Package ‘DiscreteTests’

January 20, 2025

Type Package

Title Vectorised Computation of P-Values and Their Supports for
Several Discrete Statistical Tests

Version 0.2.1
Date 2024-10-27

Description Provides vectorised functions for computing p-values of various
common discrete statistical tests, as described e.g. in Agresti (2002)
<doi:10.1002/0471249688>, including their distributions. Exact and
approximate computation methods are provided. For exact p-values, several
procedures of determining two-sided p-values are included, which are
outlined in more detail in Hirji (2006) <doi:10.1201/9781420036190>.

License GPL-3
Encoding UTF-8
Language en-GB

Imports R6, checkmate, lifecycle
URL https://github.com/DISOhda/DiscreteTests

BugReports https://github.com/DISOhda/DiscreteTests/issues
RoxygenNote 7.3.2
NeedsCompilation no

Author Florian Junge [cre, aut] (<https://orcid.org/0009-0001-6856-6938>),
Christina Kihn [aut],
Sebastian Dohler [ctb] (<https://orcid.org/0000-0002-0321-6355>)

Maintainer Florian Junge <diso.fbmn@h-da.de>
Repository CRAN
Date/Publication 2024-10-27 17:40:02 UTC

Contents

DiscreteTests-package
binom_test_pv. e

https://doi.org/10.1002/0471249688
https://doi.org/10.1201/9781420036190
https://github.com/DISOhda/DiscreteTests
https://github.com/DISOhda/DiscreteTests/issues
https://orcid.org/0009-0001-6856-6938
https://orcid.org/0000-0002-0321-6355

Index

DiscreteTests-package

DiscreteTestResults L 5
DiscreteTestResultsSummary 9
fisher_test_pv e e e 11
MCNEMAr_tESE_PV . .« v v v o v e e e e e e e e e e e e e e e e e e 13
POISSON_LESL_PV . . o o v v o o e e e e e e e e e e e e e e e e e e 15
summary.DiscreteTestResults L L 18

19

DiscreteTests-package Vectorised Computation of P-Values and Their Supports for Several

Discrete Statistical Tests

Description

This package provides vectorised functions for computing p-values of various discrete statistical
tests. Exact and approximate computation methods are provided. For exact p-values, several proce-
dures of determining two-sided p-values are included.

Additionally, these functions are capable of returning the discrete p-value supports, i.e. all observ-
able p-values under a null hypothesis. These supports can be used for multiple testing procedures
in the DiscreteFDR and FDX packages.

Author(s)

Maintainer: Florian Junge <diso.fbmn@h-da.de> (ORCID)

Authors:

e Christina Kihn

Other contributors:

¢ Sebastian Dohler <sebastian.doehler@h-da.de> (ORCID) [contributor]

References

Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society
Series A, 98, pp. 39-54. doi:10.2307/2342435

Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: John Wiley & Sons. doi:10.1002/
0471249688

Blaker, H. (2000) Confidence curves and improved exact confidence intervals for discrete distribu-
tions. Canadian Journal of Statistics, 28(4), pp. 783-798. doi:10.2307/3315916

Hirji, K. F. (2006). Exact analysis of discrete data. New York: Chapman and Hall/CRC. pp. 55-83.
doi:10.1201/9781420036190

https://orcid.org/0009-0001-6856-6938
https://orcid.org/0000-0002-0321-6355
https://doi.org/10.2307/2342435
https://doi.org/10.1002/0471249688
https://doi.org/10.1002/0471249688
https://doi.org/10.2307/3315916
https://doi.org/10.1201/9781420036190

binom_test_pv 3

See Also
Useful links:

* https://github.com/DISOhda/DiscreteTests
* Report bugs at https://github.com/DISOhda/DiscreteTests/issues

binom_test_pv Binomial Tests

Description

binom_test_pv() performs an exact or approximate binomial test about the probability of success
in a Bernoulli experiment. In contrast to stats: :binom.test(), it is vectorised, only calculates
p-values and offers a normal approximation of their computation. Furthermore, it is capable of
returning the discrete p-value supports, i.e. all observable p-values under a null hypothesis. Mul-
tiple tests can be evaluated simultaneously. In two-sided tests, several procedures of obtaining the
respective p-values are implemented.

