
Distance to default package

Benjamin Christoffersen

February 11, 2020

This package provides fast functions to work with the Merton’s distance to default model. We will only
briefly cover the model here. See e.g., [5] for a more complete coverage. Denote the observed market values
by St and unobserved asset values by Vt. We assume that Vt follows a geometric Brownian motion

dVt = µVt dt+ σVt dWt

We observe the asset values over increments of dt in time. Let Vk denote the value at t0 + k · dt. Thus,

Vk+1 = Vk exp

((
µ− 1

2
σ2

)
dt+ σWt

)
We further let r denote the risk free rate, Dt denote debt due at time t+ T . Then

C(Vt, Dt, T, σ, r) = VtN(d1)−Dt exp (−rT)N(d1 − σ
√
T)

d1 =
log(Vt)− logDt +

(
r + 1

2σ
2
)
T

σ
√
T

(1)

St = C(Vt, Dt, T, σ, r) (2)

where C is a European call option price, T is the time to maturity, Dt is the debt to due at time T + t, and
r is the risk free rate. Common choices tend to be T = 1 year and Dt is the short term debt plus half of the
long term debt. The distance-to-default is

DDt =
log(Vt)− log(Dt) + (µ− σ2/2)T

σ
√
T

It is a very good predictor of default risk despite it’s simplicity [see e.g., 1]. However, to compute it we would
need the value of the underlying asset, the drift, and volatility. This package package provides methods to
estimate these.

Equation (2) can be computed with the BS_call function. Further, the get_underlying function can
be used to invert call option price in equation (2)

library(DtD)

(S <- BS_call(100, 90, 1, .1, .3))

[1] 22.51

get_underlying(S, 90, 1, .1, .3)

[1] 100

To illustrate the above then we can simulate the underlying and transform the data into the stock price
as follows

1

assign parameters

vol <- .1

mu <- .05

dt <- .05

V_0 <- 100

t. <- (1:50 - 1) * dt

D <- c(rep(80, 27), rep(70, length(t.) - 27))

r <- c(rep(0, 13), rep(.02, length(t.) - 13))

simulate underlying

set.seed(seed <- 83992673)

V <- V_0 * exp(

(mu - vol^2/2) * t. + cumsum(c(

0, rnorm(length(t.) - 1, sd = vol * sqrt(dt)))))

compute stock price

S <- BS_call(V, D, T. = 1, r, vol)

plot(t., S, type = "l", xlab = "Time", ylab = expression(S[t]))

0.0 0.5 1.0 1.5 2.0 2.5

20
30

40

Time

S
t

Despite that the model assume a constant risk free rate than we let it vary in this example. We end by
plotting the stock price. Further, we can confirm that we the same underlying after transforming back

all.equal(V, get_underlying(S, D, 1, r, vol))

[1] TRUE

We could also have used the simulation function in the package

set.seed(seed) # use same seed

sims <- BS_sim(

vol = vol, mu = mu, dt = dt, V_0 = V_0, D = D, r = r, T. = 1)

isTRUE(all.equal(sims$V, V))

[1] TRUE

isTRUE(all.equal(sims$S, S))

[1] TRUE

2

1 Drift and volatility estimation

There are a few ways to estimate the volatility, σ, and drift, µ. This package only includes the iterative
procedure and maximum likelihood method covered in [4, 6, 3, 1]. We denote the former as the “iterative”
method and the latter as the MLE. We have not implemented the method where one solves two simultaneous
equation as it will be based on two measurements and may be quite variable [as mentioned in 2].

The iterative methods is as follows. Start with an initial guess of the volatility and denote this σ̂(0).
Then for i = 1, 2, . . .

1. compute the underlying asset values Vk = C−1(Sk, σ̂
(i−1)) where C−1 is the inverse of the call option

price in equation (2) and implicitly depend on Dt, T , and r. Then compute the log returns xk =
log Vk − log Vk−1.

2. compute the maximum likelihood estimate as if we observed the log returns. I.e. compute

µ̃ =

∑n
k=1 xk∑n
k=1 dtk

=
log Vn − log V0∑n

k=1 dtk(
σ̂(i)
)2

=
1

n

n∑
k=1

(
xk√
dtk
−
√
dtkµ̃

)2

µ̂ = µ̃+

(
σ̂(i)
)2

2
(3)

where we have extended the model to unequal gaps each with length dtk.

