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Preliminary remarks

The EloRating package is work in progress. If you have any criticism, suggestions or bugs to report, please let us
know.

We describe here the main functionality of the EloRating package. For the sake of this tutorial, we first present an
example with the minimal amount of data required: a sequence of decided dominance interactions along with the dates
of these interactions.1 Even though the package is capable of dealing with undecided interactions (in fact the example
file contains this information), we decided to omit this aspect for the sake of clarity in the first part (section Using
EloRating). In addition, this first example is not linked to ‘presence’ data. In other words, here we assume that
all individuals that occur in the data set were present over the entire study period. For the same example utilizing
information about presence/absence of individuals and undecided interactions/draws see section on presence data and
undecided interactions.

In the section Further notes on the stability index, we present a detailed description of the updated stability index S.

The fictional data set presented here comprises 250 dominance interactions of 10 individuals.

Requirements and package installation

We recommend that you have a fairly recent version of R available (v > 3.2).

To install the package, just use (given you have a working internet connection):

install.packages("EloRating")

There are a number of additional packages that are required before EloRating will work. If you used the approach
just shown, this is nothing to worry about because all the required packages will be installed alongside EloRating.

If you want the latest development version of the package you can install it from GitHub. For this to work,
you need at least the following packages installed: zoo, sna, network, Rcpp, RcppArmadillo, knitr, Rdpack and
devtools. It might be necessary to install these first before you can install the GitHub version of EloRating, e.g. by
install.packages("zoo") etc. Furthermore you will need a set of tools:

• Windows: Rtools from https://cran.r-project.org/bin/windows/Rtools/

• Mac: Xcode from the App Store

library(devtools)

install_github("gobbios/EloRating")

install_github("gobbios/EloRating", build_vignettes = TRUE) # with pdf tutorial

Data preparation

We assume that you store your data on dominance interactions in some sort of spreadsheet software. While it is
possible to read data directly from Excel files (.xls or .xlsx) or SPSS files (.sav),2 we suggest that you store your data
in simple (tab-separated) text files. For example, from Excel this is possible via File>Save as. . . and then choosing
‘tab-delimited text file’ as file format.3

In the simplest case, you need three columns in your data set, one for the date and one each for winner and loser
IDs. Note that the interactions have to be in the correct sequence, i.e. sorted by date (and time if available): the

functions in this package will not sort the data according to dates.4 The actual names of the columns are
not fixed, so you can use whatever you want as long as they conform to naming rules of column names in R (start
with a letter, no spaces, etc.).

1Dealing with calendar dates in ‘R‘ is prone to unexpected behaviour. We decided to stick to a specific format ("YYYY-MM-DD") and
the functions assume that dates appear in this format in the objects from which the functions work.

2see the R packages gdata, xlsx, readxl and foreign
3you may also save your file as comma delimited or something similar, but note that you then may need to modify the arguments to

read.table() or use read.csv()
4But the seqcheck() function will check whether interactions are sorted by date, see below.
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Date winner loser

2000-01-01 d w
2000-01-01 k w
2000-01-01 n z
2000-01-07 k n
2000-01-07 c g
2000-01-07 n g

Optional columns that may be required for a more refined assessment of ratings are a column for draws and for
interaction type (intensity). The Draw column should contain only TRUE and FALSE to indicate whether an interaction
ended undecided/tied.

Date winner loser Draw intensity

2000-01-01 d w FALSE fight
2000-01-01 k w TRUE threat
2000-01-01 n z TRUE threat
2000-01-07 k n FALSE fight
2000-01-07 c g FALSE threat
2000-01-07 n g FALSE fight

Using EloRating

Start by loading the package and reading the raw data.5

library(EloRating)

xdata <- read.table(system.file("ex-sequence.txt", package = "EloRating"), header = TRUE)

Keep in mind that as soon as you use your own data it might be necessary to include absolute paths with the file
name.6 For example:

# on Windows

xdata <- read.table("c:\\temp\\ex-sequence.txt", header = TRUE, sep = "\t")

# on Mac

xdata <- read.table("~/Documents/ex-sequence.txt", header = TRUE, sep = "\t")

Data checks

We then go on and check whether the data meet the formatting requirements for the remaining functions of the package
to work. If there is something not quite right with your data, this function will tell you. ‘Warnings’ can sometimes be
ignored (see below), whereas ‘errors’ need to be fixed before the next step. More details on the possible warning and
error messages can be found in the help files (?seqcheck).

seqcheck(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date)

## No presence data supplied

## Everything seems to be fine with the interaction sequence...OK

Elo-rating calculations

This doesn’t give any error message, and so we can go on and calculate the actual Elo-ratings and store the results
of the calculations in an object we name res. Note that in order to ignore possible warnings from seqcheck() the
argument runcheck = FALSE has to be set.

5The example files are in the above described tab-delimited text format and can be found in the package directory. If you don’t know
where that is check .libPaths()

6see also ?setwd
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res <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, runcheck = TRUE)

summary(res)

## Elo ratings from 10 individuals

## total (mean/median) number of interactions: 250 (50/49)

## range of interactions: 19 - 75

## date range: 2000-01-01 - 2000-09-06

## startvalue: 1000

## uppon arrival treatment: average

## k: 100

## proportion of draws in the data set: 0

Extract Elo-ratings

The most obvious task perhaps is to obtain Elo-ratings of all or a specific set of individuals on a specific date. This can
be achieved by running the function extract.elo() on the object res that we just created. In the output, individuals
are ordered by descending Elo-ratings.

extract_elo(res, extractdate = "2000-05-28")

## c d a f k s g n w z

## 1342 1214 1161 1133 1011 1000 958 844 799 538

extract_elo(res, extractdate = "2000-05-28", IDs = c("s", "a", "c", "k"))

## c a k s

## 1342 1161 1011 1000

If you omit the arguments regarding dates and/or individuals, the function will return the ratings of all individuals
on the last day of the study period.

extract_elo(res)

## s a c d f g k n w z

## 1381 1362 1205 1084 1077 1049 940 771 681 450

# the same as because 2000-09-06 is the last date in the sequence:

extract_elo(res, extractdate = "2000-09-06")

## s a c d f g k n w z

## 1381 1362 1205 1084 1077 1049 940 771 681 450

Finally, it is possible to extract ratings to matching combinations of IDs and dates. This comes handy if you have a data
set ready that contains measurements of some variable of interest on different dates and/or for different individuals.
Let’s look at an example:

parasites <- read.table(system.file("ex-parasites.txt", package = "EloRating"), header = TRUE)

parasites$Date <- as.Date(as.character(parasites$Date))

head(parasites)

## id Date parasites

## 1 c 2000-01-04 2

## 2 n 2000-01-04 3

## 3 n 2000-01-07 2

## 4 n 2000-01-09 2

## 5 w 2000-01-11 4

## 6 n 2000-01-13 1

5



In this fictional example, I counted ecto-parasites for certain individuals on different days7. You can see that among
the six lines of data I’ve shown, there is data for two individuals on the first day and individual n was observed on
multiple days. The entire data set contains 46 observations. In all, this is a fairly typical example of data set that
I encounter regularly. Now, the crucial thing to do here is to get for each individual its rating on the day of the
respective observation. To do so, we need to supply to extract_elo() a vector of dates and a vector of IDs. For this,
we simply take the columns in our data set parasites and write the values as a new column in that data frame:

parasites$elo <- extract_elo(res, extractdate = parasites$Date, IDs = parasites$id)

head(parasites)

## id Date parasites elo

## 1 c 2000-01-04 2 1000

## 2 n 2000-01-04 3 1050

## 3 n 2000-01-07 2 1042

## 4 n 2000-01-09 2 956

## 5 w 2000-01-11 4 853

## 6 n 2000-01-13 1 956

With this, we can then produce a figure and perhaps run some model (e.g. in figure 1). Again, this is a typical thing
to do in my work.
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Figure 1: Parasite count as a function of day-specific Elo ratings. Each individual has its own colour. Code to produce the
figure is in the Appendix.

Plotting Elo-ratings

eloplot() produces quick plots that visualize the development of Elo-ratings over time. Note that the example data set
contains a rather modest number of interactions and individuals. With larger data sets (both in terms of interactions
and individuals), such plots can become messy quickly. Even though it is possible to restrict plotting to date ranges
and subsets of individuals, we recommend to create custom plots by directly accessing the res object. Specifically,
res$mat contains raw Elo-ratings in a day-by-ID matrix, while the original dates can be found in res$truedates.
You can find more details on how to proceed with custom figures in the section on custom figures.

The following code produces figure 2.8

eloplot(res)

Restricting the date range and selecting only a subset of individuals results in figure 3.

7e.g. Duboscq et al. (2016)
8If you look carefully at figure 2, you can see that there are multiple individuals which have long, very straight lines, for example

individual s from the beginning up to about June 2000. There could be two reasons for that. Either that individual was not present during
that time (and hence could not interact), or it was present and was simply not observed interacting. In this case, s was not actually present
in the group during this time, but the plotting function won’t know that unless you supply the relevant data (we will deal with this further
below).
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Figure 2: Elo-ratings of 10 individuals over the entire study period.

eloplot(res, ids = c("s", "a", "w", "k", "c"), from = "2000-06-05", to = "2000-07-04")
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Figure 3: Elo-ratings of 5 individuals over a month.

Please note, eloplot() will plot a maximum of 20 individuals. This is because we meant the plotting function to be
an exploratory tool, but you can also select ids="random.20" if you have more than 20 individuals. Please note also
that individuals for which you have observed interactions on only one day in the selected date range9, such individuals
will be omitted from the plot. If you wish to plot such individuals as single points in the graph, you will have to use
the approach mentioned above, i.e. use the res$mat and res$truedates objects. If you need help with that, please
get in touch with us or have a look at the section on customizing figures.

