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Abstract

An earlier version of this document was published as Hankin (2005).
This paper introduces the BACCO package of R routines for carrying out Bayesian

analysis of computer code output. The package requires three packages of related func-
tionality: emulator and calibrator, and approximator, computerized implementations of
the ideas of Oakley and O’Hagan (2002), Kennedy and O’Hagan (2001a), and Kennedy
and O’Hagan (2000) respectively. The package is self-contained and fully documented R

code, and includes a toy dataset that furnishes a working example of the functions.
Package emulator carries out Bayesian emulation of computer code output; package

calibrator allows the incorporation of observational data into model calibration using
Bayesian techniques.

The package is then applied to a dataset taken from climate science.

Keywords: Bayesian analysis, climate modelling, uncertainty in climate prediction.

1. Introduction

In this paper I introduce BACCO, a new R package comprising packages emulator and
calibrator, that implements Bayesian analysis of computer code output using the meth-
ods of Oakley and O’Hagan (2002) and Kennedy and O’Hagan (2001a) respectively. The
BACCO package can be obtained from the Comprehensive R Archive Network, CRAN, at
http://cran.r-project.org/.

Many computer models, including climate prediction models such as C-goldstein (Marsh,
Edwards, and Shepherd 2002), take many hours, or even weeks, to execute. This type of model
can have tens to hundreds of free (adjustable) parameters, each of which is only approximately
known. Consider a scenario in which a particular model has been run in the past with different
sets of input parameters. The code output (here attention is confined to a single scalar value,
such as global average temperature) is desired at a new set of parameters, at which the code
has not been run. Under the Bayesian view (Currin, Mitchell, Morris, and Ylvisaker 1991),
the true value of the code output is a random variable, drawn from a distribution that is
conditioned by our prior knowledge, and in this case by the previous code runs; the computer
code is thus viewed as a random function. Package emulator gives statistical inferences about
this random function, and may be used to furnish computationally cheap—yet statistically
rigorous—estimates of the computer code output.

Although deterministic—in the sense that running the model twice with identical inputs gives
identical outputs—the Bayesian paradigm is to treat the code output as a random variable.
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Formally, the code output y is represented as a function η(x; θ) of the input parameter vector x
and parameter vector θ; if no confusion can arise, y = η(x) is written. Although η(·, ·) is
known in principle, in practice this is not the case. C-goldstein, for example, comprises
over 104 lines of computer code, and the fact that the output is knowable in principle appears
to be unhelpful in practice.

It is perhaps easier to understand output from a deterministic code as a random variable
if one imagines oneself to be at a computer terminal, waiting for a run to finish. The fact
that both the code itself, and its input parameters, are perfectly prescribed (thus the output
is in principle predetermined), does not reduce one’s subjective uncertainty in the output;
the Bayesian paradigm treats this as indistinguishable from uncertainty engendered by a
conventional random variable. Of course, if the code has been run before at slightly different
point in parameter space, one may be able to assert with some confidence that this particular
run output shouldn’t be too different from the last run’s (and of course if the code is run at
exactly the same point in parameter space, we can be certain that the code output will be
identical1). Such considerations are formalized in the Gaussian process model, discussed in
detail in section 1.2.

A case often encountered in practice is that the values of one or more components of x
are uncertain, typically because of practical difficulties of measurement (cloud albedo is a
commonly-cited example). It is therefore appropriate to consider X, the true input configu-
ration, to be a random variable with distribution G(x). Thus the output Y = η(X) is also
a random variable and it is the distribution of Y—the ‘uncertainty distribution’—that is of
interest.

In the case of C-goldstein, direct Monte-Carlo simulation of Y is so computationally inten-
sive as to become impractical: a single run typically takes 24 hours, and the parameter space
is 27 dimensional.

Package emulator allows one to emulate the code: the unknown function η(·) is assumed to
be a Gaussian process, and previous code runs constitute observations. I will show in this
paper that emulation can be orders of magnitude faster than running the code itself; and, at
least in the examples considered here, the emulator provides an estimate that is reasonably
close to the value that code itself would produce.

In this paper, the object of inference is the random function that is evaluated by the com-
puter code. Although one may question whether this object is actually of interest given that
the model is unlikely to predict reality correctly, Kennedy and O’Hagan (2001a) point out
that even a good model may be rendered ineffective by uncertainty in the input; and that
quantification of the uncertainty distribution is the first step towards reducing uncertainty in
the preditions.

1.1. Bayesian calibration of computer models

Notwithstanding that computer models are interesting and important entities in their own

1Many computer models are chaotic in the sense that running the model twice with closely separated but
non-identical parameter values will result in very different outputs. Such systems are generally not amenable
to the approach outlined here because the standard parameterization for the correlation function c(x, x

′)
discussed in the next section breaks down. Such systems may be modelled using a device known as a nugget

which breaks correlation between infinitesimally different points in parameter space. However, the climate
models used here as test cases are known to be non-chaotic.
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right, the ultimate object of inference is reality, not the model. Package calibrator imple-
ments a statistically rigorous method of incorporating observational data into uncertainty
analyses, that of Kennedy and O’Hagan (2001a) and Kennedy and O’Hagan (2001b) (here-
after KOH2001 and KOH2001S respectively).

When preparing a computer model for making predictions, workers often calibrate the model
by using observational data. In rough terms, the idea is to alter the model’s parameters to
make it fit the data.

