
Importance transdapters

Miron B. Kursa

November 12, 2022

1 Overview
Boruta is essentially a significance test for the importance of features generated
by some importance source. This source is usually the normalised permutational
importance from a Random Forest [1] model, although other options are possi-
ble. The interface between Boruta and importance source is called importance
adapter, which is an R function fed into getImp argument of the Boruta func-
tion. They should expect three arguments, x, for predictors table with shadows,
y, for the decision, and ..., for arbitrary additional arguments relayed from the
Boruta call. For instance, Boruta(Species .,iris,num.threads=1) is going
to pass the num.threads argument to the adapter function, which in turn will
append it to its call to ranger. The adapter output is expected to be a numerical
vector of the same length as ncol(x), with i-th element being the importance
of the i-th column of x; importance scale is arbitrary, but it must be a finite real
number and rise with feature importance. Adapters shipped with the package
are, by convention, given names starting with getImp, with the default called
getImpRfZ.

Transdapters are functions which wrap the adapter function with additional
behaviours — they may intercept and modify the transient data set produced
for the adapter, as well as modify the returned importance scores. They are
implemented as functions expecting at least one argument, the adapter function,
and immediately returning a function wrapping the given adapter.

One can write an example no-op transdapter in the following way:

> library(Boruta)
> noopTransdapter<-function(adapter=getImpRfZ){
+ adapter
+ }

. . . and use it this way:

> set.seed(17)
> Boruta(Species~.,iris,getImp=noopTransdapter())

Boruta performed 9 iterations in 0.11096 secs.
4 attributes confirmed important: Petal.Length, Petal.Width,

1



Sepal.Length, Sepal.Width;
No attributes deemed unimportant.

As expected, this transdpater has not altered the Boruta result.
The Boruta package ships with several experimental transdapters. Let us

now briefly discuss each of them.

2 Impute transdapter
Many potential importance sources, in particular the default ranger [2] imple-
mentation of Random Forest, can’t handle missing values (NAs) in its input.
One can avoid this problem by performing imputation, that is a process of fill-
ing missing values with substitutes generated in some way, depending on the
analysis aims and assumptions. The problem here is that such a process may
spuriously increase the importance of imputed features, bringing bias to the
Boruta output, in particular when the imputation process uses the decision
feature for its inference.

The impute transdapter alleviates this problem by performing a very simple,
stochastic imputation on input, yet repeated every time importance is requested.
This way, imputation biases have a chance to cancel out, moreover, the effect of
imputation is also reflected on shadows, allowing Boruta to better quantify its
impact.

Let us test this on the srx data:

> set.seed(17)
> data(srx)
> srx_na<-srx
> # Randomly punch 25 holes in the SRX data
> holes<-25
> holes<-cbind(
+ sample(nrow(srx),holes,replace=TRUE),
+ sample(ncol(srx),holes,replace=TRUE)
+ )
> srx_na[holes]<-NA
> # Use impute transdapter to mitigate them with internal imputation
> Boruta(Y~.,srx_na,getImp=imputeTransdapter(getImpRfZ))

Boruta performed 26 iterations in 0.2135186 secs.
5 attributes confirmed important: A, AnB, AoB, B, nA;
3 attributes confirmed unimportant: N1, N2, N3;

The precise method of imputation is to fill gaps with a random sample of
other values in a feature, taken with replacement. All-missing features are
replaced with a vector of zeros, which is non-important by design and should
be given an importance of zero by a typical importance source.

2



One should note that this method is best suited for data sets with only a
minor fraction of missing values, preferably randomly distributed. Also it rather
underestimates the importance of incomplete features.

3 Decohere transdapter
The main gain from using Boruta is that it can take into account multivariate
interactions between groups features and the decision. Decoherence transdapter
can be used to validate whether multivariate inference is required to identify a
certain feature as relevant, or just its marginal interaction with the decision
suffices.

The decoherence transformation is defined for categorical decisions only, and
is performed by randomly mixing the order of values in each feature, yet only
within decision classes. This way, feature-decision joint distribution is preserved,
but feature-feature interactions are asymptotically knocked out.

Let us try this on the srx data:

> set.seed(17)
> Boruta(Y~.,srx,getImp=decohereTransdapter())

Boruta performed 14 iterations in 0.1506834 secs.
2 attributes confirmed important: AnB, AoB;
6 attributes confirmed unimportant: A, B, N1, N2, N3 and 1 more;

We can see that most originally confirmed features are no longer relevant after
decoherence transform is applied, save for AnB and AoB of a substantial marginal
importance.

One should note that this approach is a heuristic and should be treated with
reservation. For instance, it may reduce the estimated shadow importance and
henceforth spuriously elevate originally rejected features to a confirmed status.

4 Conditional transdapter
The conditional transdapter applies the wrapped importance source to each
stratum of a given stratification vector, and averages importance scores with
weights proportional to strata sizes. This allows one to control for a certain
variable or inject additional information.

Note that each strata should be large enough to be a proper sample for the
information source used; stratification into too many very small groups may
lead to spurious results. Moreover, be aware that certain importance sources
may be incompatible with the way this transdapter collects importance from
strata; additional normalisation might be necessary.

3



References
[1] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[2] Marvin N. Wright and Andreas Ziegler. ranger: A Fast Implementation
of Random Forests for High Dimensional Data in C++ and R. Journal of
Statistical Software, 77(1), 2015.

4


