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Introduction

GHap is an acronym for Genome-wide Haplotyping, and is pronounced G-Hap, not gap (although it
is intended to fill the gap of haplotype analyses). The GHap R package was originally designed to call
haplotypes from phased SNP data. Given user-defined haplotype blocks (HapBlock), the package identifies
the different haplotype alleles (HapAllele) present in the data and scores sample haplotype allele genotypes
(HapGenotype) based on copy number (i.e., 0, 1 or 2 copies). The output is conveniently formatted for
existing pipelines intended for bi-allelic markers.

The package was first described in Bioinformatics by Utsunomiya et al. (2016, doi:10.1093/bioinformatics/
btw356). Since the v2 release, the package provides functions for unsupervised and supervised detection
of ancestry tracks. The methods implemented in these functions were described in an article published in
Methods in Ecology and Evolution by Utsunomiya et al. (2020, doi:10.1111/2041-210X.13467).

In the v3 release, the source code was extensively modified for improved performance and inclusion of new
functionality for both phased and unphased SNP data, including analysis of runs of homozygosity, sampling
methods for virtual gamete mating, mixed model fitting and GWAS. Overall, the package is a comprehensive
and versatile tool for the analysis of genomic data.
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Diagram of functions

The diagram below ilustrates the overall organization of the functions within the GHap package. Arrows
indicate analysis flow and colors encode analysis context.

Figure 1: Diagram of functions within the package
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Tutorial 1 - Data formats

There are three different input data formats that GHap recognizes: binary PLINK files (bed/bim/fam),
binary phase files (phaseb/markers/samples) and binary haplo files (hapgenotypesb/hapalleles/hapsamples).
These formats represent unphased, phased and haplotype calls data, respectively. Example data for the first
two formats can be obtained as following:

# Load GHap
library(GHap)

# Copy example data in phase format
exfiles <- ghap.makefile(dataset = "example",

format = "phase", verbose = TRUE)
file.copy(from = exfiles, to = "./")

# Copy example data in plink format
exfiles <- ghap.makefile(dataset = "example",

format = "plink", verbose = TRUE)
file.copy(from = exfiles, to = "./")

The binary haplo format results from performing haplotype calling on phased data, which is illustrated in the
“Haplotyping” tutorial. The example data set was simulated using the QMSim v1.10 software (Sargolzaei &
Schenkel, 2009) and contains 450 individuals genotyped for 15,000 markers. These markers were randomly
distributed along 10 chromosomes of 100 Mbp each (i.e., 1,500 markers per chromosome). Two divergent
lineages were created, namely ‘Pure1’ (n = 300) and ‘Pure2’ (n = 100), and gene flow between these two
lineages was allowed to produce low levels of admixture. An additional set of 50 crossbred individuals
was also included. By using format = ‘meta’, metadata including pedigree and phenotypes for the ‘Pure1’
population can be downloaded. The pedigree contains 700 records, spanning 5 generations. The records in
the phenotypes file are unbalanced repeated measurements (1 to 5 records per individual, with an average
of 3) of a trait with heritability of 0.4, repeatability of 0.2, and a major QTL located on chromosome 3.

# Copy example metadata
exfiles <- ghap.makefile(dataset = "example",

format = "meta", verbose = TRUE)
file.copy(from = exfiles, to = "./")

Other example data sets are also available, which can be seen by running:

# See list of example files
exlist <- ghap.exfiles()
View(exlist)
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Before the v2 release, the native GHap input file was composed of three files with suffix:

.samples = space-delimited file without header containing two mandatory columns: Population and ID.
Please notice that the Population column serves solely for the purpose of grouping samples, so the user can
define any arbitrary family/cluster/subgroup and use as a “population” tag. This file may further contain
three additional columns, which are optional: Sire, Dam and Sex (with code 1 = M and 2 = F). Values “0”
and “NA” in these additional columns are treated as missing values.

.markers = space-delimited file without header containing five mandatory columns: Chromosome, Marker,
Position (in bp), Reference Allele (A0) and Alternative Allele (A1). Markers should be sorted by chromo-
some and position. Repeated positions are tolerated, but the user is warned of their presence in the data.
Optionally, the user may provide a file containing an additional column with genetic positions (in cM), which
has to be placed between the base pair position and the reference allele columns.

.phase = space-delimited file without header containing the phased genotype matrix. The dimension of the
matrix is expected to be m x 2n, where m is the number of markers and n is the number of individuals (i.e.,
two columns per individual, representing the two phased chromosome alleles). Alleles must be coded as 0 or
1. No missing values are allowed, since imputation is assumed to be part of the phasing procedure.

See below an example using the Human HapMap3 chromosome 2 data. Five individuals from the ASW
population with phased genotypes for five markers are displayed:

======================================================================
| .samples file | .markers file | .phase file |
======================================================================
| ASW NA19904 | 2 rs13383216 18228 A G | 1 1 1 1 1 1 1 1 1 1 |
| ASW NA20340 | 2 rs13386087 24503 G T | 0 0 0 0 0 0 0 0 0 0 |
| ASW NA20297 | 2 rs10179984 33092 A G | 1 0 1 0 0 0 0 0 1 1 |
| ASW NA20281 | 2 rs300761 60074 A G | 0 1 0 0 1 1 0 1 0 1 |
| ASW NA20348 | 2 rs6749571 72820 C G | 0 0 0 0 0 0 0 1 0 0 |
======================================================================

This format can be obtained from Oxford HAPS/SAMPLE files with the ghap.oxford2phase function, from
fastPHASE v1.4.0 files with the ghap.fast2phase function, or from VCF files with the ghap.vcf2phase
function. Since v2 GHap requires the .phase file to be converted into a binary file with suffix .phaseb with
the ghap.compress function prior to loading in R. Each allele is stored as a bit in that file. Bits for any
given marker are arranged in a sequence of bytes. Since each marker requires storage of 2*nsamples bits,
the number of bytes consumed by a single marker in the output file is ceiling(2*nsamples). If the number of
alleles is not a multiple of 8, bits in the remainder of the last byte are filled with 0. All functions in GHap
were carefully designed to decode the bytes of a marker in such a way that trailing bits are ignored if present.
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If the user has phased data in the VCF format for example, the non-binary phase files can be obtained as:

# Copy the example VCF data
exfiles <- ghap.makefile(dataset = "example",

format = "vcf",
verbose = TRUE)

file.copy(from = exfiles, to = "./")

# Convert from a single genome-wide file
ghap.vcf2phase(input.files = "example",

out.file = "example")

# Convert from a list of chromosome files
ghap.vcf2phase(input.files = paste0("example_chr",1:10),

out.file = "example")

# Convert using separate lists for file extensions
ghap.vcf2phase(vcf.files = paste0("example_chr",1:10,".vcf"),

sample.files = paste0("example_chr",1:10,".sample"),
out.file = "example")

Similarly, Oxford HAPS/SAMPLE files can be converted to non-binary phase as:

# Copy the example Oxford data
exfiles <- ghap.makefile(dataset = "example",

format = "oxford",
verbose = TRUE)

file.copy(from = exfiles, to = "./")

# Convert from a single genome-wide file
ghap.oxford2phase(input.files = "example",

out.file = "example")

# Convert from a list of chromosome files
ghap.oxford2phase(input.files = paste0("example_chr",1:10),

out.file = "example")

# Convert using separate lists for file extensions
ghap.oxford2phase(haps.files = paste0("example_chr",1:10,".haps"),

sample.files = paste0("example_chr",1:10,".sample"),
out.file = "example")

# A more efficient alternative for *nix system users
# Note: replace "cat" by "zcat" if files are gzipped
haps.files = paste("example_chr",1:10,".haps",sep="")
command <- "tail -n+3 example_chr1.sample | cut -d' ' -f1,2 > example.samples"
system(command)
for(i in 1:10){

command <- paste("cat",haps.files[i],"| cut -d' ' -f1-5 >> example.markers")
system(command)
command <- paste("cat",haps.files[i],"| cut -d' ' -f1-5 --complement >> example.phase")
system(command)

}
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Once the non-binary phase data (phaseb/markers/samples) has been generated, the binary phase format
can be obtained as follows:

# Compress phase data using prefix
ghap.compress(input.file = "example",

out.file = "example")

# Compress phase data using file names
ghap.compress(samples.file = "example.samples",

markers.file = "example.markers",
phase.file = "example.phase",
out.file = "example")
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Tutorial 2 - Manipulating phased objects

The ghap.loadphase() function is responsible for loading phased chromosomes from an input file and
converting them into a native GHap.phase object. A detailed describtion of this object can be found in
the documentation of the function. To load the example data in the package we can run:

# Load data using prefix
phase <- ghap.loadphase(input.file = "example")

# Load data using file names
phase <- ghap.loadphase(samples.file = "example.samples",

markers.file = "example.markers",
phaseb.file = "example.phaseb")

The ghap.subset() function can take any combination of markers and individuals and subset the
GHap.phase object. This is achieved by setting undesired markers and individuals to FALSE. Inactivated
individuals and markers are then ignored by all other functions taking a GHap.phase object as input.

