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1 Purpose

The purpose of this vignette is to provide a theoretical explanation of how to design efficiently. Under-
standing this in conjunction with the ExpertChoice package will allow you to design experiments and
discrete choice questionnaires in one paradigm of discrete choice experiments.

Hensher et al. (2015, 287) conclude by explaining that Burgess and Street (2005) and Street and
Burgess (2007) launched a literature of optimal stated choice experiments which are based on the multi-
nomial logistic regression and optimal linear experiments. Since then the stated choice/discrete choice
literature has expanded in many directions and Hensher et al. (2015) explore this in their comprehensive
introduction to Applied Choice Analysis. One large contention that this literature is currently grap-
pling with is the difference between D-optimal and D-efficient (Rose and Bliemer, 2009; Walker et al.,
2018). This package, ExpertChoice, provides an easy, detailed implementation of the Burgess and
Street (2005) literature explaining how to create a DCE in this paradigm. As a paradigm it is gaining
renewed interest in particular because it creates experiments that are very robust and are especially
suited to situations where there is no prior knowledge.

Why is the term ‘experiment’ used to describe this process and its literature? Oxford dictionary
(2019) gives the following definition for experiment: “A scientific procedure undertaken to make a
discovery, test a hypothesis, or demonstrate a known fact.” The idea that this definition expresses is
that there are variables or attributes which are altered, systematically, and it is the effects of these
alterations which is of interest to discover.

2 Designing an experiment

The objective of designing a good experiment is a simple one: ensure that the variables of interest are
transparently testable to a chosen satisfactory level. Designing an experiment starts before becoming
wrapped up in theoretical considerations as to how best to achieve this. The important first step
is defining the relevant attributes and their levels. Doing this requires some prior insight. Problem
structuring methods (such as those described in Belton and Stewart (2002)) can be incorporated with the
first two design stages described by Hensher et al. (2015, 194-201). In the linked Practical Introduction
to ExpertChoice this process is described as Step 0.

The next section will introduce two examples of experiments where this groundwork has already been
done. The first, a restaurant experiment, is relatively of a small size, but has interesting considerations.
The second, a silver object experiment, is larger and was the motivation for this package being written.
Both examples are fully worked in the linked Practical Introduction to ExpertChoice.



2.1 Describing your experiment

An experiment starts by describing the variables which change. It is Step 0. The variables, also referred
to as attributes, can be ordered (ordinal) or unordered (categorical). This distinction is important if
the intention is to convert the experiment into a discrete choice experiment, but not so much otherwise.
This section will describe two experiments: one with all variables unordered (categorical) and another
with all variables ordered. It is possible to also have an experiment with a mixture of the two.

2.1.1 Unordered Variable Experiment: Restaurant Experiment

Imagine you own a restaurant that only serves a set menu. As the menu is set your patrons never
choose what they are getting for each part of the menu or infact what they are getting on the day. You
want to experiment with different set menus to see not only what meals patrons enjoy, but also which
starter, main and dessert combinations work well together. In your repertoire you have the following
recipes':

starter = {Tomato Soup, Duck Rillettes, Seafood Chowder}
main = {Roast Pheasant, Pan Fried Hake, Pork Belly, Mushroom Risotto, Sirloin Steak, Vegetable
Bake}
dessert = {Sticky Toffee Pudding, Chocolate & Hazelnut Brownie, Cheesecake}

Table 1 formally describes this experiment. The different levels of the variables (z;) are labelled
starting from 1 upwards. Starting at 1 is the convention for unordered variables. This design would
be called a 3%26' design because there are two variables each with three levels and one variable with six
levels. As a result there would be 542 different variations of set menus that could be offered.

attribute/variable name level name

(2) “ (2)

1 Starter 1 Tomato Soup

1 Starter 2 Duck Rillettes

1 Starter 3  Seafood Chowder

2  Main 1 Roast Pheasant

2  Main 2 Pan Fried Hake

2 Main 3 Pork Belly

2 Main 4  Mushroom Risotto

2 Main 5  Sirloin Steak

2 Main 6  Vegetable Bake

3 Dessert 1 Sticky Toffee Pudding
3 Dessert 2 Chocolate & Hazelnut Brownie
3 Dessert 3  Cheesecake

Table 1: Design for research on different set menus. (A 326! design.)

