
Package ‘BGData’
January 20, 2025

Version 2.4.1

License MIT + file LICENSE

Title A Suite of Packages for Analysis of Big Genomic Data

Description An umbrella package providing a phenotype/genotype data structure
and scalable and efficient computational methods for large genomic datasets
in combination with several other packages: 'BEDMatrix', 'LinkedMatrix',
and 'symDMatrix'.

URL https://github.com/QuantGen/BGData

BugReports https://github.com/QuantGen/BGData/issues

Depends R (>= 3.0.2), BEDMatrix (>= 1.4.0), LinkedMatrix (>= 1.3.0),
symDMatrix (>= 2.0.0)

Imports methods, parallel, crochet (>= 2.1.0), bigmemory,
synchronicity, ff, bit

Suggests data.table (>= 1.9.6), lme4, SKAT, testthat

NeedsCompilation yes

Author Gustavo de los Campos [aut],
Alexander Grueneberg [aut, cre],
Paulino Perez [ctb],
Ana Vazquez [ctb]

Maintainer Alexander Grueneberg <cran@agrueneberg.info>

Repository CRAN

Date/Publication 2023-03-22 10:40:05 UTC

Contents
BGData-package . 2
as.BGData . 3
BGData . 4
BGData-class . 5
chunkedApply . 6
chunkedMap . 7

1

https://github.com/QuantGen/BGData
https://github.com/QuantGen/BGData/issues

2 BGData-package

file-backed-matrices . 8
findRelated . 9
FWD . 10
geno . 11
geno-class . 12
getG . 12
getG_symDMatrix . 14
GWAS . 16
load.BGData . 18
multi-level-parallelism . 18
orderedMerge . 19
preprocess . 19
readRAW . 20
segments . 23
summarize . 24

Index 26

BGData-package A Suite of Packages for Analysis of Big Genomic Data

Description

Modern genomic datasets are big (large n), high-dimensional (large p), and multi-layered. The
challenges that need to be addressed are memory requirements and computational demands. Our
goal is to develop software that will enable researchers to carry out analyses with big genomic data
within the R environment.

Details

We have identified several approaches to tackle those challenges within R:

• File-backed matrices: The data is stored in on the hard drive and users can read in smaller
chunks when they are needed.

• Linked arrays: For very large datasets a single file-backed array may not be enough or conve-
nient. A linked array is an array whose content is distributed over multiple file-backed nodes.

• Multiple dispatch: Methods are presented to users so that they can treat these arrays pretty
much as if they were RAM arrays.

• Multi-level parallelism: Exploit multi-core and multi-node computing.

• Inputs: Users can create these arrays from standard formats (e.g., PLINK .bed).

The BGData package is an umbrella package that comprises several packages: BEDMatrix, LinkedMatrix,
and symDMatrix. It features scalable and efficient computational methods for large genomic datasets
such as genome-wide association studies (GWAS) or genomic relationship matrices (G matrix). It
also contains a container class called BGData that holds genotypes, sample information, and variant
information.

as.BGData 3

Example dataset

The extdata folder contains example files that were generated from the 250k SNP and phenotype
data in Atwell et al. (2010). Only the first 300 SNPs of chromosome 1, 2, and 3 were included to
keep the size of the example dataset small. PLINK was used to convert the data to .bed and .raw
files. FT10 has been chosen as a phenotype and is provided as an alternate phenotype file. The file
is intentionally shuffled to demonstrate that the additional phenotypes are put in the same order as
the rest of the phenotypes.

See Also

BEDMatrix-package, LinkedMatrix-package, and symDMatrix-package for an introduction to
the respective packages.

file-backed-matrices for more information on file-backed matrices. multi-level-parallelism
for more information on multi-level parallelism.

as.BGData Convert Other Objects to BGData Objects

Description

Converts other objects to BGData objects by loading supplementary phenotypes and map files ref-
erenced by the object to be used for the sample information and variant information, respectively.

Currently supported are BEDMatrix objects, plain or nested in ColumnLinkedMatrix objects.

Usage

as.BGData(x, alternatePhenotypeFile = NULL, ...)

S3 method for class 'BEDMatrix'
as.BGData(x, alternatePhenotypeFile = NULL, ...)

S3 method for class 'ColumnLinkedMatrix'
as.BGData(x, alternatePhenotypeFile = NULL,
...)

S3 method for class 'RowLinkedMatrix'
as.BGData(x, alternatePhenotypeFile = NULL,
...)

Arguments

x An object. Currently supported are BEDMatrix objects, plain or nested in ColumnLinkedMatrix
objects.

alternatePhenotypeFile

Path to an alternate phenotype file.
... Additional arguments to the read.table or fread call (if data.table package is

installed) call to parse the alternate pheno file.

https://www.nature.com/articles/nature08800
https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2/input#bed
https://www.cog-genomics.org/plink2/input#raw
https://www.cog-genomics.org/plink2/input#pheno
https://www.cog-genomics.org/plink2/input#pheno

4 BGData

Details

The .ped and .raw formats only allows for a single phenotype. If more phenotypes are required it is
possible to store them in an alternate phenotype file. The path to such a file can be provided with
alternatePhenotypeFile and will be merged with the existing sample information. The first and
second columns of that file must contain family and within-family IDs, respectively.

