IT'S NOT SAFE ON THE
STREETS... ESPECIALLY
FOR YOUR 3DS!

EXPLORING A NEW ATTACK SURFACE ON THE 3DS

https://twitter.com/MrNbaYoh

STATE OF 3DS HACKING

STATE OF 3DS HACKING

e Many - patched and

https://3dbrew.org/wiki/3DS_Userland_Flaws
https://3dbrew.org/wiki/3DS_System_Flaws
https://3dbrew.org/wiki/Main_Page

STATE OF 3DS HACKING

e Many - patched and

e hardware keyscrambler broken ()

https://3dbrew.org/wiki/3DS_Userland_Flaws
https://3dbrew.org/wiki/3DS_System_Flaws
https://3dbrew.org/wiki/Main_Page
https://smealum.github.io/3ds/32c3/

STATE OF 3DS HACKING

e Many - patched and

e hardware keyscrambler broken ()
e bootroms dumped ()

https://3dbrew.org/wiki/3DS_Userland_Flaws
https://3dbrew.org/wiki/3DS_System_Flaws
https://3dbrew.org/wiki/Main_Page
https://smealum.github.io/3ds/32c3/
https://derrekr.github.io/3ds/33c3

STATE OF 3DS HACKING

e Many - patched and

e hardware keyscrambler broken ()
e bootroms dumped ()
e derive secret AES keys as a result

https://3dbrew.org/wiki/3DS_Userland_Flaws
https://3dbrew.org/wiki/3DS_System_Flaws
https://3dbrew.org/wiki/Main_Page
https://smealum.github.io/3ds/32c3/
https://derrekr.github.io/3ds/33c3

STATE OF 3DS HACKING

e Many - patched and

e hardware keyscrambler broken ()

e bootroms dumped ()

e derive secret AES keys as a result

e permanent unpatchable bootROM exploit (&

)

https://3dbrew.org/wiki/3DS_Userland_Flaws
https://3dbrew.org/wiki/3DS_System_Flaws
https://3dbrew.org/wiki/Main_Page
https://smealum.github.io/3ds/32c3/
https://derrekr.github.io/3ds/33c3
https://derrekr.github.io/3ds/33c3
https://sciresm.github.io/33-and-a-half-c3/

STATE OF 3DS HACKING

e Many - patched and

e hardware keyscrambler broken ()

e bootroms dumped ()

e derive secret AES keys as a result

e permanent unpatchable bootROM exploit (&

)

What is left unexplored?

https://3dbrew.org/wiki/3DS_Userland_Flaws
https://3dbrew.org/wiki/3DS_System_Flaws
https://3dbrew.org/wiki/Main_Page
https://smealum.github.io/3ds/32c3/
https://derrekr.github.io/3ds/33c3
https://derrekr.github.io/3ds/33c3
https://sciresm.github.io/33-and-a-half-c3/

STATE OF 3DS HACKING

e Many , patched and

e hardware keyscrambler broken ()
e bootroms dumped ()

e permanent unpatchable bootROM exploit (&
)

What is left unexplored?

https://3dbrew.org/wiki/3DS_Userland_Flaws
https://3dbrew.org/wiki/3DS_System_Flaws
https://3dbrew.org/wiki/Main_Page
https://smealum.github.io/3ds/32c3/
https://derrekr.github.io/3ds/33c3
https://derrekr.github.io/3ds/33c3
https://sciresm.github.io/33-and-a-half-c3/

StreetPass

WHAT IS StreetPass ?

e [ocal wireless communication feature

e qutomatically communicates with nearby 3DS systems

e allows applications to exchange data (custom levels,
messages, Miis, ...)

StreetPass FOR PLAYERS

—
Crm-

StreetPass FOR PLAYERS

—
Crm-

StreetPass FOR PLAYERS

=Py =
grm) »

StreetPass FOR PLAYERS

= DRV
o7 m- R

HACKER POINT OF VIEW...

= DRV
o7 m- R

HACKER POINT OF VIEW...

<
) ¢

HACKER POINT OF VIEW...

« LB
617 e

HACKER POINT OF VIEW...

« L2
617 e

HOW DOES IT WORK?

CECD - StreetPass System Module

IPC

Application 1

IPC

Application 2

HOW DOES IT WORK?

CECD - StreetPass System Module

IPC

Application 1

Parse/Craft

IPC

Application 2

7/64

HOW DOES IT WORK?

CECD - StreetPass System Module

IPC

Application 1
StreetPass
<~

Protocol Parse/Craft

IPC

Application 2

7/64

WHAT TO ATTACK?