For instance, we know that markers with low polymorphic information content may result in rare HapAlleles
during haplotype calling. If downstream analyses do not benefit from rare HapAlleles (e.g., haplotype
association), it may be advantageous to prune these markers out prior to haplotyping. The code below
shows how to subset markers with a minor allele frequency of at least 5% in a specific population:

# Subset individuals from population 'Pure1'
pure1 <- unique(phase$id[which(phase$pop == "Pure1")])
phase <- ghap.subset(object = phase, ids = pure1,

variants = phase$marker)

# Calculate allele frequencies for population 'Pure1'
freq <- ghap.freq(phase, type = 'maf')

# Subset markers with MAF > 0.05 in population 'Pure1'
mkr <- names(freq)[which(freq > 0.05)]
phase <- ghap.subset(object = phase, ids = pure1,

variants = mkr)

To undo the subsetting and restore samples and markers, one can simply run:

# Reactivate all samples and markers
phase <- ghap.subset(object = phase, ids = unique(phase$id),

variants = phase$marker)
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It is convenient in some analyses and data exploration to be able to quickly get specific slices of the data
and import them as matrices in R. For example, say one wants to import data from 5 individuals and 10
markers:

# Select random individuals and markers
ind <- sample(x = unique(phase$id), size = 5)
mkr <- sample(x = phase$marker, size = 10)

# Generate slice of the data
ghap.slice(object = phase, ids = ind, variants = mkr)

# Import as unphased data
ghap.slice(object = phase, ids = ind, variants = mkr,

unphase = TRUE)

# Return transposed matrix
ghap.slice(object = phase, ids = ind, variants = mkr,

unphase = TRUE, transposed = TRUE)

# Display data as non-sparse matrix
ghap.slice(object = phase, ids = ind, variants = mkr,

unphase = TRUE, transposed = TRUE,
sparse = FALSE)

It is also possible to convert the phase object into PLINK binary files (bed/bim/fam), albeit this procedure
will cause loss of phase information during conversion:

# Convert from phase to plink
ghap.phase2plink(object = phase, out.file = "example")
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Tutorial 3 - Manipulating plink objects

Manipulation of plink objects work very similar to phase objects in GHap. For example, a similar subsetting
procedure looks like this:

# Load plink data
plink <- ghap.loadplink("example")

# Subset individuals from population 'Pure1'
pure1 <- plink$id[which(plink$pop == "Pure1")]
plink <- ghap.subset(object = plink, ids = pure1,

variants = plink$marker)

# Calculate allele frequencies for population 'Pure1'
freq <- ghap.freq(plink, type = 'maf')

# Subset markers with MAF > 0.05 in population 'Pure1'
mkr <- names(freq)[which(freq > 0.05)]
plink <- ghap.subset(object = plink, ids = pure1,

variants = mkr)

likewise, slicing a plink object is straightforward:

# Select random individuals and markers
ind <- sample(x = plink$id, size = 5)
mkr <- sample(x = plink$marker, size = 10)

# Generate slice of the data
ghap.slice(object = plink, ids = ind, variants = mkr)

# Return transposed matrix
ghap.slice(object = plink, ids = ind, variants = mkr,

transposed = TRUE)

# Display data as non-sparse matrix
ghap.slice(object = plink, ids = ind, variants = mkr,

transposed = TRUE, sparse = FALSE)

# Replace missing values with homozygous A0
ghap.slice(object = plink, ids = ind, variants = mkr,

transposed = TRUE, sparse = FALSE,
impute = TRUE)
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Tutorial 4 - Haplotyping

In principle, the user can provide the coordinates of any arbitrary haplotype block (HapBlock). In GHap,
we provide means to generate coordinates for HapBlocks based on sliding windows of markers. This strategy
is particularly useful in genome-wide scans.

# Generate blocks of 5 markers sliding 5 markers at a time
blocks.mkr <- ghap.blockgen(phase, windowsize = 5, slide = 5, unit = "marker")

# Generate blocks of 100 kb sliding 100 kb at a time
blocks.kb <- ghap.blockgen(phase, windowsize = 100, slide = 100, unit = "kbp")

By default all blocks are constrained to a minimum of two markers. This behavior can be adjusted by setting
the nsnp argument to a different value. The extent of overlap between consecutive blocks can be controlled
via the slide argument, depending on how fine the user wishes the genome-wide scan to be. Once HapBlocks
have been defined, haplotype genotypes (HapGenotypes) can be determined:

# Generate matrix of haplotype genotypes
ghap.haplotyping(object = phase, blocks = blocks.mkr,

outfile = "example", binary = TRUE)

By default all HapAlleles are included in the output. If intended, the user can exclude the minor HapAllele
by setting the drop.minor argument to TRUE. Additionally, the freq argument allows for exclusion of
HapAlleles outside of a specified frequency range. Control of memory usage and process parallelization is
achieved through the arguments batchsize and ncores.

The haplotyping algorithm works as follows: Let a haplotype library (HapLibrary) be the collection of
observed HapAlleles for a given HapBlock. Each HapAllele in the library is treated as a pseudo-marker, and
HapGenotypes are scored as 0, 1 or 2 HapAllele copies. Take the Human HapMap3 chromosome 2 data as
an example:

======================================================================
| .samples file | .markers file | .phase file |
======================================================================
| ASW NA19904 | 2 rs13383216 18228 A G | 1 1 1 1 1 1 1 1 1 1 |
| ASW NA20340 | 2 rs13386087 24503 G T | 0 0 0 0 0 0 0 0 0 0 |
| ASW NA20297 | 2 rs10179984 33092 A G | 1 0 1 0 0 0 0 0 1 1 |
| ASW NA20281 | 2 rs300761 60074 A G | 0 1 0 0 1 1 0 1 0 1 |
| ASW NA20348 | 2 rs6749571 72820 C G | 0 0 0 0 0 0 0 1 0 0 |
======================================================================

Let’s assume the user wishes to call haplotypes for the first three markers. First, we crop the matrix at the
selected markers (for the sake of clarity, we will transpose the matrix and represent subjects in rows and
markers in columns):
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POP ID rs13383216 rs13386087 rs10179984
ASW NA19904 1 0 1
ASW NA19904 1 0 0
ASW NA20340 1 0 1
ASW NA20340 1 0 0
ASW NA20297 1 0 0
ASW NA20297 1 0 0
ASW NA20281 1 0 0
ASW NA20281 1 0 0
ASW NA20348 1 0 1
ASW NA20348 1 0 1

The HapLibrary is created based on the unique HapAlleles:

HapAllele1: 101 (GGG)
HapAllele2: 100 (GGA)

Then, for each HapAllele, individual HapGenotypes are scored based on the number of copies:

POP ID GGG GGA
ASW NA19904 1 1
ASW NA20340 1 1
ASW NA20297 0 2
ASW NA20281 0 2
ASW NA20348 2 0

The procedure is then repeated for each HapBlock. The haplotyping function generates the following files:

.hapsamples: space-delimited file without header containing two columns: Population and Individual ID.

.hapalleles: space-delimited file without header containing five columns: Block Name, Chromosome, Start
and End Position (in bp), and HapAllele.

