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1 Introduction
Gene set enrichment analysis is broadly used in microarray data analysis [8, 5].
It aimes to find which biological functions are affected by a group of related
genes behind the massive information. The most used methotology is finding
these significant gene set from a 2 × 2 contingency table, usually by Fisher’s
exact test or chi-square test. This kind of analysis is known as Over-represented
Analysis (ORA). It takes a list of differential expressed gene, and returns sig-
nificant gene sets that the differential genes are enriched in. A lot of meth-
ods have been developed under the framework of ORA such as DAVID [6]
(https://david.abcc.ncifcrf.gov/) and GOstats package [3]. The second method-
ology to find significant pathways is to use whole expression matrix, named
Gene-set Analysis (GSA). GSA methods are implemented via either a univari-
ate or a multivariate procedure [1]. In univariate analysis, gene level statistics
are initially calculated from fold changes or statistical tests (e.g., t-test). These
statistics are then combined into a pathway level statistic by summation or av-
eraging. GSEA [12] is a widely used univariate tool that utilizes a weighted
Kolmogorov-Smirnov test to measure the degree of differential expression of a
gene set by calculating a running sum from the top of a ranked gene list. Mul-
tivariate analysis considers the correlations between genes in the pathway and
calculates the pathway level statistic directly from the expression value matrix
using Hotelling’s T 2 test [11] or MANOVA models [7].

For a specific form of gene sets, biological pathways are collections of cor-
related genes/proteins, RNAs and compounds that work together to regulate
specific biological processes. Instead of just being a list of genes, a pathway
contains the most important information that is how the member genes inter-
act with each other. Thus network structure information is necessary for the
intepretation of the importance of the pathways.

In this package, the original pathway enrichment method (ORA and GSA)
is extended by introducing network centralities as the weight of nodes which
have been mapped from differentially expressed genes in pathways [4]. There
are two advantages compared to former methods. First, for the diversity of
genes’ characters and the difficulties of covering the importance of genes from
all aspects, we do not design a fixed measurement for each gene but set it as
an optional parameter in the model. Researchers can select from candidate
choices where different measurement reflects different aspect of the importance
of genes. In our model, network centralities are used to measure the importance
of genes in pathways. Different centrality measurements assign the importance
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to nodes from different aspects. For example, degree centrality measures the
amount of neighbours that a node directly connects to, and betweenness cen-
trality measures how many information streams must pass through a certain
node. Generally speaking, nodes having large centrality values are central nodes
in the network. It’s observed that nodes represented as metabolites, proteins or
genes with high centralities are essential to keep the steady state of biological
networks. Moreover, different centrality measurements may relate to different
biological functions. The selection of centralities for researchers depends on
what kind of genes they think important. Second, we use nodes as the basic
units of pathways instead of genes. We observe that nodes in the pathways
include different types of molecules, such as single gene, complex and protein
families. Assuming a complex or family contains ten differentially expressed
member genes, in traditional ORA, these ten genes behave as the same position
as other genes represented as single nodes, and thus they have effect of ten. It
is not proper because these ten genes stay in a same node in the pathway and
make functions with the effect of one node. Also, a same gene may locate in dif-
ferent complexes in a pathway and if taking the gene with effect of one, it would
greatly decrease the importance of the gene. Therefore a mapping procedure
from genes to pathway nodes is applied in our model. What’s more, the nodes
in pathways also include non-gene nodes such as microRNAs and compounds.
These nodes also contribute to the topology of the pathway. So, when analyzing
pathways, all types of nodes are retained.

2 Pathway Catalogue
Pathways are collected from public databases, such as PID, KEGG, BioCarta
etc. In CePa package, four catalogues (PID, KEGG, BioCarta and Reactome)
from PID database have been integrated. The pathway data are parsed from
XML format file provided by the PID FTP site. The Perl code for parsing can be
obtained from the author’s website (https://mcube.nju.edu.cn/jwang/lab/soft/cepa/).
The pathway data is stored in PID.db. Note only part of pathways in the XML
file are listed on the PID website. Also, we have set the minimum and maximum
connected nodes when extracting pathways from PID, so not all the pathways
listed on the PID website are in PID.db.

