
Class Comparison with OOMPA

Kevin R. Coombes

February 4, 2025

Contents

1 Introduction 1

2 Getting Started 1

3 Gene-by-gene t-tests 2

4 Beta-uniform mixture models to account for multiple testing 2

5 Wilcoxon rank sum tests and empirical Bayes 7

6 Permutation based methods 11

6.1 Dudoit's method based on Westfall and Young 11

7 Signi�cance Analysis of Microarrays 13

8 Other class comparison approaches 14

1 Introduction

OOMPA is a suite of object-oriented tools for processing and analyzing large
biological data sets, such as those arising from mRNA expression microarrays
or mass spectrometry proteomics. The ClassComparison package in OOMPA
provides tools to work on the �class comparison� problem. Class comparison
is one of the three primary types of applications of microarrays described by
Richard Simon and colleagues. The point of these problems is to identify genes
that behave di�erently in known classes; in other words, a typical class compar-
ison problem is to �nd the genes that are di�erentially expressed between two
types of samples.

2 Getting Started

No one will be surprised to learn that we start by loading the package into the
current R session:

1

> library(ClassComparison)

The main functions and classes in the ClassComparison package work ei-
ther with data matrices or with ExpressionSet objects from the BioConductor
Biobase package. For the �rst set of examples in this vignette, we will use
simulated data that represents di�erent groups of samples:

> set.seed(6781252) # for reproducibility

> nGenes <- 5000

> nSamp <- 15

> nDif <- 150

> delta <- 1

> fake.class <- factor(rep(c('A', 'B'), each=nSamp))

> fake.data <- matrix(rnorm(nGenes*nSamp*2), nrow=nGenes, ncol=2*nSamp)

> fake.data[1:nDif, 1:nSamp] <- fake.data[1:nDif, 1:nSamp] + delta

> fake.data[(nDif+1):(2*nDif), 1:nSamp] <- fake.data[(nDif+1):(2*nDif),

+ 1:nSamp] - delta

3 Gene-by-gene t-tests

The simplest way to �nd di�erentially expressed genes is to perform a two-
sample t-test on each gene. The MultiTtest class handles this operation, with
a summary that carefully ensures that you know which class is associated with
a positive t-statistic.

> mtt <- MultiTtest(fake.data, fake.class)

> summary(mtt)

Row-by-row two-sample t-tests with 5000 rows

Positive sign indicates an increase in class: A

Call: MultiTtest(data = fake.data, classes = fake.class)

T-statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.703648 -0.732668 0.002954 0.008923 0.737256 7.021149

P-values:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000001 0.2091023 0.4680792 0.4755566 0.7430658 0.9999677

4 Beta-uniform mixture models to account for

multiple testing

As everyone now knows, an inherent di�culty with performing a separate test
for each gene is that the p-values must be adjusted to account for multiple

2

> hist(mtt, breaks=101)

T Statistics

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
50

10
0

15
0

20
0

Figure 1: Histogram of the gene-by-gene two-sample t-statistics

3

testing. A simple approach models the set of p-values using a beta-uniform
mixture (BUM). We can perform this analysis with a single command:

> bum <- Bum(mtt@p.values)

> summary(bum)

Beta-Uniform Mixture Model

MLE Estimates: ahat = 0.33804 , lhat = 0.87159

Upper Bound on Fraction Unchanged: pihat = 0.915

tau TP FN FP TN

1 0.01 0.02663749 0.05836417 0.009149983 0.9058484

The default value of the summary command is not very enlightening, but we
can get a graphical overview of the distribution. The region below the horizontal
blue line in Figure 2 represents the uniform component of the mixture (i.e., genes
that are not di�erentially expressed); the region between the blue line and the
green curve represents the beta component (i.e., genes that are di�erentially
expressed). If we set a threshold for signi�cance using some cuto� on the p-
value (such as the one indicated by the vertical purple line in Figure 2), then we
can divide the area into four regions representing true positives, false positives,
true negatives, and false negatives. These areas can then be used to estimate
the false discovery rate (FDR) as a function of the threshold (Figure 3).

The usual application of this idea is to choose a threshold that achieves a
desired level of FDR. For example, selecting genes with a p-value less than

> cutoffSignificant(bum, alpha=0.10, by="FDR")

[1] 0.001847872

should keep the FDR less than 10%. The number of such genes is easily obtained
with the command:

> countSignificant(bum, alpha=0.10, by="FDR")

[1] 98

You can also get a logical vector that selects the signi�cant genes:

> selected <- selectSignificant(bum, alpha=0.10, by="FDR")

In our example, the truly signi�cant genes are among the �rst 300 genes. We
can use this information to �nd out how close we are to the truth; the achieved
FDR in this simulated example is pretty close to the target value of 10%.

