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1 Introduction

FAmle is a R package that may be used in order to carry out tasks that pertain to univariate
frequency analysis. Basically, two general frameworks are being entertained here: mazimum
likelihood and Bayesian. More precisely, for a given problem, the user may decide to estimate
the unknown parameters via maximum likelihood, and to then proceed to statistical inference
accordingly, or to use a full Bayesian approach to parameter estimation and inference.

Although the help files provided with FAmle are regarded as self-contained, such that the user
should be able to get the package to work without having to rely upon extra documentation,
a careful examination of the present document would nonetheless correspond to a good time
investment. In other words, by carefully reading this document and by going through the
examples one by one, the user will, besides from being exposed to the functions available in
the package, benefit from seeing how those functions are actually being implemented in real
problems.

It seems worthwhile, at this point, to inform the potential user of this package about a few
facts. First, as FAmle was originally developed in the context of univariate frequency analysis
in flood hydrology, many of the examples presented herein are biased towards that specific
topic. In fact, not only the examples are biased, but also some of the functions made avail-
able by this package. For example, in univariate flood frequency analysis, the main interest
often lies in estimating quantiles for some high return periods; the former characterizing
extreme flood events that occur with low probabilities. That said, although the main func-
tions descried herein (i.e., those outlined in the sections’ titles) may be useful for estimating
probability distributions regardless of the application field, the extra functions (as they will
be presented below), were mostly written in view to tackle flood quantile estimations. Sec-
ondly, although, without a single doubt, packages similar (with many respects) to FAmle may
already exist, it is believed here that the greatest feature of the latter lies in its generality,
with respect to both maximum likelihood estimation and Bayesian estimation of univariate
frequency distributions (this goes without saying, however, that other possibly available
packages are not general). Thirdly, and finally, the user should understand, before making
any statistical inferences (e.g., significance tests, prior elicitation, or confidence intervals),
that it is her/his responsibility to make sure that the theoretical arguments behind their
use of the functions made available by FAmle are valid. For example, maximum likelihood
estimators often benefit from nice asymptotic properties. However, there are conditions that
must be met in order for such properties to apply, and, although good references will be
given, such conditions will not explicitly be discussed in this document.



This vignette is organized as follows. In Section 2, the distr function, which may be
regarded as the chore of the FAmle package, is presented and described thoroughly. In
Section 3, the mle function, which may be used to fit a parametric probability distribution
to a given univariate dataset, is presented and put to work in an application to life-time data.
Section 4 briefly discusses the boot.mle function, which may be used to generate parametric
bootstrap distributions from the fitted parametric model, while Section 5 illustrates how
the so-generated bootstrap distributions may be used to derive different types of confidence
intervals as well as to carry out two basic composite hypotheses tests concerning the fitted
distribution’s plausibility in light of the actual dataset. The latter section also treats the
topic of approximate normal confidence intervals for some quantile estimates. Section 6 deals
with the declaration of new probability distributions, for the purpose of later using them in
conjunction with the FAmle functions. Section 7 presents the FAdist package (Aucoin, 2011),
which contains a series probability distributions sometimes used in practice, but which are
not available in R. The metropolis function, which may be used to carry out a full Bayesian
estimation of the unknown parameters, is introduced and put to work in Section 8.

2 The distr Function

As mentioned in Section 1, distr corresponds to the most important FAmle function. The
reason for this is that distr is being called (and thus required) by most of the remaining
functions to perform their respective tasks. It thus seems natural to begin this tutorial by
presenting distr and by giving several simple examples on how it may be used. Before going
any further, however, the user should first make sure that the FAmle package is loaded (by
running the following code in R), and then carefully read the help file available for distr:

> library(FAmle)
> help(distr)

As may be understood from the help file discussed at the previous paragraph, distr is
a function that allows to call any of the four functions that pertain to each one of the
univariate probability distributions already available in R. For example, for the well-known
normal distribution, the following four functions are available: dnorm, pnorm, qnorm, and
rnorm. Basically, these functions, when called and provided with the proper arguments, will
respectively evaluate (and/or return) the following: the density function, the cumulative
distribution function, the quantile function, and random variates. A numerical example
shall make everything more obvious!

> x <- -4:4
> X

[1] -4 -3-2-1 0 1 2 3 4
> dnorm(x=x,mean=0,sd=1)

[1] 0.0001338302 0.0044318484 0.0539909665 0.2419707245 0.3989422804
[6] 0.2419707245 0.0539909665 0.0044318484 0.0001338302



> Fx <- pnorm(q=x,mean=0,sd=1)
> Fx

[1] 3.167124e-05 1.349898e-03 2.275013e-02 1.586553e-01 5.000000e-01
[6] 8.413447e-01 9.772499e-01 9.986501e-01 9.999683e-01

> gnorm(p=Fx,mean=0,sd=1)
[1] -4 -3-2-1 0 1 2 3 4

> set.seed(123)
> rnorm(length(x),mean=0,sd=1)

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285

The next code chunk illustrates how exactly the same tasks may be performed using distr:
> distr(x=x,dist='norm',param=c(0,1),type='d")

[1] 0.0001338302 0.0044318484 0.0539909665 0.2419707245 0.3989422804
[6] 0.2419707245 0.0539909665 0.0044318484 0.0001338302

> Fx <- distr(x=x,dist='norm',param=c(0,1),type='p')
> Fx

[1] 3.167124e-05 1.349898e-03 2.275013e-02 1.586553e-01 5.000000e-01
[6] 8.413447e-01 9.772499e-01 9.986501e-01 9.999683e-01

> distr(x=Fx,dist='norm',param=c(0,1),type="'q"')
[1] -4 3-2-1 0 1 2 3 4

> set.seed(123)
> distr(x=length(x),dist='norm',param=c(0,1),type='r')

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774 1.71506499
[7] 0.46091621 -1.26506123 -0.68685285

In fact, there are other arguments that may be provided to some of the four functions that
pertain to the normal distribution (this is also true for all distributions available in R): log,
lower.tail, log.p (see help(norm) for more information). For instance, it is often useful
to evaluate the log-density for a specific vector of observations. As an example:



> dnorm(x=x,mean=0,sd=1,1og=TRUE)

[1] -8.9189385 -5.4189385 -2.9189385 -1.4189385 -0.9189385 -1.4189385 -2.9189385
[8] -5.4189385 -8.9189385

> distr(x=x,dist='norm',param=c(0,1),type='d',1log=TRUE)

[1] -8.9189385 -5.4189385 -2.9189385 -1.4189385 -0.9189385 -1.4189385 -2.9189385
[8] -5.4189385 -8.9189385

In other situations, it is convenient to evaluate a function for various parameter values. For
example, given several pairs of location and scale parameters, one may wish to compute the
p-th quantile of a normal distribution. Here is how this may be done using both gqnorm and
distr:

>p <- .95

> mu <- ¢(0,1,2)

> s <-c¢(.1,.2,.3)

> cbind (R=qnorm(p=p,mean=mu, sd=s) ,FAmle=distr (x=p,dist='norm',
+  param=cbind(mu,s),type='q'))

R FAmle
[1,] 0.1644854 0.1644854
[2,] 1.3289707 1.3289707
[3,] 2.4934561 2.4934561

From the previous example, it can be seen that the param argument may be specified (row-
wise) as an array. In fact, it would also be possible to provide a probability vector, as long
as the latter has length equal to the number of rows for the array of parameters:

>p <-c¢(.1,.5,.9)
> cbind (R=qnorm(p=p,mean=mu, sd=s) ,FAmle=distr (x=p,dist='norm',
+  param=cbind(mu,s),type='q'))

R FAmle
[1,] -0.1281552 -0.1281552
[2,] 1.0000000 1.0000000
[3,] 2.3844655 2.3844655

In other words, if param is to be specified as an array, the user should then specify x as
either a scalar (vector of length equal to 1) or a vector that has length equal to the number
of rows in param.

