CpGassoc July 15, 2024

$\operatorname{cpg.assoc}$	Association Analysis Between Methylation Beta Values and
	Phenotype of Interest

Usage

 $\begin{array}{l} {\rm cpg.assoc(beta.val, indep, covariates = NULL, data = NULL, logit.transform \\ {\rm = FALSE, chip.id = NULL, subset = NULL, random = FALSE, fdr.cutoff \\ {\rm = 0.05, large.data = TRUE, fdr.method = "BH", logitperm = FALSE)} \end{array}$

beta.val	A vector, matrix, or data frame containing the beta values of interest (1 row per CpG site, 1 column per individual).
indep	A vector containing the variable to be tested for association. cpg.assoc will evaluate the association between the beta values (dependent variable) and indep (independent variable).
covariates	A data frame consisting of additional covariates to be included in the model. covariates can also be specified as a matrix if it takes the form of a model matrix with no intercept column, or can be specified as a vector if there is only one covariate of interest. Can also be a formula(e.g. cov1+cov2).
data	an optional data frame, list or environment (or object co- ercible by as.data.frame to a data frame) containing the vari- ables in the model. If not found in data, the variables are taken from the environment from which cpg.assoc is called.
logit.transform	Logical. If TRUE, the logit transform of the beta values $log(beta.val/(1-beta.val))$ will be used. Any values equal to zero or one will be set to the next smallest or next largest value respectively; values <0 or >1 will be set to NA.
chip.id	An optional vector containing chip or batch identifiers. If specified, chip.id will be included as a factor in the model.

subset	An optional logical vector specifying a subset of observations to be used in the fitting process.
random	Logical. If TRUE, chip.id will be included in the model as a random effect, and a random intercept model will be fitted. If FALSE, chip.id will be included in the model as an ordinary categorical covariate, for a much faster analysis.
fdr.cutoff	The desired FDR threshold. The default setting is .05. The set of CpG sites with $FDR < fdr.cutoff$ will be labeled as significant.
large.data	Logical. Enables analyses of large datasets. When large.data=TRUE, cpg.assoc avoids memory problems by performing the analysis in chunks.
fdr.method	Character. Method used to calculate False Discovery Rate. Choices include any of the methods available in p.adjust(). The default method is "BH" for the Benjamini and Hochberg method.
logitperm	Logical. For internal use only.

Details

cpg.assoc is designed to test for association between an independent variable and methylation at a number of CpG sites, with the option to include additional covariates and factors. cpg.assoc assesses significance with the Holm (step-down Bonferroni) and FDR methods.

If class(indep)='factor', cpg.assoc will perform an ANOVA test of the variable conditional on the covariates specified. Covariates, if entered, should be in the form of a data frame, matrix, or vector. For example, covariates=data.frame(weight,age,factor(city)). The data frame can also be specified prior to calling cpg.assoc. The covariates should either be vectors or columns of a matrix or data.frame.

cpg.assoc is also designed to deal with large data sets. Setting large.data=TRUE will make cpg.assoc split up the data to enable efficient analysis of large datasets.

Value

cpg.assoc will return an object of class cpg. The functions summary and plot can be called to get a summary of results and to create QQ plots.

results	A data frame consisting of the t or F statistics and P-values for each CpG site, as well as indicators of Holm and FDR significance. CpG sites will be in the same order as the original input, but the sort() function can be used directly on the cpg.assoc object to sort CpG sites by p-value.
results	A data frame consisting of the t or F statistics and P-values for each CpG site, as well as indicators of Holm and FDR significance. CpG sites will be in the same order as the original input, but the sort() function can be used directly on the cpg.assoc object to sort CpG sites by p-value.
Holm.sig	A list of sites that met criteria for Holm significance.
FDR.sig	A data.frame of the CpG sites that were significant by the FDR method specified.
info	A data frame consisting of the minimum P-value observed, the FDR method that was used, the phenotype of interest, the number of covariates in the model, the name of the ma- trix or data frame the methylation beta values were taken from, the FDR cutoff value and whether a mixed effects anal- ysis was performed.
indep	The independent variable that was tested for association.
covariates	Data.frame or matrix of covariates, if specified (otherwise NULL).
chip	chip.id vector, if specified (otherwise NULL).

```
coefficients A data frame consisting of the degrees of freedom, and if
object is continous the intercept effect adjusted for possible
covariates in the model, the estimated effect size, and the
standard error. The degrees of freedom is used in plot.cpg
to compute the genomic inflation factors.
```

Authors

Barfield, R.; Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

See Also

cpg.perm, cpg.work, plot.cpg scatterplot, cpg.combine, manhattan, plot.cpg.perm, sort.cpg.perm, sort.cpg, cpg.qc, cpg.GC

