
Package ‘CALIBERrfimpute’
January 20, 2025

Type Package

Title Multiple Imputation Using MICE and Random Forest

Version 1.0-7

Date 2022-11-17

Description Functions to impute using random forest under full conditional specifications (multivari-
ate imputation by chained equations). The methods are described in Shah and oth-
ers (2014) <doi:10.1093/aje/kwt312>.

License GPL-3

Depends mice (>= 2.20)

Imports mvtnorm, randomForest

Suggests missForest, rpart, survival, xtable, ranger

Author Anoop Shah [aut, cre],
Jonathan Bartlett [ctb],
Harry Hemingway [ths],
Owen Nicholas [ths],
Aroon Hingorani [ths]

Maintainer Anoop Shah <anoop@doctors.org.uk>

BuildVignettes TRUE

NeedsCompilation no

Repository CRAN

Date/Publication 2022-12-04 21:02:32 UTC

Contents
CALIBERrfimpute-package . 2
makemar . 3
mice.impute.rfcat . 4
mice.impute.rfcont . 6
setRFoptions . 8
simdata . 10

Index 12

1

https://doi.org/10.1093/aje/kwt312

2 CALIBERrfimpute-package

CALIBERrfimpute-package

Imputation in MICE using Random Forest

Description

Multivariate Imputation by Chained Equations (MICE) is commonly used to impute missing val-
ues in analysis datasets using full conditional specifications. However, it requires that the predictor
models are specified correctly, including interactions and nonlinearities. Random Forest is a regres-
sion and classification method which can accommodate interactions and non-linearities without
requiring a particular statistical model to be specified.

The mice package provides the mice.impute.rf function for imputation using Random Forest, as of
version 2.20. The CALIBERrfimpute package provides different, independently developed imputa-
tion functions using Random Forest in MICE.

This package contains reports of two simulation studies:

Simulation study is a comparison of Random Forest and parametric MICE in a linear regression
example.

Vignette for survival analysis with interactions - large sample compares the Random Forest MICE
algorithm for continuous variables (mice.impute.rfcont) with parametric MICE and the algo-
rithm of Doove et al. in the mice package (mice.impute.cart and mice.impute.rf).

Vignette for survival analysis with interactions - small sample is a small sample example of the
above, created during compilation of the package.

Details

Package: CALIBERrfimpute
Type: Package
Version: 1.0-7
Date: 2022-11-17
License: GPL-3

Author(s)

Anoop Shah

Maintainer: anoop@doctors.org.uk

References

Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of Random Forest and
parametric imputation models for imputing missing data using MICE: a CALIBER study. American

makemar 3

Journal of Epidemiology 2014; 179(6): 764–774. doi:10.1093/aje/kwt312 https://academic.
oup.com/aje/article/179/6/764/107562

Doove LL, van Buuren S, Dusseldorp E. Recursive partitioning for missing data imputation in
the presence of interaction effects. Computational Statistics and Data Analysis 2014; 72: 92–104.
doi:10.1016/j.csda.2013.10.025 https://www.sciencedirect.com/science/article/abs/pii/
S0167947313003939

See Also

mice, randomForest, mice.impute.rfcont, mice.impute.rfcat, mice.impute.rf

makemar Creates artificial missing at random missingness

Description

Introduces missingness into x1 and x2 into a data.frame of the format produced by simdata, for use
in the simulation study. The probability of missingness depends on the logistic of the fully observed
variables y and x3; hence it is missing at random but not missing completely at random.

Usage

makemar(simdata, prop = 0.2)

Arguments

simdata simulated dataset created by simdata.

prop proportion of missing values to be introduced in x1 and x2.

Details

This function is used for simulation and testing.

Value

A data.frame with columns:

y dependent variable, based on the model y = x1 + x2 + x3 + normal error

x1 partially observed continuous variable

x2 partially observed continuous or binary (factor) variable

x3 fully observed continuous variable

x4 variable not in the model to predict y, but associated with x1, x2 and x3; used as
an auxiliary variable in imputation

See Also

simdata

https://academic.oup.com/aje/article/179/6/764/107562
https://academic.oup.com/aje/article/179/6/764/107562
https://www.sciencedirect.com/science/article/abs/pii/S0167947313003939
https://www.sciencedirect.com/science/article/abs/pii/S0167947313003939

4 mice.impute.rfcat

Examples

set.seed(1)
mydata <- simdata(n=100)
mymardata <- makemar(mydata, prop=0.1)
Count the number of missing values
sapply(mymardata, function(x){sum(is.na(x))})
y x1 x2 x3 x4
0 11 10 0 0

mice.impute.rfcat Impute categorical variables using Random Forest within MICE

Description

This method can be used to impute logical or factor variables (binary or >2 levels) in MICE by
specifying method = ’rfcat’. It was developed independently from the mice.impute.rf algorithm
of Doove et al., and differs from it in some respects.

