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AICcmodavg-package Model Selection and Multimodel Inference Based on (Q)AIC(c)

Description

Description: This package includes functions to create model selection tables based on Akaike’s
information criterion (AIC) and the second-order AIC (AICc), as well as their quasi-likelihood
counterparts (QAIC, QAICc). The package also features functions to conduct classic model av-
eraging (multimodel inference) for a given parameter of interest or predicted values, as well as a
shrinkage version of model averaging parameter estimates. Other handy functions enable the com-
putation of relative variable importance, evidence ratios, and confidence sets for the best model.
The present version supports Cox proportional hazards models and conditional logistic regression
(coxph and coxme classes), linear models (lm class), generalized linear models (glm, glm.nb, vglm,
hurdle, and zeroinfl classes), linear models fit by generalized least squares (gls class), linear
mixed models (lme class), generalized linear mixed models (mer, merMod, and glmmTMB classes),
multinomial and ordinal logistic regressions (multinom, polr, clm, and clmm classes), robust re-
gression models (rlm class), beta regression models (betareg class), parametric survival mod-
els (survreg class), nonlinear models (nls and gnls classes), nonlinear mixed models (nlme and
nlmerMod classes), univariate models (fitdist and fitdistr classes), and certain types of latent
variable models (lavaan class). The package also supports various models of unmarkedFit and
maxLikeFit classes estimating demographic parameters after accounting for imperfect detection
probabilities. Some functions also allow the creation of model selection tables for Bayesian models
of the bugs and rjags classes. Objects following model selection and multimodel inference can be
formatted to LaTeX using xtable methods included in the package.

Details

Package: AICcmodavg
Type: Package
Version: 2.3-4
Date: 2025-03-03
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License: GPL (>=2 )
LazyLoad: yes

Many functions of the package require a list of models as the input to conduct model selection and
multimodel inference. Thus, you should start by organizing the output of the models in a list (See
’Examples’ below).

This package contains several useful functions for model selection and multimodel inference for
several model classes:

AICc Computes AIC, AICc, and their quasi-likelihood counterparts (QAIC, QAICc).

aictab Constructs model selection tables with number of parameters, AIC, delta AIC, Akaike
weights or variants based on AICc, QAIC, and QAICc for a set of candidate models.

bictab Constructs model selection tables with number of parameters, BIC, delta BIC, BIC weights
for a set of candidate models.

boot.wt Computes summary statistics from detection histories.

confset Determines the confidence set for the best model based on one of three criteria.

DIC Extracts DIC.

dictab Constructs model selection tables with number of parameters, DIC, delta DIC, DIC weights
for a set of candidate models.

evidence Computes the evidence ratio between the highest-ranked model based on the information
criteria selected and a lower-ranked model.

importance Computes importance values (w+) for the support of a given parameter among set of
candidate models.

modavg Computes model-averaged estimate, unconditional standard error, and unconditional con-
fidence interval of a parameter of interest among a set of candidate models.

modavgEffect Computes model-averaged effect sizes between groups based on the entire candi-
date model set.

modavgShrink Computes shrinkage version of model-averaged estimate, unconditional standard
error, and unconditional confidence interval of a parameter of interest among entire set of
candidate models.

modavgPred Computes model-average predictions, unconditional SE’s, and confidence intervals
among entire set of candidate models.

multComp Performs multiple comparisons across levels of a factor in a model selection framework.

useBIC Computes BIC or a quasi-likelihood counterparts (QBIC).

For models not yet supported by the functions above, the following can be useful for model selection
and multimodel inference conducted from input values supplied by the user:

AICcCustom Computes AIC, AICc, QAIC, and QAICc from user-supplied input values of log-
likelihood and number of parameters.

aictabCustom Creates model selection tables based on (Q)AIC(c) from user-supplied input values
of log-likelihood and number of parameters.
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bictabCustom Creates model selection tables based on (Q)BIC from user-supplied input values of
log-likelihood and number of parameters.

ictab Creates model selection tables from user-supplied values of an information criterion.

modavgCustom Computes model-averaged parameter estimate based on (Q)AIC(c) from user-supplied
input values of log-likelihood, number of parameters, parameter estimates, and standard er-
rors.

modavgIC Computes model-averaged parameter estimate from user-supplied values of information
criterion, parameter estimates, and standard errors.

useBICCustom Computes BIC and QBIC from user-supplied input values of log-likelihoods and
number of parameters.

A number of functions for model diagnostics are available:

c_hat Estimates variance inflation factor for binomial or Poisson GLM’s based on various estima-
tors.

checkConv Checks the convergence information of the algorithm for the model.

checkParms Checks the occurrence of parameter estimates with high standard errors in a model.

countDist Computes summary statistics from distance sampling data.

countHist Computes summary statistics from count history data.

covDiag Computes covariance diagnostics for lambda in N-mixture models.

detHist Computes summary statistics from detection histories.

detTime Computes summary statistics from time-to-detection data.

extractCN Extracts condition number from models of certain classes.

mb.gof.test Computes the MacKenzie and Bailey goodness-of-fit test for single season and dy-
namic occupancy models using the Pearson chi-square statistic.

Nmix.gof.test Computes goodness-of-fit test for N-mixture models based on the Pearson chi-
square statistic.

Other utility functions include:

anovaOD Computes likelihood-ratio test statistic corrected for overdispersion between two models.

extractLL Extracts log-likelihood from models of certain classes.

extractSE Extracts standard errors from models of certain classes and adds the labels.

extractX Extracts the predictors and associated information on variables from a list of candidate
models.

fam.link.mer Extracts the distribution family and link function from a generalized linear mixed
model of classes mer and merMod.

predictSE Computes predictions and associated standard errors models of certain classes.

summaryOD Displays summary of model output adjusted for overdispersion.

xtable Extends methods from xtable to format various objects resulting from model selection and
multimodel inference to LaTeX or HTML tables.

Author(s)

Marc J. Mazerolle <marc.mazerolle@uqat.ca>.



6 AICcmodavg-package

References

Anderson, D. R. (2008) Model-based inference in the life sciences: a primer on evidence. Springer:
New York.

Burnham, K. P., and Anderson, D. R. (2002) Model selection and multimodel inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in
model selection. Sociological Methods and Research 33, 261–304.

Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike’s Information Crite-
rion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.

Examples

##Example 1: Poisson GLM with offset
##anuran larvae example from Mazerolle (2006)
data(min.trap)
##assign "UPLAND" as the reference level as in Mazerolle (2006)
min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND")

##set up candidate models in a list
Cand.mod <- list()
##global model
Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra,

family = poisson, offset = log(Effort),
data = min.trap)

Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[3]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[4]] <- glm(Num_anura ~ Type, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[5]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra,
family = poisson, offset = log(Effort),
data = min.trap)

Cand.mod[[6]] <- glm(Num_anura ~ log.Perimeter, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[7]] <- glm(Num_anura ~ Num_ranatra, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[8]] <- glm(Num_anura ~ 1, family = poisson,
offset = log(Effort), data = min.trap)

##check c-hat for global model
c_hat(Cand.mod[[1]], method = "pearson") #uses Pearson's chi-square/df
##note the very low overdispersion: in this case, the analysis could be
##conducted without correcting for c-hat as its value is reasonably close
##to 1

##output of model corrected for overdispersion
summaryOD(Cand.mod[[1]], c.hat = 1.04)

##assign names to each model
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Modnames <- c("type + logperim + invertpred", "type + logperim",
"type + invertpred", "type", "logperim + invertpred",
"logperim", "invertpred", "intercept only")

##model selection table based on AICc
aictab(cand.set = Cand.mod, modnames = Modnames)

##compute evidence ratio
evidence(aictab(cand.set = Cand.mod, modnames = Modnames))

##compute confidence set based on 'raw' method
confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE,

method = "raw")

##compute importance value for "TypeBOG" - same number of models
##with vs without variable
importance(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG")

##compute model-averaged estimate of "TypeBOG" using the natural average
modavg(cand.set = Cand.mod, modnames = Modnames, parm = "TypeBOG")

##compute model-averaged estimate of "TypeBOG" using shrinkage estimator
##same number of models with vs without variable
modavgShrink(cand.set = Cand.mod, modnames = Modnames,

parm = "TypeBOG")

##compute model-averaged predictions for two types of ponds
##create a data set for predictions
dat.pred <- data.frame(Type = factor(c("BOG", "UPLAND")),

log.Perimeter = mean(min.trap$log.Perimeter),
Num_ranatra = mean(min.trap$Num_ranatra),
Effort = mean(min.trap$Effort))

##model-averaged predictions across entire model set
modavgPred(cand.set = Cand.mod, modnames = Modnames,

newdata = dat.pred, type = "response")

##compute model-averaged effect size between two groups
##'newdata' data frame must be limited to two rows
modavgEffect(cand.set = Cand.mod, modnames = Modnames,

newdata = dat.pred, type = "link")

## Not run:
##Example 2: single-season occupancy model example modified from ?occu
require(unmarked)
##single season
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
## add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)),

sitevar2 = rnorm(numSites(pferUMF)))
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## observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) *

obsNum(pferUMF)))

##check detection history data from data object
detHist(pferUMF)

##set up candidate model set
fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF)
##check detection history data from model object
detHist(fm1)

fm2 <- occu(~ 1 ~ sitevar1, pferUMF)
fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF)
fm4 <- occu(~ 1 ~ sitevar2, pferUMF)
Cand.models <- list(fm1, fm2, fm3, fm4)

##assign names to elements in list
##alternative to using 'modnames' argument
names(Cand.models) <- c("fm1", "fm2", "fm3", "fm4")

##check GOF of global model and estimate c-hat
mb.gof.test(fm4, nsim = 100) #nsim should be > 1000

##check for high SE's in models
lapply(Cand.models, checkParms, simplify = FALSE)

##compute table
print(aictab(cand.set = Cand.models,

second.ord = TRUE), digits = 4)

##export as LaTeX table
if(require(xtable)) {
xtable(aictab(cand.set = Cand.models,

second.ord = TRUE))
}

##compute evidence ratio
evidence(aictab(cand.set = Cand.models))
##evidence ratio between top model vs lowest-ranked model
evidence(aictab(cand.set = Cand.models), model.high = "fm2", model.low = "fm3")

##compute confidence set based on 'raw' method
confset(cand.set = Cand.models, second.ord = TRUE,

method = "raw")

##compute importance value for "sitevar1" on occupancy
##same number of models with vs without variable
importance(cand.set = Cand.models, parm = "sitevar1",

parm.type = "psi")

##compute model-averaged estimate of "sitevar1" on occupancy
##(natural average)
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modavg(cand.set = Cand.models, parm = "sitevar1",
parm.type = "psi")

##compute model-averaged estimate of "sitevar1"
##(shrinkage estimator)
##same number of models with vs without variable
modavgShrink(cand.set = Cand.models,

parm = "sitevar1", parm.type = "psi")

##compute model-average predictions
##check explanatory variables appearing in models
extractX(Cand.models, parm.type = "psi")

##create a data set for predictions
dat.pred <- data.frame(sitevar1 = seq(from = min(siteCovs(pferUMF)$sitevar1),

to = max(siteCovs(pferUMF)$sitevar1), by = 0.5),
sitevar2 = mean(siteCovs(pferUMF)$sitevar2))

##model-averaged predictions of psi across range of values
##of sitevar1 and entire model set
modavgPred(cand.set = Cand.models, newdata = dat.pred,

parm.type = "psi")
detach(package:unmarked)

## End(Not run)

## Not run:
##Example 3: example with user-supplied values of log-likelihoods and
##number of parameters

##vector with model LL's
LL <- c(-38.8876, -35.1783, -64.8970)

##vector with number of parameters
Ks <- c(7, 9, 4)

##create a vector of names to trace back models in set
Modnames <- c("Cm1", "Cm2", "Cm3")

##generate AICc table
aictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121,

sort = TRUE)
##generate AIC table
aictabCustom(logL = LL, K = Ks, modnames = Modnames,

second.ord = FALSE, nobs = 121, sort = TRUE)

##model averaging parameter estimate
##vector of beta estimates for a parameter of interest
model.ests <- c(0.0478, 0.0480, 0.0478)

##vector of SE's of beta estimates for a parameter of interest
model.se.ests <- c(0.0028, 0.0028, 0.0034)
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##compute model-averaged estimate and unconditional SE based on AICc
modavgCustom(logL = LL, K = Ks, modnames = Modnames,

estimate = model.ests, se = model.se.ests, nobs = 121)
##compute model-averaged estimate and unconditional SE based on BIC
modavgCustom(logL = LL, K = Ks, modnames = Modnames,

estimate = model.ests, se = model.se.ests, nobs = 121,
useBIC = TRUE)

## End(Not run)

## Not run:
##Example 4: example with user-supplied values of information criterion
##model selection based on WAIC

##WAIC values
waic <- c(105.74, 107.36, 108.24, 100.57)
##number of effective parameters
effK <- c(7.45, 5.61, 6.14, 6.05)

##create a vector of names to trace back models in set
Modnames <- c("global model", "interactive model",

"additive model", "invertpred model")

##generate WAIC model selection table
ictab(ic = waic, K = effK, modnames = Modnames,

sort = TRUE, ic.name = "WAIC")

##compute model-averaged estimate
##vector of predictions
Preds <- c(0.106, 0.137, 0.067, 0.050)
##vector of SE's for prediction
Ses <- c(0.128, 0.159, 0.054, 0.039)

##compute model-averaged estimate and unconditional SE based on WAIC
modavgIC(ic = waic, K = effK, modnames = Modnames,

estimate = Preds, se = Ses,
ic.name = "WAIC")

##export as LaTeX table
if(require(xtable)) {
##model-averaged estimate and confidence interval
xtable(modavgIC(ic = waic, K = effK, modnames = Modnames,

estimate = Preds, se = Ses,
ic.name = "WAIC"))

##model selection table with estimate and SE's from each model
xtable(modavgIC(ic = waic, K = effK, modnames = Modnames,

estimate = Preds, se = Ses,
ic.name = "WAIC"), print.table = TRUE)

}

## End(Not run)
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AICc Computing AIC, AICc, QAIC, and QAICc

Description

Functions to compute Akaike’s information criterion (AIC), the second-order AIC (AICc), as well
as their quasi-likelihood counterparts (QAIC, QAICc).

Usage

AICc(mod, return.K = FALSE, second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'aov'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'betareg'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'clm'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'clmm'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'coxme'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'coxph'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'fitdist'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'fitdistr'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'glm'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, c.hat = 1, ...)
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## S3 method for class 'glmmTMB'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, c.hat = 1, ...)

## S3 method for class 'gls'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'gnls'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'hurdle'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'lavaan'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'lm'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'lme'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'lmekin'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'maxlikeFit'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, c.hat = 1, ...)

## S3 method for class 'mer'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'merMod'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'lmerModLmerTest'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)
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## S3 method for class 'multinom'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, c.hat = 1, ...)

## S3 method for class 'negbin'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'nlme'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'nls'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'polr'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'rlm'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'survreg'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

## S3 method for class 'unmarkedFit'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, c.hat = 1, ...)

## S3 method for class 'vglm'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, c.hat = 1, ...)

## S3 method for class 'zeroinfl'
AICc(mod, return.K = FALSE, second.ord = TRUE,

nobs = NULL, ...)

Arguments

mod an object of class aov, betareg, clm, clmm, clogit, coxme, coxph, fitdist,
fitdistr, glm, glmmTMB, gls, gnls, hurdle, lavaan, lm, lme, lmekin, maxlikeFit,
mer, merMod, lmerModLmerTest, multinom, negbin, nlme, nls, polr, rlm,
survreg, vglm, zeroinfl, and various unmarkedFit classes containing the out-
put of a model.
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return.K logical. If FALSE, the function returns the information criterion specified. If
TRUE, the function returns K (number of estimated parameters) for a given model.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total
number of observations or number of independent clusters (e.g., sites) as the
value of nobs.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, AICc will
return the quasi-likelihood analogue of the information criteria requested and
multiply the variance-covariance matrix of the estimates by this value (i.e., SE’s
are multiplied by sqrt(c.hat)). This option is not supported for generalized
linear mixed models of the mer or merMod classes.

... additional arguments passed to the function.

Details

AICc computes one of the following four information criteria:

Akaike’s information criterion (AIC, Akaike 1973),

−2 ∗ log − likelihood+ 2 ∗K,

where the log-likelihood is the maximum log-likelihood of the model and K corresponds to the
number of estimated parameters.

Second-order or small sample AIC (AICc, Sugiura 1978, Hurvich and Tsai 1989, 1991),

−2 ∗ log − likelihood+ 2 ∗K ∗ (n/(n−K − 1)),

where n is the sample size of the data set.

Quasi-likelihood AIC (QAIC, Burnham and Anderson 2002),

QAIC =
−2 ∗ log − likelihood

c− hat
+ 2 ∗K,

where c-hat is the overdispersion parameter specified by the user with the argument c.hat.

Quasi-likelihood AICc (QAICc, Burnham and Anderson 2002),

QAIC =
−2 ∗ log − likelihood

c− hat
+ 2 ∗K ∗ (n/(n−K − 1))

.

Note that AIC and AICc values are meaningful to select among gls or lme models fit by maximum
likelihood. AIC and AICc based on REML are valid to select among different models that only
differ in their random effects (Pinheiro and Bates 2000).
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Value

AICc returns the AIC, AICc, QAIC, or QAICc, or the number of estimated parameters, depending
on the values of the arguments.

Note

The actual (Q)AIC(c) values are not really interesting in themselves, as they depend directly on the
data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much
about model fit. Information criteria become relevant when compared to one another for a given
data set and set of candidate models.

Author(s)

Marc J. Mazerolle
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See Also

AICcCustom, aictab, confset, importance, evidence, c_hat, modavg, modavgShrink, modavgPred,
useBIC,

Examples

##cement data from Burnham and Anderson (2002, p. 101)
data(cement)
##run multiple regression - the global model in Table 3.2
glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement)

##compute AICc with full likelihood
AICc(glob.mod, return.K = FALSE)

##compute AIC with full likelihood
AICc(glob.mod, return.K = FALSE, second.ord = FALSE)
##note that Burnham and Anderson (2002) did not use full likelihood
##in Table 3.2 and that the MLE estimate of the variance was
##rounded to 2 digits after decimal point

##compute AICc for mixed model on Orthodont data set in Pinheiro and
##Bates (2000)
## Not run:
require(nlme)
m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont,

method= "ML")
AICc(m1, return.K = FALSE)

## End(Not run)

AICcCustom Compute AIC, AICc, QAIC, and QAICc from User-supplied Input

Description

This function computes Akaike’s information criterion (AIC), the second-order AIC (AICc), as well
as their quasi-likelihood counterparts (QAIC, QAICc) from user-supplied input instead of extract-
ing the values automatically from a model object. This function is particularly useful for output
imported from other software or for model classes that are not currently supported by AICc.

Usage

AICcCustom(logL, K, return.K = FALSE, second.ord = TRUE, nobs = NULL,
c.hat = 1)
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Arguments

logL the value of the model log-likelihood.

K the number of estimated parameters in the model.

return.K logical. If FALSE, the function returns the information criterion specified. If
TRUE, the function returns K (number of estimated parameters) for a given model.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs the sample size required to compute the AICc or QAICc.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season or dynamic occupancy models
(MacKenzie et al. 2002, 2003), N-mixture models (Royle 2004, Dail and Mad-
sen 2011), or capture-mark-recapture models (e.g., Lebreton et al. 1992). If
c.hat > 1, AICcCustom will return the quasi-likelihood analogue of the informa-
tion criterion requested.

Details

AICcCustom computes one of the following four information criteria:

Akaike’s information criterion (AIC, Akaike 1973), the second-order or small sample AIC (AICc,
Sugiura 1978, Hurvich and Tsai 1989, 1991), the quasi-likelihood AIC (QAIC, Burnham and An-
derson 2002), and the quasi-likelihood AICc (QAICc, Burnham and Anderson 2002).

Value

AICcCustom returns the AIC, AICc, QAIC, or QAICc, or the number of estimated parameters,
depending on the values of the arguments.

Note

The actual (Q)AIC(c) values are not really interesting in themselves, as they depend directly on the
data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much
about model fit. Information criteria become relevant when compared to one another for a given
data set and set of candidate models.

Author(s)

Marc J. Mazerolle

References

Akaike, H. (1973) Information theory as an extension of the maximum likelihood principle. In:
Second International Symposium on Information Theory, pp. 267–281. Petrov, B.N., Csaki, F.,
Eds, Akademiai Kiado, Budapest.

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.
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Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

Hurvich, C. M., Tsai, C.-L. (1989) Regression and time series model selection in small samples.
Biometrika 76, 297–307.

Hurvich, C. M., Tsai, C.-L. (1991) Bias of the corrected AIC criterion for underfitted regression
and time series models. Biometrika 78, 499–509.

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case-studies. Ecological
Monographs 62, 67–118.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

Sugiura, N. (1978) Further analysis of the data by Akaike’s information criterion and the finite
corrections. Communications in Statistics: Theory and Methods A7, 13–26.

See Also

AICc, aictabCustom, confset, evidence, c_hat, modavgCustom

Examples

##cement data from Burnham and Anderson (2002, p. 101)
data(cement)
##run multiple regression - the global model in Table 3.2
glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement)

##extract log-likelihood
LL <- logLik(glob.mod)[1]

##extract number of parameters
K.mod <- coef(glob.mod) + 1

##compute AICc with full likelihood
AICcCustom(LL, K.mod, nobs = nrow(cement))

AICcmodavg-defunct Defunct Functions in AICcmodavg Package

Description

The functions listed below have been removed from the AICcmodavg package.
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Usage

AICc.mult(...)
AICc.unmarked(...)
extract.LL(...)
extract.LL.coxph(...)
extract.LL.unmarked(...)
aictab.clm(...)
aictab.clmm(...)
aictab.coxph(...)
aictab.glm(...)
aictab.gls(...)
aictab.lm(...)
aictab.lme(...)
aictab.mer(...)
aictab.merMod(...)
aictab.mult(...)
aictab.nlme(...)
aictab.nls(...)
aictab.polr(...)
aictab.rlm(...)
aictab.unmarked(...)
dictab.bugs(...)
dictab.rjags(...)
modavg.clm(...)
modavg.clmm(...)
modavg.coxph(...)
modavg.glm(...)
modavg.gls(...)
modavg.lme(...)
modavg.mer(...)
modavg.merMod(...)
modavg.mult(...)
modavg.polr(...)
modavg.rlm(...)
modavg.unmarked(...)
modavg.effect(...)
modavg.effect.glm(...)
modavg.effect.gls(...)
modavg.effect.lme(...)
modavg.effect.mer(...)
modavg.effect.merMod(...)
modavg.effect.rlm(...)
modavg.effect.unmarked(...)
modavg.shrink(...)
modavg.shrink.clm(...)
modavg.shrink.clmm(...)
modavg.shrink.coxph(...)
modavg.shrink.glm(...)
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modavg.shrink.gls(...)
modavg.shrink.lme(...)
modavg.shrink.mer(...)
modavg.shrink.merMod(...)
modavg.shrink.mult(...)
modavg.shrink.polr(...)
modavg.shrink.rlm(...)
modavg.shrink.unmarked(...)
modavgpred(...)
modavgpred.glm(...)
modavgpred.gls(...)
modavgpred.lme(...)
modavgpred.mer(...)
modavgpred.merMod(...)
modavgpred.rlm(...)
modavgpred.unmarked(...)
mult.comp(...)
predictSE.zip(...)

Arguments

... arguments passed to the function.

Details

AICc.mult has been replaced by AICc.multinom.

AICc.unmarked has been replaced by AICc.unmarkedFit.

extract.LL has been replaced by extractLL.

extract.LL.coxph has been replaced by extractLL.coxph.

extract.LL.unmarked has been replaced by extractLL.unmarkedFit.

aictab.clm has been replaced by aictab.AICsclm.clm.

aictab.clmm has been replaced by aictab.AICclmm.

aictab.coxph has been replaced by aictab.AICcoxph.

aictab.glm has been replaced by aictab.AICglm.lm.

aictab.gls has been replaced by aictab.AICgls.

aictab.lm has been replaced by aictab.AIClm.

aictab.lme has been replaced by aictab.AIClme.

aictab.mer has been replaced by aictab.AICmer.

aictab.merMod has been replaced by aictab.AIClmerMod, aictab.AICglmerMod, or aictab.AICnlmerMod,
depending on the class of the objects.

aictab.mult has been replaced by aictab.AICmultinom.nnet.

aictab.nlme has been replaced by aictab.AICnlme.

aictab.nls has been replaced by aictab.AICnls.

aictab.polr has been replaced by aictab.AICpolr.
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aictab.rlm has been replaced by aictab.AICrlm.lm.

aictab.unmarked has been replaced by aictab.AICunmarkedFitOccu, aictab.AICunmarkedFitColExt,
aictab.AICunmarkedFitOccuRN, aictab.AICunmarkedFitPCount, aictab.AICunmarkedFitPCO,
aictab.AICunmarkedFitDS, aictab.AICunmarkedFitGDS, aictab.AICunmarkedFitOccuFP, aictab.AICunmarkedFitMPois,
aictab.AICunmarkedFitGMM, or aictab.AICunmarkedFitGPC, depending on the class of the ob-
jects.

dictab.bugs has been replaced by dictab.AICbugs.

dictab.jags has been replaced by dictab.AICjags.

modavg.clm has been replaced by modavg.AICsclm.clm.

modavg.clmm has been replaced by modavg.AICsclm.clm.

modavg.coxph has been replaced by modavg.AICcoxph.

modavg.glm has been replaced by modavg.AIClm or modavg.AICglm.lm, depending on the class
of the objects.

modavg.gls has been replaced by modavg.AICgls.

modavg.lme has been replaced by modavg.AIClme.

modavg.mer has been replaced by modavg.AICmer.

modavg.merMod has been replaced by modavg.AIClmerMod or modavg.AICglmerMod, depending
on the class of the objects.

modavg.mult has been replaced by modavg.AICmultinom.nnet.

modavg.polr has been replaced by modavg.AICpolr.

modavg.rlm has been replaced by modavg.AICrlm.lm.

modavg.unmarked has been replaced by modavg.AICunmarkedFitOccu, modavg.AICunmarkedFitColExt,
modavg.AICunmarkedFitOccuRN, modavg.AICunmarkedFitPCount, modavg.AICunmarkedFitPCO,
modavg.AICunmarkedFitDS, modavg.AICunmarkedFitGDS, modavg.AICunmarkedFitOccuFP, modavg.AICunmarkedFitMPois,
modavg.AICunmarkedFitGMM, or modavg.AICunmarkedFitGPC, depending on the class of the ob-
jects.

modavg.effect has been replaced by modavgEffect.

modavg.effect.glm has been replaced by modavgEffect.AICglm.lm or modavgEffect.AIClm,
depending on the class of the objects.

modavg.effect.gls has been replaced by modavgEffect.AICgls.

modavg.effect.lme has been replaced by modavgEffect.AIClme.

modavg.effect.mer has been replaced by modavgEffect.AICmer.

modavg.effect.merMod has been replaced by modavgEffect.AICglmerMod or modavgEffect.AIClmerMod,
depending on the class of the objects.

modavg.effect.rlm has been replaced by modavgEffect.AICrlm.lm.

modavg.effect.unmarked has been replaced by modavgEffect.AICunmarkedFitOccu, modavgEffect.AICunmarkedFitColExt,
modavgEffect.AICunmarkedFitOccuRN, modavgEffect.AICunmarkedFitPCount, modavgEffect.AICunmarkedFitPCO,
modavgEffect.AICunmarkedFitDS, modavgEffect.AICunmarkedFitGDS, modavgEffect.AICunmarkedFitOccuFP,
modavgEffect.AICunmarkedFitMPois, modavgEffect.AICunmarkedFitGMM, or modavgEffect.AICunmarkedFitGPC,
depending on the class of the objects.

modavg.shrink has been replaced by modavgShrink.
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modavg.shrink.clm has been replaced by modavgShrink.AICsclm.clm.

modavg.shrink.clmm has been replaced by modavgShrink.AICclmm.

modavg.shrink.coxph has been replaced by modavgShrink.AICcoxph.

modavg.shrink.glm has been replaced by modavgShrink.AICglm.lm or modavgShrink.AICglm.lm,
depending on the class of the objects.

modavg.shrink.gls has been replaced by modavgShrink.AICgls.

modavg.shrink.lme has been replaced by modavgShrink.AIClme.

modavg.shrink.mer has been replaced by modavgShrink.AICmer.

modavg.shrink.merMod has been replaced by modavgShrink.AICglmerMod or modavgShrink.AIClmerMod,
depending on the class of the objects.

modavg.shrink.mult has been replaced by modavgShrink.AICmultinom.nnet.

modavg.shrink.polr has been replaced by modavgShrink.AICpolr.

modavg.shrink.rlm has been replaced by modavgShrink.AICrlm.lm

modavg.shrink.unmarked has been replaced by modavgShrink.AICunmarkedFitOccu, modavgShrink.AICunmarkedFitColExt,
modavgShrink.AICunmarkedFitOccuRN, modavgShrink.AICunmarkedFitPCount, modavgShrink.AICunmarkedFitPCO,
modavgShrink.AICunmarkedFitDS, modavgShrink.AICunmarkedFitGDS, modavgShrink.AICunmarkedFitOccuFP,
modavgShrink.AICunmarkedFitMPois, modavgShrink.AICunmarkedFitGMM, or modavgShrink.AICunmarkedFitGPC,
depending on the class of the objects.

modavgpred has been replaced by modavgPred.

modavgpred.glm has been replaced by modavgpred.AICglm.lm or modavgPred.AIClm, depending
on the class of the objects.

modavgpred.gls has been replaced by modavgPred.AICgls.

modavgpred.lme has been replaced by modavgPred.AIClme.

modavgpred.mer has been replaced by modavgPred.AICmer.

modavgpred.merMod has been replaced by modavgpred.AICglmerMod or modavgPred.AIClmerMod,
depending on the class of the objects.

modavgpred.rlm has been replaced by modavgPred.AICrlm.lm.

modavgpred.unmarked has been replaced by modavgPred.AICunmarkedFitOccu, modavgPred.AICunmarkedFitColExt,
modavgPred.AICunmarkedFitOccuRN, modavgPred.AICunmarkedFitPCount, modavgPred.AICunmarkedFitPCO,
modavgPred.AICunmarkedFitDS, modavgPred.AICunmarkedFitGDS, modavgPred.AICunmarkedFitOccuFP,
modavgPred.AICunmarkedFitMPois, modavgPred.AICunmarkedFitGMM, or modavgPred.AICunmarkedFitGPC,
depending on the class of the objects.

mult.comp has been replaced by multComp.

predictSE.zip has been replaced by predictSE.

Author(s)

Marc J. Mazerolle

See Also

aictab, confset, dictab, importance, evidence, extractLL, c_hat, modavg, modavgEffect,
modavgShrink, modavgPred, multComp, predictSE
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aictab Create Model Selection Tables

Description

This function creates a model selection table based on one of the following information criteria:
AIC, AICc, QAIC, QAICc. The table ranks the models based on the selected information criteria
and also provides delta AIC and Akaike weights. aictab selects the appropriate function to create
the model selection table based on the object class. The current version works with lists containing
objects of aov, betareg, clm, clmm, clogit, coxme, coxph, fitdist, fitdistr, glm, glmmTMB,
gls, gnls, hurdle, lavaan, lm, lme, lmekin, maxlikeFit, mer, merMod, lmerModLmerTest,
multinom, negbin, nlme, nls, polr, rlm, survreg, vglm, and zeroinfl classes as well as var-
ious models of unmarkedFit classes but does not yet allow mixing of different classes.

Usage

aictab(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,
sort = TRUE, ...)

## S3 method for class 'AICaov.lm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICbetareg'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICsclm.clm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICclmm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICclm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICcoxme'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICcoxph'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)
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## S3 method for class 'AICfitdist'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICfitdistr'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICglm.lm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICglmmTMB'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICgls'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICgnls.gls'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIChurdle'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClavaan'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClme'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClmekin'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICmaxlikeFit.list'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)
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## S3 method for class 'AICmer'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClmerMod'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClmerModLmerTest'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICglmerMod'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICnlmerMod'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICmultinom.nnet'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICnegbin.glm.lm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICnlme.lme'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICnls'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICpolr'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICrlm.lm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICsurvreg'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)
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## S3 method for class 'AICunmarkedFitOccu'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitColExt'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuRN'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitPCount'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitPCO'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitDS'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGDS'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitMPois'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGMM'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGPC'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuMulti'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)



aictab 27

## S3 method for class 'AICunmarkedFitOccuMS'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuTTD'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitMMO'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitDSO'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGOccu'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuComm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICvglm'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICzeroinfl'
aictab(cand.set, modnames = NULL,

second.ord = TRUE, nobs = NULL, sort = TRUE, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models (i.e., a named list). If no names appear in the list and
no character vector is provided, generic names (e.g., Mod1, Mod2) are supplied
in the table in the same order as in the list of candidate models.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total
number of observations or number of independent clusters (e.g., sites) as the
value of nobs.
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sort logical. If TRUE, the model selection table is ranked according to the (Q)AIC(c)
values.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, aictab
will return the quasi-likelihood analogue of the information criteria requested
and multiply the variance-covariance matrix of the estimates by this value (i.e.,
SE’s are multiplied by sqrt(c.hat)). This option is not supported for general-
ized linear mixed models of the mer or merMod classes.

... additional arguments passed to the function.

Details

aictab internally creates a new class for the cand.set list of candidate models, according to the
contents of the list. The current function is implemented for clogit, coxme, coxph, fitdist,
fitdistr, glm, glmmTMB, gls, gnls, hurdle, lavaan, lm, lme, lmekin, maxlikeFit, mer, merMod,
lmerModLmerTest, multinom, negbin, nlme, nls, polr, rlm, survreg, vglm, and zeroinfl classes
as well as various unmarkedFit classes.

The function constructs a model selection table based on one of the four information criteria: AIC,
AICc, QAIC, and QAICc.

Ten guidelines for model selection:

1) Carefully construct your candidate model set. Each model should represent a specific (interest-
ing) hypothesis to test.

2) Keep your candidate model set short. It is ill-advised to consider as many models as there are
data.

3) Check model fit. Use your global model (most complex model) or subglobal models to determine
if the assumptions are valid. If none of your models fit the data well, information criteria will only
indicate the most parsimonious of the poor models.

4) Avoid data dredging (i.e., looking for patterns after an initial round of analysis).

5) Avoid overfitting models. You should not estimate too many parameters for the number of ob-
servations available in the sample.

6) Be careful of missing values. Remember that values that are missing only for certain variables
change the data set and sample size, depending on which variable is included in any given model. I
suggest to remove missing cases before starting model selection.

7) Use the same response variable for all models of the candidate model set. It is inappropriate to
run some models with a transformed response variable and others with the untransformed variable.
A workaround is to use a different link function for some models (e.g., identity vs log link).

8) When dealing with models with overdispersion, use the same value of c-hat for all models in
the candidate model set. For binomial models with trials > 1 (i.e., success/trial or cbind(success,
failure) syntax) or with Poisson GLM’s, you should estimate the c-hat from the most complex
model (global model). If c-hat > 1, you should use the same value for each model of the candidate
model set (where appropriate) and include it in the count of parameters (K). Similarly, for negative
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binomial models, you should estimate the dispersion parameter from the global model and use the
same value across all models.

9) Burnham and Anderson (2002) recommend to avoid mixing the information-theoretic approach
and notions of significance (i.e., P values). It is best to provide estimates and a measure of their
precision (standard error, confidence intervals).

10) Determining the ranking of the models is just the first step. Akaike weights sum to 1 for the
entire model set and can be interpreted as the weight of evidence in favor of a given model being
the best one given the candidate model set considered and the data at hand. Models with large
Akaike weights have strong support. Evidence ratios, importance values, and confidence sets for
the best model are all measures that assist in interpretation. In cases where the top ranking model
has an Akaike weight > 0.9, one can base inference on this single most parsimonious model. When
many models rank highly (i.e., delta (Q)AIC(c) < 4), one should model-average effect sizes for the
parameters with most support across the entire set of models. Model averaging consists in making
inference based on the whole set of candidate models, instead of basing conclusions on a single
’best’ model. It is an elegant way of making inference based on the information contained in the
entire model set.

Value

aictab creates an object of class aictab with the following components:

Modname the name of each model of the candidate model set.
K the number of estimated parameters for each model.
(Q)AIC(c) the information criterion requested for each model (AIC, AICc, QAIC, QAICc).
Delta_(Q)AIC(c)

the appropriate delta AIC component depending on the information criteria se-
lected.

ModelLik the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is
not to be confused with the likelihood of the parameters given the data. The
relative likelihood can then be normalized across all models to get the model
probabilities.

(Q)AIC(c)Wt the Akaike weights, also termed "model probabilities" sensu Burnham and An-
derson (2002) and Anderson (2008). These measures indicate the level of sup-
port (i.e., weight of evidence) in favor of any given model being the most parsi-
monious among the candidate model set.

Cum.Wt the cumulative Akaike weights. These are only meaningful if results in table are
sorted in decreasing order of Akaike weights (i.e., sort = TRUE).

c.hat if c.hat was specified as an argument, it is included in the table.
LL if c.hat = 1 and parameters estimated by maximum likelihood, the log-likelihood

of each model.
Quasi.LL if c.hat > 1, the quasi log-likelihood of each model.
Res.LL if parameters are estimated by restricted maximum-likelihood (REML), the re-

stricted log-likelihood of each model.