Examples

```
> #Sample output from CpGassoc
> ###NOTE: If you are dealing with large data, do not specify large.data=FALSE. The
> ##This will involve partitioning up the data and performing more gc() to clear up
> library(CpGassoc)
> data(samplecpg,samplepheno,package="CpGassoc")
> results<-cpg.assoc(samplecpg,samplepheno$weight,large.data=FALSE)</p>
> results
The top ten CpG sites were:
     CPG.Labels T.statistic
                                 P.value Holm.sig
                                                         FDR
                                                               gc.p.value
694
         CpG694
                   3.454271 0.0006456268
                                             FALSE 0.4318310 0.0006456268
         CpG293
                                            FALSE 0.4318310 0.0007485123
293
                   3.412320 0.0007485123
560
         CpG560
                   3.313353 0.0010549618
                                            FALSE 0.4318310 0.0010549618
148
         CpG148
                   3.133454 0.0019286973
                                            FALSE 0.5645412 0.0019286973
998
         CpG998
                  -3.079596 0.0022986204
                                            FALSE 0.5645412 0.0022986204
        CpG1059
                  -2.883525 0.0042668430
                                            FALSE 0.7693539 0.0042668430
1059
        CpG1182
                  -2.819710 0.0051827097
                                            FALSE 0.7693539 0.0051827097
1182
         CpG100
                   2.787987 0.0057015107
                                            FALSE 0.7693539 0.0057015107
100
                                            FALSE 0.7693539 0.0062093208
751
         CpG751
                  -2.759379 0.0062093208
238
         CpG238
                   2.756367 0.0062650966
                                            FALSE 0.7693539 0.0062650966
```

```
To access results for all 1228 CpG sites use object$results
or sort(object)$results to obtain results sorted by p-value.
```

```
General info:
 Min.P.Observed Num.Cov fdr.cutoff FDR.method Phenotype chipinfo num.Holm
1
   0.0006456268
                       0
                               0.05
                                            BH
                                                  weight
                                                              NULL
                                                                          0
  num.fdr
1
        0
O sites were found significant by the Holm method
O sites were found significant by BH method
The beta values were taken from: samplecpg
Effect sizes and standard error can be accessed using $coefficients
Other attributes are: results, Holm.sig, FDR.sig, info
 They can be accessed using the $
> #Analysis with covariates. There are multiple ways to do this. One can define the
> #dataframe prior or do it in the function call or as a function such as ~Cov1+Cov.
> #We will do it in the function call
> test<-cpg.assoc(samplecpg,samplepheno$weight,data.frame(samplepheno$Distance,samp.
> #Doing a mixed effects model. This does take more time, so we will do a subset of
> #the samplecpg
> randtest<-cpg.assoc(samplecpg[1:10,],samplepheno$weight,chip.id=samplepheno$chip,
>
> #summary function will work on items of class cpg.
>
>
```

cpg.combine

Combine various objects of class cpg

Description

Takes a list containing objects of class cpg and combines them into one cpg item. Assumes that there are no repeated CpG sites bewtween the various objects (i.e. analysis wasn't performed on the same sites twice).

usage

cpg.combine(allvalues, fdr.method="BH",fdr.cutoff=.05)

allvalues	A list containing the cpg objects that are desired to be consolidated.
fdr.method	FDR method that user wants to use. For options see the cpg.assoc help page.
fdr.cutoff	The desired FDR threshold. The default setting is .05. The set of CpG sites with FDR $<$ fdr.cutoff will be labeled as significant.
Value	

Value

indo.data	An object of class cpg that is the consolidated version of the
	objects of class cpg that were passed in.

Authors

Barfield, R.;Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

Note

This is designed to be used by cpg.assoc when it does analysis on large data sets or by the user if they split up the analysis by chromosome or some other such partition.

See Also

cpg.perm, cpg.work, plot.cpg scatterplot, cpg.assoc, manhattan, plot.cpg.perm, sort.cpg.perm, sort.cpg

Examples

- > library(CpGassoc)
- > data(samplecpg,samplepheno,package="CpGassoc")
- > ###NOTE: If you are dealing with large data, do not specify large.data=FALSE. The
- > ##This will involve partitioning up the data and performing more gc() to clear up
- > test1<-cpg.assoc(samplecpg[1:100,],samplepheno\$weight,large.data=FALSE)
- > test2<-cpg.assoc(samplecpg[101:200,],samplepheno\$weight,large.data=FALSE)
- > overall<-cpg.combine(list(test1,test2))</pre>
- > overall

The top ten CpG sites were:

	CPG.Labels	T.statistic	P.value	Holm.sig	FDR	gc.p.value
148	CpG148	3.133454	0.001928697	FALSE	0.3857395	0.008032723
100	CpG100	2.787987	0.005701511	FALSE	0.5701511	0.018186157
52	CpG52	-2.400358	0.017093566	FALSE	0.6753972	0.041721245
3	CpG3	-2.307436	0.021828750	FALSE	0.6753972	0.050222867
85	CpG85	2.289916	0.022840129	FALSE	0.6753972	0.051979447
72	CpG72	-2.093410	0.037296699	FALSE	0.6753972	0.075466953
153	CpG153	-2.080196	0.038502367	FALSE	0.6753972	0.077318076
178	CpG178	-2.055509	0.040844281	FALSE	0.6753972	0.080876123
70	CpG70	-2.023648	0.044045272	FALSE	0.6753972	0.085664559
35	CpG35	-2.000859	0.046463353	FALSE	0.6753972	0.089228937

To access results for all 200 CpG sites use object\$results or sort(object)\$results to obtain results sorted by p-value.

General info:

Min.P.Observed Num.Cov fdr.cutoff FDR.method Phenotype chipinfo num.Holm 1 0.001928697 0 0.05 BH weight NULL 0 num.fdr 1 0

0 sites were found significant by the Holm method 0 sites were found significant by BH method

The beta values were taken from: samplecpg Effect sizes and standard error can be accessed using \$coefficients Other attributes are: results, Holm.sig, FDR.sig, info, coefficients They can be accessed using the \$

cpg.perm Perform a Permutation Test of the Association Between Methylation and a Phenotype of Interest

Description

Calls cpg.assoc to get the observed P-values from the study and then performs a userspecified number of permutations to calculate an emperical p-value. In addition to the same test statistics computed by cpg.assoc, cpg.perm will compute the permutation p-values for the observed p-value, the number of Holm significant sites, and the number of FDR significant sites.

Usage

beta.values	A vector, matrix, or data frame containing the beta values of interest (1 row per CpG site, 1 column per individual).
indep	A vector containing the main variable of interest. cpg.assoc will eval- uate the association between indep and the beta values.
covariates	A data frame consisting of the covariates of interest. covariates can also be a matrix if it is a model matrix minus the intercept column. It can also be a vector if there is only one covariate of interest. Can also be a formula(e.g. cov1+cov2).
nperm	The number of permutations to be performed.
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from the environment from which cpg.perm is called.
seed	The required seed for random number generation. If not input, will use R's internal seed.
logit.transform	Logical. If TRUE, the logit transform of the beta values log(beta.val/(1-beta.val)) will be used. Any values equal to zero or one will be set to the next smallest or next largest value respectively; values <0 or >1 will be set to NA.
chip.id	An optional vector containing the chip information. If specified, chip id will be included as a factor in the model.
subset	An optional logical vector specifying a subset of observations to be used in the fitting process.
random	Logical. If TRUE, the chip.id will be processed as a random effect, and a random intercept model will be fitted.
fdr.cutoff	The threshold at which to compare the FDR values. The default setting is .05. Any FDR values less than .05 will be considered significant.
fdr.method	Character. Method used to calculate False Discovery Rate. Can be any of the methods listed in p.adjust. The default method is "BH" for the Benjamini and Hochberg method.
large.data	Logical. Enables analyses of large datasets. When large.data=TRUE, cpg.assoc avoids memory problems by performing the analysis in chunks.

