Package ‘ARUtools’

July 28, 2025

Type Package

Title Management and Processing of Autonomous Recording Unit (ARU)
Data

Version 0.7.3

Description Parse Autonomous Recording Unit (ARU) data and for sub-sampling recordings.
Extract Metadata from your recordings, select a subset of recordings for
interpretation, and prepare files for processing on the
'WildTrax' <https://wildtrax.ca/> platform. Read and process metadata
from recordings collected using the SongMeter and BAR-LT types of ARUs.

License MIT + file LICENSE

URL https://arutools.github.io/ARUtools/,
https://github.com/ARUtools/ARUtools

BugReports https://github.com/ARUtools/ARUtools/issues
Depends R (>=4.1.0)

Imports dplyr, fs (>=1.6.1), glue, here, hms (>= 1.1.2), lifecycle,
lubridate (>= 1.9.3), lutz, parzer (>= 0.4.4), purrr, readr,
rlang (>= 0.4), seewave (>= 2.2.3), sf, spsurvey (>=5.0.1),
stringr, suncalc (>= 0.5.0), tidyr, units, withr

Suggests covr, ggplot2, jsonlite, knitr, parallel, patchwork, readxl
(>= 1.4.2), rmarkdown, rstudioapi, soundecology, testthat (>=
3.0.0), tuneR, vdiffr (>=1.0.0)

VignetteBuilder knitr
Config/testthat/edition 3
Encoding UTF-8
LazyData true
RoxygenNote 7.3.2
NeedsCompilation no

Author David Hope [aut, cre] (ORCID: <https://orcid.org/0000-0002-2140-4261>),
Steffi LaZerte [aut] (ORCID: <https://orcid.org/0000-0002-7690-8360>),
Government of Canada [cph, fnd]

https://wildtrax.ca/
https://arutools.github.io/ARUtools/
https://github.com/ARUtools/ARUtools
https://github.com/ARUtools/ARUtools/issues
https://orcid.org/0000-0002-2140-4261
https://orcid.org/0000-0002-7690-8360

Maintainer David Hope <david.hope@ec.gc.ca>
Repository CRAN
Date/Publication 2025-07-28 18:20:18 UTC

Contents

acoustic_indiCes
add_pattern_aru_typeo
add_sites e
add_wildtrax
ARUtools
calc_selection_weights
calc_ sun
check file
check meta
check_problems Lo L
clean_gps
clean_logs
clean_metadata
clean_site_index,
clip_wave
clip_wave_single,
count_files
create_dirs e
create_lookaround
create_pattern uu e e e
example_clean
example_files
example_files_long L.
example_Sites
example_sites_clean oL
get_pattern L.
get_wav_length Lo
guess_ ARU_type
meta_clean_logs Lo
sample_recordings
set_pattern e
sim_selection_weights
SOX_SPECIIO + & v v v v e e e e e e e e e e e e
task_template L L
template_observerso
femp_wavs e e
wind_detection_pre_processing
wind_detection_summarize_json
wt_assign_tasks oL oL

Index

Contents

acoustic_indices 3

acoustic_indices Get acoustic complexity values

Description

Wrapper for ’soundecology’ package to calculate acoustic complexity, the bioacoustic index, and
acoustic diversity. See Value for details about these indices.

Usage
acoustic_indices(
path,
min_freq = NA,
max_freq = NA,
units = "samples”,
quiet = FALSE
)
Arguments
path Character. Path to wave file.
min_freq Numeric. Minimum frequency for acoustic complexity (see soundecology: :acoustic_complexity())
max_freq Numeric. Maximum frequency for acoustic complexity (see soundecology: :acoustic_complexity())
units Character. Wave file units for reading the file. Defaults to "samples" (see
tuneR: :readWave()).
quiet Logical. Whether to suppress progress messages and other non-essential up-
dates.
Value

Returns a data frame with acoustic indices. Those prefaced with

e complx_ are from soundecology: :acoustic_complexity()
* bio_ are from soundecology: :bioacoustic_index()

e div_ are from soundecology: :acoustic_diversity()

Examples

w <- tuneR::sine(440, duration = 300000) # > 5s
tuneR: :writeWave(w, "test_wave.wav")
acoustic_indices("test_wave.wav")
acoustic_indices("test_wave.wav"”, quiet = TRUE)
unlink("test_wave.wav")

4 add_sites

add_pattern_aru_type Add an ARU to the list of identified ARUs

Description

Add an ARU to the list of identified ARUs

Usage

add_pattern_aru_type(pattern, aru_type)

Arguments
pattern regular expression to extract from file path
aru_type Name of ARUtype

Examples

org_pat <- get_pattern("pattern_aru_type")

print(org_pat)

add_pattern_aru_type("CWS\\d", "Canadian Wildlife Detector \1")
get_pattern("pattern_aru_type")

set_pattern("pattern_aru_type", org_pat)

add_sites Add site-level data to the metadata

Description

Uses dates to join site-level data (coordinates and site ids) to the meta data. If the site data have only
single dates, then a buffer before and after is used to determine which recordings belong to that site
observation. Can join by site ids alone if set by_date = NULL.

Usage

add_sites(
meta,
sites,
buffer_before = 0,
buffer_after = NULL,
by = c("site_id", "aru_id"),

add_sites

by_date = "date_time",

quiet = FALSE
)

Arguments

meta
sites

buffer_before

buffer_after

by

by_date

quiet

Value

Data frame. Recording metadata. Output of clean_metadata().
Data frame. Site-level data from clean_site_index().

Numeric. Number of hours before a deployment in which to include record-
ings. NULL means include the time up to the last deployment. Coupled with
buffer_after, this creates a window around a date/time in which to join record-
ings to the site-level data. Ignored if sites has both a start and end column for
date/times. Default O.

Numeric. Number of hours after the deployment in which to include record-
ings. NULL means include the time up to the next deployment. Coupled with
buffer_before, creates a window around a date/time in which to join record-
ings to the site-level data. Ignored if sites has both a start and end column for
date/times. Default NULL.

Character. Columns which identify a deployment in sites as well as meta, be-
sides date/time, which are used to join the data. Defaultis site_id and aru_id.

Character. Date/time type to join data by. date is faster but date_time is more
precise. Default date_time. NULL means ignore dates and join only with by
columns (dplyr::left_join()).

Logical. Whether to suppress progress messages and other non-essential up-
dates.

A data frame of metadata with site-level data joined in.