Author(s)

Marc J. Mazerolle
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See Also

AICc, aictabCustom, bictab, confset, c_hat, evidence, importance, modavg, modavgEffect,
modavgShrink, modavgPred

Examples

##Mazerolle (2006) frog water loss example
data(dry.frog)

##setup a subset of models of Table 1
Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
cent_Initial_mass + Initial_mass2 +
Shade:Substrate, data = dry.frog)

Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass +
Initial_mass2, data = dry.frog)

##create a vector of names to trace back models in set
Modnames <- paste("mod", 1:length(Cand.models), sep = " ")
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##generate AICc table
aictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE)
##round to 4 digits after decimal point and give log-likelihood
print(aictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE),

digits = 4, LL = TRUE)

## Not run:
##Burnham and Anderson (2002) flour beetle data
data(beetle)
##models as suggested by Burnham and Anderson p. 198
Cand.set <- list( )
Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family =

binomial(link = "logit"), weights = Number_tested,
data = beetle)

Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family =
binomial(link = "probit"), weights = Number_tested,
data = beetle)

Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family =
binomial(link ="cloglog"), weights = Number_tested,
data = beetle)

##check c-hat
c_hat(Cand.set[[1]])
c_hat(Cand.set[[2]])
c_hat(Cand.set[[3]])
##lowest value of c-hat < 1 for these non-nested models, thus use
##c.hat = 1

##set up named list
names(Cand.set) <- c("logit", "probit", "cloglog")

##compare models
##model names will be taken from the list if modnames is not specified
res.table <- aictab(cand.set = Cand.set, second.ord = FALSE)
##note that delta AIC and Akaike weights are identical to Table 4.7
print(res.table, digits = 2, LL = TRUE) #print table with 2 digits and
##print log-likelihood in table
print(res.table, digits = 4, LL = FALSE) #print table with 4 digits and
##do not print log-likelihood

## End(Not run)

##two-way ANOVA with interaction
data(iron)
##full model
m1 <- lm(Iron ~ Pot + Food + Pot:Food, data = iron)
##additive model
m2 <- lm(Iron ~ Pot + Food, data = iron)
##null model
m3 <- lm(Iron ~ 1, data = iron)
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##candidate models
Cand.aov <- list(m1, m2, m3)
Cand.names <- c("full", "additive", "null")
aictab(Cand.aov, Cand.names)

##single-season occupancy model example modified from ?occu
## Not run:
require(unmarked)
##single season example modified from ?occu
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
##add fake covariates
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)),

sitevar2 = runif(numSites(pferUMF)))

##observation covariates
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) *

obsNum(pferUMF)))

##set up candidate model set
fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF)
fm2 <- occu(~ 1 ~ sitevar1, pferUMF)
fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF)
fm4 <- occu(~ 1 ~ sitevar2, pferUMF)

##assemble models in named list (alternative to using 'modnames' argument)
Cand.mods <- list("fm1" = fm1, "fm2" = fm2, "fm3" = fm3, "fm4" = fm4)

##compute table
aictab(cand.set = Cand.mods, second.ord = TRUE)

detach(package:unmarked)

## End(Not run)

aictabCustom Create Model Selection Tables from User-supplied Input Based on
(Q)AIC(c)

Description

This function creates a model selection table from model input (log-likelihood, number of estimated
parameters) supplied by the user instead of extracting the values automatically from a list of can-
didate models. The models are ranked based on one of the following information criteria: AIC,
AICc, QAIC, QAICc. The table ranks the models based on the selected information criteria and
also provides delta AIC and Akaike weights.
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Usage

aictabCustom(logL, K, modnames = NULL, second.ord = TRUE, nobs = NULL,
sort = TRUE, c.hat = 1)

Arguments

logL a vector of log-likelihood values for the models in the candidate model set.

K a vector containing the number of estimated parameters for each model in the
candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models (i.e., a named list). If no names appear in the list and
no character vector is provided, generic names (e.g., Mod1, Mod2) are supplied
in the table in the same order as in the list of candidate models.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs the sample size required to compute the AICc or QAICc.

sort logical. If TRUE, the model selection table is ranked according to the (Q)AIC(c)
values.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season or dynamic occupancy models
(MacKenzie et al. 2002, 2003), N-mixture models (Royle 2004, Dail and Mad-
sen 2011), or capture-mark-recapture models (e.g., Lebreton et al. 1992). If
c.hat > 1, aictabCustom will return the quasi-likelihood analogue of the infor-
mation criterion requested.

Details

aictabCustom constructs a model selection table based on one of the four information criteria:
AIC, AICc, QAIC, and QAICc. This function is most useful when model input is imported into
R from other software (e.g., Program MARK, PRESENCE) or for model classes that are not yet
supported by aictab.

Value

aictabCustom creates an object of class aictab with the following components:

Modname the name of each model of the candidate model set.

K the number of estimated parameters for each model.

(Q)AIC(c) the information criteria requested for each model (AICc, AICc, QAIC, QAICc).
Delta_(Q)AIC(c)

the appropriate delta AIC component depending on the information criteria se-
lected.
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ModelLik the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is
not to be confused with the likelihood of the parameters given the data. The
relative likelihood can then be normalized across all models to get the model
probabilities.

(Q)AIC(c)Wt the Akaike weights, also termed "model probabilities" sensu Burnham and An-
derson (2002) and Anderson (2008). These measures indicate the level of sup-
port (i.e., weight of evidence) in favor of any given model being the most parsi-
monious among the candidate model set.

Cum.Wt the cumulative Akaike weights. These are only meaningful if results in table are
sorted in decreasing order of Akaike weights (i.e., sort = TRUE).

c.hat if c.hat was specified as an argument, it is included in the table.

LL if c.hat = 1 and parameters estimated by maximum likelihood, the log-likelihood
of each model.

Quasi.LL if c.hat > 1, the quasi log-likelihood of each model.

Author(s)

Marc J. Mazerolle
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Examples

##vector with model LL's
LL <- c(-38.8876, -35.1783, -64.8970)

##vector with number of parameters
Ks <- c(7, 9, 4)

##create a vector of names to trace back models in set
Modnames <- c("Cm1", "Cm2", "Cm3")

##generate AICc table
aictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121,

sort = TRUE)

anovaOD Likelihood-Ratio Test Corrected for Overdispersion

Description

Compute likelihood-ratio test between a given model and a simpler model.

Usage

anovaOD(mod.simple, mod.complex, c.hat = 1,
nobs = NULL, ...)

## S3 method for class 'glm'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitOccu'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitColExt'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitOccuRN'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitPCount'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitPCO'



36 anovaOD

anovaOD(mod.simple, mod.complex, c.hat = 1,
nobs = NULL, ...)

## S3 method for class 'unmarkedFitDS'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitGDS'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitOccuFP'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitMPois'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitGMM'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitGPC'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitOccuMS'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitOccuTTD'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitMMO'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitDSO'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitGOccu'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'unmarkedFitOccuComm'
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anovaOD(mod.simple, mod.complex, c.hat = 1,
nobs = NULL, ...)

## S3 method for class 'glmerMod'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'maxlikeFit'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'multinom'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

## S3 method for class 'vglm'
anovaOD(mod.simple, mod.complex, c.hat = 1,

nobs = NULL, ...)

Arguments

mod.simple an object of class glm, glmmTMB, maxlikeFit, mer, merMod, multinom, vglm,
and various unmarkedFit classes containing the output of a model. This model
should be a simpler version of mod.complex resulting from a deletion of certain
terms (i.e., nested model).

mod.complex an object of the same class as mod.simple.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that
obtained from c_hat, mb.gof.test, or Nmix.gof.test. Typically, this value
should be computed for the most complex model and applied to simpler models.

nobs the number of observations used in the analysis. If nobs = NULL, the total num-
ber of rows are used as the sample size to compute the residual degrees of free-
dom as nobs −K, where K is the number of estimated parameters. This is rel-
evant only for mixed models or various models of unmarkedFit classes where
sample size is not straightforward. In such cases, one might use total number of
observations or number of independent clusters (e.g., sites) as the value of nobs.

... additional arguments passed to the function.

Details

This function applies a correction for overdispersion on the likelihood-ratio test between a model
and its simpler counterpart. The simpler model must be nested within the more complex model,
typically as the result of deleting terms. You should supply the c.hat value of the most complex of
the two models you are comparing.

When 1 < c.hat < 4, the likelihood-ratio test is computed as:

LR =
−2 ∗ (LL.simple− LL.complex)

(K.complex−K.simple) ∗ c.hat
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where LL.simple and LL.complex are the log-likelihoods of the simple and complex models, respec-
tively, and where K.complex and K.simple are the number of estimated parameters in each model.
The test statistic is approximately distributed as FK.complex−K.simple,n−K.complex, where n is the
number of observations (i.e., nobs) used in the analysis (Venables and Ripley 2002).

When nobs = NULL, the number of observations is based on the number of rows of the data frame
used in the analysis. For mixed models or various models of unmarkedFit, sample size is less
straightforward, and nobs could be based on the total number of observations or on the number of
independent clusters (e.g., sites), among other choices.

When c.hat = 1, the likelihood-ratio test simplifies to:

LR = −2 ∗ (LL.simple− LL.complex)

where in this case the test statistic is distributed as a χ2
K.complex−K.simple (McCullagh and Nelder

1989).

The function supports different model types such as Poisson GLM’s and GLMM’s, single-season
and dynamic occupancy models (MacKenzie et al. 2002, 2003), and various N-mixture models
(Royle 2004, Dail and Madsen 2011).

Value

anovaOD returns an object of class anovaOD as a list with the following components:

form.simple a character string of the parameters estimated in mod.simple.

form.complex a character string of the parameters estimated in mod.complex.

c.hat the c.hat estimate used to adjust the likelihood-ratio test.

devMat a matrix storing as columns the number of parameters estimated (K), the log-
likelihood of each model logLik, the difference in estimated parameters be-
tween the two models (Kdiff), minus twice the difference in log-likelihoods
between the models (-2LL), the test statistic, and the associated P-value.

Author(s)

Marc J. Mazerolle

References

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.

Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike’s Information Crite-
rion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.
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See Also

c_hat, mb.gof.test, Nmix.gof.test, summaryOD

Examples

##anuran larvae example from Mazerolle (2006)
data(min.trap)
##assign "UPLAND" as the reference level as in Mazerolle (2006)
min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND")

##run model
m1 <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra,

family = poisson, offset = log(Effort),
data = min.trap)

##null model
m0 <- glm(Num_anura ~ 1,

family = poisson, offset = log(Effort),
data = min.trap)

##check c-hat for global model
c_hat(m1) #uses Pearson's chi-square/df

##likelihood ratio test corrected for overdispersion
anovaOD(mod.simple = m0, mod.complex = m1, c.hat = c_hat(m1))
##compare without overdispersion correction
anovaOD(mod.simple = m0, mod.complex = m1)

##example with occupancy model
## Not run:
##load unmarked package
if(require(unmarked)){

data(bullfrog)

##detection data
detections <- bullfrog[, 3:9]

##assemble in unmarkedFrameOccu
bfrog <- unmarkedFrameOccu(y = detections)

##run model
fm <- occu(~ 1 ~ Reed.presence, data = bfrog)
##null model
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fm0 <- occu(~ 1 ~ 1, data = bfrog)

##check GOF
##GOF <- mb.gof.test(fm, nsim = 1000)
##estimate of c-hat: 1.89

##display results after overdispersion adjustment
anovaOD(fm0, fm, c.hat = 1.89)

detach(package:unmarked)
}

## End(Not run)

beetle Flour Beetle Data

Description

This data set illustrates the acute mortality of flour beetles (Tribolium confusum) following 5 hour
exposure to carbon disulfide gas.

Usage

data(beetle)

Format

A data frame with 8 rows and 4 variables.

Dose dose of carbon disulfide in mg/L.
Number_tested number of beetles exposed to given dose of carbon disulfide.
Number_killed number of beetles dead after 5 hour exposure to given dose of carbon disulfide.
Mortality_rate proportion of total beetles found dead after 5 hour exposure.

Details

Burnham and Anderson (2002, p. 195) use this data set originally from Young and Young (1998) to
show model selection for binomial models with different link functions (logit, probit, cloglog).

Source

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Young, L. J., Young, J. H. (1998) Statistical Ecology. Kluwer Academic Publishers: London.

Examples

data(beetle)
## maybe str(beetle) ; plot(beetle) ...



bictab 41

bictab Create Model Selection Tables Based on BIC

Description

This function creates a model selection table based on the Bayesian information criterion (Schwarz
1978, Burnham and Anderson 2002). The table ranks the models based on the BIC and also provides
delta BIC and BIC model weights. The function adjusts for overdispersion in model selection
by using the QBIC when c.hat > 1. bictab selects the appropriate function to create the model
selection table based on the object class. The current version works with lists containing objects of
aov, betareg, clm, clmm, clogit, coxme, coxph, fitdist, fitdistr, glm, glmmTMB, gls, gnls,
hurdle, lavaan, lm, lme, lmekin, maxlikeFit, mer, merMod, lmerModLmerTest, multinom, nlme,
nls, polr, rlm, survreg, vglm, and zeroinfl classes as well as various models of unmarkedFit
classes but does not yet allow mixing of different classes.

Usage

bictab(cand.set, modnames = NULL, nobs = NULL,
sort = TRUE, ...)

## S3 method for class 'AICaov.lm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICbetareg'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICsclm.clm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICclmm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICclm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICcoxme'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICcoxph'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)
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## S3 method for class 'AICfitdist'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICfitdistr'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICglm.lm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICglmmTMB'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICgls'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICgnls.gls'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIChurdle'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClavaan'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClme'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClmekin'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICmaxlikeFit.list'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)
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## S3 method for class 'AICmer'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClmerMod'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AIClmerModLmerTest'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICglmerMod'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICnlmerMod'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICmultinom.nnet'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICnlme.lme'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICnls'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICpolr'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICrlm.lm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICsurvreg'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

## S3 method for class 'AICunmarkedFitOccu'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)
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## S3 method for class 'AICunmarkedFitColExt'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuRN'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitPCount'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitPCO'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitDS'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGDS'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitMPois'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGMM'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGPC'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuMulti'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuMS'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)



bictab 45

## S3 method for class 'AICunmarkedFitOccuTTD'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitMMO'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitDSO'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitGOccu'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICunmarkedFitOccuComm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICvglm'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, c.hat = 1, ...)

## S3 method for class 'AICzeroinfl'
bictab(cand.set, modnames = NULL,

nobs = NULL, sort = TRUE, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models (i.e., a named list). If no names appear in the list and
no character vector is provided, generic names (e.g., Mod1, Mod2) are supplied
in the table in the same order as in the list of candidate models.

nobs this argument allows to specify a numeric value other than total sample size to
compute the BIC (i.e., nobs defaults to total number of observations). This is
relevant only for mixed models or various models of unmarkedFit classes where
sample size is not straightforward. In such cases, one might use total number of
observations or number of independent clusters (e.g., sites) as the value of nobs.

sort logical. If TRUE, the model selection table is ranked according to the BIC values.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
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mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, bictab
will return the quasi-likelihood analogue of the BIC (QBIC) and multiply the
variance-covariance matrix of the estimates by this value (i.e., SE’s are mul-
tiplied by sqrt(c.hat)). This option is not supported for generalized linear
mixed models of the mer or merMod classes.

... additional arguments passed to the function.

Details

BIC tends to favor simpler models than AIC whenever n > 8 (Schwarz 1978, Link and Barker
2006, Anderson 2008). BIC assigns uniform prior probabilities across all models (i.e., equal 1/R),
whereas in AIC and AICc, prior probabilities increase with sample size (Burnham and Anderson
2004, Link and Barker 2010). Some authors argue that BIC requires the true model to be included
in the model set, whereas AIC or AICc does not (Burnham and Anderson 2002). However, Link
and Barker (2006, 2010) consider both as assuming that a model in the model set approximates
truth.

bictab internally creates a new class for the cand.set list of candidate models, according to the
contents of the list. The current function is implemented for clogit, coxme, coxph, fitdist,
fitdistr, glm, glmmTMB, gls, gnls, hurdle, lavaan, lm, lme, lmekin, maxlikeFit, mer, merMod,
lmerModLmerTest, multinom, nlme, nls, polr, rlm, survreg, vglm, and zeroinfl classes as well
as various unmarkedFit classes. The function constructs a model selection table based on BIC.

Value

bictab creates an object of class bictab with the following components:

Modname the name of each model of the candidate model set.

K the number of estimated parameters for each model.

(Q)BIC the Bayesian information criterion for each model.

Delta_(Q)BIC the delta BIC component.

ModelLik the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is
not to be confused with the likelihood of the parameters given the data. The
relative likelihood can then be normalized across all models to get the model
probabilities.

(Q)BICWt the BIC model weights, also termed "model probabilities" (Burnham and An-
derson 2002, Link and Barker 2006, Anderson 2008). These measures indicate
the level of support (i.e., weight of evidence) in favor of any given model being
the most parsimonious among the candidate model set.

Cum.Wt the cumulative BIC weights. These are only meaningful if results in table are
sorted in decreasing order of BIC weights (i.e., sort = TRUE).

c.hat if c.hat was specified as an argument, it is included in the table.

LL the log-likelihood of each model.

Res.LL if parameters are estimated by restricted maximum-likelihood (REML), the re-
stricted log-likelihood of each model.
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See Also

aictab, bictabCustom, confset, evidence, importance, useBIC,

Examples

##Mazerolle (2006) frog water loss example
data(dry.frog)

##setup a subset of models of Table 1
Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
cent_Initial_mass + Initial_mass2 +
Shade:Substrate, data = dry.frog)

Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass +



48 bictab

Initial_mass2, data = dry.frog)
Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass +

Initial_mass2, data = dry.frog)

##create a vector of names to trace back models in set
Modnames <- paste("mod", 1:length(Cand.models), sep = " ")

##generate BIC table
bictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE)
##round to 4 digits after decimal point and give log-likelihood
print(bictab(cand.set = Cand.models, modnames = Modnames, sort = TRUE),

digits = 4, LL = TRUE)

## Not run:
##Burnham and Anderson (2002) flour beetle data
data(beetle)
##models as suggested by Burnham and Anderson p. 198
Cand.set <- list( )
Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family =

binomial(link = "logit"), weights = Number_tested,
data = beetle)

Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family =
binomial(link = "probit"), weights = Number_tested,
data = beetle)

Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family =
binomial(link ="cloglog"), weights = Number_tested,
data = beetle)

##set up named list
names(Cand.set) <- c("logit", "probit", "cloglog")

##compare models
##model names will be taken from the list if modnames is not specified
bictab(cand.set = Cand.set)

## End(Not run)

##two-way ANOVA with interaction
data(iron)
##full model
m1 <- lm(Iron ~ Pot + Food + Pot:Food, data = iron)
##additive model
m2 <- lm(Iron ~ Pot + Food, data = iron)
##null model
m3 <- lm(Iron ~ 1, data = iron)

##candidate models
Cand.aov <- list(m1, m2, m3)
Cand.names <- c("full", "additive", "null")
bictab(Cand.aov, Cand.names)
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##single-season occupancy model example modified from ?occu
## Not run:
require(unmarked)
##single season example modified from ?occu
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
##add fake covariates
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)),

sitevar2 = runif(numSites(pferUMF)))

##observation covariates
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) *

obsNum(pferUMF)))

##set up candidate model set
fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF)
fm2 <- occu(~ 1 ~ sitevar1, pferUMF)
fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF)
fm4 <- occu(~ 1 ~ sitevar2, pferUMF)

##assemble models in named list (alternative to using 'modnames' argument)
Cand.mods <- list("fm1" = fm1, "fm2" = fm2, "fm3" = fm3, "fm4" = fm4)

##compute table based on QBIC that accounts for c.hat
bictab(cand.set = Cand.mods, c.hat = 3.9)

detach(package:unmarked)

## End(Not run)

bictabCustom Create Model Selection Tables from User-supplied Input Based on
(Q)BIC

Description

This function creates a model selection table from model input (log-likelihood, number of estimated
parameters) supplied by the user instead of extracting the values automatically from a list of can-
didate models. The models are ranked based on the BIC (Schwarz 1978) or on a quasi-likelihood
analogue (QBIC) corrected for overdispersion. The table ranks the models based on the selected
information criteria and also provides delta BIC and BIC weights.

Usage

bictabCustom(logL, K, modnames = NULL, nobs = NULL, sort = TRUE,
c.hat = 1)
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Arguments

logL a vector of log-likelihood values for the models in the candidate model set.

K a vector containing the number of estimated parameters for each model in the
candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models (i.e., a named list). If no names appear in the list and
no character vector is provided, generic names (e.g., Mod1, Mod2) are supplied
in the table in the same order as in the list of candidate models.

nobs the sample size required to compute the AICc or QAICc.

sort logical. If TRUE, the model selection table is ranked according to the (Q)BIC
values.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season or dynamic occupancy models
(MacKenzie et al. 2002, 2003), N-mixture models (Royle 2004, Dail and Mad-
sen 2011), or capture-mark-recapture models (e.g., Lebreton et al. 1992). If
c.hat > 1, bictabCustom will return the quasi-likelihood analogue of the infor-
mation criterion requested.

Details

bictabCustom constructs a model selection table based on BIC or QBIC. This function is most use-
ful when model input is imported into R from other software (e.g., Program MARK, PRESENCE)
or for model classes that are not yet supported by bictab.

Value

bictabCustom creates an object of class bictab with the following components:

Modname the name of each model of the candidate model set.

K the number of estimated parameters for each model.

(Q)BIC the information criteria requested for each model (BIC, QBIC).

Delta_(Q)BIC the appropriate delta BIC component depending on the information criteria se-
lected.

ModelLik the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is
not to be confused with the likelihood of the parameters given the data. The
relative likelihood can then be normalized across all models to get the model
probabilities.

(Q)BICWt the BIC weights, also termed "model probabilities" sensu Burnham and Ander-
son (2002) and Anderson (2008). These measures indicate the level of support
(i.e., weight of evidence) in favor of any given model being the most parsimo-
nious among the candidate model set.

Cum.Wt the cumulative BIC weights. These are only meaningful if results in table are
sorted in decreasing order of BIC weights (i.e., sort = TRUE).
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c.hat if c.hat was specified as an argument, it is included in the table.

LL if c.hat = 1 and parameters estimated by maximum likelihood, the log-likelihood
of each model.

Quasi.LL if c.hat > 1, the quasi log-likelihood of each model.

Author(s)

Marc J. Mazerolle

References

Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer:
New York.

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case-studies. Ecological
Monographs 62, 67–118.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.

Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike’s Information Crite-
rion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.

See Also

AICcCustom, aictabCustom, confset, c_hat, evidence, ictab, modavgCustom

Examples

##vector with model LL's
LL <- c(-38.8876, -35.1783, -64.8970)

##vector with number of parameters
Ks <- c(7, 9, 4)

##create a vector of names to trace back models in set
Modnames <- c("Cm1", "Cm2", "Cm3")
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##generate BIC table
bictabCustom(logL = LL, K = Ks, modnames = Modnames, nobs = 121,

sort = TRUE)

boot.wt Compute Model Selection Relative Frequencies

Description

This function computes the model selection relative frequencies based on the nonparametric boot-
strap (Burnham and Anderson 2002). Models are ranked based on the AIC, AICc, QAIC, or QAICc.
The function currently supports objects of aov, betareg, clm, glm, hurdle, lm, multinom, polr,
rlm, survreg, vglm, and zeroinfl classes.

Usage

boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,
sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICaov.lm'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICsurvreg'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICsclm.clm'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICglm.lm'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, c.hat = 1, ...)

## S3 method for class 'AIChurdle'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AIClm'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICmultinom.nnet'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, c.hat = 1, ...)
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## S3 method for class 'AICpolr'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICrlm.lm'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICsurvreg'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

## S3 method for class 'AICvglm'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, c.hat = 1, ...)

## S3 method for class 'AICzeroinfl'
boot.wt(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,

sort = TRUE, nsim = 100, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for certain types of models such as mixed models where sam-
ple size is not straightforward. In such cases, one might use total number of
observations or number of independent clusters (e.g., sites) as the value of nobs.

sort logical. If TRUE, the model selection table is ranked according to the (Q)AIC(c)
values.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that
obtained from c_hat. Note that values of c.hat different from 1 are only appro-
priate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success,
failure) syntax) or with Poisson GLM’s. If c.hat > 1, boot.wt will return the
quasi-likelihood analogue of the information criterion requested.

nsim the number of bootstrap iterations. Burnham and Anderson (2002) recommend
at least 1000 and up to 10 000 iterations for certain problems.

... additional arguments passed to the function.
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Details

boot.wt is implemented for aov, betareg, glm, hurdle, lm, multinom, polr, rlm, survreg, vglm,
and zeroinfl classes. During each bootstrap iteration, the data are resampled with replacement,
all the models specified in cand.set are updated with the new data set, and the top-ranked model is
saved. When all iterations are completed, the relative frequency of selection is computed for each
model appearing in the candidate model set.

Relative frequencies of the models are often similar to Akaike weights, and the latter are often
preferred due to their link with a Bayesian perspective (Burnham and Anderson 2002). boot.wt
is most useful for teaching purposes of sampling-theory based relative frequencies of model se-
lection. The current implementation is only appropriate with completely randomized designs. For
more complex data structures (e.g., blocks or random effects), the bootstrap should be modified
accordingly.

Value

boot.wt creates an object of class boot.wt with the following components:

Modname the names of each model of the candidate model set.

K the number of estimated parameters for each model.

(Q)AIC(c) the information criteria requested for each model (AICc, AICc, QAIC, QAICc).
Delta_(Q)AIC(c)

the appropriate delta AIC component depending on the information criteria se-
lected.

ModelLik the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is
not to be confused with the likelihood of the parameters given the data. The
relative likelihood can then be normalized across all models to get the model
probabilities.

(Q)AIC(c)Wt the Akaike weights, also termed "model probabilities" sensu Burnham and An-
derson (2002) and Anderson (2008). These measures indicate the level of sup-
port (i.e., weight of evidence) in favor of any given model being the most parsi-
monious among the candidate model set.

PiWt the relative frequencies of model selection from the bootstrap.

c.hat if c.hat was specified as an argument, it is included in the table.

Author(s)

Marc J. Mazerolle

References

Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer:
New York.

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in
model selection. Sociological Methods and Research 33, 261–304.
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Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike’s Information Crite-
rion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.

See Also

AICc, confset, c_hat, evidence, importance, modavg, modavgShrink, modavgPred

Examples

##Mazerolle (2006) frog water loss example
data(dry.frog)

##setup a subset of models of Table 1
Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
cent_Initial_mass + Initial_mass2 +
Shade:Substrate, data = dry.frog)

Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass +
Initial_mass2, data = dry.frog)

##create a vector of names to trace back models in set
Modnames <- paste("mod", 1:length(Cand.models), sep = " ")

##generate AICc table with bootstrapped relative
##frequencies of model selection
boot.wt(cand.set = Cand.models, modnames = Modnames, sort = TRUE,

nsim = 10) #number of iterations should be much higher

##Burnham and Anderson (2002) flour beetle data
## Not run:
data(beetle)
##models as suggested by Burnham and Anderson p. 198
Cand.set <- list( )
Cand.set[[1]] <- glm(Mortality_rate ~ Dose, family =

binomial(link = "logit"), weights = Number_tested,
data = beetle)

Cand.set[[2]] <- glm(Mortality_rate ~ Dose, family =
binomial(link = "probit"), weights = Number_tested,
data = beetle)

Cand.set[[3]] <- glm(Mortality_rate ~ Dose, family =
binomial(link ="cloglog"), weights = Number_tested,
data = beetle)

##create a vector of names to trace back models in set
Modnames <- paste("Mod", 1:length(Cand.set), sep = " ")
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##model selection table with bootstrapped
##relative frequencies
boot.wt(cand.set = Cand.set, modnames = Modnames)

## End(Not run)

bullfrog Bullfrog Occupancy and Common Reed Invasion

Description

This is a data set from Mazerolle et al. (2014) on the occupancy of Bullfrogs (Lithobates cates-
beianus) in 50 wetlands sampled in 2009 in the area of Montreal, QC.

Usage

data(bullfrog)

Format

A data frame with 50 observations on the following 23 variables.

Location a factor with a unique identifier for each wetland.

Reed.presence a binary variable, either 1 (reed present) or 0 (reed absent).

V1 a binary variable for detection (1) or non detection (0) of bullfrogs during the first survey.

V2 a binary variable for detection (1) or non detection (0) of bullfrogs during the second survey.

V3 a binary variable for detection (1) or non detection (0) of bullfrogs during the third survey.

V4 a binary variable for detection (1) or non detection (0) of bullfrogs during the fourth survey.

V5 a binary variable for detection (1) or non detection (0) of bullfrogs during the fifth survey.

V6 a binary variable for detection (1) or non detection (0) of bullfrogs during the sixth survey.

V7 a binary variable for detection (1) or non detection (0) of bullfrogs during the seventh survey.

Effort1 a numeric variable for the centered number of sampling stations during the first survey.

Effort2 a numeric variable for the centered number of sampling stations during the second survey.

Effort3 a numeric variable for the centered number of sampling stations during the third survey.

Effort4 a numeric variable for the centered number of sampling stations during the fourth survey.

Effort5 a numeric variable for the centered number of sampling stations during the fifth survey.

Effort6 a numeric variable for the centered number of sampling stations during the sixth survey.

Effort7 a numeric variable for the centered number of sampling stations during the seventh survey.

Type1 a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during
the first sampling occasion.

Type2 a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during
the second sampling occasion.
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Type3 a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during
the third sampling occasion.

Type4 a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during
the fourth sampling occasion.

Type5 a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during
the fifth sampling occasion.

Type6 a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during
the sixth sampling occasion.

Type7 a binary variable to identify the survey type, either minnow trap (1) or call survey (0) during
the seventh sampling occasion.

Details

This data set is used to illustrate single-species single-season occupancy models (MacKenzie et al.
2002) in Mazerolle (2015). The average number of sampling stations on each visit was 8.665714,
and was used to center Effort on each visit.

Source

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002). Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

Mazerolle, M. J., Perez, A., Brisson, J. (2014) Common reed (Phragmites australis) invasion and
amphibian distribution in freshwater wetlands. Wetlands Ecology and Management 22, 325–340.

Mazerolle, M. J. (2015) Estimating detectability and biological parameters of interest with the use
of the R environment. Journal of Herpetology 49, 541–559.

Examples

data(bullfrog)
str(bullfrog)

calcium Blood Calcium Concentration in Birds

Description

This data set features calcium concentration in the plasma of birds of both sexes following a hor-
monal treatment.

Usage

data(calcium)
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Format

A data frame with 20 rows and 3 variables.

Calcium calcium concentration in mg/100 ml in the blood of birds.

Hormone a factor with two levels indicating whether the bird received a hormonal treatment or not.

Sex a factor with two levels coding for the sex of birds.

Details

Zar (1984, p. 206) illustrates a two-way ANOVA with interaction with this data set.

Source

Zar, J. H. (1984) Biostatistical analysis. Second edition. Prentice Hall: Englewood Cliffs, New
Jersey.

Examples

data(calcium)
str(calcium)

cement Heat Expended Following Hardening of Portland Cement

Description

This data set illustrates the heat expended (calories) from mixtures of four different ingredients of
Portland cement expressed as a percentage by weight.

Usage

data(cement)

Format

A data frame with 13 observations on the following 5 variables.

x1 calcium aluminate.

x2 tricalcium silicate.

x3 tetracalcium alumino ferrite.

x4 dicalcium silicate.

y calories of heat per gram of cement following 180 days of hardening.

Details

Burnham and Anderson (2002, p. 101) use this data set originally from Woods et al. (1932) to
select among a set of multiple regression models.
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Source

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Woods, H., Steinour, H. H., Starke, H. R. (1932) Effect of composition of Portland cement on heat
evolved during hardening. Industrial and Engineering Chemistry 24, 1207–1214.

Examples

data(cement)
## maybe str(cement) ; plot(cement) ...

checkConv Check Convergence of Fitted Model

Description

This function checks the convergence information contained in models of various classes.

Usage

checkConv(mod, ...)

## S3 method for class 'betareg'
checkConv(mod, ...)

## S3 method for class 'clm'
checkConv(mod, ...)

## S3 method for class 'clmm'
checkConv(mod, ...)

## S3 method for class 'glm'
checkConv(mod, ...)

## S3 method for class 'glmmTMB'
checkConv(mod, ...)

## S3 method for class 'hurdle'
checkConv(mod, ...)

## S3 method for class 'lavaan'
checkConv(mod, ...)

## S3 method for class 'maxlikeFit'
checkConv(mod, ...)
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## S3 method for class 'merMod'
checkConv(mod, ...)

## S3 method for class 'lmerModLmerTest'
checkConv(mod, ...)

## S3 method for class 'multinom'
checkConv(mod, ...)

## S3 method for class 'nls'
checkConv(mod, ...)

## S3 method for class 'polr'
checkConv(mod, ...)

## S3 method for class 'unmarkedFit'
checkConv(mod, ...)

## S3 method for class 'zeroinfl'
checkConv(mod, ...)

Arguments

mod an object containing the output of a model of the classes mentioned above.

... additional arguments passed to the function.

Details

This function checks the element of a model object that contains the convergence information from
the optimization function. The function is currently implemented for models of classes betareg,
clm, clmm, glm, glmmTMB, hurdle, lavaan, maxlikeFit, merMod, lmerModLmerTest, multinom,
nls, polr, unmarkedFit, and zeroinfl. The function is particularly useful for functions with
several groups of parameters, such as those of the unmarked package (Fiske and Chandler, 2011).

Value

checkConv returns a list with the following components:

converged a logical value indicating whether the algorithm converged or not.

message a string containing the message from the optimization function.

Author(s)

Marc J. Mazerolle

References

Fiske, I., Chandler, R. (2011) unmarked: An R Package for fitting hierarchical models of wildlife
occurrence and abundance. Journal of Statistical Software 43, 1–23.
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See Also

checkParms, covDiag, mb.gof.test, Nmix.gof.test

Examples

##example modified from ?pcount
## Not run:
if(require(unmarked)){
##Simulate data
set.seed(3)
nSites <- 100
nVisits <- 3
##covariate
x <- rnorm(nSites)
beta0 <- 0
beta1 <- 1
##expected counts
lambda <- exp(beta0 + beta1*x)
N <- rpois(nSites, lambda)
y <- matrix(NA, nSites, nVisits)
p <- c(0.3, 0.6, 0.8)
for(j in 1:nVisits) {

y[,j] <- rbinom(nSites, N, p[j])
}
## Organize data
visitMat <- matrix(as.character(1:nVisits),

nSites, nVisits, byrow=TRUE)

umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x),
obsCovs=list(visit=visitMat))

## Fit model
fm1 <- pcount(~ visit ~ 1, umf, K=50)
checkConv(fm1)
}

## End(Not run)

checkParms Identify Parameters with Large Standard Errors

Description

This function identifies parameter estimates with large standard errors in a model. It is particularly
useful for complex models with different parameter types such as those of unmarkedFit classes
implemented in package unmarked (Fiske and Chandler, 2011), as well as other types of regression
models.
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Usage

checkParms(mod, se.max = 25, simplify = TRUE, ...)

## S3 method for class 'betareg'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'clm'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'clmm'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'coxme'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'coxph'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'glm'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'glmmTMB'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'gls'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'gnls'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'hurdle'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'lm'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'lme'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'lmekin'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'maxlikeFit'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'merMod'
checkParms(mod, se.max = 25, ...)
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## S3 method for class 'lmerModLmerTest'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'multinom'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'nlme'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'nls'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'polr'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'rlm'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'survreg'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'unmarkedFit'
checkParms(mod, se.max = 25, simplify = TRUE,
...)

## S3 method for class 'vglm'
checkParms(mod, se.max = 25, ...)

## S3 method for class 'zeroinfl'
checkParms(mod, se.max = 25, ...)

Arguments

mod a model of unmarkedFit classes or other regression model. This model is
checked to determine the occurrence of large standard errors for parameter esti-
mates.

se.max specifies the value beyond which standard errors are deemed high for the model
at hand. The function will determine the number of estimates with standard
errors that exceed se.max.

simplify this argument is only valid for models of unmarkedFit classes which consist of
several parameter types for detection probability and demographic parameters
(e.g., abundance, occupancy, extinction). If TRUE, the function returns a matrix
with a single row identifying the parameter type and estimate with the highest
standard error. If FALSE, the function returns a matrix with as many rows as
there are parameter types in the model. In the latter case, the estimate with the
highest standard error for each parameter type is presented.

... additional arguments passed to the function.
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Details

In some complex models such as certain hierarchical models (Royle and Dorazio 2008, Kéry and
Royle 2015), issues in estimating parameters and their standard errors can occur. Large standard
errors can be indicative of problems in estimating certain parameters due to sparse data, parameters
on the boundary, or model misspecification. The checkParms function computes the number of
parameter estimates with standard errors larger than se.max and identifies the parameter estimate
with the largest standard error across all parameter types (simplify = TRUE) or for each parameter
type (simplify = FALSE).

To help identify large standard errors, users can standardize numeric explanatory variables to zero
mean and unit variance. The checkParms function can also be useful to identify boundary estimates
in classic generalized models or their extensions (Venables and Ripley 2002).

