
Package ‘DoE.wrapper’
April 16, 2025

Title Wrapper Package for Design of Experiments Functionality

Version 0.13

Depends R(>= 3.1.0), FrF2(>= 1.6-5), DoE.base(>= 0.23-4), rsm

Imports stats, lhs, DiceDesign, AlgDesign(>= 1.1)

Suggests skpr

Date 2025-04-26

Description Various kinds of designs for
(industrial) experiments can be created. The package uses, and sometimes enhances,

design generation routines from other packages.
So far, response surface designs from package 'rsm', Latin hypercube
samples from packages 'lhs' and 'DiceDesign', and
D-optimal designs from package 'AlgDesign' have been implemented.

License GPL (>= 2)

LazyLoad yes

URL https://prof.bht-berlin.de/groemping/DoE/,

https://prof.bht-berlin.de/groemping/

NeedsCompilation no

Author Ulrike Groemping [aut, cre],
Lenth Russ [ctb]

Maintainer Ulrike Groemping <ulrike.groemping@bht-berlin.de>

Repository CRAN

Date/Publication 2025-04-16 14:20:15 UTC

Contents
DoE.wrapper-package . 2
bbd.design . 3
ccd.augment . 5
ccd.design . 8
CentralCompositeDesigns . 12

1

https://prof.bht-berlin.de/groemping/DoE/
https://prof.bht-berlin.de/groemping/

2 DoE.wrapper-package

Dopt.augment . 13
Dopt.design . 16
lhs.design . 21
optimality.criteria . 27
rsmformula . 30

Index 34

DoE.wrapper-package Wrapper package for design of experiments functionality

Description

This package creates various kinds of designs for (industrial) experiments. It uses, and sometimes
enhances, design generation routines from other packages. So far, response surface designs from
package rsm, designs for computer experiments (latin hypercube samples etc.) from packages lhs
and DiceDesign and D-optimal designs from package AlgDesign have been implemented.

Details

Currently, the package provides classical response surface designs from package rsm: Box-Behnken
designs by Box and Behnken (function bbd.design and central composite designs by Box and Wil-
son (ccd.design) are implemented. For the latter, there is also a function for augmenting 2-level
fractional factorials into central composite designs (ccd.design).

Furthermore, latin hypercube samples and other designs for computer experiments from packages
lhs and DiceDesign are provided.

Furthermore, D-optimal designs have been implemented, using package AlgDesign. This imple-
mentation is currently in beta shape.

All designs created by this package are class design objects, which are data frames with attributes.

Apart from providing designs, the package also provides functions for comparing the quality of
several designs with quantitative variables (function compare).

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come.

Author(s)

Ulrike Groemping

bbd.design 3

References

Box, G.E.P. and Behnken, D.W. (1960). Some new three-level designs for the study of quantitative
variables. Technometrics 2, 455-475.

Box, G.E.P., Hunter, J.S. and Hunter, W.G. (2005, 2nd ed.). Statistics for Experimenters. Wiley,
New York.

Box, G.E.P. and Wilson, K.B. (1951). On the Experimental Attainment of Optimum Conditions. J.
Royal Statistical Society, B13, 1-45.

NIST/SEMATECH e-Handbook of Statistical Methods, https://www.itl.nist.gov/div898/handbook/
pri/section3/pri3361.htm, accessed August 20th, 2009.

Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009). Response Surface Methodol-
ogy. Process and Product Optimization Using Designed Experiments. Wiley, New York.

See Also

See also ccd.design, ccd.augment, bbd.design, lhs.design, Dopt.design, Dopt.augment,
lhs-package, rsm, optFederov, optBlock, compare, FrF2

bbd.design Function for generating Box-Behnken designs

Description

Function for generating Box-Behnken designs, making use of package rsm

Usage

bbd.design(nfactors, ncenter=4, factor.names = NULL, default.levels=c(-1,1),
block.name=NULL, randomize=TRUE, seed=NULL, ...)

Arguments

nfactors number of factors

ncenter integer number of center points for each block

factor.names list of scale end values for each factor (the middle value is calculated);
names are used as variable names;
the names must not be x1, x2, ..., as these are used for the variables in coded
units;
if the list is not named, the variable names are A, B and so forth; in the coded
units used in attribute desnum, -1 corresponds to the smaller, +1 to the larger
value.

default.levels default levels (vector of length 2) for all factors for which no specific levels are
given; must consist of two numeric values for the scale ends, the default middle
level is calculated

block.name name of block factor that distinguishes between the blocks; blocks are usable
for nfactors=4 and nfactors=5 only, block.name is ignored otherwise.

https://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm
https://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm

4 bbd.design

randomize logical that indicates whether or not randomization should occur

seed optional seed for random number generation in randomization
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function bbd.design.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

... reserved for future usage

Details

Function bbd.design creates a Box-Behnken design, which is a design for quantitative factors
with all factors on three levels. Box-Behnken designs should not be used if the combinations of
the extreme levels of the factors are of interest (cf. also Myers, Montgomery and Anderson-Cook
2009). There are designs for 3 to 7 factors, and the unreplicated versions of these have 14 (3 factors),
24 (4 factors), 40 (5 factors), 48 (6 factors), and 56 (7 factors) runs plus the specified number of
center points ncenter.

Function bbd.design is an interface to function bbd from package rsm that makes this design
accessible using similar syntax as used in packages DoE.base and FrF2 and creates an output
object that is also treatable by the convenience functions available in package DoE.base.

Currently, creation of replications and repeated measurements - as would be usual for other design
functions - is not implemented. This is planned for the future, but does not have high priority.

Value

The function returns a data frame of S3 class design with attributes attached. The data frame itself
is in the original data scale. The matrix desnum attached as attribute desnum contains the coded
data, the attribute run.order contains the standard order and the actual run order of the design
(contrary to package rsm, the row names of the design refer to the actual rather than the standard
run order).

The attribute design.info is a list of design properties. The element type of that list is the char-
acter string bbd. Besides the elements present in all class design objects, there are the elements
quantitative (vector with nfactor TRUE entries), and a codings element usable in the coding
functions available in the rsm package, e.g. coded.data.

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that should not be relevant for the randomization of designs). For reproducing a random-
ized design that was produced with an earlier R version, please follow the steps described with the
argument seed.

ccd.augment 5

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come. bbd.design is based on version 1 of package rsm.

Author(s)

Ulrike Groemping

References

Box, G.E.P. and Behnken, D.W. (1960). Some new three-level designs for the study of quantitative
variables. Technometrics 2, 455-475.

Box, G.E.P., Hunter, J.S. and Hunter, W.G. (2005, 2nd ed.). Statistics for Experimenters. Wiley,
New York.

Box, G.E.P. and Wilson, K.B. (1951). On the Experimental Attainment of Optimum Conditions. J.
Royal Statistical Society, B13, 1-45.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/
pri/section3/pri3361.htm, accessed August 20th, 2009.

Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009). Response Surface Methodol-
ogy. Process and Product Optimization Using Designed Experiments. Wiley, New York.

See Also

See also FrF2, ccd.design, lhs-package, rsm

Examples

plan1 <- bbd.design(5) ## default for 5 factors is unblocked design, contrary to package rsm
plan1
blocked design for 4 factors, using default levels
plan2 <- bbd.design(4,block.name="block",default.levels=c(10,30))
plan2
desnum(plan2)
design with factor.names and modified ncenter
bbd.design(3,ncenter=6,

factor.names=list("one"=c(25,35),"two"=c(-5,20), "three"=c(20,60)))
design with character factor.names and default levels
bbd.design(3,factor.names=c("one","two", "three"), default.levels=c(10,20))

ccd.augment Function for augmenting an existing cube with a star portion, using
package rsm

Description

Function for augmenting an existing fractional factorial with a star portion in case of a late decision
for a sequential procedure.

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm

6 ccd.augment

Usage

ccd.augment(cube, ncenter = 4, columns="all", block.name="Block.ccd",
alpha = "orthogonal", randomize=TRUE, seed=NULL, ...)

