Package 'FinCal'

January 20, 2025

 Title
 Time Value of Money, Time Series Analysis and Computational Finance

 Description
 Package for time value of money calculation, time series analysis and computational finance.

Version 0.6.3

Date 2016-07-27

Author Felix Yanhui Fan <nolanfyh@gmail.com>

Imports ggplot2, reshape2, RCurl

Maintainer Felix Yanhui Fan <nolanfyh@gmail.com>

License GPL (≥ 2)

URL http://felixfan.github.io/FinCal/

RoxygenNote 5.0.1

NeedsCompilation no

Repository CRAN

Date/Publication 2016-07-29 06:40:54

Contents

bdy																												3
bdy2mmy																												3
candlestickChart .									•	•					•	•		•	•		•			•				4
cash.ratio	•		•		•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
coefficient.variation																												
cogs	•				•	•	•		•	•	•				•	•		•	•	•	•	•		•			•	6
current.ratio																												
$ddb \ \ \ldots \ \ldots \ \ldots \ \ldots$																												
debt.ratio																												
diluted.EPS	•				•	•	•		•	•				•	•	•		•	•	•	•	•		•				9
discount.rate																												
ear	•				•	•	•		•	•				•	•	•		•	•	•	•	•		•				11
ear.continuous																												11

ear2bey	. 12
ear2hpr	. 12
EIR	. 13
EPS	. 14
financial.leverage	. 15
fv	. 15
fv.annuity	. 16
fv.simple	. 17
fv.uneven	. 17
geometric.mean	. 17
-	
get.ohlc.google	
get.ohlc.yahoo	
get.ohlcs.google	
get.ohlcs.yahoo	
gpm	
harmonic.mean	. 22
hpr	. 22
hpr2bey	. 23
hpr2ear	. 23
hpr2mmy	. 24
irr	. 24
irr2	. 25
iss	. 26
lineChart	. 26
lineChartMult	. 27
lt.d2e	. 28
mmy2hpr	. 28
n.period	. 20
npm	. 29
	. 30
npv	. 30
pmt	
pv	. 32
pv.annuity	. 33
pv.perpetuity	. 33
pv.simple	. 34
pv.uneven	. 35
quick.ratio	. 35
r.continuous	. 36
r.norminal	. 36
r.perpetuity	. 37
sampling.error	. 38
SFRatio	. 38
Sharpe.ratio	. 39
slde	. 39
total.d2e	. 40
twrr	. 40
volumeChart	. 41
was	. 42

bdy

wpr								43
-----	--	--	--	--	--	--	--	----

Index

bdy

Computing bank discount yield (BDY) for a T-bill

Description

Computing bank discount yield (BDY) for a T-bill

Usage

bdy(d, f, t)

Arguments

d	the dollar discount, which is equal to the difference between the face value of the bill and the purchase price
f	the face value (par value) of the bill
t	number of days remaining until maturity

See Also

bdy2mmy

Examples

bdy(d=1500,f=100000,t=120)

bdy2mmy

Computing money market yield (MMY) for a T-bill

Description

Computing money market yield (MMY) for a T-bill

Usage

bdy2mmy(bdy, t)

Arguments

bdy	bank discount yield
t	number of days remaining until maturity

3

44

See Also

bdy

Examples

```
bdy2mmy(bdy=0.045,t=120)
```

er than pening

Description

Technical analysts - Candlestick chart: show prices for each period as a continuous line. The box is clear if the closing price is higher than the opening price, or filled red if the closing is lower than the opening price.

Usage

```
candlestickChart(ohlc, start = NULL, end = NULL, main = "", ...)
```

Arguments

ohlc	output from get.ohlc.yahoo or get.ohlc.google
start	start date to plot, if not specified, all date in ohlc will be included
end	end date to plot
main	an overall title for the plot
	Arguments to be passed to ggplot

See Also

get.ohlc.yahoo
get.ohlc.google

Examples

google <- get.ohlc.yahoo("GOOG",start="2013-07-01",end="2013-08-01"); candlestickChart(google)
apple <- get.ohlc.google("AAPL",start="2013-07-01",end="2013-08-01"); candlestickChart(apple)</pre>

cash.ratio

cash ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Description

cash ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Usage

cash.ratio(cash, ms, cl)

