Package 'DLPCA'

January 20, 2025

Type Package

Title The Distributed Local PCA Algorithm

Version 0.0.5

Date 2022-08-07

Maintainer Guangbao Guo <ggb11111111@163.com>

Description Algorithm to handle with optimal subset selection for distributed local principal component analysis. The philosophy of the package is described in Guo G. (2020) <doi:10.1080/02331888.2020.1823979>.

License MIT + file LICENSE

NeedsCompilation no

Author Guangbao Guo [aut, cre] (<https://orcid.org/0000-0002-4115-6218>), Guoqi Qian [aut], Yixiao Liu [aut], Haoyue Song [aut]

Depends R (>= 3.5.0)

RoxygenNote 7.2.0

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

Repository CRAN

Date/Publication 2022-08-07 02:20:02 UTC

Contents

Application	2
DLPCA	2
,t2011	3
yt2012	4
,t2013	5
t^2014	
gt2015	7
ris	8
ИЅЕрса	9

DLPCA

Index

Application Application

Description

Application data set

Usage

data("Application")

Format

The format is: int [1:48, 1:15] 6 9 7 5 6 7 9 9 9 4 ... - attr(*, "dimnames")=List of 2 ...\$: NULL ...\$: chr [1:15] "FL" "APP" "AA" "LA" ...

Details

It is the scoring of 15 indicators on 48 interviewees

Examples

```
data(Application)
## maybe str(Application) ; plot(Application) ...
```

DLPCA

Distributed local PCA

Description

Calculate the estimator on the DLPCA method

Usage

DLPCA(X = X, n = n, p = p, m = m, K = K, L = L)

Arguments

Х	is the original data matrix
n	is the sample size
р	is the number of variables
m	is the number of eigenvalues
К	is the number of nodes
L	is the number of subgroups

gt2011

Value

time	is the time cost
V	is the right singular matrix
Vm	is the m-right singular matrix
Smean	is the mean covariance matrix
MMSER	is the mean MSE values of the robust covariance matrix sub-estimators
MMSES	is the mean MSE values of the covariance matrix sub-estimators
MMSEX	is the mean MSE values of the sub-estimators of the matrix X
MSER	is the min MSE values of the robust covariance matrix sub-estimators
MSES	is the min MSE values of the covariance matrix sub-estimators
MSEX	is the min MSE values of the sub-estimators of the matrix X
wMSER	is the location of the min MSE values of the robust covariance matrix sub- estimators
wMSES	is the location of the min MSE values of the covariance matrix sub-estimators
wMSEX	is the location of the min MSE values of the sub-estimators of the matrix X
sigm	is the estimator of the covariance matrix of the matrix X

Examples

```
data(Application)
X=Application
n=nrow(Application);p=ncol(Application)
m=5;L=4;K=4
DLPCA_result=DLPCA(X=X,n=n,p=p,m=m,K=K,L=L)
```

gt2011

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2011

Usage

data("gt2011")

Format

A data frame with 7411 observations on the following 11 variables.

- AT a numeric vector
- AP a numeric vector
- AH a numeric vector
- AFDP a numeric vector
- GTEP a numeric vector
- TIT a numeric vector
- TAT a numeric vector
- TEY a numeric vector
- CDP a numeric vector
- CO a numeric vector
- NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2011)

gt2012

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2012

Usage

data("gt2012")

gt2013

Format

A data frame with 7628 observations on the following 11 variables.

- AT a numeric vector
- AP a numeric vector
- AH a numeric vector
- AFDP a numeric vector
- GTEP a numeric vector
- TIT a numeric vector
- TAT a numeric vector
- TEY a numeric vector
- CDP a numeric vector
- CO a numeric vector
- NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2012)

gt2013

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2013

Usage

data("gt2013")

Format

A data frame with 7152 observations on the following 11 variables.

- AT a numeric vector
- AP a numeric vector
- AH a numeric vector
- AFDP a numeric vector
- GTEP a numeric vector
- TIT a numeric vector
- TAT a numeric vector
- TEY a numeric vector
- CDP a numeric vector
- CO a numeric vector
- NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2013)

gt2014

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2014

Usage

data("gt2014")

gt2015

Format

A data frame with 7158 observations on the following 11 variables.

- AT a numeric vector
- AP a numeric vector
- AH a numeric vector
- AFDP a numeric vector
- GTEP a numeric vector
- TIT a numeric vector
- TAT a numeric vector
- TEY a numeric vector
- CDP a numeric vector
- CO a numeric vector
- NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2014)

gt2015

Gas-Turbine CO and NOx Emission Data

Description

Gas-Turbine CO and NOx Emission Data in 2015

Usage

data("gt2015")

Format

A data frame with 7384 observations on the following 11 variables.

- AT a numeric vector
- AP a numeric vector
- AH a numeric vector
- AFDP a numeric vector
- GTEP a numeric vector
- TIT a numeric vector
- TAT a numeric vector
- TEY a numeric vector
- CDP a numeric vector
- CO a numeric vector
- NOX a numeric vector

Details

The dataset contains 36733 instances of 11 sensor measures aggregated over one hour, from a gas turbine located in Turkey for the purpose of studying flue gas emissions, namely CO and NOx.

Source

Heysem Kaya, Department of Information and Computing Sciences, Utrecht University, 3584 CC, Utrecht, The Netherlands

Examples

data(gt2015)

Iris

Iris

Description

Iris data set

Usage

data("Iris")

MSEpca

Format

A data frame with 150 observations on the following 5 variables.

Sepal.length a numeric vector Sepal.width a numeric vector Petal.length a numeric vector Petal.width a numeric vector

Species a character vector

Details

It contains 150 samples with 5 variables

Source

Gaspar peninsula in Canada

Examples

```
data(Iris)
## maybe str(Iris) ; plot(Iris) ...
```

MSEpca

MSE on PCA

Description

Caculate the MSE value on PCA

Usage

MSEpca(V = V, X = X, n = n, p = p, m = m, K = K, L = L)

Arguments

V	is the right singular matrix
Х	is the orignal data set
n	is the sample size
р	is the number of variables
m	is the number of eigenvalues
К	is the number of nodes
L	is the number of subgroups

Value

MSEpca the MSE value on PCA

MSEpca

Examples

```
data(Application)
X=Application
n=nrow(Application);p=ncol(Application)
m=5;L=4;K=4
DLPCA_result=DLPCA(X=X,n=n,p=p,m=m,K=K,L=L)
V=DLPCA_result$V
MSEpca_result=MSEpca(V=V,X=X,n=n,p=p,m=m,K=K,L=L)
MSE_PCA=MSEpca_result$MSEpca
```

Index

* datasets ${\tt Application, 2}$ gt2011,3 gt2012,<mark>4</mark> gt2013,5 gt2014,<mark>6</mark> gt2015,7 Iris,<mark>8</mark> ${\tt Application, 2}$ DLPCA, 2 gt2011,3 gt2012,4 gt2013,5 gt2014,<mark>6</mark> gt2015,7 Iris,<mark>8</mark>

MSEpca, 9