TortoiseSVN

A Subversion client for Windows

Version 1.6.16

Stefan Kiing
Lubbe Onken
Simon Large

TortoiseSVN: A Subversion client for Windows: Version

1.6.16
by Stefan Kiing, L Gibbe Onken, and Simon Large

Published 2011/01/21 21:21:17 (r20750)

Table of Contents

= =0T PP Xi
O 8 [T oot PP Xi
22 L o [o T o[- Xi
3. TOMOISESVIN 1S TTEE! ettt e e e e e Xii
o .42 T Xii
5. ACKNOWIEAGMENESiiieeii e e e e e e e e e e e ean s Xii
6. Terminology used in this dOCUMENEcoivniiiii e e e Xii

O 1 oo (0T 1o T PSPPSR 1
1.1 What iS TOMOISESVINT ..ttt e et e e 1
1.2, TOrOISESVIN'S HIStONY ovuiiiiiciii e e e e e e e eens 1
1.3, TOrtOISESVN'S FEAIUMNESceevuieeieii e ettt e ettt e e et e et s e e e et s e e e eatneeeeranaeeees 1
1.4, Installing TOMOISESVNiiiiiiiii e e e e e e e e e e eaens 2

1.4.1. SyStemM reQUITEIMENES ...uiee e e e e e e e e e e e e e e e e e eanaeees 2
142, INSEAHBLION L.uuiieiii e 3
1.4.3. Language PacKSeeuuiiiiiiiiie e e 3
144, SPEIICNECKESneee i 3

2. Basic Version-Control CONCEPLSuuveuueeeiieii e et et eeaaneeeanas 5
200 B I 1Y = o101 1 (o 5
2.2.Versioning MOGEIScoouniiiiici e e e e 5

2.2.1. The Problem of FIle-Sharingccooieiuiieiiiieiii e e e e e e 6
2.2.2. The Lock-Modify-Unlock SOIULIONccevuiiiiiiii e 6
2.2.3. The Copy-Modify-Merge SOlULIONoeveiiiiiiicieec e 7
2.2.4, What does SUDVErSION DO?iiiiiiiiiiiiiie e e 10
2.3, SUBVErSION IN ACHON .eeiiiiei et e e et e e s 10
2.3.1. WOIKING COPIES .vueeenieiii et et e et et eaanas 10
2.3.2. REPOSITONY URLS ...ovuiiiiiiii e e e e e e e e e e e e e e 12
2.3.3. REVISIONS ...ttt ettt e et e ettt e e et e et e et aeat e e 12
2.3.4. How Working Copies Track the REPOSITONYcccvuvevviiiiiieiiii e, 14
T 0] 1= Y P 14

G I S L= o 01] (Y 16

TN I = 001 1 (o YA Ot == 1 o] o 16
3.1.1. Creating a Repository with the Command Line Client.............ccoooeviieiiinnennnnn. 16
3.1.2. Creating The Repository With TortoiSESVNcovveiiiiiiiiiiiiieeieeeve e 16
3.1.3. Local Access to the REPOSITONYuvvivnieiiiei e 17
3.1.4. Accessing a Repository on a Network Sharecc.oveveiviiiiieei e, 17
3.1.5. REPOSITONY LayOULcouniiiiieiii e e e e e e e e e e anas 18

G L 001] (o YA =T ot (| o P 19

CRCIIS = A V= g [0 [l g00 Q=] o] =P 20

34, ChECKOUL LINKS ..eeuiieiiiis ettt et e e et e e et e e e b 20

3.5. ACCeSSING the REPOSITONY ...cevuiiiiicii e e e e e e e e e e e ees 21

3.6. SVNSEIVE BASEO SEIVEYiiiiiiiiieiiii ettt e et e e e 21
I3 G0 I 1 01 (oo 1 o o [P 21
3.6.2. INSLAlING SUNSEIVEniiiiciii et e e e e e e eanaeees 21
3.6.3. RUNNING SVNSEIVE ..ottt et e e e e e e e e e e eanas 22
3.6.4. Basic Authentication With SVNSEIVEcooviiiiiiiiiiii e, 23
3.6.5. Better Security With SASL ... 24
3.6.6. Authentication With SVN+SS ... 26
3.6.7. Path-based Authorization With SVNSEIVEcoeiviiiiiiiii e, 26

3.7. APAChE BASE SEIVEYuuiiiiieiii e e e e e e e a e 26
I A5 1 01 (oo 1 o o [P 26
3.7.2. InStalling APaChouiii i 27
3.7.3. INStAlling SUDVEISION .. ccuuiiiiiiciieee e e e e e e e e 27
G A N @ g o 11 = (o) o P 28
3.7.5. MUItIPIE REPOSITONES .. .evvieeeiceiie e e e e e e 30
3.7.6. Path-Based AULNOMZAiONoiveiiiiiiiii e 30

TortoiseSVN

3.7.7. Authentication With a Windows DOMainooeieiiiiiiiiiinieciiii e 31
3.7.8. Multiple AUthentiCation SOUMCESieieuuiieiiiiieee e 32
3.7.9. Securing the server With SSLcoooiiiiii 33
3.7.10. Using client certificates with virtual SSL hOStSccovnviiiiiiiiiiiiieee 35

4. Daily USE GUIE ... ettt ettt ettt e e et e e et e e e ena e eees 37
A1, GEING SEAME ... ceeeti et ettt e e e e e et e e e e 37
411 1CON OVEITAYS ...ttt ettt e 37
4.0.2, CONEXE MBNUS ...ceeiierie ettt e e e e e e 37
4.1.3. Drag @0 DIOPuueeeeiieeeiei ettt 39
4.1.4. COMIMON SNOMCULS ... eeeetieee et e et et e et e et e et e e e et e e e 40
A4.1.5. AULNENTICEIION ...ceeveeeiiie et et e et e e eebe e e eens 40
4.1.6. Maximizing WINCGOWSciiiiiiieiiiii et e e e eeen e e 41

4.2. Importing Data INt0 A REPOSITONYueieeeiieiiiie ettt 41
A T 1 1010 o APPSR 41
4.2.2. IMPOIT N PLACE ..ot 43
4.2.3. SPECIAl FIIES .. 43

4.3. Checking Out A WOIKING COPY ... cevruneieitieeeiiae ettt e e e e e e eneans 43
4.3.1. CheckoUt DEPLNcovtiiiii e 44

4.4. Committing Your Changes TO The REPOSITONYocevuviieiiiiiiieeeiiie e 46
4.4.1. The COMMIt DIalOguoeeeeeiiiiiii e 46
A.4.2. Change LiStS .. .cceeiiieiiii et et 48
4.4.3. Excluding Items from the Commit Listccouviiiiiiiiiiiii e, 48
4.4.4. COMMIt LOG MESSAgES ...c.vvuiiiiiii ettt ettt 48
4.4.5. COMMIT PrOGIESSueiieti ettt ettt e et e ettt e e ee e eeeeba e eeens 50

4.5. Update Y our Working Copy With Changes From Others...........cooooiviiiiiiiiiiiiiieeenns 51
4.6. RESOIVING CONFIICES ..eevuieiiei et 52
4.6.1. File CONFIICES ..oeiuiiieiii e e 53
4.6.2. Tree CONFIICES ...ceeeei e e e 53

4.7. Getting Status INFOMMEBLIONcveeeeeiei e 56
A.7.1. 1CON OVEITAYS ...ttt ettt e e et e 56
4.7.2. TortoiseSVYN Columns In Windows EXPIOrercoveveviiniiiiiiiieciiiieeceii, 58
4.7.3. Local and REMOLE SEALUSccevveieeiiiii et 58
A.7.4. VIewing DiffS ..o 60

A.8. ChanQe LiStS ..eeetueiiiiii ettt et 61
4.9. REVISION LOG DIAlOQ ..eevueeiiiieeiii ettt 63
4.9.1. Invoking the Revision Log Dialogoovveviiiiiiiiiiiecciiiecei e 63
4.9.2. ReVISION LOG ACLIONScoitiieiiiii ettt 64
4.9.3. Getting Additional INfOrMELIONiiiiiiiiieiiiii e 64
4.9.4. Getting MOre 10g MESSAgEScevuueieiii et e et e et e et e et eeeai e eees 68
4.9.5. Current Working Copy REVISIONuiiiiiiiiieiiiii e 69
4.9.6. Merge Tracking FEaIUIESc.uuiiiiii e 69
4.9.7. Changing the Log Message and AULNOTcccuiiiiiiiiiieiii e 70
4.9.8. Fltering LOG MESSAJEScevviieiiiii ettt 71
4.9.9. Statistical INFOrMELTIONoiiiiiieiii e 71
4.9.10. OffliNE MOGEvneieiii et 75
4.9.11. Refreshing the VIBWoouuiiii e 75

4.10. VIiewing DIifferenCeSoiiiiii e 75
4.10.1. File DIiffErENCESttt e 76
4.10.2. Line-end and Whitespace OPLioNScuuuiiiiiiieiiiiiieeeiiie et e e eeeeens 77
4.10.3. Comparing FOIAE'Scoouiieiiiii e 77
4.10.4. Diffing Images Using Tortoisel Diffc.oiiiiiiiiii e 78
4.10.5. External Diff/Merge TOOISuiiiiiiiiiieiii e 79
4.11. Adding New Files ANd DIr€CLOMEScccuvuieiiiiiiie e 80
4.12. Copying/Moving/Renaming Files and FOlAErsccooiviiiiiiiiiiii e 81
4.13. Ignoring Files ANd DIr€CIOMESceieiiieeiii e 82
4.13.1. Pattern Matching in 1gnore ListScccuuuiiiiiiiiiiiii e 83

4.14. Deleting, Moving and RENAMINGcoeuuuuiiiiiieieii e eeaans 84
4.14.1. Deleting files and fOlAerSuui i 84

TortoiseSVN

4.15.
4.16.
4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

4.23.

4.24.
4.25.

4.26.
4.27.
4.28.

4.29.
4.30.

4.14.2. Moving files and fOlAerscooeuiiiiiii e 85
4.14.3. Changing case in afilenameoooooiiiiiiiii e 86
4.14.4. Dealing with filename case CONfliCtSoovvvviiiiiiii e, 86
4.14.5. Repairing File RENAIMESooiiiiiiiiii e 86
4.14.6. Deleting Unversioned FileSviiiiiiiiiiiii e 87
UNAO CRANGES ...ttt ettt ettt e et e eeenas 87
CIBANUD ...ttt e et e ettt e e e e 88
ProjECt SELLINGS ... eeve ettt et e 88
4.17.1. SUDVErSION ProPErtiEs ... coeeeiiceeii e e 89
4.17.2. TortoiseSVN Project PrOpErtieSccouuuiiiiiiieeeii e 92
EXEEINGl TTEMS ... 94
4.18.1. EXEErNal FOIEIS ...cooviiieiii e 94
4.18.2. EXEEINal FIlES .oouiiiiii e 97
Branching / TaOUINGceeeueeieii ettt e e 97
4.19.1. Creating @ Branch oF Tagcccuvuiiiiiiiie e 97
4.19.2. To Checkout OF t0 SWItCh... ...ccovuiiiiiii e 99
YT £ 1o To [P PRSPPI 100
4.20.1. Merging a Range of REVISIONSviiiiiiiiiiiii e 101
4.20.2. Reintegrate abranCh ... 103
4.20.3. Merging TWO Different TreeSccouuuiiiiiiii e 104
4.20.4. MEIQE OPLIONSeevtieeiiii ettt e ettt et e et e e e e e 105
4.20.5. Reviewing the Merge RESUILScc.uuiiiiiiiiiiiii e 106
4.20.6. MG TraCKiNGeeeeitieeeiiie ettt 107
4.20.7. Handling Conflicts during Mergevveiiiiiiiiiiieecei e 107
4.20.8. Merge a Completed Branchoooveiiiiiiiiiiii e 108
4.20.9. Feature Branch MaintenanCeuveiiiiiiieiiii e 109
LOCKING ettt 109
4.21.1. How Locking Works in SUBVErSIONcocuviiiiiiiiiiieiiiicce e 109
4.21.2. GEIING 8 LOCK ...t 110
4.21.3. REIEASING A LOCK ..eevtniiiiiiiei ettt 111
4.21.4. Checking LOCK SHBLUScccvvuiiiiiiiieiiiii e e 111
4.21.5. Making Non-locked Files Read-Onlycooovviiiiiiiiiiiiiiii e 112
4.21.6. The Locking HOOK SCIPESccevveniiiiiiie et 112
Creating and AppPlYiNg PalCheSc.uuiiiiiiiic e 112
4.22.1. Creating aPatCh Fileiiiiic e 112
4.22.2. Applying @ PatCh Fileccoouiiiii e 113
Who Changed WhiCh LiNE?oooiiiiiiii e 114
4.23.1. Blame fOr FilES .. .o 114
4.23.2. Blame DifferENCeSuuiiiiii e 116
The REPOSITONY BIrOWSES ...cceuiiiiiiiiiee ettt e s 116
REVISION GIaphSouiiieiii e 118
4.25.1. ReviSion Graph NOGEScccouuiiiiiiie e 119
4.25.2. Changing the VIBWuuiiiiiii e 120
4.25.3. USING the Graphuiiiiii e 122
4.25.4. Refreshing the VIBW ... 122
A.255. Pruning TIEES .. .ceeii ettt et e 123
Exporting a Subversion Working COPYc.uuueveeriieieiiiaeeeii e 123
4.26.1. Removing a working copy from version controlccccoeveeviivinneeiinnnnn. 125
Relocating 8 WOrKiNg COPYueeeetieeiiii ettt e e e e e e e eees 125
Integration with Bug Tracking Systems / ISsue Trackerscocuvvveieiinieiiiineeeennnn, 126
4.28.1. Adding Issue NUmMbersto LOg MESSAESuuevervinieiiiii e 126
4.28.2. Getting Information from the ISsue Trackerovvveeiiiieiiiiiieicii e, 129
Integration with Web-based ReEPOSITOrY VIBWEN'Sccouuuiiiiiiiieiiiiiieeeeii e 130
TOMOISESVIN'S SEHINGS ... ettt 130
4.30.1. GENEral SEHLINGS .. eevvueieitiiee ettt ettt 131
4.30.2. ReviSion Graph SEttiNGSoveeeeiiiiii e 138
4.30.3. 1CON OVENAY SEINGSuieeeitiieeeeii et e 140
4.30.4. NEWOIK SEIINGS ... eeeeiiieeeeii et e 143

TortoiseSVN

4.30.5. External Program SEiNGSooeeveieiiiiieeeiii e 145

4.30.6. SaVEd Daa SEINGS ... ceeerieeeeii ettt ettt 148

4.30.7. LOG CACNING ..evtueiiiiii ettt 149

4.30.8. Client Side HOOK SCIPES ...cevvuneiiiiii ettt 152

4.30.9. TOrtoiseBlame SEINGScuuuieiiitiieeieii et 156

4.30.10. REGISIIY SEIINGS ... eeeeriieeteiie ettt e e 156

4.30.11. Subversion Working FOIAErSoveiiiiiiiiiiii e 158

A.31. FINAL SEEP ittt ee 158

5. The SUDWCREV PrOOIaIMccuuuiiiiiie ettt ettt e et e et eeeaaa s 159
5.1. The SUBWCRev Command LiNeieiiiiiieiiiiiiiee et 159

5.2. K@YWOrd SUDSHTULIONiieieieeeii et 159

5.3. KeYWOrd EXaMPIE ...t 160

5.4, COM INEEITACE ...t e e e e 161

6. |BUGLragProVider INEITaCEoue e 164
6.1. The IBugtragProvider interfaceooeuuuiiiiiiii e 164

6.2. The IBugtragProvider2 interfatecoouuu it 165

A. Frequently Asked QUESEIONS (FAQ)ieeiiuiiiiii ettt 168
B. HOW DO L..e ittt 169
B.1. Move/copy alot Of fileS 8l ONCEuuiiiiiiiiiiii e 169

B.2. Force users to enter alog MESSA0Ecuvuneiiiii et 169
B.2.1. HOOK-SCHPt ON the SEIVEN ...uiiiiiiii et 169

B.2.2. ProjECt PrOPEITIESieeet ettt ettt ettt e eaeas 169

B.3. Update selected files from the repoSItoryvoieeiiieiiiii e 170

B.4. Roll back (Undo) revisions in the repoSItorycccuueveieiiiiiieiiiiiieeeii e 170
B.4.1. Use the revision 100 dialogocoevuiieiiiiiici e 170

B.4.2. Usethe Merge dialogooeeueniiiiiiieceii e 170

B.4.3. Use svNAUPT i [T e i 171

B.5. Compare two revisions of afile or folderooveiiiiiiiiiiii 171

B.6. Include a commON SUD-PIrOJECTcccuuuiiiiiii e 171
B.6.1. USE SVNMIEXIEINAIS .. .eiei ettt et e 171

B.6.2. Use anested WOrKiNg COPYccevruueiiiiiieiiiii ettt eeeens 172

B.6.3. Use arelative [0CAHONoiiiiiiieiiiis e 172

B.7. Create a ShOrtCut t0 @ rePOSITONYccuuueeiiit et ee et e et e et e e et e e eeni e eens 172

B.8. Ignore files which are already VErSionedooveiiiiiiiiiiiiiiici e 172

B.9. UNVersion @ WOrKing COPYceeeuuuiiieiiieeeiiia ettt e e 173
B.10. REMOVE 8 WOIKING COPY - ..eevvinetiitieeeeeti ettt ettt et e et e e e e e e e eenns 173

C. Useful Tips FOr AAMINISITELONSc.vuueeiitieeeeet ettt e e 174
C.1. Deploy TortoiseSVN Via group POICIESccvuuneieiiie i 174

C.2. Redirect the upgrade ChECKuiiiiiii e 174

C.3. Setting the SYVN_ASP_DOT_NET_HACK environment variablecc.occoeveveneeannn. 175

C.4. Disable context MeNU ENEMIESiiiiii et 175

D. Automating TOMOISESVINceiiiiiiii ettt et e e e aeenanns 177
D.1. TOrtoiSeSVN COMMANASiiiiiiiieiii ettt e e 177

D.2. TortoiSelDiff COMMANAScoeuiiiiiiii e 180

E. Command Line Interface Cross REFEIENCEiiiiiiiiiiiii e 181
E.1. Conventions and BaSIC RUIEScoouuiiiiiiiiiiei e 181

E.2. TOrtoisSeSVN COMIMANSuiiiiiiiiiii ettt 181
E.2.1. CRECKOULeeitieiiee ettt e e e 181

2.2 UPELE ...ttt e 181

E.2.3. UPdate t0 REVISIONciiiiiiciiii et 182

E.2.4, COMIMIT .ottt et e et e et e eeees 182

B 2. 5. D e e 182

E.2.6. SNOW LOQ .. ieiiiiiiiii e 182

E.2.7. Check for MOdifiCalionSuuiiiiiiiiiiiii e 183

E.2.8. REVISION GIaph ..ocuuniiiiiii e 183

E.2.9. REPO BIrOWSES ...ttt 183

E.2.10. Edit CONFIICES ...ceevviiiiiii e 183

E.2.11. RESOIVEL ...ttt e e 183

Vi

TortoiseSVN

E.2.12. RENAIME ...ttt et e et e e et e e ees 183

E.2.13. DEELE ..ot 184

EL2.14. REVENT ..t 184

E.2.15. ClEANUD .. ettt ettt e 184

E.2.16. GEE LOCK ..eeveieeeiii ettt 184

E.2.17. REIEASE LOCK ..ottt 184

E.2.18. BranCh/Tag ..ccevunieieiiiiieeiii ettt 184

E.2.19. SWITCN e 185

EL2.20. IMBIQE ..ottt 185

EL2.21. EXPOIT ..ottt 185

E.2.22. REIOCAE ...t 185

E.2.23. Create REPOSITONY HEIE ... 185

E2.24. AU ..o 185

E.2.25. IMPOI ..ottt 185

E.2.26. BIAIME ...oeiiiiei e 186

E.2.27. Add 10 1GNOI€ LIStueiiiiiieieii e 186

E.2.28. Create PatChc..uiiiiii e 186

E.2.29. APPIY PatCh ... 186

F. Implementation DEAIISc.uuuiiiiiii e 187
F.L. 1CON OVEITAYS ...t et et e 187

G. Securing SVNSEIVE USING SSHiiiiiiiiiii ettt eaaas 189
G.1. Setting Up @ LiNUX SEIVEY ... 189

G.2. Setting Up @ WINAOWS SEIVEDiiiiiiieei et 189

G.3. SSH Client Tools for use with TOroISESVNcc.uiiiiiiiiiiiiiie e 190

G.4. Creating OpenSSH CertifiCatesiiieiei e 190
G.4.1. Create Keys using SSN-KEYOENccoiuiiiiiiiii e 190

G.4.2. Create KeysS uSiNg PUTTY QBN ...coiiiiiiiiiii et 190

G.5. TS USING PUTTY ittt ettt et e e s 190

G.6. Testing SSH With TOMOISESVNiiiiiiieieii e 191

G.7. SSH Configuration VA antSveeeuuuieiiiieeiei et 192
GlOSSANY .ttt ettt e e et e et e aee 193
F g0 (= PSPPSRI 196

Vi

List of Figures
2.1. A Typical Client/SErVEr SYSEEIM .. ccuucii e e e e e e e e e e e e e e eanees 5
2.2. The Problem 10 AVOITiiiiiiieeeei et et e et e e e et e e eaeans 6
2.3. The Lock-Modify-Unlock SOIULIONceuuiiiiieii e e e e e e e e e e eaaaeees 7
2.4. The Copy-Modify-Merge SOIULIONc.uiiiiiiiiii e e e e e e e e e e e eanaees 8
2.5. ...Copy-Modify-Merge COontiNUEoevuniiiiieeii e e e e e e e e 9
2.6. The REPOSITOrY'S FilESYSIEMcuviiei e e e e e aanas 11
A I 1= = o 01] (o 13
3.1. The TortoiseSVN menu for unversioned fOlderscooovviiiieiiiiiie e 16
4.1, Explorer showing iCON OVEITAYSccuuiiiiiei e e e e 37
4.2. Context menu for a directory under Version Controlccoeeviveiiiieiiiiiiiii e, 38
4.3. Explorer file menu for a shortcut in aversioned foldercoovvviiiiiiiiin i, 39
4.4. Right drag menu for a directory under Version Controlcccoeeuveiiieriieeeieeeiieeeeeennn 40
4.5, AUthentiCation DialOgiiuuiiii i e e e e e e e e 41
T I = oo o [= oo R 42
N I ¢ =Y @41 oo 1| o = o 44
N T I =Y o 02 o [46
4.9. The Commit Dialog SPellCheCKErcovviii e 49
4.10. The Progress dialog showing a COmmIt iN PrOgrESSuvernieriiieeeiieeeiieeeiee et reraaeeaneeeens 50
4.11. Progress dialog showing finished UPdatec.oiviiiiiiii e 51
4.12. Explorer SNOWING ICON OVENTAYS ... ccuuiiiiei i e e e e e e e e e eanaeees 57
4.13. Check fOr MOOITICAIIONSuieiiiiie e 59
4.14. Commit dialog With ChangelistSccuuiiiiii i e 62
4.15. The ReVISION LOG DIalOg . .cvvuiieiieiiieiii et e e e e e e e e e e e e eaneees 63
4.16. The Revision Log Dialog Top Pane with Context MenuUccocevveiiiiiiiiieeieieeeeeaeee 64
4.17. Top Pane Context Menu for 2 Selected REVISIONScvvviiiiiiiiiiccc e 67
4.18. The Log Dialog Bottom Pane with Context MenUcouovevineiiiiiii e e 67
4.19. The Log Dialog Showing Merge Tracking REVISIONSccuviiiiiiiviieiii e een e 70
4.20. Commits-by-Author HiStOGramcc.uiiiiiiiii e e e e 72
4.21. Commits-by-Author Pie Chartcoviiiii e e 73
4.22. Commits-hy-date Graphoiieiiii i 74
N B o T @ i [T =T 0 - 75
4.24. The Compare ReVISIONS DIialOgcvvuiiiiieiiieie e e e e e e e et eeanaeees 78
4.25. The image differenCe VIEWETcouuiiiiii e e e 79
4.26. Explorer context menu for unversioned fil€Sccuviiiii i 80
4.27. Right drag menu for a directory under version Controlccoeeeveveiieiiineeiiierineeeneeeen, 8l
4.28. Explorer context menu for unversioned fil€Scouiiiiiiiiii i 82
4.29. Explorer context menu for versioned fileScovivviiiiii i 84
G O = (=Y = 1 o o 87
4.31. Explorer property page, SUDVEISION tacovvniiiiiciii e 89
4.32. SUDVEISION PIrOPEITY PAGJE . vvvueeeneeeiiteett e eeeieeat s e et e e eat e e st ae e e e et aeeaneesnnaeetnaeranaeranaees 20
FC AN [0 T 0o [o] (0] o = g 11 =S 91
4.34. The BranCh/Tag DIialOg .. .c.uciuiiiii e e e e e e e e e e e e e aens 98
4.35. The SWILCh DIGlOg ... cvveeiiiiei e e e e e e e e e et e e et e e e e eeenaes 100
4.36. The Merge Wizard - Select REVISION RANGEcvvviiiiiiicii e 102
4.37. The Merge Wizard - REINEGIAE MEIQEunevvnieii e 104
4.38. The Merge Wizard - Tree MEIQgE .ouuu i e et et e e e e et e e e e e e e e e eanaeees 105
4.39. The Merge Conflict Callback Dialogccuuiviiiiiiiiiei e 108
4.40. The Merge reintegrate DialOgovvuuieiiiieiie e e e e e e e e e e e eanas 109
N I = o Tox (1o T D= o R 110
4.42. The Check for ModificationS Dialoguevveeiiiiiiieee e e e e e 111
4.43. The Create Patch dialogcccvuiiiiieiiici e e e e 113
4.44. The AnNnotate / Blame DialOguueiuuniiiiiiii et e e e e e e e aaas 114
N o (= 2] = 1T PP 115
4.46. The REPOSITONY BIOWSESciviiiii et e e e e e e e e et e e et e e et e e eeanaas 117
N N L= Y = o = o 119

viii

TortoiseSVN

4.48. The EXPOrt-from-URL DiglOguuiitiiiiiiiiiii e e e 124
4.49. The REIOCAE DIAl0OQ eeeetieeeeii ettt ettt et e e e enanns 125
4.50. Example issue tracker qUErY didlogc.uuuiieeiiieiiiii e 129
4.51. The Settings Dial0og, GENEral Pagooiieuiiieiiiiie e 131
4.52. The Settings Dialog, Context Menu Pagecc.uiiiiiiiiii e 133
4.53. The Settings Dialog, DIialogS 1 PagEuiiiiiiieiiiiii ettt 134
4.54. The Settings Dialog, DialogS 2 PagEueiiiiiieiiiii ettt 135
4.55. The Settings Dialog, COlOUIS PEOEoiiiiiiieeiiiii et 137
4.56. The Settings Dialog, Revision Graph Pageccoouuiiiiiiiiiiei e 138
4.57. The Settings Dialog, Revision Graph Colors Pagecocuvviiiiiiiiiiiiiiicc e 139
4.58. The Settings Dialog, 160N OVerlayS Pagecoevueiiiiiiii e 140
4.59. The Settings Dialog, 1C0N Set Pageccoieviiiiii e 143
4.60. The Settings Dialog, NEtWOIK Pagec..uuiiiiiiiieiiii e 144
4.61. The Settings Dialog, Diff VIeWer Pagecooovuiiiiiiiiiiii e 145
4.62. The Settings Dialog, Diff/Merge Advanced Dialogocovevuiiiiiiiiieeiiiieeeee e 147
4.63. The Settings Dialog, Saved Data Pageccuuuiiiiiiieiiii e 148
4.64. The Settings Dialog, LOg CaChe Pageoiiiiiiiiiiiiiieeee et e 149
4.65. The Settings Dialog, Log Cache StatiStiCSuuiieieneiiiii et 151
4.66. The Settings Dialog, HOOK SCIHPtS PagEuviiiiiieiii e 152
4.67. The Settings Dialog, Configure HOOK SCIPESccevuuiiiiiiieiiiiiie e 153
4.68. The Settings Dialog, Issue Tracker INtegration Pageoovevviniiiiiiinieiiiiiieecei e 155
4.69. The Settings Dialog, TortoiseBlame Pagevviiiiiiiiiiii e 156
C.1. The uUPGratde dialOgcccuuueieii ettt 174

List of Tables

2.1, REPOSIONY ACCESS URLSiiiiiiiiiieii e e e e e e e e e e e e e e e e e eanaeeaes 12
3.1. Apache ht t pd. CONT SEINGS ...cvvvniiii e 29
5.1. List of available command [ine SWITChESc.uiiiiiiiiii e 159
5.2. List of available command [in€ SWITChEScccuiiiiiiiii e, 160
5.3. COM/automation methods SUPPOIEdeeeviieiiii i 161
C.1. Menu entries and theEIr VAIUESc.uuiiiiiiiii e e e e e e e e e e een 175
D.1. List of available commands and OPtiONScoeviiiiiiiiiiiciie e e 177
D.2. List of available OptioNSccouiiiiiiii e e 180

Preface

—_ §t
- §
AL
-

-

L

{

AL L

» Doyouwork in ateam?

» Hasit ever happened that you were working on afile, and someone el se was working on the samefile
at the same time? Did you lose your changes to that file because of that?

» Have you ever saved afile, and then wanted to revert the changes you made? Have you ever wished
you could see what afile looked like some time ago?

» Haveyou ever found a bug in your project and wanted to know when that bug got into your files?

If you answered “yes’ to one of these questions, then TortoiseSVN is for you! Just read on to find out
how TortoiseSVN can help you in your work. It's not that difficult.

1. Audience

This book iswritten for computer literate folk who want to use Subversion to manage their data, but are
uncomfortable using the command line client to do so. Since TortoiseSV N isawindows shell extension
it's assumed that the user is familiar with the windows explorer and knows how to use it.

2. Reading Guide

This Preface explains a little about the TortoiseSVN project, the community of people who work on it,
and the licensing conditions for using it and distributing it.

The Chapter 1, Introduction explains what TortoiseSVN is, what it does, where it comes from and the
basics for installing it on your PC.

In Chapter 2, Basic Version-Control Concepts we give a short introduction to the Subversion revision
control system which underlies TortoiseSVN. This is borrowed from the documentation for the
Subversion project and explains the different approachesto version control, and how Subversion works.

The chapter on Chapter 3, The Repository explains how to set up a local repository, which is useful
for testing Subversion and TortoiseSVN using a single PC. It aso explains a bit about repository
administration which is also relevant to repositories located on a server. There is also a section here on
how to setup a server if you need one.

The Chapter 4, Daily Use Guide is the most important section as it explains al the main features of
TortoiseSVN and how to use them. It takes the form of atutorial, starting with checking out a working
copy, modifying it, committing your changes, etc. It then progresses to more advanced topics.

Chapter 5, The SUbWCRev Programis a separate program included with TortoiseSVN which can extract
the information from your working copy and write it into a file. This is useful for including build
information in your projects.

The Appendix B, How Do I... section answers some common questions about performing tasks which
are not explicitly covered elsewhere.

The section on Appendix D, Automating TortoiseSVN shows how the TortoiseSVN GUI dialogs can be
called from the command line. Thisis useful for scripting where you still need user interaction.

The Appendix E, Command Line Interface Cross Reference give a correlation between TortoiseSVN
commands and their equivalents in the Subversion command line client svn. exe.

Xi

Preface

3. TortoiseSVN is free!

TortoiseSVN isfree. Y ou don't haveto pay to useit, and you can use it any way you want. It is devel oped
under the GNU General Public License (GPL).

TortoiseSVN is an Open Source project. That means you have full read access to the source code of this
program. You can browse it on this link http://code.google.com/p/tortoisesvn/source/browse/ [http://
code.google.com/p/tortoisesvn/source/browse/]. Y ou will be prompted to enter username and password.
The username is guest , and the password must be left blank. The most recent version (where we're
currently working) islocated under / t r unk/ , and the released versions are located under / t ags/ .

4. Community

Both TortoiseSVN and Subversion are developed by a community of people who are working on those
projects. They come from different countries all over the world and work together to create wonderful
programs.

5. Acknowledgments

Tim Kemp
for founding the TortoiseSV N project

Stefan Kiing
for the hard work to get TortoiseSVN to what it is now

L Ubbe Onken
for the beautiful icons, logo, bug hunting, translating and managing the translations

Simon Large
for helping with the documentation and bug hunting

The Subversion Book
for the great introduction to Subversion and its chapter 2 which we copied here

The Tigris Style project
for some of the styles which are reused in this documentation

Our Contributors
for the patches, bug reports and new ideas, and for helping others by answering questions on our
mailing list.

Our Donators
for many hours of joy with the music they sent us

6. Terminology used in this document

To make reading the docs easier, the names of all the screens and Menus from TortoiseSVN are marked
up in adifferent font. The Log Dialog for instance.

A menu choice is indicated with an arrow. TortoiseSVN - Show Log means: select Show Log from
the TortoiseSVN context menu.

Wherealocal context menu appearswithin one of the TortoiseSVN dialogs, it isshown likethis: Context
Menu - Save As ...

User Interface Buttons are indicated like this: Press OK to continue.

User Actions are indicated using a bold font. Alt+A: press the Alt-Key on your keyboard and while
holding it down press the A-Key as well. Right-drag: press the right mouse button and while holding it
down drag the items to the new location.

Xii

http://code.google.com/p/tortoisesvn/source/browse/
http://code.google.com/p/tortoisesvn/source/browse/
http://code.google.com/p/tortoisesvn/source/browse/

Preface

System output and keyboard input isindicated with adi f f er ent font aswell.

A

¢ v

I mportant

Important notes are marked with anicon.

Tip

Tipsthat make your life easier.

Caution

Places where you have to be careful what you are doing.

Warning

Where extreme care hasto be taken, data corruption or other nasty things may occur if these
warnings are ignored.

Xiii

Chapter 1. Introduction

Version control is the art of managing changes to information. It has long been a critical tool for
programmers, who typically spend their time making small changes to software and then undoing or
checking some of those changes the next day. |magine ateam of such developersworking concurrently -
and perhaps even simultaneously on the very same files! - and you can see why a good system is needed
to manage the potential chaos.

1.1. What is TortoiseSVN?

TortoiseSV N isafree open-source client for the Subversion version control system. That is, TortoiseSVN
manages files and directories over time. Files are stored in a central repository. The repository is much
likean ordinary file server, except that it remembers every change ever madeto your filesand directories.
This alows you to recover older versions of your files and examine the history of how and when your
data changed, and who changed it. This is why many people think of Subversion and version control
systemsin general as a sort of “time machine”.

Some version control systems are also software configuration management (SCM) systems. These
systems are specifically tailored to manage trees of source code, and have many features that are specific
to software devel opment - such as natively understanding programming languages, or supplying toolsfor
building software. Subversion, however, is not one of these systems; it is a genera system that can be
used to manage any collection of files, including source code.

1.2. TortoiseSVN's History

In 2002, Tim Kemp found that Subversion was a very good version control system, but it lacked a good
GUI client. The ideafor a Subversion client as a Windows shell integration was inspired by the similar
client for CVS named TortoiseCVS.

Tim studied the source code of TortoiseCV S and used it as a base for TortoiseSVN. He then started the
project, registered the domaint or t oi sesvn. or g and put the source code online. During that time,
Stefan K ing was looking for agood and free version control system and found Subversion and the source
for TortoiseSVN. Since TortoiseSVN was still not ready for use then he joined the project and started
programming. Soon he rewrote most of the existing code and started adding commands and features, up
to a point where nothing of the original code remained.

As Subversion became more stableit attracted more and more users who also started using TortoiseSVN
astheir Subversion client. The user base grew quickly (andisstill growing every day). That'swhen L iibbe
Onken offered to help out with some nice icons and a logo for TortoiseSVN. And he takes care of the
website and manages the translation.

1.3. TortoiseSVN's Features

What makes TortoiseSVN such agood Subversion client? Here's a short list of features.

Shell integration

TortoiseSVN integrates seamlessly into the Windows shell (i.e. the explorer). This means you can
keep working with the tools you're already familiar with. And you do not have to change into a
different application each time you need functions of the version control!

And you are not even forced to use the Windows Explorer. TortoiseSVN's context menus work in
many other file managers, and in the File/Open dialog which is common to most standard Windows
applications. You should, however, bear in mind that TortoiseSVN is intentionally developed as
extension for the Windows Explorer. Thusit is possible that in other applications the integration is
not as complete and e.g. the icon overlays may not be shown.

Introduction

Icon overlays
The status of every versioned file and folder isindicated by small overlay icons. That way you can
see right away what the status of your working copy is.

Easy access to Subversion commands
All Subversion commands are available from the explorer context menu. TortoiseSVN addsits own
submenu there.

Since TortoiseSVN is a Subversion client, we would also like to show you some of the features of
Subversion itself:

Directory versioning
CVS only tracks the history of individua files, but Subversion implements a “virtual” versioned
filesystem that tracks changes to whole directory trees over time. Files and directories are versioned.
Asaresult, there are real client-side move and copy commands that operate on files and directories.

Atomic commits
A commit either goesinto the repository completely, or not at al. Thisallows devel opersto construct
and commit changes as logical chunks.

Versioned metadata
Each file and directory has an invisible set of “properties’ attached. Y ou can invent and store any
arbitrary key/value pairs you wish. Properties are versioned over time, just like file contents.

Choice of network layers

Subversion has an abstracted notion of repository access, making it easy for people to implement
new network mechanisms. Subversion's “advanced” network server is a module for the Apache
web server, which speaks avariant of HTTP called WebDAV/DeltaV. This gives Subversion a big
advantagein stability and interoperability, and provides various key featuresfor free: authentication,
authorization, wire compression, and repository browsing, for example. A smaller, standalone
Subversion server processisalso available. This server speaks acustom protocol which can be easily
tunneled over ssh.

Consistent data handling
Subversion expressesfile differences using abinary differencing al gorithm, which worksidentically
on both text (human-readable) and binary (human-unreadable) files. Both types of files are stored
equally compressed in the repository, and differences are transmitted in both directions across the
network.

Efficient branching and tagging
The cost of branching and tagging need not be proportional to the project size. Subversion creates
branchesand tags by simply copying the project, using amechanism similar to ahard-link. Thusthese
operations take only avery small, constant amount of time, and very little space in the repository.

Hackability
Subversion has no historical baggage; it is implemented as a collection of shared C libraries with
well-defined APIs. This makes Subversion extremely maintainable and usable by other applications
and languages.

1.4. Installing TortoiseSVN

1.4.1. System requirements

TortoiseSVN runs on Windows 2000 SP2, Windows XP or higher. Windows 98, Windows ME and
Windows NT4 are no longer supported since TortoiseSVN 1.2.0, but you can still download the older
versionsif you really need them.

If you encounter any problems during or after installing TortoiseSVN please refer to Appendix A,
Frequently Asked Questions (FAQ) first.

Introduction

1.4.2. Installation

TortoiseSVN comes with an easy to use installer. Double click on the installer file and follow the
instructions. The installer will take care of the rest.

1| |Important

Y ou need Administrator privilegesto install TortoiseSVN.

1.4.3. Language Packs

The TortoiseSV N user interface has been trand ated into many different languages, so you may be ableto
download alanguage pack to suit your needs. Y ou can find the language packs on our translation status
page [http://tortoisesvn.net/trandlation_status]. And if there is no language pack available yet, why not
join the team and submit your own trandlation ;-)

Each language pack is packaged as a . exe ingtaler. Just run the install program and follow the
instructions. Next time you restart, the trandation will be available.

1.4.4. Spellchecker

TortoiseSVN includes a spell checker which allows you to check your commit log messages. This is
especially useful if the project language is not your native language. The spell checker uses the same
dictionary filesas OpenOffice [http://openoffice.org] and Mozlla [http://mozilla.org].

The installer automatically adds the US and UK English dictionaries. If you want other languages, the
easiest option issimply to install one of TortoiseSVN's language packs. Thiswill install the appropriate
dictionary filesaswell asthe TortoiseSV N local user interface. Next time you restart, the dictionary will
be available too.

Or you can install the dictionaries yourself. If you have OpenOffice or Mozilla installed, you can copy
those dictionaries, which are located in the installation folders for those applications. Otherwise, you
need to download the required dictionary filesfrom http://wiki.services.openoffice.org/wiki/Dictionaries
[http://wiki.services.openoffice.org/wiki/Dictionaries]

Once you have got the dictionary files, you probably need to rename them so that the filenames only
have the locale charsin it. Example:

« en_US. af f
« en_US.dic

Then just copy them to the bi n sub-folder of the TortoiseSVN installation folder. Normally this will
be C:\ Program Fi |l es\ Tort oi seSVN bi n. If you don't want to litter the bi n sub-folder, you
can instead place your spell checker filesin C: \ Progr am Fi | es\ Tor t oi seSVN\ Languages. If
that folder isn't there, you have to create it first. The next time you start TortoiseSV N, the spell checker
will be available.

If you install multiple dictionaries, TortoiseSVN uses these rules to select which one to use.

1. Check the t svn: proj ect | anguage setting. Refer to Section 4.17, “Project Settings’ for
information about setting project properties.

2. If no project language is set, or that language is not installed, try the language corresponding to the
Windows locale.

http://tortoisesvn.net/translation_status
http://tortoisesvn.net/translation_status
http://tortoisesvn.net/translation_status
http://openoffice.org
http://openoffice.org
http://mozilla.org
http://mozilla.org
http://wiki.services.openoffice.org/wiki/Dictionaries
http://wiki.services.openoffice.org/wiki/Dictionaries

Introduction

3. If the exact Windows locale doesn't work, try the “Base” language, eg. de_ CH (Swiss-German) falls
back to de_ DE (German).

4. If none of the above works, then the default language is English, which is included with the standard
installation.

Chapter 2. Basic Version-Control
Concepts

This chapter isadlightly modified version of the same chapter in the Subversion book. An online version
of the Subversion book is available here: http://svnbook.red-bean.comy [http://svnbook.red-bean.comy/].

This chapter is a short, casua introduction to Subversion. If you're new to version control, this chapter
is definitely for you. We begin with a discussion of general version control concepts, work our way into
the specific ideas behind Subversion, and show some simple examples of Subversion in use.

Even though the examplesin this chapter show people sharing collections of program source code, keep
in mind that Subversion can manage any sort of file collection - it's not limited to helping computer
programmers.

2.1. The Repository

Subversion is a centralized system for sharing information. At its core is arepository, which isacentral
store of data. The repository stores information in the form of afilesystem tree - atypical hierarchy of
filesand directories. Any number of clients connect to the repository, and then read or write to thesefiles.
By writing data, a client makes the information available to others; by reading data, the client receives
information from others.

Repository

ﬁiﬁD

Client Client

Figure 2.1. A Typical Client/Server System

So why isthisinteresting? So far, this sounds like the definition of atypical file server. And indeed, the
repository is akind of file server, but it's not your usual breed. What makes the Subversion repository
specid isthat it remembers every change ever written to it: every change to every file, and even changes
to the directory treeitself, such asthe addition, deletion, and rearrangement of files and directories.

When aclient readsdatafrom therepository, it normally seesonly thelatest version of thefilesystemtree.
But the client also has the ability to view previous states of the filesystem. For example, a client can ask
historical questionslike, “what did this directory contain last Wednesday?’, or “who was the last person
to changethisfile, and what changes did they make?’ These are the sorts of questionsthat are at the heart
of any version control system: systems that are designed to record and track changesto data over time.

2.2. Versioning Models

All version control systems haveto solve the same fundamental problem: how will the system allow users
to share information, but prevent them from accidentally stepping on each other's feet? It's al too easy
for users to accidentally overwrite each other's changes in the repository.

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Basic Version-Control Concepts

2.2.1. The Problem of File-Sharing

Consider this scenario: suppose we have two co-workers, Harry and Sally. They each decide to edit the
same repository file at the same time. If Harry saves his changes to the repository first, then it's possible
that (afew moments later) Sally could accidentally overwrite them with her own new version of thefile.
While Harry's version of the filewon't belost forever (because the system remembers every change), any
changes Harry made won't be present in Sally's newer version of the file, because she never saw Harry's
changesto begin with. Harry'swork is still effectively lost - or at least missing from the latest version of
thefile - and probably by accident. Thisis definitely a situation we want to avoid!

Iwa wsers read the same file They both begin ta edit their copies
Repository Repaository
A A

Rend Read —

Y o
¥
4]
Harry Sally

Haery pubiishes his version first
Repository

]
Harry Sally

Sally accidentolly overwrifes Horry's version
Repasitary

#)]

Sally Harry

Figure2.2. The Problem to Avoid

2.2.2. The Lock-Modify-Unlock Solution

Many version control systems use a lock-modify-unlock model to address this problem, which is a very
simple solution. In such a system, the repository alows only one person to change afile at atime. First
Harry must lock the file before he can begin making changesto it. Locking afileisalot like borrowing
abook from the library; if Harry has locked afile, then Sally cannot make any changesto it. If shetries
to lock the file, the repository will deny the request. All she can do is read the file, and wait for Harry
to finish his changes and release his lock. After Harry unlocks the file, his turn is over, and now Sally
can take her turn by locking and editing.

Basic Version-Control Concepts

Harry “lacks” file 4, then copies While Harry edits, Sally's fock
it for eliting attempt foifs
Repository Repository

A A
LocK |
oead Lock

]

L

Harry Sally Harry Sally
Harry writes his version, then Now Saily can fock, read, and
releases his lock ediit the lotest version
Repository Repository

oy l
]]
Harry Sally Harry Sally

Figure 2.3. The Lock-M odify-Unlock Solution

The problem with the lock-modify-unlock model is that it's a bit restrictive, and often becomes a
roadblock for users:

» Locking may cause administrative problems. Sometimes Harry will lock a file and then forget about
it. Meanwhile, because Sally is still waiting to edit thefile, her hands aretied. And then Harry goeson
vacation. Now Sally has to get an administrator to release Harry's lock. The situation ends up causing
alot of unnecessary delay and wasted time.

* Locking may cause unnecessary serialization. What if Harry is editing the beginning of atext file, and
Saly simply wants to edit the end of the same file? These changes don't overlap at all. They could
easily edit thefile simultaneously, and no great harm would come, assuming the changeswere properly
merged together. There's no need for them to take turnsin this situation.

» Locking may create a false sense of security. Pretend that Harry locks and edits file A, while Sally
simultaneously locks and edits file B. But suppose that A and B depend on one another, and the
changes made to each are semantically incompatible. Suddenly A and B don't work together anymore.
The locking system was powerless to prevent the problem - yet it somehow provided a sense of false
security. It'seasy for Harry and Sally toimaginethat by locking files, each isbeginning asafe, insulated
task, and thus inhibits them from discussing their incompatible changes early on.

2.2.3. The Copy-Modify-Merge Solution

Subversion, CV'S, and other version control systems use a copy-modify-merge model as an alternative to
locking. In this model, each user's client reads the repository and creates a personal working copy of the

Basic Version-Control Concepts

file or project. Users then work in parallel, modifying their private copies. Finaly, the private copies are
merged together into anew, final version. The version control system often assists with the merging, but
ultimately a human being is responsible for making it happen correctly.

Here'san example. Say that Harry and Sally each create working copies of the same project, copied from
the repository. They work concurrently, and make changes to the same file A within their copies. Sally
saves her changes to the repository first. When Harry attempts to save his changes later, the repository
informs him that his file A is out-of-date. In other words, that file A in the repository has somehow
changed since he last copied it. So Harry asks his client to merge any new changes from the repository
into his working copy of file A. Chances are that Sally's changes don't overlap with his own; so once he
has both sets of changes integrated, he saves his working copy back to the repository.

Twio users copy the same file They both begin ta edit their copies

Repository Hepository

A A
Read Reod

4]]
Harry Sally Harry Sally
Sally publishes her version first Harry gers an “sul-of-dare " error

Repasitory Repository

| | =
*]

Harry Sally Harry Sally

Figure 2.4. The Copy-M odify-M er ge Solution

Basic Version-Control Concepts

Harry compares the fatest version A mew merged version is created
T b awm
Repository Repository

[
A
Feod
[, [[
GiRG B2

Harry Sally Harry Sally
The merged version is published Now both users have each
athers changes
Repository Repository
[

— Wite —I head

Sally Harry

Figure 2.5. ...Copy-Modify-M er ge Continued

But what if Sally's changes do overlap with Harry's changes? What then? Thissituationis called aconflict,
and it's usually not much of aproblem. When Harry asks his client to merge the latest repository changes
into his working copy, his copy of file A is somehow flagged as being in a state of conflict: he'll be
able to see both sets of conflicting changes, and manually choose between them. Note that software can't
automatically resolve conflicts, only humans are capable of understanding and making the necessary
intelligent choices. Once Harry has manually resolved the overlapping changes (perhaps by discussing
the conflict with Sally!), he can safely save the merged file back to the repository.

The copy-modify-merge model may sound abit chaotic, butin practice, it runsextremely smoothly. Users
can work in parallel, never waiting for one another. When they work on the same files, it turns out that
most of their concurrent changes don't overlap at al; conflicts are infrequent. And the amount of time it
takesto resolve conflictsis far less than the time lost by alocking system.

Intheend, it all comesdown to one critical factor: user communication. When users communicate poorly,
both syntactic and semantic conflictsincrease. No system can force users to communicate perfectly, and
no system can detect semantic conflicts. So there's no point in being lulled into a false promise that a
locking system will somehow prevent conflicts; in practice, locking seems to inhibit productivity more
than anything else.

There is one common situation where the lock-modify-unlock model comes out better, and that is where
you have unmergeabl efiles. For exampleif your repository contains some graphicimages, and two people
change the image at the same time, there is no way for those changes to be merged together. Either Harry
or Sally will lose their changes.

Basic Version-Control Concepts

2.2.4. What does Subversion Do?

Subversion uses the copy-modify-merge solution by default, and in many cases thisis al you will ever
need. However, as of Version 1.2, Subversion aso supports file locking, so if you have unmergeable
files, or if you are simply forced into alocking policy by management, Subversion will still provide the
features you need.

2.3. Subversion in Action

2.3.1. Working Copies

Y ou've aready read about working copies; now we'll demonstrate how the Subversion client creates and
uses them.

A Subversion working copy isan ordinary directory tree on your local system, containing a collection of
files. You can edit these files however you wish, and if they're source code files, you can compile your
program from them in the usua way. Y our working copy is your own private work area Subversion
will never incorporate other peopl€'s changes, nor make your own changes available to others, until you
explicitly tell it to do so.

After you've made some changes to the filesin your working copy and verified that they work properly,
Subversion provides you with commands to publish your changes to the other people working with you
on your project (by writing to the repository). If other people publish their own changes, Subversion
provides you with commands to merge those changes into your working directory (by reading from the

repository).

A working copy also contains some extrafiles, created and maintained by Subversion, to help it carry out
these commands. In particular, each directory inyour working copy containsasubdirectory named. svn,
also known as the working copy administrative directory. The files in each administrative directory
help Subversion recognize which files contain unpublished changes, and which files are out-of -date with
respect to others work.

A typica Subversion repository often holds the files (or source code) for severa projects; usually, each
project is a subdirectory in the repository's filesystem tree. In this arrangement, a user's working copy
will usually correspond to a particular subtree of the repository.

For example, suppose you have arepository that contains two software projects.

10

Basic Version-Control Concepts

p

- Makefile

integer.c

L J

button.c

L

Makefile

anvas.C

- brush.c

Figure 2.6. The Repository's Filesystem
In other words, the repository's root directory has two subdirectories: pai nt and cal c.

To get aworking copy, you must check out some subtree of the repository. (The term check out may
sound like it has something to do with locking or reserving resources, but it doesn't; it smply creates a
private copy of the project for you).

Suppose you make changesto but t on. c. Sincethe. svn directory remembers the file's modification
date and original contents, Subversion can tell that you've changed the file. However, Subversion does
not make your changes public until you explicitly tell it to. The act of publishing your changes is more
commonly known as committing (or checking in) changes to the repository.

To publish your changes to others, you can use Subversion's commit command.

Now your changes to but t on. ¢ have been committed to the repository; if another user checks out a
working copy of / cal c, they will see your changesin the latest version of thefile.

Suppose you have a collaborator, Sally, who checked out aworking copy of / cal ¢ at the sametimeyou
did. When you commit your change to but t on. ¢, Sally's working copy is left unchanged; Subversion
only modifies working copies at the user's request.

To bring her project up to date, Sally can ask Subversion to update her working copy, by using the
Subversion update command. Thiswill incorporate your changes into her working copy, as well as any
others that have been committed since she checked it out.

Notethat Sally didn't need to specify which filesto update; Subversion usestheinformationinthe. svn
directory, and further information in the repository, to decide which files need to be brought up to date.

11

Basic Version-Control Concepts

2.3.2. Repository URLs

Subversion repositories can be accessed through many different methods - on local disk, or through
various network protocols. A repository location, however, isalwaysaURL. The URL schemaindicates

the access method:

Schema Access Method

file:// Direct repository access on local or network drive.

http:// Access viaWebDAYV protocol to Subversion-aware Apache server.

https:// Sameasht t p: //, but with SSL encryption.

svn:// Unauthenticated TCP/IP access via custom protocol to a svnserve
server.

svn+ssh: // authenticated, encrypted TCP/IP access via custom protocol to a
SVNSEr ve server.

Table2.1. Repository AccessURL s

For the most part, Subversion's URL susethe standard syntax, allowing for server namesand port numbers
to be specified as part of the URL. Thefil e: // access method is normally used for local access,
although it can be used with UNC pathsto anetworked host. The URL thereforetakestheformfil e: //
host nane/ pat h/ t o/ r epos. For thelocal machine, the host name portion of the URL is required
to be either absent or | ocal host . For this reason, local paths normally appear with three slashes,
file:///path/tol/repos.

Also, usersof thefi | e: // scheme on Windows platforms will need to use an unofficially “standard”
syntax for accessing repositories that are on the same machine, but on a different drive than the client's
current working drive. Either of the two following URL path syntaxes will work where X is the drive
on which the repository resides:

file:///X /path/to/repos

file:///X /path/to/repos

Note that a URL uses ordinary slashes even though the native (non-URL) form of a path on Windows
uses backslashes.

You can safely access a FSFS repository via a network share, but you cannot access a BDB repository
in thisway.

3 Warning

Do not create or access a Berkeley DB repository on a network share. It cannot exist on a
remote filesystem. Not even if you have the network drive mapped to adrive letter. If you
attempt to use Berkeley DB on anetwork share, the results are unpredictable - you may see
mysterious errors right away, or it may be months before you discover that your repository
database is subtly corrupted.

2.3.3. Revisions

A svn commit operation can publish changes to any number of files and directories as a single atomic
transaction. In your working copy, you can change files' contents, create, delete, rename and copy files
and directories, and then commit the complete set of changes as a unit.

12

Basic Version-Control Concepts

In the repository, each commit is treated as an atomic transaction: either all the commits changes take
place, or none of them take place. Subversion retainsthisatomicity in theface of program crashes, system
crashes, network problems, and other users actions.

Each timethe repository accepts acommit, thiscreatesanew state of thefilesystemtree, called arevision.
Each revision is assigned a unique natural number, one greater than the number of the previousrevision.
Theinitial revision of afreshly created repository is numbered zero, and consists of nothing but an empty
root directory.

A niceway to visualize therepository isasaseries of trees. Imagine an array of revision numbers, starting
at O, stretching from left to right. Each revision number has a filesystem tree hanging below it, and each

treeisa“snapshot” of the way the repository looked after each commit.
3

0 1 2

im [

Figure 2.7. The Repository

Global Revision Numbers

Unlike those of many other version control systems, Subversion's revision numbers apply to entire
trees, not individual files. Each revision number selects an entire tree, a particular state of the
repository after some committed change. Another way to think about it isthat revision N represents
the state of the repository filesystem after the Nth commit. When a Subversion user talks about
“revision 5 of f 00. c", they really mean “*f 00. ¢ as it appears in revision 5." Notice that in
general, revisions N and M of afile do not necessarily differ!