For BEDMatrix objects: If a .fam file (which corresponds to the first six columns of a .ped or .raw
file) of the same name and in the same directory as the .bed file exists, the sample information will
be populated with the data stored in that file. Otherwise a stub that only contains an IID column
populated with the rownames of geno(x) will be generated. The same will happen for a .bim file
for the variant information.

For ColumnLinkedMatrix objects: See the case for BEDMatrix objects, but only the .fam file of the
first node of the LinkedMatrix will be read and used for the sample information, and the .bim files
of all nodes will be combined and used for the variant information.

Value

A BGData object.

See Also

readRAW() to convert text files to BGData objects. BGData-class, BEDMatrix-class, ColumnLinkedMatrix-class
for more information on the above mentioned classes. read.table and fread to learn more about
extra arguments that can be passed via

Examples

Path to example data
path <- system.file("extdata", package = "BGData")

Convert a single BEDMatrix object to a BGData object
chr1 <- BEDMatrix::BEDMatrix(paste0(path, "/chr1.bed"))
bg1 <- as.BGData(chr1)

Convert multiple BEDMatrix objects in a ColumnLinkedMatrix to a BGData object
chr2 <- BEDMatrix::BEDMatrix(paste0(path, "/chr2.bed"))
chr3 <- BEDMatrix::BEDMatrix(paste0(path, "/chr3.bed"))
clm <- ColumnLinkedMatrix(chr1, chr2, chr3)
bg2 <- as.BGData(clm)

Load additional (alternate) phenotypes
bg3 <- as.BGData(clm, alternatePhenotypeFile = paste0(path, "/pheno.txt"))

BGData Creates a New BGData Instance

Description

This function constructs a new BGData object.

https://www.cog-genomics.org/plink2/input#pheno

BGData-class 5

Usage

BGData(geno, pheno = NULL, map = NULL)

Arguments

geno A geno object that contains genotypes.

pheno A data.frame that contains sample information (including phenotypes). A stub
that only contains a sample_id column populated with either the rownames of
geno or a sequence starting with sample_ will be generated if NULL

map A data.frame that contains variant information. A stub that only contains a
variant_id column populated with either the colnames of geno or a sequence
starting with variant_ will be generated if NULL

See Also

BGData-class and geno-class for more information on the above mentioned classes.

BGData-class Container for Phenotype and Genotype Data

Description

The BGData class is a container for genotypes, sample information, and variant information. The
class is inspired by the .bed/.fam/.bim (binary) and .ped/.fam/.map (text) phenotype/genotype
file formats of PLINK. It is used by several functions of this package such as GWAS for performing
a Genome Wide Association Study or getG for calculating a genomic relationship matrix.

Details

There are several ways to create an instance of this class:

• from arbitrary phenotype/genotype data using the BGData constructor function.

• from a .bed file using as.BGData and BEDMatrix.

• from a previously saved BGData object using load.BGData.

• from multiple files (even a mixture of different file types) using LinkedMatrix.

• from a .raw file (or a .ped-like file) using readRAW, readRAW_matrix, or readRAW_big.matrix.

A .ped file can be recoded to a .raw file in PLINK using plink --file myfile --recodeA, or
converted to a .bed file using plink --file myfile --make-bed. Conversely, a .bed file can be
transformed back to a .ped file using plink --bfile myfile --recode or to a .raw file using plink
--bfile myfile --recodeA without losing information.

https://www.cog-genomics.org/plink2
https://www.cog-genomics.org/plink2

6 chunkedApply

Accessors

In the following code snippets, x is a BGData object.

geno(x), geno(x) <- value: Get or set genotypes.

pheno(x), pheno(x) <- value: Get or set sample information.

map(x), map(x) <- value: Get or set variant information.

See Also

BGData, as.BGData, load.BGData, readRAW to create BGData objects.

LinkedMatrix-class and BEDMatrix-class for more information on the above mentioned classes.

Examples

X <- matrix(data = rnorm(100), nrow = 10, ncol = 10)
Y <- data.frame(y = runif(10))
MAP <- data.frame(means = colMeans(X), freqNA = colMeans(is.na(X)))
DATA <- BGData(geno = X, pheno = Y, map = MAP)

dim(geno(DATA))
head(pheno(DATA))
head(map(DATA))

chunkedApply Applies a Function on Each Row or Column of a File-Backed Matrix

Description

Similar to apply, but designed for file-backed matrices. The function brings chunks of an object
into physical memory by taking subsets, and applies a function on either the rows or the columns
of the chunks using an optimized version of apply. If nCores is greater than 1, the function will be
applied in parallel using mclapply. In that case the subsets of the object are taken on the slaves.

Usage

chunkedApply(X, MARGIN, FUN, i = seq_len(nrow(X)),
j = seq_len(ncol(X)), chunkSize = 5000L,
nCores = getOption("mc.cores", 2L), verbose = FALSE, ...)

Arguments

X A file-backed matrix, typically the genotypes of a BGData object.

MARGIN The subscripts which the function will be applied over. 1 indicates rows, 2
indicates columns.