Finally, the model argument of distr is not discussed within this section. Understanding of
the latter requires that the mle function be first understood. That is the topic of the next
section!



3 Fitting a Distribution Using mle

This section deals with describing the mle function, which, as already stated, may be used
to fit probability distributions to a given univariate dataset. As pointed out in Section 1, no
theoretical development pertaining to maximum likelihood estimators’ asymptotic properties
will be presented here. For more information on that topic, the interested reader is referred
to two classical texts in mathematical statistics, namely, Rice (2003) and Hogg et al. (2004),
as well as to the references therein. Within a context very similar to that of the present
document, Coles (2001) presents a nice review on maximum likelihood theory.

As was suggested for the distr function presented at the previous section, it is, at this
point, strongly recommended that the user carefully reads the help file pertaining to mle
before continue reading!

> help(mle)

The best way to start is by considering a simple example where a specific univariate proba-
bility distribution needs to be fitted to a dataset. To such ends, datasets were included with
FAmle when the latter was built. Information regarding all datasets included with FAmle
can be accessed as follows:

> help(package='FAmle')
> data(package='FAmle')

For this first example, the yarns dataset, which is used by Gamerman & Lopes (2006) (and
references therein), is considered. That dataset first needs to be loaded into R, and this may
be done as follows:

> data(yarns)
> x <- yarns[,1]
> hist(x,freq=F,col='grey',border="'white',main="")

Figure 1 shows an histogram of the yarns dataset, for which a new variable named x was
declared in the above code chunk. As stated by Gamerman & Lopes (2006), the Weibull
distribution is often regarded as a plausible model for this type of data. Interestingly,
functions for the Weibull distribution are available in R, such that it would make sense here
to use it for this first example.

> fit.x <- mle(x=x,dist='weibull',start=c(.1,.1))
> fit.x

Data object: x
Distribution: weibull



shape.hat scale.hat
Estimate 1.6052 247.86
Std.err 0.1219 16.27

log.like aic ad rho
-625.1990 1254.3981 0.5282 0.9836

> class(fit.x)

[1] "mle"
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Figure 1: Histogram of 100 cycles-to-failure times for the airplane yarns dataset described
by Gamerman & Lopes (2006).

Besides showing how fitting a distribution is done using mle, the above code chunk also
illustrates the output that is returned when calling print.mle (note: that mle returns an
object from the class mle, which allows it to work directly with plot). It can also be noticed,
from the previous output, that some goodness-of-fit statistics are returned, in addition
to the parameter estimates and their respective estimators’ approximated standard errors
(see help(mle) for more information). As will be shown later in this document, the ad
and rho goodness-of-fit statistics may be used in order to derive composite hypotheses tests
which permit to assess the fitted model’s plausibility in light of the dataset at hand. For
the moment, however, it is still worthwhile, as well as probably more informative, to try
assessing the quality of the fitted model using diagnostic plots. Similar to print.mle, a



function called plot.mle (see help(plot.mle)) may be used to generate a series of four
diagnostic plots for the mle object stored within fit.x. For this example, the plots generated
by plot.mle are presented by Figure 2.

> alpha <- .05
> plot(x=fit.x,ci=TRUE,alpha=alpha)

Diagnostic plots : x ~ weibull
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Figure 2: Diagnostic plots for the weibull model fitted to the yarns dataset. The dashed
red lines correspond to the lower and upper confidence bounds of the approximate 95%
confidence intervals derived using the observed Fisher’s information matrix in conjunction
with the well-known delta method.

From the above code chunk, it can be seen that two arguments, namely, ci and alpha,
were also specified in addition to the mle object fit.x. For the moment, it only has to
be understood that those two arguments are optional and that they were used here to
generate the approximate confidence intervals shown by Figure 2. Confidence intervals will
be discussed in more detail in Section 5.

At this point, it is also important to note that several elements are contained in the fit.x
object:

> names (fit.x)

[1] "fit" "x.info" "dist" "par.hat"  "cov.hat" "k"
[7] "n" "log.like" "aic" "ad" "data.name" "rho"



Obviously, all of these elements are described in detail by the mle help file, and that file
should again be consulted by the reader before continuing.

In Section 2, the distr function was thoroughly described, but the arguments model was
left uncommented. Here, a few additional simple examples are given on how the returned
mle object stored in fit.x, for instance, may be used in conjunction with distr. In many
practical problems dealing with time-to-failure data, interests often lies in the survival func-
tion. For example, for the yarns dataset, one might wish to obtain an estimate of the
probability of survival above a certain amount of time units. In this case, assuming that
Fx ~ Weibull(a, 8), with @ and § corresponding to the maximum likelihood parameter
estimates of the Weibull distribution for the yarns dataset, what is Pr[X > 400 | Fx]? For
the fitted model, the distr function may be used to compute that probability:

> x.obs <- 400
> distr(x=x.obs,dist=fit.x$dist,param=fit.x$par.hat,type='p',lower.tail=FALSE)

[1] 0.1157897
> pweibull(q=x.obs,shape=fit.x$par.hat[1],fit.x$par.hat[2],lower.tail=FALSE)
[1] 0.1157897

That is, the elements of the fitted model fit.x may be used in conjunction with distr
to compute all sorts of quantities. For a fitted model, however, instead of specifying the
arguments dist and param, one may optionally choose to only specify the fitted model as

> distr(x=x.obs,model=fit.x,type='p',lower.tail=FALSE)
[1] 0.1157897

which makes things somewhat faster!

As a second example, once more carried out using the elements available from the fitted
model fit.x, a quick survival plot, which is illustrated by Figure 3, may be built as follows:

sorted.S.x <- 1 - fit.x[['x.info']][,'Fz']

sorted.x <- fit.x[['x.info']J][,'z"']

empirical.S.x <- 1 - fit.x[['x.info']][, 'Emp']

plot(sorted.x,sorted.S.x,type='1"',col="red’,
xlab=expression(x),ylab=expression(S(x)==1-F(x)))

points(sorted.x,empirical.S.x,pch=19,cex=.5)

vV + VvV Vv Vv Vv

In addition to the latter, Figure 3 also shows an histogram of the yarns dataset, along with
the fitted density curve for model £it.x. That second plot may be built as follows:

> hist(x,freq=FALSE,main="'"',col="'cyan')
> fun.x <- function(x) distr(x=x,model=fit.x,type='d')
> curve(fun.x,add=T,col="'red')
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Figure 3: (a) Survival plot and (b) histogram with fitted density curve, both obtained using
the fitted model fit.x.

This section ends with an example in which several probability distributions are fitted to
a same dataset, and where the goodness-of-fit statistics are used as a means of assessing
which model might be the best. For instance, in their example using the yarns dataset,
Gamerman & Lopes (2006) (page 255) consider three models: Weibull, lognormal, and
gamma. As those distributions are all available in R, the following code chunk illustrates
how they may be simultaneously fitted to the dataset at hand.

> dist.vec <- c('weibull', 'lnorm', 'gamma')
> fit.3 <- list()
> for(i in dist.vec) fit.3[[i]] <- mle(x=x,dist=i,start=c(.1,.1))

Assuming that only ad and aic are of interest for the moment, the following code chunk
illustrates how such statistics may be extracted from the fit.3 object.