Value

The item returned will be of class *cpg.perm*. It will contain all of the values of class *cpg* <u>cpg.assoc</u> and a few more:

permutation.matrix	A matrix consisting of the minimum observed P-value, the number of Holm significant CpG sites, and the number of FDR significant sites for each permutation.
perm.p.values	A data frame consisting of the permutation P-values, and the number of permutations performed.
perm.tstat	If one hundred or more permutations were performed and indep is a continuous variable, consists of the quantile .025 and .975 of ob- served t-statistics for each permutation, ordered from smallest to largest. perm.tstat is used by plot.cpg.perm to compute the confidence inter- vals for the QQ plot of t-statistics. Otherwise NULL.
perm.pval	If one hundred or more permutations were performed, consists of the ob- served p-values for each permutation, ordered from smallest to largest. perm.pval is usd by plot.cpg.perm to compute the confidence intervals for the QQ plot of the p-values. Otherwise NULL.
gc.permutation.matrix	Similar to the permutation.matrix only in relation to the genomic con- trol adjusted p-values.

Authors

Barfield, R.; Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

See Also

cpg.assoc, cpg.work, plot.cpg scatterplot, cpg.combine, manhattan, plot.cpg.perm, sort.cpg.perm, sort.cpg, cpg.qc, cpg.GC

Examples

```
> ##Loading the data
> library(CpGassoc)
> data(samplecpg,samplepheno,package="CpGassoc")
> ###NOTE: If you are dealing with large data, do not specify large.data=FALSE. The default option i
> ##This will involve partitioning up the data and performing more gc() to clear up space
> #Performing a permutation 10 times
> Testperm<-cpg.perm(samplecpg,samplepheno$weight,data.frame(samplepheno$Dose,samplepheno$Distance),
                  seed=2314,nperm=10,large.data=FALSE)
> Testperm
The permutation P-values, number of permutations and seed:
 p.value.p p.value.holm p.value.FDR nperm seed
       0.5
                                        10 2314
1
                                   1
                       1
Other information:
```

```
Min.P.Observed Num.Cov fdr.cutoff FDR.method num.real.Holm num.real.fdr
   0.0006002142
                               0.05
                                            BH
1
                       2
                                                           0
                                                                         0
The top ten CpG sites were:
                                 P.value Holm.sig
     CPG.Labels T.statistic
                                                        FDR
                                                              gc.p.value
                   3.475160 0.0006002142
694
         CpG694
                                            FALSE 0.3833341 0.0006002142
293
         CpG293
                   3.464076 0.0006243226
                                            FALSE 0.3833341 0.0006243226
560
         CpG560
                  3.333678 0.0009848497
                                            FALSE 0.4031318 0.0009848497
         CpG148
                                            FALSE 0.4953578 0.0016135434
148
                  3.187753 0.0016135434
238
         CpG238
                  3.012760 0.0028504303
                                            FALSE 0.5921086 0.0028504303
         CpG998
998
                  -3.008091 0.0028930386
                                            FALSE 0.5921086 0.0028930386
1059
        CpG1059
                  -2.932014 0.0036749081
                                            FALSE 0.6295151 0.0036749081
100
         CpG100
                  2.889847 0.0041873059
                                            FALSE 0.6295151 0.0041873059
1006
        CpG1006
                  -2.831992 0.0049965867
                                            FALSE 0.6295151 0.0049965867
1182
        CpG1182
                  -2.823521 0.0051263442
                                            FALSE 0.6295151 0.0051263442
To access results for all 1228 CpG sites use object$results
or sort(object)$results to obtain results sorted by p-value.
O sites were found significant by the Holm method
O sites were found significant by BH method
The beta values were taken from: samplecpg
Other attributes are: permutation.matrix, perm.p.values, gc.permutation.matrix, results ,
Holm.sig, FDR.sig, info, coefficients.
They can be accessed using the $
> #All the contents of CpGassoc are included in the output from Testperm
> #Using the output from CpGassoc in the example
> test<-cpg.assoc(samplecpg,samplepheno$weight,data.frame(samplepheno$Distance,samplepheno$Dose),lar</p>
> all.equal(Testperm$results,test$results)
[1] TRUE
> #summary function works on objects of class cpg.perm
> summary(Testperm)
The permutation P-values, number of permutations and seed:
 p.value.p p.value.holm p.value.FDR nperm seed
1
                                        10 2314
       0.5
                      1
                                   1
Other information:
 Min.P.Observed Num.Cov fdr.cutoff FDR.method num.real.Holm num.real.fdr
1 0.0006002142
                      2
                               0.05
                                            BH
                                                           0
                                                                         0
The top ten CpG sites were:
     CPG.Labels T.statistic
                                 P.value Holm.sig
                                                        FDR
                                                              gc.p.value
694
         CpG694
                   3.475160 0.0006002142
                                            FALSE 0.3833341 0.0006002142
293
         CpG293
                   3.464076 0.0006243226
                                            FALSE 0.3833341 0.0006243226
560
         CpG560
                   3.333678 0.0009848497
                                            FALSE 0.4031318 0.0009848497
         CpG148
                                            FALSE 0.4953578 0.0016135434
148
                   3.187753 0.0016135434
                                            FALSE 0.5921086 0.0028504303
238
         CpG238
                   3.012760 \ 0.0028504303
         CpG998
998
                  -3.008091 0.0028930386
                                            FALSE 0.5921086 0.0028930386
1059
        CpG1059
                  -2.932014 0.0036749081
                                            FALSE 0.6295151 0.0036749081
100
         CpG100
                  2.889847 0.0041873059
                                            FALSE 0.6295151 0.0041873059
1006
        CpG1006
                 -2.831992 0.0049965867
                                            FALSE 0.6295151 0.0049965867
```

```
1182 CpG1182 -2.823521 0.0051263442 FALSE 0.6295151 0.0051263442
To access results for all 1228 CpG sites use object$results
  or sort(object)$results to obtain results sorted by p-value.
0 sites were found significant by the Holm method
0 sites were found significant by BH method
The beta values were taken from: samplecpg
Other attributes are: permutation.matrix, perm.p.values, gc.permutation.matrix, results ,
  Holm.sig, FDR.sig, info, coefficients.
They can be accessed using the $
  >
```