Arguments

cube design generated by function FrF2. The design must not be a split-plot design,
nor a parameter design in long version.

ncenter integer number of center points, or vector with two numbers, the first for the
cube and the second for the star portion of the design.
If only one number is given, this is either used for each block (if the cube block
does not have center points yet) or for the star portion of the design only.

block.name name of block factor that distinguishes (at least) between blocks; even for un-
blocked cubes, the ccd design has a cube and a star point block

alpha “orthogonal”, “rotatable”, or a number that indicates the position of the star
points; the number 1 would create a face-centered design.

randomize logical that indicates whether or not randomization should occur

seed NULL or a vector of two integer seeds for random number generation in ran-
domization
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function ccd.augment.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

... reserved for future usage

columns not yet implemented; it is intended to later allow to add star points for only some
factors of a design (after eliminating the others as unimportant in a sequential
process), and columns will be used to indicate those

Details

The statistical background of central composite designs is briefly described under CentralCompositeDesigns.

Function ccd.augment augments an existing 2-level fractional factorial that should already have
been run with center points and should have resolution V.

In exceptional situations, it may be useful to base a ccd on a resolution IV design that allows
estimation of all 2-factor interactions of interest. Thus, it can be interesting to apply function
ccd.augment to a cube based on the estimable functionality of function FrF2 in cases where a
resolution V cube is not feasible. Of course, this does not allow to estimate the aliased 2-factor
interactions and therefore generates a warning.

ccd.augment 7

Value

The function returns a data frame of S3 class design with attributes attached. The data frame itself
is in the original data scale. The data frame desnum attached as attribute desnum is the original data
frame returned by package rsm. The attribute design.info is a list of various design properties.
The element type of that list is the character string ccd. Besides the elements present in all class
design objects, there are the elements quantitative (vector with nfactor TRUE entries), and a
codings element usable in the coding functions available in the rsm package, e.g. coded.data.

Note that the row names and the standard order column in the run.order attribute of ccd designs
based on estimability requirements (cf. also the details section) are not in conventional order and
should not be used as the basis for any calculations. The same is true for blocked designs, if the
blocking routine blockpick.big was used.

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that should not be relevant for the randomization of designs). For reproducing a random-
ized design that was produced with an earlier R version, please follow the steps described with the
argument seed.

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come. ccd.augment is based on version 1 of package rsm.

Author(s)

Ulrike Groemping

References

Box, G.E.P., Hunter, J.S. and Hunter, W.G. (2005, 2nd ed.). Statistics for Experimenters. Wiley,
New York.

Box, G.E.P. and Wilson, K.B. (1951). On the Experimental Attainment of Optimum Conditions. J.
Royal Statistical Society, B13, 1-45.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/
pri/section3/pri3361.htm, accessed August 20th, 2009.

Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009). Response Surface Methodol-
ogy. Process and Product Optimization Using Designed Experiments. Wiley, New York.

See Also

See also ccd.design, FrF2, lhs-package, rsm

Examples

purely technical examples for the sequential design creation process
start with a fractional factorial with center points
plan <- FrF2(16,5,default.levels=c(10,30),ncenter=6)

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm

8 ccd.design

collect data and add them to the design
y <- rexp(22)
plan <- add.response(plan,y)
assuming that an analysis has created the suspicion that a second order
model should be fitted (not to be expected for the above random numbers):
plan.augmented <- ccd.augment(plan, ncenter=4)
add new responses to the design
y <- c(y, rexp(14)) ## append responses for the 14=5*2 + 4 star points
r.plan.augmented <- add.response(plan.augmented, y, replace=TRUE)

for info: how to analyse results from such a desgin
lm.result <- lm(y~Block.ccd+(.-Block.ccd)^2+I(A^2)+I(B^2)+I(C^2)+I(D^2)+I(E^2),

r.plan.augmented)
summary(lm.result)
analysis with function rsm
rsm.result <- rsm(y~Block.ccd+SO(A,B,C,D,E), r.plan.augmented)
summary(rsm.result) ## provides more information than lm.result
loftest(rsm.result) ## separate lack of fit test
graphical analysis
(NOTE: purely for demo purposes, the model is meaningless here)
individual contour plot
contour(rsm.result,B~A)
several contour plots
par(mfrow=c(1,2))
contour(rsm.result,list(B~A, C~E))
many contourplots, all pairs of some factors
par(mfrow=c(2,3))
contour(rsm.result,~A+B+C+D)

ccd.design Function for accessing central composite designs from package rsm

Description

Function for accessing central composite designs from package rsm, with automatic creation of an
appropriate cube portion

Usage

ccd.design(nfactors=NULL, factor.names=NULL, default.levels=c(-1,1), ncube=NULL,
resolution=if (identical(blocks,1) & is.null(ncube)) 5 else NULL,
generators=NULL, ncenter = 4, alpha = "orthogonal",
replications=1,
block.name="Block.ccd", blocks=1,
randomize=TRUE, seed=NULL, ...)

Arguments

nfactors number of factors

ccd.design 9

factor.names list of cube corner values for each factor; names are used as variable names; the
names must not be x1, x2, ..., as these are used for the variables in coded
units;
if the list is not named, the variable names are X1, X2 and so forth; in coded
units, -1 corresponds to the smaller, +1 to the larger value.

default.levels default levels (vector of length 2) for all factors for which no specific levels are
given

ncube integer number of cube points (without center points for the cube)

resolution arabic numeral for the requested resolution of the cube portion of the design;
cubes for ccd designs should usually be at least of resolution V. the default value
for resolution is therefore 5, unless generators or blocks are specified, in
which case the default is NULL

generators generators in the form allowed in function FrF2

ncenter integer number of center points for each cube or star point block, or vector with
two numbers, the first for the cube and the second for the star portion of the
design

alpha “orthogonal”, “rotatable”, or a number that indicates the position of the star
points; the number 1 would create a face-centered design.

replications the number of replications of the design; currently, only proper replications can
be generated; these are randomized in blocks within the center point and star
blocks. The same number of replications is used for both the cube and the star
blocks.

block.name name of block factor that distinguishes between blocks; even for unblocked
cubes, the ccd design has at least one cube and one star point block

blocks the same as in function FrF2;
is EITHER
the number of blocks into which the experiment is subdivided
OR a character vector of names of independent factors that are used as block
constructors
OR a vector or list of generators similar to generators.
In the latter case, the differences to generators are

• that numbers/letters refer to the factors of the experiment and not to column
numbers of the Yates matrix

• that numbers/letters can refer to *all* nfactors factors rather than the
log2(nruns) base factors only,

• that one single number is always interpreted as the number of blocks rather
than a column reference,

• that individual numbers are allowed in a list (i.e. individual factors specified
in the experiment can be used as block factors) and

• that no negative signs are allowed.

If blocks is a single number, it must be a power of 2. A blocked design can
have at most nruns-blocks treatment factors, but should usually have fewer
than that.

10 ccd.design

If the experiment is randomized, randomization happens within blocks.

For the statistical and algorithmic background of blocked designs, see block.
Note that the blocking strategy of package FrF2 was modified with version 2
(2.1) of the package.

randomize logical that indicates whether or not randomization should occur

seed NULL or a vector of two integer seeds for random number generation in ran-
domization
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function ccd.design.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

... reserved for future usage

Details

The statistical background of central composite designs is briefly described under CentralCompositeDesigns.

Function ccd.design creates a central composite design from scratch. It proceeds by generating a
cube design with function FrF2 and then augmenting this cube design using functions add.center
from package FrF2 for adding center points to the cube and subsequently function ccd from pack-
age rsm for generating the star portion of the design.

There are two main purposes for this function: one is to provide central composite designs within the
same syntax philosophy used in packages DoE.base-package and FrF2. The other is to automat-
ically identify good (=resolution V) cube portions, which can be achieved by using the resolution
parameter.

In comparison to direct usage of package ccd, the functions make the syntax closer to that of the
other packages in the DoE.wrapper suite and allow automatic selection of fractional factorials as
cubes.