> sapply(fit.3,function(h) c(ad=h$ad,aic=h$aic))

weibull Inorm gamma
ad 0.5282333 2.011448 0.6646458
aic 1254.3980555 1267.520669 1254.4886833

Usually, smaller values of both ad and aic suggest a potentially better fit. Obviously, used
this way, those values do not actually tell anything about whether or not the fits seem
appropriate, but only which one is best in comparison to the others. In this case, both
statistics suggest that Weibull should be preferred. In fact, there often exists a theoretical
argument behind the use of the Weibull distribution when dealing with this type of data.

At this point, the reader may have noticed that the maximum likelihood estimates for the
lognormal distribution were obtained iteratively even though a closed form solution does



exists for the maximum likelihood parameter estimators of this distribution. The reason
for this is simple: generality. In other words, the FAmle package was written to be as
general as possible. Obviously, when aiming for generality, there must always be a trade-off
between being general and computationally efficient. This is an example for which efficient
computing was sacrificed for convenience. Other examples like this one will be encountered
in subsequent sections (although they will not necessarily be explicitly pointed out).

4 Parametric Bootstrap Using boot.mle

In this section, the boot.mle function will be briefly described and used to generate para-
metric bootstrap parameter samples for some fitted model — Davison & Hinkley (1997) is an
excellent book about bootstrap methods. The yarns dataset example is now put aside, and
a new dataset is considered. That new dataset consists of annual maximum daily average
flows (in m3/s) that were observed at a particular hydro-metric station located along a river
in New Brunswick (Canada), and may be loaded into R as follows:

> data(station01AJ010)
> y <- station01AJ010
> layout (matrix(1:2,nr=1))
> plot(as.numeric(names(y)),y,type='b',cex=.4,pch=19,
+ cex.axis=.75,xlab="'Year',ylab="'y"')
> lines(as.numeric(names(y)),lowess(y)[['y']],col="red"')
> legend('topleft',inset=.01,col='red',1wd=2, 'Lowess',bty='n")
> acf(y,main="")
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Figure 4: (a) Time series and (b) auto-correlation plot the daily flow (in m?/s) dataset. For
(a), the red smoothed line corresponds to a lowess fit.

Note that, for convenience, the data series was copied into a new variable named y. More in-
formation about that dataset can be obtained by running help(station01AJ010). Figure 4
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shows a time series and an auto-correlation plot for the new dataset. One of the most impor-
tant things when modeling this type of data using some univariate probability distribution
is to first make sure that the observations do in fact approximately behave as independent
realized values of some common random variable. In other words, the observations must not
only be approximately independent; it must also be reasonable to assume that they were all
generated by the same process. Although those assumptions can rarely be fully verified in
practice, they can still reasonably be made for many examples. In this case, Figure 4 does
not suggest any time trends or serial dependence, such that it seems reasonable to model
that dataset using a standard univariate distribution. Coles (2001) dedicates a chapter to
modeling of extreme data characterized by time trends, but that topic will not be addressed
here, as it cannot be tackled using FAmle.

Since the goal here is to demonstrate how boot.mle may be used, and that the latter
requires a mle object, the first thing to do is to fit a distribution to y. Without justifications,
the gamma distribution will temporarily be fitted to y for illustration’s sake, although an
arguably more appropriate model will be entertained for this same dataset in Section 6.

> fit.y <- mle(x=y,dist='gamma',start=c(.1,.1))
> fit.y

Data object: y
Distribution: gamma

————————— Parameter estimates -----------

shape.hat rate.hat
Estimate 6.437 0.07375
Std.err 1.520 0.01811

log.like aic ad rho
-166.6992 337.3983 0.4172 0.9889

> plot(x=fit.y,ci=TRUE,alpha=alpha)

Judging by Figure 5, the gamma distribution does seem to be fitting quite well in this case.
Nonetheless, of greater interest here are the parameter estimates and the associated estima-
tors’ approximate standard errors, as shown by the previous code chunk. As well explained
in help(mle), the parameter estimators’ standard errors are computed/approximated here
using the observed Fisher’s information matrix, i.e., the negative of the inverse of the Hes-
sian matrix evaluated at the estimated parameter values (note: here since optim is used
to minimize the negative of the log-likelihood function, the Hessian is taken as returned
and inverted to yield the observed Fisher’s information). Under certain conditions (not
discussed here), the maximum likelihood parameter estimates may be regarded as realized

11



Diagnostic plots : y ~ gamma
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Figure 5: Diagnostic plots for the gamma model fitted to the station01AJ010 dataset. The
dashed red lines correspond to the lower and upper confidence bounds of the approximate
95% confidence intervals derived using the observed Fisher’s information matrix in conjunc-
tion with the well-known delta method.

values of random variables (their estimators) that are approximately distributed according
to a multivariate normal distribution with mean corresponding to the true parameter values
and covariance matrix approximately equal to Fisher’s information evaluated at the true
parameter values. Obviously, the true parameter values are almost never known, such that
the covariance matrix has to be estimated by either plugging the fitted parameter values
into Fisher’s information, or by simply using the observed Fisher’s information. In this
case, the second option is being use for generality. All of this is done automatically by mle,
but, for clarity, the following code chunk shows how this may be done by directly using the
optimization output provided by optim — see help(mle) and help(optim):

> names (fit.y)

[1] "fit" "x.info" "dist" "par.hat"  "cov.hat" "k"
[7] "n" "log.like" "aic" "ad" "data.name" "rho"

> cov.hat.y <- solve(fit.y$fit$hessian)
> se.asy <- sqrt(diag(cov.hat.y))
> se.asy

[1] 1.52018615 0.01810993
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Now, it is well known that those standard errors correspond to large sample approximations
and that they may be inaccurate for relatively small sample sizes. In this case, only 34 obser-
vations are available for y, and it might be suspected that the large sample approximations
motivated by maximum likelihood theory may fail. When this happens, it is usually deemed
safer to assess the parameter estimators (joint) sampling distribution by Monte Carlo meth-
ods. In other words, it is quite easy, given a fitted model, to run a simulation experiment
in order to assess the variability of some quantities of interest in light of some theoretical
model. Apart from being computationally intensive, the task at hand is relatively simple.
In fact, the boot.mle function was written to carry out that task, and the following code
chunk illustrates how the latter function may be used to obtain bootstrap samples from the
fitted model fit.y.

> boot.y <- boot.mle(model=fit.y,B=2500)
> names (boot.y)

[1] "model" "B" "seed" "par.star" "gof"
[6] "p.value" "failure.rate" "total.time"

> se.boot <- apply(boot.yl[['par.star']],2,sd)
> cbind(asymptotic.se=se.asy,bootstrap.se=as.numeric(se.boot))

asymptotic.se bootstrap.se
[1,] 1.52018615  1.83483341
[2,] 0.01810993 0.02174935

In addition to illustrating how bootstrap samples may be generated using boot.mle, the
above code chunk shows how the latter’s output may be used for computing the parameter
estimators’ standard errors. These values are then compared with those previously obtained
using the observed Fisher’s information. Clearly, the two do not tell the same story: one of
the the bootstrap standard errors is substantially larger than its large sample counterpart.
Figure 6, generated from the code chunk shown bellow, further illustrates that difference.

z1 <- seq(-4#*se.asyl[1],4*se.asy[1],length.out=100)+fit.y[['par.hat']J][1]
z2 <- seq(-4*se.asy[2],4*se.asy[2],length.out=100)+fit.y[['par.hat']][2]
fz12 <- outer(z1,z2,

)

contour(z1,z2,fz12)

title(xlab=colnames (boot.y[['par.star']])[1])
title(ylab=colnames (boot.y[['par.star']]) [2])
points(boot.y[['par.star']],cex=.1,col="red',pch=19)

V VVV + 4+ VvV VvV

The boot.mle function returns other arguments that are not discussed here, but some of
them will be discussed in the next section — see help(boot.mle) for more information.
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function(h1l,h2) dmvnorm(cbind(hl,h2),fit.y[['par.hat']],fit.y[['cov.hat']])
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Figure 6: Scatter plot of the realized values drawn from the parametric bootstrap distribu-
tion of the maximum likelihood parameter estimates obtained from fit.y. The contour lines
illustrate a bivariate normal density with covariance matrix equal to the observed Fisher’s
information and with mean taken to be the parameter estimates contained in fit.y. In
itself, that bivariate normal density has no particular meaning; it is only shown here as a
means of illustrating the fact that the bootstrap distribution of the gamma shape parameter
yields a larger variance than does its large sample approximation counterpart.