Usage

mice.impute.rfcat(y, ry, x, ntree_cat = NULL,
nodesize_cat = NULL, maxnodes_cat = NULL, ntree = NULL, ...)

Arguments

y a logical or factor vector of observed values and missing values of the variable
to be imputed.

ry a logical vector stating whether y is observed or not.

x a matrix of predictors to impute y.

ntree_cat number of trees, default = 10.
A global option can be set thus: setRFoptions(ntree_cat=10).

nodesize_cat minimum size of nodes, default = 1.
A global option can be set thus: setRFoptions(nodesize_cat=1). Smaller
values of nodesize create finer, more precise trees but increase the computation
time.

maxnodes_cat maximum number of nodes, default NULL. If NULL the number of nodes is
determined by number of observations and nodesize_cat.

ntree an alternative argument for specifying the number of trees, over-ridden by ntree_cat.
This is for consistency with the mice.impute.rf function.

... other arguments to pass to randomForest.

mice.impute.rfcat 5

Details

This Random Forest imputation algorithm has been developed as an alternative to logistic or poly-
tomous regression, and can accommodate non-linear relations and interactions among the predictor
variables without requiring them to be specified in the model. The algorithm takes a bootstrap sam-
ple of the data to simulate sampling variability, fits a set of classification trees, and chooses each
imputed value as the prediction of a randomly chosen tree.

Value

A vector of imputed values of y.

Note

This algorithm has been tested on simulated data and in survival analysis of real data with artificially
introduced missingness completely at random. There was slight bias in hazard ratios compared to
polytomous regression, but coverage of confidence intervals was correct.

Author(s)

Anoop Shah

References

Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of Random Forest and
parametric imputation models for imputing missing data using MICE: a CALIBER study. American
Journal of Epidemiology 2014; 179(6): 764–774. doi:10.1093/aje/kwt312 https://academic.
oup.com/aje/article/179/6/764/107562

See Also

setRFoptions, mice.impute.rfcont, mice, mice.impute.rf, mice.impute.cart, randomForest

Examples

set.seed(1)

A small sample dataset
mydata <- data.frame(

x1 = as.factor(c('this', 'this', NA, 'that', 'this')),
x2 = 1:5,
x3 = c(TRUE, FALSE, TRUE, NA, FALSE))

mice(mydata, method = c('logreg', 'norm', 'logreg'), m = 2, maxit = 2)
mice(mydata[, 1:2], method = c('rfcat', 'rfcont'), m = 2, maxit = 2)
mice(mydata, method = c('rfcat', 'rfcont', 'rfcat'), m = 2, maxit = 2)

A larger simulated dataset
mydata <- simdata(100, x2binary = TRUE)
mymardata <- makemar(mydata)

cat('\nNumber of missing values:\n')
print(sapply(mymardata, function(x){sum(is.na(x))}))

https://academic.oup.com/aje/article/179/6/764/107562
https://academic.oup.com/aje/article/179/6/764/107562

6 mice.impute.rfcont

Test imputation of a single column in a two-column dataset
cat('\nTest imputation of a simple dataset')
print(mice(mymardata[, c('y', 'x2')], method = 'rfcat', m = 2, maxit = 2))

Analyse data
cat('\nFull data analysis:\n')
print(summary(lm(y ~ x1 + x2 + x3, data = mydata)))

cat('\nMICE normal and logistic:\n')
print(summary(pool(with(mice(mymardata,

method = c('', 'norm', 'logreg', '', ''), m = 2, maxit = 2),
lm(y ~ x1 + x2 + x3)))))

Set options for Random Forest
setRFoptions(ntree_cat = 10)

cat('\nMICE using Random Forest:\n')
print(summary(pool(with(mice(mymardata,

method = c('', 'rfcont', 'rfcat', '', ''), m = 2, maxit = 2),
lm(y ~ x1 + x2 + x3)))))

cat('\nDataset with unobserved levels of a factor\n')
data3 <- data.frame(x1 = 1:100, x2 = factor(c(rep('A', 25),

rep('B', 25), rep('C', 25), rep('D', 25))))
data3$x2[data3$x2 == 'D'] <- NA
mice(data3, method = c('', 'rfcat'), m = 2, maxit = 2)

mice.impute.rfcont Impute continuous variables using Random Forest within MICE

Description

This method can be used to impute continuous variables in MICE by specifying method = ’rfcont’.
It was developed independently from the mice.impute.rf algorithm of Doove et al., and differs
from it in drawing imputed values from a normal distribution.

