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2 descriptives

Dpit-package Distribution Pitting

Description

Compares distributions with one another in terms of their fit to each sample in a dataset that contains
multiple samples, as described in Joo, Aguinis, and Bradley (2017). Users can examine the fit
of seven distributions per sample: pure power law, lognormal, exponential, power law with an
exponential cutoff, normal, Poisson, and Weibull.

Details

Based on the R code found at: http://tuvalu.santafe.edu/~aaronc/powerlaws/. In particu-
lar, we borrowed heavily from Cosma R. Shalizi’s code. Finally, we owe much gratitude to Cosma
R. Shalizi, Aaron Clauset, and Yogesh Virkar for their kind responses to our questions regarding
the code we borrowed from.

Author(s)

Harry Joo, Herman Aguinis, Kyle J. Bradley

Maintainer: Harry Joo <harryjoo19@gmail.com>

References

Joo, H., Aguinis, H., & Bradley, K. J. 2017. Not all nonnormal distributions are created equal:
Improved theoretical and measurement precision. Journal of Applied Psychology. Advance online
publication. doi: 10.1037/apl0000214

descriptives descriptives

Description

Returns a data frame containing descriptive statistics per sample.

Usage

descriptives(x)

Arguments

x A data set

http://tuvalu.santafe.edu/~aaronc/powerlaws/
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Value

Negative.values? Whether or not there are any negative values in a sample. If there is at least
one negative value, then the program will print out "Negative values detected" in the relevant
cell. If there are no negative values, then the program will leave the cell blank.

zeros? Whether or not there are any zero values in a sample. If there is at least one zero value, then
the program will print out "zero values detected" in the relevant cell. If there are no negative
values, then the program will leave the cell blank.

N Number of observations in a sample–before the package removes any non-positive values that
lead to incalculable expressions (e.g., the log of zero is undefined).

median Median value of a sample–before removing any non-positive values.

mean Mean value of a sample–before removing any non-positive values.

SD Standard deviation in a sample–before removing any non-positive values.

skewness Skew, or the amount of non-symmetry, in a sample–before removing any non-positive
values.

kurtosis Kurtosis in a sample–before removing any non-positive values.

minimum Minimum value of a sample–before removing any non-positive values.

maximum Maximum value of a sample–before removing any non-positive values.

No.of.SDs Number of standard deviations contained by a sample. That is: (maximum value -
minimum value) / standard deviation.

Examples

## Not run:
#The following example uses FourSamples.rda, which is a data set included in the package.

data(file = "FourSamples.rda")
out<-descriptives(FourSamples)

## End(Not run)

Dpit Distribution Pitting

Description

Compares distributions with one another in terms of their fit to each sample in a dataset that contains
multiple samples, as described in Joo, Aguinis, and Bradley (2017). Users can examine the fit
of seven distributions per sample: pure power law, lognormal, exponential, power law with an
exponential cutoff, normal, Poisson, and Weibull. Automation features allow the user to compare
all distributions for all samples with a single command line, which creates a separate row containing
results for each sample until the entire dataset has been analyzed. Automation features also skip
over any unsuccessful calculations and continues analyzing the remainder of the samples. When
calculations fail (e.g., sample size was too small), "NA" entries will be printed in the relevant cells
of the results matrix before continuing with subsequent calculations.
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Usage

Dpit(x)

Arguments

x A data set

Details

For a given sample, the Dpit() function does not truncate (i.e., discard) data points that fall below
a certain threshold, or xmin. More precisely, Dpit() sets xmin at the lowest positive number in the
sample. This is because, theoretically, the function focuses on assessing the fit of distributions in
their entirety rather than their tail ends. In other words, the goal of Dpit() is to conclude whether a
sample itself follows a certain type of distribution, not whether the tail end of the sample follows a
certain type of distribution.

Value

This function returns a data frame containing the complete detailed results of distribution pitting.
In the data frame, each row corresponds to a sample, or data vector. That is, the first row in the
data frame is sample #1, the second row is sample #2, etc. Each column in the data frame shows
a distribution pitting statistic per sample. The data frame contains a large number of columns–as
described in detail below:

PLvCut.rawLR A loglikelihood ratio (LR) quantifying the degree to which a pure power law (PL)
fits the focal sample better than a power law with an exponential cutoff (Cut). So, a positive
value means that the power law with an exponential cutoff fits worse, whereas a negative value
means that the pure power law fits worse. This loglikelihood ratio is not normalized–hence,
the word "raw" in the label.

