
BNPmix: an R Package for Bayesian
Non-Parametric Modeling via Pitman-Yor Mixtures

Riccardo Corradin
University of Milano-Bicocca

Antonio Canale
University of Padova

Bernardo Nipoti
University of Milano-Bicocca

Abstract

BNPmix is an R package for Bayesian non-parametric multivariate density estima-
tion, clustering, and regression, using Pitman-Yor mixture models, a flexible and robust
generalization of the popular class of Dirichlet process mixture models. A variety of
model specifications and state-of-the-art posterior samplers are implemented. In order to
achieve computational efficiency, all sampling methods are written in C++ and seamless
integrated into R by means of the Rcpp and RcppArmadillo packages. BNPmix exploits
the ggplot2 capabilities and implements a series of generic functions to plot and print
summaries of posterior densities and induced clustering of the data.

Keywords: Bayesian non-parametric mixture, C++, multivariate density estimation, cluster-
ing, importance conditional sampler, slice sampler, marginal sampler.

1. Introduction
Bayesian non-parametric (BNP) methods provide flexible solutions to complex problems and
data which are not easily described by parametric models (Hjort, Holmes, Müller, and Walker
2010; Müller, Quintana, Jara, and Hanson 2015). A remarkable example is represented
by BNP mixtures, flexible models for density estimation and clustering, nowadays a well-
established modeling option in the toolbox of statisticians and applied researchers. This line
of research was initiated by the Dirichlet process (DP) (Ferguson 1973) mixture of Gaussian
kernels by Lo (1984), a contribution which paved the way to the definition of a rich variety
of non-parametric mixture models. More recently, increasing interest has been dedicated to
mixture models based on non-parametric mixing random probability measures, other than
the DP, which might provide increased modeling flexibility (e.g., Nieto-Barajas, Prünster, and
Walker 2004; Lijoi, Mena, and Prünster 2005b,a, 2007; Argiento, Bianchini, and Guglielmi
2016).
A BNP mixture model for the observations Y (n) = (Y1, . . . , Yn), with Yi ∈ Rp, is defined by
the random distribution

f̃(y) =
∫

Θ
K(y; θ)dp̃(θ), (1)

where Θ is the parameter space, K(·; ·) is a suitable kernel defined on Rp × Θ, and p̃ is a
discrete random probability measure on Θ. Assuming that p̃ is distributed as a Pitman-Yor
process (PY) (Perman, Pitman, and Yor 1992; Pitman 1995; Pitman and Yor 1997) leads
to a model which stands out for being a good compromise between modeling flexibility, and

2 BNPmix: an R Package for Bayesian Non-Parametric Modeling

mathematical and computational tractability. Based on such assumption, model (1) can be
alternatively written in hierarchical form as

Yi | θi
ind∼ K(Yi; θi), i = 1, . . . , n

θi | p̃
iid∼ p̃,

p̃ ∼ PY (α, ϑ; P0),

(2)

where PY (α, ϑ; P0) denotes a PY process with discount parameter α ∈ [0, 1), strength pa-
rameter ϑ > −α, and base probability measure P0 defined on Θ. By exploiting the so-called
stick-breaking representation (Sethuraman 1994; Pitman and Yor 1997) of the PY process,
the random density f̃ can be equivalently written as an infinite sum, specifically

f̃(y) =
∞∑

j=1
πjK(y; θ̃j), (3)

with θ̃j
iid∼ P0 and πj = Vj

∏
l<j(1 − Vl) with Vj

ind∼ Beta(1 − α, ϑ + jα). The PY process (with
α > 0) and the DP, special case recovered when α = 0, are characterized by two radically
different learning mechanisms (see De Blasi, Favaro, Lijoi, Mena, Prünster, and Ruggiero
2015). The discount parameter plays an important modeling role and has an impact on the
induced prior distribution on the number of clusters in the data, the larger being α the flatter
and less informative the prior. This, in the context of mixture models, makes the PY more
robust in estimating the clustering structure underlying the data.
While open source software implementing Markov chain Monte Carlo (MCMC) methods for
some classes of BNP mixture models is already available, the BNPmix package, described
in this paper, aims at filling an existing gap by providing reliable routines which make pos-
terior inference based on PY mixtures possible, straightforward and efficient. The BNPmix
package implements different specifications of model (2) including both univariate and mul-
tivariate kernels. The inclusion of concomitant independent variables is also accounted for,
by considering mixture models for partially exchangeable data with stratification induced by
a categorical covariate (see Foti and Williamson 2015, and references therein), and mixture
models for regression problems (in the spirit of De Iorio, Müller, Rosner, and MacEachern
2004). Moreover, while there is consensus that MCMC methods represent the gold standard
for carrying out posterior inference for BNP mixtures, it is known that different MCMC sim-
ulation schemes feature different properties and thus might be convenient to serve different
purposes. With this in mind, BNPmix implements three state-of-the-art MCMC methods for
PY mixture models, henceforth referred to as marginal sampler, slice sampler and importance
conditional sampler, providing the user with the option to choose one.
The list of R (?) packages implementing MCMC techniques for BNP models is rich. In order
to clarify which features are specific to BNPmix and which are shared by other packages,
we review state-of-the-art R packages for BNP inference via MCMC. To this end, a list of
the models implemented in BNPmix is presented in Table 3 in Appendix A.1, along with
the availability of the same models in other packages. Similarly, Table 4 in Appendix A.1
compares the main technical features of BNPmix with those of other packages. While these
tables focus on the features of BNPmix, it is worth stressing that the packages considered
for the comparison also implement other models, which we review concisely. The DPpackage
by Jara, Hanson, Quintana, Müller, and Rosner (2011) is probably the most comprehen-
sive of the packages we considered. It is mainly written in Fortran and consists of a rich

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 3

collection of functions implementing some of the most successful Bayesian non-parametric
and semi-parametric models, including DP and dependent Dirichlet process (DDP) mixtures,
hierarchical DP, Pólya trees, and random Bernstein polynomials. Regrettably, despite be-
ing widely used, the DPpackage was recently archived from the Comprehensive R Archive
Network. More recent and, in some case, more specific R packages for BNP inference via
mixture models are PReMiuM (Liverani, Hastie, Azizi, Papathomas, and Richardson 2015),
BNPdensity (Barrios, Lijoi, Nieto-Barajas, Prünster, and Kon Kam King 2017), dirichletpro-
cess (Ross and Markwick 2020), BNPMIXcluster (Carmona, Nieto-Barajas, and Canale 2017)
and msBP (Canale 2017). The main focus of PReMiuM is the definition of non-parametric
regression models linking an outcome (continuous, binary or discrete) to a set of covariates
via dependent non-parametric mixtures. The package implements a rich set of functions to
explore the output of the analysis, including the induced clustering structure and the role of
each covariate in driving the final model specification. Models are implemented for the DP
case and extended to the PY process only by means of approximation. Another interesting
feature of PReMiuM is the implementation of a label switching move (Liverani et al. 2015) to
improve mixing of MCMC samplers. BNPdensity implements a Ferguson and Klass algorithm
(Ferguson and Klass 1972; Barrios, Lijoi, Nieto-Barajas, and Prünster 2013) for a large class
of univariate mixture models, with the mixing random probability assumed distributed as a
normalized random measure (Regazzini, Lijoi, and Prünster 2003). The package offers the
choice of five different kernels (Gaussian, double exponential, gamma, lognormal and beta)
and accounts for the presence of censored data. The dirichletprocess package provides a set
of functions allowing users to implement their own DP mixture model: a new object class is
introduced, which acts as building block for a variety of specific statistical models. BNPMIX-
cluster focuses exclusively on the case of multivariate mixed-scale data (Canale and Dunson
2011; Carmona, Nieto-Barajas, and Canale 2019), framework for which a marginal MCMC
sampler for PY mixture models is implemented. The package msBP only implements the mul-
tiscale Bernstein polynomial mixture model of Canale and Dunson (2014). The described set
of R packages, overall, offers the possibility of carrying out statistical inference by means of a
very broad collection of BNP mixture models. At the same time, when the focus is on the use
of the PY process, BNPmix plays a leading role. Finally, it is worth mentioning the increasing
attention recently dedicated by the BNP literature to variational methods approximating the
posterior distribution (Blei and Jordan 2006; Hughes, Kim, and Sudderth 2015; Campbell,
Straub, Fisher III, and How 2015; Tank, Foti, and Fox 2015): the availability of R packages
implementing such approach for BNP models is rather limited though, a notable exception
being the package MixDir (Ahlmann-Eltze and Yau 2018) which implements a hierarchical
DP mixture of multinomial kernels.
The rest of the paper is organized as follows. Section 2 describes the model specifications
accounted for in BNPmix. Section 3 introduces the implemented state-of-the-art MCMC
methods for posterior simulation. An overview of the design philosophy of the package is
presented in Section 4. In Section 5 the main features and usage of the package are illustrated
by means of illustrative analyses of both synthetic and real data. A further comparison
with other R packages for BNP inference and technical details on the parametrization of the
implemented models are provided in the Appendix.

2. Model specifications

4 BNPmix: an R Package for Bayesian Non-Parametric Modeling

m1

k1

a1

b1

m0

σ2
0 µ̃j

p̃

ϑα

Yi

σ2

a0 b0

j ≥ 1

i ≤ n

Figure 1: Hierarchical representation of the univariate location PY mixture model with Gaus-
sian kernel.

In this section we briefly introduce the different PY mixture models implemented in the
BNPmix package. The implemented models can be classified into two main classes, based
on whether they account for individual covariates or not. The latter ones can be obtained
by suitably specifying parametric space, kernel and base measure in (2). The first ones can
be seen as generalizations of (2) to the context of regression problems, and to the analysis of
correlated samples by means of DDP.
The focus of the BNPmix package is on models obtained by mixing univariate, multivariate
Gaussian kernels, or univariate normal regression kernels, specifications which guarantee that
the resulting mixture models are dense in the space of regular densities (Lo 1984). In addition,
the parametric space and the base measure can be chosen so to impose constraints on the
variance and, in the multivariate case, the covariance structure of the model. The resulting
mixture models are discussed next in more detail. For the sake of clarity, the parametric
forms of the distributions introduced along the paper are reported in Appendix A.2.

