
DRAFT

Download and harmonize FAOSTAT and WDI data: the
FAOSTAT package

Filippo Gheri & Michael. C. J. Kao
Food and Agriculture Organization

of the United Nations
Edited by Paul Rougieux

Abstract

The aim of this document is to introduce the FAOSTAT package developed by the Food
and Agricultural Organization of the United Nations. The package serves as an open gate
way to FAOSTAT (the FAO extensive library of agricultural statistics) and WDI (World
Development Indicators database of World Bank).

Retrieve, harmonize, and process official statistics is a thorny task. This paper will
demonstrate how the FAOSTAT can alleviate some of these obstacles providing the pos-
sibility of downloading, harmonizing, and processing FAOSTAT and WDI data automati-
cally through R. The use of open source software R brings tremendous amount of benefits,
speeding up the production process and open up the data and methodology to the general
public. In this small paper we will illustrate the process and demonstrate how the use of
the package can increase transparency and sustainability.

Keywords: R, Official Statistics, FAOSTAT.

Contents

1. Introduction

In 2011 Adam Prakash and Mattieu Stigler in the ESS division of the Food and Agricultural
Organization of the United Nations had the idea of utilizing R and LATEX for the production of
the FAO statistical yearbook. The initiative was taken in order to replace the labour intensive
work with a streamline system which integrates data extraction, processing, analysis, and
dissemination into one single comprehensive system. The FAOSTAT package is one of the first
outputs of the new process, and it aims at facilitating the user in downloading, harmonizing,
and processing statistics.

This paper will demonstrate how the FAOSTAT package is used to automatically download
data from FAOSTAT and WDI, and to harmonize different data sources under a common
country coding system. The goal is to provide a tool that facilitates the data collection from
FAOSTAT and WDI, and helps the user in harmonizing different datasets.

2. Install the package

The package can be installed from the CRAN repository just like all other R packages.

DRAFT

2 FAOSTAT: Download and harmonize FAOSTAT and WDI data

if(!is.element("FAOSTAT", .packages(all.available = TRUE)))
install.packages("FAOSTAT")

library(FAOSTAT)

The latest version of the package can also be installed from the following gitlab repository:

if(!is.element("FAOSTAT", .packages(all.available = TRUE)))
remotes::install_gitlab(repo="paulrougieux/faostatpackage/FAOSTAT")

library(FAOSTAT)

This documentation is also the vignette of the package.

help(package = "FAOSTAT")
vignette("FAOSTAT", package = "FAOSTAT")

3. Data collection

3.1. Download data from FAOSTAT

FAOSTAT is the largest agricultural database in the world. It contains data from land produc-
tivity to agricultural production and trade dating back from 1960 to the most recent available
data. Detailed information on meta data, methods and standards can be found on the official
website of FAOSTAT (http://www.fao.org/faostat/en/#data) and the Statistics Division
(ESS) (http://www.fao.org/economic/ess/en/).

Load data from the bulk download repository

A search function FAOsearch has been provided for the user to identify dataset codes. The
metadata returned by FAOsearch describes more than seventy datasets. Each dataset is iden-
tified by a 2 to 4 letter code. Once you have found the dataset code you are interested in,
enter it as the code argument to the get_faostat_bulk() function. That function will load
the corresponding data into a data frame as illustrated in the sample code below.

library(FAOSTAT)
Create a folder to store the data
data_folder <- "data_raw"
dir.create(data_folder)

Load information about all datasets into a data frame
fao_metadata <- FAOsearch()

Find information about datasets whose titles contain the word "crop" (illustrates the case insensitive search)
FAOsearch(dataset="crop", full = FALSE)

Load crop production data
crop_production <- get_faostat_bulk(code = "QCL", data_folder = data_folder)
Show the structure of the data
str(crop_production)

http://www.fao.org/faostat/en/#data
http://www.fao.org/economic/ess/en/

DRAFT

Filippo Gheri, Michael. C. J. Kao 3

Cache the file i.e. save the data frame in the serialized RDS format for fast reuse later.
saveRDS(crop_production, "data_raw/crop_production_e_all_data.rds")
Now you can load your local version of the data from the RDS file
crop_production <- readRDS("data_raw/crop_production_e_all_data.rds")

Deprecated - Load data through the FAOSTAT API

Note: this sub section is deprecated. Left here for historical purposes, as a reminder that the
FAOchecked function still doesn’t have a replacement as of 2020.

In order to access to an indicator in FAOSTAT using the API, three pieces of information need
to be provided: domain, item, and element codes. They are defined as:

Domain Code :
The domain associated with the data. For example, production, trade, prices etc.

Item Code :
These are the codes relating to the commodity or product group such as wheat, almonds,
and aggregated item like "total cereals".