PLvCut.p The p value associated with the previously mentioned loglikelihood ratio, or PLvCut.rawLR.
The p value indicates the extent to which random fluctuations alone likely explain the pres-
ence of a non-zero loglikelihood ratio, such that loglikelihood ratio = 0 constitutes the null
hypothesis. The lower the p value, the less likely that the loglikelihood ratio is simply due to
chance.

PLvWeib.rawLR A loglikelihood ratio (LR) quantifying the degree to which a pure power law (PL)
fits the focal sample better than a Weibull distribution (Weib). So, a positive value means that
the Weibull distribution fits worse, whereas a negative value means that the pure power law
fits worse.

PLvWeib.normLR Normalized value of the previously mentioned loglikelihood ratio, or PLvWeib.rawLR.

PLvWeib.p The p value associated with the previously mentioned loglikelihood ratio, or PLvWeib.normLR.

PLvLgN.rawLR A loglikelihood ratio (LR) quantifying the degree to which a pure power law (PL)
fits the focal sample better than a lognormal distribution (LgN). So, a positive value means
that the lognormal distribution fits worse, whereas a negative value means that the pure power
law fits worse.

PLvLgN.normLR Normalized value of the previously mentioned loglikelihood ratio, or PLvLgN.rawLR.

PLvLgN.p The p value associated with the previously mentioned loglikelihood ratio, or PLvLgN.normLR.
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PLvExp.rawLR A loglikelihood ratio (LR) quantifying the degree to which a pure power law (PL)
fits the focal sample better than an exponential distribution (Exp). So, a positive value means
that the exponential distribution fits worse, whereas a negative value means that the pure power
law fits worse.

PLvExp.normLR Normalized value of the previously mentioned loglikelihood ratio, or PLvExp.rawLR.

PLvExp.p The p value associated with the previously mentioned loglikelihood ratio, or PLvExp.normLR.

PLvPoi.rawLR A loglikelihood ratio (LR) quantifying the degree to which a pure power law (PL)
fits the focal sample better than a Poisson distribution (Poi). So, a positive value means that
the Poisson distribution fits worse, whereas a negative value means that the pure power law
fits worse.

PLvPoi.normLR Normalized value of the previously mentioned loglikelihood ratio, or PLvPoi.rawLR.

PLvPoi.p The p value associated with the previously mentioned loglikelihood ratio, or PLvPoi.normLR.

CutvWeib.rawLR A loglikelihood ratio (LR) quantifying the degree to which a power law with an
exponential cutoff (Cut) fits the focal sample better than a Weibull distribution (Weib). So, a
positive value means that the Weibull distribution fits worse, whereas a negative value means
that the power law with an exponential cutoff fits worse.

CutvWeib.normLR Normalized value of the previously mentioned loglikelihood ratio, or CutvWeib.rawLR.

CutvWeib.p The p value associated with the previously mentioned loglikelihood ratio, or CutvWeib.normLR.

CutvLgN.rawLR A loglikelihood ratio (LR) quantifying the degree to which a power law with an
exponential cutoff (Cut) fits the focal sample better than a lognormal distribution (LgN). So,
a positive value means that the lognormal distribution fits worse, whereas a negative value
means that the power law with an exponential cutoff fits worse.

CutvLgN.normLR Normalized value of the previously mentioned loglikelihood ratio, or CutvLgN.rawLR.

CutvLgN.p The p value associated with the previously mentioned loglikelihood ratio, or CutvLgN.normLR.

CutvExp.rawLR A loglikelihood ratio (LR) quantifying the degree to which a power law with an
exponential cutoff (Cut) fits the focal sample better than an exponential distribution (Exp). So,
a positive value means that the exponential distribution fits worse, whereas a negative value
means that the power law with an exponential cutoff fits worse.

CutvExp.normLR Normalized value of the previously mentioned loglikelihood ratio, or CutvExp.rawLR.

CutvExp.p The p value associated with the previously mentioned loglikelihood ratio, or Cutv-
Exp.normLR.

CutvPoi.rawLR A loglikelihood ratio (LR) quantifying the degree to which a power law with an
exponential cutoff (Cut) fits the focal sample better than a Poisson distribution (Poi). So, a
positive value means that the Poisson distribution fits worse, whereas a negative value means
that the power law with an exponential cutoff fits worse.

CutvPoi.normLR Normalized value of the previously mentioned loglikelihood ratio, or CutvPoi.rawLR.

CutvPoi.p The p value associated with the previously mentioned loglikelihood ratio, or CutvPoi.normLR.

WeibvLgN.rawLR A loglikelihood ratio (LR) quantifying the degree to which a Weibull distribution
(Weib) fits the focal sample better than a lognormal distribution (LgN). So, a positive value
means that the lognormal distribution fits worse, whereas a negative value means that the
Weibull distribution fits worse.