A statistically unsound (Currin et al. 1991) methodology would be to minimize, over the allow-
able parameter space, some badness-of-fit measure over the physical domain of applicability
of the code.

To fix ideas, consider C-goldstein predicting sea surface temperature (SST) as a function
of position x (here styled “latitude” and “longitude”). The naïve approach discussed above
would be to minimize, over all parameter values θ in a set of allowable parameters P, the
squared discrepancies between observations z(x) and model predictions η(x,θ) summed over
observational space X :

min
θ∈P

[

∑

x∈X

(z(x) − η(x,θ))2

]

From a computational perspective, minimizing the object function above necessitates mini-
mization over a large dimensional parameter space; optimization techniques over such spaces
are notorious in requiring large numbers of function evaluations, which is not be feasible in
the current context. Also note that the method requires code evaluations at the same points
(“x”) as the observations z(·), which may not be available.

Other problems with this approach include the implicit assumption that observation errors
(and model evaluations) are independent of one another. This assumption is likely to be
misleading for closely separated observation points and for pairs of code evaluations that use
parameter sets that differ by only a small amount.

Bayesian methods are particularly suitable for cases in which the above problems are present,
such as the climate model predictions considered here. KOH2001 present a methodology by
which physical observations of the system are used to learn about the unknown parameters
of a computer model using the Bayesian paradigm.

1.2. The Gaussian process

The notion of Gaussian process underlies both emulator and calibrator packages. Consider
a function f : X −→ R with X ⊆ R

p. If f(·) is regarded as an unknown function, in the
Bayesian framework it becomes a random function. Formally, f(·) is a Gaussian process if, for
every n ∈ N, the joint distribution of f(x1), . . . , f(xn) is multivariate normal provided xi ∈ X .
In particular, f(x) is normally distributed for all x ∈ X .

The distribution is characterized by its mean function m(·), where m(x) = E {f(x)}, and its
covariance function c(·, ·), where c(x,x′) = cov {f(x), f(x′)}.

It is usual to require that f(x) and f(x′) be closely correlated if x and x′ are themselves close;
here, it is assumed that c(·, ·) = σ2r(x − x′) with r(d) = exp(−dT Ωd), Ω being a symmetric
positive definite matrix (which is usually unknown and has to be estimated).
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2. Emulation: computer output as a Gaussian process

For any random function η(·) and set of points {x1, . . . ,xn} in its domain, the random vec-
tor {η(x1), . . . , η(xn)} is assumed to be a multivariate normal distribution with mean

E {η(x)|β} = h(x)Tβ,

conditional on the (unknown) vector of coefficients β and h(·), the q known regressor functions
of x = (x1, . . . , xp)T ; a common choice is h(x) = (1, x1, . . . , xp)T , but one is free to choose
any function of x. The covariance is given by

cov
{

η(x), η(x′)|σ2
}

= σ2c(x,x′)

where c(x,x′) is a correlation function that measures the correlation between x and x′; here
the form

c(x,x′) = exp
{

−(x − x′)TB(x − x′)
}

(1)

will be used, where B is a positive semidefinite matrix. This form has the advantage that η(·)
has derivatives of all orders; other forms for the covariance function do not have this desirable
property. Oakley and O’Hagan use the weak conjugate prior for β and σ2:

p(β, σ2) ∝ σ(r+q+2)/2 exp
[{

(β − z)TV −1(β − z) + a
}

/
(

2σ2
]

and discuss methods for expert elicitation of a, r, z and V . The random function η(·) may be
conditioned on observations at specific points in parameter space (ie code runs). This set of
points is known as the experimental design, or the design matrix. Although it is possible to
tailor design matrices to a particular problem, here a Latin hypercube system is used. With
the specified prior, and an experimental design D = {x1, . . . ,xn} on which η(·) has been
evaluated giving d = η(D), it can be shown (Oakley 2; Oakley and O’Hagan 2002) that

η(x) −m∗(x)

σ̂
√

c∗(x,x)

∣

∣

∣

∣

∣

d, B ∼ tr+n (2)

where
m∗(x) = h(x)T β̂ + t(x)TA−1(d −Hβ̂) (3)

c∗(x,x′) = c(x,x′) − t(x)TA−1t(x′) +
{

h(x)T − t(x)TA−1H
}

V ∗
{

h(x′)TA−1H
}T

t(x) = (c(x,x1), . . . , c(x,xn))T H =
(

hT (x1), . . . , hT (xn)
T

A =















1 c(x1,x2) · · · c(x1,xn)

c(x2,x1) 1
...

...
. . .

c(xn,x1) · · · 1















β̂ = V ∗
(

V −1z +HTA−1d


σ̂2 =
a+ zTV −1z + dTA−1d − β̂T (V ∗)−1 β̂

n+ r − 2
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V ∗ =
(

V −1 +HTA−1H
−1

d = (η(x1), . . . , η(xn))T .

Thusm∗(x) is a computationally cheap approximation to η(x); uncertainties are given by σ̂
√

c∗(x,x).
These equations are consistent in that the estimated value for points actually in the design
matrix is in fact the observations (with zero error). Writing X = (x1, . . . ,xn)T , we have

m∗(X) = Hβ̂ + t(X)TA−1(d −Hβ̂) = d (4)

where we use the fact that h(X) = H and t(X) = A, and expand β̂ directly. It may similarly
be shown that c∗(x,x) = 0 for x ∈ D, as expected: the emulator should return zero error
when evaluated at a point where the code output is known.