Function ccd.design does not allow direct use of the estimable functionality that is available in
function FrF2. Nevertheless, ccd designs with a cube based on the estimable functionality can be
generated by first using function FrF2 and subsequently applying function ccd.augment. It may for
example be interesting to use designs based on estimability requirements for 2-factor interactions
in cases where a resolution V cube for the ccd is not feasible - of course, this does not allow to
estimate the full second order model and therefore generates a warning.

Value

The function returns a data frame of S3 class design with attributes attached. The data frame itself
is in the original data scale. The data frame desnum attached as attribute desnum is the coded design.
The attribute design.info is a list of various design properties. The element type of that list is
the character string ccd. Besides the elements present in all class design objects, there are the

ccd.design 11

elements quantitative (vector with nfactor TRUE entries), and a codings element usable in the
coding functions available in the rsm package, e.g. coded.data.

Note that the row names and the standard order column in the run.order attribute of ccd designs
are not in conventional order, if the blocking routine blockpick.big was used. In such situations,
these should not be used as the basis for any calculations.

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that should not be relevant for the randomization of designs). For reproducing a random-
ized design that was produced with an earlier R version, please follow the steps described with the
argument seed.

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come. ccd.design is based on version 1 of package rsm.

Author(s)

Ulrike Groemping

References

Box, G.E.P., Hunter, J.S. and Hunter, W.G. (2005, 2nd ed.). Statistics for Experimenters. Wiley,
New York.

Box, G.E.P. and Wilson, K.B. (1951). On the Experimental Attainment of Optimum Conditions. J.
Royal Statistical Society, B13, 1-45.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/
pri/section3/pri3361.htm, accessed August 20th, 2009.

Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009). Response Surface Methodol-
ogy. Process and Product Optimization Using Designed Experiments. Wiley, New York.

See Also

See also ccd.augment, add.center, FrF2, lhs-package, rsm

Examples

ccd.design(5) ## per default uses the resolution V design in 16 runs for the cube
ccd.design(5, ncube=32) ## uses the full factorial for the cube
ccd.design(5, ncenter=6, default.levels=c(-10,10))
blocked design (requires ncube to be specified)
ccd.design(5, ncube=32, blocks=4)
there is only one star point block

for usage of other options, look at the FrF2 documentation

http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm
http://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm

12 CentralCompositeDesigns

CentralCompositeDesigns

Statistical background of central composite designs

Description

Brief description of the statistical background of central composite designs

Details

Central composite designs (ccd’s) were invented by Box and Wilson (1951) for response surface
experimentation with quantitative factors. They are used for estimation of second order response
surface models, i.e. models that allow to estimate linear, quadratic and interaction effects for all
factors.

Central composite designs consist of a cube and star points (also called axial points). Both the cube
and the star portion of the design should have some center points. The cube is a (fractional) factorial
design and should be at least of resolution V. The line between the center points and the star points
intersects the faces of the cube in their middle (see the link to the NIST/Sematech e-Handbook for
a visualization). There are two star points per factor, i.e. the number of runs for (each block of) the
star portion of the design is twice the number of factors plus the number of center points in the star
portion.

The tuning parameter alpha determines whether the star points lie on the faces of the cube (alpha=1,
face-centered), inside the cube (alpha<1, inscribed) or outside the cube (alpha>1, circumscribed).
The latter case is the usual one. The value of alpha can be chosen such that the design is rotatable
(may be useful if the scales of the factors are comparable) or such that the design is orthogonally
blocked (i.e. the block effects do not affect the effect estimates of interest). The default is to
generate orthogonally blocked designs.

Central composite designs are particularly useful in sequential experimentation, where a (fractional)
factorial with center points is followed up by a star portion of the design. While the cube can
already estimate the linear and interaction effects, the center points can only estimate the sum of all
quadratic effects. If this indicates that quadratic effects are important, a star portion can be added
in order to investigate the model more deeply.

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come.

Author(s)

Ulrike Groemping

References

Box, G.E.P., Hunter, J.S. and Hunter, W.G. (2005, 2nd ed.). Statistics for Experimenters. Wiley,
New York.

Dopt.augment 13

Box, G.E.P. and Wilson, K.B. (1951). On the Experimental Attainment of Optimum Conditions. J.
Royal Statistical Society, B13, 1-45.

NIST/SEMATECH e-Handbook of Statistical Methods, https://www.itl.nist.gov/div898/handbook/
pri/section3/pri3361.htm, accessed August 20th, 2009.

Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009). Response Surface Methodol-
ogy. Process and Product Optimization Using Designed Experiments. Wiley, New York.

See Also

See Also ccd, ccd.design, ccd.augment

Dopt.augment Function for augmenting a design with D-optimal additional points
using optFederov from package AlgDesign

Description

Function for comfortably augmenting a design with D-optimal additional points; this functionality
is still somewhat experimental.

Usage

Dopt.augment(design, m=1, formula=NULL, candidates=NULL, constraint=NULL,
center=FALSE, nRepeats=5,
seed=NULL, randomize=TRUE, ...)

Arguments

design an experimental design of class design, which may not be a blocked, split-
plot, neither crossed or parameter design; it also must not be replicated with
repeat.only replications.

m integer number of additional points to add to design design

formula a model formula (starting with a tilde), for the estimation of which a D-optimal
design is sought;
it can contain all column names from data or elements or element names from
factor.names, respectively;
usage of the “.”-notation for “all variables” from data or factor.names is pos-
sible.
The default formula (if the value NULL is not changed) is the formula associated
with the design (by function formula.design).
For quantitative factors, functions quad() and cubic describe the full quadratic
or full cubic model in the listed variables (cf. examples and the expand.formula-
function from package AlgDesign).

candidates data frame of candidate points; if not specified, candidates are constructed as a
full factorial from the factor.names element of the design.info attribute of
design

https://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm
https://www.itl.nist.gov/div898/handbook/pri/section3/pri3361.htm

14 Dopt.augment

constraint a condition (character string!) used for reducing the candidate set to admissible
points only.
constraint is evaluated on the specified data set or after automatic creation of
a full factorial candidate data set.
The variable names from data or factor.names can be used by the constraint.
Per default (i.e. if the constraint is NULL), the constraint attribute from design
is used.
If a previously-applied constraint is to be removed, specify constraint = "".
It is not possible to apply a constraint that is already violated by the design that
is to be augmented.

center requests that optimization is run for the centered model; the design is neverthe-
less output in non-centered coordinates

nRepeats number of independent repeats of the design optimization process; increasing
this number may improve the chance of finding a global optimum, but will also
increase search time

seed seed for generation and randomization of the design (integer number);
here, the seed is needed even if the design is not randomized, because the gen-
eration process for the optimum design involves random numbers, even if the
order of the final design is not randomized;
if a reproducible design is needed, it is therefore recommended to specify a seed

In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function Dopt.augment.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

randomize logical deciding whether or not the design should be randomized; if it is TRUE,
the design (or the additional portion of the design) returned by the workhorse
function optFederov is brought into random order after generation. Note that
the generation process itself contains a random element per default; if exact
repeatability for the returned design is desired, it is necessary to specify a seed
(option seed) if in the case randomize=FALSE.

... additional arguments to function optFederov from package AlgDesign;
interesting arguments: maxIteration, nullify (calculate good starting design,
especially set to 1, in which case nRepeats is set to 1;
arguments criterion and augment are not available, neither are evaluateI,
space, or rows, and args does not have an effect.

Details

Function Dopt.augment augments an existing design by m D-optimal additional points (unblocked
designs, no split-plot, no parameter or crossed design, no repeat.only replications), i.e. by points
that make the design particularly efficient for the intended model.

Dopt.augment 15

Option center, which is available for both blocked and unblocked designs as part of the . . . argument,
requests optimization for the centered model; the design that is created is nevertheless an uncentered
design.

NULL entries in the arguments are filled with automatic values that are determined from design.

Value

The function returns a data frame of S3 class design with attributes attached. The data frame
contains the experimental settings. The matrix desnum attached as attribute desnum contains the
model matrix of the design, using the formula as specified in the call.
Function Dopt.augment preserves additional variables (e.g. responses) that have been added to the
design design before augmenting. Note, however, that the response data are NOT used in deciding
about which points to augment the design with.