WeibvLgN.normLR Normalized value of the previously mentioned loglikelihood ratio, or Weib-
vLgN.rawLR.
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WeibvLgN.p The p value associated with the previously mentioned loglikelihood ratio, or Weib-
vLgN.normLR.

WeibvExp.rawLR A loglikelihood ratio (LR) quantifying the degree to which a Weibull distribution
(Weib) fits the focal sample better than an exponential distribution (Exp). So, a positive value
means that the exponential distribution fits worse, whereas a negative value means that the
Weibull distribution fits worse.

WeibvExp.normLR Normalized value of the previously mentioned loglikelihood ratio, or Weibv-
Exp.rawLR.

WeibvExp.p The p value associated with the previously mentioned loglikelihood ratio, or Weibv-
Exp.normLR.

WeibvPoi.rawLR A loglikelihood ratio (LR) quantifying the degree to which a Weibull distribution
(Weib) fits the focal sample better than a Poisson distribution (Poi). So, a positive value
means that the Poisson distribution fits worse, whereas a negative value means that the Weibull
distribution fits worse.

WeibvPoi.normLR Normalized value of the previously mentioned loglikelihood ratio, or Weib-
vPoi.rawLR.

WeibvPoi.p The p value associated with the previously mentioned loglikelihood ratio, or Weib-
vPoi.normLR.

LgNvExp.rawLR A loglikelihood ratio (LR) quantifying the degree to which a lognormal distribu-
tion (LgN) fits the focal sample better than an exponential distribution (Exp). So, a positive
value means that the exponential distribution fits worse, whereas a negative value means that
the lognormal distribution fits worse.

LgNvExp.normLR Normalized value of the previously mentioned loglikelihood ratio, or LgNvExp.rawLR.

LgNvExp.p The p value associated with the previously mentioned loglikelihood ratio, or LgN-
vExp.normLR.

LgNvPoi.rawLR A loglikelihood ratio (LR) quantifying the degree to which a lognormal distribu-
tion (LgN) fits the focal sample better than a Poisson distribution (Poi). So, a positive value
means that the Poisson distribution fits worse, whereas a negative value means that the log-
normal distribution fits worse.

LgNvPoi.normLR Normalized value of the previously mentioned loglikelihood ratio, or LgNvPoi.rawLR.

LgNvPoi.p The p value associated with the previously mentioned loglikelihood ratio, or LgN-
vPoi.normLR.

ExpvPoi.rawLR A loglikelihood ratio (LR) quantifying the degree to which an exponential dis-
tribution (Exp) fits the focal sample better than a Poisson distribution (Poi). So, a positive
value means that the Poisson distribution fits worse, whereas a negative value means that the
exponential distribution fits worse.

ExpvPoi.normLR Normalized value of the previously mentioned loglikelihood ratio, or ExpvPoi.rawLR.

ExpvPoi.p The p value associated with the previously mentioned loglikelihood ratio, or ExpvPoi.normLR.

NvPL.rawLR A loglikelihood ratio (LR) quantifying the degree to which a normal distribution (N)
fits the focal sample better than a pure power law (PL). So, a positive value means that the
pure power law fits worse, whereas a negative value means that the normal distribution fits
worse.

NvPL.normLR Normalized value of the previously mentioned loglikelihood ratio, or NvPL.rawLR.
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NvPL.p The p value associated with the previously mentioned loglikelihood ratio, or NvPL.normLR.

NvCut.rawLR A loglikelihood ratio (LR) quantifying the degree to which a normal distribution (N)
fits the focal sample better than a power law with an exponential cutoff (Cut). So, a positive
value means that the power law with an exponential cutoff fits worse, whereas a negative value
means that the normal distribution fits worse.

NvCut.normLR Normalized value of the previously mentioned loglikelihood ratio, or NvCut.rawLR.

NvCut.p The p value associated with the previously mentioned loglikelihood ratio, or NvCut.normLR.

NvWeib.rawLR A loglikelihood ratio (LR) quantifying the degree to which a normal distribution
(N) fits the focal sample better than a Weibull disribution (Weib). So, a positive value means
that the Weibull distribution fits worse, whereas a negative value means that the normal distri-
bution fits worse.

NvWeib.normLR Normalized value of the previously mentioned loglikelihood ratio, or NvWeib.rawLR.

NvWeib.p The p value associated with the previously mentioned loglikelihood ratio, or NvWeib.normLR.

NvLgN.rawLR A loglikelihood ratio (LR) quantifying the degree to which a normal distribution (N)
fits the focal sample better than a lognormal disribution (LgN). So, a positive value means
that the lognormal distribution fits worse, whereas a negative value means that the normal
distribution fits worse.