Value

checkParms returns a list of class checkParms with the following components:

model.class the class of the model for which diagnostics are requested.
se.max the value of SE used as a threshold in diagnostics. The function reports the

number of parameter estimates with SE > se.max.
result a matrix consisting of three columns, namely, the identity of the parameter es-

timate with the highest SE (variable), its standard error (max.se), and the
number of parameter estimates with SE larger than se.max (n.high.se). For
classical regression models with a single response variable, the row name is la-
beled beta. For unmarkedFit models, the matrix either consists of a single row
(simplify = TRUE) labeled with the name of the parameter type (e.g., psi, gam,
eps, p) where the highest SE occurs, or consists of as many rows as there are
parameter types (simplify = FALSE).

Author(s)

Marc J. Mazerolle

References

Agresti, A. (2002) Categorical data analysis. John Wiley and Sons, Inc.: Hoboken.

Fiske, I., Chandler, R. (2011) unmarked: An R Package for fitting hierarchical models of wildlife
occurrence and abundance. Journal of Statistical Software 43, 1–23.

Kéry, M., Royle, J. A. (2015) Applied hierarchical modeling in ecology: analysis of distribution,
abundance and species richness in R and BUGS. Academic Press, New York, USA.

Royle, J. A., Dorazio, R. M. (2008) Hierarchical modeling and inference in ecology: the analysis
of data from populations, metapopulations and communities. Academic Press: New York.

Venables, W. N., Ripley, B. D. (2002) Modern applied statistics with S, 2nd edition. Springer-
Verlag: New York.

See Also

c_hat, detHist, checkConv, countDist, countHist, extractCN, mb.gof.test, Nmix.gof.test,
parboot
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Examples

##example with multiple-season occupancy model modified from ?colext
## Not run:
require(unmarked)
data(frogs)
umf <- formatMult(masspcru)
obsCovs(umf) <- scale(obsCovs(umf))
siteCovs(umf) <- rnorm(numSites(umf))
yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7,

numSites(umf))))

##model with with year-dependent transition rates
fm.yearly <- colext(psiformula = ~ 1, gammaformula = ~ year,

epsilonformula = ~ year,
pformula = ~ JulianDate + I(JulianDate^2),
data = umf)

##check for high SE's and report highest
##across all parameter types
checkParms(fm.yearly, simplify = TRUE)

##check for high SE's and report highest
##for each parameter type
checkParms(fm.yearly, simplify = FALSE)
detach(package:unmarked)

## End(Not run)

##example from Agresti 2002 of logistic regression
##with parameters estimated at the boundary (complete separation)
## Not run:
x <- c(10, 20, 30, 40, 60, 70, 80, 90)
y <- c(0, 0, 0, 0, 1, 1, 1, 1)

m1 <- glm(y ~ x, family = binomial)
checkParms(m1)

## End(Not run)

confset Computing Confidence Set for the Kullback-Leibler Best Model

Description

This function computes the confidence set on the best model given the data and model set. confset
implements three different methods proposed by Burnham and Anderson (2002).

Usage

confset(cand.set, modnames = NULL, second.ord = TRUE, nobs = NULL,
method = "raw", level = 0.95, delta = 6, c.hat = 1)
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Arguments

cand.set a list storing each of the models in the candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total
number of observations or number of independent clusters (e.g., sites) as the
value of nobs.

method a character value, either as raw, ordinal, or ratio, indicating the method for
determining the confidence set for the best model (see ’Description’ above for
details).

level the level of confidence (i.e., sum of model probabilities) used to determine the
confidence set on the best model when using the raw method. Note that the
argument is not used for the other methods of determining the confidence set on
the best model.

delta the delta (Q)AIC(c) value associated with the cutoff point to determine the con-
fidence set for the best model. Note that the argument is only used when method
= ratio.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, confset
will return the quasi-likelihood analogue of the information criteria requested
and multiply the variance-covariance matrix of the estimates by this value (i.e.,
SE’s are multiplied by sqrt(c.hat)). This option is not supported for general-
ized linear mixed models of the mer or merMod classes.

Details

The first and simplest (method = 'raw'), relies on summing the Akaike weights (i.e., model proba-
bilities) of the ranked models until we reach a given cutpoint (e.g., 0.95 for a 95 percent set).

The second method (method = 'ordinal') suggested is based on the classification of the models
on an ordinal scale based on the delta (Q)AIC(c). The models are grouped in different classes based
on their weight of support as determined by the delta (Q)AIC(c) values: substantial support (delta
(Q)AIC(c) <= 2), some support (2 < delta (Q)AIC(c) <= 7), little support (7 < delta (Q)AIC(c) <=
10), no support (delta (Q)AIC(c) > 10).
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The third method (method = 'ratio') is based on identifying the ratios of model likelihoods (i.e.,
exp(-delta_(Q)AIC(c)/2) ) that exceed a cutpoint, similar to the building of profile likelihood inter-
vals. An evidence ratio of each model relative to the top-ranked model is computed and the ratios
exceeding the cutpoint determine which models are included in the confidence set. Note here that
small cutoff points are suggested (e.g., 0.125, 0.050). The cutoff point is linked to delta (Q)AIC(c)
by the following relationship: cutoff = exp(−1 ∗ δ(Q)AIC(c)/2).

Value

confset returns an object of class confset as a list with the following components, depending on
which method is used:

when method = 'raw':

method identifies the method of determining the confidence set on the best model.

level the confidence level used to determine the confidence set on the best model.

table a reduced table with the models included in the confidence set.

when method = 'ordinal':

method identifies the method of determining the confidence set on the best model.

substantial a reduced table with the models included in the confidence set for which delta
(Q)AIC(c) <= 2.

some a reduced table with the models included in the confidence set for which 2 <
delta (Q)AIC(c) <= 7.

little a reduced table with the models included in the confidence set for which 7 <
delta (Q)AIC(c) <= 10.

none a reduced table with the models included in the confidence set for which delta
(Q)AIC(c) > 10.

when method = 'ratio':

method identifies the method of determining the confidence set on the best model.

cutoff the cutoff value for the ratios used to determine the confidence set on the best
model.

delta the delta (Q)AIC(c) used to compute the cutoff value for ratios to determine the
confidence set on the best model.

table a reduced table with the models included in the confidence set.

Author(s)

Marc J. Mazerolle

References

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.
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MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

See Also

AICc, aictab, c_hat, evidence, importance, modavg, modavgShrink, modavgPred

Examples

##anuran larvae example from Mazerolle (2006)
data(min.trap)
##assign "UPLAND" as the reference level as in Mazerolle (2006)
min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND")

##set up candidate models
Cand.mod <- list()
##global model
Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra,

family = poisson, offset = log(Effort),
data = min.trap)

Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[3]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[4]] <- glm(Num_anura ~ Type, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[5]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra,
family = poisson, offset = log(Effort),
data = min.trap)

Cand.mod[[6]] <- glm(Num_anura ~ log.Perimeter, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[7]] <- glm(Num_anura ~ Num_ranatra, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[8]] <- glm(Num_anura ~ 1, family = poisson,
offset = log(Effort), data = min.trap)

##check c-hat for global model
c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df
##note the very low overdispersion: in this case, the analysis could be
##conducted without correcting for c-hat as its value is reasonably close
##to 1

##assign names to each model
Modnames <- c("type + logperim + invertpred", "type + logperim",

"type + invertpred", "type", "logperim + invertpred",
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"logperim", "invertpred", "intercept only")

##compute confidence set based on 'raw' method
confset(cand.set = Cand.mod, modnames = Modnames, second.ord = TRUE,

method = "raw")

##example with linear mixed model
## Not run:
require(nlme)

##set up candidate model list for Orthodont data set shown in Pinheiro
##and Bates (2000: Mixed-effect models in S and S-PLUS. Springer Verlag:
##New York.)
Cand.models <- list()
Cand.models[[1]] <- lme(distance ~ age, random = ~age | Subject,

data = Orthodont, method = "ML")
Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont,

random = ~ 1 | Subject, method = "ML")
Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont,

random = ~ 1 | Subject, method = "ML")

##create a vector of model names
Modnames <- paste("mod", 1:length(Cand.models), sep = "")

##compute confidence set based on 'raw' method
confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE,

method = "raw")
##round to 4 digits after decimal point
print(confset(cand.set = Cand.models, modnames = Modnames,

second.ord = TRUE, method = "raw"), digits = 4)

confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE,
level = 0.9, method = "raw")

##compute confidence set based on 'ordinal' method
confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE,

method = "ordinal")

##compute confidence set based on 'ratio' method
confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE,

method = "ratio", delta = 4)

confset(cand.set = Cand.models, modnames = Modnames, second.ord = TRUE,
method = "ratio", delta = 8)

detach(package:nlme)

## End(Not run)

countDist Compute Summary Statistics from Distance Sampling Data
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Description

This function extracts various summary statistics from distance sampling data of various unmarkedFrame
and unmarkedFit classes.

Usage

countDist(object, plot.freq = TRUE, plot.distance = TRUE, cex.axis = 1,
cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFrameDS'
countDist(object, plot.freq = TRUE,

plot.distance = TRUE, cex.axis = 1, cex.lab = 1,
cex.main = 1, ...)

## S3 method for class 'unmarkedFitDS'
countDist(object, plot.freq = TRUE,

plot.distance = TRUE, cex.axis = 1, cex.lab = 1,
cex.main = 1, ...)

## S3 method for class 'unmarkedFrameGDS'
countDist(object, plot.freq = TRUE,

plot.distance = TRUE, cex.axis = 1,
cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFitGDS'
countDist(object, plot.freq = TRUE,

plot.distance = TRUE, cex.axis = 1,
cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFrameDSO'
countDist(object, plot.freq = TRUE,

plot.distance = TRUE, cex.axis = 1,
cex.lab = 1, cex.main = 1, plot.seasons = FALSE,
...)

## S3 method for class 'unmarkedFitDSO'
countDist(object, plot.freq = TRUE,

plot.distance = TRUE, cex.axis = 1,
cex.lab = 1, cex.main = 1, plot.seasons = FALSE,
...)

Arguments

object an object of various unmarkedFrame or unmarkedFit classes containing dis-
tance sampling data.

plot.freq logical. Specifies if the count data (pooled across seasons and distance classes)
should be plotted.
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plot.distance logical. Specifies if the counts in each distance class (pooled across seasons)
should be plotted.

cex.axis expansion factor influencing the size of axis annotations on plots produced by
the function.

cex.lab expansion factor influencing the size of axis labels on plots produced by the
function.

cex.main expansion factor influencing the size of the main title above plots produced by
the function.

plot.seasons logical. Specifies if the count data should be plotted for each distance class and
season separately. This argument is only relevant for data collected across more
than a single season.

... additional arguments passed to the function.

Details

This function computes a number of summary statistics in data sets used for the distance sampling
models of Royle et al. (2004), Chandler et al. (2011), and distance-sampling versions of models of
Dail and Madsen (2011) and Hostetler and Chandler (2015) based on Sollmann et al. (2015).

countDist can take data frames of the unmarkedFrameDS, unmarkedFrameGDS, unmarkedFrameDSO
classes as input. For convenience, the function can also extract the raw data from model objects of
classes unmarkedFitDS, unmarkedFitGDS, and unmarkedFitDSO. Note that different model objects
using the same data set will have identical values.

Value

countDist returns a list with the following components:

count.table.full

a table with the frequency of each observed count pooled across distances classes.
count.table.seasons

a list of tables with the frequency of each season-specific count pooled across
distance classes.

dist.sums.full a table with the frequency of counts in each distance class across the entire
sampling seasons.

dist.table.seasons

a list of tables with the frequency of counts in each distance class for each pri-
mary period.

dist.names a character string of labels for the distance classes.

n.dist.classes the number of distance classes.

out.freqs a matrix where the rows correspond to each sampling season and where columns
consist of the number of sites sampled in season t (sampled) and the number of
sites with at least one detection in season t (detected). For multiseason data,
the matrix includes the number of sites sampled in season t − 1 with coloniza-
tions observed in season t (colonized), the number of sites sampled in season
t− 1 with extinctions observed in season t (extinct), the number of sites sam-
pled in season t − 1 without changes observed in season t (static), and the
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number of sites sampled in season t that were also sampled in season t − 1
(common).

out.props a matrix where the rows correspond to each sampling season and where columns
consist of the proportion of sites in season t with at least one detection (naive.occ).
For multiseason data, the matrix includes the proportion of sites sampled in sea-
son t − 1 with colonizations observed in season t (naive.colonization), the
proportion of sites sampled in season t− 1 with extinctions observed in season
t (naive.extinction), and the proportion of sites sampled in season t−1 with
no changes observed in season t.

n.seasons the number of seasons (primary periods) in the data set.
n.visits.season

the maximum number of visits per season in the data set.
missing.seasons

logical vector indicating whether data were collected or not during a given sea-
son (primary period), where TRUE indicates that no data were collected during
the season.

Author(s)

Marc J. Mazerolle

References

Chandler, R. B., Royle, J. A., King, D. I. (2011) Inference about density and temporary emigration
in unmarked populations. Ecology 92, 1429–1435.

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

Hostetler, J. A., Chandler, R. B. (2015) Improved state-space models for inference about spatial and
temporal variation in abundance from count data. Ecology 96, 1713–1723.

Royle, J. A., Dawson, D. K., Bates, S. (2004) Modeling abundance effects in distance sampling.
Ecology 85, 1591–1597.

Sollmann, R., Gardner, B., Chandler, R. B., Royle, J. A., Sillett, T. S. (2015) An open-population
hierarchical distance sampling model. Ecology 96, 325–331.

See Also

covDiag, detHist, detTime, countHist, Nmix.chisq, Nmix.gof.test

Examples

##modified example from ?distsamp
## Not run:
if(require(unmarked)){
data(linetran)
##format data
ltUMF <- with(linetran, {

unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat),
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dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line",
unitsIn = "m")
})

##compute descriptive stats from data object
countDist(ltUMF)

##Half-normal detection function
fm1 <- distsamp(~ 1 ~ 1, ltUMF)
##compute descriptive stats from model object
countDist(fm1)
}

## End(Not run)

countHist Compute Summary Statistics from Count Histories

Description

This function extracts various summary statistics from count data of various unmarkedFrame and
unmarkedFit classes.

Usage

countHist(object, plot.freq = TRUE, cex.axis = 1, cex.lab = 1,
cex.main = 1, ...)

## S3 method for class 'unmarkedFramePCount'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFitPCount'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFrameGPC'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFitGPC'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFrameMPois'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1, ...)
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## S3 method for class 'unmarkedFitMPois'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFramePCO'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1,
plot.seasons = FALSE, ...)

## S3 method for class 'unmarkedFitPCO'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1,
plot.seasons = FALSE, ...)

## S3 method for class 'unmarkedFrameGMM'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1,
plot.seasons = FALSE, ...)

## S3 method for class 'unmarkedFitGMM'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1,
plot.seasons = FALSE, ...)

## S3 method for class 'unmarkedFrameMMO'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1,
plot.seasons = FALSE, ...)

## S3 method for class 'unmarkedFitMMO'
countHist(object, plot.freq = TRUE,

cex.axis = 1, cex.lab = 1, cex.main = 1,
plot.seasons = FALSE, ...)

Arguments

object an object of various unmarkedFrame or unmarkedFit classes containing count
history data.

plot.freq logical. Specifies if the count data (pooled across seasons) should be plotted.

cex.axis expansion factor influencing the size of axis annotations on plots produced by
the function.

cex.lab expansion factor influencing the size of axis labels on plots produced by the
function.

cex.main expansion factor influencing the size of the main title above plots produced by
the function.
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plot.seasons logical. Specifies if the count data should be plotted for each season separately.
This argument is only relevant for data collected across more than a single sea-
son.

... additional arguments passed to the function.

Details

This function computes a number of summary statistics in data sets used for various N-mixture
models including those of Royle (2004a, b), Dail and Madsen (2011), and Chandler et al. (2011).

countHist can take data frames of the unmarkedFramePCount, unmarkedFrameGPC, unmarkedFrameMPois,
unmarkedFramePCO, unmarkedFrameGMM, unmarkedFrameMMO classes as input. For convenience,
the function can also extract the raw data from model objects of classes unmarkedFitPCount,
unmarkedFitGPC, unmarkedFitMPois, unmarkedFitPCO, unmarkedFitGMM, and unmarkedFitMMO.
Note that different model objects using the same data set will have identical values.

Value

countHist returns a list with the following components:

count.table.full

a table with the frequency of each observed count.
count.table.seasons

a list of tables with the frequency of each season-specific count.
hist.table.full

a table with the frequency of each count history across the entire sampling pe-
riod.

hist.table.seasons

a list of tables with the frequency of each count history for each primary period
(season).

out.freqs a matrix where the rows correspond to each sampling season and where columns
consist of the number of sites sampled in season t (sampled) and the number of
sites with at least one detection in season t (detected). For multiseason data,
the matrix includes the number of sites sampled in season t − 1 with coloniza-
tions observed in season t (colonized), the number of sites sampled in season
t− 1 with extinctions observed in season t (extinct), the number of sites sam-
pled in season t − 1 without changes observed in season t (static), and the
number of sites sampled in season t that were also sampled in season t − 1
(common).

out.props a matrix where the rows correspond to each sampling season and where columns
consist of the proportion of sites in season t with at least one detection (naive.occ).
For multiseason data, the matrix includes the proportion of sites sampled in sea-
son t − 1 with colonizations observed in season t (naive.colonization), the
proportion of sites sampled in season t− 1 with extinctions observed in season
t (naive.extinction), and the proportion of sites sampled in season t−1 with
no changes observed in season t.

n.seasons the number of seasons (primary periods) in the data set.
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n.visits.season

the maximum number of visits per season in the data set.

missing.seasons

logical vector indicating whether data were collected or not during a given sea-
son (primary period), where TRUE indicates that no data were collected during
the season.

Author(s)

Marc J. Mazerolle

References

Chandler, R. B., Royle, J. A., King, D. I. (2011) Inference about density and temporary emigration
in unmarked populations. Ecology 92, 1429–1435.

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

Royle, J. A. (2004a) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

Royle, J. A. (2004b) Generalized estimators of avian abundance from count survey data. Animal
Biodiversity and Conservation 27, 375–386.

See Also

covDiag, detHist, detTime, countDist, Nmix.chisq, Nmix.gof.test

Examples

##modified example from ?pcount
## Not run:
if(require(unmarked)){
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
##compute descriptive stats from data object
countHist(mallardUMF)

##run single season model
fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev +

forest, mallardUMF, K=30)
##compute descriptive stats from model object
countHist(fm.mallard)
}

## End(Not run)
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covDiag Compute Covariance Diagnostic for Lambda in N-mixture Models

Description

This function extracts the covariance diagnostic of Dennis et al. (2015) for lambda in N-mixture
models (Royle 2004) of the unmarkedFitPCount class as well as in data frames of the unmarkedFramePcount
class.

Usage

covDiag(object, ...)

## S3 method for class 'unmarkedFitPCount'
covDiag(object, ...)

## S3 method for class 'unmarkedFramePCount'
covDiag(object, ...)

Arguments

object an object of class unmarkedFitPCount or unmarkedFramePCount.

... additional arguments passed to the function.

Details

This function extracts the covariance diagnostic developed by Dennis et al. (2015) for lambda in
N-mixture models. Values <= 0 suggest sparse data and potential problems during model fitting.
covDiag can take data frames of the unmarkedFramePcount class as input. For convenience, the
function also takes the repeated count model object as input, extracts the raw data, and computes
the covariance diagnostic. Thus, different models on the same data set will have identical values for
this covariance diagnostic.

Value

covDiag returns a list with the following components:

cov.diag the value of the covariance diagnostic.

message a string indicating whether a warning was issued (i.e., "Warning: lambda is
infinite, data too sparse") or not (i.e., NULL).

Author(s)

Marc J. Mazerolle
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References
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Biometrics 71, 237–246.
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See Also

modavg, modavgPred, Nmix.chisq, Nmix.gof.test, predictSE, pcount

Examples

##modified example from ?pcount
## Not run:
if(require(unmarked)){
##Simulate data
set.seed(3)
nSites <- 100
nVisits <- 3
##covariate
x <- rnorm(nSites)
beta0 <- 0
beta1 <- 1
##expected counts
lambda <- exp(beta0 + beta1*x)
N <- rpois(nSites, lambda)
y <- matrix(NA, nSites, nVisits)
p <- c(0.3, 0.6, 0.8)
for(j in 1:nVisits) {

y[,j] <- rbinom(nSites, N, p[j])
}
## Organize data
visitMat <- matrix(as.character(1:nVisits),

nSites, nVisits, byrow=TRUE)

umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x),
obsCovs=list(visit=visitMat))

## Fit model
fm1 <- pcount(~ visit ~ 1, umf, K=50)
covDiag(fm1)

##sparser data
p <- c(0.01, 0.001, 0.01)
for(j in 1:nVisits) {

y[,j] <- rbinom(nSites, N, p[j])
}
## Organize data
visitMat <- matrix(as.character(1:nVisits),

nSites, nVisits, byrow=TRUE)

umf <- unmarkedFramePCount(y=y, siteCovs=data.frame(x=x),
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obsCovs=list(visit=visitMat))
## Fit model
fm.sparse <- pcount(~ visit ~ 1, umf, K=50)
covDiag(fm.sparse)
}

## End(Not run)

c_hat Estimate Dispersion for Poisson and Binomial GLM’s and GLMM’s

Description

Functions to compute an estimate of c-hat for binomial or Poisson GLM’s and GLMM’s using
different estimators of overdispersion.

Usage

c_hat(mod, method = "pearson", ...)

## S3 method for class 'glm'
c_hat(mod, method = "pearson", ...)

## S3 method for class 'glmmTMB'
c_hat(mod, method = "pearson", ...)

## S3 method for class 'merMod'
c_hat(mod, method = "pearson", ...)

## S3 method for class 'vglm'
c_hat(mod, method = "pearson", ...)

Arguments

mod an object of class glm, glmmTMB, merMod, or vglm for which a c-hat estimate is
required.

method this argument defines the estimator used. The default "pearson" uses the Pear-
son chi-square divided by the residual degrees of freedom. Other methods in-
clude "deviance" consisting of the residual deviance divided by the residual
degrees of freedom, "farrington" for the estimator suggested by Farrington
(1996), and "fletcher" for the estimator suggested by Fletcher (2012).

... additional arguments passed to the function.
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Details

Poisson and binomial GLM’s do not have a parameter for the variance and it is usually held fixed
to 1 (i.e., mean = variance). However, one must check whether this assumption is appropriate
by estimating the overdispersion parameter (c-hat). Though one can obtain an estimate of c-hat
by dividing the residual deviance by the residual degrees of freedom (i.e., method = "deviance"),
McCullagh and Nelder (1989) and Venables and Ripley (2002) recommend using Pearson’s chi-
square divided by the residual degrees of freedom (method = "pearson"). An estimator based on
Farrington (1996) is also implemented by the function using the argument method = "farrington".
Recent work by Fletcher (2012) suggests that an alternative estimator performs better than the
above-mentioned methods in the presence of sparse data and is now implemented with method =
"fletcher". For GLMM’s, only the Pearson chi-square estimator of overdispersion is currently
implemented.

Note that values of c-hat > 1 indicate overdispersion (variance > mean), but that values much higher
than 1 (i.e., > 4) probably indicate lack-of-fit. In cases of moderate overdispersion, one usually
multiplies the variance-covariance matrix of the estimates by c-hat. As a result, the SE’s of the
estimates are inflated (c-hat is also known as a variance inflation factor).

In model selection, c-hat should be estimated from the global model of the candidate model set and
the same value of c-hat applied to the entire model set. Specifically, a global model is the most
complex model which can be simplified to obtain all the other (nested) models of the set. When
no single global model exists in the set of models considered, such as when sample size does not
allow a complex model, one can estimate c-hat from ’subglobal’ models. Here, ’subglobal’ models
denote models from which only a subset of the models of the candidate set can be derived. In such
cases, one can use the smallest value of c-hat for model selection (Burnham and Anderson 2002).

Note that c-hat counts as an additional parameter estimated and should be added to K. All functions
in package AICcmodavg automatically add 1 when the c.hat argument > 1 and apply the same value
of c-hat for the entire model set. When c.hat > 1, functions compute quasi-likelihood information
criteria (either QAICc or QAIC, depending on the value of the second.ord argument) by scaling the
log-likelihood of the model by c.hat. The value of c.hat can influence the ranking of the models:
as c-hat increases, QAIC or QAICc will favor models with fewer parameters. As an additional
check against this potential problem, one can create several model selection tables by incrementing
values of c-hat to assess the model selection uncertainty. If ranking changes little up to the c-hat
value observed, one can be confident in making inference.

In cases of underdispersion (c-hat < 1), it is recommended to keep the value of c.hat to 1. How-
ever, note that values of c-hat « 1 can also indicate lack-of-fit and that an alternative model (and
distribution) should be investigated.

Note that c_hat only supports the estimation of c-hat for binomial models with trials > 1 (i.e.,
success/trial or cbind(success, failure) syntax) or with Poisson GLM’s or GLMM’s.

Value

c_hat returns an object of class c_hat with the estimated c-hat value and an attribute for the type
of estimator used.

Author(s)

Marc J. Mazerolle
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See Also

AICc, confset, evidence, modavg, importance, modavgPred, mb.gof.test, Nmix.gof.test,
anovaOD, summaryOD

Examples

#binomial glm example
set.seed(seed = 10)
resp <- rbinom(n = 60, size = 1, prob = 0.5)
set.seed(seed = 10)
treat <- as.factor(sample(c(rep(x = "m", times = 30), rep(x = "f",

times = 30))))
age <- as.factor(c(rep("young", 20), rep("med", 20), rep("old", 20)))
#each invidual has its own response (n = 1)
mod1 <- glm(resp ~ treat + age, family = binomial)
## Not run:
c_hat(mod1) #gives an error because model not appropriate for
##computation of c-hat

## End(Not run)

##computing table to summarize successes
table(resp, treat, age)
dat2 <- as.data.frame(table(resp, treat, age)) #not quite what we need
data2 <- data.frame(success = c(9, 4, 2, 3, 5, 2),

sex = c("f", "m", "f", "m", "f", "m"),
age = c("med", "med", "old", "old", "young",

"young"), total = c(13, 7, 10, 10, 7, 13))
data2$prop <- data2$success/data2$total
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data2$fail <- data2$total - data2$success

##run model with success/total syntax using weights argument
mod2 <- glm(prop ~ sex + age, family = binomial, weights = total,

data = data2)
c_hat(mod2)

##run model with other syntax cbind(success, fail)
mod3 <- glm(cbind(success, fail) ~ sex + age, family = binomial,

data = data2)
c_hat(mod3)

detHist Compute Summary Statistics from Detection Histories

Description

This function extracts various summary statistics from detection history data of various unmarkedFrame
and unmarkedFit classes.

Usage

detHist(object, ...)

## S3 method for class 'unmarkedFitColExt'
detHist(object, ...)

## S3 method for class 'unmarkedFitOccu'
detHist(object, ...)

## S3 method for class 'unmarkedFitOccuFP'
detHist(object, ...)

## S3 method for class 'unmarkedFitOccuRN'
detHist(object, ...)

## S3 method for class 'unmarkedFitOccuMulti'
detHist(object, ...)

## S3 method for class 'unmarkedFitOccuMS'
detHist(object, ...)

## S3 method for class 'unmarkedFrameOccu'
detHist(object, ...)

## S3 method for class 'unmarkedFrameOccuFP'
detHist(object, ...)
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## S3 method for class 'unmarkedMultFrame'
detHist(object, ...)

## S3 method for class 'unmarkedFrameOccuMulti'
detHist(object, ...)

## S3 method for class 'unmarkedFrameOccuMS'
detHist(object, ...)

## S3 method for class 'unmarkedFitGOccu'
detHist(object, ...)

## S3 method for class 'unmarkedFrameOccuComm'
detHist(object, ...)

## S3 method for class 'unmarkedFitOccuComm'
detHist(object, ...)

Arguments

object an object of various unmarkedFrame or unmarkedFit classes containing detec-
tion history data.

... additional arguments passed to the function.

Details

This function computes a number of summary statistics in data sets used for single-season occu-
pancy models (MacKenzie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003),
Royle-Nichols models (Royle and Nichols 2003), false-positive occupancy models (Royle and Link
2006, Miller et al. 2011), multispecies occupancy models (Rota et al. 2016), and multistate occu-
pancy models (Nichols et al. 2007, MacKenzie et al. 2009).

detHist can take data frames of the unmarkedFrameOccu, unmarkedFrameOccuFP, unmarkedMultFrame,
unmarkedFrameOccuMulti, unmarkedFrameOccuMS classes as input. For convenience, the function
can also extract the raw data from model objects of classes unmarkedFitColExt, unmarkedFitOccu,
unmarkedFitOccuFP, unmarkedFitOccuRN, unmarkedFitOccuMulti, unmarkedFitOccuMS, unmarkedFitGOccu,
and unmarkedFitOccuComm. Note that different model objects using the same data set will have
identical values.

Value

For objects of classes unmarkedFitOccu, unmarkedFitOccuRN, unmarkedFitOccuFP, unmarkedFitColExt,
unmarkedFitOccuMS, unmarkedFitGOccu, unmarkedFitOccuComm, unmarkedFrameOccu, unmarkedFrameOccuFP,
unmarkedMultFrame, unmarkedFrameOccuMS, unmarkedFrameOccuComm, detHist returns a list
with the following components:

hist.table.full

a table with the frequency of each observed detection history. For unmarkedFitGOccu
objects, this element consists in a summary of the detections pooled across de-
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vices (secondary periods) within each primary period. This element is NULL for
unmarkedFrameOccuComm and unmarkedFitOccuComm objects.

hist.table.seasons

a list of tables with the frequency of each season-specific detection history.

out.freqs a matrix where the rows correspond to each sampling season and where columns
consist of the number of sites sampled in season t (sampled) and the number
of sites with at least one detection in season t (detected). For multiseason
data, the matrix includes the number of sites sampled in season t − 1 with col-
onizations observed in season t (colonized), the number of sites sampled in
season t − 1 with extinctions observed in season t (extinct), the number of
sites sampled in season t − 1 without changes observed in season t (static),
and the number of sites sampled in season t that were also sampled in season
t−1 (common). For multispecies data, out.freqs presents, for each species, the
number of sites sampled and the number of sites with at least one detection.

out.props a matrix where the rows correspond to each sampling season and where columns
consist of the proportion of sites in season t with at least one detection (naive.occ).
For multiseason data, the matrix includes the proportion of sites sampled in sea-
son t − 1 with colonizations observed in season t (naive.colonization), the
proportion of sites sampled in season t− 1 with extinctions observed in season
t (naive.extinction), and the proportion of sites sampled in season t−1 with
no changes observed in season t. For multispecies data, out.props presents the
proportion of sites with a least one detection for each species.

n.seasons the number of seasons (primary periods) in the data set.

n.visits.season

the maximum number of visits per season in the data set.

n.species the number of species in the data set.

missing.seasons

logical vector indicating whether data were collected or not during a given sea-
son (primary period), where TRUE indicates that no data were collected during
the season.

For objects of classes unmarkedFitOccuMulti and unmarkedFrameOccuMulti, detHist returns a
list with the following components:

hist.table.full

a table with the frequency of each observed detection history. The species are
coded with letters and follow the same order of presentation as in the other parts
of the output.

hist.table.species

a list of tables with the frequency of each species-specific detection history.
The last element of hist.table.species features the number of sites with co-
occurrence of the different species (coOcc).

out.freqs a matrix where the rows correspond to each species and where columns consist
of the number of sites sampled during the season (sampled) and the number of
sites with at least one detection (detected).
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out.props a matrix where the rows correspond to each species and where columns con-
sist of the proportion of sites with at least one detection during the season
(naive.occ).

n.seasons the number of seasons (primary periods) in the data set.
n.visits.season

the maximum number of visits per season in the data set.

n.species the number of species in the data set.
missing.seasons

logical vector indicating whether data were collected or not during a given sea-
son (primary period), where TRUE indicates that no data were collected during
the season.

Author(s)

Marc J. Mazerolle
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See Also

covDiag, countHist, countDist, detTime, mb.chisq, mb.gof.test
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Examples

##data from Mazerolle (2015)
## Not run:
data(bullfrog)

##detection data
detections <- bullfrog[, 3:9]

##load unmarked package
if(require(unmarked)){

##assemble in unmarkedFrameOccu
bfrog <- unmarkedFrameOccu(y = detections)

##compute descriptive stats from data object
detHist(bfrog)

##run model
fm <- occu(~ 1 ~ 1, data = bfrog)
##compute descriptive stats from model object
detHist(fm)
}

## End(Not run)

detTime Compute Summary Statistics from Time to Detection Data

Description

This function extracts various summary statistics from time to detection data of various unmarkedFrame
and unmarkedFit classes.

Usage

detTime(object, plot.time = TRUE, plot.seasons = FALSE,
cex.axis = 1, cex.lab = 1, cex.main = 1, ...)

## S3 method for class 'unmarkedFrameOccuTTD'
detTime(object, plot.time = TRUE,

plot.seasons = FALSE, cex.axis = 1, cex.lab = 1,
cex.main = 1, ...)

## S3 method for class 'unmarkedFitOccuTTD'
detTime(object, plot.time = TRUE,

plot.seasons = FALSE, cex.axis = 1, cex.lab = 1,
cex.main = 1, ...)
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Arguments

object an object of various unmarkedFrame or unmarkedFit classes containing time to
detection data.

plot.time logical. Specifies if the time to detection data (pooled across seasons) should be
plotted.

plot.seasons logical. Specifies if the time to detection data should be plotted for each season
separately. This argument is only relevant for data collected across more than a
single season.

cex.axis expansion factor influencing the size of axis annotations on plots produced by
the function.

cex.lab expansion factor influencing the size of axis labels on plots produced by the
function.

cex.main expansion factor influencing the size of the main title above plots produced by
the function.

... additional arguments passed to the function.

Details

This function computes a number of summary statistics in data sets used for the time to detection
models of Garrard et al. (2008, 2013).

detTime can take data frames of the unmarkedFrameOccuTTD class as input, or can also extract the
raw data from model objects of the unmarkedFitOccuTTD class. Note that different model objects
using the same data set will have identical values.

Value

detTime returns a list with the following components:

time.table.full

a table with the quantiles of time to detection data pooled across seasons, but
excluding censored observations.

time.table.seasons

a list of tables with the quantiles of season-specific time to detection data, but
excluding censored observations.

out.freqs a matrix where the rows correspond to each sampling season and where columns
consist of the number of sites sampled in season t (sampled) and the number of
sites with at least one detection in season t (detected). For multiseason data,
the matrix includes the number of sites sampled in season t − 1 with coloniza-
tions observed in season t (colonized), the number of sites sampled in season
t− 1 with extinctions observed in season t (extinct), the number of sites sam-
pled in season t − 1 without changes observed in season t (static), and the
number of sites sampled in season t that were also sampled in season t − 1
(common).

out.props a matrix where the rows correspond to each sampling season and where columns
consist of the proportion of sites in season t with at least one detection (naive.occ).
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For multiseason data, the matrix includes the proportion of sites sampled in sea-
son t − 1 with colonizations observed in season t (naive.colonization), the
proportion of sites sampled in season t− 1 with extinctions observed in season
t (naive.extinction), and the proportion of sites sampled in season t−1 with
no changes observed in season t.

n.seasons the number of seasons (primary periods) in the data set.
n.visits.season

the maximum number of visits per season in the data set.
missing.seasons

logical vector indicating whether data were collected or not during a given sea-
son (primary period), where TRUE indicates that no data were collected during
the season.

Author(s)

Marc J. Mazerolle

References
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See Also

countDist, countHist, detHist, Nmix.chisq, Nmix.gof.test

Examples

##example from ?occuTTD
## Not run:
if(require(unmarked)){
N <- 500; J <- 1

##Simulate occupancy
scovs <- data.frame(elev=c(scale(runif(N, 0,100))),

forest=runif(N,0,1),
wind=runif(N,0,1))

beta_psi <- c(-0.69, 0.71, -0.5)
psi <- plogis(cbind(1, scovs$elev, scovs$forest)
z <- rbinom(N, 1, psi)

##Simulate detection
Tmax <- 10 #Same survey length for all observations
beta_lam <- c(-2, -0.2, 0.7)
rate <- exp(cbind(1, scovs$elev, scovs$wind)
ttd <- rexp(N, rate)
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ttd[z==0] <- Tmax #Censor unoccupied sites
ttd[ttd>Tmax] <- Tmax #Censor when ttd was greater than survey length

##Build unmarkedFrame
umf <- unmarkedFrameOccuTTD(y=ttd, surveyLength=Tmax, siteCovs=scovs)

##compute descriptive stats from data object
detTime(umf)

##Fit model
fit.occuTTD <- occuTTD(psiformula=~elev+forest, detformula=~elev+wind, data=umf)
##extract info from model object
detTime(fit.occuTTD)

}

## End(Not run)

DIC Computing DIC

Description

Functions to extract deviance information criterion (DIC).

Usage

DIC(mod, return.pD = FALSE, ...)

## S3 method for class 'bugs'
DIC(mod, return.pD = FALSE, ...)

## S3 method for class 'rjags'
DIC(mod, return.pD = FALSE, ...)

## S3 method for class 'jagsUI'
DIC(mod, return.pD = FALSE, ...)

Arguments

mod an object of class bugs, rjags, or jagsUI containing the output of a model.

return.pD logical. If FALSE, the function returns the DIC. If TRUE, the function returns the
effective number of estimated parameters (pD) for a given model.

... additional arguments passed to the function.

Details

DIC is implemented for bugs, rjags, and jagsUI classes. The function extracts the deviance infor-
mation criterion (DIC, Spiegelhalter et al. 2002) or the effective number of parameters (pD).
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Value

DIC the DIC or pD depending on the values of the arguments.