2.1. Package emulator in use: toy problem

The central function of package emulator is interpolant(), which calculates the terms of
equation 3. Here, I use the package to investigate a simple toy world in which observations
are a Gaussian process on six parameters named a to f: the mean is 0*a + 1*b + 2*c +

3*d + 4*e + 5*e + 6*f, corresponding to β = 0:6; the residuals are correlated multivariate
Gaussian, with unit variance and all scales unity2. The overall approach is to use this scheme
to generate data, then use the data to estimate the parameters, and finally, compare the
estimates with the true values.

I first consider a synthetic dataset consisting of observations of the predefined Gaussian pro-
cess on a design matrix generated by emulator’s function latin.hypercube(n,d). This func-
tion takes two arguments: the first, n, is the number of observations to take; the second, d is
the number of dimensions of the design space. The output of the function latin.hypercube()

is a matrix with each row corresponding to one point in parameter space at which the Gaus-
sian process is observed. Taking 20 observations in a 6 dimensional design space appears to
give a small yet workable toy problem:

> toy <- latin.hypercube(20,6)

> head(toy)

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 0.675 0.225 0.275 0.575 0.575 0.325

[2,] 0.175 0.425 0.375 0.275 0.775 0.925

[3,] 0.325 0.675 0.575 0.375 0.025 0.075

[4,] 0.025 0.975 0.975 0.325 0.625 0.475

[5,] 0.075 0.825 0.475 0.525 0.225 0.025

[6,] 0.625 0.075 0.325 0.025 0.725 0.525

2Here, “scales” means the e-folding lengthscales for correlations between datapoints. The concept is a
special case of equation 1 in which B is diagonal, with elements Bi, say; the relevant lengthscales Si will
be Bi = 1/S2

i . Then the correlation between two points x and x
′ is given by

c(x, x
′) = exp

(

−

r
∑

i=1

(
∣

∣xi − x′

j

∣

∣

Si

)

2
)

.

Sometimes it is more convenient to consider the elements of matrix B, and sometimes it is better to think in
terms of the lengthscales Si (they have the same dimensions as the parameters).
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It is now possible to specify the expectation of the Gaussian process as a linear product, with
coefficients 0:6 acting on regression function H1.toy(), which prepends a 1 to its argument
(viz regressor.basis(x)=c(1,x)). In R idiom:

> f <- function(x) sum( (0:6)*x)

> expectation <- apply(regressor.multi(toy), 1, f)

where regressor.multi() is a vectorized version of regressor.basis(). Recall that we sup-
pose f() to be an unknown function; one object of package emulator is to infer its coefficients.
Next, matrix A is calculated, with scales all equal to 1:

> toy.scales <- rep(1,6)

> toy.sigma <- 0.4

> A <- toy.sigma*corr.matrix(xold=toy, scales=toy.scales)

Thus, for example, A[1,2] gives the covariance between observation 1 and observation 2. We
can simulate observational data by sampling from the appropriate Gaussian process directly,
using the mvtnorm package (Hothorn, Bretz, and Genz 2001):

> d <- as.vector(rmvnorm(n=1 , mean=expectation , sigma=A))

Vector d is the vector of observations, with variance matrix A. Now function interpolant()

of package emulator can used to estimate the unknown function f(), at a point not in the
training set:

> x.unknown <- rep(0.5 , 6)

> jj <- interpolant(x.unknown, d, toy, scales=toy.scales, g=TRUE)

> print(drop(jj$mstar.star))

[1] 10.82619

The estimated value (element mstar.star) is reasonably close to the correct value (which we
know to be 0.5*sum(0:6)=10.5). Also, the estimated value for the regression line, given by
element betahat, is close to the correct value of 0:6:

> print(jj$betahat)

const <NA> <NA> <NA> <NA> <NA>

-0.03305749 1.33155581 0.91356225 2.75765584 4.33514283 5.34581177

<NA>

6.21961684

The package will also give an estimate of the error on β̂:

> print(jj$beta.marginal.sd)
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const <NA> <NA> <NA> <NA> <NA> <NA>

0.6897928 0.4852447 0.4918417 0.4836037 0.4879629 0.4854479 0.5066235

showing in this case that the true value of each component of β lies within its marginal 95%
confidence limits.

Estimation of scales

In the above analysis, the scales were set to unity. In real applications, it is often necessary to
estimate them ab initio and a short discussion of this estimation problem is presented here.

The scales are estimated by maximizing, over allowable scales, the posterior likelihood. This
is implemented in the package by optimal.scales(), which maximizes the a-postiori prob-
ability for a given set of scale parameters. The likelihood is

(σ̂)−(n−q)/2 |A|−1/2 ·
∣

∣

∣HTA−1H
∣

∣

∣

−1/2
(5)

which is evaluated in the package by scales.likelihood(). It is more convenient to work
with the logarithms of the scales, as they must be strictly positive. Function optimal.scales()

is essentially a wrapper for multidimensional optimizing routine optim(), and is used as fol-
lows:

> scales.optim <- optimal.scales(val=toy, scales.start=rep(1,6), d=d, give=FALSE)

> print(scales.optim)

[1] 2.146688e+00 3.557968e-01 2.543731e+00 1.148016e-07 1.476943e+00

[6] 5.846076e-01

The estimated scales are not particularly close to the (known) real values, all of which are
unity; the scales are known to be “difficult to estimate” (Kennedy and O’Hagan 2000). One
interpretation might be that there is not a large amount of information residing in the residuals
once β has been estimated.