Univariate location PY mixture model

We consider a univariate Gaussian kernel and define a mixture on its location parameter (West
1991). That is, we set θ = µ, and thus Θ = R, and consider the kernel K(y; θ) = ϕ(y; µ, σ2),
where ϕ(·; µ, σ2) denotes the probability density function of a normal random variable with
mean µ and variance σ2. Following this specification, the random density in (3) becomes

f̃(y) =
∞∑

j=1
πjϕ(y; µ̃j , σ2).

In order to achieve conjugacy between kernel and base measure, we assume P0 is normal,
namely µ̃j

iid∼ N(m0, σ2
0), and we assign σ2 an inverse gamma prior, that is σ2 ∼ IGa(a0, b0).

The model can be completed by specifying a normal-inverse gamma hyperprior on (m0, σ2
0),

which is tantamount to assume σ2
0 ∼ IGa(a1, b1) and m0 | σ2

0 ∼ N(m1, σ2
0/k1). Figure 1

displays a graphical representation of the model specification for the univariate location PY
mixture model.

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 5

m1

σ2
1

τ1

ζ1

m0

k0

µ̃j

p̃

ϑα

Yi

σ̃2
j a0

b0 a1

b1

j ≥ 1i ≤ n

Figure 2: Hierarchical representation of the univariate PY process mixture model with
location-scale base measure.

Univariate location-scale PY mixture model

As an extension of the previous model specification, we consider a univariate Gaussian kernel
and define a mixture on the vector (µ, σ2) composed by location and scale parameters of the
kernel (Escobar and West 1995). That is, we set θ = (µ, σ2), and thus Θ = R × R+, and
consider the kernel K(y; θ) = ϕ(y; µ, σ2). Following this specification, the random density in
(3) becomes

f̃(y) =
∞∑

j=1
πjϕ(y; µ̃j , σ̃2

j).

In order to achieve conjugacy, we consider a normal-inverse gamma base measure P0, namely
σ̃2

j
iid∼ IGa(a0, b0) and µ̃j | σ̃2

j
ind∼ N(m0, σ̃2

j /k0). The model can be completed by assign-
ing independent hyperpriors to the main parameters of the base measure. Specifically,
m0 ∼ N(m1, σ2

1), k0 ∼ Ga(τ1, ζ1), and b0 ∼ Ga(a1, b1). Figure 2 displays a hierarchical
representation of the univariate location-scale PY mixture model.

Multivariate location PY mixture model

We consider a p-dimensional multivariate Gaussian kernel and define a mixture on its mean
vector µ (Shen, Tokdar, and Ghosal 2013). That is we set θ = µ, and thus Θ = Rp, and
K(y; θ) = ϕp(y; µ, Σ), where ϕp(·; µ, Σ) is the probability density function of a p-dimensional
normal random vector with mean µ and covariance matrix Σ, with Σ symmetric ad positive
semi-definite. Following this specification, the random density in (3) becomes

f̃(y) =
∞∑

j=1
πjϕp(y; µ̃j , Σ).

In order to achieve conjugacy, we consider a multivariate normal base measure P0, that is
µ̃j

iid∼ Np(m0, S0), and we endow Σ with an inverse Wishart prior, namely Σ ∼ IW(ν0, Σ0).
The model specification can be completed by assigning a normal-inverse Wishart hyperprior

6 BNPmix: an R Package for Bayesian Non-Parametric Modeling

m1

k1

λ1

Λ1

m0

S0 µ̃j

p̃

ϑα

Yi

Σ

Σ0 ν0

j ≥ 1

i ≤ n

Figure 3: Hierarchical representation of the multivariate PY process mixture model with
location base measure.

to (m0, S0), that is by assuming S0 ∼ IW(λ1, Λ1) and m0 | S0 ∼ Np(m1, S0/k1). Figure 3
displays a hierarchical representation of the multivariate location PY mixture model.

Multivariate location-scale PY mixture model: full covariance matrix
As an extension of the previous specification, we consider a p-dimensional multivariate Gaus-
sian kernel and define a mixture jointly on the mean vector µ and the covariance matrix
Σ (Escobar and West 1995; Müller, Erkanli, and West 1996). That is, we set θ = (µ, Σ),
and thus Rp × Sp

+, where Sp
+ denotes the space of p × p positive semi-definite matrices, and

K(y; θ) = ϕp(y; µ, Σ). Following this specification, the random density in (3) becomes

f̃(y) =
∞∑

j=1
πjϕp(y; µ̃j , Σ̃j).

In order to achieve conjugacy, we specify a normal-inverse Wishart base measure P0, namely
Σ̃j

iid∼ IW(ν0, Σ0) and µ̃j | Σ̃j
ind∼ Np(m0, Σ̃j/k0). The model can be completed by assuming

independent hyperpriors on m0, k0 and Σ0, namely m0 ∼ Np(m1, S1), k0 ∼ Ga(τ1, ζ1) and
Σ0 ∼ W(ν1, Σ1). Figure 4 displays a hierarchical representation of the multivariate location-
scale PY mixture model with full covariance matrix.

Multivariate location-scale PY mixture model: diagonal covariance matrix
A more parsimonious version of the multivariate location-scale PY mixture model presented
in the previous section is obtained by constraining the random covariance matrices Σ̃j to
be diagonal (see, e.g., Bouveyron and Brunet-Saumard 2014). This model specification is
particularly convenient when p is large. Based on this assumption, the random density in (3)
becomes

f̃(y) =
∞∑

j=1
πj

p∏
r=1

ϕ(yr; µ̃jr, σ̃2
jr),

where yr is the r-th component of y, µ̃j = (µ̃j1, . . . , µ̃jp) and Σ̃j is a diagonal matrix with di-
agonal σ̃2

j = (σ̃2
j1, . . . , σ̃2

jp). Conditionally on p̃, the marginal model specification for each com-

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 7

m1

S1

τ1

ζ1

m0

k0

µ̃j

p̃

ϑα

Yi

Σ̃j ν0

Σ0 ν1

Σ1

j ≥ 1i ≤ n

Figure 4: Hierarchical representation of the multivariate PY process mixture model with
location-scale base measure and full covariance matrix.

m1

σ2
1

τ1

ζ1

m0

k0

µ̃j

p̃

ϑα

Yi

σ̃2
j a0

b0 a1

b1

j ≥ 1i ≤ n

Figure 5: Hierarchical representation of the multivariate PY process mixture model with
location-scale base measure and diagonal covariance matrix.

ponent is equivalent to the univariate location-scale case. Specifically, the base measure P0 is
the product of p independent normal-inverse gamma distributions, that is, σ̃2

jr
iid∼ IGa(a0r, b0r)

and µ̃jr | σ̃2
jr

ind∼ N(m0r, σ̃2
jr/k0r), for every r = 1, . . . , p. The model specification can be

completed by assigning independent hyperpriors to the components of b0 = (b01, . . . , b0p),
m0 = (m01, . . . , m0p) and k0 = (k01, . . . , k0p), namely m0r ∼ N(m1r, σ2

1r), b0r ∼ Ga(a1r, b1r)
and k0r ∼ Ga(τ1r, τ2r), for every r = 1, . . . , p. Figure 5 displays a hierarchical representation
of the multivariate location-scale PY mixture model with diagonal covariance matrix.

8 BNPmix: an R Package for Bayesian Non-Parametric Modeling

m1

k1

ν1

S1

m0

S0

β̃j

p̃

ϑα

Yi

σ2 b0

a0

xi

i ≤ n i ≤ n

j ≥ 1

Figure 6: Hierarchical representation of the univariate regression PY mixture model.

Univariate regression PY mixture model
We consider an infinite mixture of regression model accounting for a d-dimensional vector of
independent variables x (Dunson, Pillai, and Park 2007). This is obtained by considering a
univariate Gaussian kernel with regressors acting linearly on the location parameter, and by
defining a mixture on the regression coefficients β = (β0, β1, . . . , βd), with the scale parameter
of the kernel common across different groups. That is, we define x0 = (1, x⊤)⊤, we set
θ = β, and thus Θ = Rd+1, and consider the kernel K(y; θ) = ϕ(y; x⊤

0 β, σ2). Following this
specification, the random density in (3) becomes

f̃(y | x) =
∞∑

j=1
πjϕ(y; x⊤

0 β̃j , σ2).

In order to achieve conjugacy, we assume that the base measure P0 is a multivariate normal
distribution, that is β̃j

iid∼ Nd+1(m0, S0), with j ≥ 1. We set an inverse gamma distribution
for the common scale parameter, σ2 ∼ IGa(a0, b0). The model can be completed by endowing
(m0, S0) with a normal-inverse Wishart hyperprior, that is S0 ∼ IW(ν1, S1) and m0 | S0 ∼
Np(m1, S0/k1). Figure 6 displays a hierarchical representation of the univariate regression-
scale PY mixture model.

Univariate regression-scale PY mixture model
As an extension of the previous specification, we consider an infinite mixture of regression
model accounting for a d-dimensional vector of independent variables x, obtained by jointly
defining a mixture on the regression coefficients and the scale parameter of the univariate
Gaussian kernel (Dunson et al. 2007). That is, we set θ = (β, σ2), and thus Θ = Rd+1 ×R+,
and consider the kernel K(y; θ) = ϕ(y; x⊤

0 β, σ2). Following this specification, the random
density in (3) becomes

f̃(y | x) =
∞∑

j=1
πjϕ(y; x⊤

0 β̃j , σ̃2
j).

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 9

m1

k1

ν1

S1

m0

S0

β̃j

p̃

ϑα

Yi

σ̃2
j a0

b0 τ1

ζ1

xi

j ≥ 1i ≤ n

i ≤ n

Figure 7: Hierarchical representation of the univariate regression-scale PY mixture model.

In order to achieve conjugacy, the base measure P0 is set equal to a product of a multivariate
normal distribution and an inverse gamma distribution, that is β̃j

iid∼ Nd+1(m0, S0) and
σ̃2

j
iid∼ IGa(a0, b0). The model can be completed by endowing (m0, S0) with a normal-inverse

Wishart hyperprior, that is S0 ∼ IW(ν1, S1) and m0 | S0 ∼ Nd(m1, S0/k1), and by assuming
b0 ∼ Ga(τ1, ζ1). Figure 7 displays a hierarchical representation of the univariate regression-
scale PY mixture model.