Note

The actual DIC values are not really interesting in themselves, as they depend directly on the data,
parameters estimated, and likelihood function. Furthermore, a single value does not tell much about
model fit. Information criteria become relevant when compared to Yone another for a given data set
and set of candidate models. Model selection with hierarchical models is problematic as the classic
DIC is not appropriate for such types of models (Millar 2009).

Author(s)

Marc J. Mazerolle

References

Millar, R. B. (2009) Comparison of hierarchical Bayesian models for overdispersed count data using
DIC and Bayes’ factors. Biometrics, 65, 962–969.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., van der Linde, A. (2002). Bayesian measures of
complexity and fit. Journal of the Royal Statistical Society, Series B 64, 583–639.

See Also

AICcCustom, aictab, dictab, confset, evidence

Examples

##from ?jags example in R2jags package
## Not run:
require(R2jags)
##example model file
model.file <- system.file(package="R2jags", "model", "schools.txt")
file.show(model.file)

##data
J <- 8.0
y <- c(28.4,7.9,-2.8,6.8,-0.6,0.6,18.0,12.2)
sd <- c(14.9,10.2,16.3,11.0,9.4,11.4,10.4,17.6)

##arrange data in list
jags.data <- list (J = J, y = y, sd = sd)

##initial values
jags.inits <- function(){

list(theta=rnorm(J, 0, 100), mu=rnorm(1, 0, 100),
sigma=runif(1, 0, 100))

}

##parameters to be monitored
jags.parameters <- c("theta", "mu", "sigma")
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##run model
schools.sim <- jags(data = jags.data, inits = jags.inits,

parameters = jags.parameters,
model.file = model.file,
n.chains = 3, n.iter = 10)

##note that n.iter should be higher

##extract DIC
DIC(schools.sim)
##extract pD
DIC(schools.sim, return.pD = TRUE)
detach(package:R2jags)

## End(Not run)

dictab Create Model Selection Tables from Bayesian Analyses

Description

This function creates a model selection table based on the deviance information criterion (DIC).
The table ranks the models based on the DIC and also provides delta DIC and DIC weights. dictab
selects the appropriate function to create the model selection table based on the object class. The
current version works with objects of bugs, rjags, jagsUI classes.

Usage

dictab(cand.set, modnames = NULL, sort = TRUE, ...)

## S3 method for class 'AICbugs'
dictab(cand.set, modnames = NULL, sort = TRUE, ...)

## S3 method for class 'AICrjags'
dictab(cand.set, modnames = NULL, sort = TRUE, ...)

## S3 method for class 'AICjagsUI'
dictab(cand.set, modnames = NULL, sort = TRUE, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.
modnames a character vector of model names to facilitate the identification of each model

in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.

sort logical. If TRUE, the model selection table is ranked according to the DIC values.
... additional arguments passed to the function.
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Details

dictab internally creates a new class for the cand.set list of candidate models, according to the
contents of the list. The current function is implemented for bugs, jags, jagsUI classes. The
function constructs a model selection table based on the DIC (Spiegelhalter et al. 2002). Note that
DIC might not be appropriate to select among a set of hierarchical models and that modifications to
the information criterion have been proposed (Millar 2009).

Value

dictab creates an object of class dictab with the following components:

Modname the name of each model of the candidate model set.

pD the effective number of estimated parameters for each model.

DIC the deviance information criterion for each model.

Delta_DIC the delta DIC of each model, measuring the difference in DIC between each
model and the top-ranked model.

ModelLik the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is
not to be confused with the likelihood of the parameters given the data. The
relative likelihood can then be normalized across all models to get the model
probabilities.

DICWt the DIC weights, sensu Burnham and Anderson (2002) and Anderson (2008).
These measures indicate the level of support (i.e., weight of evidence) in favor
of any given model being the most parsimonious among the candidate model
set.

Cum.Wt the cumulative DIC weights. These are only meaningful if results in table are
sorted in decreasing order of DIC weights (i.e., sort = TRUE).

Deviance the deviance of each model.

Author(s)

Marc J. Mazerolle

References

Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer:
New York.

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Spiegelhalter, D. J., Best, N. G., Carlin, B. P., van der Linde, A. (2002). Bayesian measures of
complexity and fit. Journal of the Royal Statistical Society, Series B 64, 583–639.

See Also

aictabCustom, aictab, confset, DIC, evidence
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Examples

##from ?jags example in R2jags package
## Not run:
require(R2jags)
model.file <- system.file(package="R2jags", "model", "schools.txt")
file.show(model.file)

##data
J <- 8.0
y <- c(28.4,7.9,-2.8,6.8,-0.6,0.6,18.0,12.2)
sd <- c(14.9,10.2,16.3,11.0,9.4,11.4,10.4,17.6)

jags.data <- list (J = J, y = y, sd = sd)
jags.inits <- function(){

list(theta=rnorm(J, 0, 100), mu=rnorm(1, 0, 100),
sigma=runif(1, 0, 100))

}
jags.parameters <- c("theta", "mu", "sigma")

##run model
schools.sim <- jags(data = jags.data, inits = jags.inits,

parameters = jags.parameters,
model.file = model.file,
n.chains = 3, n.iter = 10)

#note that n.iter should be higher

##set up in list
Cand.mods <- list(schools.sim)
Model.names <- "hierarchical model"
##other models can be added to Cand.mods
##to compare them to the top model

##model selection table
dictab(cand.set = Cand.mods, modnames = Model.names)
detach(package:R2jags)

## End(Not run)

dry.frog Frog Dehydration Experiment on Three Substrate Types

Description

This is a data set modified from Mazerolle and Desrochers (2005) on the mass lost by frogs after
spending two hours on one of three substrates that are encountered in some landscape types.

Usage

data(dry.frog)
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Format

A data frame with 121 observations on the following 16 variables.

Individual a numeric identifier unique to each individual.

Species a factor with levels Racla.

Shade a numeric vector, either 1 (shade) or 0 (no shade).

SVL the snout-vent length of the individual.

Substrate the substrate type, a factor with levels PEAT, SOIL, and SPHAGNUM.

Initial_mass the initial mass of individuals.

Mass_lost the mass lost in g.

Airtemp the air temperature in degrees C.

Wind_cat the wind intensity, either 0 (no wind), 1 (low wind), 2 (moderate wind), or 3 (strong
wind).

Cloud cloud cover expressed as a percentage.

cent_Initial_mass centered inital mass.

Initial_mass2 initial mass squared.

cent_Air centered air temperature.

Perc.cloud proportion of cloud cover

Wind wind intensity, either 1 (no or low wind) or 1 (moderate to strong wind).

log_Mass_lost log of mass lost.

Details

Note that the original analysis in Mazerolle and Desrochers (2005) consisted of generalized estimat-
ing equations for three mass measurements: mass at time 0, 1 hour, and 2 hours following exposure
on the substrate.

Source

Mazerolle, M. J., Desrochers, A. (2005) Landscape resistance to frog movements. Canadian Jour-
nal of Zoology 83, 455–464.

Examples

data(dry.frog)
## maybe str(dry.frog) ; plot(dry.frog) ...
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evidence Compute Evidence Ratio Between Two Models

Description

This function compares two models of a candidate model set based on their evidence ratio (i.e.,
ratio of model weights). The default computes the evidence ratio of the model weights between the
top-ranked model and the second-ranked model. You must supply a model selection table of class
aictab, bictab, boot.wt, dictab, ictab as the first argument.

Usage

evidence(aic.table, model.high = "top", model.low = "second.ranked")

Arguments

aic.table a model selection table of class aictab such as that produced by aictab or of
classes bictab, boot.wt, dictab, or ictab. The table may be sorted or not, as
the function sorts the table internally.

model.high the top-ranked model (default), or alternatively, the name of another model as it
appears in the model selection table.

model.low the second-ranked model (default), or alternatively, the name of a lower-ranked
model such as it appears in the model selection table.

Details

The default compares the model weights of the top-ranked model to the second-ranked model in the
candidate model set. The evidence ratio can be interpreted as the number of times a given model
is more parsimonious than a lower-ranked model. If one desires an evidence ratio that does not
involve a comparison with the top-ranking model, the label of the required model must be specified
in the model.high argument as it appears in the model selection table.

Value

evidence produces an object of class evidence with the following components:

Model.high the model specified in model.high.
Model.low the model specified in model.low.
Ev.ratio the evidence ratio between the two models compared.

Author(s)

Marc J. Mazerolle

References

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.
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See Also

AICc, aictab, bictab, c_hat, confset, importance, modavg, modavgShrink, modavgPred

Examples

##run example from Burnham and Anderson (2002, p. 183) with two
##non-nested models
data(pine)
Cand.set <- list( )
Cand.set[[1]] <- lm(y ~ x, data = pine)
Cand.set[[2]] <- lm(y ~ z, data = pine)

##assign model names
Modnames <- c("raw density", "density corrected for resin content")

##compute model selection table
aicctable.out <- aictab(cand.set = Cand.set, modnames = Modnames)

##compute evidence ratio
evidence(aic.table = aicctable.out, model.low = "raw density")
evidence(aic.table = aicctable.out) #gives the same answer
##round to 4 digits after decimal point
print(evidence(aic.table = aicctable.out, model.low = "raw density"),

digits = 4)

##example with bictab
## Not run:
##compute model selection table
bictable.out <- bictab(cand.set = Cand.set, modnames = Modnames)
##compute evidence ratio
evidence(bictable.out, model.low = "raw density")

## End(Not run)

##run models for the Orthodont data set in nlme package
## Not run:
require(nlme)

##set up candidate model list
Cand.models <- list()
Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML")
##random is ~ age | Subject
Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont,

random = ~ 1, method = "ML")
Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1,

method = "ML")

##create a vector of model names
Modnames <- paste("mod", 1:length(Cand.models), sep = " ")
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##compute AICc table
aic.table.1 <- aictab(cand.set = Cand.models, modnames = Modnames,

second.ord = TRUE)

##compute evidence ratio between best model and second-ranked model
evidence(aic.table = aic.table.1)

##compute the same value but from an unsorted model selection table
evidence(aic.table = aictab(cand.set = Cand.models,

modnames = Modnames, second.ord = TRUE, sort = FALSE))

##compute evidence ratio between second-best model and third-ranked
##model
evidence(aic.table = aic.table.1, model.high = "mod1",

model.low = "mod3")
detach(package:nlme)

## End(Not run)

extractCN Compute Condition Number

Description

This function computes the condition number for models of unmarkedFit classes as the ratio of the
largest eigenvalue of the Hessian matrix to the smallest eigenvalue of the Hessian matrix.

Usage

extractCN(mod, method = "svd", ...)

## S3 method for class 'unmarkedFit'
extractCN(mod, method = "svd", ...)

Arguments

mod a model of one the unmarkedFit classes for which a condition number is re-
quested.

method specifies the method used to extract the singular values or eigenvalues from the
Hessian matrix using singular value decomposition (method = "svd") or eigen-
value decomposition (method = "eigen").

... additional arguments passed to the function.
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Details

The condition number (κ) is a measure of the transfer of error to the solution in response to small
changes in the input (Cheney and Kincaid 2008). In this implementation, the condition number is
computed on the Hessian matrix of models of unmarkedFit classes from the optim results stored
in the model object. The condition number is defined as the ratio of the largest to the smallest non-
negative singular values of a given matrix (Cline et al. 1979, Dixon 1983). In the special case of
positive semi-definite matrices, the singular values are equal to the eigenvalues (Ruhe 1975).

Large values of the condition number may indicate problems in estimating parameters or their
variance (ill-conditioning), possibly due to a model having too many parameters for the given data
set. Cheney and Ward (2008) suggest using the log10(κ) of the condition number as a crude estimate
of the number of digits of precision lost.

Value

extractCN returns a list of class extractCN with the following components:

CN the condition number (κ) of the model.

log10 the log base 10 of the condition number.

method the method used to extract the singular values or eigenvalues.

Author(s)

Marc J. Mazerolle

References

Cheney, W., Kincaid, D. (2008) Numerical mathematics and computing. Sixth edition. Thomson
Brooks/Cole: Belmont.

Cline, A. K., Moler, C. B., Stewart, G. W., Wilkinson, J. H. (1979) An estimate for the condition
number of a matrix. SIAM Journal on Numerical Analysis 16, 368–375.

Dixon, J. D. (1983) Estimating extremal eigenvalues and condition numbers of matrices. SIAM
Journal on Numerical Analysis 20, 812–814.

Ruhe, A. (1975) On the closeness of eigenvalues and singular values for almost normal matrices.
Linear Algebra and its Applications 11, 87–94.

See Also

c_hat, mb.gof.test, Nmix.gof.test, parboot, kappa, rcond

Examples

##N-mixture model example modified from ?pcount
## Not run:
require(unmarked)
##single season
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
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##run model
fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest,

mallardUMF, K=30)

##compute condition number
extractCN(fm.mallard)

##compare against 'kappa'
kappa(fm.mallard@opt$hessian, exact = TRUE)
detach(package:unmarked)

## End(Not run)

extractLL Extract Log-Likelihood of Model

Description

This function extracts the log-likelihood from an object of coxme, coxph, lmekin, maxlikeFit,
vglm, or various unmarkedFit classes.

Usage

extractLL(mod, ...)

## S3 method for class 'coxme'
extractLL(mod, type = "Integrated", ...)

## S3 method for class 'coxph'
extractLL(mod, ...)

## S3 method for class 'lmekin'
extractLL(mod, ...)

## S3 method for class 'maxlikeFit'
extractLL(mod, ...)

## S3 method for class 'unmarkedFit'
extractLL(mod, ...)

## S3 method for class 'vglm'
extractLL(mod, ...)

Arguments

mod an object of coxme, coxph, lmekin, maxlikeFit, vglm, or unmarkedFit class
resulting from the fit of distsamp, gdistsamp, gmultmix, multinomPois, gpcount,
occu, occuRN, colext, pcount, or pcountOpen.
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... additional arguments passed to the function.

type a character string indicating whether the integrated partial likelihood ("Inte-
grated") or penalized likelihood ("Penalized") is to be used for a coxme object.

Details

This utility function extracts the information from a coxme, coxph, lmekin, maxlikeFit, vglm, or
unmarkedFit object resulting from distsamp, gdistsamp, gmultmix, multinomPois, gpcount,
occu, occuRN, colext, pcount, or pcountOpen.

Value

These functions return the value of the log-likelihood of the model and associated degrees of free-
dom.

Author(s)

Marc J. Mazerolle

See Also

AICc, aictab, coxme, coxph, lmekin, maxlike, distsamp, gdistsamp, occu, occuRN, colext,
pcount, pcountOpen

Examples

##single-season occupancy model example modified from ?occu
## Not run:
require(unmarked)
##single season
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
## add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)),

sitevar2 = rnorm(numSites(pferUMF)))

## observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) *

obsNum(pferUMF)))

##run model set
fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF)

##extract log-likelihood
extractLL(fm1)
detach(package:unmarked)

## End(Not run)
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extractSE Extract SE of Fixed Effects

Description

This function extracts the standard errors (SE) of the fixed effects of a mixed model fit with coxme,
glmer, lmer, lmerModLmerTest, and lmekin and adds the appropriate labels.

Usage

extractSE(mod, ...)

## S3 method for class 'coxme'
extractSE(mod, ...)

## S3 method for class 'lmekin'
extractSE(mod, ...)

## S3 method for class 'mer'
extractSE(mod, ...)

## S3 method for class 'merMod'
extractSE(mod, ...)

## S3 method for class 'lmerModLmerTest'
extractSE(mod, ...)

Arguments

mod an object of coxme, lmekin, mer, merMod, or lmerModTest class.

... additional arguments passed to the function.

Details

These extractor functions use vcov.coxme, vcov.lmekin, vcov.mer, and vcov.merMod. Some of
these functions are called by modavg and modavgShrink, depending on the class of the objects.

Value

Returns the SE’s of the fixed effects with the appropriate labels for each.

Author(s)

Marc J. Mazerolle

See Also

modavg, glmer, lmer, coxme, lmekin
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Examples

##modified example from ?glmer
## Not run:
if(require(lme4)) {
##create proportion of incidence
cbpp$prop <- cbpp$incidence/cbpp$size
gm1 <- glmer(prop ~ period + (1 | herd), family = binomial,

weights = size, data = cbpp)
##print summary
summary(gm1)
##extract variance-covariance matrix of fixed effects
vcov(gm1)
##extract SE's of fixed effects - no labels
sqrt(diag(vcov(gm1))) #no labels
extractSE(gm1) #with labels
detach(package:lme4)
}

## End(Not run)

extractX Extract Predictors from Candidate Model List

Description

This function extracts the predictors used in candidate models. The function is currently imple-
mented for glm, glmmTMB, gls, lm, lme, merMod, lmerModLmerTest, rlm, survreg object classes
that are stored in a list as well as various models of unmarkedFit classes.

Usage

extractX(cand.set, ...)

## S3 method for class 'AICaov.lm'
extractX(cand.set, ...)

## S3 method for class 'AICglm.lm'
extractX(cand.set, ...)

## S3 method for class 'AICglmmTMB'
extractX(cand.set, ...)

## S3 method for class 'AIClm'
extractX(cand.set, ...)

## S3 method for class 'AICgls'
extractX(cand.set, ...)
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## S3 method for class 'AIClme'
extractX(cand.set, ...)

## S3 method for class 'AICglmerMod'
extractX(cand.set, ...)

## S3 method for class 'AIClmerMod'
extractX(cand.set, ...)

## S3 method for class 'AIClmerModLmerTest'
extractX(cand.set, ...)

## S3 method for class 'AICrlm.lm'
extractX(cand.set, ...)

## S3 method for class 'AICsurvreg'
extractX(cand.set, ...)

## S3 method for class 'AICunmarkedFitOccu'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitColExt'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuRN'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCount'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCO'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDS'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGDS'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
extractX(cand.set,
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parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMPois'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGMM'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGPC'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMulti'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMS'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuTTD'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMMO'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDSO'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGOccu'
extractX(cand.set,

parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuComm'
extractX(cand.set,

parm.type = NULL, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

parm.type this argument specifies the parameter type on which the predictors will be ex-
tracted and is only relevant for models of unmarkedFit classes. The character
strings supported vary with the type of model fitted. For unmarkedFitOccu,
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unmarkedFitOccuMulti, and unmarkedFitOccuComm objects, either psi or detect
can be supplied to indicate whether the parameter is on occupancy or detectabil-
ity, respectively. For unmarkedFitColExt and unmarkedFitOccuTTD, possi-
ble values are psi, gamma, epsilon, and detect, for parameters on occupancy
in the inital year, colonization, extinction, and detectability, respectively. For
unmarkedFitOccuFP objects, one can specify psi, detect, falsepos, and certain,
for occupancy, detectability, probability of assigning false-positives, and prob-
ability detections are certain, respectively. For unmarkedFitOccuMS objects,
possible values are psi, phi, or detect, denoting occupancy, transition, and
detection probabilities, respectively. For unmarkedFitOccuRN objects, either
lambda or detect can be entered for abundance and detectability parameters,
respectively. For unmarkedFitPCount and unmarkedFitMPois objects, lambda
or detect denote parameters on abundance and detectability, respectively. For
unmarkedFitPCO, unmarkedFitMMO, and unmarkedFitDSO objects, one can en-
ter lambda, gamma, omega, iota, or detect, to specify parameters on abun-
dance, recruitment, apparent survival, immigration, and detectability, respec-
tively. For unmarkedFitDS objects, lambda and detect are supported. For
unmarkedFitGDS, lambda, phi, and detect denote abundance, availability, and
detection probability, respectively. For unmarkedFitGMM and unmarkedFitGPC
objects, lambda, phi, and detect denote abundance, availability, and detectabil-
ity, respectively. For unmarkedFitGOccu objects, possible values are psi, phi,
or detect, denoting occupancy, availability, and detection probabilities, respec-
tively.

... additional arguments passed to the function.

Details

The candidate models must be stored in a list. The results of extractX are useful in preparing a
newdata data frame to use in computing model-averaged predictions with modavgPred or differ-
ences between groups with modavgEffect (Burnham and Anderson 2002, Anderson 2008, Burn-
ham et al. 2011).

Value

extractX returns an object of class extractX with the following components:

predictors a character vector of the names of the predictors included in the model, exclud-
ing the intercept term.

data a data frame or, in the case of unmarkedFit objects, a list of data frames (e.g.,
obsCovs, siteCovs, yearlySiteCovs).

Author(s)

Marc J. Mazerolle

References

Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer:
New York.
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Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel
inference in behaviorial ecology: some background, observations and comparisons. Behavioral
Ecology and Sociobiology 65, 23–25.

Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike’s Information Crite-
rion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.

Pinheiro, J. C., Bates, D. M. (2000). Mixed-effects Models in S and S-PLUS. Springer Verlag: New
York.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

See Also

extractCN, extractSE, modavgPred, modavgCustom, modavgEffect, predict, predictSE

Examples

##example from subset of models in Table 1 in Mazerolle (2006)
data(dry.frog)

Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
cent_Initial_mass + Initial_mass2 +
Shade:Substrate, data = dry.frog)

Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass +
Initial_mass2, data = dry.frog)

##assign names
names(Cand.models) <- paste(1:length(Cand.models))

##extract predictors from candidate model set
orig.data <- extractX(cand.set = Cand.models)
orig.data
str(orig.data)

## Not run:
##model-averaged prediction with original variables
modavgPred(Cand.models, newdata = orig.data$data)

## End(Not run)
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##example of model-averaged predictions from N-mixture model (e.g., Royle 2004)
##modified from ?pcount
##each variable appears twice on lambda in the models
## Not run:
require(unmarked)
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
##set up models so that each variable on abundance appears twice
fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF,

K = 30)
fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF,

K = 30)
fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF,

K = 30)
fm.mall.four <- pcount(~ ivel + date ~ 1, mallardUMF, K = 30)

##model list
Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three, fm.mall.four)
names(Cands) <- c("length + forest", "elev + forest", "length + elev",

"null")

##extract predictors on lambda
lam.dat <- extractX(cand.set = Cands, parm.type = "lambda")
lam.dat
str(lam.dat)

##extract predictors on detectability
extractX(cand.set = Cands, parm.type = "detect")

##model-averaged predictions on lambda
##extract data
siteCovs <- lam.dat$data$siteCovs
##create vector of forest values
forest <- seq(min(siteCovs$forest),

max(siteCovs$forest),
length.out = 40)

dframe <- data.frame(forest = forest,
length = mean(siteCovs$length),
elev = mean(siteCovs$elev))

modavgPred(Cands, parm.type = "lambda",
newdata = dframe)

detach(package:unmarked)

## End(Not run)

##example of model-averaged abundance from distance model
## Not run:
require(unmarked)
data(linetran) #example from ?distsamp
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ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),

siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line",
unitsIn = "m")

})

## Half-normal detection function. Density output (log scale). No covariates.
fm1 <- distsamp(~ 1 ~ 1, ltUMF)

## Halfnormal. Covariates affecting both density and and detection.
fm2 <- distsamp(~area + habitat ~ habitat, ltUMF)

## Hazard function. Covariates affecting both density and and detection.
fm3 <- distsamp(~area + habitat ~ habitat, ltUMF, keyfun="hazard")

##assemble model list
Cands <- list(fm1, fm2, fm3)

##model-average predictions on abundance
extractX(cand.set = Cands, parm.type = "lambda")
detach(package:unmarked)

## End(Not run)

##example using Orthodont data set from Pinheiro and Bates (2000)
## Not run:
require(nlme)

##set up candidate models
m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject),

data = Orthodont, method = "ML")

m2 <- gls(distance ~ 1, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject),
data = Orthodont, method = "ML")

##assemble in list
Cand.models <- list("age effect" = m1, "null model" = m2)

##model-averaged predictions
extractX(cand.set = Cand.models)
detach(package:nlme)

## End(Not run)

fam.link.mer Extract Distribution Family and Link Function
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Description

This function extracts the distribution family and link function of a generalized linear mixed model
fit with glmer or lmer.

Usage

fam.link.mer(mod)

Arguments

mod an object of mer or merMod class resulting from the fit of glmer or lmer.

Details

This utility function extracts the information from an mer or merMod object resulting from glmer or
lmer. The function is called by modavg, modavgEffect, modavgPred, and predictSE.

Value

fam.link.mer returns a list with the following components:

family the family of the distribution of the model.

link the link function of the model.

supp.link a character value indicating whether the link function used is supported by
predictSE and modavgPred.

Author(s)

Marc J. Mazerolle

See Also

modavg, modavgPred, predictSE, glmer, lmer

Examples

##modified example from ?glmer
## Not run:
if(require(lme4)){
##create proportion of incidence
cbpp$prop <- cbpp$incidence/cbpp$size
gm1 <- glmer(prop ~ period + (1 | herd), family = binomial,

weights = size, data = cbpp)
fam.link.mer(gm1)
gm2 <- glmer(prop ~ period + (1 | herd),

family = binomial(link = "cloglog"), weights = size,
data = cbpp)

fam.link.mer(gm2)
}
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## End(Not run)

##example with linear mixed model with Orthodont data from
##Pinheiro and Bates (2000)
## Not run:
data(Orthodont, package = "nlme")
m1 <- lmer(distance ~ Sex + (1 | Subject), data = Orthodont,

REML = FALSE)
fam.link.mer(m1)
m2 <- glmer(distance ~ Sex + (1 | Subject),

family = gaussian(link = "log"), data = Orthodont,
REML = FALSE)

fam.link.mer(m2)
detach(package:lme4)

## End(Not run)

fat Fat Data and Body Measurements

Description

This data set illustrates the relationship between body measurements and body fat in 252 males
aged between 21 and 81 years.

Usage

data(fat)

Format

A data frame with 252 rows and 26 variables.

Obs observation number.

Perc.body.fat.Brozek percent body fat using Brozek’s equation, i.e., 457/Density − 414.2.

Perc.body.fat.Siri percent body fat using Siri’s equation, i.e., 495/Density − 450.

Density density ( g
cm3 ).

Age age (years).

Weight weight (lbs).

Height height (inches).

Adiposity.index adiposity index computed as Weight/Height2 ( kg
m2 ).

Fat.free.weight fat free weight computed as (1−Brozek′spercentbodyfat) ∗Weight (lbs).

Neck.circ neck circumference (cm).

Chest.circ chest circumference (cm).
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Abdomen.circ abdomen circumference (cm) measured at the umbilicus and level with the iliac
crest.

Hip.circ hip circumference (cm).

Thigh.circ thigh circumference (cm).

Knee.circ knee circumference (cm).

Ankle.circ ankle circumference (cm).

Biceps.circ extended biceps circumference (cm).

Forearm.circ forearm circumference (cm).

Wrist.circ wrist circumference (cm).

inv.Density inverse of density ( cm
3

g ).

z1 log of weight divided by log of height (allometric measure).

z2 abdomen circumference divided by chest circumference (beer gut factor).

z3 index based on knee, wrist, and ankle circumference relative to height ( (Knee.circ∗Wrist.circ∗Ankle.circ)(1/3)
Height ).

z4 fleshiness index based on biceps, thigh, forearm, knee, wrist, and ankle circumference (Biceps.circ∗Thigh.circ∗Forearm.circ
Knee.circ∗Wrist.circ∗Ankle.circ ).

z5 age standardized to zero mean and unit variance.

z6 square of standardized age.

Details

Burnham and Anderson (2002, p. 268) use this data set to show model selection uncertainty in the
context of all possible combinations of explanatory variables. The data are originally from Penrose
et al. (1985) who used only the first 143 cases of the 252 observations in the data set. Johnson
(1996) later used these data as an example of multiple regression. Note that observation number 42
originally had an erroneous height of 29.5 inches and that this value was changed to 69.5 inches.

Burnham and Anderson (2002, p. 274) created six indices based on the original measurements (i.e.,
z1 – z6). Although Burnham and Anderson (2002) indicate that the fleshiness index (z4) involved
the cubic root in the equation, the result table for the full model on p. 276 suggests that the index
did not include the cubic root for z4. The latter is the version of z4 used in the data set here.

Source

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Johnson, J. W. (1996). Fitting percentage of body fat to simple body measurements. Journal of
Statistics Education 4 [online].

Penrose, K., Nelson, A., Fisher, A. (1985) Generalized body composition prediction equation for
men using simple measurement techniques Medicine and Science in Sports and Exercise 17, 189.

Examples

data(fat)
str(fat)
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gpa GPA Data and Standardized Test Scores

Description

This data set features the first-year college GPA and four standardized tests conducted before ma-
triculation.

Usage

data(gpa)

Format

A data frame with 20 rows and 5 variables.

gpa.y first-year GPA.

sat.math.x1 SAT math score.

sat.verb.x2 SAT verbal score.

hs.math.x3 high school math score.

hs.engl.x4 high school English score.

Details

Burnham and Anderson (2002, p. 225) use this data set originally from Graybill and Iyer (1994) to
show model selection for all subsets regression.

Source

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Graybill, F. A., Iyer, H. K. (1994) Regression analysis: concepts and applications. Duxbury Press:
Belmont.

Examples

data(gpa)
str(gpa)
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ictab Create Model Selection Tables from User-supplied Information Crite-
rion

Description

This function creates a model selection table from information criterion values supplied by the user.
The table ranks the models based on the values of the information criterion and also displays delta
values and information criterion weights.

Usage

ictab(ic, K, modnames = NULL, sort = TRUE, ic.name = NULL)

Arguments

ic a vector of information criterion values for each model in the candidate model
set.

K a vector containing the number of estimated parameters for each model in the
candidate model set.

modnames a character vector of model names to identify each model in the model selection
table. If NULL, generic names (e.g., Mod1, Mod2) are supplied in the table in the
same order as the information criterion values.

sort logical. If TRUE, the model selection table is ranked according to the values of
the information criterion.

ic.name a character string denoting the name of the information criterion input by the
user. This character string will appear in certain column labels of the model
selection table.

Details

ictab constructs a model selection table based on the information criterion values supplied by
the user. This function is most useful for information criterion other than AIC, AICc, QAIC, and
QAICc (e.g., WAIC: Watanabe 2010) or for classes not supported by aictab or bictab.

Value

ictab creates an object of class ictab with the following components:

Modname the name of each model of the candidate model set.

K the number of estimated parameters for each model.

IC the values of the information criterion input by the user. If a value for ic.name
is provided, the table modifies the labels of the table.

Delta_IC the delta information criterion component comparing each model to the top-
ranked model.
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ModelLik the relative likelihood of the model given the data (exp(-0.5*delta[i])). This is
not to be confused with the likelihood of the parameters given the data. The
relative likelihood can then be normalized across all models to get the model
probabilities.

ICWt the information criterion weights, also termed "model probabilities" sensu Burn-
ham and Anderson (2002) and Anderson (2008). These measures indicate the
level of support (i.e., weight of evidence) in favor of any given model being the
most parsimonious among the candidate model set.

Cum.Wt the cumulative information criterion weights. These are only meaningful if
results in table are sorted in decreasing order of Akaike weights (i.e., sort =
TRUE).

Author(s)

Marc J. Mazerolle

References

Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer:
New York.

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Watanabe, S. (2010) Asymptotic equivalence of Bayes cross validation and widely applicable infor-
mation criterion in singular learning theory. Journal of Machine Learning Research 11, 3571–3594.

See Also

aictabCustom, confset, evidence, modavgCustom, modavgIC

Examples

##create a vector of names to trace back models in set
Modnames <- c("global model", "interactive model",

"additive model", "invertpred model")

##WAIC values
waic <- c(105.74, 107.36, 108.24, 100.57)
##number of effective parameters
effK <- c(7.45, 5.61, 6.14, 6.05)

##generate WAIC table
ictab(ic = waic, K = effK, modnames = Modnames,

sort = TRUE, ic.name = "WAIC")
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importance Compute Importance Values of Variable

Description

This function calculates the relative importance of variables (w+) based on the sum of Akaike
weights (model probabilities) of the models that include the variable. Note that this measure of
evidence is only appropriate when the variable appears in the same number of models as those that
do not include the variable.

Usage

importance(cand.set, parm, modnames = NULL, second.ord = TRUE,
nobs = NULL, ...)

## S3 method for class 'AICaov.lm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICbetareg'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICsclm.clm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICclm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICclmm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICclogit.coxph'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICcoxme'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICcoxph'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)
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## S3 method for class 'AICglm.lm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, ...)

## S3 method for class 'AICglmerMod'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AIClmerModLmerTest'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICglmmTMB'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, ...)

## S3 method for class 'AICgls'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AIClm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AIClme'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AIClmekin'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICmaxlikeFit.list'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, ...)

## S3 method for class 'AICmer'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICmultinom.nnet'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, ...)

## S3 method for class 'AICnegbin.glm.lm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)
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## S3 method for class 'AICnlmerMod'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICpolr'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICrlm.lm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICsurvreg'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

## S3 method for class 'AICunmarkedFitColExt'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccu'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuRN'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCount'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCO'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDS'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGDS'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)
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## S3 method for class 'AICunmarkedFitMPois'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGMM'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGPC'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMulti'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMS'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL,
...)

## S3 method for class 'AICunmarkedFitOccuTTD'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL,
...)

## S3 method for class 'AICunmarkedFitMMO'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL,
...)

## S3 method for class 'AICunmarkedFitDSO'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL,
...)

## S3 method for class 'AICunmarkedFitGOccu'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL,
...)

## S3 method for class 'AICunmarkedFitOccuComm'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, c.hat = 1, parm.type = NULL,
...)

## S3 method for class 'AICvglm'
importance(cand.set, parm, modnames = NULL,
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second.ord = TRUE, nobs = NULL, c.hat = 1, ...)

## S3 method for class 'AICzeroinfl'
importance(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

parm the parameter of interest for which a measure of relative importance is required.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total
number of observations or number of independent clusters (e.g., sites) as the
value of nobs.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, importance
will return the quasi-likelihood analogue of the information criteria requested
and multiply the variance-covariance matrix of the estimates by this value (i.e.,
SE’s are multiplied by sqrt(c.hat)). This option is not supported for general-
ized linear mixed models of the mer or merMod classes.

parm.type this argument specifies the parameter type on which the variable of interest will
be extracted and is only relevant for models of unmarkedFit classes. The char-
acter strings supported vary with the type of model fitted. For unmarkedFitOccu,
unmarkedFitOccuMulti, unmarkedFitOccuComm objects, either psi or detect
can be supplied to indicate whether the parameter is on occupancy or detectabil-
ity, respectively. For unmarkedFitColExt objects, possible values are psi,
gamma, epsilon, and detect, for parameters on occupancy in the inital year,
colonization, extinction, and detectability, respectively. For unmarkedFitOccuTTD
objects, possible values are psi, gamma, epsilon, and detect, for parameters
on occupancy in the inital year, colonization, extinction, and time-to-dection
(lambda rate parameter), respectively. For unmarkedFitOccuFP objects, one
can specify psi, detect, falsepos, and certain, for occupancy, detectability,
probability of assigning false-positives, and probability detections are certain,
respectively. For unmarkedFitOccuMS objects, possible values are psi, phi,
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or detect, denoting occupancy, transition, and detection probabilities, respec-
tively. For unmarkedFitOccuRN objects, either lambda or detect can be entered
for abundance and detectability parameters, respectively. For unmarkedFitPCount
and unmarkedFitMPois objects, lambda or detect denote parameters on abun-
dance and detectability, respectively. For unmarkedFitPCO, unmarkedFitMMO,
and unmarkedFitDSO objects, one can enter lambda, gamma, omega, iota, or
detect, to specify parameters on abundance, recruitment, apparent survival, im-
migration, and detectability, respectively. For unmarkedFitDS objects, lambda
and detect are supported. For unmarkedFitGDS, lambda, phi, and detect de-
note abundance, availability, and detection probability, respectively. For unmarkedFitGMM
and unmarkedFitGPC objects, lambda, phi, and detect denote abundance,
availability, and detectability, respectively. For unmarkedFitGOccu objects,
possible values are psi, phi, or detect, denoting occupancy, availability, and
detection probabilities, respectively.

... additional arguments passed to the function.

Value

importance returns an object of class importance consisting of the following components:

parm the parameter for which an importance value is required.

w.plus the sum of Akaike weights for the models that include the parameter of interest.

w.minus the sum of Akaike weights for the models that exclude the parameter of interest.