However, using the estimated scales does not seem to make much difference in practice:

> interpolant(x.unknown, d, toy, scales=toy.scales , g=FALSE)

[1] 10.82619

> interpolant(x.unknown, d, toy, scales=scales.optim, g=FALSE)

[1] 10.78686

2.2. Emulation applied to a dataset from climate science

The methods above are now used for a real dataset obtained from C-goldstein (Edwards
and Marsh 2005), an Earth systems model of intermediate complexity3.

3That is, intermediate between box models such as MAGICC (Wigley, Raper, Hulme, and Smith 2000) and
general circulation models such as HadCM3 (Gordon et al. 2000), which solve the primitive equations for fluid
flow on a 3D grid.
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The results.table dataset is a dataframe consisting of 100 rows, corresponding to 100 runs
of C-goldstein. Columns 1-19 are input values and columns 20-27 are code outputs. Here,
the column corresponding to global average surface air temperature (SAT) is used.

Figure 1 shows observed versus predicted SATs. The emulator was “trained” on the first 27
runs, so 27 of the points are perfect predictions, by equation 4. The other 77 points show a
small amount of error, of about 0.1◦C. Such an error is acceptable in many contexts.

One interpretation of the accurate prediction of SAT would be that this output variable is
well-described by the Gaussian process model.

However, variables which exhibit violently nonlinear dynamics might be less well modelled:
examples would include diagnostics of the thermohaline circulation (THC), which is often con-
sidered to be a bistable system (Vellinga and Wood 2002), exhibiting catastrophic breakdown
near some critical hypersurface in parameter space. Such behaviour is not easily incorporated
into the Gaussian process paradigm and one would expect emulator techniques to be less
effective in such cases.

Computational efficiency

C-goldstein takes 12 to 24 hours to complete a single run, depending on the parameters.
The emulator software presented here takes about 0.1 seconds to calculate the expected value
and estimated error—a saving of over five orders of magnitude.

One computational bottleneck is the inversion of matrix A, but this only has to be done once
per emulator.

3. Bayesian calibration: package calibrator

Computer climate models generally require two distinct groups of inputs. One group is the
(unknown) parameter set about which we wish to make inferences; these are the calibration
inputs. It is assumed that there is a true but unknown parameter set θ = (θ1, . . . , θq2

) with
the property that if the model were run with these values, it would reproduce the observations
plus a model inadequacy term plus noise. For any single model run, it is convenient to denote
the calibration parameters by t where t = (t1, . . . , tq2

).

The other group comprises all the other model inputs whose value might change when the
calibration set is fixed, conventionally denoted by x = (x1, . . . , xq1

). In the current context,
this group is the latitude and longitude at which mean surface temperature is desired.

A model run is essentially an evaluation—or statistical observation—of the unknown random
function η(·, ·) at a specified point in parameter and location space η(x, t); a field observation
is a statistical observation of another unknown random function ξ(·).

This system has the notational advantage of distinguishing the true but unknown value θ of
the calibration inputs from the value t that were set as inputs when running the model.

The calibration data comprise the n field observations z = (z1, . . . , zn)T (ie observations
of ξ(xi), subject to error), and the outputs y = (y1, . . . , yN )T from N runs of the computer
code evaluated at points on a design matrixD1 whereD1 = {(x∗

1, t1), . . . , (x∗
N , tN )}. Thus y =

η(D1), or yi = η(x∗
i , ti); we write dT = (yT , zT ) for the full set of calibration data.



Robin K. S. Hankin 9

10 11 12 13 14 15

1
0

1
1

1
2

1
3

1
4

1
5

temperature (
o
C), model

te
m

p
e

ra
tu

re
 (

o
C

),
 e

m
u

la
to

r

Figure 1: Observed vs predicted surface air temperature; “ observed” means actual code run;
“predicted” means predicted using the emulator. Error bars are 95% confidence intervals
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Model

KOH2001 suggest that
ξ(x) = ρ · η (x, θ) + δ (x) (6)

is an adequate representation of the relationship between observation and computer model
output. Here δ(·) is a model inadequacy term that is independent of model output η(·, ·). It
is then assumed that the observations zi = ξ(·) +N(0, λ). The true value of neither λ nor ρ
is known and has to be inferred from observations and the calibration dataset.

This statistical model suggests a non-linear regression in which the computer code itself defines
the regression function through the term ρ · η(xi,θ) with parameters ρ and θ. KOH2001
consider the meaning of model fitting in this context and conclude that “the true value for θ

has the same meaning and validity as the true values of regression parameters [in a standard
regression model]. The ‘true’ θ is a best-fitting θ in the sense of representing the data
faithfully according to the error structure specified for the residuals”.

Prior knowledge

The Bayesian paradigm allows the incorporation of a priori knowledge (beliefs) about the
parameters of any model being used. Consider a model in which climate sensitivity λ is a
free parameter4. In principle, we are free to ‘tune’ λ to give the best fit to observational data.
However, most workers would consider 0.4 − 1.2 K · W−1 · m2 to be a reasonable range for this
physical constant, in the sense that finding an optimal value for λ outside this range would
be unacceptable.