FUN The function to be applied.

chunkedMap 7

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkSize The number of rows or columns of X that are brought into physical memory for
processing per core. If NULL, all elements in i or j are used. Defaults to 5000.

nCores The number of cores (passed to mclapply). Defaults to the number of cores as
detected by detectCores.

verbose Whether progress updates will be posted. Defaults to FALSE.

... Additional arguments to be passed to the apply like function.

See Also

file-backed-matrices for more information on file-backed matrices. multi-level-parallelism
for more information on multi-level parallelism. BGData-class for more information on the BGData
class.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Compute standard deviation of columns
chunkedApply(X = geno(bg), MARGIN = 2, FUN = sd)

chunkedMap Applies a Function on Each Chunk of a File-Backed Matrix

Description

Similar to lapply, but designed for file-backed matrices. The function brings chunks of an object
into physical memory by taking subsets, and applies a function on them. If nCores is greater than
1, the function will be applied in parallel using mclapply. In that case the subsets of the object are
taken on the slaves.

Usage

chunkedMap(X, FUN, i = seq_len(nrow(X)), j = seq_len(ncol(X)),
chunkBy = 2L, chunkSize = 5000L, nCores = getOption("mc.cores",
2L), verbose = FALSE, ...)

8 file-backed-matrices

Arguments

X A file-backed matrix, typically the genotypes of a BGData object.

FUN The function to be applied on each chunk.

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkBy Whether to extract chunks by rows (1) or by columns (2). Defaults to columns
(2).

chunkSize The number of rows or columns of X that are brought into physical memory for
processing per core. If NULL, all elements in i or j are used. Defaults to 5000.

nCores The number of cores (passed to mclapply). Defaults to the number of cores as
detected by detectCores.

verbose Whether progress updates will be posted. Defaults to FALSE.

... Additional arguments to be passed to the apply like function.

See Also

file-backed-matrices for more information on file-backed matrices. multi-level-parallelism
for more information on multi-level parallelism. BGData-class for more information on the BGData
class.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Compute column sums of each chunk
chunkedMap(X = geno(bg), FUN = colSums)

file-backed-matrices File-Backed Matrices

Description

Functions with the chunkSize parameter work best with file-backed matrices such as BEDMatrix
objects. To avoid loading the whole, potentially very large matrix into memory, these functions will
load chunks of the file-backed matrix into memory and perform the operations on one chunk at a
time. The size of the chunks is determined by the chunkSize parameter. Care must be taken to
not set chunkSize too high to avoid memory shortage, particularly when combined with parallel
computing.

findRelated 9

See Also

BEDMatrix-class as an example of a file-backed matrix.

findRelated Find related individuals in a relationship matrix

Description

Find related individuals in a relationship matrix.

Usage

findRelated(x, ...)

S3 method for class 'matrix'
findRelated(x, cutoff = 0.03, ...)

S3 method for class 'symDMatrix'
findRelated(x, cutoff = 0.03, verbose = FALSE,
...)

Arguments

x A matrix-like object with dimnames.

... Additional arguments for methods.

cutoff The cutoff between 0 and 1 for related individuals to be included in the output.
Defaults to 0.03.

verbose Whether progress updates will be posted. Defaults to FALSE.

Value

A vector of names or indices of related individuals.

Methods (by class)

• matrix: Find related individuals in matrices

• symDMatrix: Find related individuals in symDMatrix objects

Examples

Load example data
bg <- BGData:::loadExample()

G <- getG(geno(bg))
findRelated(G)

10 FWD

FWD Performs Forward Regressions

Description

Performs forward regression of y on the columns of X. Predictors are added, one at a time, each
time adding the one that produces the largest reduction in the residual sum of squares (RSS). The
function returns estimates and summaries for the entire forward search. This function performs
a similar search than that of step(, direction='forward'), however, FWD() is optimized for
computational speed for linear models with very large sample size. To achieve fast computations,
the software first computes the sufficient statistics X’X and X’y. At each step, the function first
finds the predictor that produces the largest reduction in the sum of squares (this can be derived
from X’X, X’y and the current solution of effects), and then updates the estimates of effects for the
resulting model using Gauss Seidel iterations performed on the linear system (X’X)b=X’y, iterating
only over the elements of b that are active in the model.

Usage

FWD(y, X, df = 20, tol = 1e-7, maxIter = 1000, centerImpute = TRUE,
verbose = TRUE)

Arguments

y The response vector (numeric nx1).

X An (nxp) numeric matrix. Columns are the features (aka predictors) considered
in the forward search. The rows of X must be matched to the entries of y.

df Defines the maximum number of predictors to be included in the model. For
complete forward search, set df = ncol(X).

tol A tolerance parameter to control when to stop the Gauss Seidel algorithm.

maxIter The maximum number of iterations for the Gauss Seidel algorithm (only used
when the algorithm is not stopped by the tolerance parameter).

centerImpute Whether to center the columns of X and impute the missing values with the
column means.

verbose Use verbose = TRUE to print summaries of the forward search.

Value

A list with two entries:

• B: (pxdf+1) includes the estimated effects for each predictor (rows) at each step of the forward
search (df, in columns).