It'simportant to note that working copies do not alwayscorrespond to any singlerevisionintherepository;
they may contain files from several different revisions. For example, suppose you check out a working
copy from arepository whose most recent revision is 4:

cal c/ Makefile: 4
i nteger.c: 4
button.c: 4

At the moment, this working directory corresponds exactly to revision 4 in the repository. However,
suppose you make a changeto but t on. ¢, and commit that change. Assuming no other commits have

13

Basic Version-Control Concepts

taken place, your commit will create revision 5 of the repository, and your working copy will now look
like this:

cal c/ Makefile: 4
integer.c:4
button.c:5

Suppose that, at this point, Sally commitsa changetoi nt eger . c, creating revision 6. If you use svn
updateto bring your working copy up to date, then it will look like this:

cal c/ Makefile: 6
integer.c:6
button.c: 6

Sally'schangestoi nt eger . ¢ will appear in your working copy, and your changewill still be presentin
but t on. c. Inthisexample, thetext of Makef i | e isidentical inrevisions 4, 5, and 6, but Subversion
will mark your working copy of Makef i | e withrevision6toindicatethatitisstill current. So, after you
do a clean update at the top of your working copy, it will generally correspond to exactly one revision
in the repository.

2.3.4. How Working Copies Track the Repository

For eachfilein aworking directory, Subversion recordstwo essential piecesof informationinthe. svn/
administrative area:

» what revision your working fileis based on (thisis called the file's working revision), and
« atimestamp recording when the local copy was last updated by the repository.

Giventhisinformation, by talking to the repository, Subversion can tell which of thefollowing four states
aworking fileisin:

Unchanged, and current
The file is unchanged in the working directory, and no changes to that file have been committed to
the repository since its working revision. A commit of the file will do nothing, and an update of
the file will do nothing.

Locally changed, and current
Thefile has been changed in the working directory, and no changesto that file have been committed
to the repository since its base revision. There are local changes that have not been committed to
the repository, thus a commit of the file will succeed in publishing your changes, and an update
of the file will do nothing.

Unchanged, and out-of-date
The file has not been changed in the working directory, but it has been changed in the repository.
Thefile should eventually be updated, to make it current with the public revision. A commit of the
file will do nothing, and an update of the file will fold the latest changes into your working copy.

Locally changed, and out-of-date
The file has been changed both in the working directory, and in the repository. A commit of the
file will fail with an out-of-date error. The file should be updated first; an update command will
attempt to merge the public changes with the local changes. If Subversion can't complete the merge
in aplausible way automatically, it leaves it to the user to resolve the conflict.

2.4. Summary

We've covered a number of fundamental Subversion conceptsin this chapter:

14

Basic Version-Control Concepts

We've introduced the notions of the central repository, the client working copy, and the array of
repository revision trees.

We've seen some simple examples of how two collaborators can use Subversion to publish and receive
changes from one another, using the ‘copy-modify-merge’ model.

We've talked a bit about the way Subversion tracks and manages information in aworking copy.

15

Chapter 3. The Repository

No matter which protocol you use to access your repositories, you always need to create at least one
repository. This can either be done with the Subversion command line client or with TortoiseSVN.

If you haven't created a Subversion repository yet, it'stime to do that now.

3.1. Repository Creation

Y ou can create a repository with the FSFS backend or with the older Berkeley Database (BDB) format.
The FSFS format is generally faster and easier to administer, and it works on network shares and
Windows 98 without problems. The BDB format was once considered more stable simply because
it has been in use for longer, but since FSFS has now been in use in the field for several years,
that argument is now rather weak. Read Choosing a Data Sore [http://svnbook.red-bean.com/

en/1.5/svn.reposadmin.planning.html#svn.reposadmin.basi cs.backends] in the Subversion book for more
information.

3.1.1. Creating a Repository with the Command Line Client
1. Create an empty folder with the name SVN (e.g. D: \ SVN\), which is used as root for al your
repositories.
2. Create another folder MyNewReposi t ory inside D: \ SVN\ .

3. Open the command prompt (or DOS-Box), changeinto D: \ SVN\ and type

svnadmin create --fs-type bdb MyNewRepository

or

svhadnmin create --fs-type fsfs MyNewRepository

Now you've got a new repository located at D; \ SVN\ MyNewReposi tory.

3.1.2. Creating The Repository With TortoiseSVN

(& J5vN Checkout...

ST .=
Send To | Efi Export, .,

Cut [Create repositary here
Copy Al Import. ..

Delete %Settings

Rename 2 Help

Properties AP fbout

Figure3.1. The TortoiseSVN menu for unversioned folders
1. Open the windows explorer

2. Create anew folder and nameit e.g. SVNReposi t ory

16

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.planning.html#svn.reposadmin.basics.backends
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.planning.html#svn.reposadmin.basics.backends
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.planning.html#svn.reposadmin.basics.backends

The Repository

3. Right-click on the newly created folder and select TortoiseSVN - Create Repository here....

A repository is then created inside the new folder. Don't edit those files yourself!!!. If you get any
errors make sure that the folder is empty and not write protected.

B

; : Tip
TortoiseSVN no longer offers the option to create BDB repositories, although you can still
use the command line client to create them. FSFS repositories are generally easier for you

to maintain, and also makes it easier for us to maintain TortoiseSVN due to compatibility
issues between the different BDB versions.

Future versions of TortoiseSVN will not supportfi | e: // accessto BDB repositories due
to these compatibility issues, althoughit will of course aways support thisrepository format
when accessed viaa server throughthesvn: // ,http:// orhttps:// protocols. For
this reason, we strongly recommend that any new repository which must be accessed using
file:// protocol iscreated as FSFS.

Of course we also recommend that you don't usefi | e: // accessat all, apart from local
testing purposes. Using aserver ismore secure and morereliablefor al but single-devel oper
use.

3.1.3. Local Access to the Repository

To access your local repository you need the path to that folder. Just remember that Subversion expects
all repository pathsintheformfile:/// C. / SYNReposi t ory/ . Note the use of forward slashes
throughout.

To access arepository located on a network share you can either use drive mapping, or you can use the
UNC path. For UNC paths, theformisfi |l e: // Ser ver Nane/ pat h/ t o/ r epos/ . Note that there
are only 2 leading slashes here.

Prior to SVN 1.2, UNC paths had to be given in the more obscure formfi |l e: ///\ Ser ver Nane/
pat h/ t o/ r epos. Thisformisstill supported, but not recommended.

E Warning

Do not create or access a Berkeley DB repository on a network share. It cannot exist on a
remote file system. Not even if you have the network drive mapped to adrive letter. If you
attempt to use Berkeley DB on anetwork share, the results are unpredictable - you may see
mysterious errors right away, or it may be months before you discover that your repository
database is subtly corrupted.

3.1.4. Accessing a Repository on a Network Share

Although in theory it is possible to put a FSFS repository on a network share and have multiple users
accessitusingfil e:// protocol, thisis most definitely not recommended. In fact we would strongly
discourage it, and do not support such use.

Firstly you are giving every user direct write access to the repository, so any user could accidentally
delete the entire repository or make it unusable in some other way.

Secondly not all network file sharing protocols support the locking that Subversion requires, so you may
find your repository gets corrupted. It may not happen straight away, but one day two users will try to
access the repository at the same time.

17

The Repository

Thirdly the file permissions have to be set just so. You may just about get away with it on a native
Windows share, but SAMBA is particularly difficult.

file:// accessisintended for local, single-user access only, particularly testing and debugging. When
you want to share the repository you really need to set up a proper server, and it is not nearly as difficult
asyou might think. Read Section 3.5, “ Accessing the Repository” for guidelines on choosing and setting
up aserver.

3.1.5. Repository Layout

Before you import your data into the repository you should first think about how you want to organize
your data. If you use one of the recommended layouts you will later have it much easier.

There are some standard, recommended ways to organize a repository. Most people create at r unk
directory to hold the “main ling” of development, abr anches directory to contain branch copies, and
at ags directory to contain tag copies. If arepository holds only one project, then often people create
these top-level directories:

/trunk
/ branches
/tags

If arepository contains multiple projects, people often index their layout by branch:

[t runk/ pai nt
/trunk/cal c

/ branches/ pai nt
/ branches/ cal ¢
/ t ags/ pai nt
/tags/calc

...or by project:

/ pai nt/trunk

/ pai nt/ branches
/ pai nt/tags
/cal ¢/ trunk

/ cal ¢/ branches
/cal c/tags

Indexing by project makes sense if the projects are not closely related and each one is checked out
individually. For related projects where you may want to check out al projects in one go, or where the
projectsareall tied together in asingle distribution package, it isoften better to index by branch. Thisway
you have only onetrunk to checkout, and the rel ationshi ps between the sub-projectsismore easily visible.

If youadopt atoplevel / t runk /tags / branches approach, thereisnothing to say that you haveto
copy the entire trunk for every branch and tag, and in some ways this structure offers the most flexibility.

For unrelated projects you may prefer to use separate repositories. When you commit changes, it is the
revision number of the whole repository which changes, not the revision number of the project. Having
2 unrelated projects share arepository can mean large gapsin the revision numbers. The Subversion and
TortoiseSV N projects appear at the same host address, but are completely separate repositories allowing
independent devel opment, and no confusion over build numbers.

Of course, you're free to ignore these common layouts. You can create any sort of variation, whatever
works best for you or your team. Remember that whatever you choose, it's not a permanent commitment.

18

The Repository

You can reorganize your repository at any time. Because branches and tags are ordinary directories,
TortoiseSVN can move or rename them however you wish.

Switching from one layout to another isjust amatter of issuing a series of server-side moves; If you don't
like the way things are organized in the repository, just juggle the directories around.

So if you haven't already created a basic folder structure inside your repository you should do that now.
There are two ways to achieve this. If you ssimply want to create a/trunk /tags /branches
structure, you can use the repository browser to create the three folders (in three separate commits). If
you want to create adeeper hierarchy thenitissimpler to create afolder structure on disk first and import
it in asingle commit, like this:

1. create anew empty folder on your hard drive

2. create your desired top-level folder structure inside that folder - don't put any filesinit yet!

3. import this structure into the repository viaaright click on the folder and selecting TortoiseSVN -
Import... Thiswill import your temp folder into therepository root to create the basic repository layout.

Note that the name of the folder you are importing does not appear in the repository, only its contents.
For example, create the following folder structure:

C.\ Tenp\ NewA t r unk
C. \ Tenp\ New\ br anches
C.\ Tenp\ Newh t ags

Import C: \ Tenp\ Newinto the repository root, which will then look like this:

/trunk
/ branches
/tags

3.2. Repository Backup

Whichever type of repository you use, it is vitally important that you maintain regular backups, and that
you verify the backup. If the server fails, you may be able to access a recent version of your files, but
without the repository all your history islost forever.

The simplest (but not recommended) way is just to copy the repository folder onto the backup medium.
However, you have to be absolutely sure that no process is accessing the data. In this context, access
means any access at al. A BDB repository iswritten to even when the operation only appearsto require
reading, such as getting status. If your repository is accessed at al during the copy, (web browser left
open, WebSVN, etc.) the backup will be worthless.

The recommended method isto run

svnadm n hot copy path/to/repository path/to/backup --clean-Iogs

to create acopy of your repository in asafe manner. Then backup the copy. The- - cl ean- 1 ogs option
is not required, but removes any redundant log files when you backup a BDB repository, which may
save some space.

The svnadm n tool isinstalled automatically when you install the Subversion command line client. If
you are installing the command line tools on a Windows PC, the best way is to download the Windows
installer version. It iscompressed more efficiently thanthe. zi p version, sothedownload issmaller, and

19

The Repository

it takes care of setting the pathsfor you. Y ou can download the latest version of the Subversion command
line client from http://subversion.apache.org/getting.html [http://subversion.apache.org/getting.html].

3.3. Server side hook scripts

A hook script is a program triggered by some repository event, such as the creation of a new revision
or the modification of an unversioned property. Each hook is handed enough information to tell what
that event is, what target(s) it's operating on, and the username of the person who triggered the event.
Depending on the hook's output or return status, the hook program may continue the action, stop it, or
suspenditin someway. Pleaserefer to the chapter on Hook Scripts [http://svnbook.red-bean.com/en/1.5/
svn.reposadmin.create.html#svn.reposadmin.create.hooks] in the Subversion Book for full details about
the hooks which are implemented.

These hook scripts are executed by the server that hosts the repository. TortoiseSVN also alows you
to configure client side hook scripts that are executed locally upon certain events. See Section 4.30.8,
“Client Side Hook Scripts’ for more information.

Sample hook scripts can be found in the hooks directory of the repository. These sample scripts are
suitable for Unix/Linux servers but need to be modified if your server is Windows based. The hook can
be abatch file or an executable. The sample below shows a batch file which might be used to implement
a pre-revprop-change hook.

remOnly allow | og nessages to be changed.

if "%" == "svn:log" exit O
echo Property '%l' cannot be changed >&2
exit 1

Note that anything sent to stdout is discarded. if you want a message to appear in the Commit Reject
dialog you must send it to stderr. In abatch file thisis achieved using >&2

3.4. Checkout Links

If you want to make your Subversion repository available to others you may want to include a link
to it from your website. One way to make this more accessible is to include a checkout link for other
TortoiseSVN users.

When you install TortoiseSVN, it registersanew t svn: protocol. When a TortoiseSVN user clicks on
such alink, the checkout dialog will open automatically with the repository URL already filled in.

To include such alink in your own html page, you need to add code which looks something like this:

</ a>

Of courseit would ook even better if you included a suitable picture. Y ou can usethe TortoiseSVN logo
[http://tortoisesvn.tigris.org/images/Tortoi seCheckout.png] or you can provide your own image.

<i ng src=Tortoi seCheckout. png>

Y ou can also make the link point to a specific revision, for example

20

http://subversion.apache.org/getting.html
http://subversion.apache.org/getting.html
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://tortoisesvn.tigris.org/images/TortoiseCheckout.png
http://tortoisesvn.tigris.org/images/TortoiseCheckout.png

The Repository

</ a>

3.5. Accessing the Repository

To use TortoiseSVN (or any other Subversion client), you need a place where your repositories are
located. You can either store your repositories locally and access them using thef i | e: // protocol or
you can place them on aserver and accessthemwiththeht t p: // orsvn: // protocols. Thetwo server
protocols can also be encrypted. You usehtt ps:// or svn+ssh://,oryoucanusesvn:// with
SASL.

If you are using a public hosting service such as Google Code [http://code.google.com/hosting/] or your
server has already been setup by someone else then there is nothing else you need to do. Move along to
Chapter 4, Daily Use Guide.

If you don't have a server and you work alone, or if you are just evaluating Subversion and TortoiseSVN
in isolation, then local repositories are probably your best choice. Just create a repository on your own
PC as described earlier in Chapter 3, The Repository. Y ou can skip the rest of this chapter and go directly
to Chapter 4, Daily Use Guide to find out how to start using it.

If you were thinking about setting up a multi-user repository on a network share, think again. Read
Section 3.1.4, “ Accessing a Repository on a Network Share” to find out why we think thisis a bad idea.
Setting up aserver isnot as hard asit sounds, and will give you better reliability and probably speed too.

The next sections are a step-by-step guide on how you can set up such a server on a Windows machine.
Of course you can also set up a server on a Linux machine, but that is beyond the scope of this guide.
More detailed information on the Subversion server options, and how to choose the best architecture for
your situation, can be found in the Subversion book under Server Configuration [http://svnbook.red-
bean.com/en/1.5/svn.serverconfig.html].

3.6. Svnserve Based Server

3.6.1. Introduction

Subversion includes Svnserve - a lightweight stand-alone server which uses a custom protocol over an
ordinary TCP/IP connection. It isidea for smaller installations, or where a full blown Apache server
cannot be used.

In most cases svnserveiseasier to setup and runs faster than the Apache based server, athough it doesn't
have some of the advanced features. And now that SASL support isincluded it is easy to secure aswell.

3.6.2. Installing svnserve

1. Get the latest version of Subversion from http://subversion.apache.org/getting.html [http:/
subversion.apache.org/getting.htmli]. Alternatively get a pre-packaged instaler from CollabNet
at http://www.collab.net/downloads/subversion [http://www.collab.net/downloads/subversion]. This
installer will setup svnserve as a Windows service, and also includes some of the tools you need if
you are going to use SASL for security.

2. If you aready have aversion of Subversion installed, and svnserve is running, you will need to stop
it before continuing.

3. Runthe Subversioninstaller. If you run theinstaller on your server (recommended) you can skip step 4.

4. Open the windows-explorer, go to the instalation directory of Subversion (usualy C:
\ Program Fil es\ Subver si on) and in the bi n directory, find the files svnserve. exe,
intl3_svn.dll,libapr.dll,libapriconv.dll,libapriutil.dll,libdb*.dllI,
i beay32.dl | andssl eay32. dl | - copy thesefiles, or just copy all of the bi n directory, into
adirectory on your server eg. c: \ svnserve

21

http://code.google.com/hosting/
http://code.google.com/hosting/
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.html
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.html
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.html
http://subversion.apache.org/getting.html
http://subversion.apache.org/getting.html
http://subversion.apache.org/getting.html
http://www.collab.net/downloads/subversion
http://www.collab.net/downloads/subversion

The Repository

3.6.3. Running svnserve

Now that svnserve is installed, you need it running on your server. The simplest approach is to run the
following from a DOS shell or create a windows shortcut:

svnserve. exe --daenon

svnserve will now start waiting for incoming requests on port 3690. The --daemon switch tells svnserve
to run as a daemon process, so it will always exist until it is manually terminated.

If you have not yet created a repository, follow the instructions given with the Apache server setup
Section 3.7.4, “Configuration”.

To test that svnserve isworking, use TortoiseSVN — Repo-Browser to view arepository.

Assuming your repository islocatedinc: \ r epos\ Test Repo, andyour serveriscaled| ocal host ,
enter:

svn:/ /| ocal host/repos/ Test Repo
when prompted by the repo browser.

You can aso increase security and save time entering URL s with svnserve by using the --root switch to
set the root location and restrict access to a specified directory on the server:

svnserve. exe --daenon --root drive:\path\to\repository\root

Using the previoustest as a guide, svnserve would now run as:

svnserve. exe --daenon --root c:\repos

And in TortoiseSVN our repo-browser URL is now shortened to:

svn:/ /| ocal host/ Test Repo

Note that the --root switch is also needed if your repository is located on a different partition or drive
than the location of svnserve on your server.

Svnserve will service any number of repositories. Just |ocate them somewhere below the root folder you
just defined, and access them using a URL relative to that root.

3 Warning

Do not create or access a Berkeley DB repository on a network share. It cannot exist on a
remote filesystem. Not even if you have the network drive mapped to a drive letter. If you
attempt to use Berkeley DB on anetwork share, the results are unpredictable - you may see
mysterious errors right away, or it may be months before you discover that your repository
database is subtly corrupted.

3.6.3.1. Run svnserve as a Service

Running svnserve as a user is usually not the best way. It means always having a user logged in on your
server, and remembering to restart it after areboot. A better way isto run svnserve as awindows service.
Starting with Subversion 1.4, svnserve can be installed as a native windows service.

22

The Repository

Toinstall svnserve as a native windows service, execute the following command all on one lineto create
aservice which is automatically started when windows starts.

sc create svnserve binpath= "c:\svnserve\svnserve. exe --service
--root c:\repos" displayname= "Subversion" depend= tcpip
start= auto

If any of the paths include spaces, you have to use (escaped) quotes around the path, like this:

sc create svnserve binpath="
\"C:\ Program Fi | es\ Subver si on\ bi n\ svnserve. exe\"
--service --root c:\repos" displaynane= "Subversion”
depend= tcpip start= auto

You can aso add a description after creating the service. This will show up in the Windows Services
Manager.
sc description svnserve "Subversion server (svnserve)"

Note the rather unusual command line format used by sc. Inthekey= val ue pairs there must be no
space between the key and the = but there must be a space before the value.

d"

: Tip
Microsoft now recommend services to be run as under either the Local Service or
Network Service account. Refer to The Services and Service Accounts Security Planning
Guide [http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/
default.mspx]. To create the service under the Local Service account, append the following

to the example above.

obj = "NT AUTHORI TY\ Local Servi ce"

Note that you would have to give the Local Service account appropriate rights to both
Subversion and your repositories, aswell asany applicationswhich are used by hook scripts.
The built-in group for thisiscalled "LOCAL SERVICE".

Once you have installed the service, you need to go to the services manager to start it (this time only; it
will start automatically when the server reboots).

For more detailed information, refer to Windows Service Support for Svnserve [http://svn.collab.net/
repos/svn/trunk/notes/windows-service.txt].

If you installed an earlier version of svnserve using the SVNSer vi ce wrapper, and you how want to
use the native support instead, you will need to unregister the wrapper as a service (remember to stop
the service first!). Simply use the command

svnservi ce -renove
to remove the service registry entry.

3.6.4. Basic Authentication with svnserve

The default svnserve setup provides anonymous read-only access. This means that you can use an
svn: // URL to checkout and update, or use the repo-browser in TortoiseSV N to view the repository,
but you won't be able to commit any changes.

23

http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://www.microsoft.com/technet/security/topics/serversecurity/serviceaccount/default.mspx
http://svn.collab.net/repos/svn/trunk/notes/windows-service.txt
http://svn.collab.net/repos/svn/trunk/notes/windows-service.txt
http://svn.collab.net/repos/svn/trunk/notes/windows-service.txt

The Repository

To enable write access to a repository, you need to edit the conf/ svnserve. conf file in your
repository directory. Thisfile controlsthe configuration of the svnserve daemon, and al so contains useful
documentation.

Y ou can enable anonymous write access by simply setting:

[general]
anon-access = wite

However, you will not know who has made changes to arepository, asthe svn: aut hor property will
be empty. You will aso be unable to control who makes changes to a repository. This is a somewhat
risky setup!

One way to overcome thisisto create a password database:

[general]

anon- access = none

aut h-access = wite
password-db = userfile

Whereuser fi | e isafilewhich existsin the same directory assvnser ve. conf . Thisfile can live
elsewhere in your file system (useful for when you have multiple repositories which require the same
access rights) and may be referenced using an absolute path, or a path relative to the conf directory.
If you include a path, it must be written/ t he/ uni x/ way. Using \ or drive letters will not work. The
user fi | e should have a structure of:

[users]
username = password

This example would deny all access for unauthenticated (anonymous) users, and give read-write access
touserslistedinuserfil e.

|
—

| Tip

If you maintain multiple repositories using the same password database, the
use of an authentication realm will make life easier for users, as TortoiseSVN
can cache your credentidls so that you only have to enter them once
More information can be found in the Subversion book, specifically in
the sections Create a 'users file and realm [http://svnbook.red-bean.com/
en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users] and Client
Credentials Caching [http://svnbook.red-bean.com/en/1.5/
svn.serverconfig.netmodel .html#svn.serverconfig.netmodel .credcache]

3.6.5. Better Security with SASL

3.6.5.1. What is SASL?

The Cyrus Simple Authentication and Security Layer isopen source software written by Carnegie Mellon
University. It adds generic authentication and encryption capabilities to any network protocol, and as of
Subversion 1.5 and later, both the svnserve server and TortoiseSVN client know how to make use of
thislibrary.

For a more complete discussion of the options available, you should look at the
Subversion book in the section Using svnserve with SASL [http://svnbook.red-bean.com/en/1.5/

24

http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.auth.users
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.netmodel.html#svn.serverconfig.netmodel.credcache
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sasl
http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sasl

The Repository

svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sad]. If you arejust looking for asimple way
to set up secure authentication and encryption on a Windows server, so that your repository can be
accessed safely over the big bad Internet, read on.

3.6.5.2. SASL Authentication

To activate specific SASL mechanisms on the server, you'll need to do three things. First, create a
[sasl] sectioninyour repository'ssvnser ve. conf file, with thiskey-value pair:

use-sasl = true

Second, create a file called svn. conf in a convenient location - typicaly in the directory where
subversion isinstalled.

Thirdly, create two new registry entries to tell SASL where to find things. Create a registry key
named [HKEY_LOCAL_MACHI NE\ SOFTWARE\ Car negi e Mel | on\ Proj ect Cyrus\ SASL
Li brary] and placetwo new string valuesinsideit: Sear chPat h set to the directory path containing
the sasl *. dl | plug-ins (normally in the Subversion install directory), and Conf Fi | e set to the
directory containing the svn. conf file. If you used the CollabNet installer, these registry keys will
already have been created for you.

Edit thesvn. conf fileto contain the following:

pwcheck _net hod: auxprop
auxprop_pl ugi n: sasl db

mech_Iist: DI GEST- MD5

sasl db_path: C:\Tortoi seSVN\ sasl db

Thelast line showsthelocation of the authentication database, whichisafilecalled sas| db. Thiscould
go anywhere, but a convenient choice is the repository parent path. Make sure that the svnserve service
has read access to thisfile.

If svnserve was already running, you will need to restart it to ensure it reads the updated configuration.

Now that everything is set up, al you need to do is create some users and passwords. To do this you
need thesasl passwd2 program. If you used the CollabNet installer, that program will bein theinstall
directory. Use acommand something like this:

sasl passwd2 -c¢ -f C/\Tortoi seSVN\sasl db -u real musernane

The - f switch gives the database location, r eal mmust be the same as the value you defined in your
repository'ssvnser ve. conf file, and usernameisexactly what you expect it to be. Note that theream
is not allowed to contain space characters.

You can list the usernames stored in the database using the sas| dbl i st user s2 program.
3.6.5.3. SASL Encryption

To enable or disable different levels of encryption, you can set two values in your repository's
svnserve. conf file

[sasl]

use-sasl = true

m n-encryption = 128
max-encryption = 256

Them n-encrypti on and max- encrypti on variables control the level of encryption demanded
by the server. To disable encryption completely, set both values to 0. To enable simple checksumming

25

http://svnbook.red-bean.com/en/1.5/svn.serverconfig.svnserve.html#svn.serverconfig.svnserve.sasl

The Repository

of data (i.e., prevent tampering and guarantee data integrity without encryption), set both values to 1.
If you wish to allow (but not require) encryption, set the minimum value to 0, and the maximum value
to some bit-length. To require encryption unconditionally, set both values to numbers greater than 1.
In our previous example, we require clients to do at least 128-hit encryption, but no more than 256-bit
encryption.

3.6.6. Authentication with svn+ssh

Another way to authenticate users with a svhserve based server is to use a secure shell (SSH) to tunnel
requests through. It is not as simple to set up as SASL, but it may be useful is some cases.

With this approach, svnserve is not run as a daemon process, rather, the secure shell starts svnserve for
you, running it as the SSH authenticated user. To enable this, you need a secure shell daemon on your
server.

A basic method for setting up your server is given in Appendix G, Securing Svnserve using SSH. You
can find other SSH topics within the FAQ by searching for “ SSH”.

Further information about svnserve can be found in the Version Control with Subversion [http:/
svnbook.red-bean.com].

3.6.7. Path-based Authorization with svnserve

Starting with Subversion 1.3, svnserve supports the same mod_aut hz_svn path-based authorization
scheme that is available with the Apache server. Y ou need to edit the conf / svnser ve. conf filein
your repository directory and add aline referring to your authorization file.

[general]
aut hz-db = aut hz

Here, aut hz is a file you create to define the access permissions. You can use a separate file for
each repository, or you can use the same file for several repositories. Read Section 3.7.6, “ Path-Based
Authorization” for a description of the file format.

3.7. Apache Based Server

3.7.1. Introduction

The most flexible of all possible server setups for Subversion is the Apache based one. Although a bit
more complicated to set up, it offers benefits that other servers cannot:

WebDAV
The Apache based Subversion server usesthe WebDAYV protocol which is supported by many other
programsaswell. Y ou could e.g. mount such arepository asa“Web folder” inthe Windows explorer
and then access it like any other folder in the file system.

Browsing The Repository
You can point your browser to the URL of your repository and browse the contents of it without
having a Subversion client installed. This gives access to your datato a much wider circle of users.

Authentication
Y ou can use any authentication mechanism Apache supports, including SSPI and LDAP.

Security
Since Apache is very stable and secure, you automatically get the same security for your repository.
Thisincludes SSL encryption.

26

http://svnbook.red-bean.com
http://svnbook.red-bean.com
http://svnbook.red-bean.com

The Repository

3.7.2. Installing Apache

Thefirst thing you need before installing Apache is a computer with Windows 2000, Windows XP+SP1,
Windows 2003, Vista or Server 2008.

Please note that Windows XP without the service pack 1 will lead to bogus network data
and could therefore corrupt your repository!

1. Download the latest version of the Apache web server from http://httpd.apache.org/download.cgi
[http://httpd.apache.org/download.cgi]. Make sure that you download the version 2.2.x - the version
1.3.xx won't work!

The ms installer for Apache can be found by clicking on ot her fil es, then browse to
bi nari es/w n32. You may want to choose the ms file apache-2. 2. x- wi n32- x86-
openssl -0. 9. x. nsi (the one that includes OpenSSL).

2. Once you have the Apache2 installer you can double click on it and it will guide you through the
installation process. Make sure that you enter the server-URL correctly (if you don't have a DNS
name for your server just enter the IP-address). | recommend to install Apache for All Users, on
Port 80, as a Service. Note: if you already have 1S or any other program running which listens on
port 80 the installation might fail. If that happens, go to the programs directory, \ Apache G oup
\ Apache?\ conf andlocatethefileht t pd. conf . Editthat filesothat Li st en 80 ischanged to
afreeport, eg.Li st en 81. Thenrestart theinstallation - thistimeit should finish without problems.

3. Now test if the Apache web server is running correctly by pointing your web browser to ht t p: //
| ocal host/ - apreconfigured Website should show up.

_ i h Caution

If you decideto install Apache asaservice, be warned that by default it will run asthelocal
system account. It would be a more secure practice for you to create a separate account for
Apacheto run as.

Make sure that the account on the server that Apache is running as has an explicit entry
in the repository directory's access control list (right-click directory | properties | security),
with full control. Otherwise, users will not be able to commit their changes.

Even if Apache runs as local system, you still need such an entry (which will be the
SYSTEM account in this case).

If Apache does not have this permission set up, your users will get “Access denied” error
messages, which show up in the Apache error log as error 500.

3.7.3. Installing Subversion

1. Download the latest version of the Subversion Win32 binaries for Apache. Be sure to get the
right version to integrate with your version of Apache, otherwise you will get an obscure error
message when you try to restart. If you have Apache 2.2.x goto http://subversion.tigris.org/servietsy
ProjectDocumentList?folderID=8100 [http://subversion.tigris.org/servlets/ProjectDocumentList?
folderlD=8100].

2. Run the Subversion installer and follow the instructions. If the Subversion installer recognized that
you've installed Apache, then you're amost done. If it couldn't find an Apache server then you have
to do some additional steps.

27

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=8100
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=8100
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=8100
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=8100

The Repository

Using the windows explorer, go to the installation directory of Subversion (usualy c:

\program fil es\Subversion) and find the files / httpd/ nod_dav_svn.so and
nod_aut hz_svn. so. Copy these files to the Apache modules directory (usualy c: \ pr ogr am
fil es\apache group\apache2\ nodul es).

4. Copy thefile/ bi n/1ibdb*.dl| and/ bi n/intl 3 _svn. dl |l fromthe Subversion installation
directory to the Apache bin directory.

5. Edit Apache's configuration file (usually C.\Program Files\ Apache G oup
\ Apache?\ conf\ htt pd. conf) with a text editor such as Notepad and make the following
changes:

Uncomment (remove the '#' mark) the following lines:

#LoadModul e dav_fs_nodul e nodul es/ nod_dav_fs. so
#LoadModul e dav_nodul e nmodul es/ nod_dav. so

Add the following two lines to the end of the LoadModul e section.

LoadModul e dav_svn_nodul e nodul es/ nod_dav_svn. so
LoadModul e aut hz_svn_nodul e nodul es/ nbd_aut hz_svn. so

3.7.4. Configuration

Now you have set up Apache and Subversion, but Apache doesn't know how to handle Subversion clients
like TortoiseSVN yet. To get Apache to know which URL will be used for Subversion repositories you
have to edit the Apache configuration file (usually locatedinc: \ program fi | es\ apache group
\ apache?2\ conf\ htt pd. conf) with any text editor you like (e.g. Notepad):

1. At the end of the config file add the following lines:

<Location /svn>
DAV svn
SVNLi st Par ent Pat h on
SVNPar ent Pat h D: \ SVN
#SVNI ndexXSLT "/ svni ndex. xsl "
Aut hType Basi c
Aut hName " Subversion repositories"
Aut hUser Fi | e passwd
#Aut hzSVNAccessFi | e svnaccessfile
Require vali d-user
</ Locati on>

Thisconfigures Apache so that all your Subversion repositoriesare physically located below D: \ SVN.
The repositories are served to the outside world from the URL: http:// MyServer/ svn/
Accessis restricted to known users/passwords listed in the passwd file.

2. To create the passwd file, open the command prompt (DOS-Box) again, change to the apache?2
folder (usualy c: \ program fi | es\ apache group\ apache?2) and createthefileby entering

bi n\ ht passwd -c¢ passwd <user nanme>

Thiswill create afile with the name passwd which is used for authentication. Additional users can
be added with

28

The Repository

bi n\ ht passwd passwd <user nane>
3. Restart the Apache service again.

4, Point your browser to http://MServer/svn/ MyNewRepository (where
MyNewReposi t ory isthe name of the Subversion repository you created before). If all went well
you should be prompted for ausername and password, then you can see the contents of your repository.

A short explanation of what you just entered:

Setting Explanation

<L ocation /svn> means that the Subversion repositories are available from the URL
http:// MWServer/svn/

DAV svn tells Apache which module will be responsible to serve that URL -
in this case the Subversion module.

SVNListParentPath on For Subversion version 1.3 and higher, this directive enableslisting
al the available repositories under SVNPar ent Pat h.

SVNParentPath D:\SVN tells Subversion to look for repositories below D: \ SVN

SVNIndexXSLT "/ | Used to make the browsing with aweb browser prettier.

svnindex.xd"

AuthType Basic isto activate basic authentication, i.e. Username/password

AuthName "Subversion | is used as an information whenever an authentication dialog pops

repositories’ up to tell the user what the authentication is for

AuthUserFile passwd specifies which password file to use for authentication

AuthzSVNA ccessFile L ocation of the Accessfile for paths inside a Subversion repository

Require valid-user specifies that only users who entered a correct username/password
are allowed to access the URL

Table 3.1. Apacheht t pd. conf Settings

But that's just an example. There are many, many more possibilities of what you can do with the Apache
web server.

« If you want your repository to have read access for everyone but write access only for specific users
you can change the line

Require valid-user

to

<Li m t Except GET PROPFI ND OPTlI ONS REPORT>
Require valid-user
</LimtExcept>

» Using apasswd file limits and grants access to all of your repositories as a unit. If you want more
control over which users have access to each folder inside a repository you can uncomment the line

#Aut hzSVNAccessFi | e svnaccessfil e

and create a Subversion accessfile. Apache will make surethat only valid users are able to access your
/ svn location, and will then passthe username to Subversion's Aut hzSVNAccessFi | e module so

29

The Repository

that it can enforce more granular access based upon ruleslisted in the Subversion accessfile. Note that
paths are specified either asr epos: pat h or simply pat h. If you don't specify aparticular repository,
that accessrulewill apply to all repositoriesunder SVNPar ent Pat h. Theformat of the authorization-
policy file used by nod_aut hz_svn isdescribed in Section 3.7.6, “ Path-Based Authorization”

» To make browsing the repository with aweb browser 'prettier', uncomment the line

#SVNI ndexXSLT "/ svni ndex. xsl "

and put thefilessvni ndex. xsl , svni ndex. css and nenucheckout . i co in your document
root directory (usualy C:./Program Files/Apache G oup/Apache2/htdocs). The
directory is set with the Docunent Root directivein your Apache config file.

You can get those three files directly from our source repository at http://

tortoisesvn.googlecode.convsvn/trunk/contrib/svnindex [http://tortoi sesvn.googlecode.com/svn/
trunk/contrib/svnindex]. (Section 3, “TortoiseSVN isfree!” explains how to access the TortoiseSVN
source repository).

The XSL file from the TortoiseSVN repository has a hice gimmick: if you browse the repository with
your web browser, then every folder in your repository has an icon on the right shown. If you click on
that icon, the TortoiseSVN checkout dialog is started for this URL.

3.7.5. Multiple Repositories

If you used the SVNPar ent Pat h directive then you don't have to change the Apache config file every
time you add a new Subversion repository. Simply create the new repository under the same location as
the first repository and you're done! In my company | have direct access to that specific folder on the
server via SMB (normal windows file access). So | just create a new folder there, run the TortoiseSVN

command TortoiseSVN - Create repository here... and a new project has ahome...

If you are using Subversion 1.3 or later, you can usethe SVNLi st Par ent Pat h on directiveto alow
Apache to produce alisting of all available projects if you point your browser at the parent path rather
than at a specific repository.

3.7.6. Path-Based Authorization

Thenod_aut hz_svn module permits fine-grained control of access permissions based on user names
and repository paths. Thisis available with the Apache server, and as of Subversion 1.3 it is available
with svnserve as well.

An example filewould look like this:

[groups]
adm n = john, kate
devteaml = john, rachel, sally

devtean? = kate, peter, mark

docs = bob, jane, mke

training = zak

Default access rule for ALL repositories

Everyone can read, admins can wite, Dan Gernman is excl uded.
[/]

* = r

@dnmn = rw

danger man =

Al'l ow devel opers conplete access to their project repos
[proj 1:/]

30

http://tortoisesvn.googlecode.com/svn/trunk/contrib/svnindex
http://tortoisesvn.googlecode.com/svn/trunk/contrib/svnindex
http://tortoisesvn.googlecode.com/svn/trunk/contrib/svnindex
http://tortoisesvn.googlecode.com/svn/trunk/contrib/svnindex

The Repository

@evteanl = rw

[proj2:/]

@evtean? = rw

[bigproj:/]

@evteanl = rw

@evtean? = rw

trevor = rw

G ve the doc people wite access to all the docs folders
[/ trunk/doc]

@ocs = rw

Gve trainees wite access in the training repository only
[Trai ni ngRepos: /]

@raining = rw

Note that checking every path can be an expensive operation, particularly in the case of the revision log.
The server checks every changed path in each revision and checks it for readability, which can be time-
consuming on revisions which affect large numbers of files.

Authentication and authorization are separate processes. If a user wants to gain access to a repository
path, she has to meet both, the usual authentication requirements and the authorization requirements of
the accessfile.

3.7.7. Authentication With a Windows Domain

As you might have noticed you need to make a username/password entry in the passwd file for each
user separately. And if (for security reasons) you want your usersto periodically change their passwords
you have to make the change manually.

But there'sa solution for that problem - at least if you're accessing the repository frominsideaLAN with
awindows domain controller: mrod_aut h_sspi !

The original SSPI module was offered by Syneapps including source code. But the development for it
has been stopped. But don't despair, the community has picked it up and improved it. It has a new home
on SourceForge [http://sourceforge.net/projects/mod-auth-sspi/].

» Download the module which matches your apache version, then copy thefilenbd_aut h_sspi . so
into the Apache modules folder.

* Edit the Apache config file: add the line

LoadModul e sspi _aut h_nodul e nodul es/ nbd_aut h_sspi . so

tothe LoadMbdul e section. Make sure you insert this line before the line

LoadModul e aut h_nmodul e nodul es/ nod_aut h. so

» To make the Subversion location use this type of authentication you have to change the line

Aut hType Basic

to

Aut hType SSPI
aso you need to add

31

http://sourceforge.net/projects/mod-auth-sspi/
http://sourceforge.net/projects/mod-auth-sspi/

The Repository

SSPI Auth On

SSPI Authoritative On

SSPI Dormai n <domai ncontrol | er>
SSPI Omi t Donmai n on

SSPI User naneCase | ower

SSPI Per Request Aut h on

SSPI Of f erBasic On

within the <Locat i on / svn> block. If you don't have a domain controller, leave the name of the
domain control as<domai ncont r ol | er >.

Note that if you are authenticating using SSPI, then you don't need the Aut hUser Fi | e lineto define
a password file any more. Apache authenticates your username and password against your windows
domain instead. Y ou will need to update the userslist in your svnaccessfi | e to reference DOVAI N
\ user nane aswell.

i | I mportant

The SSPI authentication isonly enabled for SSL secured connections (https). If you're only
using normal http connections to your server, it won't work.

Toenable SSL onyour server, seethe chapter: Section 3.7.9, “ Securing the server with SSL”

_'"‘l Tip
Subversion Aut hzSVNAccessFi | e files are case sensitive in regard to user names
(JUser isdifferent fromj user).

In Microsoft's world, Windows domains and user names are not case sensitive. Even so,
some network administrators like to create user accountsin CamelCase (e.g. JUser).

This difference can bite you when using SSPI authentication as the windows domain and
user names are passed to Subversion in the same case asthe user typesthem in at the prompt.
Internet Explorer often passes the username to Apache automatically using whatever case
the account was created with.

The end result is that you may need at least two entriesin your Aut hzSVNAccessFi | e
for each user -- alowercase entry and an entry in the same case that Internet Explorer passes
to Apache. Youwill also need to train your usersto also typein their credentialsusing lower
case when accessing repositories via TortoiseSV N.

Apache's Error and Access logs are your best friend in deciphering problems such as
these as they will help you determine the username string passed onto Subversion's
Aut hzSVNAccessFi | e module. You may need to experiment with the exact format of
the user string in the svnaccessfi |l e (e.g. DOVAI N\ user vs. DOVAI N/ / user) in
order to get everything working.

3.7.8. Multiple Authentication Sources

It isalso possible to have more than one authentication source for your Subversion repository. To do this,
you need to make each authentication type non-authoritative, so that Apache will check multiple sources
for amatching username/password.

A common scenario is to use both Windows domain authentication and apasswd file, so that you can
provide SVN access to users who don't have a Windows domain login.

The Repository

* To enable both Windows domain and passwd file authentication, add the following entries within
the<Locat i on> block of your Apache config file:

Aut hBasi cAut horitative Of
SSPI Aut horitative O f

Here is an example of the full Apache configuration for combined Windows domain and passwd file
authentication:

<Location /svn>
DAV svn
SVNLi st Par ent Pat h on
SVNPar ent Pat h D: \ SVN

Aut hNanme " Subversion repositories”
Aut hzSVNAccessFi | e svnaccessfil e. t xt

NT Domai n Logi ns.
Aut hType SSPI
SSPI Auth On
SSPI Aut horitative Of
SSPI Domai n <domai ncontrol | er>
SSPI O ferBasic On

Ht passwd Logi ns.
Aut hType Basi c
Aut hBasi cAut horitative O f
Aut hUser Fi | e passwd

Require vali d-user
</ Locati on>

3.7.9. Securing the server with SSL

Even though Apache 2.2.x has OpenSSL support, it is not activated by default. Y ou need to activate this
manually.

1. Inthe apache config file, uncomment the lines:

#LoadMbdul e ssl _nodul e nmodul es/ nod_ssl . so

and at the bottom

#1 ncl ude conf/extralhttpd-ssl.conf

then change the line (on one line)

SSLMutex "file: C/Program Fil es/ Apache Software Foundation/\
Apache2. 2/ | ogs/ ssl _mut ex"

to

SSLMut ex def aul t

33

The Repository

2. Next you need to create an SSL certificate. To do that open a command prompt (DOS-Box) and
change to the Apache folder (e.g. C: \ program fil es\ apache group\apache?2) and type
the following command:

bi n\ openssl req -config conf\openssl.cnf -new -out mny-server.csr

You will be asked for a passphrase. Please don't use simple words but whole sentences, e.g. a part of
a poem. The longer the phrase the better. Also you have to enter the URL of your server. All other
guestions are optional but we recommend you fill those in too.

Normally thepri vkey. pemfileiscreated automatically, but if itisn't you need to typethiscommand
to generate it:

bi n\ openssl genrsa -out conf\privkey.pem 2048

Next type the commands

bi n\ openssl rsa -in conf\privkey. pem-out conf\server.key

and (on one line)

bi n\ openssl req -new -key conf\server.key -out conf\server.csr \
-config conf\openssl.cnf

and then (on oneline)

bi n\ openssl x509 -in conf\server.csr -out conf\server.crt
-req -signkey conf\server.key -days 4000

Thiswill create a certificate which will expire in 4000 days. And finally enter (on one line):

bi n\ openssl x509 -in conf\server.cert -out conf\server.der.crt
- out f or m DER

These commands created some files in the Apache conf folder (server.der.crt,
server.csr,server. key,.rnd,privkey. pemserver.cert).

3. Restart the Apache service.

4. Point your browser toht t ps: // server nane/ svn/ proj ect ...

i | SSL and Internet Explorer

If you're securing your server with SSL and use authentication against a windows domain
you will encounter that browsing the repository with the Internet Explorer doesn't work
anymore. Don't worry - this is only the Internet Explorer not able to authenticate. Other
browsers don't have that problem and TortoiseSV N and any other Subversion client are till
able to authenticate.

If you still want to use | E to browse the repository you can either:

 define a separate <Locat i on [/ pat h> directive in the Apache config file, and add
the SSPI Basi cPref erred On. Thiswill alow IE to authenticate again, but other
browsers and Subversion won't be able to authenticate against that location.

The Repository

» Offer browsing with unencrypted authentication (without SSL) too. Strangely |E doesn't
have any problems with authenticating if the connection is not secured with SSL.

* Inthe SSL "standard" setup there's often the following statement in Apache's virtual SSL
host:

Set Envlf User-Agent ".*MSIE *" \
nokeepal i ve ssl -uncl ean- shut down \
downgrade-1.0 force-response-1.0

There are (were?) good reasons for this configuration, see http://mww.modssl.org/
docs/2.8/ssl_faq.html#ToC49 [http://www.modssl.org/docs/2.8/sdl_fag.html#ToC49]
But if youwant NTLM authentication you haveto usekeepal i ve. If You uncomment
thewhole Set Envl f you should be ableto authenticate | E with windows authentication
over SSL against the Apache on Win32 with included nod_aut h_sspi .

Forcing SSL access

[t.

When you've set up SSL to make your repository more secure, you might want to disable
the normal access via non-SSL (http) and only allow https access. To do this, you have to
add another directive to the Subversion <Locat i on> block: SSLRequi r eSSL.

Anexample<Locat i on> block would look like this:

<Location /svn>
DAV svn
SVNPar ent Pat h D: \ SVN
SSLRequi r eSSL
Aut hType Basi c
Aut hName " Subversion repositories"
Aut hUser Fi | e passwd
#Aut hzSVNAccessFi | e svnaccessfil e
Requi re valid-user
</ Locati on>

3.7.10. Using client certificates with virtual SSL hosts
Sent to the TortoiseSVN mailing list by Nigel Green. Thanks!

In some server configurations you may need to setup asingle server containing 2 virtual SSL hosts: The
first one for public web access, with no requirement for a client certificate. The second one to be secure
with arequired client certificate, running a Subversion server.

Adding an SSLVeri fyCient Optional directive to the per-server section of the Apache
configuration (i.e. outside of any Vi rt ual Host and Di r ect or y blocks) forces Apache to request a
client Certificatein theinitial SSL handshake. Duetoabuginnod_ssl itisessential that the certificate
isrequested at this point as it does not work if the SSL connection is re-negotiated.

The solution is to add the following directive to the virtual host directory that you want to lock down
for Subversion:

SSLRequi re 9% SSL_CLI ENT_VERI FY} eq " SUCCESS"

This directive grants access to the directory only if a client certificate was received and verified
successfully.

35

http://www.modssl.org/docs/2.8/ssl_faq.html#ToC49
http://www.modssl.org/docs/2.8/ssl_faq.html#ToC49
http://www.modssl.org/docs/2.8/ssl_faq.html#ToC49

The Repository

To summarise, the relevant lines of the Apache configuration are:

SSLVerifydient Optional

Virtual host configuration for the PUBLIC host
(not requiring a certificate)

<Vi rtual Host 127.0.0. 1: 443>
<Di rectory "pathtopublicfil eroot">
</Directory>

</ Vi rt ual Host >

Virtual host configuration for SUBVERSI ON
(requiring a client certificate)
<Vi rtual Host 127.0.0. 1: 443>
<Di rectory "subversion host root path">
SSLRequi re 9% SSL_CLI ENT_VERI FY} eq " SUCCESS"
</Directory>

<Location /svn>
DAV svn
SVNPar ent Pat h / pat ht or eposi tory
</ Locati on>
</ Vi rt ual Host >

36

Chapter 4. Daily Use Guide

This document describes day to day usage of the TortoiseSVN client. It is not an introduction to version
control systems, and not an introduction to Subversion (SVN). It is more like a place you may turn to
when you know approximately what you want to do, but don't quite remember how to do it.

If you need an introduction to version control with Subversion, then we recommend you read the fantastic
book: Version Control with Subversion [http://svnbook.red-bean.com/].

This document is also a work in progress, just as TortoiseSVN and Subversion are. If you find any
mistakes, please report them to the mailing list so we can update the documentation. Some of the
screenshots in the Daily Use Guide (DUG) might not reflect the current state of the software. Please
forgive us. We're working on TortoiseSVN in our freetime.

In order to get the most out of the Daily Use Guide:

 You should haveinstalled TortoiseSVN already.

 You should be familiar with version control systems.

* You should know the basics of Subversion.

* You should have set up a server and/or have access to a Subversion repository.

4.1. Getting Started

4.1.1. Icon Overlays

o o & & &

normal readonky added normal.cpp readonly.cpp added.cpp

o

rodified deleted igrioted modified.cpp deleted.cpp ignored.cpp
Yy & ¢ F & ¢
onflicked locked non-versioned conflicked.cpp locked.cpp non-version,,

Figure4.1. Explorer showing icon overlays

Oneof themost visiblefeatures of TortoiseSV N istheicon overlayswhich appear onfilesinyour working
copy. These show you at a glance which of your files have been modified. Refer to Section 4.7.1, “Icon
Overlays’ to find out what the different overlays represent.

4.1.2. Context Menus

37

http://svnbook.red-bean.com/
http://svnbook.red-bean.com/

Daily Use Guide

2, Repo-browser

53, Check for modifications
% Revision graph

Explore
&y Resolved,
Open
Qrepiin i Update to revision...
Search... & Rename...
X Delete
Shating and Security. .. © Revert,.
i SYM Update B Clean up
A SN Commit. ..) Get lack. ..
L= SN Show log j Release lock
REEEETNI 1 cranchtag...
Scan sr_spl 5L Swiitch...
¥ Merge...
3
send To Efii Export...
Cut 7 Relocate. .
Copy
& Add,..
Paste

aDelete and add to ignore list ¥
Create Shorkbout

Delete 8 Create patch...
Renarie £ apply patch...
Lz Properties
Properties =
[] Paste
W Settings
? Help

é About

Figure 4.2. Context menu for a directory under version control

All TortoiseSVN commands are invoked from the context menu of the windows explorer. Most are
directly visible, when you right click on afile or folder. The commands that are available depend on
whether the file or folder or its parent folder is under version control or not. You can also see the
TortoiseSVN menu as part of the Explorer file menu.

. ___|
_""‘I Tip
Some commands which are very rarely used are only available in the extended context

menu. To bring up the extended context menu, hold down the Shift key when you right-
click.

In some cases you may see several TortoiseSVN entries. Thisis not abug!

38

Daily Use Guide

Open

FWETortoiseSWN k

Edit %

€ Scan dug.xml

Cpen With 3

i 5WM Update

@ SYN Canmit..,

W Tartoise WM L
ItraEdit-32

i SYM Update

1 5YM Commit, ..

W Tortoise v r
Send To r
Mew 3

Create Shorkout
Delete

Renarme
Properties

TaWMEeskC K

Close

Figure4.3. Explorer file menu for a shortcut in a versioned folder

Thisexampleisfor an unversioned shortcut within aversioned folder, and in the Explorer file menu there
are three entries for TortoiseSVN. One is for the folder, one for the shortcut itself, and the third for the
object the shortcut is pointing to. To help you distinguish between them, the icons have an indicator in
the lower right corner to show whether the menu entry is for afile, afolder, a shortcut or for multiple
selected items.

If you are using Windows 2000 you will find that the context menus are shown as plain text, without the
menu icons shown above. We are aware that this was working in previous versions, but Microsoft has
changed the way itsicon handlers work for Vista, requiring us to use a different display method which
unfortunately does not work on Windows 2000.

4.1.3. Drag and Drop

39

Daily Use Guide

WM Mowve versioned files here

SWM Move and rename versioned files here
SWMN Copy wersioned files here

SN Copy and rename versioned File here
WM Add files to this WiC

SWMN Export ko here

WM Export all ko here

Capy Here %
Move Here

Create Shartcuks Here

Cancel

Figure 4.4. Right drag menu for a directory under version control

Other commands are available as drag handlers, when you right drag files or folders to a new location
inside working copies or when you right drag a non-versioned file or folder into a directory which is
under version control.

4.1.4. Common Shortcuts

Some common operations have well-known Windows shortcuts, but do not appear on buttonsor in menus.
If you can't work out how to do something obvious, like refreshing aview, check here.

F1
Help, of course.

F5
Refresh the current view. Thisis perhaps the single most useful one-key command. For example ...
In Explorer this will refresh the icon overlays on your working copy. In the commit dialog it will
re-scan the working copy to see what may need to be committed. In the Revision Log diaog it will
contact the repository again to check for more recent changes.

Ctrl-A
Select all. This can be used if you get an error message and want to copy and paste into an email.
Use Ctrl-A to select the error message and then ...

Ctrl-C
... Copy the selected text.

4.1.5. Authentication

If therepository that you aretrying to accessis password protected, an authentication Dialog will show up.

40

Daily Use Guide

Authentication h El

<http:ffsvn.collab, nek: 30> TorkoiseSyh repository
requests a username and a password

sername:

Passwiord;

[]save authentication

l (04 l [Cancel

Figure 4.5. Authentication Dialog

Enter your username and password. The checkbox will make TortoiseSVN store the credentials in
Subversion's default directory: %APPDATA% Subver si on\ aut h in three subdirectories:

e svn. si npl e contains credentials for basic authentication (username/password).
* svn. ssl . server contains SSL server certificates.
* svn. user nane contains credentials for username-only authentication (no password needed).

If you want to clear the authentication cache for all servers, you can do so from the Saved Data
page of TortoiseSVN's settings dialog. That button will clear all cached authentication data from the
Subversion aut h directories, aswell as any authentication data stored in the registry by earlier versions
of TortoiseSVN. Refer to Section 4.30.6, “ Saved Data Settings’.

Some peopleliketo have the authentication data del eted when they |og off Windows, or on shutdown. The
way to dothat isto use ashutdown script to delete the YWAPPDATA% Subver si on\ aut h directory, e.g.

@cho of f
rodir /s /q "Y%APPDATA% Subver si on\ aut h"

You can find a description of how to install such scripts at windows-help-central.com [http://
www.windows-hel p-central .com/windows-shutdown-script.html].

For more information on how to set up your server for authentication and access control, refer to
Section 3.5, “Accessing the Repository”

4.1.6. Maximizing Windows

Many of TortoiseSVN's dialogs have alot of information to display, but it is often useful to maximize
only the height, or only the width, rather than maximizing to fill the screen. As a convenience, there are
shortcuts for this on the Maximize button. Use the middle mouse button to maximize vertically, and right
mouse to maximize horizontally.

4.2. Importing Data Into A Repository

4.2.1. Import

If you areimporting into an existing repository which already contains some projects, then the repository
structure will already have been decided. If are importing data into a new repository then it is worth
taking the time to think about how it will be organised. Read Section 3.1.5, “Repository Layout” for
further advice.