.hapgenotypes: if binary = FALSE, a space-delimited file without header containing the HapGenotype
matrix (coded as 0, 1 or 2 copies of the HapAllele). The dimension of the matrix is m x n, where m is the
number of HapAlleles and n is the number of individuals.

.hapgenotypesb: if binary = TRUE (default), the same matrix as described above compressed into bits.
For seamless compatibility with softwares that use PLINK binary files (bed/bim/fam), the compression is
performed using the SNP-major bed format.

The example below was extracted from the first two HapBlocks for the Human HapMap3 data, using a
random draw of 3,000 markers:

==============================================================================================
| .hapsamples file | .hapalleles file | .hapgenotypes file |
==============================================================================================
| ASW NA19904 | CHR2_B4 2 1009753 2462617 CCAATGTGGG | 0 0 0 0 0 |
| ASW NA20340 | CHR2_B6 2 2511429 3071611 CCACACCAAT | 0 0 0 0 0 |
| ASW NA20297 | CHR2_B6 2 2511429 3071611 CCACACCGAT | 0 0 0 0 0 |
| ASW NA20281 | CHR2_B6 2 2511429 3071611 CTACACCAAT | 0 0 1 0 0 |
| ASW NA20348 | CHR2_B6 2 2511429 3071611 CTACACCGAT | 0 0 1 0 0 |
==============================================================================================
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Tutorial 5 - Manipulating haplo objects

After HapAlleles have been scored, the data can be loaded into R using the ghap.loadhaplo() function:

# Load haplotype genotypes using prefix
haplo <- ghap.loadhaplo("example")

# Load haplotype genotypes using file names
haplo <- ghap.loadhaplo(hapsamples.file = "example.hapsamples",

hapalleles.file = "example.hapalleles",
hapgenotypesb.file = "example.hapgenotypesb")

Similar to the phase and plink objects, the user can also subset haplo objects. For instance:

# Randomly select 50 individuals
ind <- sample(x = haplo$id, size = 50, replace = FALSE)

# Subset data
haplo <- ghap.subset(object = haplo, ids = ind,

variants = which(haplo$allele.in),
index = TRUE)

# Restore selection of the entire data
haplo <- ghap.subset(object = haplo,

ids = 1:haplo$nsamples,
variants = 1:haplo$nalleles,
index = TRUE)

To obtain a slice of specific individuals and HapAlleles, one can run:

# Generate slice of the data
ghap.slice(object = phase, ids = 1:5,

variants = 1:10, index = TRUE)

# Return transposed matrix
ghap.slice(object = phase, ids = 1:5,

variants = 1:10, index = TRUE
transposed = TRUE)

To convert the haplo object into a PLINK binary file, use:

# Convert to plink
ghap.hap2plink(haplo, outfile = "example")
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Tutorial 6 - Haplotype statistics

For each HapAllele, the ghap.hapstats function retrieves absolute and relative frequencies, expected and
observed number of homozygotes, and different tests for deficit of homozygotes in comparison to Hardy-
Weinberg Equilibrium (HWE) expectations.

# Subset
ids <- which(haplo$pop == "Pure1")
haplo <- ghap.subset(haplo, ids = ids,

variants = which(haplo$allele.in),
index = TRUE)

# Compute haplotype statistics
hapstats <- ghap.hapstats(haplo)

The function also assigns a TYPE category to each HapAllele:

“ABSENT” = the frequency of the allele is 0;

“SINGLETON” = unique haplotype of its block with frequency 1 (i.e., monomorphic block);

“MINOR” = the least frequent haplotype of its block (in the case of ties, only the first haplotype is marked);

“MAJOR” = the most frequent hapotype of its block (ties are also resolved by marking the first haplotype);

“REGULAR” = the haplotype does not fall into any of the previous categories.

Categories “SINGLETON”, “MINOR” and “MAJOR” only apply to blocks where frequencies sum to 1. The
ghap.blockstats function summarizes HapAllele statistics per block and retrieves the expected heterozy-
gosity and the number of alleles per HapBlock. For instance:

# Compute block statistics
blockstats <- ghap.blockstats(hapstats)

Notice that calculation of expected heterozygosity will not be reliable when HapAlleles are prunned out by
frequency during haplotyping. Therefore, the function will return NA for blocks where HapAllele frequencies
do not sum to unity. Also, when the dataset contains multiple populations and the statistics are computed
in the overall data, the expected heterozygosity and the number of alleles will be very high.

The tests for deficit of homozygotes in comparison to HWE are computed as follows. Relative to HapAllele
i, let pi, hi and n represent the relative frequency, the number of homozygotes, and the number of subjects,
respectively. Also, let Si be some test statistic or score for the HapAllele, representing the goodness-of-fit of
hi to HWE expectations. The ghap.hapstats() function computes three candidate methods for Si:

Method 1. The number of homozygotes for haplotype i is expected to be E[hi] = np2
i under HWE. Pro-

vided we observed O[hi] homozygotes, deviations from HWE expectations can be expressed in terms of the
expected-to-observed ratio:

Si = E[hi] + α1

O[hi] + α2

where α1 and α2 are shrinkage parameters. The purpose of the shrinkage parameters is to regularize the
scores towards a ratio of α1

α2
, being particularly useful in cases where the number of observed homozygotes

is close to zero. As the null ratio value is 1 (i.e., expected and observed counts are equal), a reasonable
choice of shrinkage parameters is α1 = α2 = 1 (the default in GHap), which in practice introduces a bias
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equivalent to that of one additional expected and one additional observed homozygote. For a more detailed
review on shrinkage expected-to-observed (or observed-to-expected) ratio, see Norén et al. (2013).
Method 2. Under the null hypothesis of HWE, hi ∼ Binomial(n, p2

i ), with E[hi] = np2
i and V AR[hi] =

np2
i (1 − p2

i ). Therefore, the probability of observing hi or less homozygotes given the haplotype is in HWE
is:

Pr(X ≤ hi) =
∑
j≤hi

(
n

j

)
p2j

i (1 − p2
i )n−j

where X is a random draw from the Binomial distribution.
Method 3. Provided n is large, hi ∼ Poisson(λi), where λi = E[hi] = V AR[hi] = np2

i . This leads to
probability:

Pr(X ≤ hi) = e−λi

∑
j≤hi

λj
i

j!

Note that the variance in the Binomial model is smaller than in the Poisson model, which in practice results
in more conservative probabilities in the latter case. GHap also provides means for the analysis of haplotype
divergence. For example, to perform a FST analysis contrasting the ‘Pure1’ and ‘Pure2’ populations, one
can run:

# Compute block statistics for population 1
ids <- which(haplo$pop == "Pure1")
haplo <- ghap.subset(haplo, ids = ids,

variants = which(haplo$allele.in),
index = TRUE)

hapstats1 <- ghap.hapstats(haplo)
blockstats1 <- ghap.blockstats(hapstats1)

# Compute block statistics for population 2
ids <- which(haplo$pop == "Pure2")
haplo <- ghap.subset(haplo, ids = ids,

variants = which(haplo$allele.in),
index = TRUE)

hapstats2 <- ghap.hapstats(haplo)
blockstats2 <- ghap.blockstats(hapstats2)

# Compute block statistics for combined populations
ids <- which(haplo$pop %in% c("Pure1","Pure2"))
haplo <- ghap.subset(haplo, ids = ids,

variants = which(haplo$allele.in),
index = TRUE)

hapstats12 <- ghap.hapstats(haplo)
blockstats12 <- ghap.blockstats(hapstats12)

# Compute FST
fst <- ghap.fst(blockstats1, blockstats2, blockstats12)
ghap.manhattan(data = fst, chr = "CHR", bp = "BP1",

y = "FST", type = "h")

Ideally, similar to the case of HapAllele and HapBlock statistics, the FST analysis should be carried out on
the full set of HapAlleles, rather than a frequency-prunned subset. Haplotype-based FST calculations are
based on the multi-allelic formula (Nei, 1973):

16



FST = (HT − HS)/HT

where HT is the total gene diversity (i.e., expected heterozygosity in the population) and HS is the sub-
population gene diversity (i.e., the average expected heterozygosity in the sub-populations).
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Tutorial 7 - Ancestry analysis

The package provides three methods for the prediction of haplotype ancestry:

GHap Unsupervised. This method does not require a reference sample. It is based on a combination of
K-means and heuristics, and is divided into three steps. In the first one, a random sample of seeding markers
(default value of nmarkers = 5000) is used to group all 2*nsamples haplotypes in a user-specified number
of clusters (default value of K = 2). Then, for each interrogated block, prototype alleles (i.e., centroids) are
built for every cluster using the mean of observed haplotypes initially assigned to that cluster. Finally, each
tested haplotype is assigned to the nearest centroid (i.e., with the smallest Euclidean distance). K-means is
internally ran through the kmeans function in the stats package.