It is possible to incorporate such ‘prior knowledge’ into analysis by ascribing a prior distri-
bution to λ. One might interpret the upper and lower ends of the range as 5th and 95th
percentiles of a normal, or lognormal, distribution; if the bounds are “hard”, then a uniform
PDF might be used.

The prior PDF for the vector of parameters θ is denoted p(·). KOH2001S assume that θ is
multivariate Gaussian with θ ∼ N (mθ, Vθ).

Hyperparameters

KOH2001S define hyperparameters ρ, λ, ψ1, ψ2 that specify the correlations between the ob-
servations in the dataset, and the relationship between the computer model and observations.

The variance matrix of d hasN+n rows and columns; its (j, j′)-th element is c1((x∗
j , tj), (x∗

j′ , tj′)).
KOH2001 derive results for the case where

c1((x, t), (x′, t′)) = σ2
1 exp

{

−(x − x′)T Ωx(x − x′) − (t − t′)T Ωt(t − t′)
}

where Ωx and Ωt are arbitrary functions of hyperparameter ψ1. A similar definition gives the
variance matrix of x in terms of a second hyperparameter ψ2.

For the purposes of implementing KOH2001, it is convenient to use a single R object that
contains not only the hyperparameters above, but also other information such as σ2

1 and ρ.
The values of these variables have to be inferred in any case and it is logical to consider them
alongside the formal hyperparameters.

4Climate sensitivity is usually defined as the equilibrium change in global mean surface temperature fol-
lowing a doubling of the atmospheric CO2 concentration (Stainforth 2005).



Robin K. S. Hankin 11

In the R implementation presented here, the hyperparameter object phi also contains extra
information such as the Cholesky decomposition of the square matrices, and the prior mean
and variance of θ. This device greatly simplifies many functions in the package; an example
is given in the discussion of ht.fun() below.

4. Design of package calibrator

The overarching design philosophy of package calibrator is to be a direct and transparent
implementation of KOH2001 and KOH2001S. Each equation appearing in the papers has a
corresponding R function, and the notation is changed as little as possible. One reason for this
approach is debugging: with such a structured programming style, it is possible to identify
differences between alternative implementations. Speed penalties of this approach appear to
be slight.

4.1. Notation

In calibrator, most notation is an ascii version of that used by KOH2001S. Function names
are descriptive where possible, or (as in p.eqn8.supp()), named for the relevant equation
number in the supplement KOH2001S.

4.2. Toy dataset

Partly to facilitate code testing, and partly as a didactic aid in the man pages, package
calibrator includes a simple “toy” dataset. Toy objects have a .toy suffix, as in theta.toy.
Each function’s documentation includes a working example in which toy data is processed
appropriately.

For any real application (such as the climate analysis discussed below), each member of the
toy dataset must be replaced with the corresponding real dataset.

Toy datasets are loaded by data(toys) and ?toys gives a complete list. The toy dataset is
designed to be simple and transparent, thus offering a clear test of the package’s methods.
The dataset comprises the following objects:

• Design matrix. Two elements:

– D1.toy, matrix of 8 rows of code run points, with five columns. The first two
columns (‘x’ and ‘y’) represent the input space of ζ (nonparameters styled “latitude
and longitude”); the next three are parameter values.

– D2.toy, matrix of 5 rows of field observations on two variables ‘x’ and ‘y’.

• Observational data. Three elements:

– y.toy, a vector of length 8. Each element corresponds to the code output at points
corresponding to the rows of design matrix D1.toy.

– z.toy, a vector of length five. Each element corresponds to a measurement at each
of the rows of D2.toy.

– d.toy, a data vector consisting of length 13: elements 1-8 are y.toy and elements 9-
13 are z.toy.
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• Functions. Ten elements:

– create.new.toy.datasets(N,n), a function to create new toy datasets with N

observations and n code runs; error distributions generated by directly simulating
the appropriate Gaussian Process on a design matrix that is a Latin hypercube
generated by latin.hypercube().

– E.theta.toy(), a function that returns expectation of H(D) with respect to theta

– Edash.theta.toy() as above, but returns expectation with respect to the “dashed”
normal distribution detailed on page 4 of KOH2001S.

– extractor.toy(), a function that extracts x∗ and t from D2; a toy example is
needed because the extraction method depends on the nature of D1.

– H1.toy(), a function that returns the regression basis of D1.toy

– H2.toy() As above but for D2.toy.

– hpp.fun.toy(), a function to create hyperparameter object phi in a form suitable
for passing to the other functions in the library.

– hpp.change.toy(), as above but modifies hyperparameter object phi

– computer.model(), function that represents the unknown computer program.
In the toy case, it is a simple Gaussian process, with mean h.toy(x,t) %*%

REAL.COEFFS and variance matrix REAL.SIGMA1SQUARED * diag(REAL.SCALES).
The capitalized variable names are the true but unknown parameters of the com-
puter model. They appear in the R source code but are not modifiable in the
context of package usage, because they represent the “real world”). Estimates of
these quantities should be close to the actual values.

– reality(), a function to simulate observational data. This toy function is a sim-
ple Gaussian process, with internal (unknown) parameters. The mean is given by
computer.model(), plus a Gaussian process with appropriate capitalized param-
eters. As above, these parameters are stand for unobservable properties of the
system under examination, whose values must be inferred from observation.

