
Package ‘FrF2’
April 16, 2025

Title Fractional Factorial Designs with 2-Level Factors

Version 2.3-4

Depends R(>= 2.13.0), DoE.base(>= 0.25)

Imports sfsmisc(>= 1.0-26), utils, scatterplot3d, igraph(>= 0.7),
methods

Suggests FrF2.catlg128, BsMD, DoE.wrapper

Date 2025-04-16

Description Regular and non-regular Fractional Factorial 2-level designs
can be created. Furthermore, analysis tools for Fractional
Factorial designs with 2-level factors are offered (main
effects and interaction plots for all factors simultaneously,
cube plot for looking at the simultaneous effects of three
factors, full or half normal plot, alias structure in a more
readable format than with the built-in function alias).

License GPL (>= 2)

LazyLoad yes

Encoding UTF-8

URL https://prof.bht-berlin.de/groemping/DoE/,

https://prof.bht-berlin.de/groemping/

NeedsCompilation no

Author Ulrike Groemping [aut, cre]

Maintainer Ulrike Groemping <ulrike.groemping@bht-berlin.de>

Repository CRAN

Date/Publication 2025-04-16 14:50:05 UTC

Contents
FrF2-package . 2
add.center . 5
aliases . 8

1

https://prof.bht-berlin.de/groemping/DoE/
https://prof.bht-berlin.de/groemping/

2 FrF2-package

block . 10
blockpick . 13
BsProb.design . 16
CatalogueAccessors . 18
CIG . 24
compromise . 27
cubePlot . 29
DanielPlot . 31
estimable.2fis . 33
fold.design . 37
FrF2 . 40
FrF2Large . 56
godolphin . 61
IAPlot . 65
makecatlg . 68
pb . 69
splitplot . 74
StructurePickers . 77

Index 80

FrF2-package Fractional Factorial designs with 2-level factors

Description

creates regular and non-regular Fractional Factorial 2-level designs. Furthermore, analysis tools for
Fractional Factorial designs with 2-level factors are offered (main effects and interaction plots for
all factors simultaneously, cube plot for looking at the simultaneous effects of three factors, full or
half normal plot, alias structure in a more readable format than with the built-in function alias).

The package works together with packages DoE.base and DoE.wrapper.

Details

The package is still subject to development; most key functionality is now included. Please contact
me, if you have suggestions.

This package designs and analyses Fractional Factorial experiments with 2-level factors. Regular
(function FrF2) and non-regular (function pb) 2-level fractional factorial designs can be generated.
For regular fractional factorials, function FrF2 permits the specification of effects of interest, whose
estimation is requested clear of aliasing with other effects. The function can furthermore generate
regular fractional factorials as blocked or split-plot designs, and hard-to-change factors can be spec-
ified in order to keep the number of level changes low. Regular resolution V designs larger than
those obtainable from function FrF2 can be created by function FrF2Large (these are not guaran-
teed to be optimal). Analysis facilities work for completely aliased designs only, i.e. e.g. not for
analysing Plackett-Burman designs with interactions.

Functions fac.design, fractionate or oa.design from Chambers and Hastie (1993) have been
used as role models e.g. for the option factor.names or for outputting a data frame with attributes.

FrF2-package 3

However, S compatibility has not been considered in devising this package. The original above-
mentioned functions are not available in R; similar functions have been implemented in package
DoE.base together with other general functionality for experimental designs.

In terms of analysis, package FrF2 works on linear models and enables convenient main effects
and interaction plots (functions MEPlot and IAPlot) similar to those offered by Minitab software
for all factors simultaneously, even though especially the interactions are often aliased, i.e. the
model is typically singular. For the (less frequent) case of suspected three-factor-interactions, func-
tion cubePlot displays a cube with corners labeled with the (modeled) means of three factors
simultaneously. Furthermore, the function DanielPlot from package BsMD has been modified to
automatically label effects significant according to the Lenth-criterion, to automatically distinguish
between whole-plot and split-plot effects for split-plot designs, and to provide more usage comfort
to the analyst.
Finally, the function aliases determines the alias structure of a Fractional Factorial 2-level design
in a format more suitable for human readers than the output from the built-in function alias.

Author(s)

Ulrike Groemping

Maintainer: Ulrike Groemping <ulrike.groemping@bht-berlin.de>

References

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2005) Statistics for Experimenters, 2nd edition. New
York: Wiley.

Chambers, J.M. and Hastie, T.J. (1993). Statistical Models in S, Chapman and Hall, London.

Chen, J., Sun, D.X. and Wu, C.F.J. (1993) A catalogue of 2-level and 3-level orthogonal arrays.
International Statistical Review 61, 131-145.

Daniel, C. (1959) Use of Half Normal Plots in Interpreting Two Level Experiments. Technometrics,
1, 311-340.

Groemping, U. (2014). R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level
Designs. Journal of Statistical Software, 56, Issue 1, 1-56. https://www.jstatsoft.org/v56/
i01/.

Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications,
Springer, New York.

Lenth, R.V. (1989) Quick and easy analysis of unreplicated factorials. Technometrics, 31, 469-473.

Mee, R. (2009). A Comprehensive Guide to Factorial Two-Level Experimentation. New York:
Springer.

Montgomery, D.C. (2001). Design and Analysis of Experiments (5th ed.). Wiley, New York.

Plackett, R.L.; Burman, J.P. (1946) The design of optimum multifactorial experiments. Biometrika
33, 305-325.

Ryan, K.J. and Bulutoglu, D.A. (2010). Minimum Aberration Fractional Factorial Designs With
Large N. Technometrics 52, 250-255.

Sanchez, S.M. and Sanchez, P.J. (2005). Very Large Fractional Factorial and Central Composite
Designs. ACM Transactions on Modeling and Computer Simulation 15, 362-377.

https://www.jstatsoft.org/v56/i01/
https://www.jstatsoft.org/v56/i01/

4 FrF2-package

See Also

The key design generating functions: FrF2, pb, FrF2Large
S3 class design
Related packages: DoE.base, DoE.wrapper, BsMD;
Graphical analysis functions: MEPlot, IAPlot, cubePlot, DanielPlot
Analysis of alias structure for linear models of FrF2 designs: aliases

Examples

for examples on design generation, cf. functions pb and FrF2

Injection Molding Experiment. Box et al. 1978.
data(BM93.e3.data, package="BsMD") #from BsMD
iMdat <- BM93.e3.data[1:16,2:10] #only original experiment
re-create here
y=c(14, 16.8, 15, 15.4, 27.6, 24, 27.4, 22.6,
22.3, 17.1, 21.5, 17.5, 15.9, 21.9, 16.7, 20.3)
iMdat <- FrF2(8,7,randomize=FALSE)
iMdat <- desnum(iMdat)
iMdat <- rbind(cbind(iMdat,H=1),cbind(-iMdat,H=-1))
iMdat <- cbind(as.data.frame(iMdat), y=y)

make data more user-friendly
colnames(iMdat) <- c("MoldTemp","Moisture","HoldPress","CavityThick","BoostPress",

"CycleTime","GateSize","ScrewSpeed", "y")
linear model with all main effects and 2-factor interactions
iM.lm <- lm(y ~ (.)^2, data = iMdat)
determine aliases
aliases(iM.lm)
coded version
aliases(iM.lm, code=TRUE)
normal plot of effects, default is autolabel with alpha=0.05
DanielPlot(iM.lm)
DanielPlot(iM.lm,code=TRUE)
DanielPlot(iM.lm,code=TRUE,alpha=0.5)
half normal plot of effects
DanielPlot(iM.lm,code=TRUE,alpha=0.5,half=TRUE)
main effects plots
MEPlot(iM.lm, las=1)
interaction plots
IAPlot(iM.lm, las=1)
interaction plots with attention drawn to aliases
aus <- IAPlot(iM.lm, show.alias=TRUE)
alias groups corresponding to interaction plots
aliases(iM.lm)$aliases[9:15]
returned object
aus
cube plot of three factors
(not very useful for this model, for demonstration only)

per default, modeled means are shown
this does not make a difference here, since the main effect of

add.center 5

ScrewSpeed is confounded with the MoldTemp:HoldPress:BoostPress
interaction, so that the three-factor-interaction is indirectly included
in the modeled means
cubePlot(iM.lm, "MoldTemp", "HoldPress", "BoostPress")
modeled means without a three-factor interaction
cubePlot(lm(y ~ (MoldTemp+HoldPress+BoostPress)^2, data = iMdat),

"MoldTemp", "HoldPress", "BoostPress")
modeled=FALSE reverts to showing the apparent three-factor interaction
cubePlot(lm(y ~ (MoldTemp+HoldPress+BoostPress)^2, data = iMdat),

"MoldTemp", "HoldPress", "BoostPress", modeled=FALSE)
cubePlot also works on raw data
cubePlot(iMdat$y, iMdat$MoldTemp, iMdat$HoldPress, iMdat$BoostPress)

plotting functions also work directly on designs,
if these have been generated from functions FrF2 or pb:

plan <- FrF2(16, 7)
plan <- add.response(plan, rnorm(16))
MEPlot(plan)
IAPlot(plan)
DanielPlot(plan)

add.center Function to add center points to a 2-level fractional factorial

Description

This function adds center points to a 2-level fractional factorial design. All factors must be quanti-
tative!

Usage

add.center(design, ncenter, distribute=NULL, ...)

Arguments

design a data frame of class design that contains a 2-level fractional factorial (regular or
non-regular); design must neither be a split-plot nor a long version parameter
design.
For function add.center, the design must not contain center points yet, while
it has to contain center points for function iscube.
For function add.center, blocked and replicated (or repeated measurement)
designs must be in the original run order (column run.no in run.order attribute
in ascending order), as the algorithm relies on the related runs being grouped as
expected. An error is thrown, if this condition is violated.

ncenter the number of center points to be added to each block

distribute the number of positions over which to distribute the center points within each
block; note that the center points are not randomized but placed evenly through-
out the (hopefully randomdomized) design (but see also the details section);

6 add.center

if distribute is NULL, center points are all added at the end for non-randomized
designs and are distributed as evenly as possible to beginning, middle and end
of the experiment for randomized designs.
distribute must neither be larger than ncenter nor than the number of runs
of the design plus one.

... currently not used

Details

Function add.center adds center points to 2-level fractional factorial designs. Instead of using this
function directly, center points should usually be added directly with calls to functions FrF2 or pb.
These make use of function add.center for this purpose.

Center points are added to designs for three main reasons: they provide a repeated benchmark
run that can alert the experimenter to unplanned changes in experimental conditions, they provide
an independent estimate of experimental error, and finally they provide a possibility for checking
whether a first order model is sufficient. Especially for the first purpose, package FrF2 follows the
recommendation in Montgomery (2001, p.275). To distinguish them from the center points, the
original fractional factorial runs are called “cube points”.

Addition of center points does not affect estimates for main effects and interactions. The difference
between the averages of cube points and center points gives an indication whether quadratic terms
might be needed in the model.

For blocked designs and properly replicated designs, ncenter center points are added to each (repli-
cation) block. In case of repeated measurements, center points are also measured repeatedly.

Center points are distributed as evenly as possible over the distribute selected positions through-
out each block. distribute=1 always adds all center points at the end of each block. If distribute
> 1, (each block of) the design starts and ends with a (group of) center point(s), and the distribute
positions for placing center points are as evenly placed throughout (each block of) the design as pos-
sible.
If ncenter is not a multiple of distribute, some center point groups have one more center point
than others. If ncenter%%distribute is one or two only, the beginning and (for two) the end of
(each block of) the design have one more center point, otherwise the ncenter%%distribute extra
center points are randomized over the center point positions.

Function iscube from package DoE.base provides a logical vector that is TRUE for cube points
and FALSE for center points, which allows to use of simple functions for “clean” 2-level fractional
factorials like MEPlot.

Value

A data frame of class design with ncenter center point runs per block (or per replication block)
added to the design (and its desnum and run.order attributes). The run.no.in.std.order column of
run.order is “0” for the center points.

Existing response values for cube runs are preserved, and response values for the new center point
runs are NA. Note, however, that center points should be added BEFORE running the experiment
in order to benefit from all their useful properties; this should best be done within functions pb or
FrF2.

The design is identifiable as a design with center points by the suffix .center to the type element
of attribute design.info, and the elements ncube and ncenter are added (with the updated nruns

add.center 7

being their sum). The element coding is also added to the design.info, in order to support steepest
ascent/descent analysis from the center point.

Note

This function is still somewhat experimental.

Author(s)

Ulrike Groemping

References

Montgomery, D.C. (2001). Design and Analysis of Experiments (5th ed.). Wiley, New York.

See Also

See also as pb, FrF2

Examples

purely technical example
plan <- FrF2(8,5, factor.names=c("one","two","three","four","five"))
add.center(plan, 6)
add.center(plan, 6, distribute=1)
add.center(plan, 6, distribute=6)
add.center(plan, 6, distribute=4)

very artificial analysis example
plan <- FrF2(8,4, factor.names=list(one=c(0,10),two=c(1,3),three=c(25,32),four=c(3.7,4.8)))
add some response data

y <- c(2+desnum(plan)%*%c(2,3,0,0) +
1.5*apply(desnum(plan)[,c(1,2)],1,"prod") + rnorm(8))
the "c()" makes y into a vector rather than a 1-column matrix

plan <- add.response(plan, y)
analysing this design provides an impression

MEPlot(lm(y~(.)^2, plan))
IAPlot(lm(y~(.)^2, plan))
DanielPlot(lm(y~(.)^2,plan), half=TRUE, alpha=0.2)

tentative conclusion: factors one and two do something
wonder whether the model with one and two and their interaction is sufficient
look at center points (!!! SHOULD HAVE BEEN INCLUDED FROM THE START,
but maybe better now than not at all)
use distribute=1, because all center points are run at the end

planc <- add.center(plan, 6, distribute=1)
conduct additional runs for the center points

y <- c(y, c(2+desnum(planc)[!iscube(planc),1:4]%*%c(2,3,0,0) +
1.5*apply(desnum(planc)[!iscube(planc),][,c(1,2)],1,"prod") + rnorm(6)))

add to the design
planc <- add.response(planc, y, replace=TRUE)

sanity check: repeat previous analyses for comparison, with the help of function iscube()
MEPlot(lm(y~(.)^2, planc, subset=iscube(planc)))

8 aliases

IAPlot(lm(y~(.)^2, planc, subset=iscube(planc)))
DanielPlot(lm(y~(.)^2, planc, subset=iscube(planc)), half=TRUE, alpha=0.2)

quick check whether there a quadratic effect is needed: is the cube indicator significant ?
summary(lm(y~(.)^2+iscube(planc), planc))

(in this unrealistic example, the quadratic effect is dominating everything else;
with an effect that strong in practice, it is likely that

one would either have expected a strong non-linearity before conducting the experiment,
OR that the effect is not real but the result of some stupid mistake

alternatively, the check can be calculated per hand (cf. e.g. Montgomery, Chapter 11):
(mean(planc$y[iscube(planc)])-mean(planc$y[!iscube(planc)]))^2*8*6/(8+6)/var(y[!iscube(planc)])
must be compared to the F-quantile with 1 degree of freedom
is the square of the t-value for the cube indicator in the linear model

aliases Alias structure for fractional factorial 2-level designs

Description

Functions to examine the alias structure of a fractional factorial 2-level design

Usage

aliases(fit, code = FALSE, condense=FALSE)
aliasprint(design, ...)
S3 method for class 'aliases'
print(x, ...)

Arguments

fit a linear model object with only 2-level factors as explanatory variables; the func-
tion will return an error, if the model contains partially aliased effects (like in-
teractions in a Plackett-Burman design for most cases)

code if TRUE, requests that aliasing is given in code letters (A, B, C etc.) instead
of (potentially lengthy) variable names; in this case, a legend is included in the
output object.

condense if TRUE, reformats the alias information to be comparable to the version calcu-
lated by internal function alias3fi; does not work with models with higher than
3-way interactions; for up to 3-way interactions, the output may be more easily
readible

design a data frame of class design that should contain a fractional factorial 2-level
design; the function does not print anything if the design is of different nature

x an object of class aliases that should be the output from function aliases

... further arguments to function print.default;
the quote argument cannot be used

aliases 9

Value

Function aliasprint returns NULL and is called for its side effects only.

Per default, Function aliases returns a list with two elements:

legend links the codes to variable names, if code=TRUE.

aliases is a list of vectors of aliased effects.

If option condense is TRUE, the function returns a list with elements legend, main, fi2 and fi3; this
may be preferrable for looking at the alias structure of larger designs.

The output object of function aliases has class aliases, which is used for customized printing
with the print method.

Author(s)

Ulrike Groemping

References

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2005) Statistics for Experimenters, 2nd edition. New
York: Wiley.

See Also

FrF2-package for information on the package, alias for the built-in R-function, IAPlot for effects
plots

Examples

Injection Molding Experiment. Box et al. 1978.
data(BM93.e3.data, package="BsMD") #from BsMD
iMdat <- BM93.e3.data[1:16,2:10] #only original experiment
re-create here
y=c(14, 16.8, 15, 15.4, 27.6, 24, 27.4, 22.6,
22.3, 17.1, 21.5, 17.5, 15.9, 21.9, 16.7, 20.3)
iMdat <- FrF2(8,7,randomize=FALSE)
iMdat <- desnum(iMdat)
iMdat <- rbind(cbind(iMdat,H=1),cbind(-iMdat,H=-1))
iMdat <- cbind(as.data.frame(iMdat), y=y)

make data more user-friendly
colnames(iMdat) <- c("MoldTemp","Moisture","HoldPress","CavityThick",

"BoostPress","CycleTime","GateSize","ScrewSpeed","y")
determine aliases with all 2-factor-interactions
aliases(lm(y ~ (.)^2, data = iMdat))
coded version
aliases(lm(y ~ (.)^2, data = iMdat), code=TRUE)
determine aliases with all 3-factor-interactions
aliases(lm(y ~ (.)^3, data = iMdat), code=TRUE)
show condensed form
aliases(lm(y ~ (.)^3, data = iMdat), code=TRUE, condense=TRUE)

10 block

determine aliases for unaliased model
aliases(lm(y ~ ., data = iMdat))

block Statistical and algorithmic aspects of blocking in FrF2

Description

This help page documents the statistical and algorithmic details of blocking in FrF2

Details

Blocking is done with the purpose to balance the design with respect to a factor that is known or
strongly suspected to have an influence but is not in itself of interest, and it is usually assumed that
block factors do not interact with experimental factors. Examples are batches of material that are
not large enough to accomodate the complete experiment so that e.g. half the experiment is done
on the first batch and the other half on the second batch (two blocks). The block factor should be
orthogonal to the experimental factors, at least to their main effects. Per default, it is also requested
that the block factor is orthogonal to the 2-factor interactions. This can be changed by the user, if
no such design can be found.

Blocking is currently implemented for regular fractional factorial designs only.
There are two principal ways to handle blocked designs, manual definition (i.e. the user specifies
exactly which columns are to be used for which purpose) and automatic definition. Each situation
has its specifics. These are detailed below. For users with not so much mathematical/statistical
background, it will often be best to use the automatic way, specifying the treatment factors of
interest via nfactors or factor.names and a single number for blocks or WPs. Users with more
mathematical background may want to use the manual definitions, perhaps in conjunction with pub-
lished catalogues of good block designs, or after inspecting possibilities with functions blockpick,
blockpick.big (default before version 2 for large settings) or colpick (default since version 2 for
large settings or settings with estimability requirements).

Manual definition of blocked designs for regular fractional factorials The user can start from a
design with a number of factors and manually specify which factors or interactions are to be
used as block generators. If this route is chosen, blocks can be a vector of factor names or
factor letters, or of the same form as generators, except that not only base factors but all factors
can be used and single factors are permitted (which would lead to resolution II designs if used
in generators). For example,
block = Letters[c(2,4,5)]
or
block = list(2,4,5)
specify that the 2nd, 4th and 5th factor are to be used as block generators, while
block = c("Day","Shift")
indicates that the named factors “Day” and “Shift” specified in factor.names are to be treated
as blocking factors). In this case, the number of blocks is calculated, and a new factor with
the default name “Blocks” (in general the name chosen in option block.name) is generated,
which would for example contain as levels the Day/Shift combinations. It is also possible to
choose interaction effects rather than factors themselves as block generators, e.g.

block 11

block = c("ABCD","EFGH")
or
block = list(c(1,2,3,4),c(5,6,7,8)) .
Finally, it is also possible to specify choice of blocks using a vector of Yates column numbers,
in order to be able to use catalogued blocking structures of this form, e.g. from Sitter, Chen
and Feder (1997).
The block main effects are defined by the k.block specified effect and all interactions between
them. The specified block effects are required to be independent from each other, which
implies that they generate 2^k.block blocks.
CAUTION: If the user manually generates a blocked design, it is his/her responsibility to
ensure a good choice of design (e.g. by using a catalogued design from Bisgaard 1994, Sun,
Wu and Chen 1997, Sitter, Chen and Feder (1997), or Cheng and Wu 2002). Since version 2
of package FrF2, manual blocking is also checked for confounding of the block factor with
main effects or two-factor interactions; this implies that some earlier code will now require
the additional specification of argument alias.block.2fis=TRUE in order to avoid errors.