CECD - StreetPass System Module

IPC

Application 1
StreetPass
<~

Protocol Parse/Craft

IPC

Application 2

8/64

WHAT TO ATTACK?

(— = = =

Application 1
StreetPass
«- >

Protocol

Parse/Craft

Packets

Application 2

8/64

WHAT TO ATTACK?

CECD - StreetPass System Module

Application 1

StreetPass
< Protocol
Parse/Craft

Application 2

8/64

WHAT TO ATTACK?

CECD - StreetPass System Module

IPC

Application 1
StreetPass
-

Application 2

8/64

WHAT TO ATTACK?

CECD - StreetPass System Module

IPC

Application 1
StreetPass
<~

Protocol

IPC

Application 2

8/64

STREETPASS PROTOCOL?

Nobody really knows how it works...

STREETPASS PROTOCOL?

Nobody really knows how it works...

e 3 bit of documentation on the pairing sequence
= never been successfully reproduced...

STREETPASS PROTOCOL?

Nobody really knows how it works...

e 3 bit of documentation on the pairing sequence
= never been successfully reproduced...

e unknown encrypted protocol operating according to IEEE
802.11 standards (use AES keyslot 0x2E)

STREETPASS PROTOCOL?

Nobody really knows how it works...

e 3 bit of documentation on the pairing sequence
= never been successfully reproduced...
e unknown encrypted protocol operating according to IEEE

802.11 standards ()

LET'S DIVE IN!

11111

EQUIPMENT & TOOLS

Alfa Network

Two hacked 3DS AWUS036NHA
running Luma3DS e wifi adapter
e debugger :) e monitor mode

 bootrom dump e packet injection

IDA/Ghidra
Whichever you like
Lo reverse
engineer CECD...

To sniff and analyze
packets...

10.1/64

PAIRING

PAIRING SEQUENCE

MASTER CLIENT

Randomize Randomize
CID & MAC CID & MAC

12/64

PAIRING SEQUENCE

MASTER CLIENT

Randomize Randomize
CID & MAC ® CID & MAC

PROBE REQUEST (BROADCAST)
PROBE REQUEST (BROADCAST)

12/64

PAIRING SEQUENCE

MASTER CLIENT

Randomize Randomize
CID & MAC ® CID & MAC

PROBE REQUEST (BROADCAST)
PROBE REQUEST (BROADCAST)

o

Check client °

titles ¢
PROBE RESPONSE

12/64

12/64

PAIRING SEQUENCE

MASTER CLIENT

Randomize Randomize
CID & MAC ® CID & MAC

PROBE REQUEST (BROADCAST)
PROBE REQUEST (BROADCAST)

o

Check client °

titles ¢
PROBE RESPONSE

Check master

titles
ACTION FRAME

PROBE REQUEST

PROBE RESPONSE

12/64

Randomize
CID & MAC

Check client
titles

Derive key

PROBE REQUEST (BROADCAST)
PROBE REQUEST (BROADCAST)

PROBE RESPONSE

ACTION FRAME
PROBE REQUEST

PROBE RESPONSE

DATA (ENCRYPTED)

CLIENT

PAIRING SEQUENCE

MASTER

Randomize
CID & MAC

Check master
titles

Derive key

PAIRING v

e netlink protocol to communicate with drivers (1)
e use nl80211 to send/recv probe requests/responses
e everything else is handled by the driver)

Yay! The 3DS starts sending encrypted data!

11111

https://www.infradead.org/~tgr/libnl/doc/core.html

ENCRYPTION

44444

15/64

SESSION KEY DERIVATION

Master CID

Client CID

Master MAC address

Client MAC address

000000...

Data Key
HMAC-SHA1

Output

CECD HMAC Key

Counter

Data Key
AES-CTR 128

Output

AES Keyslot 0x2E

StreetPass CCMP Session Key

DECRYPTION v

e uses AES-CCMP
e N[80211 lets you register CCMP keys
» receive and send encrypted packets using raw sockets
and send/recv syscalls ;)

Destination Protocol Lengtl

'bb:8a:ac:.bb: IPwv4d 94 Version
-bb:8a:ac:.:bb: IPv4 94 version
-eb:35:c9:Ta: IPv4 94 version

IPwvd 94 Version
IPwd 156 Version
IPv4 94 version
IPvd a4 version

16/64

REVERSING THE
PROTOCOL

11111

18/64

59
0C

59
0C
00
FE

59
0C
00
02

EARLY ANALYSIS

59 30 00 AD

10

59
38
00
)

59
38
00
08

B8

03
B8
00
I)E

56
B8
00
00

38

00
38
00
k)

