
Boruta for those in a hurry

Miron B. Kursa

November 12, 2022

1 Overview
Boruta [4] is a feature selection method; that is, it expects a standard infor-
mation system you’d fed to a classifier, and judges which of the features are
important and which are not. Let’s try it with a sample dataset, say iris. To
make things interesting, we will add some nonsense features to see if they get
filtered out; to this end, we randomly mix the order of elements in each of the
original features, wiping out its interaction with the decision, iris$Species.

> set.seed(17)
> data(iris)
> irisE<-cbind(
+ setNames(
+ data.frame(apply(iris[,-5],2,sample)),
+ sprintf("Nonsense%d",1:4)
+),
+ iris
+)

Now, time for Boruta:

> library(Boruta)
> Boruta(Species~.,data=irisE)->BorutaOnIrisE
> BorutaOnIrisE

Boruta performed 17 iterations in 0.9683015 secs.
4 attributes confirmed important: Petal.Length, Petal.Width,

Sepal.Length, Sepal.Width;
4 attributes confirmed unimportant: Nonsense1, Nonsense2, Nonsense3,

Nonsense4;

As one can see, the method had rejected nonsense features and confirmed
(retained) the original ones, as it was to be expected. What is important is
that Boruta does a sharp classification of features rather than ordering, which
is in contrast to many other feature selection methods. The other substantial
difference is that Boruta is an all relevant method, hence aims to find all features

1

connected with the decision — most other methods are of a minimal optimal
class, consequently aims to provide a possibly compact set of features which
carry enough information for a possibly optimal classification on the reduced set
[5]. What does it mean in practice is that Boruta will include redundant features,
that is ones which carry information already contained in other features.

As an example, let’s add a feature which contains all the information in the
decision in a most accessible form — namely, a copy of the decision, and push
it into Boruta.

> irisR<-cbind(
+ irisE,
+ SpoilerFeature=iris$Species
+)
> Boruta(Species~.,data=irisR)

Boruta performed 18 iterations in 0.2003973 secs.
5 attributes confirmed important: Petal.Length, Petal.Width,

Sepal.Length, Sepal.Width, SpoilerFeature;
4 attributes confirmed unimportant: Nonsense1, Nonsense2, Nonsense3,

Nonsense4;

We see that SpoilerFeature has not supplanted any of the original features,
despite making them fully redundant. One may wonder, however, how come
anyone would need something which is clearly redundant? There are basically
three reasons behind this:

• One may perform feature selection for an insight in which aspects of
the phenomenon in question are important and which are not. In such
cases subtle effects possess substantial explanatory value, even if they are
masked by stronger interactions.

• In some sets, especially of a p ≫ n class, nonsense features may have
spurious correlations with the decision, arising purely by chance. Such
interactions may rival or even be stronger than actual mechanisms of the
underlying phenomenon, making them apparently redundant. All relevant
approaches won’t magically help distinguish both, but will better preserve
true patterns.

• Minimal optimal methods are generally cherry-picking features usable for
classification, regardless if this usability is significant or not, which is an
easy way to overfitting. Boruta is much more robust in this manner.

2 Mechanism
Under the hood, Boruta uses feature importance scores which are provided
by certain machine learning methods; in particular Random Forest [1], which
happens to be used by default (using the ranger package [6] implementation).

2

Figure 1: Illustration of the main loop of the Boruta algorithm.

Such scores only contribute to the ranking of features, though — to separate
relevant features, we need some reference of what is a distribution of importance
of an irrelevant feature. To this end, Boruta uses shadow features or shadows,
which are copies of original features but with randomly mixed values, so that
their distribution remains the same yet their importance is wiped out.

As importance scoring is often stochastic and can be degraded due to a
presence of shadows, the Boruta selection is a process. In each iteration, first
shadows are generated, and such an extended dataset is fed to an importance
provider. Original features’ importance is then compared with the highest im-
portance of a shadow; and those which score higher are given a hit. Accumu-
lated hit counts are finally assessed; features which significantly outperform best
shadow are claimed confirmed, while those which significantly under-perform
best shadow are claimed rejected and removed from the set for all subsequent
iterations. This loop is illustrated on Figure 1.

The algorithm stops when all features have an established decision, or when
a pre-set maximal number of iterations (100 by default) is exhausted. In the
latter case, the remaining features are claimed tentative.

The process can be observed live with doTrace argument set to 1 (report

3

shadowMin Nonsense3 Sepal.Length

0
10

20
30

Attributes

Im
po

rt
an

ce

0 5 10 15

0
10

20
30

Classifier run

Im
po

rt
an

ce
Figure 2: The result of calling plot (left) and plotImpHistory (right) on the
BorutaOnIrisE object.

after each decision), 2 (report after each iteration) or 3 (also report hits); im-
portances in each iteration are also stored in the ImpHistory element of the
Boruta object. The graphical summary of a run can be obtained using plot
and plotImpHistory on the Boruta result object, as shown on Figure 2 for the
extended iris example. First function uses boxplots to show the distribution
of features’ importance over Boruta run, using colours to mark final decision;
it also draws boxplots for the importance of worst, average and best shadow
in each iteration (in blue). Second function visualises the same data, but as a
function of the iteration number. The summary of feature importance and hit
counts can be extracted using the attStats convenience function.