Incorporating presence data and undecided interactions

This section demonstrates how to incorporate presence data and undecided interactions. Please note that the presence
data needs to cover every day during your data collection, i.e. also those days on which no interactions were observed.
Also, the column that contains the dates must be labelled Date, otherwise you will receive an error message. We start
by reading the additional ‘presence matrix’, followed by reformatting the date column in this object to a date format
that R is capable of dealing with. And then, just to get a feeling for how these data are supposed to look like, we look
at first few lines.

xpres <- read.table(system.file("ex-presence.txt", package = "EloRating"), header = TRUE)

xpres$Date <- as.Date(as.character(xpres$Date))

head(xpres)

9regardless of how many interactions such individuals may have had on such days!
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## Date a c d f g k n s w z

## 1 2000-01-01 1 1 1 1 1 1 1 0 1 1

## 2 2000-01-02 1 1 1 1 1 1 1 0 1 1

## 3 2000-01-03 1 1 1 1 1 1 1 0 1 1

## 4 2000-01-04 1 1 1 1 1 1 1 0 1 1

## 5 2000-01-05 1 1 1 1 1 1 1 0 1 1

## 6 2000-01-06 1 1 1 1 1 1 1 0 1 1

Next, we rerun seqcheck() and elo.seq() with the additional presence= argument as well as incorporating the
information about undecided interactions draw= into the latter function.

seqcheck(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, presence = xpres, draw = xdata$Draw)

## Presence data supplied, see below for details

## Everything seems to be fine with the interaction sequence...OK

##

## #####################################

##

## Presence data seems to be fine and matches interaction sequence...OK

##

## #####################################

res2 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, presence = xpres, draw = xdata$Draw)

Extracting Elo-ratings takes advantage of the presence data by either omitting absent IDs from the output or returning
them as NA. The differences in ratings stem from incorporating undecided interactions.

extract_elo(res2, extractdate = "2000-05-28")

## c d f a k g n w z

## 1340 1211 1136 1092 962 960 873 860 566

# note that "s" is absent and omitted

extract_elo(res2, extractdate = "2000-05-28", IDs = c("s", "a", "c", "k"))

## c a k s

## 1340 1092 962 NA

# note that "s" is absent and returned as NA

Likewise, eloplot() omits absent IDs from the resulting plots (figure 4 and figure 5).

eloplot(res2)

eloplot(res2, ids = c("s", "a", "w", "k", "c"), from = "2000-06-05", to = "2000-07-04")

Customizing Elo-rating with prior knowledge and optimization

In principle, there are two different tuning knobs with which the calculation of Elo-ratings is controlled. First there
is the k parameter and second there is the issue of which start values to assign the individuals at the beginning of
the rating process. So far, we simply assumed a single k parameter as well as using the same starting value for each
individual throughout. Now, this is probably not ideal because we make at least two implicit assumptions here. First,
using the same k implies that all interactions have equal consequences in the sense that we can’t distinguish for example
between mild and severe aggression. A physical fight is probably more relevant for the assessment of an individual’s
status than say a mild threat and leave interaction or a displacement without any overt physical aggression. This
should/could be reflected in different k values that assign larger k to fights and lower k to mild interactions.10 Likewise,

10To use a sports metaphor: a tennis match in a Grand Slam tournament should be more impactful on the ranking than a training match
(even if it’s against the same opponent).
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Figure 4: Elo-ratings of 10 individuals over the entire study period. Note that several individuals were absent during parts of
the date range and therefore appear with gaps in the plot (e.g. c and f ). Compare to figure 2.
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Figure 5: Elo-ratings of 5 individuals over a month. Note that individual c is not displayed in the plot, since it has not been
present during the date range supplied to eloplot(). Compare to figure 3.
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by assigning each individual the same starting value we assume that, at least potentially, all individuals could have
the same status. For example, assigning females and males the same initial score seems not very plausible in many
animal species and chances are that starting values that assign higher values to males than to females leads to a more
realistic ratings/rankings.

There are two ways to address this. We can either incorporate such reasoning based on prior knowledge of the study
system, or alternatively, we can try to find settings that optimize some objective fit criterion. In this section we will
go through both approaches. We start by incorporating prior knowledge to set different start and k values. And the
then we will look into ways of using maximum likelihood to set these parameters.

Prior knowledge

Starting values

In this section, we incorporate prior knowledge of individual status (Newton-Fisher 2017). This prior knowledge may
come in several forms. You may have information on prior ordinal ranks of your individuals or you may know rank
classes of individuals. Theoretically, you could also know prior Elo-ratings, but in that case it seems likely that you
could actually also obtain the actual interaction data from which these ratings are derived. In the latter case it seems
more convenient to actually include these data in your interaction sequence and simply proceed from there, rather
than incorporate ratings from a prior analysis as starting point.

The essential idea is that you calculate custom starting values (on the scale of Elo-ratings) in a first step, and then
supply this information to the elo.seq() function. Your prior information can be either ordinal ranks, or rank classes.
We start by using ordinal ranks. Here you need to create a numeric vector with names, where the numbers reflect the
ranks and the names the individual IDs. For example:

myranks <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

# vector needs to have names!

names(myranks) <- c("a", "c", "d", "f", "g", "k", "n", "s", "w", "z")

myranks

## a c d f g k n s w z

## 1 2 3 4 5 6 7 8 9 10

The createstartvalues() function then takes these ranks and translates them into Elo-ratings. The crucial point
here is the shape= parameter that determines how differentiated these ranks are in terms of magnitude of differences
between individuals (figure 6).
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Figure 6: Different shape parameters supplied to the createstartvalues() function. Code to produce the figure is in the
Appendix.

Now we can supply these start values to the elo.seq() function and then plot the results.

startvals <- createstartvalues(ranks = myranks, shape = 0.3)

res3 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, presence = xpres, startvalue = startvals$res)
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eloplot(res3)
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Figure 7: Elo-ratings of 10 individuals over the entire study period with prior knowledge in the form of known ranks incorporated.
Compare to figure 4.

In the next example, we first calculate Elo-ratings without prior knowledge, i.e. like in the examples above. But then
we use the final ratings of this step to calculate ranks and based on these ranks, we calculate Elo-ratings again but
now with this ‘prior’ knowledge. Now, this is a somewhat circular approach, but it serves well to show how prior
information can flatten Elo-rating trajectories (figure 8). For this example, we use a smaller data set to have less
cluttered figures.

data(adv2)

# no prior knowledge

res1 <- elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date)

extract_elo(res1)

## b c d f e g a

## 1203 1148 1116 1004 982 843 704

# use the above calculated ratings as known 'ranks'

myranks <- 1:length(extract_elo(res1))

names(myranks) <- names(extract_elo(res1))

mystart <- createstartvalues(myranks, startvalue = 1000, k = 100)

res2 <- elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date, startvalue = mystart$res)

extract_elo(res2)

## b c d f e g a

## 1321 1233 1111 956 939 795 645

When we look at figure 8 we can see several things. First, the actual order of individuals at the end of both runs
is identical and final ratings are highly correlated (r = 0.98). Further, several patterns among the final ratings are
very similar, e.g. gold and blue are close to each other, as are green and grey11, while the two red individuals are
relatively further spaced apart. The only major difference is the black individual which is close to blue and gold in the
left panel but further away from them in the centre panel. Equally interesting are the correlation coefficients for each
day between the two approaches (figure 8, right panel). Not surprisingly, correlations become close over time (keep in
mind that on the first day, there was only one interaction observed and as such, in the left panel, only two individuals
(blue and gold) had ratings different from 1000).

You can also supply rank classes. These rank classes will then be transformed into intermediate ‘ranks’, which then are
transformed into custom start values according to the same principal as above with regards to the shape parameter.
The major caveat here is that currently you have to specify four rank classes. If you have less, two for example, you
still need to specify all four, but leave unused classes NULL. The class-rank conversion is done via the following formula:
class=1: 1; class=2: N/4; class=3: N/2; class=4: N − N/4, where N is the group size. Please note that rank classes
have to be given in descending order, i.e. the first class is the highest class (e.g. ‘high-ranking’), but the actual labels
of the rank classes are meaningless and are simply used for illustration.

11my apologies to colour blind people
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Figure 8: Elo-ratings from a group of seven individuals. On the left without prior knowledge and in the center with prior
knowledge (here: the ordinal ranking at the end of the sequence without prior knowledge). The right panel shows the correlation
between ratings on each date between the two runs. Code to produce the figure is in the Appendix.

# with four rank classes

myrankclasses <- list(alpha = "a", high = c("b", "c"), mid = c("d", "e"), low = c("f", "g"))

createstartvalues(rankclasses = myrankclasses)$res

## a b c d e f g

## 1202 1100 1100 952 952 846 846

# with two rank classes

myrankclasses2 <- list(class1 = NULL, high = c("a", "b", "c"), class3 = NULL,

low = c("d", "e", "f", "g"))

createstartvalues(rankclasses = myrankclasses2)$res

## a b c d e f g

## 1169 1169 1169 873 873 873 873

# with two rank classes

myrankclasses3 <- list(high = c("a", "b", "c"), mid = NULL,

low = c("d", "e", "f", "g"), superlow = NULL)

createstartvalues(rankclasses = myrankclasses3)$res

## a b c d e f g

## 1143 1143 1143 893 893 893 893

These start values can be saved as above and then be used in elo.seq(). Please note that currently all individuals
that are part of the sequence have to have an entry in the prior ranks, otherwise the elo.seq() function will fail.
For example, the following will result in an error, because only two out of ten individuals have prior ratings:

mypriors <- c(2000, 0); names(mypriors) <- c("a", "g")

elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date,

startvalue = mypriors)

In future package versions it hopefully will be allowed to include subsets of individuals in the context of prior ratings
(such that the above example would work).