Author(s)

Marc J. Mazerolle

References

Burnham, K. P., and Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

See Also

AICc, aictab, c_hat, confset, evidence, modavg, modavgShrink, modavgPred
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Examples

##example on Orthodont data set in nlme
## Not run:
require(nlme)

##set up candidate model list
Cand.models <- list( )
Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML")
##random is ~ age | Subject
Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont,

random = ~ 1, method = "ML")
Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1,

method = "ML")
Cand.models[[4]] <- lme(distance ~ Sex, data = Orthodont, random = ~ 1,

method = "ML")

##create a vector of model names
Modnames <- paste("mod", 1:length(Cand.models), sep = "")

importance(cand.set = Cand.models, parm = "age", modnames = Modnames,
second.ord = TRUE, nobs = NULL)

##round to 4 digits after decimal point
print(importance(cand.set = Cand.models, parm = "age", modnames = Modnames,

second.ord = TRUE, nobs = NULL), digits = 4)
detach(package:nlme)

## End(Not run)

##single-season occupancy model example modified from ?occu
## Not run:
require(unmarked)
##single season
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
## add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)),

sitevar2 = rnorm(numSites(pferUMF)))

## observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) *

obsNum(pferUMF)))

##set up candidate model set
fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF)
fm2 <- occu(~ 1 ~ sitevar1, pferUMF)
fm3 <- occu(~ obsvar1 ~ sitevar2, pferUMF)
fm4 <- occu(~ 1 ~ sitevar2, pferUMF)
Cand.mods <- list(fm1, fm2, fm3, fm4)
Modnames <- c("fm1", "fm2", "fm3", "fm4")

##compute importance value for 'sitevar1' on occupancy
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importance(cand.set = Cand.mods, modnames = Modnames, parm = "sitevar1",
parm.type = "psi")

##compute importance value for 'obsvar1' on detectability
importance(cand.set = Cand.mods, modnames = Modnames, parm = "obsvar1",

parm.type = "detect")

##example with multispecies occupancy modify from ?occuMulti
##Simulate 3 species data
N <- 80
nspecies <- 3
J <- 4

occ_covs <- as.data.frame(matrix(rnorm(N * 10),ncol=10))
names(occ_covs) <- paste('par',1:10,sep='')

det_covs <- list()
for (i in 1:nspecies){

det_covs[[i]] <- matrix(rnorm(N*J),nrow=N)
}
names(det_covs) <- paste('par',1:nspecies,sep='')

##True vals
beta <- c(0.5,0.2,0.4,0.5,-0.1,-0.3,0.2,0.1,-1,0.1)
f1 <- beta[1] + beta[2]*occ_covs$par1
f2 <- beta[3] + beta[4]*occ_covs$par2
f3 <- beta[5] + beta[6]*occ_covs$par3
f4 <- beta[7]
f5 <- beta[8]
f6 <- beta[9]
f7 <- beta[10]
f <- cbind(f1,f2,f3,f4,f5,f6,f7)
z <- expand.grid(rep(list(1:0),nspecies))[,nspecies:1]
colnames(z) <- paste('sp',1:nspecies,sep='')
dm <- model.matrix(as.formula(paste0("~.^",nspecies,"-1")),z)

psi <- exp(f
psi <- psi/rowSums(psi)

##True state
ztruth <- matrix(NA,nrow=N,ncol=nspecies)
for (i in 1:N){

ztruth[i,] <- as.matrix(z[sample(8,1,prob=psi[i,]),])
}

p_true <- c(0.6,0.7,0.5)

## fake y data
y <- list()

for (i in 1:nspecies){
y[[i]] <- matrix(NA,N,J)
for (j in 1:N){
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for (k in 1:J){
y[[i]][j,k] <- rbinom(1,1,ztruth[j,i]*p_true[i])

}
}

}
names(y) <- c('coyote','tiger','bear')

##Create the unmarked data object
data <- unmarkedFrameOccuMulti(y=y,siteCovs=occ_covs,obsCovs=det_covs)

## Formulas for state and detection processes
## Length should match number/order of columns in fDesign
occFormulas <- c('~par1 + par2','~par2','~par3','~1','~1','~1','~1')
occFormulas2 <- c('~par1 + par3','~par1 + par2','~par1 + par2 + par3',

"~ 1", "~1", "~ 1", "~1")

##Length should match number/order of species in data@ylist
detFormulas <- c('~1','~1','~1')

fit <- occuMulti(detFormulas,occFormulas,data)
fit2 <- occuMulti(detFormulas,occFormulas2,data)

##importance
importance(cand.set = list(fit, fit2), parm = "[coyote] par2",

parm.type = "psi")

detach(package:unmarked)

## End(Not run)

iron Iron Content in Food

Description

This data set, originally from Adish et al. (1999), describes the iron content of food cooked in
different pot types.

Usage

data(iron)

Format

A data frame with 36 rows and 3 variables.

Pot pot type, one of "aluminium", "clay", or "iron".

Food food type, one of "legumes", "meat", or "vegetables".

Iron iron content measured in mg/100 g of food.
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Details

Heiberger and Holland (2004, p. 378) use these data as an exercise on two-way ANOVA with
interaction.

Source

Heiberger, R. M., Holland, B. (2004) Statistical Analysis and Data Display: an intermediate course
with examples in S-Plus, R, and SAS. Springer: New York.

Adish, A. A., Esrey, S. A., Gyorkos, T. W., Jean-Baptiste, J., Rojhani, A. (1999) Effect of consump-
tion of food cooked in iron pots on iron status and growth of young children: a randomised trial.
The Lancet 353, 712–716.

Examples

data(iron)
str(iron)

lizards Habitat Preference of Lizards

Description

This data set describes the habitat preference of two species of lizards, Anolis grahami and A.
opalinus, on the island of Jamaica and is originally from Schoener (1970). McCullagh and Nelder
(1989) and Burnham and Anderson (2002) reanalyzed the data. Note that a typo occurs in table
3.11 of Burnham and Anderson (2002).

Usage

data(lizards)

Format

A data frame with 48 rows and 6 variables.

Insolation position of perch, either shaded or sunny.

Diameter diameter of the perch, either < 2 in or >= 2 in.

Height perch height, either < 5 or >= 5.

Time time of day, either morning, midday, or afternoon.

Species species observed, either grahami or opalinus.

Counts number of individuals observed.

Details

Burnham and Anderson (2002, p. 137) use this data set originally from Schoener (1970) to illustrate
model selection for log-linear models.
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Source

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

McCullagh, P., Nelder, J. A. (1989) Generalized Linear Models. Second edition. Chapman and
Hall: New York.

Schoener, T. W. (1970) Nonsynchronous spatial overlap of lizards in patchy habitats. Ecology 51,
408–418.

Examples

data(lizards)
## Not run:
##log-linear model as in Burnham and Anderson 2002, p. 137
##main effects
m1 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species,

family = poisson, data = lizards)

##main effects and all second order interactions = base
m2 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Time +
Diameter:Species + Height:Time + Height:Species +
Time:Species, family = poisson, data = lizards)

##base - DT
m3 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Species +
Height:Time + Height:Species + Time:Species,
family = poisson, data = lizards)

##base + HDI + HDT + HDS
m4 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Time +
Diameter:Species + Height:Time + Height:Species +
Time:Species + Height:Diameter:Insolation +
Height:Diameter:Time + Height:Diameter:Species,
family = poisson, data = lizards)

##base + HDI + HDS + HIT + HIS + HTS + ITS
m5 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Time +
Diameter:Species + Height:Time + Height:Species +
Time:Species + Height:Diameter:Insolation +
Height:Diameter:Species + Height:Insolation:Time +
Height:Insolation:Species + Height:Time:Species +
Insolation:Time:Species, family = poisson, data = lizards)



126 lizards

##base + HIT + HIS + HTS + ITS
m6 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Time +
Diameter:Species + Height:Time + Height:Species +
Time:Species + Height:Insolation:Time +
Height:Insolation:Species + Height:Time:Species +
Insolation:Time:Species, family = poisson, data = lizards)

##base + HIS + HTS + ITS
m7 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Time +
Diameter:Species + Height:Time + Height:Species +
Time:Species + Height:Insolation:Species +
Height:Time:Species + Insolation:Time:Species,
family = poisson, data = lizards)

##base + HIT + HIS + HTS + ITS - DT
m8 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Species +
Height:Time + Height:Species + Time:Species +
Height:Insolation:Time + Height:Insolation:Species +
Height:Time:Species + Insolation:Time:Species,
family = poisson, data = lizards)

##base + HIT + HIS + ITS - DT
m9 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Species +
Height:Time + Height:Species + Time:Species +
Height:Insolation:Time + Height:Insolation:Species +
Insolation:Time:Species,
family = poisson, data = lizards)

##base + HIT + HIS - DT
m10 <- glm(Counts ~ Insolation + Diameter + Height + Time + Species +

Insolation:Diameter + Insolation:Height + Insolation:Time +
Insolation:Species + Diameter:Height + Diameter:Species +
Height:Time + Height:Species + Time:Species +
Height:Insolation:Time + Height:Insolation:Species,
family = poisson, data = lizards)

##set up in list
Cands <- list(m1, m2, m3, m4, m5, m6, m7, m8, m9, m10)
Modnames <- paste("m", 1:length(Cands), sep = "")

##model selection
library(AICcmodavg)
aictab(Cands, Modnames)

## End(Not run)
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mb.gof.test Compute MacKenzie and Bailey Goodness-of-fit Test for Single Sea-
son, Dynamic, and Royle-Nichols Occupancy Models

Description

These functions compute the MacKenzie and Bailey (2004) goodness-of-fit test for single season
occupancy models based on Pearson’s chi-square and extend it to dynamic (multiple season) and
Royle-Nichols (2003) occupancy models.

Usage

mb.chisq(mod, print.table = TRUE, ...)

## S3 method for class 'unmarkedFitOccu'
mb.chisq(mod, print.table = TRUE, ...)

## S3 method for class 'unmarkedFitColExt'
mb.chisq(mod, print.table = TRUE, ...)

## S3 method for class 'unmarkedFitOccuRN'
mb.chisq(mod, print.table = TRUE,

maxK = NULL, ...)

mb.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL,
parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1,
cex.main = 1, lwd = 1, ...)

## S3 method for class 'unmarkedFitOccu'
mb.gof.test(mod, nsim = 5, plot.hist = TRUE,

report = NULL, parallel = TRUE, ncores,
cex.axis = 1, cex.lab = 1, cex.main = 1,
lwd = 1, ...)

## S3 method for class 'unmarkedFitColExt'
mb.gof.test(mod, nsim = 5, plot.hist = TRUE,

report = NULL, parallel = TRUE,
ncores, cex.axis = 1, cex.lab = 1, cex.main = 1,
lwd = 1, plot.seasons = FALSE, ...)

## S3 method for class 'unmarkedFitOccuRN'
mb.gof.test(mod, nsim = 5, plot.hist = TRUE,

report = NULL, parallel = TRUE, ncores,
cex.axis = 1, cex.lab = 1, cex.main = 1,
lwd = 1, maxK = NULL, ...)
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Arguments

mod the model for which a goodness-of-fit test is required.

print.table logical. Specifies if the detailed table of observed and expected values is to be
included in the output.

nsim the number of bootstrapped samples.

plot.hist logical. Specifies that a histogram of the bootstrapped test statistic is to be in-
cluded in the output. For dynamic occupancy models, this produces a histogram
of the sum of the season-specific chi-squares for each bootstrap sample.

report If NULL, the test statistic for each iteration is not printed in the terminal. Other-
wise, an integer indicating the number of values of the test statistic that should
be printed on the same line. For example, if report = 3, the values of the test
statistic for three iterations are reported on each line.

parallel logical. If TRUE, requests that parboot use multiple cores to accelerate compu-
tations of the bootstrap.

ncores integer indicating the number of cores to use when bootstrapping in parallel
during the analysis of simulated data sets. If ncores is not specified, one less
than the number of available cores on the computer is used.

cex.axis expansion factor influencing the size of axis annotations on plots produced by
the function.

cex.lab expansion factor influencing the size of axis labels on plots produced by the
function.

cex.main expansion factor influencing the size of the main title above plots produced by
the function.

lwd expansion factor of line width on plots produced by the function.

plot.seasons logical. For dynamic occupancy models, specifies that a histogram of the boot-
strapped test statistic for each primary period (season) is to be included in the
output.

maxK the number of support points used as the summation index in the likelihood of
the Royle-Nichols model (2003). If NULL, extracts the value of K used by occuRN
to fit the model to the original data.

... additional arguments passed to the function.

Details

MacKenzie and Bailey (2004) and MacKenzie et al. (2006) suggest using the Pearson chi-square
to assess the fit of single season occupancy models (MacKenzie et al. 2002). Given low expected
frequencies, the chi-square statistic will deviate from the theoretical distribution and it is recom-
mended to use a parametric bootstrap approach to obtain P-values with the parboot function of the
unmarked package. mb.chisq computes the table of observed and expected values based on the de-
tection histories and single season occupancy model used. mb.gof.test calls internally mb.chisq
and parboot to generate simulated data sets based on the model and compute the MacKenzie and
Bailey test statistic. Missing values are accomodated by creating cohorts for each pattern of missing
values.
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It is also possible to obtain an estimate of the overdispersion parameter (c-hat) for the model at hand
by dividing the observed chi-square statistic by the mean of the statistics obtained from simulation.

This test is extended to dynamic occupancy models of MacKenzie et al. (2003) by using the oc-
cupancy estimates for each season obtained from the model. These estimates are then used to
compute the predicted and observed frequencies separately within each season. The chi-squares are
then summed to be used as the test statistic for the dynamic occupancy model.

Note that values of c-hat > 1 indicate overdispersion (variance > mean), but that values much higher
than 1 (i.e., > 4) probably indicate lack-of-fit. In cases of moderate overdispersion, one usually
multiplies the variance-covariance matrix of the estimates by c-hat. As a result, the SE’s of the
estimates are inflated (c-hat is also known as a variance inflation factor).

In model selection, c-hat should be estimated from the global model and the same value of c-hat
applied to the entire model set. Specifically, a global model is the most complex model from which
all the other models of the set are simpler versions (nested). When no single global model exists in
the set of models considered, such as when sample size does not allow a complex model, one can
estimate c-hat from ’subglobal’ models. Here, ’subglobal’ models denote models from which only
a subset of the models of the candidate set can be derived. In such cases, one can use the smallest
value of c-hat for model selection (Burnham and Anderson 2002).

Note that c-hat counts as an additional parameter estimated and should be added to K. All functions
in package AICcmodavg automatically add 1 when the c.hat argument > 1 and apply the same value
of c-hat for the entire model set. When c-hat > 1, functions compute quasi-likelihood information
criteria (either QAICc or QAIC, depending on the value of the second.ord argument) by scaling the
log-likelihood of the model by c-hat. The value of c-hat can influence the ranking of the models: as
c-hat increases, QAIC or QAICc will favor models with fewer parameters. As an additional check
against this potential problem, one can generate several model selection tables by incrementing
values of c-hat to assess the model selection uncertainty. If ranking changes little up to the c-hat
value observed, one can be confident in making inference.

In cases of underdispersion (c-hat < 1), it is recommended to keep the value of c-hat to 1. However,
note that values of c-hat « 1 can also indicate lack-of-fit and that an alternative model should be
investigated.

Value

mb.chisq returns the following components for single-season and Royle-Nichols occupancy mod-
els:

chisq.table the table of observed and expected values for each detection history and its chi-
square component (if print.table = TRUE). Note that the table only shows the
observed detection histories. Unobserved detection histories are not shown, but
are included in the computation of the test statistic.

chi.square the Pearson chi-square statistic. This test statistic should be compared against a
bootstrap distribution instead of the theoretical chi-square distribution because
low expected frequencies invalidate the chi-square assumption.

model.type the model type, either single-season, royle-nichols, or dynamic.

mb.chisq returns the following additional components for dynamic occupancy models:

tables a list containing the season-specific chi-square tables (if print.table = TRUE).
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all.chisq an element containing the season-specific chi-squares.

n.seasons the number of primary periods (seasons).

n.seasons the number of primary periods (seasons).

missing.seasons

logical vector indicating whether data were collected or not during a given sea-
son (primary period), where TRUE indicates that no data were collected during
the season.

mb.gof.test returns the following components for single-season and Royle-Nichols occupancy
models:

chisq.table the table of observed and expected values for each detection history and its chi-
square component.

chi.square the Pearson chi-square statistic.

t.star the bootstrapped chi-square test statistics (i.e., obtained for each of the simulated
data sets).

p.value the P-value assessed from the parametric bootstrap, computed as the proportion
of the simulated test statistics greater than or equal to the observed test statistic.

c.hat.est the estimate of the overdispersion parameter, c-hat, computed as the observed
test statistic divided by the mean of the simulated test statistics.

nsim the number of bootstrap samples. The recommended number of samples varies
with the data set, but should be on the order of 1000 or 5000, and in cases with
a large number of visits, even 10 000 samples, namely to reduce the effect of
unusually small values of the test statistics.

mb.gof.test returns the following additional components for dynamic occupancy models:

chisq.table a list including the table of observed and expected values for each detection
history and its chi-square component for each primary period (season).

chi.square the chi-square test statistic, as the sum of the chi-squares across the primary
periods.

p.value a list of the P-values for each of the primary periods, computed separately as the
proportion of the simulated test statistics greater than or equal to the observed
test statistic.

p.global the P-value of the chi-square test statistic for the dynamic occupancy model.
This P-value is computed as the proportion of the simulated sums of chi-squares
greater than or equal to the observed sum of chi-squares across the primary
periods.

Author(s)

Marc J. Mazerolle
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See Also

AICc, c_hat, colext, evidence, modavg, importance, modavgPred, Nmix.gof.test, occu, parboot

Examples

##single-season occupancy model example modified from ?occu
## Not run:
require(unmarked)
##single season
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
## add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(sitevar1 = rnorm(numSites(pferUMF)),

sitevar2 = rnorm(numSites(pferUMF)))

## observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 = rnorm(numSites(pferUMF) *

obsNum(pferUMF)))

##run model
fm1 <- occu(~ obsvar1 ~ sitevar1, pferUMF)

##compute observed chi-square
obs <- mb.chisq(fm1)
obs
##round to 4 digits after decimal point
print(obs, digits.vals = 4)

##compute observed chi-square, assess significance, and estimate c-hat
obs.boot <- mb.gof.test(fm1, nsim = 3)
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##note that more bootstrap samples are recommended
##(e.g., 1000, 5000, or 10 000)
obs.boot
print(obs.boot, digits.vals = 4, digits.chisq = 4)

##data with missing values
mat1 <- matrix(c(0, 0, 0), nrow = 120, ncol = 3, byrow = TRUE)
mat2 <- matrix(c(0, 0, 1), nrow = 23, ncol = 3, byrow = TRUE)
mat3 <- matrix(c(1, NA, NA), nrow = 42, ncol = 3, byrow = TRUE)
mat4 <- matrix(c(0, 1, NA), nrow = 33, ncol = 3, byrow = TRUE)
y.mat <- rbind(mat1, mat2, mat3, mat4)
y.sim.data <- unmarkedFrameOccu(y = y.mat)
m1 <- occu(~ 1 ~ 1, data = y.sim.data)

mb.gof.test(m1, nsim = 3)
##note that more bootstrap samples are recommended
##(e.g., 1000, 5000, or 10 000)

##modifying graphical parameters
mb.gof.test(m1, nsim = 3,
cex.axis = 1.2, #axis annotations are 1.2 the default size
cex.lab = 1.2, #axis labels are 1.2 the default size
lwd = 2) #line width is twice the default width
detach(package:unmarked)

## End(Not run)

min.trap Anuran Larvae Counts in Minnow Traps Across Pond Type

Description

This data set consists of counts of anuran larvae as a function of pond type, pond perimeter, and
presence of water scorpions (Ranatra sp.).

Usage

data(min.trap)

Format

A data frame with 24 observations on the following 6 variables.

Type pond type, denotes the location of ponds in either bog or upland environment
Num_anura number of anuran larvae in minnow traps
Effort number of trap nights (i.e., number of traps x days of trapping) in each pond
Perimeter pond perimeter in meters
Num_ranatra number of water scorpions trapped in minnow traps
log.Perimeter natural log of perimeter
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Details

Mazerolle (2006) uses this data set to illustrate model selection for Poisson regression with low
overdispersion.

Source

Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike’s Information Crite-
rion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.

Examples

data(min.trap)
## maybe str(min.trap) ; plot(min.trap) ...

modavg Compute Model-averaged Parameter Estimate (Multimodel Inference)

Description

This function model-averages the estimate of a parameter of interest among a set of candidate mod-
els, computes the unconditional standard error and unconditional confidence intervals as described
in Buckland et al. (1997) and Burnham and Anderson (2002). This model-averaged estimate is also
referred to as a natural average of the estimate by Burnham and Anderson (2002, p. 152).

Usage

modavg(cand.set, parm, modnames = NULL, second.ord = TRUE, nobs = NULL,
uncond.se = "revised", conf.level = 0.95, exclude = NULL, warn =
TRUE, ...)

## S3 method for class 'AICaov.lm'
modavg(cand.set, parm, modnames = NULL, second.ord =

TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICbetareg'
modavg(cand.set, parm, modnames = NULL, second.ord =

TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICsclm.clm'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICclm'
modavg(cand.set, parm, modnames = NULL,
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second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICclmm'
modavg(cand.set, parm, modnames = NULL, second.ord

= TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICcoxme'
modavg(cand.set, parm, modnames = NULL, second.ord

= TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICcoxph'
modavg(cand.set, parm, modnames = NULL, second.ord

= TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICglm.lm'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
gamdisp = NULL, ...)

## S3 method for class 'AICglmmTMB'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
...)

## S3 method for class 'AICgls'
modavg(cand.set, parm, modnames = NULL, second.ord =

TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AIChurdle'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AIClm'
modavg(cand.set, parm, modnames = NULL, second.ord =

TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AIClme'
modavg(cand.set, parm, modnames = NULL, second.ord =

TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
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exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AIClmekin'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICmaxlikeFit.list'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
...)

## S3 method for class 'AICmer'
modavg(cand.set, parm, modnames = NULL, second.ord =

TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AIClmerMod'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AIClmerModLmerTest'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICglmerMod'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICmultinom.nnet'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
...)

## S3 method for class 'AICnegbin.glm.lm'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICpolr'
modavg(cand.set, parm, modnames = NULL, second.ord

= TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)
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## S3 method for class 'AICrlm.lm'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICsurvreg'
modavg(cand.set, parm, modnames = NULL, second.ord =

TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICvglm'
modavg(cand.set, parm, modnames = NULL, second.ord

= TRUE, nobs = NULL, uncond.se = "revised", conf.level = 0.95,
exclude = NULL, warn = TRUE, c.hat = 1, ...)

## S3 method for class 'AICzeroinfl'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, ...)

## S3 method for class 'AICunmarkedFitOccu'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitColExt'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuRN'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCount'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCO'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
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conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDS'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGDS'
modavg(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMPois'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGMM'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGPC'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMulti'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMS'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
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conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuTTD'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMMO'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDSO'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGOccu'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuComm'
modavg(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, exclude = NULL, warn = TRUE, c.hat = 1,
parm.type = NULL, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

parm the parameter of interest, enclosed between quotes, for which a model-averaged
estimate is required. For a categorical variable, the label of the estimate must be
included as it appears in the output (see ’Details’ below).

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
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is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total
number of observations or number of independent clusters (e.g., sites) as the
value of nobs.

uncond.se either, "old", or "revised", specifying the equation used to compute the un-
conditional standard error of a model-averaged estimate. With uncond.se =
"old", computations are based on equation 4.9 of Burnham and Anderson (2002),
which was the former way to compute unconditional standard errors. With
uncond.se = "revised", equation 6.12 of Burnham and Anderson (2002) is
used. Anderson (2008, p. 111) recommends use of the revised version for the
computation of unconditional standard errors and it is now the default. Note
that versions of package AICcmodavg < 1.04 used the old method to compute
unconditional standard errors.

conf.level the confidence level (1 − α) requested for the computation of unconditional
confidence intervals.

exclude this argument excludes models based on the terms specified for the computation
of a model-averaged estimate of parm. The exclude argument is set to NULL
by default and does not exclude any models other than those without the parm.
When parm is a main effect but is also involved in interactions/polynomial terms
in some models, one should specify the interaction/polynomial terms as a list to
exclude models with these terms from the computation of model-averaged es-
timate of the main effect (e.g., exclude = list("sex:mass", "mass2")). See
’Details’ and ’Examples’ below.

warn logical. If TRUE, modavg performs a check and isssues a warning when the value
in parm occurs more than once in any given model. This is a check for potential
interaction/polynomial terms in the model when such terms are constructed with
the usual operators (e.g., I( ) for polynomial terms, : for interaction terms).

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, modavg
will return the quasi-likelihood analogue of the information criteria requested
and multiply the variance-covariance matrix of the estimates by this value (i.e.,
SE’s are multiplied by sqrt(c.hat)). This option is not supported for general-
ized linear mixed models of the mer or merMod classes.

gamdisp if gamma GLM is used, the dispersion parameter should be specified here to
apply the same value to each model.

parm.type this argument specifies the parameter type on which the model-averaged esti-
mate of a predictor will be computed and is only relevant for models of unmarkedFit
classes. The character strings supported vary with the type of model fitted. For
unmarkedFitOccu, unmarkedFitOccuMulti, and unmarkedFitOccuComm ob-
jects, either psi or detect can be supplied to indicate whether the parameter
is on occupancy or detectability, respectively. For unmarkedFitColExt ob-
jects, possible values are psi, gamma, epsilon, and detect, for parameters



140 modavg

on occupancy in the inital year, colonization, extinction, and detectability, re-
spectively. For unmarkedFitOccuTTD objects, possible values are psi, gamma,
epsilon, and detect, for parameters on occupancy in the inital year, colo-
nization, extinction, and time-to-dection (lambda rate parameter), respectively.
For unmarkedFitOccuFP objects, one can specify psi, detect, falsepos, and
certain, for occupancy, detectability, probability of assigning false-positives,
and probability detections are certain, respectively. For unmarkedFitOccuMS
objects, possible values are psi, phi, or detect, denoting occupancy, transi-
tion, and detection probabilities, respectively. For unmarkedFitOccuRN objects,
either lambda or detect can be entered for abundance and detectability param-
eters, respectively. For unmarkedFitPCount and unmarkedFitMPois objects,
lambda or detect denote parameters on abundance and detectability, respec-
tively. For unmarkedFitPCO, unmarkedFitMMO, and unmarkedFitDSO objects,
one can enter lambda, gamma, omega, iota, or detect, to specify parameters on
abundance, recruitment, apparent survival, immigration, and detectability, re-
spectively. For unmarkedFitDS objects, lambda and detect are supported. For
unmarkedFitGDS, lambda, phi, and detect denote abundance, availability, and
detection probability, respectively. For unmarkedFitGMM and unmarkedFitGPC
objects, lambda, phi, and detect denote abundance, availability, and detectabil-
ity, respectively. For unmarkedFitGOccu objects, possible values are psi, phi,
or detect, denoting occupancy, availability, and detection probabilities, respec-
tively.

... additional arguments passed to the function.

Details

The parameter for which a model-averaged estimate is requested must be specified with the parm
argument and must be identical to its label in the model output (e.g., from summary). For factors,
one must specify the name of the variable and the level of interest. modavg includes checks to find
variations of interaction terms specified in the parm and exclude arguments. However, to avoid
problems, one should specify interaction terms consistently for all models: e.g., either a:b or b:a
for all models, but not a mixture of both.

You must exercise caution when some models include interaction or polynomial terms, because
main effect terms do not have the same interpretation when they also appear in an interaction/polynomial
term in the same model. In such cases, one should exclude models containing interaction terms
where the main effect is involved with the exclude argument of modavg. Note that modavg checks
for potential cases of multiple instances of a variable appearing more than once in a given model
(presumably in an interaction) and issues a warning. To correctly compute the model-averaged es-
timate of a main effect involved in interaction/polynomial terms, specify the interaction terms(s)
that should not appear in the same model with the exclude argument. This will effectively exclude
models from the computation of the model-averaged estimate.

When warn = TRUE, modavg looks for matches among the labels of the estimates with identical.
It then compares the results to partial matches with regexpr, and issues a warning whenever they
are different. As a result, modavg may issue a warning when some variables or levels of categorical
variables have nested names (e.g., treat, treat10; L, TL). When this warning is only due to the
presence of similarly named variables in the models (and NOT due to interaction terms), you can
suppress this warning by setting warn = FALSE.
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The model-averaging estimator implemented in modavg is known to be biased away from 0 when
there is substantial model selection uncertainty (Cade 2015). In such instances, it is recommended
to use the model-averaging shrinkage estimator (i.e., modavgShrink) for inference on beta esti-
mates or to focus on model-averaged effect sizes (modavgEffect) and model-averaged predictions
(modavgPred).

modavg is implemented for a list containing objects of aov, betareg, clm, clmm, clogit, coxme,
coxph, glm, glmmTMB, gls, hurdle, lm, lme, lmekin, maxlikeFit, mer, glmerMod, lmerMod,
lmerModLmerTest, multinom, polr, rlm, survreg, vglm, zeroinfl classes as well as various
models of unmarkedFit classes.

Value

modavg creates an object of class modavg with the following components:

Parameter the parameter for which a model-averaged estimate was obtained.

Mod.avg.table the reduced model selection table based on models including the parameter of
interest.

Mod.avg.beta the model-averaged estimate based on all models including the parameter of
interest (see ’Details’ above regarding the exclusion of models where parameter
of interest is involved in an interaction).

Uncond.SE the unconditional standard error for the model-averaged estimate (as opposed to
the conditional SE based on a single model).

Conf.level the confidence level used to compute the confidence interval.

Lower.CL the lower confidence limit.

Upper.CL the upper confidence limit.

Author(s)

Marc J. Mazerolle
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See Also

AICc, aictab, c_hat, confset, evidence, importance, modavgCustom, modavgEffect, modavgShrink,
modavgPred

Examples

##anuran larvae example modified from Mazerolle (2006)
##these are different models than in the paper
data(min.trap)
##assign "UPLAND" as the reference level as in Mazerolle (2006)
min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND")

##set up candidate models
Cand.mod <- list( )
##global model
Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter +

Type:log.Perimeter + Num_ranatra,
family = poisson, offset = log(Effort),
data = min.trap)

##interactive model
Cand.mod[[2]] <- glm(Num_anura ~ Type + log.Perimeter +

Type:log.Perimeter, family = poisson,
offset = log(Effort), data = min.trap)

##additive model
Cand.mod[[3]] <- glm(Num_anura ~ Type + log.Perimeter, family = poisson,

offset = log(Effort), data = min.trap)
##Predator model
Cand.mod[[4]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson,

offset = log(Effort), data = min.trap)

##check c-hat for global model
c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df
##note the very low overdispersion: in this case, the analysis could be
##conducted without correcting for c-hat as its value is reasonably close
##to 1

##assign names to each model
Modnames <- c("global model", "interactive model",

"additive model", "invertpred model")



modavg 143

##model selection
aictab(Cand.mod, Modnames)

##compute model-averaged estimates for parameters appearing in top
##models
modavg(parm = "Num_ranatra", cand.set = Cand.mod, modnames = Modnames)
##round to 4 digits after decimal point
print(modavg(parm = "Num_ranatra", cand.set = Cand.mod,

modnames = Modnames), digits = 4)

##model-averaging a variable involved in an interaction
##the following produces an error - because the variable is involved
##in an interaction in some candidate models
## Not run: modavg(parm = "TypeBOG", cand.set = Cand.mod,

modnames = Modnames)
## End(Not run)

##exclude models where the variable is involved in an interaction
##to get model-averaged estimate of main effect
modavg(parm = "TypeBOG", cand.set = Cand.mod, modnames = Modnames,

exclude = list("Type:log.Perimeter"))

##to get model-averaged estimate of interaction
modavg(parm = "TypeBOG:log.Perimeter", cand.set = Cand.mod,

modnames = Modnames)

##beware of variables that have similar names
set.seed(seed = 4)
resp <- rnorm(n = 40, mean = 3, sd = 1)
size <- rep(c("small", "medsmall", "high", "medhigh"), times = 10)
set.seed(seed = 4)
mass <- rnorm(n = 40, mean = 2, sd = 0.1)
mass2 <- mass^2
age <- rpois(n = 40, lambda = 3.2)
agecorr <- rpois(n = 40, lambda = 2)
sizecat <- rep(c("a", "ab"), times = 20)
data1 <- data.frame(resp = resp, size = size, sizecat = sizecat,

mass = mass, mass2 = mass2, age = age,
agecorr = agecorr)

##set up models in list
Cand <- list( )
Cand[[1]] <- lm(resp ~ size + agecorr, data = data1)
Cand[[2]] <- lm(resp ~ size + mass + agecorr, data = data1)
Cand[[3]] <- lm(resp ~ age + mass, data = data1)
Cand[[4]] <- lm(resp ~ age + mass + mass2, data = data1)
Cand[[5]] <- lm(resp ~ mass + mass2 + size, data = data1)
Cand[[6]] <- lm(resp ~ mass + mass2 + sizecat, data = data1)
Cand[[7]] <- lm(resp ~ sizecat, data = data1)
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Cand[[8]] <- lm(resp ~ sizecat + mass + sizecat:mass, data = data1)
Cand[[9]] <- lm(resp ~ agecorr + sizecat + mass + sizecat:mass,

data = data1)

##create vector of model names
Modnames <- paste("mod", 1:length(Cand), sep = "")

aictab(cand.set = Cand, modnames = Modnames, sort = TRUE) #correct

##as expected, issues warning as mass occurs sometimes with "mass2" or
##"sizecatab:mass" in some of the models
## Not run: modavg(cand.set = Cand, parm = "mass", modnames = Modnames)

##no warning issued, because "age" and "agecorr" never appear in same model
modavg(cand.set = Cand, parm = "age", modnames = Modnames)

##as expected, issues warning because warn=FALSE, but it is a very bad
##idea in this example since "mass" occurs with "mass2" and "sizecat:mass"
##in some of the models - results are INCORRECT
## Not run: modavg(cand.set = Cand, parm = "mass", modnames = Modnames,

warn = FALSE)
## End(Not run)

##correctly excludes models with quadratic term and interaction term
##results are CORRECT
modavg(cand.set = Cand, parm = "mass", modnames = Modnames,

exclude = list("mass2", "sizecat:mass"))

##correctly computes model-averaged estimate because no other parameter
##occurs simultaneously in any of the models
modavg(cand.set = Cand, parm = "sizesmall", modnames = Modnames) #correct

##as expected, issues a warning because "sizecatab" occurs sometimes in
##an interaction in some models
## Not run: modavg(cand.set = Cand, parm = "sizecatab",

modnames = Modnames)
## End(Not run)

##exclude models with "sizecat:mass" interaction - results are CORRECT
modavg(cand.set = Cand, parm = "sizecatab", modnames = Modnames,

exclude = list("sizecat:mass"))

##example with multiple-season occupancy model modified from ?colext
##this is a bit longer
## Not run:
require(unmarked)
data(frogs)
umf <- formatMult(masspcru)
obsCovs(umf) <- scale(obsCovs(umf))
siteCovs(umf) <- rnorm(numSites(umf))
yearlySiteCovs(umf) <- data.frame(year = factor(rep(1:7,
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numSites(umf))))

##set up model with constant transition rates
fm <- colext(psiformula = ~ 1, gammaformula = ~ 1, epsilonformula = ~ 1,

pformula = ~ JulianDate + I(JulianDate^2), data = umf,
control = list(trace=1, maxit=1e4))

##model with with year-dependent transition rates
fm.yearly <- colext(psiformula = ~ 1, gammaformula = ~ year,

epsilonformula = ~ year,
pformula = ~ JulianDate + I(JulianDate^2),
data = umf)

##store in list and assign model names
Cand.mods <- list(fm, fm.yearly)
Modnames <- c("psi1(.)gam(.)eps(.)p(Date + Date2)",

"psi1(.)gam(Year)eps(Year)p(Date + Date2)")

##compute model-averaged estimate of occupancy in the first year
modavg(cand.set = Cand.mods, modnames = Modnames, parm = "(Intercept)",

parm.type = "psi")

##compute model-averaged estimate of Julian Day squared on detectability
modavg(cand.set = Cand.mods, modnames = Modnames,

parm = "I(JulianDate^2)", parm.type = "detect")

## End(Not run)

##example of model-averaged estimate of area from distance model
##this is a bit longer
## Not run:
data(linetran) #example modified from ?distsamp

ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),

siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line", unitsIn = "m")

})

## Half-normal detection function. Density output (log scale). No covariates.
fm1 <- distsamp(~ 1 ~ 1, ltUMF)

## Halfnormal. Covariates affecting both density and detection.
fm2 <- distsamp(~ area + habitat ~ area + habitat, ltUMF)

## Hazard function. Covariates affecting both density and detection.
fm3 <- distsamp(~ habitat ~ area + habitat, ltUMF, keyfun="hazard")

##assemble model list
Cands <- list(fm1, fm2, fm3)
Modnames <- paste("mod", 1:length(Cands), sep = "")
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##model-average estimate of area on abundance
modavg(cand.set = Cands, modnames = Modnames, parm = "area", parm.type = "lambda")
detach(package:unmarked)

## End(Not run)

modavg.utility Various Utility Functions

Description

reverse.parm and reverse.exclude reverse the order of variables in an interaction term.

formatCands creates new classes for lists containing candidate models.

formulaShort prints a succinct formula from an unmarkedFit object.

Usage

reverse.parm(parm)
reverse.exclude(exclude)
formatCands(cand.set)
formulaShort(mod, unmarked.type = NULL)

Arguments

parm a parameter to be model-averaged, enclosed between quotes, as it appears in the
output of some models.

exclude a list of interaction or polynomial terms appearing in some models, as they
would appear in the call to the model function (i.e., A*B, A:B). Models contain-
ing elements from the list will be excluded to obtain a model-averaged estimate.

cand.set a list storing each of the models in the candidate model set.

mod an object storing the result of an unmarkedFit.

unmarked.type a character string specifying the type of parameter in an unmarkedFit for which
a formula is requested. This argument uses the character string for each param-
eter group as defined by unmarked.

Details

These utility functions are used internally by aictab, modavg, and other related functions.

reverse.parm and reverse.exclude enable the user to specify differently interaction terms (e.g.,
A:B, B:A) across models for model averaging. These functions have been added to avoid problems
when users are not consistent in the specification of interaction terms across models.

formatCands creates new classes for the list of candidate models based on the contents of the list.
These new classes are used for method dispatch.

formulaShort is used by anovaOD.
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Value

reverse.parm returns all possible combinations of an interaction term to identify models that in-
clude the parm of interest and find the corresponding estimate and standard error in the model
object.

reverse.exclude returns a list of all possible combinations of exclude to identify models that
should be excluded when computing a model-averaged estimate.

formatCands adds a new class to the list of candidate models based on the classes of the models.

formulaShort creates a character string for the formula related to a given parameter type from an
unmarkedFit object.