Automatic definition of blocked designs for regular fractional factorials If the user only spec-
ifies the number of blocks required for the experiment, function FrF2 automatically gener-
ates the blocks. For full factorial designs, function FrF2 uses function colpick with sub-
sequent blockgencreate, except where the Sun, Wu and Chen (1997) catalogue of blocked
designs contains suitable block generators for a design without estimability requirements (im-
plemented in function blockpick, which also calls colpick, if that catalogue does not offer
a solution). Otherwise, depending on the situation, function FrF2 uses function blockpick or
function colpick with subsequent blockgencreate; function blockpick treats smaller prob-
lems (choose(nruns-1-nfactors,k.block) < 100000) without estimability requirements and
with force.godolphin=FALSE (the latter is per default set to TRUE whenever alias.block.2fis=TRUE),
other problems are treated by function colpick.
Use of the earlier default function blockpick.big for large cases or the earlier behavior for
full factorial designs can be requested with the argument block.old=TRUE; this should only
be done for reproducing earlier results, as the new methodology is definitely superior.
The search for an appropriate blocked design starts with the overall best unblocked design (in
terms of aberration or MaxC2, if requested). If this best design does not yield an adequate
blocking possibility, the search continues with the next best design and so forth (exception:
with an estimability requirement, only a single design, prefiltered for the estimability require-
ment, is subjected to the blocking algorithm).
For the smaller problems, function blockpick looks for k.block independent subsets among
the eligible columns of the design. (The eligible columns are all columns of the Yates ma-
trix that are neither occupied by treatment main effects nor by 2fis among treatments (if
alias.block.2fis=FALSE, which is the default), or all columns of the Yates matrix that are
not occupied by treatment main effects (if alias.block.2fis=TRUE). Note that no effort is
made to avoid aliasing with 2-factor interactions, if alias.block.2fis=TRUE is chosen.
For the larger problems, or blocking in combination with requiring some 2fis to be clear of
aliasing, or per default for blocking with permitting 2fis to be aliased with blocks, function
colpick creates a q × n X matrix for creating blocks of size 2q based on the approach de-
scribed by Godolphin (2021); function blockgencreate creates block generators from this
matrix. This approach can be used in combination with argument estimable, as long as
clear=TRUE. The implementation of this approach is described in Groemping (2021). The
argument force.godolphin of function FrF2 can enforce the Godolphin approach instead
of the default approach for small blocked designs without alias.block.2fis=TRUE, and the

12 block

Godolphin approach can be switched off for alias.block.2fis=TRUE applications by explic-
itly requesting force.godolphin=FALSE. Note that the Godolphin approach solely focuses on
clear 2fis of the blocked design and does not attempt to avoid confounding of the block factor
with non-clear 2fis; it may thus confound 2fis with the block factor even if this were avoidable,
maintaining the same number of clear 2fis.
For the larger problems, in versions before 2.0, which can be activated in current versions
with block.old=TRUE, function blockpick.big permutes the k~base factors of candidate
designs with nfactors + k.block factors in search of a design the first k.block~factors of
which can be used for block construction. Any specification of design (via options design
or generators) is ignored. Note that function blockpick.big is not guaranteed to find an
existing blocked design.
Sun, Wu and Chen (1997) provided a catalogue of blocked designs with a few quality criteria,
and they stated that there is no single best design, but that the choice depends on the situation.
FrF2 always comes up with one specific solution design. Comparisons to the catalogued
designs in Sun, Wu and Chen (1997) have shown that the designs found in FrF2 are often but
not always isomorphic to the catalogued ones. Differences do occur, especially if the base
designs are resolution III, or if blockpick.big has to be used. Expert users who want to
be certain to use a “best” blocked design should manually implement a specific catalogued
design or inspect several solutions from functions blockpick or colpick (or, if desparate,
blockpick.big).

Please contact me with any suggestions for improvements.

Author(s)

Ulrike Groemping

References

Bisgaard, S. (1994a). Blocking generators for small 2k−p designs. J. Quality Technology 26, 288-
294.

Chen, J., Sun, D.X. and Wu, C.F.J. (1993) A catalogue of 2-level and 3-level orthogonal arrays.
International Statistical Review 61, 131-145.

Cheng, C.-S. and Tsai, P.-W. (2009). Optimal two-level regular fractional factorial block and split-
plot designs. Biometrika 96, 83-93.

Cheng, S.W. and Wu, C.F.J. (2002). Choice of optimal blocking schemes in 2-level and 3-level
designs. Technometrics 44, 269-277.

Godolphin, J. (2021). Construction of Blocked Factorial Designs to Estimate Main Effects and
Selected Two-Factor Interactions. J. Royal Statistical Society B 83, 5-29. doi:10.1111/rssb.12397.

Groemping, U. (2019). An algorithm for blocking regular fractional factorial 2-level designs with
clear two-factor interactions. Reports in Mathematics, Physics and Chemistry, Report 3/2019, De-
partment II, Beuth University of Applied Sciences Berlin.

Sitter, R.R., Chen, J. and Feder, M. (1997). Fractional Resolution and Minimum Aberration in
Blocked 2n-k Designs. Technometrics 39, 382–390.

Sun, D.X., Wu, C.F.J. and Chen, Y.Y. (1997). Optimal blocking schemes for 2p and 2n−p designs.
Technometrics 39, 298-307.

https://doi.org/10.1111/rssb.12397
http://www1.bht-berlin.de/FB_II/reports/Report-2019-003.pdf

blockpick 13

See Also

See Also FrF2 for regular fractional factorials, catlg for the Chen, Sun, Wu catalogue of designs
and some accessor functions, and splitplot for the statistical aspects of split-plot designs.

Examples

########## automatic blocked designs ###################
from a full factorial
FrF2(8,3,blocks=2)
with replication
run.order(FrF2(8,3,blocks=2,wbreps=2))
run.order(FrF2(8,3,blocks=2,wbreps=2,repeat.only=TRUE))
run.order(FrF2(8,3,blocks=2,bbreps=2))
run.order(FrF2(8,3,blocks=2,bbreps=2,wbreps=2))

automatic blocked design with fractions
FrF2(16,7,blocks=4,alias.block.2fis=TRUE)
isomorphic non-catalogued design as basis
FrF2(16,gen=c(7,11,14),blocks=4,alias.block.2fis=TRUE)
FrF2 uses blockpick.big and ignores the generator
FrF2(64,gen=c(7,11,14),blocks=16,alias.block.2fis=TRUE)

########## manual blocked design ####################
example that shows why order of blocks is not randomized
can of course be randomized by user, if appropriate
FrF2(32,9,blocks=c("Day","Shift"),alias.block.2fis=TRUE,

factor.names=list(Day=c("Wednesday","Thursday"), Shift=c("Morning","Afternoon"),
F1="",F2="",F3="",F4="",F5="",F6="",F7=""), default.levels=c("current","new"))

########## blocked design with estimable 2fis ####################
all interactions of last two factors to be estimable clearly
in 64 run design with blocks of size 4
not possible with catalogue entry 9-3.1
FrF2(design="9-3.2", blocks=16, alias.block.2fis=TRUE,

factor.names = list(C1="",C2="",C3="",C4="",C5="",C6="",C7="",
N1=c("low","high"),N2=c("low","high")),
default.levels = c("current","new"),
estimable=compromise(9, 8:9)$requirement)

blockpick Function to show potential block assignments

Description

Functions to investigate potential assignments of blocks and show alias information of resulting
designs, meant for expert users

14 blockpick

Usage

blockpick(k, gen, k.block, design = NULL, show = 10,
alias.block.2fis = FALSE, select.catlg = catlg)

blockpick.big(k, gen, k.block, design = NULL, show = 10,
alias.block.2fis = FALSE, select.catlg = catlg)

Arguments

k the number of base factors (designs have 2^k runs)

gen vector of generating columns from Yates matrix; for a full factorial, choose gen
= 0 or gen=numeric(0) for no generating columns; but note that there is always
just the one and only catalogued design returned for a full factorial.
For function blockpick, gen refers to the generators of the base design only,
and block columns are automatically added by blockpick.
For function blockpick.big, gen refers to the generators for treatment factors
and block generators. In fact, blockpick.big will always use the first k.block
(base) factors for block generation. Hence, for example for generating a design
in 64 runs and 7 factors with 32 blocks, gen must have 6 entries in order to
accomodate the 7 treatment factors together with the 5 block generators.

k.block number of base factors needed for constructing blocks; there will be 2^k.block
blocks in the design

design design name (character string) of a specific design from the catalogue given in
select.catlg

show numeric integer indicating how many results are to be shown; the search for
possible allocations stops, once show variants have been found. Note that the
best designs may not be found early in the process, especially if a large number
of eligible columns is available and many blocks are needed (e.g. full factorial
in 64 runs with 16 blocks). In such cases, increasing show may lead to finding a
better design (but may also increase calculation time from long to unbearable).

alias.block.2fis

logical, indicates whether 2fis may be aliased with blocks

select.catlg design catalogue of class catlg

Details

Function blockpick is used per default by function FrF2 for problems with choose(nruns-1-nfactors,k.block)
< 100000 and without estimability requirements. blockpick will find a design, if it exists. How-
ever, it may take a long time and/or much storage space in problems with large numbers of runs and
blocks.

In FrF2 versions before 2.0, function blockpick.big was used for large use cases; this can still be
requested using argument block.old=TRUE. Since FrF2 version 2, the Godolphin (2021) based
approach is used instead, both for large cases and for cases where blocking is combined with es-
timability requirements (clear=TRUE only); the big advantage is the ability of combining blocking
with estimability requirements, and a substantial speed gain if small blocks are needed.

All approaches investigate the potential assignment of blocks such that main effects of treatment
factors are not aliased with block main effects. It is left to the user whether or not 2fis amoong

blockpick 15

treatment effects may be aliased with block main effects (option alias.block.2fis). (For the
Godolphin approach to work, one will usually need to set alias.block.2fis to TRUE.)

Following Sun, Wu and Chen (1997), there is no single best block assignment. blockpick uses
their catalogue for full factorials (implemented up to 256 runs). For fractional factorials, it develops
designs according to a principle similar to that underlying the Sun Wu Chen catalogue that works
also in uncatalogued situations.

Function blockpick.big uses a strategy similar to splitpick and leftadjust and often finds
a solution quickly where blockpick does not work with the given ressources. However, it is not
guaranteed to find existing solutions or a best solution.

Value

The function blockpick outputs a list of entries with information on at most show suitable assign-
ments. It ends with an error, if no suitable solution can be found.

gen generator column numbers of the base design (w.r.t. the Yates matrix)

basics named vector with number of runs (nruns), number of blocks (nblocks), num-
ber of treatment factors (ntreat) and resolution of base design (res.base); the
vector is numeric or character, depending on whether resolution is known ex-
actly or as “5+” only

blockcols matrix with at most show rows; each row contains the k.block column numbers
(w.r.t. the Yates matrix) of the block generators for the current assignment (the
2^k.block-1 columns for block main effects can be obtained from these).

alias.2fis.block

list of character vectors, which contain the 2fis aliased with block main effects
for the respective rows of blockcols

nblock.2fis vector with number of 2fis aliased with block main effects for the respective
rows of blockcols

nclear.2fis vector with number of 2fis clear (of aliasing with block main effects and treat-
ment main effects or 2fis) for the respective rows of blockcols

clear.2fis list of character vectors, which contain the 2fis that are counted in nclear.2fis
for the respective rows of blockcols

Author(s)

Ulrike Groemping

References

Chen, J., Sun, D.X. and Wu, C.F.J. (1993) A catalogue of 2-level and 3-level orthogonal arrays.
International Statistical Review 61, 131-145.

Sun, D.X., Wu, C.F.J. and Chen, Y.Y. (1997). Optimal blocking schemes for 2n and 2n−p designs.
Technometrics 39, 298-307.

See Also

See Also FrF2

16 BsProb.design

Examples

look at possibilities for running a 32 run design with 6 factors in 8 blocks
running this without alias.block.2fis=TRUE throws an error: not possible
Not run: blockpick(k=5,design="6-1.1",k.block=3)
the 8th to 10th design have more clear 2fis than the earlier ones
blockpick(k=5,design="6-1.1",k.block=3,alias.block.2fis=TRUE)
function FrF2 can be used to manually accomodate this
des32.6fac.8blocks.MaxC2 <- FrF2(32,6,blocks=c(3,12,21),alias.block.2fis=TRUE)
summary(des32.6fac.8blocks.MaxC2)
automatic block generation leads to more aliased 2fis
summary(FrF2(32,6,blocks=8,alias.block.2fis=TRUE))

look at possibilities for blocking design 7-3.1 from Chen, Sun, Wu catalogue
blockpick(4,design="7-3.1",k.block=2,alias.block.2fis=TRUE)

big design
running this throws an error on many machines because of too little memory
Not run: blockpick(6,design="7-1.2",k.block=5,alias.block.2fis=TRUE)
for obtaining a design for this scenario with blockpick.big,
the number of factors must be increased to 7+k.block=12
designs 12-6.1 and 12-6.2 dont do it, 12-6.3 does
bpb <- blockpick.big(6,design="12-6.3",k.block=5,alias.block.2fis=TRUE)
bpb
based on the result of blockpick.big, a blocked design can be obtained as follows:
(not run for saving check time on CRAN)
Not run:
des64.7fac.32blocks <- FrF2(64,gen=bpb$gen[1,], blocks = as.list(1:5),

alias.block.2fis=TRUE)
str(des64.7fac.32blocks)
if the seven factors are to be named A,...,G:
des64.7fac.32blocks <- FrF2(64,gen=bpb$gen[1,], blocks = as.list(1:5),

alias.block.2fis=TRUE, factor.names=c(paste("b",1:5,sep=""),Letters[1:7]))
str(des64.7fac.32blocks)

End(Not run)

BsProb.design Bayesian posterior probabilities from Box and Meyer method

Description

The function calculates Bayesian posterior probabilities according to Box and Meyer (1993) for
screening experiments with 2-level factors. The function is modified from function BsProb in
packge BsMD with the purpose of providing usage comfort for class design objects.

Usage

BsProb.design(design, mFac = NULL, response=NULL, select=NULL, mInt = 2, p = 0.25, g = 2,
ng = 1, nMod = 10)

BsProb.design 17

Arguments

design an experimental design of class design with the type element of the design.info
attribute containing “FrF2” or “pb” and at least one response variable

response NULL or a character string that specifies response variable to be used, must
be an element of response.names(obj); if NULL, the first response from
response.names(obj) is used

mFac integer. Maximum number of factors included in the models. The default is the
number of factors in the design.

select vector with position numbers of the factors to be included;
default: all factors.

mInt integer <= 3. Maximum order of interactions considered in the models. This
can strongly impact the result.

p numeric. Prior probability assigned to active factors. This can strongly impact
the result.

g numeric vector. Variance inflation factor(s) gamma associated to active and in-
teraction factors; see "Details" section

ng integer <=20. Number of different variance inflation factors (g) used in calcula-
tions.

nMod integer <=100. Number of models to keep with the highest posterior probability.

Details

Factor and model posterior probabilities are computed by the Box and Meyer (1993) Bayesian
procedure. The design factors - or a selection of these given by column numbers in select - are
considered together with the specified response or the first response of the design. The function
has been adapted from function BsProb in package BsMD, and a vignette in that package (../../
BsMD/doc/BsMD.pdf) explains details of the usage regarding the parameters.

If g, the variance inflation factor (VIF) gamma, is a vector of length 1, the same VIF is used for
factor main effects and interactions. If the length of g is 2 and ng is 1, g[1] is used for factor
main effects and g[2] for the interaction effects. If ng greater than 1, then ng values of VIFs
between g[1] and g[2] are used for calculations with the same gamma value for main effects and
interactions. The function calls the FORTRAN subroutine bm and captures summary results. The
complete output of the FORTRAN code is save in the BsPrint.out file in the working directory.
The output is a list of class BsProb for which print, plot and summary methods are available from
package BsMD.

Value

cf. documentation of function BsProb

Note

This method relies on the availability of package BsMD.

Author(s)

Daniel Meyer, ported to R by Ernesto Barrios, port adapted to designs by Ulrike Groemping.

../../BsMD/doc/BsMD.pdf
../../BsMD/doc/BsMD.pdf

18 CatalogueAccessors

References

Barrios, E. (2013). Using the BsMD Package for Bayesian Screening and Model Discrimination.
Vignette. ../../BsMD/doc/BsMD.pdf.

Box, G. E. P and R. D. Meyer (1986). An Analysis for Unreplicated Fractional Factorials. Techno-
metrics 28, 11-18.

Box, G. E. P and R. D. Meyer (1993). Finding the Active Factors in Fractionated Screening Exper-
iments. Journal of Quality Technology 25, 94-105.

See Also

plot.BsProb, print.BsProb, summary.BsProb, BsMD

Examples

there are several success stories and recommendations for this method
in the simulated example here (not fabricated,
it was the first one that came to my mind),
the method goes wrong, at least when using mInt=2 (the default, because
Daniel plots work quite well for pure main effects models):
active factors are A to E (perhaps too many for the method to work),
the method identifies F, J, and L with highest probability
(but is quite undecided)
plan <- pb(12)
dn <- desnum(plan)
set.seed(8655)
y <- dn%*%c(2,2,2,2,3,0,0,0,0,0,0) + dn[,1]*dn[,3]*2 - dn[,5]*dn[,4] + rnorm(12)/10
plan.r <- add.response(plan, response=y)
if (requireNamespace("BsMD", quiet=TRUE)){
plot(bpmInt2 <- BsProb.design(plan.r), code=FALSE)
plot(bpmInt1 <- BsProb.design(plan.r, mInt=1), code=FALSE) ## much better!
summary(bpmInt2)
summary(bpmInt1)
}
For comparison: A Daniel plot does not show any significant effects according
to Lenths method, but makes the right effects stick out
DanielPlot(plan.r, half=TRUE, alpha=1)

CatalogueAccessors Catalogue file and accessor functions

Description

Functions to select elements or extract information from design catalogues of class catlg

../../BsMD/doc/BsMD.pdf

CatalogueAccessors 19

Usage

res(catlg)
S3 method for class 'catlg'
res(catlg)
S3 method for class 'character'
res(catlg)
nruns(catlg)
S3 method for class 'catlg'
nruns(catlg)
S3 method for class 'character'
nruns(catlg)
nfac(catlg)
S3 method for class 'catlg'
nfac(catlg)
S3 method for class 'character'
nfac(catlg)
WLP(catlg)
S3 method for class 'catlg'
WLP(catlg)
S3 method for class 'character'
WLP(catlg)
nclear.2fis(catlg)
S3 method for class 'catlg'
nclear.2fis(catlg)
S3 method for class 'character'
nclear.2fis(catlg)
clear.2fis(catlg)
S3 method for class 'catlg'
clear.2fis(catlg)
S3 method for class 'character'
clear.2fis(catlg)
all.2fis.clear.catlg(catlg)
dominating(catlg)
S3 method for class 'catlg'
dominating(catlg)
S3 method for class 'character'
dominating(catlg)
catlg
S3 method for class 'catlg'
catlg[i]
S3 method for class 'catlg'
print(x, name="all", nruns="all", nfactors="all",

res.min=3, MaxC2=FALSE, show=10,
gen.letters=FALSE, show.alias=FALSE, ...)

block.catlg

20 CatalogueAccessors

Arguments

catlg Catalogue of designs of class catlg (cf. details section), or character vector
with name(s) of catlg element(s) in case of accessor functions

i vector of index positions or logical vector that can be used for indexing a catlg
object

x an object of class catlg

name character vector of entry names from x; default “all” means: no selection made

nruns numeric integer (vector), giving the run size(s) for entries of x to be shown;
default “all” means: no selection made

nfactors numeric integer (vector), giving the factor number(s) for entries of x to be
shown; default “all” means: no selection made

res.min numeric integer giving the minimum resolution for entries of x to be shown

MaxC2 logical indicating whether designs are ordered by minimum aberration (default,
MaxC2=FALSE) or by maximum number of clear 2fis (MaxC2=TRUE)

show integer number indicating maximum number of designs to be shown; default is
10

gen.letters logical indicating whether the generators should be shown as column num-
bers (default, gen.letters=FALSE) or as generators with factor letters (e.g.
E=ABCD, gen.letters=TRUE)

show.alias logical indicating whether the alias structure (up to 2fis) is to be printed

... further arguments to function print

block.catlg data frame with block generators for full factorial designs up to 256~runs, taken
from Sun, Wu and Chen (1997)

Details

The class catlg is a named list of design entries. Each design entry is again a list with the following
items:

res resolution, numeric, i.e. 3 denotes resolution III and so forth

nfac number of factors

nruns number of runs

gen column numbers of additional factors in Yates order

WLP word length pattern (starting with words of length 1, i.e. the first two entries are 0 for all
designs in catlg)

nclear.2fis number of clear 2-factor interactions (i.e. free of aliasing with main effects or other
2-factor interactions)

clear.2fis 2xnclear.2fis matrix of clear 2-factor interactions (clear to be understood in the above
sense); this matrix represents each designs clear interaction graph, which can be used in au-
tomated searches for designs that can accomodate (i.e. clearly) a certain requirement set of
2-factor interactions; cf. also estimable.2fis

all.2fis.clear vector of factors with all 2-factor interactions clear in the above sense

CatalogueAccessors 21

dominating logical that indicates whether the current design adds a CIG structure that has not
been seen for a design with less aberration (cf. Wu, Mee and Tang 2012 p.196 for dominating
designs); TRUE, if so; FALSE, if current CIG is isomorphic to previous one or has no edges
(IMPORTANT: the dominance assessment refers to the current catalogue; for designs with
more than 64 runs, it is possible that a design marked dominating in catalogue catlg is not
dominating when considering ALL non-isomorphic designs).
This element is helpful in omitting non-promising designs from a search for a clear design.
This element may be missing. In that case, all catalogue entries are assumed dominating.

Reference to factors in components clear.2fis and all.2fis.clear is via their position number
(element of (1:nfac)).

The print function for class catlg gives a concise overview of selected designs in any design
catalogue of class catlg. It is possible to restrict attention to designs with certain run sizes, numbers
of factors, and/or to request a minimum resolutions. Designs are ordered in decreasing quality,
where the default is aberration order, but number of clear 2fis can be requested alternatively. The
best 10 designs are displayed per default; this number can be changed by the show option. Options
gen.letters and show.alias influence the style and amount of printed output.

The catalogue catlg, which is included with package FrF2, is of class catlg and is a living object,
since it has to be updated with recent research results for larger designs. In particular, new MA
designs may be found, or it may be proven that previous “good” designs are in fact of minimum
aberration.

Currently, the catalogue contains

• the Chen, Sun and Wu (1993) 2-level designs (complete list of 2-level fractional factorials
from 4 to 32~runs, complete list of resolution IV 2-level fractional factorials with 64~runs).
Note that the Chen Sun Wu paper only shows a selection of the 64~run designs, the complete
catalogue has been obtained from Don Sun and is numbered according to minimum aberration
(lower number = better design); numbering in the paper is not everywhere in line with this
numbering.