In general, I (CN) am still unsure about the general validity of this approach. It adds information without much
apparent justification: from an ordinal ranking (or rank classes) with meaningless differences between the ranks (or
rank classes) to cardinal scores where the differences between any two pairs of individuals can be compared in terms
of magnitude. For example, in an ordinal ranking no distinction can be made between the difference of rank 1 versus
rank 2 or rank 11 versus rank 12. In a cardinal system (like David’s score), such differences are meaningful, such that
rank 1 and rank 2 can be relatively more close to each other than rank 11 and 12, or the other way around. That being
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said, if there is some knowledge of the species in this respect, i.e. if we know how pronounced power differentials are
between individuals (compare also to steepness), the approach may be justified. Otherwise, for the moment I would
advise either to set the shape parameter to 0 (which implies that differences between all adjacent pairs of individuals
are identical, steepness = 1) or to refrain from incorporating ordinal ranks altogether. A better founded reasoning for
the approach is needed in my opinion, and also it would be really interesting to achieve the inclusion of cardinal scores
into the system, for example prior knowledge of David’s scores.

Adjusting k

Here we describe how to set different k values to different types of interactions. Typically, setting k would allow
differentiating interactions of different intensity. Similarly, we can envision that k could be set according to the value
of the resource that is contested in a given interaction. Larger ks would be set for interactions of higher intensity or
higher resource value.

In our small example of 33 interactions between 7 individuals, we have observed interactions of two different intensities:
displace (threat/leave) interactions and fights (fight/flee interactions). For the sake of this example, we consider that
displacing another individual is milder and should have less of an effect on dominance status, hence we assign such
interactions a relatively low k value, here k = 50. In contrast, ‘real’ fights should be much more consequential, hence
we chose k = 200. In the example here I chose the two k values arbitrarily. For an objective way for how to choose
varying k (or even if you have only a single k, i.e. you don’t distinguish between different aggression types), look at
the section on optimization.

In the current implementation, different k have to be supplied as a named list, where the names have to correspond
to the intensity/interaction type specified. In our example we need a list with two items:

table(adv2$intensity) # remind ourselves how the intensity categories are named

##

## displace fight

## 26 7

myk <- list(displace = 50, fight = 200)

res3 <- elo.seq(winner = adv2$winner, loser = adv2$loser, Date = adv2$Date, intensity = adv2$intensity, k = myk)

extract_elo(res3)

## b f d c e g a

## 1149 1130 1126 1089 989 799 718

Finally, we compare the final ratings from the different approaches (figure 9).

plot(0, 0, "n", xlim = c(1, 7), ylim = c(600, 1400), xlab = "individual", ylab = "Elo-rating",

axes = FALSE)

axis(1, at = 1:7, labels = res1$allids, lwd = NA); axis(2, las = 1)

x <- extract_elo(res1); x <- x[sort(names(x))]

points(1:7, x, pch = 16, col = "red")

x <- extract_elo(res2); x <- x[sort(names(x))]

points(1:7, x, pch = 16, col = "blue")

x <- extract_elo(res3); x <- x[sort(names(x))]

points(1:7, x, pch = 16, col = "gold")

box()

legend(4, 1400, legend = c("no prior knowledge", "prior ranks", "custom k"), lwd = 1,

col = c("red", "blue", "gold"), ncol = 3, xpd = TRUE, xjust = 0.5, yjust = 0,

cex = 0.8, bg = "white")

And this is just a fun exercise, in which we repeat the same as above, i.e. calculate ratings (1) without prior information,
(2) with prior information but also (3) with a completely wrong prior rank order (we reverse the order). We use the
bigger data set here. The code for the figure is in the appendix.
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Figure 9: Final ratings of 7 individuals when calculated without any prior knowledge (red), prior knowledge of ‘ranks’ (blue)
and accounting for different interaction intensities (gold).
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Figure 10: Elo-ratings from a group of ten individuals. On the left without prior knowledge and in the center with prior
knowledge (here: the ordinal ranking at the end of the sequence without prior knowledge). The right panel shows the ratings
as they develop if we use some obviously wrong prior ranking. Code to produce the figure is in the Appendix.

14



Optimization

Optimizing k

Another approach of adjusting k is to optimize its value with a likelihood approach (see the very cool articles by Franz
et al. (2015) and Foerster et al. (2016)). The fundamental idea is that we can optimize an objective criterion, i.e. find
the k that leads to the best possible value for that criterion. The criterion we can look at is the maximum likelihood of
winning probabilities. For this, we set a specific k value, calculate the ratings from our observed interactions and then
extract the expected winning probabilities for the eventual winner in each interaction (see also figure 17). In the best
possible case, all the winning probabilities are 1,12 i.e. the expected winning probabilities are optimal with respect to
the eventual outcomes of all interactions, or in other words, the expected winning probabilities match perfectly the
eventual outcomes. In the worst case scenario, all the expected winning probabilities are 0, i.e. we would always predict
the wrong winner when looking at the winning probabilities. The objective criterion we can look at is the product
of these expected winning probabilities in a sequence, i.e. the likelihood. In the first example where all probabilities
were 1, the product would be 1 too. In the second case, with all probabilities being 0, the likelihood would be 0. In
practice, it is often useful to use logged probabilities, i.e. the log likelihood and all the functions in the package by
default return log likelihoods rather than likelihoods.

To recap: the expected winning probability for an individual depends on the rating difference prior to an interaction
and k determines how much a rating can change after a single interaction. Hence, using different k will lead to
different winning probabilities. Just to be clear, we calculate the rating sequence multiple times and just change k for
each iteration. So, each iteration of the sequence and using different k will lead to different sets of expected winning
probabilities and hence to different (log) likelihoods. The k value that results in the largest (= maximal) log likelihood
is the k that leads to the largest expected winning probabilities. The function that achieves this in the package is
opimizek().

opimizek() does exactly what is described above: calculate ratings multiple times with different k (resolution=

determines how often) and extract the product of the expected winning probabilities. The other thing to specify is
the range of k you want to test (the krange= argument), and here limits of 10 until 500 seems a reasonable choice.
Finally, note that the optimizek() function requires as its main argument the result of a call to elo.seq().

So, here we calculate the ratings from a sequence with 250 interactions and just use the default k = 100 in this step
(for the purpose of finding the optimal k, its value in this step is of no relevance). Then we apply optimizek() with
k limits of 10 and 500 and with a resolution of 491.13 The result of this is a list with two entries: $best contains the
optimal k for that sequence, and $complete contains the entire set of tested k along with the log likelihood for each
tested k.

eres <- elo.seq(xdata$winner, xdata$loser, xdata$Date)

ores <- optimizek(eres, krange = c(10, 500), resolution = 491)

ores$best

## k loglik

## 84 93 -111.4457

So the k that leads to the largest likelihood is 93 (figure 11). You could also aim for more precision, i.e. increase
the resolution= argument: with an increment of 0.25 (i.e. resolution = 1961) we find the best k at 93.25, with a
marginally larger log likelihood. We can display the results of this procedure with the following code:

plot(ores$complete$k, ores$complete$loglik, type = "l", las = 1, xlab = bquote(italic(k)), ylab = "log likelihood")

abline(v = ores$best$k, col = "red")

Please note that this procedure can result in non-optimal results, i.e. there might be no local maximum along the range
of k values tested, i.e. the maximum lies at one of the edges of the k range. For example, if we test only the range
from, say, 200 to 400, we find that the maximum is at the edge of the range, i.e. 200 (figure 12). In a more realistic
scenario, you might find that the optimal k is 0 (assuming you start your range at 0). Whether this is sensible needs
to be decided on a case to case basis, I believe (see also the discussion in Foerster et al. (2016)).

12Winning probabilities will never be exactly 1, but realistically they might come very close to 1. Also, they will never be exactly 0, but
could very well be very close to 0.

13I chose this odd resolution to obtain steps 1 of the tested k: check out seq(from = 10, to = 500, length.out = 491).
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Figure 11: Optimal k for an interaction sequence with 250 interactions among 10 individuals. The k that maximizes the
likelihood is 93.

ores1 <- optimizek(eres, krange = c(200, 400), resolution = 501)

ores1$best

## k loglik

## 1 200 -118.4614

plot(ores1$complete$k, ores1$complete$loglik, type = "l", las = 1, xlab = bquote(italic(k)), ylab = "log likelihood")

abline(v = ores1$best$k, col = "red")
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Figure 12: Optimization procedure that did not result in a local maximum. The maximum likelihood estimate for k here is
200, which lies at the boundary of the tested values.

More generally speaking, the shape of the likelihood function can vary substantially between data sets. Figure 13
shows a few examples of data sets that come with this package.

The next step in this approach is to incorporate any knowledge you may have about interaction types. As stated above,
it seems plausible to assume that interactions of different intensities will have different consequences on individuals’
rating trajectories, which may be reflected in different k values for different interaction types. But the same question
remains as above, i.e. what values to choose? One solution is to simply extend the optimization approach to multiple
dimensions (for example finding two k values if there are two interaction types). Implementing this is also done with
the optimizek() function. There are two things that need to be changed compared to the case with only finding one
k: we need to supply a list with the to-be-tested k values with one list item for each interaction type and we need to
specify the vector/column that contains the information about which interaction type belongs to each interaction.14

14Handing over the interaction type vector can be done either when running elo.seq() or it can be done in the optimizek() function
call.
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Figure 13: Likelihood functions for six example data sets. The panel titles reflect the names of the data sets as stored in the
package.