cpg.GC

For genomic control adjusted statistics.

Description

cpg.GC accepts an object of class *cpg.perm* or *cpg* and returns information regarding Holm and FDR-significance of the GC (genomic control) adjusted test statistics. For *cpg.perm* will return permutation p-values based on the GC-adjusted values from each permutation.

Usage

 $\operatorname{cpg.GC}(x)$

Arguments

х

Object of class cpg.perm or cpg. .

Details

cpg.GC will display the number of Holm and FDR-significant sites using the genomic control adjusted p-values test statistics. It will also display the estimated genomic control inflation factor.

Value

cpg.GC returns an object of class cpg.gc or cpg.perm.gc

gc.results	Matrix consisting of GC-adjusted test statistics for each CpG site. Similar to the results output of cpg.assoc.
gc.info	Data frame with information on the number of Holm and FDR sig- nificant sites. Will also have the genomic control inflation estimate. Objects from cpg.perm will also have information concerning the per- mutation p-values.

Authors

Barfield, R.; Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

See Also

cpg.assoc, cpg.work, plot.cpg scatterplot, cpg.combine, manhattan, plot.cpg.perm, sort.cpg.perm, sort.cpg, cpg.qc

Examples

```
> library(CpGassoc)
> data(samplecpg,samplepheno,package="CpGassoc")
> results<-cpg.assoc(samplecpg,samplepheno$weight,large.data=FALSE)
> cpg.GC(results)
Using genomic control adjustment the top sites are:
     CPG.Labels GC.Adjusted Adjust.P.value Adj.Holm
                                                       Adj.FDR
694
         CpG694
                   3.454271
                              0.0006456268
                                               FALSE 0.4318310
293
         CpG293
                   3.412320
                              0.0007485123
                                               FALSE 0.4318310
560
         CpG560
                   3.313353
                              0.0010549618
                                               FALSE 0.4318310
148
         CpG148
                   3.133454
                              0.0019286973
                                               FALSE 0.5645412
998
         CpG998
                  -3.079596
                              0.0022986204
                                               FALSE 0.5645412
1059
        CpG1059
                  -2.883525
                              0.0042668430
                                               FALSE 0.7693539
1182
        CpG1182
                  -2.819710
                              0.0051827097
                                               FALSE 0.7693539
         CpG100
                                               FALSE 0.7693539
100
                   2.787987
                              0.0057015107
751
         CpG751
                  -2.759379
                              0.0062093208
                                               FALSE 0.7693539
238
         CpG238
                   2.756367
                              0.0062650966
                                               FALSE 0.7693539
General info:
 num.holm FDR.method num.fdr gcvalue
1
         0
                   ΒH
                            0
                                     1
O sites were found significant by the Holm method
O sites were found significant by BH method
> ##If the genomic inflation factor is less than one there is no need for adjustment
                  Performs quality control on Illumina data.
 cpg.qc
```

Description

cpg.qc is designed to perform quality control on Illumina data prior to analysis. In addition to the matrix of beta values, this function requires as input matrices of Signal A, Signal B, and detection p-values. It will remove samples that have low intensity (mean signal intensity less than half of the overall median or 2000). It can also set to NA datapoints with detection p-values exceeding a user-specified cutoff, and can remove samples or sites that have a missing rate above a user-specified value. Finally, users can opt to compute beta values as M/(U+M) or M/(U+M+100).

Usage

cpg.qc(beta.orig,siga,sigb,pval,p.cutoff = .001, cpg.miss = NULL, sample.miss = NULL, constant 100 = FALSE)

Arguments

beta.orig	The original beta values matrix obtained from GenomeStudio.		
siga	The unmethylated signals matrix obtained from GenomeStudio.		
sigb	The methylated signals matrix obtained from GenomeStudio.		
pval	A matrix of detection p-values obtained from GenomeStudio. pval should have the same dimension as the beta values and signals: one row for each site and one column for each individual.		
p.cutoff	The user-specified cutoff for detection p-values (default=.001).		
cpg.miss	Optional cutoff value. If specified, cpg.qc will remove cpg sites where the proportion of missing values exceeds this cutoff.		
sample.miss	Optional cutoff value. If specified, cpg.qc will remove samples where the proportion of missing values exceeds this cutoff.		
${ m constant}100$	Logical. If TRUE, the new beta values will be calculated as $M/(U\!+\!M\!+\!100);$ if FALSE (default) they will be calculated as $M/(U\!+\!M).$		

Details

It is important that all the matrices or data frames listed above (pval, siga, sigb, beta.orig) are ordered similarly with respect to samples and CpG sites.

Value

returns a new matrix of beta values that has been subjected to the specified quality control filters. This matrix can be input directly into cpg.assoc.

Authors

Barfield, R.; Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

See Also

cpg.perm, cpg.assoc, plot.cpg scatterplot

Examples

> ##See the examples in the CpGassoc tutorial.

 $\operatorname{cpg.work}$

Does the analysis between the CpG sites and phenotype of interest

Description

Association Analysis Between Methylation Beta Values and Phenotype of Interest. This function contains the code that does the brunt of the work for cpg.assoc and cpg.perm.