> library(CePa)
> data(PID.db)
> names(PID.db)

[1] "NCI" "BioCarta" "KEGG" "Reactome"

Each pathway catalogue has been stored as a pathway.catalogue class ob-
ject. The print.pathway.catalogue function simply prints the number of
pathways in the catalogue. The plot.pathway.catalogue function visulizes
general information of the catalogue (figure 1). It plot: A) Distribution of the
number of member genes in each node; B) Distribution of the number of nodes
in which a single gene resides; C) Relationship between node count and gene
count in biological pathways.

> class(PID.db$NCI)
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[1] "pathway.catalogue"

> PID.db$NCI

The catalogue contains 206 pathways.

> plot(PID.db$NCI)
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(A) Distribution of the number
of member genes in each node
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(B) Distribution of the number
of nodes in which a single gene resides
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Figure 1: Meta analysis of pathway catalogue

The pathway catalogue data contains a list of pathways and each pathway
contains a list of interactions. There are several parts in the pathway data where
three of them is must: the pathway list, the interaction list and the mapping list.
The corresponding list name are pathList, interactionList and mapping.

> names(PID.db$NCI)

[1] "pathList" "interactionList" "mapping" "node.name"
[5] "node.type" "version"

You can find the version of NCI data.

> PID.db$NCI$version

[1] "2012_07_19 09:34::20"

The pathList is a list in which each item is a list of interaction IDs

> head(PID.db$NCI$pathList, n = 2)

$wnt_signaling_pathway
[1] "203098" "203087" "203104" "203106" "203125" "203127" "203092" "203142"
[9] "203097" "203111" "203099" "203118" "203103" "203137" "203143" "203091"

[17] "203088" "203141" "203128" "203089" "203101" "203117" "203126" "203140"
[25] "203095" "203108" "203119" "203129" "203113" "203120" "203094" "203102"
[33] "203122" "203136" "203145" "203105" "203123" "203144" "203130" "203132"
[41] "203124" "203107" "203110" "203093" "203133" "203090" "203096" "203109"
[49] "203100" "203121" "203116" "203112"

$cdc42_reg_pathway
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[1] "203416" "203396" "203420" "203393" "203405" "203418" "203392" "203415"
[9] "203388" "203408" "203389" "203390" "203403" "203412" "203398" "203410"

[17] "203406" "203395" "203391" "203401" "203394" "203419" "203404" "203397"
[25] "203399" "203407" "203402" "203400" "203413" "203411" "203409" "203414"

The interactionList is a three-column matrix in which the first column
is the interaction ID, the second column is the input node ID and the third
column is the output node ID.

> head(PID.db$NCI$interactionList)

interaction.id input output
1 503376 507485 506711
2 503376 507487 507485
3 204164 202538 208490
4 204164 208487 208490
5 100688 101169 101176
6 100688 101177 101176

The mapping is the two-column matrix in which the first column is the node
ID and the second column is the gene ID.

> head(PID.db$NCI$mapping)

node.id symbol
1 202230 ARHGAP6
2 201405 XIAP
3 503376 SLC7A2
4 203548 SATB1
5 201647 CRY2
6 508774 CRH

The pathway catalogue can also be self-defined by set.pathway.catalogue
function. The function returns a pathway.catalogue class object. E.g. we
only need the first ten pathways in NCI catalogue.

> new.catalogue = set.pathway.catalogue(pathList = PID.db$NCI$pathList[1:10],
+ interactionList = PID.db$NCI$interactionList,
+ mapping = PID.db$NCI$mapping)

In the following examples, we will use NCI catalogue as the default pathway
catalogue.