# Unsupervised GHap analysis
prototypes1 <- ghap.anctrain(object = phase, K = 2)
hapadmix1 <- ghap.anctest(object = phase,

prototypes = prototypes1,
test = unique(phase$id))

GHap Supervised. This method is similar to the ‘unsupervised’ method, only replacing the K-means
clutering step by user-defined clusters of reference samples.

# Supervised GHap analysis
train <- unique(phase$id[which(phase$pop != "Cross")])
prototypes2 <- ghap.anctrain(object = phase, train = train,

method = "supervised")
hapadmix2 <- ghap.anctest(object = phase,

prototypes = prototypes2,
test = unique(phase$id))

Support Vector Machines (SVM). This method performs predictions using Support Vector Machines
(SVM) together with a Gaussian Radial Basis Function (RBF) kernel. The user is required to specify a
reference sample of individuals with known ancestry labels. The reference sample is then used to train the
SVM model, which is parameterized by the C constant of the regularization term in the Lagrange formulation
(default cost = 1) and the gamma parameter (default gamma = 1/blocksize) of the RBF kernel. Fitting of
SVM is performed internally by the svm function from the e1071 package. Test samples have the ancestries
of their HapAlleles predicted using the fitted SVM.

# Supervised ancestry using SVM
hapadmix3 <- ghap.ancsvm(object = phase, train = train)

In all three methods, the classifiers assume exactly one ancestry per HapBlock, such that segments encom-
passing breakpoints are miss-classified as pertaining to a single ancestral origin, as opposed to a recombinant
mixture of hybrid ancestries. When any of the three methods is ran with overlapping HapBlocks, the user
should use the ghap.ancsmooth() function to convert HapAllele classifications into ancestry tracks. In this
case, the smoothing function interrogates the ancestry of each overlapped segment by majority voting of all
blocks containing it. After the ancestry of all segments have been resolved, contiguous sites sharing the same
classification are converted into runs or segments of ancestry, which comprise the final output of an ancestry
analysis.
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# Generate ancestry tracks
anctracks1 <- ghap.ancsmooth(object = phase, admix = hapadmix1)
anctracks2 <- ghap.ancsmooth(object = phase, admix = hapadmix2)
anctracks3 <- ghap.ancsmooth(object = phase, admix = hapadmix3)

# Compare ancestry proportions results
ghap.ancplot(ancsmooth = anctracks1)
ghap.ancplot(ancsmooth = anctracks2)
ghap.ancplot(ancsmooth = anctracks3)

# Compare ancestry tracks for one individual
ghap.karyoplot(ancsmooth = anctracks1, ids = phase$id[66])
ghap.karyoplot(ancsmooth = anctracks2, ids = phase$id[66])
ghap.karyoplot(ancsmooth = anctracks3, ids = phase$id[66])

It is also possible to summarize average ancestries per marker for a given group of individuals using the
ghap.ancmark function. This is useful to screen chromosomes for loci that substantially deviate from the
average ancestry across the genome.

# Compute SNP ancestries
pure1 <- phase$id[which(phase$pop == "Pure1")]
ancmark <- ghap.ancmark(phase, ancsmooth = anctracks2, ids = pure1)

# Investigate introgression of Pure2 into Pure1
ghap.manhattan(data = ancmark, chr = "CHR", bp = "BP", y = "Pure2", type="h")

Another useful feature is the possibility of exporting ancestry track data to PLINK for admixture mapping.
The ghap.anc2plink function allows the user to count the number of alleles of a given ancestry at each
marker and export a genome-wide matrix in either plain text or PLINK binary format (Purcell et al., 2007;
Chang et al., 2015). In the latter case, bed/bim/fam files are generated, where ancestry counts 0, 1 and 2
are recoded as NN, NH and HH genotypes (N = NULL and H = haplotype allele), as if ancestry statuses
were bi-alelic markers. This coding scheme is acceptable for any given analysis relying on genotype counts,
as long as the user specifies that the analysis should be done using character H as the reference for counts.

# Export crossbred data to PLINK binary
cross <- unique(phase$id[which(phase$pop == "Cross")])
phase <- ghap.subset(object = phase,

ids = cross,
variants = phase$marker)

ghap.anc2plink(object = phase, ancsmooth = anctracks2,
ancestry = "K1", outfile = "cross_K1")
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Tutorial 8 - Identity-by-descent analysis

The ghap.ibd() function implements PLINK’s method-of-moments for identity-by-descent (IBD) estima-
tion. Although not as efficient as PLINK’s implementation, our function allows the user to restrict calcu-
lations to specific individual pairs, as well as ground all computations on allele frequencies obtained from
a reference population. This is useful for routine pedigree confirmation, since a smaller set of indviduals
and comparisons are typically targeted in these situations. The original --genome flag in PLINK not only
performs all possible comparisons given a set of individuals, but also estimates allele frequencies on-the-fly,
which may be unreliable if the number of individuals is small. We still recommend using PLINK for large
problems, such as all pairwise comparisons from thousands of individuals, because it is more efficient. Nev-
ertheless, we offer a more convenient alternative for the validation of smaller pedigrees in routine analyses
where a look up table of allele frequencies is available and maintained from a large reference population.
Below we present an example of an IBD analysis targeting one individuals:

# Subset individuals from the pure1 population
pure1 <- plink$id[which(plink$pop == "Pure1")]
plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)

# Subset markers with MAF > 0.05
freq <- ghap.freq(plink)
mkr <- names(freq)[which(freq > 0.05)]
plink <- ghap.subset(object = plink, ids = pure1, variants = mkr)

# Compute A1 allele frequencies
p <- ghap.freq(plink, type = "A1")

# Compute IBD statistics for individual 1
pairlist <- data.frame(ID1 = pure1[1], ID2 = pure1[-1])
ibd <- ghap.ibd(object = plink, pairlist = pairlist, freq = p,

refsize = length(pure1))

The resulting dataframe contains the following columns:

POP1 = Population of individual 1

ID1 = Name of individual 1

POP2 = Population of individual 2

ID2 = Name of individual 2

IBS0 = Variant sites where ID1 and ID2 share no identical alleles

IBS1 = Variant sites where ID1 and ID2 share 1 identical allele

IBS2 = Variant sites where ID1 and ID2 share 2 identical alleles

PERC = IBS2/(IBS0+IBS1+IBS2) [proportion of identical genotypes]

DST = (IBS2 + 0.5*IBS1)/(IBS0+IBS1+IBS2) [proportion of shared alleles]

Z0 = Proportion of the genome where ID1 and ID2 share no alleles IBD

Z1 = Proportion of the genome where ID1 and ID2 share 1 allele IBD

Z2 = Proportion of the genome where ID1 and ID2 share 2 alleles IBD

PI_HAT = Z2 + 0.5*Z1 (proportion of IBD alleles shared between ID1 and ID2)
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Since some relationship types will leave distinctive patterns in these values, we implemented a composite
likelihood score to predict relationships in the ghap.relfind() function:

# Predict relationships for individual 1
rel <- ghap.relfind(ibdpairs = ibd)
table(rel$REL)

Columns Z0, Z1 and Z2 are the IBD sharing estimates representing the proportions of the genome where the
two individuals being compared share exactly 0, 1 and 2 alleles identically by descent, respectively, whereas
PI_HAT is the proportion of the genome shared identically by descent. Therefore, given a relationship type,
the expectations for these estimates are provided below:

======================================================================================
| code | relationship type | PI_HAT | Z0 | Z1 | Z2 |
======================================================================================
| -1 | Duplicates/Monozygotic twins | 1.0000 | 0.000 | 0.000 | 1.000 |
| 0 | Parent-offspring* | 0.7500 | 0.000 | 0.500 | 0.500 |
| 1 | Parent-offspring | 0.5000 | 0.000 | 1.000 | 0.000 |
| 2.1 | Full-siblings | 0.5000 | 0.250 | 0.500 | 0.250 |
| 2.2 | Full-siblings* | 0.5000 | 0.500 | 0.000 | 0.500 |
| 3.1 | Half-sibs/Grandparent(child)/Avuncular* | 0.3750 | 0.375 | 0.500 | 0.125 |
| 3.2 | Half-sibs/Grandparent(child)/Avuncular | 0.2500 | 0.500 | 0.500 | 0.000 |
| 3.3 | Cousin or Half-avuncular | 0.1250 | 0.750 | 0.250 | 0.000 |
| 3.4 | Half-cousin | 0.0625 | 0.875 | 0.125 | 0.000 |
| 4 | Unrelated | 0.0000 | 1.000 | 0.000 | 0.000 |
======================================================================================

For each relationship type, the likelihood of each of the four IBD values (Z0, Z1, Z2 and PI_HAT) is
computed from a beta distribution with parameters a = µν and b = (1 − µ)ν, where µ is the expected value
according to the relationship type and ν is a hyperparameter controlling the variance around the expected
value (default ν = 50). The composite likelihood is computed by summing the log-likelihoods for the four
IBD values. The prediction is made by adopting the relationship type with the highest composite likelihood
score.

This classification strategy was inspired by the method reported by Staples et al. (2014), albeit it is a different
method. While Staples and collaborators infer relationships through Gaussian Kernel Density Estimation
using only Z0 and Z1 values, our strategy uses the composite score formed by the sum of beta log-likelihoods
for all IBD values.
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Tutorial 9 - Inbreeding analysis

The ghap.inbcoef() function provides four different measures of genomic inbreeding:

# Subset individuals from the pure1 population
pure1 <- plink$id[which(plink$pop == "Pure1")]
plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)

# Subset markers with MAF > 0.05
freq <- ghap.freq(plink)
mkr <- names(freq)[which(freq > 0.05)]
plink <- ghap.subset(object = plink, ids = pure1, variants = mkr)

# Compute A1 allele frequencies
p <- ghap.freq(plink, type = "A1")

# Compute inbreeding coefficients
ibc <- ghap.inbcoef(object = plink, freq = p)

The inbreeding measures are computed as k + s[
∑n

i=1 f(i)]/d, where k is a constant, s is a sign shifting
scalar, f(i) is a per-variant function and d is a scaling denominator. Four different measures of inbreeding
are currently available:

Type = 1 (based on genomic relationship)

k = −1

s = 1

f(i) = (m − 2p)2/2p(1 − p)

d = n

Type = 2 (excess homozygosity)

k = 1

s = −1

f(i) = m(2 − m)/2p(1 − p)

d = n

Type = 3 (correlation between uniting gametes)

k = 0

s = 1

f(i) = [m2 − (1 + 2p) + 2p2]/2p(1 − p)

d = n

Type = 4 (method-of-moments)

k = 1

s = −1

f(i) = het(m)

d =
∑

2p(1 − p)

In the expressions above, m is the genotype coded as 0, 1 or 2 copies of A1, p is the frequency of A1, n is
the number of variants (only non-monomorphic ones are considered), and het(m) is a function that retrieves
1 if the genotype is 1 and 0 otherwise (i.e., indicator function of heterozygous genotypes).
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The package also provides functions for the analysis of inbreeding through Runs Of Homozygosity (ROHs).
The main method is based on a Hidden Markov Model (HMM) that takes genotyping error and recombination
into account while detecting ROHs. The model is similar to the ones described by Narasimhan et al (2016)
and Druet & Gautier (2017), differing slightly in the definition of transition and emission probabilities. In
GHap, emission probabilities are assumed:

Pr(mi ∈ {0, 2}|Si = H) = ϵ

Pr(mi = 1|Si = H) = 1 − ϵ

Pr(mi ∈ {0, 2}|Si = N) = p2
i + (1 − pi)2

Pr(mi = 1|Si = N) = 2pi(1 − pi)

where, relative to variant i, mi is the genotype, Si is the hidden state taking values H for ROH and N
otherwise, pi is the frequency of the counted allele and ϵ is the genotyping error. The default in the package
is to assume ϵ = 0.0025, which is a good proxy for the average genotyping error rate in SNP arrays. The
transition probabilities are defined as:

Pr(Si+1 = H|Si = H) = e−2d + (1 − e−2d)f

Pr(Si+1 = N |Si = H) = (1 − e−2d)(1 − f)

Pr(Si+1 = N |Si = N) = e−2d + (1 − e−2d)(1 − f)

Pr(Si+1 = H|Si = N) = (1 − e−2d)(1 − f)

where d is the genetic distance in Morgans between markers i and i + 1, e is Euler’s number, and f is the
proportion of the genome covered by ROH. Starting values for f can be obtained in GHap by using the
‘naive’ method, where ROH are detected simply by searching for strecthes of homozygous genotypes. The
‘naive’ method is only recommended as a first pass to obtain f for the HMM method. If the user does not
provide a genetic map, 1 cM = 1 Mbp is assumed. The HMM is fitted using the Viterbi algorithm.

# Load plink data
plink <- ghap.loadplink("example")

# Subset pure1 population
pure1 <- plink$id[which(plink$pop == "Pure1")]
plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)

# ROH via the 'naive' method
roh1 <- ghap.roh(plink, method = "naive")
froh1 <- ghap.froh(plink, roh1)

# ROH via the 'hmm' method
freq <- ghap.freq(plink, type = 'A1')
inbcoef <- froh1$FROH1; names(inbcoef) <- froh1$ID
roh2 <- ghap.roh(plink, method = "hmm", freq = freq,

inbcoef = inbcoef)
froh2 <- ghap.froh(plink, roh2)
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Another possibility for starting values of f is to use the estimator ‘Fhat3’ (correlation between uniting
gametes) from the ghap.inbcoef() function.

# 'hmm' method using Fhat3 as starting values
inbcoef <- ibc$Fhat3; names(inbcoef) <- ibc$ID
inbcoef[which(inbcoef < 0)] <- 0.01
roh3 <- ghap.roh(plink, method = "hmm", freq = freq,

inbcoef = inbcoef)
froh3 <- ghap.froh(plink, roh3)
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Tutorial 10 - Pedigree analysis

A series of summary statistics are available for pedigree data through the ghap.pedcheck() function, which
are useful for integrity checks. The input pedigree must contain columns id, sire and dam.

# Copy metadata in the current working directory
exfiles <- ghap.makefile(dataset = "example",

format = "meta",
verbose = TRUE)

file.copy(from = exfiles, to = "./")

# Load pedigree data
ped <- read.table(file = "example.pedigree", header=T)

# Descriptive statistics for the pedigree
pedstat <- ghap.pedcheck(ped[,-1])
print(pedstat$stats)

Optionally, the user can set the argument ‘depth.n.f = TRUE’ to compute pedigree-based inbreeding co-
efficients (with the assistance of the pedigreemm package), as well as equivalent complete generations
(ECG).