[Deprecated]
Note: Please use binom_test_pv()! The older binom. test.pv() is deprecated in order to migrate
to snake case. It will be removed in a future version.

Usage

binom_test_pv(
X!
n,
p =0.5,
alternative = "two.sided”,
ts_method = "minlike"”,
exact = TRUE,

correct = TRUE,
simple_output = FALSE

)

binom.test.pv(
X,
n,
p =0.5,
alternative = "two.sided”,
ts.method = "minlike”,
exact = TRUE,

correct = TRUE,
simple.output = FALSE

https://github.com/DISOhda/DiscreteTests
https://github.com/DISOhda/DiscreteTests/issues

4 binom_test_pv

Arguments
X integer vector giving the number of successes.
n integer vector giving the number of trials.
p numerical vector of hypothesised probabilities of success.
alternative character vector that indicates the alternative hypotheses; each value must be

one of "two.sided"” (the default), "less” or "greater”.

ts_method, ts.method
single character string that indicates the two-sided p-value computation method
(if any value in alternative equals "two. sided") and must be one of "minlike
(the default), "blaker”, "absdist” or "central” (see details). Ignored, if
exact = FALSE.

n

exact logical value that indicates whether p-values are to be calculated by exact com-
putation (exact = TRUE; the default) or by a continuous approximation.

correct logical value that indicates if a continuity correction is to be applied (correct =
TRUE; the default) or not. Ignored, if exact = TRUE.

simple_output, simple.output
logical value that indicates whether an R6 class object, including the tests’ pa-
rameters and support sets, i.e. all observable p-values under each null hypothe-
sis, is to be returned (see below).

Details

The parameters x, n, p and alternative are vectorised. They are replicated automatically to have
the same lengths. This allows multiple hypotheses to be tested simultaneously.

If p = NULL, it is tested if the probability of success is 0.5 with the alternative being specified by
alternative.

For exact computation, various procedures of determining two-sided p-values are implemented.

"minlike"” The standard approach in stats::fisher.test() and stats::binom.test(). The
probabilities of the likelihoods that are equal or less than the observed one are summed up. In
Hirji (2006), it is referred to as the Probability-based approach.

"blaker” The minima of the observations’ lower and upper tail probabilities are combined with
the opposite tail not greater than these minima. More details can be found in Blaker (2000) or
Hirji (2006), where it is referred to as the Combined Tails method.

"absdist"” The probabilities of the absolute distances from the expected value that are greater than
or equal to the observed one are summed up. In Hirji (2006), it is referred to as the Distance
from Center approach.

"central” The smaller values of the observations’ simply doubles the minimum of lower and
upper tail probabilities. In Hirji (2006), it is referred to as the Twice the Smaller Tail method.

For non-exact (i.e. continuous approximation) approaches, ts_method is ignored, since all its meth-
ods would yield the same p-values. More specifically, they all converge to the doubling approach
as in ts_mthod = "central”.

DiscreteTestResults 5

Value

If simple.output = TRUE, a vector of computed p-values is returned. Otherwise, the output is
a DiscreteTestResults R6 class object, which also includes the p-value supports and testing
parameters. These have to be accessed by public methods, e.g. $get_pvalues().

References

Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: John Wiley & Sons. pp. 14-15.
doi:10.1002/0471249688

Blaker, H. (2000) Confidence curves and improved exact confidence intervals for discrete distribu-
tions. Canadian Journal of Statistics, 28(4), pp. 783-798. doi:10.2307/3315916

Hirji, K. F. (2006). Exact analysis of discrete data. New York: Chapman and Hall/CRC. pp. 55-83.
doi:10.1201/9781420036190

See Also

stats::binom.test()

Examples
Constructing
k <- c(4, 2, 2, 14, 6, 9, 4, 0, 1)
n <- c(18, 12, 10)
p <- c(0.5, 0.2, 0.3)

Computation of exact two-sided p-values ("blaker”) and their supports
results_ex <- binom_test_pv(k, n, p, ts_method = "blaker")
raw_pvalues <- results_ex$get_pvalues()

pCDFlist <- results_ex$get_pvalue_supports()

