| Title: | Inference for Infectious Disease Transmission in SIR Framework | 
| Version: | 1.2.1 | 
| Description: | Model and estimate the model parameters for the spatial model of individual-level infectious disease transmission in Susceptible-Infected-Recovered (SIR) framework. | 
| License: | MIT + file LICENSE | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.1 | 
| LazyData: | true | 
| Suggests: | knitr, rmarkdown, testthat (≥ 3.0.0) | 
| Config/testthat/edition: | 3 | 
| Imports: | mvtnorm, psych, stats,MASS,numDeriv,Matrix | 
| Depends: | R (≥ 2.10) | 
| NeedsCompilation: | no | 
| Packaged: | 2024-06-04 16:28:29 UTC; ruwan | 
| Author: | Ruwani Herath [aut, cre], Leila Amiri [ctb], Mahmoud Torabi [ctb] | 
| Maintainer: | Ruwani Herath <ruwanirasanjalih@gmail.com> | 
| Repository: | CRAN | 
| Date/Publication: | 2024-06-04 17:30:14 UTC | 
Area level data
Description
The data which describes the sociodemographic characters (proportion of indigenous people, proportions of immigrants, proportion of low education, median household income) for 96 regions.
Usage
Area_Level_Data
Format
A data frame with 96 rows and 5 columns:
- RHDA
- Region name 
- Percentage_of_immigrants
- percentage of immigrants in each region 
- Percentage_of_indigenous
- percentage of indigenous people in each region 
- Proporton_of_Low_education
- proportion of persons 15+ who have not graduated high school 
- Income
- median household income 
...
Individual level data
Description
The data which describes the Individual characteristics (gender, age group, infected status) and corresponding area details for 700 individuals.
Usage
Individual_Level_Data
Format
A data frame with 700 rows and 8 columns:
- Disease_Status
- Disease status of the individual 
- Region
- The regioal health authority of the individual 
- Gender
- Gender of the individual 
- Age_Group
- Age group of the individual 
- Postal_code
- postal code which the individual belong to 
- Longitde
- longitude of the region 
- Latitude
- latitude of the region 
- Region_Number
- Region number assigned for each regional health authority 
...
This function is used to estimate model parameters
Description
This function is used to estimate model parameters
Usage
Realdata_Finalmodel(
  ITER,
  zz,
  lambda0,
  sigma0,
  Di,
  D,
  n,
  time,
  tau,
  lambda,
  alpha0,
  q1,
  q2,
  cov1,
  cov2,
  phi,
  delta0,
  Nlabel,
  npar,
  I
)
Arguments
| ITER | Number of iterations | 
| zz | Number of Regions | 
| lambda0 | Spatial dependence | 
| sigma0 | precision | 
| Di | Euclidean distance between susceptible individual and infectious individual | 
| D | Neighborhood structure | 
| n | total number of individuals | 
| time | time | 
| tau | tau | 
| lambda | lambda ### | 
| alpha0 | intercept | 
| q1 | Number of variables corresponding to individual level data | 
| q2 | Number of variables corresponding to area level data | 
| cov1 | Individual level covariates | 
| cov2 | Area level covariates | 
| phi | Spatial random effects | 
| delta0 | Spatial parameter | 
| Nlabel | Label for each sample from the area | 
| npar | number of parameters | 
| I | Identity matrix | 
Value
Numerical values for estimates
Examples
Realdata_Finalmodel(2,4,0.2,0.5,
matrix(runif(400,min = 4,max = 20),nrow=20, byrow = TRUE),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),20,10,
sample(c(0,1),replace = TRUE, size = 20),rep(3,20),0.4,6,5,
matrix(runif(120, 0, 1),nrow=20,byrow=TRUE),
matrix(runif(20, 0, 1),nrow=4,byrow=TRUE),runif(4,min = 0, max = 1),2,
rep(1:4,each=5),15,diag(4))
Calculating the estimated values for the parameters using log-likelihood function
Description
Calculating the estimated values for the parameters using log-likelihood function
Usage
Sim_Estpar(
  Nlabel,
  phi,
  Di,
  alpha1,
  delta,
  lambda1,
  sigma1,
  beta1,
  beta2,
  zz,
  time,
  n,
  tau,
  lambda,
  I,
  D,
  cov1,
  cov2
)
Arguments
| Nlabel | Label for each sample from the area | 
| phi | Spatial random effects | 
| Di | Euclidean distance between susceptible individual and infectious individual | 
| alpha1 | intercept | 
| delta | Spatial parameter | 
| lambda1 | Spatial dependence | 
| sigma1 | precision of spatial random effects | 
| beta1 | the parameter corresponding to the covariate associated with susceptible individual | 
| beta2 | the parameter corresponding to the covariate associated with area | 