# Retrieve inbreeding and pedigree depth
pedstat <- ghap.pedcheck(ped[,-1], depth.n.f = TRUE)
print(pedstat$ped)
hist(pedstat$ped$f)
hist(pedstat$ped$ecg)

ECG represents the pedigree depth for a given individual, and is calculated as
∑N

i=1(1/2)Gi , where N is
the number of observed ancestors and Gi is the number of generations separating the individual from its
ancestor i.
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Tutorial 11 - Relationship matrix

A series of relationship matrices are available from the ghap.kinship() function. Let M be the n x m
matrix of genotypes, where n is the number of individuals and m is the number of variants (i.e, markers
or HapAlleles). Prior to computation, genotypes in matrix M are transformed according to the desired
relationship type. After that transformation, the relationship matrix is computed as:

K = q−1MDMT

where D = diag(dj), dj is the weight of variant j (default dj = 1), and q is a scaling factor. The ar-
gument ‘type’ controls the genotype transformation and the scaling factor, and includes the following option:

Type = 1 (General additive 1)

Genotype transformation: mj − E[mj ]

Scaling factor: tr(MDMT )−1n

Type = 2 (General additive 2)

Genotype transformation: (mj − E[mj ])/SD[mj ]

Scaling factor: m

Type = 3 (VanRaden, 2008)

Genotype transformation: mj − 2pj

Scaling factor: 2
∑m

j=1 pj(1 − pj)

Type = 4 (GCTA)

Genotype transformation: (mj − 2pj)/
√

2pj(1 − pj)

Scaling factor: m

Type = 5 (Dominance 1)

Genotype transformation:
−2p2

j , if genotype 0
2pj(1 − pj), if genotype 1
−2(1 − pj)2, if genotype 2

Scaling factor: 4
∑m

j=1 p2
j (1 − pj)2

Type = 6 (Dominance 2)

Genotype transformation:
−2p2

j , if genotype 0
2pj(1 − pj), if genotype 1
−2(1 − pj)2, if genotype 2

Scaling factor: tr(MDMT )−1n.

26



# Load plink data
plink <- ghap.loadplink("example")

# Load phenotype data
df <- read.table(file = "example.phenotypes", header=T)

# Subset pure1 population
pure1 <- plink$id[which(plink$pop == "Pure1")]
plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)

# Compute different types of relationship matrices
K1 <- ghap.kinship(plink, type = 1) # General additive 1
K2 <- ghap.kinship(plink, type = 2) # General additive 2
K3 <- ghap.kinship(plink, type = 3) # VanRaden 2008
K4 <- ghap.kinship(plink, type = 4) # GCTA GRM
K5 <- ghap.kinship(plink, type = 5) # Dominance 1
K6 <- ghap.kinship(plink, type = 6) # Dominance 2
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Tutorial 12 - Linear mixed model analysis

GHap implements linear mixed model analysis in the ghap.lmm() function. The formula describing the
model has a synthax that is consistent with lme4. The response is declared first, followed by the ‘~’ operator.
Predictors are then separated by ‘+’ operators. Currently only random intercepts are supported, which are
distinguished from fixed effects by the notation ‘(1|x)’. Covariance matrices for each random effect can be
passed to the ‘covmat’ argument. The example code below shows how to fit a GBLUP model to the data:

# Load plink data
plink <- ghap.loadplink("example")

# Load phenotype and pedigree data
df <- read.table(file = "example.phenotypes", header=T)

# Subset individuals from the pure1 population
pure1 <- plink$id[which(plink$pop == "Pure1")]
plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)

# Subset markers with MAF > 0.05
freq <- ghap.freq(plink)
mkr <- names(freq)[which(freq > 0.05)]
plink <- ghap.subset(object = plink, ids = pure1, variants = mkr)

# Compute genomic relationship matrix
# Induce sparsity to help with matrix inversion
K <- ghap.kinship(plink, sparsity = 0.01)

# Fit mixed model with variance components estimation
df$rep <- df$id
model1 <- ghap.lmm(formula = pheno ~ 1 + (1|id) + (1|rep),

data = df,
covmat = list(id = K, rep = NULL))

In the example above, the mixed model was fitted to a data set containing unbalanced repeated measurements
(1 to 5 records per individual, with an average of 3). Only an intercept was included as fixed effect, and
random effects included a genetic effect (id, with covariance K) and a permanent enviromental effect (rep,
with covariance I). Variance components were estimated using a combination of a number of starting EM-
REML iterations (default = 10) and AI-REML until convergance (default = 1e-12). Fixed and random
effects were obtained by solving mixed model equations with the pre-conditioned gradient (PCG) algorithm.
If variance components are known, the user can skip REML iterations as follows:

# Fit mixed model with fixed variance components
model2 <- ghap.lmm(formula = pheno ~ 1 + (1|id) + (1|rep),

data = df,
covmat = list(id = K, rep = NULL),
vcp.initial = list(id = 0.4, rep = 0.2, Residual = 0.4),
vcp.estimate = F)

The returned object is a rich list containing estimates and standard errors of variance components and
fixed and random effects, and fitted values and residuals conditioned on different sets of effects (only fixed,
only random or all effects). Additional outputs that can be optionally requested by the user via the ‘extras’
argument include the phenotypic (co)variance matrix (“V”) and the inverse of the coefficient matrix (“LHSi”).
The package can also be used to fit single-step GBLUP models as shown next:
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# Load plink data
plink <- ghap.loadplink("example")

# Load phenotype and pedigree data
df <- read.table(file = "example.phenotypes", header=T)
ped <- read.table(file = "example.pedigree", header=T)

# This analysis emulates a scenario of
# 100 individuals with genotypes and phenotypes
# 200 individuals with only phenotypes
# 400 individuals from pedigree with no data

# Subset 100 individuals from the pure1 population
pure1 <- plink$id[which(plink$pop == "Pure1")]
pure1 <- sample(x = pure1, size = 100)
plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)

# Subset markers with MAF > 0.05
freq <- ghap.freq(plink)
mkr <- names(freq)[which(freq > 0.05)]
plink <- ghap.subset(object = plink, ids = pure1, variants = mkr)

# Compute genomic relationship matrix
# Induce sparsity to help with matrix inversion
K <- ghap.kinship(plink, sparsity = 0.01)

# Exclude pedigree records with missing sire
ped <- ped[which(is.na(ped$sire) == FALSE),]

# Make inverse of blended pedigree/genomic matrix
ids <- unique(c(ped$id, ped$sire, ped$dam, colnames(K)))
Hinv <- ghap.getHinv(K = K, ped = ped[,-1], include = ids)

# Run single-step GBLUP
df$rep <- df$id
model3 <- ghap.lmm(formula = pheno ~ 1 + (1|id) + (1|rep),

data = df,
covmat = list(id = Hinv, rep = NULL),
invcov = TRUE)

If variance components are estimated from the data, standard errors and confidence intervals of any arbitrary
function of variance components can be approximated using the sampling-based method implemented in the
ghap.remlci() function. For example, if one wishes to estimate standard errors and confidence intervals
for the heritability, the follow code can be used:

# Compute confidence interval for heritability
h2 <- model1$vcp$Estimate[1]/sum(model1$vcp$Estimate)
h2ci <- ghap.remlci(fun = function(x){x[1]/sum(x)},

vcp = model1$vcp, ai = model1$AI)
print(h2)
print(h2ci)
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From a fitted model, it is also possible to predict random effects of both reference and test individuals. There
are two methods available for that purpose. The first applies the projection:

ûtest = Ktest,refK−1
ref,refûref

Accuracies are obtained as:

r̂test =

√
Diag(VAR[ûtest])
Diag(VAR[utest])

where:

VAR[utest] = σ̂2
uKtest,test

VAR[ûtest] = Ktest,refK−1
ref,ref[σ̂2

uKref,ref − C22]K−1
ref,refKref,test

The example below illustrates how to perform that projection in GHap:

# Define reference and test samples
set.seed(12345)
pure1 <- plink$id[which(plink$pop == "Pure1")]
test <- sample(x = pure1, size = 10)
ref <- pure1[which(pure1 %in% test == FALSE)]
plink <- ghap.subset(object = plink, ids = ref, variants = plink$marker)

# Subset markers with MAF > 0.05 in the reference
freq <- ghap.freq(plink)
mkr <- names(freq)[which(freq > 0.05)]
plink <- ghap.subset(object = plink, ids = pure1, variants = mkr)

# Fit mixed model using reference
df$rep <- df$id
model4 <- ghap.lmm(formula = pheno ~ 1 + (1|id) + (1|rep),

data = df[which(df$id %in% ref),],
covmat = list(id = K[ref,ref], rep = NULL),
extras = "LHSi")

refblup <- model4$random$id$Estimate
names(refblup) <- rownames(model4$random$id)