> truth <- rep(FALSE, nGenes)

> truth[1:(2*nDif)] <- TRUE

> sum(selected & truth)

[1] 91

> mean(!truth[selected])

[1] 0.07142857

4

> hist(bum)

> abline(v=0.05, col="purple", lwd=2)

P Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

Figure 2: Results of the BUM analysis of the p-values.

5

> image(bum)

>

Beta−Uniform Mixture

P Values

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4

0.05 0.15 0.25

0.
00

0
0.

00
4

0.
00

8

FDR Control

Desired False Discovery Rate

S
ig

ni
fic

an
t P

 V
al

ue

0.5 0.6 0.7 0.8 0.9

0.
00

0
0.

00
4

0.
00

8

Empirical Bayes

Posterior Probability

S
ig

ni
fic

an
t P

 V
al

ue

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

ROC Curve

1 − spec

se
ns

ROC area = 0.8778

Figure 3: Results of the BUM analysis of the p-values.

6

5 Wilcoxon rank sum tests and empirical Bayes

In many applications of microarrays, it is unclear how the data should be trans-
formed to achieve the approximate normality needed to justify a t-test. It may
just be simpler to ignore the transformation problem and use nonparametric
methods, like the Wilcoxon rank-sum test, that only use the ranks of the sam-
ples for the expression of each gene.

> mw <- MultiWilcoxonTest(fake.data, fake.class)

> summary(mw)

Call: MultiWilcoxonTest(data = fake.data, classes = fake.class)

Row-by-row Wilcoxon rank-sum tests with 5000 rows

Rank-sum statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

130.0 215.0 233.0 232.7 250.0 338.0

Large values indicate an increase in class: A

With prior = 1 and alpha = 0.9

the upper tail contains 23 values above 313

the lower tail contains 18 values below 152

A histogram (Figure 4) of the Wilcoxon statistics indicates that the observed
values have larger tails than expected by chance, suggesting that we ought to
be able to pick out some genes that are signi�cantly di�erent. To do this, we
use an empirical Bayes method originally suggested by Efron and Tibshirani.
The idea is that we can decompose the Wilcoxon statistics as a mixture of
those that arise from the null distribution (which is Wilcoxon with parameters
based on the number of samples in each group) and some other component
representing the di�erentially expressed genes. In that case, we can write the
observed distribution f(x) in the form:

f(x) = πf0(x) + (1− π)f1(x)

where f0(x) is the known Wilcoxon distribution and f1(x) is unknown. Since we
can estimate f(x) from the observed data, we can simply solve for the unknown
distribution f1(x) provided we know the mixing parameter π, which represents
the prior probability that a gene is not di�erentially expressed. The �empirical�
part of this empirical Bayes method comes down to selecting the prior π after
looking at the data. For, if we start with π = 1, the posterior probability of
being di�erentially expressed as a function of the observed statistic ends up
taking on negative values (Figure 5), which is rather unpleasant.

By trial and error, we can �nd a value for π that ensures that the posterior
probabilities are always positive (Figure 6). In this case, something close to 0.94
works okay. We can then use a threshold on the posterior probabilities to set a
signi�cance cuto� on the Wilcoxon statistics.

7

> hist(mw)

Rank Sum

D
en

si
ty

150 200 250 300 350

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Empirical
Theoretical

Figure 4: Histogram of the observed gene-by-gene Wilcoxon statistics.

8

> plot(mw)

> abline(h=0)

150 200 250 300 350

−
0.

5
0.

0
0.

5
1.

0

Rank Sum

P
ro

b(
D

iff
er

en
t |

 Y
)

Figure 5: Plot of the posterior probability of being di�erentially expressed,
assuming a priori that no genes are di�erent.

9

> plot(mw, prior=0.92, signif=0.9)

> abline(h=0)

150 200 250 300 350

−
0.

5
0.

0
0.

5
1.

0

Rank Sum

P
ro

b(
D

iff
er

en
t |

 Y
)

Figure 6: Plot of the posterior probability of being di�erentially expressed,
assuming a priori that 92% of the genes are not di�erent.

10

> cutoffSignificant(mw, prior=0.94, signif=0.8)

$low

[1] 158

$high

[1] 306

> countSignificant(mw, prior=0.94, signif=0.8)

[1] 80

> wilsel <- selectSignificant(mw, prior=0.94, signif=0.8)

> sum(selected & wilsel)

[1] 76

> sum(truth & wilsel)

[1] 73

6 Permutation based methods

The Bummethod, as applied to the gene-by-gene t-tests of theMultiTtest class or
to p-values fmo other tests, assumes that genes are independent. This assump-
tion is clearly false, and so various researchers have proposed permutation-based
methods that retain the correlation structure between genes when trying to es-
timate the distribution of p-values.