Arguments

cash	cash
ms	marketable securities
cl	current liabilities

See Also

current.ratio quick.ratio

Examples

cash.ratio(cash=3000,ms=2000,cl=2000)

coefficient.variation Computing Coefficient of variation

Description

Computing Coefficient of variation

Usage

coefficient.variation(sd, avg)

sd	standard deviation
avg	average value

See Also

Sharpe.ratio

Examples

coefficient.variation(sd=0.15,avg=0.39)

cogs

Cost of goods sold and ending inventory under three methods (FIFO,LIFO,Weighted average)

Description

Cost of goods sold and ending inventory under three methods (FIFO,LIFO,Weighted average)

Usage

cogs(uinv, pinv, units, price, sinv, method = "FIFO")

Arguments

uinv	units of beginning inventory
pinv	prince of beginning inventory
units	nx1 vector of inventory units. inventory purchased ordered by time (from first to last)
price	nx1 vector of inventory price. same order as units
sinv	units of sold inventory
method	inventory methods: FIFO (first in first out, permitted under both US and IFRS), LIFO (late in first out, US only), WAC (weighted average cost,US and IFRS)

Examples

```
cogs(uinv=2,pinv=2,units=c(3,5),price=c(3,5),sinv=7,method="FIF0")
cogs(uinv=2,pinv=2,units=c(3,5),price=c(3,5),sinv=7,method="LIF0")
cogs(uinv=2,pinv=2,units=c(3,5),price=c(3,5),sinv=7,method="WAC")
```

current.ratio

current ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Description

current ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Usage

current.ratio(ca, cl)

Arguments

са	current assets
cl	current liabilities

See Also

cash.ratio

quick.ratio

Examples

current.ratio(ca=8000,cl=2000)

ddb

Depreciation Expense Recognition – double-declining balance (DDB), the most common declining balance method, which applies two times the straight-line rate to the declining balance.

Description

Depreciation Expense Recognition – double-declining balance (DDB), the most common declining balance method, which applies two times the straight-line rate to the declining balance.

Usage

ddb(cost, rv, t)

Arguments

cost	cost of long-lived assets
rv	residual value of the long-lived assets at the end of its useful life. DDB does not explicitly use the asset's residual value in the calculations, but depreciation ends once the estimated residual value has been reached. If the asset is expected to have no residual value, the DB method will never fully depreciate it, so the DB method is typically changed to straight-line at some point in the asset's life.
t	length of the useful life

See Also

slde

Examples

ddb(cost=1200,rv=200,t=5)

debt.ratio	debt ratio – Solvency ratios measure the firm's ability to satisfy its
	long-term obligations.

Description

debt ratio - Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

debt.ratio(td, ta)

Arguments

td	total debt
ta	total assets

See Also

total.d2e
lt.d2e
financial.leverage

Examples

debt.ratio(td=6000,ta=20000)

diluted.EPS

Description

diluted Earnings Per Share

Usage

```
diluted.EPS(ni, pd, cpd = 0, cdi = 0, tax = 0, w, cps = 0, cds = 0,
iss = 0)
```

Arguments

ni	net income
pd	preferred dividends
cpd	dividends on convertible preferred stock
cdi	interest on convertible debt
tax	tax rate
w	weighted average number of common shares outstanding
cps	shares from conversion of convertible preferred stock
cds	shares from conversion of convertible debt
iss	shares issuable from stock options

See Also

EPS iss

was

Examples

diluted.EPS(ni=115600,pd=10000,cdi=42000,tax=0.4,w=200000,cds=60000)

diluted.EPS(ni=115600,pd=10000,cpd=10000,w=200000,cps=40000)

diluted.EPS(ni=115600,pd=10000,w=200000,iss=2500)

diluted.EPS(ni=115600,pd=10000,cpd=10000,cdi=42000,tax=0.4,w=200000,cps=40000,cds=60000,iss=2500)

discount.rate

Description

Computing the rate of return for each period

Usage

```
discount.rate(n, pv, fv, pmt, type = 0)
```

Arguments

n	number of periods
pv	present value
fv	future value
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