Univariate location-scale DDP mixture model

We assume each observation yi is endowed with a categorical covariate xi taking values in
{1, . . . , L}, which allows observations to be gathered into L distinct groups (yl1, . . . , ylnl

), with
l = 1, . . . , L. In order to account for heterogeneity across groups, while allowing borrowing of
information, we consider the partially exchangeable mixture model proposed by Lijoi, Nipoti,
and Prünster (2014). Namely, each group is modeled by means of a mixture with Gaussian
kernel and group specific random probability measure p̃l. The vector p̃ = (p̃1, . . . , p̃L) is
distributed as a Griffiths-Milne dependent Dirichlet process (GM-DDP) with parameters ϑ >
0 and z ∈ (0, 1), and base measure P0 on Θ = R×R+, which implies that, marginally, groups
are modeled with identically distributed location-scale DP mixtures, obtained by setting α = 0
in (3).
The parameter z controls the dependence across the components of p̃, with the two extremes
of the range corresponding to full exchangeability (when z → 0), that is p̃1 = p̃2 = . . . = p̃L,
and independence across groups (when z → 1), that is p̃l

iid∼ DP (ϑ; P0). Such characterization
of the extreme cases helps in setting a value for z, which by default is fixed equal to 0.5. A
formal elicitation of z might be obtained by specifying the value of the correlation between
the random variables p̃l1(A) and p̃l2(A), with l1 ̸= l2 and for a measurable A (see Equations
12 and 13 in Lijoi et al. 2014), quantity which is invariant with respect to the choice of A. In

10 BNPmix: an R Package for Bayesian Non-Parametric Modeling

m0

k0

µ̃lj

p̃l

z ϑ

Yli

σ̃2
lj a0

b0

j ≥ 1i ≤ nl

l ≤ L

Figure 8: Hierarchical representation of the univariate location-scale DDP mixture model
with Gaussian kernel.

order to achieve conjugacy, a normal-inverse gamma base measure is considered, that is σ̃2
lj

iid∼
IGa(a0, b0) and µ̃lj | σ̃2

lj
ind∼ N(m0, σ̃2

lj/k0). Figure 8 displays a hierarchical representation of
the univariate location-scale DDP mixture model.

3. Posterior simulation methods

The BNPmix package implements three types of MCMC algorithm for posterior simulation,
namely the marginal sampler (Escobar and West 1995; Müller et al. 1996; Neal 2000), the slice
sampler (Walker 2007; Kalli, Griffin, and Walker 2011), and the importance conditional sam-
pler (ICS) (Canale, Corradin, and Nipoti 2020). The three sampling schemes are implemented
for all the models described in Section 2, exception made for the univariate location-scale DDP
mixture model, for which only the ICS is made available. Different simulation methods might
be convenient in serving different purposes (see discussion in Canale et al. 2020): with this in
mind, the method is offered as an option in the functions of the package, with the default one
being the ICS, whose efficiency has been proved to be the most robust to model specifications
(Canale et al. 2020).

Marginal sampler

Escobar and West (1995) and Müller et al. (1996) propose a marginal sampling scheme for
DP mixtures of univariate and multivariate Gaussian kernels, respectively. The approach
relies on the analytical marginalization of the mixing random probability measure p̃, while
the parameters θ = (θ1, . . . , θn) appearing in (2) are integrated out by means of a Gibbs
sampler. The full conditional of each θi is reminiscent of the urn scheme of Blackwell and

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 11

MacQueen (1973), and, for the PY case with generic kernel K(·; ·), is given by

P[θi ∈ dt | θ(−i), y(n)] ∝ ϑ + k(−i)α

ϑ + n − 1 K(yi; t)P0(dt) +
k(−i)∑
j=1

n
(−i)
j − α

ϑ + n − 1K(yi; θ∗
j)δθ∗

j
(dt), (4)

where θ(−i) = (θ1, . . . , θi−1, θi+1, . . . , θn) and k(−i) is the number of distinct values θ∗
j in

θ(−i), with n
(−i)
j denoting their frequencies. As a result, the marginal method generates

realizations from the conditional posterior mean of the random density f̃ , that is realizations
of E[f̃ | θ, y(n)], where the expectation is taken with respect to p̃. In case of nonconjugate
specification of kernel and base measure, one can resort to Algorithm 8 of Neal (2000) which
introduces a set of auxiliary random variables to evaluate the probability that θi takes a new
value in (4).

Slice sampler

Introduced by Walker (2007) for DP mixtures, and improved on by Kalli et al. (2011), the slice
sampler is a conditional method which works by introducing a suitable vector of augment-
ing random variables U (n) = (U1, . . . , Un). The components of U are independent uniform
random variables and are such that the joint distribution of (Yi, Ui) is given by

f(yi, ui) =
∞∑

j=1
ξ−1

j 1{ui<ξj}πjK(yi; θ̃j), (5)

where {ξj}∞
j=1 is any positive sequence. The random distribution of Yi, given in (3), is recov-

ered by marginalizing (5) with respect to Ui. As a by-product and conveniently, the problem
of dealing with the infinite-dimensional p̃ boils down to the problem of dealing with a finite
sum, with a random number of terms. Approximate realizations of the posterior distributions
of f̃ are obtained by implementing a Gibbs sampler which serves the purpose of marginalizing
with respect to U . Different choices for the sequence {ξj}∞

j=1 are considered. Following Kalli
et al. (2011), BNPmix implements the dependent slice-efficient version of the algorithm by
setting ξj = πj , which leads to a convenient simplification of (5), and different versions of
the independent slice-efficient sampler obtained by choosing a deterministic sequence {ξj}∞

j=1,
the default choice being ξj = E(πj). The efficiency of the dependent slice-efficient algorithm,
when used for PY mixtures, is compromised if large values of α and ϑ are considered (see
discussion in Canale et al. 2020).

Importance conditional sampler

The ICS is a conditional sampling strategy for PY mixture models, recently introduced by
Canale et al. (2020). It combines a convenient characterization of the posterior distribution of
a PY process (Pitman 1996) with a sampling importance resampling (SIR) step. The problem
of dealing with the infinite-dimensional p̃ reduces to: 1) evaluating p̃ on a finite dimensional
partition of the parameter space Θ, and 2) sampling, via SIR, from a distribution proportional
to K(yi, t)q̃(dt), where q̃ is PY process used as proposal distribution. Approximate realizations
of the posterior distribution of f̃ are then obtained by marginalizing θ out with a Gibbs
sampler. The full conditional distribution of each θi, in a similar fashion as Algorithm 8
in Neal (2000), boils down to a discrete distribution with a finite support, given, up to a

12 BNPmix: an R Package for Bayesian Non-Parametric Modeling

proportionality constant, by

P[θi ∈ dt | yi, p̃] ∝ p0

km∑
l=1

ml

m
K(yi; s∗

l)δs∗
l
(dt) +

kn∑
j=1

pjK(yi; t∗
j)δt∗

j
(dt), (6)

where (t∗
1, . . . , t∗

kn
) are the fixed jump points of p̃, (p0, p1, . . . , pkn) is the random vector ob-

tained by evaluating p̃ on the partition (Θ \ {t∗
1, . . . , t∗

kn
}, t∗

1, . . . , t∗
kn

), and (s∗
1, . . . , s∗

kn
) and

(m1, . . . , mkm) are, respectively, the distinct values in the m-dimensional exchangeable sample
generated from q̃ and their frequencies. The value of m can be chosen arbitrarily, with large
values favoring a good mixing of the chain at the price of a longer run-time.

4. Package implementation
The BNPmix package consists of three main R functions, wrappers of C++ routines which
implement the BNP models described in Section 2 and the MCMC simulation methods in-
troduced in Section 3, along with some user-friendly functions which facilitate the elicita-
tion of prior distributions and the post-processing of generated posterior samples. The three
main functions are PYdensity, PYregression, and DDPdensity, and implement, respectively,
Pitman-Yor mixture models for density estimation and clustering, a Pitman-Yor mixture
model for density regression, and a DDP mixture model for density estimation of correlated
samples. The spirit of the package is two-fold. On the one side, it provides a ready-to-use
suite of functions to estimate a rich variety of BNP models: to this end, all functions provide
a default specifications of their arguments, thus allowing for a non-informed estimation pro-
cedure. On the other side, each function offers a detailed list of arguments, concerning prior
parameters, hyperpriors specification, kernel structure and sampling approach, which can be
tuned by the more experienced user so to formalize and exploit available prior information.
The remainder of the section deals with both what lies under the hood (Section 4.1) and the
design of the R wrappers (Section 4.2).

4.1. Low level implementation

All the main functions of the BNPmix package are written in C++ and exploit the seam-
less interface to R provided by Rcpp and RcppArmadillo (Eddelbuettel and François 2011;
Eddelbuettel and Sanderson 2014).
All the C++ routines implementing the models listed in Section 2 share a common structure
as they consist of a main function—where all the required objects are initialized—with a
loop cycling over the number of MCMC iterations. Within this loop, all the method-specific
functions are called to update the MCMC status.
Broadly speaking, any MCMC algorithm for posterior simulation under a mixture model setup
includes two steps, which consist in i) allocating individual observations to clusters or mixture
components, and ii) updating the parameters specific to each group or mixture component.
In our C++ implementation, step i) is performed by specific functions, with names of the
type clust_update_method_model, where method refers to one of the three MCMC methods
discussed in Section 3 while model refers to one of the mixture specifications presented in Sec-
tion 2. While step i) differs intrinsically from one MCMC method to another, step ii) stays
fundamentally unchanged for different MCMC methods, as the update of component specific

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 13

parameters essentially depends on the structure of the kernel only. In our C++ implementa-
tion, step ii) is performed by specific routines, whose names —accellerate_method_model—
follow the same logic as those of the functions implementing step i). While method-specific,
these functions share most of the C++ code needed to perform common tasks. Such common
structure allows, as a by-product, for a fair comparison between the performance of different
MCMC simulation methods.
In order to limit the memory usage, all the accellerate_method_model functions are of
type void. This conveniently allows us to update, at each iteration of the MCMC, all the
quantities needed to produce posterior summaries — e.g., realizations of posterior densities
evaluated at a grid of points, or partitions of the data into clusters — while passing on
to the next iteration only those required for the evaluation of full conditional distributions.
The number of elements to update can vary across the iterations of the MCMC (see Canale
et al. 2020, for details), aspect which is addressed by means of method-specific functions,
named para_clean_method_model, which suitably resize and reorder the arrays where the
values taken by model parameters are stored. In line with the two-fold spirit of the package,
however, the option to save all the quantities generated by the MCMC algorithm is offered
for the user to independently compute any posterior summary that might be of interest.
Finally, functions of the type hyper_accellerate_method_model allow hyperprior distri-
butions to be added on the parameters defining the base measure, thus avoiding the often
daunting task of eliciting the same parameters.