3 ORA Extension
The pathway score is defined as the summation of the weights of differentially
affected nodes in the pathway:

s =

n∑
i=1

widi (1)

where s is the score of the pathway, wi is the weight of the ith node and
reflects the importance of the node, n is the number of nodes in the pathway,
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and di identifies whether the ith node is differentially affected ( = 1) or not (
= 0).

The CePa package needs a differentially expressed gene list and a background
gene list. The differential gene list can be obtained through variaty of methods
such as t-test, SAM [13] and limma [10]. The background gene list is the com-
plete category of genes that exist on a certain microarray platform or from the
whole genome. The CePa package contains an example gene list and a back-
ground gene list. The gene list is obtained from a microarray study by t-test
[2].

> data(gene.list)
> names(gene.list)

[1] "bk" "dif"

In order to find significant pathways under several centrality measurements,
we use cepa.all function.In the function, dif refers to the differential gene list,
bk refers to the background gene list and the pc refers to the pathway catalogue.

> res = cepa.all(dif = gene.list$dif, bk = gene.list$bk,
+ pc = PID.db$NCI)

Calculate pathway scores...
1/211, wnt_signaling_pathway...

- equal.weight: 0.878
- in.degree: 0.864
- out.degree: 0.921
- betweenness: 0.89
- in.reach: 0.81
- out.reach: 0.91

...

The differential gene list and the background gene list should be indicated
with the same identifiers (e.g. gene symbol or refseq ID). All genes in the differ-
ential gene list should exist in the background gene list. In this example, since
PID.db is applied, gene list must be formatted as gene symbol. If background
gene list is not specified, the function use whole human genome genes as default.

By default, cepa.all calls equal.weight, in.degree, out.degree, betweenness,
in.reach and out.reach centralities as pathway nodes’ weight. More centrality
measurements can be used by setting it as a function (such as closeness, cluster
coefficient). The non-default centralities can be set by cen argument, and re-
member to set the cen.name argument to get the name of the centrality. Note
you can mix the centralities in string format and function format. When you
set the function object, the only parameter for the function is the network in
igraph object format. The following codes are examples to set the centralities.

> # if you use the function, you should quote the function
> # because we need the function name as the centrality name
> cepa.all(dif = gene.list$dif, bk = gene.list$bk,
+ pc = PID.db$NCI,
+ cen = list("in.degree", quote(closeness)))
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Moreover, if your centrality function contains more than one argument, you
must wrap to a function that only have one igraph object argument.

> in.closeness = function(g) closeness(g, mode = "in")
> cepa.all(dif = gene.list$dif, bk = gene.list$bk,
+ pc = PID.db$NCI,
+ cen = list("in.degree", quote(in.closeness)))
> # If you don't like the function name to be centrality name
> # you can set by cen.name argument
> cepa.all(dif = gene.list$dif, bk = gene.list$bk,
+ pc = PID.db$NCI,
+ cen = list("in.degree", quote(in.closeness)),
+ cen.name = c("In-degree", "In-closeness"))

In order to generate the null distribution of the pathway score, novel differ-
ential gene list is sampled from the background gene list. P-values are calculated
from 1000 simulations by default.

The calculation would spend about 12 min. res is a cepa.all class object.
To see the general information of this object:

> res

number of pathways: 211

Significant pathways (p.value <= 0.01):
Number

equal.weight 20
in.degree 19
out.degree 19
betweenness 14
in.reach 19
out.reach 20

It will print the number of significant pathways under different centralities.
For ORA extension, cepa.all in fact calls cepa.ora.all function. So the
following code is same as the former code.

> res = cepa.ora.all(dif = gene.list$dif, bk = gene.list$bk,
+ pc = PID.db$NCI)

The p-values or adjusted p-values of all pathways under different centralities
can be compared through the heatmap of p-values (Figure 2). Users can select
methods to adjust raw p-values.

