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BayesianFM Bayesian Fama-MacBeth
Description

This function provides the Bayesian Fama-MacBeth regression.

Usage
BayesianFM(f, R, sim_length)

Arguments
f A matrix of factors with dimension ¢ x k, where k is the number of factors and
t is the number of periods;
R A matrix of test assets with dimension ¢ x IV, where ¢ is the number of periods
and N is the number of test assets;
sim_length The length of MCMC:s;
Details

BayesianFM is similar to another twin function in this package, BayesianSDF, except that we esti-
mate factors’ risk premia rather than risk prices in this function. Unlike BayesianSDF, we use factor
loadings, (¢, instead of covariance exposures, C'¢, in the Fama-MacBeth regression. In particular,
after we obtain the posterior draws of py and Xy (details can be found in the section introducing
BayesianSDF function), we calculate 37 as follows: 3y = CfE_l, and 5 = (1w, By).

Bayesian Fama-MacBeth (BFM)

The posterior distribution of A conditional on uy, Xy, and the data, is a Dirac distribution at
(BTB) '8 pr.

Bayesian Fama-MacBeth GLS (BFM-GLS)

The posterior distribution of A conditional on uy, ¥y, and the data, is a Dirac distribution at
(5TZ};15)71BTE§1MR~
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Value

The return of BayesianFM is a list of the following elements:

lambda_ols_path: A sim_lengthx(k + 1) matrix of OLS risk premia estimates (Each row
represents a draw. Note that the first column is A. corresponding to the constant term. The
next k£ columns are the risk premia estimates of the k factors);

lambda_gls_path: A sim_lengthx(k 4 1) matrix of the risk premia estimates A (GLS);
R2_ols_path: A sim_lengthx 1 matrix of the R ;
R2_gls_path: A sim_lengthx 1 matrix of the R% .

Examples

library(reshape2)
library(ggplot2)

# Load Data

data("BFactor_zoo_example")

HML <- BFactor_zoo_example$HML

lambda_ols <- BFactor_zoo_example$lambda_ols
R2.0ls.true <- BFactor_zoo_example$R2.0ls.true
sim_f <- BFactor_zoo_example$sim_f

sim_R <- BFactor_zoo_example$sim_R

uf <- BFactor_zoo_example$uf

# the Frequentist Fama-MacBeth

# sim_f: simulated factor, sim_R: simulated return
# sim_f is the useful (i.e., strong) factor
results.fm <- Two_Pass_Regression(sim_f, sim_R)

# the Bayesian Fama-MacBeth with 10000 simulations
results.bfm <- BayesianFM(sim_f, sim_R, 2000)

# Note that the first element correspond to lambda of the constant term
# So we choose k=2 to get lambda of the strong factor

k <-

2

ml <- results.fm$lambdalk]
sd1 <- sqgrt(results.fm$cov_lambdalk,k])

bfm<-results.bfm$lambda_ols_path[1001:2000,k]
fm<-rnorm(20000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("Frequentist FM", "Bayesian FM")
data.long<-melt(data)

p <=

ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
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p+

stat_density(aes(x=value, colour=variable),

geom="1ine" ,position="identity", size = 2, adjust=1) +

geom_vline(xintercept = lambda_ols[2], linetype="dotted"”, color = "#8c8c8c", size=1.5)+
guides(colour = guide_legend(override.aes=list(size=2), title.position = "top”,
title.hjust = 0.5, nrow=1,byrow=TRUE))+

theme_bw()+

labs(color=element_blank()) +

labs(linetype=element_blank()) +

theme(legend.key.width=unit(4,"1line")) +

theme(legend.position="bottom")+

theme(text = element_text(size = 26))+

xlab(bquote("Risk premium ("~lambda[strong]~")")) +

ylab("Density"” )

# <—mmmmmmmmmmmmo - Case 2: useless factor----------------—---———--——--—————————— >

# uf is the useless factor
# the Frequentist Fama-MacBeth
results.fm <- Two_Pass_Regression(uf, sim_R)

# the Bayesian Fama-MacBeth with 10000 simulations
results.bfm <- BayesianFM(uf, sim_R, 2000)

# Note that the first element correspond to lambda of the constant term
# So we choose k=2 to get lambda of the useless factor

k <=2

ml <- results.fm$lambdalk]

sdl <- sqgrt(results.fm$cov_lambdalk,k])

bfm<-results.bfm$lambda_ols_path[1001:2000,k]
fm<-rnorm(20000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("Frequentist FM", "Bayesian FM")
data.long<-melt(data)

p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+
stat_density(aes(x=value, colour=variable),
geom="1ine" ,position="identity", size = 2, adjust=1) +
geom_vline(xintercept = lambda_ols[2], linetype="dotted"”, color = "#8c8c8c", size=1.5)+
guides(colour = guide_legend(override.aes=list(size=2),
title.position = "top"”, title.hjust = 0.5, nrow=1,byrow=TRUE))+
theme_bw()+
labs(color=element_blank()) +
labs(linetype=element_blank()) +
theme(legend.key.width=unit(4,"1line")) +
theme(legend.position="bottom")+
theme(text = element_text(size = 26))+
xlab(bquote("Risk premium ("~lambda[strong]~")")) +
ylab("Density” )
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BayesianSDF

Bayesian estimation of Linear SDF (B-SDF)

Description

This function provides the Bayesian estimates of factors’ risk prices. The estimates with the flat
prior are given by Definitions 1 and 2 in Bryzgalova et al. (2023). The estimates with the normal
prior are used in Table I (see the footnote of Table I).