Computation of normal-approximated one-sided p-values ("less"”) and their supports
results_ap <- binom_test_pv(k, n, p, "less”, exact = FALSE)

raw_pvalues <- results_ap$get_pvalues()

pCDFlist <- results_ap$get_pvalue_supports()

DiscreteTestResults Discrete Test Results Class

Description

This is the class used by the statistical test functions of this package for returning not only p-values,
but also the supports of their distributions and the parameters of the respective tests. Objects of this
class are obtained by setting the simple.output parameter of a test function to FALSE (the default).
All data members of this class are private to avoid inconsistencies by deliberate or inadvertent
changes by the user. However, the results can be read by public methods.

https://doi.org/10.1002/0471249688
https://doi.org/10.2307/3315916
https://doi.org/10.1201/9781420036190

6 DiscreteTestResults

Methods

Public methods:

e DiscreteTestResults$new()

e DiscreteTestResults$get_pvalues()

e DiscreteTestResults$get_inputs()

e DiscreteTestResults$get_pvalue_supports()
* DiscreteTestResults$get_support_indices()
e DiscreteTestResults$print()

* DiscreteTestResults$clone()

Method new(): Creates a new DiscreteTestResults object.

Usage:
DiscreteTestResults$new(
test_name,
inputs,
p_values,
pvalue_supports,
support_indices,
data_name

)

Arguments:

test_name single character string with the name of the test(s).

inputs named list of exactly three elements containing the observations, test parameters and
hypothesised null values as data frames; names of these list fields must be observations,
nullvalues and parameters. See details for further information about the requirements
for these fields.

p_values numeric vector of the p-values calculated by each hypothesis test.

pvalue_supports list of unique numeric vectors containing all p-values that are observable
under the respective hypothesis; each value of p_values must occur in its respective p-
value support.

support_indices list of numeric vectors containing the test indices that indicates to which
individual testing scenario each unique parameter set and each unique support belongs.

data_name single character string with the name of the variable that contains the observed data.

Details: The fields of the inputs have the following requirements:

$observations data frame that contains the observed data; if the observed data is a matrix, it
must be converted to a data frame; must not be NULL, only numerical and character values
are allowed.

$nullvalues data frame that contains the hypothesised values of the tests, e.g. the rate param-
eters for Poisson tests; must not be NULL, only numerical values are allowed.

$parameters data frame that holds the parameter combinations of the null distribution of each
test (e.g. numbers of Bernoulli trials for binomial tests, or m, n and k for the hypergeometric
distribution used by Fisher’s Exact Test, which have to be derived from the observations
first); must include a mandatory column named alternative; only numerical and charac-
ter values are allowed.

DiscreteTestResults 7

Missing values or NULLs are not allowed for any of these fields. All data frames must have the
same number of rows. Their column names are used by the print method for producing text
output, therefore they should be informative, i.e. short and (if necessary) non-syntactic, like e.g.
“number of success”.

Method get_pvalues(): Returns the computed p-values.

Usage:

DiscreteTestResults$get_pvalues(named = TRUE)

Arguments:

named single logical value that indicates whether the vector is to be returned as a named vector
(if names are present)

Returns: A numeric vector of the p-values of all null hypotheses.

Method get_inputs(): Return the list of the test inputs.

Usage:
DiscreteTestResults$get_inputs(unique = FALSE)

Arguments:

unique single logical value that indicates whether only unique combinations of parameter sets
and null values are to be returned. If unique = FALSE (the default), the returned data frames
may contain duplicate sets.

Returns: A list of three elements. The first one contains a data frame with the observations for

each tested null hypothesis, while the second is another data frame with the hypothesised null

values (e.g. p for binomial tests). The third list field holds the parameter sets (e.g. n in case of

a binomial test). If unique = TRUE, only unique combinations of parameter sets and null values

are returned, but observations remain unchanged.

Method get_pvalue_supports(): Returns the p-value supports, i.e. all observable p-values
under the respective null hypothesis of each test.

Usage:
DiscreteTestResults$get_pvalue_supports(unique = FALSE)

Arguments:

unique single logical value that indicates whether only unique p-value supports are to be re-
turned. If unique = FALSE (the default), the returned supports may be duplicated.