> plot(res)

By default, CePa use p.adjust to calculate adjusted p-values, so only meth-
ods valid for p.adjust can be applied to CePa. However, there is another
popular method to adjust p-values: qvalue. CePa did not implement it since
errors may occur when evaluating some kind of p-values. Nevertheless, users
can override the default p.adjust to support qvalue by themselves, use code
below:
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Heatmap of p−values of pathways 1 0.0010.01
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Figure 2: Heatmap of p-values of all pathways

> library(qvalue)
> p.adjust = function(p, method = c("holm", "hochberg", "hommel", "bonferroni",
+ "BH", "BY", "fdr", "none", "qvalue"), ...) {
+ if(method == "qvalue") {
+ # qvalue has more arguments, pass them by ...
+ qvalue(p, ...)$qvalue
+ } else {
+ stats::p.adjust(p, method)
+ }
+ }

R will first look for p.adjust in .GlobalEnv environment and get your own
p.adjust.

By default, plot generates the heatmap containing all pathways. If only
significant pathways are of interest, the only.sig argument can be set to TRUE.
(Figure 3). Here we do not set cutoff arguments because if adjusted method
is used, the default cutoff is 0.05, while if user just wants the raw p-values, the
default cutoff is 0.01.

> plot(res, adj.method = "BH", only.sig = TRUE)

The numeric values of p-values can be obtained via p.table. The function
just returns the raw p-values.

> pt = p.table(res)
> head(pt)

equal.weight in.degree out.degree betweenness
wnt_signaling_pathway 0.878121878 0.86413586 0.921078921 0.890109890
cdc42_reg_pathway 0.858141858 0.84515485 0.818181818 0.852147852
mtor_4pathway 0.777222777 0.80319680 0.707292707 0.596403596
plk3_pathway 0.007992008 0.01598402 0.007992008 0.002997003
era_genomic_pathway 0.079920080 0.08891109 0.047952048 0.074925075
insulin_glucose_pathway 1.000000000 1.00000000 1.000000000 1.000000000

in.reach out.reach
wnt_signaling_pathway 0.81018981 0.910089910
cdc42_reg_pathway 0.84815185 0.859140859
mtor_4pathway 0.83616384 0.422577423
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Figure 3: Heatmap of p-values of significant pathways

8



plk3_pathway 0.01398601 0.005994006
era_genomic_pathway 0.09290709 0.017982018
insulin_glucose_pathway 1.00000000 1.000000000

We can get the result for single pathway under specific centrality from the
cepa.all object by identifying the index for the pathway and the index for the
centrality.

> g = get.cepa(res, id = "mapktrkpathway", cen = "in.reach")
> g

procedure: ora
weight: in.reach
p-value: 0.002

g is a cepa class object. It stores information of the evaluation of a single
pathway under a single centrality. The distribution of the pathway score and
the network graph can be generated by plot function on the cepa object by
specifying type argument (figure 4 and figure 5).

> plot(g, type = "graph")

> plot(g, type = "null")

By default, type is set to graph, and the node labels is combined from mem-
ber genes. The exact name for each node can be set by node.name argument.
Also, more detailed categories of the nodes can be set by node.type argument
(Figure 6).

> plot(g, node.name = PID.db$NCI$node.name,
+ node.type = PID.db$NCI$node.type)

For simplicity, the plotting for the cepa object can be directly applied on
the cepa.all object by specifying the index of the pathway and the index of
the centrality (Figure 6).

> plot(res, id = "mapktrkpathway", cen = "in.reach")
> plot(res, id = "mapktrkpathway", cen = "in.reach", type = "null")
> plot(res, id = "mapktrkpathway", cen = "in.reach",
+ node.name = PID.db$NCI$node.name,
+ node.type = PID.db$NCI$node.type)

If users use plot to draw network graphs, the function would return an
igraph object. So if users are not satisfy with the default graph, they can
visulize by their own methods. An example of custumize your network can be
found at the next section.