Author(s)

Marc J. Mazerolle

See Also

aictab, anovaOD, modavg, modavgShrink, modavgPred

Examples

##a main effect
reverse.parm(parm = "Ageyoung") #does not return anything

##an interaction term as it might appear in the output
reverse.parm(parm = "Ageyoung:time") #returns the reverse

##exclude two interaction terms
reverse.exclude(exclude = list("Age*time", "A:B"))
##returns all combinations
reverse.exclude(exclude = list("Age:time", "A*B"))
##returns all combinations

##Mazerolle (2006) frog water loss example
data(dry.frog)

##setup a subset of models of Table 1
Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
cent_Initial_mass + Initial_mass2 +
Shade:Substrate, data = dry.frog)

Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
Initial_mass2, data = dry.frog)

formatCands(Cand.models)
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## Not run:
require(unmarked)
data(bullfrog)
bfrog <- unmarkedFrameOccu(y = bullfrog[, c("V1", "V2", "V3", "V4")],

siteCovs = bullfrog[, 1:2])
fm1 <- occu(~ 1 ~ Reed.presence, data = bfrog)
formulaShort(fm1, unmarked.type = "state")
formulaShort(fm1, unmarked.type = "det")

## End(Not run)

modavgCustom Compute Model-averaged Parameter Estimate from User-supplied In-
put Based on (Q)AIC(c)

Description

This function model-averages the estimate of a parameter of interest among a set of candidate
models, and computes the unconditional standard error and unconditional confidence intervals as
described in Buckland et al. (1997) and Burnham and Anderson (2002).

Usage

modavgCustom(logL, K, modnames = NULL, estimate, se, second.ord = TRUE,
nobs = NULL, uncond.se = "revised", conf.level = 0.95,
c.hat = 1, useBIC = FALSE)

Arguments

logL a vector of log-likelihood values for the models in the candidate model set.

K a vector containing the number of estimated parameters for each model in the
candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.

estimate a vector of estimates for each of the models in the candidate model set. Estimates
can be either beta estimates for a parameter of interest or a single prediction from
each model.

se a vector of standard errors for each of the estimates appearing in the estimate
vector.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc). This argument is ignored if useBIC = TRUE.

nobs the sample size required to compute the AICc, QAICc, BIC, or QBIC.
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uncond.se either, "old", or "revised", specifying the equation used to compute the un-
conditional standard error of a model-averaged estimate. With uncond.se =
"old", computations are based on equation 4.9 of Burnham and Anderson (2002),
which was the former way to compute unconditional standard errors. With
uncond.se = "revised", equation 6.12 of Burnham and Anderson (2002) is
used. Anderson (2008, p. 111) recommends use of the revised version for the
computation of unconditional standard errors and it is now the default.

conf.level the confidence level (1 − α) requested for the computation of unconditional
confidence intervals.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that
obtained from c_hat. Note that values of c.hat different from 1 are only ap-
propriate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success,
failure) syntax), with Poisson GLM’s, single-season and dynamic occupancy
models (MacKenzie et al. 2002, 2003), N-mixture models (Royle 2004, Dail and
Madsen 2011), or capture-mark-recapture models (e.g., Lebreton et al. 1992).
If c.hat > 1, modavgCustom will return the quasi-likelihood analogue of the in-
formation criteria requested and multiply the variance-covariance matrix of the
estimates by this value (i.e., SE’s are multiplied by sqrt(c.hat)).

useBIC logical. If TRUE, the function returns the Bayesian information criterion (BIC)
when c.hat = 1 or the quasi-likelihood BIC (QBIC) when c.hat > 1.

Details

modavgCustom computes a model-averaged estimate from the vector of parameter estimates speci-
fied in estimate. Estimates and their associated standard errors must be specified in the same order
as the log-likelihood, number of estimated parameters, and model names. Estimates provided may
be for a parameter of interest (i.e., beta estimates) or predictions from each model. This function
is most useful when model input is imported into R from other software (e.g., Program MARK,
PRESENCE) or for model classes that are not yet supported by the other model averaging functions
such as modavg or modavgPred.

Value

modavgCustom creates an object of class modavgCustom with the following components:

Mod.avg.table the model selection table

Mod.avg.est the model-averaged estimate

Uncond.SE the unconditional standard error for the model-averaged estimate

Conf.level the confidence level used to compute the confidence interval

Lower.CL the lower confidence limit

Upper.CL the upper confidence limit

Author(s)

Marc J. Mazerolle
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See Also

AICcCustom, aictabCustom, bictabCustom, modavg, modavgIC, modavgShrink, modavgPred

Examples

## Not run:
##model averaging parameter estimate (natural average)
##vector with model LL's
LL <- c(-38.8876, -35.1783, -64.8970)

##vector with number of parameters
Ks <- c(7, 9, 4)

##create a vector of names to trace back models in set
Modnames <- c("Cm1", "Cm2", "Cm3")

##vector of beta estimates for a parameter of interest
model.ests <- c(0.0478, 0.0480, 0.0478)

##vector of SE's of beta estimates for a parameter of interest
model.se.ests <- c(0.0028, 0.0028, 0.0034)

##compute model-averaged estimate and unconditional SE based on AICc
modavgCustom(logL = LL, K = Ks, modnames = Modnames,

estimate = model.ests, se = model.se.ests, nobs = 121)
##compute model-averaged estimate and unconditional SE based on BIC
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modavgCustom(logL = LL, K = Ks, modnames = Modnames,
estimate = model.ests, se = model.se.ests, nobs = 121,
useBIC = TRUE)

##model-averaging with shrinkage based on AICc
##set up candidate models
data(min.trap)
Cand.mod <- list( )
##global model
Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter,

family = poisson, offset = log(Effort),
data = min.trap)

Cand.mod[[2]] <- glm(Num_anura ~ Type + Num_ranatra, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[3]] <- glm(Num_anura ~ log.Perimeter + Num_ranatra,
family = poisson, offset = log(Effort), data = min.trap)

Model.names <- c("Type + log.Perimeter", "Type + Num_ranatra",
"log.Perimeter + Num_ranatra")

##model-averaged estimate with shrinkage (glm model type is already supported)
modavgShrink(cand.set = Cand.mod, modnames = Model.names,

parm = "log.Perimeter")

##equivalent manual version of model-averaging with shrinkage
##this is especially useful when model classes are not supported
##extract vector of LL
LLs <- sapply(Cand.mod, FUN = function(i) logLik(i)[1])
##extract vector of K
Ks <- sapply(Cand.mod, FUN = function(i) attr(logLik(i), "df"))
##extract betas
betas <- sapply(Cand.mod, FUN = function(i) coef(i)["log.Perimeter"])
##second model does not include log.Perimeter
betas[2] <- 0
##extract SE's
ses <- sapply(Cand.mod, FUN = function(i) sqrt(diag(vcov(i))["log.Perimeter"]))
ses[2] <- 0
##model-averaging with shrinkage based on AICc
modavgCustom(logL = LLs, K = Ks, modnames = Model.names,

nobs = nrow(min.trap), estimate = betas, se = ses)
##model-averaging with shrinkage based on BIC
modavgCustom(logL = LLs, K = Ks, modnames = Model.names,

nobs = nrow(min.trap), estimate = betas, se = ses,
useBIC = TRUE)

## End(Not run)

modavgEffect Compute Model-averaged Effect Sizes (Multimodel Inference on
Group Differences)
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Description

This function model-averages the effect size between two groups defined by a categorical variable
based on the entire model set and computes the unconditional standard error and unconditional
confidence intervals as described in Buckland et al. (1997) and Burnham and Anderson (2002).
This can be particularly useful when dealing with data from an experiment (e.g., ANOVA) and when
the focus is to determine the effect of a given factor. This is an information-theoretic alternative to
multiple comparisons (e.g., Burnham et al. 2011).

Usage

modavgEffect(cand.set, modnames = NULL, newdata, second.ord = TRUE,
nobs = NULL, uncond.se = "revised", conf.level = 0.95,
...)

## S3 method for class 'AICaov.lm'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICglm.lm'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1, gamdisp = NULL,
...)

## S3 method for class 'AICgls'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClm'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClme'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICmer'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", ...)

## S3 method for class 'AICglmerMod'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
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conf.level = 0.95, type = "response", ...)

## S3 method for class 'AIClmerMod'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClmerModLmerTest'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICnegbin.glm.lm'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", ...)

## S3 method for class 'AICrlm.lm'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICsurvreg'
modavgEffect(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", ...)

## S3 method for class 'AICunmarkedFitOccu'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitColExt'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuRN'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCount'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
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"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCO'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDS'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGDS'
modavgEffect(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMPois'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGMM'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGPC'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuTTD'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
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"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMMO'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDSO'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMS'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMulti'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGOccu'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuComm'
modavgEffect(cand.set, modnames =

NULL, newdata, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, type = "response",
c.hat = 1, parm.type = NULL, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.

newdata a data frame with two rows and where the columns correspond to the explana-
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tory variables specified in the candidate models. Note that this data set must
have the same structure as that of the original data frame for which we want to
make predictions, specifically, the same variable type and names that appear in
the original data set. Each row of the data set defines one of the two groups com-
pared. The first row in newdata defines the first group, whereas the second row
defines the second group. The effect size is computed as the prediction in the
first row minus the prediction in the second row (first row - second row). Only
the column relating to the grouping variable can change value and all others
must be held constant for the comparison (see ’Details’). For community occu-
pancy models of unmarkedFitOccuComm classes, the newdata data frame must
include a column specifying the name of the species for which each prediction
is requested (see ’Examples’ below).

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows the specification of a numeric value other than total sample
size to compute the AICc (i.e., nobs defaults to total number of observations).
This is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total num-
ber of observations or number of independent clusters (e.g., sites) as the value
of nobs.

uncond.se either, "old", or "revised", specifying the equation used to compute the un-
conditional standard error of a model-averaged estimate. With uncond.se =
"old", computations are based on equation 4.9 of Burnham and Anderson (2002),
which was the former way to compute unconditional standard errors. With
uncond.se = "revised", equation 6.12 of Burnham and Anderson (2002) is
used. Anderson (2008, p. 111) recommends use of the revised version for the
computation of unconditional standard errors and it is now the default. Note
that versions of package AICcmodavg < 1.04 used the old method to compute
unconditional standard errors.

conf.level the confidence level (1−α) requested for the computation of unconditional con-
fidence intervals. To obtain confidence intervals corrected for multiple compar-
isons between pairs of treatments, it is possible to adjust the α level according
to various strategies such as the Bonferroni correction (Dunn 1961).

type the scale of prediction requested, one of "response" or "link" (only relevant
for glm, mer, and unmarkedFit classes). Note that the value "terms" is not
defined for modavgEffect).

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that
obtained from c_hat. Note that values of c.hat different from 1 are only ap-
propriate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success,
failure) syntax), with Poisson GLM’s, single-season and dynamic occupancy
models (MacKenzie et al. 2002, 2003), or N-mixture models (Royle 2004, Dail
and Madsen 2011). If c.hat > 1, modavgEffect will return the quasi-likelihood
analogue of the information criteria requested and multiply the variance-covariance
matrix of the estimates by this value (i.e., SE’s are multiplied by sqrt(c.hat)).
This option is not supported for generalized linear mixed models of the mer
class.
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gamdisp if gamma GLM is used, the dispersion parameter should be specified here to
apply the same value to each model.

parm.type this argument specifies the parameter type on which the effect size will be com-
puted and is only relevant for models of unmarkedFit classes. The character
strings supported vary with the type of model fitted. For unmarkedFitOccu,
unmarkedFitOccuMulti, and unmarkedFitOccuComm objects, either psi or detect
can be supplied to indicate whether the parameter is on occupancy or detectabil-
ity, respectively. For unmarkedFitColExt objects, possible values are psi,
gamma, epsilon, and detect, for parameters on occupancy in the inital year,
colonization, extinction, and detectability, respectively. For unmarkedFitOccuTTD
objects, possible values are psi, gamma, epsilon, and detect, for parameters
on occupancy in the inital year, colonization, extinction, and time-to-dection
(lambda rate parameter), respectively. For unmarkedFitOccuFP objects, one
can specify psi, detect, falsepos, and certain, for occupancy, detectabil-
ity, probability of assigning false-positives, and probability detections are cer-
tain, respectively. For unmarkedFitOccuRN objects, either lambda or detect
can be entered for abundance and detectability parameters, respectively. For
unmarkedFitPCount and unmarkedFitMPois objects, lambda or detect de-
note parameters on abundance and detectability, respectively. For unmarkedFitPCO,
unmarkedFitMMO, and unmarkedFitDSO objects, one can enter lambda, gamma,
omega, iota, or detect, to specify parameters on abundance, recruitment, ap-
parent survival, immigration, and detectability, respectively. For unmarkedFitDS
objects, lambda and detect are supported. For unmarkedFitGDS, lambda,
phi, and detect denote abundance, availability, and detection probability, re-
spectively. For unmarkedFitGMM and unmarkedFitGPC objects, lambda, phi,
and detect denote abundance, availability, and detectability, respectively. For
unmarkedFitOccuMS objects, psi, phi, and detect denote occupancy, transi-
tion, and detection probability, respectively. For unmarkedFitGOccu objects,
possible values are psi, phi, or detect, denoting occupancy, availability, and
detection probabilities, respectively.

... additional arguments passed to the function.

Details

The strategy used here to compute effect sizes is to work from the newdata object to create two
predictions from a given model and compute the differences and standard errors between both val-
ues. This step is executed for each model in the candidate model set, to obtain a model-averaged
estimate of the effect size and unconditional standard error. As a result, the newdata argument is
restricted to two rows, each for a given prediction. To specify each group, the values entered in the
column for each explanatory variable can be identical, except for the grouping variable. In such a
case, the function will identify the variable and the assign group names based on the values of the
variable. If more than a single variable has different values in its respective column, the function
will print generic names in the output to identify the two groups. A sensible choice of value for the
explanatory variables to be held constant is the average of the variable.

Model-averaging effect sizes is most useful in true experiments (e.g., ANOVA-type designs), where
one wants to obtain the best estimate of effect size given the support of each candidate model. This
can be considered as a information-theoretic analog of traditional multiple comparisons, except
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that the information contained in the entire model set is used instead of being restricted to a single
model. See ’Examples’ below for applications.

modavgEffect calls the appropriate method depending on the class of objects in the list. The cur-
rent classes supported include aov, glm, gls, lm, lme, mer, glmerMod, lmerMod, lmerModLmerTest,
rlm, survreg, as well as models of unmarkedFitOccu, unmarkedFitColExt, unmarkedFitOccuFP,
unmarkedFitOccuRN, unmarkedFitOccuTTD, unmarkedFitPCount, unmarkedFitPCO, unmarkedFitDS,
unmarkedFitDSO, unmarkedFitGDS, unmarkedFitMPois, unmarkedFitGMM, unmarkedFitMMO, unmarkedFitGPC,
unmarkedFitOccuMS, unmarkedFitOccuMulti, unmarkedFitGOccu, and unmarkedFitOccuComm
classes.

Value

The result is an object of class modavgEffect with the following components:

Group.variable the grouping variable defining the two groups compared.

Group1 the first group considered in the comparison.

Group2 the second group considered in the comparison.

Type the scale on which the model-averaged effect size was computed (e.g., response
or link).

Mod.avg.table the full model selection table including the entire set of candidate models.

Mod.avg.eff the model-averaged effect size based on the entire candidate model set.

Uncond.SE the unconditional standard error for the model-averaged effect size.

Conf.level the confidence level used to compute the confidence interval.

Lower.CL the lower confidence limit.

Upper.CL the upper confidence limit.

Matrix.output a matrix containing the model-averaged effect size, the unconditional standard
error, and the lower and upper confidence limits.

Author(s)

Marc J. Mazerolle

References

Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer:
New York.

Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Burnham, K. P., Anderson, D. R. (2004) Multimodel inference: understanding AIC and BIC in
model selection. Sociological Methods and Research 33, 261–304.

Burnham, K. P., Anderson, D. R., Huyvaert, K. P. (2011) AIC model selection and multimodel
inference in behaviorial ecology: some background, observations and comparisons. Behavioral
Ecology and Sociobiology 65, 23–25.



modavgEffect 159

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

Dunn, O. J. (1961) Multiple comparisons among means. Journal of the American Statistical Asso-
ciation 56, 52–64.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.

Mazerolle, M. J. (2006) Improving data analysis in herpetology: using Akaike’s Information Crite-
rion (AIC) to assess the strength of biological hypotheses. Amphibia-Reptilia 27, 169–180.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

See Also

AICc, aictab, c_hat, confset, evidence, importance, modavgShrink, modavgPred

Examples

##heights (cm) of plants grown under two fertilizers, Ex. 9.5 from
##Zar (1984): Biostatistical Analysis. Prentice Hall: New Jersey.
heights <- data.frame(Height = c(48.2, 54.6, 58.3, 47.8, 51.4, 52.0,

55.2, 49.1, 49.9, 52.6, 52.3, 57.4, 55.6, 53.2,
61.3, 58.0, 59.8, 54.8),

Fertilizer = c(rep("old", 10), rep("new", 8)))

##run linear model hypothesizing an effect of fertilizer
m1 <- lm(Height ~ Fertilizer, data = heights)

##run null model (no effect of fertilizer)
m0 <- lm(Height ~ 1, data = heights)

##assemble models in list
Cands <- list(m1, m0)
Modnames <- c("Fert", "null")

##compute model selection table to compare
##both hypotheses
aictab(cand.set = Cands, modnames = Modnames)
##note that model with fertilizer effect is much better supported
##than the null

##compute model-averaged effect sizes: one model hypothesizes a
##difference of 0, whereas the other assumes a difference

##prepare newdata object from which differences between groups
##will be computed
##the first row of the newdata data.frame relates to the first group,
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##whereas the second row corresponds to the second group
pred.data <- data.frame(Fertilizer = c("new", "old"))

##compute best estimate of effect size accounting for model selection
##uncertainty
modavgEffect(cand.set = Cands, modnames = Modnames,

newdata = pred.data)

##classical one-way ANOVA type-design
## Not run:
##generate data for two groups and control
set.seed(seed = 15)
y <- round(c(rnorm(n = 15, mean = 10, sd = 5),

rnorm(n = 15, mean = 15, sd = 5),
rnorm(n = 15, mean = 12, sd = 5)), digits = 2)

##groups
group <- c(rep("cont", 15), rep("trt1", 15), rep("trt2", 15))

##combine in data set
aov.data <- data.frame(Y = y, Group = group)
rm(y, group)

##run model with group effect
lm.eff <- lm(Y ~ Group, data = aov.data)
##null model
lm.0 <- lm(Y ~ 1, data = aov.data)

##compare both models
Cands <- list(lm.eff, lm.0)
Mods <- c("group effect", "no group effect")
aictab(cand.set = Cands, modnames = Mods)
##model with group effect has most of the weight

##compute model-averaged effect sizes
##trt1 - control
modavgEffect(cand.set = Cands, modnames = Modnames,

newdata = data.frame(Group = c("trt1", "cont")))
##trt1 differs from cont

##trt2 - control
modavgEffect(cand.set = Cands, modnames = Modnames,

newdata = data.frame(Group = c("trt2", "cont")))
##trt2 does not differ from cont

## End(Not run)

##two-way ANOVA type design, Ex. 13.1 (Zar 1984) of plasma calcium
##concentration (mg/100 ml) in birds as a function of sex and hormone
##treatment
## Not run:
birds <- data.frame(Ca = c(16.87, 16.18, 17.12, 16.83, 17.19, 15.86,
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14.92, 15.63, 15.24, 14.8, 19.07, 18.77, 17.63,
16.99, 18.04, 17.2, 17.64, 17.89, 16.78, 16.92,
32.45, 28.71, 34.65, 28.79, 24.46, 30.54, 32.41,
28.97, 28.46, 29.65),

Sex = c("M", "M", "M", "M", "M", "F", "F", "F", "F",
"F", "M", "M", "M", "M", "M", "F", "F", "F", "F",
"F", "M", "M", "M", "M", "M", "F", "F", "F", "F",
"F"),

Hormone = as.factor(c(1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3,
3, 3, 3, 3, 3)))

##candidate models
##interactive effects
m.inter <- lm(Ca ~ Sex + Hormone + Sex:Hormone, data = birds)

##additive effects
m.add <- lm(Ca ~ Sex + Hormone, data = birds)

##Sex only
m.sex <- lm(Ca ~ Sex, data = birds)

##Hormone only
m.horm <- lm(Ca ~ Hormone, data = birds)

##null
m.0 <- lm(Ca ~ 1, data = birds)

##model selection
Cands <- list(m.inter, m.add, m.sex, m.horm, m.0)
Mods <- c("interaction", "additive", "sex only", "horm only", "null")
aictab(Cands, Mods)
##there is some support for a hormone only treatment, but also for
##additive effects

##compute model-averaged effects of sex, and set the other variable
##to a constant value
##M - F
sex.data <- data.frame(Sex = c("M", "F"), Hormone = c("1", "1"))
modavgEffect(Cands, Mods, newdata = sex.data)
##no support for a sex main effect

##hormone 1 - 3, but set Sex to a constant value
horm1.data <- data.frame(Sex = c("M", "M"), Hormone = c("1", "3"))
modavgEffect(Cands, Mods, newdata = horm1.data)

##hormone 2 - 3, but set Sex to a constant value
horm2.data <- data.frame(Sex = c("M", "M"), Hormone = c("2", "3"))
modavgEffect(Cands, Mods, newdata = horm2.data)

## End(Not run)



162 modavgEffect

##Poisson regression with anuran larvae example from Mazerolle (2006)
## Not run:
data(min.trap)
##assign "UPLAND" as the reference level as in Mazerolle (2006)
min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND")

##set up candidate models
Cand.mod <- list( )
##global model
Cand.mod[[1]] <- glm(Num_anura ~ Type + log.Perimeter,

family = poisson, offset = log(Effort),
data = min.trap)

Cand.mod[[2]] <- glm(Num_anura ~ log.Perimeter, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[3]] <- glm(Num_anura ~ Type, family = poisson,
offset = log(Effort), data = min.trap)

Cand.mod[[4]] <- glm(Num_anura ~ 1, family = poisson,
offset = log(Effort), data = min.trap)

##check c-hat for global model
vif.hat <- c_hat(Cand.mod[[1]]) #uses Pearson's chi-square/df

##assign names to each model
Modnames <- c("type + logperim", "type", "logperim", "intercept only")

##compute model-averaged estimate of difference between abundance at bog
##pond and upland pond
##create newdata object to make predictions
pred.data <- data.frame(Type = c("BOG", "UPLAND"),

log.Perimeter = mean(min.trap$log.Perimeter),
Effort = mean(min.trap$Effort))

modavgEffect(Cand.mod, Modnames, newdata = pred.data, c.hat = vif.hat,
type = "response")

##little suport for a pond type effect

## End(Not run)

##mixed linear model example from ?nlme
## Not run:
library(nlme)
Cand.models <- list( )
Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method="ML")
Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont,

random = ~ 1, method="ML")
Cand.models[[3]] <-lme(distance ~ 1, data = Orthodont, random = ~ 1,

method="ML")
Cand.models[[4]] <-lme(distance ~ Sex, data = Orthodont, random = ~ 1,

method="ML")

Modnames <- c("age", "age + sex", "null", "sex")

data.other <- data.frame(age = mean(Orthodont$age),
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Sex = factor(c("Male", "Female")))
modavgEffect(cand.set = Cand.models, modnames = Modnames,

newdata = data.other, conf.level = 0.95, second.ord = TRUE,
nobs = NULL, uncond.se = "revised")

detach(package:nlme)

## End(Not run)

##site occupancy analysis example
## Not run:
library(unmarked)
##single season model
data(frogs)
pferUMF <- unmarkedFrameOccu(pfer.bin)
##create a bogus site group
site.group <- c(rep(1, times = nrow(pfer.bin)/2), rep(0, nrow(pfer.bin)/2))

## add some fake covariates for illustration
siteCovs(pferUMF) <- data.frame(site.group, sitevar1 =

rnorm(numSites(pferUMF)),
sitevar2 = runif(numSites(pferUMF)))

## observation covariates are in site-major, observation-minor order
obsCovs(pferUMF) <- data.frame(obsvar1 =

rnorm(numSites(pferUMF) * obsNum(pferUMF)))

fm1 <- occu(~ obsvar1 ~ site.group, pferUMF)
fm2 <- occu(~ obsvar1 ~ 1, pferUMF)

Cand.mods <- list(fm1, fm2)
Modnames <- c("fm1", "fm2")

##model selection table
aictab(cand.set = Cand.mods, modnames = Modnames, second.ord = TRUE)

##model-averaged effect sizes comparing site.group 1 - site.group 0
newer.dat <- data.frame(site.group = c(0, 1))

modavgEffect(cand.set = Cand.mods, modnames = Modnames, type = "response",
second.ord = TRUE, newdata = newer.dat, parm.type = "psi")

##no support for an effect of site group

## End(Not run)

##single season N-mixture models
## Not run:
data(mallard)
##this variable was created to illustrate the use of modavgEffect
##with detection variables
mallard.site$site.group <- c(rep(1, 119), rep(0, 120))
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,



164 modavgEffect

obsCovs = mallard.obs)
siteCovs(mallardUMF)
tmp.covs <- obsCovs(mallardUMF)
obsCovs(mallardUMF)$date2 <- tmp.covs$date^2
(fm.mall <- pcount(~ site.group ~ length + elev + forest, mallardUMF, K=30))
(fm.mallb <- pcount(~ 1 ~ length + elev + forest, mallardUMF, K=30))

Cands <- list(fm.mall, fm.mallb)
Modnames <- c("one", "null")

##model averaged effect size of site.group 1 - site.group 0 on response
##scale (point estimate)
modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)),

parm.type = "detect", type = "response")

##model averaged effect size of site.group 1 - site.group 0 on link
##scale (here, logit link)
modavgEffect(Cands, Modnames, newdata = data.frame(site.group = c(0, 1)),

parm.type = "detect", type = "link")

detach(package:unmarked)

## End(Not run)

##example of model-averaged occupancy in community occupancy model
## Not run:
##example adapted from ?occuComm in unmarked package
##simulate multispecies data
M <- 300
J <- 5
S <- 30

set.seed(123)
x <- rnorm(M)

mu_0 <- 0
sd_0 <- 0.4
beta0 <- rnorm(S, mu_0, sd_0)

mu_x <- 1
sd_x <- 0.3
beta_x <- rnorm(S, mu_x, sd_x)

mu_a <- 0
sd_a <- 0.2
alpha0 <- rnorm(S, mu_a, sd_a)

ylist <- list()
z <- matrix(NA, M, S)
for (s in 1:S){

psi <- plogis(beta0[s] + beta_x[s] * x)
z[,s] <- rbinom(M, 1, psi)
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p <- plogis(alpha0[s])

y <- matrix(NA, M, J)
for (m in 1:M){

y[m,] <- rbinom(J, 1, p * z[m,s])
}
ylist[[s]] <- y

}
##add species names
names(ylist) <- paste0("sp", sprintf("

##create unmarkedFrame
sc <- data.frame(x=x, a=factor(sample(letters[1:5], M, replace=TRUE)))
umf <- unmarkedFrameOccuComm(ylist, siteCovs=sc)

##fit model with one covariate on occupancy
##structure of the model psi ~ (x | species), p ~ (1 | species)
fit1 <- occuComm(~ 1 ~ x, umf)

##fit alternative model without covariate
fit2 <- occuComm(~ 1 ~ 1, umf)

##assemble models in list
occModels <- list("withX" = fit1, "withoutX" = fit2)

##check names of species in unmarkedFrameOccuComm object
checkNames <- names(umf@ylist)
checkNames

##create data frame for predictions on sp06
newData <- data.frame(x = c(min(sc$x), max(sc$x)),

species = factor("sp06", levels = checkNames))
resultsPred <- modavgPred(occModels, newdata = newData,

parm.type = "psi")
resultsPred

## End(Not run)

modavgIC Compute Model-averaged Parameter Estimate from User-supplied In-
formation Criterion

Description

This function model-averages the estimate of a parameter of interest among a set of candidate
models, and computes the unconditional standard error and unconditional confidence intervals as
described in Buckland et al. (1997) and Burnham and Anderson (2002). Computations are based
on the values of the information criterion supplied manually by the user.
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Usage

modavgIC(ic, K, modnames = NULL, estimate, se, uncond.se = "revised",
conf.level = 0.95, ic.name = NULL)

Arguments

ic a vector of information criterion values for each model in the candidate model
set.

K a vector containing the number of estimated parameters for each model in the
candidate model set.

modnames a character vector of model names to identify each model in the model selection
table. If NULL, generic names (e.g., Mod1, Mod2) are supplied in the table in the
same order as the information criterion values.

estimate a vector of estimates for each of the models in the candidate model set. Estimates
can be either beta estimates for a parameter of interest or a single prediction from
each model.

se a vector of standard errors for each of the estimates appearing in the estimate
vector.

uncond.se either, "old", or "revised", specifying the equation used to compute the un-
conditional standard error of a model-averaged estimate. With uncond.se =
"old", computations are based on equation 4.9 of Burnham and Anderson (2002),
which was the former way to compute unconditional standard errors. With
uncond.se = "revised", equation 6.12 of Burnham and Anderson (2002) is
used. Anderson (2008, p. 111) recommends use of the revised version for the
computation of unconditional standard errors and it is now the default.

conf.level the confidence level (1 − α) requested for the computation of unconditional
confidence intervals.

ic.name a character string denoting the name of the information criterion input by the
user. This character string will appear in certain column labels of the model
selection table.

Details

modavgIC computes a model-averaged estimate from the vector of parameter estimates specified in
estimate. Estimates and their associated standard errors must be specified in the same order as
the values of the information criterion, the number of estimated parameters, and the model names.
Estimates provided may be for a parameter of interest (i.e., beta estimates) or predictions from each
model. This function is most useful for information criterion other than AIC, AICc, QAIC, and
QAICc (e.g., WAIC: Watanabe 2010) or for classes not supported by modavg, modavgCustom, or
modavgPred.

Value

modavgIC creates an object of class modavgIC with the following components:

Mod.avg.table the model selection table.
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Mod.avg.est the model-averaged estimate.

Uncond.SE the unconditional standard error for the model-averaged estimate.

Conf.level the confidence level used to compute the confidence interval.

Lower.CL the lower confidence limit.

Upper.CL the upper confidence limit.

Author(s)

Marc J. Mazerolle

References

Anderson, D. R. (2008) Model-based Inference in the Life Sciences: a primer on evidence. Springer:
New York.

Buckland, S. T., Burnham, K. P., Augustin, N. H. (1997) Model selection: an integral part of
inference. Biometrics 53, 603–618.

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Watanabe, S. (2010) Asymptotic equivalence of Bayes cross validation and widely applicable infor-
mation criterion in singular learning theory. Journal of Machine Learning Research 11, 3571–3594.

See Also

aictabCustom, ictab, modavg, modavgCustom, modavgShrink, modavgPred

Examples

## Not run:
##model averaging parameter estimate based on WAIC
##create a vector of names to trace back models in set
Modnames <- c("global model", "interactive model",

"additive model", "invertpred model")

##WAIC values
waic <- c(105.74, 107.36, 108.24, 100.57)
##number of effective parameters
effK <- c(7.45, 5.61, 6.14, 6.05)

##vector of predictions
Preds <- c(0.106, 0.137, 0.067, 0.050)
##vector of SE's for prediction
Ses <- c(0.128, 0.159, 0.054, 0.039)

##compute model-averaged estimate and unconditional SE based on WAIC
modavgIC(ic = waic, K = effK, modnames = Modnames,

estimate = Preds, se = Ses,
ic.name = "WAIC")

## End(Not run)
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modavgPred Compute Model-averaged Predictions

Description

This function computes the model-averaged predictions, unconditional standard errors, and confi-
dence intervals based on the entire candidate model set. The function is currently implemented for
glm, gls, lm, lme, mer, merMod, lmerModLmerTest, negbin, rlm, survreg object classes that are
stored in a list as well as various models of unmarkedFit classes.

Usage

modavgPred(cand.set, modnames = NULL, newdata, second.ord = TRUE,
nobs = NULL, uncond.se = "revised", conf.level = 0.95, ...)

## S3 method for class 'AICaov.lm'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICglm.lm'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
gamdisp = NULL, ...)

## S3 method for class 'AIClm'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICgls'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClme'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICmer'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1, ...)

## S3 method for class 'AICglmerMod'
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modavgPred(cand.set, modnames = NULL, newdata,
second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1, ...)

## S3 method for class 'AIClmerMod'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClmerModLmerTest'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICnegbin.glm.lm'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", ...)

## S3 method for class 'AICrlm.lm'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICsurvreg'
modavgPred(cand.set, modnames = NULL, newdata,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", ...)

## S3 method for class 'AICunmarkedFitOccu'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitColExt'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuRN'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCount'
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modavgPred(cand.set, modnames = NULL,
newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCO'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDS'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGDS'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMPois'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGMM'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGPC'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuTTD'
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modavgPred(cand.set, modnames = NULL,
newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMMO'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDSO'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMS'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMulti'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGOccu'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuComm'
modavgPred(cand.set, modnames = NULL,

newdata, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, type = "response", c.hat = 1,
parm.type = NULL, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
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models.

newdata a data frame with the same structure as that of the original data frame for
which we want to make predictions. For community occupancy models of
unmarkedFitOccuComm classes, the newdata data frame must include a column
specifying the name of the species for which each prediction is requested (see
’Examples’ below).

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total
number of observations or number of independent clusters (e.g., sites) as the
value of nobs.

uncond.se either, old, or revised, specifying the equation used to compute the uncondi-
tional standard error of a model-averaged estimate. With uncond.se = "old",
computations are based on equation 4.9 of Burnham and Anderson (2002), which
was the former way to compute unconditional standard errors. With uncond.se
= "revised", equation 6.12 of Burnham and Anderson (2002) is used. Ander-
son (2008, p. 111) recommends use of the revised version for the computation
of unconditional standard errors and it is now the default. Note that versions
of package AICcmodavg < 1.04 used the old method to compute unconditional
standard errors.

conf.level the confidence level (1 − α) requested for the computation of unconditional
confidence intervals.

type the scale of prediction requested, one of response or link. The latter is only
relevant for glm, mer, and unmarkedFit classes. Note that the value terms is
not defined for modavgPred.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season and dynamic occupancy mod-
els (MacKenzie et al. 2002, 2003), or N-mixture models (Royle 2004, Dail and
Madsen 2011). If c.hat > 1, modavgPred will return the quasi-likelihood ana-
logue of the information criteria requested and multiply the variance-covariance
matrix of the estimates by this value (i.e., SE’s are multiplied by sqrt(c.hat)).
This option is not supported for generalized linear mixed models of the mer
class.

gamdisp the value of the gamma dispersion parameter.

parm.type this argument specifies the parameter type on which the predictions will be com-
puted and is only relevant for models of unmarkedFit classes. The character
strings supported vary with the type of model fitted. For unmarkedFitOccu,
unmarkedFitOccuMulti, and unmarkedFitOccuComm objects, either psi or detect
can be supplied to indicate whether the parameter is on occupancy or detectabil-
ity, respectively. For unmarkedFitColExt objects, possible values are psi,
gamma, epsilon, and detect, for parameters on occupancy in the inital year,
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colonization, extinction, and detectability, respectively. For unmarkedFitOccuTTD
objects, possible values are psi, gamma, epsilon, and detect, for parameters
on occupancy in the inital year, colonization, extinction, and time-to-dection
(lambda rate parameter), respectively. For unmarkedFitOccuFP objects, one
can specify psi, detect, falsepos, and certain, for occupancy, detectabil-
ity, probability of assigning false-positives, and probability detections are cer-
tain, respectively. For unmarkedFitOccuRN objects, either lambda or detect
can be entered for abundance and detectability parameters, respectively. For
unmarkedFitPCount and unmarkedFitMPois objects, lambda or detect de-
note parameters on abundance and detectability, respectively. For unmarkedFitPCO,
unmarkedFitMMO, and unmarkedFitDSO objects, one can enter lambda, gamma,
omega, iota, or detect, to specify parameters on abundance, recruitment, ap-
parent survival, immigration, and detectability, respectively. For unmarkedFitDS
objects, lambda and detect are supported. For unmarkedFitGDS, lambda,
phi, and detect denote abundance, availability, and detection probability, re-
spectively. For unmarkedFitGMM and unmarkedFitGPC objects, lambda, phi,
and detect denote abundance, availability, and detectability, respectively. For
unmarkedFitOccuMS objects, psi, phi, and detect denote occupancy, transi-
tion, and detection probability, respectively. For unmarkedFitGOccu objects,
possible values are psi, phi, or detect, denoting occupancy, availability, and
detection probabilities, respectively.

... additional arguments passed to the function.

Details

The candidate models must be stored in a list. Note that a data frame from which to make predictions
must be supplied with the newdata argument and that all variables appearing in the model set must
appear in this data frame. Variables must be of the same type as in the original analysis (e.g., factor,
numeric).