5 Approximate Confidence Intervals and Hypotheses Tests

This section deals with two main topics: quantile confidence intervals and composite hy-
potheses tests. As stated in Section 1, different types of applications will require different
types of inferences. Although FAmle may be useful for carrying tasks in several fields of
application, only examples with hydrometeorological variables will be considered for the
remaining part of this document. For that type of applications, for example, one is often
concerned with making inferences regarding theoretical quantiles corresponding to extreme
meteorological events that occur with small probabilities. But before discussing quantile
confidence intervals, the concept of goodness-of-fit testing is briefly addressed.

As already mentioned in Section 3, mle computes and returns goodness-of-fit statistics.
Although, for a particular example, those values may be used as a means of choosing between
several fitted distributions, it is also possible to use some of the latter in order to construct
simple hypotheses tests. For example, ad is known to give more weight to observations in the
tails of the distributions than to those in the center, such that is is often regarded as a good
statistic for detecting departures from distributional assumptions in the tails. As another
example, Pearson’s correlation coefficient between the fitted quantiles and the observed ones
may also be useful for detecting poor fits. That said, a natural question to ask when fitting a
parametric model to a given dataset is the following: "Does it make sense to assume that the
observed data could actually have been generated from the fitted model"? To put it another
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way, to what extent is the fitted model consistent with the data that was used in fitting
it? An answer to that question may be obtained by constructing a simple hypothesis test
based on some observed statistic that is particular to either or both the observed data and
the fitted model. For example, if ad was used to assess the fitted model’s plausibility in
light of the data, the goal would be to check at what level the observed ad statistic fell into
its respective sampling distribution. But since, in practice, the true parameter values are
seldom known, the true sampling distribution for the statistic of interest cannot be obtained
(unless, of course, that the statistic is the same for all possible parameter values). An
alternative is thus to derive a test that is conditional on the fitted model. In other words, if
the data has in fact been generated from the fitted model, then what is the probability of
observing a value as extreme or more extreme than the statistic that was actually observed.
Here, for the ad statistic, the goal would be to compute the probability of observing a value
as high or even higher than what was observed — this is the definition of the well-known
p-value.

That said, given the fitted gamma model obtained for the previous example, the idea is
to draw many samples from the fitted model, and for each new sample, to re-estimate the
parameters and to compute a new realized ad statistic. That way, the hypothetical sampling
distribution of ad will be empirically approximated and then be used to approximate the
p-value of the test. It turns out that this can be achieve using boot.mle. In fact, boot.mle
does return the p-values for the two tests discussed here:

> boot.y[['p.value']]

ad rho
0.3454618 0.5985606

Thus, based on these two criteria, since observing values as extreme or more extreme than
the latter two could likely be the result of chance alone, there are no reasons why one should
doubt the hypothesis according to which the gamma distribution is a plausible model for
the data at hand. To put it another way, the model is consistent with the data. For more
information regarding composite hypotheses tests as well as so-called parametric bootstrap
tests, the interested reader is referred to the following two excellent books: Cox & Hinkley
(1979) and Davison & Hinkley (1997). Finally, it should be recalled that tests such as
those derived above are often considered as highly hypothetical (e.g., Rice, 2003; Cox &
Hinkley, 1979), as no such thing as a true distribution does exist for most practical situations.
Nonetheless, in many instances, those tests are still very useful for quickly assessing the fitted
model’s plausibility.

So far, from both Figure 5 and the tests results shown above, it seems reasonable to look
at the fitted gamma distribution as a suitable model for the purpose of describing the
station01AJ010 dataset, such that it would now seem appropriate to move on to statistical
inference for some quantities of interests, in this case, the quantile estimators for some
high return periods. More precisely, for a return period T', Q7 corresponds to the quantile
value which is expected, in a series of independent samples of equal size n, to occur (or
to be exceeded) no more than once every T-time period — for the random variable X with
cumulative distribution function F, Q7 = F~!(p) if p = 1 — 1/T. In this case, the return
period T is in years. That said, for the station01AJ010 dataset, one may wish to obtain
quantile estimates for the following return periods:

15



> RP <- ¢(2,10,20,50,100,500)
>p <-1- 1/RP
>p

[1] 0.500 0.900 0.950 0.980 0.990 0.998

Using the fitted model stored in the variable fit.y, the distr function may be used to
obtain the required values; i.e.,

> @.hat <- distr(x=p,model=fit.y,type='q')
> @.hat

[1] 82.81087 133.25210 150.48042 171.49443 186.47899 219.25191

Although those values are interesting, it is often more informative to get an idea about the
potential variability that is to be expected when estimating them. For example, it is often
convenient to summarize frequency analyses in terms of confidence intervals for the quantiles
of interest. There exist numerous ways in which approximate confidence intervals can be
derived for any particular problem. Here, for the example’s sake, the following four types of
intervals are entertained:

e Approximate normal quantile confidence interval derived using the observed Fisher’s
information matrix in conjunction with the delta method — see, e.g., Rice (2003) and
Coles (2001) regarding the delta method;

e The same interval as the previous, except that the computations are carried out on the
natural logarithmic scale and later exponentiated to yield the interval on the original
scale;

e Approximate bootstrap quantile confidence interval obtained using the so-called per-
centile method (see, e.g., Davison & Hinkley, 1997);

e And the so-called basic bootstrap interval (method also often referred to as reflexion
method) (see, e.g., Davison & Hinkley, 1997).

For a given numerical example, the first two intervals can be obtained using the Q.cond. int
function, while the second two can be obtained from Q.boot.ci (the reader should now
consult help(Q.conf.int) and help(Q.boot.ci)). While the former function requires a
mle object as main argument, the latter requires an object returned by boot.mle. The
following code chunk illustrates how all four intervals may be obtained for the previously
specified return periods (in this case, alpha equals 0.05, such that 95% confidence intervals
are obtained):

> @.conf.int(p=p,model=fit.y,alpha=alpha,ln=FALSE)[c(1,3),]

p=05 p=0.9p=0.95p=0.98p=0.99 p=0.998
low-2.5% 71.64955 112.5527 125.0045 139.6325 149.7839 171.3921
up-97.5% 93.97219 153.9515 175.9563 203.3564 223.1741 267.1117
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> @.conf.int (p=p,model=fit.y,alpha=alpha,ln=TRUE) [c(1,3),]

p=0.5 p=0.9p=0.95p=0.98p =0.99 p =0.998
low-2.5% 72.36903 114.0803 127.0444 142.4173 153.1687 176.2556
up-97.5% 94.75932 155.6458 178.2398 206.5082 227.0333 272.7369

> @.boot.ci(p=p,boot=boot.y,alpha=alpha) [['percentile']][c(1,3),]

p=05 p=0.9p=0.95p=0.98p=0.99 p=0.998
low-2.5% 72.45505 112.1003 124.9385 139.6009 150.0482 171.7810
up-97.5% 93.95050 153.7670 176.0941 204.0852 224.4526 269.1219

> @.boot.ci(p=p,boot=boot.y,alpha=alpha) [['reflexion']][c(1,3),]

p=05 p=0.9p=0.95p=0.98p=0.99 p=0.998
low-2.5% 71.67124 112.7372 124.8667 138.9037 148.5053 169.3819
up-97.5% 93.16669 154.4039 176.0223 203.3880 222.9098 266.7228

Before commenting on those confidence intervals, it is informative to look at Figure 7 for
a visual assessment of the estimated quantiles’ bootstrap distributions. The following code
chunk illustrates how those distributions may be obtained and plotted. Also visible from
that code is the delta.Q function, which is used to obtain the quantile estimates and their
estimators’ standard errors.