The attribute run.order provides the run number in standard order (as returned from function
optFederov in package AlgDesign) as well as the randomized actual run order. The third column
is always identical to the first. Note that the first n runs (the ones that are already present before
augmentation) have run numbers in standard order from 1 to n (i.e. their original run numbers in
standard order, if they were also generated by Dopt.design are lost).

The attribute design.info is a list of various design properties, with type resolving to “Dopt.augment”.
In addition to the standard list elements (cf. design), the element quantitative is a vector of
nfactor logical values or NAs, and the optional digits elements indicates the number of digits
to which the data were rounded. The list contains further entries regarding the optimality that has
been achieved (D, Dea and A).

Note that the original design is contained in the first rows of the new data set. The original design
also contains columns that are not directly part of the design, e.g. comment columns.
Note that replications is always set to 1, even if the original design was replicated, and repeat.only
is always FALSE. These elements are only present to fulfill the formal requirements for class
design.)

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that should not be relevant for the randomization of designs). For reproducing a design
that was produced with an earlier R version, please follow the steps described with the argument
seed.

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come.

Author(s)

Ulrike Groemping

16 Dopt.design

References

Atkinson, A.C. and Donev, A.N. (1992). Optimum experimental designs. Clarendon Press, Oxford.

Federov, V.V. (1972). Theory of optimal experiments. Academic Press, New York.

Wheeler, R.E. (2004). Comments on algorithmic design. Vignette accompanying package AlgDe-
sign. ../../AlgDesign/doc/AlgDesign.pdf.

See Also

See also optFederov, fac.design, quad, cubic, Dopt.design. Furthermore, unrelated to function
Dopt.augment, see also function gen_design from package skpr for a new general R package for
creating D-optimal or other letter optimal designs.

Examples

a full quadratic model with constraint in three quantitative factors
plan <- Dopt.design(36,factor.names=list(eins=c(100,250),zwei=c(10,30),drei=c(-25,25)),

nlevels=c(4,3,6),
formula=~quad(.),
constraint="!(eins>=200 & zwei==30 & drei==25)")

summary(plan)
y <- rnorm(36)
r.plan <- add.response(plan, y)
plan2 <- Dopt.augment(r.plan, m=10)
summary(plan2)
add the new response values after conducting additional experiments
y <- c(y, rnorm(10))
r.plan2 <- add.response(plan2,y, replace=TRUE)
summary(r.plan2, brief=FALSE)

Dopt.design Function for creating D-optimal designs with or without blocking
from package AlgDesign

Description

Function for comfortably creating a D-optimal design with or without blocking based on functions
optFederov or optBlock from package AlgDesign; this functionality is still somewhat experimental.

Usage

Dopt.design(nruns, data=NULL, formula=~., factor.names=NULL, nlevels=NULL,
digits=NULL, constraint=NULL, center=FALSE, nRepeats=5, seed=NULL, randomize=TRUE,
blocks=1, block.name="Blocks", wholeBlockData=NULL, qual=NULL, ...)

../../AlgDesign/doc/AlgDesign.pdf

Dopt.design 17

Arguments

nruns number of runs in the requested design

data data frame or matrix of candidate design points;
if data is specified, factor.names and levels are ignored

formula a model formula (starting with a tilde), for the estimation of which a D-optimal
design is sought;
it can contain all column names from data or elements or element names from
factor.names, respectively;
usage of the “.”-notation for “all variables” from data or factor.names is pos-
sible.
The default formula linearly includes all main effects for columns of data or fac-
tors from factor.names respectively, by using the “.”-notation. Note that the
variables from wholeBlockData must be explicitly included into the formula
and are not covered by the “.”-notation for “all variables”. (Thus, the default
formula does not work, if wholeBlockData is used.) For quantitative factors,
functions quad() and cubic describe the full quadratic or full cubic model in
the listed variables (cf. examples and the expand.formula-function from pack-
age AlgDesign).

factor.names is used for creating a candidate set (for the within Block factors) with the help
of function fac.design, if data is not specified. It is a list of vectors which
contain
- individual levels
- or (in case of numerical values combined with nlevels) lower and upper scale
end values
for each factor.
The element names are used as variable names;
if the list is not named, the variable names are A, B and so forth (from function
fac.design).
factor.names can also be a character vector. In this case, nlevels must be
specified, and levels are automatically assigned as integers starting with 1, which
implies quantitative factors, unless qual=TRUE is specified.

nlevels can be omitted if the list factor.names explicitly lists all factor levels (which
of course defines the number of levels).
For numeric factors for which factor.names only specifies the two scale ends,
these are filled with equally-spaced intermediate points, using the nlevels entry
as the length.out argument to function seq.
If factor.names is a character vector of factor names only, nlevels is required,
and default levels are created.

digits is used for creating a candidate set if data is not specified.
It specifies the digits to which numeric design columns are rounded in case of
automatic creation of intermediate values. It can consist of one single value (the
same for all such factors) or a numeric vector of the same length as factor.names
with integer entries.

constraint a condition (character string!) used for reducing the candidate set to admissible
points only. constraint is evaluated on the specified data set or after automatic
creation of a full factorial candidate data set.

18 Dopt.design

The variable names from data or factor.names can be used by the constraint.
The variable names from wholePlotData can NOT be used.
See Syntax and Logic for an explanation of the syntax of general and especially
logical R expressions.

center requests that optimization is run for the centered model; the design is neverthe-
less output in non-centered coordinates

nRepeats number of independent repeats of the design optimization process; increasing
this number may improve the chance of finding a global optimum, but will also
increase search time

seed seed for generation and randomization of the design (integer number);
here, the seed is needed even if the design is not randomized, because the gen-
eration process for the optimum design involves random numbers, even if the
order of the final design is not randomized;
if a reproducible design is needed, it is therefore recommended to specify a seed.

In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.-0) R version and want to reproduce a random-
ized design from an earlier R version (before 3.6.0), you have to change the
RNGkind setting by
RNGkind(sample.kind="Rounding")
before running function Dopt.design.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

randomize logical deciding whether or not the design should be randomized; if it is TRUE,
the design (or the additional portion of the design) returned by the workhorse
function optFederov is brought into random order after generation. Note that
the generation process itself contains a random element per default; if exact
repeatability for the returned design is desired, it is necessary to specify a seed
(option seed) if in the case randomize=FALSE.

blocks a single integer giving the number of blocks (default 1, if no blocking is needed)
OR
a vector of block sizes which enable blocks of different sizes;
for a scalar value, nruns must be divisible into blocks equally-sized blocks; for
a vector value, the block sizes must add up to nruns.
If blocking is requested, the following two options are potentially important.

block.name character string: name of the blocking variable (used only if blocks are re-
quested)

wholeBlockData optional matrix or data frame that specifies the whole block characteristics;
can only be used if blocks are requested; if used, it must have as many rows as
there are block sizes.
If this is specified, the resulting design is a split-plot design with the whole-
plot factors specified in wholeBlockData, the split-plot factors specified in data.
Note that usage of this option makes it necessary to explicitly specify a formula.

Dopt.design 19

Since wholeBlockData must be completely specified by the user, optimization
is for the split-plot portion of the design only. The rationale is (assumably) that
the characteristics of the available blocks are known. If this is not the case, users
may want to try out various possible whole block setups, or to proceed sequen-
tially by first optimizing a whole block design for a model with the whole block
factors only and subsequently using this model for adding split-plot factors.

qual optional logical (length 1 or same as number of factors); ignored, if data is
specified; overrides automatic determination of whether or not factors are quan-
titative;
if neither qual nor data are specified, factors are per default quantitative, unless
they have non-numeric levels in a list-valued factor.names

... additional arguments to functions optFederov or optBlock (if blocking is re-
quested) from package AlgDesign;
interesting arguments for optFederov: maxIteration, nullify (calculate good
starting design, especially set to 1, in which case nRepeats is set to 1);
arguments criterion and augment are not available, neither are evaluateI,
space, or rows, and args does not have an effect.