Usage

BayesianSDF (
f,
R,

sim_length = 10000,
intercept = TRUE,

type = "OLS",

prior = "Flat”,

psi0 = 5,
d=20.5

Arguments

.F

sim_length

intercept

type

prior

psiod

A t x k matrix of factors, where k is the number of factors and ¢ is the number
of periods

At x N matrix of test assets, where ¢ is the number of periods and N is the
number of test assets

The length of MCMCs

If intercept = TRUE (intercept = FALSE), the model includes (does not in-
clude) the intercept. The default is intercept = TRUE

If type = 'OLS' (type = 'GLS"), the function returns Bayesian OLS (GLS) es-
timates of risk prices A. The default is ’OLS’

If type = 'Flat' (type = 'Normal'), the function executes the Bayesian esti-
mation with the flat prior (normal prior). The default is *Flat’

The hyper-parameter of the prior distribution of risk prices A used in the normal
prior (see Details). This parameter is needed only when the user chooses the
normal prior. The default value is 5

The hyper-parameter of the prior distribution of risk prices A used in the normal
prior (see Details). The default value is 0.5
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Details
Intercept
Consider the cross-sectional step. If one includes the intercept, the model is
Ur = Adn +CpAp = CA,
where C' = (1y,Cy)and X" = (A[,A[)". If one doesn’t include the intercept, the model is
pr = CrAp = O,
where C'= Cf and A = Ay.

Bayesian Estimation

Let Y; = f; U R;. Conditional on the data Y = {Y}}?ﬂ, we can draw py and Xy from the
Normal-inverse-Wishart system

wy |y, Y ~ N(py,Zy/T),
Sy Y ~ WHT = 1,55, (Y — ) (Ve — fv) ),

where W1 is the inverse-Wishart distribution. We do not standardize Y; in the time-series regres-
sion. In the empirical implementation, after obtaining posterior draws for py- and ¥y, we calculate
wr and Cy as the standardized expected returns of test assets and correlation between test assets
and factors. It follows that C' is a matrix containing a vector of ones and C'y.

The prior distribution of risk prices is either the flat prior or the normal prior.

With prior = 'Flat' and type = 'OLS', for each draw, the risk price estimate is
A= (CTC)'CT g,
With prior = 'Flat' and type = 'GLS', for each draw, the risk price estimate is
A= (T2 O) e uR
If one chooses prior = 'Normal', the prior of factor j’s risk price is
Ajlo® ~ N(0,09p] 5;T%),

where p; = p; — (%Ef\; pj.i) % 1 is the cross-sectionally demeaned vector of factor j’s correla-
tions with asset returns. Equivalently,

Mo? ~ N(0,0°D71),
D = diag{(yp; ;1T 7L, ..., (Wpy ppT?) ™'} without intercept;
D = diag{c, (Yp{ T ™", ... (g pxT*) '} with intercept;

where c is a small positive number corresponding to the common cross-sectional intercept (\.).
Default values for ¥ (psi@) and d (d) are 5 and 0.5, respectively.

With prior = '"Normal' and type = 'OLS', for each draw, the risk price estimate is
A= (CTC+D)'C .
With prior = 'Normal' and type = 'GLS', for each draw, the risk price estimate is

A=(CTSR'C+ D) ICTS g
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Value

The return of BayesianSDF is a list that contains the following elements:

 lambda_path: A sim_lengthx(k + 1) matrix if the intercept is included. NOTE: the first
column ). corresponds to the intercept. The next k columns (i.e., the 2th — (k+1)-th columns)
are the risk prices of k factors. If the intercept is excluded, the dimension of lambda_path is
sim_lengthxk.

* R2_path: A sim_lengthx1 matrix, which contains the posterior draws of the OLS or GLS
R2.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>. Journal of Finance, 78(1), 487-557.