Usage

beta.values	A vector, matrix, or data frame containing the beta values of interest $(1 \text{ row per CpG site}, 1 \text{ column per individual}).$
indep	A vector containing the main variable of interest. cpg.work will evalu- ate the association between indep and the beta values.
covariates	A data frame consisting of the covariates of interest. covariates can also be a matrix if it is a model matrix minus the intercept column. It can also be a vector if there is only one covariate of interest. Can also be a formula (e.g. $cov1+cov2$).
data	an optional data frame, list or environment (or object coercible by as.data.frame to a data frame) containing the variables in the model. If not found in data, the variables are taken from the environment from which cpg.work is called.
logit.transform	Logical. If TRUE, the logit transform of the beta values $\log(beta.val/(1-beta.val))$ will be used. Any values equal to zero or one will be set to the next smallest or next largest value respectively; values <0 or >1 will be set to NA.
chip.id	An optional vector containing chip or batch identities. If specified, chip id will be included as a factor in the model.
subset	an optional logical vector specifying a subset of observations to be used in the fitting process.
random	Logical. If TRUE, the chip.id will be included in the model as a random effect, and a random intercept model will be fitted. If FALSE, chip.id will be included in the model as an ordinary categorical covariate, for a much faster analysis.
fdr.cutoff	The threshold at which to compare the FDR values. The default setting is .05. Any FDR values less than .05 will be considered significant.
callarge	Logical. Used by cpg.assoc when it calls cpg.work. If TRUE it means that beta.values is actually split up from a larger data set and that memory.limit may be a problem. This tells cpg.work to perform more rm() and gc() to clear up space.

fdr.method	Character. Method used to calculate False Discovery Rate. Can be any of the methods listed in p.adjust. The default method is "BH" for the Benjamini and Hochberg method.
$\log it \operatorname{perm}$	Passes from cpg.perm when permutation test is performed. Stops from future checks involving the logistic transformation.
big.split	Passes from cpg.assoc. Internal flag to inform cpg.work that the large data did not need to be split up.

Details

cpg.work does the analysis between the methylation and the phenotype of interest. It is called by cpg.assoc to do the brunt of the work. It can be called itself with the same input as cpg.assoc, it just cannot handle large data sets.

Value

cpg.work will return an object of class *cpg*. The functions summary and plot can be called to get a summary of results and to create QQ plots. The output is in the same order as the original input. To sort it by p-value, use the sort function.

results	A data frame consisting of the statistics and P-values for each CpG site. Also has the adjusted p-value based on the fdr.method and whether the site was Holm significant.
Holm.sig	A list of sites that met criteria for Holm significance.
FDR.sig	A data.frame of the sites that were FDR significant by the fdr method.
info	A data frame consisting of the minimum P-value observed, the fdr method used, what the phenotype of interest was, and the number of covariates in the model.
indep	The main phenotype of interest.
covariates	If covariates was non NULL, the covariates will be included. Otherwise will be NULL.
chip	If chip.id was non NULL, the chip will be included. Otherwise will be NULL.
coefficients	A data frame consisting of the degrees of freedom, and if object is continuous the intercept effect adjusted for possible covariates in the model, the estimated effect size, and the standard error. The degrees of freedom is used in plot.cpg to compute the genomic inflation factors.

Authors

Barfield, R.; Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

See Also

cpg.perm, cpg.assoc, plot.cpg scatterplot, cpg.combine, manhattan, plot.cpg.perm, sort.cpg.perm, sort.cpg, cpg.qc $\,$

Examples

```
> ##See the examples listed in cpg.assoc for ways in which to use cpg.work.
> ##Just change the cpg.assoc to cpg.work.
```

 design

Create full and reduced design matrices for the cpg assoc function.

Description

Designed to be used by cpg.assoc and cpg.perm. Creates a full and reduced design matrices.

Usage

design(covariates, indep, chip.id, random)

Arguments

covariates	A data frame consisting of the covariates of interest. covariates can also be a matrix if it is a model matrix minus the intercept column. It can also be a vector if there is only one covariate of interest. If no covariates must be specified as NULL.
indep	A vector containing the main variable of interest. cpg.assoc will eval- uate the association between indep and the beta values.
chip.id	An optional vector containing chip or batch identities. If specified, chip.id will be included as a factor in the model.
random	Is the model going to be a mixed effects. If so, chip.id will not be included in the design matrices.

Value

Returns a list containing the full and reduced design matrices.

full	The full design matrix
reduced	The reduced design matrix

Author

Barfield, R.; Kilaru,V.; Conneely, K. Maintainer: R. Barfield: barfieldrichard8@gmail.com

Note

The design function is designed to be used exclusively by the cpg.assoc and cpg.perm functions.

See Also

cpg.assoc, cpg.perm, plot.cpg, cpg.work, scatterplot, cpg.combine, manhattan, plot.cpg.perm, sort.cpg.perm, sort.cpg

examples

```
> library(CpGassoc)
> data(samplecpg,samplepheno,package="CpGassoc")
> #Example where there are covariates:
> covar<-data.frame(samplepheno$weight,samplepheno$Distance)</pre>
> test<-design(covar,samplepheno$SBP,samplepheno$chip,FALSE)
> dim(test$full)
[1] 258 26
> dim(test$reduced)
[1] 258 25
> test$reduced[1:5,1:5]
  (Intercept) samplepheno.weight samplepheno.Distance factor(chip.id)3
1
                        31.02998
                                              28.49084
            1
                                                                       0
2
            1
                        20.83885
                                              13.10059
                                                                       0
                        21.47078
                                              14.76703
3
            1
                                                                       0
4
                        23.95091
                                              25.54482
                                                                       0
           1
                                              29.45997
5
           1
                        34.12922
                                                                       0
 factor(chip.id)4
1
                 0
2
                 0
3
                 0
                 0
4
5
                 0
> test$full[1:5,1:5]
                 indep samplepheno.weight samplepheno.Distance factor(chip.id)3
  (Intercept)
            1 16.98629
1
                                 31.02998
                                                       28.49084
                                                                                0
2
            1 34.90645
                                 20.83885
                                                       13.10059
                                                                                0
3
            1 21.55838
                                 21.47078
                                                       14.76703
                                                                                0
4
            1 20.90882
                                 23.95091
                                                       25.54482
                                                                                0
            1 27.01004
                                  34.12922
                                                       29.45997
                                                                                0
5
> #When no covariates or chip.id:
> test2<-design(NULL,samplepheno$SBP,NULL,FALSE)</pre>
> dim(test2$full)
[1] 258
          2
```

```
> dim(test2$reduced)
[1] 258 1
```

${f manhattan}$

 $Create\ a\ manhattan\ plot$

Description

This function will produce a manhattan plot for the observed P-values from a object of class cpg or cpg.perm.

