Package ‘BosonSampling’

January 20, 2025
Type Package
Title Classical Boson Sampling
Version 0.1.5
Date 2023-10-10

Description Classical Boson Sampling using the algorithm of
Clifford and Clifford (2017) <arXiv:1706.01260>. Also provides functions for
generating random unitary matrices, evaluation of matrix permanents (both
real and complex) and evaluation of complex permanent minors.

Maintainer Raphaél Clifford <clifford@cs.bris.ac.uk>
License GPL-2

Imports Rcpp (>=0.12.12)

LinkingTo Rcpp, ReppArmadillo

Encoding UTF-8

NeedsCompilation yes

Author Peter Clifford [aut],
Raphaél Clifford [cre, aut]

Repository CRAN
Date/Publication 2023-10-10 17:50:02 UTC

Contents

BosonSampling-package
bosonSampler e
Permanent-functions e
randomUnitary L e e e e

Index

https://arxiv.org/abs/1706.01260

2 bosonSampler

BosonSampling-package Classical Boson Sampling

Description

Classical Boson Sampling using the algorithm of Clifford and Clifford (2017) <arXiv:1706.01260>.
Also provides functions for generating random unitary matrices, evaluation of matrix permanents
(both real and complex) and evaluation of complex permanent minors.

Details

Index of help topics:

BosonSampling-package Classical Boson Sampling

Permanent-functions Functions for evaluating matrix permanents
bosonSampler Function for independently sampling from the
Boson Sampling distribution
randomUnitary Random unitary
Author(s)

Peter Clifford <peter.clifford @jesus.ox.ac.uk> and Raphaél Clifford <clifford @cs.bris.ac.uk>
Maintainer: RaphaA«l Clifford <clifford @cs.bris.ac.uk>

bosonSampler Function for independently sampling from the Boson Sampling distri-
bution

Description

The function implements the Boson Sampling algorithm defined in Clifford and Clifford (2017)
https://arxiv.org/abs/1706.01260

Usage

bosonSampler (A, sampleSize, perm = FALSE)

Arguments
A the first n columns of an (m x m) random unitary matrix,
see randomUnitary
sampleSize the number of independent sample values required for given A

perm TRUE if the permanents and pmfs of each sample value are required

https://arxiv.org/abs/1706.01260

bosonSampler 3

Details

Let the matrix A be the first n columns of an (m x m) random unitary matrix, then X <- bosonSampler (A,
sampleSize =N, perm = TRUE) provides X$values, X$perms and X$pmfs,

The component X$values is an (n x N) matrix with columns that are independent sample values
from the Boson Sampling distribution. Each sample value is a vector of n integer-valued output
modes in random order. The elements of the vector can be sorted in increasing order to provide a
multiset representation of the sample value.

The outputs X$perms and X$pmfs are vectors of the permanents and probability mass functions
(pmfs) associated with the sample values. The permanent associated with a sample value v =
(v_1,...,v_n) is the permanent of an (n x n) matrix constructed with rows v_1,...,v_n of A.
Note the constructed matrix, M, may have repeated rows since v_1,...,v_n are not necessarily
distinct. The pmf is calculated as Mod(pM)“2/prod(factorial (tabulate(c)) where pM is the
permanent of M.

Value

X = bosonSampler (A, sampleSize =N, perm = TRUE) provides X$values, X$perms and X$pmfs.
See Details.

References

Clifford, P. and Clifford, R. (2017) The Classical Complexity of Boson Sampling, https://arxiv.
org/abs/1706.01260

Examples

set.seed(7)

n <- 20 # number of photons

m <- 200 # number of output modes

A <- randomUnitary(m)[,1:n]

sample of output vectors

valuelist <- bosonSampler(A, sampleSize = 10)$values
valuelist

sample of output multisets

apply(valuelList,2, sort)

#

set.seed(7)

n <- 12 # number of photons

m <- 30 # number of output modes

A <- randomUnitary(m)[,1:n]

sample of output vectors

valuelist = bosonSampler(A, sampleSize = 1000)$values
Compare frequency of output modes at different

positions in the output vectors
matplot(1:m,apply(valuelList,1,tabulate), pch =20, t = "p",
xlab = "output modes”, ylab = "frequency")

https://arxiv.org/abs/1706.01260
https://arxiv.org/abs/1706.01260

4 Permanent-functions

Permanent-functions Functions for evaluating matrix permanents

Description

These three functions are used in the classical Boson Sampling problem

Usage

cxPerm(A)
rePerm(B)
cxPermMinors(C)

Arguments

A a square complex matrix.
B a square real matrix.

C a rectangular complex matrix where nrow(C) = ncol(C) + 1.

Details

Permanents are evaluated using Glynn’s formula (equivalently that of Nijenhuis and Wilf (1978))

Value

cxPerm(A) returns a complex number: the permanent of the complex matrix A.

rePerm(B) returns a real number: the permanent of the real matrix B.

cxPermMinors(C) returns a complex vector of length ncol (C)+1: the permanents of all ncol(C)-
dimensional square matrices constructed by removing individual rows from C.

References

Glynn, D.G. (2010) The permanent of a square matrix. European Journal of Combinatorics,
31(7):1887-1891.

Nijenhuis, A. and Wilf, H. S. (1978). Combinatorial algorithms: for computers and calculators.
Academic press.

Examples

set.seed(7)

n <- 20

A <- randomUnitary(n)
cxPerm(A)

#

B <- Re(A)

rePerm(B)

#

C <= A[,-n]

randomUnitary

v <- cxPermMinors(C)

#

Check Laplace expansion by sub-permanents
c(cxPerm(A), sum(v*A[,n]))

randomUnitary Random unitary

Description

Returns a square complex matrix sampled from the Haar random unitary distribution.

Usage

randomUnitary(size)
Arguments

size dimension of matrix
Value

A square complex matrix.

Examples

m <- 25 # size of matrix (m x m)
set.seed(7)

U <- randomUnitary(m)

#

n <- 5 # First n columns

A <= U[,1:n]

Index

bosonSampler, 2
BosonSampling-package, 2

cxPerm (Permanent-functions), 4
cxPermMinors (Permanent-functions), 4

Permanent-functions, 4

randomUnitary, 2, 5
rePerm (Permanent-functions), 4

	BosonSampling-package
	bosonSampler
	Permanent-functions
	randomUnitary
	Index