Examples

## Example: Bayesian estimates of risk prices and R2
## This example is from the paper (see Section III. Simulation)

library(reshape2)
library(ggplot2)

# Load the example data
data("BFactor_zoo_example")

HML <- BFactor_zoo_example$HML

lambda_ols <- BFactor_zoo_example$lambda_ols
R2.0ls.true <- BFactor_zoo_example$R2.0ls.true
sim_f <- BFactor_zoo_example$sim_f

sim_R <- BFactor_zoo_example$sim_R

uf <- BFactor_zoo_example$uf

W_ols <- BFactor_zoo_example$W_ols

cat("Load the simulated example \n")

cat("Cross-section: Fama-French 25 size and value portfolios \n")
cat("True pricing factor in simulations: HML \n")
cat("Pseudo-true cross-sectional R-squared:"”, R2.ols.true, "\n")
cat("Pseudo-true (monthly) risk price:", lambda_ols[2], "\n")

cat("--------—-mmmmmmm oo Bayesian SDF ------------———------oo— - \n")
cat("-—-----mmmmmmm e See definitions 1 and 2 ----------——---——---——- \n")
cat("---------——mmm-m oo Bayesian SDF: Strong factor --------------------- \n")

sim_result <- SDF_gmm(sim_R, sim_f, W_ols) # GMM estimation
# sim_result$lambda_gmm

# sqgrt(sim_result$Avar_hat[2,2])

# sim_result$R2_adj
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## Now estimate the model using Bayesian method

two_step <- BayesianSDF(sim_f, sim_R, sim_length = 2000, psi®@ = 5, d = 0.5)

# apply(X = two_step$lambda_path, FUN = quantile, MARGIN = 2, probs = c(0.05, 0.95))
# quantile(two_step$R2_path, probs = c(0.05, 0.5, 0.95))

# Note that the first element correspond to lambda of the constant term
# So we choose k=2 to get lambda of the strong factor

k <=2

ml <- sim_result$lambda_gmm[k]

sd1 <- sqgrt(sim_result$Avar_hat[k,k])

bfm<-two_step$lambda_path[1001:2000, k]
fm<-rnorm(5000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c(”"GMM-OLS", "BSDF-OLS")
data.long<-melt(data)

#
### Figure 1(c)
#

p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)

p+

stat_density(aes(x=value, colour=variable),

geom="1ine",position="identity", size = 2, adjust=1) +

geom_vline(xintercept = lambda_ols[2], linetype="dotted"”, color = "#8c8c8c", size=1.5)+
guides(colour = guide_legend(override.aes=list(size=2), title.position = "top”,
title.hjust = 0.5, nrow=1,byrow=TRUE))+

theme_bw()+

labs(color=element_blank()) +

labs(linetype=element_blank()) +

theme(legend.key.width=unit(4,"line")) +

theme(legend.position="bottom")+

theme(text = element_text(size = 26))+

xlab(bquote(”"Risk price ("~lambda[strongl~")")) +

ylab("Density” )

cat("---——-—————————————- Bayesian SDF: Useless factor ----------------—--—-—- \n")

sim_result <- SDF_gmm(sim_R, uf, W_ols)
# sim_result$lambda_gmm

# sqrt(sim_result$Avar_hat[2,2])

# sim_result$R2_adj

0.5)
c(0.05, 0.95))

two_step <- BayesianSDF(uf, sim_R, sim_length = 2000, psi@ = 5, d
#apply(X = two_step$lambda_path, FUN = quantile, MARGIN = 2, probs

## Posterior (Asymptotic) Distribution of lambda
k <-2

ml <- sim_result$lambdalk]

sd1 <- sqrt(sim_result$Avar_hat[k,k])
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bfm<-two_step$lambda_path[1001:2000, k]
fm<-rnorm(5000,mean = m1, sd=sd1)
data<-data.frame(cbind(fm, bfm))
colnames(data)<-c("GMM-OLS", "BSDF-OLS")
data.long<-melt(data)

#

### Figure 1(a)

#

p <- ggplot(aes(x=value, colour=variable, linetype=variable), data=data.long)
p+

stat_density(aes(x=value, colour=variable),
geom="1ine",position="identity"”, size = 2, adjust=2) +

geom_vline(xintercept = @, linetype="dotted”, color = "#8c8c8c", size=1.5)+

guides(colour = guide_legend(override.aes=list(size=2),

title.position = "top"”, title.hjust = 0.5, nrow=1,byrow=TRUE))+

theme_bw()+

labs(color=element_blank()) +

labs(linetype=element_blank()) +

theme(legend.key.width=unit(4,"line")) +

theme(legend.position="bottom")+

theme(text = element_text(size = 26))+

xlab(bquote("Risk price ("~lambdal[spurious]~")")) +

ylab("Density"” )

BFactor_zoo_example Simulated Example Dataset ’BFactor_zoo_example’

Description

A simulated dataset used in Figure 1 of Bryzgalova et al. (2023).

Usage

data("BFactor_zoo_example”)

Format
A list consisting of the following variables:

HML High-minus-low value factor, from Ken French Website
lambda_ols Hypothetical true risk prices of factors in simulations
R2.ols.true Hypothetical true OLS R-squared in simulations
sim_f Simulated strong factor

sim_R Simulated test asset returns
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uf Simulated weak/unspanned factor
W_ols Weighting matrix used in GMM OLS estimations

Source

Section III in Bryzgalova et al. (2023).