Usage

manhattan(x, cpgname, chr, pos, save.plot = NULL, file.type="pdf", popup.pdf = FALSE, eps.size = c(15, 5), main.title = NULL, cpg.labels = NULL, chr.list = NULL, color.list = NULL, ...)

Х	Object of class cpg or cpg.perm.
cpgname	A vector consisting of the labels for each CpG site.
chr	A vector consisting of the chromosome number for each CpG site.
pos	The map position of each CpG site within its chromosome.
save.plot	Name of the file for the plot to be saved to. If not specified, plot will not be saved.
file.type	Type of file to be saved. Can either be "pdf" or "eps". Selecting file.type="eps" will result in publication qual- ity editable postscript files that can be opened by Adobe Illustrator or Photoshop.
popup.pdf	TRUE or FALSE. If creating a pdf file, this indicates if the plot should appear in a popup window as well. If running in a cluster-like environment, best to leave FALSE.
eps.size	Vector indicating the size of .eps file (if creating one). Corresponds to horrizontal and height.

$\operatorname{main.title}$	Main title to be put on the graph. If NULL one based on the analysis will be used.
cpg.labels	A character scalar of either "FDR" or "HOLM" which will label the significant sites on the manhattan plot.
chr.list	A vector listing the chromosomes to be plotted (all available chromosomes are plotted by default). The X and Y chromosomes can be denoted by 23 and 24
color.list	A vector of custom colors to be used for each chromosomes in the manhattan plot.
	Arguments to be passed to methods, such as graphical parameters.

Authors

Barfield, R.;Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

Note

cpgname, chr, and pos must be sorted in the same order, so that the first cpgname[1] corresponds to chr[1] and pos[1], and so on.

See Also

cpg.assoc, cpg.perm, plot.cpg, cpg.work, scatterplot, cpg.combine, design, plot.cpg.perm, sort.cpg.perm, sort.cpg

Examples

Object of class cpg	Methods for object of class	
---------------------	-----------------------------	--

Usage

plot.cpg(x, save.plot = NULL, file.type="pdf", popup.pdf = FALSE, tplot = FALSE, classic = TRUE, main.title = NULL, eps.size = c(5, classic)

```
> #Doing a Manhattan plot. First load the data:
>
> #Doing a Manhattan plot. First load the data:
> library(CpGassoc)
> data(samplecpg,samplepheno,annotation,package="CpGassoc")
> data(samplecpg,samplepheno,annotation,package="CpGassoc")
> ###NOTE: If you are dealing with large data, do not specify large.data=FALSE. The defaul
> ##This will involve partitioning up the data and performing more gc() to clear up space
> examplemanhat<-cpg.assoc(samplecpg,samplepheno$Disease,large.data=FALSE)
> manhattan(examplemanhat,annotation$TargetID,annotation$CHR,annotation$MAPINFO)
>
```

Manhattan Plot for association between methylation and Disea:

5), gc.p.val = FALSE, gcdisplay = FALSE, ...)

summary.cpg(object,...)

 $\operatorname{print.cpg}(x,\dots)$

 $\operatorname{sort.cpg}(x, \operatorname{decreasing}, \dots)$

х	Output of class cpg from cpg.assoc or cpg.work.
save.plot	Name of the file for the plot to be saved to. If not specified, plot will not be saved.
file.type	Type of file to be saved. Can either be "pdf" or "eps". Selecting file.type="eps" will result in publication qual- ity editable postscript files that can be opened by Adobe Illustrator or Photoshop.
popup.pdf	TRUE or FALSE. If creating a pdf file, this indicates if the plot should appear in a popup window as well. If running in a cluster-like environment, best to leave FALSE.
tplot	Logical. If TRUE, ordered t-statistics will be plotted against their expected quanties. If FALSE (default), $-\log(p)$ will be plotted. If indep is a class variable this option will be ig- nored.
classic	Logical. If TRUE, a classic qq-plot will be generated, with all p-values plotted against predicted values (including signifi- cant). If FALSE Holm-significant CpG sites will not be used to compute expected quantiles and will be plotted separately.
main.title	Main title to be put on the graph. If NULL one based on the analysis will be used.
eps.size	Vector indicating the size of .eps file (if creating one). Correponds to the options horizontal and height in the postscript function.

gc.p.val	Logical. If TRUE , plot will use the genomic control adjusted p-values.
gcdisplay	Logical. If TRUE , plot will display the genomic control value in the legend.
object	Output of class <i>cpg</i> from cpg.assoc or cpg.work.
decreasing	Logical. Should the sort be increasing or decreasing? Not available for partial sorting.
	Arguments to be passed to methods, such as graphical parameters.

Description

Methods and extra functions for class cpg.

plot.cpg creates a QQ plot based on the association p-values or tstatistics from the function cpg.assoc.

Value

sort.cpg returns an item of class cpg that is sorted by p-value.

summary.cpg creates a qq-plot based on the data, and scatterplots or boxplots for the top sites.