• minimum aberration (MA) resolution III designs for 33 to 63 factors in 64 runs. The first
few of these have been obtained from Appendix G of Mee 2009, the designs for 38 and more
factors have been constructed by combining a duplicated minimum aberration design in 32
runs and the required number of factors with columns 32 to 63 of the Yates matrix for 64 run
designs. Using complementary design theory (cf. e.g. Chapter 6.2.2 in Mee 2009), it can be
shown that the resulting designs are minimum aberration (because they are complementary to
basically the same designs as the designs in 32 runs on which they are based). The author is
grateful to Robert Mee for pointing this out.

• the MA designs in 128 runs:
– for up to 24 factors obtained from Xu (2009),
– for 25 to 64 factors taken from Block and Mee (2005, with corrigendum 2006),
– for 65 to 127 factors (resolution III): up to 69 factors coming from Appendix G in Mee,

whereas the designs for 70 or more factors have been constructed according to the same
principle mentioned for the 64 run designs.

• various further “good” resolution IV designs in 128 runs obtained by evaluating designs from
the complete catalogue by Xu (2009, catalogue on his website) w.r.t. aberration and number of
clear 2fis (including also all designs that yield minimum aberration clear compromise designs
according to Groemping 2010); all designs with resolution at least IV for up to 11 factors have
been added with version 2.2.

22 CatalogueAccessors

• the MA even designs in 128 runs, in support of blocking according to the Godolphin approach
have been added with version 2.2.
Note that additional non-isomorphic resolution IV designs in 128 runs are available in package
(FrF2.catlg128); since the catalogues are quite large, they are not forced upon users of this
package who do not need them. Since version 1.1 of that package, the catalogues are not
complete but contain high resolution fractions and even/odd fractions only (status: version
1.2-x); re-inclusion of at least selected even fractions is intended, because these may yield
improved support of blocking in connection with estimable 2fis.

• the best (MA) resolution IV or higher designs in
256 runs for up to 36 factors (resolution V up to 17 factors),
512 runs for up to 29 factors (resolution V for up to 23 factors).
These have been taken from Xu (2009) with additions by Ryan and Bulutoglu (2010).

• Further “good” resolution IV designs with up to 80 factors in 256 runs and up to 160 factors
in 512 runs have also been implemented from Xu (2009).

• the best (MA) resolution V or higher design for each number of factors or a “good” such de-
sign (if it is not known which one is best) in
1024 runs (up to 33 factors, MA up to 28 factors, resolution VI up to 24 factors),
2048 runs (up to 47 factors, MA up to 32 factors, resolution VI up to 34 factors),
and 4096 runs (up to 65 factors, MA up to 26 factors, resolution VI up to 48 factors).

Most of the large designs in catlg have been taken from Xu (2009), where complete cata-
logues of some scenarios are provided (cf. also his website) as well as “good” (not necessarily
MA) designs for a larger set of situations. Some of the good designs by Xu (2009) have later
been shown to be MA by Ryan and Bulutoglu (2010), who also found some additional larger
MA designs, which are also included in catlg. Non-MA designs that were already available
before Bulutoglu (2010) are still in the catalogue with their old name. (Note that designs that
are not MA and cannot be placed in the ranking do not have a running number in the design
name; for example, the MA 2048 runs design in 28 factors is named 28-17.1, the older previ-
ous design that was not MA is named 28-17 (without “.1” or another placement, because the
designs position in the ranking of all designs is not known.))

There are also some non-regular 2-level fractional factorial designs of resolution V which may be
interesting, as it is possible to increase the number of factors for which resolution V is possible (cf.
Mee 2009, Chapter 8). These are part of package DoE.base, which is automatically loaded with
this package. With versions higher than 0.9-14 of that package, the following arrays are available:
L128.2.15.8.1, which allows 4 additional factors and blocking into up to 8 blocks
L256.2.19, which allows just 2 additonal factors
L2048.2.63, which allows 16 additional factors. These non-regular arrays should be fine for most
purposes; the difference to the arrays generated by function FrF2 lies in the fact that there is partial
aliasing, e.g. between 3-factor interactions and 2-factor interactions. This means that an affected
3-factor interaction is partially aliased with several different 2-factor interactions rather than being
aliased either fully or not at all.

Value

[selects a subset of designs based on i, which is again a list of class catlg, even if a single
element is selected. res, nruns, nfac, nclear.2fis and dominating return a named vector, the

CatalogueAccessors 23

print method does not return anything (i.e. it returns NULL), and the remaining functions return a
list.

Author(s)

Ulrike Groemping

References

Block, R. and Mee, R. (2005) Resolution IV Designs with 128 Runs Journal of Quality Technology
37, 282-293.

Block, R. and Mee, R. (2006) Corrigenda Journal of Quality Technology 38, 196.

Chen, J., Sun, D.X. and Wu, C.F.J. (1993) A catalogue of 2-level and 3-level orthogonal arrays. Int.
Statistical Review 61, 131-145.

Groemping, U. (2012). Creating clear designs: a graph-based algorithm and a catalog of clear
compromise plans. IIE Transactions 44, 988-1001. doi:10.1080/0740817X.2012.654848. Early
preprint at http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf.

Mee, R. (2009). A Comprehensive Guide to Factorial Two-Level Experimentation. New York:
Springer.

Ryan, K.J. and Bulutoglu, D.A. (2010). Minimum Aberration Fractional Factorial Designs With
Large N. Technometrics 52, 250-255.

Sun, D.X., Wu, C.F.J. and Chen, Y.Y. (1997). Optimal blocking schemes for 2p and 2n−p designs.
Technometrics 39, 298-307.

Wu, H., Mee, R. and Tang, B. (2012). Fractional Factorial Designs With Admissible Sets of Clear
Two-Factor Interactions. Technometrics 54, 191-197.

Xu, H. (2009) Algorithmic Construction of Efficient Fractional Factorial Designs With Large Run
Sizes. Technometrics 51, 262-277.

See Also

See also FrF2, oa.design

Examples

c8 <- catlg[nruns(catlg)==8]
nclear.2fis(c8)
clear.2fis(c8)
all.2fis.clear.catlg(c8)

inspecting a specific catalogue element
clear.2fis("9-4.2")

usage of print function for inspecting catalogued designs
the first 10 resolution V+ designs in catalogue catlg
print(catlg, res.min=5)
the 10 resolution V+ designs in catalogue catlg with the most factors
(for more than one possible value of nfactors, MaxC2 does usually not make sense)
print(catlg, res.min=5, MaxC2=TRUE)

https://doi.org/10.1080/0740817X.2012.654848
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf

24 CIG

designs with 12 factors in 64 runs (minimum resolution IV because
no resolution III designs of this size are in the catalogue)
best 10 aberration designs
print(catlg, nfactors=12, nruns=64)
best 10 clear 2fi designs
print(catlg, nfactors=12, nruns=64, MaxC2=TRUE)
show alias structure
print(catlg, nfactors=12, nruns=64, MaxC2=TRUE, show.alias=TRUE)
show best 20 designs
print(catlg, nfactors=12, nruns=64, MaxC2=TRUE, show=20)

use vector-valued nruns
print(catlg, nfactors=7, nruns=c(16,32))
all designs (as show=100 is larger than available number of designs)
with 7 or 8 factors in 16 runs
print(catlg, nfactors=c(7,8), nruns=16, show=100)

the irregular resolution V arrays from package DoE.base (from version 0.9-17)
designs can be created from them using function oa.design
Not run:
not run in case older version of DoE.base does not have these
length3(L128.2.15.8.1)
length4(L128.2.15.8.1) ## aliasing of 2fis with block factor
length4(L128.2.15.8.1[,-16])

length3(L256.2.19)
length4(L256.2.19)

##length3(L2048.2.63)
##length4(L2048.2.63) do not work resource wise
but the array is also resolution V (but irregular)

End(Not run)

CIG Clear interactions graph from catlg entry

Description

Function CIG creates a clear interactions graph (CIG) from a catlg design (design name must be
given). Function CIGstatic allows to create a static graph from a dynamically-adjusted one.

Usage

CIG(design, select.catlg = catlg, nfac = NULL, static = FALSE,
layout = layout.auto, label = "num", plot = TRUE, ...)

CIGstatic(graph, id, label = "num", xlim = c(-1,1), ylim = c(1,-1), ...)
gen2CIG(nruns, gen)

CIG 25

Arguments

design a character string that identifies a design in the catalogue specified by option
select.catlg,
OR a class catlg object with a single entry,
OR a formula with all main effects and the requested clear 2-factor interactions,
OR a character vector of length more than one with two-letter combinations of
the clear 2-factor interactions,
OR a numeric two-row matrix with factor numbers of the clear 2-factor interac-
tions,
OR a character two-row matrix with factor names of the clear 2-factor interac-
tions.
The first two are for graphing design CIGs, the other ones for requirement set
CIGs.

select.catlg name of catalogue (not in quotes); only relevant, if design is a character string

nfac number of factors; this is not needed for a class catlg object, or if the graph is
supposed to show only factors that are involved in at least one interaction

static logical. If TRUE, a static graphic is produced, otherwise an interactive graphic
is created that can be modified by moving aroung nodes; only relevant for
plot=TRUE

layout ignored for static=FALSE;
possible values are two-column matrices with number of rows equal to the num-
ber of vertices of the graph, or layout parameters for function plot.igraph as
described in plot.common and layout;
default: layout.auto (changed with version 1.6, was layout.circle before

label in effect for catlg object only (character design name or class catlg object);
a character string that decides for numeric labels or character labels; any string
other than the default will invoke the factor letters as labels

plot a logical that decides whether a plot is requested (default: TRUE);
plotting can be suppressed, if graph creation is desired for calculating graph
characteristics with functions from package igraph (e.g. clique.number, largest.cliques,
independence.number, degree)

... further arguments to be passed to function tkplot, or graphical parameters to
be passed to plot.

graph a graph object from package igraph, or a list whose first element is such a graph
object (like the output from function CIG)

id identification number of the interactive graph to be reproduced in static form;
this number can be found in the header line of the graphics window

xlim horizontal axis limits

ylim vertical axis limits (per default reversed in order to exactly reproduce the inter-
active graph)

nruns number of runs of the design to be graphed

gen generator (vector of Yates matrix column numbers)

26 CIG

Details

The design depicted in CIG has to be the name (character string) of a regular fractional factorial
2-level design present in select.catlg.

Clear 2fis are depicted as edges in the graph. In the interactive graph, users can change the layout
manually or with the menus. For example, the Reingold-Tilford layout can be chosen, with a root
vertex specified; this sometimes helps in identifying groups of vertices that are not connected with
each other.

Previous versions of package igraph used to internally number the vertices from 0 to number of
vertices -1, not from 1 to number of vertices. This has been changed in June 2012 (FrF2 adapted to
this change with version 1.5).

Function CIGstatic serves the purpose to statically create the current interactively modified graph;
the usual annotation possibilities for plots are available.

Function gen2CIG returns a graph object that can be plotted or otherwise investigated with graph-
related functionality.

Value

For plot=FALSE or plot=TRUE with static=TRUE, function CIG visibly (plot=FALSE) or invisibly
(plot=TRUE) returns a graph from package igraph.
For plot=TRUE with static=FALSE, the function returns a list with the first element graph the
element coords with the coordinates of that graph.
Function CIGstatic works on the list produced by function CIG by plotting the graph statically
using the positioning from the current interactive picture.

Function gen2CIG returns a clear interactions graph that can e.g. be plotted with functions plot
(plot.igraph) or tkplot.

Author(s)

Ulrike Groemping

References

Groemping, U. (2012). Creating clear designs: a graph-based algorithm and a catalog of clear
compromise plans. IIE Transactions 44, 988-1001. doi:10.1080/0740817X.2012.654848. Early
preprint at http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf.

See Also

plot.igraph, tkplot, plot.common

Examples

Not run:
ex.CIG <- CIG("9-4.2", vertex.color="white", vertex.label.color="darkred")
play around with the dynamic graph until it looks right
look up its id number in the title bar of the graph window and use it for id
par(xpd=TRUE)
CIGstatic(ex.CIG, id=1)

https://doi.org/10.1080/0740817X.2012.654848
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf

compromise 27

End(Not run)

graph1 <- CIG("9-4.2", plot=FALSE) ### create graph object from design name
calculate graph properties
require(igraph)
degree(graph1)
clique.number(graph1)
independence.number(graph1)
largest.cliques(graph1)

graph2 <- gen2CIG(32, c(7,11,14,29)) ### create graph object from generator columns
check isomorphism to graph1
graph.isomorphic(graph1, graph2)

Not run:
use a CIG for manual design search
requirement set:
estim <- compromise(9, 8:9)$requirement ## all interactions of factors 8 and 9 (H, J)
graph the requirement set CIG
CIG(estim, vertex.color="white", vertex.label.color="darkred")
a human can easily see that columns 1, 8 and 9 are worth a try for factors P, Q and R
CIG("9-4.1", vertex.color="white", vertex.label.color="darkred")

obviously, 9-4.1 cannot accommodate the requirement set
CIG("9-4.2", vertex.color="white", vertex.label.color="darkred")

9-4.2 can, by assigning factors H and J to columns 5 and 9
function FrF2 automatically does such matchings

End(Not run)

compromise Function to support estimability requests for compromise designs

Description

Addelman (1962) and Ke and Wu (2005) discuss compromise plans of different types. Their cre-
ation is supported by the function compromise.

Usage

compromise(nfactors, G1, class=3, msg=TRUE)

Arguments

nfactors overall number of factors
G1 vector with indices of factors in group G1 (cf. details)
class class of compromise designs that is to be generated; 1, 2, 3, or 4, cf. details

below
msg logical stating whether the minnruns.clear element of the result should be

reported in a message

28 compromise

Details

For compromise plans, the factors are decomposed into a group G1 and a group G2. The different
classes of compromise plans require estimability of different subsets of 2fis in addition to main
effects:

Class 1: all 2fis within group G1 are estimable
Class 2: all 2fis within group G1 are estimable, as well as all 2fis within group G2
Class 3: all 2fis within group G1 are estimable, as well as all 2fis between groups G1 and G2
Class 4: all 2fis between groups G1 and G2 are estimable

The function returns a list of four components (cf. section “Value”). They can be used as input
for the function FrF2, if compromise plans are to be created. Both distinct designs (Addelman
1962) and clear designs (Ke, Tang and Wu 2005) can be constructed, depending on the settings of
option clear in function FrF2. More explanations on specifying estimability requirements for 2fis
in general are provided under estimable.2fis.

Value

Value is a list of the four components perms.full, requirement, class, and minnrun.clear.
The last two components are purely imformative, while the first two provide input parameters for
function FrF2.
requirement can be used for specifying the required 2fis in the estimable option, both with
clear=FALSE and clear=TRUE. For clear=FALSE, perms.full can be used in the perms option
for speeding up the search into a hopefully realistic time frame.
minnrun.clear indicates the minimum number of runs needed for a clear design.

Note that the catalogue catlg contains all designs needed for accomodating existing clear com-
promise designs in up to 128 runs (even minimum aberration among all existing clear compromise
designs; for a catalogue of these, cf. Gr\"omping 2010).

Author(s)

Ulrike Groemping

References

Addelman, S. (1962). Symmetrical and asymmetrical fractional factorial plans. Technometrics 4,
47-58.

Groemping, U. (2012). Creating clear designs: a graph-based algorithm and a catalog of clear
compromise plans. IIE Transactions 44, 988-1001. doi:10.1080/0740817X.2012.654848. Early
preprint at http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf.

Ke, W., Tang, B. and Wu, H. (2005). Compromise plans with clear two-factor interactions. Statis-
tica Sinica 15, 709-715.

See Also

See Also FrF2 for creation of regular fractional factorial designs as well as estimable.2fis for
statistical and algorithmic information on estimability of 2-factor interactions

https://doi.org/10.1080/0740817X.2012.654848
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf

cubePlot 29

Examples

seven factors two of which are in group G1
C1 <- compromise(7, c(2,4), class=1)
C1$perms.full ## the same for all classes
C1$requirement
C2 <- compromise(7, c(2,4), class=2)
C2$requirement
C3 <- compromise(7, c(2,4), class=3)
C3$requirement
C4 <- compromise(7, c(2,4), class=4)
C4$requirement

Not run:
########## usage of estimable ###########################

design with with BD clear in 16 runs
FrF2(16,7,estimable = C1$requirement)
design with BD estimable on a distinct column in 16 runs (any design will do,
if resolution IV!!!
FrF2(16,7,estimable = C1$requirement, clear=FALSE, perms=C1$perms.full)
all four classes, mostly clear, for 32 runs
FrF2(32,7,estimable = C1$requirement)
FrF2(32,7,estimable = C2$requirement) ## requires resolution V

as clear class 2 compromise designs do not exist due to Ke et al. 2005
FrF2(32,7,estimable = C2$requirement, clear=FALSE, perms=C2$perms.full)
FrF2(32,7,estimable = C3$requirement)
FrF2(32,7,estimable = C4$requirement)
two additional factors H and J that do not show up in the requirement set
FrF2(32,9,estimable = C3$requirement)
two additional factors H and J that do not show up in the requirement set
FrF2(32,9,estimable = C3$requirement, clear=FALSE)
note that this is not possible for distinct designs in case perms is needed,
because perms must have nfactors columns

End(Not run)

cubePlot Cube plot for three-factor-effects

Description

A cube plot for the combined effect of three factors is produced (function cubePlot). Functions
cubedraw, cubecorners, cubelabel and myscatterplot3d are not intended for users.

Usage

cubePlot(obj, eff1, eff2, eff3, main=paste("Cube plot for",respnam),
cex.title=1.5,cex.lab=par("cex.lab"), cex.ax=par("cex.axis"),
cex.clab=1.2, size=0.3, round=NULL,
abbrev=4,y.margin.add=-0.2, modeled=TRUE)

30 cubePlot

Arguments

obj a vector of response values to be analyzed
OR
a linear model object with 2-level factors or numerical 2-level variables (CAU-
TION: numerical x-variable have to be coded as -1 and +1 only!); the structure
must be such that effects are either fully aliased or orthogonal, like in a fractional
factorial 2-level design

eff1 cf. eff3

eff2 cf. eff3

eff3 effects to be included in the cube plot (x-, y-, z-direction), EITHER vectors of
equal length (two-level factors or numerical with the two values -1 and 1) OR
variable names of main effects within the obj linear model object (character
strings)

main title for the plot, respnam is the name of the response variable as determined
from the call

cex.title multiplier for size of overall title (cex.main is multiplied with this factor)

cex.ax size of axis tick marks, defaults to cex.axis-parameter

cex.lab size of axis labels

cex.clab size of corner labels

size size of cube corners

round optional rounding of corner labels (digits argument for function round, e.g.
round=0 for integers, round=-1 for multiples of 10, round=1 for 1 decimal place

abbrev number of characters shown for factor levels

y.margin.add adjustment parameter for placement of y-axis labeling

modeled TRUE (default: show modeled means; FALSE: show averages
NOTE: Even when showing modeled means, there also appears to be a three-
factor-interaction, if the model contains an effect that is aliased with this inter-
action!

Details

cubePlot produces a cube plot of the modeled means or averages of all combinations for three
factors. The other functions are internal and are called by cubePlot. myscatterplot3d is a modified
version of scatterplot3d, made more suitable for this situation.

Value

cubePlot is used for its side effects only.

Author(s)

Ulrike Groemping

DanielPlot 31

References

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2005) Statistics for Experimenters, 2nd edition. New
York: Wiley.

See Also

FrF2-package for examples

DanielPlot Normal or Half-Normal Effects Plots

Description

The function is modified from the same-name function in packge BsMD with the purpose of pro-
viding more usage comfort (correct effect sizes in case of factors, automatic annotation, automatic
labelling of the most significant factors only).

Usage

DanielPlot(fit, ...)
S3 method for class 'design'
DanielPlot(fit, ..., response = NULL)
Default S3 method:
DanielPlot(fit, code = FALSE, autolab = TRUE, alpha = 0.05, faclab = NULL,

block = FALSE, datax = TRUE, half = FALSE, pch = "*",
cex.fac = par("cex.lab"), cex.lab = par("cex.lab"),
cex.pch = par("cex"), cex.legend = par("cex.lab"),
main = NULL, subtitle=NULL, ...)

Arguments

fit an experimental design of class design with the type element of the design.info
attribute containing “FrF2” or “pb”
OR
object of class lm. Fitted model from lm or aov.

... further arguments to be passed to the default function, or graphical parameters
to be passed to plot; note that one should not use pch for split-plot designs.

response NULL or a character string that specifies response variable to be used, must
be an element of response.names(obj); if NULL, the first response from
response.names(obj) is used

code logical. If TRUE labels “A”,“B”, etc. are used instead of the names of the coeffi-
cients (factors). A legend linking codes to names is provided.

autolab If TRUE, only the significant factors according to the Lenth method (signifi-
cance level given by alpha) are labelled.

alpha significanc level for the Lenth method

32 DanielPlot

faclab NULL or list. If NULL, point labels are automatically determined according to the
setting of code (i.e. A,B,C etc. for code=TRUE, natural effect names otherwise)
and autolab (i.e. all effects are labelled if autolab=FALSE, only significant ef-
fects are labelled if autolab=TRUE). Otherwise, faclab can be used for manual
labelling of certain effects and should be a list with idx (integer vector refer-
ring to position of effects to be labelled) and lab (character vector of labels)
components.

block logical. If TRUE, the first factor is labelled as “BK” (block).

datax logical. If TRUE, the x-axis is used for the factor effects the the y-axis for the
normal scores. The opposite otherwise.

half logical. If TRUE, half-normal plot of effects is display.

pch numeric or character. Points character.

cex.fac numeric. Factor label character size.

cex.lab numeric. Labels character size.

cex.pch numeric. Points character size.

cex.legend numeric. Legend size in case of codes.

main NULL or character. Title of plot. If NULL, automatic title is generated.

subtitle NULL or character. Sub title of plot. Should not be used for split-plot designs,
because automatic subtitle is generated for these.