41

http://www.windows-help-central.com/windows-shutdown-script.html
http://www.windows-help-central.com/windows-shutdown-script.html
http://www.windows-help-central.com/windows-shutdown-script.html

Daily Use Guide

This section describes the Subversion import command, which was designed for importing a directory
hierarchy into the repository in one shot. Although it doesthe jab, it has several shortcomings:

e Thereisno way to select files and folders to include, aside from using the global ignore settings.

» The folder imported does not become a working copy. You have to do a checkout to copy the files
back from the server.

* Itiseasy toimport to the wrong folder level in the repository.

For these reasons we recommend that you do not use the import command at all but rather follow the
two-step method described in Section 4.2.2, “Import in Place”. But since you are here, this is how the
basic import works ...

Before you import your project into arepository you should:

1. Removeal fileswhich are not needed to build the project (temporary files, files which are generated
by a compiler e.g. *.obj, compiled binaries, ...)

2. Organize the files in folders and sub-folders. Although it is possible to rename/move files later it is
highly recommended to get your project's structure straight before importing!

Now select thetop-level folder of your project directory structure in the windows explorer and right click
to open the context menu. Select the command TortoiseSVN — Import... which brings up adialog box:

Import

Repositary
LIRL of repositaory;

| hupjtards.orgfsvngsensorfrunk v [

Impork message

| Recent messages |
—

First import of sensor code

[]include ignored files % [ok,] [Cancel][Help

Figure4.6. Thelmport dialog

Inthisdialog you haveto enter the URL of the repository location where you want to import your project.
Itisvery important to realisethat thelocal folder you areimporting does not itself appear intherepository,
only its content. For example if you have a structure:

C.\ Proj ect s\ Wdget\source
C.\ Proj ect s\Wdget\ doc
C.\ Projects\Wdget\inages

and you import C: \ Proj ect s\ Wdget into http:// mydomai n. com svn/trunk then you
may be surprised to find that your subdirectories go straight into t r unk rather than being in aW dget

42

Daily Use Guide

subdirectory. You need to specify the subdirectory as part of the URL, htt p: // mydonai n. com
svn/trunk/ W dget - X. Note that the import command will automatically create subdirectories
within the repository if they do not exist.

Theimport message is used as alog message.

By default, files and folders which match the global-ignore patterns are not imported. To override this
behaviour you can use the Include ignored files checkbox. Refer to Section 4.30.1, “General Settings’
for more information on setting a global ignore pattern.

As soon as you press OK TortoiseSVN imports the complete directory tree including all files into the
repository. The project is now stored in the repository under version control. Please note that the folder
you imported is NOT under version control! To get a version-controlled working copy you need to do a
Checkout of the version you just imported. Or read on to find out how to import afolder in place.

4.2.2. Import in Place

Assuming you already have a repository, and you want to add a new folder structure to it, just follow
these steps:

1. Usetherepository browser to create a new project folder directly in the repository.

2. Checkout the new folder over the top of the folder you want to import. Y ou will get awarning that the
local folder is not empty. Now you have a versioned top level folder with unversioned content.

3. Use TortoiseSVN - Add... on this versioned folder to add some or all of the content. Y ou can add
and removefiles, set svn: i gnor e properties on folders and make any other changes you need to.

4. Commit the top level folder, and you have a new versioned tree, and a local working copy, created
from your existing folder.

4.2.3. Special Files

Sometimes you need to have a file under version control which contains user specific data. That means
you have a file which every developer/user needs to modify to suit his’/her local setup. But versioning
such afileisdifficult because every user would commit his/her changes every time to the repository.

In such caseswe suggest to use templatefiles. Y ou create afilewhich containsall the datayour devel opers
will need, add that file to version control and let the devel opers check thisfile out. Then, each devel oper
has to make a copy of that file and rename that copy. After that, modifying the copy is not a problem
anymore.

As an example, you can have a look at TortoiseSVN's build script. It cals a file named
Tort oi seVars. bat which doesn't exist in the repository. Only the file Tor t oi seVars. t nmpl .
Tort oi seVars. t npl isthetemplatefilewhich every devel oper hasto create acopy from and rename
that fileto Tor t oi seVar s. bat . Inside that file, we added comments so that the users will see which
lines they have to edit and change according to their local setup to get it working.

So asnot to disturb the users, we also added thefile Tor t oi seVar s. bat totheignorelist of its parent
folder, i.e. we've set the Subversion property svn: i gnor e to include that filename. That way it won't
show up as unversioned on every commit.

4.3. Checking Out A Working Copy

To obtain aworking copy you need to do a checkout from a repository.

Select adirectory in windows explorer where you want to place your working copy. Right click to pop up

the context menu and select the command TortoiseSVN - Checkout..., which brings up the following
dialog box:

43

Daily Use Guide

Checkout

X

Reposikbary
IRL of repository:

http:/fkortoisesyn. tigris, org/svn/torkoisesyn)trunk, hd E]
Checkout directory:

C:\Projectsi TortoiseSh i E]

Checkout Depth

Fully recursive w
[] omit externals

Revision
G} HEALD rewvision

) Revision [Show log]

[K l [Cancel][Help]

Figure4.7. The Checkout dialog

If you enter afolder name that does not yet exist, then a directory with that name is created.
4.3.1. Checkout Depth

Y ou can choose the depth you want to checkout, which allows you to specify the depth of recursion into
child folders. If you want just afew sections of alarge tree, Y ou can checkout the top level folder only,
then update selected folders recursively.

Fully recursive
Checkout the entire tree, including all child folders and sub-folders.

Immediate children, including folders
Checkout the specified directory, including al files and child folders, but do not populate the child
folders.

Only file children
Checkout the specified directory, including all files but do not checkout any child folders.

Only thisitem
Checkout the directory only. Do not populate it with files or child folders.

Working copy
Retain the depth specified in the working copy. This option is not used in the checkout dialog, but
itisthe default in all other dialogs which have a depth setting.

Exclude
Used to reduce working copy depth after a folder has already been populated. This option is only
available in the Update to revision dialog.

If you check out a sparse working copy (i.e., by choosing something other thanf ul | y recur si ve for
the checkout depth), you can fetch additional sub-folders by using the repository browser (Section 4.24,
“The Repository Browser”) or the check for modifications dialog (Section 4.7.3, “Local and Remote
Status”).

Daily Use Guide

In the repository browser, Right click on the checked out folder, then use TortoiseSVN - Repo-
Browser to bring up the repository browser. Find the sub-folder you would like to add to your working

copy, then use Context menu — Update item to revision... That menu will only be visible if the
selected item does not exist yet in your working copy, but the parent item does exist.

In the check for modifications dialog, first click on the button Check repository. The dialog will show
all the files and folders which are in the repository but which you have not checked out asr enot el y
added. Right click onthefolder(s) you would like to add to your working copy, then use Context menu

- Update.

This feature is very useful when you only want to checkout parts of a large tree, but you want
the convenience of updating a single working copy. Suppose you have a large tree which has sub-
folders Pr oj ect 01 to Pr oj ect 99, and you only want to checkout Pr oj ect 03, Pr oj ect 25 and
Pr oj ect 76/ SubPr oj . Usethese steps:

1. Checkout the parent folder with depth “Only thisitem” Y ou now have an empty top level folder.
2. Select the new folder and use TortoiseSVN — Repo browser to display the repository content.

3. Right click on Pr oj ect 03 and Context menu — Update item to revision.... Keep the default
settings and click on OK. Y ou now have that folder fully populated.

Repeat the same process for Pr oj ect 25.

4. Navigate to Pr oj ect 76/ SubPr oj and do the same. This time note that the Pr oj ect 76 folder
has no content except for SubPr oj , which itself is fully populated. Subversion has created the
intermediate folders for you without populating them.

_"‘: Changing wor king copy depth

Once you have checked out aworking copy to a particular depth you can change that depth
later to get more or less content using Context menu — Update item to revision....

: Using an older server

Pre-1.5 servers do not understand the working copy depth request, so they cannot always
deal with requests efficiently. The command will still work, but an older server may send
all the data, leaving the client to filter out what is not required, which may mean alot of
network traffic. If possible you should upgrade your server to 1.5.

If the project contains references to external projects which you do not want checked out at the same
time, use the Omit externals checkbox.

i | I mportant

If Omit externals is checked, or if you wish to increase the depth value, you will have
to perform updates to your working copy using TortoiseSVN — Update to Revision...

instead of TortoiseSVN - Update. The standard update will include all externals and
keep the existing depth.

It is recommended that you check out only thet r unk part of the directory tree, or lower. If you specify
the parent path of the directory tree in the URL then you might end up with a full hard disk since you
will get acopy of the entire repository tree including every branch and tag of your project!

45

Daily Use Guide

Thi | Exporting

Sometimes you may want to create a local copy without any of those . svn directories,
e.g. to create a zipped tarball of your source. Read Section 4.26, “ Exporting a Subversion
Working Copy” to find out how to do that.

4.4. Committing Your Changes To The Repository

Sending the changes you made to your working copy is known as committing the changes. But beforeyou
commit you have to make sure that your working copy is up to date. Y ou can either use TortoiseSVN

- Update directly. Or you can use TortoiseSVN - Check for Modifications first, to see which files
have changed locally or on the server.

4.4.1. The Commit Dialog

If your working copy is up to date and there are no conflicts, you are ready to commit your changes.
Select any file and/or folders you want to commit, then TortoiseSVN - Commit....

Commit - C:\TortoiseSYM\doc\test\tempidoc . =
iz}, Compare with base
Carnmit ko 2y, Show differences as unified diff
File: [T Torkaise SN doctestftermp/repos 9 Revert...
Message: &= Show log
[Recent messages] L Blame, .,
< Open
7 Open wikh, ..
[C3Explare o
X Delete
) Get ok, .
Changes made {double-click on file For diff): 3 Create patch...
Path Extension | Text statu &= Properties...

h list
Mﬂ-ge ist) [Z]Copy paths to cipboard

[[dug_add.xmil errl madified [Copy allinformation ta cipboard
[&= dug_igniore. <mi el modified Move to changelist b
0= dug_revert, xml niakrnal

Blame doc update

(] |H=| dug_blame. =i el rnodified

S et s 0 files selected, 4 files takal
[]select f deselect al

DKeep ;H.;n;gelists I ok H Cancel] [Help

Figure 4.8. The Commit dialog

46

Daily Use Guide

The commit dialog will show you every changed file, including added, deleted and unversioned files. If
you don't want achanged fileto be committed, just uncheck that file. If youwant to include an unversioned
file, just check that file to add it to the commit.

Items which have been switched to a different repository path are also indicated using an (s) marker.
You may have switched something while working on a branch and forgotten to switch back to trunk.
Thisisyour warning sign!

_"“: Commit files or folders?

When you commit files, the commit dialog shows only the files you have selected. When
you commit a folder the commit dialog will select the changed files automatically. If you
forget about a new file you created, committing the folder will find it anyway. Committing
afolder does not mean that every file gets marked as changed; It just makes your life easier
by doing more work for you.

If you have modified fileswhich have beenincluded from adifferent repository usingsvn: ext er nal s,
those changes cannot be included in the same atomic commit. A warning symbol below thefilelist tells
you if thishas happened, and the tooltip explainsthat those externa files haveto be committed separately.

_"“I Many unversioned filesin the commit dialog

If you think that the commit dialog shows you too many unversioned (e.g. compiler
generated or editor backup) files, there are severa ways to handle this. Y ou can:

 add thefile (or awildcard extension) to the list of files to exclude on the settings page.
Thiswill affect every working copy you have.

* addthefiletothesvn: i gnor e list using TortoiseSVN - Add to ignore list Thiswill
only affect the directory on which you set the svn: i gnor e property. Using the SVN
Property Dialog, you can ater thesvn: i gnor e property for adirectory.

Read Section 4.13, “Ignoring Files And Directories’ for more information.

Double clicking on any modified file in the commit dialog will launch the external diff tool to show your
changes. The context menu will give you more options, as shown in the screenshot. Y ou can also drag
files from here into another application such as atext editor or an IDE.

You can select or deselect items by clicking on the checkbox to the left of the item. For directories you
can use Shift-select to make the action recursive.

The columns displayed in the bottom pane are customizable. If you right click on any column header you
will seeacontext menu allowing you to sel ect which columns are displayed. Y ou can also change column
width by using the drag handl e which appears when you move the mouse over acolumn boundary. These
customizations are preserved, so you will see the same headings next time.

By default when you commit changes, any locksthat you hold on files are released automatically after the
commit succeeds. If you want to keep those locks, make sure the Keep locks checkbox is checked. The
default state of this checkbox istaken fromtheno_unl ock option in the Subversion configuration file.
Read Section 4.30.1, “ General Settings” for information on how to edit the Subversion configuration file.

_"‘: | Drag and Drop

You can drag files into the commit dialog from elsewhere, so long as the working copies
are checked out from the same repository. For example, you may have ahuge working copy

47

Daily Use Guide

with several explorer windows open to look at distant folders of the hierarchy. If you want
to avoid committing from the top level folder (with a lengthy folder crawl to check for
changes) you can open the commit dialog for one folder and drag in items from the other
windows to include within the same atomic commit.

Y ou can drag unversioned files which reside within aworking copy into the commit dial og,
and they will be SVN added automatically.

. : Repairing External Renames

Sometimes files get renamed outside of Subversion, and they show up in the file list as
a missing file and an unversioned file. To avoid losing the history you need to notify
Subversion about the connection. Simply select both the old name (missing) and the new

name (unversioned) and use Context Menu — Repair Move to pair the two files as a
rename.

4.4.2. Change Lists

The commit dialog supports Subversion's changelist feature to help with grouping related files together.
Find out about this feature in Section 4.8, “Change Lists’.

4.4.3. Excluding Items from the Commit List

Sometimes you have versioned files that change frequently but that you really don't want to commit.
Sometimesthisindicatesaflaw in your build process - why are those files versioned? should you be using
template files? But occasionaly it isinevitable. A classic reason is that your IDE changes a timestamp
in the project file every time you build. The project file has to be versioned as it includes al the build
settings, but it doesn't need to be committed just because the timestamp changed.

To help out in awkward cases like this, we have reserved a changelist called i gnor e-on-commi t .
Any file added to this changelist will automatically be unchecked in the commit dialog. You can still
commit changes, but you have to select it manually in the commit dialog.

4.4.4. Commit Log Messages

Be sure to enter alog message which describes the changes you are committing. Thiswill help you to see
what happened and when, as you browse through the project log messages at a later date. The message
can be as long or as brief as you like; many projects have guidelines for what should be included, the
language to use, and sometimes even a strict format.

You can apply simple formatting to your log messages using a convention similar to that used within
emails. To apply styling to t ext , use *t ext * for bold, _t ext _ for underlining, and ~t ext ~ for
italics.

48

Daily Use Guide

Commit - C:\TortoiseSYN\doc\testitem pidoc

Commit Eo:
File: !/ TortoiseSYR)doc/test ftemprepos

Message:

[Recent messages]

receive
relieve

Add ‘recieve’ to dickionary

IIndo %

Path Extensi s Lock

Changes made (double-click on file For di

{m_:_n_ changelist)

(] |&=| dug_add.xml el
] &= dug_ignore. «mi el Select Al
[|5 dug_rewert, el il
Blame doc update Paste filename list
] &l dug_Blame, sl el
e i 0 files selected, 4 files takal

[]select | deselect al

[]keep changelists [Cancel] [Help

Figure 4.9. The Commit Dialog Spellchecker

TortoiseSVN includes a spellchecker to help you get your log messages right. This will highlight any
mis-spelled words. Use the context menu to access the suggested corrections. Of course, it doesn't know
every technical term that you do, so correctly spelt words will sometimes show up as errors. But don't
worry. You can just add them to your personal dictionary using the context menu.

Thelog message window also includesafilename and function auto-completion facility. Thisusesregular
expressions to extract class and function names from the (text) files you are committing, as well as the
filenamesthemselves. If aword you are typing matches anything in thelist (after you havetyped at least 3
characters, or pressed Ctrl+Space), adrop-down appears allowing you to select thefull name. Theregular
expressionssupplied with TortoiseSVN areheldinthe TortoiseSV N installation bi n folder. Y ou canalso
defineyour own regexes and store them in %APPDATA% Tor t oi seSVN aut ol i st . t xt . Of course
your private autolist will not be overwritten when you update your installation of TortoiseSVN. If you
are unfamiliar with regular expressions, take a look at the introduction at http://en.wikipedia.org/wiki/
Regular_expression [http://en.wikipedia.org/wiki/Regular_expression], and the online documentation
and tutorial at http://www.regular-expressions.info/ [http://www.regular-expressions.info/].

You can re-use previously entered log messages. Just click on Recent messages to view alist of the
last few messages you entered for this working copy. The number of stored messages can be customized
in the TortoiseSVN settings dialog.

49

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/
http://www.regular-expressions.info/

Daily Use Guide

You can clear all stored commit messages from the Saved data page of TortoiseSVN's settings, or you
can clear individual messages from within the Recent messages dialog using the Delete key.

If you want to include the checked paths in your log message, you can use the command Context Menu
- Paste filename list in the edit control.

Another way to insert the paths into the log message is to simply drag the files from the file list onto
the edit control.

—

b

—

b

Special Folder Properties

There are several specia folder properties which can be used to help give more control over
the formatting of commit log messages and the language used by the spellchecker module.
Read Section 4.17, “Project Settings’ for further information.

Integration with Bug Tracking Tools

If you have activated the bug tracking system, you can set one or more Issues in the Bug-
ID / Issue-Nr: text box. Multiple issues should be comma separated. Alternatively, if you
are using regex-based bug tracking support, just add your issue references as part of the
log message. Learn more in Section 4.28, “Integration with Bug Tracking Systems/ Issue
Trackers'.

4.4.5. Commit Progress

After pressing OK, adialog appears displaying the progress of the commit.

¢ SYN Commit.... Finished! =13

Action

Modified
Modified
Modified
Modified

Sending Content CifTartaiseSYNidocfimages/ContextMenubirMoContral pra
Sending Content CifTorboiseSWMdocfimages/ContextMenuFileMoControl.png
Sending Content i TortoiseSYNidocfimages/ConkextMenubirContral, png
Sending Content C:fTortoiseSYhfdocfimages /ContextMenuFileControl, png
Completed

Path Mime Type
TarkaiseSYh docimagesContextMenulinZantral pnag
TortoisesYMfdocfimages) ContextMenuDirMoControl, png
TorkoiseSYM/docfimages/ ContextMenuFileControl. png

TorkoiseSYh docfimages/ContextMenuFileMoControl . png

Ak revision: 1875

N o

Figure 4.10. The Progress dialog showing a commit in progress

The progress dialog uses colour coding to highlight different commit actions

Blue

Committing a modification.

Purple

Committing a new addition.

Dark red

Committing a deletion or areplacement.

Black

All other items.

50

Daily Use Guide

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Section 4.30.1.4, “TortoiseSVN Colour Settings” for more information.

4.5. Update Your Working Copy With Changes From Others

47 C:\TortoiseSYN\trunk\docsource - SYN Update. .. Finished! M=1E3

Action Path Mime Type -

Updated Ci\TartaiseSMibrunkidocsourcetenibortaisemerge, sl
Conflicked i TortoiseSyMitrunkidocsourcetentbsyn_dugidug_update, xmil
Updated CiiTorboiseSthitrunkidocsourcetenitsvn_dugldug_commit, xml
Merged i\ TorkoisesYh brunkl doch sourced enbsvn_dug)dug_westatus, xml
Updated Ci\TarkaiseSMibrunkidocsourcatenibartaisesyn,oml

Added i TorkoisesyMitrunkl docsourcetentglossary . xml

Updated CiTortoiseSthitrunkidocisourcetenttsyn_basics, xml

Added i\ TorkoisesMibrunkl doch sourcelstvles_site, css

Updated Ci\Tortoises¥Mitrunkldocisourcelstyles_html.css

Completed Ak revision: 3818

Warning! One or more files are in a conflicked state,

Canflicked: 1 Merged: 1 Added: 2 Deleted: 1
Updated:a % l Show Log...] [o4

Figure 4.11. Progress dialog showing finished update

Periodically, you should ensure that changes done by others get incorporated in your local working copy.
The process of getting changes from the server to your local copy is known as updating. Updating may
be done on single files, a set of selected files, or recursively on entire directory hierarchies. To update,
select thefilesand/or directoriesyou want, right click and select TortoiseSVN - Update inthe explorer
context menu. A window will pop up displaying the progress of the update as it runs. Changes done by
others will be merged into your files, keeping any changes you may have done to the same files. The
repository is not affected by an update.

The progress dialog uses colour coding to highlight different update actions

Purple
New item added to your WC.

Dark red
Redundant item deleted from your WC, or missing item replaced in your WC.

Green
Changes from repository successfully merged with your local changes.

Bright red
Changesfrom repository merged with local changes, resulting in conflicts which you need to resolve.

Black
Unchanged item in your WC updated with newer version from the repository.

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Section 4.30.1.4, “TortoiseSVN Colour Settings’ for more information.

If you get any conflicts during an update (this can happen if others changed the same linesin the samefile
as you did and those changes don't match) then the dialog shows those conflictsin red. Y ou can double
click on these lines to start the external merge tool to resolve the conflicts.

When the update is complete, the progress dialog shows a summary of the number of items updated,
added, removed, conflicted, etc. below the file list. This summary information can be copied to the
clipboard using Ctrl+C.

51

Daily Use Guide

The standard Update command has no options and just updates your working copy to the HEAD revision
of the repository, which isthe most common use case. If you want more control over the update process,

you should use TortoiseSVN - Update to Revision... instead. Thisallowsyou to update your working
copy to a specific revision, not only to the most recent one. Suppose your working copy is at revision
100, but you want it to reflect the state which it had in revision 50 - then simply update to revision 50.
In the same dialog you can also choose the depth at which to update the current folder. The terms used
are described in Section 4.3.1, “ Checkout Depth”. The default depth is Working copy, which preserves
the existing depth setting. Y ou can also choose whether to ignore any external projectsin the update (i.e.
projects referenced using svn: ext er nal s).

i ﬁ Caution

If you update afile or folder to a specific revision, you should not make changes to those
files. You will get “out of date” error messages when you try to commit them! If you want
to undo changes to a file and start afresh from an earlier revision, you can rollback to
a previous revision from the revision log dialog. Take a look at Section B.4, “Roll back
(Undo) revisionsin the repository” for further instructions, and alternative methods.

Update to Revision can occasionally be useful to see what your project looked like at some earlier point
inits history. But in general, updating individual filesto an earlier revisionisnot agood idea asit leaves
your working copy in an inconsistent state. If the file you are updating has changed name, you may even
find that the filejust disappears from your working copy because no file of that name existed in the earlier
revision. Y ou should also note that the item will show a normal green overlay, so it isindistinguishable
from files which are up-to-date.

If you simply want alocal copy of an old version of afileit is better to use the Context Menu - Save
revision to... command from the log dialog for that file.

—*‘*; Multiple Files/Folders

If you select multiple files and folders in the explorer and then select Update, all of those
files/folders are updated one by one. TortoiseSVN makes sure that all files/folders which
are from the same repository are updated to the exact same revision! Even if between those
updates another commit occurred.

; Local File Already Exists

Sometimes when you try to update, the update fails with a message to say that there is
already a local file of the same name. This typically happens when Subversion tries to
checkout anewly versionedfile, and findsthat an unversioned file of the same name already
existsin your working folder. Subversion will never overwrite an unversioned file- it might
contain something you are working on, which coincidentally has the same filename as
another devel oper has used for his newly committed file.

If you get this error message, the solution is simply to rename the local unversioned file.
After completing the update, you can check whether the renamed file is still needed.

If you keep getting error messages, use TortoiseSVN — Check for Modifications instead
to list all the problem files. That way you can deal with them all at once.

4.6. Resolving Conflicts

Once in awhile, you will get a conflict when you update/merge your files from the repository or when
you switch your working copy to a different URL. There are two kinds of conflicts:

Daily Use Guide

file conflicts
A file conflict occursif two (or more) devel opers have changed the same few lines of afile.

tree conflicts
A tree conflict occurs when a developer moved/renamed/deleted a file or folder, which another
developer either also has moved/renamed/del eted or just modified.

4.6.1. File Conflicts

A file conflict occurs when two or more developers have changed the same few lines of a file. As
Subversion knows nothing of your project, it leaves resolving the conflicts to the devel opers. Whenever
a conflict is reported, you should open the file in question, and search for lines starting with the string
<<<<<<<, The conflicting areais marked like this:

<<<<<<< fil enane
your changes

code nmerged fromrepository
>>>>>>> revision

Also, for every conflicted file Subversion places three additional filesin your directory:

filename.ext.mine
Thisisyour file asit existed in your working copy before you updated your working copy - that is,
without conflict markers. Thisfile has your latest changesin it and nothing else.

filename.ext.*OLDREV
Thisisthefile that was the BASE revision before you updated your working copy. That is, it thefile
that you checked out before you made your latest edits.

filename.ext. INEWREV
This is the file that your Subversion client just received from the server when you updated your
working copy. Thisfile corresponds to the HEAD revision of the repository.

Y ou can either launch an external merge tool / conflict editor with TortoiseSVN - Edit Conflicts or
you can use any other editor to manually resolve the conflict. Y ou should decide what the code should
look like, do the necessary changes and save thefile.

Afterwards execute the command TortoiseSVN - Resolved and commit your modifications to the
repository. Please note that the Resolve command does not really resolve the conflict. It just removesthe
filenane.ext.mneandfil enane. ext.r* files, toalow you to commit your changes.

If you have conflicts with binary files, Subversion does not attempt to merge thefilesitself. Thelocal file
remains unchanged (exactly asyou last changedit) and you havef i | enane. ext . r * files. If youwant
to discard your changes and keep the repository version, just use the Revert command. If you want to keep
your version and overwrite the repository version, use the Resolved command, then commit your version.

You can use the Resolved command for multiple files if you right click on the parent folder and select

TortoiseSVN - Resolved... Thiswill bring up adialog listing al conflicted filesin that folder, and
you can select which ones to mark as resolved.

4.6.2. Tree Conflicts

A tree conflict occurs when a devel oper moved/renamed/del eted afile or folder, which another devel oper
either also has moved/renamed/deleted or just modified. There are many different situations that can
result in atree conflict, and all of them require different steps to resolve the conflict.

53

Daily Use Guide

When afileis deleted locally in Subversion, the fileis also deleted from the local file system, so even if
it ispart of atree conflict it cannot show a conflicted overlay and you cannot right click on it to resolve
the conflict. Use the Check for Modifications dialog instead to access the Edit conflicts option.
TortoiseSVN can help find theright place to merge changes, but there may be additional work required to
sort out the conflicts. Remember that after an update the working BASE will always contain the revision
of eachitem asit wasin the repository at the time of update. If you revert achange after updating it goes
back to the repository state, not to the way it was when you started making your own local changes.
4.6.2.1. Local delete, incoming edit upon update
1. Developer A modifies Foo. ¢ and commitsit to the repository

2. Developer B has simultaneously moved Foo. ¢ to Bar . ¢ in his working copy, or smply deleted
Foo. c orits parent folder.

An update of developer B's working copy results in atree conflict:
* Foo0. ¢ hasbeen deleted from working copy, but is marked with a tree conflict.

« |f the conflict results from arename rather than adelete then Bar . ¢ is marked as added, but does not
contain developer A's modifications.

Developer B now has to choose whether to keep Developer A's changes. In the case of afile rename, he
can merge the changes to Foo. ¢ into the renamed file Bar . c. For simplefile or directory deletions he
can choose to keep the item with Developer A's changes and discard the deletion. Or, by marking the
conflict as resolved without doing anything he effectively discards Developer A's changes.

The conflict edit dialog offers to merge changes if it can find the original file of the renamed Bar . c.
Depending on where the update was invoked, it may not be possible to find the source file.

4.6.2.2. Local edit, incoming delete upon update
1. Developer A moves Foo. ¢ to Bar . ¢ and commitsit to the repository.
2. Developer B modifies Foo. ¢ in hisworking copy.
Or in the case of afolder move....
1. Developer A moves parent folder FooFol der to Bar Fol der and commitsit to the repository.
2. Developer B maodifies Foo. c in hisworking copy.
An update of developer B's working copy resultsin atree conflict. For asimple file conflict:
» Bar. c isadded to the working copy asanormal file.
» Foo. ¢ ismarked as added (with history) and has a tree conflict.
For afolder conflict:
» Bar Fol der isadded to the working copy as a normal folder.
» FooFol der ismarked as added (with history) and has atree conflict.
Foo. c ismarked as modified.

Developer B now has to decide whether to go with developer A's reorganisation and merge her changes
into the corresponding file in the new structure, or simply revert A's changes and keep the local file.

Daily Use Guide

To merge her local changes with the reshuffle, Developer B must first find out to what filename the
conflicted file Foo. ¢ was renamed/moved in the repository. This can be done by using the log dial og.
The changes must then be merged by hand as there is currently no way to automate or even simplify this
process. Once the changes have been ported across, the conflicted path isredundant and can be deleted. In
thiscase usethe Remove button in the conflict editor dialog to clean up and mark the conflict asresolved.

If Developer B decidesthat A's changes were wrong then she must choose the Keep button in the conflict
editor dialog. This marks the conflicted file/folder as resolved, but Developer A's changes need to be
removed by hand. Again the log dialog helps to track down what was moved.
4.6.2.3. Local delete, incoming delete upon update
1. Developer A moves Foo. ¢ to Bar . ¢ and commitsit to the repository
2. Developer B movesFoo. c toBi x. ¢
An update of developer B's working copy results in atree conflict:
* Bi x. c ismarked as added with history.
e Bar . c isadded to the working copy with status 'normal’.

* Foo. c ismarked as deleted and has a tree conflict.

To resolve this conflict, Developer B has to find out to what filename the conflicted file Foo. ¢ was
renamed/moved in the repository. This can be done by using the log dialog.

Then developer B has to decide which new filename of Foo. ¢ to keep - the one done by developer A
or the rename done by himself.

After developer B has manually resolved the conflict, the tree conflict hasto be marked as resolved with
the button in the conflict editor dialog.

4.6.2.4. Local missing, incoming edit upon merge
1. Developer A working on trunk modifies Foo. ¢ and commitsit to the repository
2. Developer B working on a branch moves Foo. ¢ to Bar . ¢ and commitsit to the repository
A merge of developer A'strunk changes to developer B's branch working copy resultsin atree conflict:
» Bar. c isalready in the working copy with status 'normal’.
» Foo. ¢ ismarked as missing with atree conflict.
To resolve this conflict, Developer B has to mark the file as resolved in the conflict editor dialog, which
will remove it from the conflict list. She then hasto decide whether to copy the missing file Foo. ¢ from
the repository to the working copy, whether to merge Developer A's changesto Foo. ¢ into the renamed

Bar . ¢ or whether to ignore the changes by marking the conflict as resolved and doing nothing else.

Note that if you copy the missing file from the repository and then mark as resolved, your copy will be
removed again. Y ou have to resolve the conflict first.

4.6.2.5. Local edit, incoming delete upon merge
1. Developer A working on trunk moves Foo. ¢ to Bar . ¢ and commitsit to the repository
2. Developer B working on a branch modifies Foo. ¢ and commitsit to the repository.

Thereis an equivalent case for folder moves, but it is not yet detected in Subversion 1.6 ...

55

Daily Use Guide

1. Developer A working on trunk moves parent folder FooFol der to Bar Fol der and commitsit to
the repository.

2. Developer B working on a branch modifies Foo. ¢ in her working copy.

A merge of developer A'strunk changesto developer B's branch working copy resultsin atree conflict:
» Bar. c ismarked as added.

* Foo. c ismarked as modified with atree conflict.

Developer B now has to decide whether to go with developer A's reorganisation and merge her changes
into the corresponding file in the new structure, or simply revert A's changes and keep the local file.

To merge her local changes with the reshuffle, Developer B must first find out to what filename the
conflicted file Foo. ¢ wasrenamed/moved in therepository. This can be done by using thelog dialog for
the merge source. The conflict editor only showsthe log for the working copy asit does not know which
path was used in the merge, so you will have to find that yourself. The changes must then be merged by
hand asthere is currently no way to automate or even simplify this process. Once the changes have been

ported across, the conflicted path is redundant and can be deleted. In this case use the Remove button
in the conflict editor dialog to clean up and mark the conflict as resolved.

If Developer B decidesthat A's changes were wrong then she must choose the Keep button in the conflict

editor dialog. This marks the conflicted file/folder as resolved, but Developer A's changes need to be

removed by hand. Again the log dialog for the merge source helps to track down what was moved.
4.6.2.6. Local delete, incoming delete upon merge

1. Developer A working on trunk moves Foo. ¢ to Bar . ¢ and commitsit to the repository

2. Developer B working on a branch moves Foo. ¢ to Bi x. ¢ and commitsit to the repository

A merge of developer A'strunk changesto developer B's branch working copy resultsin atree conflict:

* Bi x. ¢ ismarked with norma (unmodified) status.

e Bar . ¢ ismarked as added with history.

* Foo. ¢ ismarked as missing and has a tree conflict.

To resolve this conflict, Developer B has to find out to what filename the conflicted file Foo. ¢ was

renamed/moved in the repository. This can be done by using the log dialog for the merge source. The

conflict editor only shows the log for the working copy as it does not know which path was used in the

merge, so you will have to find that yourself.

Then developer B has to decide which new filename of Foo. ¢ to keep - the one done by developer A
or the rename done by himself.

After developer B has manually resolved the conflict, the tree conflict hasto be marked as resolved with
the button in the conflict editor dialog.

4.7. Getting Status Information

While you are working on your working copy you often need to know which files you have changed/
added/removed or renamed, or even which files got changed and committed by others.

4.7.1. Icon Overlays

56

Daily Use Guide

narral readonly added normal.cpp readonly.cpp added.cpp

o] @ % &

modified deleted igriored modified.cpp deleted.cpp ignored.cpp

1

Y & ® kK & €

:onflicked locked non-versioned conflicked.cpp locked.cpp non-version,,

]
NG
1

Figure4.12. Explorer showing icon overlays

Now that you have checked out a working copy from a Subversion repository you can see your filesin
the windows explorer with changed icons. This is one of the reasons why TortoiseSVN is so popular.
TortoiseSVN adds a so called overlay icon to each file icon which overlaps the original file icon.
Depending on the Subversion status of the file the overlay icon is different.

@

A fresh checked out working copy has a green checkmark as overlay. That means the Subversion status
isnormal.

9

As soon as you start editing a file, the status changes to modified and the icon overlay then changes to
ared exclamation mark. That way you can easily see which files were changed since you last updated
your working copy and need to be committed.

If during an update a conflict occurs then the icon changes to a yellow exclamation mark.

Fa

v

If you have set the svn: needs- | ock property on afile, Subversion makes that file read-only until
you get alock on that file. Such files have this overlay to indicate that you have to get alock first before
you can edit that file.

|

If you hold alock on afile, and the Subversion status is normal, thisicon overlay reminds you that you
should release the lock if you are not using it to allow others to commit their changes to the file.

Thisicon showsyou that somefiles or foldersinside the current folder have been scheduled to be deleted
from version control or afile under version control ismissing in afolder.

+

The plus sign tells you that afile or folder has been scheduled to be added to version control.

57

Daily Use Guide

Thebar signtellsyouthat afile or folder isignored for version control purposes. Thisoverlay isoptional.

->

This icon shows files and folders which are not under version control, but have not been ignored. This
overlay is optional.

In fact, you may find that not all of these icons are used on your system. This is because the number of
overlays allowed by Windows is very limited and if you are also using an old version of TortoiseCV'S,
then there are not enough overlay slots available. TortoiseSVN tries to be a “Good Citizen (TM)” and
limitsits use of overlaysto give other apps a chance too.

Now that there are more Tortoise clients around (TortoiseCVS, TortoiseHG, ...) the icon limit becomes
area problem. To work around this, the TortoiseSVN project introduced a common shared icon set,
loaded as a DLL, which can be used by all Tortoise clients. Check with your client provider to see if
this has been integrated yet :-)

For a description of how icon overlays correspond to Subversion status and other technical details, read
Section F.1, “Icon Overlays”.

4.7.2. TortoiseSVN Columns In Windows Explorer

The same information which is available from the icon overlays (and much more) can be displayed as
additional columnsin Windows Explorer's Details View.

Simply right click on one of the headings of acolumn, choose More... from the context menu displayed. A
dialog will appear where you can specify the columns and their order, which isdisplayed in the“ Detailed
View”. Scroll down until the entries starting with SVN come into view. Check the onesyou would liketo
have displayed and close the dialog by pressing OK. The columns will be appended to the right of those
currently displayed. Y ou can reorder them by drag and drop, or resize them, so that they fit your needs.

i | I mportant

Theadditional columnsin the Windows Explorer are not available on Vista, since Microsoft
decided to not allow such columnsfor all files anymore but only for specific file types.

= Tip
VY

If you want the current layout to be displayed in al your working copies, you may want
to make this the default view.

4.7.3. Local and Remote Status

Daily Use Guide

Working Copy - C:YTortoiseS¥N\doctestitempidoc

Path Text status Property skatus | Remote text status | Remote property status | Depth Lock | Lock comment | Aul
{no changelist)
|hdoc narmal narrmal modified Fully recursive Sirm
modified k & —— Fully recursive Simon Major update
dug_branchtag.xml added S:mp;rfe with base e Unknown d... Sirmm
dug_conﬂicts.xml added ot diiTerences as aniried o Unknown d... Sirm
= @ Commit... .
dug_general.xml added Unknawn d. .. Sirm
dug_ignare. il conflicted modifie) €} Revert.,, Fully recursive Sirru
dug_relocate, xml miodified normal L= Show log Fully recursive Sirm
dug_revert,xml riormal modified &Blame. oo Fully recursive Sirm
|Cminested Mested 7 Open Unknown d...
[Z] readme.bxt nion-versioned 7 Open with... Unrknown d. ..
|[)Explore to
_ DUG blame update X Delete
dug_blame.xml modified 7 Release lock Fully recursive Sirmm
¢ 7 Break lock Y
[#] shaw unversicned files 3 Create patch... 2, modified=4, added=0, deleted=0,
[5haw unmadified files
[5how ignored files &= Properties...
7 ; -
Show items |n. externals) Copy paths to clipboard
[]5how properties)))
[Z]Copy allinformation to clipboard
Lowesk shown revision: 1 - Highesk shown revision: & - HEAD revision: 7
Move to changelist 4 Check repository] [oK

Figure 4.13. Check for Modifications

It's often very useful to know which files you have changed and also which files got changed and

committed by others. That's where the command TortoiseSVN — Check For Modifications... comes
in handy. Thisdialog will show you every file that has changed in any way in your working copy, aswell
as any unversioned files you may have.

If you click on the Check Repository then you can also look for changes in the repository. That way
you can check before an update if there's a possible conflict. Y ou can aso update selected files from the
repository without updating the whole folder. By default, the Check Repository button only fetches the
remote status with the checkout depth of the working copy. If you want to see all files and foldersin the
repository, even those you have not checked out, then you have to hold down the Shift key when you
click on the Check Repository button.

The dialog uses colour coding to highlight the status.

Blue
Locally modified items.

Purple
Added items. Items which have been added with history have a + sign in the Text status column,
and atooltip shows where the item was copied from.

Dark red
Deleted or missing items.

Green
Items modified locally and in the repository. The changes will be merged on update. These may
produce conflicts on update.

Bright red
Items modified locally and deleted in repository, or modified in repository and deleted locally. These
will produce conflicts on update.

Black
Unchanged and unversioned items.

59

Daily Use Guide

This is the default colour scheme, but you can customise those colours using the settings dialog. Read
Section 4.30.1.4, “TortoiseSVN Colour Settings” for more information.

Items which have been switched to a different repository path are also indicated using an (s) marker.
You may have switched something while working on a branch and forgotten to switch back to trunk.
Thisisyour warning sign!

From the context menu of the dialog you can show a diff of the changes. Check the local changes you
made using Context Menu - Compare with Base. Check the changesin therepository made by others
using Context Menu — Show Differences as Unified Diff.

You can also revert changes in individual files. If you have deleted a file accidentaly, it will show up
as Missing and you can use Revert to recover it.

Unversioned and ignored files can be sent to the recycle bin from here using Context Menu - Delete.
If you want to delete files permanently (bypassing the recycle bin) hold the Shift key while clicking on
Delete.

If you want to examine afile in detail, you can drag it from here into another application such as a text
editor or IDE.

The columns are customizable. If you right click on any column header you will see a context menu
allowing you to select which columns are displayed. You can aso change column width by using the
drag handle which appears when you move the mouse over a column boundary. These customizations
are preserved, so you will see the same headings next time.

If you are working on several unrelated tasks at once, you can a so group files together into changelists.
Read Section 4.4.2, “Change Lists’ for more information.

At the bottom of the dialog you can see a summary of the range of repository revisions in use in your
working copy. These are the commit revisions, not the update revisions; they represent the range of
revisions where these files were last committed, not the revisions to which they have been updated. Note
that the revision range shown applies only to the items displayed, not to the entire working copy. If you
want to see that information for the whole working copy you must check the Show unmodified files
checkbox.

_"“‘l Tip
If you want a flat view of your working copy, i.e. showing al files and folders at every
level of the folder hierarchy, then the Check for Modifications dialog is the easiest way

to achieve that. Just check the Show unmodified files checkbox to show all filesin your
working copy.

; Repairing External Renames

Sometimes files get renamed outside of Subversion, and they show up in the file list as
a missing file and an unversioned file. To avoid losing the history you need to notify
Subversion about the connection. Simply select both the old name (missing) and the new

name (unversioned) and use Context Menu — Repair Move to pair the two files as a
rename.

4.7.4. Viewing Diffs

Often you want to look inside your files, to have alook at what you've changed. Y ou can accomplish this
by selecting a file which has changed, and selecting Diff from TortoiseSVN's context menu. This starts

Daily Use Guide

the external diff-viewer, which will then compare the current file with the pristine copy (BASE revision),
which was stored after the last checkout or update.

_'"‘l Tip
Even when not inside a working copy or when you have multiple versions of the file lying
around, you can still display diffs:

Select the two files you want to compare in explorer (e.g. using Ctrl and the mouse) and
choose Diff from TortoiseSVN's context menu. Thefile clicked last (the one with the focus,
i.e. the dotted rectangle) will be regarded as the later one.

4.8. Change Lists

Inanideal world, you only ever work on onething at atime, and your working copy contains only one set
of logical changes. OK, back to reality. It often happens that you have to work on several unrelated tasks
at once, and when you look in the commit dialog, all the changes are mixed in together. The changelist
feature helps you group files together, making it easier to see what you are doing. Of course this can
only work if the changes do not overlap. If two different tasks affect the same file, there is no way to
separate the changes.

i | I mportant

The changelist feature in TortoiseSVN is only available in Windows XP and later, as it
depends on a shell capability which is not present in Windows 2000. Sorry, but Win2K is
really quite old now, so please don't complain.

You can see changelists in severa places, but the most important ones are the commit dialog and the
check-for-modifications dialog. Let's start in the check-for-modifications dialog after you have worked
on several featuresand many files. When you first openthedia og, all the changed filesare listed together.
Suppose you now want to organise things and group those files according to feature.

Select one or more files and use Context Menu — Move to changelist to add an item to a changelist.
Initially there will be no changelists, so the first time you do this you will create a new changelist. Give
it name which describes what you are using it for, and click OK. The dialog will now change to show
groups of items.

Once you have created a changelist you can drag and drop items into it, either from another changelist,
or from Windows Explorer. Dragging from Explorer can be useful as it allows you to add items to a
changelist before the file is modified. You could do that from the check-for-modifications dialog, but
only by displaying all unmodified files.

61

Daily Use Guide

Commit - C:\Projects\TortoiseSYMidoc\sourcelen\TortoiseS... E|@|E|

Commit ko
http:/ ftortoisesyn.tigris. orgfsvnftortoiseswn/trunk/doc/source fen TortoiseSRftsvn_dug

Message:

[Recent messages]

Zhanges made {double-click on File For diff):
Path Extension = Text status Properbw status | Lock

(no ;_hangelist]

dug_bugtracker... xml normal modified
dug_checkout,xml xml modified niarmal
dug_conflicks.xml - xml modified niarmal

DUG blame up Select changelist
Deselect chanaelisk

IjLIg_b'al'ﬂE.xllu VT momed niarmal
Show unversioned Files 4 files selected, 4 files total
Select [deselect all
[Zancel] [Help

Figure 4.14. Commit dialog with Changelists

Inthe commit dialog you can see those samefiles, grouped by changelist. Apart from giving animmediate
visual indication of groupings, you can aso use the group headings to select which filesto commit.

On XP, there is a context menu when you right click on a group heading which gives you the choice to
check or uncheck all group entries. On Vista however the context menu is not necessary. Click on the
group header to select al entries, then check one of the selected entriesto check all.

TortoiseSV N reserves one changelist name for itsown use, namely i gnor e- on- conmmi t . Thisisused
to mark versioned files which you almost never want to commit even though they have local changes.
Thisfeature is described in Section 4.4.3, “Excluding Items from the Commit List”.

When you commit files belonging to a changelist then normally you would expect that the changelist
membership is no longer needed. So by default, files are removed from changelists automatically on
commit. If youwish to retain thefilein its changelist, use the Keep changelists checkbox at the bottom
of the commit dialog.

Changelists are purely alocal client feature. Creating and removing changelists will not
affect the repository, nor anyone else's working copy. They are ssmply a convenient way
for you to organise your files.

62

Daily Use Guide

4.9. Revision Log Dialog

For every change you make and commit, you should provide alog message for that change. That way
you can later find out what changes you made and why, and you have adetailed log for your devel opment

Process.

The Revision Log Dialog retrieves all those log messages and shows them to you. The display is divided

into 3 panes.

» The top pane shows a list of revisions where changes to the file/folder have been committed. This
summary includes the date and time, the person who committed the revision and the start of the log

message.

Lines shown in blue indicate that something has been copied to this development line (perhaps from

abranch).

e The middle pane shows the full log message for the selected revision.

» The bottom pane shows alist of all files and folders that were changed as part of the selected revision.

But it does much more than that - it provides context menu commands which you can use to get even

more information about the project history.

4.9.1. Invoking the Revision Log Dialog

| op Messages - C:\Projects\TortoiseSYN

From: 4118/2003 w | To: 30 1)2008 &

Revision Actions Author Diate Bug-I Message ™

7Tl steveking 116 Remove obs

::'.‘ ing f AN, Sakurd: S14 Fixe UI proble;

o schaefer 0z Menu items v

TTET O steveking 557127 AM, Saturday, October 14, 2006 314 Fix problems

7766 stewveking 1:39:45 PM, Friday, October 13, 2006 fixc link ko the

7754 sirnonlarge 1:28:10 PM, Friday, October 13, 2006 IMention the .

7763 4 luebbe 12:58:08 AM, Friday, Ockober 13, 2006 Fixe "Inwvalid C
FIE? lirbhe 1 E5:11 aM Fridasw Owboher 13 2006 i b ar] akic S8

4

Fix TI problems with '#' chars in urls/paths in the repository browser:

* Add new param bAlreadyUnescaped to all constructors of the EVNUrl class

* Add new param blAlreadylhescaped also to the AddFolder and AddFile methods in
CRepositoryTres

* Pass true as the bhlreadylnescaped param wherewer we're sure that the string we
pass is an url which we already unescaped

This fixes izsue f£314.

Action Path Copy from path | Revision -~

Modified ftrunkfsrcfChangelog, bt

Modified ftrunkysrcfSYRESYMUEL cpp

Modified ferunkfsec/SYRSVRIUA LR

Modified ftrunkfsrcf TortoiseProclAppUtils. cpp

Modified ftrunkfsrcf TortoiseProc/RepositoryBar. cpp b

Showing 11209 revision(s], fram revision 1 to revision 12233 - 1 revision(s) selected,

[E]Hide unrelated changed paths Statiskics

|:| Stop on copy/Fename

Include merged revisions
= °

[showal v| [mextioo || Refresh | oK

Figure 4.15. The Revision L og Dialog

There are several places from where you can show the Log dialog:

63

Daily Use Guide

» From the TortoiseSVN context submenu
» From the property page

» From the Progress dial og after an update has finished. Then the Log dialog only shows those revisions
which were changed since your last update

If the repository is unavailable you will see the Want to go offline? dialog, described in Section 4.9.10,
“Offline Mode”.

4.9.2. Revision Log Actions

Thetop pane hasan Actions column containing iconsthat summarize what has been donein that revision.
There are four different icons, each shown in its own column.

o
If arevision modified afile or directory, the modified icon is shown in the first column.

o
If arevision added afile or directory, the added icon is shown in the second column.

x!
If arevision deleted afile or directory, the deleted icon is shown in the third column.

L2

If arevision replaced afile or directory, the replaced icon is shown in the fourth column.

4.9.3. Getting Additional Information

Cu:umpare with warking copy
%Cumpare and blame with working BASE
Shu:uw changes as unified diff
Cu:umpare with previous revision

!ﬂ Save resision to...
Qpen
Cpen wikh, ..

4, Blame, ..

Gk Browse repository

'F-‘ Create branchytag from revision
K Update item ko revision

=) Revert to this revision

£} Revert changes from this revision
¥ Merge revision tao...

('! Checkout, ..

Efil Export...

Edit author
Edit log message
L= Show revision properties

[Z] Copy bo clipboard
gearch log messages. ..

Figure 4.16. The Revision Log Dialog Top Pane with Context Menu

Daily Use Guide

The top pane of the Log dialog has a context menu that allows you to access much more information.
Some of these menu entries appear only when the log is shown for a file, and some only when the log
is shown for afolder.

Compare with working copy
Compare the selected revision with your working copy. The default Diff-Tool is TortoiseMerge
which is supplied with TortoiseSVN. If the log dialog is for a folder, this will show you alist of
changed files, and allow you to review the changes made to each fileindividually.

Compare and blame with working BASE
Blame the selected revision, and thefilein your working BA SE and compare the blame reports using
avisual diff tool. Read Section 4.23.2, “Blame Differences’ for more detail. (files only).

Show changes as unified diff
View the changes made in the selected revision as a Unified-Diff file (GNU patch format). This
shows only the differences with afew lines of context. It isharder to read than avisual file compare,
but will show all file changes together in a compact format.

Compare with previousrevision
Compare the selected revision with the previous revision. This works in a similar manner to
comparing with your working copy. For folders this option will first show the changed files dialog
allowing you to select files to compare.

Compare and blame with previous revision
Show the changed files dialog allowing you to select files. Blame the selected revision, and the
previous revision, and compare the results using avisual diff tool. (folders only).

Saverevision to...
Save the selected revision to afile so you have an older version of that file. (files only).

Open / Open with...
Open the selected file, either with the default viewer for that file type, or with a program you choose.
(files only).

Blame...
Blame the file up to the selected revision. (files only).

Browse repository
Open the repository browser to examine the selected file or folder in the repository as it was at the
selected revision.

Create branch/tag from revision
Create a branch or tag from a selected revision. Thisis useful e.g. if you forgot to create a tag and
already committed some changes which weren't supposed to get into that release.

Update item to revision
Update your working copy to the selected revision. Useful if you want to have your working copy
reflect atime in the past, or if there have been further commits to the repository and you want to
update your working copy one step at atime. It is best to update a whole directory in your working
copy, not just onefile, otherwise your working copy could be inconsistent.

If you want to undo an earlier change permanently, use Revert to this revision instead.

Revert to thisrevision
Revert to an earlier revision. If you have made several changes, and then decide that you really want
to go back to how thingswerein revision N, thisis the command you need. The changes are undone
in your working copy so this operation does not affect the repository until you commit the changes.
Note that this will undo all changes made after the selected revision, replacing the file/folder with
the earlier version.

65

Daily Use Guide

If your working copy isin an unmodified state, after you perform this action your working copy will
show as modified. If you already have local changes, this command will merge the undo changes
into your working copy.

What is happening internally is that Subversion performs a reverse merge of all the changes made
after the selected revision, undoing the effect of those previous commits.

If after performing this action you decide that you want to undo the undo and get your working

copy back to its previous unmodified state, you should use TortoiseSVN - Revert from within
Windows Explorer, which will discard the local modifications made by this reverse merge action.

If you simply want to see what a file or folder looked like at an earlier revision, use Update to
revision or Save revision as... instead.

Revert changes from this revision
Undo changes from which were made in the selected revision. The changes are undone in your
working copy so this operation does not affect the repository at al! Note that this will undo the
changes made in that revision only; it does not replace your working copy with the entirefile at the
earlier revision. Thisisvery useful for undoing an earlier change when other unrelated changes have
been made since.

If your working copy isin an unmodified state, after you perform this action your working copy will
show as modified. If you already have local changes, this command will merge the undo changes
into your working copy.

What is happening internally is that Subversion performs a reverse merge of that one revision,
undoing its effect from a previous commit.

Y ou can undo the undo as described above in Revert to this revision.

Merge revision to...
Merge the selected revision(s) into a different working copy. A folder selection dialog allows you
to choose the working copy to merge into, but after that there is no confirmation dialog, nor any
opportunity to try atest merge. It is agood idea to merge into an unmodified working copy so that
you can revert the changesif it doesn't work out! Thisisauseful featureif you want to merge selected
revisions from one branch to another.

Checkoutt...
Make afresh checkout of the selected folder at the selected revision. This brings up adialog for you
to confirm the URL and revision, and select alocation for the checkout.

Export...
Export the selected file/folder at the selected revision. This brings up adialog for you to confirm the
URL and revision, and select alocation for the export.

Edit author / log message
Edit the log message or author attached to a previous commit. Read Section 4.9.7, “ Changing the
Log Message and Author” to find out how this works.

Show revision properties
View and edit any revision property, not just log message and author. Refer to Section 4.9.7,
“Changing the Log Message and Author”.

Copy to clipboard
Copy the log details of the selected revisions to the clipboard. This will copy the revision number,
author, date, log message and the list of changed items for each revision.

Search log messages...
Search log messages for the text you enter. This searches the log messages that you entered and
also the action summaries created by Subversion (shown in the bottom pane). The search isnot case
sensitive.

66

Daily Use Guide

Campare revisions

21, Blame revisions

iz}, show differences as unified diff

£} Revert changes from these revisions
),’ Merge revisions La...

[Z] Copy to clipboard
Search log messages. ..

Figure4.17. Top Pane Context Menu for 2 Selected Revisions

If you select two revisions at once (using the usual Ctrl-modifier), the context menu changes and gives
you fewer options;

Compare revisions
Compare the two selected revisions using a visual difference tool. The default Diff-Tool is
TortoiseMerge which is supplied with TortoiseSVN.

If you select thisoption for afolder, afurther dialog pops up listing the changed files and offering you
further diff options. Read more about the Compare Revisions dialog in Section 4.10.3, “Comparing
Folders’.

Blame revisions
Blame the two revisions and compare the blame reports using a visual difference tool. Read
Section 4.23.2, “Blame Differences’ for more detail.

Show differences as unified diff
View the differences between the two selected revisions as a Unified-Diff file. This works for files
and folders.

Copy to clipboard
Copy log messages to clipboard as described above.

Search log messages...
Search log messages as described above.

If you select two or more revisions (using the usual Ctrl or Shift modifiers), the context menu will
include an entry to Revert al changes which were madein the selected revisions. Thisisthe easiest way
to rollback a group of revisionsin one go.

Y ou can also choose to merge the selected revisions to another working copy, as described above.

If al selected revisions have the same author, you can edit the author of all those revisionsin one go.

iz}, Show changes
54, Blame changes
Shcuw changes as unified diff

Qpen
Open with, ..

&, Blame. .,

) Revert changes from this revision
L= Show properties

L= Show log

L= Get merge logs

!ﬂ Save resision to...

Figure 4.18. The L og Dialog Bottom Pane with Context Menu

67

Daily Use Guide

The bottom pane of the Log dialog also has a context menu that allows you to

Show changes
Show changes made in the selected revision for the selected file. This context menu isonly available
for files shown as modified.