The objects in the toy dataset are chosen to be small enough for the functions of the package
to operate quickly. However, for the purposes of testing the optimization strategy, longer
datasets are needed. Such are given by function create.new.toy.datasets(), which au-
tomagically creates a dataset of the same form as the toy dataset discussed above but with
the number of observations supplied by the user. The observations are drawn directly from
the appropriate multivariate Gaussian distribution.

4.3. Example function

In order to show the design philosophy of calibrator, and to illustrate some of the programming
issues that occur when implementing a conceptually complex methodology, I discuss in some
detail a typical function of the package. The function chosen is ht.fun(), which is one of
many needed when calculating the conditional covariance matrix of z. Function ht.fun()

calculates the matrix
∫

h1 (xj ,θ) t (xi,θ)T p(θ) dθ (7)
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where h1(·, ·) is the basis function for calculating expectation of y, and t(·, ·) is the set of
distances to a point with k-th element

c1 ((xi,θ), (x∗
k, tk)) , j = 1, . . . , N . (8)

With these definitions, KOH2001 show that the k-th column of equation 7, and thus ht.fun(...)[,k],
is

σ2
1 |I + 2VθΩx|−1/2 exp

{

−(xi − x∗
k)T Ωx(xi − x∗

j )
}

×

exp



−(mθ − tk)T
(

2Vθ + Ω−1
t

−1
(mθ − tk)



E′
Θ

(

h1(xj ,θ)


(9)

where E′
Θ is discussed below. Equation 9 is one of several similar equations appearing in

KOH2001. In the implementation, function ht.fun() takes ten arguments:

> args(ht.fun)

function (x.i, x.j, D1, extractor, Edash.theta, H1, fast.but.opaque = TRUE,

x.star = NULL, t.vec = NULL, phi)

NULL

Apart from the arguments already discussed, this function requires several further arguments:

• extractor() is a function that splits D1 into x∗ and t. It is necessary to pass this
function explicitly if the split between code input space and parameter space is to be
arbitrary. In the toy example, with the code input space being R

2 and the parameter
space being R

3, the working toy example extractor.toy() (supplied as part of the
toys dataset in the package) returns a list with elements x[1:2] and x[3:5].

• Edash.theta() is a function that returns expectation with respect to the normal dis-

tribution N



(

V −1
θ + 2Ωt

−1 (

V −1
θ mθ + 2Ωttk



,
(

V −1
θ + 2Ωt

−1


.

• fast.but.opaque is a Boolean variable, with default TRUE meaning to take advantage
of Cholesky decomposition for evaluating quadratic forms (the hyperparameter object
phi includes the upper and lower triangular decompositions by default). However, this
requires the calling routine to supply x∗ and t explicitly.

Setting fast.but.opaque to FALSE should give numerically identical results in a slower,
but more conceptually clear, manner. This option is used mainly for debugging pur-
poses.

• phi. The hyperparameter object. In KOH2001S, “hyperparameters” refers to ψ1 and ψ2,
but in this computer implementation is it convenient to augment ϕ with other objects
that do not change from run to run (such as the a priori PDF for θ and Cholesky
decompositions for the various covariance matrices). This way, it is possible to pass
a single argument to each function in the package and update it in a consistent—and
object-oriented—manner.

The package includes methods for setting and changing the components of phi (the
toy examples provided are hpp.fun.toy() to create a hyperparameter object and
hpp.change.toy() to change elements of the hyperparameter object).
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This example illustrates several features of the KOH2001 approach. Firstly, the system is
algebraically complex, requiring a multi-level hierarchy of concepts. The design philosophy of
emulator is to code, explicitly, each function appearing in KOH2001; and to include working
examples of these functions in the online help pages. This structured approach aids debugging
and code verification.

4.4. Optimization of parameters and hyperparameters

Kennedy and O’Hagan estimate the hyperparameters first, then the parameters. In this
paper, I use ‘hyperparameters’ to mean ψ1 and ψ2 together with ρ, λ, σ2

1, σ2
2; all have to be

estimated.

The package provides functions stage1() and stage2() which use numerical optimization
techniques to estimate hyperparameters ψ1 and ψ2 in two stages, as per KOH2001a. These
functions maximize the posterior likelihood of observations y.

Function stage3() optimizes the model parameters by maximizing the posterior PDF of θ;
but note that KOH2001 explicitly state that point estimation of θ is not generally desirable,
and suggest that calibrated prediction is usually a better approach.

5. Package calibrator in use

Two case studies of calibrator are now presented. First, a simple “toy” dataset will be
analysed. The object of this is to show how the software behaves when the dataset has only
a simple structure that is known in advance.

The package is then applied to a real climate problem in which model parameters are assessed
using model output and observational data.

5.1. The toy problem

In this section, calibrator is used to estimate the hyperparameters of the toy dataset, in the
two-stage process outlined above and in more detail in KOH2001a; all executable R code is
taken directly from the stage1() help page. The parameters of the model are then estimated,
using the estimated hyperparameters.

One advantage of considering a simple toy example is that the covariance structure may
be specified exactly. Thus one can generate observations and code runs directly from the
appropriate multivariate Gaussian distribution using rmvnorm(n=1, mean, sigma), where
rmvnorm(), from package mvtnorm returns samples from a multivariate Gaussian distribution
with specified mean and variance.