Details

Function Dopt.design creates a D-optimal design, optionally with blocking, and even as a split-
plot design. If no blocks are required, calculations are carried out through function optFederov
from package AlgDesign. In case of blocked designs, function optBlock from package AlgDesign
is behind the calculations. By specifying wholeBlockData, a blocked design becomes a split-plot
design. The model formula can refer to both the within block data (only those are referred to by the
“.” notation) and the whole block data and interactions between both.
In comparison to direct usage of package AlgDesign, the function adds the possibility of automat-
ically creating the candidate points on the fly, with or without constraints. Furthermore, it embeds
the D-optimal designs into the class design. On the other hand, it sacrifices some of AlgDesigns
flexibility; of course, users can still use AlgDesign directly.

The D-optimal designs are particularly useful, if the classical regular designs are too demanding in
run size requirements, or if constraints preclude automatic generation of orthogonal designs. Note,
however, that the best design in few runs can still be very bad in absolute terms!

When specifying the design without the data option, a full factorial in the requested factors is the
default candidate set of design points. For some situations - especially with many factors - it may
be better to start from a restricted candidate set. Such a candidate set can be produced with another
R function, e.g. oa.design or FrF2, or can be manually created.

If there are doubts, whether the process has delivered a design close to the absolute optimum,
nRepeats can be increased.

For unblocked designs, it is additionally possible to increase maxIteration. Also, improving the
starting value by nullify=1 or nullify=2 may lead to an improved design. These options are
handed through to function optFederov from package AlgDesign and are documented there.

Value

The function returns a data frame of S3 class design with attributes attached. The data frame
contains the experimental settings. The matrix desnum attached as attribute desnum contains the

20 Dopt.design

model matrix of the design, using the formula as specified in the call.
Function Dopt.augment preserves additional variables (e.g. responses) that have been added to the
design design before augmenting. Note, however, that the response data are NOT used in deciding
about which points to augment the design with.

The attribute run.order provides the run number in standard order (as returned from function
optFederov in package AlgDesign) as well as the randomized actual run order. The third column
is always identical to the first.

The attribute design.info is a list of various design properties, with type resolving to “Dopt”,
“Dopt.blocked”, “Dopt.splitplot”. In addition to the standard list elements (cf. design), the element
quantitative is a vector of nfactor logical values or NAs, and the optional digits elements in-
dicates the number of digits to which the data were rounded. For blocked and splitplot designs, the
list contains additional information on numbers and sizes of blocks or plots, as well as the number
of whole plot factors (which are always the first few factors) and split-plot factors.
The list contains a list of optimality criteria as calculated by function optFederov, see documenta-
tion there) with elements D, Dea, A and G.

(Note that replications is always 1 and repeat.only is always FALSE; these elements are only
present to fulfill the formal requirements for class design. Note however, that blocked designs do
in fact repeat experimental runs if nruns and blocks imply this.)

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased previous
behavior that should not be relevant for the randomization of designs). For reproducing a design
that was produced with an earlier R version, please follow the steps described with the argument
seed.

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come.

Author(s)

Ulrike Groemping

References

Atkinson, A.C. and Donev, A.N. (1992). Optimum experimental designs. Clarendon Press, Oxford.

Federov, V.V. (1972). Theory of optimal experiments. Academic Press, New York.

Wheeler, R.E. (2004). Comments on algorithmic design. Vignette accompanying package AlgDe-
sign. ../../AlgDesign/doc/AlgDesign.pdf.

See Also

See also optFederov, fac.design, quad, cubic, Dopt.augment. Furthermore, unrelated to func-
tion Dopt.design, see also function gen_design from package skpr for a new general R package
for creating D-optimal or other letter optimal designs.

../../AlgDesign/doc/AlgDesign.pdf

lhs.design 21

Examples

a full quadratic model with constraint in three quantitative factors
plan <- Dopt.design(36,factor.names=list(eins=c(100,250),zwei=c(10,30),drei=c(-25,25)),

nlevels=c(4,3,6),
formula=~quad(.),
constraint="!(eins>=200 & zwei==30 & drei==25)")

plan
cor(plan)
y <- rnorm(36)
r.plan <- add.response(plan, y)
plan2 <- Dopt.augment(r.plan, m=10)
plot(plan2)
cor(plan2)

designs with qualitative factors and blocks for
an experiment on assessing stories of social situations
where each subject is a block and receives a deck of 5 stories
plan.v <- Dopt.design(480, factor.names=list(cause=c("sick","bad luck","fault"),

consequences=c("alone","children","sick spouse"),
gender=c("Female","Male"),
Age=c("young","medium","old")),
blocks=96,
constraint="!(Age==\"young\" & consequences==\"children\")",
formula=~.+cause:consequences+gender:consequences+Age:cause)

an experiment on assessing stories of social situations
with the whole block (=whole plot) factor gender of the assessor
not run for saving test time on CRAN

Not run: plan.v.splitplot <- Dopt.design(480, factor.names=list(cause=c("sick","bad luck","fault"),
consequences=c("alone","children","sick spouse"),
gender.story=c("Female","Male"),
Age=c("young","medium","old")),
blocks=96,
wholeBlockData=cbind(gender=rep(c("Female","Male"),each=48)),
constraint="!(Age==\"young\" & consequences==\"children\")",
formula=~.+gender+cause:consequences+gender.story:consequences+

gender:consequences+Age:cause+gender:gender.story)
End(Not run)

lhs.design Functions for accessing latin hypercube sampling designs from pack-
age lhs or space-filling designs from package DiceDesign

Description

Functions for comfortably accessing latin hypercube sampling designs from package lhs or space-
filling designs from package DiceDesign, which are useful for quantitative factors with many possi-
ble levels. In particular, they can be used in computer experiments. Most of the designs are random
samples.

22 lhs.design

Usage

lhs.design(nruns, nfactors, type="optimum", factor.names=NULL, seed=NULL, digits=NULL,
nlevels = nruns, default.levels = c(0, 1), randomize = FALSE, ...)

lhs.augment(lhs, m=1, type="optAugment", seed=NULL, ...)

Arguments

nruns number of runs in the latin hypercube sample;
for type fact (a full factorial with equally-space levels), if nlevels is not sep-
arately specified, this number is taken to be the common number of levels of all
factors, i.e. the resulting design will have nruns^nfactors runs;
alternatively, if nlevels is separately specified as a vector of different numbers
of levels, nruns can be missing or can be the correctly-specified number of runs.

nfactors number of factors in the latin hypercube sample

type character string indicating the type of design or augmentation method; defaults
are “optimum” for lhs.design and “optAugment” for lhs.augment.

Function lhs.design calls
a function named typeLHS from package lhs (types genetic, improved, maximin,
optimum, random),
a function named typeDesign from package DiceDesign (types dmax, strauss,
fact)
or function runif.faure from package DiceDesign (type faure).

Function lhs.augment calls function typeLHS from package lhs,
where possible choices for type are augment, optSeeded, or optAugment.
see the respective functions from packages lhs and DiceDesign.

seed seed for random number generation; latin hypercube samples from package lhs
are random samples. Specifying a seed used to make the result reproducible for
early versions of package lhs - lately, results are reproducible within a package
version, but reproducibility between package versions cannot be guaranteed.

factor.names list of scale end values for each factor; names are used as variable names;
the names should not be x1, x2, ..., as this would interfere with usability of stan-
dard second order analysis methods on the resulting data (link{rsmformula});
if the list is not named, the variable names are X1, X2 and so forth; the original
unit cube calculated by package lhs (scale ends 0 and 1 for each variable) is
rescaled to the values given in factor.names.

digits digits to which the design columns are rounded; one single value (the same for
all factors) or a vector of length nfactors;
note that the rounding is applied after generation of the design on the actual
data scale, i.e. the unit cube generated by the functions from packages lhs or
DiceDesign is NOT rounded

nlevels used for type fact only; integer number or numeric vector of nfactor integers;
specifies the number of levels for each factor. If all factors have the same number
of levels, the number of levels can also be specified through nruns, which is
interpreted as the number of levels for type fact, if nlevels is not separately
specified

lhs.design 23

default.levels scale ends for all factors; convenient, if all factors have the same scaling that
deviates from the default 0/1 scale ends.

randomize logical that prevents randomization per default. The option has an effect for
types fact and faure only. All other types are based on random design genera-
tion anyway. Note that preventing randomization is the default here, because
these designs are assumed to be used mostly for computer experimentation,
where the systematics of the non-randomized design may be beneficial. For
hardware experimentation, randomization should be set to TRUE!