> obj = plot(res, id = "mapktrkpathway", cen = "in.reach")
> class(obj)
[1] "igraph"

The igraph package provides a write.graph function to output graph into
several formats. As I have tried, with graphml format, Cytoscape Web [9]
(https://cytoscapeweb.cytoscape.org/) can make a more beautiful and interac-
tive visualization of the network.
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Figure 4: Network visualization of a pathway
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(A) Distribution of in.reach centrality
in the pathway under simulation
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> write.graph(obj, file = "example-network.xml", format = "graphml")
> write.graph(obj, file = "example-network.gml", format = "gml")

Instead of analysis a list of pathways, users can also be focused on a single
pathway under a single centrality by identifying the id of the pathway in the
catalogue.

> res.pathway = cepa(dif = gene.list$dif, bk = gene.list$bk,
+ pc = PID.db$NCI, "mapktrkpathway",
+ cen = "in.reach")

Similarly, cepa function here directly calls cepa.ora.

4 GSA extension
In the traditional univariate GSA procedure, the score s of the pathway is
defined as:

s = f(g) (2)

where f transforms the gene-level statistic to a pathway-level statistic (e.g.
by summation, averaging) and g is the gene-level statistic vector which typically
comprises t-values. In ORA, g is a binary variant and f(g) is summation. In
our model to extend GSA, gene-level statistic is first transformed to node-level
statistic. We define the vector of the node-level statistics as d. When nodes
in pathways comprise multiple genes, the node-level statistic can be considered
as the largest principle component of the corresponding member genes. Using
centrality as the weight, the score is defined as

s = f(wd) (3)

where w is the weight vector and the transformation function f acts upon
the product of w and d. Equation 3 incorporates centrality weight into the
original node-level statistic. The null distribution of the pathway score could
then be generated by permuting the gene expression matrix.

Since GSA procedure need a complete expression matrix, we first read the
P53 microarray data set. The P53_symbol.gct and P53.cls can be down-
loaded from https://mcube.nju.edu.cn/jwang/lab/soft/cepa/. read.gct and
read.cls are simple functions to read expression data and phenotype data.

> eset = read.gct("P53_symbol.gct")
> # some process of the names of genes
> rownames(eset) = gsub("\\s+.*$", "", rownames(eset))
> label = read.cls("P53.cls", treatment="MUT", control="WT")

Here, we also use cepa.all to do batch pathway analysis. The following
code spent about 38 min with 1000 sample permutations.

> res = cepa.all(mat = eset, label = label, pc = PID.db$NCI,
+ nlevel = "tvalue_sq", plevel = "mean")

Calculate gene level values.
Calculate pathway score...

1/211, wnt_signaling_pathway...
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Calculate node level value and permutate sample labels...
17 genes measured in the pathway...
- equal.weight: 0.587
- in.degree: 0.652
- out.degree: 0.777
- betweenness: 0.466
- in.reach: 0.56
- out.reach: 0.696

...

Here, we use mat and label arguments instead of dif and bk arguments. In
fact, when specifying mat and label arguments, cepa.all calls cepa.univaraite.all.

In GSA procedure, first a node level statistic should be calculated. In CePa
package, there are three methods to calculate node level statistics. User can
choose from tvalue, tvalue_abs and tvalue_sq. tvalue_abs is choosen as
the default node level method because it can capture two directional regula-
tions. After we get the node level statistics in the pathway, a pathway level
transformation should be applied. User can choose from max, min, median, sum,
mean and rank. mean is taken as default.