One can compute unconditional confidence intervals around the predictions from the elements re-
turned by modavgPred. The classic computation based on asymptotic normality of the estimator is
appropriate to estimate confidence intervals on the linear predictor (i.e., link scale). For predictions
of some types of response variables such as counts or binary variables, the normal approximation
may be inappropriate. In such cases, it is often better to compute the confidence intervals on the
linear predictor scale and then back-transform the limits to the scale of the response variable. These
are the confidence intervals returned by modavgPred. Burnham et al. (1987), Burnham and Ander-
son (2002, p. 164), and Williams et al. (2002) suggest alternative methods of computing confidence
intervals for small degrees of freedom with profile likelihood intervals or bootstrapping, but these
approaches are not yet implemented in modavgPred.

Value

modavgPred returns an object of class modavgPred with the following components:

type the scale of predicted values (response or link) for glm, mer, merMod, or unmarkedFit
classes.

mod.avg.pred the model-averaged prediction over the entire candidate model set.

uncond.se the unconditional standard error of each model-averaged prediction.
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conf.level the confidence level used to compute the confidence interval.

lower.CL the lower confidence limit.

upper.CL the upper confidence limit.

matrix.output a matrix with rows consisting of the model-averaged predictions, the uncondi-
tional standard errors, and the confidence limits.

Author(s)

Marc J. Mazerolle
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See Also
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Examples

##example from subset of models in Table 1 in Mazerolle (2006)
data(dry.frog)

Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
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cent_Initial_mass + Initial_mass2 +
Shade:Substrate, data = dry.frog)

Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[4]] <- lm(log_Mass_lost ~ Shade + cent_Initial_mass +
Initial_mass2, data = dry.frog)

Cand.models[[5]] <- lm(log_Mass_lost ~ Substrate + cent_Initial_mass +
Initial_mass2, data = dry.frog)

##setup model names
Modnames <- paste("mod", 1:length(Cand.models), sep = "")

##compute model-averaged value and unconditional SE of predicted log of
##mass lost for frogs of average mass in shade for each substrate type

##first create data set to use for predictions
new.dat <- data.frame(Shade = c(1, 1, 1),

cent_Initial_mass = c(0, 0, 0),
Initial_mass2 = c(0, 0, 0),
Substrate = c("SOIL", "SPHAGNUM", "PEAT"))

##compare unconditional SE's using both methods
modavgPred(cand.set = Cand.models, modnames = Modnames,

newdata = new.dat, type = "response", uncond.se = "old")
modavgPred(cand.set = Cand.models, modnames = Modnames,

newdata = new.dat, type = "response", uncond.se = "revised")
##round to 4 digits after decimal point
print(modavgPred(cand.set = Cand.models, modnames = Modnames,

newdata = new.dat, type = "response",
uncond.se = "revised"), digits = 4)

##Gamma glm
## Not run:
##clotting data example from 'gamma.shape' in MASS package of
##Venables and Ripley (2002, Modern applied statistics with
##S. Springer-Verlag: New York.)
clotting <- data.frame(u = c(5, 10, 15, 20, 30, 40, 60, 80, 100),

lot1 = c(118, 58, 42, 35, 27, 25, 21, 19, 18),
lot2 = c(69, 35, 26, 21, 18, 16, 13, 12, 12))

clot1 <- glm(lot1 ~ log(u), data = clotting, family = Gamma)

require(MASS)
gamma.dispersion(clot1) #dispersion parameter
gamma.shape(clot1) #reciprocal of dispersion parameter ==
##shape parameter
summary(clot1, dispersion = gamma.dispersion(clot1)) #better

##create list with models
Cand <- list( )
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Cand[[1]] <- glm(lot1 ~ log(u), data = clotting, family = Gamma)
Cand[[2]] <- glm(lot1 ~ 1, data = clotting, family = Gamma)

##create vector of model names
Modnames <- paste("mod", 1:length(Cand), sep = "")

##compute model-averaged predictions on scale of response variable for
##all observations
modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting,

gamdisp = gamma.dispersion(clot1), type = "response")

##compute model-averaged predictions on scale of linear predictor
modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting,

gamdisp = gamma.dispersion(clot1), type = "link")

##compute model-averaged predictions on scale of linear predictor
modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting,

gamdisp = gamma.dispersion(clot1), type = "terms") #returns an error
##because type = "terms" is not defined for 'modavgPred'

modavgPred(cand.set = Cand, modnames = Modnames, newdata = clotting,
type = "terms") #returns an error because

##no gamma dispersion parameter was specified (i.e., 'gamdisp' missing)

## End(Not run)

##example of model-averaged predictions from N-mixture model
##each variable appears twice in the models - this is a bit longer
## Not run:
require(unmarked)
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
##set up models so that each variable on abundance appears twice
fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF,

K = 30)
fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF,

K = 30)
fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF,

K = 30)
fm.mall.four <- pcount(~ ivel + date ~ 1, mallardUMF, K = 30)

##model list
Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three, fm.mall.four)
Modnames <- c("length + forest", "elev + forest", "length + elev",

"null")

##compute model-averaged predictions of abundance for values of elev
modavgPred(cand.set = Cands, modnames = Modnames, newdata =

data.frame(elev = seq(from = -1.4, to = 2.4, by = 0.1),
length = 0, forest = 0), parm.type = "lambda",

type = "response")
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##compute model-averaged predictions of detection for values of ivel
modavgPred(cand.set = Cands, modnames = Modnames, newdata =

data.frame(ivel = seq(from = -1.75, to = 5.9, by = 0.5),
date = 0), parm.type = "detect",

type = "response")
detach(package:unmarked)

## End(Not run)

##example of model-averaged abundance from distance model
## Not run:
##this is a bit longer
data(linetran) #example from ?distsamp

ltUMF <- with(linetran, {
unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),

siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line",
unitsIn = "m")

})

## Half-normal detection function. Density output (log scale). No covariates.
fm1 <- distsamp(~ 1 ~ 1, ltUMF)

## Halfnormal. Covariates affecting both density and and detection.
fm2 <- distsamp(~area + habitat ~ habitat, ltUMF)

## Hazard function. Covariates affecting both density and and detection.
fm3 <- distsamp(~area + habitat ~ habitat, ltUMF, keyfun="hazard")

##assemble model list
Cands <- list(fm1, fm2, fm3)
Modnames <- paste("mod", 1:length(Cands), sep = "")

##model-average predictions on abundance
modavgPred(cand.set = Cands, modnames = Modnames, parm.type = "lambda", type = "link",

newdata = data.frame(area = mean(linetran$area), habitat = c("A", "B")))
detach(package:unmarked)

## End(Not run)

##example of model-averaged occupancy in community occupancy model
## Not run:
##example adapted from ?occuComm in unmarked package
##simulate multispecies data
M <- 300
J <- 5
S <- 30
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set.seed(123)
x <- rnorm(M)

mu_0 <- 0
sd_0 <- 0.4
beta0 <- rnorm(S, mu_0, sd_0)

mu_x <- 1
sd_x <- 0.3
beta_x <- rnorm(S, mu_x, sd_x)

mu_a <- 0
sd_a <- 0.2
alpha0 <- rnorm(S, mu_a, sd_a)

ylist <- list()
z <- matrix(NA, M, S)
for (s in 1:S){

psi <- plogis(beta0[s] + beta_x[s] * x)
z[,s] <- rbinom(M, 1, psi)

p <- plogis(alpha0[s])

y <- matrix(NA, M, J)
for (m in 1:M){

y[m,] <- rbinom(J, 1, p * z[m,s])
}
ylist[[s]] <- y

}
##add species names
names(ylist) <- paste0("sp", sprintf("

##create unmarkedFrame
sc <- data.frame(x=x, a=factor(sample(letters[1:5], M, replace=TRUE)))
umf <- unmarkedFrameOccuComm(ylist, siteCovs=sc)

##fit model with one covariate on occupancy
##structure of the model psi ~ (x | species), p ~ (1 | species)
fit1 <- occuComm(~ 1 ~ x, umf)

##fit alternative model without covariate
fit2 <- occuComm(~ 1 ~ 1, umf)

##assemble models in list
occModels <- list("withX" = fit1, "withoutX" = fit2)

##check names of species in unmarkedFrameOccuComm object
checkNames <- names(umf@ylist)
checkNames

##create data frame for predictions on sp06
newData <- data.frame(x = seq(min(sc$x), max(sc$x), length.out = 30),
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species = factor("sp06", levels = checkNames))
resultsPred <- modavgPred(occModels, newdata = newData,

parm.type = "psi")
resultsPred
##example with multiple species
newData2 <- expand.grid(x = seq(min(sc$x), max(sc$x), length.out = 30),

species = factor(c("sp06", "sp10", "sp22"),
levels = checkNames))

resultsPred2 <- modavgPred(occModels, newdata = newData2,
parm.type = "psi")

resultsPred2

## End(Not run)

##example using Orthodont data set from Pinheiro and Bates (2000)
## Not run:
require(nlme)

##set up candidate models
m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject),

data = Orthodont, method = "ML")

m2 <- gls(distance ~ 1, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject),
data = Orthodont, method = "ML")

##assemble in list
Cand.models <- list(m1, m2)
##model names
Modnames <- c("age effect", "null model")

##model selection table
aictab(cand.set = Cand.models, modnames = Modnames)

##model-averaged predictions
modavgPred(cand.set = Cand.models, modnames = Modnames, newdata =
data.frame(age = c(8, 10, 12, 14)))
detach(package:nlme)

## End(Not run)

modavgShrink Compute Model-averaged Parameter Estimate with Shrinkage (Multi-
model Inference)

Description

This function computes an alternative version of model-averaging parameter estimates that consists
in shrinking estimates toward 0 to reduce model selection bias as in Burnham and Anderson (2002,
p. 152), Anderson (2008, pp. 130-132) and Lukacs et al. (2010). Specifically, models without the
parameter of interest have an estimate and variance of 0. modavgShrink also returns unconditional
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standard errors and unconditional confidence intervals as described in Buckland et al. (1997) and
Burnham and Anderson (2002).

Usage

modavgShrink(cand.set, parm, modnames = NULL, second.ord = TRUE,
nobs = NULL, uncond.se = "revised", conf.level = 0.95,
...)

## S3 method for class 'AICaov.lm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICbetareg'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICsclm.clm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICclm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICclmm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICcoxme'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICcoxph'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICglm.lm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, gamdisp = NULL, ...)

## S3 method for class 'AICgls'
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modavgShrink(cand.set, parm, modnames = NULL,
second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICglmmTMB'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, ...)

## S3 method for class 'AIChurdle'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClme'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClmekin'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICmer'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICglmerMod'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClmerMod'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AIClmerModLmerTest'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)
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## S3 method for class 'AICmaxlikeFit.list'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, ...)

## S3 method for class 'AICmultinom.nnet'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, ...)

## S3 method for class 'AICnegbin.glm.lm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICpolr'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICrlm.lm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICsurvreg'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICvglm'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, ...)

## S3 method for class 'AICzeroinfl'
modavgShrink(cand.set, parm, modnames = NULL,

second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, ...)

## S3 method for class 'AICunmarkedFitOccu'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitColExt'
modavgShrink(cand.set, parm, modnames
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= NULL, second.ord = TRUE, nobs = NULL, uncond.se =
"revised", conf.level = 0.95, c.hat = 1, parm.type = NULL,
...)

## S3 method for class 'AICunmarkedFitOccuRN'
modavgShrink(cand.set, parm, modnames

= NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCount'
modavgShrink(cand.set, parm, modnames

= NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitPCO'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDS'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGDS'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuFP'
modavgShrink(cand.set, parm, modnames

= NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMPois'
modavgShrink(cand.set, parm, modnames

= NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGMM'
modavgShrink(cand.set, parm, modnames

= NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGPC'
modavgShrink(cand.set, parm, modnames

= NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)
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## S3 method for class 'AICunmarkedFitOccuMulti'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuMS'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuTTD'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitMMO'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitDSO'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitGOccu'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

## S3 method for class 'AICunmarkedFitOccuComm'
modavgShrink(cand.set, parm, modnames =

NULL, second.ord = TRUE, nobs = NULL, uncond.se = "revised",
conf.level = 0.95, c.hat = 1, parm.type = NULL, ...)

Arguments

cand.set a list storing each of the models in the candidate model set.

parm the parameter of interest, enclosed between quotes, for which a model-averaged
estimate is required. For a categorical variable, the label of the estimate must be
included as it appears in the output (see ’Details’ below).

modnames a character vector of model names to facilitate the identification of each model
in the model selection table. If NULL, the function uses the names in the cand.set
list of candidate models. If no names appear in the list, generic names (e.g.,
Mod1, Mod2) are supplied in the table in the same order as in the list of candidate
models.
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second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for mixed models or various models of unmarkedFit classes
where sample size is not straightforward. In such cases, one might use total
number of observations or number of independent clusters (e.g., sites) as the
value of nobs.

uncond.se either, "old", or "revised", specifying the equation used to compute the un-
conditional standard error of a model-averaged estimate. With uncond.se =
"old", computations are based on equation 4.9 of Burnham and Anderson (2002),
which was the former way to compute unconditional standard errors. With
uncond.se = "revised", equation 6.12 of Burnham and Anderson (2002) is
used. Anderson (2008, p. 111) recommends use of the revised version for the
computation of unconditional standard errors and it is now the default. Note
that versions of package AICcmodavg < 1.04 used the old method to compute
unconditional standard errors.

conf.level the confidence level (1 − α) requested for the computation of unconditional
confidence intervals.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, modavgShrink
will return the quasi-likelihood analogue of the information criteria requested
and multiply the variance-covariance matrix of the estimates by this value (i.e.,
SE’s are multiplied by sqrt(c.hat)). This option is not supported for general-
ized linear mixed models of the mer or merMod classes.

gamdisp if gamma GLM is used, the dispersion parameter should be specified here to
apply the same value to each model.

parm.type this argument specifies the parameter type on which the model-averaged esti-
mate of a predictor will be computed and is only relevant for models of unmarkedFit
classes. The character strings supported vary with the type of model fitted. For
unmarkedFitOccu, unmarkedFitOccuMulti, and unmarkedFitOccuComm ob-
jects, either psi or detect can be supplied to indicate whether the parameter
is on occupancy or detectability, respectively. For unmarkedFitColExt ob-
jects, possible values are psi, gamma, epsilon, and detect, for parameters
on occupancy in the inital year, colonization, extinction, and detectability, re-
spectively. For unmarkedFitOccuTTD objects, possible values are psi, gamma,
epsilon, and detect, for parameters on occupancy in the inital year, colo-
nization, extinction, and time-to-dection (lambda rate parameter), respectively.
For unmarkedFitOccuFP objects, one can specify psi, detect, falsepos, and
certain, for occupancy, detectability, probability of assigning false-positives,
and probability detections are certain, respectively. For unmarkedFitOccuRN
objects, either lambda or detect can be entered for abundance and detectabil-
ity parameters, respectively. For unmarkedFitPCount and unmarkedFitMPois
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objects, lambda or detect denote parameters on abundance and detectability,
respectively. For unmarkedFitPCO, unmarkedFitMMO, and unmarkedFitDSO
objects, one can enter lambda, gamma, omega, iota, or detect, to specify pa-
rameters on abundance, recruitment, apparent survival, immigration, and de-
tectability, respectively. For unmarkedFitDS objects, lambda and detect are
supported. For unmarkedFitGDS, lambda, phi, and detect denote abundance,
availability, and detection probability, respectively. For unmarkedFitGMM and
unmarkedFitGPC objects, lambda, phi, and detect denote abundance, avail-
ability, and detectability, respectively. For unmarkedFitGOccu objects, possible
values are psi, phi, or detect, denoting occupancy, availability, and detection
probabilities, respectively.

... additional arguments passed to the function.

Details

The parameter for which a model-averaged estimate is requested must be specified with the parm
argument and must be identical to its label in the model output (e.g., from summary). For factors,
one must specify the name of the variable and the level of interest. The shrinkage version of model
averaging is only appropriate for cases where each parameter is given an equal weighting in the
model (i.e., each parameter must appear the same number of times in the models) and has the same
interpretation across all models. As a result, models with interaction terms or polynomial terms are
not supported by modavgShrink.

modavgShrink is implemented for a list containing objects of aov, betareg, clm, clmm, clogit,
coxme, coxph, glm, glmmTMB, gls, hurdle, lm, lme, lmekin, maxlikeFit, mer, glmerMod, lmerMod,
lmerModLmerTest, multinom, polr, rlm, survreg, vglm, zeroinfl classes as well as various
models of unmarkedFit classes.

Value

modavgShrink creates an object of class modavgShrink with the following components:

Parameter the parameter for which a model-averaged estimate with shrinkage was ob-
tained.

Mod.avg.table the model selection table based on models including the parameter of interest.

Mod.avg.beta the model-averaged estimate based on all models.

Uncond.SE the unconditional standard error for the model-averaged estimate (as opposed to
the conditional SE based on a single model).

Conf.level the confidence level used to compute the confidence interval.

Lower.CL the lower confidence limit.

Upper.CL the upper confidence limit.

Author(s)

Marc J. Mazerolle
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See Also

AICc, aictab, c_hat, importance, confset, evidence, modavg, modavgCustom, modavgPred

Examples

##cement example in Burnham and Anderson 2002
data(cement)
##setup same model set as in Table 3.2, p. 102
Cand.models <- list( )
Cand.models[[1]] <- lm(y ~ x1 + x2, data = cement)
Cand.models[[2]] <- lm(y ~ x1 + x2 + x4, data = cement)
Cand.models[[3]] <- lm(y ~ x1 + x2 + x3, data = cement)
Cand.models[[4]] <- lm(y ~ x1 + x4, data = cement)
Cand.models[[5]] <- lm(y ~ x1 + x3 + x4, data = cement)
Cand.models[[6]] <- lm(y ~ x2 + x3 + x4, data = cement)
Cand.models[[7]] <- lm(y ~ x1 + x2 + x3 + x4, data = cement)
Cand.models[[8]] <- lm(y ~ x3 + x4, data = cement)
Cand.models[[9]] <- lm(y ~ x2 + x3, data = cement)
Cand.models[[10]] <- lm(y ~ x4, data = cement)
Cand.models[[11]] <- lm(y ~ x2, data = cement)
Cand.models[[12]] <- lm(y ~ x2 + x4, data = cement)
Cand.models[[13]] <- lm(y ~ x1, data = cement)
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Cand.models[[14]] <- lm(y ~ x1 + x3, data = cement)
Cand.models[[15]] <- lm(y ~ x3, data = cement)

##vector of model names
Modnames <- paste("mod", 1:15, sep="")

##AICc
aictab(cand.set = Cand.models, modnames = Modnames)

##compute model-averaged estimate with shrinkage - each parameter
##appears 8 times in the models
modavgShrink(cand.set = Cand.models, modnames = Modnames, parm = "x1")

##compare against classic model-averaging
modavg(cand.set = Cand.models, modnames = Modnames, parm = "x1")
##note that model-averaged estimate with shrinkage is closer to 0 than
##with the classic version

##remove a few models from the set and run again
Cand.unbalanced <- Cand.models[-c(3, 14, 15)]

##set up model names
Modnames <- paste("mod", 1:length(Cand.unbalanced), sep="")

##issues an error because some parameters appear more often than others
## Not run: modavgShrink(cand.set = Cand.unbalanced,

modnames = Modnames, parm = "x1")
## End(Not run)

##example on Orthodont data set in nlme
## Not run:
require(nlme)

##set up candidate model list
##age and sex parameters appear in the same number of models
##same number of models with and without these parameters
Cand.models <- list( )
Cand.models[[1]] <- lme(distance ~ age, data = Orthodont, method = "ML")
##random is ~ age | Subject as it is a grouped data frame
Cand.models[[2]] <- lme(distance ~ age + Sex, data = Orthodont,

random = ~ 1, method = "ML")
Cand.models[[3]] <- lme(distance ~ 1, data = Orthodont, random = ~ 1,

method = "ML")
Cand.models[[4]] <- lme(distance ~ Sex, data = Orthodont, random = ~ 1,

method = "ML")

##create a vector of model names
Modnames <- paste("mod", 1:length(Cand.models), sep = "")

##compute importance values for age
imp.age <- importance(cand.set = Cand.models, parm = "age",
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modnames = Modnames, second.ord = TRUE,
nobs = NULL)

##compute shrinkage version of model averaging on age
mod.avg.age.shrink <- modavgShrink(cand.set = Cand.models,

parm = "age", modnames = Modnames,
second.ord = TRUE, nobs = NULL)

##compute classic version of model averaging on age
mod.avg.age.classic <- modavg(cand.set = Cand.models, parm = "age",

modnames = Modnames, second.ord = TRUE,
nobs = NULL)

##correspondence between shrinkage version and classic version of
##model averaging
mod.avg.age.shrink$Mod.avg.beta/imp.age$w.plus
mod.avg.age.classic$Mod.avg.beta
detach(package:nlme)

## End(Not run)

##example of N-mixture model modified from ?pcount
## Not run:
require(unmarked)
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
##set up models so that each variable on abundance appears twice
fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF,

K = 30)
fm.mall.two <- pcount(~ ivel + date ~ elev + forest, mallardUMF,

K = 30)
fm.mall.three <- pcount(~ ivel + date ~ length + elev, mallardUMF,

K = 30)

##model list and names
Cands <- list(fm.mall.one, fm.mall.two, fm.mall.three)
Modnames <- c("length + forest", "elev + forest", "length + elev")

##compute model-averaged estimate with shrinkage for elev on abundance
modavgShrink(cand.set = Cands, modnames = Modnames, parm = "elev",

parm.type = "lambda")
detach(package:unmarked)

## End(Not run)

multComp Create Model Selection Tables based on Multiple Comparisons
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Description

This function is an alternative to traditional multiple comparison tests in designed experiments. It
creates a model selection table based on different grouping patterns of a factor and computes model-
averaged predictions for each of the factor levels. The current version works with objects of aov,
glm, gls, lm, lme, mer, merMod, lmerModLmerTest, negbin, and rlm, survreg classes.

Usage

multComp(mod, factor.id, letter.labels = TRUE, second.ord = TRUE,
nobs = NULL, sort = TRUE, newdata = NULL, uncond.se = "revised",
conf.level = 0.95, correction = "none", ...)

## S3 method for class 'aov'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
...)

## S3 method for class 'lm'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
...)

## S3 method for class 'gls'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
...)

## S3 method for class 'glm'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
type = "response", c.hat = 1, gamdisp = NULL, ...)

## S3 method for class 'lme'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
...)

## S3 method for class 'negbin'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
type = "response", ...)
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## S3 method for class 'rlm'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
...)

## S3 method for class 'survreg'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
type = "response", ...)

## S3 method for class 'mer'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95, correction = "none",
type = "response", ...)

## S3 method for class 'merMod'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95,
correction = "none", type = "response", ...)

## S3 method for class 'lmerModLmerTest'
multComp(mod, factor.id, letter.labels = TRUE,

second.ord = TRUE, nobs = NULL, sort = TRUE, newdata = NULL,
uncond.se = "revised", conf.level = 0.95,
correction = "none", ...)

Arguments

mod a model of one of the above-mentioned classes that includes at least one factor
as an explanatory variable.

factor.id the factor of interest, on which the groupings (multiple comparisons) are based.
The user must supply the name of the categorical variable between quotes as it
appears in the model formula.

letter.labels logical. If TRUE, letters are used as labels to denote the grouping structure. If
FALSE, numbers are used as group labels.

second.ord logical. If TRUE, the function returns the second-order Akaike information crite-
rion (i.e., AICc), otherwise returns Akaike’s Information Criterion (AIC).

nobs this argument allows to specify a numeric value other than total sample size to
compute the AICc (i.e., nobs defaults to total number of observations). This
is relevant only for certain types of models such as mixed models where sam-
ple size is not straightforward. In such cases, one might use total number of
observations or number of independent clusters (e.g., sites) as the value of nobs.

sort logical. If TRUE, the model selection table is ranked according to the (Q)AIC(c)
values.
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newdata a data frame with the same structure as that of the original data frame for which
we want to make predictions. This data frame should hold all variables constant
other than the factor.id variable. All levels of the factor.id variables should
be included in the newdata data frame to get model-averaged predictions for
each level. If NULL, model-averaged predictions are computed for each level of
the factor.id variable while the values of the other explanatory variables are
taken from the first row of the original data set.

uncond.se either, "old", or "revised", specifying the equation used to compute the un-
conditional standard error of a model-averaged estimate. With uncond.se =
"old", computations are based on equation 4.9 of Burnham and Anderson (2002),
which was the former way to compute unconditional standard errors. With
uncond.se = "revised", equation 6.12 of Burnham and Anderson (2002) is
used. Anderson (2008, p. 111) recommends use of the revised version for the
computation of unconditional standard errors and it is now the default. Note
that versions of package AICcmodavg < 1.04 used the old method to compute
unconditional standard errors.

conf.level the confidence level (1 − α) requested for the computation of unconditional
confidence intervals around predicted values for each level of factor.id.

correction the type of correction applied to obtain confidence intervals for simultaneous
inference (i.e., corrected for multiple comparisons). Current corrections include
"none" for uncorrected unconditional confidence intervals, "bonferroni" for
Bonferroni-adjusted confidence intervals (Dunn 1961), and "sidak" for Sidak-
adjusted confidence intervals (Sidak 1967).

type the scale of prediction requested, one of "response" or "link". The latter is
only relevant for glm and mer classes. Note that the value "terms" is not defined
for multComp.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that
obtained from c_hat. Note that values of c.hat different from 1 are only ap-
propriate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success,
failure) syntax) or with Poisson GLM’s. If c.hat > 1, multComp will return the
quasi-likelihood analogue of the information criterion requested. This option is
not supported for generalized linear mixed models of the mer class.

gamdisp the value of the gamma dispersion parameter in a gamma GLM.

... additional arguments passed to the function.

Details

A number of pairwise comparison tests are available for traditional experimental designs, some
controlling for the experiment-wise error and others for comparison-wise errors (Day and Quinn
1991). With the advent of information-theoretic approaches, there has been a need for methods
analogous to multiple comparison tests in a model selection framework. Dayton (1998) and Burn-
ham et al. (2011) suggested using different parameterizations or grouping patterns of a factor to
perform multiple comparisons with model selection. As such, it is possible to assess the support in
favor of certain grouping patterns based on a factor.

For example, a factor with three levels has four possible grouping patterns: {abc} (all groups are
different), {abb} (the first group differs from the other two), {aab} (the first two groups differ from



multComp 193

the third), and {aaa} (all groups are equal). multComp implements such an approach by pooling
groups of the factor variable in a model and updating the model, for each grouping pattern possi-
ble. The models are ranked according to one of four information criteria (AIC, AICc, QAIC, and
QAICc), and the labels in the table correspond to the grouping pattern. Note that the factor levels
are sorted according to their means for the response variable before being assigned to a group. The
function also returns model-averaged predictions and unconditional standard errors for each level
of the factor.id variable based on the support in favor of each model (i.e., grouping pattern).

The number of grouping patterns increases substantially with the number of factor levels, as 2k−1,
where k is the number of factor levels. multComp supports factors with a maximum of 6 levels.
Also note that multComp does not handle models where the factor.id variable is involved in an
interaction. In such cases, one should create the interaction variable manually before fitting the
model (see Examples).

multComp currently implements three methods of computing confidence intervals. The default un-
conditional confidence intervals do not account for multiple comparisons (correction = "none").
With a large number m of potential pairwise comparisons among levels of factor.id, there is
an increased risk of type I error. For m pairwise comparisons and a given α level, correction
= "bonferroni" computes the unconditional confidence intervals based on αcorr = α

m (Dunn
1961). When correction = "sidak", multComp reports Sidak-adjusted confidence intervals, i.e.,
αcorr = 1− (1− α)

1
m .

Value

multComp creates a list of class multComp with the following components:

factor.id the factor for which grouping patterns are investigated.

models a list with the output of each model representing a different grouping pattern for
the factor of interest.

model.names a vector of model names denoting the grouping pattern for each level of the
factor.

model.table the model selection table for the models corresponding to each grouping pattern
for the factor of interest.

ordered.levels the levels of the factor ordered according to the mean of the response variable.
The grouping patterns (and model names) in the model selection table are based
on the same order.

model.avg.est a matrix with the model-averaged prediction, unconditional standard error, and
confidence intervals for each level of the factor.

conf.level the confidence level used for the confidence intervals.

correction the type of correction applied to the confidence intervals to account for potential
pairwise comparisons.

Author(s)

Marc J. Mazerolle
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See Also

aictab, confset, c_hat, evidence, glht, fit.contrast

Examples

##one-way ANOVA example
data(turkey)

##convert diet to factor
turkey$Diet <- as.factor(turkey$Diet)
##run one-way ANOVA
m.aov <- lm(Weight.gain ~ Diet, data = turkey)

##compute models with different grouping patterns
##and also compute model-averaged group means
out <- multComp(m.aov, factor.id = "Diet", correction = "none")
##look at results
out

##look at grouping structure of a given model
##and compare with original variable
cbind(model.frame(out$models[[2]]), turkey$Diet)

##evidence ratio
evidence(out$model.table)

##compute Bonferroni-adjusted confidence intervals
multComp(m.aov, factor.id = "Diet", correction = "bonferroni")

##two-way ANOVA with interaction
## Not run:
data(calcium)

m.aov2 <- lm(Calcium ~ Hormone + Sex + Hormone:Sex, data = calcium)
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##multiple comparisons
multComp(m.aov2, factor.id = "Hormone")
##returns an error because 'Hormone' factor is
##involved in an interaction

##create interaction variable
calcium$inter <- interaction(calcium$Hormone, calcium$Sex)

##run model with interaction
m.aov.inter <- lm(Calcium ~ inter, data = calcium)

##compare both
logLik(m.aov2)
logLik(m.aov.inter)
##both are identical

##multiple comparisons
multComp(m.aov.inter, factor.id = "inter")

## End(Not run)

##Poisson regression
## Not run:
##example from ?glm
##Dobson (1990) Page 93: Randomized Controlled Trial :
counts <- c(18,17,15,20,10,20,25,13,12)
outcome <- gl(3,1,9)
treatment <- gl(3,3)
print(d.AD <- data.frame(treatment, outcome, counts))
glm.D93 <- glm(counts ~ outcome + treatment, data = d.AD, family = poisson)

multComp(mod = glm.D93, factor.id = "outcome")

## End(Not run)

##example specifying 'newdata'
## Not run:
data(dry.frog)
m1 <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

multComp(m1, factor.id = "Substrate",
newdata = data.frame(

Substrate = c("PEAT", "SOIL", "SPHAGNUM"),
Shade = 0, cent_Initial_mass = 0,
Initial_mass2 = 0))

## End(Not run)
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newt Newt Capture-mark-recapture Data

Description

This is a capture-mark-recapture data set on adult male and female Red-spotted Newts (Notoph-
thalmus viridescens) recorded by Gill (1985). A total of 1079 unique individuals were captured in
pitfall traps at a breeding site (White Oak Flat pond, Virginia) between 1975 and 1983.

Usage

data(newt)

Format

A data frame with 78 observations on the following 11 variables.

T1975 a binary variable, either 1 (captured) or 0 (not captured) during the 1975 breeding season.

T1976 a binary variable, either 1 (captured) or 0 (not captured) during the 1976 breeding season.

T1977 a binary variable, either 1 (captured) or 0 (not captured) during the 1977 breeding season.

T1978 a binary variable, either 1 (captured) or 0 (not captured) during the 1978 breeding season.

T1979 a binary variable, either 1 (captured) or 0 (not captured) during the 1979 breeding season.

T1980 a binary variable, either 1 (captured) or 0 (not captured) during the 1980 breeding season.

T1981 a binary variable, either 1 (captured) or 0 (not captured) during the 1981 breeding season.

T1982 a binary variable, either 1 (captured) or 0 (not captured) during the 1982 breeding season.

T1983 a binary variable, either 1 (captured) or 0 (not captured) during the 1983 breeding season.

Males a numeric variable indicating the total number of males with a given capture history.

Females a numeric variable indicating the total number of females with a given capture history.

Details

A single cohort of individuals was followed throughout the study, as all individuals were marked
in 1975 and no new individuals were added during the subsequent years. This data set is used to
illustrate classic Cormack-Jolly-Seber and related models (Cormack 1964, Jolly 1965, Seber 1965,
Lebreton et al. 1992, Mazerolle 2015).

Source

Cormack, R. M. (1964) Estimates of survival from the sighting of marked animals. Biometrika 51,
429–438.

Gill, D. E. (1985) Interpreting breeding patterns from census data: a solution to the Husting
dilemma. Ecology 66, 344–354.

Jolly, G. M. (1965) Explicit estimates from capture-recapture data with both death and immigration:
stochastic model. Biometrika 52, 225–247.
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Laake, J. L. (2013) RMark: an R interface for analysis of capture-recapture data with MARK.
Alaska Fisheries Science Center (AFSC), National Oceanic and Atmospheric Administration, Na-
tional Marine Fisheries Service, AFSC Report 2013-01.

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case-studies. Ecological
Monographs 62, 67-118.

Mazerolle, M. J. (2015) Estimating detectability and biological parameters of interest with the use
of the R environment. Journal of Herpetology 49, 541–559.

Seber, G. A. F. (1965) A note on the multiple-recapture census. Biometrika 52, 249–259.

Examples

data(newt)
str(newt)

##convert raw capture data to capture histories
captures <- newt[, c("T1975", "T1976", "T1977", "T1978", "T1979",

"T1980", "T1981", "T1982", "T1983")]
newt.ch <- apply(captures, MARGIN = 1, FUN = function(i)

paste(i, collapse = ""))

##organize as a data frame readable by RMark package (Laake 2013)
##RMark requires at least one column called "ch"
##and another "freq" if summarized captures are provided
newt.full <- data.frame(ch = rep(newt.ch, 2),

freq = c(newt$Males, newt$Females),
Sex = c(rep("male", length(newt.ch)),
rep("female", length(newt.ch))))

str(newt.full)
newt.full$ch <- as.character(newt.full$ch)

##delete rows with 0 freqs
newt.full.orig <- newt.full[which(newt.full$freq != 0), ]

Nmix.gof.test Compute Chi-square Goodness-of-fit Test for N-mixture Models

Description

These functions compute a goodness-of-fit test for N-mixture models based on Pearson’s chi-square.

Usage

##methods for 'unmarkedFitPCount', 'unmarkedFitPCO',
##'unmarkedFitDS', 'unmarkedFitGDS', 'unmarkedFitGMM',
##'unmarkedFitGPC', and 'unmarkedFitMPois' classes
Nmix.chisq(mod, ...)
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Nmix.gof.test(mod, nsim = 5, plot.hist = TRUE, report = NULL,
parallel = TRUE, ncores, cex.axis = 1, cex.lab = 1, cex.main = 1,
lwd = 1, ...)

Arguments

mod the N-mixture model of unmarkedFitPCount, unmarkedFitPCO, unmarkedFitDS,
unmarkedFitGDS, unmarkedFitGMM, unmarkedFitGPC, unmarkedFitMPois, unmarkedFitMMO,
or unmarkedFitDSO classes for which a goodness-of-fit test is required.

nsim the number of bootstrapped samples.

plot.hist logical. Specifies that a histogram of the bootstrapped test statistic is to be in-
cluded in the output.

report If NULL, the test statistic for each iteration is not printed in the terminal. Other-
wise, an integer indicating the number of values of the test statistic that should
be printed on the same line. For example, if report = 3, the values of the test
statistic for three iterations are reported on each line.

parallel logical. If TRUE, requests that parboot use multiple cores to accelerate compu-
tations of the bootstrap.

ncores integer indicating the number of cores to use when bootstrapping in parallel
during the analysis of simulated data sets. If ncores is not specified, one less
than the number of available cores on the computer is used.

cex.axis expansion factor influencing the size of axis annotations on plots produced by
the function.

cex.lab expansion factor influencing the size of axis labels on plots produced by the
function.

cex.main expansion factor influencing the size of the main title above plots produced by
the function.

lwd expansion factor of line width on plots produced by the function.

... additional arguments passed to the function.

Details

The Pearson chi-square can be used to assess the fit of N-mixture models. Instead of relying on the
theoretical distribution of the chi-square, a parametric bootstrap approach is implemented to obtain
P-values with the parboot function of the unmarked package. Nmix.chisq computes the observed
chi-square statistic based on the observed and expected counts from the model. Nmix.gof.test
calls internally Nmix.chisq and parboot to generate simulated data sets based on the model and
compute the chi-square test statistic.

It is also possible to obtain an estimate of the overdispersion parameter (c-hat) for the model at hand
by dividing the observed chi-square statistic by the mean of the statistics obtained from simulation
(MacKenzie and Bailey 2004, McKenny et al. 2006). This method of estimating c-hat is similar to
the one implemented for capture-mark-recapture models in program MARK (White and Burnham
1999).

Note that values of c-hat > 1 indicate overdispersion (variance > mean). Values much higher than
1 (i.e., > 4) probably indicate lack-of-fit. In cases of moderate overdispersion, one can multiply



Nmix.gof.test 199

the variance-covariance matrix of the estimates by c-hat. As a result, the SE’s of the estimates are
inflated (c-hat is also known as a variance inflation factor).

In model selection, c-hat should be estimated from the global model and the same value of c-hat
applied to the entire model set. Specifically, a global model is the most complex model which can
be simplified to yield all the other (nested) models of the set. When no single global model exists
in the set of models considered, such as when sample size does not allow a complex model, one can
estimate c-hat from ’subglobal’ models. Here, ’subglobal’ models denote models from which only
a subset of the models of the candidate set can be derived. In such cases, one can use the smallest
value of c-hat for model selection (Burnham and Anderson 2002).