Usage

mice.impute.rfcont(y, ry, x, ntree_cont = NULL,
nodesize_cont = NULL, maxnodes_cont = NULL, ntree = NULL, ...)

Arguments

y a vector of observed values and missing values of the variable to be imputed.

ry a logical vector stating whether y is observed or not.

x a matrix of predictors to impute y.

ntree_cont number of trees, default = 10.
A global option can be set thus: setRFoptions(ntree_cont=10).

mice.impute.rfcont 7

nodesize_cont minimum size of nodes, default = 5.
A global option can be set thus: setRFoptions(nodesize_cont=5). Smaller
values of nodesize create finer, more precise trees but increase the computation
time.

maxnodes_cont maximum number of nodes, default NULL. If NULL the number of nodes is
determined by number of observations and nodesize_cont.

ntree an alternative argument for specifying the number of trees, over-ridden by ntree_cont.
This is for consistency with the mice.impute.rf function.

... other arguments to pass to randomForest.

Details

This Random Forest imputation algorithm has been developed as an alternative to normal-based
linear regression, and can accommodate non-linear relations and interactions among the predictor
variables without requiring them to be specified in the model. The algorithm takes a bootstrap
sample of the data to simulate sampling variability, fits a regression forest trees and calculates the
out-of-bag mean squared error. Each value is imputed as a random draw from a normal distribution
with mean defined by the Random Forest prediction and variance equal to the out-of-bag mean
squared error.

If only one tree is used (not recommended), a bootstrap sample is not taken in the first stage because
the Random Forest algorithm performs an internal bootstrap sample before fitting the tree.

Value

A vector of imputed values of y.

Note

This algorithm has been tested on simulated data with linear regression, and in survival analy-
sis of real data with artificially introduced missingness at random. On the simulated data there
was slight bias if the distribution of missing values was very different from observed values, be-
cause imputed values were closer to the centre of the data than the missing values. However in the
survival analysis the hazard ratios were unbiased and coverage of confidence intervals more con-
servative than normal-based MICE, but the mean length of confidence intervals was shorter with
mice.impute.rfcont.

Author(s)

Anoop Shah

References

Shah AD, Bartlett JW, Carpenter J, Nicholas O, Hemingway H. Comparison of Random Forest and
parametric imputation models for imputing missing data using MICE: a CALIBER study. American
Journal of Epidemiology 2014; 179(6): 764–774. doi:10.1093/aje/kwt312 https://academic.
oup.com/aje/article/179/6/764/107562

https://academic.oup.com/aje/article/179/6/764/107562
https://academic.oup.com/aje/article/179/6/764/107562

8 setRFoptions

See Also

setRFoptions, mice.impute.rfcat, mice, mice.impute.rf, mice.impute.cart, randomForest

Examples

set.seed(1)

A small dataset with a single row to be imputed
mydata <- data.frame(x1 = c(2, 3, NA, 4, 5, 1, 6, 8, 7, 9), x2 = 1:10,

x3 = c(1, 3, NA, 4, 2, 8, 7, 9, 6, 5))
mice(mydata, method = c('norm', 'norm', 'norm'), m = 2, maxit = 2)
mice(mydata[, 1:2], method = c('rfcont', 'rfcont'), m = 2, maxit = 2)
mice(mydata, method = c('rfcont', 'rfcont', 'rfcont'), m = 2, maxit = 2)

A larger simulated dataset
mydata <- simdata(100)
cat('\nSimulated multivariate normal data:\n')
print(data.frame(mean = colMeans(mydata), sd = sapply(mydata, sd)))

Apply missingness pattern
mymardata <- makemar(mydata)
cat('\nNumber of missing values:\n')
print(sapply(mymardata, function(x){sum(is.na(x))}))

Test imputation of a single column in a two-column dataset
cat('\nTest imputation of a simple dataset')
print(mice(mymardata[, c('y', 'x1')], method = 'rfcont'))