2.1.2 Ordered Variable Experiment

The silver experiment was an attempt to determine utility functions for the different variables from
experts in antique silver. Notice here that unlike in Table 1 the levels of the variables (z;) are labelled

1 (This menu is adapted from the restaurant 101 Talbot http://www.101talbot.ie/menus/)
2This number should not be too suprisingly it comes from the design notation that is 54 = 32 x 61



starting from 0 upwards. This is to make explicit the fact that the z; = 0 level will be used as the
base level. In unordered variables the base level can be chosen arbitrarily. This experiment would be
described as 5° and hence there are 3125 possible combinations.

attribute name

level name

() z (=) Description
1 Makers Renown 0 bottom 50% of makers common
1 Makers Renown 1 50% to 65% of makers known to specialists
1 Makers Renown 2 65% to 80% recognised
1 Makers Renown 3 80% to 90% famous
1 Makers Renown 4  top 10% celebrated
2 Technical Perfection 0 below 50% of craftmanship below average
2  Technical Perfection 1 50% to 65% good
2 Technical Perfection 2 65% to 80% meritorious
2 Technical Perfection 3 80% to 90% distinguished
2 Technical Perfection 4 top 10% exquisite
3 Category Rarity 0 bottom 20% common
3 Category Rarity 1 20% to 40% uncommon
3 Category Rarity 2 40% to 60% rare
3 Category Rarity 3 60% to 80% very rare
3 Category Rarity 4  top 20% exceptional
4 Size (of object) 0 under 125g petite
4 Size (of object) 1 between 126g and 275g small
4 Size (of object) 2 between 276g and 600g medium
4 Size (of object) 3 between 601g and 1200g large
4 Size (of object) 4  exceeds 1200g extra large
5 Age (of object) 0 1951-present
5 Age (of object) 1 1900-1950
5 Age (of object) 2 1851-1899
5 Age (of object) 3 1801-1850
5 Age (of object) 4 before 1800

Table 2: Design for research on antique silver objects to be answered by experts. (A 5° design.)

3 The Factorial Designs
3.1 The Full Factorial Design

The full factorial design is constructed from z attributes each with [ levels denoted as z;. It contains
all possible combinations of the levels of the attributes and each row is unique. The full factorial for
any design has the unique number of combinations (hence the number of rows of the full factorial)
given by the design description. Recall for the restaurant and silver experiments that was 326 and
5% respectively. Table 5, at the end of this document gives the full factorial design for the restaurant
experiment.

3.2 The Fractional Factorial Design

It is clear that the full factorial design can quickly become overwhelming if the intention was to im-
plement an experiment where each scenario (i.e. row) as conducted. It would also be onerous, costly



and more so depending on what is desired unnecessary. The aim of all experimental design is to get to
the results faster and as effectively as possible. Therefore for all but toy examples the researcher must
concern themselves with how best to select from the full factorial design to form the fractional factorial
design. The fractional factorial design is always (by definition) be contained in the full factorial design.
In general there are three methods to select from the full factorial: column based methods (typ-
ically methods originating with Federov), row based methods (mixed integer programming) and the
construction of orthogonal arrays (Gromping, 2018; Kuhfeld, 2010). There are merits to each method,
but before an extensive discussion can be had it is necessary to explain further some of the efficacy
measures for factorial designs. These efficacy measures are meant to guide the selection process.

3.2.1 Efficacy Measures for Factorial Designs

A design’s main effects are the effects of the each of the attributes measured at each of the levels.
Two-attribute interactions are the interaction effects between 2 and 2z where a # b. In order to have
a two-attribute interaction effect there must be at least two factors. Similarly for three factors. The
number of estimable n-attribute interactions are related to a efficacy measure described by Xu and
Wu (2001) and Gromping and Xu (2014) as generalised word lengths. That is the nth world length
is the n-attribute interactions that the full factorial would support. For the menu example there are
3 attributes hence 3-attribute interactions as such the there are generalised word lengths 0,1,2 and 3.
For the silver object design there are 5 attributes hence 5-attribute interactions as such the there are
generalised word lengths 0,1,2,3,4,5 and 6. Only the full factorial design is capable of supporting the
nth world length. But in many instances one’s interest is only in the main effects and/or possibly two
level interactions. This comes with the major advantage that a fraction of the full factorial may now
be used.