00
38
00
00

00

AD
00
10
74

AD
00
16
N0

D)
00

DE
00
00
54

DE
00
00
08

AF
00

AF
00
00
12

AF
00
00
A3

BE
00

BE
00
00
00

BE
00
00

00

00
03

00
03
11
84

00 00 0O

00
63
00

00

00
00
10

00

63 FF
0A 0O
BD CO

00
00
00

00
)
05
05

00

00
43
1A

00
12
ING
BF

00

00
00
30

00
00
00
49

00

00
00
OF

00
00
30

00

00
00
00

00
00
00

18/64

EARLY ANALYSIS

00 00 00 00 10 OO0
FF FF FE FE 74 54

00 00 00 00 1o 0O
02 08 00 00 FO 08

00
12

00
A3

00
00

00

03

03
11
84

63
00

63
0A
BD

00
10

Ty
00
CO

00
00

)
05
05

43 00
1A 30

12 00
16 00
BE 49

00 00
OF 00

00 00
30 00

18/64

59
0C

59
0C
00
0 e

59
0C
00
02

EARLY ANALYSIS

59 30 00 AD

10

59
38
00
)

59
38
00
08

B8

03
B&
00
s

56
B&
00
00

header

38

00
38
00
2

00
38
00
00

00

AD
00
10
74

AD
00
16
E'O

DE
00

DE
00
00
54

DE
00
00
08

AF
00

AF
00
00
12

AF
00
00
A3

BE
00

BE
00
00
00

BE
00
00

00

00
03

00
03
11
84

00 00 0O

00
63
00

00

00
00
10

00

63 FF
0A 0O
BD CO

data

00
00
00

00
o)
05
05

00

00
43
1A

00
12
ING
BF

00

00
00
80

00
00
00
49

00

00
00
OF

00
00
30

00

00
00
00

00
00
00

EARLY ANALYSIS

30 00 AD DE AF BE 00 00 00 00 00 00 00 0O
0C 10 B8 38 00 00 00 0O

o 00 AD DE AF BE 00 00 00 00 00 00 00 OO
0C 38 Bs 38 00 00 00 00 o3 63 00 00 43 00 00 0O
00 00 00 00 10 00 00 00 1B 00 10 00 1A 80 OF 0O
FF FE FF FEF 74 54 12 00

506 00 AD DE AF BE 00 00 00 00 00 00 00 0O
0C 38 Bs 38 00 00 00 00 3 63 FF FF 12 00 00 0O
00 00 00 00 1e 00 OO0 00 11 OA 00 05 16 00 30 0O
02z 08 00 00 FO 08 A3 E1 84 BD CO 05 BF 49

header data

data magic value

18/64

TWO PROTOCO LS!

official n

11111

TWO PROTOCOLS!

Not official names obviously...

e StreetPass Transmission Control Protocol (SPTCP)
= quite similar to TCP but for local communication
= ensures reliability
= handles data segmentation

11111

TWO PROTOCOLS!

Not official names obviously...

e StreetPass Transmission Control Protocol (SPTCP)
= quite similar to TCP but for local communication
= ensures reliability
= handles data segmentation

e StreetPass Message Transfer Protocol (SPMTP)
» sends packets over SPTCP
= handles exchanging streetpass messages

11111

22222

SPTCP HEADER & FLAGS

59 59 30 00 AD DE AF BE 00 00 00 00 00 00 00 0O
0C 10 B8 38 00 00 00 0O

21/64

SPTCP HEADER & FLAGS

SPTCP HEADER & FLAGS

30 00 AD DE AF BE 00 00 00 00 00 00 00 0O
0C 10 B8 38 00 00 00 0O

constants
Oxdead Oxbeaf

21/64

SPTCP HEADER & FLAGS

30 00 AD DE AF BE 00 00 00 00 00 00 00 0O
0C 10 B8 38 00 00 00 0O

constants flags
Oxdead Oxbeaf frame types

21/64

SPTCP HEADER & FLAGS

30 00 AD DE AF BE 00 00 00 00 00 00 00 0O
0C 10 B8 38 00 00 00 0O

constants flags
Oxdead Oxbeaf frame types

Almost the same as TCP flags...

Ox18
Ox12

ACK|PSH: O 1 1 O
SYN|ACK: O 1 0O O

BRG END ACK PSH RST

Once you know that, it's fairly easy to build the state diagram and understand the protocol...