Blame changes
Blame the selected revision and the previous revision for the selected file, and compare the blame
reports using avisual diff tool. Read Section 4.23.2, “Blame Differences’ for more detail .

Show as unified diff
Show file changes in unified diff format. This context menu is only available for files shown as
modified.

Open / Open with...
Open the selected file, either with the default viewer for that file type, or with a program you choose.

Blame...
Opens the Blame diaog, allowing you to blame up to the selected revision.

Revert changes from this revision
Revert the changes made to the selected file in that revision.

Show properties
View the Subversion properties for the selected item.

Show log
Show the revision log for the selected singlefile.

Get merge logs
Show the revision log for the selected single file, including merged changes. Find out more in
Section 4.9.6, “Merge Tracking Features’.

Saverevision to...
Save the selected revision to afile so you have an older version of that file.

_'"‘l Tip
Y ou may notice that sometimes we refer to changes and other times to differences. What's
the difference?

Subversion uses revision numbers to mean 2 different things. A revision generally
represents the state of the repository at a point in time, but it can also be used to represent
the changeset which created that revision, eg. “Done in r1234” means that the changes
committed in r1234 implement feature X. To make it clearer which senseisbeing used, we
use two different terms.

If you select two revisions N and M, the context menu will offer to show the difference
between those two revisions. In Subversion termsthisisdi ff -r M N

If you select asinglerevision N, the context menu will offer to show the changes made in
that revision. In Subversion termsthisisdi ff -r N-1: Nordiff -c N

The bottom pane shows the files changed in all selected revisions, so the context menu
always offers to show changes.

4.9.4. Getting more log messages

The Log dialog does not always show all changes ever made for a number of reasons:

68

Daily Use Guide

 For alargerepository there may be hundreds or even thousands of changes and fetching them all could
take along time. Normally you are only interested in the more recent changes. By default, the number

of log messages fetched islimited to 100, but you can change thisvalue in TortoiseSVN - Settings
(Section 4.30.1.2, “TortoiseSVN Dialog Settings 1),

* When the Stop on copy/rename box is checked, Show Log will stop at the point that the selected file
or folder was copied from somewhere el se within the repository. This can be useful when looking at
branches (or tags) as it stops at the root of that branch, and gives a quick indication of changes made
in that branch only.

Normally you will want to leave this option unchecked. TortoiseSVN remembers the state of the
checkbox, so it will respect your preference.

When the Show Log dialog is invoked from within the Merge dialog, the box is always checked by
default. Thisisbecause merging is most often looking at changes on branches, and going back beyond
the root of the branch does not make sense in that instance.

Notethat Subversion currently implements renaming as a copy/delete pair, so renaming afile or folder
will also cause the log display to stop if this option is checked.

If you want to see more log messages, click the Next 100 to retrieve the next 100 log messages. You
can repeat this as many times as needed.

Next to this button there is a multi-function button which remembersthe last option you used it for. Click
on the arrow to see the other options offered.

Use Show Range ... if you want to view a specific range of revisions. A dialog will then prompt you
to enter the start and end revision.

Use Show All if you want to see all log messages from HEAD right back to revision 1.

4.9.5. Current Working Copy Revision

Because the log dialog shows you the log from HEAD, not from the current working copy revision, it
often happens that there are log messages shown for content which has not yet been updated in your
working copy. To help make this clearer, the commit message which corresponds to the revision you
have in your working copy is shown in bold.

When you show thelog for afolder therevision highlighted isthe highest revision found anywherewithin
that folder, which requires a craw! of the working copy. This can be a slow operation for large working
copies, and the log messages are not displayed until the crawl completes. If you want to disable or limit
this feature you need to set aregistry key HKCU\ Sof t war e\ Tort oi seSVN\ Recur si veLogRev
as described in Section 4.30.10, “Registry Settings’.

4.9.6. Merge Tracking Features

Subversion 1.5 and later keeps arecord of merges using properties. This allows usto get amore detailed
history of merged changes. For example, if you develop a new feature on a branch and then merge that
branch back to trunk, the feature development will show up on the trunk log as a single commit for the
merge, even though there may have been 1000 commits during branch devel opment.

69

Daily Use Guide

7 | op Messages - C:\TEMPMergeTest E‘E|E|

From: | 26/05/2007 ~ | Tor | 30j05/2007 & | [
Revision Actions Authar | Date Message ~
i merger 20048:11, 30 May 2007 Merge branch b - product roadmap and update about pa
o
al
o F
I i user 20031:04, 30 May 2007 Add medium product ko products lisk
g8 & merger 20:29:16, 30 May 2007 Block r7 fram branch a
+
& P merger 01:16:28, 26 May 2007 Merge branch a. Added medium product,
al .
2 W user 01:07:03, 26 May 2007 Flesh out page content before launch, i
€ 3 |

Merge branch b - product roadmap and update about page

Command executed: svn merge $REPOE/branches/h

Action Path Copy from path Revision Al
Modified ftrunk |
Modified ftrunkfabout findes. html
Modified trunkfindes. html

Modified ftrunk/news/indes:;, htrl

Meadified theork fewndocb e flindsy Rkeal)

Showing 23 revision(s), from revision 1 to revision 17 - 1 revision(s) selected,

[E] Hide unrelated changed paths Statiskics

|:| Skop on copyrename

| Include merged revisions
;

[Show Range. .. *]’ Mext 100]’ Refresh] QK

Figure4.19. The Log Dialog Showing Merge Tracking Revisions

If you want to see the detail of which revisions were merged as part of that commit, use the Include
merged revisions checkbox. This will fetch the log messages again, but will also interleave the log
messages from revisions which were merged. Merged revisions are shown in grey because they represent
changes made on a different part of the tree.

Of course, merging is never simple! During feature development on the branch there will probably be
occasional merges back from trunk to keep the branch in sync with the main line code. So the merge
history of the branch will also include another layer of merge history. These different layers are shown
in the log dialog using indentation levels.

4.9.7. Changing the Log Message and Author

Revision properties are completely different from the Subversion properties of each item. Revprops are
descriptive items which are associated with one specific revision number in the repository, such aslog
message, commit date and committer name (author).

Sometimes you might want to change alog message you once entered, maybe because there's a spelling
error in it or you want to improve the message or change it for other reasons. Or you want to change the
author of the commit because you forgot to set up authentication or...

Subversion lets you change revision properties any time you want. But since such changes can't be
undone (those changes are not versioned) this feature is disabled by default. To make this work, you
must set up a pre-revprop-change hook. Please refer to the chapter on Hook Scripts [http://svnbook.red-

70

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks

Daily Use Guide

bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks] in the Subversion Book for
details about how to do that. Read Section 3.3, “ Server side hook scripts’ to find some further notes on
implementing hooks on a Windows machine.

Once you've set up your server with the required hooks, you can change the author and log message (or
any other revprop) of any revision, using the context menu from the top pane of the Log dialog. Y ou can
also edit alog message using the context menu for the middle pane.

Because Subversion'srevision properties are not versioned, making modificationsto such a
property (for example, thesvn: | og commit message property) will overwritethe previous
value of that property forever.

4.9.8. Filtering Log Messages

If you want to restrict the log messages to show only those you are interested in rather than scrolling
through alist of hundreds, you can use the filter controls at the top of the Log Dialog. The start and end
date controls allow you to restrict the output to a known date range. The search box alows you to show
only messages which contain a particular phrase.

Click on the search icon to select which information you want to search in, and to choose regex mode.
Normally you will only need a simple text search, but if you need to more flexible search terms, you
can use regular expressions. If you hover the mouse over the box, a tooltip will give hints on how to
use the regex functions. Y ou can also find online documentation and a tutorial at http://mww.regular-
expressions.info/ [http://www.regular-expressions.info/]. The filter works by checking whether your
filter string matches the log entries, and then only those entries which match the filter string are shown.

To make the filter show all log entries that do not match the filter string, start the string with an
exclamation mark ('!"). For example, afilter string ! user nane will only show those entries which were
not committed by user nane.

Notethat thesefiltersact onthe messagesalready retrieved. They do not control downloading of messages
from the repository.

You can aso filter the path names in the bottom pane using the Hide unrelated changed paths
checkbox. Related paths are those which contain the path used to display the log. If you fetch the log for
afolder, that means anything in that folder or below it. For afileit meansjust that onefile. The checkbox
istristate: you can show all paths, grey out the unrelated ones, or hide the unrelated paths completely.

Sometimes your working practices will require log messages to follow a particular format, which means
that the text describing the changesis not visible in the abbreviated summary shown in the top pane. The
property t svn: | ogsummrary can be used to extract a portion of the log message to be shown in the
top pane. Read Section 4.17.2, “TortoiseSVN Project Properties’ to find out how to use this property.

_"I | No L og Formatting from Repository Browser

Because the formatting depends upon accessing subversion properties, you will only see
the results when using a checked out working copy. Fetching properties remotely isaslow
operation, so you will not see this feature in action from the repo browser.

4.9.9. Statistical Information

The Statistics button brings up a box showing some interesting information about the revisions shown
inthe Log dialog. This shows how many authors have been at work, how many commitsthey have made,

71

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.create.html#svn.reposadmin.create.hooks
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/

Daily Use Guide

progress by week, and much more. Now you can see at a glance who has been working hardest and who
isslacking ;-)

4.9.9.1. Statistics Page

This page gives you all the numbers you can think of, in particular the period and number of revisions
covered, and some min/max/average values.

4.9.9.2. Commits by Author Page

Statistics - G:\Libraries\TortoiseSYN\TortoiseSYN-trunk

File
Graph type: Commits by author L |
Commits by author
e
274 4
I
sutho
|:| Authors case sensitive E] ||_| Ll
Sort by commit count
authors shown individually: ‘ j

Figure 4.20. Commits-by-Author Histogram

This graph shows you which authors have been active on the project as a smple histogram, stacked
histogram or pie chart.

72

Daily Use Guide

Statistics - G:\Libraries\TortoiseSYN\TortoiseSYN-trunk

File

Graph type: Commits by author L |

Commits by author

arthor

[] Authors case sensitive E] ||_| Il
[+]5ort by commit count
authors shown individually: L j

Figure 4.21. Commits-by-Author Pie Chart

Wherethere are afew major authors and many minor contributors, the number of tiny segments can make
the graph more difficult to read. The dider at the bottom allows you to set a threshold (as a percentage

of total commits) below which any activity is grouped into an Others category.

73

Daily Use Guide

4.9.9.3. Commits by date Page

Statistics - G:\Libraries\TortoiseSYN\TortoiseSYN-trunk
File

Graph type: Commits by date w |

Commits by date

commits
(&1
e
L
}

-
i

.
[y
]
T

CAM N g
"

ra
]
T

D D ol Ut o D (Pt

|:| Authors case sensitive
Sort by commit count

authors shown individually: j

Figure 4.22. Commits-by-date Graph

This page gives you a graphical representation of project activity in terms of number of commits and
author. This gives some idea of when a project is being worked on, and who was working at which time.

When there are several authors, you will get many lines on the graph. There aretwo views available here:
normal, where each author's activity isrelative to the base line, and stacked, where each author's activity
is relative to the line underneath. The latter option avoids the lines crossing over, which can make the
graph easier to read, but less easy to see one author's output.

By default the analysis is case-sensitive, so users Pet er Egan and Pet eRegan are treated as
different authors. However, in many cases user names are not case-sensitive, and are sometimes entered
inconsistently, so you may want Davi dMor gan and davi dnor gan to be treated as the same person.
Use the Authors case insensitive checkbox to control how thisis handled.

Note that the statistics cover the same period as the Log dialog. If that is only displaying one revision
then the statistics will not tell you very much.

74

Daily Use Guide

4.9.10. Offline Mode

X

Want to go offline?

There has been a problem contacting the server,
Lo wou want to see the cached data instead?

Please understand that the cached data may be outdated,
incomplete ar even misleading due to incompleke histary data,

[Make this the default %

[COffline For now] [Permanently offline]

[Cancel l

Figure 4.23. Go Offline Dialog

If the server is not reachable, and you have log caching enabled you can use the log dialog and revision
graph in offline mode. This uses data from the cache, which allows you to continue working athough
the information may not be up-to-date or even complete.

Here you have three options:

Offline for now
Complete the current operation in offline mode, but retry the repository next time log data is
requested.

Permanently offline
Remain in offline mode until a repository check is specifically requested. See Section 4.9.11,
“Refreshing the View”.

Cancel
If you don't want to continue the operation with possibly stale data, just cancel.

The Make this the default checkbox preventsthisdialog from re-appearing and always picksthe option

you choose next. You can still change (or remove) the default after doing this from TortoiseSVN -
Settings.

4.9.11. Refreshing the View

4.10.

If you want to check the server again for newer log messages, you can simply refresh the view using F5.
If you are using the log cache (enabled by default), thiswill check the repository for newer messages and
fetch only the new ones. If the log cache was in offline mode, this will also attempt to go back online.

If you are using the log cache and you think the message content or author may have changed, you can use

Shift-F5 or Ctrl-F5 to re-fetch the displayed messages from the server and update the log cache. Note
that this only affects messages currently shown and does not invalidate the entire cachefor that repository.

Viewing Differences

One of the commonest requirementsin project development is to see what has changed. Y ou might want
tolook at the differences between two revisions of the samefile, or the differences between two separate

75

Daily Use Guide

files. TortoiseSVN provides a built-in tool named TortoiseMerge for viewing differences of text files.
For viewing differences of image files, TortoiseSVN also has atool named Tortoisel Diff. Of course, you
can use your own favourite diff programif you like.

4.10.1. File Differences

Local changes
If you want to see what changes you have made in your working copy, just use the explorer context

menu and select TortoiseSVN - Diff.

Difference to another branch/tag
If you want to see what has changed on trunk (if you are working on abranch) or on a specific branch
(if you are working on trunk), you can use the explorer context menu. Just hold down the Shift key

whileyouright click onthefile. Then select TortoiseSVN - Diff with URL. Inthefollowing dialog,
specify the URL in the repository with which you want to compare your locd file to.

Y ou can also use the repository browser and select two trees to diff, perhaps two tags, or a branch/
tag and trunk. The context menu there allows you to compare them using Compare revisions. Read
more in Section 4.10.3, “ Comparing Folders”.

Difference from a previousrevision
If you want to see the difference between a particular revision and your working copy, use the
Revision Log dialog, select the revision of interest, then select Compare with working copy from
the context menu.

If you want to see the difference between the last committed revision and your working copy,
assuming that the working copy hasn't been modified, just right click on the file. Then select

TortoiseSVN - Diff with previous version. Thiswill perform a diff between the revision before
the last-commit-date (as recorded in your working copy) and the working BASE. This shows you
the last change made to that file to bring it to the state you now see in your working copy. It will not
show changes newer than your working copy.

Difference between two previous revisions
If you want to see the difference between two revisions which are already committed, use the
Revision Log dialog and select the two revisions you want to compare (using the usual Ctrl-
modifier). Then select Compare revisions from the context menu.

If you did thisfrom therevision log for afolder, a Compare Revisions dialog appears, showing alist
of changed filesin that folder. Read more in Section 4.10.3, “ Comparing Folders’.

All changes made in a commit
If you want to see the changes made to all filesin a particular revision in one view, you can use
Unified-Diff output (GNU patch format). Thisshowsonly the differenceswith afew lines of context.
It is harder to read than a visua file compare, but will show all the changes together. From the
Revision Log dialog select the revision of interest, then select Show Differences as Unified-Diff
from the context menu.

Difference between files
If you want to see the differences between two different files, you can do that directly in explorer
by selecting both files (using the usual Ctrl-modifier). Then from the explorer context menu select

TortoiseSVN - Diff.

Difference between WC file/folder and a URL
If you want to see the differences between afile in your working copy, and afilein any Subversion
repository, you can do that directly in explorer by selecting the file then holding down the Shift key
whilst right clicking to obtain the context menu. Select TortoiseSVN - Diff with URL. Y ou can do
the same thing for a working copy folder. TortoiseMerge shows these differences in the same way
asit shows apatch file - alist of changed files which you can view one at atime.

76

Daily Use Guide

Difference with blame information
If you want to see not only the differences but also the author, revision and date that changes
were made, you can combine the diff and blame reports from within the revision log dialog. Read
Section 4.23.2, “Blame Differences’ for more detail.

Difference between folders
The built-in tools supplied with TortoiseSVN do not support viewing differences between directory
hierarchies. But if you have an external tool which does support that feature, you can use that instead.
In Section 4.10.5, “External Diff/Merge Tools” we tell you about some tools which we have used.

If you have configured a third party diff tool, you can use Shift when selecting the Diff command to

use the alternate tool. Read Section 4.30.5, “Externa Program Settings” to find out about configuring
other diff tools.

4.10.2. Line-end and Whitespace Options
Sometimesin thelife of aproject you might changetheline endingsfrom CRLF to LF, or you may change
theindentation of a section. Unfortunately thiswill mark alarge number of lines as changed, even though
thereis no change to the meaning of the code. The options here will help to manage these changes when
it comes to comparing and applying differences. You will see these settings in the Merge and Blame
diaogs, aswell asin the settings for TortoiseMerge.

Ignore line endings excludes changes which are due solely to differencein line-end style.

Compare whitespaces includes all changes in indentation and inline whitespace as added/removed
lines.

Ignore whitespace changes excludes changes which are due solely to a change in the amount or type
of whitespace, eg. changing the indentation or changing tabs to spaces. Adding whitespace where there
was none before, or removing a whitespace completely is still shown as a change.

Ignore all whitespaces excludes all whitespace-only changes.

Naturally, any line with changed content is always included in the diff.

4.10.3. Comparing Folders

77

Daily Use Guide

#" Changed Files

Difference between

htkp:fftortoisesyn. tigris. org/swn tortoisesyn/trunk/doc) source/en 11182
”

and
htkp:fftortoisesyn. tigris. org/swn tortoisesyn/trunk/doc) source/en 11908

°

File Ackion
= Iserver_apache,xml Modified
% TortaiseSvMN tsyn_server/server_svn,xmil Modified
[TortoisesyMtsvn_server Mormal
@ TortaiseSyhtsyn_app_internals, xml Modified
@ TortaiseSWNtswn_subwcres, xml Modified
[TortaiseSyM tsvn_repositary Mormal
@ TorkoiseSWMtsvn_app_automation. xml Modified
@ TorkoiseSWM tsvn_dugfdug_settings_|ookfeel.xml Deleted
% TorkoisesWMtsvn_dugfdug_settings _main, xml Deleted
% TortaiseayMtsyn_dugidug_showlog, xml Modified
EI TortaiseSWMtsyn_dugfdug_settings_logcache,<ml Added
@ TortaiseSWMtswn_dugfdug_carmmit, sl Modified
@ TartaiseSWNtsyn_dugidug_merae. =mil Madified F
fafie - ~iman L | | | e b

Figure 4.24. The Compare Revisions Dialog

When you select two trees within the repository browser, or when you select two revisions of afolder in
the log dialog, you can Context menu — Compare revisions.

This dialog shows a list of all files which have changed and allows you to compare or blame them
individually using context menu.

Y ou can export achangetree, whichisuseful if you need to send someone el se your project tree structure,
but containing only the fileswhich have changed. This operation works on the sel ected files only, so you

need to select the files of interest - usually that means all of them - and then Context menu — Export
selection to.... You will be prompted for alocation to save the change tree.

Y ou can also export the list of changed filesto atext file using Context menu — Save list of selected
files to....

If you want to export the list of files and the actions (modified, added, deleted) as well, you can do that
using Context menu — Copy selection to clipboard.

The button at the top allows you to change the direction of comparison. Y ou can show the changes need
to get from A to B, or if you prefer, from B to A.

The buttons with the revision numbers on can be used to change to a different revision range. When you
change the range, the list of items which differ between the two revisions will be updated automatically.

If thelist of filenamesis very long, you can use the search box to reduce the list to filenames containing
specific text. Note that a simple text search is used, so if you want to restrict the list to C source files
you should enter . ¢ rather than*. c.

4.10.4. Diffing Images Using TortoiselDiff

78

Daily Use Guide

There are many tools available for diffing text files, including our own TortoiseMerge, but we often find
ourselves wanting to see how an image file has changed too. That's why we created Tortoisel Diff.

B TorloiselDiff FE®E
File View
=~ & L e
T B AW ?
C:A\Projekte\svriTortoiseSYNidoclimageside\Commit.png Ci\Projekte\svniTortoise SYNVdoclimage sien\Commit.png
= Enter Log Message - C:\TorloiseSVNVTSVNIestB
= Logmeldung eingeben - D:\Development\SYN TortolseSVH
Comenk to:
Ubser b e uch: :
Pittp:fhortoisesen. Boria.orgien,Rortomsesvn/runk Pl TortokseSYN/TSVMrepositrurk
AL Messags:
- | Reowt messases
Update German poresnshafy to match English documentation Update docusentation to erplain new Frobnicate checkbox
Werghriche mat fass
Texge Uriterpcheede sl Stancierd-Onff
Ruab gy Changes made (double-cic: for detads):
tc*ﬂ T File Extension Tet stabus Property stabus Lok
Offnen .. [2] dumy_blawwe. el modfied
Arderurgen [Dopeeidck fr Oetada): Exgiorer offer 5 chay_chwnckont el Compare with base _
Lshen . Teas [() m_confices. ol Show difererces as unfied &ff
Sperre holen... - [&) readem. txt
Boerachafier. oy Show bog Q
Kopeere Piade in die Zmischenablage L Open
Kaogeere ale Informationen in dee Zwischenablage Hna Cpen with, ..
3.4] Explors to
[t Com e 5 o Cete
[¥] 2ege bt versarier te Datiien $0uteien cemiiR, 53 Cataien negesent] St urwversionssd Fles Get lock.... Ilkes selacted, 4 files total
[5] ke o | sbcsbion &
(5] Sedect | decelact sl Sroparties...
1
Fila size: 23k Bytes | aptrechen . Fle size: 21 kBytes | &
Wicth 536 puce Lo [flosna JII oo,] LS SaBpual | Tore e oy G e
Haight 555 peasd Haight 531 pace [/ 3 ormat Sphoar
Horizorial Resohdion 96.0 dpi Harizortal Resohtion %0dpi |
Vertical Resohution 6.0 dps ertical Resolution $6.0dpi |
Dapah 1.} Duaspity 2d b2 |
Zoom BO% Zoam 50%

Figure 4.25. Theimage difference viewer

TortoiseSVN -, Diff for any of the common image file formats will start Tortoisel Diff to show image
differences. By default the images are displayed side-by-side but you can use the View menu or toolbar
to switch to atop-bottom view instead, or if you prefer, you can overlay the images and pretend you are
using alightbox.

Naturally you can also zoom in and out and pan around the image. Y ou can also pan the image simply
by left-dragging it. If you select the Link images together option, then the pan controls (scrollbars,
mousewheel) on both images are linked.

An image info box shows details about the image file, such as the size in pixels, resolution and colour

depth. If thisbox getsin the way, use View — Image Info to hideit. Y ou can get the same information
in atooltip if you hover the mouse over the image title bar.

When the images are overlaid, the relative intensity of the images (alpha blend) is controlled by a slider
control at the left side. Y ou can click anywhere in the slider to set the blend directly, or you can drag the
dider to change the blend interactively. CtrI+Shift-Wheel to change the blend.

The button above the dider toggles between 0% and 100% blends, and if you double click the button,
the blend toggles automatically every second until you click the button again. This can be useful when
looking for multiple small changes.

Sometimes you want to see a difference rather than a blend. Y ou might have the image files for two
revisions of aprinted circuit board and want to see which tracks have changed. If you disable alphablend
mode, the difference will be shown as an XOR of the pixel colour values. Unchanged areas will be plain
white and changes will be coloured.

4.10.5. External Diff/Merge Tools

79

Daily Use Guide

If the toolswe provide don't do what you need, try one of the many open-source or commercial programs
available. Everyone has their own favourites, and this list is by no means complete, but here are a few
that you might consider:

WinMerge
WinMerge [http://winmerge.sourceforge.net/] is agreat open-source diff tool which can also handle
directories.

Perforce Merge
Perforce is a commercia RCS, but you can download the diff/merge tool for free. Get more
information from Perforce [http://www.perforce.com/perforce/products/merge.htmi].

KDiff3
KDiff3 isafree diff tool which can also handle directories. Y ou can download it from here [http://
kdiff3.sf.net/].

ExamDiff
ExamDiff Standard is freeware. It can handle files but not directories. ExamDiff Pro is shareware
and adds a number of goodies including directory diff and editing capability. In both flavours,
version 3.2 and above can handle unicode. You can download them from PrestoSoft [http://
www. prestosoft.com/].

Beyond Compare
Similar to ExamDiff Pro, this is an excellent shareware diff tool which can handle directory diffs
and unicode. Download it from Scooter Software [http://www.scootersoftware.com/].

AraxisMerge
Araxis Merge is a useful commercial tool for diff and merging both files and folders. It does three-
way comparison in merges and has synchronization links to use if you've changed the order of
functions. Download it from Araxis [http://www.araxis.com/merge/index.htmi].

SciTE
This text editor includes syntax colouring for unified diffs, making them much easier to read.
Download it from Scintilla [http://www.scintilla.org/Sci TEDownload.html].

Notepad?
Notepad? is designed as a replacement for the standard Windows Notepad program, and is based
on the Scintilla open-source edit control. As well as being good for viewing unified diffs, it is
much better than the Windows notepad for most jobs. Download it for free here [http://www.flos-
freeware.ch/notepad2.html].

Read Section 4.30.5, “External Program Settings” for information on how to set up TortoiseSVN to use
these tools.

4.11. Adding New Files And Directories

Cpen Wwith F
" TorboiseShM ¥ %Repn-brnwser
Send To 1
) . "
Cut ﬂ.ﬁ.dd ko ignore lisk
Copy W Settings
Create Shortout ? Help
about

Delete

Figure 4.26. Explorer context menu for unversioned files

80

http://winmerge.sourceforge.net/
http://winmerge.sourceforge.net/
http://www.perforce.com/perforce/products/merge.html
http://www.perforce.com/perforce/products/merge.html
http://kdiff3.sf.net/
http://kdiff3.sf.net/
http://kdiff3.sf.net/
http://www.prestosoft.com/
http://www.prestosoft.com/
http://www.prestosoft.com/
http://www.scootersoftware.com/
http://www.scootersoftware.com/
http://www.araxis.com/merge/index.html
http://www.araxis.com/merge/index.html
http://www.scintilla.org/SciTEDownload.html
http://www.scintilla.org/SciTEDownload.html
http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html

Daily Use Guide

4.12.

If you created new files and/or directories during your development process then you need to add them
to source control too. Select the file(s) and/or directory and use TortoiseSVN — Add.

After you added the files/directories to source control the file appears with aadded icon overlay which
means you first have to commit your working copy to make those files/directories available to other
developers. Adding afile/directory does not affect the repository!

=" | Many Adds
b

You can aso use the Add command on aready versioned folders. In that case, the add
dialog will show you all unversioned files inside that versioned folder. This helps if you
have many new files and need to add them all at once.

To add files from outside your working copy you can use the drag-and-drop handler:
1. select thefiles you want to add
2. right-drag them to the new location inside the working copy

3. release the right mouse button

4. select Context Menu — SVN Add files to this WC. The files will then be copied to the working
copy and added to version control.

Y ou can also add fileswithin aworking copy simply by |eft-dragging and dropping them onto the commit
dialog.

If you add afile or folder by mistake, you can undo the addition before you commit using TortoiseSVN
- Undo add....

Copying/Moving/Renaming Files and Folders

It often happens that you already have the files you need in another project in your repository, and you
simply want to copy them across. Y ou could simply copy the files and add them as described above, but
that would not give you any history. And if you subsequently fix abug in the original files, you can only
merge the fix automatically if the new copy isrelated to the original in Subversion.

The easiest way to copy filesand folders from within aworking copy isto use the right-drag menu. When
you right-drag afile or folder from one working copy to ancther, or even within the samefolder, a context
menu appears when you rel ease the mouse.

SN Mowve versioned files here

WM Move and rename versioned files here
YN Copy wersioned files here

WM Copy and rename versioned file here
SN Add files to this wC

SWMN Export to here

SWMN Export all ko here

Capy Here %
Move Here

Create Shaortouks Here

Cancel

Figure 4.27. Right drag menu for a directory under version control

81

Daily Use Guide

Now you can copy existing versioned content to a new location, possibly renaming it at the same time.

Y ou can also copy or move versioned files within aworking copy, or between two working copies, using
thefamiliar cut-and-paste method. Use the standard Windows Copy or Cut to copy one or more versioned
items to the clipboard. If the clipboard contains such versioned items, you can then use TortoiseSVN

- Paste (note: not the standard Windows Paste) to copy or move those items to the new working copy
location.

You can copy files and folders from your working copy to another location in the repository using
TortoiseSVN - Branch/Tag. Refer to Section 4.19.1, “Creating a Branch or Tag” to find out more.

You can locate an older version of afile or folder in the log dialog and copy it to a new location in the

repository directly fromthelog dialog using Context menu — Create branch/tag from revision. Refer
to Section 4.9.3, “ Getting Additional Information” to find out more.

Y ou can aso use the repository browser to locate content you want, and copy it into your working copy
directly from the repository, or copy between two locations within the repository. Refer to Section 4.24,
“The Repository Browser” to find out more.

_"“i Cannot copy between repositories

Whilst you can copy and files and folders within a repository, you cannot copy or move
from one repository to another while preserving history using TortoiseSVN. Not eveniif the
repositories live on the same server. All you can do is copy the content in its current state
and add it as new content to the second repository.

If you are uncertain whether two URLS on the same server refer to the same or different
repositories, use the repo browser to open one URL and find out where the repository root
is. If you can see both locations in one repo browser window then they are in the same

repository.

4.13. Ignoring Files And Directories

Open |
" TortoiseShM k %Repu-bruwser
Send To M| & Add...
Cut =, Add toignore list ¥ '-.-'E:r'::il:ln.I:nuill:IE:r'
* builder
Copy A Settings
Create Sharteut | ¢ HElP
Delete ‘é'ﬁ'b':'”t
Renarne
Properties

Figure 4.28. Explorer context menu for unversioned files

In most projects you will have files and folders that should not be subject to version control. These
might include files created by the compiler, *. obj , *. | st, maybe an output folder used to store the
executable. Whenever you commit changes, TortoiseSVN shows your unversioned files, which fills up
the file list in the commit dialog. Of course you can turn off this display, but then you might forget to
add a new sourcefile.

The best way to avoid these problemsis to add the derived files to the project'signore list. That way they
will never show up in the commit dialog, but genuine unversioned source files will still be flagged up.

82

Daily Use Guide

If you right click on asingle unversioned file, and select the command TortoiseSVN - Add to Ignore
List from the context menu, a submenu appears allowing you to select just that file, or all files with the
same extension. If you select multiple files, there is no submenu and you can only add those specific
files/folders.

If you want to remove one or more items from the ignore list, right click on those items and select

TortoiseSVN - Remove from Ignore List You can also access a folder's svn: i gnor e property
directly. That allows you to specify more genera patterns using filename globbing, described in the
section below. Read Section 4.17, “ Project Settings” for more information on setting properties directly.
Please be aware that each ignore pattern has to be placed on a separate line. Separating them by spaces
does not work.

_"“I The Global IgnoreList

Another way to ignorefilesisto add them to the global ignore list. The big difference here
isthat the global ignore list isaclient property. It appliesto all Subversion projects, but on
the client PC only. In general it is better to usethesvn: i gnor e property where possible,
because it can be applied to specific project areas, and it works for everyone who checks
out the project. Read Section 4.30.1, “General Settings’ for more information.

: Ignoring Versioned Items

Versioned files and folders can never be ignored - that's a feature of Subversion. If you
versioned a file by mistake, read Section B.8, “Ignore files which are already versioned”
for instructions on how to “unversion” it.

4.13.1. Pattern Matching in Ignore Lists

Subversion'signore patterns make use of filename globbing, atechnique originally used in Unix to specify
files using meta-characters as wildcards. The following characters have special meaning:

*

Matches any string of characters, including the empty string (no characters).

Matches any single character.

[...]
Matches any one of the characters enclosed in the square brackets. Within the brackets, a pair of
characters separated by “-” matches any character lexically between the two. For example [AGm
p] matchesany oneof A, G mn, o orp.

Pattern matching is case sensitive, which can cause problems on Windows. You can force case
insengitivity the hard way by pairing characters, eg. to ignore * . t np regardless of case, you could use
apattern like*. [Tt] [M [Pp] .

If you want an official definition for globbing, you can find it in the IEEE specifications for the shell
command language Pattern Matching Notation [http://www.opengroup.org/onlinepubs/009695399/
utilities/xcu_chap02.htmi#tag 02_13].

_"“I | No Pathsin Global IgnoreList

Y ou should not include path information in your pattern. The pattern matching is intended
to be used against plain file names and folder names. If you want to ignore all CVS folders,
just add CvVSto theignorelist. Thereisno need to specify CVS */ CVSasyoudidin earlier

83

http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13
http://www.opengroup.org/onlinepubs/009695399/utilities/xcu_chap02.html#tag_02_13

Daily Use Guide

versions. If you want to ignore al t mp folders when they exist within a pr og folder but
not within a doc folder you should use the svn: i gnor e property instead. There is no
reliable way to achieve this using global ignore patterns.

4.14. Deleting, Moving and Renaming

Unlike CV'S, Subversion alows renaming and moving of files and folders. So there are menu entries for
delete and rename in the TortoiseSVN submenu.

i SWN Update
@ 3N Commit,
Lz 5VN Show log

@ TortoiseShM ¥ DiFF with previous wersion

UleraEdit k 24, Repo-browser
Bz, Check For modifications

Send To »
44, Revision graph
Cuk
Copy K" Update to revision...
& Rename...
Create Sharkout % Delete
Delete
) et lock, ..
Rename
o i 1% Eranchjtag. ..
roperties B <
Swikch. ..
}f Merge. ..
L Blame, ..

aDelete and add to ignore lisk #
= Properties

¥ Settings
? Help

é.ﬁ.bnut

Figure 4.29. Explorer context menu for versioned files

4.14.1. Deleting files and folders

Use TortoiseSVN - Delete to remove files or folders from subversion.

When you TortoiseSVN - Delete afile, it is removed from your working copy immediately as well
as being marked for deletion in the repository on next commit. The file's parent folder shows a*“ del eted”

icon overlay. Up until you commit the change, you can get the file back using TortoiseSVN - Revert
on the parent folder.

When you TortoiseSVN - Delete afolder, it remainsin your working copy, but the overlay changesto
indicate that it is marked for deletion. Up until you commit the change, you can get the folder back using

TortoiseSVN - Revert on the folder itself. This difference in behaviour between files and foldersis
apart of Subversion, not TortoiseSVN.

If you want to delete an item from the repository, but keep it locally as an unversioned file/folder, use

Extended Context Menu - Delete (keep local). Y ou have to hold the Shift key while right clicking
on theitem in the explorer list pane (right pane) in order to see thisin the extended context menu.

Daily Use Guide

If afile is deleted via the explorer instead of using the TortoiseSVN context menu, the commit dialog
shows those files and lets you remove them from version control too before the commit. However, if you
update your working copy, Subversion will spot the missing file and replace it with the latest version
from the repository. If you need to delete a version-controlled file, always use TortoiseSVN - Delete
so that Subversion doesn't have to guess what you really want to do.

If afolder is deleted viathe explorer instead of using the TortoiseSVN context menu, your working copy
will be broken and you will be unable to commit. If you update your working copy, Subversion will
replace the missing folder with the latest version from the repository and you can then del eteiit the correct

way using TortoiseSVN -, Delete.

_""‘I Getting a deleted file or folder back

If you have deleted a file or a folder and aready committed that delete operation to the

repository, then anormal TortoiseSVN - Revert can't bring it back anymore. But thefile
or folder isnot lost at all. If you know therevision thefile or folder got deleted (if you don't,
usethelog dialog to find out) open the repository browser and switch to that revision. Then

select the file or folder you deleted, right-click and select Context Menu — Copy to... as
the target for that copy operation select the path to your working copy.

4.14.2. Moving files and folders

If you want to do a simple in-place rename of afile or folder, use Context Menu — Rename... Enter
the new name for the item and you're done.

If you want to move files around inside your working copy, perhaps to a different sub-folder, use the
right-mouse drag-and-drop handler:

1. select thefiles or directories you want to move
2. right-drag them to the new location inside the working copy

3. release the right mouse button

4. inthe popup menu select Context Menu — SVN Move versioned files here

E ; Commit the parent folder

Since renames and moves are done as a delete followed by an add you must commit the
parent folder of the renamed/moved file so that the deleted part of the rename/move will
show up in the commit dialog. If you don't commit the removed part of the rename/move,
it will stay behind in the repository and when your co-workers update, the old file will not
be removed. i.e. they will have both the old and the new copies.

You must commit a folder rename before changing any of the files inside the folder,
otherwise your working copy can get really messed up.

You can also use the repository browser to move items around. Read Section 4.24, “The Repository
Browser” to find out more.

E ; | Do Not SVN Move Externals

You should not use the TortoiseSVN Move or Rename commands on a folder which
has been created using svn: ext er nal s. This action would cause the external item

85

Daily Use Guide

to be deleted from its parent repository, probably upsetting many other people. If you
need to move an externals folder you should use an ordinary shell move, then adjust the
svn: ext er nal s properties of the source and destination parent folders.

4.14.3. Changing case in a filename

Making case-only changesto afilenameistricky with Subversion on Windows, because for a short time
during arename, both filenames have to exist. As Windows has a case-insensitive file system, this does
not work using the usual Rename command.

Fortunately there are (at |east) two possible methods to rename a file without losing its log history. It is
important to rename it within subversion. Just renaming in the explorer will corrupt your working copy!

Solution A) (recommended)
1. Commit the changesin your working copy.

2. Rename the file from UPPERcase to upperCASE directly in the repository using the repository
browser.

3. Update your working copy.

Solution B)

1. Rename from UPPERcase to UPPERcase _with the rename command in the TortoiseSVN submenu.
2. Commit the changes.

3. Rename from UPPERcase to upperCASE.

4. Commit the changes.

4.14.4. Dealing with filename case conflicts

If the repository already containstwo fileswith the same name but differing only incase (e.g. TEST. TXT
andt est . t xt), you will not be able to update or checkout the parent directory on a Windows client.
Whilst Subversion supports case-sensitive filenames, Windows does not.

This sometimes happens when two people commit, from separate working copies, files which happen
to have the same name, but with a case difference. It can also happen when files are committed from a
system with a case-sensitive file system, like Linux.

In that case, you have to decide which one of them you want to keep and delete (or rename) the other
one from the repository.

_"I Preventing two fileswith the same name

There is a server hook script available at: http://svn.collab.net/repos/svn/trunk/contrib/
hook-scripts/ [http://svn.collab.net/repos/svn/trunk/contrib/hook-scripts/] that will prevent
checkins which result in case conflicts.

4.14.5. Repairing File Renames

Sometimes your friendly IDE will rename files for you as part of a refactoring exercise, and of course
it doesn't tell Subversion. If you try to commit your changes, Subversion will see the old filename as
missing and the new one as an unversioned file. You could just check the new filename to get it added
in, but you would then lose the history tracing, as Subversion does not know the files are related.

86

http://svn.collab.net/repos/svn/trunk/contrib/hook-scripts/
http://svn.collab.net/repos/svn/trunk/contrib/hook-scripts/
http://svn.collab.net/repos/svn/trunk/contrib/hook-scripts/

Daily Use Guide

A better way isto notify Subversion that this changeis actually arename, and you can do this within the
Commit and Check for Modifications dialogs. Simply select both the old name (missing) and the new

name (unversioned) and use Context Menu — Repair Move to pair the two files as arename.

4.14.6. Deleting Unversioned Files

4.15.

Usually you set your ignore list such that all generated files are ignored in Subversion. But what if you
want to clear all thoseignored itemsto produce aclean build? Usually you would set that in your makefile,
but if you are debugging the makefile, or changing the build system it is useful to have away of clearing
the decks.

TortoiseSVN provides just such an option using Extended Context Menu — Delete unversioned

items.... You haveto hold the Shift while right clicking on afolder in the explorer list pane (right pane)
in order to see thisin the extended context menu. Thiswill produce a dialog which lists all unversioned
files anywhere in your working copy. Y ou can then select or deselect items to be removed.

When such items are deleted, the recycle bin is used, so if you make a mistake here and delete afile that
should have been versioned, you can still recover it.

Undo Changes

If you want to undo al changes you made in afile since the last update you need to select the file, right
click to pop up the context menu and then select the command TortoiseSVN — Revert A dialog will
pop up showing you the files that you've changed and can revert. Select those you want to revert and
click on OK.

File Texk Status Property Status
@ dug_add.xmi rmodified
9 dug_checkaut.xml madified
@ dug_general.xml madified
@ dug_impark, xml modified
@ dug_rename.xml modified
@ dug_showlog.xml modified

[5elect | Deselect Al

% [Ok l [Cancel] [Help

Figure 4.30. Revert dialog

If you want to undo a deletion or a rename, you need to use Revert on the parent folder as the deleted
item does not exist for you to right-click on.

87

Daily Use Guide

4.16.

4.17.

If you want to undo the addition of an item, this appears in the context menu as TortoiseSVN - Undo
add.... Thisisrealy arevert aswell, but the name has been changed to make it more obvious.

The columns in this dialog can be customized in the same way as the columns in the Check for
modifications dialog. Read Section 4.7.3, “Local and Remote Status’ for further details.

_""‘I Undoing Changes which have been Committed

Revert will only undo your local changes. It does not undo any changeswhich have already
been committed. If you want to undo all the changes which were committed in a particular
revision, read Section 4.9, “Revision Log Dialog” for further information.

= | Revert is Slow

When you revert changes you may find that the operation takes alot longer than you expect.
Thisis because the modified version of thefileis sent to the recycle bin, so you can retrieve
your changesif you reverted by mistake. However, if your recyclebinisfull, Windowstakes
along time to find a place to put the file. The solution is simple: either empty the recycle
bin or deactivate the Use recycle bin when reverting box in TortoiseSVN's settings.

Cleanup

If a Subversion command cannot complete successfully, perhaps due to server problems, your working

copy can be left in an inconsistent state. In that case you need to use TortoiseSVN - Cleanup on the
folder. It isagood ideato do this at the top level of the working copy.

Cleanup has another useful side effect. If a file date changes but its content doesn't, Subversion cannot
tell whether it has really changed except by doing a byte-by-byte comparison with the pristine copy. If
you have alot of filesin this state it makes acquiring status very slow, which will make many dialogs
dow to respond. Executing a Cleanup on your working copy will repair these “broken” timestamps and
restore status checks to full speed.

_"“I Use Commit Timestamps

Some earlier releases of Subversion were affected by a bug which caused timestamp
mismatch when you check out with the Use commit timestamps option checked. Use the
Cleanup command to speed up these working copies.

Project Settings

Daily Use Guide

Tortoise5¥MN Properties

General || Sharing fa Subversion | Customize

URL: http:/ftortoizesvn igns. argdsvntortoizezwyndtunk,

R ewvizion / Author; 12232 SF
Lazt commit revizion: 12232 3:31:15 AM, Saturday, March 01, 20038

Test Status: nuarmal
Property Status: harrmal
Lock owner:

Lock creation date:

Repazitary LUID: al8leeda-fc27-d748-b48c-545418967348
Changelist;
D epth: Fully recursive
Checkavm:
lacked: ho
awitched: ylu]
copied: ho

Properties. ..] [Show log

[k. l [Cancel]

Figure 4.31. Explorer property page, Subversion tab

Sometimes you want to have more detailed information about a file/directory than just the icon overlay.
You can get al the information Subversion provides in the explorer properties dialog. Just select the
file or directory and select Windows Menu - properties in the context menu (note: thisis the normal
properties menu entry the explorer provides, not the onein the TortoiseSVN submenu!). In the properties
dialog box TortoiseSV N has added anew property page for files/folders under Subversion control, where
you can see al relevant information about the selected file/directory.

4.17.1. Subversion Properties

89

Daily Use Guide

#" Properties

Properties for
C:\Developrment) S Tortoise 3y

Properky Walue

bugtrag:logrege:x [Ii]ssue Wa*, land) st d+E)+ (d+)

bugtrag:url http: ffissues, tarkoisesyn, net) rdo=details@task_id=%BUGI0%

syniignare bin abj v Deskiop.ini Toals toals MYBUILD version.build default, user defaulk,build,
synimergeinfo fbranches|1.4.x:9134 [branches/LogCacheEnhancement: 9629-9630, 9653, 9691 -969;

synmerge-blocked fbranches/LogCacheEnhancement: 11244, 11247

synmerge-integrated fbranches/LogCacheEnhancement:1-11244,11246,11248-11252

ksvn:autoprops * . avi = svnimime-type=videofavi * bat = svn:eal-style=native *.bmp = svnimime-ty
tevn:logminsize 10

ksvniprojectlanguage 1033

< ¥

Import...] [Expnrt...] [Save,..] [Remove] [Edit...] [Mew, ..]

| o | [He |

Figure 4.32. Subversion property page

You can read and set the Subversion properties from the Windows properties dialog, but also from
TortoiseSVN - properties and within TortoiseSVN's status lists, from Context menu — properties.

Y ou can add your own properties, or some properties with aspecial meaning in Subversion. These begin
withsvn: .svn: ext er nal s issuch aproperty; see how to handle externalsin Section 4.18, “ External
Items”.

4.17.1.1. svn:keywords

Subversion supports CV S-like keyword expansion which can be used to embed filename and revision
information within the file itself. Keywords currently supported are:

$Date
Date of last known commit. Thisis based on information obtained when you update your working
copy. It does not check the repository to find more recent changes.

$Revision$
Revision of last known commit.

$Author$
Author who made the last known commit.

$HeadURL $
The full URL of thisfilein the repository.

ld
A compressed combination of the previous four keywords.

To find out how to use these keywords, ook at the svn:keywords section [http://svnbook.red-bean.com/
en/1.5/svn.advanced.props.special .keywords.html] in the Subversion book, which givesafull description
of these keywords and how to enable and use them.

For more information about properties in Subversion see the Special Properties [http://svnbook.red-
bean.com/en/1.5/svn.advanced.props.html].

90

http://svnbook.red-bean.com/en/1.5/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.special.keywords.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html

Daily Use Guide

4.17.1.2. Adding and Editing Properties

Add Properties

Property narne: b

sy exkernals
Property value;

synimergeinfo
bugtrag:url
bugtraq:logrege:x
bugtrag:label
bugtrag:message
bugkraq:number
bugtrag:warnifnoissue
bugkraq:append
kavn:logkemplate
Eswr:logwidthmarker
kevn:logminsize
kavnilockmsgminsize

D ,Cl'pp|-:|.- properky recursiveh.- tS\l’I’IIlDQFilEliStEI’Ig"Sh
tsvn:lngsummary

[tsvn:prnjectlanguage

kavniuserfileproperties
kavniuserdirproperties -
ksvn:autoprops

webyviewer resision
webviewer pathrevision

Figure 4.33. Adding properties

To add a new property, first click on Add.... Select the required property hame from the combo box, or
type in a name of your own choice, then enter avalue in the box below. Properties which take multiple
values, such asanignorelist, can be entered on multiplelines. Click on OK to add that property to thelist.

If you want to apply a property to many items at once, select the files/folders in explorer, then select
Context menu - properties

If you want to apply the property to every file and folder in the hierarchy below the current folder, check
the Recursive checkbox.

Some properties, for example svn: needs- | ock, can only be applied to files, so the property name
doesn't appear inthe drop down list for folders. Y ou can still apply such a property recursively to al files
in ahierarchy, but you have to type in the property name yourself.

If you wish to edit an existing property, select that property from thelist of existing properties, then click
on Edit....

If you wish to remove an existing property, select that property from the list of existing properties, then
click on Remove.

The svn: ext er nal s property can be used to pull in other projects from the same repository or a
completely different repository. For more information, read Section 4.18, “External ltems”.

4.17.1.3. Exporting and Importing Properties

Often you will find yourself applying the same set of properties many times, for example
bugt raqg: | ogr egex. To simplify the process of copying properties from one project to another, you
can use the Export/Import feature.

From the file or folder where the properties are already set, use TortoiseSVN - properties, select the
properties you wish to export and click on Export.... You will be prompted for a filename where the
property names and values will be saved.

91

Daily Use Guide

From the folder(s) where you wish to apply these properties, use TortoiseSVN - properties and click
on Import.... You will be prompted for afilename to import from, so navigate to the place you saved the
export file previously and select it. The properties will be added to the folders non-recursively.

If you want to add properties to a tree recursively, follow the steps above, then in the property dialog
select each property inturn, click on Edit..., check the Apply property recursively box and click on OK.

TheImport file format is binary and proprietary to TortoiseSVN. Itsonly purposeisto transfer properties
using Import and Export, so thereis no need to edit thesefiles.

4.17.1.4. Binary Properties

TortoiseSVN can handle binary property values using files. To read a binary property value, Save... to
afile. To set a binary value, use a hex editor or other appropriate tool to create a file with the content
you require, then Load... from that file.

Although binary properties are not often used, they can be useful in some applications. For example if
you are storing huge graphics files, or if the application used to load the file is huge, you might want to
store athumbnail as a property so you can obtain a preview quickly.

4.17.1.5. Automatic property setting

Y ou can configure Subversion and TortoiseSV N to set properties automatically on filesand folderswhen
they are added to the repository. There are two ways of doing this.

Y ou can edit the subversion configuration file to enable this feature on your client. The General page of
TortoiseSV N's settings dial og has an edit button to take you there directly. The config fileisasimple text
file which controls some of subversion's workings. Y ou need to change two things: firstly in the section
headed mi scel | any uncomment the line enabl e- aut o- props = yes. Secondly you need to
edit the section below to define which properties you want added to which file types. This method is a
standard subversion feature and works with any subversion client. However it has to be defined on each
client individually - there is no way to propagate these settings from the repository.

An aternative method is to set the t svn: aut opr ops property on folders, as described in the next
section. Thismethod only worksfor TortoiseSVN clients, but it does get propagated to all working copies
on update.

Whichever method you choose, you should note that auto-props are only applied to files at the time
they are added to the repository. Auto-props will never change the properties of files which are already
versioned.

If you want to be absolutely sure that new files have the correct properties applied, you should set up a
repository pre-commit hook to reject commits where the required properties are not set.

i | Commit properties

Subversion properties are versioned. After you change or add aproperty you haveto commit
your changes.

: Conflictson properties

If there's a conflict on committing the changes, because another user has changed the same
property, Subversion generates a. pr ej file. Delete this file after you have resolved the
conflict.

4.17.2. TortoiseSVN Project Properties

Daily Use Guide

TortoiseSVN has afew special properties of its own, and these begin witht svn: .

* tsvn: | ogni nsi ze setsthe minimum length of alog message for a commit. If you enter a shorter
message than specified here, the commit is disabled. This feature is very useful for reminding you to
supply a proper descriptive message for every commit. If this property is not set, or the valueis zero,
empty log messages are allowed.

tsvn: | ocknsgni nsi ze setstheminimum length of alock message. If you enter ashorter message
than specified here, the lock is disabled. This feature is very useful for reminding you to supply a
proper descriptive message for every lock you get. If this property isnot set, or the valueis zero, empty
lock messages are allowed.

* tsvn: | ogwi dt hmar ker is used with projects which require log messages to be formatted with
some maximum width (typically 80 characters) before aline break. Setting this property to anon-zero
will do 2 things in the log message entry dialog: it places a marker to indicate the maximum width,
and it disables word wrap in the display, so that you can see whether the text you entered is too long.
Note: this feature will only work correctly if you have afixed-width font selected for log messages.

» tsvn: | ogt enpl at e is used with projects which have rules about log message formatting. The
property holds a multi-line text string which will be inserted in the commit message box when you
start a commit. You can then edit it to include the required information. Note: if you are also using
tsvn: | ogm nsi ze, besureto set thelength longer than the template or you will lose the protection
mechanism.

 Subversion alowsyou to set “ autoprops’ which will be applied to newly added or imported files, based
onthefile extension. This depends on every client having set appropriate autopropsin their subversion
configuration file. t svn: aut opr ops can be set on folders and these will be merged with the user's
local autoprops when importing or adding files. The format is the same as for subversion autoprops,
eg.*.sh = svn:eol -styl e=native; svn: execut abl e sets two properties on files with
the . sh extension.

If there is a conflict between the local autoprops and t svn: aut opr ops, the project settings take
precedence because they are specific to that project.

 Inthe Commit dialog you have the option to paste in the list of changed files, including the status of
each file (added, modified, etc). t svn: | ogfi | el i st engl i sh defines whether the file status is
inserted in English or in the localized language. If the property is not set, the default ist r ue.

e TortoiseSVN can use spell checker modules which are also used by OpenOffice and Mozilla. If you
have those installed this property will determine which spell checker to use, i.e. in which language
the log messages for your project should be written. t svn: pr oj ect | anguage sets the language
modul e the spell checking engine should use when you enter alog message. Y ou can find the valuesfor
your language on this page: MSDN: Language ldentifiers [http://msdn2.microsoft.com/en-us/library/
ms776260.aspx].

Y ou can enter thisvaluein decimal, or in hexadecimal if prefixed with Ox. For example English (US)
can be entered as0x0409 or 1033.

* Thepropertyt svn: | ogsunmmar y isused to extract aportion of thelog message which isthen shown
in the log dialog as the log message summary.

Thevaueof thet svn: | ogsunmar y property must be set to aone line regex string which contains
one regex group. Whatever matches that group is used as the summary.

An example: \ [SUMVARY\] : \ s+(. *) Will catch everything after “[SUMMARY]” in the log
message and use that as the summary.

» When you want to add a new property, you can either pick one from the list in the combo box, or
you can enter any property name you like. If your project uses some custom properties, and you want
those properties to appear in the list in the combo box (to avoid typos when you enter a property

93

http://msdn2.microsoft.com/en-us/library/ms776260.aspx
http://msdn2.microsoft.com/en-us/library/ms776260.aspx
http://msdn2.microsoft.com/en-us/library/ms776260.aspx

Daily Use Guide

4.18.

name), you can create a list of your custom properties using t svn: userfil eproperti es and
tsvn: userdi rproperties.Apply thesepropertiestoafolder. Whenyou go to edit the properties
of any child item, your custom properties will appear in the list of pre-defined property names.

Some t svn: properties require a t rue/ f al se value. TortoiseSVN also understands yes as a
synonym for t r ue and no asasynonym for f al se.

TortoiseSVN can integrate with some bug tracking tools. This uses project properties that start with
bugt r aqg: . Read Section 4.28, “Integration with Bug Tracking Systems / Issue Trackers® for further
information.

It can also integrate with some web-based repository browsers, using project properties that start
with webvi ewer : . Read Section 4.29, “Integration with Web-based Repository Viewers’ for further
information.

i | Set the project propertieson folders

These specia project properties must be set on folders for the system to work. When you
commit a file or folder the properties are read from that folder. If the properties are not
found there, TortoiseSVN will search upwards through the folder tree to find them until it
comes to an unversioned folder, or the tree root (eg. C: \) isfound. If you can be sure that
each user checksout only frome.gt r unk/ and not some sub-folder, then it issufficient to
set the propertiesont r unk/ . If you can't be sure, you should set the propertiesrecursively
on each sub-folder. A property setting deeper in the project hierarchy overrides settings on
higher levels (closer to t r unk/).

For project properties only you can use the Recursive checkbox to set the property to al
sub-foldersin the hierarchy, without also setting it on all files.

When you add new sub-folders using TortoiseSVN, any project properties present in the parent folder
will automatically be added to the new child folder too.

: i i Caution

Although TortoiseSVN's project properties are extremely useful, they only work with
TortoiseSVN, and some will only work in newer versions of TortoiseSVN. If people
working on your project use a variety of Subversion clients, or possibly have old versions
of TortoiseSVN, you may want to use repository hooks to enforce project policies. project
properties can only help to implement a policy, they cannot enforce it.