Examples

m <- clean_metadata(project_files = example_files)
s <- clean_site_index(example_sites_clean,
name_date = c("date_time_start”, "date_time_end")

m <- add_sites(m,

s)

Without dates (by site only)

m <- clean_metadata(project_files = example_files)

eg <- dplyr::select(example_sites_clean, -date_time_start, -date_time_end)
s <- clean_site_index(eg, name_date_time = NULL)

m <- add_sites(m,

s, by_date = NULL)

6 ARUtools

add_wildtrax Add file name formated for Wildtrax to metadata

Description
Create and append file name appropriate for uploading data to the Wildtrax platform https://
wildtrax.ca/.

Usage

add_wildtrax(meta)

Arguments

meta Data frame. Recording metadata. Output of clean_metadata().

Value

Data frame of metadata with appended column of WildTrax appropriate file names.

Examples

m <- clean_metadata(project_files = example_files)
m <- add_wildtrax(m)

m
ARUtools ARUtools: Management and Processing of Autonomous Recording
Unit (ARU) Data
Description

Parse Autonomous Recording Unit (ARU) data and for sub-sampling recordings. Extract Meta-
data from your recordings, select a subset of recordings for interpretation, and prepare files for
processing on the WildTrax https://wildtrax.ca/ platform. Read and process metadata from
recordings collected using the Song Meter and BAR-LT types of ARUs.

Author(s)

Maintainer: David Hope <david.hope@ec.gc.ca> (ORCID)
Authors:

o Steffi LaZerte <sel@steffilazerte.ca> (ORCID)
Other contributors:

* Government of Canada [copyright holder, funder]

https://wildtrax.ca/
https://wildtrax.ca/
https://wildtrax.ca/
https://orcid.org/0000-0002-2140-4261
https://orcid.org/0000-0002-7690-8360

calc_selection_weights 7

See Also
Useful links:

e https://arutools.github.io/ARUtools/
* https://github.com/ARUtools/ARUtools
* Report bugs at https://github.com/ARUtools/ARUtools/issues

calc_selection_weights
Calculate Selection Weights

Description

Calculate selection weights for a series of recordings based on the selection parameters defined by
sim_selection_weights().

Usage

calc_selection_weights(
meta_sun,
params,
col_site_id = site_id,
col_min = t2sr,
col_day = date

)
Arguments
meta_sun (Spatial) Data frame. Recording meta data with time to sunrise/sunset. Output
of calc_sun(). Must have at least col_min, col_day, and col_site_id.
params Named list. Parameters created by sim_selection_weights(), containingmin_range,
min_mean, min_sd, day_range, day_mean, day_sd, offset, return_log, selection_fun.
col_site_id Column. Unquoted column containing site strata IDs (defaults to site_id).
col_min Column. Unquoted column containing minutes to sunrise (t2sr) or sunset
(t2ss) output from calc_sun() (defaults to t2sr).
col_day Column. Unquoted column containing dates or day-of-year (doy) to use (de-
faults to date).
Value

Returns data with appended selection weights columns:

¢ psel_by - The minutes column used
* psel_min - Probability of selection by time of day (min column)

* psel_doy - Probability of selection by day of year

https://arutools.github.io/ARUtools/
https://github.com/ARUtools/ARUtools
https://github.com/ARUtools/ARUtools/issues

8 calc_sun

* psel - Probability of selection overall
* psel_scaled - Probability of selection scaled overall
* psel_std - Probability of selection standardized within a site

* psel_normalized - Probability of selection normalized within a site

Examples

s <- clean_site_index(example_sites_clean,
name_date_time = c("date_time_start"”, "date_time_end")

)

m <- clean_metadata(project_files = example_files) [>
add_sites(s) [|>
calc_sun()

params <- sim_selection_weights()
calc_selection_weights(m, params = params)

calc_sun Calculate time to sunrise/sunset

Description

Calculate the sunrise/sunset of each sound file for the day of, the day before and the day after to get
the nearest sunrise to the recording. Times are calculated using the ’suncalc’ package.

Usage
calc_sun(meta_sites, aru_tz = "local”)
Arguments
meta_sites (Spatial) Data frame. Recording metadata with added coordinates. Output of
clean_metadata() and then add_sites() (with either clean_gps() or clean_site_index()).
aru_tz Character. Must be either "local” or a timezone listed in OlsonNames(). See
Details.
Details

Timezones. To ensure that the sunrise/sunset times are calculated correctly relative to the time of
the recording, we need to know the timezone of the date/time of the recording. If ARUs were
calibrated with a specific timezone before going into the field, that can be specified by using, for ex-
ample, aru_tz = "America/Toronto"”. If on the other hand each ARU was calibrated to whichever
timezone was local when it was deployed use aru_tz = "local”. The specific timezone will be
calculated individually based on the longitude and latitude of each recording.

Value

Data frame with metadata and added timezone of recording time (tz), and time to sunrise/sunset
(t2sr, t2ss).

check_file

Examples

s <- clean_site_index(example_sites_clean,
name_date = c("date_time_start”, "date_time_end")

)

m <- clean_metadata(project_files = example_files) [>
add_sites(s)

calc_sun(m)

check_file Explore a file

Description

Shows the first few lines in a text file. Useful for trying to understand problems in GPS files.

Usage
check_file(file_name, n_max = 10, ...)
Arguments
file_name Character. File path to check.
n_max Numeric. Number of lines in the file to show. Default 10.
Arguments passed on to readr: :read_lines()
Details

Wrapper around readr: :read_lines(n_max).

Value

A character vector with one element for each line

Examples

f <- system.file("extdata”, "logfile_00015141_SD1.txt", package = "ARUtools")
check_file(f)

10 check_problems

check_meta Check output of clean_metadata()

Description

Cleaning metadata can take a series of tries. This function helps summarize and explore the meta-
data for possible patterns which may help find problems.

Usage

check_meta(meta, date = FALSE)

Arguments
meta Data frame. Recording metadata. Output of clean_metadata().
date Logical. Whether to summarize output by date (as well as site_id and aru_id.
Default FALSE.
Value

A data frame summarizing the metadata by site_id, aru_type, aru_id, and (optionally) by date.
Presents the number of files, directories, and days worth of recordings, as well as the minimum and
maximum recording times.

Examples
m <- clean_metadata(project_files = example_files)

check_meta(m)
check_meta(m, date = TRUE)

check_problems Check problems in output of clean_metadata()

Description

Cleaning metadata can take a series of tries. This function helps summarize and explore missing
metadata (problems).

Usage
check_problems(
df,
check = c("site_id", "aru_id", "date”, "date_time”, "longitude", "latitude"),
path = FALSE,
date = FALSE

clean_gps 11

Arguments
df Data frame. Either meta data (clean_metadata()) or GPS coordinates (clean_gps())
check Character. Character vector of columns to check for missing values. Default is
site_id, aru_id, date, date_time, longitude and latitude.
path Logical. Whether to return just the file paths which have missing attributes.
Default FALSE
date Logical. Whether to summarize output by date (as well as site_id and aru_id.
Default FALSE.
Value

A data frame summarizing the metadata by site_id, aru_type, aru_id, and (optionally) by date.
Presents the number of files, directories, and days worth of recordings, as well as the minimum and
maximum recording times.