Q.boot.dist <- sapply(as.list(p),function(h) distr(h,dist=fit.y[['dist']],
param=boot.y[['par.star']],type='q"'))
Q.norm <- sapply(as.list(p),function(h) delta.Q(p=h,model=fit.y,1ln=FALSE))
layout (matrix(1:6,nc=2))
for(i in 1:ncol(Q.boot.dist)) {
hist(Q.boot.dist[,i],freq=F,col='gray',border="'white',
main=paste('T = ',RP,sep="'"')[i],xlab="'"',cex.axis=.75,las=2)
curve(distr(x=x,dist='norm',param=Q.norm[,i],type="'d"'),
add=TRUE,col="'red')

+ + 4+ 4+ 4+ VVV+V

From Figure 7, it can be observed that the large sample quantile variance approximations
are somewhat consistent with the bootstrap variance counterparts, regardless of what was
previously observed for the parameters themselves (see Figure 6). In other words, although
the large sample shape parameter variance approximation was clearly less than that of its
bootstrap counterpart, it does not seem to be the case for the quantile variance estimates
discussed here. In addition, most of the quantile bootstrap distributions are nearly sym-
metrical, which might explain why the different types of confidence intervals shown above
yield results that are somewhat similar (except for the normal intervals computed on the
log-quantile scale)

Finally, there are a two facts that must be recalled about the approximate quantile confidence
intervals presented and discussed in this section:
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spread of the bootstrap distributions. In this case, it appears that the bootstrap distribu-
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tions are somewhat centered around the maximum likelihood quantile estimates.
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e The numerical intervals presented in the application above are not random — they are
realized values of some random intervals. This means that those realized intervals
either contain or do not contain the true quantile value that is being estimated. That
said, when interpreting such intervals, a probability statement is not being made with
regard to the true quantile value, but rather with regard to the statistical procedure
that is used to estimate it. In other words, if the fitted model is indeed the true
distribution from which the observed data have arisen, and that the experiment (i.e.,
data collection, estimation, and confidence intervals derivation) could be repeated
many times, then, for a nominal level 1 — «, the long run average of the intervals
that do succeed in covering the true quantile value would lie close to 1 — « (it should
be noted, however, that poor coverage probabilities might still occur depending on
the type of interval used). Obviously, as it was said for the hypotheses tests derived
previously, the present definition is also quite hypothetical. Nonetheless, it is still very
informative with respect to the variability that should be expected when estimating
theoretical quantiles using parametric distributions.

e The bootstrap intervals and the normal intervals that are discussed in this document
are not exact — they are approximate confidence intervals. Roughly, for the bootstrap
intervals, it is assumed that the true maximum likelihood quantile estimator’s sampling
distribution — sampling distribution that would be obtained from generating random
samples from the true parametric model — can be fairly well approximated by the
hypothetical sampling distribution obtained from bootstrapping the estimated model.
On the other hand, roughly, the normal intervals assume that the maximum likelihood
quantile estimate corresponds to a realized value of a random variable (its estimator)
that is approximately normally distributed with mean equal to the true quantile value
and variance that may be fairly well approximated using Fisher’s information matrix
evaluated at the true parameter values (in conjunction with the delta method). Here,
however, since the true parameter values are not known, Fisher’s information may be
approximated by either the observed Fisher’s information (as it is the case here) or
by evaluating Fisher’s information at the estimated parameter values. Obviously, this
second approach assumes more than the bootstrap (see Davison & Hinkley (1997) and
Rice (2003) for good discussions about confidence intervals).

6 Declaration of New Probability Distributions

In the previous section, a numerical example in which a gamma model was fitted to a
dataset of annual maximum average daily flows (in m?3/s) was considered. At that point,
it was assumed, based on both visual assessments and goodness-of-fit testing, that the
latter family of distributions was suitable for the purpose of describing the dataset at hand.
Nonetheless, it was briefly mentioned that other families of distributions were sometimes
to be preferred, based on certain theoretical arguments, when dealing with such extreme
data. More precisely, when dealing with, for example, annual maximum average daily flows,
the so-called generalized extreme value (GEV) distribution is often regarded as a plausible
model — under certain conditions (e.g., Coles, 2001), extreme observations will likely start to
behave as realized values of a random variable asymptotically distributed (this is the concept
of convergence in distribution) according to one of three types of limiting distributions; GEV
containing each of them three as special cases.

Since the station01AJ010 dataset is consistent with the extreme value framework described
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by Coles (2001), it would be interesting to fit GEV to that dataset. However, functions for
the GEV model are not available in R. Although there exist numerous packages on CRAN
which do contain those functions, the latter are relatively easy to program, and this is what
will be done in this section. In fact, since they will be written with the intention of later being
used with the FAmle functions, it will be important to make sure that those new functions
are consistent with all such functions already available in R. That way, no problems should
occur when they are used to carry out tasks similar to those that have so far been discussed
in this tutorial.

dGEV <- function(x,shape=1,scale=1,location=0,1og=FALSE)
{
fx <- 1/scale*(1+shape*((x-location)/scale))~(-1/shape-1)*
exp (- (1+shape* ((x-location)/scale)) ~(-1/shape))
if(log) return(log(fx))
else return(fx)

PGEV <- function(q,shape=1,scale=1,location=0,lower.tail=TRUE,log.p=FALSE)

Fx <- exp(-(1+shape*((q-location)/scale))~(-1/shape))
if(!lower.tail) Fx <- 1 - Fx

if(log.p) Fx <- log(Fx)

return (Fx)

qGEV <- function(p,shape=1,scale=1,location=0,lower.tail=TRUE, log.p=FALSE)

if(log.p) p <- exp(p)

if(!lower.tail) p <- 1 - p

xF <- location+scale/shape*((-log(p))~(-shape)-1)
return (xF)

rGEV <- function(n,shape=1,scale=1,location=0)
qggev (runif (n),shape,scale,location)

+ V+ 4+ ++++VH+H++F+t+FNVEFAFAFF+YV

Now that the GEV distribution has been added into the R environment, it can be fitted, for
example, to y, and the obtained mle object can be used as usual:

> fit.y.gev <- mle(x=y,dist='GEV',c(.1,1,1))
> fit.y.gev

Data object: y
Distribution: GEV

shape.hat scale.hat location.hat
Estimate 0.08264 26.175 69.866
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Std.err 0.17032 4.076 5.291

log.like aic ad rho
-166.4371 338.8741 0.3552 0.9923

Finally, the code chunk shown below is presented as a means of illustrating how inferences
might greatly differ when going from one plausible model to another; in this case, the
previously fitted gamma model vs. the new GEV model.

