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1 Introduction

Two di�erent probability distributions are both known in the literature as �the�
noncentral hypergeometric distribution. These two distributions will be called
Fisher's and Wallenius' noncentral hypergeometric distribution, respectively.

Both distributions can be associated with the classical experiment of taking
colored balls at random from an urn without replacement. If the experiment is
unbiased then the result will follow the well-known hypergeometric distribution.
If the balls have di�erent size or weight or whatever so that balls of one color
have a higher probability of being taken than balls of another color then the
result will be a noncentral hypergeometric distribution.

The distribution depends on how the balls are taken from the urn. Wallenius'
noncentral hypergeometric distribution is obtained if n balls are taken one by
one. Fisher's noncentral hypergeometric distribution is obtained if balls are
taken independently of each other.

Wallenius' distribution is used in models of natural selection and biased
sampling. Fisher's distribution is used mainly for statistical tests in contingency
tables. Both distributions are supported in the BiasedUrn package.

The di�erence between the two noncentral hypergeometric distributions is
di�cult to understand. I am therefore providing a detailed explanation in the
following sections.

2 De�nition of Wallenius' noncentral hypergeo-

metric distribution

Assume that an urn contains N balls of c di�erent colors and let mi be the
number of balls of color i. Balls of color i have the weight ωi. n balls are
drawn from the urn, one by one, in such a way that the probability of taking a
particular ball at a particular draw is equal to this ball's fraction of the total
weight of all balls that lie in the urn at this moment.

The colors of the n balls that are taken in this way will follow Wallenius'
noncentral hypergeometric distribution. This distribution has the probability
mass function:

dMWNCHypergeo(x;m, n,ω) =

(
c∏

i=1

(
mi

xi

)) ∫ 1

0

c∏
i=1

(1− tωi/d)xi dt ,
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where d =

c∑
i=1

ωi(mi − xi) .

x = (x1, x2, . . . , xc) is the number of balls drawn of each color.
m = (m1,m2, . . . ,mc) is the initial number of balls of each color in the urn.
ω = (ω1, ω2, . . . , ωc) is the weight or odds of balls of each color.
n =

∑c
i=1 xi is the total number of balls drawn.

c is the number of colors. The unexpected integral in this formula arises as the
solution to a di�erence equation. (The above formula is invalid in the trivial
case n = N .)

3 De�nition of Fisher's noncentral hypergeomet-

ric distribution

If the colored balls are taken from the urn in such a way that the probability
of taking a particular ball of color i is proportional to its weight ωi and the
probability for each particular ball is independent of what happens to the other
balls, then the number of balls taken will follow a binomial distribution for each
color.

The total number of balls taken n =
∑c

i=1 xi is necessarily random and
unknown prior to the experiment. After the experiment, we can determine n
and calculate the distribution of colors for the given value of n. This is Fisher's
noncentral hypergeometric distribution, which is de�ned as the distribution of
independent binomial variates conditional upon their sum n.

The probability mass function of Fisher's noncentral hypergeometric distri-
bution is given by

dMFNCHypergeo(x;m, n,ω) =
g(x;m, n,ω)∑

y∈ Ξ

g(y;m, n,ω)
,

where g(x;m, n,ω) =

c∏
i=1

(
mi

xi

)
ω xi
i ,

and the domain Ξ =

{
x ∈ Zc

∣∣∣∣∣
c∑

i=1

xi = n ∧ ∀ i ∈ [1, c] : 0 ≤ xi ≤ mi

}
.

4 Univariate distributions

The univariate distributions are used when the number of colors c is 2. The
multivariate distributions are used when the number of colors is more than 2.

The above formulas apply to any number of colors c. The univariate dis-
tributions can be expressed by setting c = 2, x1 = x, x2 = n − x, m1 = m,
m2 = N −m, ω1 = ω, ω2 = 1 in the above formulas.

5 Name confusion

Wallenius' and Fisher's distribution are both known in the literature as �the�
noncentral hypergeometric distribution. Fisher's distribution was �rst given the
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name extended hypergeometric distribution, but some scientists are strongly
opposed to using this name.

There is a widespread confusion in the literature because these two distribu-
tions have been given the same name and because it is not obvious that they are
di�erent. Several publications have used the wrong distribution or erroneously
assumed that the two distributions were identical.

I am therefore recommending to use the pre�xes Wallenius' and Fisher's to
distinguish the two noncentral hypergeometric distributions. While this makes
the names rather long, it has the advantage of emphasizing that there is more
than one noncentral hypergeometric distribution, whereby the risk of confusion
is minimized. Wallenius and Fisher are the names of the scientists who �rst
described each of these two distributions.

The following section explains why the two distributions are di�erent and
how to decide which distribution to use in a speci�c situation.

6 The di�erence between the two distributions

Both distributions degenerate into the well-known hypergeometric distribution
when all balls have the same weight. In other words: It doesn't matter how the
balls are sampled if the balls are unbiased. Only if the urn experiment is biased
can we get di�erent distributions depending on how the balls are sampled.