Generalised word lengths are a powerful method of assessing design efficacy which has a strong
relationship to two more familiar concepts from the DoE literature: resolution and strength. Strength3
s is equal to the resolution* (r) less 1. The first generalised world length, always the zero word length
is always 1 i.e. generalised word length (0) = (1). Thereafter the number of zero length words is
the strength of the design. For example in the menu design there are 3 word lengths (as explained
previously). For the silver experiment if generalised world length (1) = 0, generalised word length (2)
= 0 and generalised word length (3) = 0, but generalised word length (4) = 25, i.e. 3 zero length words,
then the strength of the design is 3, hence resolution four.

This is significant because, following Kuhfeld (2010), stated generally if resolution (r) is odd then
the effects of order e = (r — 1)/2 or less are estimable free of each other. However at least some of
the effects of order e are confounded with interactions of order e + 1. If r is even then effects of order
e = (r — 2)/2 are estimable free of each other and are also free of interactions of order e + 1. Table 3
gives some commonly chosen designs and an interpreted description.

3Strength is traditionally denoted with a number: 1,2,3,4
4Resolution is traditionally denoted in roman numerals or in words



number of zero

resolution strength length words

description

all main effects are estimable free of each
111 2 2 other, but some are confounded with two-
attribute interactions
all main effects are estimable free of each
other and free of all two-factor interactions,

I . . .

v 3 3 but some two-attribute interactions are con-
founded with other two-attribute interactions

v 4 4 all main effects and two-factor interactions are

estimable free of each other

Table 3: Commonly chosen designs and their efficacy

The full factorial design has the maximum achievable resolution, strength and number of zero length
words. Hence, although it is only possible in toy examples, it is best possible design. It also has two
other desirable properties: orthogonality and level balance.

The efficacy of a design for a particular specification can be calculated for a specific stipulation. Let
X be the design matrix of the proposed design (typically this is the fractional factorial design) with an
intercept and its attributes expanded using standardised orthogonal contrast coding®. The information
matrix (familiar from theory of the linear model) is XTX. The number of rows in the proposed design is
denoted Np. The number of rows (or columns) in the symmetric information matrix (XTX) is denoted
as p. The A-efficiency is defined as

100 1

Np ~ trace(XTX) 1) /p M)

and the D-efficiency® as
100 1

Np * det(XTX)-Ha/m) (2)

It cannot be overemphasised that A-efficiency and D-efficiency of a design is specific to the particular
model matrix expansion of the proposed design. For example assume that a suitable fractional factorial
design for the silver objects experiment is given by the matrix B. The design expansion of the matrix
B would be different when estimating only the main effects (viz. Makers Renown, Technical Perfection,
Category Rarity, Size and Age) as it would be when an expansion that included some (or all) interactions
(viz. Makers Renown, Technical Perfection, Makers Renown x Technical Perfection, Category Rarity,
Size). Let us assume that matrix B is of resolution IV then, by definition, the A- and D- efficiency
of the main effects design will be 100% i.e. fully efficient. Yet, the second proposed expansion of B
(the one including interactions) may or may not be 100% efficient. It will depends on whether those
particular interactions ailise each-other. In general to inspect which effects ailise which other expand
the X up to the value of e (see definition earlier) and investigate the information matrix (XTX).

To make this discussion about model expansions more concrete, Step 5 of the menu experiment,
demonstrates how to programme these tests. The following table, Table 4, summarises the results
for the different formulations. The notation ‘+’ indicates the variable is added linearly, while the ‘x’
indicates that the variables and its interactions are added. A 36 run orthogonal array with generalised

5Any coding can be used in analysis of the completed experiment. The standardised orthogonal contrast coding has
attractive properties when designing an experiment as its efficiency measures are normalised to 100% in the case of the
optimal design.