Examples

m <- clean_metadata(project_files = example_files, pattern_aru_id = "test")

check_problems(m)
check_problems(m, date = TRUE)
check_problems(m, path = TRUE)

clean_gps Check and clean GPS data

Description

Check and clean GPS data from ARU logs. GPS points are checked for obvious problems (expected
range, distance cutoffs and timing) then attached to the meta data frame. Note that it is often safer
and more reliable to create your own Site Index file including site ids, and GPS coordinates. This
file can be cleaned and prepared with clean_site_index() instead.

Usage

clean_gps(
meta = NULL,
dist_cutoff = 100,
dist_crs = 3161,

dist_by = c("site_id", "aru_id"),
quiet = FALSE,
verbose = FALSE

12

Arguments

meta
dist_cutoff

dist_crs

dist_by

quiet

verbose

Details

clean_logs

Data frame. Output of clean_metadata().

Numeric. Maximum distance (m) between GPS points within a site. Default is
100m but can be set to Inf to skip.

Numeric. Coordinate Reference System to use when calculating distance (should
be one with m).

Character. Column which identifies sites within which to compare distance
among GPS points. Only valid if dist_cutoff is not Inf.

Logical. Whether to suppress progress messages and other non-essential up-
dates.

Logical. Show extra loading information. Default FALSE.

If checking for a maximum distance (dist_cutoff) among GPS points within a group (dist_by),
the returned data frame will include a column max_dist, which represents the largest distance
among points within that group.

Value

Data frame of site-level metadata.

Examples

m <- clean_metadata(project_dir = "my_project”)
g <- clean_gps(meta = m)

clean_logs

Extract log data from BAR-LT log files

Description

Process BAR-LT log files into a data frame reflecting metadata, schedule information, and events.
Events are time-stamped logs of either GPS fixes (1at and lon) or recordings (rec_file, rec_size,

rec_end).

Usage

clean_logs(log_files, return = "all"”, progress = TRUE)

Arguments

log_files

return

progress

Character vector of log files to process.

Character. What kind of data to return, GPS fixes ("gps"), recording events
("recordings") or "all” (default).

Logical. Whether to use purrr: :map() progress bars (default TRUE).

clean_metadata 13

Details

Note that log files can have glitches. If there is no start time for a recording (generally when there
is a problem and no recording is made), the date_time value for that recording will be the same as
the rec_end time.

Because the BAR-LT units adjust their time according to the GPS locations, all times are in "local"
to that area.

Value

Data frame containing

* file_names and paths of the log files
* events and their date_times
* lat and lon for "gps" events

* rec_file, rec_size and rec_end for "recording" events (recording start is the date_time of
the event)

¢ schedule information such as schedule_date, schedule_name, schedule_lat, schedule_lon,
schedule_sr (sunrise), and schedule_ss (sunset)

* metadata information such as meta_serial and meta_firmware

Examples

Replace "my_project_folder” with your directory containing your recordings and logfiles
log_files <- fs::dir_ls("my_project_folder"”, recurse = TRUE, glob = "xlogfilex")
log_files

logs <- clean_logs(log_files)

log_files <- "../ARUtools - Extra/aru_log_files/P@28/1A_BARLT10962/1logfile_00010962_SD1.txt"
clean_logs(log_files)

clean_logs(log_files, return = "gps")

clean_logs(log_files, return = "recordings”)

log_files <- fs::dir_1s("../ARUtools - Extra/aru_log_files/", recurse = TRUE, glob = "*xlogfilex")

1 <- clean_logs(log_files)

clean_metadata Extract and clean ARU metadata from file names

Description

Using regular expressions, metadata is extracted from file names and directory structure, checked
and cleaned.

14 clean_metadata

Usage

clean_metadata(
project_dir = NULL,
project_files = NULL,
file_type = "wav",
subset = NULL,
subset_type = "keep”,
pattern_site_id = create_pattern_site_id(),
pattern_aru_id = create_pattern_aru_id(),
pattern_date = create_pattern_date(),
pattern_time = create_pattern_time(),
pattern_dt_sep = create_pattern_dt_sep(),
pattern_tz_offset = create_pattern_tz_offset(),

order_date = "ymd",
quiet = FALSE
)
Arguments
project_dir Character. Directory where project files are stored. File paths will be used to

extract information and must actually exist.

project_files Character. Vector of project file paths. These paths can be absolute or relative
to the working directory, and don’t actually need to point to existing files unless
you plan to use clean_gps() or other sampling steps down the line. Must be
provided if project_dir is NULL.

file_type Character. Type of file (extension) to summarize. Default wav.

subset Character. Text pattern to mark a subset of files/directories to either "keep” or
"omit" (see subset_type)

subset_type Character. Either keep (default) or omit files/directories which match the pat-

tern in subset.
pattern_site_id

Character. Regular expression to extract site ids. See create_pattern_site_id().
Can be a vector of multiple patterns to match.

pattern_aru_id Character. Regular expression to extract ARU ids. See create_pattern_aru_id().
Can be a vector of multiple patterns to match.

pattern_date Character. Regular expression to extract dates. See create_pattern_date().
Can be a vector of multiple patterns to match.

pattern_time Character. Regular expression to extract times. See create_pattern_time().
Can be a vector of multiple patterns to match.

pattern_dt_sep Character. Regular expression to mark separators between dates and times. See
create_pattern_dt_sep().

pattern_tz_offset
Character. Regular expression to extract time zone offsets from file names. See.
create_pattern_tz_offset().

order_date Character. Order that the date appears in. "ymd" (default), "mdy", or "dmy".
Can be a vector of multiple patterns to match.

clean_site_index 15

quiet Logical. Whether to suppress progress messages and other non-essential up-
dates.

Details

Note that times are extracted by first combining the date, date/time separator and the time patterns.
This means that if there is a problem with this combination, dates might be extracted but date/times
will not. This mismatch can be used to determine which part of a pattern needs to be tweaked.

See vignette("customizing”, package = "ARUtools") for details on customizing clean_metadata()
for your project.

Value

Data frame with extracted metadata

Examples

clean_metadata(project_files = example_files)

clean_metadata(project_files = example_files, subset = "P@2")
clean_site_index Prepare and clean site index file
Description

A site index file contains information on when specific ARUs were deployed where. This func-
tion cleans a file (csv, xIsx) or data frame in preparation for adding these details to the output of
clean_metadata(). It can be used to specify missing information according to date, such as GPS
lon/lats and site ids.