See Also

fv.simple
fv.annuity
fv
pv
pmt
n.period

Examples

discount.rate(n=5,pv=0,fv=600,pmt=-100,type=0)

ear

Description

Convert stated annual rate to the effective annual rate

Usage

ear(r, m)

Arguments

r	stated annual rate
m	number of compounding periods per year

See Also

ear.continuous hpr2ear ear2bey ear2hpr

Examples

```
ear(r=0.12,m=12)
```

ear(0.04,365)

ear.continuous	Convert stated annual rate to the effective annual rate with continuous
	compounding

Description

Convert stated annual rate to the effective annual rate with continuous compounding

Usage

ear.continuous(r)

Arguments

r stated annual rate

See Also

ear

r.norminal

Examples

ear.continuous(r=0.1)

ear.continuous(0.03)

ear2bey

bond-equivalent yield (BEY), 2 x the semiannual discount rate

Description

bond-equivalent yield (BEY), 2 x the semiannual discount rate

Usage

ear2bey(ear)

Arguments

ear effective annual rate

See Also

ear

Examples

ear2bey(ear=0.08)

ear2hpr

Computing HPR, the holding period return

Description

Computing HPR, the holding period return

Usage

ear2hpr(ear, t)

12

EIR

Arguments

ear	effective annual rate
t	number of days remaining until maturity

See Also

hpr2ear ear hpr

Examples

ear2hpr(ear=0.05039,t=150)

EIR

Equivalent/proportional Interest Rates

Description

An interest rate to be applied n times p.a. can be converted to an equivalent rate to be applied p times p.a.

Usage

EIR(r, n = 1, p = 12, type = c("e", "p"))

Arguments

type	equivalent interest rates ('e',default) or proportional interest rates ('p')
р	times that the equivalent rate were compounded per year
n	times that the interest rate r were compounded per year
r	interest rate to be applied n times per year (r is annual rate!)

Examples

monthly interest rat equivalent to 5% compounded per year $\mbox{EIR}(r{=}0.05,n{=}1,p{=}12)$

monthly interest rat equivalent to 5% compounded per half year EIR(r=0.05, n=2, p=12)

monthly interest rat equivalent to 5% compounded per quarter $\mbox{EIR}(r{=}0.05,n{=}4,p{=}12)$

annual interest rate equivalent to 5% compounded per month $\mbox{EIR}(r{=}0.05,n{=}12,p{=}1)$

```
# this is equivalent to
ear(r=0.05,m=12)
# quarter interest rate equivalent to 5% compounded per year
EIR(r=0.05,n=1,p=4)
# quarter interest rate equivalent to 5% compounded per month
EIR(r=0.05,n=12,p=4)
```

monthly proportional interest rate which is equivalent to a simple annual interest EIR(r=0.05,p=12,type='p')

EPS

Basic Earnings Per Share

Description

Basic Earnings Per Share

Usage

EPS(ni, pd, w)

Arguments

ni	net income
pd	preferred dividends
w	weighted average number of common shares outstanding

See Also

diluted.EPS

was

Examples

EPS(ni=10000,pd=1000,w=11000)

14

financial.leverage financial leverage – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Description

financial leverage - Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

financial.leverage(te, ta)

Arguments

te	total equity
ta	total assets

See Also

total.d2e
lt.d2e
debt.ratio

Examples

financial.leverage(te=16000,ta=20000)

	^
- 1	- \/
	v

Estimate future value (fv)

Description

Estimate future value (fv)

Usage

fv(r, n, pv = 0, pmt = 0, type = 0)

r	discount rate, or the interest rate at which the amount will be compounded each period
n	number of periods
рv	present value
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

fv.annuity

See Also

```
fv.simple
fv.annuity
pv
pmt
n.period
discount.rate
```

Examples

fv(0.07,10,1000,10)

fv.annuity

Estimate future value of an annuity

Description

Estimate future value of an annuity

Usage

fv.annuity(r, n, pmt, type = 0)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
n	number of periods
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