4.2. Wrappers to the main functions

A BNP mixture model can be fitted with the BNPmix package by calling an R function
which, based on its arguments, interfaces with one of the specific C++ subroutines described
in Section 4.1. All the R functions require a data set y and a set of arguments referring to
MCMC method, prior specification and form of the produced output. The MCMC parameters
are passed through the named list mcmc, which allows the following arguments to be specified:

• niter, the number of MCMC iterations;

• nburn, the number of burn-in iterations to discard;

• nupd, argument controlling the number of iterations to be displayed on screen;

• print_message, control option: if equal to TRUE the status is printed to standard output
every nupd iterations.

The prior specification is passed to the C++ routines through the named list prior. The
latter includes the arguments strength (1 by default) and discount (0 by default) for the
strength parameter ϑ and the discount parameter α of the Pitman-Yor process, and a set
of model-specific arguments, as described in Section 2. If hyper = TRUE, as by default, the
parameters defining the base measure are endowed with hyperprior distributions.
Finally, the arguments of the named list output describe the output which is to be returned.
Such list shares a structure which is common to all the functions, and contains:

• out_type, summaries of the posterior distribution to be returned. If equal to "FULL",
the function returns the estimated partition and all the MCMC realizations of the

14 BNPmix: an R Package for Bayesian Non-Parametric Modeling

posterior densities. If equal to "MEAN", the function returns the estimated partition
and the mean of the sampled densities. If equal "CLUST", the function only returns the
estimated partition;

• out_param, option to return the values taken by cluster or component-specific param-
eters. If equal to TRUE, the function returns all the MCMC draws of such parameters;

• grid, a grid of points (or a data frame obtained via expand.grid) where to evaluate
posterior densities.

While the general structure of these named lists is common across functions, there exist
model-specific arguments which we describe, for each R function, in the remainder of the
section.

PY mixture models

The function PYdensity performs univariate and multivariate density estimation and clus-
tering, via Pitman-Yor mixtures with Gaussian kernels. Specific elements of the mcmc list
are:

• method, the MCMC algorithm chosen to perform the estimation. Three options are
available, namely ICS (method = "ICS"), marginal sampler (method = "MAR") and slice
sampler (method = "SLI");

• model, the specific mixture model, among those described in Section 2, to be fitted.
The default choice is location-scale mixture (model = "LS") for both univariate and
multivariate data. Other options are location mixture (model = "L") for both univari-
ate and multivariate data, and location-scale mixture with diagonal covariance matrix
(model = "DLS") for multivariate data only;

• m_imp (available if method = "ICS"), size (given by m in the notation of Section 3) of
the exchangeable sample generated from the proposal distribution q̃, in the SIR step of
the ICS method. Default is m_imp = 10;

• slice_type (available if method = "SLI"), the specification of the type of slice sampler.
Options are "DEP" for dependent slice-efficient, and "INDEP" for independent slice-
efficient. Default is slice_type = "DEP".

Finally, the named list prior for PYdensity admits a set of model-specific arguments, for
which an exhaustive description is reported in Table 1. The default values of the arguments
in the prior list are set so that the expectation of the location component equals the sample
mean, and both the variance of the location component and the expectation of the scale
component coincide with the sample variance.

PY density regression

The function PYregression performs univariate density regression and clustering, via Pitman-
Yor mixture of normal linear regressions. Beside y, the argument x, that is the values taken
by the d regressors, is also required.
The specific arguments of the named list mcmc for PYregression are:

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 15

Table 1: Parameters for the prior list of the PYdensity function.
hyper = FALSE Univariate Multivariate

model = "L"

m0, mean of µ̃j

s20, variance of µ̃j

a0, shape of σ2

b0, scale of σ2

m0, mean of µ̃j

S20, covariance of µ̃j

Sigma0, scale matrix of Σ
n0, df of Σ

model = "LS"

m0, mean of µ̃j

k0, scale factor of µ̃j

a0, shape of σ̃2
j

b0, scale of σ̃2
j

m0, mean of µ̃j

k0, scale factor of µ̃j

S0, matrix of Σ̃j

n0, df of Σ̃j

model = "DLS"

m0, mean of µ̃j (vector)
k0, scale factor of µ̃j (vector)
a0, shape of Σ̃j (vector)
b0, scale of Σ̃j (vector)

hyper = TRUE Univariate Multivariate

model = "L"

m1, mean of m0
k1, scale factor of m0
a1, shape of s20
b1, scale of s20

m1, mean of m0
k1, scale factor of m0
lambda1, df of S20
Lambda1, matrix of S20

model = "LS"

m1, mean of m0
s21, variance of m0
tau1, shape of k0
zeta1, rate of k0
a1, shape of b0
b1, rate of b0

m1, mean of m0
S1, covariance of m0
tau1, shape of k0
zeta1, rate of k0
n1, df of Sigma0
Sigma1, matrix of Sigma0

model = "DLS"

m1, mean of m0 (vector)
s21, variance of m0 (vector)
tau1, shape of k0 (vector)
zeta1, rate of k0 (vector)
a1, shape of b0 (vector)
b1, rate of b0 (vector)

• method, the MCMC algorithm chosen to perform the estimation. Three options are
available, namely ICS (method = "ICS"), marginal sampler (method = "MAR") and slice
sampler (method = "SLI");

• model, the specific mixture model, between those described in Section 2, to be fitted.
The default choice is location-scale mixture (model = "LS"), a second option is the
location mixture (model = "L");

• m_imp (available if method = "ICS"), size of the exchangeable sample generated from
the proposal distribution q̃, in the SIR step of the ICS method. Default is m_imp = 10;

• m_marginal (available if method = "MAR"), number of auxiliary variables introduced
for the Monte Carlo evaluation of the probability that θi takes a new value in (4) (see
Algorithm 8 of Neal 2000);

16 BNPmix: an R Package for Bayesian Non-Parametric Modeling

Table 2: Parameters for the prior list of the PYregression function.
hyper = FALSE hyper = TRUE

model = "L" m0, mean of β̃j m1, mean of m0
S0, covariance of β̃j k1, scale factor of m0
a0, shape parameter of σ2 n1, degrees of freedom for S0
b0, scale parameter of σ2 S1, scale matrix of S0

a0, shape parameter of σ2

b0, scale parameter of σ2

model = "LS" m0, mean of β̃j m1, mean of m0
S0, covariance of β̃j k1, scale factor of m0
a0, shape parameter of σ̃2

j n1, degrees of freedom for S0
b0, scale parameter of σ̃2

j S1, scale matrix of S0
tau1, shape of b0
zeta1, rate of b0

• slice_type (available if method = "SLI"), the specification of the type of slice sampler.
Options are "DEP" for dependent slice-efficient, and "INDEP" for independent slice-
efficient. Default is slice_type = "DEP".

Finally, the model-specific arguments admitted by the named list prior for PYregression,
are described in Table 2. The default specification of the hyperparameters is such that the
intercept has prior expectation equal to the average of y and variance 100, the regression
coefficients have prior expectation and variance equal to 0 and 100, respectively, and the
prior expectation for the scale component coincides to the sample variance of y.

DDP density estimation

The function DDPdensity performs univariate density estimation for correlated samples, via
GM-DDP mixture model with Gaussian kernel. Beside y, an argument named groups is
also required. The latter can be thought of as a label assigned to each observation in y,
which thus identifies distinct subsamples in y. Unlike the previous two functions, the named
list mcmc does not account for the MCMC algorithm choice since only the ICS method is
implemented for this class of models. Beside the common arguments, the mcmc named list
includes, as model-specific, m_imp, which is the size of the exchangeable sample generated
from the proposal distribution q̃, in the SIR step of the ICS method.
The base measure of the DDPdensity function is a normal-inverse gamma distribution with
parameters m0, k0, a0 and b0, where the first two are mean and scale factor defining the
normal base measure on the location parameter, and the latter two are shape and scale of the
inverse gamma base measure on the scale parameter. These parameters can be specified as
arguments of the named list prior. Their default specification is such that the expectation
of the location component of the base measure is equal to the overall sample mean, obtained
by pooling the groups together, and the expectation of the scale component coincides to
the overall sample variance. In addition, the prior list admits the argument wei (z in
the notation of Section 2), which is a parameter taking values in (0, 1) (default is 0.5) and
controlling the strength of the borrowing of information across groups. Finally, notice that,
for the DDPdensity function, the argument discount is fixed equal to 0 while one can tune

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 17

the argument strength (1 by default), corresponding to the parameter ϑ in the specification
of the univariate location-scale DDP mixture model in Section 2.

Other functions

The PYdensity, PYregression, and DDPdensity functions return an object of class BNPdens.
The plot method, extended to the BNPdens class by means of the ggplot2 package, produces
a plot of the estimated posterior mean density function. Based on the type of model and the
dimension of the data, plot can be called with additional arguments. Specifically:

• if the BNPdens object is produced by PYdensity and data are univariate, plot admits
the argument show_hist, a logical argument which returns the histogram of the raw
data along with the posterior density. The size of the bins can be set with bin_size.
Observations can be displayed on the x-axis by specifying show_points = TRUE. More-
over, if also show_clust = TRUE, the displayed observations are colored based on the
estimated clustering. The col argument controls the color of the estimated posterior
density. Pointwise posterior credible bands of level conf_level around the posterior
mean densities can be added by setting band = TRUE;

• if the BNPdens object is produced by PYdensity and data are multivariate, plot gen-
erates, for the pair of variables indexed by dimension, the bivariate contour plot of
the corresponding bivariate marginal density function. Adding show_points = TRUE
or show_clust = TRUE, allows to display the observations in the contour plot and to
color them based on the estimated clustering;

• if the BNPdens object is produced by PYregression and the number of covariates does
not exceed four, the plot function returns the scatterplot of the observations colored
according to the estimated clustering;

• if the BNPdens object is produced by DDPdensity and thus data consist of two or more
subgroups, the plot function returns a wrapped plot, with each subplot corresponding
to a specific group. An additional argument specific to the output of DDPdensity is
wrap_dim, which allows to choose the number of rows and columns in the plot.