Authurs

Barfield, R.; Kilaru, V.; Conneely, K. Maintainer: R. Barfield: barfieldrichard8@gmail.com

Note

Plots with empirical confidence intervals based on permutation tests can be obtained from cpg.perm. See plot.cpg.perm for more info

See Also

 $cpg.perm, cpg.work, cpg.assoc \ scatterplot, cpg.combine, \ manhattan, \ plot.cpg.perm, \ sort.cpg.perm, cpg.qc$

Examples

Object of class cpg.perm Methods for object of class cpg.perm

Usage

 $\begin{array}{l} plot.cpg.perm(x, save.plot = NULL, file.type="pdf", popup.pdf = FALSE, \\ main.title = NULL, eps.size = c(5, 5), tplot = FALSE, perm.ci = TRUE, \\ classic = TRUE, gc.p.val = FALSE, gcdisplay = FALSE, ...) \\ summary.cpg.perm(object, ...) \\ print.cpg.perm(x, ...) \\ sort.cpg.perm(x, decreasing, ...) \end{array}$

Description

Methods and extra functions for class *cpg.perm*. plot.cpg.perm creates a QQ plot based on the association p-values or t-statistics from the function cpg.perm.

Х	Output from cpg.perm. Of class cpg.perm.
save.plot	Name of the file for the plot to be saved to. If not specified, plot will not be saved.
file.type	Type of file to be saved. Can either be "pdf" or "eps". Selecting file.type="eps" will result in publication qual- ity editable postscript files that can be opened by Adobe Illustrator or Photoshop.
popup.pdf	TRUE or FALSE. If creating a pdf file, this indicates if the plot should appear in a popup window as well. If running in a cluster-like environment, best to leave FALSE.

main.title	Main title to be put on the graph. If NULL one based on the analysis will be used
eps.size	Vector indicating the size of .eps file (if creating one). Correponds to the options horizontal and height in the postscript function.
tplot	Logical. If TRUE, ordered t-statistics will be plotted against their expected quanties. If FALSE (default), $-\log(p)$ will be plotted. If indep is a class variable this option will be ig- nored.
perm.ci	Logical. If TRUE, the confidence intervals computed will be from the permutated values, otherwise will be based on the theoretical values.
classic	Logical. If TRUE, a classic qq-plot will be generated, with all p-values plotted against predicted values (including signifi- cant). If FALSE Holm-significant CpG sites will not be used to compute expected quantiles and will be plotted separately.
gc.p.val	Logical. If TRUE , plot will use the genomic control adjusted p-values.
gcdisplay	Logical. If TRUE , plot will display the genomic control value in the legend.
object	Output of class cpg.perm from cpg.perm.
decreasing	Logical. Should the sort be increasing or decreasing? Not available for partial sorting.
	Arguments to be passed to methods, such as graphical parameters.

Authors

Barfield, R.; Kilaru, V.; Conneely, K. Maintainer: R. Barfield: barfieldrichard8@gmail.com

```
> ##Using the results from the example given in cpg.assoc.
> ###NOTE: If you are dealing with large data, do not specify large.data=FALSE. The defaul
> ##This will involve partitioning up the data and performing more gc() to clear up space
> ##QQ Plot:
> library(CpGassoc)
> data(samplecpg,samplepheno,package="CpGassoc")
> test<-cpg.assoc(samplecpg,samplepheno$weight,data.frame(samplepheno$Distance,samplephenc</p>
> plot(test)
> ##t-statistic plot:
> plot(test,tplot=TRUE)
> ##Now an example of sort
> head(sort(test)$results)
    CPG.Labels T.statistic
                                P.value Holm.sig
                                                        FDR
                                                              gc.p.value
694
        CpG694
                  3.475160 0.0006002142
                                           FALSE 0.3833341 0.0006002142
293
        CpG293
                  3.464076 0.0006243226
                                           FALSE 0.3833341 0.0006243226
560
        CpG560
                  3.333678 0.0009848497
                                           FALSE 0.4031318 0.0009848497
        CpG148
148
                  3.187753 0.0016135434
                                            FALSE 0.4953578 0.0016135434
238
        CpG238
                  3.012760 0.0028504303
                                            FALSE 0.5921086 0.0028504303
        CpG998
998
                 -3.008091 0.0028930386
                                            FALSE 0.5921086 0.0028930386
> ##Summary
> summary(test)
The top ten CpG sites were:
                                 P.value Holm.sig
     CPG.Labels T.statistic
                                                         FDR
                                                               gc.p.value
694
        CpG694
                   3.475160 0.0006002142
                                            FALSE 0.3833341 0.0006002142
293
        CpG293
                   3.464076 0.0006243226
                                             FALSE 0.3833341 0.0006243226
560
        CpG560
                   3.333678 0.0009848497
                                            FALSE 0.4031318 0.0009848497
148
        CpG148
                   3.187753 0.0016135434
                                            FALSE 0.4953578 0.0016135434
        CpG238
                                             FALSE 0.5921086 0.0028504303
238
                   3.012760 0.0028504303
998
        CpG998
                  -3.008091 0.0028930386
                                             FALSE 0.5921086 0.0028930386
1059
        CpG1059
                  -2.932014 0.0036749081
                                             FALSE 0.6295151 0.0036749081
        CpG100
                   2.889847 0.0041873059
                                            FALSE 0.6295151 0.0041873059
100
1006
        CpG1006
                  -2.831992 0.0049965867
                                            FALSE 0.6295151 0.0049965867
1182
        CpG1182
                  -2.823521 0.0051263442
                                             FALSE 0.6295151 0.0051263442
To access results for all 1228 CpG sites use object$results
or sort(object)$results to obtain results sorted by p-value.
General info:
 Min.P.Observed Num.Cov fdr.cutoff FDR.method Phenotype chipinfo num.Holm
   0.0006002142
                       2
                               0.05
                                            BH
                                                   weight
                                                              NULL
                                                                          0
1
 num.fdr
1
        0
0 sites were found significant by the Holm method
0 sites were found significant by BH method
The beta values were taken from: samplecpg
Effect sizes and standard error can be accessed using $coefficients
Other attributes are: results, Holm.sig, FDR.sig, info
They can be accessed using the \$_5
```

QQ plot for association between methylation and weight

Note

Empirical confidence intervals will be computed only if there are a hundred or more permutations. Otherwise the theoretical confidence intervals will be plotted.