SD-efficiency is, in general, a relationship between [det(C)/ det(Coptimal)] where C' is the information matrix in the
case of the linear model viz. XTX. For linear models the det(Coptimal) is well known.



word lengths (0) = 1,(0) =0,(1) =0,(2) =0,(3) = 0.5 was used. This design hence has strength of 2
(the number of zero lengths words is (3) — (1) = 2).

. . ini h A-effici D-effici
Design Expansion minimum strengt efliciency efficiency

for full efficiency (%) (%)
starter + main + dessert 2 100 100
starter x main + dessert 3 93.75 97.164
starter + main x dessert 3 93.75 97.164
starter x dessert + main 3 91.304 95.975
starter x mainx dessert” 4 NA NA
Table 4:

The information matrix (XTX) is also telling about the balance and orthogonality of the design. A
design is orthogonal when the sub-matrix of (XTX)~! (excluding the row and column for the intercept)
is diagonal. (There may be off-diagonal non-zeros for the intercept.) A design is balanced when all off
diagonal elements in the intercept row and column are zero. When a design is both simultaneously bal-

1
anced and orthogonal, the (XTX)~! matrix is diagonal and (XTX)~! is equal to N—I(pxp) (Kuhfeld,
D

2010, 63). Such a design is a 100% efficient design. That is, practically speaking, the design does not
in any way influence the results — it has no systematic bias. All designs less than 100% efficient may
have balance or orthogonality or neither.

In the conjoint literature there existed a historical preference for designs that are orthogonal, despite
the fact that some of these designs may have been very imbalanced and hence rather inefficient. This
literature has now migrated to choosing designed based on D-efficiency (Kuhfeld, 2010). (Which may
result in designs which are neither orthogonal nor balanced, but are relatively orthogonal and balanced.)
In the discrete choice literature there exists a strong preference for a balanced design (Hensher et al.,
2015).

4 Experiments without blocks

A major technique in the design of both conjoint and discrete choice experiments is blocking. Blocking
is a design of experiment (DoE) term used to describe a situation where different respondents answer
different portions of the chosen design. (In more technical terms blocking is the division of the chosen
fractional factorial design.) Blocking is a systematic technique of division — typically blocks are mutually
exclusive of one-another (so called “no-overlap designs”), but increasingly often with purposeful overlap
(so called “minimal overlap designs”).

Why block? Sometimes a fractional factorial design may be too large that it can be reasonably
answered by one respondent. Blocking breaks the experiment into smaller ”bites” for respondents.

The appropriateness of blocking has come under strong theoretical scrutiny (Hensher et al., 2015;
Rose and Bliemer, 2009). Their arguments can be summarised as this, typically in large respondent
surveys when blocking is used the result can be imbalance of administration of the blocks. Let us
assume that a design is separated into four blocks (A, B, C, D). The study has 50 participants. Firstly,
four does not divide 50 equally so the researcher must make the choice of which of the blocks to give
to the 49th and 50th respondent. Secondly many things could foul a response: the respondent may
wish to withdraw from the study, they may be missing questions or have answered illegibly, etc. Let
us assume that there are 47 usable responses and that these consist of 12 A blocks, 7 B blocks, 11 C
blocks and 17 D blocks which collectively sum to 47. The problem is now self-evident: analysis happens
based on the original chosen design. The blocked reconstruction of the original chosen design is fatally



flawed it will introduce imbalances (where they never existed) and will struggle to estimate with the
same efficacy. This is strong motivation to avoid blocked designs.

4.1 Selecting from the Full Factorial Design

Constructing the fractional factorial design is very much an iterative process of using a selection
method evaluating the design and then typically reiterating. Step 3 in the Practical Introduction
to ExpertChoice demonstrate how to do so using a column based, row based and orthogonal array
approach. Hensher et al. (2015) provide a good introduction to these different methods.