If randomization is requested, the following information is relevant:
In R version 3.6.0 and later, the default behavior of function sample has changed.
If you work in a new (i.e., >= 3.6.0) R version want to run code interchangeably
on R 3.6.0 and an earlier R version, you have to change the RNGkind setting in
the later R version by
RNGkind(sample.kind="Rounding")
before running function lhs.design.
It is recommended to change the setting back to the new recommended way af-
terwards:
RNGkind(sample.kind="default")
For an example, see the documentation of the example data set VSGFS.

lhs design generated by function lhs.design (class design, of type lhs

m integer number of additional points to add to design lhs (note, however, that
optSeeded does not necessarily preserve all original runs!)

... additional arguments to the functions from packages lhs or DiceDesign. Refer
to their documentation.
Functions for generating lhs designs: randomLHS, geneticLHS, improvedLHS,
maximinLHS, optimumLHS, dmaxDesign, straussDesign, runif.faure, factDesign;
functions for augmenting lhs designs: augmentLHS, optSeededLHS, optAugmentLHS)

Details

Function lhs.design creates a latin hypercube sample, function lhs.augment augments an exist-
ing latin hypercube sample (or in case of type optSeeded takes the existing sample as the starting
point but potentially modifies it). In comparison to direct usage of package lhs, the functions add
the possibility of recoding lhs samples to a desired range, and they embed the lhs designs into class
design.
Range coding is based on the recoding facility from package rsm and the factor.names parameter
used analogously to packages DoE.base and FrF2.

The lhs designs are useful for quantitative factors, if it is considered desirable to uniformly dis-
tribute design points over a hyperrectangular space. This is e.g. considered interesting for computer
experiments, where replications of the same settings are often useless.

Supported design types are described in the documentation for packages lhs and DiceDesign.

Value

Both functions return a data frame of S3 class design with attributes attached. The data frame
contains the experimental settings as recoded to the scale ends defined in factor.names (if given),

24 lhs.design

rounded to the number of digits given in digits (if given). The experimental factors in the matrix
desnum attached as attribute desnum contain the design in the unit cube (all experimental factors
ranging from 0 to 1) as returned by packages lhs or DiceDesign.
Function lhs.augment preserves additional variables (e.g. responses) that have been added to the
design lhs before augmenting. Note, however, that the response data are NOT used in deciding
about which points to augment the design with.

The attribute run.order is not very useful for most of these designs, as there is no standard order. It
therefore is present for formal reasons only and contains three identical columns of 1,2,...,nruns. For
designs created with type=fact or type=faure, the standard order is the order in which package
DiceDesign creates the design, and the actual run order may be different in case of randomization.
In case of lhs.augment, if the design to be augmented had been reordered before, the augmented
design preserves this reorder and also the respective numbering of the design.

The attribute design.info is a list of various design properties, with type resolving to “lhs”. In
addition to the standard list elements (cf. design), the subtype element indicates the type of latin
hypercube designs and possibly additional augmentations, the element quantitative is a vector
of nfactor logical TRUEs, and the digits elements indicates the digits to which the data were
rounded.
For designs created with package DiceDesign, special list elements from this package are also added
to design.info.
randomize is always TRUE for designs generated by random sampling, but may be FALSE for
designs created with type=fact or type=faure.
coding provides formulae for making the designs comfortably usable with standard second order
methodology implemented in package rsm. replications is always 1 and repeat.only is always
FALSE; these elements are only present to fulfill the formal requirements for class design.

Warning

Since R version 3.6.0, the behavior of function sample has changed (correction of a biased pre-
vious behavior that should not be relevant for the randomization of designs). For using code that
randomizes a design interchangeably between a new R version (3.6.0 or later) and an older one,
please follow the steps described with the argument randomize.

Note also: Package lhs does not promise to keep designs reproducible between package versions.
Thus, please make sure to store important designs for the future, if needed (of course, this is always
wise anyway!).

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come.

Author(s)

Ulrike Groemping

References

Beachkofski, B., Grandhi, R. (2002) Improved Distributed Hypercube Sampling. American Insti-
tute of Aeronautics and Astronautics Paper 1274.

lhs.design 25

Currin C., Mitchell T., Morris M. and Ylvisaker D. (1991) Bayesian Prediction of Deterministic
Functions With Applications to the Design and Analysis of Computer Experiments, Journal of the
American Statistical Association 86, 953–963.

Santner T.J., Williams B.J. and Notz W.I. (2003) The Design and Analysis of Computer Experi-
ments, Springer, 121–161.

Shewry, M. C. and Wynn and H. P. (1987) Maximum entropy sampling. Journal of Applied Statis-
tics 14, 165–170.

Fang K.-T., Li R. and Sudjianto A. (2006) Design and Modeling for Computer Experiments, Chap-
man & Hall.

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics 29, 143–151.

Stocki, R. (2005) A method to improve design reliability using optimal Latin hypercube sampling.
Computer Assisted Mechanics and Engineering Sciences 12, 87–105.

See Also

See Also compare for comparing optimality criteria for various designs,
lhs-package and DiceDesign-package for the packages that do the calculations,
FrF2, oa.design, fac.design, pb for other possibilites of generating designs

Examples

maximin design from package lhs
plan <- lhs.design(20,7,"maximin",digits=2)
plan
plot(plan)
cor(plan)
y <- rnorm(20)
r.plan <- add.response(plan, y)

augmenting the design with 10 additional points, default method
plan2 <- lhs.augment(plan, m=10)
plot(plan2)
cor(plan2)

purely random design (usually not ideal)
plan3 <- lhs.design(20,4,"random",

factor.names=list(c(15,25), c(10,90), c(0,120), c(12,24)), digits=2)
plot(plan3)
cor(plan3)

optimum design from package lhs (default)
plan4 <- lhs.design(20,4,"optimum",

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2)

plot(plan4)
cor(plan4)

dmax design from package DiceDesign
arguments range and niter_max are required

26 lhs.design

?dmaxDesign for more info
plan5 <- lhs.design(20,4,"dmax",

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2,
range=0.2, niter_max=500)

plot(plan5)
cor(plan5)

Strauss design from package DiceDesign
argument RND is required
?straussDesign for more info
plan6 <- lhs.design(20,4,"strauss",

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2,
RND = 0.2)

plot(plan6)
cor(plan6)

full factorial design from package DiceDesign
mini try-out version
plan7 <- lhs.design(3,4,"fact",

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2)

plot(plan7)
cor(plan7)

Not run:

full factorial design from package DiceDesign
not as many different levels as runs, but only a fixed set of levels
caution: too many levels can easily bring down the computer
above design with 7 distinct levels for each factor,
implying 2401 runs
plan7 <- lhs.design(7,4,"fact",

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2)

plot(plan7)
cor(plan7)

equivalent call
plan7 <- lhs.design(,4,"fact",nlevels=7,

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2)

different number of levels for each factor
plan8 <- lhs.design(,4,"fact",nlevels=c(5,6,5,7),

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2)

plot(plan8)
cor(plan8)

equivalent call (specifying nruns, not necessary but a good check)
plan8 <- lhs.design(1050,4,"fact",nlevels=c(5,6,5,7),

optimality.criteria 27

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2)

End(Not run)

optimality.criteria Overview of optimality criteria in experimental design packages

Description

One function for calculating the S-optimality criterion is provided here. This help file documents
this function and also describes optimality criteria from other related packages, referring to space
filling optimality like the S criterion or to model-based optimality like the well-known D-criterion.