The node level statistic can be self-defined. The self-defined function should
only contain two argumetns, one for vector of expression value in treatment
class and one for that in control class. E.g. we set the node level statistic as
kind of robust t-value:

> robust_tvalue = function(x, y) {
+ qx = quantile(x, c(0.1, 0.9))
+ qy = quantile(y, c(0.1, 0.9))
+
+ x = x[(x <= qx[2]) & (x >= qx[1])]
+ y = y[(y <= qy[2]) & (y >= qy[1])]
+
+ n1 = length(x)
+ n2 = length(y)
+ v1 = var(x)
+ v2 = var(y)
+ ifelse(v1 + v2 == 0, 0, (mean(x) - mean(y)) / sqrt(v1/n1 + v2/n2))
+ }
> res = cepa.all(mat = eset, label = label, pc = PID.db$NCI,
+ nlevel = robust_tvalue, plevel = "mean")

Similarly, the pathway level transformation can also be self-defined:

> trim_mean = function(x) mean(x, trim = 0.2)
> res = cepa.all(mat = eset, label = label, pc = PID.db$NCI,
+ nlevel = "tvalue_abs", plevel = trim_mean)

Print the general result of the analysis and plot figures (figure 7).

> res

number of pathways: 211
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Significant pathways (p.value <= 0.01):
Number

equal.weight 6
in.degree 6
out.degree 7
betweenness 5
in.reach 7
out.reach 7

> plot(res, only.sig = TRUE, adj.method = "BH", cutoff = 0.1)

Heatmap of FDRs of pathways (only significant)1 0.010.1

equal.weight

in.degree

out.degree

betweenness

in.reach

out.reach

p73pathw
ay

erb_genom
ic_pathw

ay

tap63pathw
ay

hdac_classiii_pathw
ay

p53dow
nstream

pathw
ay

Figure 7: Heatmap of FDRs of significant pathways

If we are instread in p53 downstream pathway. First we extract this pathway
under "in.degree" centrality from res.

> g = get.cepa(res, id = "p53downstreampathway", cen="in.degree")
> g

procedure: gsa.univariate
weight: in.degree
p-value: 9.990e-04

> plot(g)

Figure 8 illustrates the graph of p53 downstream pathway. Since the pathway
is evaluated under GSA procedure, the color of each node is continues in which
red refers to up-regulated, green refers to down-regulated and white refers to
no-change.
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Figure 8: Network visulization of a pathway
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Maybe due to to many nodes in the graph, Figure 8 is really hard to read.
However, since the plotting function returns an igraph object. We can cus-
tomize it handly (Figure 9).

> g2 = plot(g)
> # only label those nodes with high centralities
> V(g2)$label[V(g2)$size < quantile(V(g2)$size, 0.95)] = ""
> # we do not need margins
> par(mar = c(0,0,0,0))
> plot(g2)
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Figure 9: customize the network graph

5 The report function
One of the advantages of CePa package is that it can generate a detailed report
in HTML format. The function report is used to generate report. The report
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will locate in the current working directory. By default it only generate figures of
the significant pathways, but this can be changed by setting only.sig argument
to FALSE.

> report(res)

generate images for ap1_pathway ...
generate images for epopathway ...
generate images for il12_stat4pathway ...
generate images for foxm1pathway ...
generate images for mapktrkpathway ...
generate images for aurora_a_pathway ...
...

> report(res, adj.method = "BH", cutoff = 0.2)
> report(res, only.sig = FALSE)

An example of the report can be found in figure 10. After CePa version 0.4,
the network for pathways can be viewed interactively by Cytoscape Web [9]
(figure 11).

6 Parallel computing
Since CePa evaluates pathways independently, the process can be realized through
parallel computing. In R statistical environment, there are many packages focus-
ing on parallel computing such as snow, multicore, etc. After version 4.0, the
package implemented a cepa.all.parallel function to do parallel computing.

cepa.all.parallel use snow package.
All the arguments for cepa.all.parallel are same as the arguments for

cepa.all except the ncores arguments. The ncores specifies the number of
cores for parallel computing.

> res = cepa.all.parallel(dif = gene.list$dif, bk = gene.list$bk,
+ pc = PID.db$NCI, ncores = 4)
> res = cepa.all.parallel(mat = eset, label = label, pc = PID.db$NCI,

nlevel = "tvalue_sq", plevel = "mean", ncores = 4)

The returned value res is a cepa.all class object.
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