5 Moving from Factorial Design to Discrete Choice Design

A discrete choice experiment consists of several choice sets (denoted as the number of runs) with each
choice set containing two or more options (denoted as alternatives). The most apparent difference,
the fact that in discrete choice there must be choice within choice sets soon takes forefront concern in
converting from a fractional design to a discrete choice design.

For now the focus is to review the different techniques currently available to convert from a factorial
design to a discrete choice design. The following section is quashed in a warning about efficiency
measures for discrete choice experiments. Methods for laying out DCE are the same regardless of the
paradigm for evaluating their end results.

e Modulo Methods (these are proposed by Street and Burgess (2007) and have many advantages)

° LMA8

e Rotation Method?

e mix-and-match Method 1°

5.1 Optimality Measures for MNL Discrete Choice Designs

The efficacy measures for discrete choice designs inherit much of the literature from the fractional designs
(used in conjoint analysis). This can be incorporated into a measure of efficacy for DCE that are used
to estimate the main effects or the main effects plus two-factor interactions. Optimal designs will, when
using D-optimally criterion have the maximum determinant of the Fisher information matrix. For DCE
the information matrix is defined to be: C = BAB’. The B matrix is the matrix of contracts for the
effects that are to be estimated. Although theoretically possible, currently the ExpertChoice package
only supports the construction of the B matrix for main effects. Hence the D-optimallity calculated

84The LMA method directly creates a choice experiment design from an orthogonal main-effect array (Johnson et al.
2007). In this method, an orthogonal main-effect array with M times A columns of L level factors is used to create each
choice set that contains M alternatives of A attributes with L levels. Each row of the array corresponds to the alternatives
of a choice set.” (Aizaki, 2012)

9“The rotation method uses an orthogonal main-effect array as the first alternative in each choice set; this method
creates one or more additional alternative(s) by adding a constant to each attribute level of the first alternative; the
kth(;= 2) alternative in the jth (= 1, 2, ..., J) choice set is created by adding one to each of the m attributes in the k - 1
th alternative in the jth choice set. If the level of the attribute in the k - 1 th alternative is maximum, then the level of
the attribute in the k th alternative is assigned the minimum value.” (Aizaki, 2012)

10¢The mix-and-match method modifies the rotation method by introducing the randomizing process. After placing
a set of N alternatives created from the orthogonal main-effect array into an urn, one or more additional set(s) of N
alternatives are created using the rotation method and placed into different urn(s). A choice set is generated by selecting
one alternative from each urn at random. This selection process is repeated, without replacement, until all the alternatives
are assigned to N choice sets. These N choice sets correspond to a choice experiment design.” Aizaki (2012)



by ExpertChoice will, at this stage, always be for main effects only. This may sound limiting, but it
will become apparent that achieving a D-optimal DCE for main effects is sufficiently challenging not to
warrant further complication. The A matrix is the matrix of second derivatives of the likelihood function
which “under the null hypothesis of no differences between the effects of the levels of each attribute
turns out that A contains the proportions of choice sets in which pairs of profiles appear together”
(Street and Burgess, 2007, 462). The entries in A can be evaluated by counting the occurrences of pairs
of profiles and diving by m?N where N is the number of choice sets (Street and Burgess, 2007, 462).
The D-efficency of the design of any design can be given by [det(C)/ det(Coptimal)]-

There exists a theoretical det(Coptimal) for main effects only, first determined by Burgess and Street
(2005), for the multinomal logit model. The mathematics of this are given most plainly in Street
and Burgess (2007). The ExpertChoice package has this functionally built into it. See the Practical
Introduction, step 9.

Since then “Bliemer and Rose (2014) were able to show that Street and Burgess designs are simply
a special case of the more general methods used by other researchers” (Hensher et al., 2015, 310).
In particular this more general method requires a larger introduction than is possible here. For the
most neutral introduction see Walker et al. (2018). Much of the dififcult boils down to: “D-optimal
designs attempt to maximize attribute level differences whereas D-efficient designs attempt to minimize
the elements that are likely to be contained within the AVC matrices of models estimated from data
collected using the design.” (Rose and Bliemer, 2009)
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Table 5: The full factorial design for the restaurant experiment. (A 326! design.)
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