See Also

fv

Examples

fv.annuity(0.03,12,-1000)

fv.annuity(r=0.03,n=12,pmt=-1000,type=1)

16

fv.simple

Description

Estimate future value (fv) of a single sum

Usage

fv.simple(r, n, pv)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each
	period
n	number of periods
pv	present value

See Also

fv

Examples

fv.simple(0.08,10,-300)

fv.simple(r=0.04, n=20, pv=-50000)

fv.uneven

Computing the future value of an uneven cash flow series

Description

Computing the future value of an uneven cash flow series

Usage

fv.uneven(r, cf)

r	stated annual rate	
cf	uneven cash flow	

See Also

fv.simple

Examples

fv.uneven(r=0.1, cf=c(-1000, -500, 0, 4000, 3500, 2000))

geometric.mean Geometric mean return

Description

Geometric mean return

Usage

geometric.mean(r)

Arguments r

returns over multiple periods

Examples

```
geometric.mean(r=c(-0.0934, 0.2345, 0.0892))
```

get.ohlc.google	Download stock prices from Google Finance (open, high, low, close,
	volume)

Description

Download stock prices from Google Finance (open, high, low, close, volume)

Usage

get.ohlc.google(symbol, start = "2013-01-01", end = "today")

Arguments

symbol	symbol of stock, e.g. AAPL, GOOG, SPX
start	start date, e.g., 2013-07-31
end	end date, e.g., 2013-08-06

18

get.ohlc.yahoo

See Also

get.ohlc.yahoo
get.ohlcs.google

Examples

```
# get.ohlc.google(symbol="AAPL")
# get.ohlc.google(symbol="AAPL",start="2013-08-01")
# get.ohlc.google(symbol="AAPL",start="2013-07-01",end="2013-08-01")
```

get.ohlc.yahoo	Download stock prices from Yahoo Finan	ce (open, high, low, close,
	volume, adjusted)	

Description

Download stock prices from Yahoo Finance (open, high, low, close, volume, adjusted)

Usage

```
get.ohlc.yahoo(symbol, start = "firstDay", end = "today", freq = "d")
```

Arguments

symbol	symbol of stock, e.g. AAPL, GOOG, SPX
start	start date, e.g., 2013-07-31
end	end date, e.g., 2013-08-06
freq	time interval, e.g., d:daily, w:weekly, m:monthly

See Also

get.ohlcs.yahoo
get.ohlc.google

Examples

```
# get.ohlc.yahoo(symbol="AAPL")
# get.ohlc.yahoo(symbol="AAPL",start="2013-08-01",freq="d")
# get.ohlc.yahoo(symbol="AAPL",start="2013-07-01",end="2013-08-01",freq="w")
```

get.ohlcs.google

Description

Batch download stock prices from Google Finance (open, high, low, close, volume)

Usage

```
get.ohlcs.google(symbols, start = "2013-01-01", end = "today")
```

Arguments

symbols	symbols of stock, e.g. AAPL, GOOG, SPX
start	start date, e.g., 2013-07-31
end	end date, e.g., 2013-08-06

See Also

get.ohlc.google

get.ohlcs.yahoo

Examples

```
# get.ohlcs.google(symbols=c("AAPL","GOOG","SPY"))
# get.ohlcs.google(symbols=c("AAPL","GOOG","SPY"),start="2013-01-01")
# get.ohlcs.google(symbols=c("AAPL","GOOG","SPY"),start="2013-01-01",end="2013-07-31")
```

get.ohlcs.yahoo	Batch download stock prices from Yahoo Finance (open, high, low,
	close, volume, adjusted)

Description

Batch download stock prices from Yahoo Finance (open, high, low, close, volume, adjusted)

Usage

```
get.ohlcs.yahoo(symbols, start = "firstDay", end = "today", freq = "d")
```

gpm

Arguments

symbols	symbols of stock, e.g. AAPL, GOOG, SPX
start	start date, e.g., 2013-07-31
end	end date, e.g., 2013-08-06
freq	time interval, e.g., d:daily, w:weekly, m:monthly