Details

The design underlying fit has to be a (regular or non-regular) fractional factorial 2-level design.
Effects (except for the intercept) are displayed in a normal or half-normal plot with the effects in
the x-axis by default.

If fit is a design with at least one response variable rather than a linear model fit, the lm-method
for class design is applied to it with degree high enough that at least one effect is assigned to each
column of the Yates matrix, and the default method for DanielPlot is afterwards applied to the
resulting linear model.

For split-plot designs, whole plot effects are shown as different plotting characters, because they are
potentially subject to larger variability, and one should not be too impressed, if they look impres-
sively large, as this may well be indication of plot-to-plot variability rather than a true effect.

Value

The function invisibly returns a data frame with columns: x, y, no, effect, coded (if coded plot
was requested) and pchs, for the coordinates, the position numbers, the effect names, the coded
effect names, and the plotting characters for plotted points.

The plotting characters are particularly useful for split-plot designs and can be used for subsequent
separate plotting of whole-plot and split-plot effects, if necessary.

Note

If you load package BsMD after package FrF2, a mere call to function DanielPlot will use the
function from package BsMD rather than the one from package FrF2. You can explicitly request
usage of the FrF2 function by FrF2::DanielPlot.

estimable.2fis 33

Author(s)

Ernesto Barrios, modified by Ulrike Groemping.

References

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2005) Statistics for Experimenters, 2nd edition. New
York: Wiley.

Daniel, C. (1959) Use of Half Normal Plots in Interpreting Two Level Experiments. Technometrics
1, 311–340.

Daniel, C. (1976) Application of Statistics to Industrial Experimentation. New York: Wiley.

Lenth, R.V. (1989) Quick and easy analysis of unreplicated factorials. Technometrics 31, 469–473.

Lenth, R.V. (2006) Lenth s Method for the Analysis of Unreplicated Experiments. To appear in
Encyclopedia of Statistics in Quality and Reliability, Wiley, New York. Downloadable at http:
//www.wiley.com/legacy/wileychi/eqr/docs/sample_1.pdf.

See Also

qqnorm, halfnormal, LenthPlot, BsMD-package

estimable.2fis Statistical and algorithmic aspects of requesting 2-factor interactions
to be estimable in FrF2

Description

This help page documents the statistical and algorithmic details of requesting 2-factor interactions
to be estimable in FrF2

Details

The option estimable allows to specify 2-factor interactions (2fis) that have to be estimable in the
model. Whenever a resolution V or higher design is available, this option is unnecessary, because
all 2fis are estimable in the sense that they are not aliased with any main effect or any other 2fi.
If resolution V or higher is not affordable, the option estimable can ensure that certain 2fis can
nevertheless be estimated.

Per default, it is assumed that a resolution IV design is required, as it is normally not reasonable
to allow main effects to be aliased with other 2-factor interactions in this situation. There are two
types of estimability that are distinguished by the setting of option clear in function FrF2 (cf.
Groemping 2010).

Let us first consider designs of at least resolution IV. With option clear=TRUE, FrF2 searches for
a model for which all main effects and all 2fis given in estimable are clear of aliasing with any
other 2fis. This is a weaker requirement than resolution V, because 2fis outside those specified in
estimable may be aliased with each other. But it is much stronger than what is done in case of
clear=FALSE: For the latter, FrF2 searches for a design that has a distinct column in the model
matrix for each main effect and each interaction requested in estimable.

http://www.wiley.com/legacy/wileychi/eqr/docs/sample_1.pdf
http://www.wiley.com/legacy/wileychi/eqr/docs/sample_1.pdf

34 estimable.2fis

Users can explicitly permit that resolution III designs are included in the search of designs for which
the specified 2fis are estimable (by the res3=TRUE option). In case of clear=TRUE, this leads to the
somewhat strange situation that main effects can be aliased with 2fis from outside estimable while
2fis from inside estimable are not aliased with any main effects or 2fis.

With clear=TRUE, the algorithm compares the requirement set to catalogued sets of clear 2fis by a
graph isomorphism algorithm from R-package igraph. For details of this algorithm, cf. Groemping
(2012). With the catalogue catlg available in this package, the best (minimum aberration) existing
clear designs are guaranteed to be found for up to 64 runs and have a good chance to be found for
128 runs. For 128 runs, it is possible to load an additional large catalogue (package FrF2.catlg128)
in order to also guarantee that the best clear design is found. For 256 and 512 runs, only one or
two resolution IV designs of each size are catalogued so that option estimable can try to influence
allocation of factors to columns, but may fail although an appropriate clear design would exist out-
side the catalogued designs.
The search for a clear design is often fast. If it isn’t, option sort of function FrF2 can help. For
the occasional situation where this doesn’t help either, a manual search may help, see CIG for an
example of how to proceed.
Since version 2 of package FrF2, requesting 2fis to be clear is compatible with blocking a de-
sign. The algorithm behind that functionality is based on Godolphin (2021) and is described in
Groemping (2021). The default implementation strives for a guartanteed and best possible result.
Arguments firsthit and useV to function FrF2 can be used for trying to obtain a possibly not best
result (firsthit) faster or to use a (sometimes) faster algorithm that is not guaranteed to deliver a
result even though it might exist for resolution IV situations (useV=FALSE).

With clear=FALSE, the algorithm loops through the eligible designs from catlg.select from
good to worse (in terms of MA) and, for each design, loops through all eligible permutations of
the experiment factors from perms. If perms is omitted, the permutations are looped through in
lexicographic order starting from 1:nfac or perm.start. Especially in this case, run times of the
search algorithm can be very long. The max.time option allows to limit this run time. If the
time limit is reached, the final situation (catalogued design and current permutation of experiment
factors) is printed so that the user can decide to proceed later with this starting point (indicated by
catlg.select for the catalogued design(s) to be used and perm.start for the current permutation
of experiment factors).

With clear=TRUE, the algorithm loops through the eligible designs from catlg.select from good
to worse (in terms of MA) and, for each design, uses a subgraph isomorphism check from package
igraph. There are two such algorithms, VF2 (the default, Cordella et al. 2001) and LAD (in-
troduced with version 1.7 of package FrF2, Solnon 2010), which can be chosen with the method
option. Run times of the subgraph isomorphism search are often fast, but can also be very very slow
in unlucky situations. Where the VF2 algorithm is particularly slow, the LAD algorithm is often
fast (see Groemping 2014b). Especially for the VF2 algorithm, run times may strongly depend on
the ordering of factors, which can be influenced by the option sort. As the slowness of the process
is intrinsic to the subgraph isomorphism search problem (which is NP-complete), a max.time op-
tion analogous to the clear=FALSE situation would be of very limited use only and is therefore not
available. Instead, it is possible to have a look at the number of the design that was in the process of
being searched when the process was interrupted (with the command FrF2.currentlychecked()).

Note that - according to the structure of the catalogued designs and the lexicographic order of
checking permutations - the initial order of the factors has a strong influence on the run time for
larger or unlucky problems. For example, consider an experiment in 32~runs and 11~factors, for
six of which the pairwise interactions are to be estimable (Example 1 in Wu and Chen 1992).

estimable.2fis 35

estimable for this model can be specified as
formula("~(F+G+H+J+K+L)^2")
OR
formula("~(A+B+C+D+E+F)^2").
The former runs a lot faster than the latter (I have not yet seen the latter finish the first catalogued
design, if perms is not specified). The reason is that the latter needs more permutations of the
experiment factors than the former, since the factors with high positions change place faster and
more often than those with low positions.

For this particular design, it is very advisable to constrain the permutations of the experiment factors
to the different subset selections of six factors from eleven, since permutations within the sets do not
change the possibility of accomodating a design. The required permutations for the second version
of this example can be obtained e.g. by the following code:

perms.6 <- combn(11,6)
perms.full <- matrix(NA,ncol(perms.6),11)
for (i in 1:ncol(perms.6))
perms.full[i,] <- c(perms.6[,i],setdiff(1:11,perms.6[,i]))

Handing perms.full to the procedure using the perms option makes the second version of the re-
quested interaction terms fast as well, since up to almost 40 Mio permutations of experiment factors
are reduced to at most 462. Thus, whenever possible, one should try to limit the permutations
necessary in case of clear=FALSE.

In order to support relatively comfortable creation of distinct designs of some frequently-used types
of required interaction patterns, the function compromise has been divised: it supports creation of
the so-called compromise plans of classes 1 to 4 (cf. e.g. Addelman 1962; Ke, Tang and Wu 2005;
Groemping 2012). The list it returns also contains a component perms.full that can be used as
input for the perms option.

Please contact me with any suggestions for improvements.

Author(s)

Ulrike Groemping

References

Addelman, S. (1962). Symmetrical and asymmetrical fractional factorial plans. Technometrics 4,
47-58.

Chen, J., Sun, D.X. and Wu, C.F.J. (1993). A catalogue of 2-level and 3-level orthogonal arrays.
International Statistical Review 61, 131-145.

Cordella, L.P., Foggia, P., Sansone, C. and Vento, M. (2001). An improved algorithm for matching
large graphs. Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern
Recognition, 149–159.

Godolphin, J. (2021). Construction of Blocked Factorial Designs to Estimate Main Effects and
Selected Two-Factor Interactions. J. Royal Statistical Society B 83, 5-29. doi:10.1111/rssb.12397.

Groemping, U. (2010). “Clear” and “Distinct”: two approaches for regular fractional factorial
designs with estimability requirements. Reports in Mathematics, Physics and Chemistry, report

https://doi.org/10.1111/rssb.12397

36 estimable.2fis

02/2010, Department II, Beuth University of Applied Sciences Berlin. http://www1.bht-berlin.
de/FB_II/reports/Report-2010-002.pdf.

Groemping, U. (2012). Creating clear designs: a graph-based algorithm and a catalogue of clear
compromise plans. IIE Transactions 44, 988–1001. Early preprint available at http://www1.
bht-berlin.de/FB_II/reports/Report-2010-005.pdf.

Groemping, U. (2014a). R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level
Designs. Journal of Statistical Software, 56, Issue 1, 1-56. https://www.jstatsoft.org/v56/
i01/.

Groemping, U. (2014b). A Note on Dominating Fractional Factorial Two-Level Designs With Clear
Two-Factor Interactions. Technometrics 56, 42–45.

Groemping, U. (2021). An algorithm for blocking regular fractional factorial 2-level designs with
clear two-factor interactions. Computational Statistics and Data Analysis 153, 1-18. doi:10.1016/
j.csda.2020.107059. Preprint at Report 3/2019.

Ke, W., Tang, B. and Wu, H. (2005). Compromise plans with clear two-factor interactions. Statis-
tica Sinica 15, 709-715.

Solnon, C. (2010). AllDifferent-based Filtering for Subgraph Isomorphism. Artificial Intelligence
174, 850–864.

Wu, C.F.J. and Chen, Y. (1992) A graph-aided method for planning two-level experiments when
certain interactions are important. Technometrics 34, 162-175.

See Also

See also FrF2 for regular fractional factorials, catlg for the Chen, Sun, Wu (1993) and larger
catalogues of designs and some accessor functions, and function compromise for a convenience
function to handle estimability requests for compromise plans

Examples

########## usage of estimable ###########################
design with all 2fis of factor A estimable on distinct columns in 16 runs
FrF2(16, nfactors=6, estimable = rbind(rep(1,5),2:6), clear=FALSE)
FrF2(16, nfactors=6, estimable = c("AB","AC","AD","AE","AF"), clear=FALSE)
FrF2(16, nfactors=6, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=FALSE)
formula would also accept self-defined factor names
from factor.names instead of letters A, B, C, ...

estimable does not need any other input
FrF2(estimable=formula("~(A+B+C)^2+D+E"))

estimable with factor names
resolution three must be permitted, as FrF2 first determines that 8 runs
would be sufficient degrees of freedom to estimate all effects
and then tries to accomodate the 2fis from the model clear of aliasing in 8 runs
FrF2(estimable=formula("~one+two+three+four+two:three+two:four"),

factor.names=c("one","two","three","four"), res3=TRUE)
clear=FALSE allows to allocate all effects on distinct columns in the
8 run MA resolution IV design

http://www1.bht-berlin.de/FB_II/reports/Report-2010-002.pdf
http://www1.bht-berlin.de/FB_II/reports/Report-2010-002.pdf
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf
https://www.jstatsoft.org/v56/i01/
https://www.jstatsoft.org/v56/i01/
https://doi.org/10.1016/j.csda.2020.107059
https://doi.org/10.1016/j.csda.2020.107059
http://www1.bht-berlin.de/FB_II/reports/Report-2019-003.pdf

fold.design 37

FrF2(estimable=formula("~one+two+three+four+two:three+two:four"),
factor.names=c("one","two","three","four"), clear=FALSE)

7 factors instead of 6, but no requirements for factor G
FrF2(16, nfactors=7, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=FALSE)
larger design for handling this with all required effects clear
FrF2(32, nfactors=7, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=TRUE)
16 run design for handling this with required 2fis clear, but main effects aliased
(does not usually make sense)
FrF2(16, nfactors=7, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=TRUE, res3=TRUE)

example for necessity of perms for the clear=FALSE case
based on Wu and Chen Example 1

Not run:
runs per default about max.time=60 seconds, before throwing error with
interim results
results could be used in select.catlg and perm.start for restarting with
calculation of further possibilities
FrF2(32, nfactors=11, estimable = formula("~(A+B+C+D+E+F)^2"), clear=FALSE)
would run for a long long time (I have not yet been patient enough)
FrF2(32, nfactors=11, estimable = formula("~(A+B+C+D+E+F)^2"), clear=FALSE,

max.time=Inf)

End(Not run)
can be easily done with perms,
as only different subsets of six factors are non-isomorphic
perms.6 <- combn(11,6)
perms.full <- matrix(NA,ncol(perms.6),11)
for (i in 1:ncol(perms.6))

perms.full[i,] <- c(perms.6[,i],setdiff(1:11,perms.6[,i]))
function compromise will calculate the necessary perms entries automatically
compromise(11,1:6)$perms.full
FrF2(32, nfactors=11, estimable = formula("~(A+B+C+D+E+F)^2"), clear=FALSE,

perms = perms.full)

fold.design Function to create a foldover for 2-level fractional factorials

Description

This function creates a foldover design for a 2-level fractional factorial. The purpose is to dealias
(some) effects. Per default, all factors are folded upon, which makes the resulting design at least
resolution IV. Different foldover versions can be requested.

Usage

fold.design(design, columns = "full", ...)

38 fold.design

Arguments

design a data frame of class design that contains a 2-level fractional factorial; currently,
design must neither be blocked nor a long version parameter design

columns indicates which columns to fold on; the default “full” folds on all columns, i.e.
swaps levels for all columns.
A specific fold on certain columns can be requested giving a character vector of
factor names or a numeric vector of factor positions.
See the details section for some statistical comments.

... currently not used

Details

Foldover is a method to dealias effects in relatively small 2-level fractional factorial designs. The
folded design has twice the number of runs from the original design, and an additional column
“fold” that distinguishes the original runs from the mirror runs. This column should be used in
analyses, since it captures a block effect on time (often the mirror runs are conducted substantially
later than the original experiment).

Like most other software, this function conducts a full foldover per default, i.e. the mirror portion
reverses the levels of all factors. In terms of the convenient -1/1 notation for factor levels, this can
be written as a multiplication with “-1” for the mirror portion of all factors. Thus, all confounding
relations involving an odd number of factors (e.g. A=BC) are resolved, because the odd side of the
equation involves a minus for the mirror runs, and the even side does not (since the minuses cancel
each other). (These confounding relations are replaced by even ones for which the odd side of the
equation is multiplied with minus the new mirror factor fold.)

There are many situations, for which the default full foldover is not the best possible foldover
fraction, cf. e.g. Li and Mee (2002). It is therefore possible to choose an arbitrary foldover fraction.
For example, folding on one particular factor alone dealiases all confounding relations for that
factor, folding on two particular factors dealiases all confounding relations of these two with others
but not of these two together with others and so on.

Folding Plackett-Burman designs also removes the (partial) aliasing with 2-factor interactions for
all main effects that are mirrored.

Value

A data frame of class design with twice as many rows as design and the additional factor fold
(added as the last factor for folded pb designs, as the first factor for splitplot designs, and as the last
base factor for other folded regular fractional factorial designs).

Existing response values are of course preserved, and response values for the new mirror runs are
NA.

The type in attribute design.info is suffixed with “.folded”, and nruns (and, if applicable, nWPs)
is doubled, nfactors (and, if applicable, nfac.WP) is increased by one (for the factor fold, which
is a block factor and can also be treated as such, but will currently be treated as a fixed (whole plot)
factor by any automated analysis routine). The creator element receives a list entry for the fold
columns.
For regular fractional factorials (design type starting with FrF2), the generator element is ad-
justed (the generators for all generated fold factors now involve the folding factor), and an existing

fold.design 39

catlg.entry element is replaced by a new generators element. The aliased element is adapted to
the new alias structure. Note that the fold factor enters as a new base factor and therefore is added
to the factor matrix after the first log2(nruns) factors. This implies that all factor letters previously
used for the generated factors are changed - for avoiding confusion it is always recommended to
work with factor names that are meaningful in a subject-matter sense.

Furthermore, for the regular fractional factorial designs, the column run.no.in.std.order in attribute
run.order for the mirror portion of the design is populated such that the base factors remain in the
conventional order when ordered by run.no.in.std.order (regardless whether or not they are included
in the fold; it is always possible to reorder runs such that the original base factors together with the
folding factor form the new base in standard order).

Note

This function is still somewhat experimental.

Author(s)

Ulrike Groemping

References

Li, H. and Mee, R. (2002). Better foldover fractions for resolution III 2^(k-p) designs. Technomet-
rics 44, 278–283. New York: Springer.

Mee, R. (2009). A Comprehensive Guide to Factorial Two-Level Experimentation. New York:
Springer.

Montgomery, D.C. (2001). Design and Analysis of Experiments (5th ed.). Wiley, New York.

See Also

See also as pb, FrF2

Examples

create resolution III design
plan <- FrF2(8,5, factor.names=c("one","two","three","four","five"))
add some resonse data
y <- c(2+desnum(plan)%*%c(2,3,0,0,0) +

1.5*apply(desnum(plan)[,c(1,2)],1,"prod") + rnorm(8))
the "c()" makes y into a vector rather than a 1-column matrix

plan <- add.response(plan, y)
DanielPlot(lm(y~(.)^2,plan), alpha=0.2, half=TRUE)
alias information
design.info(plan)
full foldover for dealiasing all main effects
plan <- fold.design(plan)
design.info(plan)
further data, shifted by -2
y <- c(y, desnum(plan)[9:16,1:5]%*%c(2,3,0,0,0) +

1.5*apply(desnum(plan)[9:16,c(1,2)],1,"prod") + rnorm(8))
plan <- add.response(plan, y, replace=TRUE)

40 FrF2

linmod <- lm(y~(.)^2,plan)
DanielPlot(linmod, alpha=0.2, half=TRUE)
MEPlot(linmod)
IAPlot(linmod)

fold on factor a only (also removes main effect aliasing here)
plan <- FrF2(8,5, factor.names=c("one","two","three","four","five"))
aliasprint(plan)
plan <- fold.design(plan, columns=1)
aliasprint(plan)

fold a Plackett-Burman design with 11 factors
plan <- pb(12)
fold.design(plan)

FrF2 Function to provide regular Fractional Factorial 2-level designs

Description

Regular fractional factorial 2-level designs are provided. Apart from obtaining the usual minimum
aberration designs in a fixed number of runs, it is possible to request highest number of free 2-factor
interactions instead of minimum aberration or to request the smallest design that fulfills certain
requirements (e.g. resolution V with 8 factors).

Usage

FrF2(nruns = NULL, nfactors = NULL, factor.names = if (!is.null(nfactors)) {
if (nfactors <= 50) Letters[1:nfactors] else

paste("F", 1:nfactors, sep = "")} else NULL,
default.levels = c(-1, 1), ncenter=0, center.distribute=NULL,
generators = NULL, design = NULL,
resolution = NULL, select.catlg=catlg,
estimable = NULL, clear = TRUE, method="VF2", sort="natural",
ignore.dom = !isTRUE(all.equal(blocks,1)),
useV = TRUE, firsthit=FALSE, res3 = FALSE, max.time = 60,
perm.start=NULL, perms = NULL,
MaxC2 = FALSE, replications = 1, repeat.only = FALSE,
randomize = TRUE, seed = NULL, alias.info = 2,
blocks = 1, block.name = "Blocks", block.old=FALSE,
force.godolphin=alias.block.2fis,
bbreps=replications, wbreps=1,
alias.block.2fis = FALSE,
hard = NULL, check.hard=10, WPs=1,nfac.WP=0,
WPfacs=NULL, check.WPs = 10, ...)