If this is done, one knows that the conditions and assumptions specified by KOH2001 are met
exactly, with the additional advantage that the basis functions, scales, regression coefficients,
and model parameters, are all known and adjustable.

KOH2001 state explicitly that exact determination of the hyperparameters tends to be dif-
ficult in practice, and indeed even in the toy example the numerically determined values for
phi differ somewhat from the exact values, although they are correct to within half an order
of magnitude. Note that KOH2001 consider only the case of h1(x, t) = h2(x) = 1, corre-
sponding to a constant prior with β1 and β2 being scalars; but in the toy example I consider
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the more complex case of h1(x, t) = (1,x, t)T and h2(x) = (H(0.5 − x[1]), H(x[2] − 0.5))T

where H is the Heaviside function5. In the climatic case considered below, Legendre functions
are needed to specify a prior for global temperatures as a function of latitude and longitude.

5.2. Results from toy problem

In this section, various parameters and hyperparameters of the toy problem are estimated
using standard numerical optimization techniquies. The correct values are viewable by ex-
amining the source code, or by using computer.model() with the export argument set to
to TRUE. Because these operations are not possible in real applications (parameters are un-
observable), accessing them causes the package to give a warning, reminding the user that
he is carrying out an operation that requires omniscience6, an attribute not thought to be
possessed by the typical user of calibrator.

In the first stage, ψ1 is estimated by maximizing p(ψ1|y), given by equation 4 of KOH2001.
This is carried out by stage1() of the package. In stage 2, the remaining hyperparame-
ters ψ2 are estimated by maximizing the posterior probability p(ρ, λ, ψ2|d, ψ1) given by the
(unnumbered) equation on page 4, evaluated by R function p.page4().

Taking the example given in the help page for stage1(), but with 74 code runs and 78 obser-
vation points, chosen as a compromise between informative dataset and reasonable execution
time, yields

x y A B C

6.82060592 0.09290103 6.25596840 0.77746434 0.01929785

sigma1squared

0.83948328

comparing reasonably well with the true values of 10, 0.1, 10, 1, 0.1, 0.4, as hard-coded
in to computer.model(). Better agreement might be obtained by taking more observations
or using more code runs, at the expense of increased runtimes.

Stage 2, in which ψ2, λ, and σ2
1 are estimated, yields

rho lambda x y sigma2squared

0.8631548 0.1051552 3.81230769 3.40685222 0.64521921

comparing reasonably well with the real values of 2 and 3 for the scales, 0.2 for lambda, and
0.3 for σ2

1, hard-coded in to reality(). Again, the estimated values are close to the exact
values but further improvements could be obtained by taking more observations or using more
code runs; but too many observations can invite numerical problems as several large, almost
singular, matrices have to be inverted.

Stage 3 finds a maximum likelihood estimate for the model parameters, by maximizing the
apriori PDF for θ, given by p.eqn8.supp() in this implementation.

5Thus, the model inadequacy term is the sum of two parts, the first being zero if x[1]>0.5 and an unknown
constant otherwise; and the second being zero if x[2]<0.5 and a second unknown constant otherwise. The R
idiom would be h2(x) = c( x[1]<0.5, x[2]>0.5)

6Changing the parameters is not permitted without editing the source code. This would be equivalent to
omnipotence.
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ϕ A B C

θ̂|ϕ = ϕtrue 0.88 0.09 0.24

θ̂|ϕ = ϕbest 0.78 0.13 0.40

θ̂|ϕ = ϕprior 0.51 0.22 0.71

θtrue 0.90 0.10 0.30

Table 1: Estimates for the parameter set using three different values for the hyperparameters ϕ

A B C

0.78345 0.131281 0.40222366

comparing resonably well with the real values of c(0.9, 0.1, 0.3) hard coded in to reality().
Note that the three stages above operate sequentially in the sense that each one estimates
parameters, which are subsequently held fixed.

Effect of inaccurate hyperparameters

As shown above, even with a system specifically tailored for use with KOH2001, the estimated
values for the hyperparameters may differ from the true values by a substantial amount.

To gain some insight into the effect of hyperparameter misprediction, table 1 presents some
predictions conditional on the true hyperparameters, the estimated hyperparameters, and
several incorrect values. Observe how the true value of the hyperparameters yields the most
accurate values for θ, although in this case the difference is slight. It is important to realize
that the best that can possibly be expected is for the predicted value being drawn from the
same distribution as generated the observation. In this case, both observations and computer
predictions are Gaussian processes.

5.3. Conclusions from toy problem analysis

The toy problem analyzed above shows that the implementation is satisfactory in the sense
that the true values of the parameters and hyperparameters may be estimated with reasonable
accuracy if their true value is known and the assumptions of KOH2001 are explicitly satisfied.

However, certain difficulties are apparent, even in this highly simple system, which was specif-
ically created in order to show the methods of KOH2001S in a favourable light.

The primary difficulty is execution time for the optimization process to find the best set of
hyperparameters. Stage 1 is reasonably fast, but the objective function minimized in stage 2
takes about 5 minutes to evaluate with the setup described above: execution time goes as
the fourth power of number of observations. In the toy case considered here, any number of
observations could be taken (the generating function is very cheap), but too many renders
the methods unworkably slow; and too few makes the estimates unreliable.

Note that the situation is ameliorated somewhat by stage 2 requiring only four-dimensional
optimization.