21/64

SPTCP STATE DIAGRAM

recv: -
send: SYN

0 -INIT

send: SYN+ACK

recv: SYN
—)(2 - SYN_RECV)(e (1 - SYN_SENT)

recv: SYN r
|

\—/

recv: SYN
SRR SRS recv: ACK 3 . ESTABLISHED recv: SYN+ACK
send: -) send: ACK
recv: FIN
send: -
| FINIsH PAssIVE | | FINisH AcTiveE |
r \ r N\
‘ ‘ recv: -
¢ send: Fle
r 5 - FIN_SENT
8 - FIN_RECV_1 1§
recv: ACK
send: -
recv: FIN(+ACK)
recv: FIN recv: - send: ACK
send: - send: FIN+ACK
\ 4
6 - ACK_RECV 10 - FIN_RECV
9 - FIN_RECV_2
recv: FIN recv: FIN
send: ACK send: ACK
L J \L Yy

recv: ACK recv: -
send: -)(11 - CLOSED)‘ send: -

21.1/64

TYPICAL SPTCP EXCHANGE

SYN + ACK 3-Way
ACK Handshake

ACK
ACK

o Data

ACK + PSH Master's
ACK buffer is full

Data

Client is done
sending

21.2/64

SPTCP SECURITY

Hey it seems to be okay.

e found no deadly bug

= maybe some minor unexploitable ones
e attack surface is not that large

s SPMTP is much more interesting!

22222

SPMTP

22222

TWO TYPES OF PACKETS

There are two different magic values!

63 063 00 00 43 00 00 00 OO0 OO0 OO0 00 10 00 00 0O
1B 00 10 00 1A 80 OF 00 FF FF FF FF 74 54 12 00

ol o1 00 00 80 30 00 00 00 1o O5 00 00 00 Q0 OO
01 00 00 00 o0 o0 00 00 oC 30 00 00 48 OD 00 0O
04 23 00 00 00 16 05 00 OO0 00 OO0 00 OO0 00 Q00 OO
00 00 00 00 12 1D AA 64 90 76 5A CB 00 0O

24/64

TWO TYPES OF PACKETS

There are two different magic values!

00 00 43 00 00 00 00 00 00 00 10 00 00 0O
1B 00 10 00 1A 80 OF 00 FF FF FF FF 74 54 12 00

00 00 80 30 00 00 00 16 05 00 00 00 00 OO
01 00 00 00 o0 o0 00 00 oC 30 00 00 48 OD 00 0O
04 23 00 00 00 16 05 00 OO0 00 OO0 00 OO0 00 Q00 OO
00 00 00 00 12 1D AA 64 90 76 5A CB 00 0O

24/64

24/64

TWO TYPES OF PACKETS

There are two different magic values!

00 00 43 00 00 00 00 00 00 00 10 00 00 0O
1B 00 10 00 1A 80 OF 00 FF FF FF FF 74 54 12 00

00 00 80 30 00 00 00 16 05 00 00 00 00 OO
01 00 00 00 o0 60 00 00 oC 30 00 00 48 OD 00 0O
04 23 00 00 00 16 05 00 OO0 00 OO0 00 OO0 00 Q00 OO
00 00 00 00 12 1D AA 64 90 76 5A CB 00 00 ...

CECD message fFile magic value!

we reached application data!

INFO PACKETS

A bunch of data sent here...

22222

INFO PACKETS

A bunch of data sent here...
e fixed size data

= nothing Fancy...
= Friend Code, MAC address, date & time, etc.

22222

INFO PACKETS

A bunch of data sent here...

e fixed size data
= nothing fancy...
= Friend Code, MAC address, date & time, etc.
e variable size data
= application list, message box metadata list, etc.
= much more interesting! any buffer overflow in sight?

22222

BOX METADATA LIST PARSING

Where is the deadly bug here?

copy box info list(box i1nfo list* dst, box info list* src)

memcpy (dst, src, (box 1nfo list header));
(dst->header.magic == 0x6565)

{
dst->box count = dst->header.count;

(1 = 0; 1 < dst->box count; 1++)
memcpy (&dst->box info[1i], &src->box info[1i],
(box 1nfo entry));

26/64

BOX METADATA LIST PARSING

Where is the deadly bug here?

(1 = 0; 1 < dst->box count; 1++)
memcpy (&dst->box info[1i], &src->box info[1i],
(box 1nfo entry));

26/64

BOX METADATA LIST PARSING

Where is the deadly bug here?

(i = 0; i< ;o1+t)
memcpy (&dst->box info[1i], &src->box info[1i],
(box 1nfo entry));

26/64

BOX METADATA LIST PARSING

Where is the deadly bug here?

= 0; 1 < ;14
&dst->box 1nfol1i], &src->box 1infol[1i],
(box 1nfo entry));

(1
(

memcpy

Is it exploitable?