FrF2.currentlychecked()

FrF2 41

Arguments

nruns Number of runs, must be a power of 2 (4 to 4096), if given.
The number of runs can also be omitted. In that case, if resolution is speci-
fied, the function looks for the smallest design of the requested resolution that
accomodates nfactors factors. If the smallest possible design is a full factorial
or not catalogued, the function stops with an error.
If generators is specified, nruns is required.
If estimable is specified and nruns omitted, nruns becomes the size of the small-
est design that MIGHT accomodate the effects requested in estimable. If this
run size turns out to be too low, an error is thrown. In that case, explicitly choose
nruns as twice the run size given in the error message and retry.

nfactors is the number of 2-level factors to be investigated. It can be omitted, if it is ob-
vious from factor.names, a specific catalogued design given in design, nruns
together with generators, or estimable.
If estimable is used for determining the number of factors, it is assumed that
the largest main effect position number occurring in estimable coincides with
nfactors.
For blocked designs, block generator columns are not included in nfactors,
except if the user explicitly specifies 2-level block generation factors as part
of the fractional factorial design (e.g. a factor shift with levels morning and
afternoon).
For automatically-generated split-plot designs (cf. details section), nfactors
simply is the number of all factors (whole plot and split plot together). If
nfac.WP < log2(WPs), the algorithm will add (an) artificial plot generation fac-
tor(s).
For manually-specified split-plot designs (through options generators or design
together with WPfacs), the user must specify at least log2(WPs) split plot fac-
tors, i.e. nfac.WP >= log2(WPs) is required (and must, if necessary, be achieved
by adding log2(WPs) - nfac.WP extra independent generator columns for the
whole plot structure, which have to be counted in nfac.WP and nfactors).

factor.names a character vector of nfactors factor names or a list with nfactors elements;
if the list is named, list names represent factor names, otherwise default factor
names are used;
the elements of the list are
EITHER vectors of length 2 with factor levels for the respective factor
OR empty strings. For each factor with an empty string in factor.names, the
levels given in default.levels are used;
Default factor names are the first elements of the character vector Letters, or
the factors position numbers preceded by capital F in case of more than 50 fac-
tors.

default.levels default levels (vector of length 2) for all factors for which no specific levels are
given

ncenter number of center points per block; ncenter > 0 is permitted, if all factors are
quantitative and the design is not a split-plot design

center.distribute

the number of positions over which the center points are to be distributed for

42 FrF2

each block; if NULL (default), center points are distributed over end, begin-
ning, and middle (in that order, if there are fewer than three center points) for
randomized designs, and appended to the end for non-randomized designs. for
more detail, see function add.center, which does the work.

generators There are log2(nruns) base factors the full factorial of which spans the design
(e.g. 3 for 8 runs). The generators specify how the remaining factors are to be
allocated to interactions of these.

generators can be

a list of vectors with position numbers of base factors (e.g. c(1,3,4) stands for
the interaction between first, third and fourth base factor)

a vector of character representations of these interactions, e.g. “ACD” stands for
the same interaction as above

a vector of columns numbers in Yates order (e.g. 13 stands for ACD). Note that
the columns 1, 2, 4, 8, etc., i.e. all powers of 2, are reserved for the base factors
and cannot be used for assigning additional factors, because the design would
become a resolution II design. For looking up which column number stands for
which interaction, type e.g. names(Yates)[1:15] for a 16 run design.

In all cases, preceding the respective entry with a minus sign (e.g. -c(1,3,4),
“-ACD”, -13) implies that the levels of the respective column are reversed.
WARNING: Minus signs do not cause an error, but neither have an effect in case
of automatic assignment of split-plot designs or hard-to-change columns.

design is a character string specifying the name of a design listed in the catalogue spec-
ified as select.catlg, which is usually the catalogue catlg

resolution is the arabic numeral for the requested resolution of the design. FrF2 looks
for a design with at least this resolution. Option resolution does not work, if
estimable, blocks or WPs are specified, and neither if nruns is given.
A design with resolution III (resolution=3) confounds main effects with 2-factor
interactions, a design with resolution IV confounds main effects with three-
factor interactions or 2-factor interactions with each other, and designs with
resolution V or higher are usually regarded as very strong, because all 2-factor
interactions are unconfounded with each other and with main effects.

select.catlg specifies a catalogue of class catlg from which an adequate design is selected
and adapted.
The specified catalogue is used for design construction, unless generators ex-
plicitly constructs a non-catalogued design. The default catlg is adequate for
most applications.

If a specific different catalogue of designs is available, this can be specified
here.
Specification of a smaller subset of designs is useful, if estimable has been
given and clear=FALSE, for restricting the search to promising designs.

Names of catalogues from package FrF2.catlg128 can be given here without
prior loading of that package; loading of the package and the selected catalogue
will then happen automatically, provided the package is installed (for version
>=1.2 of package FrF2.catlg128; for earlier versions, the suitable catalogue has
to be manually loaded using the data() command).

FrF2 43

estimable indicates the 2-factor interactions (2fis) that are to be estimable in the design.
Consult the specific help file (estimable.2fis) for details of two different ap-
proaches of requesting estimability, as indicated by the status of the clear op-
tion. estimable cannot be specified together with splitplot, generators or
design.
estimable can be
a numeric matrix with two rows, each column of which indicates one interac-
tion, e.g. column 1 3 for interaction of the first with the third factor
OR
a character vector containing strings of length 2 with capital letters from Letters
(cf. package DoE.base) for the first 25 factors and small letters for the last 25
(e.g. c("AB","BE")
OR
a formula that contains an adequate model formula, e.g.
formula("~A+B+C+D+E+(F+G+H+J+K+L)^2")
for a model with (at least) eleven factors.
The names of the factors used in the formula can be the same letters usable in
the character vector (cf. above, A the first factor, B the second etc.), or they can
correspond to the factor names from factor.names.

clear logical, indicating how estimable is to be used. See estimable.2fis.

method character string indicating which subgraph isomorphism search routine of pack-
age igraph is used (graph.subisomorphic.vf2 or graph.subisomorphic.lad).
The default "VF2" uses VF2 algorithm by Cordella et al. (2001), which was the
only available algorithm before version 1.7 of package FrF2. The alternative
"LAD" uses the LAD algorithm by Solnon (2010), which was reported to be sub-
stantially faster than VF2 especially for some notoriously difficult VF2 cases
(see Gr?mping 2014b). This option is relevant for estimable with clear=TRUE
only.
NOTE: The resulting design may be different for different settings of this option!

sort character string indicating how the estimability requirement and the candidate
design clear 2fis are handed to the subgraph isomorphism search routine of pack-
age igraph. The default "natural" leaves them in unchanged order (like in
FrF2 versions up to 1.6). sort="high" and sort="low" sort both requirement
set and candidate design graph according to vertex degrees (high first or low
first).
This option is relevant for estimable with clear=TRUE only.
It has been added, because pre-sorting of vertices sometimes speeds up the
search by several orders of magnitude especially for the VF2 method.
NOTE: The resulting design may be different for different settings of this option!

ignore.dom logical, default FALSE for unblocked designs, TRUE for blocked designs; if
TRUE, estimable ignores the dominating attribute of the catalogue entries; can
be useful for searching a blocked design with estimable 2fis from a reduced
catalogue

useV NULL or logical; relevant for designs with blocks and estimable only; if
TRUE, function link{colpick} is used (default), otherwise function link{colpickIV};
if set to NULL, colpick is used for fractions with resolution at least V and func-
tion link{colpickIV} for resolution IV fractions;

44 FrF2

useV=FALSE does the subgraph isomorphism check once only, at the expense of
missing out opportunities; it may be worth trying useV=NULL or useV=FALSE for
resolution IV situations, for which the search takes very long with the default

firsthit logical; relevant for designs with blocks and estimable only; if FALSE, the
function tries to find a design with as many as possible clear 2fis, otherwise the
function stops at the first possible blocking; in case of resource problems, setting
firsthit to TRUE may be helpful

res3 logical; if TRUE, estimable includes resolution III designs into the search for
adequate designs; otherwise resolution IV and higher designs are included only.

max.time maximum time for design search as requested by estimable, in seconds (default
60); introduced for clear=FALSE situations because the search can take a long
time in complicated or unlucky situations; set max.time to Inf if you want to
force a search over an extended period of time; however, be aware that it may
still take longer than feasible (cf. also estimable.2fis)

perm.start used with estimable specified, and clear=FALSE.
Provides a start permutation for permuting experiment factors (numeric vector).
This is useful for the case that a previous search was not (yet) successful because
of a time limit, since the algorithm notifies the user about the permutation at
which it had to stop.

perms used with estimable specified, and clear=FALSE.
Provides the matrix of permutations of experiment factors to be tried; each row
is a permutation. For example, for an 11-factor design with the first six factors
and their 2fis estimable, it is only relevant, which of the eleven factors are to be
allocated to the first six experiment factors, and these as well as the other five
factors can be in arbitrary order. This reduces the number of required permu-
tations from about 40 Mio to 462. It is recommended to use perms whenever
possible, if clear=FALSE, since this dramatically improves performance of the
algorithm.
It is planned to automatically generate perms for certain structures like compro-
mise designs in the (not so near) future.

MaxC2 is a logical and defaults to FALSE. If TRUE, maximizing the number of clear
2-factor interactions takes precedence over minimizing aberration. Resolution
is always considered first. MaxC2 is ignored when using the estimable option.
MaxC2=TRUE is not a recommended choice.

replications positive integer number. Default 1 (i.e. each row just once). If larger, each de-
sign run is executed replication times. If repeat.only, repeated measurements
are carried out directly in sequence, i.e. no true replication takes place, and all
the repeat runs are conducted together. It is likely that the error variation gen-
erated by such a procedure will be too small, so that average values should be
analyzed for an unreplicated design.
Otherwise (default), the full experiment is first carried out once, then for the
second replication and so forth. In case of randomization, each such blocks is
randomized separately. In this case, replication variance is more likely suitable
for usage as error variance (unless e.g. the same parts are used for replication
runs although build variation is important).

FrF2 45

repeat.only logical, relevant only if replications > 1. If TRUE, replications of each run
are grouped together (repeated measurement rather than true replication). The
default is repeat.only=FALSE, i.e. the complete experiment is conducted in
replications blocks, and each run occurs in each block.

randomize logical. If TRUE, the design is randomized. This is the default. In case of repli-
cations, the nature of randomization depends on the setting of option repeat.only.

seed optional seed for the randomization process
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function FrF2.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

alias.info can be 2 or 3, gives the order of interaction effects for which alias information
is to be included in the aliased component of the design.info element of the
output object.

blocks is EITHER
the number of blocks into which the experiment is subdivided
OR a character vector of names of independent factors that are used as block
constructors
OR a vector of Yates column numbers OR a list of generators similar to list en-
tries for generators.
In the latter case, the differences to generators are

• that numbers/letters refer to the factors of the experiment and not to column
numbers of the Yates matrix

• that numbers/letters can refer to *all* nfactors factors rather than the
log2(nruns) base factors only,

• that one single number is always interpreted as the number of blocks rather
than a column reference,

• that individual numbers are allowed in a list (i.e. individual factors specified
in the experiment can be used as block factors) and

• that no negative signs are allowed.

If blocks is a single number, it must be a power of 2. A blocked design can
have at most nruns-blocks-1 treatment factors, but should usually have fewer
than that.

If the experiment is randomized, randomization happens within blocks. In case
of many blocks, units should also be randomized to blocks wherever possible!

For the statistical and algorithmic background of blocked designs, see block.

block.name name of the block factor, default “Blocks”

46 FrF2

block.old logical; if TRUE, blocking behavior of FrF2 version 1.7.2 is activated

force.godolphin

logical; if TRUE, blocking is forced to be done with the Godolphin method (us-
ing function colpick, see block), even if the default would have been to use
function blockpick.
The Godolphin method was introduced with package version 2.0, and since
package version 2.3, the default for alias.block.2fis=TRUE is to force the
use of the Godolphin method.

bbreps between block replications; these are always taken as genuine replications, not
repeat runs; default: equal to replications; CAUTION: you should not mod-
ify bbreps if you do not work with blocks, because the program code uses it
instead of replications in some places

wbreps within block replications; whether or not these are taken as genuine replications
depends on the setting of repeat.only

alias.block.2fis

logical indicating whether blocks may be aliased with 2fis (default: FALSE);
it will often be necessary to modify this option, because there is otherwise no
solution.

hard gives the number of hard to change factors. These must be the first factors in
factor.names. Implementation is via a non-randomized split-plot design with
as few as possible whole plots (number of possible whole plots is determined
via left-adjustment) and as few as possible non-hard factors within the whole
plot structure (by applying split-plot after left-adjustment).
Observations within whole plots are randomized, whole plots themselves are not
randomized (contrary to split plot designs).
From the statistical point of view, randomisation of whole plots is strongly pre-
ferrable (cf. splitplot for a brief discussion of the difference). If this appears
feasible, you may want to explicitly handle the situation by treating the hard to
change factors as whole-plot factors via WPs and nfac.WP.

check.hard is the number of candidate designs from the catalogue specified in select.catlg
that are checked for making hard-to-change factors change as little as possible.
The default is 10 - if too many changes are needed, a larger choice might help
find a design with fewer level changes (but will also take longer run time and
will find a worse design in terms of resolution / aberration).
If you want to use the best design and do not want to compromise the confound-
ing structure for ease-of-change reasons, set check.hard to 1.

WPs is the number of whole plots and must be a power of 2.
If WPs > 1, at least one of nfac.WP or WPfacs must be given.
If WPs = 1, all settings for split-plot related options are ignored.

For statistical and algorithmic information on treatment of split-plot designs see
the separate help file splitplot.

nfac.WP is the number of whole plot factors and must be smaller than WPs.
The nfac.WP whole plot factors are counted within nfactors. Per default, the
first nfac.WP factors are the whole plot factors.

FrF2 47

If a design is provided and whole plot factors are manually provided (design or
generators option together with WPfacs), nfac.WP can be omitted (i.e. remains
0). If given, it must coincide with the length of WPfacs.
If nfac.WP is given without WPfacsonly, generators must not be given.
If nfac.WP is omitted (i.e. remains 0) and WPs > 1, an error is thrown, because
the situation is a block rather than a split-plot situation (and either it was forgot-
ten to specify the number of whole plot factors, or blocks should be specified).

WPfacs is per default NULL. In this case, the first nfac.WP factors are considered whole
plot factors (and are, if necessary, automatically supplemented by additional
whole plot constructor factors).
If WPfacs is given, it must specify at least log2(WPs) whole plot factors. A
custom design must be specified with options design or generators, and the
requested factors in WPfacs must indeed create a split-plot structure with WPs
whole plots. If the number of whole plots created by the whole plot factors
differs from WPs or factors other than the specified factors from WPfacs would
in fact become whole plot factors as well, an error is thrown.
WPfacs can be any of
a vector or list of factor position numbers
OR
a character vector of factor position letters from Letters
OR
a character vector with entries “F” followed by factor position number
OR
a character vector of factor names (this takes precedence over factor letters, i.e.
if the factor names were B, A, C, D, and E, factor letter entries in the nfac.WP
are interpreted as factor names, not position letters).
It is not possible to specify additional whole plot generators from interaction
effects manually through WPfacs. Rather, all whole plot factors - even artificial
ones needed only to increase the number of plots - need to be included in the
design factors.

check.WPs is the number of potential split-plot designs that are compared by function splitpick
w.r.t. resolution of the whole plot portion of the design. This option is effective,
if nfac.WP>k.WP (i.e. bad resolution possible) and nfac.WP not larger than half
the number of plots (i.e. resolution better than III is possible). The default is
10 - if not satisfied with the structure of the whole plot factors, a larger choice
might help find a better design (but also take longer run time).

... currently not used

Details

Per default, the function picks the best design from the default design catalogue catlg (a list object
of class catlg).

Alternatively, the user can explicitly specify a design through accessing a specific catalogued design
using the design option or specifying non-catalogued generators via the generators option.

Apart from generation of simple fractional factorial designs based on catalogued or non-catalogued
generators, function FrF2 allows specification of blocked designs and split-plot designs, as well
as specification of a set of 2fis that are required to be estimable. The implementation of these

48 FrF2

possibilities is explained in the separate help files block, splitplot and estimable.2fis. If you
consider to use option hard, it may also be worth while to look at the splitplot help file.

Function FrF2 is still under development, although most features are now included, and the principle
structure of inputs and outputs should not change much any more. Please contact me with any
suggestions for improvements.

Function FrF2.currentlychecked is meant as a diagnostic tool, when searching for designs with
option estimable and clear=TRUE. If the search takes very long, it can be interrupted (CAUTION:
in some igraph versions, interrupting the search may crash R). After a successful interruption, and
FrF2.currentlychecked() returns a character string with the name of the design that was checked
at the time of interruption.

Value

Function FrF2 returns a data frame of S3 class design that has attached attributes that can be
accessed by functions desnum, run.order and design.info.

The data frame itself contains the design with levels coded as requested. If no center points have
been requested, the design columns are factors with contrasts -1 and +1 (cf. also contr.FrF2); in
case of center points, the design columns are numeric.

The following attributes are attached to it:

desnum Design matrix in -1/1 coding

run.order a three column data frame;
the first column (run.no.in.std.order) contains the run number in standard
order, possibly including a block number and in that case also a number for the
original position within the block,
the second column (run.no) contains the actual run number as randomized,
the third column contains (run.no.std.rp) contains the content of the first col-
umn accumulated with a replication identifier, if applicable.
A few remarks on the run number in standard order are needed here:
In blocked and split plot designs, the run number in standard order refers to a
row ordering with the first base factor changing slowest, different from the usual
order with the first base factor changing fastest. Also note that the run number
in standard order may not refer to the base columns one would naturally expect
for designs created with blocking, estimable 2fis or split plot designs; the ele-
ments map and/or orig.fac.order of the attribute design.info help identify
which base factors drive the run number in standard order. (In case of option
hard=TRUE, the remark on split plot designs applies, and the numbering refers
to the special slow change matrix from Cheng et al. 1998.)
Before version 2 of package FrF2, blocking for large situations was internally
done with function blockpick.big. This behavior can be reproduced using
the argument block.old=TRUE; if blocking for a large design is not successful
otherwise, block.old=TRUE might be worth a try. For blocked designs created
internally with function blockpick.big, the run number in standard order is
not easily related to the final design.

design.info list with the entries

type character string “full factorial”, “FrF2”, “FrF2.estimable”, “FrF2.generators”,
“FrF2.blocked” or “FrF2.splitplot” depending on the type of design

FrF2 49

nruns number of runs (replications are not counted)
nfactors number of factors; since version 0.97, this is also true for designs of

type FrF2.blocked (nfactors is now equal to ntreat) and for designs of
type FrF2.splitplot, where nfactors is now the sum of nfac.WP and
nfac.SP.

ntreat for designs of type FrF2.blocked only;
number of treatment factors

nfac.WP for designs of type FrF2.splitplot only;
number of whole plot factors (including extra factors that may have been
added for whole plot construction); these are the first factors in the design
data frame

nfac.SP for designs of type FrF2.splitplot only;
number of split-plot factors

nlevels for designs of type full factorial only;
vector with number of levels for each factor (of course, all the nfactors
entries are “2” for FrF2)

factor.names list named with (treatment) factor names and containing as en-
tries vectors of length two each with coded factor levels

FrF2.version version number of package FrF2, supporting correct usage of
FrF2-specific functionality in functions summary and generators methods
for class design

nblocks for designs of type FrF2.blocked only;
number of blocks

block.gen vector of columns of the Yates matrix for generating block factors in
case of automatic block generation
OR list of (vectors of) factor numbers in case the blocks argument specifies
certain factor combinations for blocking; ;
for designs of type FrF2.blocked only

blocksize for designs of type FrF2.blocked only;
size of each block (without consideration of wbreps)

nWPs for designs of type FrF2.splitplot only;
number of whole plots

plotsize for designs of type FrF2.splitplot only;
size of each plot (without consideration of repeat.only replications if appli-
cable)

orig.fac.order designs of type FrF2.splitplot only;
factor order of the design before reshuffling of factors in order to accomo-
date the split plot request; the run number in standard order can only be
interpreted together with this information

catlg.entry for designs of type FrF2 only;
list with one element, which is the entry of catlg on which the design is
based

generators for designs of type FrF2.generators only;
character vector of generators in the form D=ABC etc.

base.design for designs of type FrF2.blocked or FrF2.splitplot only;
gives a character string that contains the name of the base design in the

50 FrF2

catalogue or the column numbers of generating columns in Yates matrix; in
case of automatic block generation, the exclusion or inclusion of k.block
in the number of design factors / generators indicates whether the design
was generated using function blockpick or blockpick.big.

aliased.with.blocks for designs of type FrF2.blocked only;
treatment effects that are aliased with block main effects, up to 2fis or 3fis,
depending on the choice of alias.info

aliased alias structure of main effects, 2fis and possibly 3fis, depending on
the choice of alias.info; For non-blocked and non-split-plot designs,
aliased is itself a list of the two or three components main, fi2, and op-
tionally fi3, given in terms of factor letters from Letters (up to 50~factors)
or F1, F2, and so forth (more than 50~factors). For blocked and split-plot
designs, aliased is a single list with an entry for each column of the Yates
matrix that accomodates aliased low-order effects, and entries are in terms
of factor names.)

replication option setting in call to FrF2

repeat.only option setting in call to FrF2

bbreps for designs of type FrF2.blocked only; number of between block repli-
cations

wbreps for designs of type FrF2.blocked only; number of within block repli-
cations;
repeat.only indicates whether these are replications or repetitions only

map the mapping relation between factors in the base design and experimental
factors, after using option estimable and for split-plot designs

clear option setting in call to FrF2, in case of estimable
res3 option setting in call to FrF2, in case of estimable
randomize option setting in call to FrF2

seed option setting in call to FrF2

creator call to function FrF2 (or stored menu settings, if the function has been
called via the R commander plugin RcmdrPlugin.DoE)

ncube number of cube points per block, in case center points have been re-
quested

ncenter number of center points per block, in case center points have been
requested

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that should not be relevant for the randomization of designs). For reproducing a random-
ized design that was produced with an earlier R version, please follow the steps described with the
argument seed.

Author(s)

Ulrike Groemping

FrF2 51

References

Bingham, D.R., Schoen, E.D. and Sitter, R.R. (2004). Designing Fractional Factorial Split-Plot
Experiments with Few Whole-Plot Factors. Applied Statistics 53, 325-339.

Bingham, D. and Sitter, R.R. (2003). Fractional Factorial Split-Plot Designs for Robust Parameter
Experiments. Technometrics 45, 80-89.

Bisgaard, S. (1994a). Blocking generators for small 2k−p designs. J. Quality Technology 26, 288-
294.

Chen, J., Sun, D.X. and Wu, C.F.J. (1993) A catalogue of 2-level and 3-level orthogonal arrays.
International Statistical Review 61, 131-145.

Cheng, C.-S., Martin, R.J., and Tang, B. (1998). Two-level factorial designs with extreme numbers
of level changes. Annals of Statistics 26, 1522-1539.

Cheng, C.-S. and Tsai, P.-W. (2009). Optimal two-level regular fractional factorial block and split-
plot designs. Biometrika 96, 83-93.