Other methods have been extended to the BNPdens class. The print method returns details
on the BNPdens object and the model which produced it. The summary method returns
some basic information on the model fitting, such as number of iterations, number of burn-in
iterations, computational time and average number of clusters. The partition method, when
applied to BNPdens objects, returns a point estimate for the clustering of the data, based on the
partitions visited during the MCMC algorithm. This can be achieved by adopting two distinct
loss functions, namely the variation of information loss function (dist = "VI") and Binder’s
loss function (dist = "Binder"). This method is an efficient C++ implementation of the
method described by Wade and Ghahramani (2018). The BNPmix package also includes a
method, named BNPdens2coda, to interface objects of class BNPdens with the coda package.
For univariate PY mixture models, the BNPdens2coda method exports a matrix, whose first
row reports the number of blocks of the partitions visited by the chain, while each one of
the remaining rows is composed by the values taken by the density at each point of the grid
(grid), at different iterations of the MCMC algorithm. For multivariate and regression PY

18 BNPmix: an R Package for Bayesian Non-Parametric Modeling

mixture models, the BNPdens2coda method exports only a vector with the number of blocks
of the partitions visited by the chain. For DDP mixture models the BNPdens2coda method
exports a matrix whose first row reports the number of clusters of the partition visited by
the chain, while the other rows report the values taken by the weights of the group specific
processes at each iteration. Finally, the PYcalibrate function allows to elicit the strength
parameter of the Pitman-Yor process by specifying the sample size and by fixing the discount
parameter and the expected number of clusters a priori.

4.3. Package scalability

Considering the variety of models implemented in the BNPmix package and the possibility to
fit these models to data sets with different levels of complexity in terms of size (n), dimension
(p), presence and number of covariates (d) and number of groups (L), we briefly comment
on the scalability of the package with respect to these quantities. Based on our experience,
when considering the default specifications and without taking into account the time needed
to evaluate estimated densities on a given grid of values (i.e., output$out_type = "CLUST"),
the average time per iteration for the functions PYdensity, PYregression, and DDPdensity,
displays a linear grow as the sample size n becomes large. The run-time is also affected by
the complexity of the data. Specifically, assuming n is kept fixed, a growth faster than linear
is observed both when the dimension p in PYdensity and when the number of covariates d
in PYregression increases. Finally, the function DDPdensity shows a roughly linear growth
of its average time per iteration as the number of groups L becomes large. The described
behavior of PYdensity, PYregression and DDPdensity is not surprising as it is well known
that MCMC methods are severely affected by the dimension of the space that has to be
explored by the chain, that is the support of the posterior distribution for the functions
implemented in BNPmix, which is ultimately connected to the quantities discussed above.
Evaluating the generated densities on a given grid of points at each iteration of an MCMC
algorithm can severely affect computational efficiency, issue which is particularly relevant for
large dimensions p in PYdensity or number of covariates d in PYregression. Note, however,
that BNPmix conveniently allows users to specify the type of desired output (see Section 4.2),
thus avoiding unnecessary computations if not needed.

5. Usage of the package
We next illustrate the use of the BNPmix package by walking the reader through the entire
process of density estimation, clustering and regression, via BNP mixture models. We start
by showing how to elicit prior distributions, how to run the sampler, and how to process the
output of the functions, for inferential purposes. In order to do this, we analyze different
subsets of the Collaborative Perinatal Project (CPP) data set (Klebanoff 2009), as well as
synthetic data. The CPP data set is a rich collection of observations referring to a large
prospective study conducted in the United States in the ’60s. The goal of the study was to
assess the cause of neurological disorders and other pathologies in children. The full data
set counts more than 2 300 observations, each consisting of several measurements referring to
pregnant women and their babies. The focus of our illustrative analysis is on three quantities:
the gestational age (in weeks), the weight of the baby at birth (in g), and the concentration
level in maternal serum of DDE (in µg/L), a persistent metabolite of the pesticide DDT,

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 19

known to have adverse impact on health (Longnecker, Klebanoff, Zhou, and Brock 2001).
This subset of the original data set is available in the BNPmix package via

R> library("BNPmix")
R> data(CPP, package = "BNPmix")

5.1. Univariate density estimation
We illustrate here how to perform univariate density estimation and clustering, by focusing
on the gestational age for a group of women belonging to one of the 12 university hospitals
participating in the study.

R> y <- CPP[CPP$hosp == 11,]

We consider a DP location-scale mixture model, thus setting the discount parameter α = 0.
Previous studies show that the distribution of the gestational age is left skewed and shows an
irregular shape due to the presence of three subpopulations corresponding to early preterm,
preterm, and normal births. For this reason we fix the prior expected number of clusters to
three and choose the value of strength parameter ϑ accordingly. This can be done by using
the PYcalibrate function.

R> DPprior <- PYcalibrate(Ek = 3, n = nrow(y), discount = 0)

We endow the parameters of the base measure with hyperprior distributions with default
parameters. The complete prior specification for our BNP mixture model is specified as

R> prior <- list(strength = DPprior$strength, discount = 0)

Before running the MCMC algorithm (opting here and henceforth for the default ICS simu-
lation method), we specify the number of MCMC iterations and the grid of points where to
evaluate the density. This can be done with

R> mcmc <- list(niter = 5000, nburn = 4000)
R> output <- list(grid = seq(30, 46, length.out = 100), out_type = "FULL")

Then MCMC algorithm can then be run by calling the PYdensity function and providing all
the previously defined lists.

R> set.seed(42)
R> fit1 <- PYdensity(y = y$gest, mcmc = mcmc, prior = prior, output = output)
R> print(fit1)

BNPdens object
Type: univariate density

The plot of the posterior mean density is produced by calling the method plot on the fitted
model fit1. The posterior mean density plot can be endowed with pointwise quantile-based
posterior credible bands, histogram of the raw data, observations colored according to the
estimated clustering (obtained by calling the function partition within the method plot),
or a combination of them. The two examples displayed in Figure 9 have been produced by
the following code:

20 BNPmix: an R Package for Bayesian Non-Parametric Modeling

0.0

0.1

0.2

0.3

30 35 40 45
gestational age

0.00

0.05

0.10

0.15

0.20

30 35 40 45
gestational age

Figure 9: Posterior mean density of gest in the 11th hospital (left) and 95% pointwise
posterior credible bands along with the histogram of the raw data and observations colored
according to the estimated clustering (right).

R> plot(fit1, show_hist = TRUE, xlab = "gestational age")
R> plot(fit1, band = FALSE, show_clust = TRUE, xlab = "gestational age")

5.2. Multivariate density estimation

Next we illustrate how to perform density estimation and model-based clustering for multi-
variate data. The first illustration focuses on the three continuous variables composing the
CPP data set. The goal of the analysis is to provide an estimate of the joint trivariate den-
sity function of the variables gestational age, DDE (after a logarithmic transformation), and
weight at birth.

R> y <- cbind(CPP$gest, log(CPP$dde), CPP$weight)

Given the lack of precise prior information on the clustering structure of the data when these
three variables are concerned, we consider a PY mixture model with discount parameter
α = 0.1 and strength parameter ϑ equal to 0.05. We also assume hyperprior distributions
on the parameters of the base measure and adopt the default empirical specification for the
corresponding hyperparameters.

R> prior <- list(strength = 0.05, discount = 0.1)

We specify the remaining arguments of PYdensity and run the MCMC algorithm with

R> grid <- expand.grid(seq(30, 46, length.out = 25),
+ seq(0.7, 5.2, length.out = 25), seq(0, 130, length.out = 25))
R> output <- list(grid = grid, out_type = "FULL")
R> mcmc <- list(niter = 2000, nburn = 1000, m_imp = 100)

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 21

R> set.seed(42)
R> fit2 <- PYdensity(y = y, mcmc = mcmc, prior = prior, output = output)

Posterior mean densities, univariate marginal or bivariate marginal (collected and displayed
in Figure 10), can be produced by calling the method plot as follows:

R> p12 <- plot(fit2, dim = c(1, 2), show_clust = TRUE,
+ xlab = "gestational age", ylab = "log(DDE)")
R> p21 <- plot(fit2, dim = c(2, 1), show_clust = TRUE,
+ ylab = "gestational age", xlab = "log(DDE)")
R> p13 <- plot(fit2, dim = c(1, 3), show_clust = TRUE,
+ slab = "gestational age", ylab = "weight")
R> p23 <- plot(fit2, dim = c(2, 3), show_clust = TRUE,
+ xlab = "log(DDE)", ylab = "weight")
R> p32 <- plot(fit2, dim = c(3, 2), show_clust = TRUE,
+ ylab = "log(DDE)", xlab = "weight")
R> p31 <- plot(fit2, dim = c(3, 1), show_clust = TRUE,
+ ylab = "gestational age", xlab = "weight")
R> p1 <- plot(fit2, dim = c(1, 1), show_clust = TRUE,
+ xlab = "gestational age", ylab = "density")
R> p2 <- plot(fit2, dim = c(2, 2), show_clust = TRUE,
+ xlab = "log(DDE)", ylab = "density")
R> p3 <- plot(fit2, dim = c(3, 3), show_clust = TRUE,
+ xlab = "weight", ylab = "density")
R> gridExtra::grid.arrange(p1, p12, p13, p21, p2, p23, p31, p32, p3,
+ layout_matrix = matrix(1:9, 3, 3))

A second illustration of the usage of PYdensity focuses on model-based clustering only, and
considers observations of a larger dimension. To this end, we consider a synthetic data set
and estimate the clustering structure induced by a BNP model assuming a more parsimonious
location-scale mixture specification where each Gaussian component has a diagonal covariance
matrix. This is done by specifying the option model = "DLS" in the mcmc list. We also exploit
the marginal sampler implementation specifying method = "MAR" in the mcmc list.

R> output <- list(out_type = "CLUST")
R> mcmc <- list(niter = 5000, nburn = 4000, model = "DLS", method = "MAR")

A sample of 100 synthetic observations of dimension p = 25 is simulated from a mixture of
two Gaussians and one scaled Student t distribution. Given this simulation framework, we
might expect to observe two regions of the sample space dense of observations, and a moderate
number of observations, generated from the heavy tailed mixture component, which are likely
to constitute singleton clusters in our model-based clustering analysis. The code to simulate
these data is

R> p <- 25
R> set.seed(42)
R> ysim <- rbind(
+ mnormt::rmnorm(50, mean = rep(1, p), varcov = diag(1, p)),

22 BNPmix: an R Package for Bayesian Non-Parametric Modeling

0.00

0.05

0.10

0.15

30 35 40 45
gestational age

de
ns

ity

1

2

3

4

5

30 35 40 45
gestational age

lo
g(

D
D

E
)

0

50

100

30 35 40 45
gestational age

w
ei

gh
t

30

35

40

45

1 2 3 4 5
log(DDE)

ge
st

at
io

na
l a

ge

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
log(DDE)

de
ns

ity

0

50

100

1 2 3 4 5
log(DDE)

w
ei

gh
t

30

35

40

45

0 50 100
weight

ge
st

at
io

na
l a

ge

1

2

3

4

5

0 50 100
weight

lo
g(

D
D

E
)

0.00

0.05

0.10

0.15

0 50 100
weight

de
ns

ity

Figure 10: Posterior mean densities, univariate marginal and pairwise bivariate marginal,
obtained by calling plot on the fitted model fit2. In addition to the posterior mean density
value, each pairwise bivariate density shows the data points colored according to the estimated
clustering.