| zz | Number of areas | 
| time | Time | 
| n | Total number of individuals | 
| tau | the set of infectious individuals at time t in the zth area | 
| lambda | a vector containing the length of infectious period | 
| I | identity matrix | 
| D | Neighborhood structure | 
| cov1 | Individual level covariates | 
| cov2 | Area level covariates | 
Value
a list of the solutions for the estimations of the parameters
Examples
Sim_Estpar(rep(1:4,each=5),runif(4,min = 0, max = 1),
matrix(runif(400,min=4,max=20),nrow=20,byrow = TRUE),0.4,3,0.2,0.5,1,1,4,10,
20,sample(c(0,1),replace = TRUE, size = 20),rep(3,20),diag(4),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
runif(20, 0, 1),runif(4, 0, 1))
This function calculates the value of the log-likelihood function
Description
This function calculates the value of the log-likelihood function
Usage
Sim_Loglik(
  Nlabel,
  phi,
  Di,
  alpha1,
  delta,
  lambda,
  sigma1,
  beta1,
  beta2,
  time,
  n,
  zz,
  tau,
  lambda1,
  I,
  D,
  cov1,
  cov2
)
Arguments
| Nlabel | Label for each sample from the area | 
| phi | Spatial random effects | 
| Di | Euclidean distance between susceptible individual and infectious individual | 
| alpha1 | intercept | 
| delta | Spatial parameter | 
| lambda | a vector containing the length of infectious period | 
| sigma1 | precision of spatial random effects | 
| beta1 | the parameter corresponding to the covariate associated with susceptible individual | 
| beta2 | the parameter corresponding to the covariate associated with area | 
| time | time | 
| n | Total number of individuals | 
| zz | Number of areas | 
| tau | the set of infectious individuals at time t in the zth area | 
| lambda1 | Spatial dependence | 
| I | Identity matrix | 
| D | matrix reflecting neighborhood structure | 
| cov1 | Individual level covariates | 
| cov2 | Area level covariates | 
Value
a numeric value for the log-likelihood
Examples
Sim_Loglik(rep(1:4,each=5), runif(4,min = 0, max = 1),
matrix(runif(400,min=4,max=20),nrow=20,byrow=TRUE),0.4, 2,rep(3,20),0.5,1,1,
10,20,4,sample(c(0,1),replace = TRUE, size = 20),0.6,diag(4),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
runif(20, 0, 1), runif(4, 0, 1))
This function can use to estimate the model parameters using the initial values.
Description
This function can use to estimate the model parameters using the initial values.
Usage
Simulation_Finalmodel(
  ITER,
  zz,
  lambda0,
  sigma0,
  Di,
  g,
  nSample,
  d,
  n,
  time,
  tau,
  lambda,
  alpha0,
  beta10,
  beta20,
  cov1,
  cov2,
  phi,
  delta0,
  Nlabel,
  D,
  I
)
Arguments
| ITER | Number of iterations | 
| zz | Number of Regions | 
| lambda0 | initial value for Spatial dependence | 
| sigma0 | initial value for the precision of spatial random effects | 
| Di | Euclidean distance between susceptible individual and infectious individual | 
| g | Number of rows in the lattice | 
| nSample | Number of individuals in each cell | 
| d | infectious time units | 
| n | total number of individuals | 
| time | time | 
| tau | the set of infectious individuals at time t in the zth area | 
| lambda | a vector containing the length of infectious period | 
| alpha0 | initial value for the intercept | 
| beta10 | initial value for the parameter corresponding to the covariate associated with susceptible individual | 
| beta20 | initial value for the parameter corresponding to the area-level covariates corresponding to area | 
| cov1 | a vector of covariates associated with susceptible individual | 
| cov2 | a vector of area-level covariates corresponding to area | 
| phi | Spatial random effects | 
| delta0 | Spatial parameter | 
| Nlabel | Label for each sample from the area | 
| D | matrix reflecting neighborhood structure | 
| I | Identity matrix | 
Value
the estimated values for the model parameters
Examples
Simulation_Finalmodel(2,4,0.2,0.5,
matrix(runif(1600,min=4,max=20),nrow=40,byrow=TRUE),2,10,3,40,10,
sample(c(0,1),replace=TRUE,size=40),rep(3,40),0.4,1,1,runif(40,0,1),
runif(4,0,1),runif(4,min=0,max=1),2,rep(1:4,each=10),
matrix(c(0,-1,0,-1,-1,0,-1,-1,0,-1,0,-1,-1,-1,-1,0),nrow=4,byrow=TRUE),
diag(4))
TwoWeek
Description
The simulated data for the date diagnosed and tau
Usage
TwoWeek
Format
A data frame with 700 rows and 2 columns:
- date_diagnosed
- The date which the disease diagnosed 
- V2
- the week 
...