Note that c-hat counts as an additional parameter estimated and should be added to K. All functions
in package AICcmodavg automatically add 1 when the c.hat argument > 1 and apply the same value
of c-hat for the entire model set. When c-hat > 1, functions compute quasi-likelihood information
criteria (either QAICc or QAIC, depending on the value of the second.ord argument) by scaling the
log-likelihood of the model by c-hat. The value of c-hat can influence the ranking of the models: as
c-hat increases, QAIC or QAICc will favor models with fewer parameters. As an additional check
against this potential problem, one can generate several model selection tables by incrementing
values of c-hat to assess the model selection uncertainty. If ranking changes only slightly up to the
c-hat value observed, one can be confident in making inference.

In cases of underdispersion (c-hat < 1), it is recommended to keep the value of c-hat to 1. However,
note that values of c-hat « 1 can also indicate lack-of-fit and that an alternative model should be
investigated.

Value

Nmix.chisq returns two value:

chi.square the Pearson chi-square statistic.

model.type the class of the fitted model.

Nmix.gof.test returns the following components:

model.type the class of the fitted model.

chi.square the Pearson chi-square statistic.

t.star the bootstrapped chi-square test statistics (i.e., obtained for each of the simulated
data sets).

p.value the P-value assessed from the parametric bootstrap, computed as the proportion
of the simulated test statistics greater than or equal to the observed test statistic.

c.hat.est the estimate of the overdispersion parameter, c-hat, computed as the observed
test statistic divided by the mean of the simulated test statistics.

nsim the number of bootstrap samples. The recommended number of samples varies
with the data set, but should be on the order of 1000 or 5000, and in cases with
a large number of visits, even 10 000 samples, namely to reduce the effect of
unusually small values of the test statistics.

Author(s)

Marc J. Mazerolle
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References

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

MacKenzie, D. I., Bailey, L. L. (2004) Assessing the fit of site-occupancy models. Journal of
Agricultural, Biological, and Environmental Statistics 9, 300–318.

McKenny, H. C., Keeton, W. S., Donovan, T. M. (2006). Effects of structural complexity enhance-
ment on eastern red-backed salamander (Plethodon cinereus) populations in northern hardwood
forests. Forest Ecology and Management 230, 186–196.

White, G. C., Burnham, K. P. (1999). Program MARK: Survival estimation from populations of
marked animals. Bird Study 46 (Supplement), 120–138.

See Also

AICc, c_hat, evidence, modavg, importance, mb.gof.test, modavgPred, pcount, pcountOpen,
parboot

Examples

##N-mixture model example modified from ?pcount
## Not run:
require(unmarked)
##single season
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
##run model
fm.mallard <- pcount(~ ivel+ date + I(date^2) ~ length + elev + forest,

mallardUMF, K=30)

##compute observed chi-square
obs <- Nmix.chisq(fm.mallard)
obs

##round to 4 digits after decimal point
print(obs, digits.vals = 4)

##compute observed chi-square, assess significance, and estimate c-hat
obs.boot <- Nmix.gof.test(fm.mallard, nsim = 10)
##note that more bootstrap samples are recommended
##(e.g., 1000, 5000, or 10 000)
obs.boot
print(obs.boot, digits.vals = 4, digits.chisq = 4)
detach(package:unmarked)

## End(Not run)
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pine Strength of Pine Wood Based on the Density Adjusted for Resin Con-
tent

Description

This data set consists of the strength of pine wood as a function of density or density adjusted for
resin content.

Usage

data(pine)

Format

A data frame with 42 observations on the following 3 variables.

y pine wood strength.

x pine wood density.

z pine wood density adjusted for resin content.

Details

Burnham and Anderson (2002, p. 183) use this data set originally from Carlin and Chib (1995) to
illustrate model selection for two competing and non-nested models.

Source

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Carlin, B. P., Chib, S. (1995) Bayesian model choice via Markov chain Monte Carlo methods.
Journal of the Royal Statistical Society, Series B 57, 473–484.

Examples

data(pine)
## maybe str(pine) ; plot(pine) ...
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predictSE Computing Predicted Values and Standard Errors

Description

Function to compute predicted values based on linear predictor and associated standard errors from
various fitted models.

Usage

predictSE(mod, newdata, se.fit = TRUE, print.matrix = FALSE, ...)

## S3 method for class 'gls'
predictSE(mod, newdata, se.fit = TRUE, print.matrix =

FALSE, ...)

## S3 method for class 'lme'
predictSE(mod, newdata, se.fit = TRUE, print.matrix =

FALSE, level = 0, ...)

## S3 method for class 'mer'
predictSE(mod, newdata, se.fit = TRUE, print.matrix =

FALSE, level = 0, type = "response", ...)

## S3 method for class 'merMod'
predictSE(mod, newdata, se.fit = TRUE, print.matrix =

FALSE, level = 0, type = "response", ...)

## S3 method for class 'lmerModLmerTest'
predictSE(mod, newdata, se.fit = TRUE, print.matrix =

FALSE, level = 0, ...)

## S3 method for class 'unmarkedFitPCount'
predictSE(mod, newdata, se.fit = TRUE,

print.matrix = FALSE, type = "response", c.hat = 1, parm.type =
"lambda", ...)

## S3 method for class 'unmarkedFitPCO'
predictSE(mod, newdata, se.fit = TRUE,

print.matrix = FALSE, type = "response", c.hat = 1,
parm.type = "lambda", ...)

Arguments

mod an object of class gls, lme, mer, merMod, lmerModLmerTest, unmarkedFitPCount,
or unmarkedFitPCO containing the output of a model.
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newdata a data frame with the same structure as that of the original data frame for which
we want to make predictions.

se.fit logical. If TRUE, compute standard errors on predictions.
print.matrix logical. If TRUE, the output is returned as a matrix, with predicted values and

standard errors in columns. If FALSE, the output is returned as a list.
level the level for which predicted values and standard errors are to be computed.

The current version of the function only supports predictions for the populations
excluding random effects (i.e., level = 0).

type specifies the type of prediction requested. This argument can take the value
response or link, for predictions on the scale of the response variable or on
the scale of the linear predictor, respectively.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from Nmix.gof.test. If c.hat > 1, predictSE will multiply the variance-
covariance matrix of the predictions by this value (i.e., SE’s are multiplied by
sqrt(c.hat)). High values of c.hat (e.g., c.hat > 4) may indicate that model
structure is inappropriate.

parm.type the parameter for which predictions are made based on the N-mixture model of
class unmarkedFitPCount or unmarkedFitPCO classes.

... additional arguments passed to the function.

Details

predictSE computes predicted values and associated standard errors. Standard errors are approx-
imated using the delta method (Oehlert 1992). Predictions and standard errors for objects of gls
class and mixed models of lme, mer, merMod, lmerModLmerTest classes exclude the correlation or
variance structure of the model.

predictSE computes predicted values on abundance and standard errors based on the estimates
from an unmarkedFitPCount or unmarkedFitPCO object. Currently, only predictions on abundance
(i.e., parm.type = "lambda") with the zero-inflated Poisson distribution is supported. For other
parameters or distributions for models of unmarkedFit classes, use predict from the unmarked
package.

Value

predictSE returns requested values either as a matrix (print.matrix = TRUE) or list (print.matrix
= FALSE) with components:

fit the predicted values.
se.fit the standard errors of the predicted values (if se.fit = TRUE).

Note

For standard errors with better properties, especially for small samples, one can opt for simulations
(see Gelman and Hill 2007), or nonparametric bootstrap (Efron and Tibshirani 1998).

Author(s)

Marc J. Mazerolle
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References

Efron, B., Tibshirani, R. J. (1998) An Introduction to the Bootstrap. Chapman & Hall/CRC: New
York.

Gelman, A., Hill, J. (2007) Data Analysis Using Regression and Multilevel/Hierarchical Models.
Cambridge University Press: New York.

Oehlert, G. W. (1992) A note on the delta method. American Statistician 46, 27–29.

See Also

gls, lme, glmer, simulate.merMod, boot, parboot, nonparboot, pcount, pcountOpen, unmarkedFit-class

Examples

##Orthodont data from Pinheiro and Bates (2000) revisited
## Not run:
require(nlme)
m1 <- gls(distance ~ age, correlation = corCompSymm(value = 0.5, form = ~ 1 | Subject),

data = Orthodont, method= "ML")

##compare against lme fit
logLik(m1)
logLik(lme(distance ~ age, random = ~1 | Subject, data = Orthodont,

method= "ML"))
##both are identical

##compute predictions and SE's for different ages
predictSE(m1, newdata = data.frame(age = c(8, 10, 12, 14)))
detach(package:nlme)

## End(Not run)

##example with mallard data set from unmarked package
## Not run:
require(unmarked)
data(mallard)
mallardUMF <- unmarkedFramePCount(mallard.y, siteCovs = mallard.site,

obsCovs = mallard.obs)
##run model with zero-inflated Poisson abundance
fm.mall.one <- pcount(~ ivel + date ~ length + forest, mallardUMF, K=30,

mixture = "ZIP")
##make prediction
predictSE(fm.mall.one, type = "response", parm.type = "lambda",

newdata = data.frame(length = 0, forest = 0, elev = 0))
##compare against predict
predict(fm.mall.one, type = "state", backTransform = TRUE,

newdata = data.frame(length = 0, forest = 0, elev = 0))

##add offset in model to scale abundance per transect length
fm.mall.off <- pcount(~ ivel + date ~ forest + offset(length), mallardUMF, K=30,
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mixture = "ZIP")
##make prediction
predictSE(fm.mall.off, type = "response", parm.type = "lambda",

newdata = data.frame(length = 10, forest = 0, elev = 0))
##compare against predict
predict(fm.mall.off, type = "state", backTransform = TRUE,

newdata = data.frame(length = 10, forest = 0, elev = 0))
detach(package:unmarked)

## End(Not run)

salamander Salamander Capture-mark-recapture Data

Description

This is a capture-mark-recapture data set on male and female Spotted Salamanders (Ambystoma
maculatum) recorded by Husting (1965). A total of 1244 unique individuals were captured in pitfall
traps at a breeding site between 1959 and 1963.

Usage

data(salamander)

Format

A data frame with 36 observations on the following 7 variables.

T1959 a binary variable, either 1 (captured) or 0 (not captured) during the 1959 breeding season.

T1960 a binary variable, either 1 (captured) or 0 (not captured) during the 1960 breeding season.

T1961 a binary variable, either 1 (captured) or 0 (not captured) during the 1961 breeding season.

T1962 a binary variable, either 1 (captured) or 0 (not captured) during the 1962 breeding season.

T1963 a binary variable, either 1 (captured) or 0 (not captured) during the 1963 breeding season.

Males a numeric variable indicating the total number of males with a given capture history. Nega-
tive values indicate losses on capture (animals not released on last capture).

Females a numeric variable indicating the total number of females with a given capture history.
Negative values indicate losses on capture (animals not released on last capture).

Details

This data set is used to illustrate classic Cormack-Jolly-Seber and related models (Cormack 1964,
Jolly 1965, Seber 1965, Lebreton et al. 1992).
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Source

Cormack, R. M. (1964) Estimates of survival from the sighting of marked animals. Biometrika 51,
429–438.

Husting, E. L. (1965) Survival and breeding structure in a population of Ambystoma maculatum.
Copeia 1965, 352–362.

Jolly, G. M. (1965) Explicit estimates from capture-recapture data with both death and immigration:
stochastic model. Biometrika 52, 225–247.

Laake, J. L. (2013) RMark: an R interface for analysis of capture-recapture data with MARK.
Alaska Fisheries Science Center (AFSC), National Oceanic and Atmospheric Administration, Na-
tional Marine Fisheries Service, AFSC Report 2013-01.

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case-studies. Ecological
Monographs 62, 67-118.

Seber, G. A. F. (1965) A note on the multiple-recapture census. Biometrika 52, 249–259.

Examples

data(salamander)
str(salamander)

##convert raw capture data to capture histories
captures <- salamander[, c("T1959", "T1960", "T1961", "T1962", "T1963")]
salam.ch <- apply(captures, MARGIN = 1, FUN = function(i)

paste(i, collapse = ""))

##organize as a data frame readable by RMark package (Laake 2013)
##RMark requires at least one column called "ch"
##and another "freq" if summarized captures are provided
salam.full <- data.frame(ch = rep(salam.ch, 2),

freq = c(salamander$Males, salamander$Females),
Sex = c(rep("male", length(salam.ch)),

rep("female", length(salam.ch))))
str(salam.full)
salam.full$ch <- as.character(salam.full$ch)

##delete rows with 0 freqs
salam.full.orig <- salam.full[which(salam.full$freq != 0), ]

summaryOD Display Model Summary Corrected for Overdispersion

Description

This function displays the estimates of a model with standard errors corrected for overdispersion
for a variety of model classes. The output includes either confidence intervals based on the normal
approximation or Wald hypothesis tests corrected for overdispersion.
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Usage

summaryOD(mod, c.hat = 1, conf.level = 0.95,
out.type = "confint", ...)

## S3 method for class 'glm'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitOccu'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitColExt'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitOccuRN'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitPCount'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitPCO'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitDS'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitGDS'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitOccuFP'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitMPois'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitGMM'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)
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## S3 method for class 'unmarkedFitGPC'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitOccuMulti'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitOccuMS'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitOccuTTD'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitMMO'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitDSO'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitGOccu'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'unmarkedFitOccuComm'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'glmerMod'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'maxlikeFit'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'multinom'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)

## S3 method for class 'vglm'
summaryOD(mod, c.hat = 1, conf.level = 0.95,

out.type = "confint", ...)
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Arguments

mod an object of class glm, glmmTMB, maxlikeFit, mer, merMod, multinom, vglm,
and various unmarkedFit classes containing the output of a model.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that
obtained from c_hat, mb.gof.test, or Nmix.gof.test.

conf.level the confidence level (1 − α) requested for the computation of confidence inter-
vals.

out.type the type of summary requested for each parameter estimate. If out.type =
"confint", computes confidence intervals corrected for overdispersion, whereas
out.type = "nhst" conducts null-hypothesis statistical testing corrected for overdis-
persion.

... additional arguments passed to the function.

Details

Overdispersion occurs when the variance in the data exceeds that expected from a theoretical dis-
tribution such as the Poisson or binomial (McCullagh and Nelder 1989, Burnham and Anderson
2002). When the model is correct, small values of c-hat (1 < c-hat < 4) can reflect minor devia-
tions from model assumptions (Burnham and Anderson 2002). In such cases, it is possible to adjust
standard errors of parameter estimates by multiplying with sqrt(c.hat) (McCullagh and Nelder
1989). This is the correction applied by summaryOD.

Depending on the type of summary requested, i.e., out.type = "confint" or out.type = "nhst",
summaryOD will return either confidence intervals based on the normal approximation or Wald tests
for each parameter estimate (Agresti 1990).

For binomial distributions, note that values of c.hat > 1 are only appropriate with trials > 1 (i.e.,
success/trial or cbind(success, failure) syntax). The function supports different model
types such as Poisson GLM’s and GLMM’s, single-season occupancy models (MacKenzie et al.
2002), dynamic occupancy models (MacKenzie et al. 2003), or N-mixture models (Royle 2004,
Dail and Madsen 2011).

Value

summaryOD returns an object of class summaryOD as a list with the following components:

out.type the type of output requested by the user.

c.hat the c.hat estimate used to adjust standard errors.

conf.level the confidence level used to compute confidence intervals around the estimates.

outMat the output of the model corrected for overdispersion organized in a matrix.

Author(s)

Marc J. Mazerolle
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References

Agresti, A. (2002) Categorical Data Analysis. Second edition. John Wiley and Sons: New Jersey.
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See Also

c_hat, mb.gof.test, Nmix.gof.test, anovaOD

Examples

##anuran larvae example from Mazerolle (2006)
data(min.trap)
##assign "UPLAND" as the reference level as in Mazerolle (2006)
min.trap$Type <- relevel(min.trap$Type, ref = "UPLAND")

##run model
m1 <- glm(Num_anura ~ Type + log.Perimeter + Num_ranatra,

family = poisson, offset = log(Effort),
data = min.trap)

##check c-hat for global model
c_hat(m1) #uses Pearson's chi-square/df

##display results corrected for overdispersion
summaryOD(m1, c_hat(m1))
summaryOD(m1, c_hat(m1), out.type = "nhst")

##example with occupancy model
## Not run:
##load unmarked package
if(require(unmarked)){

data(bullfrog)
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##detection data
detections <- bullfrog[, 3:9]

##assemble in unmarkedFrameOccu
bfrog <- unmarkedFrameOccu(y = detections)

##run model
fm <- occu(~ 1 ~ 1, data = bfrog)

##check GOF
##GOF <- mb.gof.test(fm, nsim = 1000)
##estimate of c-hat: 1.89

##display results after overdispersion adjustment
summaryOD(fm, c.hat = 1.89)
summaryOD(fm, c.hat = 1.89, out.type = "nhst")

detach(package:unmarked)
}

## End(Not run)

tortoise Gopher Tortoise Distance Sampling Data

Description

This simulated data set by Mazerolle (2015) is based on the biological parameters for the Gopher
Tortoise (Gopherus polyphemus) reported by Smith et al. (2009). A half-normal distribution with a
scale of 10 and without an adjustment factor was used to simulate the distance data for a study area
of 120 km2. An effort of 500 m in 300 line transects was deployed. A density of 72 individuals per
km2 was used in the simulation using the approach outlined in Buckland et al. (2001).

Usage

data(tortoise)

Format

A data frame with 410 observations on the following 5 variables.

Region.Label a numeric identifier for the study area.
Area a numeric variable for the surface area of the study area in square meters.
Sample.Label a numeric identifier for each line transect relating each observation to its corre-

sponding transect.
Effort Effort in meters expended in each line transect.
distance a numeric variable for the perpendicular distances in meters relative to the transect line

for each of the individuals detected during the survey. Note that transects without detections
have a value of NA for this variable.
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Details

This data set is used to illustrate classic distance sampling (Buckland et al. 2001, Mazerolle 2015).

Source

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., Thomas, L.
(2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford
University Press: Oxford.

Mazerolle, M. J. (2015) Estimating detectability and biological parameters of interest with the use
of the R environment. Journal of Herpetology 49, 541–559.

Smith, L. L., Linehan, J. M., Stober, J. M., Elliott, M. J., Jensen, J. B. (2009) An evaluation of
distance sampling for large-scale gopher tortoise surveys in Georgia, USA. Applied Herpetology 6,
355–368.

Examples

data(tortoise)
str(tortoise)

##plot distance data to determine if truncation is required
##(Buckland et al. 2001, pp. 15--17)
hist(tortoise$distance)

turkey Turkey Weight Gain

Description

This one-way ANOVA data set presents turkey weight gain in pounds across five diets.

Usage

data(turkey)

Format

A data frame with 30 rows and 2 variables.

Diet diet factor with 5 levels.

Weight.gain weight gain in pounds.

Details

Heiberger and Holland (2004) and Ott (1993) analyze this data set to illustrate one-way ANOVA.
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Source

Heiberger, R. M., Holland, B. (2004) Statistical Analysis and Data Display: an intermediate course
with examples in S-Plus, R, and SAS. Springer: New York.

Ott, R. L. (1993) An Introduction to Statistical Methods and Data Analysis. Fourth edition. Duxbury:
Pacific Grove, CA.

Examples

data(turkey)
str(turkey)

useBIC Computing BIC or QBIC

Description

Functions to compute the Bayesian information criterion (BIC) or a quasi-likelihood analogue
(QBIC).

Usage

useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'aov'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'betareg'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'clm'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'clmm'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'coxme'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'coxph'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'fitdist'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'fitdistr'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)
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## S3 method for class 'glm'
useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1,
...)

## S3 method for class 'glmmTMB'
useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1,
...)

## S3 method for class 'gls'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'gnls'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'hurdle'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'lavaan'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'lm'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'lme'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'lmekin'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'maxlikeFit'
useBIC(mod, return.K = FALSE, nobs = NULL, c.hat =
1, ...)

## S3 method for class 'mer'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'merMod'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'lmerModLmerTest'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'multinom'
useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1,
...)

## S3 method for class 'nlme'
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useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'nls'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'polr'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'rlm'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'survreg'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

## S3 method for class 'unmarkedFit'
useBIC(mod, return.K = FALSE, nobs = NULL, c.hat =
1, ...)

## S3 method for class 'vglm'
useBIC(mod, return.K = FALSE, nobs = NULL, c.hat = 1,
...)

## S3 method for class 'zeroinfl'
useBIC(mod, return.K = FALSE, nobs = NULL, ...)

Arguments

mod an object of class aov, betareg, clm, clmm, clogit, coxme, coxph, fitdist,
fitdistr, glm, glmmTMB, gls, gnls, hurdle, lavaan, lm, lme, lmekin, maxlikeFit,
mer, merMod, lmerModLmerTest, multinom, nlme, nls, polr, rlm, survreg,
vglm, zeroinfl, and various unmarkedFit classes containing the output of a
model.

return.K logical. If FALSE, the function returns the information criterion specified. If
TRUE, the function returns K (number of estimated parameters) for a given model.

nobs this argument allows to specify a numeric value other than total sample size to
compute the BIC (i.e., nobs defaults to total number of observations). This is
relevant only for mixed models or various models of unmarkedFit classes where
sample size is not straightforward. In such cases, one might use total number of
observations or number of independent clusters (e.g., sites) as the value of nobs.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season occupancy models (MacKen-
zie et al. 2002), dynamic occupancy models (MacKenzie et al. 2003), or N-
mixture models (Royle 2004, Dail and Madsen 2011). If c.hat > 1, useBIC
will return the quasi-likelihood analogue of the information criteria requested
and multiply the variance-covariance matrix of the estimates by this value (i.e.,



216 useBIC

SE’s are multiplied by sqrt(c.hat)). This option is not supported for general-
ized linear mixed models of the mer or merMod classes.

... additional arguments passed to the function.

Details

useBIC computes the Bayesian information criterion (BIC, Schwarz 1978):

BIC = −2 ∗ log − likelihood+K ∗ log(n),

where the log-likelihood is the maximum log-likelihood of the model, K corresponds to the number
of estimated parameters, and n corresponds to the sample size of the data set.

In the presence of overdispersion, a quasi-likelihood analogue of the BIC (QBIC) will be computed,
as

QBIC =
−2 ∗ log − likelihood

c− hat
+K ∗ log(n),

where c-hat is the overdispersion parameter specified by the user with the argument c.hat. Note
that BIC or QBIC values are meaningful to select among gls or lme models fit by maximum like-
lihood. BIC or QBIC based on REML are valid to select among different models that only differ in
their random effects (Pinheiro and Bates 2000).

Value

useBIC returns the BIC or the number of estimated parameters, depending on the values of the
arguments.

Note

The actual (Q)BIC values are not really interesting in themselves, as they depend directly on the
data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much
about model fit. Information criteria become relevant when compared to one another for a given
data set and set of candidate models.

Author(s)

Marc J. Mazerolle

References

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.

MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.



useBICCustom 217

Pinheiro, J. C., Bates, D. M. (2000) Mixed-effect models in S and S-PLUS. Springer Verlag: New
York.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.

See Also

AICc, bictab, bictabCustom, useBICCustom

Examples

##cement data from Burnham and Anderson (2002, p. 101)
data(cement)
##run multiple regression - the global model in Table 3.2
glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement)

##compute BIC with full likelihood
useBIC(glob.mod, return.K = FALSE)

##compute BIC for mixed model on Orthodont data set in Pinheiro and
##Bates (2000)
## Not run:
require(nlme)
m1 <- lme(distance ~ age, random = ~1 | Subject, data = Orthodont,

method= "ML")
useBIC(m1, return.K = FALSE)

## End(Not run)

useBICCustom Custom Computation of BIC and QBIC from User-supplied Input

Description

This function computes the Bayesian information criterion (BIC) or a quasi-likelihood counterpart
(QBIC) from user-supplied input instead of extracting the values automatically from a model object.
This function is particularly useful for output imported from other software or for model classes that
are not currently supported by useBIC.

Usage

useBICCustom(logL, K, return.K = FALSE, nobs = NULL, c.hat = 1)
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Arguments

logL the value of the model log-likelihood.

K the number of estimated parameters in the model.

return.K logical. If FALSE, the function returns the information criterion specified. If
TRUE, the function returns K (number of estimated parameters) for a given model.

nobs the sample size required to compute the BIC or QBIC.

c.hat value of overdispersion parameter (i.e., variance inflation factor) such as that ob-
tained from c_hat. Note that values of c.hat different from 1 are only appropri-
ate for binomial GLM’s with trials > 1 (i.e., success/trial or cbind(success, fail-
ure) syntax), with Poisson GLM’s, single-season or dynamic occupancy models
(MacKenzie et al. 2002, 2003), N-mixture models (Royle 2004, Dail and Mad-
sen 2011), or capture-mark-recapture models (e.g., Lebreton et al. 1992). If
c.hat > 1, useBICCustom will return the quasi-likelihood analogue of the infor-
mation criterion requested.

Details

useBICCustom computes one of the following two information criteria:

the Bayesian information criterion (BIC, Schwarz 1978) or the quasi-likelihood BIC (QBIC).

Value

useBICCustom returns the BIC or QBIC depending on the values of the c.hat argument.

Note

The actual (Q)BIC values are not really interesting in themselves, as they depend directly on the
data, parameters estimated, and likelihood function. Furthermore, a single value does not tell much
about model fit. Information criteria become relevant when compared to one another for a given
data set and set of candidate models.

Author(s)

Marc J. Mazerolle

References

Burnham, K. P., Anderson, D. R. (2002) Model Selection and Multimodel Inference: a practical
information-theoretic approach. Second edition. Springer: New York.

Dail, D., Madsen, L. (2011) Models for estimating abundance from repeated counts of an open
population. Biometrics 67, 577–587.

Lebreton, J.-D., Burnham, K. P., Clobert, J., Anderson, D. R. (1992) Modeling survival and testing
biological hypotheses using marked animals: a unified approach with case-studies. Ecological
Monographs 62, 67–118.

MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, J. A., Langtimm, C. A.
(2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83,
2248–2255.
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MacKenzie, D. I., Nichols, J. D., Hines, J. E., Knutson, M. G., Franklin, A. B. (2003) Estimating
site occupancy, colonization, and local extinction when a species is detected imperfectly. Ecology
84, 2200–2207.

Royle, J. A. (2004) N-mixture models for estimating population size from spatially replicated
counts. Biometrics 60, 108–115.

Schwarz, G. (1978) Estimating the dimension of a model. Annals of Statistics 6, 461–464.

See Also

AICc, aictabCustom, useBIC, bictab, evidence, modavgCustom

Examples

##cement data from Burnham and Anderson (2002, p. 101)
data(cement)
##run multiple regression - the global model in Table 3.2
glob.mod <- lm(y ~ x1 + x2 + x3 + x4, data = cement)

##extract log-likelihood
LL <- logLik(glob.mod)[1]

##extract number of parameters
##including residual variance
K.mod <- length(coef(glob.mod)) + 1

##compute BIC with full likelihood
useBICCustom(LL, K.mod, nobs = nrow(cement))
##compare against useBIC
useBIC(glob.mod)

xtable Format Objects to LaTeX or HTML

Description

Functions to format various objects following model selection and multimodel inference to LaTeX
or HTML tables. These functions extend the methods from the xtable package (Dahl 2014).

Usage

## S3 method for class 'aictab'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, include.AICc = TRUE,
include.LL = TRUE, include.Cum.Wt = FALSE, ...)

## S3 method for class 'anovaOD'
xtable(x, caption = NULL, label = NULL, align = NULL,
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digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, ...)

## S3 method for class 'bictab'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, include.BIC = TRUE, include.LL = TRUE,
include.Cum.Wt = FALSE, ...)

## S3 method for class 'boot.wt'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, include.AICc = TRUE, include.AICcWt = FALSE, ...)

## S3 method for class 'countDist'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, table.countDist = "distance", ...)

## S3 method for class 'checkParms'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, include.variable = TRUE, include.max.se =
TRUE, include.n.high.se = TRUE, ...)

## S3 method for class 'countHist'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, table.countHist = "count", ...)

## S3 method for class 'detHist'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, table.detHist = "freq", ...)

## S3 method for class 'detTime'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, table.detTime = "freq", ...)

## S3 method for class 'dictab'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, include.DIC = TRUE, include.Cum.Wt = FALSE, ...)

## S3 method for class 'ictab'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE,
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include.IC = TRUE, include.Cum.Wt = FALSE, ...)

## S3 method for class 'mb.chisq'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE,
include.detection.histories = TRUE, ...)

## S3 method for class 'modavg'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE,
print.table = FALSE, ...)

## S3 method for class 'modavgCustom'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, print.table = FALSE, ...)

## S3 method for class 'modavgEffect'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, print.table = FALSE, ...)

## S3 method for class 'modavgIC'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE, nice.names = TRUE,
print.table = FALSE, ...)

## S3 method for class 'modavgPred'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, ...)

## S3 method for class 'modavgShrink'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, print.table = FALSE, ...)

## S3 method for class 'multComp'
xtable(x, caption = NULL, label = NULL,

align = NULL, digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, print.table = FALSE, ...)

## S3 method for class 'summaryOD'
xtable(x, caption = NULL, label = NULL, align = NULL,

digits = NULL, display = NULL, auto = FALSE,
nice.names = TRUE, ...)
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Arguments

x an object of class aictab, anovaOD, bictab, boot.wt, checkParms, countDist,
countHist, detHist, detTime, dictab, ictab, mb.chisq, modavg, modavgEffect,
modavgCustom, modavgIC, modavgPred, modavgShrink, multComp, or summaryOD.

caption a character vector of length 1 or 2 storing the caption or title of the table. If
the vector is of length 2, the second item is the short caption used when LaTeX
generates a list of tables. The default value is NULL and suppresses the caption.

label a character vector storing the LaTeX label or HTML anchor. The default value
is NULL and suppresses the label.

align a character vector of length equal to the number of columns of the table speci-
fying the alignment of the elements. Note that the rownames are considered as
an additional column and require an alignment value.

digits a numeric vector of length one or equal to the number of columns in the table
(including the rownames) specifying the number of digits to display in each
column.

display a character vector of length equal to the number of columns (including the row-
names) specifying the format of each column. For example, use s for strings, f
for numbers in the regular format, or d for integers. See formatC for additional
possible values.

auto Logical, indicating whether to apply automatic format when no value is passed
to align, digits, or display. This autoformat (based on xalign, xdigits,
and xdisplay) can be useful to quickly format a typical matrix or data.frame.
Default value is FALSE.

nice.names logical. If TRUE, column labels are modified to improve their appearance in the
table. If FALSE, simpler labels are used, or the ones supplied directly by the user
in the object storing the output.

include.AICc logical. If TRUE, the column containing the information criterion (AIC, AICc,
QAIC, or QAICc) of each model is printed in the table. If FALSE, the column is
suppressed.

include.BIC logical. If TRUE, the column containing the information criterion (BIC or QBIC)
of each model is printed in the table. If FALSE, the column is suppressed.

include.DIC logical. If TRUE, the column containing the deviance information criterion (DIC)
of each model is printed in the table. If FALSE, the column is suppressed.

include.IC logical. If TRUE, the column containing the information criterion of each model
is printed in the table. If FALSE, the column is suppressed.

include.LL logical. If TRUE, the column containing the log-likelihood of each model is
printed in the table. If FALSE, the column is suppressed.

include.Cum.Wt logical. If TRUE, the column containing the cumulative Akaike weights is printed
in the table. If FALSE, the column is suppressed.

include.AICcWt logical. If TRUE, the column containing the Akaike weight of each model is
printed in the table. If FALSE, the column is suppressed.

include.detection.histories

logical. If TRUE, the column containing detection histories is printed in the table.
If FALSE, the column is suppressed.
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include.variable

logical. If TRUE, the column containing the variable name is printed in the table.
If FALSE, the column is suppressed.

include.max.se logical. If TRUE, the column containing the maximum SE in the model is printed
in the table. If FALSE, the column is suppressed.

include.n.high.se

logical. If TRUE, the column containing the number of SE’s greater than the
threshold specified by the user is printed in the table. If FALSE, the column is
suppressed.

print.table logical. If TRUE, the model selection table is printed and other sections of the
output are suppressed (e.g., model-averaged estimates). If FALSE, the model
selection table is suppressed and only the other portion of the output is printed
in the table.

table.detHist character string specifying, either "freq", "prop", or "hist". If table.type
= "freq", the function returns a table of frequencies of sites sampled, of sites
with at least one detection, and for data with multiple primary periods, the fre-
quencies of sites with observed extinctions and colonizations. If table.type =
"prop", the table returns the proportion of sites with at least one detection, and
for data with multiple periods, the proportion of sites with observed extinctions
and colonizations. If table.type = "hist", the function returns the frequencies
of each observed detection history.

table.detTime character string specifying, either "freq", "prop", or "dist". If table.type
= "freq", the function returns a table of frequencies of sites sampled, of sites
with at least one detection, and for data with multiple primary periods, the fre-
quencies of sites with observed extinctions and colonizations. If table.type =
"prop", the table returns the proportion of sites with at least one detection, and
for data with multiple periods, the proportion of sites with observed extinctions
and colonizations. If table.type = "dist", the function returns the quantiles
of detection times.

table.countDist

character string specifying, either "distance", "count", "freq", or "prop". If
table.type = "distance", the function returns a table of counts summarized
for each distance class. If table.type = "count", the function returns the ta-
ble of frequencies of counts observed across sites. If table.type = "freq", the
function returns a table of frequencies of sites sampled, of sites with at least one
detection, and for data with multiple primary periods, the frequencies of sites
with observed extinctions and colonizations. If table.type = "prop", the ta-
ble returns the proportion of sites with at least one detection, and for data with
multiple periods, the proportion of sites with observed extinctions and coloniza-
tions.

table.countHist

character string specifying, either "count", "freq", "prop", or "hist". If
table.type = "count", the function returns the table of frequencies of counts
observed across sites. If table.type = "freq", the function returns a table of
frequencies of sites sampled, of sites with at least one detection, and for data
with multiple primary periods, the frequencies of sites with observed extinctions
and colonizations. If table.type = "prop", the table returns the proportion of
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sites with at least one detection, and for data with multiple periods, the pro-
portion of sites with observed extinctions and colonizations. If table.type =
"hist", the function returns the frequencies of each observed count history.

... additional arguments passed to the function.

Details

xtable creates an object of the xtable class inheriting from the data.frame class. This object can
then be used with print.xtable for added flexibility such as suppressing row names, modifying
caption placement, and format tables in LaTeX or HTML format.

Author(s)

Marc J. Mazerolle

References

Dahl, D. B. (2014) xtable: Export tables to LaTeX or HTML. R package version 1.7-3. https:
//cran.r-project.org/package=xtable.

See Also

aictab, boot.wt, dictab, formatC, ictab, mb.chisq, modavg, modavgCustom, modavgIC, modavgEffect,
modavgPred, modavgShrink, multComp, summaryOD, anovaOD, xtable, print.xtable

Examples

if(require(xtable)) {
##model selection example
data(dry.frog)
##setup candidate models
Cand.models <- list( )
Cand.models[[1]] <- lm(log_Mass_lost ~ Shade + Substrate +

cent_Initial_mass + Initial_mass2,
data = dry.frog)

Cand.models[[2]] <- lm(log_Mass_lost ~ Shade + Substrate +
cent_Initial_mass + Initial_mass2 +
Shade:Substrate, data = dry.frog)

Cand.models[[3]] <- lm(log_Mass_lost ~ cent_Initial_mass +
Initial_mass2, data = dry.frog)

Model.names <- c("additive", "interaction", "no shade")

##model selection table - AICc
out <- aictab(cand.set = Cand.models, modnames = Model.names)

xtable(out)
##exclude AICc and LL
xtable(out, include.AICc = FALSE, include.LL = FALSE)
##remove row names and add caption
print(xtable(out, caption = "Model selection based on AICc"),

include.rownames = FALSE, caption.placement = "top")

https://cran.r-project.org/package=xtable
https://cran.r-project.org/package=xtable
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##model selection table - BIC
out2 <- bictab(cand.set = Cand.models, modnames = Model.names)

xtable(out2)
##exclude AICc and LL
xtable(out2, include.BIC = FALSE, include.LL = FALSE)
##remove row names and add caption
print(xtable(out2, caption = "Model selection based on BIC"),

include.rownames = FALSE, caption.placement = "top")

##model-averaged estimate of Initial_mass2
mavg.mass <- modavg(cand.set = Cand.models, parm = "Initial_mass2",

modnames = Model.names)
#model-averaged estimate
xtable(mavg.mass, print.table = FALSE)
#table with contribution of each model
xtable(mavg.mass, print.table = TRUE)

##model-averaged predictions for first 10 observations
preds <- modavgPred(cand.set = Cand.models, modnames = Model.names,

newdata = dry.frog[1:10, ])
xtable(preds)
}

##example of diagnostics
## Not run:
if(require(unmarked)){
##distance sampling example from ?distsamp
data(linetran)
ltUMF <- with(linetran, {

unmarkedFrameDS(y = cbind(dc1, dc2, dc3, dc4),
siteCovs = data.frame(Length, area, habitat),
dist.breaks = c(0, 5, 10, 15, 20),
tlength = linetran$Length * 1000, survey = "line",
unitsIn = "m")
})

##summarize counts across distance classes
xtable(countDist(ltUMF), table.countDist = "distance")
##summarize counts across all sites
xtable(countDist(ltUMF), table.countDist = "count")

##Half-normal detection function
fm1 <- distsamp(~ 1 ~ 1, ltUMF)
##determine parameters with highest SE's
xtable(checkParms(fm1))
}
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## End(Not run)
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