• path: A data frame providing the order in which variables were added to the model (variable)
and statistics for each step of the forward search (RSS, LogLik, VARE (the residual variance),
DF, AIC, and BIC).

geno 11

geno Getting/Setting Genotypes, Sample Information, and Variant Informa-
tion

Description

A set of generic functions for getting/setting the genotypes, sample information, and variant infor-
mation.

Usage

geno(x)
geno(x) <- value

pheno(x)
pheno(x) <- value

map(x)
map(x) <- value

Arguments

x The object from/on which to get/set genotypes, sample information, and variant
information. Typically a BGData object.

value Typically a geno object for the geno setter.
Typically a data.frame object for the pheno setter.
Typically a data.frame object for the map setter.

See Also

• BGData-class

• geno-class

Examples

Load example data
bg <- BGData:::loadExample()

Access genotypes
geno(bg)

Access sample information
pheno(bg)

Access variant information
map(bg)

12 getG

geno-class An Abstract S4 Class Union of Matrix-Like Types

Description

geno is a class union of several matrix-like types, many of them suitable for very large datasets.

Currently supported are LinkedMatrix, BEDMatrix, big.matrix,ff_matrix, and matrix.

See Also

LinkedMatrix-class, BEDMatrix-class, big.matrix-class, ff, and matrix for more informa-
tion on each matrix-like type.

BGData-class for more information on the BGData class, in particular its geno accessor that accepts
geno objects.

getG Computes a Genomic Relationship Matrix

Description

Computes a positive semi-definite symmetric genomic relation matrix G=XX’ offering options for
centering and scaling the columns of X beforehand.

Usage

getG(X, center = TRUE, scale = TRUE, impute = TRUE, scaleG = TRUE,
minVar = 1e-05, i = seq_len(nrow(X)), j = seq_len(ncol(X)), i2 = NULL,
chunkSize = 5000L, nCores = getOption("mc.cores", 2L), verbose = FALSE)

Arguments

X A matrix-like object, typically the genotypes of a BGData object.

center Either a logical value or a numeric vector of length equal to the number of
columns of X. Numeric vector required if i2 is used. If FALSE, no centering
is done. Defaults to TRUE.

scale Either a logical value or a numeric vector of length equal to the number of
columns of X. Numeric vector required if i2 is used. If FALSE, no scaling is
done. Defaults to TRUE.

impute Indicates whether missing values should be imputed. Defaults to TRUE.

scaleG Whether XX’ should be scaled. Defaults to TRUE.

minVar Columns with variance lower than this value will not be used in the computation
(only if scale is not FALSE).

getG 13

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

i2 Indicates which rows should be used to compute a block of the genomic rela-
tionship matrix. Will compute XY’ where X is determined by i and j and Y
by i2 and j. Can be integer, boolean, or character. If NULL, the whole genomic
relationship matrix XX’ is computed. Defaults to NULL.

chunkSize The number of columns of X that are brought into physical memory for process-
ing per core. If NULL, all columns of X are used. Defaults to 5000.

nCores The number of cores (passed to mclapply). Defaults to the number of cores as
detected by detectCores.

verbose Whether progress updates will be posted. Defaults to FALSE.

Details

If center = FALSE, scale = FALSE and scaleG = FALSE, getG produces the same outcome than
tcrossprod.

Value

A positive semi-definite symmetric numeric matrix.

See Also

file-backed-matrices for more information on file-backed matrices. multi-level-parallelism
for more information on multi-level parallelism. BGData-class for more information on the BGData
class.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Compute a scaled genomic relationship matrix from centered and scaled
genotypes
g1 <- getG(X = geno(bg))

Disable scaling of G
g2 <- getG(X = geno(bg), scaleG = FALSE)

Disable centering of genotypes
g3 <- getG(X = geno(bg), center = FALSE)

14 getG_symDMatrix

Disable scaling of genotypes
g4 <- getG(X = geno(bg), scale = FALSE)

Provide own scales
scales <- chunkedApply(X = geno(bg), MARGIN = 2, FUN = sd)
g4 <- getG(X = geno(bg), scale = scales)

Provide own centers
centers <- chunkedApply(X = geno(bg), MARGIN = 2, FUN = mean)
g5 <- getG(X = geno(bg), center = centers)

Only use the first 50 individuals (useful to account for population structure)
g6 <- getG(X = geno(bg), i = 1:50)

Only use the first 100 markers (useful to ignore some markers)
g7 <- getG(X = geno(bg), j = 1:100)

Compute unscaled G matrix by combining blocks of XX_{i2}' where X_{i2} is
a horizontal partition of X. This is useful for distributed computing as each
block can be computed in parallel. Centers and scales need to be precomputed.
block1 <- getG(X = geno(bg), i2 = 1:100, center = centers, scale = scales)
block2 <- getG(X = geno(bg), i2 = 101:199, center = centers, scale = scales)
g8 <- cbind(block1, block2)