66666

27/64

BOX METADATA LIST PARSING

Stack Frame
(>0x400 bytes)

return address

E memcpy
«—
«—

packet header

Packet Buffer
(0x400 bytes)

BOX METADATA LIST PARSING

packet header

E memcpy
Packet Buffer
(0x400 bytes)
[)
o
Stack Frame °

(>0x400 bytes)

. Controlled data

. Uncontrolled data?

27/64

BOX METADATA LIST PARSING

packet header

Packet Buffer
(0x400 bytes)

Stack Frame
(>0x400 bytes)

®h mannnn!

—

«—
«—

. Controlled data

. Uncontrolled data?

27/64

BOX METADATA LIST PARSING

Packet Buffer
(0x400 bytes)

Stack Frame
(>0x400 bytes)

22222

HOW DO WE EXPLOIT IT?

NX Bit Stack Cookie ASLR
/

22222

HOW DO WE EXPLOIT IT?

NX Bit Stack Cookie ASLR
/

1.embed a small ROP-chain in the box list

22222

HOW DO WE EXPLOIT IT?

NX Bit Stack Cookie ASLR
/

1. embed a small ROP-chain in the box list
2.send another one in a packet

22222

HOW DO WE EXPLOIT IT?

NX Bit Stack Cookie ASLR
/

1. embed a small ROP-chain in the box list
2.send another one in a packet
3. stack-pivot to the second chain

22222

HOW DO WE EXPLOIT IT?

NX Bit Stack Cookie ASLR
/

1. embed a small ROP-chain in the box list
2.send another one in a packet
3. stack-pivot to the second chain

RCE in cecd v

22222

HOW DO WE EXPLOIT IT?

NX Bit Stack Cookie ASLR
/

1. embed a small ROP-chain in the box list
2.send another one in a packet
3. stack-pivot to the second chain

RCE in cecd v
This one was easy... let's move on!

22222

MESSAGE BOX PACKETS

o list of StreetPass messages (max 64)
e stored in temporary files ("TMP XX")
s [et's call them "TMP Box"

e parsed once the communication is over

22222

MESSAGE BOX PACKETS

o list of StreetPass messages (max 64)
e stored in temporary files ("TMP XX")
s [et's call them "TMP Box"

22222

TMP BOX FILE LOADING

load TMP file (tmp box* dst, tmp file* file buffer,
file size) {

message* current msg = file buffer->messages;
(dst->header.msg count > 1 && end of file > current msg)
msg slze = message get size(current msg);
dst->msg pointers[i1] = current msg;
dst->msg sizes[1] = msg size;
current msg += msg size;
1++;
glob tmp box alloc mode = POINTER MODE;
J
dst->header.msg count = 1;

0;

30/64

TMP BOX FILE LOADING

load TMP file (tmp box* dst, tmp file* file buffer,
file size) {

message* current msg = file buffer->message
(dst->header.msg count > 1 && end of
msSg size = message get size (cur

dst->msg pointers[i1] = current msg;
dst->msg sizes[1] = msg size;
current msg += msg size;
1++4;
glob tmp box alloc mode = POINTER MODE;

\ /
dst->header.msg count = i; nuuT“En 0"[
0; |

30/64

TMP BOX FILE LOADING

(&& end of

dst->msg pointers[i] = current msg;
dst->msg sizes[1] = msg size;

ANOTHER ONE

30/64

TMP BOX OVERFLOW

load _tmp_file

Stack after parsing

TMP File on Heap

inters[64
msg_pointers[64] File Buffer

(<=0x19000 bytes)

msg_sizes[64]

. Controlled data

. Partially controlled / uncontrolled data

return value

31/64

TMP BOX OVERFLOW

Stack after parsing load_tmp_file

TMP File on Heap

msg_pointers[64]

File Buffer
(<=0x19000 bytes)

ptr to message 65

msg_sizes[64]

message 65

size of message 65

Controlled data

return value . Partially controlled / uncontrolled data

31/64

32/64

WHAT CAN WE DO?

load TMP file (tmp box* dst, tmp file* file buffer,
file size) {

message* current msg = file buffer->messages;
(dst->header.msg count > 1 && end of file > current msg)
msSg slize = message get size (current msqg);
dst->msg pointers[i1i] = current msg;
dst->msg sizes[1] = msg size;
current msg += msg size;
1++;
glob tmp box alloc mode = POINTER MODE;
J
dst->header.msg count = 1;

0;

WHAT CAN WE DO?

(tmp box* dst, tmp file* file buffer,
file size)

message* current msg = file buffer->messages;
(dst->header.msg count > 1 && end of file > current msg) {
msg slze = message get size(current msg);
dst->msg sizes[1l] = msg size;
current msg += msg size;
1++;
glob tmp box alloc mode = POINTER MODE;
}
dst->header.msg count = 1;
07

J

The "size" of the last message can be an arbitrary value!
We can totally control only one 32-bit value on the stack...