# Predict blup of test
blup <- ghap.predictblup(refblup, vcp = model4$vcp$Estimate[1],

covmat = as.matrix(K),
errormat = model4$extras$LHSi,
errorname = "id")

# Compare predictions
cor(blup[test,"Estimate"], model1$random$id[test,"Estimate"])
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Another possibility to project breeding values of test samples is to convert random effects of individuals into
random effects of variants using:

α̂ = q−1DMT
refK−1

ref,refûref

and then predicting breeding values in a test sample as:

ûtest = Mtestα̂

The example below shows how to do it in GHap:

# Convert blup of individuals into blup of variants
mkrblup <- ghap.varblup(object = plink, gebv = refblup,

covmat = K[ref,ref], vcp = model4$vcp$Estimate[1],
errormat = model4$extras$LHSi, errorname = "id")

# Build EBVs from variant effects and compare predictions
blup <- ghap.profile(object = plink, score = mkrblup)
rownames(blup) <- blup$ID
cor(blup[test,"SCORE"], model1$random$id[test,"Estimate"])
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Tutorial 13 - Association analysis

The ghap.assoc() implements methods for Genome-Wide Association Studies (GWAS). The example below
shows how to perform GWAS in GHap:

# Load plink data
plink <- ghap.loadplink("example")

# Load phenotype data
df <- read.table(file = "example.phenotypes", header=T)

# Subset individuals from the pure1 population
pure1 <- plink$id[which(plink$pop == "Pure1")]
plink <- ghap.subset(object = plink, ids = pure1, variants = plink$marker)

# Subset markers with MAF > 0.05
freq <- ghap.freq(plink)
mkr <- names(freq)[which(freq > 0.05)]
plink <- ghap.subset(object = plink, ids = pure1, variants = mkr)

# Compute genomic relationship matrix
# Induce sparsity to help with matrix inversion
K <- ghap.kinship(plink, sparsity = 0.01)

# Perform GWAS on repeated measures
# Use grammar-gama approximation
# Recalibrate top 1 percent variants
df$rep <- df$id
gwas1 <- ghap.assoc(object = plink,

formula = pheno ~ 1 + (1|id) + (1|rep),
data = df,
covmat = list(id = K, rep = NULL),
ngamma = 100, nlambda = 1000, recalibrate = 0.01)

ghap.manhattan(data = gwas1, chr = "CHR", bp = "BP", y = "LOGP")

# GWAS with no approximaion (slow)
gwas2 <- ghap.assoc(object = plink,

formula = pheno ~ 1 + (1|id) + (1|rep),
data = df,
covmat = list(id = K, rep = NULL),
ngamma = 0, nlambda = 1000)

ghap.manhattan(data = gwas2, chr = "CHR", bp = "BP", y = "LOGP")

# Correlation between methods
cor(gwas1$LOGP, gwas2$LOGP)
plot(gwas1$LOGP, gwas2$LOGP); abline(0,1)
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A standard GWAS analysis starts by fitting a mixed model including a genomic or pedigree relationship
matrix to obtain solutions for fixed effects and the phenotypic (co)variance matrix. Then, for each tested
variant, generalized least squares equations are solved:

α̂j =
mT

j V̂−1(y − Xb̂)
mT

j V̂−1mj

SE[α̂j ] = 1√
mT

j V̂−1mj

where relative to variant i, mj is the vector of genotypes centered on its mean, α̂j is the allele substitution
effect, V̂ is the phenotypic (co)variance matrix estimated in the mixed model, y is the vector of phenotypes,
b̂ is the vector of fixed effects estimated in the mixed model and X is a matrix relating fixed effects to
phenotypes. Repeated measurements are easily accommodated by inflating vector mj to repeat genotypes
of individuals with multiple phenotypes. The test statistic is then computed as:

t2
j =

(
α̂j

SE[α̂j ]

)2

Under the null hypothesis of no association between genotypes and phenotypes, t2
j follows a χ2 distribution

with 1 degree of freedom. To avoid the computational burden of calculating V̂−1mj for each marker, the
GRAMMAR-GAMMA approximation is used as default in GHap. That approximation consists of randomly
sampling a number k of variants to compute:

γj =
mT

j V̂−1mj

mT
j mj

γ̂ =
k∑

j=1
γj

the parameter γ̂ is then used to approximate α̂j and SE[α̂j ] as:

α̂j ≈
mT

j y∗

mT
j mj γ̂

SE[α̂j ] ≈ 1√
mT

j mj γ̂

where y∗ = V̂−1(y − Xb̂). The GRAMMAR-GAMMA procedure reduces computations to least squares
complexity, and is therefore much faster than traditional GWAS. By default, γ̂ is estimated using 100 markers,
but that can be increased via the argument ‘ngamma’. The 1% top scoring markers are re-calibrated using
the full generalized least squares equations. The proportion of variants undergoing re-calibration can be
controlled using the ‘recalibrate’ argument.
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Instead of treating variants as fixed effects in generalized least squares equations, GWAS can also be per-
formed directly on the conversion of random effects of individuals into random effects of variants in the
mixed model analysis, as shown in the Linear mixed model analysis tutorial. After fitting the mixed
model, random allele substitution effects and their sampling variance are obtained as:

α̂ = q−1DMT K−1û

VAR[α̂] = Diag
(

q−1DMT K−1[σ̂2
uK − C22]K−1MDq−1

)
To avoid expensive matrix operations, the calculations are broken down for each marker j separately as:

α̂j = q−1djmT
j û∗

VAR[α̂j ] = q−2d2
jmT

j Bmj

where dj is the marker weight, û∗ = K−1û and B = K−1[σ̂2
uK − C22]K−1. Since shrinkage acts propor-

tionally on the estimate and the sampling variance of random effects, p-values computed using this linear
transformation should be equivalent to those obtained with standard GWAS (Duarte et. al., 2014).

# Fit mixed model
model <- ghap.lmm(formula = pheno ~ 1 + (1|id) + (1|rep),

data = df,
covmat = list(id = K, rep = NULL),
extras = "LHSi")

refblup <- model$random$id$Estimate
names(refblup) <- rownames(model$random$id)

# Convert blup of individuals into blup of variants
gwas3 <- ghap.varblup(object = plink, gebv = refblup,

covmat = K, vcp = model$vcp$Estimate[1],
errormat = model$extras$LHSi, errorname = "id")

ghap.manhattan(data = gwas3, chr = "CHR", bp = "BP", y = "LOGP")
plot(gwas3$LOGP, gwas3$LOGP); abline(0,1)
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Tutorial 14 - Replacing variants by haplotypes in mixed models

Consider a multi-allelic locus and let alleles 1, 2, . . . , h be ordered with frequencies p =
[
p1 p2 ... ph

]′
(from lowest to highest). Following Falconer and Mackay (1996), the genotypic value associated with the
locus genotype can be decomposed into:

g = µ + u + δ

where µ, u and δ are the genotypic mean, the breeding value (BV) and the dominance deviation, respectively.
Here we will focus only on the BV, such that the dominance deviation will be treated as a residual effect.
Assuming Hardy-Weinberg Equilibrium (HWE), the BV can be partitioned into allelic effects (Da, 2015):

ui =
∑
j ̸=i

pjαij

where αij is the average effect of substituting allele i by allele j. It follows that αii = 0 and αij = −αji,
such that there are only h − 1 independent substitution effects to consider, which can be expressed as the
effects of replacing a reference allele by any other in the same locus. Da (2015) proposed setting the most
frequent allele as the reference. However, since the choice is arbitrary and do not affect the resulting BV,
we will consider at first the least frequent allele (i.e., allele 1) as the reference instead for later convenience.
In this setting, the BV can be expressed as:

uij =
h∑

k=2
mij,kα1k

where mij,k is a scalar taking values:

−(0 − 2pk), for i, j ̸= k

−(1 − 2pk), for i ̸= j but i = k or j = k

−(2 − 2pk), for i = j = k

So far all substitution effects α1k are expressed in the direction of allele 1. However, we wish to derive
substitution effects in the direction of each allele by treating them as the reference, and use allele 1 as the
basis for contrasts. Since we established that α1k = −αk1, we can re-write the BV as:

uij =
h∑

k=2
−mij,kαk1

where −mij,k is a scalar taking values:

0 − 2pk, for 0 copies of allele k

1 − 2pk, for 0 copies of allele k

2 − 2pk, for 0 copies of allele k
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Since the 2pk term represents the mean allele count when HWE is assumed, an alternative coding not
requiring HWE is obtained from replacing 2pk by the sample mean. If the locus is bi-allelic, the allele coding
collapses to the genotype coding used for SNP markers. In fact, SNP-based regression is revealed here as a
special case of haplotype-based regression, where HapBlocks are bi-allelic and of size 1 bp. This coding also
reveals that regression on HapAlleles is in fact equivalent to fitting haplotypes as pseudo bi-allelic markers,
provided that an arbitrary HapAllele (in this case the minor HapAllele) has been discarded (i.e., set as the
basis for contrasts). Without loss of generality, rare and nearly fixed HapAlleles can also be discarded in
order to reduce the number of predictors, procedure that is analogous to exclusion of SNPs by minor allele
frequency in SNP-based regression.
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Tutorial 15 - Simulations

GHap provides three simulation functions. The first one, namely ghap.simmating(), was designed for
Monte Carlo sampling of progeny from candidate parents to approximate the probability distribution of
measures of interest (e.g., progeny distribution of breeding values, inbreeding coefficients and ancestry).
The function can be used to support both mating optimization based on genomic information and complex
simulation scenarios to evaluate the consequences of different breeding strategies.

Given a list of candidate parents, the ghap.simmating() function samples sire i with probability pi and
dam j with probability pj (these probabilities should be provided by the user, otherwise matings will occur
at random). Once sire and dam are sampled, gametes are simulated by creating recombinant parental
haplotypes. The progeny is then obtained by uniting the simulated gametes. If only a specific mating is
targeted, the user can also provide a single sire id and a single dam id.

The default model in the function (“proportional”) assumes that the number of recombinations per meiosis
across all chromosomes follows a Poisson distribution with mean equal to nchr (the number of chromosome
pairs), such that the number of recombinations for a given chromosome is sampled from a Poisson distribu-
tion with mean prop*nchr, where prop is the proportion of the genome size covered by that chromosome.
Therefore, this option takes chromosome size in consideration while sampling the number of recombination
events. In option “uniform”, the number of recombinations is sampled from a Poisson distribution with
mean 1 for each chromosome instead. Alternatively, the model argument can also take a named vector
of chromosome-specific recombination rates in cM/Mbp. In this option, the number of recombinations for
a given chromosome is sampled from a Poisson distribution with mean chrsize*chrrate/100, where chrsize
is the size of the chromosome in Mbp and chrrate is the recombination rate in cM/Mbp. A last option is
offered where the model argument is a named vector of marker-specific recombination rates in cM/Mbp. The
number of recombinations for a given chromosome is also sampled from a Poisson distribution with mean
chrsize*chrrate/100, but with chrrate calculated as the average across markers within the same chromosome.
In this model, instead of placing the recombination breakpoint randomly within a chromosome for each
gamete, marker-specific recombination rates are taken into account, making regions in the chromosome with
higher recombination rates more susceptible to breaks.

# Load phase data
phase <- ghap.loadphase("example")

# Simulation using only two specific parents
parent1 <- phase$id[1]
parent2 <- phase$id[3]
ghap.simmating(phase, n.individuals = 100,

parent1 = parent1, parent2 = parent2,
out.file = "sim1", ncores = 1)

# Simulation using candidates with unequal probabilities
parent1 <- c(0.5,0.25,0.25)
names(parent1) <- phase$id[c(1,3,5)]
parent2 <- c(0.7,0.2,0.1)
names(parent2) <- phase$id[c(7,9,11)]
ghap.simmating(phase, n.individuals = 100,

parent1 = parent1, parent2 = parent2,
out.file = "sim2", ncores = 1)
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The second simulation function is ghap.ancadmix(), which generates haplotypes of individuals descending
from admixture between user-defined ancestral populations after a specified number of generations. Consider
m variants in a chromosome and K ancestral popoulations. The simulation algorithm works as follows:

For each of the two haplotypes of a new individual:
Initialize j = 0;
While j < m:

Set i = j + 1;
Sample lineage k ∈ {1, 2...K} with probabilities q1, q2, . . . , qK ;
Sample ancestral haplotype h from lineage k;
Sample window size x from X ∼ Exp(β);
Evaluate j = min(i + x, m);
Copy the segment [i; j] from haplotype h;

The ancestry proportions q can be either informed by the user or sampled from a Direchelet distribution with
a vector of parameters α. For example, if three ancestral populations are considered and the parameters are
set as alpha = list(pop1 = 1, pop2 = 1, pop3 = 1), the resulting simulated individuals will have a highly
diverse configuration of ancestry proportions. On the other hand, by setting alpha = list(pop1 = 0, pop2 =
1, pop3 = 0) for example, all individuals will descend entirely from population 2 without admixture. The
user can play with these values to fine tune the desired sampling distribution. The mean parameter of the
exponential distribution used for sampling ancestry tracks is defined as β = L−1, where L is the average
ancestry track length expressed in number of markers. Since the expectation of the ancestry track length
in Morgans after g generations of the admixture event is 1/(2g), we have L = d[100/(2g)], where d is the
marker density in the genome expressed in number of markers per cM.

# Load phase data
phase <- ghap.loadphase("example")

# Make vectors of ancestors
pure1 <- unique(phase$id[which(phase$pop == "Pure1")])
pure2 <- unique(phase$id[which(phase$pop == "Pure2")])

# Simulate proportions
ngroup <- 30
pop1 <- c(rep(1, times = ngroup), # purebred from population 1

runif(n = ngroup, min = 0.1, max = 0.9), # admixed individuals
rep(0, times = ngroup)) # purebred from population 2

pop2 <- 1-pop1
prop <- data.frame(pop1,pop2)

# Simulate individuals
set.seed(1988)
ghap.simadmix(object = phase, n.individuals = nrow(prop),

n.generations = 10,
ancestors = list(pop1 = pure1, pop2 = pure2),
proportions = prop, out.file = "sim")
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The last simulation function in the package is ghap.simpheno, which was developed for the simulation of
phenotypes. The function uses the model:

y = Zu + Zp + e

where u is a vector of breeding values, p is a vector of permanent environmental effects, Z is an incidence
matrix mapping y to u and p, and e is the vector of residuals. True breeding values are computed from the
sum of causal variant effects specified in the ‘h2’ argument. Both the residual and permanent environmental
effects are sampled from normal distributions.

# Load phase data
phase <- ghap.loadphase("example")

# Subset Pure1 population
pure1 <- unique(phase$id[which(phase$pop == "Pure1")])
phase <- ghap.subset(object = phase, ids = pure1,

variants = phase$marker)
freq <- ghap.freq(object = phase, type = "maf")

# Heritability = 0.3
# Number of QTLs = 1000
# Major QTLs = 0
# Records per id = 1
nqtl <- 1000
h2 <- 0.3
mkr <- sample(names(freq[which(freq > 0.05)]), size = nqtl)
eff <- runif(n = nqtl, min = 0, max = 1)
eff <- h2*eff/sum(eff)
names(eff) <- mkr
df1 <- ghap.simpheno(object = phase, h2 = eff)

# Heritability = 0.5
# Number of QTLs = 100
# Major QTLs = 1
# Records per id = 5
# Repeatability = 0.2
nqtl <- 100
h2 <- 0.4
r2 <- 0.2
reps <- 5
mkr <- sample(names(freq[which(freq > 0.05)]), size = nqtl)
eff <- runif(n = nqtl, min = 0, max = 1)
eff <- h2*eff/sum(eff)
eff[which(eff == min(eff))] <- 0.1
names(eff) <- mkr
df2 <- ghap.simpheno(object = phase, h2 = eff,

r2 = r2, nrep = reps)
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