> attStats(BorutaOnIrisE)

meanImp medianImp minImp maxImp normHits decision
Nonsense1 -0.6223617 -0.6799732 -2.772898 1.8188905 0.1176471 Rejected
Nonsense2 -0.9948939 -0.8577297 -2.786295 1.6816756 0.0000000 Rejected
Nonsense3 -0.4736442 -0.2560304 -1.457678 0.3584504 0.0000000 Rejected
Nonsense4 -1.4697104 -1.7284141 -1.853175 -0.5765322 0.0000000 Rejected
Sepal.Length 15.1547848 15.1036042 14.253937 16.3782501 1.0000000 Confirmed
Sepal.Width 10.4050117 10.5075698 9.277403 11.3140607 1.0000000 Confirmed
Petal.Length 31.7638457 31.9196862 29.916815 34.5062408 1.0000000 Confirmed
Petal.Width 31.7153185 31.3917818 29.752987 34.7062734 1.0000000 Confirmed

3 Importance sources
Building Random Forest multiple times on substantially enlarged dataset may
easily become very time consuming, especially for larger sets for which us-

4

ing Boruta makes most sense. It is also possible that RF importance is not
best suited to catch the information content of features because of the dataset
specifics.

Anyhow, Boruta allows you to switch importance source to an arbitrary
function which gets an information system and returns a vector of numeric
importance scores of all features. The package already includes adapters for
several importance scorers and their various configurations; all start with a
getImp prefix.

In particular, there is one for rFerns [2], an implementation of random ferns,
a purely stochastic ensemble classifier which can usually provide similar impor-
tance scores as Random Forest, but in substantially shorter time:

> library(rFerns)
> Boruta(Species~.,data=irisE,getImp=getImpFerns)

Boruta performed 14 iterations in 0.05695009 secs.
4 attributes confirmed important: Petal.Length, Petal.Width,

Sepal.Length, Sepal.Width;
4 attributes confirmed unimportant: Nonsense1, Nonsense2, Nonsense3,

Nonsense4;

You can pass arguments to the importance provider by providing it to the
Boruta call; for instance, ranger, the default importance provider, makes use
of all available CPU threads, won’t always be the optimal choice. Setting
num.threads in the Boruta call will cause it to relay this argument to the
ranger function, and hence limit the training process parallelism.

Importance adapters may also be modified by transdapters (functions with
names ending with Transdapter) to achieve some additional goals; consult the
transdapter vignette or manual for more details.

4 Caveats
Few things worth noting before using Boruta in production:

• Boruta is a heuristic; there are no strict guarantees about its output.
Whenever possible, try to assess its results, especially in terms of selection
stability as classification accuracy may be deceiving [3].

• For datasets with lots of features, the default configuration of the impor-
tance source is likely insufficient; in the particular case of Random Forest
the number of trees is often not large enough to allow the importance
scores to stabilise, which in turn often leads to false negatives and unsta-
ble results.

• Boruta is a strictly serial algorithm, and spends most time waiting for
the importance provider — hence, tweaking this element brings the best
chance to speed up the selection. If speed is a concern, one should also

5

avoid the formula interface and directly pass predictor and decision parts
of the information system.

• Elimination of tentative features becomes practically impossible if they
turn out to have very similar importance distribution to the best shadow,
and the presence of such does not make the overall Boruta result useless.

• Importance history for bigger problems may take an impractically huge
amount of memory; hence its collection can be turned off with holdHistory
argument of the Boruta function. This will disable some functionality,
though, most notably plotting.

• Treatment of missing values and non-standard decision forms (like survival
problems) depends on the capacity of the information source.

• The original Boruta paper describes the 1.0 version, and the algorithm
has undergone substantial changes since then, namely the initial, warm-
up rounds were removed, the multiple testing correction was introduced,
finally the nomenclature has been clarified.

References
[1] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[2] Miron B. Kursa. rFerns: An Implementation of the Random Ferns Method
for General-Purpose Machine Learning. Journal of Statistical Software,
61(10), 2014.

[3] Miron B. Kursa. Robustness of Random Forest-based gene selection meth-
ods. BMC Bioinformatics, 15(1), 2014.

[4] Miron B. Kursa and Witold R. Rudnicki. Feature selection with the boruta
package. Journal of Statistical Software, 36(11), 2010.

[5] Roland Nilsson, José M. Peña, Johan Björkegren, and Jesper Tegnér. Con-
sistent Feature Selection for Pattern Recognition in Polynomial Time. The
Journal of Machine Learning Research, 8:589–612, 2007.

[6] Marvin N. Wright and Andreas Ziegler. ranger: A Fast Implementation
of Random Forests for High Dimensional Data in C++ and R. Journal of
Statistical Software, 77(1), 2015.

6