It is important to understand how this dependence on the sampling proce-
dure arises. In the Wallenius model, there is competition between the balls. The
probability that a particular ball is taken is lower when the other balls in the
urn are heavier. The probability of taking a particular ball at a particular draw
is equal to its fraction of the total weight of the balls that remain in the urn at
that moment. This total weight depends on the weight of the balls that have
been removed in previous draws. Therefore, each draw except the �rst one has a
probability distribution that depends on the results of the previous draws. The
fact that each draw depends on the previous draws is what makes Wallenius'
distribution unique and makes the calculation of it complicated. What hap-
pens to each ball depends on what has happened to other balls in the preceding
draws.

In the Fisher model, there is no such dependence between draws. We may
as well take all n balls at the same time. Each ball has no �knowledge� of what
happens to the other balls. For the same reason, it is impossible to know the
value of n before the experiment. If we tried to �x the value of n then we would
have no way of preventing ball number n+1 from being taken without violating
the principle of independence between balls. n is therefore a random variable
and the Fisher distribution is a conditional distribution which can only be de-
termined after the experiment when n is known. The unconditional distribution
is c independent binomials.

The di�erence between Wallenius' and Fisher's distributions is low when
odds ratios are near 1, and n is low compared to N . The di�erence between the
two distributions becomes higher when odds ratios are high and n is near N .

Consider the extreme example where an urn contains one red ball with the
weight 1000, and a thousand white balls each with the weight 1. We want to
calculate the probability that the red ball is not taken when balls are taken
one by one. The probability that the red ball is not taken in the �rst draw is
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1000
2000 = 1

2 . The probability that the red ball is not taken in the second draw,
under the condition that it was not taken in the �rst draw, is 999

1999 ≈
1
2 . The

probability that the red ball is not taken in the third draw, under the condition
that it was not taken in the �rst two draws, is 998

1998 ≈
1
2 . Continuing in this

way, we can calculate that the probability of not taking the red ball in n draws
is approximately 2−n for moderate values of n. In other words, the probability
of not taking a very heavy ball in n draws falls almost exponentially with n in
Wallenius' model. The exponential function arises because the probabilities for
each draw are all multiplied together.

This is not the case in Fisher's model where balls may be taken simultane-
ously. Here the draws are independent and the probabilities are therefore not
multiplied together. The probability of not taking the heavy red ball in Fisher's
model is approximately 1

n+1 . The two distributions are therefore very di�erent
in this extreme case.

The following conditions must be ful�lled for Wallenius' distribution to be
applicable:

� Items are taken randomly from a �nite source containing di�erent kinds
of items without replacement.

� Items are drawn one by one.

� The probability of taking a particular item at a particular draw is equal
to its fraction of the total weight of all items that have not yet been taken
at that moment. The weight of an item depends only on its kind (color)
i. (It is convenient to use the word �weight� for ωi even if the physical
property that determines the odds is something else than weight).

� The total number n of items to take is �xed and independent of which
items happen to be taken.

The following conditions must be ful�lled for Fisher's distribution to be
applicable:

� Items are taken randomly from a �nite source containing di�erent kinds
of items without replacement.

� Items are taken independently of each other. Whether one item is taken is
independent of whether another item is taken. Whether one item is taken
before, after, or simultaneously with another item is irrelevant.

� The probability of taking a particular item is proportional to its weight.
The weight of an item depends only on its kind (color) i.

� The total number n of items that will be taken is not known before the
experiment.

� n is determined after the experiment and the conditional distribution for
n known is desired.
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7 Examples

The following examples will further clarify which distribution to use in di�erent
situations.

7.1 Example 1

You are catching �sh in a small lake that contains a limited number of �sh. There
are di�erent kinds of �sh with di�erent weights. The probability of catching a
particular �sh is proportional to its weight when you only catch one �sh.

You are catching the �sh one by one with a �shing rod. You have been
ordered to catch n �sh. You are determined to catch exactly n �sh regardless of
how long time it may take. You are stopping after you have caught n �sh even
if you can see more �sh that are tempting you.

This scenario will give a distribution of the types of �sh caught that is equal
to Wallenius' noncentral hypergeometric distribution.

7.2 Example 2

You are catching �sh as in example 1, but you are using a big net. You are
setting up the net one day and coming back the next day to remove the net.
You count how many �sh you have caught and then you go home regardless of
how many �sh you have caught.

Each �sh has a probability of getting into the net that is proportional to its
weight but independent of what happens to the other �sh.

This scenario gives Fisher's noncentral hypergeometric distribution after n
is known.

7.3 Example 3

You are catching �sh with a small net. It is possible that more than one �sh
can go into the net at the same time. You are using the net multiple times until
you have at least n �sh.