External Items

Sometimesit isuseful to construct aworking copy that ismade out of anumber of different checkouts. For
example, you may want different files or subdirectories to come from different locationsin arepository,
or perhaps from different repositories altogether. If you want every user to have the same layout, you
can definethesvn: ext er nal s propertiesto pull in the specified resource at the locations where they
are needed.

4.18.1. External Folders

Let's say you check out aworking copy of / pr oj ect 1 toD: \ dev\ pr oj ect 1. Select the folder D:

\ dev\ pr oj ect 1, right click and choose Windows Menu - Properties from the context menu. The
Properties Dialog comes up. Then go to the Subversion tab. There, you can set properties. Click Add....
Select thesvn: ext er nal s property from the combobox and write in the edit box the repository URL
intheformat ur | f ol der orif you want to specify aparticular revision, - r REV ur| f ol der You

94

Daily Use Guide

can add multiple external projects, 1 per line. Suppose that you have set these properties on D: \ dev
\ proj ect 1:

htt p://sounds. red- bean. com repos sounds
htt p://graphics.red-bean. conf repos/ fast ¥%20graphics "quick graphs”
-r21 http://svn.red-bean. com repos/ ski n-maker skins/tool kit

Now click Set and commit your changes. When you (or any other user) update your working copy,
Subversion will create a sub-folder D: \ dev\ pr oj ect 1\ sounds and checkout the sounds project,
another sub-folder D: \ dev\ pr oj ect 1\ qui ck_gr aphs containing the graphics project, and finally
anested sub-folder D: \ dev\ pr oj ect 1\ ski ns\ t ool ki t containing revision 21 of the skin-maker
project.

URLs must be properly escaped or they will not work, e.g. you must replace each space with %20 as
shown in the second example above.

If you want the local path to include spaces or other special characters, you can enclose it in double
guotes, or you can use the\ (backslash) character as a Unix shell style escape character preceding any
special character. Of course this also means that you must use/ (forward slash) as a path delimiter. Note
that this behaviour is new in Subversion 1.6 and will not work with older clients.

——

| Use explicit revision numbers

You should strongly consider using explicit revision numbers in al of your externals
definitions, as described above. Doing so means that you get to decide when to pull down
a different snapshot of external information, and exactly which snapshot to pull. Besides
the common sense aspect of not being surprised by changes to third-party repositories that
you might not have any control over, using explicit revision numbers also means that as
you backdate your working copy to aprevious revision, your externals definitions will also
revert to theway they looked in that previousrevision, which in turn meansthat the external
working copies will be updated to match they way they looked back when your repository
was at that previous revision. For software projects, this could be the difference between a
successful and afailed build of an older snapshot of your complex code base.

: Older svn:externals definitions

The format shown here was introduced in Subversion 1.5. You may also see the older
format which has the same information in a different order. The new format is preferred
asit supports several useful features described below, but it will not work on older clients.
The differences are shown in the Subversion Book [http://svnbook.red-bean.com/en/1.5/
svn.advanced.external s.htmi].

If the external project isin the same repository, any changes you make there there will beincluded in the
commit list when you commit your main project.

If the external project is in a different repository, any changes you make to the external project will be
notified when you commit the main project, but you have to commit those external changes separately.

If you use absolute URLsinsvn: ext er nal s definitions and you have to relocate your working copy
(i.e, if the URL of your repository changes), then your externals won't change and might not work
anymore.

To avoid such problems, Subversion clients version 1.5 and higher support relative external URLSs.
Four different methods of specifying a relative URL are supported. In the following examples,
assume we have two repositories: one at ht t p: / / exanpl e. conf svn/ repos- 1 and another at

95

http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.externals.html

Daily Use Guide

http://exanpl e. com svn/repos- 2. Wehaveacheckout of ht t p: / / exanpl e. com svn/
repos-1/ project/trunkintoC: \ Wrki ng andthesvn: ext er nal s property is set on trunk.

Relative to parent directory
These URLs always begin with the string . . / for example:

../../widgets/foo conmon/foo-w dget

Thiswill extractht t p: / / exanpl e. conf svn/ repos- 1/ wi dget s/ f oointoC; \ Wr ki ng
\ conmon\ f oo- wi dget .

Note that the URL is relative to the URL of the directory with thesvn: ext er nal s property, not
to the directory where the external is written to disk.

Relative to repository root
These URLs aways begin with the string */ for example:

N wi dgets/foo conmon/f oo-w dget

Thiswill extractht t p: / / exanpl e. conf svn/ repos- 1/ wi dget s/ f oointoC: \ Wor ki ng
\ conmon\ f oo- wi dget .

You can easily refer to other repositories with the same SVNPar ent Pat h (a common directory
holding several repositories). For example:

Al ..l repos-2/ hamers/cl aw common/ cl aw hammer

This will extract http://exanpl e.conl svn/repos-2/ hammers/claw into C
\ Wor ki ng\ conmon\ cl aw hamer .

Relative to scheme
URL s beginning with the string / / copy only the scheme part of the URL. Thisis useful when the
same hosthame must the accessed with different schemes depending upon network location; e.g.
clientsintheintranet use ht t p: / / while external clientsusesvn+ssh: / /. For example:

/I exanpl e. com svn/repos- 1/ wi dgets/foo comon/foo-w dget

This will extract htt p: / / exanpl e. coni svn/repos- 1/ w dget s/ f oo or svn+ssh://
exanpl e. conl svn/ repos- 1/ wi dget s/ f oo depending on which method was used to
checkout C: \ Wor ki ng.

Relative to the server's hosthame
URL s beginning with the string / copy the scheme and the hostname part of the URL, for example:

/svn/repos- 1/ wi dgets/foo comon/foo-w dget

Thiswill extractht t p: / / exanpl e. conf svn/ repos- 1/ wi dget s/ f oointoC: \ Wr ki ng
\ conmon\ f oo- wi dget . But if you checkout your working copy from another server at
svn+ssh://another. mrror.net/svn/repos-1/projectl/trunkthentheexterna
reference will extract svn+ssh://another.mrror.net/svn/repos-1/ w dgets/
f 0o.

You can also specify a peg revision after the URL if required, e.g. http://sounds. r ed-
bean. com r epos@J9.

96

Daily Use Guide

If you need moreinformation how TortoiseSV N handles Propertiesread Section 4.17, “ Project Settings”.

To find out about different methods of accessing common sub-projects read Section B.6, “Include a
common sub-project”.

4.18.2. External Files

4.19.

As of Subversion 1.6 you can add single file externals to your working copy using the same syntax as
for folders. However, there are some restrictions.

* Thepathto thefile external must placethefilein an existing versioned folder. In general it makes most
senseto placethefile directly inthe folder that hassvn: ext er nal s set, but it can bein aversioned
sub-folder if necessary. By contrast, directory externals will automatically create any intermediate
unversioned folders as required.

» The URL for afile external must be in the same repository as the URL that the file external will be
inserted into; inter-repository file externals are not supported.

A file external behaves just like any other versioned file in many respects, but they cannot be moved or
deleted using the normal commands; the svn: ext er nal s property must be modified instead.

E File externals support incompletein Subversion 1.6

In subversion 1.6 it is not possible to remove afile externa from your working copy once
you have added it, even if you deletethesvn: ext er nal s property altogether. Y ou have
to checkout a fresh working copy to remove thefile.

Branching / Tagging

One of the features of version control systems is the ability to isolate changes onto a separate line of
development. This line is known as a branch. Branches are often used to try out new features without
disturbing the main line of development with compiler errors and bugs. As soon as the new feature is
stable enough then the devel opment branch is merged back into the main branch (trunk).

Another feature of version control systems is the ability to mark particular revisions (e.g. a release
version), So you can at any time recreate acertain build or environment. This processisknown astagging.

Subversion does not have special commands for branching or tagging, but uses so-called “cheap copies’
instead. Cheap copies are similar to hard links in Unix, which means that instead of making a complete
copy in therepository, aninternal link is created, pointing to a specific tree/revision. Asaresult branches
and tags are very quick to create, and take up almost no extra space in the repository.

4.19.1. Creating a Branch or Tag

If you have imported your project with the recommended directory structure, creating a branch or tag
versionisvery smple:

97

Daily Use Guide

X)

Copy (Branch [Tag)

Reposikbary
From Wi at LIRL:
http: [ftortoisesyn, tigris, orgf svnytortoisesynftrunk,

To URL:
ktp: fikortaisesyn, bgris, arg)svn/taortoisesyn/tags version-1.5.0 b E]
Create copy in the repository From:
{i} HEAD rewision in the repository
{:} Specific revision in repositary E]
() working copy

Log message

[Recent messages]

Tag the 1_5_.0 releasel

Switch working copy bo new
Dbral‘lch.l'tag [(074 l [Cancel] [Help

Figure 4.34. The Branch/Tag Dialog

Select thefolder in your working copy which you want to copy to abranch or tag, then select the command

TortoiseSVN - Branch/Tag....

The default destination URL for the new branch will be the source URL on which your working copy is

based. Y ou will need to edit that URL to the new path for your branch/tag. So instead of
http://svn. col |l ab. net/repos/ Proj ect Narme/ t runk

you might now use something like

http://svn.col |l ab. net/repos/ Proj ect Nanme/t ags/ Rel ease_1. 10

If you can't remember the naming convention you used last time, click the button on the right to open the
repository browser so you can view the existing repository structure.

Now you have to select the source of the copy. Here you have three options:
HEAD revision in the repository

The new branch is copied directly in the repository from the HEAD revision. No data needs to be
transferred from your working copy, and the branch is created very quickly.

98

Daily Use Guide

Specific revision in the repository
The new branch is copied directly in the repository but you can choose an older revision. Thisis
useful if you forgot to make a tag when you released your project last week. If you can't remember
the revision number, click the button on the right to show the revision log, and select the revision
number from there. Again no datais transferred from your working copy, and the branch is created

very quickly.

Working copy
The new branch is an identical copy of your local working copy. If you have updated some filesto
an older revision in your WC, or if you have made local changes, that is exactly what goes into the
copy. Naturally this sort of complex tag may involve transferring data from your WC back to the
repository if it does not exist there already.

If you want your working copy to be switched to the newly created branch automatically, use the Switch
working copy to new branch/tag checkbox. But if you do that, first make sure that your working copy
does not contain modifications. If it does, those changes will be merged into the branch WC when you
switch.

Press OK to commit the new copy to the repository. Don't forget to supply alog message. Note that the
copy is created inside the repository.

Note that unless you opted to switch your working copy to the newly created branch, creating a Branch
or Tag does not affect your working copy. Even if you create the branch from your WC, those changes
are committed to the new branch, not to the trunk, so your WC may still be marked as modified with
respect to the trunk.

4.19.2. To Checkout or to Switch...

...that is (not really) the question. While a checkout downloads everything from the desired branch in the

repository to your working directory, TortoiseSVN - Switch... only transfers the changed datato your
working copy. Good for the network load, good for your patience. :-)

To be abletowork with your freshly generated branch or tag you have several waysto handleit. Y ou can:

TortoiseSVN - Checkout to make a fresh checkout in an empty folder. You can check out to any
location onyour local disk and you can create as many working copiesfrom your repository asyoulike.

» Switch your current working copy to the newly created copy in the repository. Again select the top
level folder of your project and use TortoiseSVN - Switch... from the context menu.

Inthe next dialog enter the URL of the branch you just created. Select the Head Revision radio button
and click on OK. Y our working copy is switched to the new branch/tag.

Switchworksjust like Updatein that it never discardsyour local changes. Any changesyou have made
to your working copy which have not yet been committed will be merged when you do the Switch. If
you do not want this to happen then you must either commit the changes before switching, or revert
your working copy to an aready-committed revision (typically HEAD).

* If you want to work on trunk and branch, but don't want the expense of a fresh checkout, you can use

Windows Explorer to make a copy of your trunk checkout in another folder, then TortoiseSVN —
Switch... that copy to your new branch.

99

Daily Use Guide

4.20.

Switch To Branch / Tag

Switch:
i lbortoisesyn

To LIRL:

] http:{itartaiseswn tigris, org/svn/tortaisesvnftrunk v E]
Revision
{(*) HEAD revision Show log
() Revision

[(] 4 l [Cancel] [Help

Figure 4.35. The Switch Dialog

Although Subversion itself makes no distinction between tags and branches, the way they are typically
used differs a bit.

» Tagsaretypically used to create a static snapshot of the project at a particular stage. As such they not
normally used for development - that's what branches are for, which is the reason we recommended
the/ trunk / branches /t ags repository structureinthefirst place. Working on atag revisionis
not a good idea, but because your local files are not write protected there is nothing to stop you doing
this by mistake. However, if you try to commit to a path in the repository which contains/ t ags/ ,
TortoiseSVN will warn you.

» It may be that you need to make further changes to a release which you have aready tagged. The
correct way to handle thisisto create anew branch from the tag first and commit the branch. Do your
Changes on this branch and then create a new tag from this new branch, e.g. Ver si on_1. 0. 1.

* If you modify aworking copy created from abranch and commit, then all changes go to the new branch
and not the trunk. Only the modifications are stored. The rest remains a cheap copy.

Merging

Where branches are used to maintain separate lines of development, at some stage you will want to merge
the changes made on one branch back into the trunk, or vice versa.

It isimportant to understand how branching and merging worksin Subversion beforeyou start using it, as
it can become quite complex. It ishighly recommended that you read the chapter Branching and Merging
[http://svnbook.red-bean.com/en/1.5/svn.branchmerge.html] in the Subversion book, which gives a fulll
description and many examples of how it is used.

The next point to note is that merging always takes place within a working copy. If you want to merge
changes into a branch, you have to have a working copy for that branch checked out, and invoke the

merge wizard from that working copy using TortoiseSVN - Merge....

In general it isagood ideato perform amerge into an unmodified working copy. If you have made other
changesin your WC, commit thosefirst. If the merge does not go as you expect, you may want to revert
the changes, and the Revert command will discard all changesincluding any you made before the merge.

There are three common use cases for merging which are handled in slightly different ways, as described
below. Thefirst page of the merge wizard asks you to select the method you need.

100

http://svnbook.red-bean.com/en/1.5/svn.branchmerge.html
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.html

Daily Use Guide

Merge arange of revisions
This method covers the case when you have made one or more revisionsto a branch (or to the trunk)
and you want to port those changes across to a different branch.

What you are asking Subversion to do is this: “Calculate the changes necessary to get [FROM]
revision 1 of branch A [TQ] revision 7 of branch A, and apply those changes to my working copy
(of trunk or branch B).”

Reintegrate a branch
This method covers the case when you have made a feature branch as discussed in the Subversion
book. All trunk changes have been ported to the feature branch, week by week, and now the feature
is complete you want to merge it back into the trunk. Because you have kept the feature branch
synchronized with thetrunk, thelatest versionsof branch and trunk will be absolutely identical except
for your branch changes.

Thisisaspecial case of the tree merge described below, and it requires only the URL to merge from
(normally) your development branch. It uses the merge-tracking features of Subversion to calculate
the correct revision ranges to use, and perform additional checks which ensure that the branch has
been fully updated with trunk changes. Thisensuresthat you don't accidentally undo work that others
have committed to trunk since you last synchronized changes.

After the merge, al branch development has been completely merged back into the main
development line. The branch is now redundant and can be deleted.

Once you have performed a reintegrate merge you should not continue to use it for development.
Thereason for thisisthat if you try to resynchronize your existing branch from trunk later on, merge
tracking will see your reintegration as atrunk change that has not yet been merged into the branch,
and will try to merge the branch-to-trunk merge back into the branch! The solution to thisis simply
to create a new branch from trunk to continue the next phase of your development.

Merge two different trees
This is a more general case of the reintegrate method. What you are asking Subversion to do is:
“Calculate the changes necessary to get [FROM] the head revision of thetrunk [TO] the head revision
of the branch, and apply those changes to my working copy (of the trunk).” The net result is that
trunk now looks exactly like the branch.

If your server/repository does not support merge-tracking then thisisthe only way to merge abranch
back to trunk. Another use case occurs when you are using vendor branches and you need to merge
the changes following a new vendor drop into your trunk code. For more information read the
chapter on vendor branches [http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html] in
the Subversion Book.

4.20.1. Merging a Range of Revisions

101

http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.vendorbr.html

Daily Use Guide

Merge

X)

Merge revision range
Select the revisions to merge

IRL to merge From

& | htkp:fftortoisesyn, bigris. orgsynftortoisesyn/trunkfdoc b B

Revision range to merge

9236, 9254-9256, 9260 Show log]

|:| Rewverse merge

IJse the log dialog to select the revisions wou wank to merge, or enter the revisions ko
merge, separated by cormmas. & revision range can be specified by a dash.

Example: 4-7,9,11,15-HEAD

To merge all revisions, leave the box emphy,

Working Copy
4 TorkaiseSyNidoo [

Shiow log]

% [< Barck ” Next =][Cancel] [Help]

Figure 4.36. The Merge Wizard - Select Revision Range

In the From: field enter the full folder URL of the branch or tag containing the changes you want to
port into your working copy. Y ou may also click ... to browse the repository and find the desired branch.
If you have merged from this branch before, then just use the drop down list which shows a history of
previously used URLSs.

In the Revision range to merge field enter thelist of revisions you want to merge. Thiscan beasingle
revision, alist of specific revisions separated by commas, or a range of revisions separated by a dash,
or any combination of these.

1 | I mportant

Thereisan important difference in the way arevision rangeis specified with TortoiseSVN
compared to the command line client. The easiest way to visualise it is to think of afence
with posts and fence panels.

With the command line client you specify the changes to merge using two “fence post”
revisions which specify the before and after points.

With TortoiseSVN you specify the changeset to merge using “fence panels’. The reason
for this becomes clear when you use the log dialog to specify revisions to merge, where
each revision appears as a changeset.

If you are merging revisionsin chunks, the method shown in the subversion book will have
you merge 100-200 this time and 200-300 next time. With TortoiseSVN you would merge
100-200 this time and 201-300 next time.

102

Daily Use Guide

This difference has generated a lot of heat on the mailing lists. We acknowledge that there
is a difference from the command line client, but we believe that for the majority of GUI
usersit is easier to understand the method we have implemented.

The easiest way to select the range of revisions you need isto click on Show Log, asthiswill list recent
changes with their log comments. If you want to merge the changes from a single revision, just select
that revision. If you want to merge changes from several revisions, then select that range (using the usual
Shift-modifier). Click on OK and the list of revision numbers to merge will befilled in for you.

If you want to merge changes back out of your working copy, to revert a change which has already been
committed, select the revisions to revert and make sure the Reverse merge box is checked.

If you have already merged some changes from this branch, hopefully you will have made a note of the
last revision merged in the log message when you committed the change. In that case, you can use Show
Log for the Working Copy to trace that |og message. Remembering that we are thinking of revisions as
changesets, you should Use the revision after the end point of the last merge as the start point for this
merge. For example, if you have merged revisions 37 to 39 last time, then the start point for this merge
should be revision 40.

If you are using the merge tracking features of Subversion, you do not need to remember which revisions
have already been merged - Subversion will record that for you. If you leave the revision range blank,
all revisions which have not yet been merged will be included. Read Section 4.20.6, “Merge Tracking”
to find out more.

If other people may be committing changes then be careful about using the HEAD revision. It may not
refer to the revision you think it does if someone el se made a commit after your last update.

Click Next and go to Section 4.20.4, “Merge Options”

4.20.2. Reintegrate a branch

103

Daily Use Guide

Merge E|
Tree merge
Select the URLs for the tree merge
From LRL:
£ | htkp:f frortoisesyn, kigris .orgfsvnftortoisesyn/branches/doc-rewrite| W o0
[Shows log]

Working Copy
1 TortoiseSyNidoo Show g

% [< Back ” Mexk =] [Cancel] [Help

Figure4.37. TheMerge Wizard - Reintegrate Merge

To merge a feature branch back into the trunk you must start the merge wizard from within a working
copy of the trunk.

In the From URL.: field enter the full folder URL of the branch that you want to merge back. Y ou may
aso click ... to browse the repository.

There are some conditions which apply to a reintegrate merge. Firstly, the server must support merge
tracking. Theworking copy must be of depthinfinite (no sparse checkouts), and it must not have any local
modifications, switched itemsor itemsthat have been updated to revisions other than HEAD. All changes
to trunk made during branch development must have been merged across to the branch (or marked as
having been merged). The range of revisions to merge will be calculated automatically.

4.20.3. Merging Two Different Trees

104

Daily Use Guide

X)

Merge

Tree merge
Select the URLs for the tree merge

From: {start URL and revision of the range ko merge)

hitkp: / ftortoisesyn, tigris. org/syntortoisesyn/trunkfdoc) w B
(%) HEAD Revision

() Revision Shiow log

To: (end URL and revision of the range to merge)

Http: ffkartoisesyn, bigris. argfsvn/tartoisesvn)branches/doc-rewrite/| b D
(%) HEAD Revision
i) Revision show log]

Working Copy
1 TorkaiseSyNidos [

Shiow log]

% [< Back ” Mext =][Cancel] [Help]

Figure4.38. TheMerge Wizard - TreeMerge

If you are using this method to merge a feature branch back to trunk, you need to start the merge wizard
from within aworking copy of trunk.

In the From: field enter the full folder URL of the trunk. This may sound wrong, but remember that the
trunk is the start point to which you want to add the branch changes. You may also click ... to browse
the repository.

In the To: field enter the full folder URL of the feature branch.

In both the From Revision field and the To Revision field, enter the last revision number at which
the two trees were synchronized. If you are sure no-one else is making commits you can use the HEAD
revision in both cases. If there is a chance that someone else may have made a commit since that
synchronization, use the specific revision number to avoid losing more recent commits.

You can aso use Show Log to select the revision.

4.20.4. Merge Options

This page of the wizard lets you specify advanced options, before starting the merge process. Most of
the time you can just use the default settings.

You can specify the depth to use for the merge, i.e. how far down into your working copy the merge
should go. The depth terms used are described in Section 4.3.1, “Checkout Depth”. The default depth is
Working copy, which uses the existing depth setting, and is amost always what you want.

Most of the timeyou want mergeto take account of thefile'shistory, so that changesrelative to acommon
ancestor are merged. Sometimes you may need to merge files which are perhaps related, but not in

105

Daily Use Guide

your repository. For example you may have imported versions 1 and 2 of athird party library into two
separate directories. Although they are logically related, Subversion has no knowledge of this because
it only sees the tarballs you imported. If you attempt to merge the difference between these two trees
you would see a complete removal followed by a complete add. To make Subversion use only path-
based differencesrather than history-based differences, check thelgnore ancestry box. Read more about
this topic in the Subversion book, Noticing or Ignoring Ancestry [http://svnbook.red-bean.com/en/1.5/
svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry]

Y ou can specify theway that line ending and whitespace changes are handl ed. These options are described
in Section 4.10.2, “Line-end and Whitespace Options’. The default behaviour is to treat all whitespace
and line-end differences as real changes to be merged.

If you are using merge tracking and you want to mark arevision as having been merged, without actually
doing the merge here, check the Only record the merge checkbox. There are two possible reasons you
might want to do this. It may be that the mergeistoo complicated for the merge agorithms, so you code
the changes by hand, then mark the change as merged so that the merge tracking algorithm is aware of
it. Or you might want to prevent a particular revision from being merged. Marking it as aready merged
will prevent the merge occurring with merge-tracking-aware clients.

Now everything is set up, all you have to do is click on the Merge button. If you want to preview the
results Test Merge performs the merge operation, but does not modify the working copy at al. It shows
you alist of thefilesthat will be changed by areal merge, and notesthose areaswhere conflictswill occur.

The merge progress dialog shows each stage of the merge, with the revision ranges involved. This
may indicate one more revision than you were expecting. For example if you asked to merge revision
123 the progress dialog will report “Merging revisions 122 through 123”. To understand this you need
to remember that Merge is closely related to Diff. The merge process works by generating a list of
differences between two points in the repository, and applying those differences to your working copy.
The progress dialog is simply showing the start and end points for the diff.

4.20.5. Reviewing the Merge Results

Themergeisnow complete. It'sagood ideato have alook at the merge and seeif it'sasexpected. Merging
isusually quite complicated. Conflicts often arise if the branch has drifted far from the trunk.

For Subversion clients and servers prior to 1.5, no merge information is stored and merged revisions
have to be tracked manually. When you have tested the changes and come to commit this revision,
your commit log message should always include the revision numbers which have been ported
in the merge. If you want to apply another merge at a later time you will need to know what
you have aready merged, as you do not want to port a change more than once. For more
information about this, refer to Best Practices for Merging [http://svnbook.red-bean.com/en/1.4/
svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac] in the Subversion book.

If your server and all clientsare running Subversion 1.5 or higher, the merge tracking facility will record
the revisions merged and avoid a revision being merged more than once. This makes your life much
simpler as you can simply merge the entire revision range each time and know that only new revisions
will actually be merged.

Branch management isimportant. If you want to keep this branch up to date with the trunk, you should
be sure to merge often so that the branch and trunk do not drift too far apart. Of course, you should till
avoid repeated merging of changes, as explained above.

B

) | T
If you have just merged afeature branch back into the trunk, the trunk now contains all the

new feature code, and the branch is obsolete. You can now delete it from the repository
if required.

106

http://svnbook.red-bean.com/en/1.5/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.5/svn.branchmerge.advanced.html#svn.branchmerge.advanced.ancestry
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac
http://svnbook.red-bean.com/en/1.4/svn.branchmerge.copychanges.html#svn.branchmerge.copychanges.bestprac

Daily Use Guide

i | | mportant

Subversion can't merge afile with afolder and vice versa - only folders to folders and files
to files. If you click on afile and open up the merge dialog, then you have to give a path
to afilein that dialog. If you select afolder and bring up the dialog, then you must specify
afolder URL for the merge.

4.20.6. Merge Tracking

Subversion 1.5 introduced facilities for merge tracking. When you merge changes from one tree into
another, the revision numbers merged are stored and this information can be used for several different
purposes.

* You can avoid the danger of merging the same revision twice (repeated merge problem). Once a
revision is marked as having been merged, future merges which include that revision in the range will
skip over it.

» When you merge a branch back into trunk, the log dialog can show you the branch commits as part of
the trunk log, giving better traceability of changes.

» When you show the log dialog from within the merge dialog, revisions already merged are shown in
grey.

» When showing blame information for a file, you can choose to show the original author of merged
revisions, rather than the person who did the merge.

* You can mark revisions as do not merge by including them in the list of merged revisions without
actually doing the merge.

Merge tracking information is stored in the svn: mer gei nf o property by the client when it performs
amerge. When the merge is committed the server stores that information in a database, and when you
request merge, log or blame information, the server can respond appropriately. For the system to work
properly you must ensure that the server, the repository and al clients are upgraded. Earlier clients will
not store the svn: mer gei nf o property and earlier servers will not provide the information requested
by new clients.

Find out more about merge tracking from Subversion's Merge tracking documentation [http:/
subversion.tigris.org/merge-tracking/index.html].

4.20.7. Handling Conflicts during Merge

Merging does not always go smoothly. Sometimes there is a conflict, and if you are merging multiple
ranges, you generally want to resolve the conflict before merging of the next range starts. TortoiseSVN
helps you through this process by showing the merge conflict callback dialog.

107

http://subversion.tigris.org/merge-tracking/index.html
http://subversion.tigris.org/merge-tracking/index.html
http://subversion.tigris.org/merge-tracking/index.html

Daily Use Guide

#" Resolve Conflict

X)

Could nat merge 'dug_ignare. xml’ because there are conflicking maodifizations.

Please resalve the conflick by choasing ane of the Fallowing options:

Choose ikem; [Ise local l [Ise repository]

ar

Resolve conflick: [Edit conflick]

ar

Leave conflicted: [Resalve |aker] [Resaolve all later]
Q [abort Merge] [Help]

Figure 4.39. The Merge Conflict Callback Dialog

When a conflict occurs during the merge, you have three ways to handle it.

1. You may decide that your local changes are much moreimportant, so you want to discard the version
from the repository and keep your local version. Or you might discard your local changes in favour
of the repository version. Either way, no attempt is made to merge the changes - you choose one or
the other.

2. Normally you will want to look at the conflicts and resolve them. In that case, choose the Edit Conflict
which will start up your merge tool. When you are satisfied with the result, click Resolved.

3. Thelast optionisto postpone resolution and continue with merging. Y ou can choose to do that for the
current conflicted file, or for al filesin the rest of the merge. However, if there are further changes
inthat file, it will not be possible to complete the merge.

If you do not want to usethisinteractive callback, thereisacheckbox in the merge progress dialog Merge
non-interactive. If thisis set for amerge and the merge would result in aconflict, thefileismarked asin
conflict and the merge goes on. Y ou will have to resolve the conflicts after the whole merge is finished.
If it isnot set, then before afileis marked as conflicted you get the chance to resolve the conflict during
the merge. This has the advantage that if afile gets multiple merges (multiple revisions apply a change
to that file), subsequent merges might succeed depending on which lines are affected. But of course you
can't walk away to get a coffee while the merge isrunning ;)

4.20.8. Merge a Completed Branch

If you want to merge al changes from afeature branch back to trunk, then you can use the TortoiseSVN

- Merge reintegrate... from the extended context menu (hold down the Shift key while you right click
on thefile).

108

Daily Use Guide

Merge all @

Merge options

Merge depth: Working copy w
[|Ignote ancestry

[]1gnore line endings

G} Compare whitespaces

() Ignore whitespace changes
() Ignore all whitespaces

[Merge H Cancel][Help

Figure 4.40. The Mergereintegrate Dialog

Thisdialogisvery easy. All you haveto dois set the optionsfor the merge, asdescribedin Section 4.20.4,
“Merge Options’. The rest is done by TortoiseSVN automatically using merge tracking.

4.20.9. Feature Branch Maintenance

4.21.

When you develop a new feature on a separate branch it is a good idea to work out a policy for re-
integration when the feature is complete. If other work isgoing onint r unk at the same time you may
find that the differences become significant over time, and merging back becomes a nightmare.

If thefeatureisrelatively simpleand development will not take long then you can adopt asimpleapproach,
which isto keep the branch entirely separate until the feature is complete, then merge the branch changes
back into trunk. In the merge wizard this would be a smple Merge a range of revisions, with the
revision range being the revision span of the branch.

If thefeatureis going to take longer and you need to account for changesint r unk, then you need to keep
the branch synchronised. This simply means that periodically you merge trunk changes into the branch,
so that the branch contains all the trunk changes plus the new feature. The synchronisation process uses
Merge a range of revisions. When the feature is complete then you can mergeit back tot r unk using
either Reintegrate a branch or Merge two different trees.

Locking

Subversion generally works best without locking, using the “Copy-Modify-Merge” methods described
earlier in Section 2.2.3, “The Copy-Moaodify-Merge Solution”. However there are a few instances when
you may need to implement some form of locking policy.

* You are using “unmergeable” files, for example, graphics files. If two people change the same file,
merging is not possible, so one of you will lose their changes.

* Your company has aways used a locking revision control system in the past and there has been a
management decision that “locking is best”.

Firstly you need to ensure that your Subversion server isupgraded to at least version 1.2. Earlier versions
do not support locking at all. If you areusing fi | e:// access, then of course only your client needs
to be updated.

4.21.1. How Locking Works in Subversion

By default, nothing is locked and anyone who has commit access can commit changes to any file at any
time. Others will update their working copies periodically and changes in the repository will be merged
with local changes.

109

Daily Use Guide

If you Get a Lock on afile, then only you can commit that file. Commits by all other userswill be blocked
until you release the lock. A locked file cannot be modified in any way in the repository, so it cannot be
deleted or renamed either, except by the lock owner.

However, other userswill not necessarily know that you have taken out alock. Unlessthey check thelock
status regularly, the first they will know about it is when their commit fails, which in most cases is not
very useful. To makeit easier to manage locks, there isanew Subversion property svn: needs- | ock.
When this property is set (to any value) on afile, whenever the file is checked out or updated, the local
copy is made read-only unless that working copy holds alock for the file. This acts asawarning that you
should not edit that file unless you havefirst acquired alock. Fileswhich are versioned and read-only are
marked with a special overlay in TortoiseSV N to indicate that you need to acquire alock before editing.

Locks are recorded by working copy location as well as by owner. If you have several working copies
(at home, at work) then you can only hold alock in one of those working copies.

If one of your co-workers acquires a lock and then goes on holiday without releasing it, what do you
do? Subversion provides a means to force locks. Releasing alock held by someone else is referred to
as Breaking the lock, and forcibly acquiring a lock which someone else aready holds is referred to as
Sealing the lock. Naturally these are not things you should do lightly if you want to remain friends with
your co-workers.

Locks are recorded in the repository, and alock token is created in your local working copy. If thereis
a discrepancy, for example if someone else has broken the lock, the local lock token becomes invalid.
The repository is always the definitive reference.

4.21.2. Getting a Lock

Select the file(s) in your working copy for which you want to acquire a lock, then select the command
TortoiseSVN - Get Lock....

Lock Files M(=1E3

[Recent messages

Enter a message describing why wou are locking the Filels),

Path Extension Lock Meeds lock
% chozdial.png .png
%] chozdisz.png .png
,ﬂ ch02dia3.png .png
,ﬂ chiZdia4.png .png
,ﬂ chOZdiaS.png .png
,ﬂ chizdiat.png .png
,ﬂ chlzdia?.png .png

EEREEE

Select | deselect &l
[]5teal the locks [OF,] [Cancel] [Help

Figure4.41. The Locking Dialog

A dialog appears, allowing you to enter acomment, so others can see why you have locked the file. The
comment is optional and currently only used with Svnserve based repositories. If (and only if) you need
to steal the lock from someone else, check the Steal lock box, then click on OK.

110

Daily Use Guide

If you select a folder and then use TortoiseSVN — Get Lock... the lock dialog will open with every
filein every sub-folder selected for locking. If you really want to lock an entire hierarchy, that isthe way
to do it, but you could become very unpopular with your co-workersif you lock them out of the whole
project. Use with care ...

4.21.3. Releasing a Lock

To make sure you don't forget to release alock you don't need any more, locked files are shown in the
commit dialog and selected by default. If you continue with the commit, locks you hold on the selected
files are removed, even if the files haven't been modified. If you don't want to release alock on certain
files, you can uncheck them (if they're not modified). If you want to keep alock on afile you've modified,
you have to enable the Keep locks checkbox before you commit your changes.

To release a lock manually, select the file(s) in your working copy for which you want to release the

lock, then select the command TortoiseSVN - Release Lock There is nothing further to enter so
TortoiseSV N will contact the repository and release thelocks. Y ou can al so use this command on afol der
to release al locks recursively.

4.21.4. Checking Lock Status

Working Copy - C:YTortoiseS¥N\doctestitempidoc

Path Text stabus Property skabus | Remote text status | Remote property status | Depth Lock | Lock comment | Aul
{no changelist)
hdoc narmal narrmal modified Fully recursive Sirm
f modified k ac —— Fully recursive Simon Major update
dug_branchtag,xml added S:mp;rfe with base e Unknown d,.. Sirmm
dug_conﬂicts.xml added ot diiTerences as aniried o Unknown d... Sirm
= @ Commit... .
dug_general.xml added Unknawn d. .. Sirm
dug_ignore, xml conflicted modifie) €3 Revert.,, Fully recursive Sirm
dug_relocate,xml miodified normal = Show log Fully recursive Sirm
dug_rewvert,xml riorrmal modified &Blame. . Fully recursive Sirmn
|Cminested Mested 7 Open Unknown d...
[£] readme.bxt nion-versioned 7 Open with... Unknown d. ..
|[)Explore to
DuG blame update X Delete
dug_blame.xml modified 7 Release lock Fully recursive Sirm
¢ 7 Break lock Y
[#] shaw unversicned Files 3 Create patch... 2, modified=4, added=0, deleted=0,
[5haw unmadified files
[5how ignored files &= Properties...
= ; :
Shaw items |n. externals) Copy paths to clipboard
[]5how properties ; ")
[=]Copy allinformation to clipboard
Lowesk shown revision: 1 - Highesk shown revision: 6 - HEAD revision! 7
Move to changelist 4 Check repositary] [Ok

Figure 4.42. The Check for Modifications Dialog

To seewhat locksyou and othershold, you canuse TortoiseSVN — Check for Modifications.... Locally
held lock tokens show up immediately. To check for locks held by others (and to seeif any of your locks
are broken or stolen) you need to click on Check Repository.

From the context menu here, you can also get and release locks, as well as breaking and stealing locks
held by others.

@ | Avoid Breaking and Stealing L ocks

If you break or steal someone else's lock without telling them, you could potentially cause
loss of work. If you are working with unmergeabl e file types and you steal someone else's
lock, once you release the lock they are free to check in their changes and overwrite yours.

111

Daily Use Guide

Subversion doesn't lose data, but you have lost the team-working protection that locking
gave you.

4.21.5. Making Non-locked Files Read-Only

As mentioned above, the most effective way to use locking is to set the svn: needs- | ock property
on files. Refer to Section 4.17, “Project Settings’ for instructions on how to set properties. Files with
this property set will always be checked out and updated with the read-only flag set unless your working
copy holds alock.

Fa

v

Asareminder, TortoiseSVN uses a special overlay to indicate this.

If you operate a policy where every file has to be locked then you may find it easier to use Subversion's
auto-props feature to set the property automatically every time you add new files. Read Section 4.17.1.5,
“ Automatic property setting” for further information.

4.21.6. The Locking Hook Scripts

4.22.

When you create a new repository with Subversion 1.2 or higher, four hook templates are created in
the repository hooks directory. These are called before and after getting a lock, and before and after
releasing alock.

Itisagoodideatoinstall apost - | ock andpost - unl ock hook script onthe server which sendsout an
email indicating the file which has been locked. With such ascript in place, al your users can be notified
if someone locks/unlocks afile. You can find an example hook script hooks/ post - | ock. t npl in
your repository folder.

You might also use hooks to disallow breaking or stealing of locks, or perhaps limit it to a named
administrator. Or maybe you want to email the owner when one of their locksis broken or stolen.

Read Section 3.3, “ Server side hook scripts’ to find out more.

Creating and Applying Patches

For open source projects (like this one) everyone has read access to the repository, and anyone can make
a contribution to the project. So how are those contributions controlled? If just anyone could commit
changes, the project would be permanently unstable and probably permanently broken. In this situation
the change is managed by submitting a patch file to the development team, who do have write access.
They can review the patch first, and then either submit it to the repository or reject it back to the author.

Patch files are simply Unified-Diff files showing the differences between your working copy and the
base revision.

4.22.1. Creating a Patch File

First you need to make and test your changes. Then instead of using TortoiseSVN — Commit... on the
parent folder, you select TortoiseSVN — Create Patch...

112

Daily Use Guide

2% Create Patch

File
dug_blarme, xml
dug_checkout. xml

dug_conflicts, xml
] r;j readme, txk

[2] select: | Deselect Al

% [0K l [Cancel] [Help

Figure 4.43. The Create Patch dialog

you can now select the files you want included in the patch, just as you would with a full commit. This
will produce a single file containing a summary of al the changes you have made to the selected files
since the last update from the repository.

The columns in this dialog can be customized in the same way as the columns in the Check for
modifications dialog. Read Section 4.7.3, “Local and Remote Status’ for further details.

Y ou can produce separate patches containing changes to different sets of files. Of course, if you create
a patch file, make some more changes to the same files and then create another patch, the second patch
file will include both sets of changes.

Just save the file using a filename of your choice. Patch files can have any extension you like, but by
convention they should usethe. pat ch or . di f f extension. You are now ready to submit your patch
file.

Y ou can also save the patch to the clipboard instead of to afile. Y ou might want to do this so that you can
paste it into an email for review by others. Or if you have two working copies on one machine and you
want to transfer changes from one to the other, a patch on the clipboard is a convenient way of doing this.

4.22.2. Applying a Patch File

Patch files are applied to your working copy. This should be done from the same folder level aswas used
to create the patch. If you are not sure what thisis, just look at thefirst line of the patch file. For example,
if the first file being worked on was doc/ sour ce/ engl i sh/ chapt er 1. xm and the first linein
the patch fileis| ndex: engl i sh/ chapt er 1. xm then you need to apply the patch to the doc/
sour ce/ folder. However, provided you are in the correct working copy, if you pick the wrong folder
level, TortoiseSVN will notice and suggest the correct level.

In order to apply apatch file to your working copy, you need to have at least read accessto the repository.
The reason for this is that the merge program must reference the changes back to the revision against
which they were made by the remote devel oper.

From the context menu for that folder, click on TortoiseSVN — Apply Patch... Thiswill bring up a
file open dialog allowing you to select the patch file to apply. By default only . pat ch or . di f f files

113

Daily Use Guide

4.23.

are shown, but you can opt for “All files". If you previously saved a patch to the clipboard, you can use
Open from clipboard... in the file open dialog.

Alternatively, if the patch file hasa. pat ch or . di ff extension, you can right click on it directly

and select TortoiseSVN - Apply Patch.... In this case you will be prompted to enter a working copy
location.

These two methods just offer different ways of doing the same thing. With the first method you select
the WC and browse to the patch file. With the second you select the patch file and browse to the WC.

Once you have selected the patch file and working copy location, TortoiseMerge runs to merge the
changes from the patch file with your working copy. A small window lists the files which have been
changed. Double click on each onein turn, review the changes and save the merged files.

The remote developer's patch has now been applied to your working copy, so you need to commit to
allow everyone else to access the changes from the repository.

Who Changed Which Line?

Sometimes you need to know not only what lines have changed, but also who exactly changed specific

lines in a file. That's when the TortoiseSVN — Blame... command, sometimes also referred to as
annotate command comes in handy.

This command lists, for every linein afile, the author and the revision the line was changed.

4.23.1. Blame for Files

Blame ﬁ|
Fram rewision To Revision
@ HEAD revision
{:} Revision
Diff options

Ignore line endings

O Compare whitespaces
() Ignore whitespace changes
(%) Ignore all whitespaces

[]Use kext viewer to view blames

[1include merge info

% [Ok l [Cancel] [Help

Figure 4.44. The Annotate / Blame Dialog

If you're not interested in changes from earlier revisions you can set the revision from which the blame
should start. Set thisto 1, if you want the blame for every revision.

By default the blamefileisviewed using TortoiseBlame, which highlightsthe different revisionsto make
it easier to read. If you wish to print or edit the blame file, select Use Text viewer to view blames

114

Daily Use Guide

Y ou can specify theway that line ending and whitespace changes are handl ed. These options are described
in Section 4.10.2, “Line-end and Whitespace Options’. The default behaviour is to treat all whitespace
and line-end differences as real changes, but if you want to ignore an indentation change and find the
original author, you can choose an appropriate option here.

Once you press OK TortoiseSVN starts retrieving the data to create the blame file. Please note: This can
take several minutesto finish, depending on how much the file has changed and of course your network
connection to the repository. Once the blame process has finished the result is written into a temporary
file and you can view the results.

#£. TortoiseBlame - tsvn_app_automation.xml

File Edit Wiew

F evizsion Author Line
10130 simonlarge 342 Adds all targets in <option A
10130 simonlarge 343 ignore list, i.e. adds the -
10130 Simonlarge 344 property to those files.
1183 steveking 345 </entrys>
1183 steveking 346 </row>
1183 steveking 347 <row>
7408 simonlarge 3438 <entry condition="pot":>:khlame</
1183 steveking 349 <Entry:>
1507 lusbbe 350 Opens the blame dialog for -
1807 luebbe 351 in <option:/path</option:.
10215 stannic 352 If the options <option:>/sta
10215 stannic 353 <options/endrev</option> ar
55658 steveking 354 asking for the blame range
5568 steveking 355 the rewvision walues of thos
5568 steveking 356 instead.
7763 simonlarge 357 If the option <option>/line
7764 Simonlarge 358 TortoiseBlame will open wit!
7764 Simonlarge 359 nurber showing.

B 1183 steveking 360 </entry>

— 1183 steveking 361 </row>
1183 steveking 362 <row>
7405 simonlarge 363 <entry condition="pot"::icat</en
Lilskl EEESELEE 04/09/2006 22:49:23
1307 luebhe & collection of small fixes for the 1.4 docs: ile from an URL or
1807 lushbe * Show commands as abcd instead of fabod in tsvn_app_automation, sml -/ path</option> t
1807 lusbbe * Document: how to expart actions as well as changed files in Folder compare. lesvepath: path</opt
option>/revision:,

£ >

Figure 4.45. TortoiseBlame

TortoiseBlame, which is included with TortoiseSVN, makes the blame file easier to read. When you
hover the mouse over alinein the blame info column, al lines with the same revision are shown with a
darker background. Lines from other revisions which were changed by the same author are shown with a
light background. The colouring may not work as clearly if you have your display set to 256 colour mode.

If you left click on aline, al lines with the same revision are highlighted, and lines from other revisions
by the same author are highlighted in alighter colour. This highlighting is sticky, allowing you to move
the mouse without losing the highlights. Click on that revision again to turn off highlighting.

The revision comments (log message) are shown in ahint box whenever the mouse hovers over the blame
info column. If you want to copy the log message for that revision, use the context menu which appears
when you right click on the blame info column.

You can search within the Blame report using Edit — Find.... This allows you to search for revision
numbers, authors and the content of the file itself. Log messages are not included in the search - you
should use the Log Dialog to search those.

Y ou can aso jump to a specific line number using Edit - Go To Line....

When the mouseis over the blame info columns, acontext menu is avail able which helpswith comparing
revisions and examining history, using the revision number of the line under the mouse as a reference.

Context menu — Blame previous revision generates a blame report for the same file, but using the

115

Daily Use Guide

previous revision as the upper limit. This gives you the blame report for the state of the file just before
the line you are looking at was last changed. Context menu - Show changes starts your diff viewer,

showing you what changed in the referenced revision. Context menu - Show log displaystherevision
log dialog starting with the referenced revision.

If you need a better visual indicator of where the oldest and newest changes are, select View — Color
age of lines. This will use a colour gradient to show newer lines in red and older lines in blue. The
default colouring is quite light, but you can change it using the TortoiseBlame settings.

If you are using Merge Tracking, where lines have changed as a result of merging from another path,
TortoiseBlame will show the revision and author of the last change in the original file rather than the
revision where the merge took place. These lines are indicated by showing the revision and author in
italics. If you do not want merged lines shown in this way, uncheck the Include merge info checkbox.

If you want to see the pathsinvolved in the merge, select View — Merge paths.

The settingsfor TortoiseBlame can be accessed using TortoiseSVN — Settings... on the TortoiseBlame
tab. Refer to Section 4.30.9, “TortoiseBlame Settings”.

4.23.2. Blame Differences

4.24.

One of the limitations of the Blame report is that it only shows the file asit wasin a particular revision,
and shows the last person to change each line. Sometimes you want to know what change was made, as
well as who made it. What you need here is a combination of the diff and blame reports.

The revision log dialog includes several options which allow you to do this.

Blame Revisions

In the top pane, select 2 revisions, then select Context menu — Blame revisions. Thiswill fetch
the blame data for the 2 revisions, then use the diff viewer to compare the two blame files.

Blame Changes

Select onerevision inthetop pane, then pick onefilein the bottom pane and select Context menu -
Blame changes. Thiswill fetch the blame data for the selected revision and the previous revision,
then use the diff viewer to compare the two blame files.

Compare and Blame with Working BASE
Show thelog for asinglefile, and in the top pane, select asinglerevision, then select Context menu
- Compare and Blame with Working BASE. This will fetch the blame data for the selected
revision, and for the file in the working BASE, then use the diff viewer to compare the two blame
files.

The Repository Browser

Sometimes you need to work directly on the repository, without having aworking copy. That's what the
Repository Browser is for. Just as the explorer and the icon overlays alow you to view your working
copy, so the Repository Browser allows you to view the structure and status of the repository.

116

Daily Use Guide

http:/tortoisesvn.tigris.org/svn/tortoisesvn - Repository Browser

URL: htkp: fftartoisesvn tigris .org/svnytortoisesvngtrunk/build, Ext ~ Revision:
=l () hktpefftartoisesyn. tigris orgfsvnftortoise | File Extension = Fevision Author Size Date
=03 trunk [Sicontrib 15684 steweking 14/03/200% 16:08:26
- contrib Chdoc 15706 milaradspopavic 15/03/2009 19:22:40
#-{]) doc et 15633 of 10/03/2009 22:01: 16
: 3 f;:guages [Silanguages 15703 otk 15/03/2009 16:43:50
55 sre |Zhsre 15704 steveking 15/03/2009 19:04:49
1) test |itest 15599 simonlarge 07/03/2009 22:36:59
05 v | 15664 simonlarge 12/03/2009 22:04:05
F.:='_1 Eoailed. kxck o g] /
=) deault.buid & Open ng 12.1KB 02/11/2008 05:26:50
) default. build user tmpl | 7 OPEN with... r 161KE 10j03/2008 19:29:50
[Z] release_procedure kxt 2 Show log 2,25 KB 01/01j2009 14:37:29
wersion.build.in &Revision araph ng 385 bytes 15/03/2009 07:25:12
versioninfo. build &Blame... ng Z.05KE 19/02/2008 17:47:15
& Rename
X Delete. ..
m 3aVE a5,
Copy ko working copy...
'P'-‘ Copy ko,
[Z]Copy URL ta clipboard
< > | 4= Show properties »
Hint: Press FS ko refresh the selected subtree and Ctrl-FS to load all children koo
ok | [hep
Figure 4.46. The Repository Browser
With the Repository Browser you can execute commands like copy, move, rename, ... directly on the

repository.

The repository browser looks very similar to the Windows explorer, except that it is showing the content
of therepository at aparticular revision rather than files on your computer. In the left pane you can see a
directory tree, and in the right pane are the contents of the selected directory. At the top of the Repository
Browser Window you can enter the URL of the repository and the revision you want to browse.

Just like Windows explorer, you can click on the column headingsin the right pane if you want to set the
sort order. And as in explorer there are context menus available in both panes.

The context menu for afile allows you to:

» Open the selected file, either with the default viewer for that file type, or with a program you choose.

» Save an unversioned copy of the fileto your hard drive.

» Show therevision log for that file, or show a graph of al revisions so you can see where the file came

from.
» Blamethefile, to see who changed which line and when.

* Delete or rename thefile.

» Make acopy of thefile, either to adifferent part of the repository, or to aworking copy rooted in the

same repository.
» View/Edit the file's properties.

The context menu for afolder allows you to:

» Show therevision log for that folder, or show a graph of all revisions so you can see where the folder

came from.

117

Daily Use Guide

» Export the folder to alocal unversioned copy on your hard drive.

» Checkout the folder to produce alocal working copy on your hard drive.
 Create anew folder in the repository.

» Add filesor folders directly to the repository.

* Delete or rename the folder.

» Make acopy of the folder, either to a different part of the repository, or to aworking copy rooted in
the same repository.

» View/Edit the folder's properties.
» Mark the folder for comparison. A marked folder is shown in bold.

» Compare the folder with a previously marked folder, either as a unified diff, or as alist of changed
files which can then be visually diffed using the default diff tool. This can be particularly useful for
comparing two tags, or trunk and branch to see what changed.

If you select two folders in the right pane, you can view the differences either as a unified-diff, or as a
list of fileswhich can be visually diffed using the default diff tool.

If you select multiple folders in the right pane, you can checkout all of them at once into a common
parent folder.

If you select 2 tags which are copied from the same root (typicaly / t r unk/), you can use Context
Menu — Show Log... to view thelist of revisions between the two tag points.

You can use F5 to refresh the view as usual. This will refresh everything which is currently displayed.
If you want to pre-fetch or refresh the information for nodes which have not been opened yet, use Ctrl-
F5. After that, expanding any node will happen instantly without a network delay while the information
isfetched.

Y ou can also use the repository browser for drag-and-drop operations. If you drag afolder from explorer
into the repo-browser, it will be imported into the repository. Note that if you drag multiple items, they
will beimported in separate commits.

If you want to move an item within the repository, just left drag it to the new location. If you want to
create a copy rather than moving the item, Ctrl-left drag instead. When copying, the cursor has a*“ plus’
symbol onit, just asit doesin Explorer.

If you want to copy/move afile or folder to another location and also give it anew name at the sametime,
you can right drag or Ctrl-right drag the item instead of using left drag. In that case, arename dialog is
shown where you can enter a new name for thefile or folder.

Whenever you make changes in the repository using one of these methods, you will be presented with
alog message entry dialog. If you dragged something by mistake, thisis also your chance to cancel the
action.

Sometimes when you try to open a path you will get an error message in place of the item details. This
might happen if you specified an invalid URL, or if you don't have access permission, or if thereis some
other server problem. If you need to copy this message to include it in an email, just right click on it and

use Context Menu — Copy error message to clipboard, or smply use Ctrl+C.

4.25. Revision Graphs

118

Daily Use Guide

Revision Graph
File ‘Miew SWM Help
= 11 000 [= vEEEHB |tz @dom 7
14933
IL 15162 - ftags
— 14940 p—— Fwersion-1.5.61.
| 14836 }
14260
Jtags
Fwersion-1.5.4f. fver:
| 14238 |
13784
Jtags
Fwersion-1.5.3/.
| 13616 }
13596
ftags
Fyersion-1.5.2f.
| 13575 }
13561
Jtags
Fwersion-1.5.1f.
| 13546 }
13317
Jtags %
Fwersion-1.5.0f.
13309 4—/
fbranches
f1.5.:)
13302 }
13158
ftags
fversion-1,5,0-rc3f, 2
B | >
IShowing 132 nodes Showing graph For C;i\TorboiseShiidoc

Figure 4.47. A Revision Graph

Sometimes you need to know where branches and tags were taken from the trunk, and the ideal way to
view this sort of information is as a graph or tree structure. That's when you need to use TortoiseSVN

- Revision Graph...

This command analyses the revision history and attempts to create a tree showing the points at which
copies were taken, and when branches/tags were del eted.

i | | mportant

In order to generate the graph, TortoiseSVN must fetch all 1og messages from the repository
root. Needlessto say this can take several minutes even with arepository of afew thousand
revisions, depending on server speed, network bandwidth, etc. If you try thiswith something
like the Apache project which currently has over 500,000 revisions you could be waiting
for sometime.

The good newsisthat if you are using log caching, you only have to suffer this delay once.
After that, log datais held locally. Log caching is enabled in TortoiseSVN's settings.

4.25.1. Revision Graph Nodes

Each revision graph node represents arevision in the repository where something changed in the tree you
are looking at. Different types of node can be distinguished by shape and colour. The shapes are fixed,

but colours can be set using TortoiseSVN - Settings

119

Daily Use Guide

Added or copied items
Items which have been added, or created by copying another file/folder are shown using a rounded
rectangle. The default colour isgreen. Tagsand trunks are treated asa special case and use adifferent

shade, depending on the TortoiseSVN -, Settings

Deleted items
Deleted items eg. a branch which is no longer required, are shown using an octagon (rectangle with
corners cut off). The default colour isred.

Renamed items
Renamed items are also shown using an octagon, but the default colour is blue.

Branch tip revision
The graph is normally restricted to showing branch points, but it is often useful to be able to see the
respective HEAD revision for each branch too. If you select Show HEAD revisions, each HEAD
revision nodeswill be shown asan ellipse. Notethat HEAD hererefersto the last revision committed
on that path, not to the HEAD revision of the repository.

Working copy revision
If you invoked the revision graph from aworking copy, you can opt to show the BASE revision on
the graph using Show WC revision, which marks the BASE node with a bold outline.

Modified working copy
If you invoked the revision graph from a working copy, you can opt to show an additional node
representing your modified working copy using Show WC modifications. Thisisan elliptical node
with abold outline in red by default.

Normal item
All other items are shown using a plain rectangle.

Note that by default the graph only shows the points at which items were added, copied or deleted.
Showing every revision of a project will generate a very large graph for non-trivial cases. If you really
want to see all revisions where changes were made, there is an option to do this in the View menu and
on the toolbar.