Two more things to note. (1) The names of the list need to match the entries in the interaction type vector/column.
(2) The resolution setting works combinatorially, i.e. if you set this to 5 with two interaction types the function
will run 5 ∗ 5 = 25 times, and if you have three interaction types with a resolution of 100 the function will iterate
100 ∗ 100 ∗ 100 = 1000000 times. Just keep in mind that higher resolutions here lead to longer run times, so it might
be wise to start with small values to see whether everything works.

eres <- elo.seq(xdata$winner, xdata$loser, xdata$Date, intensity = xdata$intensity)

# two list items: 'fight' and 'threat', because these are the two interaction types specified in xdata$intensity

mykranges <- list(fight = c(10, 500), threat = c(10, 500))

ores2 <- optimizek(eres, krange = mykranges, resolution = 91)

ores2$best

## fight threat loglik

## 1294 113.4444 86.22222 -111.1532

So what we find here is that the optimal setting of two different k is as follows: k = 113.4 for fights, and k = 86.2 for
threats. Incidentally, this matches our general expectation that more intense interactions (fights) should lead to larger
changes.15

We can also illustrate these results with a heatmap (figure 14):

heatmapplot(loglik ~ threat + fight, data = ores2$complete)

Finally, we can also investigate how taking into account interaction type compares to ignoring interaction type (figure
15)16. The idea here is that a rating model that accounts for some variable (interaction type) should be better than a
model that doesn’t account for it. So here we visualize the likelihoods as a function of different k. The thick blue line
represents the results with one k, ignoring interaction types (the same as in figure 11). For the red lines we look at how
the likelihood changes according to kthreat when the k for fights (kfight) is fixed. The continuous line reflects this at
kfight = 113.4, i.e. at the optimal value for kfight, while the dashed line corresponds to kfight = 10. The grey curves
represent the same thing, just that kfight varies, while kthreat is fixed (continuous line: kthreat = 86.2 and dashed line
kthreat = 500). The arrows below the horizontal axis depict the maximum point of each curve. There are at least two
points to make here. First, the k values at the peaks of the continuous curves (indicated by the arrows) reflect the k

values we found in the optimization step above. This is logical because I chose the fixed values to depict in the figure
post-hoc, i.e. after I knew what the optimal values were. Second, in absolute terms, neither the continuous red and
grey curves lead to a maximum likelihood that is substantially larger than that at the maximum of the blue curve
(-111.15 versus -111.45). Hence, in this example it appears that the added complexity of incorporating two interaction
types doesn’t lead to a substantially better fit (in terms of winning probabilities on which the ML is based). You could
even formally test this with a likelihood ratio test, although I don’t see a practical reason to do so in real life.

15Of course, I made up these interactions with the goal of showing what one would expect, so this is hardly surprising.
16Code for this figure is in the appendix
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Figure 14: Optimal k values for an interaction sequence with two different interaction types (fights and threats). Large
likelihoods are red, small likelihoods are blue.
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Optimizing start values

It is also possible to use a maximum likelihood approach to try out multiple sets of starting values in order to find
one the maximizes the likelihood of winning probabilities. Actually though, this is more of an approximate approach
because we cannot go through all possible combinations of start ratings. So what we rather do is to generate a large
number of sets of starting values and then assess the likelihood of these sets. For example a set of a = 1100, b = 1000,

c = 900 may be better than the set of a = 1200, b = 1000, c = 800.

In the following piece of code we run a simulation where we compare the performance of informed start ratings (either
via prior knowledge or via optimization) with uninformed start ratings. I won’t explain the code in detail here (that is
for future versions), just note that we begin with creating sequences for which we know the true ranks (via a function
in the aniDom package). Then we create (1) start values from these known ranks, (2) start values based on a best
set of random start values (as outline in the paragraph above) and (3) uniform start values (i.e. each individual has
the same start value). For approach (2) I use two different sets of possible start values (1000 and 10000), where the
expectation is that the higher the number of possible start values the higher the probability that a ‘good’ set is among
them. In the end, we compare the correlations between the final ratings from each of the three approaches and the
true ranks. A higher correlation indicates that the relationship between true ranks and final ratings is better.

library(aniDom)

## Warning: package ’aniDom’ was built under R version 4.3.3

set.seed(123)

resmat <- matrix(ncol = 4, nrow = 100)

for (i in 1:nrow(resmat)) {

xd <- generate_interactions(N.inds = 10, N.obs = 200, b = -2, a = 1, id.biased = TRUE)

allids <- letters[1:10]

w <- allids[xd$interactions$Winner]

l <- allids[xd$interactions$Loser]

D <- seq.Date(as.Date("2000-01-01"), by = "day", length.out = length(w))

myranks <- 1:10

names(myranks) <- allids

kvals <- rep(100, length(w))

# informed by known ranks

svals <- createstartvalues(ranks = myranks, shape = 0.5)$res

ores1 <- fastelo(w, l, allids, kvals, svals)

ores1 <- ores1[[1]][allids]

# informed by optimized start values

templist <- list(allids = allids,

misc = c(normprob = "1"),

logtable = data.frame(winner = w, loser = l),

kvals = rep(100, length(w)),

startvalues = rep(1000, length(allids)))

svals <- optistart(templist, runs = 1000)$best

ores2 <- fastelo(w, l, allids, kvals, svals)

ores2 <- ores2[[1]][allids]

# with more runs

svals <- optistart(templist, runs = 10000)$best

ores3 <- fastelo(w, l, allids, kvals, svals)

ores3 <- ores3[[1]][allids]

# uninformed

svals <- rep(1000, length(allids))

ores4 <- fastelo(w, l, allids, kvals, svals)

ores4 <- ores4[[1]]

resmat[i, 1] <- cor(ores1, myranks, method = "s")

resmat[i, 2] <- cor(ores2, myranks, method = "s")

resmat[i, 3] <- cor(ores3, myranks, method = "s")

resmat[i, 4] <- cor(ores4, myranks, method = "s")

}

resmat <- resmat * (-1)
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boxplot(resmat, axes = FALSE, boxwex = 0.4, lty = 1)

axis(1, at = 1:4, tcl = 0, cex.axis = 0.7, padj = 0.5,

labels = c("informed by\nknown ranks",

"informed by\noptimized start values\n(1000 runs)",

"informed by\noptimized start values\n(10000 runs)",

"uninformed"))

axis(2, las = 1)
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Figure 16: Comparison of performance between different approaches to assign custom start values.

Figure 16 shows the results of this simulation. We did 100 runs here, i.e. we created 100 different data sets. The best
performance is achieved by using approach (1), i.e. assigning ratings based on prior knowledge of ranks. The remaining
runs don’t differ much in terms of their performance, although with some squinting of the eyes we could argue that
approach (2) with 10000 tries is a tiny bit better than the remaining two (1000 tries and uniform). The take-home
message here then is that if you know prior ranks, use them.17 That said, if you don’t know prior ranks then there
seems to be only a very small advantage of using procedure (2). One more thing to note here is that this simulation is
far from comprehensive. For example, group size was fixed (10) as was the number of interactions per data set (200).
I suspect that for larger group sizes approach (2) becomes inefficient.

More functions related to Elo-rating

In addition to calculate, extract and display/plot Elo-ratings, our package also provides some more functions that may
be useful in some contexts.

Hierarchy stability with stab.elo()

stab.elo() can be used to calculate an index of hierarchy stability (S, see Neumann et al. 2011) and McDonald and
Shizuka (2013)). Please note that in contrast to the original publication, S now is limited to a range between 0 and
1, where 1 indicates a stable hierarchy in which no rank changes occurred (see this section for more information).

res2 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date, presence = xpres,

draw = xdata$Draw)

stab_elo(res2, from = "2000-05-05", to = "2000-06-05")

## [1] 0.9658

17But if you actually have interaction data from *before* your study, I would rather incorporate those interactions in my sequence directly
rather than discarding them in favour of using ordinal ranks
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Individual rating trajectories with traj.elo()

traj.elo() provides information about Elo-rating trajectories of individuals over time. These trajectories are simply
regression slopes of ratings as a function of days. To calculate these slopes we use ratings per day, which may differ
from those ratings that would be returned by extract_elo(). For extract_elo(), we return ratings on a given day
regardless of whether there were actually observed interactions for a given individual (i.e. the most recent rating). For
traj_elo(), we use only ratings from days with observed interactions. As a consequence, we need at least two days
with interactions to calculate a slope. If there was no or only one day with observed interactions, the slope is returned
as NA in the output and a message is produced (s and n in the examples).

traj_elo(res2, ID = c("s", "f", "n", "z"), from = "2000-05-05", to = "2000-06-05")

## no (or only one) observation for s during specified date range

## ID fromDate toDate slope Nobs

## 1 s 2000-05-05 2000-06-05 NA 1

## 2 f 2000-05-05 2000-06-05 1.696998 6

## 3 n 2000-05-05 2000-06-05 3.904463 5

## 4 z 2000-05-05 2000-06-05 -2.172414 5

traj_elo(res2, ID = c("s", "f", "n", "z"), from = "2000-06-05", to = "2000-07-05")

