Package 'CombinS'

May 28, 2025

Type Package

Title Construction Methods for Series of PBIB Designs via Combinatory Method S

Version 1.2

Date 2025-05-27

Description Provides constructions of series of partially balanced incomplete block designs (PBIB) based on the combinatory method S, intro-

duced by Rezgui et al. (2014) <doi:10.3844/jmssp.2014.45.48>. This package also offers the associated U-type designs. Version 1.1-1 generalizes the approach to designs with v = wnl treatments. It includes various rectangular and generalized rectangular right angular association schemes with 4, 5, and 7 associated classes.

Imports stats, utils

URL https://mlaib.net

License GPL-3

Encoding UTF-8

RoxygenNote 7.3.2

NeedsCompilation no

Author Mohamed Laib [aut, cre], Imane Rezgui [aut], Zebida Gheribi-Aoulmi [aut], Herve Monod [aut]

Maintainer Mohamed Laib <laib.med@gmail.com>

Repository CRAN

Date/Publication 2025-05-27 23:00:27 UTC

Contents

CombS																															2
GPBIB4.	A.		•	•	•	•	•			•	•	•	•	•	•		•	•	•	•			•	•	•	•		•	•		3
GPBIB4	В																													•	5
GPBIB5																														•	6

CombS

GPBIB7A . GPBIB7B .																											
UType	 •	•	 •	•	•	•	•	•		•	•	•	•	•		•		•	•	•		•	•	•	•	•	11
																											12

Index

The Combinatory Method (s) for the construction of rectangular PBIB designs

Description

The application of the Combinatory Method (s), with s chosen in [2, l-1], on rectangular association scheme to obtain the configuration and the parameters of the PBIB design associated.

Usage

CombS(n, 1, s)

Arguments

n	Number of lines of the association schemes array.
1	Number of columns of the association schemes array.
S	Number of the token treatments from the same row of the association scheme.

Details

- For 2 < s < l, we obtain a rectangular PBIB design.
- For s = l, we obtain a singular group divisible designs.

Value

A LIST :

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable ?

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

GPBIB4A

References

Imane Rezgui, Z. Gheribi-Aoulmi (2014). New construction method of rectangular partially balanced incomplete block designs and singular group divisible designs, Journal of Mathematics and Statistics, 10, 45- 48.

M.N. Vartak 1955. On an application of Kronecker product of Matrices to Statistical designs. Ann. Math. Stat., 26(420-438).

See Also

UType

Examples

```
## Not run:
n<-3
l<-3
s<-2
CombS(l,n,s)
## End(Not run)
```

GPBIB4A

Generalized rectangular right angular (4) design with $\lambda_4 = 0$

Description

Gives the configuration and the parametres of the design obtained by the first construction method of GPBIB_4 (see 3.1.1 of the paper rezgui et al (2015)).

Usage

GPBIB4A(n, l, s, w)

Arguments

r	า	Number of lines of the association schemes array.
]	L	Number of columns of the association schemes array.
Ś	6	Number of the token treatments from the same row of the association scheme.
٧	V	Number of the association scheme arrays.

Details

• For s = l, the previous method gives configuration of nested group divisible designs.

A LIST :

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable ?

Note

For w = 2, the GPBIB_4 is a rectangular right angular (4) (PBIB_4)

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, doi:10.4236/am.2015.62024, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

GPBIB4B and UType

Examples

```
## Not run:
n<-3
l<-3
s<-3
w<-3
GPBIB4A(n, l, s, w)
```

GPBIB4B

Description

Gives the configuration and the parametres of the design obtained by the seconde construction method of GPBIB_4 (see 3.1.2 of the paper rezgui et al (2015)).

Usage

GPBIB4B(n, l, s, w)

Arguments

n	Number of lines of the association schemes array.
1	Number of columns of the association schemes array.
S	Number of the token treatments from the same row of the association scheme.
w	Number of the association scheme arrays.

Value

A LIST :

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable ?

Note

For w = 2, the GPBIB_4 is a rectangular right angular (4) (PBIB_4)

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, doi:10.4236/am.2015.62024, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

GPBIB4A and UType

Examples

```
## Not run:
n<-3
l<-3
s<-3
w<-3
GPBIB4B(n, 1, s, w)
```

End(Not run)

GPBIB5	5
--------	---

Generalized rectangular right angular (5) *design.*

Description

gives the configuration and the parametres of the design obtained by the construction method of GPBIB_5 (see 3.2 of the paper rezgui et al (2015)).