> @.conf.int(p=p,model=fit.y,alpha=alpha)

p=0.5 p=0.9p=0.95p=0.98p =0.99 p=0.998
low-2.5% 71.64955 112.5527 125.0045 139.6325 149.7839 171.3921
Estimate 82.81087 133.2521 150.4804 171.4944 186.4790 219.2519
up-97.5% 93.97219 153.9515 175.9563 203.3564 223.1741 267.1117

> @.conf.int(p=p,model=fit.y.gev,alpha=alpha)

p=0.5 p=0.9p=0.95p=0.98p =0.99 p =0.998
low-2.5% 67.68637 106.9238 114.1674 114.1445 106.5823 60.69746
Estimate 79.60677 134.6031 157.9841 190.3891 216.3609 282.43311
up-97.5% 91.52718 162.2824 201.8008 266.6336 326.1396 504.16876

As visible from the previous output, quantile uncertainty is much more pronounced for
the GEV model, but this is to be expected since it has one more parameter than gamma.
Moreover, given that only 34 observations were used in fitting those two models, half of
the quantile estimates correspond to extrapolations (i.e., those for the return periods 7' =
{50,100, 500} ), such that it is not unreasonable at all to observe large uncertainties at those
levels (again, this is especially true for GEV).

7 The R package FAdist

The previous section has dealt with the declaration of functions that pertain to a new uni-
variate distribution that is not available in the R environment; i.e., the GEV distribution.
In this section, a package containing such functions for various distributions is presented.
Actually, not much needs to be said here; the only thing being that the package name
is FAdist!, and that, at the time of writing of this document, the latter could be down-
loaded from CRAN. Once downloaded, the FAdist package may be installed and loaded (see
help(package=’FAdist’) for more information).

Just to give a quick example, in the code chunk below, a three-parameter lognormal distri-
bution, made available when loading FAdist, is fitted to y (note that this new distribution
is based on the R function 1norm):

ISee Aucoin (2011).
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> library(FAdist)
> fit.y.1n3 <- mle(x=y,dist='lnorm3',start=c(1,1,1))

8 Bayesian Model Estimation Using metropolis

All of the functions and examples that have so far been presented and discussed in this
document rely upon maximum likelihood as a means of estimating the unknown parameters,
and upon a frequentist framework as a means of carrying out statistical inferences. This
section is different; it deals with a Bayesian approach to parameter estimation and statistical
inference. Since the goal here is to present the main functions and to keep the discussion
as brief as possible, the interested reader is referred to the classical book by Box & Tiao
(1973) for an interesting discussion on the different types of statistical inferences, and to
the excellent book by Gelman et al. (2004) for a modern treatment of Bayesian methods in
general.

It should also be said here that the FAmle package was originally designed as a tool for
carrying out tasks pertaining to univariate frequency analysis within a maximum-likelihood-
based frequentist framework. Nonetheless, the metropolis function discussed in this section
was later added to the package, as it seemed natural to do so given that it mainly relies upon
distr and mle. As it is the case for many of functions available in FAmle, the metropolis
function was written in order to be as general as possible.

The metropolis function is based on a specific version of the Metropolis algorithm (Metropo-
lis et al., 1953), such that it approximates the posterior distribution using a Markov Chain -
the returned distribution corresponds to time correlated draws from the posterior distribu-
tion (see the details in help(metropolis)). The algorithm used is well described by Gilks
et al. (1996), Carlin & Louis (2009), and Gamerman & Lopes (2006). Here, no attention will
be given to topics such as tunning of the Metropolis algorithm or MCMC convergence; only
examples on how to use the metropolis function will be presented. For more information
about those topics, the reader is again referred to excellent texts such as Gilks et al. (1996),
Carlin & Louis (2009), Gelman et al. (2004), and Gamerman & Lopes (2006), as well as to
the various references given therein. Finally, before continuing with the examples below, the
reader should carefully examine the help file available for metropolis.

The first dataset that will be used in this section is taken from Coles (2001) and consists
of 64 sea level (in meters) yearly maxima for the time period 1923-1987 — here it will be
referred to as the ColesData dataset (see help(ColesData) for more detail).

> data(ColesData)
> z <- ColesDatal,2]

As suggested by Coles (2001), the GEV distribution is a plausible model for that dataset.
That said, the code chunk below shows how the GEV distribution is first fitted to that

dataset using mle (see Figure 8).

> fit.z <- mle(x=z,dist='gev',start=c(.1,1,1))
> plot(x=fit.z,ci=TRUE,alpha=alpha)

As visible from the previous output, for the dist argument, gev was specified instead of the
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Figure 8: Diagnostic plots for the gev model fitted to the ColesData dataset. The dashed
red lines correspond to the lower and upper confidence bounds of the approximate 95%
confidence intervals derived using the observed Fisher’s information matrix in conjunction
with the well-known delta method.
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previously declared GEV. This is because the gev functions were made available into R when
loading the FAdist package at the previous section.

A mle object having been obtained for z, the code chunk below shows how it may be provided
to metropolis in order to carry out a full Bayesian estimation of the gev parameters (see
Figure 9).

> trans.z <- list(function(x) x, function(x) exp(x), function(x) x)

> bayes.z <- metropolis(model=fit.z,iter=10000,tun=2,trans.list=trans.z)
> plot(x=bayes.z,plot.type='carlin')

> bayes.z

Data object: =z
Likelihood: gev
Prior distribution specified: No

Marginal posterior distributions
shape scale location

mean -0.0259 0.2033  3.8719

sd 0.1005 0.0203 0.0282

1% -0.2232 0.1614  3.8060

50% -0.0333 0.2016 3.8711

99%  0.2421 0.2573  3.9379

Posterior correlations

shape scale location

shape 1.00 -0.32 -0.40
scale -0.32 1.00 0.32
location -0.40 0.32 1.00

Number of iterations: 10000
Burnin: first O iteratiomns
Acceptance rate: 0.3034
Required time: 0.074 minutes

It is very important that the argument trans.list be fully understood, as it is the most
important argument to be provided to metropolis! As explained in the help file provided
for metropolis, the version of the Metropolis algorithm that is implemented here requires,
at least as much as possible, that all parameters be made as normal as possible. In other
words, in order to yield a good approximation, it is important (but not mandatory) that
all parameters be defined on the real line before implementing the algorithm. For the GEV
distribution, as it is parametrized here, both the shape and location parameters are defined
on the real line, but the scale parameter can only take on positive values. That said, it needs
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Figure 9: Marginal trace plots and histograms for the parameters of the GEV model fitted
to the ColesData dataset.
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Figure 10: Quantile posterior distributions obtained using the bayes.z object.

to be transformed before implementing the algorithm. Here, a natural logarithmic trans-
formation is used, whose inverse transformation corresponds to the well-known exponential
function. That said, the trans.list requires a list containing the inverse transformations
in order to carry out the simulation on the correct parameter space. If that argument
is left unspecified, the function will assume that all parameters are indeed defined on the
real line, and will perform the simulation accordingly. However, it should be noted that
the metropolis function will return the marginal posterior distributions on their original
scales. Finally, if the prior argument is left unspecified, as it was the case in the previous
example, the function will assume that the prior is proportional to 1 on the parameter space
defined by trans.list — a prior distribution proportional to 1 is called improper, as it is
not a density.

Once draws from the posterior distribution have been obtained, they can be used to compute
the posterior distribution for any quantity that is a function of the estimated parameters.
For instance, interest here might be in computing the posterior distributions for some specific
quantiles, as illustrated by the code chunk below and displayed by Figure 10.