Compute unscaled G matrix by combining blocks of $X_{i}X_{i2}'$ where both
X_{i} and X_{i2} are horizontal partitions of X. Similarly to the example
above, this is useful for distributed computing, in particular to compute
very large G matrices. Centers and scales need to be precomputed. This
approach is similar to the one taken by the symDMatrix package, but the
symDMatrix package adds memory-mapped blocks, only stores the upper side of
the triangular matrix, and provides a type that allows for indexing as if the
full G matrix is in memory.
block11 <- getG(X = geno(bg), i = 1:100, i2 = 1:100, center = centers, scale = scales)
block12 <- getG(X = geno(bg), i = 1:100, i2 = 101:199, center = centers, scale = scales)
block21 <- getG(X = geno(bg), i = 101:199, i2 = 1:100, center = centers, scale = scales)
block22 <- getG(X = geno(bg), i = 101:199, i2 = 101:199, center = centers, scale = scales)
g9 <- rbind(

cbind(block11, block12),
cbind(block21, block22)

)

getG_symDMatrix Computes a Very Large Genomic Relationship Matrix

Description

Computes a positive semi-definite symmetric genomic relation matrix G=XX’ offering options for
centering and scaling the columns of X beforehand.

getG_symDMatrix 15

Usage

getG_symDMatrix(X, center = TRUE, scale = TRUE, impute = TRUE, scaleG = TRUE,
minVar = 1e-05, blockSize = 5000L,
folderOut = paste0("symDMatrix_", randomString()), vmode = "double",
i = seq_len(nrow(X)), j = seq_len(ncol(X)), chunkSize = 5000L,
nCores = getOption("mc.cores", 2L), verbose = FALSE)

Arguments

X A matrix-like object, typically the genotypes of a BGData object.

center Either a logical value or a numeric vector of length equal to the number of
columns of X. If FALSE, no centering is done. Defaults to TRUE.

scale Either a logical value or a numeric vector of length equal to the number of
columns of X. If FALSE, no scaling is done. Defaults to TRUE.

impute Indicates whether missing values should be imputed. Defaults to TRUE.

scaleG TRUE/FALSE whether xx’ must be scaled.

minVar Columns with variance lower than this value will not be used in the computation
(only if scale is not FALSE).

blockSize The number of rows and columns of each block. If NULL, a single block of the
same length as i will be created. Defaults to 5000.

folderOut The path to the folder where to save the symDMatrix object. Defaults to a ran-
dom string prefixed with "symDMatrix_".

vmode vmode of ff objects.

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkSize The number of columns of X that are brought into physical memory for process-
ing per core. If NULL, all columns of X are used. Defaults to 5000.

nCores The number of cores (passed to mclapply). Defaults to the number of cores as
detected by detectCores.

verbose Whether progress updates will be posted. Defaults to FALSE.

Details

Even very large genomic relationship matrices are supported by partitioning X into blocks and call-
ing getG on these blocks. This function performs the block computations sequentially, which may
be slow. In an HPC environment, performance can be improved by manually distributing these
operations to different nodes.

Value

A symDMatrix object.

16 GWAS

See Also

multi-level-parallelism for more information on multi-level parallelism. symDMatrix-class
and BGData-class for more information on the BGData class. getG to learn more about the under-
lying method.

GWAS Performs Single Marker Regressions Using BGData Objects

Description

Implements single marker regressions. The regression model includes all the covariates specified in
the right-hand-side of the formula plus one column of the genotypes at a time. The data from the
association tests is obtained from a BGData object.

Usage

GWAS(formula, data, method = "lsfit", i = seq_len(nrow(geno(data))),
j = seq_len(ncol(geno(data))), chunkSize = 5000L,
nCores = getOption("mc.cores", 2L), verbose = FALSE, ...)

Arguments

formula The formula for the GWAS model without the variant, e.g. y ~ 1 or y ~ factor(sex)
+ age. The variables included in the formula must be column names in the sam-
ple information of the BGData object.

data A BGData object.

method The regression method to be used. Currently, the following methods are imple-
mented: rayOLS (see below), lsfit, lm, lm.fit, glm, lmer, and SKAT. Defaults
to lsfit.

i Indicates which rows of the genotypes should be used. Can be integer, boolean,
or character. By default, all rows are used.

j Indicates which columns of the genotypes should be used. Can be integer,
boolean, or character. By default, all columns are used.

chunkSize The number of columns of the genotypes that are brought into physical memory
for processing per core. If NULL, all elements in j are used. Defaults to 5000.

nCores The number of cores (passed to mclapply). Defaults to the number of cores as
detected by detectCores.

verbose Whether progress updates will be posted. Defaults to FALSE.

... Additional arguments for chunkedApply and regression method.

GWAS 17

Details

The rayOLS method is a regression through the origin that can only be used with a y ~ 1 formula,
i.e. it only allows for one quantitative response variable y and one variant at a time as an explanatory
variable (the variant is not included in the formula, hence 1 is used as a dummy). If covariates are
needed, consider preadjustment of y. Among the provided methods, it is by far the fastest.

Some regression methods may require the data to not contain columns with variance 0 or too many
missing values. We suggest running summarize to detect variants that do not clear the desired
minor-allele frequency and rate of missing genotype calls, and filtering these variants out using the
j parameter of the GWAS function (see example below).

Value

The same matrix that would be returned by coef(summary(model)).