3. Repeat step 1 if (σ̂(i), µ̂(i)) is far from (σ̂(i−1), µ̂(i−1)). Otherwise stop.

The parameters can be estimated with the BS_fit function. The iterative method is used in the following
call

simulate data

set.seed(52722174)

sims <- BS_sim(

vol = .2, mu = .05, dt = 1/252, V_0 = 100, r = .01, T. = 1,

simulate firm that grows partly by lending

D = 70 * (1 + .01 * (0:(252 * 4)) / 252))

the sims data.frame has a time column. We need to pass this

head(sims$time, 6)

[1] 0.000000 0.003968 0.007937 0.011905 0.015873 0.019841

estimate parameters

it_est <- BS_fit(

S = sims$S, D = sims$D, T. = sims$T, r = sims$r, time = sims$time,

method = "iterative")

it_est

$ests

mu vol

-0.06848 0.19701

##

$n_iter

[1] 19

##

$success

[1] TRUE

3

The volatility is quite close the actual value while the drift is a bit off. This may be due to the fact that
the likelihood is flat in the drift. The maximum likelihood estimator is obtained by maximizing the observed
log likelihood

L(µ, σ, ~S) = −n log
(
σ2
)
−

n∑
k=1

(
log C−1(Sk,σ)

C−1(Sk−1,σ)
−
(
µ− σ2/2

)
dtk

)2
σ2dtk

− 2

n∑
k=1

(
logC−1 (Sk, σ) + log

∣∣C ′ (C−1 (Sk, σ) , σ
)∣∣)+ . . .

(4)

where C−1 is the inverse of the call option price in equation (2) and implicitly depend on Dt, T , and r. Notice
that we need to use dtk in (4) and the time to maturity, T , in C and C−1. The last term in equation (4)
follows from the change of variable

X = h−1(Y)

fY (y) = fX
(
h−1 (y)

) ∣∣(h−1)′ (y)
∣∣

= fX
(
h−1 (y)

) ∣∣∣∣ 1

h′ (h−1 (y))

∣∣∣∣
(5)

where f denotes a density and the subscript denotes which random variable the density is for.
The first order conditions for the drift, µ, is

n∑
k=1

xk − (µ− σ2/2)dtk =

n∑
k=1

xk − (µ− σ2/2)

n∑
k=1

dtk

= 0

⇔ µ =

∑n
k=1 xk∑n
k=1 dtk

+
σ2

2

=
logC−1(Sn, σ)− logC−1(S0, σ)∑n

k=1 dtk
+
σ2

2

as in Equation (3). Substituting into the log-likelihood in Equation (4) yields

L(σ, ~S) = −n log
(
σ2
)
−

n∑
k=1

(
log C−1(Sk,σ)

C−1(Sk−1,σ)
− logC−1(Sn,σ)/C

−1(S0,σ)∑n
k=1 dtk

dtk

)2
σ2dtk

− 2

n∑
k=1

(
logC−1 (Sk, σ) + log

∣∣C ′ (C−1 (Sk, σ) , σ
)∣∣)+ . . .

which we can optimize numerically.
We can estimate the parameters with the MLE method as follows

mle_est <- BS_fit(

S = sims$S, D = sims$D, T. = sims$T, r = sims$r, time = sims$time,

method = "mle")

mle_est

$ests

mu vol

-0.06847 0.19787

##

$n_iter

[1] 21

##

$success

[1] TRUE

4

The result are usually very similar although they need not to as far as I gather

it_est$est - mle_est$est

mu vol

-7.883e-06 -8.561e-04

The iterative method is faster though

library(microbenchmark)

with(sims,

microbenchmark(

iter = BS_fit(

S = S, D = D, T. = T, r = r, time = time, method = "iterative"),

mle = BS_fit(

S = S, D = D, T. = T, r = r, time = time, method = "mle"),

times = 5))

Unit: milliseconds

expr min lq mean median uq max neval

iter 81.9 82.30 83.29 82.89 84.23 85.11 5

mle 89.8 90.12 90.38 90.14 90.45 91.39 5

We can also estimate the parameters when there unequal time gaps in the data set

drop random rows

sims <- sims[sort(sample.int(nrow(sims), 100L)),]

the gap lengths are not equal anymore

range(diff(sims$time))

[1] 0.003968 0.162698

estimate parameters

BS_fit(

S = sims$S, D = sims$D, T. = sims$T, r = sims$r, time = sims$time,

method = "iterative")

$ests

mu vol

-0.07127 0.21468

##

$n_iter

[1] 21

##

$success

[1] TRUE

References

[1] Sreedhar T. Bharath and Tyler Shumway. Forecasting default with the merton distance to default model.
The Review of Financial Studies, 21(3):1339–1369, 2008.

[2] Peter Crosbie. Modeling default risk. Technical report, Moody, December 2003.

[3] Jin-Chuan Duan, Geneviève Gauthier, and Jean-Guy Simonato. On the equivalence of the kmv and
maximum likelihood methods for structural credit risk models. 2004.

5

[4] Jin-Chuan Duan. Maximum likelihood estimation using price data of the derivative contract. Mathemat-
ical Finance, 4(2):155–167, 1994.

[5] David Lando. Credit risk modeling: theory and applications. Princeton University Press, 2009.

[6] Maria Vassalou and Yuhang Xing. Default risk in equity returns. The Journal of Finance, 59(2):831–868,
2004.

6