>p <-c¢(.5,.9,.99)

> @.p.post <- sapply(as.list(p),

+  function(h) distr(x=h,dist=fit.z[['dist']],

+ param=bayes.z[['sims']],type='q'))

> layout (matrix(1:length(p),nr=1))

> for(i in 1:ncol(Q.p.post)) hist(Q.p.post[,i],

+ freq=FALSE,col='steelblue4',

+ main=paste('T = ',1/(1-p[i]),sep="'"'),xlab="")

Depending on the situation at hand, it is sometimes deemed safer to consider a non-
informative (or only weakly informative) prior distribution that is nonetheless proper. This
will insure that the resulting posterior is also proper. Although this might not be necessary
here, specification of the prior distribution will allow to illustrate how this is done with
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metropolis. Again, it should always be kept in mind that the prior distribution will be
used on the transformed parameter space, such that it must be defined accordingly. Here’s
an example:

> prior.z.weak <- function(x)

+ dnorm(x[1],0,1000)*dnorm(x[2],0,1000)*dnorm(x[3],0,1000)
> bayes.z.weak <- metropolis(model=fit.z,iter=10000,

+  tun=2,trans.list=trans.z,prior=prior.z.weak)

The following code chunk illustrates an equivalent way of specifying the previous prior
distribution, which suggests that fairly complex prior distributions may be specified using
metropolis.

> prior.z.weak.2 <- function(x) dmvnorm(x=x[1:3],

+ mean=rep(0,3),sigma=diag(1000,3))

> bayes.z.weak.2 <- metropolis(model=fit.z,iter=10000,
+  tun=2,trans.list=trans.z,prior=prior.z.weak.2)

To help further illustrate the point made at the previous paragraph, a final example is
presented; an example which corresponds to an application in hydrology, for which the main
goal is to enhance flood estimates for large return periods at hydrometric stations where very
few historical data are available. In this last example, the goal will therefore be to make use
of flood information available at the regional scale in order to elicit a prior distribution for
the frequency distribution parameters at a particular site of interest.

The first thing to do is to load the dataset into R:

> data(floodsNB)
> length(floodsNB)

[1] 64

> names (floodsNB) [1:5]

[1] "01ADO0O2" "01ADO03" "01AD004" "O1AE001" "O1AF009"

> floodsNB[[3]]

$data
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979
2660 3710 2710 2740 2700 3740 3480 2290 2660 2790 2780 4200

$peak
1968 1969 1970 1972 1973 1974 1975 1978 1979
2690 3790 2810 2730 3790 3600 2320 2820 4250

$1ln.drain
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[1] 9.648595

$coor
Latitude Longitude
2 47.36078 -68.32489

$status
[1] "Active"

$Aucoin.2011
[1] TRUE

At large, floodsNB is a list whose elements correspond to individual hydrometric stations
located across the Canadian province of New Brunswick (NB), and, in this case, the variable
of interest is peak and corresponds to annual maximum daily peak discharge observations
(in m3/s). As visible from the previous code chunk, the dataset contains flood data from
64 stations located across NB. However, not all stations will be analyzed here — the stations
considered for analysis are identified in Aucoin.2011 in the list; i.e.,

> aucoin.2011 <- names(which(sapply(floodsNB,
+  function(i) i[['Aucoin.2011'1])))
> aucoin.2011

[1] "01ADOO2" "01ADOO3" "01AD004" "O1AE0O01" "O1AF009" "O01AKOO1" "O01AKO06"
[8] "01AK0O7" "01ALOO4" "01AMOO1" "O01ANOO2" "O1AP0OO2" "O1APOO6" "01AQOO1"
[15] "01BEOO1" "01BJOO3" "01BJOO7" "01BJO12" "01BL0OO2" "01BLOO3" "01B0OOO1"
[22] "01BPOO2" "01BUOO2" "01BUOO3" "01BV004" "O01BV0OO6" "01AJOO7" "01AKO08"
[29] "O01AL003" "O1ALOO5" "O01ALOO6" "O1ALOO7" "O1ALOO8" "01ANOO1'" "01A0009"
[36] "01AP009" "01AQOO8" "01AR008" "01BJOO1" "O1BLOO1" "O01BROO1'" "01BUOO4"

> length(aucoin.2011)
[1] 42

> NB <- 1ist()
> for(i in names (floodsNB))
+ if(is.element(i,aucoin.2011)) NB[[i]] <- floodsNB[[i]]

Now, before going any further, it should be mentioned that three basic assumptions are
made with regards to the annual observations available at the stations retained for analysis:

e The at-site annual observations may be treated as independent realizations of some
random variable Y;, where i denotes a specific station;

e The random variable Y; arises from a GEV distribution;

e The data generating process at site ¢ is stationary.
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The above assumptions will not be explicitly tested here.

For illustration’s sake, the station of main interest here is chosen to be 01AJ007, for which 7
peak flood historical observations are available. As already pointed out previously, interest
lies in the estimation of quantiles associated with large return periods — for example, the
99" GEV quantile, which corresponds to the 100-year flood. Obviously, estimating the
99" quantile is problematic here, since only 7 observations are available. In fact, given
the smallness of the observed flood series, this example will also serve to illustrate how to
use metropolis without providing an mle object to the model argument: this feature is
very useful since, in some instances, prior information will be available for the distribution’s
parameters, but not enough data will be available to obtain reliable maximum likelihood es-
timates (and the corresponding observed Fisher’s information matrix) using mle. Therefore,
without even trying to obtain the maximum likelihood GEV parameter estimates for the
data of station 01AJ007, the following code chunk illustrates how to use metropolis with-
out resorting to mle. Actually, as well explained in help(metropolis), the procedure only
requires the specification of a list object containing both the data (x) and the hypothesized
distribution; in this case

> st <- '01AJ007'

> station.x <- NB[[st]]

> In.drain.x <- station.x[['ln.drain']]

> model.x <- list(x=station.x[['peak']],dist="'gev')
> model.x

$x

1973 1974 1975 1976 1977 1978 1979
30.00 8.72 5.07 19.10 8.50 6.60 24.40

$dist
[1] llgevll

As already said previously in this document, metropolis requires that the distribution’s
parameters be made as normal as possible through variable transformation. That said, the
GEV scale parameter should be transformed so that it is defined on the real line. To this
end, a natural logarithmic transformation may be entertained, whose inverse transformation
corresponds to the well-known exponential function; i.e.

> trans.list.x <- list(function(x) x, function(x) exp(x), function(x) x)

The variable trans.list.x having been declared, the next step is to elicit a prior distribu-
tion for the GEV parameters. For the NB dataset, there exists a well-behaved relationship
between site-specific maximum likelihood GEV parameter estimates and their corresponding
drainage area. Here the drainage area may be extracted as follows:

> station.x[['ln.drain']]

[1] 3.443618
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More precisely, the idea here is to exploit this relationship in order to elicit a prior distribu-
tion for the GEV parameters at sites where few historical data are available to yield sensible
frequency analyses.

The following code chuck illustrates how the GEV parameters may be estimated by maxi-
mum likelihood for the remaining stations.

gev.inits <- function(x) {
sig.hat <- sqrt(var(x)*6/pi~2)
mu.hat <- mean(x) - digamma(1)*sig.hat
return(c(0.01,sig.hat,mu.hat))
}
nb.stations <- nb.stations.fits <- list()
for(i in names(NB)) {
if(substr(i,3,3)=="'A" & i != st) {
temp <- NULL
try(temp <- mle(NB[[i]][['peak']], 'gev',gev.inits(NB[[i]][['peak']])),
silent=TRUE)
if(!is.null(temp)) {
nb.stations[[i]] <- NB[[i]]
nb.stations.fits[[i]] <- temp
}
}
}
f <- function(x) c(x[1],log(x[2:31))
nb.stations.par.hat <- t(sapply(nb.stations.fits,
function(i) f(i[['par.hat']]1)))
> colnames(nb.stations.par.hat) <- c('shape', 'ln.scale', 'ln.location')
> nb.stations.par.hat[1:5,]

+ VV A+ 4+ 4+ +++++++VYVE+ A+ +V

shape 1ln.scale 1n.location
01AD002 -0.11022007 6.578624 7.665888
01AD0O03 0.01527191 4.176540 5.168666
01AE001 0.14614377 3.932903 5.354724
01AF009 0.29278049 2.378894 3.613878
01AK001 -0.05552452 2.433190 3.477394

> nb.stations.ln.drain <- sapply(nb.stations,function(i) i[['ln.drain']])
> nb.stations.regs <- lapply(list('shape','ln.scale', 'ln.location'),

+  function(i) Im(nb.stations.par.hat[,i] nb.stations.ln.drain))

> names (nb.stations.regs) <- colnames(nb.stations.par.hat)

The previous output shows several commands, each of which are now explained in detail:

1. gev.inits is declared above as a function that generates reasonable initial values,
for a given data series, for the optimization algorithm used by mle to get the GEV
parameter estimates.