32/64

WHAT TO OVERWRITE?

The only interesting one you can overwrite without crashing...

parse all TMP ()
[..]
tmp box tmp box;
critical section* lock;
[]

(1 = 0; 1 < TMP file count; 1++) {
enter critical section(&lock, &global lock);
file buffer = malloc(TMP file size[1]);
[]
parse TMP file(&tmp box, file buffer, TMP file size[1l]);
write messages from tmp box(...);

[]
free tmp box (tmp box);
leave critical section(&lock);

[...]

33/64

WHAT TO OVERWRITE?

The only interesting one you can overwrite without crashing...

enter critical section (& , &global lock);

parse TMP file(&tmp box, file buffer, TMP file size[1l]);

leave critical section (&) 7

33/64

CRITICAL SECTION?

leave critical section(critical section** lock ptr) {
*lock ptr->count--;

-

34/64

CRITICAL SECTION?

*lock ptr->coun t—-—>

By overwriting lock ptr we can decrement a value at an
arbitrary address!

44444

ALLOCATION MODES?

free tmp box (tmp box* box) {

(box->header.msg count && glob tmp box alloc mode != POINTER MODE) {
(1 = 0; 1 < box->header.msg count; 1++) {
(box->msg pointers[i]) {

free (box->msg pointers[1i]);
box->msg poilnters[1] = ;

35/64

33333

ALLOCATION MODES?

glob tmp box alloc mode != POINTER MODE

free (box->msg pointers[1i]);

We can decrement glob_tmp box alloc mode...
We fully control data pointed by msg_pointers...

We can make it free some crafted Fake chunks!

WE HAVE A PROBLEM...

load TMP file (tmp box* dst, tmp file* file buffer,
file size) {

[...]

memcpy (dst, file buffer, (tmp box header));
(dst->header.size != file size)
OxCB8E1080A;

(dst->header.msg count > 1 && end of file > current msg)
[...]
glob tmp box alloc mode = POINTER MODE;
J
[...]

36/64

WE HAVE A PROBLEM...

load TMP file (tmp box* dst, tmp file* file buffer,
file size) {

[...]

memcpy (dst, file buffer, (tmp box header));
(dst->header.size != file size)
OxCB8E1080A;

(dst->header.msg count > 1 && end of file > current msg) {

36/64

WE HAVE A PROBLEM...

memcpy (dst, file buffer, (tmp box header));
(dst->header.size != file size)
OxCB8E1080A;

We could bypass this by crafting an invalid header, but
an error is returned...

36/64

WHATEVER...

parse all TMP ()
[..]
tmp box tmp box;
critical section* lock;
[..]

(1 = 0; 1 < TMP file count; 1++) {
enter critical section(&lock, &global lock);
file buffer = malloc(TMP file size[1]);
[]
parse TMP file(&tmp box, file buffer, TMP file size[1]);
write messages from tmp box(...);

[..]
free tmp box (tmp box);
leave critical section (&lock);

[...]

37/64

WHATEVER...

parse TMP file(&tmp box, file buffer, TMP file size[1]);

...they do not check the return value anyway!

37/64

WHAT CAN WE DO SO FAR?

33333

WHAT CAN WE DO SO FAR?

e send a first TMP box
s overwrite the lock & decrement the alloc mode

33333

WHAT CAN WE DO SO FAR?

e send a first TMP box
= overwrite the lock & decrement the alloc mode

e send a second TMP box (invalid header)
m parser returns early so msg_pointers is not updated
= 3ll pointers in msg_pointers are freed

33333

WHAT CAN WE DO SO FAR?

e send a first TMP box
s overwrite the lock & decrement the alloc mode
e send a second TMP box (invalid header)

33333

WHAT CAN WE DO SO FAR?

e send a first TMP box
s overwrite the lock & decrement the alloc mode
e send a second TMP box (invalid header)

...which gets reallocated for the second TMP file!

33333

WHAT CAN WE DO SO FAR?

e send a first TMP box
s overwrite the lock & decrement the alloc mode
e send a second TMP box (invalid header)

...which gets reallocated for the second TMP file!
So it Frees pointers to our controlled buffer!

33333

WHAT DO WE DO NEXT?

We can craft fake heap chunks which will get freed...

33333

WHAT DO WE DO NEXT?

We can craft fake heap chunks which will get freed...
e the 3DS heap is insecure

= classic unsafe-unlink
= one arbitrary write for each chunk you free

33333

WHAT DO WE DO NEXT?