See Also

get.ohlc.yahoo

get.ohlcs.google

Examples

get.ohlcs.yahoo(symbols=c("AAPL","GOOG","SPY"),freq="d")
get.ohlcs.yahoo(symbols=c("AAPL","GOOG","SPY"),start="2013-01-01",freq="m")

gpm	gross profit margin – Evaluate a company's financial performance

Description

gross profit margin - Evaluate a company's financial performance

Usage

gpm(gp, rv)

Arguments

gp	gross profit, equal to revenue minus cost of goods sold (cogs)
rv	revenue (sales)

See Also

npm

Examples

gpm(gp=1000,rv=20000)

harmonic.mean

Description

harmonic mean, average price

Usage

harmonic.mean(p)

Arguments

р

price over multiple periods

Examples

harmonic.mean(p=c(8,9,10))

hpr

Computing HPR, the holding period return

Description

Computing HPR, the holding period return

Usage

hpr(ev, bv, cfr = 0)

Arguments

ev	ending value
bv	beginning value
cfr	cash flow received

See Also

twrr hpr2ear hpr2mmy

Examples

hpr(ev=33,bv=30,cfr=0.5)

hpr2bey

Description

bond-equivalent yield (BEY), 2 x the semiannual discount rate

Usage

```
hpr2bey(hpr, t)
```

Arguments

hpr	holding period return
t	number of month remaining until maturity

See Also

hpr

Examples

hpr2bey(hpr=0.02,t=3)

hpr2ear	Convert holding period return to the effective annual rate	
---------	--	--

Description

Convert holding period return to the effective annual rate

Usage

hpr2ear(hpr, t)

Arguments

hpr	holding period return
t	number of days remaining until maturity

See Also

ear hpr ear2hpr

Examples

hpr2ear(hpr=0.015228,t=120)

hpr2mmy

Computing money market yield (MMY) for a T-bill

Description

Computing money market yield (MMY) for a T-bill

Usage

hpr2mmy(hpr, t)

Arguments

hpr	holding period return
t	number of days remaining until maturity

See Also

hpr

mmy2hpr

Examples

hpr2mmy(hpr=0.01523,t=120)

irr

Computing IRR, the internal rate of return

Description

Computing IRR, the internal rate of return

Usage

irr(cf)

Arguments

cf

cash flow, the first cash flow is the initial outlay

irr2

See Also

pv.uneven npv

Examples

irr(cf=c(-5, 1.6, 2.4, 2.8))

irr2

Computing IRR, the internal rate of return

Description

This function is the same as irr but can calculate negative value. This function may take a very long time. You can use larger cutoff and larger step to get a less precision irr first. Then based on the result, change from and to, to narrow down the interval, and use a smaller step to get a more precision irr.

Usage

```
irr2(cf, cutoff = 0.1, from = -1, to = 10, step = 1e-06)
```

Arguments

cf	cash flow, the first cash flow is the initial outlay
cutoff	threshold to take npv as zero
from	smallest irr to try
to	largest irr to try
step	increment of the irr

See Also

irr

Examples

```
# irr2(cf=c(-5, 1.6, 2.4, 2.8))
# irr2(cf=c(-200, 50, 60, -70, 30, 20))
```

iss

calculate the net increase in common shares from the potential exercise of stock options or warrants

Description

calculate the net increase in common shares from the potential exercise of stock options or warrants

Usage

iss(amp, ep, n)

Arguments

amp	average market price over the year
ер	exercise price of the options or warrants
n	number of common shares that the options and warrants can be convened into

See Also

diluted.EPS

Examples

iss(amp=20,ep=15,n=10000)

lineChart	Technical analysts - Line charts: show prices for each period as a
	continuous line

Description

Technical analysts - Line charts: show prices for each period as a continuous line

Usage

lineChart(ohlc, y = "close", main = "", ...)

ohlc	output from get.ohlc.yahoo or get.ohlc.google
У	y coordinates: close, open, high, low or adjusted (yahoo data only)
main	an overall title for the plot
	Arguments to be passed to ggplot

lineChartMult

See Also

get.ohlc.yahoo
get.ohlc.google

Examples

```
# google <- get.ohlc.yahoo("GOOG"); lineChart(google)
# apple <- get.ohlc.google("AAPL"); lineChart(apple)</pre>
```

lineChartMult	Technical analysts - Line charts: show prices for each period as a
	continuous line for multiple stocks