Usage

clean_site_index(
site_index,

name_aru_id = "aru_id",

name_site_id = "site_id",

name_date_time = "date",

name_coords = c("longitude”, "latitude"),

name_extra = NULL,
resolve_overlaps = TRUE,
quiet = FALSE

16

Arguments

site_index

name_aru_id
name_site_id
name_date_time

name_coords

name_extra

clean_site_index

(Spatial) Data frame or file path. Site index data to clean. If file path, must be to
a local csv or xlIsx file.

Character. Name of the column that contains ARU ids. Default "aru_id".
Character. Name of the column that contains site ids. Default "site_id".

Character. Column name that contains dates or date/times. Can be vector of two
names if there are both ’start’ and ’end’ columns. Can be NULL to ignore dates.
Default "date”.

Character. Column names that contain longitude and latitude (in that order).
Ignored if site_index is spatial. Default c("longitude”, "latitude")

Character. Column names for extra data to include. If a named vector, will
rename the columns (see examples). Default NULL.

resolve_overlaps

quiet

Details

Logical. Whether or not to resolve date overlaps by shifting the start/end dates to
noon (default TRUE). This assumes that ARUs are generally not deployed/removed
at midnight (the official start/end of a day) and so noon is used as an approxi-
mation for when an ARU was deployed or removed. If possible, use specific
deployment times to avoid this issue.

Logical. Whether to suppress progress messages and other non-essential up-
dates.

Note that times are assumed to be in ’local’ time and a timezone isn’t used (and is removed if
present, replaced with UTC). This allows sites from different timezones to be processed at the same

time.

Value

Standardized site index data frame

Examples

s <- clean_site_index(example_sites,
name_aru_id = "ARU",
name_site_id = "Sites”,

name_date_time

name_coords =

)

= c("Date_set_out”, "Date_removed"),

c("lon”, "lat")

s <- clean_site_index(example_sites,

name_aru_id = "ARU",
name_site_id = "Sites”,
name_date_time = c("Date_set_out”, "Date_removed"”),

name_coords =

c("lon”, "lat"y,

name_extra = c("plot” = "Plots")

clip_wave 17

Without dates
eg <- dplyr::select(example_sites, -Date_set_out, -Date_removed)
s <- clean_site_index(eg,

name_aru_id = "ARU",

name_site_id = "Sites”,
name_date_time = NULL,
name_coords = c("lon"”, "lat"),
name_extra = c("plot” = "Plots")
)
clip_wave Clip multiple wave files and format names
Description

Process multiple wave files by copying them with a new filename and clipping to a given length.

Usage

clip_wave(
waves,
dir_out,
dir_in = NULL,
col_path_in = path,
col_subdir_out = subdir_out,
col_filename_out = filename_out,
col_clip_length = clip_length,
col_start_time = start_time,
overwrite = FALSE,
create_dir = TRUE,
diff_limit = 30

)
Arguments
waves Data frame. Details of file locations.
dir_out Character. Output directory.
dir_in Character. Directory wave files are read from. Default is NULL meaning the
current working directory.
col_path_in Column. Unquoted column containing the current file paths. Default path.

Note: file paths must be either relative to dir_in or absolute.

col_subdir_out Column. Unquoted column containing the subdirectories in which to put output
files. Default subdir_out.

col_filename_out
Column. Unquoted column containing the output filenames. Default filename_out.

18 clip_wave_single

col_clip_length
Column. Unquoted column containing the length of the new clip. Default

length.

col_start_time Column. Unquoted column containing the start time of the new clip. Default
start_time.

overwrite Logical. Overwrite pre-existing files when clipping and moving. Default FALSE.

create_dir Logical. Whether to create directory structure for newly formatted and clipped
wave files.

diff_limit Numeric. How much longer in seconds clip lengths can be compared to file

lengths before triggering an error. Default 30.

Value

TRUE if successful and clipped wave files created

Examples

w <- data.frame(
path = temp_wavs(n = 4),
subdir_out = c("testl1/a"”, "test2/a", "test3/c"”, "test4/d"),
subsub_dir_out = rep("zz", 4),
filename_out = c("wavel_clean.wav"”, "wave2_clean.wav”, "wave3_clean.wav”, "wave4_clean.wav"),
clip_length = c(1, 1, 1, 2),
start_time = c¢(1.2, 0.5, 1, 0)
)

clip_wave(w, dir_out = "clean”, col_subdir_out = c(subdir_out, subsub_dir_out))

unlink("clean”, recursive = TRUE) # Remove this new 'clean' directory

clip_wave_single Clip single wave file

Description

Clip and copy a single wave files to a given length. See clip_wave() for processing multiple files.

Usage

clip_wave_single(
path_in,
path_out,
clip_length,
start_time = 0,
wave_length = NULL,
overwrite = FALSE

count_files

Arguments
path_in
path_out
clip_length
start_time

wave_length

19

Character. Path to the wave file to clip.

Character. Path to copy the new clipped wave file to.

Numeric. Length of new clip in seconds.

Numeric. Time in seconds where new clip should start. Default 0.

Numeric. Length of the clipped wave file in seconds (if NULL, default, will be
the length of time from start_time to the end of the file).

overwrite Logical. Whether to overwrite existing files when creating new clipped wave
files. Default (FALSE) will error if the file already exists.
Value
TRUE if successful
Examples

Create test wave file

f <- temp_wavs(1)

Clip file and check it out

clip_wave_single(f, "new_file.wav"”, clip_length = 1)
tuneR: :readWave("new_file.wav")
unlink("new_file.wav")

count_files

Count files in a project directory

Description

Helper function to explore the number of files in a directory, recursively.

Usage

count_files(project_dir, subset = NULL, subset_type = "keep")

Arguments

project_dir

subset

subset_type

Character. Directory where project files are stored. File paths will be used to
extract information and must actually exist.

Character. Text pattern to mark a subset of files/directories to either "keep"” or
"omit" (see subset_type)

Character. Either keep (default) or omit files/directories which match the pat-
tern in subset.

20

Value

create_dirs

A data frame with number of files in a directory

Examples

count_files("PROJECT_DIR")

create_dirs

Create directory structure for recording folders

Description

Create a set of nested folders for storing ARU recordings by plots and sites.

Usage

create_dirs(
plots,
site_ids,
base_dir =
dir_list =
dry_run =T
expect_dirs

Arguments

plots
site_ids
base_dir

dir_list

dry_run

expect_dirs

Value

NULL,
FALSE,
RUE,

= FALSE

Character vector. Hexagon or cluster names for folder names.
Character vector. Site IDs. Should include the plot/cluster id in the name.
Character. Base directory to build directory structure in.