See Also

file-backed-matrices for more information on file-backed matrices. multi-level-parallelism
for more information on multi-level parallelism. BGData-class for more information on the BGData
class. lsfit, lm, lm.fit, glm, lmer, and SKAT for more information on regression methods.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Detect variants that do not pass MAF and missingness thresholds
summaries <- summarize(geno(bg))
maf <- ifelse(summaries$allele_freq > 0.5, 1 - summaries$allele_freq,

summaries$allele_freq)
exclusions <- maf < 0.01 | summaries$freq_na > 0.05

Perform a single marker regression
res1 <- GWAS(formula = FT10 ~ 1, data = bg, j = !exclusions)

Draw a Manhattan plot
plot(-log10(res1[, 4]))

Use lm instead of lsfit (the default)
res2 <- GWAS(formula = FT10 ~ 1, data = bg, method = "lm", j = !exclusions)

Use glm instead of lsfit (the default)
y <- pheno(bg)$FT10
pheno(bg)$FT10.01 <- y > quantile(y, 0.8, na.rm = TRUE)
res3 <- GWAS(formula = FT10.01 ~ 1, data = bg, method = "glm", j = !exclusions)

Perform a single marker regression on the first 50 markers (useful for

18 multi-level-parallelism

distributed computing)
res4 <- GWAS(formula = FT10 ~ 1, data = bg, j = 1:50)

load.BGData Loads BGData (and Other) Objects from .RData Files

Description

This function is similar to load, but also initializes the different types of objects that can be used as
genotypes in a BGData object.

Currently supported are ff_matrix, big.matrix, and BEDMatrix objects. If the object is of type
LinkedMatrix, all nodes will be initialized with their appropriate method.

Usage

load.BGData(file, envir = parent.frame())

Arguments

file The name of the .RData file to be loaded.
envir The environment where to load the data.

See Also

BGData-class, ff, big.matrix-class, BEDMatrix-class, and LinkedMatrix-class for more
information on the above mentioned classes.

multi-level-parallelism

Multi-Level Parallelism

Description

Functions with the nCores, i, and j parameters provide capabilities for both parallel and distributed
computing.

For parallel computing, nCores determines the number of cores the code is run on. Memory usage
can be an issue for higher values of nCores as R is not particularly memory-efficient. As a rule
of thumb, at least around (nCores * object_size(chunk)) + object_size(result) MB of total
memory will be needed for operations on file-backed matrices, not including potential copies of
your data that might be created (for example lsfit runs cbind(1, X)). i and j can be used to
include or exclude certain rows or columns. Internally, the mclapply function is used and therefore
parallel computing will not work on Windows machines.

For distributed computing, i and j determine the subset of the input matrix that the code runs on.
In an HPC environment, this can be used not just to include or exclude certain rows or columns, but
also to partition the task among many nodes rather than cores. Scheduler-specific code and code to
aggregate the results need to be written by the user. It is recommended to set nCores to 1 as nodes
are often cheaper than cores.

orderedMerge 19

See Also

mclapply to learn more about the function used to implement parallel computing. detectCores to
detect the number of available cores.

orderedMerge Merge Two Data Frames Keeping the Order of the First

Description

This is a simplified version of merge useful for merging additional data into a BGData object while
keeping the order of the data in the BGData object.

Usage

orderedMerge(x, y, by = c(1L, 2L))

Arguments

x Data frame

y Data frame

by Specifications of the columns used for merging. Defaults to the first two columns
of the data frame, which traditionally has the family ID and the individual ID.

Value

Merged data frame

See Also

BGData-class for more information on the BGData class.

preprocess Center, scale, and impute data

Description

A faster version of scale with a similar interface that also allows for imputation. The main differ-
ence is that this version scales by the standard deviation regardless of whether centering is enabled
or not. If centering is enabled, missing values are imputed by 0, otherwise by the mean of the
column that contains the value.

Usage

preprocess(X, center = FALSE, scale = FALSE, impute = FALSE,
nCores = getOption("mc.cores", 2L))

20 readRAW

Arguments

X A numeric matrix.

center Either a logical value or numeric vector of length equal to the number of columns
of X.

scale Either a logical value or numeric vector of length equal to the number of columns
of X.

impute Indicates whether missing values should be imputed.

nCores The number of cores (passed to mclapply). Defaults to the number of cores as
detected by detectCores.

Value

The centered, scaled, and imputed matrix.

See Also

scale, which this function tries to improve upon.

Examples

Load example data
bg <- BGData:::loadExample()

Center and scale genotypes
W <- preprocess(as.matrix(geno(bg)), center = TRUE, scale = TRUE)

readRAW Creates a BGData Object From a .raw File or a .ped-Like File

Description

Creates a BGData object from a .raw file (generated with --recodeA in PLINK). Other text-based
file formats are supported as well by tweaking some of the parameters as long as the records of
individuals are in rows, and phenotypes, covariates and markers are in columns.