6. Bayesian calibration applied to a real problem in climate science

The calibrator package is now applied to a problem of greater complexity, namely climate
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science output from the C-goldstein computer model. The techniques presented here are
complementary to the Kalman filtering techniques of Annan, Hargreaves, Edwards, and Marsh
(2005).

The problem considered here is slightly different from that presented in part 1. Here,
KOH2001 is used to calibrate temperature data generated by C-goldstein using obser-
vational data taken from the SGEN dataset.

The procedure is as follows:

1. Pick a few representative points on the Earth’s surface whose temperature is of interest.
This set might include, for example, the North and South Poles, and a point in Western
Europe. Seven points appears to be a good compromise between coverage and acceptable
runtime.

2. Choose a reasonable prior distribution for the 16 adjustable C-goldstein parameters,
using expert judgement

3. Generate an ensemble of calibration points in parameter space by sampling from the
prior PDF. For each member of this ensemble, run C-goldstein at that point in pa-
rameter space and record the predicted temperature at each of the seven representative
points on Earth’s surface. For this application, a calibration ensemble of about 100 code
runs appears to represent a reasonable compromise between coverage and acceptable
runtime.

4. Determine the hyperparameters for the dataset exactly as for the toy problem above

5. From the prior PDF, sample an ensemble of say 10000 points and, using the hyperpa-
rameters estimated in step 4 above, use the emulator package to estimate the European
temperature conditional on the field observations z and code runs y.

6. From equation 8, estimate the probability of each of the 10000 points in parameter
space

7. Construct a weighted CDF for the temperature predictions.

Such a procedure will specify a CDF that incorporates observed temperature data from the
NCEP dataset. In essence, parameter sets that give predicted temperature distributions
closely matching observed data are assigned a high probability; if the match is poor, a low
probability is assigned.

Although it might be possible to maximize the posterior PDF for parameter space (and thus
determine a maximum likelihood estimate for the “true” parameters), such an approach would
preclude techniques that require averaging over parameter space.

6.1. Results

The results section splits into two: first, numerical estimates of the scales and other hyper-
parameters, and second, results conditional on those hyperparameters.

Estimation of the hyperparameters

Optimization is always difficult in high dimensional spaces. Here, location of the true global
minimum is an acknowledged difficulty; the emphasis in this paper is on the considerably
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easier problem of locating points in hyperparameter space that are significantly better than
the starting point of the optimization routine. It is also the case that the true global minimum,
even if it could be found, is a statistic of the observations in the sense that it is a partition of
the sample space—and thus would be different from trial to trial (if repeated sampling were
admitted).

Use of the simulated annealing process helps to reduce the undesirable possibility of being
“trapped” in a local minimum, but does not eliminate it. For the present, it is suggested
that the difficulties of multidimensional optimization are conceptually distinct from the main
thrust of this paper (and are far better dealt with in the specialist optimization literature).

In any case, as shown in the toy example section above, using incorrect scales is unlikely to
lead to serious mispredictions.

The values for the hyperparameters used in the remainder of this paper were the result of a
weekend’s optimization time on a dual 2GHz P5.

Modification of the prior

Results are now presented which show distributions for temperatures in Northern Europe,
conditional on the observed values of the observations and optimized values of the hyperpa-
rameters. For the purposes of this paper, “temperature in Northern Europe” means annual
average temperatures, as predicted by C-goldstein, at latitude 60◦N, longitude 0◦E. Fig-
ure 2 shows how the distribution function changes on incorporation of observed temperatures.

Note how the median temperature, for example, falls by about one degree centigrade when
the observational dataset is included.

6.2. Conclusions from climate problem analysis

The primary conclusion from the above analysis is that it is possible to apply the methods of
KOH2001 to a real problem in climate dynamics, in a computationally efficient manner.

This is, as far as I am aware, the first time that a posterior PDF has been rigorously derived
for the parameter space of a climate model.

The fact that the estimated PDF changes significantly on incorporation of observational data
suggests that the prior is uninformative. Such conclusions can be useful in climate science,
by suggesting where new observational data can be most effective.

7. Conclusions

Viewing a deterministic computer code as a Gaussian process with unknown coefficients and
applying Bayesian analysis to estimate them appears to be a useful and powerful technique. It
furnishes a fast, statistically rigorous approximation to the output of any computer program.

This paper has presented emulator, an R package that interprets computer code output as a
Gaussian process, and uses the ideas of Oakley and O’Hagan (2002) to construct an emulator:
that is, a statistical approximation to the actual code.

The package is applied successfully to a toy dataset, and a problem taken from climate
science in which globally averaged surface air temperature (SAT) is predicted as a function
of 16 unknown input parameters.
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Average SAT is predicted well by the emulator, as this output variable is well-described by
the Gaussian process model.

This paper has shown how Bayesian methods may be used interpret climate model output in
a statistically rigorous way. The BACCO package, incorporating packages emulator, approx-

imator, and calibrator, implements the formulæ of Oakley and O’Hagan (2002) and Kennedy
and O’Hagan (2001a) respectively in a transparent and maintainable manner.

Both packages were demonstrated using the built in “toy” dataset, and a dataset taken from
climate science.

The emulator package produced an approximation to C-goldstein output that ran five
orders of magnitude faster, and was accurate to within about 0.1◦C.

The calibrator package applied formal Bayesian methods to show that predictions for tem-
perature over Northern Europe were about 1◦C cooler when observational data is taken into
account.
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