Logical. Whether to return a vector of directories (to be) created (defaults to
FALSE).

Logical. Whether to do a dry-run of the process (i.e. do not actually create
directories; defaults to TRUE)

Logical. Expect that directories may already exist? Default (FALSE) is to stop if
directories to be created already exist.

If dir_list = TRUE, returns a list of directories (to be) created. If not a dry run, also creates the

folder structure.

create_lookaround 21

Examples

Default is to do a dry-run (don't actually create the directories)
create_dirs(

plots = c("river1”, "river2", "river3"),

site_ids = c(
"river1_sm@1"”, "river1_sm@2", "river2_sm@3", "river2_sm@4",
"river3_sm@5", "river3_smo6"

),

base_dir = "Recordings”

)

Get a list of directories which would be created
create_dirs(

plots = c("river1”, "river2", "river3"),

site_ids = c(
"river1_sm@1", "river1_sm@2", "river2_sm@3", "river2_sm@4",
"river3_sm@5", "river3_smo6"

),

base_dir = "Recordings"”, dir_list = TRUE

Create directories AND return a list of those created
d <- create_dirs(

plots = c("river1”, "river2", "river3"),

site_ids = c(
"river1_sm@1", "river1_sm@2", "river2_sm@3", "river2_smo4",
"river3_sm@5", "river3_sm@6"

),

base_dir = "Recordings"”, dir_list = TRUE, expect_dirs =TRUE,
dry_run = FALSE

)
d
create_lookaround Create a look around expression and add it to an existing regular ex-
pression
Description

Lookarounds allow you to position a regular expression to more specificity.

Usage

create_lookaround(pattern, lookaround_pattern, position, negate = FALSE)

22 create_pattern

Arguments

pattern String. Pattern that you wish to add a look around to

lookaround_pattern
String. Pattern that you wish to look for.

position String. One of ’before’, ’after’, *ahead’, or ’behind’. Capitalization doesn’t
matter
negate Logical. allows you to exclude cases where look around is detected.
Value

Returns a string that can be used as a regular expression

Examples

Here is a string with three patterns of digits
text <- "cars123ruin456cities789"

To extract the first one we can use this pattern
stringr::str_extract(text, "\\d{3}")

or

create_lookaround(”"\\d{3}", "cars"”, "before") |>
stringr::str_extract(string=text)

To exclude the first one we can write
create_lookaround(”"\\d{3}", "cars"”, "before”, negate=TRUE) |>
stringr::str_extract_all(string=text)

To extract the second one we can write
create_lookaround(”"\\d{3}", "ruin”, "before") |>
stringr::str_extract(string=text)

or

create_lookaround(”"\\d{3}", "cities”, "after”) |>
stringr::str_extract(string=text)

create_pattern Create a pattern to match date

Description

Helper functions to create regular expression patterns to match different metadata in file paths.

create_pattern

Usage

create_pattern_date(
order = "ymd",
sep = C(”_II’ II_II, IIII)’
yr_digits = 4,

look_ahead = ,
look_behind = ""

)

create_pattern_time(
sep = c("_", "=", "t M),
seconds = "yes”,
look_ahead = ""
look_behind = ""

)

create_pattern_dt_sep(
sep = "T",
optional = FALSE,
look_ahead = "",
look_behind = ""

)

create_pattern_aru_id(
arus = c("BARLT", "S\\d(A[U)", "SM\\d", "SMM" 6 "SMA"),
n_digits = c(4, 8),
Sep = C(“—”, ”_”) ””))
prefix = ""
suffix = "",
look_ahead = "",
look_behind = ""

)

create_pattern_site_id(
prefix = c("P", "Q"),
p_digits = 2,
sep = c("_", "-"),
suffix = "",
s_digits = 1,
look_ahead = "",
look_behind = ""

)

create_pattern_tz_offset(
direction_from_UTC = "West",
n_digits_hrs = 2,
n_digits_min = 2

)

create_pattern

test_pattern(test, pattern)

Arguments

order

sep

yr_digits
look_ahead
look_behind
seconds

optional

arus

n_digits

prefix
suffix
p_digits
s_digits

Character vector. Expected orders of (y)ear, (m)onth and (d)ate. Default is
"ymd" for Year-Month-Date order. Can have more than one possible order.

Character vector. Expected separator(s) between the pattern parts. Can be "" for
no separator.

Numeric vector. Number of digits in Year, either 2 or 4.
Pattern to look ahead or after string Can be a regular expression or text.
Pattern to look before behind string. Can be a regular expression or text.

Character. Whether seconds are included. Options are "yes", "no", "maybe".

Logical. Whether the separator should be optional or not. Allows matching on
different date/time patterns.

Character vector. Pattern(s) identifying the ARU prefix (usually model specific).

Numeric vector. Number of digits expected to follow the arus pattern. Can be
one or two (a range).

Character vector. Prefix(es) for site ids.
Character vector. Suffix(es) for site ids.
Numeric vector. Number(s) of digits following the prefix.

Numeric vector. Number(s) of digits following the suffix.

direction_from_UTC

n_digits_hrs
n_digits_min
test

pattern

Details

Character. Must be on of "West", "East" or "Both"
Numeric vector. Number(s) of digits for hours in offset.
Numeric vector. Number(s) of digits for minutes in offset.
Character vector. Examples of text to test.

Character. Regular expression pattern to test.

By default create_pattern_aru_id() matches many common ARU patterns like BARLT0000,
S4A0000, SM40000, SMMORQ, SMARQQO.

test_pattern() is a helper function to see what a regular expression pattern will pick out of some
example text. Can be used to see if your pattern grabs what you want. This is just a simple wrapper
around stringr: :str_extract().

Value

Either a pattern (create_pattern_xxx()) or the text extracted by a pattern (test_pattern())

create_pattern

Functions

create_pattern_date(): Create a pattern to match a date
create_pattern_time(): Create a pattern to match a time
create_pattern_dt_sep(): Create a pattern to match a date/time separator
create_pattern_aru_id(): Create a pattern to match an ARU id
create_pattern_site_id(): Create a pattern to match a site id
create_pattern_tz_offset(): Create a pattern to match a site id

test_pattern(): Test patterns

Examples

create_pattern_date() # Default matches 2020-01-01 or 2020_01_01 or 20200101

("-", "_" or "" as separators)
create_pattern_date(sep = "") # Matches only 20200101 (no separator allowed)
create_pattern_time() # Default matches 23_59_59 (_, -, :, as optional separators)

create_pattern_time(sep =

nn

create_pattern_dt_sep() # Default matches 'T' as a required separator
create_pattern_dt_sep(optional = TRUE) # 'T' as an optional separator