Element Code :
Lastly, this is the quantity/unit or data collection type associated with the commodity.
Typical elements are quantity, value or production/extraction rate.

The getFAOtoSYB is a wrapper for the getFAO to batch download data, it supports error recov-
ery and stores the status of the download. The function also splits the data downloaded into
entity level and regional aggregates, saving time for the user. Query results from FAOsearch
can also be used.

In some cases multiple China are provided. In the FAOSTAT database for example, the trade
domain provides data on China mainland (faostat country code = 41), Taiwan (faostat country
code = 214) and China plus Taiwan (faostat country code = 357). In some other datasets it is
also possible to find China plus Taiwan plus Macao plus Hong Kong (faostat country code =
351). The CHMT function avoids double counting if multiple China are detected by removing
the more aggregated entities if detected. The default in getFAOtoSYB is to use CHMT when
possible. It is important to perform this check before the aggregation step in order to avoid
double counting. This means that not necessarily this operation needs to be done at the data
collection stage. This can be done also at a later stage using the FAOcheck function (or the
CHMT function directly).

FAOchecked.df = FAOcheck(var = FAOquery.df$varName, year = "Year",
data = FAO.lst$entity, type = "multiChina",
take = "simpleCheck")

3.2. Download data from World Bank

The World Bank also provides an API where data from the World Bank and various interna-
tional organization are made public. More information about the data and the API can be
found at http://data.worldbank.org/

The authors are aware of the WDI package, but we have wrote this function before the recent
update of the package with additional functionalities. We have plans to integrate with the
WDI package to avoid confusion for the users.

http://data.worldbank.org/

DRAFT

4 FAOSTAT: Download and harmonize FAOSTAT and WDI data

Download World Bank data and meta-data
WB.lst = getWDItoSYB(indicator = c("SP.POP.TOTL", "NY.GDP.MKTP.CD"),

name = c("totalPopulation", "GDPUSD"),
getMetaData = TRUE, printMetaData = TRUE)

The output is similar to the object generated by getFAOtoSYB except that if the argument
getMetaData is specified as TRUE then the meta data is also downloaded and saved. The
function getWDItoSYB relies on getWDI and getWDImetaData functions.

One point to note here, it is usually unlikely to reconstruct the world aggregates provided by
the World Bank based on the data provided. The reason is that the aggregate contains Taiwan
when available, yet the statistics for Taiwan are not published.

4. Merge data from different sources

Warning: this section needs to be updated. Contributions and pull requests are welcomed at
https://gitlab.com/paulrougieux/faostatpackage/.

Merge is a typical data manipulation step in daily work yet a non-trivial exercise especially
when working with different data sources. The built in mergeSYB function enables one to
merge data from different sources as long as the country coding system is identified. Currently
the following country coding translation are supported and included in the internal data set
FAOcountryProfile of the package:

• United Nations M49 country standard [UN_CODE]
https://unstats.un.org/unsd/methods/m49/m49.htm/

• FAO country code scheme [FAOST_CODE]
https://termportal.fao.org/faonocs/appl/

• FAO Global Administrative Unit Layers (GAUL).[ADM0_CODE]

• ISO 3166-1 alpha-2 [ISO2_CODE]
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2

• ISO 3166-1 alpha-2 (World Bank) [ISO2_WB_CODE]
https://data.worldbank.org/

• ISO 3166-1 alpha-3 [ISO3_CODE]
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3

• ISO 3166-1 alpha-3 (World Bank) [ISO3_WB_CODE]
https://data.worldbank.org/

Data from any sources employ country classification listed above can be supplied to mergeSYB
in order to obtain a single merged data. However, the column name of the country cod-
ing scheme is required to be the same as the name in square bracket, the responsibility of
identifying the coding system lies with the user.

Nevertheless, often only the name of the country is provided and thus merge is not possible
or inaccurate based on names. We have provided a function to obtain country codes based
on the names matched. In order to avoid matching with the wrong code, the function only
attempts to fill in countries which have exact match.

https://gitlab.com/paulrougieux/faostatpackage/
https://unstats.un.org/unsd/methods/m49/m49.htm/
https://termportal.fao.org/faonocs/appl/
https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2
https://data.worldbank.org/
http://en.wikipedia.org/wiki/ISO_3166-1_alpha-3
https://data.worldbank.org/

DRAFT

Filippo Gheri, Michael. C. J. Kao 5

Just a demonstration
Demo = WB.lst$entity[, c("Country", "Year", "totalPopulation")]
demoResult = fillCountryCode(country = "Country", data = Demo,

outCode = "ISO2_WB_CODE")

Countries have not been filled in.
unique(demoResult[is.na(demoResult$ISO2_WB_CODE), "Country"])

We have not implemented a regular expression match for the identification reason listed be-
low. From the above example we can see that both China and Sudan are not filled in, the
identification of Sudan prior to 2011 and China should be carefully examined.
Below we list some commonly observed problems when merging data from different sources.