We can craft fake heap chunks which will get freed...

e the 3DS heap is insecure
s classic unsafe-unlink
= one arbitrary write for each chunk you free
e rewrite the heap free-list head pointer
= make it point to the stack
= next malloc call will return a pointer to the stack!

33333

WHAT DO WE DO NEXT?

We can craft fake heap chunks which will get freed...

e the 3DS heap is insecure
s classic unsafe-unlink
= one arbitrary write for each chunk you free
e rewrite the heap free-list head pointer
= make it point to the stack
= next malloc call will return a pointer to the stack!

The third TMP file buffFer will be allocated on the stack!

33333

EXPLOIT SCENARIO

TMP File 1

message 64+n

TMP Box Alloc Mode
return value POINTER MODE

40/64

EXPLOIT SCENARIO

stk | load tmp fie TP File 1

message 64+n

lock ~> ptr to alloc mode
I

. From TMP File 1

TMP Box Alloc Mode

40/64

EXPLOIT SCENARIO

stk Free Chunk

lock ~> ptr to alloc mode
I

. From TMP File 1

TMP Box Alloc Mode

40/64

40/64

EXPLOIT SCENARIO

stk Free Chunk

lock ~> ptr to alloc mode
I

. From TMP File 1

TMP Box Alloc Mode

EXPLOIT SCENARIO

lock ~> ptr to alloc mode
] TMP Box Alloc Mode
. From TMP File 1 i

40/64

EXPLOIT SCENARIO

“ load_tmp_file Realloc Chunk TMP File 2

lock ~> ptr to alloc mode
] TMP Box Alloc Mode
. From TMP File 1 i

40/64

EXPLOIT SCENARIO

free

<«—| free-list head

lock ~> ptr to alloc mode
] TMP Box Alloc Mode
. From TMP File 1 i

40/64

40/64

EXPLOIT SCENARIO

TMP File 3
_tweRies

TMP Box Alloc Mode

POINTER MODE - 1

SECOND RCE IN CECD v

This one was trickier!

ANOTHER ONE

42/64

44444

AGAIN?

There is another one in the message parser...

44444

AGAIN?

There is another one in the message parser...
which is a SDK function...

44444

AGAIN?

There is another one in the message parser...
which is a SDK function...
so any application using StreetPass is vulnerable!

44444

AGAIN?

There is another one in the message parser...
which is a SDK function...
so any application using StreetPass is vulnerable!

This problem is left as an exercise for the reader...

43/64

THIRD RCE IN CECD v

Code execution in any application using StreetPass v
Persistent backdoor in CECD v

44444

POST-EXPLOITATION

44444

SANDBOX ESCAPE

CECD does not have much privileges... we want more!

ARM9 "Security Processor"

Process9

Signature checks

ARMS9 Kernel :
Encryption

etc.

Kernel Space

User Space

46/64

TAKING OVER THE HOME
MENU

OUTBOX INDEX READER

Another SDK vulnerability!

index file size;
CECD open file(..., &size);
[...]
* 1ndex buffer = malloc(0x800);

[...]

CECD read file(..., 1ndex buffer, size, ...);

46.2/64

OUTBOX INDEX READER

Another SDK vulnerability!

index file size;
CECD open file(..., &size);
[...]

malloc

[...]

CECD read file(..., 1ndex buffer, size, ...);

46.2/64

OUTBOX INDEX READER

Another SDK vulnerability!

index file size;

CECD open file(..., &size);
[...]
malloc
[...]
CECD read file (..., 1ndex buffer, size, ...);

Enough to take over the home menu!

...and any application that uses this function...

46.2/64

ESCAPE TO THE HOME
MENU 4

ccccc to the internet v
Access to the SD ¢ d v/
Drawing on screen

TAKING OVER THE ARM11
KERNEL

44444

IPC: STATIC BUFFERS

How does one send data from a sender process to a receiver process?

48/64

IPC: STATIC BUFFERS

How does one send data from a sender process to a receiver process?

e for reqular large buffers
= map parts of the sender's memory into the receiver's

48/64

IPC: STATIC BUFFERS

How does one send data from a sender process to a receiver process?

e for reqgular large buffers
= Map parts of the sender's memory into the receiver's
e for reqular small buffers
m receiver can register some static buffers
= copy from the sender's buffer to the receiver's buffer
done by the ARM11 kernel

44444

44444

IPC: STATIC BUFFERS

How does one send data from a sender process to a receiver process?

e for reqgular large buffers
= map parts of the sender's memory into the receiver's
e for regular small buffers
= receiver can register some static buffers
= copy from the sender's buffer to the receiver's buffer
done by the ARM11 kernel
e for buffers sent to the ARM9 (over PXI)
= ARM11 kernel writes pairs of {physical address, size} to
static buffers for the ARM9 side to understand
= copy of data done by Process9 (ARM9 side) using the
given physical address