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>." Journal of Finance, 78(1), 487-557.

Examples

data(BFactor_zoo_example)

HML <- BFactor_zoo_example$HML

lambda_ols <- BFactor_zoo_example$lambda_ols
R2.0ls.true <- BFactor_zoo_example$R2.0ls.true
sim_f <- BFactor_zoo_example$sim_f

sim_R <- BFactor_zoo_example$sim_R

uf <- BFactor_zoo_example$uf

W_ols <- BFactor_zoo_example$W_ols

cat("Load the simulated example \n")

cat("Cross-section: Fama-French 25 size and value portfolios \n")
cat("True pricing factor in simulations: HML \n")

cat("Misspecified model with pseudo-true R-squared:”, R2.ols.true, "\n")
cat("Pseudo-true (monthly) risk price:", lambda_ols[2], "\n")

continuous_ss_sdf SDF model selection with continuous spike-and-slab prior

Description

This function provides the SDF model selection procedure using the continuous spike-and-slab
prior. See Propositions 3 and 4 in Bryzgalova et al. (2023).

Usage

continuous_ss_sdf/(
f,
R,
sim_length,
psio = 1,
r=20.001,
aw = 1,
bw = 1,
type = "OLS",
intercept = TRUE
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Arguments
f A matrix of factors with dimension ¢ x k, where k is the number of factors and
t is the number of periods;
R A matrix of test assets with dimension ¢ x N, where ¢ is the number of periods
and N is the number of test assets;
sim_length The length of monte-carlo simulations;
psio The hyper-parameter in the prior distribution of risk prices (see Details);
r The hyper-parameter related to the prior of risk prices (see Details);
aw The hyper-parameter related to the prior of v (see Details);
bw The hyper-parameter related to the prior of v (see Details);
type If type = 'OLS' (type = 'GLS"), the function returns Bayesian OLS (GLS) es-
timates of risk prices. The default is "OLS’.
intercept If intercept = TRUE (intercept = FALSE), we include (exclude) the common
intercept in the cross-sectional regression. The default is intercept = TRUE.
Details

To model the variable selection procedure, we introduce a vector of binary latent variables v =
(70,71, -+, YK ), where y; € {0, 1}. When y; = 1, factor j (with associated loadings C;) should be
included in the model and vice verse.

The continuous spike-and-slab prior of risk prices A is
Ajlyg, 0% ~ N(O,7(v;)8507).

When the factor j is included, we have r(y; = 1) = 1. When the factor is excluded from the
model, r(y; = 0) = r < 1. Hence, the Dirac "spike" is replaced by a Gaussian spike, which is
extremely concentrated at zero (the default value for r is 0.001). If intercept = TRUE, we choose
Py = wﬁ;ﬁj, where p; = p; — (%Efilpj,i) x 1 is the cross-sectionally demeaned vector of
factor j’s correlations with asset returns. Instead, if intercept = FALSE, we choose ¢; = wp;rpj.
In the codes, 1) is equal to the value of psi@.

The prior 7(w) encoded the belief about the sparsity of the true model using the prior distribution
7(v; = 1l|lw;) = wj. Following the literature on the variable selection, we set

m(y; = lw;) = wj, w; ~ Beta(ay,by).

Different hyperparameters a,, and b,, determine whether one a priori favors more parsimonious
models or not. We choose a,, = 1 (aw) and b,, = 1 (bw) as the default values.

For each posterior draw of factors’ risk prices )\gf ), we can define the SDF as mgj ) =1 (fe —
I f)T/\gfj ) The Bayesian model averaging of the SDF (BMA-SDF) over J draws is

1K
mlt)ma _ jzm?)
j=1
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Value

The return of continuous_ss_sdf is a list of the following elements:

e gamma_path: A sim_lengthxk matrix of the posterior draws of . Each row represents a
draw. If y; = 1 in one draw, factor j is included in the model in this draw and vice verse.

* lambda_path: A sim_lengthx (k -+ 1) matrix of the risk prices \ if intercept = TRUE. Each
row represents a draw. Note that the first column is A, corresponding to the constant term.
The next k columns (i.e., the 2-th — (k + 1)-th columns) are the risk prices of the & factors. If
intercept = FALSE, lambda_path is a sim_lengthxk matrix of the risk prices, without the
estimates of ..

* sdf_path: A sim_lengthxt matrix of posterior draws of SDFs. Each row represents a draw.

* bma_sdf: BMA-SDF.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>.” Journal of Finance, 78(1), 487-557.