The default view (grouping off) places the nodes such that their vertical positionisin strict revision order,
so0 you have a visual cue for the order in which things were done. Where two nodes are in the same
column the order is very obvious. When two nodes are in adjacent columns the offset is much smaller
because there is no need to prevent the nodes from overlapping, and as a result the order is alittle less
obvious. Such optimisations are necessary to keep complex graphsto a reasonable size. Please note that
this ordering uses the edge of the node on the older side as areference, i.e. the bottom edge of the node
when the graph is shown with oldest node at the bottom. The reference edge is significant because the
node shapes are not all the same height.

4.25.2. Changing the View

Because a revision graph is often quite complex, there are a number of features which can be used to
tailor the view the way you want it. These are available in the View menu and from the toolbar.

Group branches
The default behavior (grouping off) has al rows sorted strictly by revision. As aresult, long-living
brancheswith sparse commits occupy awhole column for only afew changes and the graph becomes
very broad.

This mode groups changes by branch, so that there is no global revision ordering: Consecutive
revisionson abranchwill be shownin (often) consecutivelines. Sub-branches, however, arearranged
in such away that later branches will be shown in the same column above older branches to keep
the graph slim. As aresult, agiven row may contain changes from different revisions.

120

Daily Use Guide

Oldest on top
Normally the graph shows the oldest revision at the bottom, and the tree grows upwards. Use this
option to grow down from the top instead.

Align trees on top
When a graph is broken into several smaller trees, the trees may appear either in natural revision
order, or aligned at the bottom of the window, depending on whether you are using the Group
Branches option. Use this option to grow all trees down from the top instead.

Reduce cross lines
If the layout of the graph has produced alot of crossing lines, use this option to clean it up. This may
make the layout columns appear in less logical places, for example in adiagonal line rather than a
column, and the graph may require alarger areato draw.

Differential path names
Long path names can take a lot of space and make the node boxes very large. Use this option to
show only the changed part of a path, replacing the common part with dots. E.g. if you create a
branch/ br anches/ 1. 2. x/ doc/ ht m from/t r unk/ doc/ ht m the branch could be shown
in compact form as/ br anches/ 1. 2. x/ . . because the last two levels, doc and ht m , did not
change.

Show dl revisions
This does just what you expect and shows every revision where something (in the tree that you are
graphing) has changed. For long histories this can produce a truly huge graph.

Show HEAD revisions
This ensures that the latest revision on every branch is always shown on the graph.

Exact copy sources
When a branch/tag is made, the default behaviour is to show the branch as taken from the last node
where a change was made. Strictly speaking this is inaccurate since the branches are often made
from the current HEAD rather than a specific revision. So it is possible to show the more correct
(but less useful) revision that was used to create the copy. Note that this revision may be younger
than the HEAD revision of the source branch.

Fold tags
When a project has many tags, showing every tag as a separate node on the graph takes alot of space
and obscures the more interesting development branch structure. At the same time you may need
to be able to access the tag content easily so that you can compare revisions. This option hides the
nodes for tags and shows them instead in the tooltip for the node that they were copied from. A tag
icon on theright side of the source node indicates that tags were made.

Hide deleted paths
Hidespathswhich areno longer present at the HEAD revision of therepository, e.g. deleted branches.

Hide unchanged branches
Hides branches where no changes were committed to the respective file or sub-folder. This does not
necessarily indicate that the branch was not used, just that no changes were made to this part of it.

Show WC revision
Marks the revision on the graph which corresponds to the update revision of the item you fetched
the graph for. If you have just updated, this will be HEAD, but if others have committed changes
since your last update your WC may be afew revisions lower down. The node is marked by giving
it abold outline.

Show WC modifications
If your WC contains local changes, this option draws it as a separate elliptical node, linked back
to the node that your WC was last updated to. The default outline colour is red. You may need to
refresh the graph using F5 to capture recent changes.

121

Daily Use Guide

Filter
Sometimes the revision graph contains more revisions than you want to see. This option opens a
dialog which alows you to restrict the range of revisions displayed, and to hide particular paths by
name.

Tree stripes
Where the graph contains several trees, it is sometimes useful to use alternating colours on the
background to help distinguish between trees.

Show overview
Showsasmall picture of the entire graph, with the current view window as arectangle which you can
drag. Thisallowsyou to navigate the graph more easily. Note that for very large graphsthe overview
may become useless due to the extreme zoom factor and will therefore not be shown in such cases.

4.25.3. Using the Graph

To make it easier to navigate a large graph, use the overview window. This shows the entire graph in
a small window, with the currently displayed portion highlighted. Y ou can drag the highlighted area to
change the displayed region.

The revision date, author and comments are shown in a hint box whenever the mouse hovers over a
revision box.

If you select two revisions (Use Ctrl-left click), you can use the context menu to show the differences
between these revisions. Y ou can choose to show differences as at the branch creation points, but usually
you will want to show the differences at the branch end points, i.e. at the HEAD revision.

You can view the differences as a Unified-Diff file, which shows all differences in a single file with

minimal context. If you opt to Context Menu — Compare Revisions you will be presented with alist
of changed files. Double click on afile nameto fetch both revisions of the file and compare them using
the visual difference tool.

If you right click on arevision you can use Context Menu — Show Log to view the history.

Y ou can aso merge changes in the selected revision(s) into a different working copy. A folder selection
dialog alows you to choose the working copy to mergeinto, but after that thereis no confirmation dial og,
nor any opportunity totry atest merge. It isagood ideato merge into an unmodified working copy so that
you can revert the changes if it doesn't work out! Thisis a useful feature if you want to merge selected
revisions from one branch to another.

; : L earn to Read the Revision Graph

First-time users may be surprised by the fact that the revision graph shows something that
does not match the user's mental model. If arevision changes multiple copies or branches
of afile or folder, for instance, then there will be multiple nodes for that single revision. It
isagood practice to start with the leftmost options in the toolbar and customize the graph
step-by-step until it comes close to your mental model.

All filter options try lose as little information as possible. That may cause some nodes to
change their color, for instance. Whenever the result is unexpected, undo the last filter
operation and try to understand what is specia about that particular revision or branch. In
most cases, the initially expected outcome of the filter operation would either beinaccurate
or misleading.

4.25.4. Refreshing the View

If you want to check the server again for newer information, you can simply refresh the view using F5.
If you are using the log cache (enabled by default), thiswill check the repository for newer commits and
fetch only the new ones. If the log cache was in offline mode, thiswill also attempt to go back online.

122

Daily Use Guide

If you are using thelog cache and you think the message content or author may have changed, you should
use the log dialog to refresh the messages you need. Since the revision graph works from the repository
root, we would have to invalidate the entire log cache, and refilling it could take a very long time.

4.25.5. Pruning Trees

4.26.

A largetree can be difficult to navigate and sometimes you will want to hide parts of it, or break it down
into aforest of smaller trees. If you hover the mouse over the point where anode link enters or leavesthe
node you will see one or more popup buttons which alow you to do this.

=

Click on the minus button to collapse the attached sub-tree.

+]

Click on the plus button to expand a collapsed tree. When a tree has been collapsed, this button remains
visible to indicate the hidden sub-tree.

]

Click on the cross button to split the attached sub-tree and show it as a separate tree on the graph.

o

Click on the circle button to reattach a split tree. When a tree has been split away, this button remains
visible to indicate that there is a separate sub-tree.

Click on the graph background for the main context menu, which offers options to Expand all and Join
all. If no branch has been collapsed or split, the context menu will not be shown.

Exporting a Subversion Working Copy

Sometimes you may want a copy of your working tree without any of those . svn directories, e.g.
to create a zipped tarball of your source, or to export to a web server. Instead of making a copy and
then deleting all those . svn directories manually, TortoiseSVN offers the command TortoiseSVN -
Export.... Exporting from a URL and exporting from aworking copy are treated dlightly differently.

123

Daily Use Guide

Export &|
Reposibary
IRL of repository:
| kbp: [fbortoisesyn, baris, orafsvnftarkoisesyvnitags fversion-1.5.0 b | E]
Export directary;
|C:'I,Prcujects'l,versinn-l.S.EI | E]
|F|_|||';.f reCUrsive W |

[]omit externals

enl style default b

Reision
G} HEALD rewvision

) Revision | | [Show log]

[QK l [Cancel][Help]

Figure 4.48. The Export-from-URL Dialog

If you execute this command on an unversioned folder, TortoiseSV N will assume that the selected folder
is the target, and open a dialog for you to enter the URL and revision to export from. This dialog has
options to export only the top level folder, to omit external references, and to override the line end style
for fileswhich havethesvn: eol - st yl e property set.

Of course you can export directly from the repository too. Use the Repository Browser to navigate to the

relevant subtree in your repository, then use Context Menu — Export. You will get the Export from
URL dialog described above.

If you execute this command on your working copy you'll be asked for a place to save the clean working
copy without the . svn folders. By default, only the versioned files are exported, but you can use the
Export unversioned files too checkbox to include any other unversioned files which exist in your WC
and not in the repository. External referencesusing svn: ext er nal s can be omitted if required.

Another way to export from aworking copy is to right drag the working copy folder to another location

and choose Context Menu - SVN Export here or Context Menu - SVN Export all here. The
second option includes the unversioned files as well.

When exporting from aworking copy, if the target folder already contains a folder of the same name as
the one you are exporting, you will be given the option to overwrite the existing content, or to create a
new folder with an automatically generated name, eg. Target (1) .

_-‘"*i Exporting single files

The export dialog does not allow exporting single files, even though Subversion can.

To export single files with TortoiseSVN, you have to use the repository browser
(Section 4.24, “ The Repository Browser”). Simply drag the file(s) you want to export from
the repository browser to where you want them in the explorer, or use the context menu in
the repository browser to export the files.

124

Daily Use Guide

— i Exporting a Change Tree

If you want to export a copy of your project tree structure but containing only the files
which have changed in aparticular revision, or between any two revisions, use the compare
revisions feature described in Section 4.10.3, “Comparing Folders’.

4.26.1. Removing a working copy from version control

4.27.

Sometimes you have a working copy which you want to convert back to a normal folder without the
. svn directories. What you really need is an export-in-place command, that just removes the control
directories rather than generating a new clean directory tree.

The answer is surprisingly simple - export the folder to itself! TortoiseSV N detects this special case and
asksif you want to make the working copy unversioned. If you answer yes the control directorieswill be
removed and you will have a plain, unversioned directory tree.

Relocating a working copy
Relocate El
From LIRL:
To URL:
||?] https: /fsvn.collab. netfrepos tortoisesvn ftrunk V| E]

Figure 4.49. The Relocate Dialog

If your repository has for some reason changed it'slocation (IP/URL). Maybe you're even stuck and can't
commit and you don't want to checkout your working copy again from the new location and to move all
your changed data back into the new working copy, TortoiseSVN - Relocate isthe command you are

looking for. It basically does very little: it scans all ent ri es filesinthe. svn folder and changes the
URL of the entries to the new value.

You may be surprised to find that TortoiseSVN contacts the repository as part of this operation. All it
isdoing is performing some simple checks to make sure that the new URL really does refer to the same
repository as the existing working copy.

b Warning

Thisis a very infrequently used operation. The relocate command is only used if the URL
of the repository root has changed. Possible reasons are:

» The P address of the server has changed.

» The protocol has changed (e.g. http:// to https://).

» Therepository root path in the server setup has changed.

125

Daily Use Guide

Put another way, you need to relocate when your working copy is referring to the same
location in the same repository, but the repository itself has moved.

It does not apply if:

» You want to move to adifferent Subversion repository. In that case you should perform
a clean checkout from the new repository location.

 You want to switch to a different branch or directory within the same repository. To do

that you should use TortoiseSVN - Switch.... Read Section 4.19.2, “To Checkout or
to Switch...” for more information.

If you use relocate in either of the cases above, it will corrupt your working copy and you
will get many unexplainable error messages while updating, committing, etc. Oncethat has
happened, the only fix is afresh checkout.

4.28. Integration with Bug Tracking Systems / Issue Trackers

Itisvery common in Software Development for changesto be related to a specific bug or issue ID. Users
of bug tracking systems (issue trackers) would like to associate the changes they make in Subversion
with a specific ID in their issue tracker. Most issue trackers therefore provide a pre-commit hook script
which parses the log message to find the bug 1D with which the commit is associated. Thisis somewhat
error prone since it relies on the user to write the log message properly so that the pre-commit hook script
can parse it correctly.

TortoiseSVN can help the user in two ways:

1. When the user enters alog message, a well defined line including the issue number associated with
the commit can be added automatically. This reduces the risk that the user enters the issue number in
away the bug tracking tools can't parse correctly.

Or TortoiseSVN can highlight the part of the entered log message which is recognized by the issue
tracker. That way the user knows that the log message can be parsed correctly.

2. When the user browses the log messages, TortoiseSVN creates a link out of each bug ID in the log
message which fires up the browser to the issue mentioned.

4.28.1. Adding Issue Numbers to Log Messages

Y ou can integrate a bug tracking tool of your choicein TortoiseSVN. To do this, you have to define some
properties, which start with bugt r aq: . They must be set on Folders: (Section 4.17, “ Project Settings”)

There are two ways to integrate TortoiseSVN with issue trackers. One is based on simple strings, the
other is based on regular expressions. The properties used by both approaches are:

bugtrag:url
Set this property to the URL of your bug tracking tool. It must be properly URI encoded and it
has to contain ¥BUG D% 9BUG D%is replaced with the Issue number you entered. This alows
TortoiseSVN to display alink in the log dialog, so when you are looking at the revision log you
can jump directly to your bug tracking tool. You do not have to provide this property, but then
TortoiseSV N shows only theissue number and not thelink toit. e.g the TortoiseSV N project isusing
http://issues.tortoi sesvn. net/ ?do=det ai | s& d=%8BUG D%

Y ou can also userelative URL sinstead of absolute ones. Thisis useful when your issue tracker ison
the same domain/server as your source repository. In case the domain name ever changes, you don't
have to adjust the bugt r aq: ur | property. There are two ways to specify arelative URL:

If it begins with the string */ it is assumed to be relative to the repository root. For example,
Al ..l ?do=det ai | s& d=%BUG D% will resolve to http://tortoisesvn.net/?

126

Daily Use Guide

do=det ai | s& d=%BUQ D%if your repository islocated on ht t p: / / t ort oi sesvn. net/
svn/trunk/.

A URL beginning with the string / is assumed to be relative to the server's hostname. For
example / ?do=det ai | s& d=9%BUGQ D% will resolve to http://tortoi sesvn.net/?
do=det ai | s& d=9%BUAQ D% if your repository is located anywhere on http://
tortoi sesvn. net.

bugtrag:warnifnoissue
Setthistot r ue, if youwant TortoiseSVN to warn you because of an empty issue-number text field.
Vaidvaluesaret r ue/ f al se. If not defined, f al se isassumed.

4.28.1.1. Issue Number in Text Box

In the simple approach, TortoiseSV N shows the user aseparate input field where abug | D can be entered.
Then a separate line is appended/prepended to the log message the user entered.

bugtrag:message

This property activates the bug tracking system in Input field mode. If this property is set, then
TortoiseSVN will prompt you to enter an issue number when you commit your changes. It's used
to add aline at the end of the log message. It must contain ¥BUGQ D% which is replaced with the
issue number on commit. This ensuresthat your commit log contains areference to the issue number
which is alwaysin a consistent format and can be parsed by your bug tracking tool to associate the
issue number with a particular commit. As an example you might use | ssue : %BUQ D% but
this depends on your Tool.

bugtrag:append
Thisproperty definesif the bug-1D isappended (true) to the end of thelog message or inserted (false)
at the start of the log message. Valid valuesaret r ue/ f al se. If not defined, t r ue is assumed,
so that existing projects don't break.

bugtrag:label
This text is shown by TortoiseSVN on the commit dialog to label the edit box where you enter the
issue number. If it'snot set, Bug- | D / | ssue- Nr: will be displayed. Keep in mind though that
the window will not be resized to fit this label, so keep the size of the label below 20-25 characters.

bugtrag:number
If settot r ue only numbers are allowed in the issue-number text field. An exception isthe comma,
SO you can comma separate several numbers. Valid valuesaret r ue/ f al se. If not defined, t r ue
is assumed.

4.28.1.2. Issue Numbers Using Regular Expressions

In the approach with regular expressions, TortoiseSV N doesn't show a separate input field but marksthe
part of the log message the user enters which is recognized by the issue tracker. Thisis done while the
user writes the log message. This also means that the bug 1D can be anywhere inside alog message! This
method is much more flexible, and is the one used by the TortoiseSVN project itself.

bugtrag:logregex
This property activates the bug tracking system in Regex mode. It contains either a single regular
expressions, or two regular expressions separated by a newline.

If two expressions are set, then the first expression is used as a pre-filter to find expressions which
contain bug 1Ds. The second expression then extracts the bare bug 1Ds from the result of the first
regex. This allows you to use a list of bug IDs and natural language expressions if you wish. e.g.
you might fix several bugs and include a string something like this. “This change resolves issues
#23, #24 and #25”

If you want to catch bug I1Ds as used in the expression above inside a log message, you could use
the following regex strings, which are the ones used by the TortoiseSVN project: [| i] ssues?: ?
(\s*(,|and) 2\ s*#\ d+) + and (\ d+)

127

Daily Use Guide

The first expression picks out “issues #23, #24 and #25” from the surrounding log message. The
second regex extracts plain decimal numbers from the output of the first regex, so it will return“23”,
“24" and “25" to use as bug IDs.

Breaking the first regex down alittle, it must start with the word “issue”, possibly capitalised. This
is optionally followed by an “s” (more than one issue) and optionally a colon. Thisis followed by
one or more groups each having zero or more leading whitespace, an optional comma or “and” and
more optional space. Finally thereis a mandatory “#” and a mandatory decimal number.

If only one expression is set, then the bare bug | Ds must be matched in the groups of the regex string.
Example:[i] ssue(?:s)? #?(\ d+) Thismethodisrequired by afew issuetrackers, e.g. trac,
but it is harder to construct the regex. We recommend that you only use this method if your issue
tracker documentation tells you to.

If you are unfamiliar with regular expressions, take a look at the introduction at http://
en.wikipedia.org/wiki/Regular_expression [http://en.wikipedia.org/wiki/Regular_expression], and
the online documentation and tutorial at http://www.regular-expressions.info/ [http://www.regular-
expressions.info/].

If both the bugt r aq: nessage and bugt raq: | ogr egex properties are set, | ogr egex takes
precedence.

— =
VY

Even if you don't have an issue tracker with a pre-commit hook parsing your log messages,
you still can use this to turn the issues mentioned in your log messages into links!

And even if you don't need the links, the issue numbers show up as a separate column in
the log dialog, making it easier to find the changes which relate to a particular issue.

Some t svn: properties require a t rue/ f al se value. TortoiseSVN also understands yes as a
synonym for t r ue and no asasynonymfor f al se.

i | Set the Propertieson Folders

These properties must be set on folders for the system to work. When you commit afile
or folder the properties are read from that folder. If the properties are not found there,
TortoiseSVN will search upwards through the folder tree to find them until it comesto an
unversioned folder, or the tree root (eg. C: \) is found. If you can be sure that each user
checks out only from e.gt r unk/ and not some sub-folder, then it's enough if you set the
properties on t r unk/ . If you can't be sure, you should set the properties recursively on
each sub-folder. A property setting deeper in the project hierarchy overrides settings on
higher levels (closer tot r unk/).

For t svn: properties only you can use the Recursive checkbox to set the property to all
sub-foldersin the hierarchy, without also setting it on al files.

; No Issue Tracker Information from Repository Browser

Because the issue tracker integration depends upon accessing subversion properties, you
will only see the results when using a checked out working copy. Fetching properties
remotely isaslow operation, so you will not seethisfeaturein action from the repo browser.

This issue tracker integration is not restricted to TortoiseSVN; it can be used with any Subversion
client. For more information, read the full Issue Tracker Integration Specification [http://

128

http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Regular_expression
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://www.regular-expressions.info/
http://tortoisesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt
http://tortoisesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt

Daily Use Guide

tortoi sesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt] in the TortoiseSVN source repository.
(Section 3, “TortoiseSVN isfree!” explains how to access the repository).

4.28.2. Getting Information from the Issue Tracker

The previous section deal s with adding issue information to the log messages. But what if you need to get
information from the issue tracker? The commit dialog has a COM interface which alows integration an
external program that can talk to your tracker. Typically you might want to query the tracker to get alist
of open issues assigned to you, so that you can pick the issues that are being addressed in this commit.

Any such interface is of course highly specific to your issue tracker system, so we cannot provide
this part, and describing how to create such a program is beyond the scope of this manua. The
interface definition and sample pluginsin C# and C++/ATL can be obtained from the cont r i b folder
in the TortoiseSVN repository [http://tortoisesvn.googlecode.com/svn/trunk/contrib/issue-tracker-
pluging]. (Section 3, “TortoiseSVN is free!” explains how to access the repository). A summary of the
APl isaso given in Chapter 6, |BugtragProvider interface Another (working) example plugin in C#is
Gurtle [http://code.google.com/p/gurtle/] which implementsthe required COM interface to interact with
the Google Code [http://code.google.com/hosting/] issue tracker.

For illustration purposes, let's suppose that your system administrator has provided you with an issue
tracker plugin which you have installed, and that you have set up some of your working copies to use
the plugin in TortoiseSVN's settings dialog. When you open the commit dialog from a working copy to
which the plugin has been assigned, you will see a new button at the top of the dialog.

Cornrnik ko [Choose Issue]

File: §ffc: /TortoiseSWM docftest/temp/repos

Message:

[Recent messages]

MylssuesForm @

Summary
12 Service doesn't start onWindows Vista
[] 19 About box dossn't render comectly in large forts mode

Zhanges made (g

Path roperty skatus

| dug_adfj
| dug_blg
|2 dug_igr]

| dug_relf bl
7] = i
Iﬁdugd_re % ok, I [Canicel ries
=| readme
£ | >

Show unversioned Files S files selected, & files total

[2] 5elect | deselect all

[keep lacks

[(0]] [Cancel] [Help

Figure 4.50. Exampleissuetracker query dialog

129

http://tortoisesvn.googlecode.com/svn/trunk/doc/issuetrackers.txt
http://tortoisesvn.googlecode.com/svn/trunk/contrib/issue-tracker-plugins
http://tortoisesvn.googlecode.com/svn/trunk/contrib/issue-tracker-plugins
http://tortoisesvn.googlecode.com/svn/trunk/contrib/issue-tracker-plugins
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/hosting/
http://code.google.com/hosting/

Daily Use Guide

4.29.

4.30.

In this example you can select one or more open issues. The plugin can then generate specially formatted
text which it adds to your log message.

Integration with Web-based Repository Viewers

There are several web-based repository viewers available for use with Subversion such as ViewVC
[http://lwww.viewvc.org/] and WebSVN [http://websvn.tigris.org/]. TortoiseSVN provides a means to
link with these viewers.

You can integrate a repo viewer of your choice in TortoiseSVN. To do this, you have to define some
properties which define the linkage. They must be set on Folders: (Section 4.17, “Project Settings”)

webviewer:revision
Set this property to the URL of your repo viewer to view al changes in a specific revision. It must
be properly URI encoded and it has to contain %4REVI SI ON% YREVI SI ONY%bis replaced with the
revision number in question. This allows TortoiseSVN to display a context menu entry in the log

dialog Context Menu - View revision in webviewer

webviewer:pathrevision
Set this property to the URL of your repo viewer to view changes to a specific file in a specific
revision. It must be properly URI encoded and it hasto contain %4REVI SI ONYoand YPAT HY% Y°PATH
%is replaced with the path relative to the repository root. This allows TortoiseSVN to display a

context menu entry in the log dialog Context Menu — View revision and path in webviewer For
example, if you right-click in the log dialog bottom pane on afileentry / t r unk/ src/ fil e then
the %PATH%in the URL will bereplaced with/ t runk/ src/fil e.

Y ou can also use relative URL sinstead of absolute ones. Thisis useful in case your web viewer ison the
same domain/server as your source repository. In case the domain name ever changes, you don't haveto
adjust the webvi ewer : revi si on and webvi ewer : pat hr evi si on property. The format is the
same as for the bugt r aq: ur | property. See Section 4.28, “Integration with Bug Tracking Systems /
Issue Trackers'.

i | Set the Propertieson Folders

These properties must be set on folders for the system to work. When you commit afile
or folder the properties are read from that folder. If the properties are not found there,
TortoiseSVN will search upwards through the folder tree to find them until it comes to an
unversioned folder, or the tree root (eg. C: \) is found. If you can be sure that each user
checks out only from e.gt r unk/ and not some sub-folder, then it's enough if you set the
properties on t r unk/ . If you can't be sure, you should set the properties recursively on
each sub-folder. A property setting deeper in the project hierarchy overrides settings on
higher levels (closertot r unk/).

For t svn: properties only you can use the Recursive checkbox to set the property to al
sub-foldersin the hierarchy, without also setting it on all files.

| No Repo Viewer Linksfrom Repository Browser

Because the repo viewer integrati on depends upon accessing subversion properties, you will
only see the results when using a checked out working copy. Fetching properties remotely
isaslow operation, so you will not see this feature in action from the repo browser.

TortoiseSVN's Settings

130

http://www.viewvc.org/
http://www.viewvc.org/
http://websvn.tigris.org/
http://websvn.tigris.org/

Daily Use Guide

To find out what the different settings are for, just leave your mouse pointer a second on the editbox/
checkbox... and a helpful tooltip will popup.

4.30.1. General Settings

Settings - TortoiseS5VYN

2%,
Conkexk Menu

=% Dialogs 1 Torkoisewh

o

=5 Dialogs 2 Language: English vl
8 Colars

= Rewision Graph
s W Colors i [automatically check For newer versions every week
= Icon Overlays
14 Icon Set

&3 netwark
=%, External Programs

DIFF Wienwer Subversion

1’ Merge Tool Global ignore pattern:
LIriFied Diff Viewer
Saved Data

= | Log Caching

[15et file dates ta the "last commit time"
[= Cached Repositories
=17 Hook Scripts

Subversion configuration file:
@ Issue Tracker Integration

& TortoiseBlame [Juse " svn"instead of ".svn" directories

[}S I a4 l[Cancel][Apply][Help

Figure4.51. The Settings Dialog, General Page
This dialog allows you to specify your preferred language, and the Subversion-specific settings.

Language
Selects your user interface language. What else did you expect?

Automatically check for newer versions every week
If checked, TortoiseSVN will contact its download site once aweek to seeif thereisanewer version
of the program available. Use Check now if you want an answer right away. The new version will
not be downloaded; you simply receive an information dialog telling you that the new version is
available.

System sounds
TortoiseSVN has three custom sounds which are installed by default.

» Error
* Notice
e Warning
Y ou can select different sounds (or turn these sounds off completely) using the Windows Control
Panel. Configure is a shortcut to the Control Panel.
Global ignore pattern

Global ignore patterns are used to prevent unversioned files from showing up e.g. in the commit
dialog. Files matching the patterns are also ignored by an import. Ignorefiles or directories by typing

131

Daily Use Guide

inthe names or extensions. Patterns are separated by spacese.g.bi n obj *. bak *. ~?? * . jar
*. [Tt] np. These patterns should not include any path separators. Note also that there isno way to
differentiate between files and directories. Read Section 4.13.1, “Pattern Matching in Ignore Lists’
for more information on the pattern-matching syntax.

Note that the ignore patterns you specify here will also affect other Subversion clients running on
your PC, including the command line client.

_ i h Caution

If you use the Subversion configuration file to set a gl obal - i gnor es pattern, it
will override the settings you make here. The Subversion configuration fileis accessed
using the Edit as described below.

This ignore pattern will affect all your projects. It is not versioned, so it will not affect other users.
By contrast you can also use the versioned svn: i gnor e property to exclude files or directories
from version control. Read Section 4.13, “Ignoring Files And Directories’ for more information.

Set file dates to the “last commit time”
This option tells TortoiseSVN to set the file dates to the last commit time when doing a checkout
or an update. Otherwise TortoiseSVN will use the current date. If you are developing software it
is generally best to use the current date because build systems normally look at the date stamps to
decide which files need compiling. If you use “last commit time” and revert to an older filerevision,
your project may not compile as you expect it to.

Subversion configuration file

Use Edit to edit the Subversion configuration file directly. Some settings cannot be
modified directly by TortoiseSVN, and need to be set here instead. For more information
about the Subverson config file see the Runtime Configuration Area [http:/
svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html]. The section on Automatic Property
Setting [http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto]
is of particular interest, and that is configured here. Note that Subversion can read
configuration information from several places, and you need to know which one takes
priority. Refer to Configuration and the Windows Registry [http://svnbook.red-bean.com/en/1.5/
svn.advanced.confarea.html#svn.advanced.confarea.windows-registry] to find out more.

Use _svn instead of . svn directories
VS.NET when used with web projects can't handle the . svn folders that Subversion uses to store
its internal information. Thisis not a bug in Subversion. The bug isin VS.NET and the frontpage
extensionsit uses. Read Section 4.30.11, “ Subversion Working Folders” to find out more about this
issue.

If you want to change the behaviour of Subversion and TortoiseSVN, you can use this checkbox to
set the environment variable which controls this.

Y ou should note that changing this option will not automatically convert existing working copies
to use the new admin directory. Y ou will have to do that yourself using a script (See our FAQ) or
simply check out afresh working copy.

132

http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.5/svn.advanced.props.html#svn.advanced.props.auto
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html#svn.advanced.confarea.windows-registry

Daily Use Guide

4.30.1.1. Context Menu Settings

Settings - TortoiseSVYN

=%, General

Context Menu

=% Dialogs 1
=2 Dialogs 2
8 Colars
=-J# Revision Graph
8 Colors
=g Icon Cverlays
4] Icon Set
g etk
(=%, External Pragrams
Diff Wiewer
)’ Merge Tool
Unified Diff Wigwer
@ Saved Data
=|_1 Log Caching
|~ Carhed Repositaries
=] j‘ Hook Scripts
@ Issue Tracker Inkegration
4, TortoiseBlame

Cascaded conkext menu

E'-]Check-:-ut...

i Update

@ Commit...

), Diff

[&4, Diff with previous wersion
] 2, Diff with URL

e Show log

| %Repo—browser

(155, check for modifications
1 4L Revisinn ranh

Put "Get Lock" on top menu when svnineeds-lock is set

Do not show the context menu For the Following paths:

l [Cancel

%IOK

Figure 4.52. The Settings Dialog, Context Menu Page

This page allows you to specify which of the TortoiseSV N context menu entrieswill show up inthe main
context menu, and which will appear in the TortoiseSVN submenu. By default most items are unchecked

and appear in the submenu.

Thereisaspecial case for Get Lock. You can of course promote it to the top level using the list above,
but as most files don't need locking this just adds clutter. However, afile with the svn: needs- | ock
property needs this action every timeit is edited, soin that case it is very useful to have at the top level.
Checking the box here means that when afile is selected which has the svn: needs- | ock property
set, Get Lock will always appear at the top level.

If there are some paths on your computer where you just don't want TortoiseSVN's context menu to
appear at all, you can list them in the box at the bottom.

133

Daily Use Guide

4.30.1.2. TortoiseSVN Dialog Settings 1

Settings - TortoiseSYN

=%, General e
@ Conkext Menu '

=" ADialogs 1 Log messages

- N
47 Dialogs 2 Ciefault number of log messages 100
S Colors

=]:‘vl Revision Graph Faont for log messages: T Courier New pv 8 v
? Cglnrsl [I5hort date/time Format in log messages

=ed Li‘c?nko\;e;::s IJse system locale For date/time

ni" Ne-twork [l an double-click in log list ko compare with previous revision

=%, External Programs Misc
Diff Viewer
w- Merge Tool Autoclose; Close manually w

Unified Diff Wiewer

IJse recycle bin when reverting
@ Saved Data

=1 1 Lo_.g Caching Merge
,l Cached Repositaries [[Juse URL of W as the default "From:" URL
=l Hook Scripts
@ Issue Tracker Integration Checkaut
& TortoiseBlame Defaul path: E]
Default URL:

% I Ok H Cancel H Apply H Help

Figure 4.53. The Settings Dialog, Dialogs 1 Page
This dialog allows you to configure some of TortoiseSVN's dialogs the way you like them.

Default number of log messages
Limits the number of log messages that TortoiseSVN fetches when you first select TortoiseSVN

- Show Log Useful for slow server connections. Y ou can always use Show All or Next 100 to
get more messages.

Font for log messages
Selectsthefont face and size used to display thelog messageitself in the middle pane of the Revision
Log dialog, and when composing log messages in the Commit dialog.

Short date / time format in log messages
If the standard long messages use up too much space on your screen use the short format.

Can double-click in log list to compare with previous revision
If you frequently find yourself comparing revisions in the top pane of the log dialog, you can use
this option to allow that action on double-click. It is not enabled by default because fetching the diff
is often along process, and many people prefer to avoid the wait after an accidental double-click,
which iswhy this option is not enabled by default.

Progress Dialog
TortoiseSVN can automatically close all progress dialogs when the action is finished without error.
This setting allows you to select the conditions for closing the dialogs. The default (recommended)
setting is Close manually which alows you to review all messages and check what has happened.
However, you may decide that you want to ignore some types of message and have the dialog close
automatically if there are no critical changes.

Auto-close if no merges, adds or deletes means that the progress dialog will closeif there were
simple updates, but if changes from the repository were merged with yours, or if any fileswere added
or deleted, the dialog will remain open. It will also stay open if there were any conflicts or errors
during the operation.

134

Daily Use Guide

Auto-close if no merges, adds or deletes for local operations means that the progress dialog
will closeasfor Auto-close if no merges, adds or deletes but only for local operationslike adding
files or reverting changes. For remote operations the dialog will stay open.

Auto-close if no conflicts relaxes the criteria further and will close the dialog even if there were
merges, adds or deletes. However, if there were any conflicts or errors, the dialog remains open.

Auto-close if no errors aways closes the dialog even if there were conflicts. The only condition
that keepsthe dialog openisan error condition, which occurs when Subversion is unable to complete
the task. For example, an update fails because the server is inaccessible, or a commit fails because
the working copy is out-of-date.

Use recycle bin when reverting
When you revert local modifications, your changes are discarded. TortoiseSVN gives you an extra
safety net by sending the modified file to the recycle bin before bringing back the pristine copy. If
you prefer to skip the recycle bin, uncheck this option.

Use URL of WC asthe default “From:” URL
In the merge dialog, the default behaviour isfor the From: URL to be remembered between merges.
However, some people like to perform merges from many different points in their hierarchy, and
find it easier to start out with the URL of the current working copy. This can then be edited to refer
to aparallel path on another branch.

Default checkout path
You can specify the default path for checkouts. If you keep all your checkouts in one place, it is
useful to have the drive and folder pre-filled so you only have to add the new folder nameto the end.

Default checkout URL
Y ou can a so specify the default URL for checkouts. If you often checkout sub-projects of somevery
large project, it can be useful to have the URL pre-filled so you only have to add the sub-project
name to the end.

4.30.1.3. TortoiseSVN Dialog Settings 2

Settings - TortoiseSVYN

)

=%, General =7
E',E—! Cantext Menu
2% Dialogs 1 Stakus
-] Yimlmme
g Dialogs 2 Recurse into unversioned Folders
ﬁ Colars
=1 Revision Graph Canmriit
¥ Colors IJse auko-completion of Ffile paths and keyvwords
=) Icon Overlays
4. Icon Set Timeout in seconds ko stop the auto-completion parsing 5
S‘, Mekwark,
=%, External Programs [onky use spellchecker when tsvn:projectlanguage is set
G DFE
Diff Viewer MMax. items to keep in the log message history 25
),’ Merge Tool
Uriified Diff Wewer [Ireopen commit and branchjtag dialog after a commit Failed

{é} Saved Data
=-| | LogCaching
[= Cached Repositories
=7 Hook Scripts
@ Issue Tracker Inkegration |:| Contact the repository on startup
&, TortoiseBlame

Select items automatically

Check for modifications

Lok
Shiow Lock dialog befare locking Ffiles

% I oK H Cancel ” Apply H Help

Figure 4.54. The Settings Dialog, Dialogs 2 Page

135

Daily Use Guide

Recurse into unversioned folders
If this box is checked (default state), then whenever the status of an unversioned folder is shown in
the Add, Commit or Check for Modifications dialog, every child file and folder is aso shown. If
you uncheck this box, only the unversioned parent is shown. Unchecking reduces clutter in these
diaogs. Inthat case if you select an unversioned folder for Add, it is added recursively.

Use auto-compl etion of file paths and keywords
The commit dialog includes afacility to parse thelist of filenames being committed. When you type
thefirst 3 letters of an item in the list, the auto-completion box pops up, and you can press Enter to
complete the filename. Check the box to enable this feature.

Timeout in seconds to stop the auto-completion parsing
The auto-completion parser can be quite slow if there are alot of large files to check. This timeout
stops the commit dialog being held up for too long. If you are missing important auto-completion
information, you can extend the timeout.

Only use spellchecker whent svn: pr oj ect | anguage is set
If you don't wish to use the spellchecker for all commits, check this box. The spellchecker will still
be enabled where the project properties requireit.

Max. items to keep in the log message history
When you type in alog message in the commit dialog, TortoiseSVN stores it for possible re-use
later. By default it will keep the last 25 log messages for each repository, but you can customize that
number here. If you have many different repositories, you may wish to reduce this to avoid filling

your registry.

Note that this setting applies only to messages that you type in on this computer. It has nothing to
do with the log cache.

Re-open commit and branch/tag dialog after a commit failed
When a commit fails for some reason (working copy needs updating, pre-commit hook rejects
commit, network error, etc), you can select this option to keep the commit dialog open ready to try
again. However, you should be aware that this can lead to problems. If the failure means you need
to update your working copy, and that update leads to conflicts you must resolve those first.

Select items automatically
The normal behaviour in the commit dialog is for all modified (versioned) items to be selected for
commit automatically. If you prefer to start with nothing selected and pick the items for commit
manually, uncheck this box.

Contact the repository on startup
The Check for Madifications dialog checks the working copy by default, and only contacts the
repository when you click Check repository. If you always want to check the repository, you can
use this setting to make that action happen automatically.

Show Lock dialog before locking files

When you select one or more files and then use TortoiseSVN - Lock to take out alock on those
files, on some projects it is customary to write alock message explaining why you have locked the
files. If you do not use lock messages, you can uncheck this box to skip that dialog and lock the
filesimmediately.

If you use the lock command on afolder, you are aways presented with the lock dialog as that also
gives you the option to select files for locking.

If your project is using the t svn: | ocknsgm nsi ze property, you will see the lock dialog
regardless of this setting because the project requires lock messages.

136

Daily Use Guide

4.30.1.4. TortoiseSVN Colour Settings

#* Settings - TortoiseSYN

=, General
@ Conkext Menu
=¥ Dialogs 1 Stakus and action colors
2% Dialogs 2
%’g Colnrgs possible or real conflict § obstructed
= 'ﬁl Revision Graph added Files
8 colors
[=-fg) Ican Overlays missing | deleted | replaced
4. Icon Set
Q Metwark merged
(=%, External Pragrams
) DIff Viewar modified | copied
¥ Merge Tool

Unified Diff Yigwer
@ Saved Data
=] Log Caching
[Cached Repositaries
=+ Hook Scripts
@ Issue Tracker Inkegration
&, TortoiseBlame

I Reskare Defaulk l

% ’ Ok,] ’ Cancel] [Apply] [Help]

Figure 4.55. The Settings Dialog, Colours Page

Thisdialog allowsyou to configure thetext colours used in TortoiseSV N's dial ogsthe way you likethem.

Possible or real conflict / obstructed
A conflict has occurred during update, or may occur during merge. Update is obstructed by an
existing unversioned file/folder of the same name as a versioned one.

This colour is also used for error messages in the progress dialogs.

Added files
Items added to the repository.

Missing / deleted / replaced
Items del eted from the repository, missing from the working copy, or deleted from the working copy
and replaced with another file of the same name.

Merged
Changes from the repository successfully merged into the WC without creating any conflicts.

Modified / copied
Add with history, or paths copied in the repository. Also used in the log dialog for entries which
include copied items.

Deleted node
An item which has been deleted from the repository.

Added node
An item which has been added to the repository, by an add, copy or move operation.

Renamed node
An item which has been renamed within the repository.

137

Daily Use Guide

Replaced node
The original item has been deleted and a new item with the same name replacesiit.

4.30.2. Revision Graph Settings

Settings - TortoiseSVYN

=%, General
@ Context Menu
=% Dialogs 1 Classification Patkerns
=% Dialogs 2 T,
8 Colars
=8P cision Graph |trunk |
g F?! Cglnrsl Branches
- Ieon Crverlays
= 4] Icon Set |) |
£ network Tags
(=%, External Pragrams | tags |
Diff Wiewer
)’ Merge Tool
Unified Diff Wigwer Misc

{@5 Saved Data
=1 | Log Caching
| = cached Repositories
=] Ua“ Hook Scripts
@ Issue Tracker Inkegration
&, TortoiseBlame

Modify color Far trunk copies
Madify color For tag copies

y = (o=

Figure 4.56. The Settings Dialog, Revision Graph Page

Classification Patterns
Therevision graph attempts to show aclearer picture of your repository structure by distinguishing
between trunk, branches and tags. As there is no such classification built into Subversion, this
information is extracted from the path names. The default settings assume that you use the
conventional English names as suggested in the Subversion documentation, but of course your usage
may vary.

Specify the patterns used to recognise these paths in the three boxes provided. The patterns will be
matched case-insensitively, but you must specify them in lower case. Wild cards* and ? will work
as usual, and you can use ; to separate multiple patterns. Do not include any extra white space as
it will be included in the matching specification.

Modify Colors
Colors are used in the revision graph to indicate the node type, i.e. whether anode is added, del eted,
renamed. In order to help pick out node classifications, you can allow the revision graph to blend
colors to give an indication of both node type and classification. If the box is checked, blending is
used. If the box is unchecked, color isused to indicate node type only. Use the color selection dialog
to allocate the specific colors used.

138

Daily Use Guide

4.30.2.1. Revision Graph Colors

Settings - TortoiseSYN

=%, General
t{é}' Conkext Menu
2% Dialogs 1 Mode colors
2% Dialogs 2 Deleted node IUnchanged node
Colars
L Y e A node HERD nods
Y v e
=g Tcon Owverlays
14 Icon Set Modified node wiC node border
Q Mekwark
=%, External Programs Cwerlays
)’ Merge Tool
P u;iﬁed DiFf Wigwer Mo
Saved Data
; [__' Cached Repositories i
7 Hook Scripts Stripes
@ Issue Tracker Inkeqration Calar 1 Opacity
L. TorkoiseBlame
“ Color 2 Opacy
[Restore Default q
% l Ok l l Cancel l [Apply] [Help]

Figure 4.57. The Settings Dialog, Revision Graph Colors Page

This page allows you to configure the colors used. Note that the color specified here is the solid color.
Most nodes are colored using a blend of the node type color, the background color and optionally the
classification color.

Deleted Node
Items which have been deleted and not copied anywhere else in the same revision.

Added Node
Items newly added, or copied (add with history).

Renamed Node
Items del eted from one location and added in another in the same revision.

Modified Node
Simple modifications without any add or delete.

Unchanged Node
May be used to show the revision used as the source of a copy, even when no change (to the item
being graphed) took place in that revision.

HEAD node
Current HEAD revision in the repository.

WC Node
If you opt to show an extranode for your maodified working copy, attached to itslast-commit revision
on the graph, use this color.

WC Node Border
If you opt to show whether the working copy is modified, use this color border on the WC node
when modifications are found.

139

Daily Use Guide

Tag Nodes
Nodes classified as tags may be blended with this color.

Trunk Nodes
Nodes classified as trunk may be blended with this color.

Folded Tag Markers
If you use tag folding to save space, tags are marked on the copy source using ablock in this color.

Selected Node Markers
When you left click on anodeto select it, the marker used to indicate selectionisablock in thiscolor.

Stripes
These colors are used when the graph is split into sub-trees and the background is colored in
alternating stripes to help pick out the separate trees.

4.30.3. Icon Overlay Settings

Settings - TortoiseSVYN

| =%, General a
[b Context Menu [
2% Dialogs 1 1 Skatus cache
2# Dialogs 2 [(%) Default () shell () Mone
| B A~ A/ F:plors [Icon Overlays [Status Columns
- Riwsmn Erep []show averlays and context menu only in explorer
Y’ Clnrs [show overlay For ignored items
SR Lcon Cverlays

" Teon Set []show overlay for unversioned items

9 Nebwork [[Jurwersioned Files mark parent Folder as modified

(=%, External Pragrams

B i Drive Types

L. DiffF Wi

Mlerg:-lfneorl [[orives f: and B: []co-RoM
Urified Diff Viewer | [remavable drives

| Saved Data [[CIMetwork drives [CIRAM drives

| &] Log Caching Fixed drives [urkniown drives

[[= cached Repositories
| =7 Hook Scripts
@ Issue Tracker Inkegration
&, TortoiseBlame

Exclude paths:

Include paths:

[] show excluded Folders as normal

% I OF, H Cancelm ” Apply H “I.-;elp

Figure 4.58. The Settings Dialog, | con Overlays Page
This page allows you to choose the items for which TortoiseSVN will display icon overlays.

By default, overlay icons and context menus will appear in al open/save dialogs as well asin Windows
Explorer. If you want them to appear only in Windows Explorer, check the Show overlays and context
menu only in explorer box.

Ignored items and Unversioned items are not usually given an overlay. If you want to show an overlay
in these cases, just check the boxes.

Y ou can also choose to mark folders as modified if they contain unversioned items. This could be useful
for reminding you that you have created new files which are not yet versioned. This option is only
available when you use the default status cache option (see below).

Since it takes quite awhile to fetch the status of a working copy, TortoiseSVN uses a cache to store the
status so the explorer doesn't get hogged too much when showing the overlays. Y ou can choose which
type of cache TortoiseSVN should use according to your system and working copy size here:

140

Daily Use Guide

Default
Caches all status information in a separate process (TSVNCache. exe). That process watches all
drivesfor changesand fetchesthe statusagainif filesinsideaworking copy get modified. Theprocess
runswith theleast possible priority so other programs don't get hogged because of it. That also means
that the status information is not real time but it can take afew seconds for the overlays to change.

Advantage: the overlays show the status recursively, i.e. if a file deep inside a working copy is
modified, al folders up to the working copy root will also show the modified overlay. And sincethe
process can send notifications to the shell, the overlays on the |eft tree view usually change too.

Disadvantage: the process runs constantly, even if you're not working on your projects. It also uses
around 10-50 MB of RAM depending on number and size of your working copies.

Shell
Caching isdone directly inside the shell extension dil, but only for the currently visible folder. Each
time you navigate to another folder, the status information is fetched again.

Advantage: needs only very little memory (around 1 MB of RAM) and can show the statusin real
time.

Disadvantage: Since only one folder is cached, the overlays don't show the status recursively. For
big working copies, it can take more time to show afolder in explorer than with the default cache.
Also the mime-type column is not available.

None
With this setting, the TortoiseSVN does not fetch the status at all in Explorer. Because of that, files
don't get an overlay and folders only get a'normal’ overlay if they're versioned. No other overlays
are shown, and no extra columns are available either.

Advantage: uses absolutely no additional memory and does not slow down the Explorer at all while
browsing.

Disadvantage: Statusinformation of filesand foldersisnot shownin Explorer. To seeif your working
copies are modified, you have to use the “Check for modifications” dialog.

The next group allows you to select which classes of storage should show overlays. By default, only hard
drives are selected. Y ou can even disable all icon overlays, but where's the fun in that?

Network drivescan bevery slow, so by default icons are not shown for working copieslocated on network
shares.

USB Flash drives appear to be a special casein that the drive typeisidentified by the deviceitself. Some
appear as fixed drives, and some as removable drives.

The Exclude Paths are used to tell TortoiseSVN those paths for which it should not show icon overlays
and status columns. This is useful if you have some very big working copies containing only libraries
which you won't change at all and therefore don't need the overlays. For example:

f:\devel oprment\ SVN\ Subver si on will disable the overlays only on that specific folder. You
gtill can see the overlays on al files and folder inside that folder.

f:\devel opnent\ SVN\ Subver si on* will disablethe overlayson all filesand folders whose path
startswith f : \ devel opnent \ SVN\ Subver si on. That means you won't see overlays for any files
and folders below that path.

The same applies to the Include Paths. Except that for those paths the overlays are shown even if the
overlays are disabled for that specific drive type, or by an exclude path specified above.

Users sometimes ask how these three settings interact, and the definitive answer is:

141

Daily Use Guide

if (path is in include list)
show overl ays

if (path is allowed drive type) AND (path is not in exclude Iist)
show overl ays

The include list always makes the overlays show. Otherwise, overlays are shown for all marked drive
types unless the path is excluded.

TSVNCache.exe also uses these paths to restrict its scanning. If you want it to look only in particular
folders, disable all drive types and include only the folders you specifically want to be scanned.

o=

| Exclude SUBST Drives

It is often convenient to use a SUBST drive to access your working copies, e.g. using the
command

subst T: C:\Tortoi seSVNtrunk\doc
However this can cause the overlays not to update, as TSVNCache will only receive one
notification when afile changes, and that is normally for the original path. This means that

your overlays on the subst path may never be updated.

An easy way to work around thisis to exclude the original path from showing overlays, so
that the overlays show up on the subst path instead.

Sometimes you will exclude areas that contain working copies, which saves TSV NCache from scanning
and monitoring for changes, but you still want a visual indication that such folders are versioned. The
Show excluded folders as 'normal’ checkbox allowsyou to do this. With this option, versioned folders
in any excluded area (drive type not checked, or specifically excluded) will show up as normal and up-
to-date, with a green check mark. This reminds you that you are looking at aworking copy, even though
the folder overlays may not be correct. Files do not get an overlay at all. Note that the context menus still
work, even though the overlays are not shown.

As a special exception to this, drives A: and B: are never considered for the Show excluded folders
as 'normal’ option. Thisis because Windows is forced to look on the drive, which can result in adelay
of several seconds when starting Explorer, even if your PC does have afloppy drive.

142

Daily Use Guide

4.30.3.1. Icon Set Selection

Settings - TortoiseSVN

=%, General
@ Conkext Menu
#& Dialogs 1 Icon Set: |XPSter ~ |
22 Didlogs 2
¥ ;plors e normal ﬁ:l deleted.cpp ‘Ej nion-yersioned. b &I reac
& P Revision Graph {gi modified] lncked.cpp &) normal, bt 4| dele
¥/ colors li7) conflicted | added.cpp @) modified. bt 2] locks
ﬁjreadnnly Pj ignored. cpp m conflicked. bxt ﬁ adds
Ejdeleted ‘EI nan-versioned.cpp E] readonly, txt rM:I igno
=%, External Programs [locked E] normal.h m deleted. bzt ‘EI non-
DIFF Wiewer) added @ modified.h 2] locked bt B narn
y Merge Toal [“Dignored [£] conflicted.h) added bxt & mod
Urified Diff Wewer &Jnon-versioned EI readanly b 'mj ignared. txk L'r_ijconf
@ Saved Data &) normal.cpp | deleted.h 2] non-versioned bzt Blrear
= [_j Log Caching &I modified.cpp m locked.h E] narmal . java ﬂ]dele
[7 cached Repositories &) conflicted. cpp o added.h @) modffied.java Elocks
=] j] Hook Scripts & readonly.cpp =] ignored.h I&] conflicted. java maddf
@ Issue Tracker Integration
4 TortaiseBlame < I >
() List Wiew () symbol Yiew
% I OF, l [Cancel l [Apply] [Help

Figure 4.59. The Settings Dialog, | con Set Page

Y ou can change the overlay icon set to the one you like best. Note that if you change overlay set, you
may have to restart your computer for the changes to take effect.

4.30.4. Network Settings

143

Daily Use Guide

#" Settings - TortoiseSVYN

=%, General Y)

E:_E:} Context Menu

=% Dialogs 1 [JEnable Proxy Server

=2 Dialogs 2

8 Colars
=T Revision Graph

8 Colars
=) Icon Crverlays

4] Icon Set

Proxy Settings

=%, External Programs
Diff Wiewer
w Merge Tool
Unified Diff Wigwer
@’} Saved Data
=1 | Log Caching

o] = Cached Repositories Subversion server file:
=< Hook Scripts
. i Issue Tracker Inkeqgration S5H
g, TortoiseBlame S5H dlient:
% I OF, l [Cancel l [Apply] [Help]

Figure 4.60. The Settings Dialog, Networ k Page
Here you can configure your proxy server, if you need one to get through your company's firewall.

If you need to set up per-repository proxy settings, you will need to use the Subversion servers
file to configure this. Use Edit to get there directly. Consult the Runtime Configuration Area [http://
svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html] for details on how to use thisfile.

Y ou can also specify which program TortoiseSVN should use to establish a secure connection to a svn
+ssh repository. We recommend that you use TortoisePlink.exe. Thisis a version of the popular Plink
program, and isincluded with TortoiseSVN, but it is compiled as a Windowless app, so you don't get a
DOS box popping up every time you authenticate.

Y ou must specify the full path to the executable. For TortoisePlink.exe thisisthe standard TortoiseSVN
bin directory. Use the Browse button to help locate it. Note that if the path contains spaces, you must
encloseit in quotes, e.g.

"C.\ Program Fi | es\ Tort oi seSVMN bi n\ Tort oi sePl i nk. exe"

One side-effect of not having a window is that there is nowhere for any error messages to go, so if
authentication fails you will smply get a message saying something like “Unable to write to standard
output”. For this reason we recommend that you first set up using standard Plink. When everything is
working, you can use TortoisePlink with exactly the same parameters.

TortoisePlink does not have any documentation of its own because it is just a minor variant of Plink.
Find out about command line parameters from the PUTTY website [http://www.chiark.greenend.org.uk/
~sgtatham/putty/]

To avoid being prompted for a password repeatedly, you might also consider using a password caching
tool such as Pageant. Thisis also available for download from the PUTTY website.

Finally, setting up SSH on server and clients is a non-trivial process which is beyond the scope of this
help file. However, you can find aguide in the TortoiseSVN FAQ listed under Subversion/TortoiseSVN
SSH How-To [http://tortoisesvn.net/ssh_howto].

144

http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://svnbook.red-bean.com/en/1.5/svn.advanced.confarea.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://tortoisesvn.net/ssh_howto
http://tortoisesvn.net/ssh_howto
http://tortoisesvn.net/ssh_howto

Daily Use Guide

4.30.5. External Program Settings

Settings - TortoiseSVYN

=%, General
@ Context Menu
24 Dialogs 1 Configure the program used for comparing different revisions of files
=¥ Dialogs 2
;’:;? Colors (3 TortoiseMerge () External

=P Revision Graph | |

8 Colars
=g Icon Overlays

[1con set Click on "Advanced" FD speciFy_aIternate diff e]
g — programs based on file extension

=%, External Programs
Diff Wiewer
y Merge Toal Configure the pragram used for comparing different revisions of properties
Urified DiFf Viewer
Saved Data
2| | Log Caching
[= cached Repositories |
= U:,«“ Hoak Scripts
@ Issue Tracker Integration
&, TortoiseBlame Convert files when diffing against BASE

(%) TortoiseMer ge () External

% I [o]4 l[Cancel][Apply][Help

Figure 4.61. The Settings Dialog, Diff Viewer Page

Here you can define your own diff/merge programs that TortoiseSVN should use. The default setting is
to use TortoiseMerge which isinstalled alongside TortoiseSV N.

Read Section 4.10.5, “External Diff/Merge Tools” for alist of some of the external diff/merge programs
that people are using with TortoiseSVN.