+ mnormt::rmnorm(40, mean = sample(1:5, p, rep = TRUE),
+ varcov = diag(1, p)),
+ matrix(rt(10*p, df = 2), 10, p)) * 2)
R> ysim <- scale(ysim)

We run the MCMC with the following prior specification:

R> prior <- list(strength = 1, discount = 0.1, hyper = TRUE)
R> fit.sim <- PYdensity(y = ysim, mcmc = mcmc, prior = prior,
+ output = output)

The clustering structure detected by the model fitted to the object fit.sim can be explored
by using the function partition. As point estimate, we consider the partition which, among
those visited during the MCMC, minimizes the posterior expected loss, where we work under
the variation of information framework introduced and studied by Wade and Ghahramani
(2018) in the context of clustering estimation problems.

R> fit.sim.part <- partition(fit.sim)
R> sort(ftable(fit.sim.part$partitions[3,]), decreasing = T)

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 23

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 10
0

50
47
44
41
38
35
32
29
26
23
20
17
14
11
8
5
1
89
86
83
80
77
74
71
68
65
62
59
56
53
100
97
94
92

Figure 11: Dissimilarity matrix returned by partition(fit.sim), obtained by using Wade
and Ghahramani (2018)’s method with variation of information loss function (dist = "VI").

50 40 1 1 1 1 1 1 1 1 1 1

The data appear grouped into twelve clusters. The frequencies are consistent with the presence
of two large clusters and ten small ones, all being singletons, arguably representing the 10% of
the data coming from the heavy-tailed Student t distribution. Further insight on the clustering
structure of the data can be gained by visualizing the estimated dissimilarity matrix with

R> dissmat <- as.dist(1 - fit.sim.part$psm)
R> clus <- hclust(dissmat)
R> heatmap(as.matrix(dissmat), Rowv = as.dendrogram(hclust(dissmat)),
+ Colv = NA)

The dendrogram obtained with the complete linkage through the hclust function (displayed
in Figure 11) clearly shows the presence of two main clusters. The remaining small clusters,
while distinct in our analysis, can be interpreted as one group of outlying observations, in
agreement with the simulation scenario we devised.

5.3. Density regression

In order to illustrate the usage of the PYregression function, we study how the distribution of
gestational age changes with DDE. Following the same argument as in Section 5.1, we fix the
prior expected number of clusters to 3 and, given a moderate discount parameter α = 0.25,
we elicit the strength parameter via PYcalibrate. We opt for the default specification of the
other hyperparameters and summarize our prior assumptions with the code

R> PYpar <- PYcalibrate(Ek = 3, n = nrow(CPP), discount = 0.25)
R> prior <- list(strength = PYpar$strength, discount = PYpar$discount)

24 BNPmix: an R Package for Bayesian Non-Parametric Modeling

As summary of the posterior distribution, we compute the estimated conditional density of
gest, conditionally on 6 values of dde equal to the minimum observed value and the empirical
quantiles of order 0.25, 0.5, 0.75, 0.95, and 0.99.

R> grid_y <- seq(26, 47, length.out = 100)
R> grid_x <- round(quantile(CPP$dde, c(0, 0.25, 0.5, 0.75, 0.95, 0.99)))
R> mcmc <- list(niter = 2000, nburn = 1000)
R> output <- list(grid_x = grid_x, grid_y = grid_y,
+ out_type = "FULL", out_param = TRUE)
R> set.seed(42)
R> fit.reg <- PYregression(y = CPP$gest, x = CPP$dde, prior = prior,
+ mcmc = mcmc, output = output)

We next plot the posterior mean conditional density of gest, given the values of dde in
grid_x. In doing this, we exploit all the information contained in the object fit.reg, which
allows us to compute also pointwise posterior credible bands for the estimated densities.

R> regplot <- data.frame(
+ dens = as.vector(apply(fit.reg$density, c(1, 2), mean)),
+ qlow = as.vector(apply(fit.reg$density, c(1, 2),
+ quantile, probs = 0.025)),
+ qupp = as.vector(apply(fit.reg$density, c(1, 2),
+ quantile, probs = 0.975)),
+ grid = rep(grid_y, 6),
+ label = factor(rep(paste("DDE = ", grid_x), each = length(grid_y)),
+ level = rep(paste("DDE = ", grid_x))))
R> library(ggplot2)
R> ggplot(regplot) + theme_bw() +
+ geom_line(data = regplot, map = aes(x = grid, y = dens)) +
+ geom_ribbon(data = regplot, map = aes(x = grid, ymin = qlow,
+ ymax = qupp), fill = "blue", alpha = 0.3) +
+ facet_wrap(~label, ncol = 3, nrow = 2) +
+ labs(x = "gestational age", y = "density")

The results displayed in Figure 12 show, for increasing values of dde, a deflation of the mode
around 40 weeks of pregnancy and an inflation of the left tail of the distribution (corresponding
to preterm births). This is an expected behavior, possibly due to the negative effect of DDE
on gestational age (Longnecker et al. 2001). For a related discussion involving a different
BNP mixture approach see Canale, Durante, and Dunson (2018).

5.4. Density estimation for correlated samples

We conclude this section by illustrating the usage of the DDPdensity function. The CPP data
set consists of observations coming from 12 hospitals: while assuming homogeneity within each
hospital seems reasonable, we opt for a model which might account for heterogeneity across
hospitals and thus consider the GM-DDP mixture model with Gaussian kernels, described in
Section 2. We use an empirical approach and center the base measure parameters on sample
summaries, as by default.

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 25

DDE = 37 DDE = 70 DDE = 105

DDE = 2 DDE = 17 DDE = 25

25 30 35 40 45 25 30 35 40 45 25 30 35 40 45

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

gestational age

de
ns

ity

Figure 12: Posterior mean conditional univariate densities (and 95% pointwise credible bands)
of gest, conditionally on the values of dde reported in the plots’ headers.

R> mcmc <- list(niter = 5000, nburn = 4000)
R> output <- list(grid = seq(30, 46, length.out = 100), out_type = "FULL")

The lists defined above are supplied as arguments to the function DDPdensity, which can be
run to estimate the posterior mean densities for the 12 hospitals. The latter can be visualized
by running the method plot on the output of DDPdensity.

R> fit.ddp <- DDPdensity(y = CPP$gest, group = CPP$hosp, mcmc = mcmc,
+ output = output)
R> fit.ddp$group <- factor(CPP$hosp,
+ labels = paste("Hospital ", levels(CPP$hosp)))
R> plot(fit.ddp, wrap_dim = c(3, 4), ylab = "density",
+ xlab = "gestational age")

Figure 13 displays the estimated densities along with pointwise 95% posterior credible bands.
The model successfully accounts for heterogeneity across hospitals: this can be noticed, for
example, by observing that the estimated densities for hospitals 3 and 5 are more skewed
than those of most of the other hospitals in the study. At the same time, the model allows
for borrowing information across hospitals displaying similar distributions: the result of this
is apparent when the posterior density of gest for hospital 11 is compared with the one, for
the same hospital, displayed in Figure 9 and obtained by ignoring information from other
hospitals.

26 BNPmix: an R Package for Bayesian Non-Parametric Modeling

Hospital 9 Hospital 10 Hospital 11 Hospital 12

Hospital 5 Hospital 6 Hospital 7 Hospital 8

Hospital 1 Hospital 2 Hospital 3 Hospital 4

30 35 40 45 30 35 40 45 30 35 40 45 30 35 40 45

0.0

0.1

0.2

0.0

0.1

0.2

0.0

0.1

0.2

gestiational age

de
ns

ity

Figure 13: Posterior mean densities and 95% pointwise posterior credible bands of gestational
age for the 12 hospitals.

Technical details

The results presented in this paper were obtained by using a macOS 10.15.7 machine. All the
routines were executed on R 4.1.1 with the BNPmix 0.2.9 package, dependent of Rcpp 1.0.7
and RcppArmadillo 0.10.7.0.0 packages. R itself and all packages used are available from the
Comprehensive R Archive Network (CRAN) at https://CRAN.R-project.org/.

Acknowledgments
The authors wish to thank two anonymous referees and the guest editors of the special issue
on Bayesian Statistics. Riccardo Corradin and Bernardo Nipoti are grateful to the DEMS
Data Science Lab for supporting this work by providing computational resources. Antonio
Canale is supported by the University of Padova under the STARS Grant program (acronym
of the project: BNP-CD).

References

https://CRAN.R-project.org/

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 27

Ahlmann-Eltze C, Yau C (2018). “MixDir: Scalable Bayesian Clustering for High-Dimensional
Categorical Data.” In 2018 IEEE 5th International Conference on Data Science and Ad-
vanced Analytics (DSAA), pp. 526–539. doi:10.1109/DSAA.2018.00068.

Argiento R, Bianchini I, Guglielmi A (2016). “Posterior sampling from ε-approximation of
normalized completely random measure mixtures.” Electron. J. Statist., 10(2), 3516–3547.
doi:10.1214/16-EJS1168.

Barrios E, Lijoi A, Nieto-Barajas LE, Prünster I (2013). “Modeling with Normalized Random
Measure Mixture Models.” Statist. Sci., 28(3), 313–334. doi:10.1214/13-STS416.

Barrios E, Lijoi A, Nieto-Barajas LE, Prünster I, Kon Kam King G (2017). BNPdensity:
Ferguson-Klass Type Algorithm for Posterior Normalized Rando Measures. R package ver-
sion 2020.3.4, URL https://CRAN.R-project.org/package=BNPdensity.

Blackwell D, MacQueen JB (1973). “Ferguson Distributions Via Polya Urn Schemes.” The
Annals of Statistics, 1(2), 353–355. doi:10.1214/aos/1176342372.