Cheng, S.W. and Wu, C.F.J. (2002). Choice of optimal blocking schemes in 2-level and 3-level
designs. Technometrics 44, 269-277.

Cordella, L.P., Foggia, P., Sansone, C. and Vento, M. (2001). An improved algorithm for matching
large graphs. Proc. of the 3rd IAPR TC-15 Workshop on Graphbased Representations in Pattern
Recognition, 149–159.

Godolphin, J. (2021). Construction of Blocked Factorial Designs to Estimate Main Effects and
Selected Two-Factor Interactions. J. Royal Statistical Society B 83, 5-29. doi:10.1111/rssb.12397.

Groemping, U. (2012). Creating clear designs: a graph-based algorithm and a catalogue of clear
compromise plans. IIE Transactions 44, 988–1001. Early preprint available at http://www1.
bht-berlin.de/FB_II/reports/Report-2010-005.pdf.

Groemping, U. (2014a). R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level
Designs. Journal of Statistical Software, 56, Issue 1, 1-56. https://www.jstatsoft.org/v56/
i01/.

Groemping, U. (2014b). A Note on Dominating Fractional Factorial Two-Level Designs With Clear
Two-Factor Interactions. Technometrics 56, 42–45.

Groemping, U. (2021). An algorithm for blocking regular fractional factorial 2-level designs with
clear two-factor interactions. Computational Statistics and Data Analysis 153, 1-18. doi:10.1016/
j.csda.2020.107059. Preprint at Report 3/2019.

Huang, P., Chen, D. and Voelkel, J.O. (1998). Minimum-Aberration Two-Level Split-Plot Designs.
Technometrics 40, 314-326.

Mee, R. (2009). A Comprehensive Guide to Factorial Two-Level Experimentation. New York:
Springer.

Solnon, C. (2010). AllDifferent-based Filtering for Subgraph Isomorphism. Artificial Intelligence
174, 850–864.

Sun, D.X., Wu, C.F.J. and Chen, Y.Y. (1997). Optimal blocking schemes for 2n and 2n−p designs.
Technometrics 39, 298-307.

Wu, C.F.J. and Chen, Y. (1992) A graph-aided method for planning two-level experiments when
certain interactions are important. Technometrics 34, 162-175.

https://doi.org/10.1111/rssb.12397
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf
https://www.jstatsoft.org/v56/i01/
https://www.jstatsoft.org/v56/i01/
https://doi.org/10.1016/j.csda.2020.107059
https://doi.org/10.1016/j.csda.2020.107059
http://www1.bht-berlin.de/FB_II/reports/Report-2019-003.pdf

52 FrF2

See Also

See also
FrF2Large for regular fractional factorial designs with more than 4096 runs (these are not sup-
ported by a design catalogue, except for a few resolution V designs which have not been checked
for any optimality among the resolution V designs),
pb for non-regular fractional factorials according to Plackett-Burman,
catlg for the underlying design catalogue and some accessor functions,
and block, splitplot or estimable.2fis for statistical and algorithmic information on the re-
spective topic.

Examples

maximum resolution minimum aberration design with 4 factors in 8 runs
FrF2(8,4)
the design with changed default level codes
FrF2(8,4, default.level=c("current","new"))
the design with number of factors specified via factor names

(standard level codes)
FrF2(8,factor.names=list(temp="",press="",material="",state=""))
the design with changed factor names and factor-specific level codes
FrF2(8,4, factor.names=list(temp=c("min","max"),press=c("low","normal"),

material=c("current","new"),state=c("new","aged")))
a full factorial
FrF2(8,3, factor.names=list(temp=c("min","max"),press=c("low","normal"),

material=c("current","new")))
a replicated full factorial (implicit by low number of factors)
FrF2(16,3, factor.names=list(temp=c("min","max"),press=c("low","normal"),

material=c("current","new")))
three ways for custom specification of the same design
FrF2(8, generators = "ABC")
FrF2(8, generators = 7)
FrF2(8, generators = list(c(1,2,3)))
more than one generator
FrF2(8, generators = c("ABC","BC"))
FrF2(8, generators = c(7,6))
FrF2(8, generators = list(c(1,2,3),c(2,3)))
alias structure for three generators that differ only by sign
design.info(FrF2(16,generators=c(7,13,15),randomize=FALSE))$aliased
design.info(FrF2(16,generators=c(7,-13,15),randomize=FALSE))$aliased
design.info(FrF2(16,generators=c(-7,-13,-15),randomize=FALSE))$aliased
finding smallest design with resolution 5 in 7 factors
FrF2(nfactors=7, resolution=5)
same design, but with 12 center points in 6 positions
FrF2(nfactors=7, resolution=5, ncenter=12, center.distribute=6)

maximum resolution minimum aberration design with 9 factors in 32 runs
show design information instead of design itself
design.info(FrF2(32,9))
maximum number of free 2-factor interactions instead of minimum aberration
show design information instead of design itself

FrF2 53

design.info(FrF2(32,9,MaxC2=TRUE))

usage of replication
shows run order instead of design itself
run.order(FrF2(8,4,replication=2,randomize=FALSE))
run.order(FrF2(8,4,replication=2,repeat.only=TRUE,randomize=FALSE))
run.order(FrF2(8,4,replication=2))
run.order(FrF2(8,4,replication=2,repeat.only=TRUE))

Not run:
examples below do work, but are repeated in the
respective method's separate help file and are therefore prevented
from running twice

########## automatic blocked designs ###################
from a full factorial
FrF2(8,3,blocks=2)
with replication
run.order(FrF2(8,3,blocks=2,wbreps=2))
run.order(FrF2(8,3,blocks=2,wbreps=2,repeat.only=TRUE))
run.order(FrF2(8,3,blocks=2,bbreps=2))
run.order(FrF2(8,3,blocks=2,bbreps=2,wbreps=2))

automatic blocked design with fractions
FrF2(16,7,blocks=4,alias.block.2fis=TRUE,factor.names=c("MotorSpeed",

"FeedMode","FeedSizing","MaterialType","Gain","ScreenAngle","ScreenVibLevel"))
isomorphic non-catalogued design as basis, using Godolphin approach
FrF2(16,gen=c(7,11,14),blocks=4,alias.block.2fis=TRUE)
isomorphic non-catalogued design as basis, not using Godolphin approach
(different design of comparable quality in this case)
FrF2(16,gen=c(7,11,14),blocks=4,alias.block.2fis=TRUE, force.godolphin=FALSE)
FrF2 uses blockpick.big and ignores the generator
FrF2(64,gen=c(7,11,14),blocks=16,alias.block.2fis=TRUE, block.old=TRUE)
FrF2 uses Godolphin approach, regardless of force.godolphin argument
because the setting is large
FrF2(64,gen=c(7,11,14),blocks=16,alias.block.2fis=TRUE)

########## manual blocked design ####################
example that shows why order of blocks is not randomized
can of course be randomized by user, if appropriate
FrF2(32,9,blocks=c("Day","Shift"),alias.block.2fis=TRUE,

factor.names=list(Day=c("Wednesday","Thursday"), Shift=c("Morning","Afternoon"),
F1="",F2="",F3="",F4="",F5="",F6="",F7=""), default.levels=c("current","new"))

########## blocked design with estimable 2fis ####################
all interactions of last two factors to be estimable clearly
in 64 run design with blocks of size 4
not possible with catalogue entry 9-3.1
FrF2(64, 6, blocks=16, factor.names=Letters[15:20],

estimable=compromise(6,3)$requirement,
alias.block.2fis=TRUE, randomize=FALSE)

FrF2(design="9-3.2", blocks=16, alias.block.2fis=TRUE,

54 FrF2

factor.names = list(C1="",C2="",C3="",C4="",C5="",C6="",C7="",
N1=c("low","high"),N2=c("low","high")),
default.levels = c("current","new"),
estimable=compromise(9, 8:9)$requirement)

FrF2(256, 13, blocks=64, alias.block.2fis=TRUE,
factor.names = list(C1="",C2="",C3="",C4="",C5="",C6="",C7="",C8="",
N1=c("low","high")),
default.levels = c("current","new"),
estimable=compromise(13, 1)$requirement)

########## hard to change factors ####################
example from Bingham and Sitter Technometrics 19999
MotorSpeed, FeedMode,FeedSizing,MaterialType are hard to change
BS.ex <- FrF2(16,7,hard=4,

factor.names=c("MotorSpeed", "FeedMode","FeedSizing","MaterialType",
"Gain","ScreenAngle","ScreenVibLevel"),

default.levels=c("-","+"),randomize=FALSE)
design.info(BS.ex)
BS.ex
NOTE: the design has 8 whole plots.
If randomize=FALSE is used like here, the first hard-to-change factors
do not always change between whole plots.
A conscious and honest decision is required whether this is
acceptable for the situation at hand!
randomize=TRUE would cause more changes in the first four factors.

########## automatic generation for split plot ##########
3 control factors, 5 noise factors, control factors are whole plot factors
8 plots desired in a total of 32 runs
Bingham Sitter 2003
BS.ex2a <- FrF2(32, 8, WPs=8, nfac.WP=3,

factor.names=c(paste("C",1:3,sep=""), paste("N",1:5,sep="")),randomize=TRUE)

manual generation of this same design
BS.ex2m <- FrF2(32, 8, generators=c("ABD","ACD","BCDE"),WPs=8, WPfacs=c("C1","C2","C3"), nfac.WP=3,

factor.names=c(paste("C",1:3,sep=""),paste("N",1:5,sep="")),randomize=TRUE)

design with few whole plot factors
2 whole plot factors, 7 split plot factors
8 whole plots, i.e. one extra WP factor needed
BSS.cheese.exa <- FrF2(32, 9, WPs=8, nfac.WP=2,

factor.names=c("A","B","p","q","r","s","t","u","v"))
design.info(BSS.cheese.exa)
manual generation of the design used by Bingham, Schoen and Sitter
note that the generators include a generator for the 10th spplitting factor

s= ABq, t = Apq, u = ABpr and v = Aqr, splitting factor rho=Apqr
BSS.cheese.exm <- FrF2(32, gen=list(c(1,2,4),c(1,3,4),c(1,2,3,5),c(1,4,5),c(1,3,4,5)),

WPs=8, nfac.WP=3, WPfacs=c(1,2,10),
factor.names=c("A","B","p","q","r","s","t","u","v","rho"))

design.info(BSS.cheese.exm)

########## usage of estimable ###########################
design with all 2fis of factor A estimable on distinct columns in 16 runs

FrF2 55

FrF2(16, nfactors=6, estimable = rbind(rep(1,5),2:6), clear=FALSE)
FrF2(16, nfactors=6, estimable = c("AB","AC","AD","AE","AF"), clear=FALSE)
FrF2(16, nfactors=6, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=FALSE)
formula would also accept self-defined factor names
from factor.names instead of letters A, B, C, ...

estimable does not need any other input
FrF2(estimable=formula("~(A+B+C)^2+D+E"))

estimable with factor names
resolution three must be permitted, as FrF2 first determines that 8 runs
would be sufficient degrees of freedom to estimate all effects
and then tries to accomodate the 2fis from the model clear of aliasing in 8 runs
FrF2(estimable=formula("~one+two+three+four+two:three+two:four"),

factor.names=c("one","two","three","four"), res3=TRUE)
clear=FALSE allows to allocate all effects on distinct columns in the
8 run MA resolution IV design
FrF2(estimable=formula("~one+two+three+four+two:three+two:four"),

factor.names=c("one","two","three","four"), clear=FALSE)

7 factors instead of 6, but no requirements for factor G
FrF2(16, nfactors=7, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=FALSE)
larger design for handling this with all required effects clear
FrF2(32, nfactors=7, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=TRUE)
16 run design for handling this with required 2fis clear, but main effects aliased
(does not usually make sense)
FrF2(16, nfactors=7, estimable = formula("~A+B+C+D+E+F+A:(B+C+D+E+F)"),

clear=TRUE, res3=TRUE)

End(Not run)
example for the sort option added with version 1.6-1
and for usage of a catalogue from package FrF2.catlg128 (simplified with version 1.6-5)

Not run:
estim <- compromise(17,15:17)$requirement ## all interactions of factors 15 to 17 (P,Q,R)
VF2 algorithm without pre-sorting of vertices
CAUTION: in some igraph versions, the following may crash R
FrF2(128, 17, estimable=estim, select.catlg=catlg128.17)

very slow, interrupt with ESC key after a short while
!!! save all important work before, in case R crashes

FrF2.currentlychecked() ## displays the design that was currently checked
should be 17-10.2407, if the interrupt was successful

VF2 algorithm with pre-sorting of vertices
FrF2(128, 17, estimable=estim, sort="high", select.catlg=catlg128.17) ## very fast
FrF2(128, 17, estimable=estim, sort="low", select.catlg=catlg128.17) ## very fast
LAD algorithm
FrF2(128, 17, estimable=estim, method="LAD", select.catlg=catlg128.17) ## very fast
guaranteed to be MA clear design
only works, if package FrF2.catlg128 is installed

End(Not run)

56 FrF2Large

example for necessity of perms, and uses of select.catlg and perm.start
based on Wu and Chen Example 1

Not run:
runs per default about max.time=60 seconds, before throwing error with
interim results
results could be used in select.catlg and perm.start for restarting with
calculation of further possibilities
FrF2(32, nfactors=11, estimable = formula("~(A+B+C+D+E+F)^2"), clear=FALSE)
would run for a long long time (I have not yet been patient enough)
FrF2(32, nfactors=11, estimable = formula("~(A+B+C+D+E+F)^2"), clear=FALSE,

max.time=Inf)
can be easily done with perms,
as only different subsets of six factors are non-isomorphic
perms.6 <- combn(11,6)
perms.full <- matrix(NA,ncol(perms.6),11)
for (i in 1:ncol(perms.6))

perms.full[i,] <- c(perms.6[,i],setdiff(1:11,perms.6[,i]))
FrF2(32, nfactors=11, estimable = formula("~(A+B+C+D+E+F)^2"), clear=FALSE,

perms = perms.full)

End(Not run)

FrF2Large Function to provide large (at least 8192 runs) regular Fractional Fac-
torial designs that are not necessarily optimal, especially large reso-
lution V designs.

Description

Large regular fractional factorial 2-level designs in 8192 or more runs are provided: Resolution V
designs in 8096 to 32768 runs with up to 120 factors according to the suggestion by Sanchez and
Sanchez 2005 are automatically created (these are not necessarily optimal). Furthermore, manual
generation of large regular fractional factorial designs via specification of generators is possible.

Usage

FrF2Large(nruns, nfactors = NULL, factor.names = if (!is.null(nfactors)){
if (nfactors <= 50)

Letters[1:nfactors]
else paste("F", 1:nfactors, sep = "")
} else NULL,
default.levels = c(-1, 1), ncenter = 0, center.distribute = NULL,
generators = NULL,
replications = 1, repeat.only = FALSE,
randomize = TRUE, seed = NULL, alias.info = 2, ...)

nrunsV(nfactors)

FrF2Large 57

Arguments

nruns Number of runs, must be a power of 2 (8192 to 32768).
The number of runs must match the number of factors. Function nrunsV can be
used for determining the number of runs needed for a resolution V design, and
for advice on the function to be used.
For more detail on specification of the number of runs, see the Details section.

nfactors is the number of 2-level factors to be investigated. It can be omitted, if it is
obvious from options factor.names or generators.
The number of factors must match the length of generators.

factor.names a character vector of nfactors factor names or a list with nfactors elements;
if the list is named, list names represent factor names, otherwise default factor
names are used;
the elements of the list are
EITHER vectors of length 2 with factor levels for the respective factor
OR empty strings. For each factor with an empty string in factor.names, the
levels given in default.levels are used;
Default factor names are the first elements of the character vector Letters, or
the factors position numbers preceded by capital F in case of more than 50 fac-
tors.

default.levels default levels (vector of length 2) for all factors for which no specific levels are
given

ncenter number of center points per block; ncenter > 0 is permitted, if all factors are
quantitative and the design is not a split-plot design

center.distribute

the number of positions over which the center points are to be distributed for
each block; if NULL (default), center points are distributed over end, begin-
ning, and middle (in that order, if there are fewer than three center points) for
randomized designs, and appended to the end for non-randomized designs. for
more detail, see function add.center, which does the work.

generators There are log2(nruns) base factors the full factorial of which spans the design
(e.g. 10 for 1024 runs). The generators specify how the remaining factors are to
be allocated to interactions of these.
WARNING: Of course, with manual specification of generators, the structure of
the design is in the users responsibility; the function only prevents confounding
of two main effects with each other.
generators can be
a list of vectors with position numbers of base factors (e.g. c(1,3,4) stands for
the interaction between first, third and fourth base factor)
a vector of character representations of these interactions, e.g. “ACD” stands for
the same interaction as above
a vector of columns numbers in Yates order (e.g. 13 stands for ACD). Note that
the columns 1, 2, 4, 8, etc., i.e. all powers of 2, are reserved for the base factors
and cannot be used for assigning additional factors, because the design would
become a resolution II design. For looking up which column number stands for
which interaction, type e.g. names(Yates)[1:15] for a 16 run design.

58 FrF2Large

WARNING: Contrary to function FrF2, it is not possible to precede generator
entries with a minus sign for reversing column levels; instead, the levels must
be swapped.

replications positive integer number. Default 1 (i.e. each row just once). If larger, each de-
sign run is executed replication times. If repeat.only, repeated measurements
are carried out directly in sequence, i.e. no true replication takes place, and all
the repeat runs are conducted together. It is likely that the error variation gen-
erated by such a procedure will be too small, so that average values should be
analyzed for an unreplicated design.
Otherwise (default), the full experiment is first carried out once, then for the
second replication and so forth. In case of randomization, each such blocks is
randomized separately. In this case, replication variance is more likely suitable
for usage as error variance (unless e.g. the same parts are used for replication
runs although build variation is important).

repeat.only logical, relevant only if replications > 1. If TRUE, replications of each run
are grouped together (repeated measurement rather than true replication). The
default is repeat.only=FALSE, i.e. the complete experiment is conducted in
replications blocks, and each run occurs in each block.

randomize logical. If TRUE, the design is randomized. This is the default. In case of repli-
cations, the nature of randomization depends on the setting of option repeat.only.

seed optional seed for the randomization process
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function FrF2Large.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

alias.info can be 2 or 3, gives the order of interaction effects for which alias information
is to be included in the aliased component of the design.info element of the
output object.

... currently not used

Details

If generators are not explicitly specified, function FrF2Large creates a resolution V design accord-
ing to the rules by Sanchez and Sanchez (2005) for the specified number of factors in the specified
number of runs. The Sanchez and Sanchez article offers designs with
at least 1024 runs for 25 to 29 factors (1024 up to 33 factors with FrF2),
at least 2048 runs for 30 to 38 factors (2048 up to 47 factors with FrF2),
at least 4096 runs for 39 to 52 factors (4096 up to 65 factors with FrF2),
at least 8192 runs for 53 to 69 factors (up to 65 factors in half the run size with FrF2),
at least 16384 runs for 70 to 92 factors, (
at least 32768 runs for 93 to 120 factors.

FrF2Large 59

For designs with up to 4096 runs, function FrF2 creates better automatic designs. Therefore, func-
tion FrF2Large is restricted to usage for larger designs.

Users can explicitly specify a design through specifying generators via the generators option. For
up to 4096 runs, this is also possible with function FrF2, even with more flexibility. Therefore,
manual design generation with function FrF2Large is also restricted to designs of at least 8192
runs.

Manual generation of large designs with the option generators is limited by computer memory
only. nruns must be at least large enough to accomodate the rightmost generator column; for
example, if generators contains an element ABEP, P is the 15th base factor (15th letter in Letters),
i.e. nruns must be at least 2^15=32768; if the largest generator column number in Yates column
notation is 4201, nruns must be at least 2^ceiling(log2(4201))=8192.

Value

Function nrunsV invisibly returns the number of runs requested and prints a message with the
number of runs and the appropriate function.

Function FrF2Large returns a data frame of S3 class design and has attached attributes that can be
accessed by functions desnum, run.order and design.info.

The data frame itself contains the design with levels coded as requested. If no center points have
been requested, the design columns are factors with contrasts -1 and +1 (cf. also contr.FrF2); in
case of center points, the design columns are numeric.

The following attributes are attached to it:

desnum Design matrix in -1/1 coding

run.order three column data frame, first column contains the run number in standard order,
second column the run number as randomized, third column the run number
with replication number as postfix; useful for switching back and forth between
actual and standard run number

design.info list with the entries

type character string “FrF2.large”
nruns number of runs (replications are not counted)
nfactors number of factors
factor.names list named with (treatment) factor names and containing as en-

tries vectors of length two each with coded factor levels
generators for designs of type FrF2.generators only;

character vector of generators in the form D=ABC etc.
aliased alias structure of main effects, 2fis and possibly 3fis, depending on

the choice of alias.info; For non-blocked and non-split-plot designs,
aliased is itself a list of the two or three components main, fi2, and op-
tionally fi3, given in terms of factor letters from Letters (up to 50~factors)
or F1, F2, and so forth (more than 50~factors). For blocked and split-plot
designs, aliased is a single list with an entry for each column of the Yates
matrix that accomodates aliased low-order effects, and entries are in terms
of factor names.)

replications option setting in call to FrF2

repeat.only option setting in call to FrF2

60 FrF2Large

randomize option setting in call to FrF2

seed option setting in call to FrF2

creator call to function FrF2Large; (in future, may also contain stored menu
settings from R commander plugin RcmdrPlugin.DoE, once the function
has been implemented in that package)

FrF2.version version number of package FrF2, supporting correct usage of
FrF2-specific functionality in functions summary and generators methods
for class design

ncube number of cube points per block, in case center points have been re-
quested

ncenter number of center points per block, in case center points have been
requested

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that might be relevant for the randomization of very large designs). For reproducing a
randomized design that was produced with an earlier R version, please follow the steps described
with the argument seed.

Author(s)

Ulrike Groemping

References

Mee, R. (2009). A Comprehensive Guide to Factorial Two-Level Experimentation. New York:
Springer.