Examples

## Load the example data
data("BFactor_zoo_example")

HML <- BFactor_zoo_example$HML

lambda_ols <- BFactor_zoo_example$lambda_ols
R2.0ls.true <- BFactor_zoo_example$R2.0ls.true
sim_f <- BFactor_zoo_example$sim_f

sim_R <- BFactor_zoo_example$sim_R

uf <- BFactor_zoo_example$uf

## sim_f: simulated strong factor
## uf: simulated useless factor

psi_hat <- psi_to_priorSR(sim_R, cbind(sim_f,uf), priorSR=0.1)

shrinkage <- continuous_ss_sdf (cbind(sim_f,uf), sim_R, 5000, psi@=psi_hat, r=0.001, aw=1, bw=1)

cat(”Null hypothesis: lambda =", @, "for each factor”, "\n")

cat("Posterior probabilities of rejecting the above null hypotheses are:”,
colMeans(shrinkage$gamma_path), "\n")

## We also have the posterior draws of SDF: m(t) = 1 - lambda_g %x% (f(t) - mu_f)
sdf_path <- shrinkage$sdf_path

## We also provide the Bayesian model averaging of the SDF (BMA-SDF)
bma_sdf <- shrinkage$bma_sdf
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continuous_ss_sdf_v2  SDF model selection with continuous spike-and-slab prior (tradable
factors are treated as test assets)

Description

This function provides the SDF model selection procedure using the continuous spike-and-slab
prior. See Propositions 3 and 4 in Bryzgalova et al. (2023). Unlike continuous_ss_sdf, tradable
factors are treated as test assets in this function.

Usage
continuous_ss_sdf_v2(
f1,
f2,
R,
sim_length,
psi@ = 1,
r = 0.001,
aw = 1,
bw = 1,
type = "OLS",
intercept = TRUE
)
Arguments

f1 A matrix of nontradable factors with dimension ¢ x k;, where k7 is the number
of nontradable factors and ¢ is the number of periods.

f2 A matrix of tradable factors with dimension ¢ x ko, where ko is the number of
tradable factors and ¢ is the number of periods.

R A matrix of test assets with dimension ¢ x N, where ¢ is the number of periods
and N is the number of test assets (R should NOT contain tradable factors
f2);

sim_length The length of monte-carlo simulations;

psi@ The hyper-parameter in the prior distribution of risk prices (see Details);

r The hyper-parameter related to the prior of risk prices (see Details);

aw The hyper-parameter related to the prior of v (see Details);

bw The hyper-parameter related to the prior of v (see Details);

type If type = 'OLS' (type = 'GLS"), the function returns Bayesian OLS (GLS) es-
timates of risk prices. The default is "OLS’.

intercept If intercept = TRUE (intercept = FALSE), we include (exclude) the common

intercept in the cross-sectional regression. The default is intercept = TRUE.
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Details

continuous_ss_sdf v2

See the description in the twin function continuous_ss_sdf.

Value

The return of continuous_ss_sdf_v2 is a list of the following elements:

gamma_path: A sim_lengthxk matrix of the posterior draws of v (k = k1 + k). Each row
represents a draw. If v; = 1 in one draw, factor j is included in the model in this draw and
vice verse.

lambda_path: A sim_lengthx (k -+ 1) matrix of the risk prices A if intercept = TRUE. Each
row represents a draw. Note that the first column is A\. corresponding to the constant term.
The next k& columns (i.e., the 2-th — (k + 1)-th columns) are the risk prices of the & factors. If
intercept = FALSE, lambda_path is a sim_lengthxk matrix of the risk prices, without the
estimates of ..

sdf_path: A sim_lengthxt matrix of posterior draws of SDFs. Each row represents a draw.
bma_sdf: BMA-SDF.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>." Journal of Finance, 78(1), 487-557.

Examples

library(timeSeries)

## Load the example data
data("BFactor_zoo_example")

HML <- BFactor_zoo_example$HML

lambda_ols <- BFactor_zoo_example$lambda_ols
R2.0ls.true <- BFactor_zoo_example$R2.0ls.true
sim_f <- BFactor_zoo_example$sim_f

sim_R <- BFactor_zoo_example$sim_R

uf <- BFactor_zoo_example$uf

## sim_f: simulated strong factor
## uf: simulated useless factor

psi_hat <- psi_to_priorSR(sim_R, cbind(sim_f,uf,sim_R[,1]), priorSR=0.1)

## We include the first test asset, sim_R[,1], into factors, so f2 = sim_R[,1,drop=FALSE].
## Also remember excluding sim_R[,1,drop=FALSE] from test assets, so R = sim_R[,-1].
shrinkage <- continuous_ss_sdf_v2(cbind(sim_f,uf), sim_R[,1,drop=FALSE], sim_R[,-1], 1000,

psi0=psi_hat, r=0.001, aw=1, bw=1)

cat("Null hypothesis: lambda =", @, "for each of these three factors”, "\n")
cat("Posterior probabilities of rejecting the above null hypotheses are:",

colMeans(shrinkage$gamma_path), "\n")

## We also have the posterior draws of SDF: m(t) = 1 - lambda_g %*% (f(t) - mu_f)
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sdf_path <- shrinkage$sdf_path