Analyse data
cat('\nFull data analysis:\n')
print(summary(lm(y ~ x1 + x2 + x3, data=mydata)))

cat('\nMICE using normal-based linear regression:\n')
print(summary(pool(with(mice(mymardata,

method = 'norm'), lm(y ~ x1 + x2 + x3)))))

Set options for Random Forest
setRFoptions(ntree_cont = 10)

cat('\nMICE using Random Forest:\n')
print(summary(pool(with(mice(mymardata,

method = 'rfcont'), lm(y ~ x1 + x2 + x3)))))

setRFoptions Set Random Forest options for imputation using MICE

Description

A convenience function to set global options for number of trees or number of nodes.

setRFoptions 9

Usage

setRFoptions(ntree_cat = NULL, ntree_cont = NULL,
nodesize_cat = NULL, nodesize_cont = NULL,
maxnodes_cat = NULL, maxnodes_cont = NULL)

Arguments

ntree_cat number of trees to be used for imputing categorical variables (each imputed
value is the prediction of a randomly chosen tree), default = 10.

ntree_cont number of trees in the forest for imputing continuous variables, default = 10.

nodesize_cat minimum node size for trees for imputing categorical variables, default = 1. A
higher value can be used on larger datasets in order to save time.

nodesize_cont minimum node size for trees for imputing continuous variables, default = 5. A
higher value can be used on larger datasets in order to save time.

maxnodes_cat maximum number of nodes in trees for imputing categorical variables. By de-
fault the size limit is set by the number of observations and nodesize_cat.

maxnodes_cont maximum number of nodes in trees for imputing continuous variables. By de-
fault the size limit is set by the number of observations and nodesize_cont.

Details

This function sets the global options which have the prefix ’CALIBERrfimpute_’.

Value

No return value. The function prints a message stating the new option setting.

See Also

mice.impute.rfcat, mice.impute.rfcont

Examples

Set option using setRFoptions
setRFoptions(ntree_cat=15)
options()$CALIBERrfimpute_ntree_cat

Set option directly
options(CALIBERrfimpute_ntree_cat=20)
options()$CALIBERrfimpute_ntree_cat

10 simdata

simdata Simulate multivariate data for testing

Description

Creates multivariate normal or normal and binary data, as used in the simulation study.

Usage

simdata(n = 2000, mymean = rep(0, 4), mysigma = matrix(
c(1, 0.2, 0.1, -0.7,

0.2, 1, 0.3, 0.1,
0.1, 0.3, 1, 0.2,
-0.7, 0.1, 0.2, 1), byrow = TRUE, nrow = 4, ncol = 4),

residsd = 1, x2binary = FALSE)

Arguments

n number of observations to create.

mymean vector of length 4, giving the mean of each variable.

mysigma variance-covariance matrix of multivariate normal distribution from which x1-
x4 are to be drawn.

residsd residual standard deviation.

x2binary if TRUE, x2 is converted to a binary factor variable (1, 2) with probability equal
to the logistic of the underlying normally distributed variable.

Value

Data frame with 5 columns:

y continuous, generated by y = x1 + x2 + x3 + normal error if x2 is continuous, or
y = x1 + x2 + x3 - 1 + normal error if x2 is a factor with values 1 or 2

x1 continuous

x2 continuous or binary (factor) with value 1 or 2

x3 continuous

x4 continuous

See Also

makemar

simdata 11

Examples

set.seed(1)
simdata(n=4, x2binary=TRUE)
y x1 x2 x3 x4
1 -0.06399616 -1.23307320 2 -0.6521442 1.6141842
2 1.00822173 -0.05167026 1 0.4659907 0.5421826
3 2.87886825 0.43816687 1 1.5217240 0.2808691
4 0.79129101 -0.72510640 1 0.7342611 0.1820001

Index

∗ package
CALIBERrfimpute-package, 2

CALIBERrfimpute
(CALIBERrfimpute-package), 2

CALIBERrfimpute-package, 2

makemar, 3, 10
mice, 3, 5, 8
mice.impute.cart, 2, 5, 8
mice.impute.rf, 2–6, 8
mice.impute.rfcat, 3, 4, 8, 9
mice.impute.rfcont, 2, 3, 5, 6, 9

randomForest, 3, 5, 8

setRFoptions, 5, 8, 8
simdata, 3, 10

12

	CALIBERrfimpute-package
	makemar
	mice.impute.rfcat
	mice.impute.rfcont
	setRFoptions
	simdata
	Index