Returns: A list of numeric vectors containing the supports of the p-value null distributions.
Method get_support_indices(): Returns the indices that indicate to which testing scenario
each unique support belongs.

Usage:
DiscreteTestResults$get_support_indices()

Returns: A list of numeric vectors. Each one contains the indices of the null hypotheses to
which the respective support and/or unique parameter set belongs.

Method print(): Prints the computed p-values.
Usage:

8 DiscreteTestResults
DiscreteTestResults$print(
inputs = TRUE,
pvalues = TRUE,
supports = FALSE,
test_idx = NULL,
limit = 10,
)
Arguments:
inputs single logical value that indicates if the inputs values (i.e. observations and parameters)
are to be printed; defaults to TRUE.
pvalues single logical value that indicates if the resulting p-values are to be printed; defaults
supports single logical value that indicates if the p-value supports are to be printed; defaults
test_idx integer vector giving the indices of the tests whose results are to be printed; if NULL
(the default), results of every test up to the index specified by 1imit (see below) are printed
limit single integer that indicates the maximum number of test results to be printed; if 1imit
= 0, results of every test are printed; ignored if test_idx is not set to NULL
. further arguments passed to print.default.
Returns: Prints a summary of the tested null hypotheses. The object itself is invisibly returned.
Method clone(): The objects of this class are cloneable with this method.
Usage:
DiscreteTestResults$clone(deep = FALSE)
Arguments:
deep Whether to make a deep clone.
Examples

one-sided binomial test

#
X
n
p
m
#

parameters
<- 2:4

<-5

<- 0.4

<- length(x)

support (same for all three tests) and p-values

support <- sapply(@:n, function(k) binom.test(k, n, p, "greater")$p.value)
pv <- support[x + 1]

#

DiscreteTestResults object

res <- DiscreteTestResults$new(

string with name of the test
test_name = "Exact binomial test”,
list of data frames
inputs = list(
observations = data.frame(
“number of successes™ = X,
no name check of column header to have a speaking name for 'print'

DiscreteTestResultsSummary 9

check.names = FALSE
)!

parameters = data.frame(
parameter 'n', needs to be replicated to length of 'x'
“number of trials™ = rep(n, m),
mandatory parameter 'alternative', needs to be replicated to length of 'x'
alternative = rep("”greater”, m),
no name check of column header to have a speaking name for 'print'
check.names = FALSE

),

nullvalues = data.frame(
here: only one null value, 'p'; needs to be replicated to length of
“probability of success™ = rep(p, m),
no name check of column header to have a speaking name for 'print'
check.names = FALSE

)

[

X

)Y

numerical vector of p-values

p_values = pv,

list of supports (here: only one support); values must be sorted and unique
pvalue_supports = list(unique(sort(support))),

list of indices that indicate which p-value/hypothesis each support belongs to
support_indices = list(1:m),

name of input data variables

data_name = "x, n and p"

)

print results without supports
print(res)

print results with supports
print(res, supports = TRUE)

DiscreteTestResultsSummary
Discrete Test Results Summary Class

Description

This is the class used by DiscreteTests for summarising DiscreteTestResults objects. It con-
tains the summarised objects itself, as well as a summary data frame as private members. Both can
be read by public methods.

Methods

Public methods:
e DiscreteTestResultsSummary$new()
* DiscreteTestResultsSummary$get_test_results()
* DiscreteTestResultsSummary$get_summary_table()

10

DiscreteTestResultsSummary

* DiscreteTestResultsSummary$print()
* DiscreteTestResultsSummary$clone()

Method new(): Creates a new summary.DiscreteTestResults object.

Usage:
DiscreteTestResultsSummary$new(test_results)

Arguments:
test_results the DiscreteTestResults class object to be summarised.

Method get_test_results(): Returns the underlying DiscreteTestResults object.

Usage:
DiscreteTestResultsSummary$get_test_results()

Returns: A DiscreteTestResults R6 class object.
Method get_summary_table(): Returns the summary table of the underlying DiscreteTestRe-
sults object.

Usage:
DiscreteTestResultsSummary$get_summary_table()

Returns: A data frame.