## no (or only one) observation for n during specified date range

## ID fromDate toDate slope Nobs

## 1 s 2000-06-05 2000-07-05 5.505214 6

## 2 f 2000-06-05 2000-07-05 -7.128125 8

## 3 n 2000-06-05 2000-07-05 NA 0

## 4 z 2000-06-05 2000-07-05 6.862589 7

individuals()

individuals() provides information about which/how many individuals were present on specific dates. When applied
over a date range, the average number of individuals can be returned as can the coefficient of variation of the number
of individuals present on each date. Note that this function has little relevance if the calculation of Elo-ratings (see
above) is not supplemented by presence data.

individuals(res2, from = "2000-05-05", to = "2000-05-05", outp = "N")

## [1] 8

individuals(res2, from = "2000-05-05", to = "2000-06-05", outp = "N")

## [1] 8.3125

individuals(res2, from = "2000-05-05", to = "2000-06-05", outp = "CV")

## [1] 0.07125283

individuals(res2, from = "2000-05-05", to = "2000-06-05", outp = "IDs")

## [1] "d" "k" "n" "w" "z" "c" "g" "f" "a" "s"

winprob()

winprob() simply returns the expected probability of an individual winning given its own rating and that of its
opponent. Note that there are two major ways of calculating these probabilities. Without going into details too much:
the package default assumes a normal distribution by default (following Albers and de Vries (2001), see Elo (1978) for
more details), the alternative being based on an exponential distribution (Elo 1978).
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winprob(1000, 1200)

## [1] 0.2397501

winprob(1000, 1200, normprob = FALSE)

## [1] 0.2402531

winprob(1200, 1000)

## [1] 0.7602499

winprob(1200, 1000, normprob = FALSE)

## [1] 0.7597469

winprob(1200, 1200)

## [1] 0.5

winprob(1200, 1200, normprob = FALSE)

## [1] 0.5

Elo (1978) discussed both, but it turns out both approaches produce very similar results (figure 17), specifically when
rating differences are relatively small (up to about 200 points difference).

There is at least one more way to calculate winning probabilities, which was used by Foerster et al. (2016) and
Sánchez-Tójar, Schroeder, and Farine (2018) and is implemented in the EloOptimized package (Feldblum, Foerster,
and Franz 2019) and in the aniDom package (Farine and Sánchez-Tójar 2019).

Furthermore, we can simulate random interaction sequences, then calculate ratings based on both winning probabilities,
and then extract the ratings from a randomly selected individual. If we do this 100 times, we can see that there is
very little difference between the two approaches (figure 18).

From sequence to matrix with creatematrix()

creatematrix() returns a square matrix which can be used with other, matrix-based algorithms to calculate dominance
scores or ranks (e.g. I&SI de Vries 1998) or David’s score (David 1987; Gammell et al. 2003; de Vries, Stevens, and
Vervaecke 2006), see sections on David’s scores and I&SI).

The function works either from the results of elo.seq() or from vectors of winners and losers. First, we look at
creating matrices from the results from elo.seq. If undecided interactions (ties/draws) are present in the data, you
can decide on how to treat them (either 0.5 or 1 for both individuals, or they are omitted (default)). Individuals that
were absent during the specified date range are excluded from the matrix by default. In addition, the matrix can be
restricted to individuals that had interactions (i.e. observed interactions) in the date range.

creatematrix(res2)

## a c d f g k n s w z

## a 0 5 5 2 9 4 2 1 10 6

## c 0 0 4 7 3 4 1 1 5 2

## d 2 0 0 2 5 5 4 0 8 10

## f 0 2 0 0 2 6 4 0 6 5

## g 0 0 0 0 0 4 3 0 6 2

## k 1 0 3 0 0 0 2 0 2 6

## n 0 0 0 0 2 0 0 0 2 3

## s 3 0 2 1 3 0 0 0 2 2

## w 2 0 0 0 0 1 1 0 0 11

## z 0 0 0 2 1 1 0 0 0 0
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Figure 17: Three ways of calculating winning probabilities. Up to a rating difference of 200 points, the two curves proposed
by Elo 1978 (red and gold) are virtually indistinguishable. The step-wise curves are taken from Elo 1978 and Albers and de
Vries 2001, which provide tables in intervals, for example, the winning probability is 0.5 if the rating difference is between 0 and
3. The curve for the algorithm used by Feldblum and colleagues and Farine and colleagues, in contrast, is much steeper (grey
line). Code to produce the figure is in the Appendix.
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Figure 18: Ratings from individuals that were based on either normally distributed winning probabilities or exponen-
tially distributed winning probabilities. Code for the simulation and figure is in the Appendix.
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sum(creatematrix(res2))

## [1] 200

creatematrix(res2, drawmethod = "0.5")

## a c d f g k n s w z

## a 0.0 6.0 6.0 2.5 10.0 4.0 2.0 1.0 13.0 6.5

## c 1.0 0.0 4.0 7.5 3.0 4.0 1.0 1.5 6.0 2.5

## d 3.0 0.0 0.0 3.5 5.0 5.5 4.0 0.5 8.0 12.0

## f 0.5 2.5 1.5 0.0 2.5 6.5 5.0 0.5 6.5 5.0

## g 1.0 0.0 0.0 0.5 0.0 4.0 3.0 0.0 8.0 2.5

## k 1.0 0.0 3.5 0.5 0.0 0.0 2.5 0.0 3.0 7.0

## n 0.0 0.0 0.0 1.0 2.0 0.5 0.0 0.0 2.5 4.0

## s 3.0 0.5 2.5 1.5 3.0 0.0 0.0 0.0 2.5 2.0

## w 5.0 1.0 0.0 0.5 2.0 2.0 1.5 0.5 0.0 12.0

## z 0.5 0.5 2.0 2.0 1.5 2.0 1.0 0.0 1.0 0.0

sum(creatematrix(res2, drawmethod = "0.5"))

## [1] 250

# "c" and "n" are omitted

creatematrix(res2, daterange = c("2000-06-10", "2000-06-16"))

## a d f g k s w z

## a 0 0 0 1 0 0 0 0

## d 0 0 0 0 0 0 0 0

## f 0 0 0 0 1 0 0 1

## g 0 0 0 0 0 0 0 0

## k 0 0 0 0 0 0 0 0

## s 0 0 0 0 0 0 0 0

## w 0 0 0 0 0 0 0 0

## z 0 0 0 0 0 0 0 0

creatematrix(res2, daterange = c("2000-06-10", "2000-06-16"), onlyinteracting = TRUE)

## a f g k z

## a 0 0 1 0 0

## f 0 0 0 1 1

## g 0 0 0 0 0

## k 0 0 0 0 0

## z 0 0 0 0 0

If you want to create a matrix directly from winner and loser vectors, you need to take care that both the winners=

and the losers= arguments are named. So the following will work:

creatematrix(winners = xdata$winner, losers = xdata$loser)

## a c d f g k n s w z

## a 0 7 7 3 11 4 2 1 16 7

## c 0 0 4 7 3 4 1 1 6 3

## d 2 0 0 5 5 6 4 0 8 14

## f 0 3 0 0 3 7 6 0 7 5

## g 0 0 0 0 0 4 3 0 10 3

## k 1 0 3 0 0 0 3 0 4 8

## n 0 0 0 0 2 0 0 0 3 4

## s 3 1 3 2 3 0 0 0 3 2

## w 2 1 0 0 0 1 1 0 0 13

## z 0 0 0 2 1 1 1 0 0 0

But this one will not work:
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creatematrix(xdata$winner, xdata$loser)

Also note that if you work with vectors directly, there is no way to take into account date ranges and hence co-residency.
If you want to make sure that your matrices adhere to presence information, you need to run elo.seq() first and
include the relevant presence information. Then create the matrix from its results.

randomsequence()

randomsequence() creates random data sets, which can be used for simulations for example. It returns a list with
two data.frames (named seqdat and pres for the actual sequence and presence data, respectively). By default, it
creates a sequence of 100 interactions between 10 individuals. All IDs are present the entire time and there are no
undecided interactions. Also by default, IDs are simply single letters and in order to produce realistic data, IDs that
appear earlier in alphabetic order are more likely to win any given interaction (alphabet = TRUE). The proportion of
reversals (against that order) is by default set to reversals = 0.1.

rdata <- randomsequence()

xres <- elo.seq(winner = rdata$seqdat$winner, loser = rdata$seqdat$loser, Date = rdata$seqdat$Date,

presence = rdata$pres)

summary(xres)

## Elo ratings from 10 individuals

## total (mean/median) number of interactions: 100 (20/19)

## range of interactions: 14 - 30

## date range: 2000-01-01 - 2000-04-09

## startvalue: 1000

## uppon arrival treatment: average

## k: 100

## proportion of draws in the data set: 0

From dominance matrix to sequence with randomelo()

This is an experimental function to generate a set of random sequences based on an interaction matrix. Based on the
randomly generated sequences, Elo-ratings are calculated (in the example 5 times, runs = 5)18. For inspection, we
save the average Elo-ratings across all the randomized sequences in a new object called res. If you plan to use this
function, you may want to have a look at the EloChoice package, which does the same, but is substantially faster.

data(bonobos)

xdata <- randomelo(bonobos, runs = 5)

res <- data.frame(ID = colnames(xdata[[1]]), avg = round(colMeans(xdata[[1]]), 1))

Now, compare that to David’s scores (figure 19).19

ds <- DS(bonobos)

ds <- ds[order(ds$ID), ]

plot(ds$normDS, res$avg, xlab = "David's score", ylab = "randomized average Elo-rating", las = 1,

xlim=c(0, 6))

Utilities

Proportion of unknown relationships with prunk()