4.30.5.1. Diff Viewer

An external diff program may be used for comparing different revisions of files. The external program
will need to obtain the filenames from the command line, along with any other command line options.
TortoiseSVN uses substitution parameters prefixed with % When it encounters one of these it will
substitute the appropriate value. The order of the parameters will depend on the Diff program you use.

Y%base
The original file without your changes

%bname
The window title for the base file

%mine
Y our own file, with your changes

%yname
The window title for your file

The window titles are not pure filenames. TortoiseSVN treats that as a name to display and creates the
names accordingly. So e.g. if you're doing a diff from afilein revision 123 with afile in your working
copy, thenameswill befi |l ename : revision 123 andfil ename : working copy

For example, with ExamDiff Pro:

145

Daily Use Guide

C.\Pat h- To\ ExanDi f f . exe %base % ne --I|eft_di spl ay_nane: Y%bnane
--right_displ ay_nane: %ynane

or with KDiff3:

C.\Pat h-To\ kdi ff 3. exe %base %rine --L1 %nane --L2 %nane

or with WinMerge:

C.\ Pat h- To\W nMerge. exe -e -ub -dl %bnanme -dr %nane %base % ne

or with Araxis:

C:\Pat h-To\conmpare.exe /max /wait /titlel:%nane /title2: Y%ynane
%base % ne

If youusethesvn: keywor ds property to expand keywords, and in particular therevision of afile, then
there may be a difference between files which is purely due to the current value of the keyword. Also if
youusesvn: eol -styl e = nati ve theBASE filewill have pure LF line endings whereas your file
will have CR- LF line endings. TortoiseSVN will normally hide these differences automatically by first
parsing the BASE file to expand keywords and line endings before doing the diff operation. However,
this can take a long time with large files. If Convert files when diffing against BASE is unchecked
then TortoiseSVN will skip pre-processing thefiles.

You can also specify a different diff tool to use on Subversion properties. Since these tend to be short
simple text strings, you may want to use a simpler more compact viewer.

If you have configured an alternate diff tool, you can access TortoiseMerge and the third party tool from

the context menus. Context menu - Diff uses the primary diff tool, and Shift+ Context menu - Diff
uses the secondary diff tool.

4.30.5.2. Merge Tool

An external merge program used to resolve conflicted files. Parameter substitution is used in the same
way as with the Diff Program.

Y%base
the original file without your or the others changes

%bname
The window title for the base file

%mine
your own file, with your changes

%yname
The window title for your file

%theirs
thefileasit isin the repository

%tname
The window title for thefile in the repository

%merged
the conflicted file, the result of the merge operation

146

Daily Use Guide

%mname
The window title for the merged file

For example, with Perforce Merge:

C:\ Pat h- To\ PAMer ge. exe Y%base % heirs % ne %rer ged

or with KDiff3:

C:\ Pat h- To\ kdi f f 3. exe Y%base %rine % heirs -o %rerged
--L1 %nane --L2 %nane --L3 % nane

or with Araxis:

C:\Pat h-To\conmpare.exe /max /wait /3 /titlel:%nane /title2: Y%bnane
/title3: %Wnanme % heirs %base % ne %rerged /a2

or with WinMerge (2.8 or later):

C. \ Pat h- To\ W nMer ge. exe %rer ged

4.30.5.3. Diff/Merge Advanced Settings

X

Advanced diff settings
Extension/mime-tyvpe specific programs

Extension Program

Jdoc wscripk, exe "C\Program Files TortoisesY My DifF-Scripks\diff-doc. js" #sba...
docx wscripk, exe "CProgram Files! Tortoise Sy My DiFF-Scripks\ diff-doc, §" %:h...
.ods wscripk,exe "Ci\Program Files\ TortoiseSyYMADIFF-Scriptstdiff-ods wbs" <b. ..
.odk wscripk.exe "Ci\Program Files' TortoiseSYRADIFF-Scriptst diff-odt wbs" %:b. ..
ppt wscripk, exe "C\Program Files Tortoise3Y M DIFF-Scripks\diff-ppt. 5" #:ba. ..
Jppkx wscripk, exe "CProgram Files! Tortoise SR DIFF-Scripts\diff-pptx, is" b,
S wscript,exe "Ci\Program Files'\ TortoiseSYRADIE-Scriptst diff-sxw wbs" <%, ..
Jxls vascripk.exe "Ci\Program Files' TortoiseSYMDIFF-Scriptst,diff-xls. vbs" b, ..
s wscripk, exe "C\Program Files Tortoise 3y M DIFF-Scripksh diff-xlsx, wbs" 94, .

[Ok H Zancel]

Figure 4.62. The Settings Dialog, Diff/M er ge Advanced Dialog

In the advanced settings, you can define a different diff and merge program for every file extension. For
instance you could associate Photoshop as the “ Diff” Program for . j pg files:-) Y ou can also associate
thesvn: m me-t ype property with adiff or merge program.

147

Daily Use Guide

To associate using afile extension, you need to specify the extension. Use . bnp to describe Windows
bitmap files. To associate using the svn: i ne- t ype property, specify the mime type, including a
dash, for examplet ext / xmi .

4.30.5.4. Unified Diff Viewer

A viewer program for unified-diff files (patch files). No parameters are required. The Default option is
to check for afile association for . di f f files, and then for . t xt files. If you don't have a viewer for
. di ff files, you will most likely get NotePad.

The origina Windows NotePad program does not behave well on files which do not have standard
CR-LF line-endings. Since most unified diff files have pure LF line-endings, they do not view well
in NotePad. However, you can download a free NotePad replacement Notepad2 [http://www.flos-
freeware.ch/notepad2.html] which not only displays the line-endings correctly, but also colour codes the
added and removed lines.

4.30.6. Saved Data Settings

Settings - TortoiseSVYN

@}' Conkext Menu
=% Dialogs 1
=% Dialogs 2

| 2%, General @

= 03& External Programs

Dialog sizes and positions

URL histary Clear

8 Colars
| =-Jr Revision Graph
| colors Log messages (Input dislog) Cloar
| =) Icon Overlays
| .

9 ﬁ”t IEDZ ==t Log messages (Show log dialog) Clear

et

Clear

Diff Wiewer
w Merge Tool
L Unified Diff Yiewer

| Saved Data
| = J Log Caching
[= cached Repositories
| = 1 Hook Scripts

@ Issue Tracker Inkegration

&, TortoiseBlame

Authentication data Clear

Action log

Max, lines in action log f 4000 | Show] [Clear

” Cancel ” Apply H Help

%[oK

Figure 4.63. The Settings Dialog, Saved Data Page

For your convenience, TortoiseSVN saves many of the settings you use, and remembers where you have
been lately. If you want to clear out that cache of data, you can do it here.

URL history
Whenever you checkout aworking copy, merge changes or use the repository browser, TortoiseSVN
keeps a record of recently used URLs and offers them in a combo box. Sometimes that list gets
cluttered with outdated URLs so it is useful to flush it out periodically.

If you want to remove a single item from one of the combo boxes you can do that in-place. Just
click on the arrow to drop the combo box down, move the mouse over the item you want to remove
and type Shift+Del.

L og messages (Input dialog)
TortoiseSVN stores recent commit log messages that you enter. These are stored per repository, so
if you access many repositories thislist can grow quite large.

148

http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html
http://www.flos-freeware.ch/notepad2.html

Daily Use Guide

L og messages (Show log dialog)
TortoiseSV N cacheslog messages fetched by the Show L og dial og to save time when you next show
thelog. If someone else edits alog message and you already have that message cached, you will not

see the change until you clear the cache. Log message caching is enabled on the Log Cache tab.

Dialog sizes and positions

Many dialogs remember the size and screen position that you last used.

Authentication data

When you authenticate with a Subversion server, the username and password are cached locally so
you don't have to keep entering them. Y ou may want to clear thisfor security reasons, or because you
want to access the repository under a different username ... does John know you are using his PC?

If you want to clear authentication data for one particular server only, read Section 4.1.5,

“Authentication” for instructions on how to find the cached data.

Action log

TortoiseSVN keeps alog of everything written to its progress dialogs. This can be useful when, for

example, you want to check what happened in arecent update command.

Thelogfileislimited in length and when it grows too big the oldest content is discarded. By default

4000 lines are kept, but you can customize that number.

From here you can view the log file content, and also clear it.

4.30.7. Log Caching

Settings - TortoiseSYN

=%, General
C',Eg}-‘ Context Menu
=% Dialogs 1
2% Dialogs 2
8 Colars
= Rewision Graph
8 Colors
=) Leon Crverlays
4] Icon Set
S'} Metwark
=%, External Programs
Diff wigwer
),’ Merge Tool
Urified Diff Viewer
@ Saved Data
=- j
| = Cached Repositories
= Hook Scripts
@ Issue Tracker Inkegration
& TortoiseBlame

Global settings

Enable log caching
[aflow ambiguous URLs
[allaw ambiguous UUIDs

If the repository can nok be contacted

X

Ask the user b
Timeauts

Timeout in seconds before updating the HEAD revision &0

Days of inactivity until small caches get removed 10
Maximum size [kByte] of a removed inactive cache 10
Expett settings

Maximum number of kool Failures until cache remaoval 20

Restore defaults] [Power user defaulks]
% I OF, l [Cancel] [Apply] [Help]

Figure 4.64. The Settings Dialog, L og Cache Page

This dialog allows you to configure the log caching feature of TortoiseSVN, which retains alocal copy
of log messages and changed paths to avoid time-consuming downloads from the server. Using the log
cache can dramatically speed up the log dialog and the revision graph. Another useful feature is that the

log messages can till be accessed when offline.

149

Daily Use Guide

Enable log caching
Enableslog caching whenever log dataisrequested. If checked, datawill be retrieved from the cache
when available, and any messages not in the cache will be retrieved from the server and added to
the cache.

If caching is disabled, datawill always be retrieved directly from the server and not stored locally.

Allow ambiguous URLs
Occasionally you may have to connect to a server which uses the same URL for al repositories.
Older versions of svnbr i dge would do this. If you need to access such repositories you will have
to check this option. If you don't, leave it unchecked to improve performance.

Allow ambiguous UUIDs
Some hosting services give all their repositories the same UUID. You may even have done this
yourself by copying arepository folder to create anew one. For all sorts of reasonsthisisabad idea
- aUUID should be unique. However, the log cache will still work in this situation if you check this
box. If you don't need it, leave it unchecked to improve performance.

If the repository cannot be contacted
If you are working offline, or if the repository server is down, the log cache can still be used to
supply log messages aready held in the cache. Of course the cache may not be up-to-date, so there
are optionsto alow you to select whether this feature should be used.

When log data is being taken from the cache without contacting the server, the dialog using those
message will show the offline state in itstitle bar.

Timeout before updating the HEAD revision
When you invoke the log dialog you will normally want to contact the server to check for any newer
log messages. If the timeout set here is non-zero then the server will only be contacted when the
timeout has elapsed since the last time contact. This can reduce server round-trips if you open the
log dialog frequently and the server is slow, but the data shown may not be completely up-to-date.
If you want to use this feature we suggest using a value of 300 (5 minutes) as a compromise.

Days of inactivity until small caches get removed
If you browse around a lot of repositories you will accumulate a lot of log caches. If you're not
actively using them, the cache will not grow very big, so TortoiseSVN purges them after a set time
by default. Use thisitem to control cache purging.

Maximum size of removed inactive caches
Larger caches are more expensive to reacquire, so TortoiseSV N only purges small caches. Finetune
the threshold with this value.

Maximum number of tool failures before cache removal
Occasionally something goes wrong with the caching and causes a crash. If this happens the cache
isnormally deleted automatically to prevent a recurrence of the problem. If you use the less stable
nightly build you may opt to keep the cache anyway.

4.30.7.1. Cached Repositories

Onthispageyou can seealist of the repositoriesthat are cached locally, and the space used for the cache.
If you select one of the repositories you can then use the buttons underneath.

Click on the Update to completely refresh the cache and fill in any holes. For a large repository this
could be very time consuming, but useful if you are about to go offline and want the best available cache.

Click on the Export button to export the entire cache as a set of CSV files. This could be useful if you
want to process the log data using an external program, although it is mainly useful to the devel opers.

Click on Delete to remove all cached datafor the selected repositories. This does not disable caching for
the repository so the next time you request log data, a new cache will be created.

150

Daily Use Guide

4.30.7.2. Log Cache Statistics

Log Cache Statistics

Size and status Age
RamM[kB]: 2759 last read: 23/02)z009
disk [kE]: 739 last update; 23/02/2009
connection: online last head update: 23/02)2009

Conkainer sizes

authaors; 73 word bokens: 26565
path elements: 4036 pair tokens: 6611
paths: 10313 kext [token count]: 184639
skipranges: 0O waords [uncompressed]; 291875
Revisions
max revision: 15472 merges kakal: 0
resision count: 19472 revisions: 0O
missing in: 15472
changes tokal; 53856 user revprops bokal; 0
resvisions: 15470 revisions: 0O
mis=sing in: 0 missing in: 15472

b o]

Figure 4.65. The Settings Dialog, L og Cache Statistics

Click onthe Details button to see detailed statistics for a particular cache. Many of the fields shown here
are mainly of interest to the developers of TortoiseSVN, so they are not all described in detail.

RAM
The amount of memory required to service this cache.

Disk
The amount of disk space used for the cache. Data is compressed, so disk usage is generally fairly
modest.

Connection
Shows whether the repository was available last time the cache was used.

Last update
The last time the cache content was changed.

Last head update
The last time we requested the HEAD revision from the server.

Authors
The number of different authors with messages recorded in the cache.

151

Daily Use Guide

Paths
The number of paths listed, asyou would seeusingsvn | og - V.

Skip ranges
The number of revision ranges which we have not fetched, simply because they haven't been
requested. Thisisameasure of the number of holes in the cache.

Max revision
The highest revision number stored in the cache.

Revision count
The number of revisions stored in the cache. Thisis another measure of cache completeness.

4.30.8. Client Side Hook Scripts

#" Settings - TortoiseSVYN

=%, General %‘

@ Context Menu
=% Dialogs 1

- Hook Tvpe Path Command Line
"é‘: E'E:I':'gs z pre_commit_hook C:\TartoiseSvMidoc C:lTortoiseSyRhcontribihook-scripksiclient -sids
alors
=P Revision Graph
8 Colars
=4 Icon Overlays
4] Icon Set
9 Mekwork,
(=%, External Pragrams
Diff Wiewer
)’ Merge Tool
Unified Diff Wigwer
@ Saved Data
= | Log Caching
[= Cached Repositories
=] :Ua“ Hook Scripts
@ Issue Tracker Inkegration
g, TortoiseBlame & | 5

% [oK ” Cancel ” Apply H Help]

Figure 4.66. The Settings Dialog, Hook Scripts Page

This dialog allows you to set up hook scripts which will be executed automatically when certain
Subversion actions are performed. As opposed to the hook scripts explained in Section 3.3, “ Server side
hook scripts’, these scripts are executed locally on the client.

One application for such hooks might be to call a program like SubWCRev. exe to update version
numbers after acommit, and perhaps to trigger arebuild.

For various security and implementation reasons, hook scripts are defined locally on a machine, rather
than as project properties. You define what happens, no matter what someone else commits to the
repository. Of course you can aways choose to call a script which isitself under version control.

152

Daily Use Guide

Configure Hook Scripis El

Hook Type: Pre-Commit Hook, A

Working Copy Path:
i Torkoise 3y

Wacript O tortoisesyntcontribihook- scripkst client-side\Preommit s knpl

Command Line To Execute:

‘ait For the script ko finish
Hide the script while running [OK] [Cancel l [Help l

Figure 4.67. The Settings Dialog, Configure Hook Scripts
To add anew hook script, smply click Add and fill in the details.
There are currently six types of hook script available

Start-commit
Called beforethe commit dialog isshown. Y ou might want to usethisif the hook modifiesaversioned
file and affects the list of files that need to be committed and/or commit message. However you
should note that becausethe hook iscalled at an early stage, thefull list of objects selected for commit
isnot available.

Pre-commit
Called after the user clicks OK in the commit dialog, and before the actual commit begins. Thishook
has alist of exactly what will be committed.

Post-commit
Called after the commit finishes (whether successful or not).

Start-update
Called before the update-to-revision dialog is shown.

Pre-update
Called before the actual Subversion update begins.

Post-update
Called after the update finishes (whether successful or not).

A hook is defined for a particular working copy path. Y ou only need to specify the top level path; if you
perform an operation inasub-folder, TortoiseSVN will automatically search upwardsfor amatching path.

Next you must specify the command lineto execute, starting with the path to the hook script or executable.
This could be abatch file, an executablefile or any other file which has avalid windows file association,
eg. aperl script.

The command line includes severa parameters which get filled in by TortoiseSVN. The parameters
passed depend upon which hook is called. Each hook has its own parameters which are passed in the
following order:

Start-commit
PATH MESSAGEFI LE CWD

Pre-commit
PATH DEPTH MESSAGEFI LE CWD

Post-commit
PATH DEPTH MESSAGEFI LE REVI SI ON ERROR CVWD

153

Daily Use Guide

Start-update
PATHCWD

Pre-update
PATHDEPTH REVI SI ONCWD

Post-update
PATH DEPTH REVI SI ON ERROR CV\D

The meaning of each of these parametersis described here:

PATH
A path to a temporary file which contains all the paths for which the operation was started. Each
path is on a separate line in the temp file.

DEPTH
The depth with which the commit/update is done.

Possible values are:

-2

svn_dept h_unknown
-1

svn_dept h_excl ude
0

svn_depth_enpty
1

svn_depth_files
2

svn_dept h_i medi at es
3

svn_depth_infinity

MESSAGEFILE

Path to afile containing the log message for the commit. Thefile containsthetext in UTF-8 encoding.
After successful execution of the start-commit hook, the log message is read back, giving the hook
a chance to modify it.

REVISION
The repository revision to which the update should be done or after a commit compl etes.

ERROR
Path to afile containing the error message. If there was no error, the file will be empty.

CWD
The current working directory with which the script isrun. Thisis set to the common root directory
of all affected paths.

Note that although we have given these parameters names for convenience, you do not have to refer to
those names in the hook settings. All parameters listed for a particular hook are always passed, whether
you want them or not ;-)

If you want the Subversion operation to hold off until the hook has completed, check Wait for the script
to finish.

154

Daily Use Guide

Normally you will want to hide ugly DOS boxes when the script runs, so Hide the script while running
is checked by default.

Sample client hook scripts can be found inthecont ri b folder in the TortoiseSVN repository [http://
tortoi sesvn.googl ecode.com/svn/trunk/contrib/hook-scripts]. (Section 3, “ TortoiseSV N isfree!” explains
how to access the repository).

4.30.8.1. Issue Tracker Integration

TortoiseSVN can use a COM plugin to query issue trackers when in the commit dialog. The use of such
plugins is described in Section 4.28.2, “Getting Information from the Issue Tracker”. If your system
administrator has provided you with a plugin, which you have already installed and registered, thisisthe
place to specify how it integrates with your working copy.

Settings - TortoiseSVN

=%, General
[L’,E-‘ Conkext Menu
22 Dialogs 1
2% Dialogs 2
[Y Colors
=-Ja Revision Graph
¥ cColors
| =) Icon Cverlays
| {4 Icon Set
| g Metwark
| =%, External Programs
DIFF Wiewer
l‘ Merge Tool
Unified Diff Viewer
{é} Saved Data
I = | Log Caching
| [Cached Repositories
| =7 Hook Scripts
Issue Tracker Inkegration
&, TortoiseBlame

Path Provider Parameters
CiTortoiseavhidocitestitempldoc ExampleCsPlugin. MyPlugin fuser:joebloggs

e | S — S —

% I Ok, l ’ Cancel] [“ Apply] [Help]:

Figure 4.68. The Settings Dialog, I ssue Tracker Integration Page

Click on Add... to use the plugin with a particular working copy. Here you can specify the working copy
path, choose which plugin to use from a drop down list of all registered issue tracker plugins, and any
parameters to pass. The parameters will be specific to the plugin, but might include your user name on
the issue tracker so that the plugin can query for issues which are assigned to you.

If you want all users to use the same COM plugin for your project, you can specify the plugin also with
the propertiesbugt r aq: pr ovi der uui d and bugt r aq: pr ovi der par ans.

bugtrag:provideruuid
This property specifies the COM UUID of the I[BugtragProvider, for example
{91974081- 2DC7- 4FB1- B3BE- 0DE1C8D6CEAE]} . (this exampleis the UUID of the Gurtle
bugtraq provider [http://code.google.com/p/gurtlef], which is a provider for the Google Code
[http://code.google.com/hosting/] issue tracker).

bugtrag: providerparams
This property specifies the parameters passed to the IBugtragProvider.

Please check the documentation of your |BugtragProvider plugin to find out what to specify in these two
properties.

155

http://tortoisesvn.googlecode.com/svn/trunk/contrib/hook-scripts
http://tortoisesvn.googlecode.com/svn/trunk/contrib/hook-scripts
http://tortoisesvn.googlecode.com/svn/trunk/contrib/hook-scripts
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/p/gurtle/
http://code.google.com/hosting/
http://code.google.com/hosting/

Daily Use Guide

4.30.9. TortoiseBlame Settings

Settings - TortoiseSVN

=%, General
| r{g\}' Context Menu
=2 Dialogs 1 [| - Colors
2 Dialogs 2 Recently modified lines
Y cColors
| =P~ Revision Graph || older lines
8 Colars [{
| =) Icon Overlays [
| [1con Set [Restore Default]
Q Mekwark [
=%, External Programs I
DiFF Yiewer [| . Fonk
Y Merge Taol :
Unified DiFf Viewer [| | Font: T Courier New a0 &
: @ -, - - - - &
| = 1 Logcaching
[Cached Repositaries [
Hook Scripts Moke: the Font settings also affect the TorboiselIDIFF viewer
@ Issue Tracker Inkegration |
488 TortoiseElame

Tab size: 4

e

% I . Ok H Cancel ” Apply“m].[Help

Figure 4.69. The Settings Dialog, TortoiseBlame Page

The settings used by TortoiseBlame are controlled from the main context menu, not directly with
TortoiseBlame itself.

Colors
TortoiseBlame can use the background colour to indicate the age of lines in a file. You set the
endpoints by specifying the colours for the newest and oldest revisions, and TortoiseBlame uses a
linear interpol ation between these col ours according to the repository revision indicated for each line.

Font
Y ou can select the font used to display the text, and the point size to use. This applies both to thefile
content, and to the author and revision information shown in the left pane.

Tabs
Defines how many spaces to use for expansion when atab character is found in the file content.

4.30.10. Registry Settings

A few infrequently used settings are available only by editing the registry directly. It goes without saying
that you should only edit registry valuesif you know what you are doing.

Configuration
You can specify a different location for the Subversion configuration file using registry location
HKCW\ Sof t war e\ Tor t oi seSVN\ Confi gDi r. Thiswill affect all TortoiseSVN operations.

Cachetray icon
To add a cache tray icon for the TSV NCache program, create a DWORD key with a value of 1 at
HKCW Sof t war e\ Tort oi seSVN\ CacheTr ayl con. Thisisreally only useful for developers
asit allows you to terminate the program gracefully.

156

Daily Use Guide

Debug
To show the command line parameters passed from the shell extension to TortoiseProc.exe create a
DWORD key with avalue of 1 at HKCUW\ Sof t war e\ Tor t oi seSVN\ Debug.

Context Menu Icons
This can be useful if you use something other than the windows explorer or if you get problemswith
the context menu displaying correctly. create a DWORD key with avalue of 0 at HKCW\ Sof t war e
\ Tor t oi seSVN\ ShowCont ext Menul cons if you don't want TortoiseSVN to not show icons
for the shell context menu items. Set this value to 1 to show the icons again.

Block Overlay Status
If you don't want the explorer to update the status overlays while another TortoiseSVN command is
running (e.g. Update, Commit, ...) then create a DWORD key with avalue of 1 at HKCUW Sof t war e
\ Tort oi seSVN\ Bl ockSt at us.

Update Check URL
HKCW Sof t war e\ Tor t oi seSVN\ Updat eCheckURL contains the URL from which
TortoiseSVN tries to download a text file to find out if there are updates available. You can aso
set this under HKLMinstead of HKCU if you want, but HKCU overwrites the setting in HKLM This
might be useful for company admins who don't want their users to update TortoiseSVN until they
approveit.

Filenames without extensions in auto-completion list
The auto-completion list shown in the commit message editor displays the names of files listed for
commit. To aso include these names with extensions removed, create a DWORD key with a value of
1 at HKCW\ Sof t war e\ Tor t oi seSVN\ Aut oconpl et eRenbvesExt ensi ons.

Explorer columns everywhere
The extra columns the TortoiseSVN adds to the details view in Windows Explorer are normally
only active in a working copy. If you want those to be accessible everywhere, not just in
working copies, create a DAWORD key with a value of 1 at HKCUW Sof t war e\ Tor t oi seSVN
\ Col umsEver y\Wer e.

Merge log separator
When you merge revisions from another branch, and merge tracking information is available, the
log messages from the revisions you merge will be collected to make up a commit log message. A
pre-defined string is used to separate the individual log messages of the merged revisions. If you
prefer, you can create a SZ key at HKCUW\ Sof t war e\ Tor t oi seSVN\ Mer geLogSepar at or
containing a separator string of your choice.

Always blame changes with TortoiseMerge
TortoiseSVN allows you to assign external diff viewer. Most such viewers, however, are not suited
for change blaming (Section 4.23.2, “Blame Differences’), so you might wish to fall back to
TortoiseMerge in this case. To do so, create a DWORD key with avalue of 1 at HKCW\ Sof t war e
\ Tortoi seSVN\Di f f Bl amesW t hTort oi seMer ge.

Current revision highlighting for foldersin log dialog

The log dialog highlights the current working copy revision when the log is shown for afile. To do
the same thing for a folder requires aworking copy crawl, which is the default action, but it can be
a slow operation for large working copies. If you want to change the operation of this feature you
must create a DWORD registry key at HKCU\ Sof t war e\ Tor t oi seSVN\ Recur si veLogRev.
A value of 0 disables the feature (no highlighting for folders), a value of 1 (default) will fetch the
status recursively (find the highest revision in the working copy tree), and a value of 2 will check
the revision of the selected folder itself, but will not check any child items.

Make checkout fail if an item of the same name exists
By default, if you checkout a working copy over an existing unversioned folder structure, as
you might do after import, then any existing which differ from the repository content will be
left unchanged and marked as modified. When you come to commit, it is your local copy which
will then be sent back to the repository. Some people would prefer the checkout to fail if the

157

Daily Use Guide

existing content differs, so that if two people add the same file the second person's version does
not overwrite the original version by mistake. If you want to force checkouts to fail in this
instance you must create a DWORD registry key with value O at HKCU\ Sof t war e\ Tor t oi seSVN
\ Al | owUnver si onedQbst ructi on.

4.30.11. Subversion Working Folders
VS.NET 2003 when used with web projects can't handle the . svn folders that Subversion usesto store

itsinternal information. Thisis not a bug in Subversion. The bug isin VS.NET 2003 and the frontpage
extensions it uses.

Note that the bug is fixed in VV S2005 and later versions.

As of Verson 1.3.0 of Subversion and TortoiseSVN, you can set the environment variable
SVN_ASP_DOT_NET_HACK. If that variable is set, then Subversion will use _svn folders instead of
. svn folders. You must restart your shell for that environment variable to take effect. Normally that
means rebooting your PC. To make this easier, you can now do this from the general settings page using
asimple checkbox - refer to Section 4.30.1, “ General Settings’.

For moreinformation, and other waysto avoid this problem in the first place, check out the article about
thisin our FAQ [http://tortoisesvn.net/aspdotnethack].

4.31. Final Step

Donate!

Even though TortoiseSV N and TortoiseM erge are free, you can support the devel opers by sending
in patches and play an active role in the development. Y ou can also help to cheer us up during the
endless hours we spend in front of our computers.

While working on TortoiseSVN we love to listen to music. And since we spend many hours on
the project we need a lot of music. Therefore we have set up some wish-lists with our favourite
music CDs and DVDs. http://tortoisesvn.tigris.org/donate.ntml [http://tortoisesvn.tigris.org/
donate.html] Please also have alook at the list of people who contributed to the project by sending
in patches or trandations.

158

http://tortoisesvn.net/aspdotnethack
http://tortoisesvn.net/aspdotnethack
http://tortoisesvn.tigris.org/donate.html
http://tortoisesvn.tigris.org/donate.html
http://tortoisesvn.tigris.org/donate.html

Chapter 5. The SubWCRev Program

SubWCRev is Windows console program which can be used to read the status of a Subversion working
copy and optionally perform keyword substitution in atemplatefile. Thisis often used as part of the build
process as ameans of incorporating working copy information into the object you are building. Typically
it might be used to include the revision number in an “ About” box.

5.1. The SubWCRev Command Line

SubWCRev reads the Subversion status of all filesin aworking copy, excluding externals by default. It
records the highest commit revision number found, and the commit timestamp of that revision, It also
recordswhether there arelocal modificationsintheworking copy, or mixed updaterevisions. Therevision
number, update revision range and modification status are displayed on stdout.

SubWCRev.exe is called from the command line or a script, and is controlled using the command line
parameters.

SubWCRev Wor ki ngCopyPat h [SrcVersi onFil e Dst VersionFile] [-nndfe]

Wor ki ngCopyPat h is the path to the working copy being checked. You can only use SubWCRev
on working copies, not directly on the repository. The path may be absolute or relative to the current
working directory.

If you want SubWCRev to perform keyword substitution, so that fields like repository revision and
URL are saved to atext file, you need to supply atemplate file Sr cVer si onFi | e and an output file
Dst Ver si onFi | e which contains the substituted version of the template.

There are a number of optional switches which affect the way SubWCRev works. If you use more than
one, they must be specified asasingle group, eg. - nmnot-n -m

-n If this switch is given, SUbWCRev will exit with ERRORLEVEL 7 if the working
copy contains local modifications. This may be used to prevent building with
uncommitted changes present.

-m If this switch is given, SUbWCRev will exit with ERRORLEVEL 8 if the working
copy contains mixed revisions. This may be used to prevent building with a partially
updated working copy.

-d If this switch is given, SUbWCRev will exit with ERRORLEVEL 9 if the destination
file aready exists.

-f If this switch is given, SubWCRev will include the last-changed revision of folders.

The default behaviour isto use only files when getting the revision numbers.

-e If this switch is given, SUbWCRev will examine directories which are included
with svn: ext er nal s, but only if they are from the same repository. The default
behaviour isto ignore externals.

-X If this switch is given, SUbWCRev will output the revision numbersin HEX.
-X If this switch is given, SubWCRev will output the revision numbers in HEX, with
'0X" prepended.

Table5.1. List of available command line switches

5.2. Keyword Substitution

If a source and destination files are supplied, SUbWCRev copies source to destination, performing
keyword substitution as follows:

159

The SubWCRev Program

Keyword Description

$WCREV$

Replaced with the highest commit revision in the working copy.

$WCDATES$

Replaced with the commit date/time of the highest commit revision.
By default, international format is used: yyyy- mm dd hh: mm ss.
Alternatively, you can specify acustom format which will be used with
strftine(), for example: SWCDATE=%a % % % : %Vt %S
%$. For alist of available formatting characters, look at the online
reference [http://www.cppreference.com/stddate/strftime.html].

$SWCNOWS

Replaced with the current system date/time. This can be used to indicate
the build time. Time formatting can be used as described for SWCDATE
$.

$SWCRANGES

Replaced with the update revision range in the working copy. If the
working copy is in a consistent state, this will be a single revision. If
the working copy contains mixed revisions, either due to being out of
date, or due to a deliberate update-to-revision, then the range will be
shown in the form 100:200

SWCMIXED$

$WCM XED?TText : FText $ is replaced with TText if there are
mixed update revisions, or FText if not.

$WCMODSS$

$WCMODS?TText : FText $isreplacedwith TText if therearelocal
modifications, or FText if not.

$WCURL$

Replaced with the repository URL of the working copy path passed to
SubWCRev.

SWCINSVNS

$SWCI NSVN?TText : FText $ isreplaced with TText if the entry is
versioned, or FText if not.

$WCNEEDSLOCK$

$WCNEEDSL OCK?TText : FText $ is replaced with TText if the
entry hasthesvn: needs- | ock property set, or FText if not.

$WCISLOCKED$

$WCI SLOCKED?TText : FText $ is replaced with TText if the
entry islocked, or FText if not.

$WCLOCKDATES$

Replaced with the lock date. Time formatting can be used as described
for $WCDATES.

$WCLOCKOWNERS$

Replaced with the name of the lock owner.

$WCLOCKCOMMENTS$

Replaced with the comment of the lock.

Table5.2. List of available command line switches

= Tip

5.3. Keyword Example

Some of these keywords apply to single files rather than to an entire working copy,
so it only makes sense to use these when SubWCRev is called to scan a single file.
This applies to $WCI NSVN$, $WCNEEDSL OCK$, $WCI SLOCKEDS, $WCL OCKDATES,
$WCL OCKOMNERS and $WCL OCKCOMVENT$.

The example below shows how keywords in atemplate file are substituted in the output file.

/1 Test file for SubWCRev: testfile.tnpl

char *Revi si on
char *Modi fi ed

" $WCREVS" ;
" $WCMODS?Modi fi ed: Not nodi fi ed$";

160

http://www.cppreference.com/stddate/strftime.html
http://www.cppreference.com/stddate/strftime.html
http://www.cppreference.com/stddate/strftime.html

The SubWCRev Program

char *Date = "$WCDATES$" ;

char *Range = " $WCRANGES" ;

char *M xed = "$WCM XED?M xed revi si on WC: Not mi xed$";
char *URL = "$WCURLS";

#i f $WCMODS?1: 0%
#error Source is nodified
#endi f

/1 End of file

After running SubWCRev. exe pat h\t o\wor ki ngcopy testfile.tnpl testfile.txt,
theoutput filet est fi | e. t xt would lookslike this:

/] Test file for SubWCRev: testfile.txt

char *Revision = "3701";

char *Modified = "Mdified";

char *Date = "2005/06/15 11:15:12";

char *Range = "3699: 3701";

char *M xed = "M xed revision W',

char *URL = "http://project.donain.org/svn/trunk/src";
#if 1

#error Source is nodified

#endi f

/1 End of file

= Tip

A filelike thiswill beincluded in the build so you would expect it to be versioned. Be sure
to version the template file, not the generated file, otherwise each time you regenerate the
version file you need to commit the change, which in turn means the version file needs to
be updated.

5.4. COM interface

If you need to access Subversion revision information from other programs, you can use the COM
interface of SubWCRev. The object to create is SUbWCRev. obj ect , and the following methods are

supported:

.GetWClnfo This method traverses the working copy gathering the revision
information. Naturally you must call this before you can access the
information using the remaining methods. The first parameter is the
path. The second parameter should be true if you want to include
folder revisions. Equivalent to the -f command line switch. The
third parameter should be true if you want to include svn:externals.
Equivalent to the - e command line switch.

.Revision The highest commit revision in the working copy. Equivalent to
$WCREVS

.Date The commit date/time of the highest commit revision. Equivaent to
$WCDATES

161

The SubWCRev Program

Method Description

Author The author of the highest commit revision, that is, the last person to
commit changes to the working copy.

.MinRev The minimum update revision, as shown in SWCRANGES

.MaxRev The maximum update revision, as shown in SWCRANGES

.HasM odifications Trueif there are local modifications

.Url Replaced with the repository URL of the working copy path used in
CGet WCI nf 0. Equivalent to SWCURL$

IsSvnltem Trueif the item is versioned.

.NeedsL ocking Trueif theitem hasthesvn: needs- | ock property set.

.IsLocked Trueif theitem islocked.

.LockCreationDate String representing the date when the lock was created, or an empty
string if the item is not locked.

.LockOwner String representing the lock owner, or an empty string if the item is not
locked.

.LockComment The message entered when the lock was created.

Table 5.3. COM/automation methods supported

The following example shows how the interface might be used.

/] testCOMjs - javascript file

/1 test script
filesystem=

revbj ect1
revQbj ect 2
revQbj ect 3
revoj ect4

revQObj ect 1.

new Acti veX(nhj ect (" SubWCRev.
new Acti veX(nhj ect (" SubWCRev.
new Acti veX(nhj ect (" SubWCRev.
new Acti veX(nhj ect (" SubWCRev.

for the SubWCRev COM Aut omati on- obj ect

new Acti veXQhject ("Scripting. FileSystembbject");

obj ect");
obj ect");
obj ect");
obj ect");

Get WCI nf o(
filesystem Get Absol ut ePat hNarme("."),

1, 1);

revCbj ect 2. Get WCI nf o

filesystem Get Absol ut ePat hName(".."),
revoj ect 3. Get WCI nf o(

filesystem Get Absol ut ePat hName(" SubWCRev. cpp"),
revCbj ect 4. Get WCI nf o

fil esystem Get Absol ut ePat hNanme(". .\\.

1, 1);

1,
"),

1, 1);

wel nfoStringl = "Revision =" + revObjectl. Revision +
"\nMn Revision =" + revCbjectl. M nRev +
"\'nMax Revision =" + rev(bjectl. MaxRev +
"\nDate = " + revObjectl. Date +
"\nURL =" + revjectl. Ul + "\nAuthor =" +
revbj ect 1. Aut hor + "\ nHasMbds = " +
revbj ect 1. HasMbodi fi cations + "\nlsSvnltem=" +
revbjectl.l1sSvnltem + "\ nNeedsLocking = " +
revbj ect 1. NeedsLocki ng + "\ nlsLocked =" +
revbjectl.lsLocked + "\ nLockCreati onDate = " +
revbj ect1. LockCreati onDate + "\ nLockOamner =" +
revoj ect 1. LockOmer + "\ nLockComment =" +

1);

162

The SubWCRev Program

revCbj ect 1. LockConment ;

wel nfoString2 = "Revision = " + revObject2. Revision +
"\nMn Revision =" + rev(bject2. M nRev +
"\'nMax Revision =" + rev(bject2. MaxRev +
"“\nDate = " + revQbject2. Date +
"\nURL = " + revject2. Ul + "\nAuthor =" +
revbj ect 2. Aut hor + "\ nHasMods = " +
revbj ect 2. HasModi fi cations + "\nlsSvnltem =" +
revbject2.1sSvnltem + "\ nNeedsLocking = " +
revoj ect 2. NeedsLocki ng + "\ nlsLocked =" +
revbj ect 2. I sLocked + "\ nLockCreati onDate = " +
revbj ect 2. LockCreati onDate + "\ nLockOawner =" +
revoj ect 2. LockOmer + "\ nLockComment =" +
revCbj ect 2. LockConment ;

wel nfoString3 = "Revision =" + rev(Obj ect3. Revision +
"\nMn Revision =" + rev(bject3.MnRev +
"\'nMax Revision =" + rev(bject3. MaxRev +
"“\nDate = " + revQbject3.Date +
"\nURL =" + revbject3. Ul + "\nAuthor =" +
revoj ect 3. Aut hor + "\nHasMods = " +
revoj ect 3. HasModi fi cations + "\nlsSvnltem=" +
revoj ect3.1sSvnltem + "\ nNeedsLocking = " +
revoj ect 3. NeedsLocki ng + "\ nlsLocked =" +
revoj ect 3. 1 sLocked + "\ nLockCreati onDate = " +
revoj ect 3. LockCreati onDate + "\ nLockOawner =" +
revoj ect 3. LockOmer + "\ nLockComment =" +
revCbj ect 3. LockConment ;

wel nfoString4d = "Revision =" + revObject4. Revision +
"\nMn Revision =" + rev(bject4. M nRev +
"\'nMax Revision =" + rev(bject4. MaxRev +
"“\nDate = " + revQbject4. Date +
"\nURL =" + revbjectd4. Ul + "\nAuthor =" +
revbj ect 4. Aut hor + "\ nHasMbds = " +
revoj ect 4. HasModi fi cations + "\nlsSvnltem=" +
revoj ect4.1sSvnltem + "\ nNeedsLocking = " +
revoj ect 4. NeedsLocki ng + "\ nlsLocked =" +
revbj ect4. | sLocked + "\ nLockCreati onDate = " +
revbj ect4. LockCreati onDate + "\ nLockOawner =" +
revoj ect 4. LockOmer + "\ nLockComment =" +

revCbj ect 4. LockConment ;

Wscri pt. Echo(wel nfoStringl);
W5cri pt. Echo(wel nfoString2);
W5cri pt. Echo(wel nfoString3);
W5cri pt. Echo(wel nfoString4);

163

Chapter 6. IBugtragProvider interface

To get a tighter integration with issue trackers than by simply using the bugt r aq: properties,
TortoiseSV N can make use of COM plugins. With such pluginsit is possibleto fetch information directly
from the issue tracker, interact with the user and provide information back to TortoiseSVN about open
issues, verify log messages entered by the user and even run actions after a successful commit to e.g,
close an issue.

We can't provideinformation and tutorials on how you haveto implement aCOM object in your preferred
programming language, but we have example plugins in C++/ATL and C# in our repository in the
contrib/issue-tracker-pl ugi ns folder. In that folder you can aso find the required include
files you need to build your plugin. (Section 3, “TortoiseSVN is freel” explains how to access the

repository).
6.1. The IBugtragProvider interface

TortoiseSVN 1.5 can use pluginswhich implement the | BugtragProvider interface. Theinterface provides
afew methods which plugins can use to interact with the issue tracker.

HRESULT Val i dat ePar aneters (
/1 Parent window for any U that needs to be
/1 displayed during validation.
[in] HWND hPar ent Whd,

/1l The paraneter string that needs to be validated.
[in] BSTR paraneters,

/1 1s the string valid?
[out, retval] VARI ANT _BOOL *valid

)

This method is called from the settings dialog where the user can add and configure the plugin. The
par amet er s string can be used by a plugin to get additional required information, e.g., the URL to
the issue tracker, login information, etc. The plugin should verify the par anet er s string and show an
error dialog if the string is not valid. The hPar ent Whd parameter should be used for any dialog the
plugin shows asthe parent window. The plugin must return TRUE if the validation of the par anet er s
string is successful. If the plugin returns FAL SE, the settings dialog won't allow the user to add the plugin
to aworking copy path.

HRESULT Get Li nkText (
/1 Parent window for any (error) U that needs to be displayed.
[in] HWND hPar ent Whd,

/1 The paraneter string, just in case you need to talk to your
/1 web service (e.g.) to find out what the correct text is.
[in] BSTR paraneters,

/1 \What text do you want to display?
/1 Use the current thread | ocale.
[out, retval] BSTR *linkText

)

The plugin can provide a string here which is used in the TortoiseSVN commit dialog for the button
which invokes the plugin, e.g., "Choose issue" or "Select ticket". Make sure the string is not too long,

164

I BugtragProvider interface

otherwise it might not fit into the button. If the method returns an error (e.g., E_NOTI MPL), a default
text is used for the button.

HRESULT Get Commi t Message (
/1 Parent wi ndow for your provider's U.
[in] HWND hPar ent Whd,

/1 Parameters for your provider.
[in] BSTR paraneters,

[in] BSTR comobnRoot,

[in] SAFEARRAY(BSTR) pathLi st,

/1 The text already present in the conmit nessage.

/1 Your provider should include this text in the new nessage,
/1 where appropriate.

[in] BSTR ori gi nal Message,

/1 The new text for the commt nessage.
/1 This replaces the original nessage.
[out, retval] BSTR *newlMessage

)

Thisisthe main method of the plugin. This method is called from the TortoiseSVN commit dialog when
the user clicks on the plugin button. The par anet er s string is the string the user has to enter in the
settings dialog when he configuresthe plugin. Usually aplugin would usethisto find the URL of theissue
tracker and/or login information or more. The cormonRoot string contains the parent path of all items
selected to bring up the commit dialog. Note that thisis not the root path of all items which the user has
selected in the commit dialog. The pat hLi st parameter contains an array of paths (as strings) which
the user has selected for the commit. The or i gi nal Message parameter contains the text entered in
the log message box in the commit dialog. If the user has not yet entered any text, this string will be
empty. The newivessage return string is copied into the log message edit box in the commit dialog,
replacing whatever isaready there. If a plugin does not modify theor i gi nal Message string, it must
return the same string again here, otherwise any text the user has entered will be lost.

6.2. The IBugtragProvider2 interface

In TortoiseSVN 1.6 a new interface was added which provides more functionality for plugins. This
IBugtragProvider2 interface inherits from 1BugtragProvider.

HRESULT Get Conmi t Message?2 (
/1 Parent wi ndow for your provider's U.
[in] HWND hPar ent Whd,

/1 Paraneters for your provider.
[in] BSTR paraneters,

/1 The conmon URL of the commit
[in] BSTR comobnURL,

[in] BSTR conmpnRoot ,

[in] SAFEARRAY(BSTR) pat hLi st,

/1 The text already present in the conmit nessage.

/1 Your provider should include this text in the new nessage,
/1 where appropriate.

[in] BSTR origi nal Message,

/1 You can assign customrevision properties to a conmit
/1 by setting the next two parans.

165

I BugtragProvider interface

/1 note: Both safearrays nust be of the same |ength.
/1 For every property nane there nmust be a property val ue!

/1 The content of the buglD field (if shown)
[in] BSTR bugl D,

/1 Modified content of the buglD field
[out] BSTR * bugl DQut,

/1 The list of revision property nanes.
[out] SAFEARRAY(BSTR) * revPropNanes,

/1 The list of revision property val ues.
[out] SAFEARRAY(BSTR) * revPropVal ues,

/1 The new text for the commit message.
/1 This replaces the original nessage
[out, retval] BSTR * newiMessage

)

This method is called from the TortoiseSVN commit dialog when the user clicks on the plugin button.
This method is called instead of Get Commi t Message() . Please refer to the documentation for
Get Conmi t Message for the parameters that are also used there. The parameter conmonURL is the
parent URL of all items selected to bring up the commit dialog. This is basically the URL of the
conmonRoot path. The parameter bugl D contains the content of the bug-ID field (if it is shown,
configured with the property bugt r aq: message). Thereturn parameter bugl DOut isused tofill the
bug-1D field when the method returns. Ther evPr opNanes andr evPr opVal ues return parameters
can contain name/value pairs for revision properties that the commit should set. A plugin must make
sure that both arrays have the same size on return! Each property name inr evPr opNanmes must also
have a corresponding valueinr evPr opVal ues. If no revision properties are to be set, the plugin must
return empty arrays.

HRESULT CheckCommit (
[in] HWND hPar ent Whd,
[in] BSTR paraneters,
[in] BSTR conmonURL,
[in] BSTR conmonRoot ,
[in] SAFEARRAY(BSTR) pathLi st,
[in] BSTR conmi t Message,
[out, retval] BSTR * errorMessage

)

This method is called right before the commit dialog is closed and the commit begins. A plugin can
use this method to validate the selected files/folders for the commit and/or the commit message entered
by the user. The parameters are the same as for Get Conmi t Message?2() , with the difference that
conmmonURL is now the common URL of all checked items, and conmmonRoot the root path of al
checked items. The return parameter er r or Message must either contain an error message which
TortoiseSVN shows to the user or be empty for the commit to start. If an error message is returned,
TortoiseSVN showsthe error string in adialog and keeps the commit dialog open so the user can correct
whatever iswrong. A plugin should therefore return an error string which informsthe user what iswrong
and how to correct it.

HRESULT OnCommit Fi ni shed (
/1 Parent window for any (error) U that needs to be displayed.
[in] HWND hPar ent Whd,

/1 The common root of all paths that got committed.

166

I BugtragProvider interface

[in] BSTR conmonRoot ,

/1 Al the paths that got committed.
[in] SAFEARRAY(BSTR) pathLi st,

/1 The text already present in the conmit nessage.
[in] BSTR | ogMessage,

/! The revision of the commt.
[in] ULONG revision,

/!l An error to showto the user if this function
/1 returns sonething else than S_ K
[out, retval] BSTR * error

)

This method is called after a successful commit. A plugin can use this method to e.g., close the
selected issue or add information about the commit to the issue. The parameters are the same as for
Get Commi t Message?2.

HRESULT HasOpti ons(
/1 \Whet her the provider provides options
[out, retval] VARI ANT _BOOL *ret

);

This method is called from the settings dialog where the user can configure the plugins. If a plugin
provides its own configuration dialog with ShowOpt i onsDi al og, it must return TRUE here,
otherwise it must return FALSE.

HRESULT ShowOpt i onsDi al og(
/1 Parent wi ndow for the options dialog
[in] HWND hPar ent Whd,

/1 Parameters for your provider.
[in] BSTR paraneters,

/1 The paraneters string
[out, retval] BSTR * newparaneters

)

Thismethod is called from the settings dial og when the user clicks on the "Options' button that is shown
if HasOpt i ons returns TRUE. A plugin can show an options dialog to make it easier for the user to
configure the plugin. The par anet er s string contains the plugin parameters string that is already set/
entered. The newpar anet er s return parameter must contain the parameters string which the plugin
constructed from the info it gathered in its options dialog. That par amanet er s string is passed to all
other IBugtragProvider and | BugtragProvider2 methods.

167

Appendix A. Frequently Asked
Questions (FAQ)

Because TortoiseSVN is being developed al the time it is sometimes hard to keep the documentation
completely up to date. We maintain an online FAQ [http://tortoisesvn.tigris.org/fag.html] which
contains a selection of the questions we are asked the most on the TortoiseSVN mailing lists
<dev@ortoi sesvn.tigris.org>and<users@ortoisesvn.tigris.org>.

We also maintain a project Issue Tracker [http://issues.tortoisesvn.net] which tells you about some of
the things we have on our To-Do list, and bugs which have already been fixed. If you think you have
found abug, or want to request anew feature, check herefirst to seeif someone el se got there before you.

If you have a question which is not answered anywhere else, the best place to ask it is on one of the
mailing lists. <users@or t oi sesvn. tigris. org>istheoneto useif you have questions about
using TortoiseSVN. If you want to help out with the development of TortoiseSVN, then you should take
part in discussionson <dev@ or t oi sesvn. tigris. org>.

168

http://tortoisesvn.tigris.org/faq.html
http://tortoisesvn.tigris.org/faq.html
http://issues.tortoisesvn.net
http://issues.tortoisesvn.net

Appendix B. How Do I...

This appendix contains solutions to problems/questions you might have when using TortoiseSVN.

B.1. Move/copy a lot of files at once

Moving/Copying single files can be done by using TortoiseSVN — Rename.... But if you want to
move/copy alot of files, thisway isjust too slow and too much work.

The recommended way is by right-dragging the files to the new location. Simply right-click on the files
you want to move/copy without releasing the mouse button. Then drag the files to the new location and

release the mouse button. A context menu will appear where you can either choose Context Menu -
SVN Copy versioned files here. or Context Menu - SVN Move versioned files here.

o’ %

SVM Move versioned files here

N=i bin -

1l Copy versioned files here
SYM Copy and Rename versioned files here

.] SVN Add files to this WC
v: 3 SVN Export to here

himl-stylesheet. xsl readme-dblite. html svnbook| SYM Export all to here

Hierher kopieren
Hierher verschieben
Verknipfungen hier erstellen

Abbrechen

B.2. Force users to enter alog message

B.2.1.

B.2.2.

There are two ways to prevent users from committing with an empty log message. One is specific to
TortoiseSVN, the other works for all Subversion clients, but requires access to the server directly.

Hook-script on the server

If you have direct access to the repository server, you can install a pre-commit hook script which rejects
all commits with an empty or too short log message.

In the repository folder on the server, there's a sub-folder hooks which contains some example hook
scripts you can use. The filepre- comm t . t npl contains a sample script which will reject commits
if no log message is supplied, or the message is too short. The file a'so contains comments on how to
install/use this script. Just follow the instructions in that file.

This method is the recommended way if your users also use other Subversion clients than TortoiseSVN.
The drawback is that the commit is rejected by the server and therefore users will get an error message.
The client can't know before the commit that it will be rejected. If you want to make TortoiseSVN have
the OK button disabled until the log message islong enough then please use the method described bel ow.

Project properties

TortoiseSVN uses properties to control some of its features. One of those properties is the
tsvn: | ogm nsi ze property.

169

How Dol l...

If you set that property on afolder, then TortoiseSVN will disable the OK button in all commit dialogs
until the user has entered alog message with at least the length specified in the property.

For detailed information on those project properties, please refer to Section 4.17, “Project Settings”

B.3. Update selected files from the repository

Normally you update your working copy using TortoiseSVN - Update. But if you only want to pick
up some new files that a colleague has added without merging in any changes to other files at the same
time, you need a different approach.

UseTortoiseSVN - Check for Modifications. and click on Check repository to seewhat has changed
in the repository. Select the files you want to update locally, then use the context menu to update just
those files.

B.4. Roll back (Undo) revisions in the repository

B.4.1.

B.4.2.

Use the revision log dialog

The easiest way to revert the changes from a single revision, or from arange of revisions, is to use the
revision log dialog. Thisis also the method to use of you want to discard recent changes and make an
earlier revision the new HEAD.

1. Select the file or folder in which you need to revert the changes. If you want to revert all changes,
this should be the top level folder.

Select TortoiseSVN - Show Log to display alist of revisions. Y ou may need to use Show All or
Next 100 to show therevision(s) you are interested in.

3. Select the revision you wish to revert. If you want to undo a range of revisions, select the first one
and hold the Shift key while selecting the last one. Note that for multiple revisions, the range must be

unbroken with no gaps. Right click on the selected revision(s), then select Context Menu — Revert
changes from this revision.

4. Orif youwant to make an earlier revision the new HEAD revision, right click on the selected revision,

then select Context Menu - Revert to this revision. Thiswill discard all changes after the selected
revision.

Y ou have reverted the changes within your working copy. Check the results, then commit the changes.
Use the merge dialog

To undo alarger range of revisions, you can use the Merge dialog. The previous method uses merging
behind the scenes; this method uses it explicitly.

Ln your working copy select TortoiseSVN - Merge.

2. Inthe From: field enter the full folder URL of the branch or tag containing the changes you want to
revert in your working copy. This should come up as the default URL.

3. In the From Revision field enter the revision number that you are currently at. If you are sure there
is no-one else making changes, you can use the HEAD revision.

4. make sure the Use "From:" URL checkbox is checked.

5. Inthe To Revision field enter the revision number that you want to revert to, namely the one before
the first revision to be reverted.

170

How Dol l...

B.4.3.

6. Click OK to complete the merge.

Y ou have reverted the changes within your working copy. Check the results, then commit the changes.

Use svndunpfil ter

Since TortoiseSVN never loses data, your “rolled back” revisions till exist as intermediate revisionsin
the repository. Only the HEAD revision was changed to a previous state. If you want to make revisions
disappear completely from your repository, erasing all trace that they ever existed, you have to use more
extreme measures. Unless there is areally good reason to do this, it is not recommended. One possible
reason would be that someone committed a confidential document to a public repository.

Theonly way to remove datafrom the repository isto use the Subversion command linetool svnadmi n.
You can find a description of how this works in the Repository Maintenance [http://svnbook.red-
bean.com/en/1.5/svn.reposadmin.maint.htmi].

B.5. Compare two revisions of a file or folder

If you want to compare two revisionsin an item's history, for example revisions 100 and 200 of the same
file, just use TortoiseSVN - Show Log to list the revision history for that file. Pick the two revisions
you want to compare then use Context Menu — Compare Revisions.

If you want to compare the sameitem in two different trees, for example the trunk and abranch, you can
use the repository browser to open up both trees, select the file in both places, then use Context Menu

- Compare Revisions.

If you want to compare two trees to see what has changed, for example the trunk and a tagged release,
you can use TortoiseSVN - Revision Graph Select the two nodes to compare, then use Context

Menu - Compare HEAD Revisions. Thiswill show alist of changed files, and you can then select
individual files to view the changes in detail. You can aso export a tree structure containing all the
changed files, or simply alist of all changed files. Read Section 4.10.3, “Comparing Folders’ for more

information. Alternatively use Context Menu — Unified Diff of HEAD Revisions to see a summary
of al differences, with minimal context.