Blei DM, Jordan MI (2006). “Variational inference for Dirichlet process mixtures.” Bayesian
Anal., 1(1), 121–143. doi:10.1214/06-BA104.

Bouveyron C, Brunet-Saumard C (2014). “Model-based clustering of high-dimensional data:
A review.” Computational Statistics & Data Analysis, 71, 52 – 78. ISSN 0167-9473. doi:
https://doi.org/10.1016/j.csda.2012.12.008.

Campbell T, Straub J, Fisher III JW, How JP (2015). “Streaming, distributed variational
inference for Bayesian nonparametrics.” In Advances in Neural Information Processing
Systems, pp. 280–288.

Canale A (2017). “msBP: An R Package to Perform Bayesian Nonparametric Inference Using
Multiscale Bernstein Polynomials Mixtures.” Journal of Statistical Software, 78(6), 1–19.
ISSN 1548-7660. doi:10.18637/jss.v078.i06.

Canale A, Corradin R, Nipoti B (2020). “Importance Conditional Sampling for Pitman-Yor
mixtures.” preprint arXiv:1906.08147.

Canale A, Dunson D (2011). “Bayesian multivariate mixed-scale density estimation.” Statistics
and Its Interface, 8. doi:10.4310/SII.2015.v8.n2.a7.

Canale A, Dunson D (2014). “Multiscale Bernstein polynomials for densities.” Statistica
Sinica, 26. doi:10.5705/ss.202015.0163.

Canale A, Durante D, Dunson DB (2018). “Convex mixture regression for quantitative risk
assessment.” Biometrics, 74(4), 1331–1340. doi:10.1111/biom.12917.

Carmona C, Nieto-Barajas L, Canale A (2017). BNPMIXcluster: Bayesian Nonparametric
Model for Clustering with Mixed Scale Variables. R package version 1.2.4, URL https:
//CRAN.R-project.org/package=BNPMIXcluster.

Carmona C, Nieto-Barajas L, Canale A (2019). “Model-based approach for household clus-
tering with mixed scale variables.” Advances in Data Analysis and Classification, 13(2),
559–583. doi:10.1007/s11634-018-0313-6.

https://doi.org/10.1109/DSAA.2018.00068
https://doi.org/10.1214/16-EJS1168
https://doi.org/10.1214/13-STS416
https://CRAN.R-project.org/package=BNPdensity
https://doi.org/10.1214/aos/1176342372
https://doi.org/10.1214/06-BA104
https://doi.org/https://doi.org/10.1016/j.csda.2012.12.008
https://doi.org/https://doi.org/10.1016/j.csda.2012.12.008
https://doi.org/10.18637/jss.v078.i06
https://doi.org/10.4310/SII.2015.v8.n2.a7
https://doi.org/10.5705/ss.202015.0163
https://doi.org/10.1111/biom.12917
https://CRAN.R-project.org/package=BNPMIXcluster
https://CRAN.R-project.org/package=BNPMIXcluster
https://doi.org/10.1007/s11634-018-0313-6

28 BNPmix: an R Package for Bayesian Non-Parametric Modeling

De Blasi P, Favaro S, Lijoi A, Mena RH, Prünster I, Ruggiero M (2015). “Are Gibbs-Type
Priors the Most Natural Generalization of the Dirichlet Process?” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 37(2), 212–229. doi:10.1109/TPAMI.2013.
217.

De Iorio M, Müller P, Rosner GL, MacEachern SN (2004). “An ANOVA Model for Dependent
Random Measures.” Journal of the American Statistical Association, 99(465), 205–215.
doi:10.1198/016214504000000205.

Dunson DB, Pillai N, Park JH (2007). “Bayesian density regression.” Journal of the Royal
Statistical Society B, 69(2), 163–183. doi:10.1111/j.1467-9868.2007.00582.x.

Eddelbuettel D, François R (2011). “Rcpp: Seamless R and C++ Integration.” Journal of
Statistical Software, 40(8), 1–18. doi:10.18637/jss.v040.i08.

Eddelbuettel D, Sanderson C (2014). “RcppArmadillo: Accelerating R with high-performance
C++ linear algebra.” Computational Statistics and Data Analysis, 71, 1054–1063. doi:
10.1016/j.csda.2013.02.005.

Escobar MD, West M (1995). “Bayesian Density Estimation and Inference Using Mixtures.”
Journal of the American Statistical Association, 90(430), 577–588. doi:10.2307/2291069.

Ferguson T (1973). “A Bayesian Analysis of some Nonparametric Problems.” The Annals of
Statistics, 1(2), 209–230. doi:10.1214/aos/1176342360.

Ferguson TS, Klass MJ (1972). “A Representation of Independent Increment Processes With-
out Gaussian Components.” The Annals of Mathematical Statistics, 43(5), 1634–1643.
doi:10.1214/aoms/1177692395.

Foti N, Williamson S (2015). “A Survey of Non-Exchangeable Priors for Bayesian Nonpara-
metric Models.” IEEE Transactions on Pattern Analysis and Machine Intelligence, 37.
doi:10.1109/TPAMI.2013.224.

Hjort NL, Holmes C, Müller P, Walker SG (2010). Bayesian Nonparametrics, volume 28.
Cambridge University Press.

Hughes M, Kim DI, Sudderth E (2015). “Reliable and scalable variational inference for the
hierarchical dirichlet process.” In Artificial Intelligence and Statistics, pp. 370–378.

Ishwaran H, Zarepour M (2000). “Markov Chain Monte Carlo in Approximate Dirichlet
and Beta Two-Parameter Process Hierarchical Models.” Biometrika, 87(2), 371–390. doi:
10.1093/biomet/87.2.371.

Jara A, Hanson T, Quintana F, Müller P, Rosner G (2011). “DPpackage: Bayesian Semi-
and Nonparametric Modeling in R.” Journal of Statistical Software, 40(5), 1–30. doi:
10.18637/jss.v040.i05.

Kalli M, Griffin J, Walker S (2011). “Slice sampling mixture models.” Statistics and Com-
puting, 21, 93–105. doi:10.1007/s11222-009-9150-y.

Klebanoff M (2009). “The Collaborative Perinatal Project: A 50-year retrospective.” Paedi-
atric and perinatal epidemiology, 23, 2–8. doi:10.1111/j.1365-3016.2008.00984.x.

https://doi.org/10.1109/TPAMI.2013.217
https://doi.org/10.1109/TPAMI.2013.217
https://doi.org/10.1198/016214504000000205
https://doi.org/10.1111/j.1467-9868.2007.00582.x
https://doi.org/10.18637/jss.v040.i08
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.1016/j.csda.2013.02.005
https://doi.org/10.2307/2291069
https://doi.org/10.1214/aos/1176342360
https://doi.org/10.1214/aoms/1177692395
https://doi.org/10.1109/TPAMI.2013.224
https://doi.org/10.1093/biomet/87.2.371
https://doi.org/10.1093/biomet/87.2.371
https://doi.org/10.18637/jss.v040.i05
https://doi.org/10.18637/jss.v040.i05
https://doi.org/10.1007/s11222-009-9150-y
https://doi.org/10.1111/j.1365-3016.2008.00984.x

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 29

Lijoi A, Mena RH, Prünster I (2005a). “Bayesian Nonparametric Analysis for a Generalized
Dirichlet Process Prior.” Statistical Inference for Stochastic Processes, 8, 283–309. doi:
10.1007/s11203-005-6071-z.

Lijoi A, Mena RH, Prünster I (2005b). “Hierarchical Mixture Modeling With Normalized
Inverse-Gaussian Priors.” Journal of the American Statistical Association, 100(472), 1278–
1291. doi:10.1198/016214505000000132.

Lijoi A, Mena RH, Prünster I (2007). “Controlling the Reinforcement in Bayesian Non-
Parametric Mixture Models.” Journal of the Royal Statistical Society B, 69(4), 715–740.
doi:10.1111/j.1467-9868.2007.00609.x.

Lijoi A, Nipoti B, Prünster I (2014). “Bayesian Inference with Dependent Normalized Com-
pletely Random Measures.” Bernoulli, 20(3), 1260–1291. doi:10.3150/13-BEJ521.

Liverani S, Hastie DI, Azizi L, Papathomas M, Richardson S (2015). “PReMiuM: An R
Package for Profile Regression Mixture Models Using Dirichlet Processes.” Journal of
statistical software, 64(7), 1–30. doi:10.18637/jss.v064.i07.

Lo AY (1984). “On a Class of Bayesian Nonparametric Estimates: I. Density Estimates.” The
Annals of Statistics, 12(1), 351–357. doi:10.1214/aos/1176346412.

Longnecker MP, Klebanoff MA, Zhou H, Brock JW (2001). “Association Between Maternal
Serum Concentration of the DDT Metabolite DDE and Preterm and Small-for-Gestational-
Age Babies at Birth.” The Lancet, 358(9276), 110–114. doi:10.1016/S0140-6736(01)
05329-6.

Müller P, Erkanli A, West M (1996). “Bayesian Curve Fitting Using Multivariate Normal
Mixtures.” Biometrika, 83(1), 67–79. doi:10.1093/biomet/83.1.67.

Müller P, Quintana FA, Jara A, Hanson T (2015). Bayesian Nonparametric Data Analysis,
volume 18. Springer-Verlag.

Neal RM (2000). “Markov Chain Sampling Methods for Dirichlet Process Mixture Mod-
els.” Journal of Computational and Graphical Statistics, 9(2), 249–265. doi:10.1080/
10618600.2000.10474879.

Nieto-Barajas LE, Prünster I, Walker SG (2004). “Normalized Random Measures Driven by
Increasing Additive Processes.” The Annals of Statistics, 32(6), 2343–2360. doi:10.1214/
009053604000000625.

Perman M, Pitman J, Yor M (1992). “Size-Biased Sampling of Poisson Point Processes
and Excursions.” Probability Theory and Related Fields, 92(1), 21–39. doi:10.1007/
BF01205234.

Pitman J (1995). “Exchangeable and Partially Exchangeable Random Partitions.” Probability
Theory and Related Fields, 102, 145–158. doi:10.1007/BF01213386.