This function lets you determine how large the proportion of dyads in your data set is for which no interactions have
been observed. You can use this function on both the results of elo.seq() or an interaction matrix. If used on
an eloobject, you will see as a result the unknown relationships for all dyads that were found in the date range,

18Typically, you would want to set a substantially higher number, for example 1000
19Note, the plot you will get will differ because the generation of Elo-ratings is based on random sequences
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Figure 19: David’s scores and average randomized Elo-ratings from seven bonobos (data from de Vries et al 2006).

and additionally restricted to those dyads that were actually co-resident at some point during the date range. In the
example, this results in the identical output since all dyads were co-resident at some point. Of course, the accuracy
of the second part of the output depends on presence data being supplied. Note for matrices, we cannot control for
co-residency, so the second part of the output is returned as NA if prunk() is used with a matrix.

data(adv); data(advpres)

x <- elo.seq(winner = adv$winner, loser = adv$loser, Date = adv$Date, presence = advpres)

prunk(x, daterange = c("2010-01-01", "2010-01-15"))

## pu.all dyads.all pu.cores dyads.cores

## 0.524 21.000 0.524 21.000

mat <- creatematrix(x, daterange = c("2010-01-01", "2010-01-15"))

prunk(mat)

## pu.all dyads.all pu.cores dyads.cores

## 0.524 21.000 NA NA

David’s scores and steepness

With the DS() function you can calculate David’s scores (David 1987; Gammell et al. 2003; de Vries, Stevens, and
Vervaecke 2006). Note that this function only works on square matrices (see creatematrix() for how to create a
matrix from a sequence). There are two ways by which the dyadic winning proportions can be calculated. The default
way is to calculate proportions corrected for chance (prop = "Dij"). Alternatively, you can use raw proportions with
prop = "Pij" (see de Vries, Stevens, and Vervaecke (2006) for details).

data(bonobos)

DS(bonobos, prop = "Dij")

## ID DS normDS

## 1 He 10.987484 4.569641

## 2 Dz 9.689126 4.384161

## 3 Ho 7.392677 4.056097

## 4 De 0.860578 3.122940

## 5 Ko -7.255948 1.963436

## 6 Re -8.849421 1.735797

## 7 Ki -12.824495 1.167929
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With the steepness() function we can calculate steepness based on David’s scores (de Vries, Stevens, and Vervaecke
2006).

steepness(bonobos, nrand = 1000)

## steep expected p nrand

## 0.6283758 0.2684507 0.0010000 1000.0000000

However, you may want to be somewhat careful about its interpretation because steepness is known to depend on
matrix sparseness (proportion of unknown relationships, Klass and Cords (2011), figure 20):

plot(0, 0, "n", xlab = "sparseness", ylab = "steepness", las = 1, xlim = c(0, 1), ylim = c(0, 1))

for(i in 1:100) {

x <- randomsequence(nID = 15, avgIA = 40)

xmat <- creatematrix(winners = x$seqdat$winner, losers = x$seqdat$loser)

# remove a random number of cells (replace by 0)

xmat[sample(1:225, sample(0:200, 1))] <- 0

# calculate and plot sparseness and steepness

points(prunk(xmat)[1], steepness(xmat)[1])

}
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Figure 20: Relationship between sparseness and steepness (data from 100 random matrices).

Directional consistency with DCindex()

You can also calculate the Directional Consistency Index (cf. van Hooff and Wensing 1987).

DCindex(devries98)

## [1] 0.9056604

DCindex(bonobos)

## [1] 0.9473684
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Linearity, transitivity and ordinal ranks

Linearity with h.index()

The function h.index() allows calculating the linearity indices h and h′ [Appleby (1983); de Vries (1995)]20. The
significance test as described by de Vries (1995) is also included. In order to get it to work, you need to extract a
matrix from your eloobject (see creatematrix).

mat <- creatematrix(winners = adv$winner, losers = adv$loser)

h.index(mat, loops = 1000)

## variable value

## 1 N 7.0000

## 2 h index 0.4821

## 3 h’ index 0.5536

## 4 expected h 0.3721

## 5 p right 0.2270

## 6 randomizations 1000.0000

## 7 tied 1.0000

## 8 unknown 4.0000

Or you can use a matrix directly, as with the matrix of seven bonobos that is included in this package (data from de
Vries, Stevens, and Vervaecke (2006)).

data(bonobos)

h.index(bonobos, loops = 1000)

## variable value

## 1 N 7.0000

## 2 h index 0.8036

## 3 h’ index 0.8571

## 4 expected h 0.3725

## 5 p right 0.0260

## 6 randomizations 1000.0000

## 7 tied 0.0000

## 8 unknown 3.0000

Triangle transitivity (transitivity())

Shizuka and McDonald (2012) suggested an alternative measure to quantify the degree of linearity in dominance
networks.

data(devries98)

set.seed(123)

transitivity(devries98, runs = 1000)

## Pt ttri p runs

## 0.907 0.630 0.011 1000.000

data(adv)

mat <- creatematrix(winners = adv$winner, losers = adv$loser)

set.seed(123)

transitivity(mat, runs = 1000)

## Pt ttri p runs

## 0.923 0.692 0.095 1000.000

20As noted above for steepness, also h and h′ are affected by the number unknown relationships Neumann, McDonald, and Shizuka
(2018).
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Linear hierarchy with the I&SI algorithm (ISI())

It is also possible to order the individuals in a matrix according to a linear hierarchy (Appleby 1983; de Vries 1995,
1998). This is implemented in the function ISI() that re-orders the matrix according to the I&SI algorithm suggested
by de Vries (1998)). Strictly speaking, applying this algorithm is only justified if there is linearity in the matrix in the
first place. This can be tested with h.index() function (see above). For illustration, I also present an example for a
non-linear hierarchy. Note that the application of the I&SI method does not necessarily result in a unique solution.
This is likely related to the assumption that actually the matrix has to be linear. In other words, we can apply the
I&SI algorithm to any matrix, but whether this reflects a linear ordering depends on whether there actually is such a
linear order in the first place. Let’s start with de Vries’ (1998) example, which can be ordered linearly according to
de Vries’ randomization test (de Vries 1995).

data(devries98)

set.seed(123)

h.index(devries98)

## variable value

## 1 N 10.0000

## 2 h index 0.5818

## 3 h’ index 0.6424

## 4 expected h 0.2743

## 5 p right 0.0130

## 6 randomizations 1000.0000

## 7 tied 1.0000

## 8 unknown 10.0000

ISI(devries98)

## I = 2

## SI = 7

## [[1]]

## a b v g w h k e c y

## a 0 4 5 3 0 6 2 2 3 1

## b 0 0 0 1 1 0 2 1 2 2

## v 0 0 0 2 1 0 0 2 7 7

## g 0 0 0 0 2 1 0 4 3 0

## w 2 0 0 0 0 3 0 0 2 1

## h 0 0 3 0 0 0 0 6 2 5

## k 0 0 0 0 0 0 0 0 2 1

## e 0 0 0 0 0 0 0 0 0 4

## c 0 0 0 0 1 0 2 0 0 6

## y 0 0 0 0 0 0 0 0 2 0

Now let’s look at an example for which the linearity assumption is not met. Incidentally, these data come from the
Elo-rating example given by Albers and de Vries (2001).21 We first bring the sequence into matrix form, then test
for linearity and run the ISI() function. Note that here we get three possible orderings that equally well fit a linear
hierarchy (though that linear ranking is actually not justified). All three possibilities contain one inconsistency with
a strength of 2.

data(adv)

mat <- creatematrix(winners = adv$winner, losers = adv$loser)

h.index(mat)

## variable value

## 1 N 7.0000

## 2 h index 0.4821

## 3 h’ index 0.5536

## 4 expected h 0.3751

## 5 p right 0.2550

## 6 randomizations 1000.0000

## 7 tied 1.0000

## 8 unknown 4.0000

21Remember, this is exactly the point of Elo-rating, i.e. it does not assume a linear order across the entire time period, but rather handles
temporal changes and assigns individual scores, not ranks.
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set.seed(123)

res <- ISI(mat)

## more than 1 solution

## I = 1

## SI = 2

With ISIranks() we can have the actual ranks returned in a more readable format. The actual sorting (either by ID
or average rank) can be controlled via sortbyID=. The results here indicate that four individuals had the same rank
assigned in each of the three rankings (a, b, c and d). Three others held different ranks in each of the three possible
solutions (e, f and g).

ISIranks(res, sortbyID = TRUE)

## ID avg rnkg1 rnkg2 rnkg3

## 1 a 7 7 7 7

## 2 b 1 1 1 1

## 3 c 2 2 2 2

## 4 d 3 3 3 3

## 5 e 5 6 4 5

## 6 f 5 5 6 4

## 7 g 5 4 5 6

Custom plots of Elo-ratings

This section gives a few hints on how to plot Elo-ratings in case your not satisfied with the results of the standard
eloplot() function. The main thing to know is that the ratings for each individual are stored in the results of
elo.seq(), specifically in the list item cmat.22 The actual object is a matrix, and contains a column for each
individual and a row for each date. For example:

data(adv); data(advpres)

SEQ <- elo.seq(winner = adv$winner, loser = adv$loser, Date = adv$Date, presence = advpres)

ratings <- SEQ$cmat

head(ratings)

## b c g d e a f

## [1,] 1050 950 1000 1000 1000 1000 NA

## [2,] 1061 1007 943 976 989 992 NA

## [3,] 1072 1056 951 951 978 984 1000

## [4,] 1082 1092 959 915 968 977 979

## [5,] 1093 1098 968 946 957 969 NA

## [6,] 1086 1104 976 977 934 961 938

Note that this approach is illustrated in case you use the default Elo-ratings, i.e. when init="average" is set in the
elo.seq() step (which it is by default). I have not tested it, but this plotting approach should in principle also work
for the two other modes of init=.