Usage

Scalc(design)
compare(...)

Arguments

design matrix, often normalized to unit cube,
OR
design (class design) of type lhs or Dopt.
For design objects, calculations are applied to the desnum attribute.

... two or more designs, either all of type lhs or all of type Dopt, can be compared
w.r.t. some optimality criteria that are stored in their design.info attribute
(only works with designs created by DoE.wrapper version 0.7 or higher)

Details

Function Scalc calculates the S criterion for optimality, which is employed in package lhs for most
optimization purposes (exception: maximin designs). The criterion is the harmonic mean of all
pairwise interpoint distances, and space-filling optimization tries to maximize it.

Function eval.design from package AlgDesign calculates various model-based optimality crite-
ria:

confounding a confounding matrix of effects, if requested

determinant the k-th root of the determinant of Z’Z/N, where Z is the model matrix of the model
under investigation, k is the number of columns of Z and N the number of rows; this is the
quantity optimized for D-optimal designs

A the arithmetic mean of coeffient variance multipliers, i.e. the average diagonal element of the
inverse of Z’Z/N, intercept included

I the average prediction variance over a space X; calculated only, if X is specified

Ge the minimax normalized variance over X; calculated only, if X is specified

28 optimality.criteria

Dea A lower bound on D efficiency for approximate theory designs. It is equal to exp(1-1/Ge), i.e.
is also calculated only, if X is specified.

diagonality the k-th root of the ratio of the determinant of M1 divided by the product of diagonal
elements of M1, where M1 is Z’Z with the column and row referring to the intercept removed,
and k the number of columns of M1; if this is 1, the coefficient estimates are uncorrelated.

gmean.variances the geometric mean of normalized coeffient variance multipliers (intercept ex-
cluded), i.e. the geometric mean of the diagonal elements of the inverse of Z’Z/N, without the
first element, if an intercept is in the model.

Several functions from package DiceDesign calculate optimality criteria regarding the space filling
qualities of a design. These functions normalize the design to lie in the unit cube, if it does not yet
do so. Application of these functions to designs with qualitative factors does not make sense and
yields errors. The following functions are available:

mindist calculates the minimum distance between any pair of design points. This is the criterion
which is maximized by maximin designs, i.e. should be large for a space-filling design.

For the next two distance metrics, it is helpful to define g_i as the minimal distance of design point
i to any other design point.

meshRatio calculates the ratio of the maximum g_i to the minimum g_i (a small mesh ratio indi-
cates a similar minimal distance for all design points).

coverage calculates the coefficient of variation of the g_i, however using the denominator n instead
of n-1 for the standard deviation (a large coverage indicates that the average minimal distance for
of design points is large relative to their standard deviation; large values are desirable).

Function discrepancyCriteria calculates several versions of L2 discrepancy.

Function link[skpr]{eval_design} calculates effect and parameter powers for a design for a
specified model and a specified significance level alpha.

Value

Function Scalc returns a single number: the harmonic mean of all pairwise interpoint distances is
calculated, based on the matrix design or the desnum attribute of the design design. (This value
should be as large as possible for a space-filling design.)

Note that the resulting S value differs from the printed optimum value by function lhs.design for
type optimum in two respects: the printed optimum value is the sum of inverse distances, i.e. the
denominator of the harmonic mean. choose(nruns, 2) divided by the printed final optimal value is
approximately equal to the calculated S; perfect equality cannot be achieved because the underly-
ing the printed final optimum refers to an interim latin hypercube of integers that is subsequently
rescaled to the unit cube and scrambled by random numbers.

Function compare returns a matrix, with rows representing the criteria and columns the different
designs. Apart from many of the criteria mentioned above, the determinant of the correlation matrix
is shown, which should ideally be close to one for a near-orthogonal design (at least in terms of
linear effects).

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come.

optimality.criteria 29

Author(s)

Ulrike Groemping

References

Beachkofski, B., Grandhi, R. (2002) Improved Distributed Hypercube Sampling. American Insti-
tute of Aeronautics and Astronautics Paper 1274.

Currin C., Mitchell T., Morris M. and Ylvisaker D. (1991) Bayesian Prediction of Deterministic
Functions With Applications to the Design and Analysis of Computer Experiments, Journal of the
American Statistical Association 86, 953–963.

Santner T.J., Williams B.J. and Notz W.I. (2003) The Design and Analysis of Computer Experi-
ments, Springer, 121–161.

Shewry, M. C. and Wynn and H. P. (1987) Maximum entropy sampling. Journal of Applied Statis-
tics 14, 165–170.

Fang K.-T., Li R. and Sudjianto A. (2006) Design and Modeling for Computer Experiments, Chap-
man & Hall.

Stein, M. (1987) Large Sample Properties of Simulations Using Latin Hypercube Sampling. Tech-
nometrics 29, 143–151.

Stocki, R. (2005) A method to improve design reliability using optimal Latin hypercube sampling.
Computer Assisted Mechanics and Engineering Sciences 12, 87–105.

See Also

See Also lhs-package, DiceDesign-package, eval.design, eval_design

Examples

optimum design from package lhs (default)
plan <- lhs.design(20,4,"optimum",

factor.names=list(c(15,25), c(10,90), c(0,120), c(12,24)), digits=2)
maximin design
plan2 <- lhs.design(20,4,"maximin",

factor.names=list(c(15,25), c(10,90), c(0,120), c(12,24)), digits=2)
purely random design (usually not ideal)
plan3 <- lhs.design(20,4,"random",

factor.names=list(c(15,25), c(10,90), c(0,120), c(12,24)), digits=2)
genetic design
plan4 <- lhs.design(20,4,"genetic",

factor.names=list(c(15,25), c(10,90), c(0,120), c(12,24)), digits=2)
dmax design from package DiceDesign
arguments range and niter_max are required
?dmaxDesign for more info
plan5 <- lhs.design(20,4,"dmax",

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2,
range=0.2, niter_max=500)

Strauss design from package DiceDesign
argument RND is required

30 rsmformula

?straussDesign for more info
plan6 <- lhs.design(20,4,"strauss",

factor.names=list(torque=c(10,14),friction=c(25,35),
temperature=c(-5,35),pressure=c(20,50)),digits=2,
RND = 0.2)

compare all these designs
compare(plan, plan2, plan3, plan4, plan5, plan6)

rsmformula Functions for supporting response surface analysis with package rsm

Description

These functions support response surface analysis with package rsm. Function rsmformula cre-
ates a model formula for use with function rsm, using the FO, TWI and PQ notation. Function
code.design prepares a fractional factorial 2-level design with center points from package FrF2 or a
ccd, bbd or lhs design from this package for convenient use with package rsm functionality, function
decode.design reverses the coding action.

Usage

code.design(design)
decode.design(design)
rsmformula(design, response=NULL, factor.names=NULL,

use.blockvar = TRUE, degree=2, coded=TRUE, ...)

Arguments

design a response surface design of class design with at least one response variable
and of a type derived from ccd, bbd, or lhs

response character string specifying the response variable to be analysed (default: the first
response of the design)

factor.names character vector specifying the factors to be included (default: all experimental
factors)

use.blockvar logical indicating whether or not the block effect (if available) is to be included
into the model

degree default is 2 for a full second order model. For a first order only model, specify
1; for a model with main effects and 2-factor interactions, specify 1.5. degree
corresponds to the order element of the object created by function rsm.

coded logical indicating whether the formula is to be provided in coded names (x1, x2
etc., coded=TRUE) or original variable names (coded=FALSE)

... reserved for future usage

rsmformula 31

Details

Function code.design rescales the variables of a design with quantitative variables according to
the information stored in the coding element of the design.info attribute of design, function
decode.design rescales a coded design to original units.

Function rsmformula creates a formula for use with function rsm. If this function is created in
coded variable names (which is the default), it can be used in function rsm together with the coded
data object created by function code.design for creating a response surface model, which can be
post-processed by the utilities provided in package rsm, especially the [rsm:rsm]{methods} for
class rsm objects and functions steepest or canonical.path.