Description

Technical analysts - Line charts: show prices for each period as a continuous line for multiple stocks

Usage

```
lineChartMult(ohlcs, y = "close", main = "", ...)
```

Arguments

ohlcs	output from get.ohlc.yahoo.mult or get.ohlc.google.mult
У	y coordinates: close, open, high, low or adjusted (yahoo data only)
main	an overall title for the plot
	Arguments to be passed to ggplot

See Also

get.ohlcs.yahoo
get.ohlcs.google
lineChart

Examples

- # googapple <- get.ohlcs.yahoo(c("GOOG","AAPL"),start="2013-01-01");</pre>
- # lineChartMult(googapple)
- # googapple <- get.ohlcs.google(c("GOOG","AAPL"),start="2013-01-01");</pre>
- # lineChartMult(googapple)

lt.d2e

long-term debt-to-equity – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Description

long-term debt-to-equity – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

lt.d2e(ltd, te)

Arguments

ltd	long-term debt
te	total equity

See Also

total.d2e
debt.ratio
financial.leverage

Examples

lt.d2e(ltd=8000,te=20000)

mmy2hpr

Computing HPR, the holding period return

Description

Computing HPR, the holding period return

Usage

mmy2hpr(mmy, t)

mmy	money market yield
t	number of days remaining until maturity

n.period

See Also

bdy2mmy hpr2mmy hpr

Examples

mmy2hpr(mmy=0.04898,t=150)

n.period

Estimate the number of periods

Description

Estimate the number of periods

Usage

n.period(r, pv, fv, pmt, type = 0)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
pv	present value
fv	future value
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

See Also

pv fv pmt discount.rate

Examples

n.period(0.1,-10000,6000000,-50000,0)

n.period(r=0.1,pv=-10000,fv=60000000,pmt=-50000,type=1)

npv

npm

Description

net profit margin - Evaluate a company's financial performance

Usage

npm(ni, rv)

Arguments

ni	net income
rv	revenue (sales)

See Also

gpm

Examples

npm(ni=8000,rv=20000)

npv	Computing NPV, the PV of the cash flows less the initial (time = 0)
	outlay

Description

Computing NPV, the PV of the cash flows less the initial (time = 0) outlay

Usage

npv(r, cf)

r	discount rate, or the interest rate at which the amount will be compounded each period
cf	cash flow, the first cash flow is the initial outlay

pmt

See Also

```
pv.simple
pv.uneven
irr
```

Examples

npv(r=0.12, cf=c(-5, 1.6, 2.4, 2.8))

pmt

Estimate period payment

Description

Estimate period payment

Usage

pmt(r, n, pv, fv, type = 0)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
n	number of periods
pv	present value
fv	future value
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

See Also

pv fv

n.period

Examples

pmt(0.08,10,-1000,10)

pmt(r=0.08,n=10,pv=-1000,fv=0)

pmt(0.08,10,-1000,10,1)

Description

Estimate present value (pv)

Usage

pv(r, n, fv = 0, pmt = 0, type = 0)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
n	number of periods
fv	future value
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

See Also

pv.simple
pv.annuity
fv
pmt
n.period
discount.rate

Examples

pv(0.07,10,1000,10)

pv(r=0.05,n=20,fv=1000,pmt=10,type=1)

pv

pv.annuity

Description

Estimate present value (pv) of an annuity

Usage

pv.annuity(r, n, pmt, type = 0)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
n	number of periods
pmt	payment per period
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

See Also

pv

Examples

```
pv.annuity(0.03,12,1000)
```

pv.annuity(r=0.0425,n=3,pmt=30000)

pv.perpetuity Estimate present value of a perpetuity

Description

Estimate present value of a perpetuity

Usage

pv.perpetuity(r, pmt, g = 0, type = 0)

pv.simple

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each period
pmt	payment per period
g	growth rate of perpetuity
type	payments occur at the end of each period (type=0); payments occur at the be- ginning of each period (type=1)