## We also provide the Bayesian model averaging of the SDF (BMA-SDF)
bma_sdf <- shrinkages$bma_sdf

## We can further estimate the posterior distributions of model-implied Sharpe ratios:
cat("The 5th, 50th, and 95th quantiles of model-implied Sharpe ratios:",
quantile(colSds(t(sdf_path)), probs=c(0.05, 0.5, 0.95)), "\n")

## Finally, we can estimate the posterior distribution of model dimensions:
cat("The posterior distribution of model dimensions (= @, 1, 2, 3):",
prop.table(table(rowSums(shrinkage$gamma_path))), "\n")

## We now use the 17th test asset, sim_R[,17,drop=FALSE], as the tradable factor,

## so f2 = sim_R[,17,drop=FALSE].

## Also remember excluding sim_R[,17,drop=FALSE] from test assets, so R = sim_R[,-17].

psi_hat <- psi_to_priorSR(sim_R, cbind(sim_f,uf,sim_R[,17]), priorSR=0.1)

shrinkage <- continuous_ss_sdf_v2(cbind(sim_f,uf), sim_R[,17,drop=FALSE], sim_R[,-171,
1000, psi0=psi_hat, r=0.001, aw=1, bw=1)

cat("Null hypothesis: lambda =", @, "for each of these three factors”, "\n")

cat("Posterior probabilities of rejecting the above null hypotheses are:",

colMeans(shrinkage$gamma_path), "\n")

dirac_ss_sdf_pvalue Hypothesis testing for risk prices (Bayesian p-values) with Dirac
spike-and-slab prior

Description

This function tests the null hypothesis, Hy : A = A9, when v = 0. When Ay = 0, we compare
factor models using the algorithm in Proposition 1 of Bryzgalova et al. (2023). When Ao # 0, this
function corresponds to Corollary 2 in Section II.A.2 of Bryzgalova et al. (2023). The function
can also be used to compute the posterior probabilities of all possible models with up to a given
maximum number of factors (see examples).

Usage

dirac_ss_sdf_pvalue(f, R, sim_length, lambda®@, psi® = 1, max_k = NULL)

Arguments
f A matrix of factors with dimension ¢ x k, where k is the number of factors and
t is the number of periods;
R A matrix of test assets with dimension ¢ x N, where ¢ is the number of periods

and N is the number of test assets;

sim_length The length of Monte-Carlo simulations;
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lambda@ A k x 1 vector of risk prices under the null hypothesis (7 = 0);
psio The hyper-parameter in the prior distribution of risk price A (see Details);
max_k The maximal number of factors in models (max_k is a positive integer or NULL

if the user does not impose any restriction on the model dimension).

Details

Let D denote a diagonal matrix with elements c, ] Lo wl_(l, and D, the submatrix of D cor-
responding to model ~, where c is a small positive number corresponding to the common cross-
sectional intercept (A.). The prior for the prices of risk (\) of model + is then

Aylo®, v ~ N(0,0%, D).

We choose v; = p] pj, where p; = p;j — (X, pj.i) X 1w is the cross-sectionally demeaned
vector of factor j’s correlations with asset returns. In the codes, 1) is equal to the value of psi@.

Value
The return of dirac_ss_sdf_pvalue is a list of the following elements:
* gamma_path: A sim_lengthxk matrix of the posterior draws of . Each row represents a
draw. If v; = 1 in one draw, factor j is included in the model in this draw and vice verse.

 lambda_path: A sim_lengthx(k 4 1) matrix of the risk prices A. Each row represents a
draw. Note that the first column is A\, corresponding to the constant term. The next £ columns
(i.e., the 2-th — (k + 1)-th columns) are the risk prices of the k factors;

* model_probs: A 2% x (k+1) matrix of posterior model probabilities, where the first k columns
are the model indices and the final column is a vector of model probabilities.
References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/jofi.13197>. Journal of Finance, 78(1), 487-557.

Examples
B <o m o >
## Example: Bayesian p-value (with the dirac spike-and-slab prior)
B o m o o >

# Load the example data
data("BFactor_zoo_example")

HML <- BFactor_zoo_example$HML

lambda_ols <- BFactor_zoo_example$lambda_ols
R2.0ls.true <- BFactor_zoo_example$R2.0ls.true
sim_f <- BFactor_zoo_example$sim_f

sim_R <- BFactor_zoo_example$sim_R

uf <- BFactor_zoo_example$uf

### Now we estimate the Bayesian p-values defined in Corollary 2.
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#

### Prior Sharpe ratio of factor model for different values of psi: see equation (27):
#

cat("---—----—------ Choose psi based on prior Sharpe ratio ---------------- \n")

cat("if psi = 1, prior Sharpe ratio is"”, psi_to_priorSR(sim_R, sim_f, psi@=1), "\n")
cat("if psi = 2, prior Sharpe ratio is"”, psi_to_priorSR(sim_R, sim_f, psi@=2), "\n")
cat("if psi = 5, prior Sharpe ratio is"”, psi_to_priorSR(sim_R, sim_f, psi@=5), "\n")