6.1 Dudoit's method based on Westfall and Young

Sandrine Dudoit and colleagues introduced the idea of using the Westfall-Young
stepdown procedure to control the family-wise error rate in a microarray study.
In our example, we can perform this analysis as follows:

> dudoit <- Dudoit(fake.data, fake.class, nPerm=100)

1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.31.32.33.34.35.36.37.38.39.40.41.42.43.44.45.46.47.48.49.50.51.52.53.54.55.56.57.58.59.60.61.62.63.64.65.66.67.68.69.70.71.72.73.74.75.76.77.78.79.80.81.82.83.84.85.86.87.88.89.90.91.92.93.94.95.96.97.98.99.100.

> summary(dudoit)

Row-by-row two-sample t-tests with 5000 rows

Positive sign indicates an increase in class: A

Call: Dudoit(data = fake.data, classes = fake.class, nPerm = 100)

T-statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max.

11

> plot(dudoit)

−6 −4 −2 0 2 4 6

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

T−Statistic

P
−

V
al

ue

Figure 7: Plot of the unadjusted (blue) and adjusted (black) p-values.

-5.703648 -0.732668 0.002954 0.008923 0.737256 7.021149

P-values:

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000001 0.2091023 0.4680792 0.4755566 0.7430658 0.9999677

To get good results, we probably need more than 100 permutations, but
this implementation (completely in R) is rather slow. The default plot routine
(Figure 7) shows both the unadjusted and adjusted p-values. In most cases,
controlling the family-wise error rate (FWER) is viewed as overly conservative,
since it tries to ensure that there are no false positive �ndings instead of trying
to estimate the number or fraction of false positives. In our example, using the
Dudoit correction with FWER = 10% �nds very few di�erentially expressed
genes:

> countSignificant(dudoit, 0.10)

[1] 8

12

> plot(sam, tracks=seq(0.5, 2, by=0.5))

−4 −2 0 2 4

−
6

−
4

−
2

0
2

4
6

Expected T Statistics (Empirical)

O
bs

er
ve

d
T

 S
ta

tis
tic

s

Figure 8: Quantile-quantile plot of the observed t-statistics against the t-
statistics expected from the permutation-based null distribution.

7 Signi�cance Analysis of Microarrays

Signi�cance Analysis of Microarrays (SAM) is an alternative procedure, which
is based on permutations but tries to control the FDR instead of the FWER.
We can get the results by:

> sam <- Sam(fake.data, fake.class)

1 . 2 . 3 . 4 . 5 . 6 . 7 . 8 . 9 . 10 . 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19 . 20 . 21 . 22 . 23 . 24 . 25 . 26 . 27 . 28 . 29 . 30 . 31 . 32 . 33 . 34 . 35 . 36 . 37 . 38 . 39 . 40 . 41 . 42 . 43 . 44 . 45 . 46 . 47 . 48 . 49 . 50 . 51 . 52 . 53 . 54 . 55 . 56 . 57 . 58 . 59 . 60 . 61 . 62 . 63 . 64 . 65 . 66 . 67 . 68 . 69 . 70 . 71 . 72 . 73 . 74 . 75 . 76 . 77 . 78 . 79 . 80 . 81 . 82 . 83 . 84 . 85 . 86 . 87 . 88 . 89 . 90 . 91 . 92 . 93 . 94 . 95 . 96 . 97 . 98 . 99 . 100 .

> summary(sam)

Using a cutoff of 1 , we called 102 genes significant with expected FDR = 0.0882 (9)

Based on the �gure, we can probably take a cuto� of 1 to de�ne signi�cance,
which yields the following results

> cutoff <- 1

> countSignificant(sam, cutoff)

13

[1] 102

> sum(selectSignificant(sam, cutoff) & truth)

[1] 94

8 Other class comparison approaches

The package contains several other methods for �nding genes that are di�eren-
tially expressed between known classes:

1. Total Number of Misclassi�cation (TNoM): This method was introduced by
Yakhini and Ben-Dor and applied by Bittner and colleagues in 2000. It
has probably seen fewer applications than it deserves, which this imple-
mentation may help rectify.

2. The smooth (regularized) t-test (SmoothTtest): This method was intro-
duced by Baggerly and Coombes in 2001, but a large number of authors
have proposed similar ideas. The basic idea is that (even after log trans-
formation) genes of similar intensity appear to have similar variance, and
that one can borrow strength across genes to get better estimates of the
variability even in small microarray studies.

3. Linear models (MultiLinearModel) can be constructed using the usual R
formula, providing generalization to one-way designs with more than two
classes to compare, or to factorial designs.

4. Gene-by-gene paired t-tests (MultiTtestPaired).

5. Gene-by-gene t-tests assuming unequal variance in the two groups (MultiTtestUnequal).

A future version of this vignette may include more examples of their use; for
now, you can read the examples in the help pages.

14

	Introduction
	Getting Started
	Gene-by-gene t-tests
	Beta-uniform mixture models to account for multiple testing
	Wilcoxon rank sum tests and empirical Bayes
	Permutation based methods
	Dudoit's method based on Westfall and Young

	Significance Analysis of Microarrays
	Other class comparison approaches