The only thing left that we need for creating our plot are the actual dates, which are not part of the \$cmat matrix.
The dates can be found in the item truedates, which again is part of the output of elo.seq() (which we stored in
the object SEQ).

dates <- SEQ$truedates

head(dates)

## [1] "2010-01-01" "2010-01-02" "2010-01-03" "2010-01-04" "2010-01-05" "2010-01-06"

22list items can be accessed with the $ character
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So now we can do the plot. We start by setting up an empty plot,23 which we subsequently fill with our data,
specifically looping through each individual (i.e. columns in ratings). Then we add the axes and draw a box around
the plot.

plot(0, 0, xlim = range(dates), ylim = range(ratings, na.rm = T), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings")

for(i in 1:ncol(ratings)) points(dates, ratings[, i], type = "l")

axis.Date(1, x = dates, cex.axis = 0.8)

axis(2, las = 1, cex.axis = 0.8)

box()
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Figure 21: Elo-ratings of 7 individuals across one month.

Now, we can modify the colors for individuals. Note that I will also change the line types, just so the logic becomes
clear. The important thing here is that you need as many colors/line types as you have individuals (here seven) and
you need to specify the colors in the order in which individual occur in ratings.

plot(0, 0, xlim = range(dates), ylim = range(ratings, na.rm = T), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings")

mycols <- c("red", "green", "blue", "gold", "black", "grey", "darkred")

myltys <- c(1, 2, 3, 1, 2, 3, 1)

for(i in 1:ncol(ratings)) points(dates, ratings[, i], type = "l", col = mycols[i], lty = myltys[i])

axis.Date(1, x = dates, cex.axis = 0.8)

axis(2, las = 1, cex.axis = 0.8)

box()

If we want to have a legend it gets a bit more tricky. For this, we need to set up a plot layout, which basically creates
two plotting areas, the first (left) of which we use for the plot, and the other (right) for the legend. Setting up the
exact location for the legend is the actual tricky part, and requires a little trial and error in my experience because the
way your final figure looks like depends how your plotting system is set up. Specifically, you may want to experiment
with the x and y values in the legend(x=<...>, y=<...>) call.

layout(matrix(c(1, 2), ncol = 2), heights = c(5, 5), widths = c(4, 1))

plot(0, 0, xlim = range(dates), ylim = range(ratings, na.rm = T), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings")

mycols <- c("red", "green", "blue", "gold", "black", "grey", "darkred")

myltys <- c(1, 2, 3, 1, 2, 3, 1)

for(i in 1:ncol(ratings)) points(dates, ratings[, i], type = "l", col = mycols[i], lty = myltys[i])

23The main reason for this seemingly complicated way is that we want custom axes. There might be a more straightforward way of doing
this, but I am not aware of it.
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Figure 22: Elo-ratings of 7 individuals across one month. Individuals are coded by color and line type.

axis.Date(1, x = dates, cex.axis = 0.8)

axis(2, las = 1, cex.axis = 0.8)

box()

# set margins for legend plot

par(mar = c(5, 0.5, 3.8, 0.5))

plot(1:2, 1:2, xaxt = "n", yaxt = "n", type = "n", bty = "n", ylab = "", xlab = "")

legend(x = 1, y = 2.04, colnames(ratings), cex = 0.8, bty = "n", pch = 16, pt.cex = 1, col = mycols,

lty = myltys)

Finally, we may want to add symbols on top of the lines so that distinction between individuals becomes clearer in
addition or replacing the colour approach. Because putting symbols on for each single interaction may clutter the plot,
I find it useful to use only every Xth data point. In the example we use every 3rd point (stp <- 3). The data come
from yet another list item in the results ($nmat).

ias <- apply(SEQ$nmat, 2, cumsum)

stp <- 3

layout(matrix(c(1, 2), ncol = 2), heights = c(5, 5), widths = c(4, 1))

plot(0, 0, xlim = range(dates), ylim = range(ratings, na.rm = T), axes = FALSE, xlab = "Date", ylab = "Elo-ratings")

mycols <- c("red", "green", "blue", "gold", "black", "grey", "darkred")

myltys <- c(1, 2, 3, 1, 2, 3, 1)

mysymbs <- c(15:21)

for(i in 1:ncol(ratings)) {

points(dates, ratings[, i], type = "l", col = mycols[i], lty = myltys[i])

pos <- sapply(unique(ias[, i] %/% stp),

function(X)min(which(ias[, i] %/% stp == X))

)[-1]

points(dates[pos], ratings[pos, i], pch = mysymbs[i], col = mycols[i])

}

axis.Date(1, x = dates, cex.axis = 0.8)

axis(2, las = 1, cex.axis = 0.8)

box()

par(mar = c(5, 0.5, 3.8, 0.5))

plot(1:2, 1:2, xaxt = "n", yaxt = "n", type = "n", bty = "n", ylab = "", xlab = "")

legend(1, 2.04, colnames(ratings), cex = 0.8, bty="n", pch = mysymbs, pt.cex = 1, col = mycols, lty = myltys)

Further notes on the stability index

Originally, Neumann et al. (2011) defined the stability index S as:
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Figure 23: Elo-ratings of 7 individuals across one month. Individuals are coded by color and line type, which are noted in the
legend.
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Figure 24: Elo-ratings of 7 individuals across one month. Individuals are coded by color and line type, which are noted in the
legend. For each individual, ratings after every third interaction are highlighted.
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S =

�d

i=1
(Ci × wi)

�d

i=1
(Ni)

(1)

with:

Ci: the sum of absolute differences between rankings of two consecutive days

wi: a weighting factor determined as the standardized Elo-rating of the highest-ranked individual involved in a rank
change

Ni: the number of individuals present on both days

d: the number of days

This approach was (justifiably so) criticized by McDonald and Shizuka (2013), who pointed out that (1) S is coded
against intuition, i.e., S = 0 indicates a stable hierarchy and larger values unstable situations, and (2) S is not
standardized, i.e., its maximal value depends on the number of individuals present.

McDonald and Shizuka (2013) suggested the following modification:

St = 1 −

S

2n
(2)

where S is the stability index as defined above (equation 1) and n is the group size.

As far as I can see, this approach only applies to situations in which group size is stable, and as such does not do
justice to one of the major advantages of Elo-rating, i.e., its ability to work on data sets in which group size changes.

A stability index that includes the suggestions of McDonald and Shizuka (2013) but preserves the ability to deal with
varying group sizes can be defined as follows:

S = 1 −

�d

i=2
(Ci × wi)

�d

i=2
(Mi)

(3)

where Ci and wi are defined as above and Mi is the sum of absolute rank changes per day if the hierarchy completely
reversed.24 This index now ranges between 0 and 1, where 1 indicates total stability (no changes) and 0 indicates total
instability (complete reversal of rank order every other day). Note that Mi depends on group size, but can take into
account varying group sizes because it is calculated for each single day. Note also that the index can only be calculated
from the second day onward (see the index i), because it is based on changes between two consecutive days (it does
not make sense to calculate S for the first day of a study because there is no day before from which rank changes can
be assessed). This was incorrectly displayed in the original equation 1, but was correctly implemented in the functions
supplied in the supplementary material for the Animal Behaviour paper (Neumann et al. 2011).

A final note. I did not change the symbol for the modified index, i.e., I kept it as ‘S’ for now. The functions in the
current version of the EloRating-package (v. 0.43) calculate S following equation 3, i.e., S is standardized between 0
and 1, and 1 indicates a stable hierarchy.

24In a group of three animals this would amount to 4, if n = 4 Mi = 8, if n = 5 Mi = 12, if n = 6 Mi = 18, etc. In other words, this is
maximally possible magnitude of the sum of rank changes. Mi will always be positive and Mi ≥ Ci.
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Appendix

This code produces figure 1.

# run model (note that for simplicity this is a GLM and not a mixed model)

mod <- glm(parasites ~ elo, data = parasites, family = "poisson")

# calculate predicted values

pdata <- data.frame(elo = seq(min(parasites$elo), max(parasites$elo), length.out = 51))

pdata$par <- predict(mod, newdata = pdata, type = "r")

# add some colour

xcols <- rainbow(n = 9, alpha = 0.5)[parasites$id]

# plot and draw model on top

plot(parasites$elo, parasites$parasites, pch = 16, col = xcols,

xlab = "Elo rating", ylab = "parasite count", las = 1)

points(pdata$elo, pdata$par, type = "l")

This code produces figure 6.

plot(0, 0, "n", xlim = c(1,10), ylim = c(500, 1500), xlab = "prior ordinal rank",

ylab = "custom startvalue", cex.axis = 0.8, cex.lab = 0.8, las = 1)

shapes <- c(0, 0.1, 0.3, 0.5, 1)

xcols <- c("black", "grey", "red", "yellow", "blue")

for(i in 1:length(shapes)) {

points(myranks, createstartvalues(ranks = myranks, shape = shapes[i])$res, type = "l",

col = xcols[i], lwd = 2)

}

legend("topright", lty = 1, col = xcols, legend = shapes, lwd = 2, title = "shape", bty = "n",

cex = 0.7)

This code produces figure 8.