See Also

r.perpetuity

Examples

```
pv.perpetuity(r=0.1,pmt=1000,g=0.02)
pv.perpetuity(r=0.1,pmt=1000,type=1)
```

pv.perpetuity(r=0.1,pmt=1000)

pv.simple

Estimate present value (pv) of a single sum

Description

Estimate present value (pv) of a single sum

Usage

pv.simple(r, n, fv)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each
	period
n	number of periods
fv	future value

See Also

pv

Examples

pv.simple(0.07,10,100)

pv.simple(r=0.03,n=3,fv=1000)

pv.uneven

Description

Computing the present value of an uneven cash flow series

Usage

pv.uneven(r, cf)

Arguments

r	discount rate, or the interest rate at which the amount will be compounded each
	period
cf	uneven cash flow

See Also

pv.simple npv

Examples

pv.uneven(r=0.1, cf=c(-1000, -500, 0, 4000, 3500, 2000))

quick.ratio	quick ratio – Liquidity ratios measure the firm's ability to satisfy its
	short-term obligations as they come due.

Description

quick ratio – Liquidity ratios measure the firm's ability to satisfy its short-term obligations as they come due.

Usage

quick.ratio(cash, ms, rc, cl)

cash	cash
ms	marketable securities
rc	receivables
cl	current liabilities

r.norminal

See Also

current.ratio

cash.ratio

Examples

quick.ratio(cash=3000,ms=2000,rc=1000,cl=2000)

r.continuous

Convert a given norminal rate to a continuous compounded rate

Description

Convert a given norminal rate to a continuous compounded rate

Usage

r.continuous(r, m)

Arguments

r	norminal rate
m	number of times compounded each year

See Also

r.norminal

Examples

r.continuous(0.03,4)

r.norminal Convert a given continuous compounded rate to a norminal rate	
--	--

Description

Convert a given continuous compounded rate to a norminal rate

Usage

r.norminal(rc, m)

36

r.perpetuity

Arguments

rc	continuous compounded rate
m	number of desired times compounded each year

See Also

r.continuous

ear.continuous

Examples

r.norminal(0.03,1)

r.norminal(0.03,4)

r.perpetuity Rate of return for a perpetuity

Description

Rate of return for a perpetuity

Usage

r.perpetuity(pmt, pv)

Arguments

pmt	payment per period
pv	present value

See Also

pv.perpetuity

Examples

r.perpetuity(pmt=4.5,pv=-75)

sampling.error

Description

Computing Sampling error

Usage

sampling.error(sm, mu)

Arguments

sm	sample mean
mu	population mean

Examples

sampling.error(sm=0.45, mu=0.5)

SFRatio

Computing Roy's safety-first ratio

Description

Computing Roy's safety-first ratio

Usage

SFRatio(rp, rl, sd)

Arguments

rp	portfolio return
rl	threshold level return
sd	standard deviation of portfolio retwns

See Also

Sharpe.ratio

Examples

```
SFRatio(rp=0.09,rl=0.03,sd=0.12)
```

Sharpe.ratio

Description

Computing Sharpe Ratio

Usage

Sharpe.ratio(rp, rf, sd)

Arguments

rp	portfolio return
rf	risk-free return
sd	standard deviation of portfolio retwns

See Also

coefficient.variation
SFRatio

Examples

Sharpe.ratio(rp=0.038,rf=0.015,sd=0.07)

slde	Depreciation Expense Recognition – Straight-line depreciation (SL)
	allocates an equal amount of depreciation each year over the asset's
	useful life

Description

Depreciation Expense Recognition – Straight-line depreciation (SL) allocates an equal amount of depreciation each year over the asset's useful life

Usage

slde(cost, rv, t)

cost	cost of long-lived assets
rv	residual value of the long-lived assets at the end of its useful life
t	length of the useful life

total.d2e

See Also

ddb

Examples

slde(cost=1200,rv=200,t=5)

total.d2e

total debt-to-equity – Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Description

total debt-to-equity - Solvency ratios measure the firm's ability to satisfy its long-term obligations.