## Test whether factors' risk prices equal 'matrix(lambda_ols[2]*sd(HML),ncol=1)"

## Bayesian p-value is given by mean(shrinkage$gamma_path)

shrinkage <- dirac_ss_sdf_pvalue(sim_f, sim_R, 1000, matrix(lambda_ols[2]*sd(HML),ncol=1))

cat("Null hypothesis: lambda =", matrix(lambda_ols[2]*sd(HML)), "\n")

cat("Posterior probability of rejecting the above null hypothesis is:",
mean(shrinkage$gamma_path), "\n")

## Test whether the risk price of factor 'sim_f' is equal to @

shrinkage <- dirac_ss_sdf_pvalue(sim_f, sim_R, 1000, 0, psio=1)

cat(”Null hypothesis: lambda =", @, "\n")

cat("Posterior probability of rejecting the above null hypothesis is:",
mean(shrinkage$gamma_path), "\n")

## One can also put more than one factor into the test

two_f = cbind(sim_f,uf) # sim_f is the strong factor while uf is the useless factor

# Test1: lambda of sim_f = @, Test2: lambda of uf = @

lambda@_null_vec = t(cbind(@,0)) # 2x1 vector

shrinkage <- dirac_ss_sdf_pvalue(two_f, sim_R, 1000, lambda@_null_vec, psi@=1)

cat("Null hypothesis: lambda =", @, "for each factor”, "\n")

cat("Posterior probabilities of rejecting the above null hypothesis are:",
colMeans(shrinkage$gamma_path), "\n")

## We can also print the posterior model probabilities:
cat('Posterior model probabilities are:\n')
print(shrinkage$model_probs)

## One can compute the posterior probabilities of all possible models with up to

## a given maximum number of factors. For example, we consider two factors, but

## the number of factors is restricted to be less than two.

lambda@_null_vec = t(cbind(@,0)) # 2x1 vector

shrinkage <- dirac_ss_sdf_pvalue(two_f, sim_R, 1000, lambda@_null_vec, psi@=1, max_k=1)
cat('Posterior model probabilities are:\n')

print(shrinkage$model_probs)

## Comment: You may notice that the model with index (1, 1) has a posterior probability
## of exactly zero since the maximal number of factors is one.

psi_to_priorSR Mapping ) (psi@) to the prior Sharpe ratio of factors (priorSR), and
vice versa.
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Description
This function provides the one-to-one mapping between ) and the prior Sharpe ratio of factors. See
Section II.A.3 in Bryzgalova et al. (2023).

Usage
psi_to_priorSR(R, f, psi® = NULL, priorSR = NULL, aw = 1, bw = 1)

Arguments
R A matrix of test assets with dimension ¢ x N, where ¢ is the number of periods
and N is the number of test assets;
f A matrix of factors with dimension ¢ x k, where k is the number of factors and
t is the number of periods;
psio The hyper-parameter in the prior distribution of risk prices (see Details in the
function continuous_ss_sdf);
priorSR The prior Sharpe ratio of all factors (see Details);
aw The hyper-parameter in the prior of  (default value = 1, see Details);
bw The hyper-parameter in the prior of y (default value = 1, see Details);
Details

According to equation (27) in Bryzgalova et al. (2023), we learn that

Ex[SR} [ 7,0%) 50, r(w)pL pn
E.[SR2 | 02| N ’

where SR? and SR? denote the Sharpe ratios of all factors (f;) and of the pricing errors («), and
FE; denotes prior expectations.

The prior 7(w) encodes the belief about the sparsity of the true model using the prior distribution
7(y; = lwj) = wj, w; ~ Beta(ay,by,). We further integrate out ; in Ex[SR} | v,0?] and
show the following:

Ei[SR} 0% aa
B SR 0% ~ au+ b

K  ~T~
Zk:lPkTPk
N

(4

, asr — 0.

Since we can decompose the Sharpe ratios of all test assets, SR, into SR} and SR? (i.e., SRy, =
S Rfc + SR2), we can represent SR?C as follows:

E,[SR? | 0% m —etbe o SR%.

We define the prior Sharpe ratio implied by the factor models as ,/F [SR?c | 02]. Given a, by,

K <7 =
W, and the observed Sharpe ratio of test assets, we have one-to-one mapping between

and ,/E;[SR} | 02].
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If the user aims to convert v to the prior Sharpe ratio, she should input only psi@. In contrast, if
she wants to convert the prior Sharpe ratio to v, priorSR should be entered.

Value

The return of psi_to_priorSR is:

* psi@ or priorSR.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/j0fi.13197>.” Journal of Finance, 78(1), 487-557.