Usage

readRAW(fileIn, header = TRUE, dataType = integer(), n = NULL,
p = NULL, sep = "", na.strings = "NA", nColSkip = 6L,
idCol = c(1L, 2L), nNodes = NULL, linked.by = "rows",
folderOut = paste0("BGData_", sub("\\.[[:alnum:]]+$", "",
basename(fileIn))), outputType = "byte", dimorder = if (linked.by ==
"rows") 2L:1L else 1L:2L, verbose = FALSE)

readRAW_matrix(fileIn, header = TRUE, dataType = integer(), n = NULL,
p = NULL, sep = "", na.strings = "NA", nColSkip = 6L,

https://www.cog-genomics.org/plink2

readRAW 21

idCol = c(1L, 2L), verbose = FALSE)

readRAW_big.matrix(fileIn, header = TRUE, dataType = integer(),
n = NULL, p = NULL, sep = "", na.strings = "NA", nColSkip = 6L,
idCol = c(1L, 2L), folderOut = paste0("BGData_",
sub("\\.[[:alnum:]]+$", "", basename(fileIn))), outputType = "char",
verbose = FALSE)

Arguments

fileIn The path to the plaintext file.
header Whether fileIn contains a header. Defaults to TRUE.
dataType The coding type of genotypes in fileIn. Use integer() or double() for nu-

meric coding. Alpha-numeric coding is currently not supported for readRAW and
readRAW_big.matrix: use the --recodeA option of PLINK to convert the .ped
file into a .raw file. Defaults to integer().

n The number of individuals. Auto-detect if NULL. Defaults to NULL.
p The number of markers. Auto-detect if NULL. Defaults to NULL.
sep The field separator character. Values on each line of the file are separated by this

character. If sep = "" (the default for readRAW the separator is "white space",
that is one or more spaces, tabs, newlines or carriage returns.

na.strings The character string used in the plaintext file to denote missing value. Defaults
to NA.

nColSkip The number of columns to be skipped to reach the genotype information in the
file. Defaults to 6.

idCol The index of the ID column. If more than one index is given, both columns will
be concatenated with "_". Defaults to c(1, 2), i.e. a concatenation of the first
two columns.

nNodes The number of nodes to create. Auto-detect if NULL. Defaults to NULL.
linked.by If columns a column-linked matrix (ColumnLinkedMatrix) is created, if rows

a row-linked matrix (RowLinkedMatrix). Defaults to rows.
folderOut The path to the folder where to save the binary files. Defaults to the name of the

input file (fileIn) without extension prefixed with "BGData_".
outputType The vmode for ff and type for big.matrix objects. Default to byte for ff and

char for big.matrix objects.
dimorder The physical layout of the underlying ff object of each node.
verbose Whether progress updates will be posted. Defaults to FALSE.

Details

The data included in the first couple of columns (up to nColSkip) is used to populate the sample
information of a BGData object, and the remaining columns are used to fill the genotypes. If the first
row contains a header (header = TRUE), data in this row is used to determine the column names for
sample information and genotypes.

The genotypes can take several forms, depending on the function that is called (readRAW, readRAW_matrix,
or readRAW_big.matrix). The following sections illustrate each function in detail.

22 readRAW

readRAW

Genotypes are stored in a LinkedMatrix object where each node is an ff instance. Multiple ff
files are used because the array size in ff is limited to the largest integer which can be represented
on the system (.Machine$integer.max) and for genetic data this limitation is often exceeded. The
LinkedMatrix package makes it possible to link several ff files together by columns or by rows and
treat them similarly to a single matrix. By default a ColumnLinkedMatrix is used for the genotypes,
but the user can modify this using the linked.by argument. The number of nodes to generate is
either specified by the user using the nNodes argument or determined internally so that each ff
object has a number of cells that is smaller than .Machine$integer.max / 1.2. A folder (see
folderOut) that contains the binary flat files (named geno_*.bin) and an external representation
of the BGData object in BGData.RData is created.

readRAW_matrix

Genotypes are stored in a regular matrix object. Therefore, this function will only work if the .raw
file is small enough to fit into memory.

readRAW_big.matrix

Genotypes are stored in a filebacked big.matrix object. A folder (see folderOut) that contains
the binary flat file (named BGData.bin), a descriptor file (named BGData.desc), and an external
representation of the BGData object in BGData.RData are created.

Reloading a BGData object

To reload a BGData object, it is recommended to use the load.BGData function instead of the load
function as load does not initialize ff objects or attach big.matrix objects.

See Also

load.BGData() to load a previously saved BGData object, as.BGData() to create BGData objects
from non-text files (e.g. .bed files). BGData-class, ColumnLinkedMatrix-class, RowLinkedMatrix-class,
big.matrix-class, and ff for more information on the above mentioned classes.

Examples

Path to example data
path <- system.file("extdata", package = "BGData")

Convert RAW files of chromosome 1 to a BGData object
bg <- readRAW(fileIn = paste0(path, "/chr1.raw"))

unlink("BGData_chr1", recursive = TRUE)

segments 23

segments Find non-overlapping segments based on a summary statistic

Description

Given a summary statistic and a threshold, this function computes the number of non-overlapping
segments, each defined as a discovery (i.e., statistic[i] <= threshold) +/- a gap, in the same
units as bp (often base-pair position).