Pitman J (1996). “Some Developments of the Blackwell-Macqueen Urn Scheme.” Lecture
Notes-Monograph Series, 30, 245–267. doi:10.1214/lnms/1215453576.

https://doi.org/10.1007/s11203-005-6071-z
https://doi.org/10.1007/s11203-005-6071-z
https://doi.org/10.1198/016214505000000132
https://doi.org/10.1111/j.1467-9868.2007.00609.x
https://doi.org/10.3150/13-BEJ521
https://doi.org/10.18637/jss.v064.i07
https://doi.org/10.1214/aos/1176346412
https://doi.org/10.1016/S0140-6736(01)05329-6
https://doi.org/10.1016/S0140-6736(01)05329-6
https://doi.org/10.1093/biomet/83.1.67
https://doi.org/10.1080/10618600.2000.10474879
https://doi.org/10.1080/10618600.2000.10474879
https://doi.org/10.1214/009053604000000625
https://doi.org/10.1214/009053604000000625
https://doi.org/10.1007/BF01205234
https://doi.org/10.1007/BF01205234
https://doi.org/10.1007/BF01213386
https://doi.org/10.1214/lnms/1215453576

30 BNPmix: an R Package for Bayesian Non-Parametric Modeling

Pitman J, Yor M (1997). “The Two-Parameter Poisson-Dirichlet Distribution Derived from
a Stable Subordinator.” The Annals of Probability, 25(2), 855–900. doi:10.1214/aop/
1024404422.

Regazzini E, Lijoi A, Prünster I (2003). “Distributional results for means of normalized
random measures with independent increments.” The Annals of Statistics, 31(2), 560–585.
doi:10.1214/aos/1051027881.

Ross GJ, Markwick D (2020). dirichletprocess: Build Dirichlet Process Objects for Bayesian
Modelling. R package version 0.4.0, URL https://CRAN.R-project.org/package=
dirichletprocess.

Sethuraman J (1994). “A Constructive Definition of Dirichlet Priors.” Statistica Sinica, 4(2),
639–650. URL http://www.jstor.org/stable/24305538.

Shen W, Tokdar ST, Ghosal S (2013). “Adaptive Bayesian Multivariate Density Estimation
with Dirichlet Mixtures.” Biometrika, 100(3), 623–640. doi:10.1093/biomet/ast015.

Tank A, Foti N, Fox E (2015). “Streaming variational inference for Bayesian nonparametric
mixture models.” In Proceedings of the Eighteenth International Conference on Artificial
Intelligence and Statistics, pp. 968–976.

Wade S, Ghahramani Z (2018). “Bayesian Cluster Analysis: Point Estimation and Credible
Balls.” Bayesian Anal., 13(2), 559–626. doi:10.1214/17-BA1073.

Walker SG (2007). “Sampling the Dirichlet Mixture Model with Slices.” Communications in
Statistics - Simulation and Computation, 36(1), 45–54. doi:10.1080/03610910601096262.

West M (1991). Modelling with Mixtures. Institute of Statistics and Decision Sciences, Duke
University.

https://doi.org/10.1214/aop/1024404422
https://doi.org/10.1214/aop/1024404422
https://doi.org/10.1214/aos/1051027881
https://CRAN.R-project.org/package=dirichletprocess
https://CRAN.R-project.org/package=dirichletprocess
http://www.jstor.org/stable/24305538
https://doi.org/10.1093/biomet/ast015
https://doi.org/10.1214/17-BA1073
https://doi.org/10.1080/03610910601096262

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 31

Table 3: Mixture models implemented in the package BNPmix and availability of the same
in other R packages for BNP inference via mixtures: ✓ indicates the model is implemented,
✗ the model is not. The structure of the Gaussian kernel can be location (L), location-scale
(LS) and, only for the multivariate case, location-scale with diagonal covariance matrix (DLS)
as described in Section 2.

package mixing process Gaussian kernel structure dependent mixtureunivariate multivariate
DP PY L LS L LS DLS GM-DDP regression

BNPmix ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

DPpackage ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓

PreMiuM ✓ ✓1 ✗ ✓ ✗ ✓ ✗ ✗ ✓

BNPdensity ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗

dirichletprocess ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗

BNPMIXcluster ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗

msBP ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
1 PY mixtures are implemented only by approximating the PY process via deterministic truncation.

A. Appendix

A.1. Packages comparison

We compare state-of-the-art R packages for BNP inference. To this end, a list of the models
implemented in BNPmix is presented in Table 3 along with the availability of the same models
in other packages. Similarly, Table 4 compares the main technical features of BNPmix with
those of other packages.

A.2. Base measures and hyperdistributions

Table 5 summarizes the base measures and the hyperdistributions on the base measures
parameters, for the specifications of univariate and multivariate PY mixture models with
Gaussian kernels, described in Section 2. The focus of the table is on the models that can be
fitted by using PYdensity. The top part of the table refers to the models without hyperpriors
on the parameters of the base measure (hyper = FALSE), the bottom part (hyper = TRUE)
instead describes the specification of the hyperpriors.
For the sake of clarity and in order to avoid any ambiguity, Table 6 reports the parametrization
of the relevant probability distributions, adopted throughout the paper.

Affiliation:
Riccardo Corradin
Department of Economics, Management and Statistics
University of Milano-Bicocca, Milan, Italy
E-mail: riccardo.corradin@unimib.it

mailto:riccardo.corradin@unimib.it

32 BNPmix: an R Package for Bayesian Non-Parametric Modeling

Table 4: Main technical features of the BNPmix package and comparison with other R
packages for BNP models using MCMC. The sampling methods considered in the table are
marginal (Escobar and West 1995), dependent slice efficient (Kalli et al. 2011), independent
slice efficient (Kalli et al. 2011), ICS (Canale et al. 2020), marginal algorithm 8 (Neal 2000),
truncated sampler (Ishwaran and Zarepour 2000), label switching move (Liverani et al. 2015)
for the truncated sampler, Ferguson and Klass algorithm (Ferguson and Klass 1972; Barrios
et al. 2013), and the slice sampler for multi-scale Bernstein polynomials (Canale and Dunson
2014).

package sampling method programming language S3
core functions MCMC loop system

BNPmix

Marginal

C++ C++ ✓
Slice dependent
Slice independent
ICS

DPpackage Marginal Fortran Fortran ✗Marginal algorithm 8

PreMiuM

Truncated sampler

C++ C++ ✗
Slice dependent (not for PY)
Slice independent (not for PY)
Label switching move

BNPdensity Ferguson and Klass R R ✓

dirichletprocess Marginal R R ✓Marginal algorithm 8
BNPMIXcluster Marginal algorithm 8 C++ R ✗

msBP Slice sampler C++ R ✗

Antonio Canale
Department of Statistics
University of Padova, Padova, Italy
E-mail: canale@stat.unipd.it

Bernardo Nipoti
Department of Economics, Management and Statistics
University of Milano-Bicocca, Milan, Italy
E-mail: bernardo.nipoti@unimib.it

mailto:canale@stat.unipd.it
mailto:bernardo.nipoti@unimib.it

Riccardo Corradin, Antonio Canale, Bernardo Nipoti 33

Table 5: Base measures and optional hyperprior distributions on the parameters of the base
measures, for location (L), location-scale (LS) and, only for the multivariate case, location-
scale with diagonal covariance matrix (DLS) PY mixture models. As for the multivariate
location-scale PY mixture model with diagonal covariance matrix, assume that r = 1, . . . , p.

hyper = FALSE Univariate Multivariate

L µ̃j ∼ N(m0, σ2
0)

σ2 ∼ IGa(a0, b0)
µ̃j ∼ N(m0, S0)
Σ ∼ IW(ν0, Σ0)

LS µ̃j | σ̃2
j ∼ N(m0, σ̃2

j /k0)
σ̃2

j ∼ IGa(a0, b0)
µ̃j | Σ̃j ∼ N(m0, Σ̃j/k0)
Σ̃j ∼ IW(ν0, Σ0)

DLS µ̃jr | σ̃2
jr ∼ N(m0r, σ̃2

jr/k0r)
σ̃2

jr ∼ IGa(a0r, b0r)
hyper = TRUE Univariate Multivariate

L m0 | σ2
0 ∼ N(m1, σ2

0/k1)
σ2

0 ∼ IGa(a1, b1)
m0 | S0 ∼ N(m1, S0/k1)
S0 ∼ IW(λ1, Λ1)

LS
m0 ∼ N(m1, σ2

1)
k0 ∼ Ga(τ1, ζ1)
b0 ∼ Ga(a1, b1)

m0 ∼ N(m1, S1)
k0 ∼ Ga(τ1, ζ1)
Σ0 ∼ W(ν1, Σ1)

DLS
m0r ∼ N(m1r, σ2

1r)
k0r ∼ Ga(τ1r, ζ1r)
b0r ∼ Ga(a1r, b1r)

Table 6: Parametrizations of the probability distributions used throughout the paper. Multi-
variate distributions are assumed of dimension p. As for the Wishart and the inverse Wishart
distribution, only the (j, l)-th element of the covariance matrix is reported.

Distribution Notation Parameters Expectation Variance/Covariance
Univ. normal N(µ, σ2) µ (location), σ2 (scale) µ σ2

Mult. normal Np(µ, Σ) µ (location), Σ (scale) µ Σ
Gamma Ga(a, b) a (shape), b (rate) a/b a/b2

Inverse gamma IGa(a, b) a (shape), b (scale) b
a−1

(b−1)2

(a−1)2(b−1)
Wishart W(ν, S) ν (d.o.f.), S (scale) νS ν(S2

jl + SjjSll)
Inverse Wishart IW(ν, S) ν (d.o.f.), S (scale) S

ν−p−1
(ν−p+1)S2

jl+(ν−p−1)SjjSll

(ν−p)(ν−p−1)2(ν−p−3)

	Introduction
	Model specifications
	Univariate location PY mixture model
	Univariate location-scale PY mixture model
	Multivariate location PY mixture model
	Multivariate location-scale PY mixture model: full covariance matrix
	Multivariate location-scale PY mixture model: diagonal covariance matrix
	Univariate regression PY mixture model
	Univariate regression-scale PY mixture model
	Univariate location-scale DDP mixture model

	Posterior simulation methods
	Marginal sampler
	Slice sampler
	Importance conditional sampler

	Package implementation
	Low level implementation
	Wrappers to the main functions
	PY mixture models
	PY density regression
	DDP density estimation
	Other functions

	Package scalability

	Usage of the package
	Univariate density estimation
	Multivariate density estimation
	Density regression
	Density estimation for correlated samples

	Appendix
	Packages comparison
	Base measures and hyperdistributions