Usage

GPBIB5(n, 1, s, w)

Arguments

n	Number of lines of the association schemes array.
1	Number of columns of the association schemes array.
S	Number of the token treatments from the same row of the association scheme.
w	Number of the association scheme arrays.

GPBIB5

Value

A LIST :

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lamda Vector of m-lambda.
- Resolvable Is the design Resolvable ?

Note

For w = 2, the GPBIB_5 is a rectangular right angular (5) (PBIB_5).

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, doi:10.4236/am.2015.62024, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

UType

Examples

```
## Not run:
n<-3
l<-3
s<-3
w<-3
GPBIB5(n, l, s, w)
## End(Not run)
```

GPBIB7A

Generalized rectangular right angular (7) design with λ_i equal to $\lambda_i + 4$ (i = 1, ..., 4)

Description

gives the configuration and the parametres of the design obtained by the first construction method of GPBIB_7 (see 3.3.1 of the paper rezgui et al (2015))

Usage

GPBIB7A(n, l, s, w)

Arguments

n	Number of lines of the association schemes array.
1	Number of columns of the association schemes array.
S	Number of the token treatments from the same row of the association scheme.
w	Number of the association scheme arrays.

Value

A LIST :

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lambda Vector of m-lambda.
- Resolvable Is the design Resolvable ?

Note

For w = 2, the GPBIB_7 is a rectangular right angular (7) (PBIB_7).

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

GPBIB7B

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, doi:10.4236/am.2015.62024, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

GPBIB7B and UType

Examples

```
## Not run:
n<-3
1<-3
s<-3
w<-3
GPBIB7A(n, l, s, w)
## End(Not run)
```

GPBIB7B	Generalized rectangular right angular (7) design with distinct λ_i
	(<i>i</i> =1,,7)

Description

Gives the configuration and the parametres of the design obtained by the seconde construction method of GPBIB_7 (see 3.3.2 of the paper rezgui et al (2015)).

Usage

GPBIB7B(n, 1, s, w)

Arguments

n	Number of lines of the association schemes array.
1	Number of columns of the association schemes array.
S	Number of the token treatments from the same row of the association scheme.
w	Number of the association scheme arrays.

Value

A LIST :

- PBIB The configuration of the PBIB.
- Type The type of the design
- V Number of treatments.
- B Number of blocs.
- R Repetition of each treatment.
- K Size of blocs.
- lambda Vector of m-lambda.
- Resolvable Is the design Resolvable ?

Note

For w = 2, the GPBIB_7 is a rectangular right angular (7) (PBIB_7).

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

Imane Rezgui, Z. Gheribi-Aoulmi and H. Monod (2015). U-type Designs via New Generalized Partially Balanced Incomplete Block Designs with m = 4, 5 and 7 Associated Classes, doi:10.4236/am.2015.62024, Applied mathematics, 6, 242-264.

Imane Rezgui, Z.Gheribi-Aoulmi and H. Monod, New association schemes with 4, 5 and 7 associated classes and their associated partially balanced incomplete block designs; Advances and Applications in Discrete Mathematics Vol.12 Issue 2 197-206.

See Also

GPBIB7A and UType

Examples

```
## Not run:
n<-3
l<-3
s<-3
w<-3
GPBIB7B(n, l, s, w)
```

End(Not run)

10

UType

Description

Applies the Fang algorithm on our constructed designs to obtain the configuration and the parameters of the U-type design associated.

Usage

UType(lst)

Arguments

1st The output of one of our package functions.

Value

A LIST :

- v Number of runs.
- r Number of factors.
- UtypeDesign The configuration of the U-type design..

Author(s)

Mohamed Laib, Imane Rezgui, Zebida Gheribi-Aoulmi and Herve Monod

References

K.T. Fang, R.Li and A.Sudjanto (2006). Design ans Modeling for Computer Experiments. Taylor & Francis Group, LLC London.

Examples

```
## Not run:
M<-GPBIB4A(4,4,2,2)
UType(M)
```

End(Not run)

Index

CombS, 2

GPBIB4A, 3, 6 GPBIB4B, 4, 5 GPBIB5, 6 GPBIB7A, 8, 10 GPBIB7B, 9, 9

UType, *3*, *4*, *6*, *7*, *9*, *10*, 11