2. Information pertaining to stations from sub drainage basin A are stored in a new
variable called nb.stations, where it is also made explicit that station 01AJ007 does
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not belong to that group of stations (the data should not be used twice)! At the same
time, mle is used to estimate the GEV parameters for all stations and the corresponding
fitted models are stored in the new variable nb.stations.fits. In fact, only stations
for which optimization of the likelihood function is successful are retained for prior
elicitation — in this context, an optimization failure is often a result of too few historical
observations!

3. A function called f is declared, which is then used to transform both the GEV scale
and location parameters on their natural logarithmic scales.

4. The GEV parameter estimates are extracted from nb.stations.fits, transformed
and finally stored in a new variable called nb.stations.par.hat.

5. For all stations contained in nb.stations, the natural logarithms of the corresponding
drainage areas are extracted and stored in a variable called nb.stations.ln.drain.

6. The natural logarithm of the drainage area is then used as a predictor to fit three
independent linear regression models for the previously obtained parameter estimates
— see Figure 11

Now, the final step is to make use of the relationships illustrated by Figure 11 in order to
elicit a prior distribution for the GEV parameters of station 01AJ007. More precisely, the
approach is to propose a multivariate normal prior distribution for the GEV parameters of
station 01AJ007, where the mean vector corresponds to the values obtained from the fitted
regression models by conditioning on the actual station’s drainage area, and by using the
multivariate residuals of these three regression models to estimate a covariance matrix.

> mu.x <- sapply(nb.stations.regs,
function(i) as.numeric(coef (i) [1]+coef(i)[2]*1n.drain.x))
> mu.x

+

shape In.scale 1n.location
0.2377576  0.7927161  2.0491200

> residuals.x <- sapply(nb.stations.regs,residuals)
sigma.x <- t(residuals.x)}*)residuals.x/nrow(residuals.x)
> sigma.x

4

shape In.scale 1ln.location
shape 0.04378255 -0.03997864 -0.01292101
In.scale -0.03997864 0.48904948 0.16824129

In.location -0.01292101 0.16824129 0.09595529

The prior distribution whose parameters are presented in the previous code chunk suggests
viewing the extra stations’ GEV maximum likelihood parameter estimates as error-free re-
alized values of some multivariate normal random variable. In other words, it is assumed
that those estimates, when considered as a whole, will allow to approximate, with reason-
able accuracy, the hierarchical structure that exists between the GEV parameters and the
drainage area (as shown by Figure 11). In fact, all stations could be fitted simultaneously
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Figure 11: This figure illustrates the relationships between the site-specific maximum likeli-
hood GEV parameter estimates and their corresponding drainage area. Also shown are the
regression lines for the corresponding three linear regression models. For each plot, the two
sided t-test on the regression slope and the associated R-squared are also given.
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as part of a hierarchical model, but the conceptual difficulty with that approach is that the
likelihood function would have to account for spatial dependence between the annual max-
ima observed at different stations. The assumption stated above, although it might appear
unreasonable at first thought, is certainly more reasonable than attempting to model the
spatial dependence between the annual maxima, especially when such dependence is of no
particular interest.

That said, the variables mu.x and sigma.x may be used to declare a prior distribution for
the GEV parameters of station 01AJ007 i.e.

> prior.x <- function(p)
+  dmvnorm(x=c(p[1:2],1log(p[3])),mean=mu.x,sigma=sigma.x)

Finally, the model may now be estimated using metropolis - note the difference between
the arguments specified in previous occurrences of metropolis and the one below.

inits.1 <- gev.inits(model.x[['x']])

inits.1[2] <- log(inits.1[2])

bayes.x.1 <- metropolis(model=model.x,iter=5000,
trans.list=trans.list.x,start=inits.1,variance=diag(.1,3),
prior=prior.x,pass.down.to.C=TRUE)

plot(bayes.x.1)

vV + + Vv Vv Vv

Inspection of the trace plots shown by Figure 12 suggests that the Metropolis algorithm
could use some tuning in order to improve mixing of the chain. Using the guidelines given
by Gamerman & Lopes (2006) and Carlin & Louis (2009), for example, the following code
chunk illustrates how tuning may be carried out using the output from bayes.x. 1.

start.x <- bayes.x.1[['M']]

variance.x <- bayes.x.1[['V']]

bayes.x.2 <- metropolis(model=model.x,iter=15000,
trans.list=trans.list.x,start=start.x,variance=variance.x,
prior=prior.x,pass.down.to.C=TRUE)

plot (bayes.x.2)

vV + + Vv Vv Vv

Figure 13 suggests that the posterior distribution may be well approximated by the corre-
lated draws contained in bayes.x.2, such that it now seems reasonable to use the latter to
approximate the posterior distributions of some quantiles of interest, which are shown by
Figure 14. Although somewhat sparse, the posterior distribution of the 100-year flood is still
very informative, especially given the relatively small sample of size 7 used in its estimation.

prior.draws <- rmvnorm(100000,mu.x,sigma.x)

prior.draws[,2:3] <- exp(prior.draws[,2:3])

p <- ¢(.5,.9,.99)

Q.p.post <- sapply(as.list(p),function(h)
distr(x=h,dist='gev',param=bayes.x.2[['sims']],type="'q'))

Q.p.prior <- sapply(as.list(p),function(h)
distr(x=h,dist='gev',param=prior.draws,type='q'))

layout (matrix(1:length(p),nr=1))

VvV + V + VvV Vv Vv Vv

33



shape

scale

location

0.8

0.2

-0.4

5 10 15

16

10

shape : lag 1 acf = 0.844

0 1000 2000 3000 4000 5000
Iteration
scale : lag 1 acf = 0.944
! T T T T !
0 1000 2000 3000 4000 5000
Iteration
location : lag 1 acf = 0.995
! T T T T !
0 1000 2000 3000 4000 5000
Iteration

2.0

1.0

0.0

0.00 0.10 0.20

0.00 0.10 0.20

0.025, 0.5, 0.975 quantiles are -0.13, 0.264, 0.606

[ T T T T T 1
-0.4 00 02 04 06 08

0.025, 0.5, 0.975 quantiles are 2.07, 4.756, 10.671

0.025, 0.5, 0.975 quantiles are 6.312, 9.228, 15.198

Figure 12: Trace plots for the object bayes.x.1.
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Figure 13: Trace plots for the object bayes.x.2
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Figure 14: Posterior quantile distributions (blue histograms) obtained using the bayes.x.2
object. In addition, the density estimates of the corresponding prior distributions (red
curves) are also presented.

> for(i in 1:ncol(Q.p.post)) {

+ hist(Q.p.post[,il],freq=FALSE,col="'steelblue4’,
main=paste('T = ',1/(1-p[i]),sep=""'),xlab="")

lines(density(Q.p.prior[,i],bw=3),col="'red')

+ + +
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