NvLgN.normLR Normalized value of the previously mentioned loglikelihood ratio, or NvLgN.rawLR.

NvLgN.p The p value associated with the previously mentioned loglikelihood ratio, or NvLgN.normLR.

NvExp.rawLR A loglikelihood ratio (LR) quantifying the degree to which a normal distribution (N)
fits the focal sample better than an exponential disribution (Exp). So, a positive value means
that the exponential distribution fits worse, whereas a negative value means that the normal
distribution fits worse.

NvExp.normLR Normalized value of the previously mentioned loglikelihood ratio, or NvExp.rawLR.

NvExp.p The p value associated with the previously mentioned loglikelihood ratio, or NvExp.normLR.

NvPoi.rawLR A loglikelihood ratio (LR) quantifying the degree to which a normal distribution (N)
fits the focal sample better than a Poisson disribution (Poi). So, a positive value means that the
Poisson distribution fits worse, whereas a negative value means that the normal distribution
fits worse.

NvPoi.normLR Normalized value of the previously mentioned loglikelihood ratio, or NvPoi.rawLR.

NvPoi.p The p value associated with the previously mentioned loglikelihood ratio, or NvPoi.normLR.

Note

The Dpit() function is based on the R code found at: http://tuvalu.santafe.edu/~aaronc/
powerlaws/. In particular, we borrowed heavily from Cosma R. Shalizi’s code. But our code
differs from the aforementioned code in mainly three ways. First, the Dpit() function sets xmin at
the lowest positive number in a sample to assess the fit of distributions in their entirety rather than
their tail ends. Second, our code allows for the comparison of non-pure power law distributions
with one another. Third, our code includes automation features that allow the user to compare all
distributions for all samples with a single command line, which creates a separate row containing
results for each sample until the entire dataset has been analyzed. Automation features clean each
sample by removing missing cases and non-positive values that lead to incalculable expressions
(e.g., the log of zero is undefined). Automation features also skip over any unsuccessful calculations

http://tuvalu.santafe.edu/~aaronc/powerlaws/
http://tuvalu.santafe.edu/~aaronc/powerlaws/
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and continues analyzing the remainder of the samples. When calculations fail (e.g., sample size was
too small), "NA" entries will be printed in the relevant cells of the results matrix before continuing
with subsequent calculations.

References

Clauset, A., Shalizi, C. R., & Newman, M. E. J. 2009. Power-law distributions in empirical data.
SIAM Review, 51, 661-703. Available at: http://arxiv.org/abs/0706.1062

Joo, H., Aguinis, H., & Bradley, K. J. 2017. Not all nonnormal distributions are created equal:
Improved theoretical and measurement precision. Journal of Applied Psychology. Advance online
publication. doi: 10.1037/apl0000214

Examples

## Not run:
#The following example uses FourSamples.rda, which is a data set included in the package.

data(file = "FourSamples.rda")
out<-Dpit(FourSamples)

#Full results are shown in Table 4 in Joo, Aguinis, and Bradley (2017)

#Next, to draw conclusions regarding the fit of a certain type of distribution per sample,
#we suggest that users implement three decision rules, which are described in
#the Analysis section in Joo, Aguinis, and Bradley (2017).

#Conclusions regarding the fit of distributions to the four samples in the focal data set
#--after applying the three decision rules--can be found in
#the first two and last two rows in Table 3, in Joo, Aguinis, and Bradley (2017).

## End(Not run)

FourSamples A part of the data set used in Joo, Aguinis, & Bradley (2017).

Description

A part of the data set used in Joo, Aguinis, & Bradley (2017).

Usage

data(FourSamples)

Format

A data frame consisting of four variables with varying number of observations.

v1 number of publications in top five journals in the field of Agriculture.

v2 number of publications in top five journals in the field of Agronomy.
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v228 number electrical fixtures assembled by assemblers.

v229 wirer’s ratio of production time per unit assembled to standard.

Details

Running the Dpit() function on the FourSamples dataset will produce the results reported in Table
4 in Joo, Aguinis, & Bradley (2017). Though the precise results the user obtains may very slightly
differ from those in Joo et al.’s Table 4 due to statistical fluctuations, substantive conclusions remain
the same regardless of such fluctuations.

Author(s)

Harry Joo, Herman Aguinis, Kyle J. Bradley

Maintainer: Harry Joo <harryjoo19@gmail.com>

Source

Joo, H., Aguinis, H., & Bradley, K. J. 2017. Not all nonnormal distributions are created equal:
Improved theoretical and measurement precision. Journal of Applied Psychology. Advance online
publication. doi: 10.1037/apl0000214
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