This scenario gives a distribution that lies between Wallenius' and Fisher's
distributions. The total number of �sh caught can vary if you are getting too
many �sh in the last catch. You may put the excess �sh back into the lake, but
this still doesn't give Wallenius' distribution. This is because you are catching
multiple �sh at the same time. The condition that each catch depends on all
previous catches does not hold for �sh that are caught simultaneously or in the
same operation.

The resulting distribution will be close to Wallenius' distribution if there are
only few �sh in the net in each catch and you are catching many times.

The resulting distribution will be close to Fisher's distribution if there are
many �sh in the net in each catch and you are catching few times.

7.4 Example 4

You are catching �sh with a big net. Fish are swimming into the net randomly
in a situation that resembles a Poisson process. You are watching the net all
the time and take up the net as soon as you have caught exactly n �sh.
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The resulting distribution will be close to Fisher's distribution because the
�sh swim into the net independently of each other. But the fates of the �sh
are not totally independent because a particular �sh can be saved from getting
caught if n other �sh happen to get into the net before the time that this
particular �sh would have been caught. This is more likely to happen if the
other �sh are heavy than if they are light.

7.5 Example 5

You are catching �sh one by one with a �shing rod as in example 1. You need
a particular amount of �sh in order to feed your family. You are stopping when
the total weight of the �sh you have caught exceeds a predetermined limit.

The resulting distribution will be close to Wallenius' distribution, but not
exactly because the decision to stop depends on the weight of the �sh you have
caught so far. n is therefore not known exactly before the �shing trip.

7.6 Conclusion

These examples show that the distribution of the types of �sh you catch de-
pends on the way they are caught. Many situations will give a distribution
that lies somewhere between Wallenius' and Fisher's noncentral hypergeometric
distributions.

An interesting consequence of the di�erence between these two distributions
is that you will get more of the heavy �sh, on average, if you catch n �sh one
by one than if you catch all n at the same time.

These conclusions can of course be applied to biased sampling of other items
than �sh.

8 Applications

The biased urn models can be applied to many di�erent situations where items
are sampled with bias and without replacement.

8.1 Calculating probabilities etc.

Probabilities, mean and variance can be calculated with the appropriate func-
tions. More complicated systems, such as the natural selection of animals, can
be treated with Monte Carlo simulation, using the random variate generating
functions.

8.2 Measuring odds ratios

The odds of a sampling process can be measured by an experiment or a series of
experiments where the number of items sampled of each kind (color) is counted.

It is recommended to use sampling with replacement if possible. Sampling
with replacement makes it possible to use the binomial distribution, whereby
the calculation of the odds becomes simpler and more accurate. If sampling with
replacement is not possible, then the procedure of sampling without replacement
must be carefully controlled in order to get a pure Wallenius' distribution or
a pure Fisher's distribution rather than a mixture of the two, as explained in
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the examples above. Use the odds functions to calculate the odds ratios from
experimental values of the mean.

8.3 Estimating the number of items of a particular kind

from experimental sampling

It is possible to estimate the number of items of a particular kind, for example
defective items in a production, from biased sampling. The traditional proce-
dure is to use unbiased sampling. But a model of biased sampling may be used
if bias is unavoidable or if bias is desired in order to increase the probability of
detecting e.g. defective items.

It is recommended to use sampling with replacement if possible. Sampling
with replacement makes it possible to use the binomial distribution, whereby
the calculation of the number of items becomes simpler and more accurate. If
sampling with replacement is not possible, then the procedure of sampling with-
out replacement must be carefully controlled in order to get a pure Wallenius'
distribution or a pure Fisher's distribution rather than a mixture of the two, as
explained in the examples above. The value of the bias (odds ratio) must be
determined before the numbers can be calculated.

Use the functions with names beginning with �num� to calculate the number
of items of each kind from the result of a sampling experiment with known odds
ratios.

9 Demos

The following demos are included in the BiasedUrn package:

9.1 CompareHypergeo

This demo shows the di�erence between the hypergeometric distribution and the
two noncentral hypergeometric distributions by plotting the probability mass
functions.

9.2 ApproxHypergeo

This demo shows shows that the two noncentral hypergeometric distributions
are approximately equal when the parameters are adjusted so that they have
the same mean rather than the same odds.

9.3 OddsPrecision

Calculates the precision of the oddsWNCHypergeo and oddsFNCHypergeo func-
tions that are used for estimating the odds from a measured mean.

9.4 SampleWallenius

Makes 100,000 random samples from Wallenius noncentral hypergeometric dis-
tribution and compares the measured mean with the theoretical mean.
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9.5 UrnTheory

Displays this document.

10 Calculation methods

The BiasedUrn package can calculate the univariate and multivariate Walle-
nius' and Fisher's noncentral hypergeometric distributions. Several di�erent
calculation methods are used, depending on the parameters.

The calculation methods and sampling methods are documented in Fog
(2008a,b).
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