Examples

## Load the example data
data("BFactor_zoo_example")

HML <- BFactor_zoo_example$HML

lambda_ols <- BFactor_zoo_example$lambda_ols
R2.0ls.true <- BFactor_zoo_example$R2.0ls.true
sim_f <- BFactor_zoo_example$sim_f

sim_R <- BFactor_zoo_example$sim_R

uf <- BFactor_zoo_example$uf

## If the user aims to convert \egn{\psi} to the prior Sharpe ratio:
print(psi_to_priorSR(sim_R, sim_f, priorSR=0.1))

## If the user wants to convert the prior Sharpe ratio to \egn{\psi}:
psi@_to_map <- psi_to_priorSR(sim_R, sim_f, priorSR=0.1)
print(psi_to_priorSR(sim_R, sim_f, psi@=psi@_to_map))

## If we enter both psi@ and priorSR (or forget to input them simultaneously),
## a warning will be printed:

print(psi_to_priorSR(sim_R, sim_f))

print(psi_to_priorSR(sim_R, sim_f, priorSR=0.1, psi0=2))

SDF _gmm GMM Estimates of Factors’ Risk Prices under the Linear SDF Frame-
work

Description

This function provides the GMM estimates of factors’ risk prices under the linear SDF framework
(including the common intercept).
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Usage
SDF_gmm(R, f, W)

Arguments
R A matrix of test assets with dimension ¢ x N, where ¢ is the number of periods
and N is the number of test assets;
f A matrix of factors with dimension ¢ x k, where k is the number of factors and
t is the number of periods;
W Weighting matrix in GMM estimation (see Details).
Details

We follow the notations in Section I of Bryzgalova et al. (2023). Suppose that there are K
factors, f; = (fit,..., fxt) ' ,t = 1,...,T. The returns of N test assets are denoted by R; =
(th, ceey RNt)T.

Consider linear SDFs (M), that is, models of the form M; = 1 — (f;, — E[f]) T A;.

The model is estimated via GMM with moment conditions

Ry — Aln — Re(fi —pp)TA 0
Elge(Ae; A )] = E( Py f, f,(ti} A ) - ( OJIZ )

and the corresponding sample analog function g7 (Ac, As, 1f) = =571 g¢(Ae, As, puy). Different
weighting matrices deliver different point estimates. Two popular choices are

Iy  Onxrk W Sn' Onxk
”os = 5 s — R )
! ( Orxn  klk gt Orxn  Klk

where X, is the covariance matrix of returns and £ > 0 is a large constant so that iy = X7, fi.

The asymptotic covariance matrix of risk premia estimates, Avar_hat, is based on the assumption
that g¢(Ac, Ay, ptr) is independent over time.

Value

The return of SDF_gmm is a list of the following elements:

* lambda_gmm: Risk price estimates;

* mu_f: Sample means of factors;

* Avar_hat: Asymptotic covariance matrix of GMM estimates (see Details);
* R2_adj: Adjusted cross-sectional R?;

* S_hat: Spectral matrix.

References

Bryzgalova S, Huang J, Julliard C (2023). “Bayesian solutions for the factor zoo: We just ran two
quadrillion models <https://doi.org/10.1111/j0fi.13197>.” Journal of Finance, 78(1), 487-557.
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Two_Pass_Regression Fama MacBeth Two-Pass Regression

Description

This function provides the frequentist Fama-MacBeth Two-Pass Regression.

Usage

Two_Pass_Regression(f, R)

Arguments
f A matrix of factors with dimension ¢ x k, where k is the number of factors and
t is the number of periods;
R A matrix of test assets with dimension ¢ x N, where ¢ is the number of periods
and N is the number of test assets;
Details

See Chapter 12.2 in Cochrane (2009). t_stat and t_stat_gls are t-statistics of OLS and GLS risk
premia estimates based on the asymptotic standard errors in equation (12.19) in Cochrane (2009).

Value

The return of Two_Pass_Regression is a list of the following elements:

* lambda: Risk premia estimates in the OLS two-pass regression;

» lambda_gls: Risk premia estimates in the GLS two-pass regression;

* t_stat: The t-statistics of risk premia estimates in the OLS two-pass regression;

* t_stat_gls: The t-statistics of risk premia estimates in the GLS two-pass regression;
* R2_adj: Adjusted R2 in the OLS two-pass regression;

R2_adj_GLS: Adjusted R2 in the GLS two-pass regression.

References

Cochrane J (2009). Asset pricing: Revised edition. Princeton University Press.



Index

+ datasets
BFactor_zoo_example, 9

BayesianFM, 2
BayesianSDF, 5
BFactor_zoo_example, 9

continuous_ss_sdf, 10
continuous_ss_sdf_v2, 13

dirac_ss_sdf_pvalue, 15
psi_to_priorSR, 17
SDF _gmm, 19

Two_Pass_Regression, 21

22



	BayesianFM
	BayesianSDF
	BFactor_zoo_example
	continuous_ss_sdf
	continuous_ss_sdf_v2
	dirac_ss_sdf_pvalue
	psi_to_priorSR
	SDF_gmm
	Two_Pass_Regression
	Index