4.1. Identification problem

Due to the fact that different organization are bounded by different political agenda, the users
need to be aware of the precise definition and legal recognition of countries. Take example,
the China provided by the World Bank does not include Taiwan, Hong Kong and Macao. On
the other hand, FAO provides not only a single China (FAO = 41), but also China plus Taiwan
(FAO = 357) depending on the context. In addition, it is common to observed statistics for
China (ISO2 = CN or ISO3 = CHN) which includes Taiwan, Hong Kong and Macao. The
default translates China from other country coding scheme to Mainland China (FAO = 41)
and is not matched in fillCountryCode.

4.2. Representation problem

Moreover, the situation is further complicated by disputed territories or economic union such
as Kosovo and Belgium-Luxembourg which does not have representation under particular
country coding system.

Countries which are not listed under the ISO2 international standard.
FAO.df = translateCountryCode(data = FAOchecked.df, from = "FAOST_CODE",

to = "ISO2_CODE")

Countries which are not listed under the UN M49 system.
WB.df = translateCountryCode(data = WB.lst$entity, from = "ISO2_WB_CODE",

to = "UN_CODE")

4.3. Transition problem

Finally, the discontinuity and transition of countries further increases the complexity of the
data. The South Sudan was recognized by the United Nations on the 9th of July 2011, however,
the statistics reported by The republic of the Sudan in the same year can also includes data
for South Sudan thus failing the mutually exclusive test. Moreover, sources which uses ISO
standard country code have no way to distinguish between the new and old Sudan (SD and
SDN are used for both entity) which causes problem in merge with country system that
distingiushes the entity.
Finally, if historical aggregates are computed then a region composition which does not back-
track in time will result in an aggregate which is incorrect. For more details about histor-
ical and transitional countries please refer to http://unstats.un.org/unsd/methods/m49/
m49chang.htm

http://unstats.un.org/unsd/methods/m49/m49chang.htm
http://unstats.un.org/unsd/methods/m49/m49chang.htm

DRAFT

6 FAOSTAT: Download and harmonize FAOSTAT and WDI data

Given the lack of an internationally recognized standard which incorporates all these prop-
erties, we suggests the use of the FAO country standard and region profile shipped with the
package which addresses most of these problems.

merged.df = mergeSYB(FAOchecked.df, WB.lst$entity, outCode = "FAOST_CODE")

5. Reshape data to the wide "non normalized" format

The dataset locations returned by ‘FAOsearch()‘ point to the "normalized" version of the data,
compatible with the tidy data mindset. The "normalized" data format is a long format, better
for analysis in the tidy-data mindset as described by Hadley Wickham in https://cran.
r-project.org/web/packages/tidyr/vignettes/tidy-data.html.

In tidy data:

• : Every column is a variable.

• : Every row is an observation.

• : Every cell is a single value.

In case you want the data in long format, you can reshape it with:

library(tidyr)
Reuse the data folder created above
data_folder <- "data_raw"
dir.create(data_folder)

Load food balance data
fbs <- get_faostat_bulk("FBS", data_folder)

Reshape to wide format
fbs_wide <- pivot_wider(fbs, names_from=year, values_from=value)

6. Scale data to basic unit
Warning: this section needs to be updated. Contributions and pull requests are

welcomed at https://gitlab.com/paulrougieux/faostatpackage/.
The functions translateUnit and scaleUnit help the user in scaling the data

to the basic unit. The function translateUnit allows to translate multipliers
from character names into numbers and vice versa. This is really useful because
multipliers in metadata are usually provided in character names. The function
scaleUnit allows to scale the variables in the dataset using the multipliers pro-
vided by the user. It is always important to work with variables in basic units,
especially if new variables need to be generated. As a matter of fact, when a large
set of new variables need to be generated out of the raw variables, it is already
quite difficult to deal with the unit of measurements. For this reason it is better
to avoid the multipliers issue a priori by scaling all the raw variables to their basic
unit.

https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://cran.r-project.org/web/packages/tidyr/vignettes/tidy-data.html
https://gitlab.com/paulrougieux/faostatpackage/

DRAFT

Filippo Gheri, Michael. C. J. Kao 7

multipliers = data.frame(Variable = c("arableLand", "cerealExp", "cerealProd",
"totalPopulation", "GDPUSD"),

Multipliers = c("thousand", NA, NA, NA, NA),
stringsAsFactors = FALSE)

multipliers[, "Multipliers"] =
as.numeric(translateUnit(multipliers[, "Multipliers"]))

preConstr.df = scaleUnit(merged.df, multipliers)