create_pattern_dt_sep(c("T", "_", "=-")) # 'T', '_', or '-' as separators

create_pattern_aru_id()
create_pattern_aru_id(prefix = "CWS")
create_pattern_aru_id(n_digits = 12)

create_pattern_site_id() # Default matches P00-0
create_pattern_site_id(

prefix = "site", p_digits = 3, sep =

nn

suffix = c("a", "b", "c"), s_digits = @
) # Matches site000a

create_pattern_site_id() # Default matches P00-0
create_pattern_site_id(
prefix = "site"”, p_digits = 3, sep = s
suffix = c("a", "b", "c"), s_digits =0
) # Matches site@@0a

nn

pat <- create_pattern_aru_id(prefix = "CWS")
test_pattern(”"CWS_BARLT1012", pat) # No luck
pat <- create_pattern_aru_id(prefix = "CWS_")
test_pattern("CWS_BARLT1012", pat) # Ah ha!
pat <- create_pattern_site_id()

pat <- create_pattern_site_id()
test_pattern(”P03"”, pat) # Nope
test_pattern("P03-1", pat) # Success!

25

, seconds = "no") # Matches 2359 (no seconds no separators)

26 example_clean

pat <- create_pattern_site_id(prefix = "site"”, p_digits = 3, sep = "", s_digits = @)
test_pattern(”sitel111”, pat)
pat <- create_pattern_site_id(
prefix = "site", p_digits = 3, sep =
suffix = c("a"”, "b", "c"), s_digits =0
)
test_pattern(c(”site9”, "sitel@@a"), pat)

nn

example_clean Example cleaned recording meta data

Description

A data frame with examples of correctly formatted metadata with added site-level information

Usage

example_clean

Format

example_clean:

A data frame with 42 rows and 10 columns:

file_name Name of the file

type File type

path Relative file path including file name
aru_type ARU model

aru_id ARU ids

site_id Site ids

date_time Recording date/time

date Recording date

longitude Latitude in decimal degrees

latitude Longitude in decimal degrees

Source

data-raw/data_test.R

example_files 27

example_files Example recording files

Description

A vector of examples ARU recording files.

Usage

example_files

Format

example_files:
A vector with 42 file paths

Source

data-raw/data_test.R

example_files_long Example long-term deployment recording files

Description

A vector of examples ARU recording files. Uses the example_sites data, but deploys them for a
longer deployment

Usage

example_files_long

Format

example_files_long:
A vector with 614 file paths

Source

data-raw/data_long_deployment.R

28

example_sites_clean

example_sites Example site-level meta data

Description

A data frame with examples of incorrectly formatted site-level data.

Usage

example_sites

Format

example_sites:
A data frame with 10 rows and 8 columns:

Sites Site ids

Date_set_out Deployment start date
Date_removed Deployment end date

ARU ARU ids

lon Longitude in decimal degrees

lat Latitude in decimal degrees

Plots Hypothetical extra plot column
Subplot Hypothetical extra subplot column

Source

data-raw/data_test.R

example_sites_clean Example cleaned site-level meta data

Description

A data frame with examples of correctly formatted site-level data.

Usage

example_sites_clean

get_pattern 29

Format

example_sites_clean:

A data frame with 10 rows and 8 columns:
site_id Site ids

aru_id ARU ids

date_time_start Deployment start date/time
date_time_end Deployment end date/time
date_start Deployment start date

date_end Deployment end date

longitude Latitude in decimal degrees

latitude Longitude in decimal degrees

Source

data-raw/data_test.R

get_pattern Returns the current vector of ARU types

Description

Returns the current vector of ARU types

Usage

get_pattern(pattern_name)

Arguments

non

pattern_name String of pattern variable to return. One of "pattern_aru_type", "pattern_check","pattern_data",
or "pattern_date_time"

Value

named character vector

Examples

get_pattern("pattern_aru_type")

30 guess_ARU._type
get_wav_length Get the length of a recording in seconds
Description
Get the length of a recording in seconds
Usage
get_wav_length(path, return_numeric = FALSE)
Arguments
path Character. Path to wave file.
return_numeric Logical. Return numeric or character?
Value
Length of recording in seconds
Examples
f <- tempfile()
w <- tuneR::sine(440, duration = 100000)
tuneR: :writeWave(w, f)
get_wav_length(f)
guess_ARU_type Try to guess the ARU type from a file path
Description
Try to guess the ARU type from a file path
Usage
guess_ARU_type(path)
Arguments
path Character. Path to wave file
Value

Tibble with columns *manufacturer’, 'model’, and ’aru_type’

meta_clean_logs 31

Examples

get_pattern("pattern_aru_type")
guess_ARU_type("/path/to/barlt/file.wav")

guess_ARU_type("/path/to/sm/S4A2342.wav")

meta_clean_logs Run clean_logs () on the output from clean_metadata()

Description

Run clean_logs() on the output from clean_metadata()

Usage

meta_clean_logs(meta)

Arguments

meta Data frame. meta data processed in add_sites()

Value

Data frame containing

* file_names and paths of the log files
* events and their date_times
* lat and lon for "gps" events

* rec_file, rec_size and rec_end for "recording" events (recording start is the date_time of
the event)

¢ schedule information such as schedule_date, schedule_name, schedule_lat, schedule_lon,
schedule_sr (sunrise), and schedule_ss (sunset)

¢ metadata information such as meta_serial and meta_firmware

e other columns from meta provided

Examples

file_vec <- fs::dir_ls(fs::path_package("extdata”, package = "ARUtools"), recurse = TRUE,)
m <- clean_metadata(project_files = file_vec, file_type = 'json',pattern_site_id = "000\\d+")

logs <- meta_clean_logs(m)

32 sample_recordings

sample_recordings Sample recordings

Description

Sample recordings based on selection weights from calc_selection_weights() using spsurvey::grts().

Usage

sample_recordings(
meta_weights,
n)
0os = NULL,
col_site_id = site_id,
col_sel_weights = psel_std,
seed = NULL,

Arguments

meta_weights (Spatial) Data frame. Recording meta data selection weights. Output of calc_selection_weights().
Must have at least the columns identified by col_site_id and col_sel_weights,
as well as the probability of selection columns (those starting with psel) and
doy.

n Numeric, Data frame, Vector, or List. Number of base samples to choose. For
stratification by site, a named vector/list of samples per site, or a data frame
with columns n for samples, n_os for oversamples and the column matching
that identified by col_site_id.

0s Numeric, Vector, or List. Over sample size (proportional) or named vector/list
of number of samples per site Ignored if n is a data frame.
col_site_id Column. Unquoted column containing site strata IDs (defaults to site_id).

col_sel_weights
Column. Unquoted name of column identifying selection weights (defaults to
psel_std)

seed Numeric. Random seed to use for random sampling. Seed only applies to spe-
cific sampling events (does not change seed in the environment). NULL does not
set a seed.