Method print(): Prints the summary.
Usage:
DiscreteTestResultsSummary$print(...)
Arguments:
. further arguments passed to print.data.frame.
Returns: Prints a summary table of the tested null hypotheses. The object itself is invisibly
returned.
Method clone(): The objects of this class are cloneable with this method.

Usage:
DiscreteTestResultsSummary$clone(deep = FALSE)

Arguments:
deep Whether to make a deep clone.

Examples

binomial tests

obj <- binom.test.pv(0:5, 5, 0.5)

create DiscreteTestResultsSummary object
res <- DiscreteTestResultsSummary$new(obj)
print summary

print(res)

extract summary table
res$get_summary_table()

fisher_test_pv 11

fisher_test_pv Fisher’s Exact Test for Count Data

Description

fisher_test_pv() performs Fisher’s exact test or a chi-square approximation to assess if rows
and columns of a 2-by-2 contingency table with fixed marginals are independent. In contrast to
stats::fisher.test(), it is vectorised, only calculates p-values and offers a normal approxima-
tion of their computation. Furthermore, it is capable of returning the discrete p-value supports, i.e.
all observable p-values under a null hypothesis. Multiple tables can be analysed simultaneously. In
two-sided tests, several procedures of obtaining the respective p-values are implemented.

[Deprecated]
Note: Please use fisher_test_pv()! The older fisher.test.pv() is deprecated in order to
migrate to snake case. It will be removed in a future version.

Usage
fisher_test_pv(
X,
alternative = "two.sided”,
ts_method = "minlike"”,
exact = TRUE,

correct = TRUE,
simple_output = FALSE

)

fisher.test.pv(
X,
alternative = "two.sided”,
ts.method = "minlike"”,
exact = TRUE,

correct = TRUE,
simple.output = FALSE

)
Arguments
X integer vector with four elements, a 2-by-2 matrix or an integer matrix (or data
frame) with four columns, where each line represents a 2-by-2 table to be tested.
alternative character vector that indicates the alternative hypotheses; each value must be

one of "two.sided"” (the default), "less"” or "greater".

ts_method, ts.method
single character string that indicates the two-sided p-value computation method
(if any value in alternative equals "two. sided") and must be one of "minlike
(the default), "blaker”, "absdist"” or "central” (see details). Ignored, if
exact = FALSE.

n

12 fisher_test_pv

exact logical value that indicates whether p-values are to be calculated by exact com-
putation (exact = TRUE; the default) or by a continuous approximation.

correct logical value that indicates if a continuity correction is to be applied (correct =
TRUE; the default) or not. Ignored, if exact = TRUE.

simple_output, simple.output
logical value that indicates whether an R6 class object, including the tests’ pa-
rameters and support sets, i.e. all observable p-values under each null hypothe-
sis, is to be returned (see below).

Details

The parameters x and alternative are vectorised. They are replicated automatically, such that the
number of x’s rows is the same as the length of alternative. This allows multiple null hypotheses
to be tested simultaneously. Since x is (if necessary) coerced to a matrix with four columns, it is
replicated row-wise.

If exact = TRUE, Fisher’s exact test is performed (the specific hypothesis depends on the value of
alternative). Otherwise, if exact = FALSE, a chi-square approximation is used for two-sided
hypotheses or a normal approximation for one-sided tests, based on the square root of the chi-
squared statistic. This is possible because the degrees of freedom of chi-squared tests on 2-by-2
tables are limited to 1.

For exact computation, various procedures of determining two-sided p-values are implemented.

"minlike"” The standard approach in stats::fisher.test() and stats::binom.test(). The
probabilities of the likelihoods that are equal or less than the observed one are summed up. In
Hirji (2006), it is referred to as the Probability-based approach.

"blaker” The minima of the observations’ lower and upper tail probabilities are combined with
the opposite tail not greater than these minima. More details can be found in Blaker (2000) or
Hirji (2006), where it is referred to as the Combined Tails method.

"absdist” The probabilities of the absolute distances from the expected value that are greater than
or equal to the observed one are summed up. In Hirji (2006), it is referred to as the Distance
from Center approach.

"central” The smaller values of the observations’ simply doubles the minimum of lower and
upper tail probabilities. In Hirji (2006), it is referred to as the Twice the Smaller Tail method.