Usage

total.d2e(td, te)

Arguments

td	total debt
te	total equity

See Also

total.d2e

debt.ratio

financial.leverage

Examples

total.d2e(td=6000,te=20000)

40

twrr

Description

Computing TWRR, the time-weighted rate of return

Usage

twrr(ev, bv, cfr)

Arguments

ev	ordered ending value list
bv	ordered beginning value list
cfr	ordered cash flow received list

See Also

hpr

Examples

twrr(ev=c(120,260),bv=c(100,240),cfr=c(2,4))

volumeChart	Technical analysts - Volume charts: show each period's volume as a
	vertical line

Description

Technical analysts - Volume charts: show each period's volume as a vertical line

Usage

volumeChart(ohlc, main = "", ...)

ohlc	output from get.ohlc.yahoo or get.ohlc.google
main	an overall title for the plot
	Arguments to be passed to ggplot

See Also

get.ohlc.yahoo

get.ohlc.google

Examples

- # google <- get.ohlc.yahoo("GOOG");</pre>
- # volumeChart(google)
- # apple <- get.ohlc.google("AAPL");</pre>
- # volumeChart(apple)

was

calculate weighted average shares – weighted average number of common shares

Description

calculate weighted average shares - weighted average number of common shares

Usage

was(ns, nm)

Arguments

ns	n x 1 vector vector of number of shares
nm	n x 1 vector vector of number of months relate to ns

See Also

EPS

diluted.EPS

Examples

s=c(10000,2000);m=c(12,6);was(ns=s,nm=m)

s=c(11000,4400,-3000);m=c(12,9,4);was(ns=s,nm=m)

42

wpr

Description

Weighted mean as a portfolio return

Usage

wpr(r, w)

Arguments

r	returns of the individual assets in the portfolio
W	corresponding weights associated with each of the individual assets

Examples

wpr(r=c(0.12, 0.07, 0.03),w=c(0.5,0.4,0.1))

Index

bdy, 3, 4 bdy2mmy, *3*, *3*, *2*9 candlestickChart,4 cash.ratio, 5, 7, 36 coefficient.variation, 5, 39 cogs, 6 current.ratio, 5, 7, 36 ddb, 7, 40 debt.ratio, 8, 15, 28, 40 diluted.EPS, 9, 14, 26, 42 discount.rate, 10, 16, 29, 32 ear, 11, 12, 13, 23 ear.continuous, 11, 11, 37 ear2bey, 11, 12 ear2hpr, 11, 12, 23 EIR, 13 EPS, 9, 14, 42 financial.leverage, 8, 15, 28, 40 fv, 10, 15, 16, 17, 29, 31, 32 fv.annuity, 10, 16, 16 fv.simple, 10, 16, 17, 18 fv.uneven, 17 geometric.mean, 18 get.ohlc.google, 4, 18, 19, 20, 27, 42 get.ohlc.yahoo, 4, 19, 19, 21, 27, 42 get.ohlcs.google, 19, 20, 21, 27 get.ohlcs.yahoo, 19, 20, 20, 27 gpm, 21, *30* harmonic.mean, 22 hpr, 13, 22, 23, 24, 29, 41 hpr2bey, 23 hpr2ear, 11, 13, 22, 23 hpr2mmy, 22, 24, 29

irr, 24, 25, 31

irr2, 25 iss, 9, 26 lineChart, 26, 27 lineChartMult, 27 lt.d2e, 8, 15, 28 mmy2hpr, 24, 28 n.period, 10, 16, 29, 31, 32 npm, 21, 30 npv, 25, 30, 35 pmt, 10, 16, 29, 31, 32 pv, 10, 16, 29, 31, 32, 33, 34 pv.annuity, 32, 33 pv.perpetuity, 33, 37 pv.simple, 31, 32, 34, 35 pv. uneven, 25, 31, 35 quick.ratio, 5, 7, 35 r.continuous, 36, 37 r.norminal, 12, 36, 36 r.perpetuity, 34, 37 sampling.error, 38 SFRatio, 38, 39 Sharpe.ratio, 6, 38, 39 slde, 8, 39 total.d2e, 8, 15, 28, 40, 40 twrr, 22, 41 volumeChart, 41 was, 9, 14, 42

wpr, 43