Extra named arguments passed on to spsurvey: :grts().

Value

A sampling run from grts. Note that the included dataset is spatial, but is a dummy spatial dataset
created by using dates and times to create the spatial landscape.

set_pattern

Examples

s <- clean_site_index(example_sites_clean,
name_date_time = c("date_time_start”, "date_time_end")

)

m <- clean_metadata(project_files
add_sites(s) |>
calc_sun()

params <- sim_selection_weights()

= example_files) |>

w <- calc_selection_weights(m, params = params)

No stratification by site
samples <- sample_recordings(w, n

=10, os = 0.1, col_site_id = NULL)

Stratification by site defined by...

lists
samples <- sample_recordings(w, n

vectors
samples <- sample_recordings(w, n

data frame

samples <- sample_recordings(
w,
n = data.frame(

1list(PO1_1 = 2, PO2_1 = 5, P@3_1 = 2), os = 0.2)

= c(PO1_1 = 2, PO2_1 = 5, P83_1 = 2), os = 0.2)

site_id = c("PQ1_1", "P02_1", "P@3_1"),
n=c(2, 5, 2),
n_os = c(@, 0, 1)
)
)
set_pattern Set pattern into ARUtools environment
Description

Set pattern into ARUtools environment

Usage

set_pattern(pattern_name, pattern)

Arguments

pattern_name string of variable to set

pattern Pattern to add into ARUtools environment

34

Examples

sim_selection_weights

og_pat <- get_pattern("pattern_date_time")

set_pattern("pattern_date_time", create_pattern_date())

glue::glue("Default pattern: {og_pat}")
glue::glue("Updated pattern: {get_pattern('pattern_date_time')}")

set_pattern("pattern_date_time", og_pat)

sim_selection_weights Create parameters and simulate selection weights

Description

This function creates and explores parameters for generating selections. These parameters define
the selection distribution of minutes (min) around the sun event (sunrise/sunset), as well as of days

(day).

Usage

sim_selection_weights(
min_range = c(-70, 240),

min_mean = 30
min_sd = 60,

’

day_range = c(120, 201),
day_mean = 161,

day_sd = 20,
offset = 0,

return_log = TRUE,

selection_fun
selection_var
return_params
plot = TRUE

Arguments

min_range

min_mean

min_sd

day_range

= "norm”,
= "psel_normalized",
= TRUE,

Numeric vector. Range of the sampling distribution of minutes around the sun
event.

Numeric. Mean of the sampling distribution of minutes to the sun event.

Numeric. SD in minutes of the sampling distribution of minutes around the sun
event.

Date/Datetime/Numeric vector. Range of sampling distribution of days. Can be
Dates, Date-times, or DOY (day-of-year, 1-366).

SOX_spectro

day_mean

day_sd

offset
return_log
selection_fun

selection_var

return_params
plot

Value

35

Date/Datetime/Numeric. Mean date of the sampling distribution of days. Can
be Date, Date-time, or DOY (day-of-year, 1-366).

Numeric. SD in days of the sampling distribution of days.

Numeric. Offset to shift for time of day in minutes.

Logical. Log the density in the selection function?

Character. Selection function to use. Options are lognorm, norm (default), or
cauchy.

Character. Selection variable to plot (if plot = TRUE). Options are are psel,
psel_doy, psel_min, psel_std, psel_scaled, or psel_normalized (default).
Logical. Return parameter list for use in calc_selection_weights()?

Logical. Create plot of simulated selection weights? If return_param = TRUE

and plot = TRUE plot is created as a side effect. Other wise, plot is returned
directly.

Returns either a list of selection parameters or a plot of simulated selection weights

Examples

params <- sim_selection_weights()

sox_spectro

Create spectrogram image from wave file

Description

Using the external program SoX (the Swiss Army knife of sound processing programs), create a
spectrogram image file. Note that you must have SoX installed to use this function. Spectrograms
will be silently overwritten.

Usage

sox_spectro(
path,
dir_out = "Spectrograms”,
prepend = "spectro_",
width = NULL,
height = NULL,
start = NULL,
end = NULL,
rate = "20k",

dry_run = FALSE,
quiet = FALSE,
sox_file_path = NULL,
skip_check = FALSE

36

Arguments

path
dir_out
prepend
width
height

start

end

rate

dry_run

quiet

sox_file_path
skip_check

Details

SOX_spectro

Character. Path to wave file.

Character. Output directory.

Character. Text to add to the start of the output file. Defaults to "spectro_".
Numeric. Width of the spectrogram image in pixels.

Numeric. Height of the spectrogram image in pixels.

Numeric/Character. Start the spectrogram at this time (seconds or HH:MM:SS
format).

Numeric/Character. End time the spectrogram at this time (seconds or HH:MM:SS
format).

Numeric. Audio sampling rate to display (used by the rate effect in sox). This
effectively limits the upper frequency of the spectrogram to rate/2. The default
("20k"), limits the spectrogram to 10kHz. Use rate = NULL for no limiting.

Logical. If TRUE show the sox command, but do not run (for debugging and
understanding precise details).

Logical. Whether to suppress progress messages and other non-essential up-
dates.

Path to sox file if not installed at the system level, otherwise NULL.

Logical. Should the function skip check to ensure SoX is installed. This may
allow speed ups if running across large numbers of files.

Most arguments are passed through to the seewave: : sox() command.

* width and height correspond to the -x and -y options for the spectrogram effect.

* start and end are used by the trim effect

* rate is passed on to the rate effect

Based on code from Sam Hache.

Value

Does not return anything, but creates a spectrogram image in dir_out.

Examples

Prep sample file
w <- tuneR::sine(440, duration = 300000)

td <- tempdir()

temp_wave <- glue::glue("{td}/test_wave.wav")
tuneR: :writeWave(w, temp_wave)

Create spectrograms

try({sox_spectro(temp_wave)

task_template 37

sox_spectro(temp_wave, rate = NULL)
sox_spectro(temp_wave, start = 2, end = 3)

sox_spectro(temp_wave, start = "0:01", end = "0:04")
sox_spectro(temp_wave, prepend = "")

»

Clean up

unlink(temp_wave)
unlink("Spectrograms”, recursive = TRUE)

task_template Example template of tasks for WildTrax

Description

A data frame with tasks generated from example_clean using the wildRtrax::wt_make_aru_tasks()
function. Allows updating of tasks on WildTrax https://wildtrax.ca/.