Sanchez, S.M. and Sanchez, P.J. (2005). Very Large Fractional Factorial and Central Composite
Designs. ACM Transactions on Modeling and Computer Simulation 15, 362-377.

See Also

See also FrF2 for smaller regular fractional factorials and oacat for two non-regular resolution V
fractional factorials (reported e.g. by Mee 2009) for up to 19 factors in 256 runs or up to 63 factors
in 2048 runs

Examples

numbers of runs needed for resolution V designs in different numbers of factors
nrunsV(8)
nrunsV(18)
needed <- nrunsV(27)
needed
nrunsV(65)
nrunsV(71)

Not run:
plan <- FrF2Large(nrunsV(75),75)

godolphin 61

summary(plan)

End(Not run)

godolphin Functions in support of Godolphin’s approach for blocking designs

Description

Function colpick handles the creation of X matrices for blocking, function FF_from_X blocks a full
factorial, function X_from_profile creates an X matrix from a profile, function phimax calculations
the maximum number of clear 2fis from Godolphin’s approach. Further helper functions support
the use of the method. The functions are meant for expert users only.

Usage

colpick(design, q, all = FALSE, select.catlg = catlg,
estimable = NULL, method = "VF2", sort = "natural",
res3 = FALSE, all0 = FALSE, quiet = FALSE,
firsthit = is.numeric(design))

FF_from_X(X, randomize = TRUE, seed = NULL, alias.info=2)
X_from_profile(n, q, profile = NULL)
clear2fis_from_profile(n, q, profile = NULL)
X_from_parts(n, q, parts)
phimax(n, q, profile = NULL)
blockgencreate(X, p = 0)
Xcalc(XI, gen)
blockgengroup(X, p = 0, num = FALSE)
colpickIV(design, q, all = FALSE, select.catlg = catlg,

estimable = NULL, method = "VF2", sort = "natural",
res3 = FALSE, all0 = FALSE, quiet = FALSE,
firsthit = is.numeric(design))

Arguments

design a character string that identifies a design in the cataloge specified by option
select.catlg,
OR a class catlg object with a single entry (of longer, only the first one is used),
OR an integer number of factors for which a full factorial is assumed.

q the requested block size is 2q

all if TRUE (default FALSE), all possible X matrices are returned; otherwise, colpick
returns the first successful one (if estimable is not NULL) or the best one (oth-
erwise)

select.catlg name of catalogue (not in quotes); only relevant, if design is a character string

estimable a specification of 2fis to be kept clear in the blocked design, either as a character
vector of pairs of factor letters (using the first elements of ‘Letters‘) or as a
two-row matrix of pairs of factor numbers occurring in 2fis)

62 godolphin

method character string identifying a subgraph isomorphism method (VF2 or LAD), see
FrF2

sort character string specifying a presort strategy for subgraph isomorphism search,
see FrF2

res3 relevant only if estimable is not NULL;
per default (res3=FALSE), design will yield no result, if it has resolution III
only; set res3 to TRUE for allowing a design of resolution III (almost never
useful)

all0 per default (all0=FALSE), X matrices are requested to be free of all-zero columns.
Set all0 to TRUE for permitting aliasing between blocks and factor main ef-
fects, i.e. for finding a suitable split-plot constructor.

quiet if TRUE, the message about failure is suppressed (for using the function inside
other functions, like FrF2)

firsthit if TRUE, the function does not attempt to optimize the number of clear 2fis but
accepts the first acceptable blocking (relevant for non-null estimable only);
per default, optimizing is suppressed for full factorials only (where it is not very
reasonable to use function colpick instead of simply hand-crafting an X matrix;
function FrF2 sets it to FALSE for creation of full factorials with estimability
requirements);
for large applications with estimability requirements, specifying firsthit as
TRUE may allow to inspect more candidates and to then possibly deepdive some
of them

X a q × n X matrix with only 0/1 elements for block construction

randomize logical. If TRUE, the design is randomized. This is the default. Randomization
is implemented using function rerandomize.design of package DoE.base as
the last step in design creation.

seed optional seed for the randomization process
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function FrF2.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

alias.info degree of effects aliased with blocks to be included in the design.info attribute

profile profile to use for calculation (NULL or integer vector of up to 2q − 1 elements
that sum to n); if NULL, the maximally balanced profile is used (which yields
the overall maximum number of clear 2fis when blocking a full factorial)

parts list that provides factor partitions; list entries must either be all integers from 1
to n or the elements of Letters[1:n]

n number of factors

godolphin 63

p the number of generated factors (among the n factors); 2n−p is the number of
runs in the experiment)

XI a q× k X_I matrix with only 0/1 elements, to be extended into a q×n X matrix
for block construction, given the generators in gen (k = n− p)

gen generators for extending XI: gen can be
a class catlg object (e.g. catlg["7-2.1"] or catlg[nruns(catlg)==32 &
nfac(catlg)==7]); each nfac entry must be the sum of k and the length of the
gen element)
a vector of Yates column numbers (e.g. c(7, 27))
a vector of defining contrasts (e.g. c("ABC","ABDE")) a list of vectors of base
column numbers

num if TRUE (default FALSE), Yates column numbers are returned instead of their
character representations

Details

These are the functions for the Godolphin (2021) approach to blocking; most of them are user-
visible. This approach and its implementation are described in Groemping (2021). Direct use of
this functions is intended for expert use only.

Function colpick is the main workhorse function for blocking larger situations in function FrF2
(since version 2 of the package, it replaces the earlier approach with function blockpick.big); it
makes use of function blockgencreate, and of the internal function blockgengroup.

Function FF_from_X creates a class design object. Design size is limited by computer memory and
run time. The function can use an X matrix that was produced by function colpick; but note that it
is quite easy to hand-craft an X matrix for a full factorial, even with estimability requirements. The
light-weight function does not have arguments for customization; it can be post-processed, however,
e.g. using function factor.names<-.

Function X_from_profile creates an X matrix that corresponds to the specified profile.

Function phimax returns the maximum number of 2fis that can be kept clear when blocking a full
factorial design in n factors into blocks of size 2q , given the specified profile.

Function blockgencreate creates block generators from an X matrix for blocking a design in
2n−p = 2k runs into blocks of size 2q , where n and q are derived from X as the number of columns
and rows, respectively. The generators are returned as a character vector that consists of strings of
base factor letters.

Function Xcalc extends a q × k matrix X_I by p = n− k columns (X_II in Godolphin notatation)
based on the generators provided in gen.

Function blockgengroup is internal only, as are functions colpickIV and clear2fis_from_profile.

Value

Function colpick returns a list of at least two elements:
if all is FALSE, the list consists of the matrix X, the character vector clear.2fis and possibly the
integer vector map,
otherwise of list-valued elements X_matrices, clearlist and profiles and maplist.

Function FF_from_X returns a class design object of type FrF2.blocked.

64 godolphin

Function phimax returns a real number.

Function blockgencreate returns a character vector of generators in terms of Letters combina-
tions of the first $n-p$ factors.

Function Xcalc returns a q × n matrix (in case of a single generator) or a list of such matrices (if
gen is a class catlg object with more than one element).

The internal function blockgengroup returns a character vector of all effects (denoted as base
column letter combinations) aliased with the block main effect, or corresponding Yates column
numbers.

The internal function colpickIV returns almost the same type of results as colpick. The differ-
ence:
if all is TRUE, there is an integer vector map instead of the maplist element, because the map does
not depend on the choice of X-matrix (separate subgraph isomorphism checking is skipped with
this function).

Author(s)

Ulrike Groemping

References

Groemping, U. (2012). Creating clear designs: a graph-based algorithm and a catalogue of clear
compromise plans. IIE Transactions 44, 988–1001. Early preprint available at http://www1.
bht-berlin.de/FB_II/reports/Report-2010-005.pdf.

Godolphin, J. (2021). Construction of Blocked Factorial Designs to Estimate Main Effects and
Selected Two-Factor Interactions. J. Royal Statistical Society B 83, 5-29. doi:10.1111/rssb.12397.

Groemping, U. (2021). An algorithm for blocking regular fractional factorial 2-level designs with
clear two-factor interactions. Computational Statistics and Data Analysis 153, 1-18. doi:10.1016/
j.csda.2020.107059. Preprint at Report 3/2019.

See Also

plot.igraph, tkplot, plot.common

Examples

phimax(7, 2) ## 16 2fis can be clear, if 128 run full factorial is blocked
into 32 blocks of size 2^2=4

X matrices for blocking full factorials
do not care about which factors have which role
X_from_profile(7, 2, c(3,2,2))

X_from_profile(7, 2, c(2,2,3)) returns same matrix
ensure specific partition, i.e. specific requirement CIG to be accommodated
X <- X_from_parts(7, 2, parts=list(c("A","D","F"), c("B","G"), c("C","E")))

blocked full factorial
summary(FF_from_X(X))

using colpick

http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf
http://www1.bht-berlin.de/FB_II/reports/Report-2010-005.pdf
https://doi.org/10.1111/rssb.12397
https://doi.org/10.1016/j.csda.2020.107059
https://doi.org/10.1016/j.csda.2020.107059
http://www1.bht-berlin.de/FB_II/reports/Report-2019-003.pdf

IAPlot 65

estimable in standard letters
requ <- c("BA", "BC", "BD", "BE", "BF", "BG", "BH", "BJ")
estimability requirement in factor names
fn <- Letters[15:23] ## P to X
requfn <- requ
requfn <- sapply(1:8, function(obj) gsub(Letters[obj], fn[obj], requfn[obj]))

obtain X matrix for accommodating estimability requirement in 9-4.2
(aus <- colpick("9-4.2", 2, estimable=requ))
obtain the same matrix manually with Xcalc
XI <- aus$X[,1:5]
obtain the same matrix manually with Xcalc
all(Xcalc(XI, catlg["9-4.2"])==aus$X)
inspect X matrices generated from XI
Xcalc(XI, catlg[nruns(catlg)==32 & nfac(catlg)==9 & res(catlg)>=4])

factor permutation needed
aus$map
calculate block generators
blockgencreate(aus$X, p=4)
automatic creation from the design 9-4.2 uses these block generators
summary(FrF2(32, 9, blocks=8, estimable=requ, factor.names=fn,

alias.block.2fis = TRUE, select.catlg = catlg["9-4.2"]),
brief=TRUE)

can also be reproduced manually (internal function invperm does the permuting)
summary(FrF2(design="9-4.2", blocks=blockgencreate(aus$X, p=4),

factor.names=fn[FrF2:::invperm(aus$map)],
alias.block.2fis = TRUE),
brief=TRUE)

IAPlot Main Effects and Interaction Plots

Description

Main effects plots and interaction plots are produced. The other documented functions are not
intended for users.

Usage

MEPlot(obj, ...)
S3 method for class 'design'
MEPlot(obj, ..., response = NULL)
Default S3 method:
MEPlot(obj, main = paste("Main effects plot for", respnam),

pch = 15, cex.xax = par("cex.axis"), cex.yax = cex.xax, mgp.ylab = 4,
cex.title = 1.5, cex.main = par("cex.main"),
lwd = par("lwd"), las=par("las"), abbrev = 3, select = NULL, ...)

66 IAPlot

IAPlot(obj, ...)
S3 method for class 'design'
IAPlot(obj, ..., response = NULL)
Default S3 method:
IAPlot(obj, main = paste("Interaction plot matrix for", respnam),

pch = c(15, 17), cex.lab = par("cex.lab"), cex = par("cex"),
cex.xax = par("cex.axis"), cex.yax = cex.xax, cex.title = 1.5,

lwd = par("lwd"), las=par("las"), abbrev = 4, select = NULL, show.alias = FALSE, ...)

intfind(i, j, mat)

check(obj)

remodel(obj)

Arguments

obj an experimental design of class design with the type element of the design.info
attribute containing “FrF2” or “pb”
OR
a linear model object with 2-level factors or numerical 2-level variables;
the structure must be such that effects are either fully aliased or orthogonal, like
in a regular fractional factorial 2-level design;
note that IAPlot currently requires the response in obj to be a pre-defined vari-
able and not a calculated quantity

... further arguments to be passed to the default function;
. . . in the default method are not used, they have been added because of formal
requirements only

response character string that specifies response variable to be used, must be an element of
response.names(obj); if NULL, the first response from response.names(obj)
is used

main overall title for the plot assembly

pch Plot symbol number MEPlot, or vector of two plot symbol numbers for the lower
and higher level of the trace factor iap

cex.xax size of x-axis annotation, defaults to cex.axis-parameter

cex.yax size of y-axis annotation, defaults to cex.xax

mgp.ylab horizontal placement of label of vertical axis in MEPlot

cex.title multiplier for size of overall title (cex.main is multiplied with this factor)

cex.main size of individual plot titles in MEPlot

cex.lab Size of variable names in diagonal panels of interaction plots produced by IAPlot.

cex size of plot symbols in interaction plots

lwd line width for plot lines and axes

las orientation for tick mark labels (las=1 is recommended)

abbrev number of characters shown for factor levels

IAPlot 67

select vector with position numbers of the main effects to be displayed;
default: all main effects; the default implies the full interaction plot matrix for
IAPlot.
For IAPlot, the full interaction plot matrix for the selected factors is displayed.
Of course, at least two factors must be selected. Furthermore, the linear model
obj must at least contain one interaction term among the selected variables.
For interactions that do not occur in the linear model, not plot is shown. An
interaction plot matrix of data means can be obtained by specifying the model
with all possible 2-factor interactions (e.g. formula y~(.)^2 for a regular 2-level
fractional factorial, for which y is the only response and all other variables are
2-level factors).

show.alias if TRUE, the interaction plot shows the number of the list entry from aliases(obj)
(cf. aliases) in order to support immediate diagnosis of which depicted inter-
action may be due to other than the shown effect because of aliasing;
CAUTION: if the select option is used, the model is reduced to the selected
factors, i.e. aliases with unselected factors are not shown!

i integer, for internal use only

j integer, for internal use only

mat matrix, for internal use only

Details

For functions MEPlot or IAPlot, if obj is a design with at least one response variable rather than
a linear model fit, the lm-method for class design is applied to it with the required degree (1 or
2), and the default method for the respective function is afterwards applied to the resulting linear
model.
If the design contains a block factor, the plot functions show non-block effects only.

MEPlot produces plots of all treatment main effects in the model, or selected ones if select is
specified

IAPlot produces plots of all treatment interaction effects in the model, or selected ones if select
is specified

intfind is an internal function not directly useful for users

check is an internal function for checking whether the model complies with assumptions (frac-
tional factorial of 2-level factors with full or no aliasing, not partial aliasing; this implies that
Plackett-Burman designs with partial aliasing of 2-factor interactions give an OK (=TRUE) in
check for pure main effects models only.)

remodel is an internal function that redoes factor values into -1 and 1 coding, regardless of the
contrasts that have been used for the original factors; numerical data are transformed by sub-
tracting the mean and dividing by half the range (max-min), which also transforms them to -1
and 1 coding in the 2-level case (and leads to an error otherwise)

Value

MEPlot and IAPlot invisibly return the plotted effects (two-row matrix or four-row matrix, re-
spectively). If show.alias=TRUE, the matrix returned by IAPlot has as the attribute aliasgroups,
which contains all alias groups (list element number corresponds to number in the graphics tableau).

68 makecatlg

The internal function check is used within other functions for checking whether the model is a
fractional factorial with 2-level factors and no partial aliasing, as requested for the package to work.
It is applied to remodeled objects only and returns a logical. If the returned value is FALSE, the
calling function fails.

The internal function intfind returns an integer (length 1 or 0). It is not useful for users.

The internal function remodel is applied to a linear model object and returns a list of two compo-
nents:

model is the redone model with x-variables recoded to numeric -1 and 1 notation and
aov objects made into “pure” lm objects

labs is a list preserving the level information from original factors (levels are minus
and plus for numerical variables)

Author(s)

Ulrike Groemping

References

Box G. E. P, Hunter, W. C. and Hunter, J. S. (2005) Statistics for Experimenters, 2nd edition. New
York: Wiley.

See Also

FrF2-package for examples

makecatlg Function for creating a class catlg catalogue from a vector of gener-
ators

Description

creates a class catlg catalogue with a single element for use in functions colpick or FrF2

Usage

makecatlg(k, gen)

Arguments

k number of base factors spanning a full factorial with the desired number of runs

gen generators as a numeric vector of Yates column numbers

pb 69

Details

If generators are available in a different format, they must be transformed to Yates column numbers.

For a character vector genc with elements like ABC, ADE, etc., a code for obtaining Yates columns
with order preserved is sapply(1:length(genc), function(obj) which(names(Yates)==genc[obj]))
(a solution with which applied to the entire vector at once does not preserve the order).

Yet different formats like 123, 145, etc., can e.g. be preprocessed by picking the suitable elements
from Letters, e.g. paste(Letters[as.numeric(unlist(strsplit("123","")))],collapse="").

Value

The function returns a list of class catlg with a single element.

Note

This package is still under development, but does already provide useful and well-tested results.

Author(s)

Ulrike Groemping

See Also

See also FrF2

Examples

Xu's fraction 13-5.2
genXu <- c(127, 143, 179, 85, 150)
catXu <- makecatlg(k=8, genXu)
colpick(catXu, q=2) ## Godolphin blocking into blocks of size 4 yields 56 clear 2fis
FrF2(256, 13, blocks=64, alias.block.2fis=TRUE, select.catlg=catXu)

pb Function to generate non-regular fractional factorial screening de-
signs

Description

The function generates Plackett-Burman designs and in some cases other screening designs in run
numbers that are a multiple of 4. These designs are particularly suitable for screening a large
number of factors, since interactions are not fully aliased with one main effect each but partially
aliased. (The design in 8 runs is an exception from this rule.)

70 pb

Usage

pb(nruns, nfactors = nruns - 1, factor.names = if (nfactors <= 50)
Letters[1:nfactors] else paste("F", 1:nfactors, sep = ""),
default.levels = c(-1, 1), ncenter=0, center.distribute=NULL,
boxtyssedal = TRUE, n12.taguchi = FALSE,
replications = 1, repeat.only = FALSE,
randomize = TRUE, seed = NULL, oldver = FALSE, ...)

pb.list

Arguments

nruns number of runs, must be a multiple of 4

nfactors number of factors, default is nruns - 1, and it is recommended to retain this de-
fault.
It is possible to specify factor names for fewer factors, and the remaining columns
will be named e1, e2, ... They are useful for representing error in effects plots
(so-called dummy factors).

factor.names a character vector of factor names (length up to nfactors) or a list with nfactors
elements;
if the list is named, list names represent factor names, otherwise default factor
names are used;
the elements of the list are
EITHER vectors of length 2 with factor levels for the respective factor
OR empty strings. For each factor with an empty string in factor.names, the
levels given in default.levels are used;
Default factor names are the first elements of the character vector Letters, or
the factors position numbers preceded by capital F in case of more than 50 fac-
tors.

default.levels default levels (vector of length 2) for all factors for which no specific levels are
given

ncenter number of center points; ncenter > 0 is permitted, if all factors are quantitative
center.distribute

the number of positions over which the center points are to be distributed ; if
NULL (default), center points are distributed over end, beginning, and middle
(in that order, if there are fewer than three center points) for randomized de-
signs, and appended to the end for non-randomized designs. for more detail, see
function add.center, which does the work.

boxtyssedal logical, relevant only for nruns=16. If FALSE, the geometric (=standard) 16 run
plan is used. If TRUE, the proposal by Box and Tyssedal is used instead, which
has the advantage (for screening) of aliasing each interaction with several main
effects, like the other Plackett-Burman designs.

n12.taguchi logical, relevant only for nruns=12. If TRUE, the 12 run design is given in
Taguchi order.

replications positive integer number. Default 1 (i.e. each row just once). If larger, each de-
sign run is executed replication times. If repeat.only, repeated measurements

pb 71

are carried out directly in sequence, i.e. no true replication takes place, and all
the repeat runs are conducted together. It is likely that the error variation gen-
erated by such a procedure will be too small, so that average values should be
analyzed for an unreplicated design.
Otherwise (default), the full experiment is first carried out once, then for the
second replication and so forth. In case of randomization, each such blocks is
randomized separately. In this case, replication variance is more likely suitable
for usage as error variance (unless e.g. the same parts are used for replication
runs although build variation is important).

repeat.only logical, relevant only if replications > 1. If TRUE, replications of each run
are grouped together (repeated measurement rather than true replication). The
default is repeat.only=FALSE, i.e. the complete experiment is conducted in
replications blocks, and each run occurs in each block.

randomize logical. If TRUE, the design is randomized. This is the default.

seed optional seed for the randomization process
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function pb.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

oldver logical. If TRUE, the column ordering from package versions 1.0-5 to 1.2.10 is
used. This affects designs in 40, 52, 56, 64, 76, 92, 96 and 100 runs. Usually,
option oldver should not be set to is useful for reproducing an old design, or
for making a design in 40, 56, 64, 88 or 96 runs with exactly half the number of
factors resolution IV.

... currently not used

Details

pb stands for Plackett-Burman. Plackett-Burman designs (Plackett and Burman 1946) are generally
used for screening many variables in relatively few runs, when interest is in main effects only, at
least initially. Different from the regular fractional factorial designs created by function FrF2, they
do not perfectly confound interaction terms with main effects but distribute interaction effects over
several main effects. The designs with number of runs a power of 2 are an exception to this rule:
they are just the resolution III regular fractional factorial designs and are as such not very suitable
for screening because of a high risk of very biased estimates for the main effects of the factors.
Where possible, these are therefore replaced by different designs (cf. below).

For most run numbers, function pb uses Plackett-Burman designs, and simply fills columns from
left to right. The generating rows for these designs can be found in the list pb.list (a 0 entry
indicates that the design is constructed by a different method, e.g. doubling).

For 12 runs, the isomorphic design by Taguchi can be requested. For 16 runs, the default is to use
the designs suggested by Box and Tyssedal (2001), which up to 14 factors do not suffer from perfect

72 pb

aliasing. For 32 runs, a cyclic design with generating row given in Samset and Tyssedal (1999) is
used. For 64 runs, the 32 run design is doubled. For 92 runs, a design is constructed according to
the Williamson construction with matrices A, B, C and D from Hedayat and Stufken (1999), p. 160.