For non-exact (i.e. continuous approximation) approaches, ts_method is ignored, since all its meth-
ods would yield the same p-values. More specifically, they all converge to the doubling approach
asin ts_mthod = "central”.

Value

If simple.output = TRUE, a vector of computed p-values is returned. Otherwise, the output is
a DiscreteTestResults R6 class object, which also includes the p-value supports and testing
parameters. These have to be accessed by public methods, e.g. $get_pvalues().

References

Fisher, R. A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society
Series A, 98, pp. 39-54. doi:10.2307/2342435

https://doi.org/10.2307/2342435

mcnemar._test_pv 13

Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: John Wiley & Sons. pp. 91-97.
doi:10.1002/0471249688

Blaker, H. (2000) Confidence curves and improved exact confidence intervals for discrete distribu-
tions. Canadian Journal of Statistics, 28(4), pp. 783-798. doi:10.2307/3315916

Hirji, K. F. (2006). Exact analysis of discrete data. New York: Chapman and Hall/CRC. pp. 55-83.
doi:10.1201/9781420036190

See Also

stats::fisher.test()

Examples

Constructing

S1 <-c(4, 2, 2, 14, 6, 9, 4, 0, 1)
S2 <-c(0, 0, 1, 3, 2,1, 2,2, 2)
N1 <- rep(148, 9)

N2 <- rep(132, 9)

F1 <= N1 - S1

F2 <- N2 - S2

df <- data.frame(S1, F1, S2, F2)

Computation of Fisher's exact p-values (default: "minlike"”) and their supports
results_f <- fisher_test_pv(df)

raw_pvalues <- results_f$get_pvalues()

pCDFlist <- results_f$get_pvalue_supports()

Computation of p-values of chi-square tests and their supports
results_c <- fisher_test_pv(df, exact = FALSE)

raw_pvalues <- results_c$get_pvalues()

pCDFlist <- results_c$get_pvalue_supports()

mcnemar_test_pv McNemar’s Test for Count Data

Description

Performs McNemar’s chi-square test or an exact variant to assess the symmetry of rows and columns
in a 2-by-2 contingency table. In contrast to stats: :mcnemar.test(), it is vectorised, only calcu-
lates p-values and offers their exact computation. Furthermore, it is capable of returning the discrete
p-value supports, i.e. all observable p-values under a null hypothesis. Multiple tables can be anal-
ysed simultaneously. In two-sided tests, several procedures of obtaining the respective p-values are
implemented. It is a special case of the binomial test.

[Deprecated]
Note: Please use mcnemar_test_pv()! The older mcnemar.test.pv() is deprecated in order to
migrate to snake case. It will be removed in a future version.

https://doi.org/10.1002/0471249688
https://doi.org/10.2307/3315916
https://doi.org/10.1201/9781420036190

14

Usage

mcnemar_test_pv(

X,

alternative = "two.sided",
exact = TRUE,

correct = TRUE,
simple_output = FALSE

mcnemar. test.pv(

X,
alternative = "two.sided”,
exact = TRUE,

correct = TRUE,
simple.output = FALSE

Arguments

X

alternative

exact

correct

mcnemar_test_pv

integer vector with four elements, a 2-by-2 matrix or an integer matrix (or data
frame) with four columns where each line represents a 2-by-2 table to be tested.

character vector that indicates the alternative hypotheses; each value must be
one of "two.sided"” (the default), "less” or "greater”.

logical value that indicates whether p-values are to be calculated by exact com-

putation (exact = TRUE; the default) or by a continuous approximation.

simple_output, simple.output
logical value that indicates whether an R6 class object, including the tests’ pa-
rameters and support sets, i.e. all observable p-values under each null hypothe-

sis, is to be returned (see below).

Details

logical value that indicates if a continuity correction is to be applied (correct =
TRUE; the default) or not. Ignored, if exact = TRUE.

The parameters x and alternative are vectorised. They are replicated automatically, such that the
number of x’s rows is the same as the length of alternative. This allows multiple null hypotheses
to be tested simultaneously. Since ‘x is (if necessary) coerced to a matrix with four columns, it is
replicated row-wise.