LAZYPIXIE

Vulnerability found by

How does the kernel handle the "PXI buffers" case?
1. check alignment of the destination static buffer
2. check size of the destination static buffer
3. check permissions For the source buffer

5. cache operations, etc.
6. copy metadata to the destination static buffer

44444

https://twitter.com/TuxSH

LAZYPIXIE

Vulnerability found by

How does the kernel handle the "PXI buffers" case?
1. check alignment of the destination static buffer
2. check size of the destination static buffer
3. check permissions For the source buffer

5. cache operations, etc.
6. copy metadata to the destination static buffer

44444

https://twitter.com/TuxSH

LAZYPIXIE

Vulnerability found by

How does the kernel handle the "PXI buffers" case?
1. check alignment of the destination static buffer
2. check size of the destination static buffer
3. check permissions for the source buffer

5. cache operations, etc.
6. copy metadata to the destination static buffer

Just overwrite the MMU table and make the kernel

44444

https://twitter.com/TuxSH

ARM11 KERNEL HAS FALLEN!

... but we still want more!

ARM9 "Security Processor"

Process9

Signature checks
ARM9 Kernel :
Encryption

etc.

ARM11 "Userland Processor”

50/64

ROAD TO FULL SYSTEM
CONTROL

s the best idea

SAFEHAX

e race condition in firmware header parsing
= take over ARM9 if you control ARM11 kernel

e fixed in version 9.5.0 for reqgular (native) firmware
= remains unfixed in safe mode firmware

e mitigated in version 11.3.0and 11.4.0

55555

SAFEHAX

e race condition in firmware header parsing
» take over ARM9 if you control ARM11 kernel

e fixed in version 9.5.0 for reqgular (native) firmware
= remains unfixed in safe mode firmware

e mitigated in version 11.3.0and 11.4.0

Mitigated? Not Patched?

=

55555

SAFEHAX

e race condition in firmware header parsing
» take over ARM9 if you control ARM11 kernel

e fixed in version 9.5.0 for reqgular (native) firmware
= remains unfixed in safe mode firmware

e mitigated in version 11.3.0and 11.4.0

Mitigated? Not Patched?

=

How do they prevent it?

55555

SAFEHAX "MITIGATION"

55555

SAFEHAX "MITIGATION"

e 3dd a global boolean flag on ARM9 side
= set to 1 = panics when trying to launch safe mode
Firmware

55555

SAFEHAX "MITIGATION"

e 3dd a global boolean flag on ARM9 side
= set to 1 = panics when trying to launch safe mode
Firmware
e flag set to 1 when applications are launched
= except for home menu and system modules

55555

SAFEHAX "MITIGATION"

e 3dd a global boolean flag on ARM9 side
= set to 1 = panics when trying to launch safe mode
Firmware
e flag set to 1 when applications are launched
= except for home menu and

55555

SAFEHAX "MITIGATION"

e 3dd a global boolean flag on ARM9 side
= set to 1 = panics when trying to launch safe mode
Firmware
e flag set to 1 when applications are launched
= except for home menu and

...with a ARM11 kernel exploit we can leverage safehax!

55555

54/64

FULL CONTROL RCE v

44444

FULL CONTROL RCE v
WITHOUT USER INTERACTION v

44444

FULL CONTROL RCE v

WITHOUT USER INTERACTION v
ON ANY FIRMWARE VERSION v

at the time this was developed... fixed on version 11.12!

44444

DEMO TIME!

55555

e v e

—aw

LT

Créer un dossier

56/64

SOME TAKEAWAYS

e you'd better check your return values
e don't hide behind cryptography
= your encryption might get broken faster than you think
e 3ssessing hard-to-reach Features is arduous but can lead
to amazing (yet dangerous) results!
e fix you flaws
= don'timplement poor mitigations...
e there're still things to do on 3DS!
= 3mazing system to work on
= check out the documentation on |

55555

https://3dbrew.org/

ACKNOWLEDGEMENTS

. . LazyPixie, joint effort on leveraging safehax

. . recurrent support, help with so many
things it would not fit in the slide...

. :amazing documentation

. > allowing me to talk about these great things

and patching the flaws

CONTACT

I'm a first year master's degree student looking for a great research internship!

Twitter:

Email:

55555

https://twitter.com/TuxSH
https://twitter.com/hedgeberg
https://3dbrew.org/
https://hackerone.com/nintendo
https://twitter.com/MrNbaYoh
http://localhost:8000/?fragments=true