IMPORTANT: coded vs. original units
The text below assumes that the design has been entered using the default.levels or the factor.names
option to specify the factor levels in original units.
The usual steepest ascent analysis is done in coded units, i.e. if e.g. factor X1 has original units 10
(code -1 = (10-20)/10) and 30 (code +1 = (30-20)/10) and factor X2 has original units 0.1 (code -1 =
(0.1 - 0.2)/0.1) and 0.3 (code +1 = (0.3 - 0.2)/0.1), an increase of 10 for a change in factor X1 from
10 to 30 is considered steeper (slope 10/2) than an increase of 9 for a change in factor X2 from 0.1
to 0.3 (slope 9/2). If this behavior is desired, usage of rsmformula with option coded=TRUE and a
design generated by code.design is needed.
Otherwise, i.e. when assessment is desired in original units, the ascent for factor X2 (9/0.2) would
of course be much steeper than for factor X1 (10/20) in the above example. For obtaining an assess-
ment based on the original units, one can simply use rsmformula with option coded=FALSE and
the design itself in original units in the rsm model. This only makes sense for first order models:
function steepest always assesses the slope at the origin; for first order models, it does not matter
where the slope is assessed. For models with order (=degree) 1.5 or 2, the steepest analysis in
original units is adequate only for the exceptional case that 0 is the point of interest.

Value

Function code.design returns a coded.data object for usage with function rsm; this object can be
returned to its original state by applying function decode.design.

Function rsmformula returns a formula with an FO (=first order) portion, for degree=1.5 addition-
ally a TWI (=two factor interactions, 2fis) portion, and for degree=2 also a PQ (=pure quadratic)
portion.

This representation of the model formula is needed for response surface analyses with package rsm.
Per default, the formula comes in coded variable names (x1, x2 etc.).

Note

This package is still under (slow) development. Reports about bugs and inconveniences are wel-
come.

Author(s)

Ulrike Groemping

32 rsmformula

References

Lenth, R.V. (2009). Response-Surface Methods in R, using rsm. Journal of Statistical Software
32(7), 1-17. https://www.jstatsoft.org/v32/i07/.

Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009). Response Surface Methodol-
ogy. Process and Product Optimization Using Designed Experiments. Wiley, New York.

See Also

See also rsm, steepest, canonical.path, contour.lm, . The formula method for class design
objects creates equivalent model formulae in standard model notation.

Examples

an artificial example with random response
purely for demonstrating how the functions work together with rsm
plan <- ccd.design(5, ncenter=6,

factor.names = list(one=c(10,30),two=c(1,5),three=c(0.1,0.9),
four=c(2,4),five=c(-1,1)))

set.seed(298)
plan <- add.response(plan, rnorm(38))

coding
plan.c <- code.design(plan)
plan.c
decode.design(plan.c)

first order analysis
formulae needed for first order models:
rsmformula(plan, degree=1) ## coded
rsmformula(plan, degree=1, coded=FALSE) ## original units

steepest ascent: steepness assessed in coded units,
results also presented in original units
linmod1 <- rsm(rsmformula(plan, degree=1), data=plan.c)
summary(linmod1)
steepest(linmod1)

steepest ascent: steepness assessed in original units!!!
this is different from the usual approach!!!
cf. explanation in Details section
linmod1.original <- rsm(rsmformula(plan, degree=1, coded=FALSE), data=plan)
summary(linmod1.original)
steepest(linmod1.original)

second order analysis (including quadratic, degree=1.5 would omit quadratic
formulae needed for second order models:
rsmformula(plan, degree=2) ## coded
rsmformula(plan, degree=2, coded=FALSE) ## original units

the formulae can also be constructed analogously to the FO formulae
by using SO instead of FO
rsmformula returns the more detailed function because

https://www.jstatsoft.org/v32/i07/

rsmformula 33

it can be more easily modified to omit one of the effects

the stationary point is not affected by using coded or original units
neither is the decision about the nature of the stationary point
a subsequent canonical path analysis will however be affected,
analogously to the steepest ascent (cf. Details section)

analysis in coded units
linmod2 <- rsm(rsmformula(plan, degree=2), data=plan.c)
summary(linmod2)
analysis in original units
linmod2.original <- rsm(rsmformula(plan, degree=2, coded=FALSE), data=plan)
summary(linmod2.original)
the contour plot may be nicer when using original units
contour(linmod2, form=~x1*x2)
contour(linmod2.original, form=~one*two)
the canonical path is usually more reasonable in coded units
canonical.path(linmod2) ## coded units
canonical.path(linmod2.original) ## original units

analogous analysis without the special formula notation of function rsm
linmod <- rsm(rnorm.38. ~ Block.ccd + (one + two + three + four + five)^2 +

I(one^2) + I(two^2) + I(three^2) + I(four^2) + I(five^2), data=plan)
summary(linmod)
contour(linmod, form=~one*two) ## contour plot is possible
steepest or canonical.path cannot be used,
because the model is a conventional lm

contour will not work on the convenience model
lm(plan), which is otherwise identical to linmod
(it will neither work on lm(formula(plan), plan))
or lm(rsmformula(plan), plan)

Index

∗ array
bbd.design, 3
ccd.augment, 5
ccd.design, 8
CentralCompositeDesigns, 12
DoE.wrapper-package, 2
Dopt.augment, 13
Dopt.design, 16
lhs.design, 21
optimality.criteria, 27
rsmformula, 30

∗ design
bbd.design, 3
ccd.augment, 5
ccd.design, 8
CentralCompositeDesigns, 12
DoE.wrapper-package, 2
Dopt.augment, 13
Dopt.design, 16
lhs.design, 21
optimality.criteria, 27
rsmformula, 30

add.center, 10, 11
augmentLHS, 23

bbd, 4
bbd.design, 2, 3, 3
block, 10
blockpick.big, 7, 11

canonical.path, 31, 32
ccd, 10, 13
ccd.augment, 3, 5, 10, 11, 13
ccd.design, 2, 3, 5, 7, 8, 13
CentralCompositeDesigns, 6, 10, 12
code.design (rsmformula), 30
coded.data, 4, 7, 11, 31
compare, 3, 25
compare (optimality.criteria), 27

contour.lm, 32
coverage, 28
cubic, 16, 20

decode.design (rsmformula), 30
design, 2, 4, 7, 10, 15, 19, 20, 23, 24
DiceDesign, 22, 23
discrepancyCriteria, 28
dmaxDesign, 23
DoE.wrapper (DoE.wrapper-package), 2
DoE.wrapper-package, 2
Dopt.augment, 3, 13, 20
Dopt.design, 3, 15, 16, 16

eval.design, 27, 29
eval_design, 29
expand.formula, 13, 17

fac.design, 16, 17, 20, 25
factDesign, 23
formula, 32
FrF2, 3, 5–7, 9–11, 19, 25

gen_design, 16, 20
geneticLHS, 23

improvedLHS, 23

lhs, 22, 23
lhs.augment (lhs.design), 21
lhs.design, 3, 21
Logic, 18

maximinLHS, 23
meshRatio, 28
mindist, 28

oa.design, 19, 25
optAugmentLHS, 23
optBlock, 3, 19
optFederov, 3, 14–16, 18–20

34

INDEX 35

optimality.criteria, 27
optimumLHS, 23
optSeededLHS, 23

pb, 25

quad, 16, 20

randomLHS, 23
rsm, 3, 5, 7, 11, 30–32
rsmformula, 30
runif.faure, 23

sample, 4, 6, 7, 10, 11, 14, 15, 18, 20, 23, 24
Scalc (optimality.criteria), 27
seq, 17
steepest, 31, 32
straussDesign, 23
Syntax, 18

VSGFS, 4, 6, 10, 14, 18, 23

	DoE.wrapper-package
	bbd.design
	ccd.augment
	ccd.design
	CentralCompositeDesigns
	Dopt.augment
	Dopt.design
	lhs.design
	optimality.criteria
	rsmformula
	Index