See Also

cpg.assoc, cpg.perm, plot.cpg, cpg.work, scatterplot, cpg.combine, design, manhattan, sort.cpg $\,$

Examples

scatterplot	Plot beta values of individual CpG sites against the indepen-
	dent variable.

Usage

scatterplot(x, cpg.rank = NULL, cpg.name = NULL, save.plot = NULL, file.type="pdf", eps.size = c(5, 5), popup.pdf = FALSE, beta.values = NULL,user.indep=NULL,main.title=NULL, ...)

х	Object of class cpg or cpg.perm.
cpg.rank	A vector listing the rank of sites to be plotted. The rank is based on the ordered p-values.
cpg.name	A character vector containing the names of CpG sites to be plotted against the phenotype of interest. This option is ignored if cpg.rank is specified.
save.plot	Prefix of the filename for the plot(s) to be saved to. If spec- ified, plot filenames will be created by appending this prefix to either cpg.rank or cpg.name. If not specified, plot will not be saved.
file.type	Type of file to be saved. Can either be "pdf" or "eps". Selecting file.type="eps" will result in publication qual- ity editable postscript files that can be opened by Adobe Illustrator or Photoshop.

eps.size	Vector indicating the size of .eps file (if creating one). Correponds to horrizontal and height.
popup.pdf	TRUE or FALSE. If creating a pdf file, this indicates if the plot should appear in a popup window as well. If running in a cluster-like environment, best to leave FALSE.
beta.values	If the object has been renamed (i.e. xinfobetainfo is no longer in ls(.GlobalEnv)) then specify the new object here.
user.indep	Default NULL. If return.data=F in run, scatterplot will not work. Pass in samplepheno here. Must be in same order as samplecpg.
main.title	Main title to be put on the graph. If NULL one based on the analysis will be used
	Arguments to be passed to methods, such as graphical parameters.

Details

An unlimited number of CpG sites can be selected for plotting by specifying either cpg.rank or cpg.name, as shown in the Examples below. Note that only one of these options is needed; if both are entered, cpg.rank will be used.

Authors

Barfield, R.; Conneely, K.; Kilaru, V. Maintainer: R. Barfield: barfieldrichard8@gmail.com

See Also

cpg.assoc, cpg.perm, manhattan, cpg.work, plot.cpg.perm, cpg.combine, design, plot.cpg, sort.cpg.perm, sort.cpg

Examples

```
> library(CpGassoc)
> data(samplecpg,samplepheno,package="CpGassoc")
 ##We will do the analysis on a subset to save time
>
 ###NOTE: If you are dealing with large data, do not specify large.data=FALSE. The defaul
>
 ##This will involve partitioning up the data and performing more gc() to clear up space
>
  #The qq plot:
>
>
  Testperm<-cpg.perm(samplecpg,samplepheno$weight,data.frame(samplepheno$Dose,samplepheno$
                  seed=2314,nperm=10,large.data=FALSE)
>
 plot(Testperm)
 #The t-statistic plot from cpg.perm has confidence intervals since we were allowed to pe
>
 plot(Testperm,tplot=TRUE)
>
>
 #If there was 100 or more permutations, there would be emperical confidence intervals.
>
>
 ###Now for Sort
> head(sort(Testperm)$results)
    CPG.Labels T.statistic
                                P.value Holm.sig
                                                        FDR
                                                               gc.p.value
694
        CpG694
                  3.475160 0.0006002142
                                            FALSE 0.3833341 0.0006002142
293
        CpG293
                  3.464076 0.0006243226
                                            FALSE 0.3833341 0.0006243226
        CpG560
                  3.333678 0.0009848497
                                            FALSE 0.4031318 0.0009848497
560
148
        CpG148
                  3.187753 0.0016135434
                                            FALSE 0.4953578 0.0016135434
238
        CpG238
                  3.012760 0.0028504303
                                            FALSE 0.5921086 0.0028504303
998
                 -3.008091 0.0028930386
                                            FALSE 0.5921086 0.0028930386
        CpG998
> head(Testperm$results)
  CPG.Labels T.statistic
                            P.value Holm.sig
                                                    FDR gc.p.value
                                        FALSE 0.9439499 0.10279215
1
        CpG1 -1.63736663 0.10279215
2
                                        FALSE 0.9927071 0.92775038
        CpG2 -0.09076561 0.92775038
3
        CpG3 -2.36081337 0.01899094
                                        FALSE 0.9057057 0.01899094
4
        CpG4 1.28326656 0.20056830
                                        FALSE 0.9530109 0.20056830
5
        CpG5 -1.29476076 0.19657851
                                        FALSE 0.9530109 0.19657851
```

FALSE 0.9911946 0.34314045

QQ plot for association between methylation and weight

CpG6 -0.94975324 0.34314045

6

> #Load the data: > data(samplecpg,samplepheno,package="CpGassoc") > library(CpGassoc) > ###NOTE: If you are dealing with large data, do not specify large.data=FALSE. The defaul > ##This will involve partitioning up the data and performing more gc() to clear up space > test<-cpg.assoc(samplecpg,samplepheno\$weight,large.data=FALSE)</pre> > ##Using rank, will plot the top three sites in order of significance: > scatterplot(test,cpg.rank=c(1:3),user.indep=samplepheno\$weight) Press enter to continue Press enter to continue Press enter to continue All 3 sites plotted > ##Using name, specify three sites: > scatterplot(test,cpg.name=c("CpG1182","CpG1000","CpG42"),user.indep=samplepheno\$weight) Press enter to continue Press enter to continue Press enter to continue All 3 sites plotted > ##Plotting something that is categorical in nature: > test2<-cpg.assoc(samplecpg,factor(samplepheno\$Disease),large.data=FALSE)</p> > scatterplot(test2,c(2),user.indep=as.factor(samplepheno\$Disease)) Press enter to continue

All 1 sites plotted