It can be shown that McNemar’s test is a special case of the binomial test. Therefore, its compu-
tations are handled by binom_test_pv(). In contrast to that function, mcnemar_test_pv() does
not allow specifying exact two-sided p-value calculation procedures. The reason is that McNe-
mar’s exact test always tests for a probability of 0.5, in which case all these exact two-sided p-value

computation methods yield exactly the same results.

Value

If simple.output = TRUE, a vector of computed p-values is returned. Otherwise, the output is
a DiscreteTestResults R6 class object, which also includes the p-value supports and testing

poisson_test_pv 15
parameters. These have to be accessed by public methods, e.g. $get_pvalues().

References

Agresti, A. (2002). Categorical data analysis (2nd ed.). New York: John Wiley & Sons. pp.
411-413. doi:10.1002/0471249688

See Also

stats: :mcnemar.test(), binom_test_pv()

Examples

Constructing

S1 <-c(4, 2, 2, 14, 6, 9, 4, 0, 1)
S2<-c(0, 0, 1,3,2,1,2,2, 2
N1 <- rep(148, 9)

N2 <- rep(132, 9)

F1 <= N1 - S1

F2 <= N2 - S2

df <- data.frame(S1, F1, S2, F2)

Computation of exact p-values and their supports
results_ex <- mcnemar_test_pv(df)

raw_pvalues <- results_ex$get_pvalues()

pCDFlist <- results_ex$get_pvalue_supports()

Computation of chisquare p-values and their supports
results_cs <- mcnemar_test_pv(df, exact = FALSE)
raw_pvalues <- results_cs$get_pvalues()

pCDFlist <- results_cs$get_pvalue_supports()

poisson_test_pv Poisson Test

Description

poisson_test_pv() performs an exact or approximate Poisson test about the rate parameter of
a Poisson distribution. In contrast to stats::poisson.test(), it is vectorised, only calculates
p-values and offers a normal approximation of their computation. Furthermore, it is capable of
returning the discrete p-value supports, i.e. all observable p-values under a null hypothesis. Mul-
tiple tests can be evaluated simultaneously. In two-sided tests, several procedures of obtaining the
respective p-values are implemented.

[Deprecated]
Note: Please use poisson_test_pv()! The older poisson.test.pv() is deprecated in order to
migrate to snake case. It will be removed in a future version.

https://doi.org/10.1002/0471249688

16 poisson_test_pv

Usage

poisson_test_pv(
X,
lambda = 1,
alternative = "two.sided”,
ts_method = "minlike”,
exact = TRUE,
correct = TRUE,
simple_output = FALSE

poisson.test.pv(
X,
lambda = 1,
alternative = "two.sided”,
ts.method = "minlike"”,
exact = TRUE,
correct = TRUE,
simple.output = FALSE

)
Arguments
X integer vector giving the number of events.
lambda non-negative numerical vector of hypothesised rate(s).
alternative character vector that indicates the alternative hypotheses; each value must be

one of "two.sided"” (the default), "less" or "greater".

ts_method, ts.method
single character string that indicates the two-sided p-value computation method
(if any value in alternative equals "two. sided") and must be one of "minlike
(the default), "blaker”, "absdist” or "central” (see details). Ignored, if
exact = FALSE.

exact logical value that indicates whether p-values are to be calculated by exact com-
putation (exact = TRUE; the default) or by a continuous approximation.

n

correct logical value that indicates if a continuity correction is to be applied (correct =
TRUE; the default) or not. Ignored, if exact = TRUE.

simple_output, simple.output
logical value that indicates whether an R6 class object, including the tests’ pa-
rameters and support sets, i.e. all observable p-values under each null hypothe-
sis, is to be returned (see below).

Details
The parameters x, lambda and alternative are vectorised. They are replicated automatically to
have the same lengths. This allows multiple null hypotheses to be tested simultaneously.

Since the Poisson distribution itself has an infinite support, so do the p-values of exact Poisson tests.
Thus supports only contain p-values that are not rounded off to 0.

poisson_test_pv 17

For exact computation, various procedures of determining two-sided p-values are implemented.