Designs up to 100~runs are covered.

Usage of the 8 run design for more than 4 factors is discouraged, as it completely aliases main
effects with individual two-factor interactions. It is recommended to use at least the 12 run design
instead for screening more than 4 factors.

Value

Value is a data frame of S3 class design and has attached attributes that can be accessed by functions
desnum, run.order and design.info.

The data frame itself contains the design with levels coded as requested. If no center points have
been requested, the design columns are factors with contrasts -1 and +1 (cf. also contr.FrF2); in
case of center points, the design columns are numeric.

The following attributes are attached to it:

desnum Design matrix in -1/1 coding

run.order three column data frame, first column contains the run number in standard order,
second column the run number as randomized, third column the run number
with replication number as postfix; useful for switching back and forth between
actual and standard run number

design.info list with entries

type character string “pb”, except for 8~runs with up to 4~factors, for which a
type “FrF2” design is output

nruns number of runs (replications are not counted)
nfactors number of factors
factor.names list named with (treatment) factor names and containing as en-

tries vectors of length two each with coded factor levels
ndummies number of dummy factors for error
replication option setting in call to pb

repeat.only option setting in call to pb

randomize option setting in call to pb

seed option setting in call to pb

creator call to function pb (or stored menu settings, if the function has been
called via the R commander plugin RcmdrPlugin.DoE)

Warning

With version 1.0-5 of package FrF2, design generation for the designs based on doubling has
changed (internal function double.des). This affected designs for 40,56,64,88,96 runs. With ver-
sion 1.3 of package FrF2, this and further behaviors (52, 76) has changed again, in the interest of
improving generalized resolution of desigs produced by function pb.

For the affected run sizes, package versions from 1.0-5 onwards cannot exactly reproduce pb de-
signs that have been created with a version before 1.0-5. Package versions from 1.3 onwards repro-
duce the behavior of versions 1.0-5 to 1.2-10 through option oldver.

pb 73

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that should not be relevant for the randomization of designs). For reproducing a random-
ized design that was produced with an earlier R version, please follow the steps described with the
argument seed.

Author(s)

Ulrike Groemping

References

Box, G.E.P. and Tyssedal, J. (2001) Sixteen Run Designs of High Projectivity for Factor Screening.
Communications in Statistics - Simulation and Computation 30, 217-228.

Hedayat, A.S., Sloane, N.J.A. and Stufken, J. (1999) Orthogonal Arrays: Theory and Applications,
Springer, New York.

Groemping, U. (2014). R Package FrF2 for Creating and Analyzing Fractional Factorial 2-Level
Designs. Journal of Statistical Software, 56, Issue 1, 1-56. https://www.jstatsoft.org/v56/
i01/.

Mee, R. (2009). A Comprehensive Guide to Factorial Two-Level Experimentation. New York:
Springer.

Plackett, R.L.; Burman, J.P. (1946) The design of optimum multifactorial experiments. Biometrika
33, 305-325.

Samset, O.; Tyssedal, J. (1999) Two-level designs with good projection properties. Technical Report
12, Department of Mathematical Sciences, The Norwegian University of Science and Technology,
Norway.

Williamson, J. (1946) Determinants whose elements are 0 and 1. American Mathematical Monthly
53, 427-434.

See Also

See also FrF2 for regular fractional factorial designs, generalized.word.length for functions
length3 and length4 used in examples

Examples

pb(12,randomize=FALSE)
pb(12,randomize=FALSE,n12.taguchi=TRUE)
pb(20,seed=29869)
pb(16,factor.names=list(A="",B="",C="",D=c("min","max"),

E="",F="",G="",H="",J=c("new","old")))
pb(8,default.levels=c("current","new"))
test <- pb(40) ## design created by doubling the 20 run design
pb(12, ncenter=6) ## 6 center points with default placement

Not run:
note: designs in 40, 56, 64, 88, and 96 runs are resolution IV,
if the number of factors is up to nruns/2 - 1, e.g.:

https://www.jstatsoft.org/v56/i01/
https://www.jstatsoft.org/v56/i01/

74 splitplot

plan1 <- pb(40, 19)
length3(plan1) ## 0 generalized words of length 3
length4(plan1) ## 228 generalized words of length 4
they can be made resolution IV by oldver=TRUE for
nfactors=nruns/2, e.g.:
plan2 <- pb(40, 20)
plan3 <- pb(40, 20, oldver=TRUE)
length3(plan2) ## 9 generalized words of length 3
length3(plan3) ## 0 generalized words of length 3
length4(plan3) ## 285 generalized words of length 4

note: designs in 52, 76, and 100 runs are almost resolution IV,
if the number of factors is up to nruns/2 - 1, e.g.:
plan4 <- pb(52, 25)
GR(plan4) ## generalized resolution 3.92

note: versions >1.3 avoid complete and heavy aliasing of triples of factors
for up to nruns-2 factors for 40, 52, 56, 64, 76, 88, 92 and 96 runs
(the same for 100 runs, which were not implemented before version 1.3)
plan5 <- pb(40, 38)
plan6 <- pb(40, 38, oldver=TRUE)
GR(plan5) ## generalized resolution 3.4
GR(plan6) ## generalized resolution 3
plan7 <- pb(52, 50)
plan8 <- pb(52, 50, oldver=TRUE)
GR(plan7) ## generalized resolution 3.62
GR(plan8) ## generalized resolution 3.15

End(Not run)

splitplot Statistical and algorithmic aspects of split-plot designs in FrF2

Description

This help page documents the statistical and algorithmic details of split-plot designs in FrF2

Details

A split-plot design is similar to a blocked design, with the difference that there are also factors of
interest that can be only changed on block level (so-called whole plot factors). The blocks are called
“plots” in the context of split-plot designs. The factors that can (and should!) be varied within a
plot are called split-plot factors. Note that the experiment provides more information on split-plot
factors than on whole-plot factors.

Warning: In terms of analysis, split-plot designs would have to be treated by advanced random
effects models, but often are not. At the very least, the user must be aware that all whole-plot
effects (i.e. effects on columns that only change between plots) are (likely to be) more variable than

splitplot 75

split-plot effects so that e.g. it does not necessarily mean anything if they stick out in a normal or
half-normal effects plot.

Designs for hard-to-change factors are also treated by the split-plot approach in function FrF2,
although they are not quite split-plot designs: The are non-randomized split-plot designs arranged
in an order such that the first whole-plot factors have as few as possible changes. This gives very
poor information on these first whole-plot factors (which in the extreme are only changed once or
twice), if there is variability involved with setting the factor levels.
If hard-to-change factors can be implemented as true whole-plot factors with randomization, this is
by far preferrable from a statistical point of view (but may nevertheless be rejected from a feasibility
point of view, as the necessary changes may seem unaffordable).

For design generation, there are two principal ways to handle split-plot designs, manual definition
(i.e. the user specifies exactly which columns are to be used for which purpose) and automatic
definition. Each situation has its specifics. These are detailed below. For users with not so much
mathematical/statistical background, it will often be best to use the automatic way, specifying the
treatement factors of interest via nfactors or factor.names and a single number for WPs. Users
with more mathematical background may want to use the manual definitions, perhaps in conjunction
with published catalogues of good split-plot designs, or after inspecting possibilities with function
splitpick.

Manual definition of split-plot designs The user can specify a design with the design or the
generators option and specify manually with the WPfacs option, which factors are whole
plot factors (i.e. factors that do not change within a plot). The other factors become split-plot
factors (i.e. factors that do change within a plot). If the user chooses this route, WPfacs must
be character vectors of factor names, factor letters, factor numbers preceded by capital F, or
a vector or list of factor position numbers (NOT: Yates column numbers). Caution: It is the
users responsibility to ensure a good choice of split-plot design (e.g. by using a catalogued
design from Huang, Chen and Voelkel 1998, Bingham and Sitter 2003, or Bingham Schoen
and Sitter 2004). In case of a user-mistake such that the resulting design is not a split-plot
design with the alleged number of whole plots, an error is thrown.

Automatic definition of split-plot designs As mentioned above, split-plot designs differ from block
designs by the fact that the block main effects are purely nuisance parameters which are
assumed (based on prior knowledge) to be relevant but are not of interest, while the plots
are structured by nfac.WP whole plot factors, which are of interest. The user has to decide
on a number of whole plots (WPs) as well as the number of whole plot factors nfac.WP. If
log2(WPs) <= nfac.WP <= WPs-1, it is obviously in principle possible to accomodate the de-
sired number of whole plot factors in the desired number of whole plots. If nfac.WP > WPs/2,
the base design for the split-plot structure has to be of resolution III. Sometimes, subject mat-
ter considerations limit whole plot sizes, and there are only few interesting whole plot factors,
i.e. nfac.WP < log2(WPs). In this case, it is of course nevertheless necessary to have a total
of log2(WPs) whole plot construction factors; the missing log2(WPs) - nfac.WP factors are
added to the design (names starting with WP), and nfactors is increased accordingly.
In all cases, the first nfac.WPs user-specified factors are treated as whole plot factors, the
remaining factors as split-plot factors.
From there, function FrF2 proceeds like in the blocked situation by starting with the best
design and working its way down to worse designs, if the best design cannot accomodate the
desired split-plot structure. For each design, function FrF2 calls function splitpick, which
permutes base factors until the requested whole plot / split-plot structure is achieved, or until

76 splitplot

impossibility for this design with these base factors has been ascertained. In the latter case,
function FrF2 proceeds to the next best design and so forth.
If several competing split-plot designs based on the same base design are found, the best
possible resolution among the first check.WPs such designs is chosen. No further criteria are
automatically implemented, and no more than check.WPs designs are checked. If not satisfied
with the structure of the whole plot portion of the experiment, increasing check.WPs vs. the
default 10 may help. Expert users may want to inspect possibilities, using function splitpick
directly.
Note that the algorithm does not necessarily find an existing split-plot design. It has been
checked out which catalogued designs it can find: designs for all catalogued situations from
Bingham and Sitter (2003) have been found, as well as for most catalogued situations from
Huang, Chen and Voelkel (1998). Occasionally, a better design than catalogued has been
found, e.g. for 4 whole plot and 10 split plot factors in 32 runs with 16 whole plots, the design
found by the algorithm is resolution IV, while Huang, Chen and Voelkel propose a resolution
III design. The algorithm has the largest difficulties with extreme designs in the sense that a
large number of whole plots with a small number of whole plot factors are to be accomodated;
thus it does not find designs for the more extreme situations in Bingham, Schoen and Sitter
(2004).

Please contact me with any suggestions for improvements.

Author(s)

Ulrike Groemping

References

Bingham, D.R., Schoen, E.D. and Sitter, R.R. (2004). Designing Fractional Factorial Split-Plot
Experiments with Few Whole-Plot Factors. Applied Statistics 53, 325-339.

Bingham, D. and Sitter, R.R. (2003). Fractional Factorial Split-Plot Designs for Robust Parameter
Experiments. Technometrics 45, 80-89.

Chen, J., Sun, D.X. and Wu, C.F.J. (1993) A catalogue of 2-level and 3-level orthogonal arrays.
International Statistical Review 61, 131-145.

Cheng, C.-S. and Tsai, P.-W. (2009). Optimal two-level regular fractional factorial block and split-
plot designs. Biometrika 96, 83-93.

Huang, P., Chen, D. and Voelkel, J.O. (1998). Minimum-Aberration Two-Level Split-Plot Designs.
Technometrics 40, 314-326.

See Also

See Also FrF2 for regular fractional factorials, catlg for the Chen, Sun, Wu catalogue of designs
and some accessor functions, and block for the statistical aspects of blocked designs.

Examples

########## hard to change factors ####################
example from Bingham and Sitter Technometrics 19999
MotorSpeed, FeedMode,FeedSizing,MaterialType are hard to change

StructurePickers 77

BS.ex <- FrF2(16,7,hard=4,
factor.names=c("MotorSpeed", "FeedMode","FeedSizing","MaterialType",

"Gain","ScreenAngle","ScreenVibLevel"),
default.levels=c("-","+"))

design.info(BS.ex)
BS.ex
NOTE: the design has 8 whole plots.
The first hard-to-change factors have very few changes only
between whole plots.
A conscious and honest decision is required whether it is
acceptable for the situation at hand not to reset them!
A proper split-plot design with resetting all whole plot factors
for each whole plot would be strongly preferred from a
statistical point of view.

########## automatic generation for split plot ##########
3 control factors, 5 noise factors, control factors are whole plot factors
8 plots desired in a total of 32 runs
Bingham Sitter 2003
BS.ex2a <- FrF2(32, 8, WPs=8, nfac.WP=3,

factor.names=c(paste("C",1:3,sep=""), paste("N",1:5,sep="")),randomize=TRUE)

manual generation of this same design
BS.ex2m <- FrF2(32, 8, generators=c("ABD","ACD","BCDE"),WPs=8, WPfacs=c("C1","C2","C3"), nfac.WP=3,

factor.names=c(paste("C",1:3,sep=""),paste("N",1:5,sep="")),randomize=TRUE)

design with few whole plot factors
2 whole plot factors, 7 split plot factors
8 whole plots, i.e. one extra WP factor needed
BSS.cheese.exa <- FrF2(32, 9, WPs=8, nfac.WP=2,

factor.names=c("A","B","p","q","r","s","t","u","v"))
design.info(BSS.cheese.exa)
manual generation of the design used by Bingham, Schoen and Sitter
note that the generators include a generator for the 10th spplitting factor

s= ABq, t = Apq, u = ABpr and v = Aqr, splitting factor rho=Apqr
BSS.cheese.exm <- FrF2(32, gen=list(c(1,2,4),c(1,3,4),c(1,2,3,5),c(1,4,5),c(1,3,4,5)),

WPs=8, nfac.WP=3, WPfacs=c(1,2,10),
factor.names=c("A","B","p","q","r","s","t","u","v","rho"))

design.info(BSS.cheese.exm)

StructurePickers Functions to find split-plot or left-adjusted designs

Description

Functions to restructure a fractional factorial by permuting the base factors such that the leftmost
base factors have a suitable alias structure for the problem at hand; meant for expert users

78 StructurePickers

Usage

splitpick(k, gen, k.WP, nfac.WP, show=10)
leftadjust(k, gen, early=NULL, show=10)

Arguments

k the number of base factors (designs have 2^k runs)

gen vector of generating columns from Yates matrix

k.WP integer number of base factors used for whole plot generation; there will be
2^k.WP plots in the design

nfac.WP integer number of whole plot factors, must not be smaller than k.WP; the other k
+ length(gen) factors are split-plot factors, i.e. they change within plots

show numeric integer indicating how many results are to be shown; for function splitpick,
this number also determines how many designs are investigated; the other two
functions investigate all designs and show the best results only

early number that indicates how many “leftmost” factors are needed in the design;
used by FrF2 for accomodating hard-to-change factors

Details

These functions exploit the fact that a factorial design can be arranged such that the 2^k.WP-1
leftmost columns have exactly 2^k.WP different patterns. They can thus accomodate whole plot
effects if 2^k.WP plots are available; also, with a specially rearranged version of the Yates matrix,
the leftmost columns can have particularly few or particularly many level changes, cf. e.g. Cheng,
Martin and Tang 1998.

By permuting the k base factors , the functions try to find 2^k.WP ones that accomodate the current
needs, if taken as the first base factors. They are used by function FrF2, if a user requests an
automatically-generated split-plot design or a design with some factors declared hard-to-change.

There may be a possibility to better accomodate the experimenters needs within a given design by
trying different sets of base factors. This is not done in these functions. Also, custom user needs
may be better fulfilled, if an expert user directly uses one of these functions for inspecting the
possibilities, rather than relying on the automatic selection routine in function FrF2.

Value

Both functions output a list of entries with information on at most show suitable permutations.
splitpick ends with an error, if no suitable solution can be found.

orig original generator column numbers

basics named vector with the following entries:
for function splitpick, entries are the number of runs, the number of plots, the
number of whole plot factors and the number of split-plot factors
for function leftadjust, entries are the number of runs, the number of factors,
and - if early is not NULL - the entry for early

perms matrix with rows containing permutations of base factors

StructurePickers 79

res.WP for splitpick only;
vector of resolutions for the respective rows of perms

maxpos for leftadjust only;
vector of maximum positions for the early leftmost factors for the respective
rows of perms

k.early for leftadjust only;
vector of numbers of base factors needed for spanning the early leftmost factors
for the respective rows of perms

gen matrix the rows of which contain the generator columns for the respective rows
of perms

Author(s)

Ulrike Groemping

References

Cheng, C.-S., Martin, R.J., and Tang, B. (1998). Two-level factorial designs with extreme numbers
of level changes. Annals of Statistics 26, 1522-1539.

See Also

See Also FrF2

Examples

leftadjusting MA design from table 6.22 in BHH2, 9 factors, 32 runs
NOTE: nevertheless not as well left-adjusted as the isomorphic design 9-4.1 from catlg
leftadjust(5,c(30,29,27,23))
with option early=4 (i.e. 4 columns as early as possible are requested)
leftadjust(5,c(30,29,27,23),early=4)
leftadjust(5,catlg$'9-4.1'$gen,early=4)

look for a split plot design in 32 runs with 7 factors,
3 of which are whole plot factors,
and 8 plots
splitpick(5,catlg$'7-2.1'$gen,nfac.WP=3,k.WP=3)

Index

∗ array
add.center, 5
block, 10
blockpick, 13
CatalogueAccessors, 18
compromise, 27
estimable.2fis, 33
fold.design, 37
FrF2, 40
FrF2-package, 2
FrF2Large, 56
makecatlg, 68
pb, 69
splitplot, 74
StructurePickers, 77

∗ design
add.center, 5
aliases, 8
block, 10
blockpick, 13
BsProb.design, 16
CatalogueAccessors, 18
CIG, 24
compromise, 27
cubePlot, 29
DanielPlot, 31
estimable.2fis, 33
fold.design, 37
FrF2, 40
FrF2-package, 2
FrF2Large, 56
godolphin, 61
IAPlot, 65
makecatlg, 68
pb, 69
splitplot, 74
StructurePickers, 77

[.catlg (CatalogueAccessors), 18

add.center, 5, 42, 57, 70

alias, 9
aliases, 4, 8, 67
aliasprint (aliases), 8
all.2fis.clear.catlg

(CatalogueAccessors), 18
all.2fis.clear.character

(CatalogueAccessors), 18

block, 10, 45, 46, 48, 52, 74, 76
block.catlg (CatalogueAccessors), 18
blockgencreate, 11
blockgencreate (godolphin), 61
blockgengroup (godolphin), 61
blockpick, 10–12, 13, 50
blockpick.big, 10–12, 50, 63
BsMD, 4, 18
BsProb, 17
BsProb.design, 16

CatalogueAccessors, 18
catlg, 13, 28, 34, 36, 42, 47, 52, 76
catlg (CatalogueAccessors), 18
check (IAPlot), 65
CIG, 24, 34
CIGstatic (CIG), 24
clear.2fis (CatalogueAccessors), 18
clear2fis_from_profile (godolphin), 61
clique.number, 25
colpick, 10–12
colpick (godolphin), 61
colpickIV (godolphin), 61
compromise, 27, 35, 36
contr.FrF2, 48, 59, 72
cubecorners (cubePlot), 29
cubedraw (cubePlot), 29
cubelabel (cubePlot), 29
cubePlot, 4, 29

DanielPlot, 4, 31
degree, 25

80

INDEX 81

design, 4, 17, 31, 48, 59, 66, 72
design.info, 48, 59, 72
desnum, 48, 59, 72
DoE.base, 3, 4
DoE.wrapper, 4
dominating (CatalogueAccessors), 18

estimable.2fis, 20, 28, 33, 43, 44, 48, 52

FF_from_X (godolphin), 61
fold.design, 37
FrF2, 2, 4, 6, 7, 11, 13–15, 23, 28, 33, 34, 36,

39, 40, 58–60, 62, 63, 69, 71, 73, 75,
76, 79

FrF2-package, 2
FrF2.catlg128, 34
FrF2Large, 2, 4, 52, 56

gen2CIG (CIG), 24
generalized.word.length, 73
godolphin, 61

halfnormal, 33

IAPlot, 4, 9, 65
independence.number, 25
intfind (IAPlot), 65
iscube, 6

largest.cliques, 25
layout, 25
leftadjust, 15
leftadjust (StructurePickers), 77
length3, 73
length4, 73
LenthPlot, 33
Letters, 41, 57, 59, 69, 70

makecatlg, 68
MEPlot, 4
MEPlot (IAPlot), 65
myscatterplot3d (cubePlot), 29

Names of catalogues from package, 42
nclear.2fis (CatalogueAccessors), 18
nfac (CatalogueAccessors), 18
nruns (CatalogueAccessors), 18
nrunsV (FrF2Large), 56

oa.design, 23

oacat, 60

pb, 2, 4, 6, 7, 39, 52, 69
phimax (godolphin), 61
plot.BsProb, 18
plot.common, 25, 26, 64
plot.igraph, 25, 26, 64
print.aliases (aliases), 8
print.BsProb, 18
print.catlg (CatalogueAccessors), 18
print.default, 8

qqnorm, 33

remodel (IAPlot), 65
rerandomize.design, 62
res (CatalogueAccessors), 18
run.order, 48, 59, 72

sample, 45, 50, 58, 60, 62, 71, 73
splitpick, 15, 75, 76
splitpick (StructurePickers), 77
splitplot, 13, 46, 48, 52, 74
StructurePickers, 77
summary.BsProb, 18

tkplot, 25, 26, 64

VSGFS, 45, 58, 62, 71

WLP (CatalogueAccessors), 18

X_from_parts (godolphin), 61
X_from_profile (godolphin), 61
Xcalc (godolphin), 61

	FrF2-package
	add.center
	aliases
	block
	blockpick
	BsProb.design
	CatalogueAccessors
	CIG
	compromise
	cubePlot
	DanielPlot
	estimable.2fis
	fold.design
	FrF2
	FrF2Large
	godolphin
	IAPlot
	makecatlg
	pb
	splitplot
	StructurePickers
	Index