par(mfrow = c(1, 3))

dates <- res1$truedates

mycols <- c("red", "blue", "gold", "black", "grey", "green", "darkred")

ratings1 <- res1$cmat

ratings1 <- ratings1[, sort(colnames(ratings1))]

plot(0, 0, type = "n", xlim = range(dates), ylim = c(600, 1400), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings", cex.lab = 0.7)

for(i in 1:ncol(ratings1)) points(dates, ratings1[, i], type = "l", col = mycols[i])

axis.Date(1, x = dates, cex.axis = 0.7)

axis(2, las = 1, cex.axis = 0.7)

box()

ratings2 <- res2$cmat

ratings2 <- ratings2[, sort(colnames(ratings2))]

plot(0, 0, type = "n", xlim = range(dates), ylim = c(600, 1400), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings", cex.lab = 0.7)

for(i in 1:ncol(ratings2)) points(dates, ratings2[, i], type = "l", col = mycols[i])

axis.Date(1, x = dates, cex.axis = 0.7)

axis(2, las = 1, cex.axis = 0.7)

box()

plot(0, 0, type = "n", xlim = range(dates), ylim = c(0, 1), axes = FALSE, xlab = "Date",

ylab = "correlation coefficient", cex.lab = 0.7)

for(i in 1:nrow(ratings1)) points(dates[i], cor(ratings1[i, ], ratings2[i, ]), pch = 16)

axis.Date(1, x = dates, cex.axis = 0.7)

axis(2, las = 1, cex.axis = 0.7)

box()

This code produces figure 10.
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xdata <- read.table(system.file("ex-sequence.txt", package = 'EloRating'), header = TRUE)

# no prior knowledge

s1 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date)

# use the above calculated ratings as known 'ranks'

myranks <- 1:length(extract_elo(s1))

names(myranks) <- names(extract_elo(s1))

mystart <- createstartvalues(myranks, startvalue = 1000, k = 100)

s2 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date,

startvalue = mystart$res)

# reverse

myranks[1:10] <- 10:1

mystart <- createstartvalues(myranks, startvalue = 1000, k = 100)

s3 <- elo.seq(winner = xdata$winner, loser = xdata$loser, Date = xdata$Date,

startvalue = mystart$res)

par(mfrow = c(1, 3))

dates <- s1$truedates

mycols <- c("red", "blue", "gold", "black", "grey", "green", "darkred", "darkblue", "pink", "cyan")

# do the plots

ratings1 <- s1$cmat

ratings1 <- ratings1[, sort(colnames(ratings1))]

plot(0, 0, type = "n", xlim = range(dates), ylim = c(400, 1600), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings", cex.lab = 0.7)

for(i in 1:ncol(ratings1)) points(dates, ratings1[, i], type = "l", col = mycols[i])

axis.Date(1, x = dates, cex.axis = 0.7)

axis(2, las = 1, cex.axis = 0.7)

box()

ratings2 <- s2$cmat

ratings2 <- ratings2[, sort(colnames(ratings2))]

plot(0, 0, type = "n", xlim = range(dates), ylim = c(400, 1600), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings", cex.lab = 0.7)

for(i in 1:ncol(ratings2)) points(dates, ratings2[, i], type = "l", col = mycols[i])

axis.Date(1, x = dates, cex.axis = 0.7)

axis(2, las = 1, cex.axis = 0.7)

box()

ratings3 <- s3$cmat

ratings3 <- ratings3[, sort(colnames(ratings3))]

plot(0, 0, type = "n", xlim = range(dates), ylim = c(400, 1600), axes = FALSE, xlab = "Date",

ylab = "Elo-ratings", cex.lab = 0.7)

for(i in 1:ncol(ratings3)) points(dates, ratings3[, i], type = "l", col = mycols[i])

axis.Date(1, x = dates, cex.axis = 0.7)

axis(2, las = 1, cex.axis = 0.7)

box()

This code produces figure 15.

plot(0, 0, type = "n", xlim = c(0, 500), ylim = c(-220, -100), las = 1, xlab = bquote(italic(k)),

ylab = "log likelihood", yaxs = "i")

points(ores$complete$k, ores$complete$loglik, type = "l", col = "blue", lwd = 2)

arrows(x0 = ores$best$k, y0 = -230, x1 = ores$best$k, y1 = -220, col = "blue", lwd = 2, xpd = TRUE, length = 0.1)

pdata <- ores2$complete[ores2$complete$fight == ores2$best$fight, ]

points(pdata$threat, pdata$loglik, type = "l", col = "red")

arrows(x0 = ores2$best$threat, y0 = -230, x1 = ores2$best$threat, y1 = -220, col = "red", lwd = 2, xpd = TRUE, length = 0.1)

pdata <- ores2$complete[ores2$complete$fight == 10, ]

points(pdata$threat, pdata$loglik, type = "l", col = "red", lty = 3)

x <- pdata$threat[which.max(pdata$loglik)]

arrows(x0 = x, y0 = -230, x1 = x, y1 = -220, col = "red", lwd = 2, xpd = TRUE, length = 0.1, lty = 3)

pdata <- ores2$complete[ores2$complete$threat == ores2$best$threat, ]

points(pdata$fight, pdata$loglik, type = "l", col = "grey")

arrows(x0 = ores2$best$fight, y0 = -230, x1 = ores2$best$fight, y1 = -220, col = "grey", lwd = 2, xpd = TRUE, length = 0.1)

pdata <- ores2$complete[ores2$complete$threat == 500, ]
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points(pdata$fight, pdata$loglik, type = "l", col = "grey", lty = 3)

x <- pdata$fight[which.max(pdata$loglik)]

arrows(x0 = x, y0 = -230, x1 = x, y1 = -220, col = "grey", lwd = 2, xpd = TRUE, length = 0.1, lty = 3)

legend("bottom", legend = c("one interaction type", "threat (fight fixed)", "fight (threat fixed)"),

col = c("blue", "red", "grey"), lty = 1, cex = 0.7)

This code produces figure 17.

elotable <- list(0:3, 4:10, 11:17, 18:24, 25:31, 32:38, 39:45, 46:52, 53:59, 60:66, 67:74, 75:81, 82:88, 89:96,

97:103, 104:111, 112:119, 120:127, 128:135, 136:143, 144:151, 152:159, 160:168, 169:177,

178:186, 187:195, 196:205, 206:214, 215:224, 225:235, 236:246, 247:257, 258:269, 270:281,

282:294, 295:308, 309:323, 324:338, 339:354, 355:372, 373:391, 392:412, 413:436, 437:463,

464:494, 495: 530, 531:576, 577:636, 637:726, 727:920, 921:1000)

alberstable <- list(0:3, 4:10, 11:17, 18:25, 26:32, 33:39, 40:46, 47:53, 54:61, 62:68, 69:76, 77:83, 84:91,

92:98, 99:106, 107:113, 114:121, 122:129, 130:137, 138:145, 146:153, 154:162, 163:170,

171:179, 180:188, 189:197, 198:206, 207:215, 216:225, 226:235, 236:245, 246:256, 257:267,

268:278, 279:290, 291:302, 303:315, 316:328, 329:344, 345:357, 358:374, 375:391, 392:411,

412:432, 433:456, 457:484, 485:517, 518:559, 560:619, 620:735, 736:1000)

elotable <- data.frame(rtgdiff = unlist(elotable),

P = rep(seq(0.5, 1, by = 0.01), unlist(lapply(elotable, length))))

alberstable <- data.frame(rtgdiff = unlist(alberstable),

P = rep(seq(0.5, 1, by = 0.01), unlist(lapply(alberstable, length))))

w <- rep(0, 1001) # winner rating: constant

l <- w - 0:1000 # loser rating: varying

elonorm <- numeric(length(w))

eloexpo <- numeric(length(w))

eloopti <- numeric(length(w))

for(i in 1:length(w)) {

elonorm[i] <- winprob(w[i], l[i], normprob = TRUE)

eloexpo[i] <- winprob(w[i], l[i], normprob = FALSE)

eloopti[i] <- winprob(w[i], l[i], normprob = FALSE, fac = 0.01)

}

plot(0, 0, type = "n", las = 1, yaxs = "i",

xlim = c(0, 1000), ylim = c(0.5, 1),

xlab = "rating difference",

ylab = "winning probability")

points(abs(l), elonorm, "l", col = "red")

points(abs(l), eloexpo, "l", col = "gold")

points(abs(l), eloopti, "l", col = "grey")

points(alberstable$rtgdiff, alberstable$P, type="l", col="red")

points(elotable$rtgdiff, elotable$P, type="l", col="gold")

legend("bottomright",

legend = c("normal", "exponential", "exponential (alternative)"),

col = c("red", "gold", "grey"),

lwd = 2,

cex = 0.9)

This code produces figure 18.

set.seed(123)

n <- 100

xres <- data.frame(nid = sample(8:26, n, TRUE),

r1 = NA, r2 = NA,

k = sample(50:300, n, TRUE))

for (i in 1:length(xres$nid)) {

xd <- randomsequence(nID = xres$nid[i], avgIA = sample(3:100, 1),

reversals = runif(1, 0, 0.4))$seqdat

allids <- letters[1:xres$nid[i]]

w <- allids[xd$winner]

l <- allids[xd$loser]

kvals <- rep(res$k[i], length(w))
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svals <- rep(1000, length(allids))

xres1 <- fastelo(w, l, allids, kvals, svals, NORMPROB = TRUE)

xres2 <- fastelo(w, l, allids, kvals, svals, NORMPROB = FALSE)

xind <- sample(1:xres$nid[i], 1)

xres$r1[i] <- xres1[[1]][xind]

xres$r2[i] <- xres2[[1]][xind]

}

plot(xres$r1, xres$r2, xlab = "normal", ylab = "exponential", las = 1)

abline(0, 1)

This document took 5.4 minutes to compile.
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