Usage

segments(statistic, chr, bp, threshold, gap, trim = FALSE, verbose = FALSE)

Arguments

statistic A statistic (e.g., BFDR or p-values).

chr A vector containing the chromosome for each value of statistic.

bp A vector containing the base-pair positions for each value of statistic.

threshold The threshold to determine ’significance’ (e.g., 1e-5 for p-values).

gap 1/2 of the length of the desired segments.

trim Whether to collapse segments that were artifically inflated by gap. Defaults to
FALSE.

verbose Whether progress updates will be posted. Defaults to FALSE.

Value

A data frame containing the following information:

chr Chromosome

start Index where segment starts within statistic.

end Index where segment ends within statistic.

length Length of segment.

bpStart Base-pair position where segment starts.

bpEnd Base-pair position where segment ends.

bpLength Length of segment in base-pair positions.

minValue Smallest value of statistic within segment.

minValuePos Position of variant with the smallest value of statistic within segment.

24 summarize

Examples

library(BGData)

Load example data
bg <- BGData:::loadExample()

Perform GWAS
pValues <- GWAS(

formula = FT10 ~ 1,
data = bg,
method = "rayOLS"

)

Determine segments within +/- 1MB from a significant variant
segments <- segments(

statistic = pValues[, 4],
chr = map(bg)$chromosome,
bp = map(bg)$base_pair_position,
threshold = 1e-5,
gap = 1e6,
trim = FALSE,
verbose = FALSE

)

summarize Generates Various Summary Statistics

Description

Computes the frequency of missing values, the (minor) allele frequency, and standard deviation of
each column of X.

Usage

summarize(X, i = seq_len(nrow(X)), j = seq_len(ncol(X)),
chunkSize = 5000L, nCores = getOption("mc.cores", 2L),
verbose = FALSE)

Arguments

X A matrix-like object, typically the genotypes of a BGData object.

i Indicates which rows of X should be used. Can be integer, boolean, or character.
By default, all rows are used.

j Indicates which columns of X should be used. Can be integer, boolean, or char-
acter. By default, all columns are used.

chunkSize The number of columns of X that are brought into physical memory for process-
ing per core. If NULL, all elements in j are used. Defaults to 5000.

summarize 25

nCores The number of cores (passed to mclapply). Defaults to the number of cores as
detected by detectCores.

verbose Whether progress updates will be posted. Defaults to FALSE.

Value

A data.frame with three columns: freq_na for frequencies of missing values, allele_freq for
allele frequencies of the counted allele, and sd for standard deviations.

See Also

file-backed-matrices for more information on file-backed matrices. multi-level-parallelism
for more information on multi-level parallelism. BGData-class for more information on the BGData
class.

Examples

Restrict number of cores to 1 on Windows
if (.Platform$OS.type == "windows") {

options(mc.cores = 1)
}

Load example data
bg <- BGData:::loadExample()

Summarize the whole dataset
sum1 <- summarize(X = geno(bg))

Summarize the first 50 individuals
sum2 <- summarize(X = geno(bg), i = 1:50)

Summarize the first 1000 markers (useful for distributed computing)
sum3 <- summarize(X = geno(bg), j = 1:100)

Summarize the first 50 individuals on the first 1000 markers
sum4 <- summarize(X = geno(bg), i = 1:50, j = 1:100)

Summarize by names
sum5 <- summarize(X = geno(bg), j = c("snp81233_C", "snp81234_C", "snp81235_T"))

Convert to minor allele frequencies (useful if the counted alleles are not
the minor alleles)
maf <- ifelse(sum1$allele_freq > 0.5, 1 - sum1$allele_freq, sum1$allele_freq)

Index

∗ methods
geno, 11

as.BGData, 3, 6
as.BGData(), 22

BGData, 4, 6
BGData-class, 5
BGData-package, 2

chunkedApply, 6
chunkedMap, 7

detectCores, 19

ff, 12, 18, 22
file-backed-matrices, 8
findRelated, 9
fread, 4
FWD, 10

geno, 11
geno,BGData-method (BGData-class), 5
geno-class, 12
geno<- (geno), 11
geno<-,BGData-method (BGData-class), 5
getG, 12, 16
getG_symDMatrix, 14
glm, 17
GWAS, 16

lm, 17
lm.fit, 17
lmer, 17
load.BGData, 6, 18
load.BGData(), 22
lsfit, 17

map (geno), 11
map,BGData-method (BGData-class), 5
map<- (geno), 11

map<-,BGData-method (BGData-class), 5
matrix, 12
mclapply, 19
multi-level-parallelism, 18

orderedMerge, 19

pheno (geno), 11
pheno,BGData-method (BGData-class), 5
pheno<- (geno), 11
pheno<-,BGData-method (BGData-class), 5
preprocess, 19

read.table, 4
readRAW, 6, 20
readRAW(), 4
readRAW_big.matrix (readRAW), 20
readRAW_matrix (readRAW), 20

scale, 19, 20
segments, 23
SKAT, 17
summarize, 24

26

	BGData-package
	as.BGData
	BGData
	BGData-class
	chunkedApply
	chunkedMap
	file-backed-matrices
	findRelated
	FWD
	geno
	geno-class
	getG
	getG_symDMatrix
	GWAS
	load.BGData
	multi-level-parallelism
	orderedMerge
	preprocess
	readRAW
	segments
	summarize
	Index