7. Computing growth, and other derivatives
Warning: this section needs to be updated. Contributions and pull requests are

welcomed at https://gitlab.com/paulrougieux/faostatpackage/.
The function constructSYB allows to automatically construct four different

types of indicators: shares, growth rates, indeces, and year to year changes through
the functios shConstruct, grConstruct, lsgr, geogr, indConstruct, chConstruct,
chgr. There are two types of growth rate shipped with the package, the least
squares growth rate and the geometric growth rate. The least squares growth rate
is used when the time series is of sufficient length. The default is at least 5 usable
observations, however if the time series is sparse and more than 50% of the data
are missing than the robust regression is used.

con.df = data.frame(STS_ID = c("arableLandPC", "arableLandShareOfTotal",
"totalPopulationGeoGR", "totalPopulationLsGR",
"totalPopulationInd", "totalPopulationCh"),

STS_ID_CONSTR1 = c(rep("arableLand", 2),
rep("totalPopulation", 4)),

STS_ID_CONSTR2 = c("totalPopulation", NA, NA, NA, NA, NA),
STS_ID_WEIGHT = rep("totalPopulation", 6),
CONSTRUCTION_TYPE = c("share", "share", "growth", "growth",

"index", "change"),
GROWTH_RATE_FREQ = c(NA, NA, 10, 10, NA, 1),
GROWTH_TYPE = c(NA, NA, "geo", "ls", NA, NA),
BASE_YEAR = c(NA, NA, NA, NA, 2000, NA),
AGGREGATION = rep("weighted.mean", 6),
THRESHOLD_PROP = rep(60, 6),
stringsAsFactors = FALSE)

postConstr.lst = with(con.df,
constructSYB(data = preConstr.df,

origVar1 = STS_ID_CONSTR1,
origVar2 = STS_ID_CONSTR2,
newVarName = STS_ID,
constructType = CONSTRUCTION_TYPE,
grFreq = GROWTH_RATE_FREQ,
grType = GROWTH_TYPE,
baseYear = BASE_YEAR))

8. Compute aggregates
Warning: this section needs to be updated. Contributions and pull requests are

https://gitlab.com/paulrougieux/faostatpackage/

DRAFT

8 FAOSTAT: Download and harmonize FAOSTAT and WDI data

welcomed at https://gitlab.com/paulrougieux/faostatpackage/.
Aggregation is another important step that is commonly overlook. Many things

need to taken into account. Aggregate composition, duplicated values, missing val-
ues, aggregation method, and aggregation rules are probably the most important
ones. The result can vary due to the differences between the regional composition
and the set of countries used. Furthermore, it is complicated by the amount of
missing values which can render the aggregates incomparable. Given the missing
values and diverging country sets, aggregation can only serve as approximates in
order to inform the general situation of the region. The user has the possibility
of choosing whether to apply a rule or not. The rule consists in computing the
aggregate just if, for each aggregate, the available data represent (in terms of the
weighting variable) a share greater than the threshold provided by the user. In
case of aggregation method equal to "sum", the same rule is applied considering a
weight equals to one for all the countries.

Compute aggregates under the FAO continental region.
relation.df = FAOregionProfile[, c("FAOST_CODE", "UNSD_MACRO_REG")]

Macroregion.df = Aggregation(data = postConstr.lst$data,
relationDF = relation.df,
aggVar = c("arableLand", "totalPopulation",

"arableLandPC"),
weightVar = c(NA, NA, "totalPopulation"),
aggMethod = c("sum", "sum", "weighted.mean"),
applyRules = TRUE,
keepUnspecified = TRUE,
unspecifiedCode = "NotClassified",
thresholdProp = c(rep(0.65,3)))

Acknowledgement
The authors owe a great debt to Adam Prakash, Guido Barbaglia, Amy Hey-

man, Amanda Gordon, Jacques Joyeux, Mattieu Stigler, and Markus Gesmann for
their contribution to the package.

The authors would also like to express their profound gratitude to the direc-
tors Pietro Gennari and Josef Schimidhuber and the entire ESS division for their
support.

Affiliation:
Filippo Gheri & Michael C.J. Kao
Economics and Social Statistics Division
Economic and Social Development Department
United Nations Food and Agriculture Organization
Viale delle Terme di Caracalla 00153 Rome, Italy
E-mail: filippo.gheri@fao.org, michael.kao@fao.org

https://gitlab.com/paulrougieux/faostatpackage/
mailto:filippo.gheri@fao.org
mailto:michael.kao@fao.org

	Introduction
	Install the package
	Data collection
	Download data from FAOSTAT
	Download data from World Bank

	Merge data from different sources
	Identification problem
	Representation problem
	Transition problem

	Reshape data to the wide "non normalized" format
	Scale data to basic unit
	Computing growth, and other derivatives
	Compute aggregates