Usage

task_template

Format

task_template:
A data frame with 14 rows and 13 columns:

location Site location name

recording_date_time Date time of the recording
method Method of interpretation (generally *1SPT”)
taskLength Length of recording in seconds
transcriber Transcriber ID, to be filled in with function
rain Empty character for filling in WildTrax

wind Empty character for filling in WildTrax
industryNoise Empty character for filling in WildTrax
audioQuality Empty character for filling in WildTrax
taskComments Empty character for filling in WildTrax
internal_task_id Empty character for filling in WildTrax

Source

data-raw/data_wt_assign_tasks.R

https://wildtrax.ca/

38 temp_wavs

template_observers Example template of tasks for WildTrax

Description

A data frame showing example observers and their effort

Usage

template_observers

Format

template_observers:
A data frame with 4 rows and 2 columns:

transcriber Interpreter name in Wildtrax system
hrs Number of hours to assign to interpreter

Source

data-raw/data_wt_assign_tasks.R

temp_wavs Helper function to create test wave files

Description

Creates a directory structure and example wave files in temp folders.

Usage

temp_wavs(n = 6)

Arguments

n Numeric. How many test files to create (up to six). D

Value

vector of paths to temporary wave files

Examples

temp_wavs(n=3)

wind_detection_pre_processing 39

wind_detection_pre_processing
Pre-processing of files for Wind Detection program

Description

[Experimental]

This function takes a vector of wave file names and returns a list of three vectors that can be
provided to the wind detection software or written to files that the software can read. Details
of the usable fork of the wind detection software can be found at https://github.com/dhope/
WindNoiseDetection

Usage

wind_detection_pre_processing(
wav_files,
site_pattern,
output_directory,
write_to_file = FALSE,
chunk_size = NULL

Arguments

wav_files Vector of path to wav files

site_pattern Pattern to extract sites from file names
output_directory
Directory path to export files to

write_to_file Logical Should the function write files to output_directory

chunk_size Numeric If not NULL, sets number of files to include in each chunk

Value

List including filePath, filenames, and sites suitable for wind software.

Examples

wind_files <-
wind_detection_pre_processing(
wav_files = example_clean$path,
output_directory = td,
site_pattern = create_pattern_site_id(
p_digits = c(2, 3), sep = "_",
s_digits = c(1, 2)
),
write_to_file = FALSE, chunk_size = NULL
)

https://github.com/dhope/WindNoiseDetection
https://github.com/dhope/WindNoiseDetection

40 wind_detection_summarize_json

wind_detection_summarize_json
Summarize wind detection results

Description

[Experimental]

This function takes output from the command line program and summarizes it. Details of the wind
detection software can be found at https://github.com/dhope/WindNoiseDetection.

Usage

wind_detection_summarize_json(f)

Arguments
f filepath for json
#7
Value

tibble of summarized data from json file

Examples
example code
example_json <- system.file("extdata",
"P71-1__20210606T232500-0400_SS. json",

package = "ARUtools”
)

wind_summary <- wind_detection_summarize_json(example_json)

https://github.com/dhope/WindNoiseDetection

wt_assign_tasks 41

wt_assign_tasks Assign tasks for interpretation on Wildtrax

Description

Assign tasks for interpretation on Wildtrax

Usage

wt_assign_tasks(
wt_task_template_in,
interp_hours,
wt_task_output_file,
interp_hours_column,
random_seed = NULL

Arguments

wt_task_template_in
Path to csv template downloaded from Wildtrax platform https://wildtrax.
ca listing all tasks. Alternatively, can be a data.frame that is correctly format-
ted usingwildRtrax: :wt_make_aru_tasks(). See vignette("Misc") for de-
tails.

interp_hours Path to number of hours for each interpreter or a data.table. If a file, must
be csv and must include the columns "transcriber" and whatever the variable
interp_hours_column is.

wt_task_output_file
Path to csv of output file for uploading to Wildtrax. If left as NULL will not

write file
interp_hours_column

LazyEval column name with hours for interpreters

random_seed Integer. Random seed to select with. If left NULL will use timestamp

Value

Returns a list with a tibble of assigned tasks and a summary tibble.

Examples

task_output <- wt_assign_tasks(
wt_task_template_in = task_template,
wt_task_output_file = NULL,
interp_hours = template_observers,
interp_hours_column = hrs,
random_seed = 65122

)

https://wildtrax.ca
https://wildtrax.ca

Index

+ datasets
example_clean, 26
example_files, 27
example_files_long, 27
example_sites, 28
example_sites_clean, 28
task_template, 37
template_observers, 38

acoustic_indices, 3
add_pattern_aru_type, 4
add_sites, 4

add_wildtrax, 6

ARUtools, 6

ARUtools-package (ARUtools), 6

calc_selection_weights, 7

calc_sun, 8

check_file, 9

check_meta, 10

check_problems, 10

clean_gps, 11

clean_logs, 12

clean_metadata, 13

clean_site_index, 15

clip_wave, 17

clip_wave_single, 18

count_files, 19

create_dirs, 20

create_lookaround, 21

create_pattern, 22

create_pattern_aru_id (create_pattern),
22

create_pattern_date (create_pattern), 22

create_pattern_dt_sep (create_pattern),
22

create_pattern_site_id
(create_pattern), 22

create_pattern_time (create_pattern), 22

create_pattern_tz_offset
(create_pattern), 22

example_clean, 26
example_files, 27
example_files_long, 27
example_sites, 28
example_sites_clean, 28

get_pattern, 29
get_wav_length, 30
guess_ARU_type, 30

meta_clean_logs, 31

sample_recordings, 32

set_pattern, 33
sim_selection_weights, 34
soundecology: :acoustic_complexity(), 3
soundecology: :acoustic_diversity(), 3
soundecology: :bioacoustic_index(), 3
sox_spectro, 35

task_template, 37

temp_wavs, 38
template_observers, 38
test_pattern (create_pattern), 22
tuneR: :readWave(), 3

wind_detection_pre_processing, 39
wind_detection_summarize_json, 40
wt_assign_tasks, 41

	acoustic_indices
	add_pattern_aru_type
	add_sites
	add_wildtrax
	ARUtools
	calc_selection_weights
	calc_sun
	check_file
	check_meta
	check_problems
	clean_gps
	clean_logs
	clean_metadata
	clean_site_index
	clip_wave
	clip_wave_single
	count_files
	create_dirs
	create_lookaround
	create_pattern
	example_clean
	example_files
	example_files_long
	example_sites
	example_sites_clean
	get_pattern
	get_wav_length
	guess_ARU_type
	meta_clean_logs
	sample_recordings
	set_pattern
	sim_selection_weights
	sox_spectro
	task_template
	template_observers
	temp_wavs
	wind_detection_pre_processing
	wind_detection_summarize_json
	wt_assign_tasks
	Index