"minlike"” The standard approach in stats::fisher.test() and stats::binom.test(). The
probabilities of the likelihoods that are equal or less than the observed one are summed up. In
Hirji (2006), it is referred to as the Probability-based approach.

"blaker” The minima of the observations’ lower and upper tail probabilities are combined with
the opposite tail not greater than these minima. More details can be found in Blaker (2000) or
Hirji (2006), where it is referred to as the Combined Tails method.

"absdist"” The probabilities of the absolute distances from the expected value that are greater than
or equal to the observed one are summed up. In Hirji (2006), it is referred to as the Distance
from Center approach.

"central” The smaller values of the observations’ simply doubles the minimum of lower and
upper tail probabilities. In Hirji (2006), it is referred to as the Twice the Smaller Tail method.

For non-exact (i.e. continuous approximation) approaches, ts_method is ignored, since all its meth-
ods would yield the same p-values. More specifically, they all converge to the doubling approach
as in ts_mthod = "central”.

Value

If simple.output = TRUE, a vector of computed p-values is returned. Otherwise, the output is
a DiscreteTestResults R6 class object, which also includes the p-value supports and testing
parameters. These have to be accessed by public methods, e.g. $get_pvalues().

References

Blaker, H. (2000) Confidence curves and improved exact confidence intervals for discrete distribu-
tions. Canadian Journal of Statistics, 28(4), pp. 783-798. doi:10.2307/3315916

Hirji, K. F. (2006). Exact analysis of discrete data. New York: Chapman and Hall/CRC. pp. 55-83.
doi:10.1201/9781420036190

See Also

stats::poisson.test(), binom_test_pv()

Examples

Constructing
k <-c(4, 2, 2, 14, 6, 9, 4, 0, 1)
lambda <- c(3, 2, 1)

Computation of exact two-sided p-values ("blaker”) and their supports
results_ex <- poisson_test_pv(k, lambda, ts_method = "blaker")
raw_pvalues <- results_ex$get_pvalues()

pCDFlist <- results_ex$get_pvalue_supports()

Computation of normal-approximated one-sided p-values ("less"”) and their supports
results_ap <- poisson_test_pv(k, lambda, "less"”, exact = FALSE)

raw_pvalues <- results_ap$get_pvalues()

pCDFlist <- results_ap$get_pvalue_supports()

https://doi.org/10.2307/3315916
https://doi.org/10.1201/9781420036190

18 summary.Discrete TestResults

summary.DiscreteTestResults
Summarizing Discrete Test Results

Description

summary method for class DiscreteTestResults.

Usage

S3 method for class 'DiscreteTestResults'
summary(object, ...)

Arguments

object object of class DiscreteTestResults to be summarised; usually created by us-
ing one of the packages test functions, e.g. binom. test.pv(), with simple.output
= FALSE.

further arguments passed to or from other methods.

Value

A summary.DiscreteTestResults R6 class object.

Examples

binomial tests

obj <- binom.test.pv(0:5, 5, 0.5)
print summary

summary (obj)

extract summary table

smry <- summary(obj)
smry$get_summary_table()

Index

binom.test.pv (binom_test_pv), 3
binom.test.pv(), I8
binom_test_pv, 3
binom_test_pv(), 14, 15,17
binomial test, /3

DiscreteFDR, 2
DiscreteTestResults, 5,5, 9, 10, 12, 14, 17,
18
DiscreteTestResultsSummary, 9
DiscreteTests (DiscreteTests-package), 2
DiscreteTests-package, 2

FDX, 2
fisher.test.pv (fisher_test_pv), 11
fisher_test_pv, 11

mcnemar. test.pv (mcnemar_test_pv), 13
mcnemar_test_pv, 13

poisson.test.pv (poisson_test_pv), 15
poisson_test_pv, 15

stats::binom.test(), 3-5, 12, 17
stats::fisher.test(), 4, 11-13,17
stats::mcnemar.test(), 13, 15
stats::poisson.test(), 15, 17
summary.DiscreteTestResults, I8, 18

19

	DiscreteTests-package
	binom_test_pv
	DiscreteTestResults
	DiscreteTestResultsSummary
	fisher_test_pv
	mcnemar_test_pv
	poisson_test_pv
	summary.DiscreteTestResults
	Index