B.6. Include a common sub-project

B.6.1.

Sometimes you will want to include another project within your working copy, perhaps some library
code. You don't want to make a duplicate of this code in your repository because then you would lose
connection with the original (and maintained) code. Or maybe you have several projectswhich share core
code. There are at least 3 ways of dealing with this.

Use svn:externals

Set the svn: ext er nal s property for afolder in your project. This property consists of one or more
lines; each line has the name of a sub-folder which you want to use as the checkout folder for common
code, and the repository URL that you want to be checked out there. For full detailsrefer to Section 4.18,
“External Items’.

Commit the new folder. Now when you update, Subversion will pull a copy of that project from its
repository into your working copy. The sub-folders will be created automatically if required. Each time
you update your main working copy, you will also receive the latest version of al external projects.

If the external project isin the same repository, any changes you make there there will beincluded in the
commit list when you commit your main project.

171

http://svnbook.red-bean.com/en/1.5/svn.reposadmin.maint.html
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.maint.html
http://svnbook.red-bean.com/en/1.5/svn.reposadmin.maint.html

How Dol l...

B.6.2.

B.6.3.

If the externa project is in a different repository, any changes you make to the external project will be
notified when you commit the main project, but you have to commit those external changes separately.

Of thethree methods described, thisisthe only onewhich needsno setup on theclient side. Onceexternals
are specified in the folder properties, all clients will get populated folders when they update.

Use a nested working copy

Create a new folder within your project to contain the common code, but do not add it to Subversion

Select TortoiseSVN — Checkout for the new folder and checkout a copy of the common code into it.
Y ou now have a separate working copy nested within your main working copy.

The two working copies are independent. When you commit changes to the parent, changesto the nested
WC are ignored. Likewise when you update the parent, the nested WC is not updated.

Use arelative location

If you use the same common core code in several projects, and you do not want to keep multiple working
copies of it for every project that usesit, you can just check it out to a separate |ocation which is related
to al the other projects which useit. For example:

C\Projects\Proj1
C.\Projects\Proj2
C.\Projects\Proj3
C:\ Proj ect s\ Cormon

and refer to the common code using arelative path, eg. . . \ . . \ Conmron\ DSPcor e.

If your projects are scattered in unrelated locations you can use a variant of this, which is to put the
common code in one location and use drive letter substitution to map that location to something you can
hard code in your projects, eg. Checkout the common code to D: \ Docurnrent s\ Fr anmewor k or C:
\ Docunents and Settings\{l ogi n}\ My Docunent s\ f ramewor k then use

SUBST X: "D:\Document s\ franewor k"

to create the drive mapping used in your source code. Y our code can then use absolute locations.

#i ncl ude "X: \superi o\superio. h"

This method will only work in an all-PC environment, and you will need to document the required drive
mappings so your team know where these mysterious files are. This method is strictly for use in closed
development environments, and not recommended for general use.

B.7. Create a shortcut to a repository

If you frequently need to open the repository browser at a particular location, you can create a desktop
shortcut using the automation interface to TortoiseProc. Just create a new shortcut and set the target to:

Tort oi seProc. exe /comuand: r epobr owser /path:"url/to/repository"

Of course you need to include the real repository URL.

B.8. Ignore files which are already versioned

172

How Dol l...

If you accidentally added some files which should have been ignored, how do you get them out of version
control without losing them? Maybe you have your own IDE configuration file which is not part of the
project, but which took you along time to set up just the way you like it.

If you have not yet committed the add, then all you haveto do is use TortoiseSVN - Revert... to undo
the add. Y ou should then add the file(s) to the ignore list so they don't get added again later by mistake.

If the files are aready in the repository, you have to do alittle more work.

1. Hold the Shift key to get the extended context menu and use TortoiseSVN - Delete (keep local)
to mark the file/folder for deletion from the repository without losing the local copy.

2. TortoiseSVN - Commit the parent folder.

3. Add thefile/folder to the ignore list so you don't get into the same trouble again.

B.9. Unversion a working copy
If you have a working copy which you want to convert back to a plain folder tree without the . svn

directories, you can simply export it to itself. Read Section 4.26.1, “Removing a working copy from
version control” to find out how.

B.10. Remove a working copy

If you have aworking copy which you no longer need, how do you get rid of it cleanly? Easy - just delete
it in Windows Explorer! Working copies are private local entities, and they are self-contained.

173

Appendix C. Useful Tips For
Administrators

This appendix contains solutions to problems/questions you might have when you are responsible for
deploying TortoiseSVN to multiple client computers.

C.1. Deploy TortoiseSVN via group policies

The TortoiseSVN installer comes as an M Sl file, which means you should have no problems adding that
MSI file to the group policies of your domain controller.

A good walk-through on how to do that can be found in the knowledge base article 314934 from
Microsoft: http://support.microsoft.com/?kbid=314934 [http://support.microsoft.com/?kbid=314934].

Versions 1.3.0 and later of TortoiseSVN must be installed under Computer Configuration and not under
User Configuration. Thisis because those versions need the new CRT and MFC DLLs, which can only
be deployed per computer and not per user. If you really must install TortoiseSVN on a per user basis,
then you must first install the MFC and CRT package version 8 from Microsoft on each computer you
want to install TortoiseSVN as per user.

C.2. Redirect the upgrade check

TortoiseSVN checks if there's a new version available every few days. If there is a newer version
available, adialog shows up informing the user about that.

&F TortoiseSVYN : Check For Updates @

Checking if a newer version of TortoiseSVN is
available...

Your version is: 1.3.0.5416
Current version is: 1.3.1.5521

A newer version is available. Please go to
http:/ftortoisesvn. tigris.org and download the
current version! %

Figure C.1. The upgrade dialog

If you'reresponsiblefor alot of usersin your domain, you might want your usersto use only versionsyou
have approved and not have them install always the latest version. Y ou probably don't want that upgrade
dialog to show up so your users don't go and upgrade immediately.

Versions 1.4.0 and later of TortoiseSVN allow you to redirect that upgrade check to your intranet server.
You can set the registry key HKCUW\ Sof t war e\ Tor t oi seSVN\ Updat eCheck URL (string value)
to an URL pointing to atext file in your intranet. That text file must have the following format:

1.4.1.6000
A new version of TortoiseSVN is available for you to downl oad!
http://192.168. 2. 1/ downl oads/ Tort oi seSVN- 1. 4. 1. 6000- svn-1. 4. 0. nsi

174

http://support.microsoft.com/?kbid=314934
http://support.microsoft.com/?kbid=314934

Useful Tips For Administrators

Thefirst linein that fileisthe version string. Y ou must make sure that it matches the exact version string
of the TortoiseSVN installation package. The second line is a custom text, shown in the upgrade dial og.
You can write there whatever you want. Just note that the space in the upgrade dialog is limited. Too
long messages will get truncated! Thethird lineisthe URL to the new installation package. ThisURL is
opened when the user clicks on the custom message label in the upgrade dialog. Y ou can also just point
the user to aweb page instead of the M Sl file directly. The URL is opened with the default web browser,
so if you specify aweb page, that page is opened and shown to the user. If you specify the MSI package,
the browser will ask the user to save the MSlI filelocally.

C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable

As of version 1.4.0 and later, the TortoiseSVN installer doesn't provide the user with the option to set
the SYN_ASP_DOT_NET_HACK environment variable anymore, since that caused many problems and
confusions with users which always install everything no matter if they know what it isfor.

But that option is only hidden for the user. You still can force the TortoiseSVN instaler to set that
environment variable by setting the ASPDOTNETHACK property to TRUE. For example, you can start
theinstaler like this:

nsi exec /i Tortoi seSVN-1.4.0. nmsi ASPDOTNETHACK=TRUE

C.4. Disable context menu entries

As of version 1.5.0 and later, TortoiseSVN allows you to disable (actually, hide) context menu entries.
Sincethisisafeature which should not be used lightly but only if thereisacompelling reason, thereisno
GUI for thisand it has to be done directly in the registry. This can be used to disable certain commands
for users who should not use them. But please note that only the context menu entriesin the explorer are
hidden, and the commands are still available through other means, e.g. the command line or even other
diaogsin TortoiseSVN itself!

The registry keys which hold the information on which context menus to show
are HKEY CURRENT _USER\ Sof t war e\ Tor t oi seSVN\ Cont ext MenuEnt ri esMaskLowand
HKEY_CURRENT_USER\ Sof t war e\ Tor t oi seSVN\ Cont ext MenuEnt ri esMaskHi gh.

Each of these registry entries is a DWORD value, with each bit corresponding to a specific menu entry. A
set bit means the corresponding menu entry is deactivated.

Value Menu entry

(0x0000000000000001 | Checkout
(0x0000000000000002 | Update
0x0000000000000004 | Commit
(0x0000000000000008 | Add
(0x0000000000000010 | Revert
(0x0000000000000020 | Cleanup
(0x0000000000000040 | Resolve
(0x0000000000000080 | Switch
0x0000000000000100 | Import
0x0000000000000200 | Export
0x0000000000000400 | Create Repository here
0x0000000000000800 | Branch/Tag

175

Useful Tips For Administrators

Value Menu entry

0x0000000000001000

Merge

0x0000000000002000

Delete

0x0000000000004000

Rename

0x0000000000008000

Update to revision

0x0000000000010000

Diff

0x0000000000020000

Show Log

0x0000000000040000

Edit Conflicts

0x0000000000080000

Relocate

(0x0000000000100000

Check for modifications

0x0000000000200000

Ignore

(0x0000000000400000

Repository Browser

(0x0000000000800000

Blame

0x0000000001000000

Create Patch

0x0000000002000000

Apply Patch

(0x0000000004000000

Revision graph

0x0000000008000000

Lock

0x0000000010000000

Remove Lock

0x0000000020000000

Properties

0x0000000040000000

Diff with URL

0x0000000080000000

Delete unversioned items

0x2000000000000000

Settings

0x4000000000000000

Help

0x8000000000000000

About

TableC.1. Menu entriesand their values

Example: to disable the “Relocate” the “ Delete unversioned items’ and the “ Settings” menu entries, add
the values assigned to the entries like this:

0x0000000000080000
0x0000000080000000
0x2000000000000000
0x2000000080080000

n + +

The lower DWORD value (0x80080000) must then be stored in HKEY _CURRENT _USER\ Sof t war e
\ Tor t oi seSVN\ Cont ext MenuEnt ri esMaskLow, the higher DWORD value (0x20000000) in
HKEY_CURRENT_USER\ Sof t war e\ Tor t oi seSVN\ Cont ext MenuEnt ri esMaskHi gh.

To enable the menu entries again, simply delete the two registry keys.

176

Appendix D. Automating TortoiseSVN

Sinceal commandsfor TortoiseSVN are controlled through command line parameters, you can automate
it with batch scripts or start specific commands and dialogs from other programs (e.g. your favourite
text editor).

i |Important

Remember that TortoiseSVN isa GUI client, and this automation guide shows you how to
make the TortoiseSVN dialogs appear to collect user input. If you want to write a script
which requiresnoinput, you should usethe official Subversion command lineclient instead.

D.1. TortoiseSVN Commands

The TortoiseSVN GUI programiscalled Tor t oi sePr oc. exe. All commands are specified with the
parameter / conmand: abcd where abcd is the required command name. Most of these commands
need at least one path argument, whichisgivenwith/ pat h: " sone\ pat h" . Inthefollowing table the
command refersto the/ conmand: abcd parameter and the path refersto the/ pat h: " sone\ pat h"
parameter.

Since some of the commands can take a list of target paths (e.g. committing several specific files) the /
pat h parameter can take several paths, separated by a* character.

TortoiseSVN uses temporary files to pass multiple arguments between the shell extension and the main
program. From TortoiseSVN 1.5.0 on and later, / not enpf i | e parameter is obsolete and there is no
need to add it anymore.

The progress dialog which is used for commits, updates and many more commands usually stays open
after the command has finished until the user presses the OK button. This can be changed by checking
the corresponding option in the settings dialog. But using that setting will close the progress dialog, no
matter if you start the command from your batch file or from the TortoiseSVN context menu.

To specify a different location of the configuration file, use the parameter / conf i gdi r: "path\to
\config\directory". Thiswill override the default path, including any registry setting.

To close the progress dialog at the end of a command automatically without using the permanent setting
you can passthe/ cl oseonend parameter.

e / cl oseonend: 0 don't close the dialog automatically

* /cl oseonend: 1 auto closeif no errors

» /cl oseonend: 2 auto closeif no errors and conflicts

e / cl oseonend: 3 auto closeif no errors, conflicts and merges

» / cl oseonend: 4 auto closeif no errors, conflicts and merges for local operations

Thetable below lists all the commands which can be accessed using the TortoiseProc.exe command line.
As described above, these should be used in the form / conmmand: abcd. In the table, the/ command
prefix is omitted to save space.

:about Shows the about dialog. Thisis also shown if no command is given.

:log Opensthelogdialog. The/ pat h specifiesthefileor folder for whichthelog
should be shown. Three additional options can be set: / st artrev: xxXx,
/endrev: xxx and/ stri ct

177

Automating TortoiseSVN

Command Description

:checkout Opensthe checkout dialog. The/ pat h specifiesthetarget directory and the
/ ur | specifiesthe URL to checkout from.

:import Opens the import dialog. The / pat h specifies the directory with the data
to import.
:update Updates the working copy in/ pat h to HEAD. If the option/ r ev isgiven

then adialog is shown to ask the user to which revision the update should go.
To avoid the dialog specify arevision number / r ev: 1234. Other options
are/ nonrecursi ve and/ i gnor eext er nal s.

:commit Opens the commit dialog. The / pat h specifies the target directory or the
list of filesto commit. You can also specify the/ | ognsg switch to pass a
predefined log message to the commit dialog. Or, if you don't want to pass
the log message on the command line, use /| ognsgfi | e: pat h, where
pat h pointsto afile containing the log message. To pre-fill the bug ID box
(in case you've set up integration with bug trackers properly), you can use
the/ bugi d: "t he bug id here" todo that.

:add Addsthefilesin/ pat h to version control.

revert Revertslocal modifications of aworking copy. The/ pat h tellswhichitems
to revert.

:cleanup Cleans up interrupted or aborted operations and unlocks the working copy
in/ pat h.

‘resolve Marks a conflicted file specified in / pat h asresolved. If / noquest i on
isgiven, then resolving is done without asking the user first if it really should
be done.

‘repocreate Creates arepository in/ pat h

:switch Opens the switch dialog. The/ pat h specifies the target directory.

:export Exports the working copy in / pat h to another directory. If the / pat h

points to an unversioned directory, a dialog will ask for an URL to export
to the directory in/ pat h.

:merge Opens the merge dialog. The / pat h specifies the target directory.
For merging a revision range, the following options are available: /
fromurl: URL,/revrange: stri ng.For merging two repository trees,
the following options are available: / fromurl : URL, /tourl : URL, /
fronrev: xxx and/ t or ev: xxx. These pre-fill therelevant fieldsin the

merge dialog.
:mergeall Opens the merge all dialog. The/ pat h specifies the target directory.
:copy Brings up the branch/tag dialog. The/ pat h isthe working copy to branch/

tag from. And the / ur| is the target URL. You can also specify the /
| ognsg switch to pass a predefined log message to the branch/tag dialog.
Or, if you don't want to pass the log message on the command line, use
/1 ognsgfi |l e: pat h, where pat h points to a file containing the log

message.
‘settings Opens the settings dialog.

‘remove Removes thefile(s) in/ pat h from version control.

rename Renames the file in / pat h. The new name for the file is asked with a

dialog. To avoid the question about renaming similar filesin one step, pass
/ noquest i on.

diff Starts the external diff program specified in the TortoiseSVN settings. The
/ pat h specifies the first file. If the option / pat h2 is set, then the diff
program is started with thosetwo files. If / pat h2 isomitted, then the diff is

178

Automating TortoiseSVN

Command Description

done between thefilein/ pat h and itsBASE. To explicitly set therevision
numbersuse/ st artrev: xxx and/ endr ev: xxx. If / bl ame isset and
/ pat h2 is not set, then the diff is done by first blaming the files with the
given revisions.

:showcompare

Depending on the URL sand revisionsto compare, thiseither showsaunified
diff (if the option uni fi ed is set), a dialog with a list of files that have
changed or if the URL s point to files starts the diff viewer for thosetwo files.

The options url 1, url 2, revisionl and revision2 must be
specified. The options pegr evi si on, i gnor eancestry, bl ane and
uni fi ed areoptional.

:conflicteditor

Starts the conflict editor specified in the TortoiseSVN settings with the
correct files for the conflicted filein/ pat h.

‘relocate Opens the relocate dialog. The / pat h specifies the working copy path to
relocate.

:help Opens the help file.

‘repostatus Opensthe check-for-modificationsdialog. The/ pat h specifiestheworking
copy directory.

:repobrowser Starts the repository browser dialog, pointing to the URL of the working
copy given in/ pat h or / pat h points directly to an URL. An additiona
option/ r ev: xxx can be used to specify the revision which the repository
browser should show. If the/ r ev: xxx isomitted, it defaultsto HEAD. If /
pat h pointsto an URL, the/ pr oj ect properti espat h: pat h/ t o/
we specifies the path from where to read and use the project properties.

:ignore Adds al targets in / pat h to the ignore list, i.e. adds the svn: i gnore
property to those files.

:blame Opens the blame dialog for the file specified in/ pat h.

If the options/ st art rev and / endr ev are set, then the dialog asking
for the blame range is not shown but the revision values of those options are
used instead.

If theoption/ | i ne: nnn isset, TortoiseBlame will open with the specified
line number showing.

The options /i gnoreeol, /i gnor espaces and /
i gnor eal | spaces are also supported.

‘cat Saves a file from an URL or working copy path given in / path to
the location given in / savepat h: pat h. The revision is given in /
revi si on: xxx. This can be used to get afile with a specific revision.

‘Cregtepatch Creates a patch file for the path givenin/ pat h.

‘revisiongraph Shows the revision graph for the path givenin/ pat h.

:lock Locks afile or al filesin adirectory givenin/ pat h. The 'lock’ dialog is
shown so the user can enter acomment for the lock.

:unlock Unlocks afile or al filesin adirectory givenin/ pat h.

:rebuildiconcache

Rebuilds the windows icon cache. Only use this in case the windows icons
are corrupted. A side effect of this (which can't be avoided) is that the
icons on the desktop get rearranged. To suppress the message box, pass /
noquesti on.

179

Automating TortoiseSVN

Command Description

:properties Shows the properties dialog for the path givenin/ pat h.

TableD.1. List of available commands and options

Examples (which should be entered on one line):

Tortoi seProc. exe /comrand: commi t
/path:"c:\svn_we\filel.txt*c:\svn_wec\file2. txt"
/1 ognmeg: "test | og nessage" /closeonend: 0

Tortoi seProc. exe /command: update /path:"c:\svn_wc\" /cl oseonend: 0

Tort oi seProc. exe /command: log /path:"c:\svn_wc\filel. txt"
/startrev:50 /endrev: 60 /cl oseonend: 0

D.2. TortoiselDiff Commands

Theimage diff tool has afew command line options which you can use to control how thetool is started.
Theprogramiscaled Tort oi sel Di ff. exe.

The table below lists al the options which can be passed to the image diff tool on the command line.

‘ Option ‘ Description ‘

Jleft Path to the file shown on the | eft.

lefttitle A title string. This string is used in the image view title instead of the full
path to the imagefile.

:right Path to the file shown on theright.

:righttitle A title string. This string is used in the image view title instead of the full
path to the imagefile.

:overlay If specified, the image diff tool switches to the overlay mode (alpha blend).

fit If specified, the image diff tool fits both images together.

:showinfo Shows the image info box.

TableD.2. List of available options
Example (which should be entered on one line):
TortoiselDiff.exe /left:"c:\images\ingl.jpg" /lefttitle:"inage 1"

/[right:"c:\inmages\ing2.jpg" /righttitle:"imge 2"
/fit [overlay

180

Appendix E. Command Line Interface
Cross Reference

Sometimes this manual refersyou to the main Subversion documentation, which describes Subversionin
terms of the Command Line Interface (CLI). To help you understand what TortoiseSV N is doing behind
the scenes, we have compiled a list showing the equivalent CLI commands for each of TortoiseSVN's
GUI operations.

| Note

Even though there are CLI equivalents to what TortoiseSVN does, remember that
TortoiseSVN does not call the CLI but uses the Subversion library directly.

If you think you have found a bug in TortoiseSVN, we may ask you to try to reproduce it using the CLI,
so that we can distinguish TortoiseSVN issues from Subversion issues. This reference tells you which
command to try.

E.1. Conventions and Basic Rules

In the descriptions which follow, the URL for a repository location is shown simply as URL, and an
example might be ht t p: / / t ort oi sesvn. googl ecode. coni svn/trunk. The working copy
path is shown simply as PATH, and an example might be C: \ Tor t oi seSVN\t r unk.

1| |Important

Because TortoiseSVN is a Windows Shell Extension, it is not able to use the notion of a
current working directory. All working copy paths must be given using the absolute path,
not arelative path.

Certainitemsare optional, and these are often controlled by checkboxes or radio buttonsin TortoiseSVN.
These options are shown in [square brackets] in the command line definitions.

E.2. TortoiseSVN Commands
E.2.1. Checkout

svn checkout [-N] [--ignore-externals] [-r rev] URL PATH
If Only checkout the top folder is checked, use the - N switch.

If Omit externals is checked, usethe- - i gnor e- ext er nal s switch.

If you are checking out a specific revision, specify that after the URL using - r switch.

E.2.2. Update

svn info URL of WC
svn update [-r rev] PATH

Updating multiple items is currently not an atomic operation in Subversion. So TortoiseSVN first finds
the HEAD revision of the repository, and then updates all items to that particular revision number to
avoid creating a mixed revision working copy.

181

Command Line Interface Cross Reference

E.2.3.

E.2.4.

E.2.5.

E.2.6.

If only one item is selected for updating or the selected items are not al from the same repository,
TortoiseSVN just updatesto HEAD.

No command line options are used here. Update to revision also implements the update command, but
offers more options.

Update to Revision

svn info URL of WC
svn update [-r rev] [-N] [--ignore-externals] PATH

If Only update the top folder is checked, use the - N switch.

If Omit externals is checked, usethe- - i gnor e- ext er nal s switch.

Commit

In TortoiseSV N, the commit dialog uses several Subversion commands. Thefirst stage is a status check
which determines the items in your working copy which can potentially be committed. Y ou can review
thelist, diff files against BASE and select the items you want to be included in the commit.

svn status -v PATH

If Show unversioned files is checked, TortoiseSVN will aso show al unversioned files and folders
in the working copy hierarchy, taking account of the ignore rules. This particular feature has no direct
equivalent in Subversion, asthesvn st at us command does not descend into unversioned folders.

If you check any unversioned files and folders, those items will first be added to your working copy.

svn add PATH...

When you click on OK, the Subversion commit takes place. If you have left all the file selection
checkboxes in their default state, TortoiseSVN uses a single recursive commit of the working copy. If
you desel ect somefiles, then anon-recursive commit (- N) must be used, and every path must be specified
individually on the commit command line.

svn conmit -m "LogMessage" [-N] [--no-unlock] PATH...
LogMessage here represents the contents of the log message edit box. This can be empty.
If Keep locks ischecked, usethe - - no- unl ock switch.

Diff

svn di ff PATH

If you use Diff from the main context menu, you are diffing a modified file against its BASE revision.
The output from the CLI command above aso does this and produces output in unified-diff format.
However, thisis not what TortoiseSVN is using. TortoiseSVN uses TortoiseMerge (or a diff program of
your choosing) to display differencesvisually between full-text files, so thereisno direct CLI equivalent.

Y ou can also diff any 2 filesusing TortoiseSVN, whether or not they are version controlled. TortoiseSVN
just feeds the two files into the chosen diff program and lets it work out where the differenceslie.

Show Log

182

Command Line Interface Cross Reference

svn log -v -r O:N--limt 100 [--stop-on-copy] PATH
or
svn log -v -r MN [--stop-on-copy] PATH

By default, TortoiseSV N triesto fetch 100 log messages using the --limit method. If the settings instruct
it to use old APIs, then the second form is used to fetch the log messages for 100 repository revisions.

If Stop on copy/rename is checked, usethe - - st op- on- copy switch.

E.2.7. Check for Modifications

svn status -v PATH
or
svn status -u -v PATH

The initial status check looks only at your working copy. If you click on Check repository then the
repository isalso checked to seewhich fileswould be changed by an update, which requiresthe - u switch.

If Show unversioned files is checked, TortoiseSVN will also show al unversioned files and folders
in the working copy hierarchy, taking account of the ignore rules. This particular feature has no direct
equivalent in Subversion, asthesvn st at us command does not descend into unversioned folders.

E.2.8. Revision Graph
Therevision graph is afeature of TortoiseSVN only. There's no equivalent in the command line client.

What TortoiseSVN doesisan

svn info URL of WC
svn log -v URL

where URL is the repository root and then analyzes the data returned.

E.2.9. Repo Browser

svn info URL_of WC
svn list [-r rev] -v URL

Youcanusesvn i nf o to determine the repository root, which is the top level shown in the repository
browser. Y ou cannot navigate Up abovethislevel. Also, thiscommand returnsall thelocking information
shown in the repository browser.

Thesvn |i st call will list the contents of adirectory, given aURL and revision.
E.2.10. Edit Conflicts

This command has no CLI equivalent. It invokes TortoiseMerge or an external 3-way diff/merge tool to
look at the files involved in the conflict and sort out which linesto use.

E.2.11. Resolved

svn resol ved PATH

E.2.12. Rename

183

Command Line Interface Cross Reference

svn renanme CURR_PATH NEW PATH

E.2.13. Delete

svn del et e PATH

E.2.14. Revert

svn status -v PATH

Thefirst stage is a status check which determines the items in your working copy which can potentially
bereverted. Y ou can review thelist, diff files against BASE and select the items you want to be included
in the revert.

Whenyou click on OK, the Subversion revert takes place. If you haveleft all thefile selection checkboxes

intheir default state, TortoiseSVN usesasinglerecursive (- R) revert of theworking copy. If you deselect
some files, then every path must be specified individually on the revert command line.

svn revert [-R PATH. ..

E.2.15. Cleanup

svn cl eanup PATH

E.2.16. Get Lock

svn status -v PATH

The first stage is a status check which determines the files in your working copy which can potentially
be locked. Y ou can select the items you want to be locked.

svn |l ock -m "LockMessage" [--force] PATH. ..

LockMessage here represents the contents of the lock message edit box. This can be empty.

If Steal the locks is checked, usethe- - f or ce switch.

E.2.17. Release Lock

svn unl ock PATH

E.2.18. Branch/Tag

svn copy -m "LogMessage" URL URL
or

svn copy -m "LogMessage" URL@ev URL@ ev
or

svn copy -m "LogMessage" PATH URL

The Branch/Tag dialog performs a copy to the repository. There are 3 radio button options:

» HEAD revision in the repository

184

Command Line Interface Cross Reference

* Specific revision in repository

» Working copy

which correspond to the 3 command line variants above.

LogMessage here represents the contents of the log message edit box. This can be empty.
E.2.19. Switch

svn info URL _of WC

svn switch [-r rev] URL PATH

E.2.20. Merge

svn nerge [--dry-run] --force From URL@evN To URL@ evM PATH

The Test Merge performs the same merge with the - - dr y- r un switch.

svn diff From URL@evN To_ URL@ evM
The Unified diff shows the diff operation which will be used to do the merge.

E.2.21. Export

svn export [-r rev] [--ignore-externals] URL Export_PATH
Thisform is used when accessed from an unversioned folder, and the folder is used as the destination.

Exporting aworking copy to adifferent location is done without using the Subversion library, so there's
no matching command line equivalent.

What TortoiseSVN does is to copy al files to the new location while showing you the progress of the
operation. Unversioned files/folders can optionally be exported too.

In both cases, if Omit externals is checked, usethe - - i gnor e- ext er nal s switch.

E.2.22. Relocate

svn switch --relocate From URL To_URL

E.2.23. Create Repository Here

svnadmn create --fs-type fsfs PATH

E.2.24. Add

svn add PATH...
If you selected afolder, TortoiseSVN first scansit recursively for items which can be added.

E.2.25. Import

185

Command Line Interface Cross Reference

svn inmport -m LogMessage PATH URL

LogMessage here represents the contents of the log message edit box. This can be empty.

E.2.26. Blame

svn blame -r N.M-v PATH
svn log -r N M PATH

If you use TortoiseBlame to view the blame info, the file log is also required to show log messagesin a
tooltip. If you view blame as atext file, thisinformation is not required.

E.2.27. Add to Ignore List

svn propget svn:ignore PATH > tenpfile
{edit new ignore iteminto tenmpfil e}
svn propset svn:ignore -F tenpfile PATH

Because the svn: i gnor e property is often amulti-line value, it is shown here as being changed via a
text file rather than directly on the command line.

E.2.28. Create Patch

svn di ff PATH > patch-file

TortoiseSVN creates a patch file in unified diff format by comparing the working copy with its BASE
version.

E.2.29. Apply Patch

Applying patchesisatricky business unlessthe patch and working copy are at the same revision. Luckily
for you, you can use TortoiseMerge, which has no direct equivalent in Subversion.

186

Appendix F. Implementation Details

This appendix contains a more detailed discussion of the implementation of some of TortoiseSVN's
features.

F.1. Icon Overlays

Every file and folder has a Subversion status val ue as reported by the Subversion library. In the command
line client, these are represented by single letter codes, but in TortoiseSVN they are shown graphically
using the icon overlays. Because the number of overlaysisvery limited, each overlay may represent one
of several status values.

The Conflicted overlay isused to represent theconf | i ct ed state, where an update or switch resultsin
conflicts between local changes and changes downloaded from the repository. It is also used to indicate
theobst r uct ed state, which can occur when an operation is unable to complete.

9

The Modified overlay represents the nodi f i ed state, where you have made local modifications, the
nmer ged state, where changes from the repository have been merged with local changes, and the
r epl aced state, where afile has been del eted and replaced by another different file with the same name.

The Deleted overlay represents the del et ed state, where an item is scheduled for deletion, or the
nm ssi ng state, where an itemis not present. Naturally an item which is missing cannot have an overlay
itself, but the parent folder can be marked if one of its child itemsis missing.

£

The Added overlay issimply used to represent theadded status when an item has been added to version
control.

&

The In Subversion overlay isused to represent an item which isinthenor nal state, or aversioned item
whose state is not yet known. Because TortoiseSV N uses a background caching process to gather status,
it may take afew seconds before the overlay updates.

o

v

The Needs Lock overlay is used to indicate when a file has the svn: needs- | ock property set. For
working copies which were created using Subversion 1.4.0 and later, the svn: needs- | ock statusis
cached locally by Subversion and thisisused to determine when to show this overlay. For working copies
which arein pre-1.4.x format, TortoiseSVN shows this overlay when the file has read-only status. Note
that Subversion automatically upgrades working copies when you update them, although the caching of
thesvn: needs- | ock property may not happen until the file itself is updated.

| &

The Locked overlay is used when the local working copy holds alock for that file.

187

Implementation Details

The Ignored overlay is used to represent an item which isin thei gnor ed state, either due to a global
ignore pattern, or thesvn: i gnor e property of the parent folder. This overlay is optional.

-

The Unversioned overlay is used to represent an item which isin the unver si oned state. Thisis an
item in aversioned folder, but which is not under version control itself. This overlay is optional.

If an item has subversion status none (the item is not within aworking copy) then no overlay is shown.
If you have chosen to disable the Ignored and Unversioned overlays then no overlay will be shown for
those files either.

An item can only have one Subversion status value. For example a file could be locally modified and
it could be marked for deletion at the same time. Subversion returns a single status value - in this case
del et ed. Those priorities are defined within Subversion itself.

When TortoiseSVN displays the status recursively (the default setting), each folder displays an overlay
reflecting its own status and the status of all its children. In order to display a single summary overlay,
we use the priority order shown above to determine which overlay to use, with the Conflicted overlay
taking highest priority.

In fact, you may find that not all of these icons are used on your system. This is because the number
of overlays allowed by Windows is limited to 15. Windows uses 4 of those, and the remaining 11 can
be used by other applications. If there are not enough overlay dots available, TortoiseSVN triesto be a
“Good Citizen (TM)” and limits its use of overlaysto give other apps a chance.

» Normal, Modified and Conflicted are always |oaded and visible.
» Deleted isloaded if possible, but falls back to Modified if there are not enough dots.
» Read-Only isloaded if possible, but falls back to Normal if there are not enough dlots.

» Locked is only loaded if there are fewer than 13 overlays aready loaded. It falls back to Normal if
there are not enough slots.

» Added is only loaded if there are fewer than 14 overlays already loaded. It falls back to Modified if
there are not enough slots.

188

Appendix G. Securing Svnserve using
SSH

This section provides a step-by-step guide to setting up Subversion and TortoiseSVN to use the svn
+ssh protocol. If you already use authenticated SSH connections to login to your server, then you are
already there and you can find more detail in the Subversion book. If you are not using SSH but would
like to do so to protect your Subversion installation, this guide gives a smple method which does not
involve creating a separate SSH user account on the server for every subversion user.

In this implementation we create a single SSH user account for all subversion users, and use different
authentication keys to differentiate between the real Subversion users.

In this appendix we assumethat you already have the subversion toolsinstalled, and that you have created
arepository as detailed elsewhere in this manual. Note that you should not start svnserve as a service or
daemon when used with SSH.

Much of the information here comes from a tutorial provided by Marc Logemann, which can be
found at www.logemann.org [http://www.logemann.org/2007/03/13/subversi on-tortoisesvn-ssh-howto/
] Additional information on setting up a Windows server was provided by Thorsten Mller. Thanks guys!

G.1. Setting Up a Linux Server

Y ou need to have SSH enabled on the server, and here we assume that you will be using OpenSSH. On
most distributions this will aready be installed. To find out, type:

ps xa | grep sshd
and look for ssh jobs.

One point to note is that if you build Subversion from source and do not provide any argument to . /

confi gur e, Subversion createsa bi n directory under / usr /| ocal and placesits binaries there. If
you want to use tunneling mode with SSH, you have to be aware that the user logging in via SSH needs
to execute the svnserve program and some other binaries. For this reason, either place/ usr /| ocal /

bi n into the PATH variable or create symbolic links of your binariesto the/ usr / sbi n directory, or
to any other directory which is commonly in the PATH.

To check that everything is OK, login in as the target user with SSH and type:

whi ch svnserve
This command should tell you if svnserveis reachable.

Create anew user which we will use to access the svn repository:

useradd - m svnuser

Be sureto give this user full access rights to the repository.

G.2. Setting Up a Windows Server

Install Cygwin SSH daemon as described here: http://pigtail.net/LRP/printsrv/cygwin-sshd.html [http://
pigtail.net/L RP/printsrv/cygwin-sshd.htmi]

Create a new Windows user account svnuser which we will use to access the repository. Be sure to
give this user full accessrightsto the repository.

189

http://www.logemann.org/2007/03/13/subversion-tortoisesvn-ssh-howto/
http://www.logemann.org/2007/03/13/subversion-tortoisesvn-ssh-howto/
http://pigtail.net/LRP/printsrv/cygwin-sshd.html
http://pigtail.net/LRP/printsrv/cygwin-sshd.html
http://pigtail.net/LRP/printsrv/cygwin-sshd.html

Securing Svnserve using SSH

If thereis no password file yet then create one from the Cygwin console using:

nkpasswd -1 > /etc/passwd

G.3. SSH Client Tools for use with TortoiseSVN

Grab the tools we need for using SSH on the windows client from this site http://
www.chiark.greenend.org.uk/~sgtatham/putty/ [http://www.chiark.greenend.org.uk/~sgtatham/putty/]
Just go to the download section and get Put t y, Pl i nk, Pageant and Put t ygen.

G.4. Creating OpenSSH Certificates

G.4.1.

G.4.2.

The next step isto create a key pair for authentication. There are two possible ways to create keys. The
first isto create the keys with PUTTY gen on the client, upload the public key to your server and use the
private key with PUTTY . The other isto create the key pair with the OpenSSH tool ssh-keygen, download
the private key to your client and convert the private key to a PUTTY -style private key.

Create Keys using ssh-keygen

Login to the server asr oot or svnuser and type:

ssh-keygen -b 1024 -t dsa -N passphrase -f keyfile

substituting a real pass-phrase (which only you know) and key file. We just created a SSH2 DSA key
with 1024 hit key-phrase. If you type

Is -1 keyfile*

you will seetwo files, keyfi | e andkeyfi | e. pub. Asyou might guess, the. pub fileisthe public
key file, the other is the private one.

Append the public key to those in the . ssh folder within the svnuser home directory:

cat keyfile.pub >> /hone/svnuser/.ssh/authorized_keys

In order to use the private key we generated, we have to convert it to a putty format. Thisis because the
private key file format is not specified by a standards body. After you download the private key file to

your client PC, start PUTTY gen and use Conversions — Import key. Browse to your file keyfil e
which you got from the server the passphrase you used when creating the key. Finally click on Save
private key and savethefileaskeyfi | e. PPK.

Create Keys using PuTTYgen
Use PUTTY gen to generate a public-key/private-key pair and save it. Copy the public key to the server

and append it to those in the . ssh folder within the svnuser home directory:

cat keyfile.pub >> /hone/svnuser/.ssh/authorized_keys

G.5. Test using PUTTY

To test the connection we will use PUTTY . Start the program and on the Session tab set the hostname to
the name or | P address of your server, the protocol to SSH and save the session as SvnConnect i on or
whatever name you prefer. On the SSH tab set the preferred SSH protocol version to 2 and from Auth
set the full path to the . PPK private key file you converted earlier. Go back to the Sessions tab and hit
the Save button. Y ou will now see SvnConnect i on inthelist of saved sessions.

190

http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/
http://www.chiark.greenend.org.uk/~sgtatham/putty/

Securing Svnserve using SSH

Click on Open and you should see atelnet style login prompt. Usesvnuser asthe user nameand if all
iswell you should connect directly without being prompted for a password.

You may need to edit / et ¢/ sshd_confi g on the server. Edit lines as follows and restart the SSH
service afterwards.

PubkeyAut henti cati on yes

Passwor dAut henti cati on no

Per m t Enpt yPasswor ds no

Chal | engeResponseAut henti cati on no

G.6. Testing SSH with TortoiseSVN

So far we have only tested that you can login using SSH. Now we need to make sure that
the SSH connection can actually run svnserve. On the server modify / honme/ svnuser/ . ssh/
aut hori zed_keys as follows to allow many subversion authors to use the same system account,
svnuser . Notethat every subversion author uses the samelogin but a different authentication key, thus
you have to add one line for every author.

Note: Thisisall on one very long line.

conmand="svnserve -t -r <ReposRoot Pat h> --tunnel - user =<aut hor >",
no- port - f orwar di ng, no- agent - f orwar di ng, no- X11-f or war di ng,
no-pty ssh-rsa <PublicKey> <Coment >

There are several values that you need to set according to your setup.

<ReposRoot Pat h> should bereplaced with the path to the directory containing your repositories. This
avoids the need to specify full server paths within URLSs. Note that you must use forward slashes even
on a Windows server, e.qg. c: / svn/ r eposr oot . In the examples below we assume that you have a
repository folder within the repository root caled r epos.

<aut hor > should be replaced with the svn author that you want to be stored on commit. Thisalso allows
svnserve to use its own access rights within svnser ve. conf .

<Publ i cKey> should be replaced with the public key that you generated earlier.

<Comment > can beany comment you like, but it isuseful for mapping an svn author nameto the person's
real name.

Right click on any folder in Windows Explorer and select TortoiseSVN — Repo-Browser. You will
be prompted to enter a URL, so enter onein this form:

svn+ssh: //svnuser @vnConnecti on/ r epos

What does this URL mean? The Schema name is svn+ssh which tells TortoiseSVYN how to handle
the requests to the server. After the double slash, you specify the user to connect to the server, in our
case svnuser . After the @we supply our PUTTY session name. This session hame contains al details
like where to find the private key and the server's IP or DNS. Lastly we have to provide the path to the
repository, relative to the repository root on the server, as specified inthe aut hor i zed_keys file.

Click on OK and you should be able to browse the repository content. If so you now have arunning SSH
tunnel in conjunction with TortoiseSVN.

Notethat by default TortoiseSVN usesits own version of Plink to connect. This avoids aconsole window
popping up for every authentication attempt, but it also means that there is nowhere for error messages
to appear. If you receive the error “Unable to write to standard output”, you can try specifying Plink as

191

Securing Svnserve using SSH

the client in TortoiseSVN's network settings. Thiswill allow you to see the real error message generated
by Plink.

G.7. SSH Configuration Variants

One way to simplify the URL in TortoiseSVN isto set the user inside the PUTTY session. For thisyou
have to load your aready defined session SvnConnecti on in PUTTY and in the Connection tab
set Auto login user to the user name, e.g. svnuser . Save your PUTTY session as before and try the
following URL inside TortoiseSVN:

svn+ssh: // SvnConnecti on/ r epos

This time we only provide the PUTTY session SvnConnect i on to the SSH client TortoiseSVN uses
(TortoisePlink.exe). This client will check the session for all necessary details.

At the time of writing PUTTY does not check all saved configurations, so if you have multiple
configurations with the same server name, it will pick the first one which matches. Also, if you edit the
default configuration and save it, the auto login user name is not saved.

Many people like to use Pageant for storing all their keys. BecauseaPUTTY session is capable of storing
akey, you don't always need Pageant. But imagine you want to store keys for several different servers;
in that case you would have to edit the PUTTY session over and over again, depending on the server you
are trying to connect with. In this situation Pageant makes perfect sense, because when PUTTY, Plink,
TortoisePlink or any other PUTTY -based tool is trying to connect to an SSH server, it checks all private
keys that Pageant holds to initiate the connection.

For this task, smply run Pageant and add the private key. It should be the same private key you defined
in the PUTTY session above. If you use Pageant for private key storage, you can delete the reference
to the private key file in your saved PUTTY session. Y ou can add more keys for other servers, or other
users of course.

If you don't want to repeat this procedure after every reboot of your client, you should place Pageant
in the auto-start group of your Windows installation. Y ou can append the keys with complete paths as
command line arguments to Pageant.exe

The last way to connect to an SSH server is simply by using this URL inside TortoiseSV N:

svn+ssh: //svnuser @O00. 101. 102. 103/ repos
svn+ssh: //svnuser @ydonmai n. com r epos

Asyou can see, wedon't useasaved PUTTY session but an | P address (or domain name) asthe connection
target. We also supply the user, but you might ask how the private key file will be found. Because
TortoisePlink.exeisjust amodified version of the standard Plink tool fromthe PUTTY suite, TortoiseSVN
will also try all the keys stored in Pageant.

If you use this last method, be sure you do not have a default username set in PUTTY.
We have had reports of a bug in PUTTY causing connections to close in this case. To
remove the default user, ssimply clear HKEY_ _CURRENT_USER\ Sof t war e\ Si nronTat ham Putty
\ Sessi ons\ Def aul t %20Set t i ngs\ Host Nane

192

Glossary

Add

BASE revision

BDB

Blame

Branch

Checkout

Cleanup

Commit

Conflict
Copy

Delete

A Subversion command that is used to add afile or directory to your
working copy. The new items are added to the repository when you
commit.

The current base revision of afile or folder in your working copy.
Thisisthe revision the file or folder was in, when the last checkout,
update or commit wasrun. The BASE revisionisnormally not equal
to the HEAD revision.

Berkeley DB. A well tested database backend for repositories, that
cannot be used on network shares. Default for pre 1.2 repositories.

This command is for text files only, and it annotates every line to
show the repository revision in which it was last changed, and the
author who made that change. Our GUI implementation is called
TortoiseBlame and it also shows the commit date/time and the log
message when you hover the mouse of the revision number.

A term frequently used in revision control systems to describe what
happens when development forks at a particular point and follows 2
separate paths. You can create a branch off the main development
line so as to develop a new feature without rendering the main line
unstable. Or you can branch a stable release to which you make only
bug fixes, while new devel opments take place on the unstabl e trunk.
In Subversion abranch isimplemented as a“ cheap copy”.

A Subversion command which creates a local working copy in an
empty directory by downloading versioned files from the repository.

To quote from the Subversion book: “ Recursively clean up the
working copy, removing locks and resuming unfinished operations.
If you ever get a working copy locked error, run this command to
remove stale locks and get your working copy into a usable state
again. " Note that in this context lock refers to local filesystem
locking, not repository locking.

This Subversion command is used to pass the changes in your local
working copy back into the repository, creating a new repository
revision.

When changes from the repository are merged with local changes,
sometimes those changes occur on the same lines. In this case
Subversion cannot automatically decide which version to useand the
fileis said to be in conflict. You have to edit the file manually and
resolve the conflict before you can commit any further changes.

In a Subversion repository you can create a copy of asingle file or
an entire tree. These are implemented as “cheap copies’ which act
abit like alink to the original in that they take up almost no space.
Making a copy preserves the history of the item in the copy, so you
can trace changes made before the copy was made.

When you delete a versioned item (and commit the change) the item
no longer exists in the repository after the committed revision. But
of courseit still existsin earlier repository revisions, so you can still
access it. If necessary, you can copy a deleted item and “resurrect”
it complete with history.

193

Glossary

Diff

Export

FSFS

GPO
HEAD revision
History

Import

Lock

Log

Merge

Patch

Property

Relocate

Shorthand for “Show Differences’. Very useful when you want to
see exactly what changes have been made.

This command produces a copy of a versioned folder, just like a
working copy, but without the local . svn folders.

A proprietary Subversion filesystem backend for repositories. Can
be used on network shares. Default for 1.2 and newer repositories.

Group policy object
The latest revision of afile or folder in the repository.
Show the revision history of afile or folder. Also known as“Log".

Subversion command to import an entire folder hierarchy into the
repository in asingle revision.

When you take out a lock on a versioned item, you mark it in the
repository as non-committable, except from the working copy where
the lock was taken out.

Show the revision history of a file or folder. Also known as
“History”.

The process by which changes from the repository are added to your
working copy without disrupting any changesyou have already made
locally. Sometimesthese changes cannot be reconciled automatically
and the working copy is said to bein conflict.

Merging happens automatically when you update your working
copy. You can also merge specific changes from another branch
using TortoiseSVN's Merge command.

If a working copy has changes to text files only, it is possible to
use Subversion's Diff command to generate a single file summary
of those changes in Unified Diff format. A file of this type is often
referred to as a “Patch”, and it can be emailed to someone else (or
to a mailing list) and applied to another working copy. Someone
without commit access can make changes and submit a patch file
for an authorized committer to apply. Or if you are unsure about a
change you can submit a patch for othersto review.

In addition to versioning your directories and files, Subversion
allows you to add versioned metadata - referred to as “properties”
to each of your versioned directories and files. Each property has
a name and a value, rather like a registry key. Subversion has
some special propertieswhich it usesinternally, suchassvn: eol -
st yl e. TortoiseSVN has sometoo, such ast svn: | ogm nsi ze.
You can add your own properties with any name and value you
choose.

If your repository moves, perhaps because you have moved it to
a different directory on your server, or the server domain name
has changed, you need to “relocate” your working copy so that its
repository URL s point to the new location.

Note: you should only use this command if your working copy
is referring to the same location in the same repository, but the
repository itself has moved. In any other circumstance you probably
need the “ Switch” command instead.

194

Glossary

Repository

Resolve

Revert

Revision

Revision Property (revprop)

Switch

Update

Working Copy

A repository isacentral placewhere datais stored and maintained. A
repository can beaplacewhere multipledatabases or filesarelocated
for distribution over a network, or arepository can be alocation that
is directly accessible to the user without having to travel across a
network.

When filesin aworking copy areleft in aconflicted state following a
merge, those conflicts must be sorted out by a human using an editor
(or perhaps TortoiseMerge). Thisprocessisreferred to as” Resolving
Conflicts’. When this is complete you can mark the conflicted files
as being resolved, which allows them to be committed.

Subversion keeps alocal “pristine” copy of each file as it was when
you last updated your working copy. If you have made changes and
decide you want to undo them, you can use the “revert” command to
go back to the pristine copy.

Every time you commit a set of changes, you create one new
“revision” in the repository. Each revision represents the state of the
repository tree at acertain point inits history. If you want to go back
in time you can examine the repository asit was at revision N.

In another sense, arevision can refer to the set of changes that were
made when that revision was created.

Just as files can have properties, so can each revision in the
repository. Some special revprops are added automatically when the
revisioniscreated, namely: svn: dat e svn: aut hor svn: |l og
which represent the commit date/time, the committer and the log
message respectively. These properties can be edited, but they are
not versioned, so any change is permanent and cannot be undone.

A freguently-used abbreviation for Subversion.

The name of the Subversion custom protocol used by the “ svnserve”
repository server.

Just as “Update-to-revision” changes the time window of aworking
copy to look at a different point in history, so “ Switch” changes the
space window of aworking copy so that it points to a different part
of therepository. Itis particularly useful when working on trunk and
brancheswhere only afew filesdiffer. Y ou can switch your working
copy between the two and only the changed fileswill be transferred.

This Subversion command pulls down the latest changes from the
repository into your working copy, merging any changes made by
others with local changesin the working copy.

This is your local “sandbox”, the area where you work on the
versioned files, and it normally resides on your local hard disk. You
create aworking copy by doing a“ Checkout” from arepository, and
you feed your changes back into the repository using “ Commit”.

195

Index

Symbols
.svn folder, 158
_svnfolder, 158

A

Access, 17

add, 80

add files to repository, 41
annotate, 114
Apache, 26

ASP projects, 175
authentication, 40
Authorization, 30
auto-props, 92
automation, 177, 180

B

backup, 19
blame, 114
branch, 81, 97
bug tracker, 126
bug tracking, 126
bugtracker, 126

C

case change, 86
changelist, 61
changes, 171
check in, 46
check new version, 174
checkout, 43
checkout link, 20
cleanup, 88
CLI, 181
client hooks, 152
COM, 159, 164
COM SubWCRev interface, 161
command line, 177, 180
command line client, 181
commit, 46
commit message, 169
commit messages, 63
common projects, 171
compare, 75
comparefiles, 171
compare folders, 171
compare revisions, 77
conflict, 9, 52
context menu, 37
context menu entries, 175
copy, 97, 116
copy files, 81
Create

Command Line Client, 16

TortoiseSVN, 16
create repository, 16
create working copy, 43

D

delete, 84

deploy, 174

detach from repository, 172
dictionary, 3

diff, 75, 112

diff tools, 79

diffing, 60

disable functions, 175
domain controller, 174
domaincontroller, 31
drag handler, 39
drag-n-drop, 39

E

edit log/author, 70
empty message, 169
exclude pattern, 131
expand keywords, 90
explorer, 1

Explorer Columns, 58
export, 123

export changes, 77
external repositories, 94
externals, 94, 171

F

FAQ, 168
fetch changes, 51
filter, 71

G

global ignore, 131
globbing, 83

GPO, 174

graph, 118

group policies, 174, 175

H
history, 63

hook scripts, 20, 152
hooks, 20

I

| BugtragProvider, 164
icons, 56

ignore, 82

image diff, 78

import, 41

import in place, 43
Index of projects, 30
install, 3

issue tracker, 126, 164

196

Index

K rename, 85, 116, 169
rename files, 81
keywords, 90 reorganize, 169
L repo viewer, 130
repo-browser, 116
Ignguage packs, 3 repository, 5, 41
link, 20 repository URL changed, 125
locking, 109 resolve, 52
log, 63 revert, 87, 170
log cache, 149 revision, 12, 118
log message, 169 revision graph, 118
log messages, 63 revision properties, 70
revprops, 70
M right drag, 39
mark release, 97 right-click, 37
maximize, 41 rollback, 170
merge, 100
reintegrate, 103 S
revision range, 101 SASL, 24
two trees, 104

send changes, 46

server moved, 125

server side hook scripts, 20
server viewer, 116
server-side actions, 116

merge conflicts, 107
merge reintegrate, 108
merge tools, 79

merge tracking, 107

merge tra_cking log, 69 settings, 130
modifications, 58 shortcut, 172
mod_authz_svn, 27, 30 sounds, 131
move, 85 special files, 43
move files, 81 spellchecker, 3
mov_ed server, 125 SsL, 33
moving, 169 SSPl, 31
ms, 174 - statistics, 71
Multiple authentication, 32 status, 56, 58
SUBST drives, 142
N Subversion book, 5
Network share, 17 Subversion properties, 89
NTLM, 31 SubWCRev, 159
SVNParentPath, 29, 30
O SVNPath, 29
overlay priority, 187 svnserve, 21, 22
overlays, 56, 187 SVN_ASP DOT_NET_HACK, 175
switch, 99
P
patch, 112 T
pattern matching, 83 tag, 81, 97
plugin, 164 temporary files, 41
praise, 114 Tortoisel Diff, 78
project properties, 92 TortoiseSVN link, 20
properties, 88 TortoiseSVN properties, 92
proxy server, 143 trandations, 3
tree conflict, 52
R
readonly, 109 U
registry, 156 UNC paths, 17
relocate, 125 undo, 87
remove, 84 undo change, 170
remove versioning, 172 undo commit, 170

197

Index

unified diff, 112

unversion, 125, 172
unversioned ‘working copy', 123
unversioned files/folders, 82
update, 51, 170

upgrade check, 174

URL changed, 125

\Y,

vendor projects, 171
version, 174

version control, 1

version extraction, 159
version new files, 80
version number in files, 159
view changes, 56

ViewVC, 130

VS2003, 175

W

web view, 130
WebDAYV, 26

website, 20

WebSVN, 130
Windows domain, 31
Windows shell, 1
working copy, 10
working copy status, 56

198

	TortoiseSVN
	Table of Contents
	Preface
	1. Audience
	2. Reading Guide
	3. TortoiseSVN is free!
	4. Community
	5. Acknowledgments
	6. Terminology used in this document

	Chapter 1. Introduction
	1.1. What is TortoiseSVN?
	1.2. TortoiseSVN's History
	1.3. TortoiseSVN's Features
	1.4. Installing TortoiseSVN
	1.4.1. System requirements
	1.4.2. Installation
	1.4.3. Language Packs
	1.4.4. Spellchecker

	Chapter 2. Basic Version-Control Concepts
	2.1. The Repository
	2.2. Versioning Models
	2.2.1. The Problem of File-Sharing
	2.2.2. The Lock-Modify-Unlock Solution
	2.2.3. The Copy-Modify-Merge Solution
	2.2.4. What does Subversion Do?

	2.3. Subversion in Action
	2.3.1. Working Copies
	2.3.2. Repository URLs
	2.3.3. Revisions
	2.3.4. How Working Copies Track the Repository

	2.4. Summary

	Chapter 3. The Repository
	3.1. Repository Creation
	3.1.1. Creating a Repository with the Command Line Client
	3.1.2. Creating The Repository With TortoiseSVN
	3.1.3. Local Access to the Repository
	3.1.4. Accessing a Repository on a Network Share
	3.1.5. Repository Layout

	3.2. Repository Backup
	3.3. Server side hook scripts
	3.4. Checkout Links
	3.5. Accessing the Repository
	3.6. Svnserve Based Server
	3.6.1. Introduction
	3.6.2. Installing svnserve
	3.6.3. Running svnserve
	3.6.3.1. Run svnserve as a Service

	3.6.4. Basic Authentication with svnserve
	3.6.5. Better Security with SASL
	3.6.5.1. What is SASL?
	3.6.5.2. SASL Authentication
	3.6.5.3. SASL Encryption

	3.6.6. Authentication with svn+ssh
	3.6.7. Path-based Authorization with svnserve

	3.7. Apache Based Server
	3.7.1. Introduction
	3.7.2. Installing Apache
	3.7.3. Installing Subversion
	3.7.4. Configuration
	3.7.5. Multiple Repositories
	3.7.6. Path-Based Authorization
	3.7.7. Authentication With a Windows Domain
	3.7.8. Multiple Authentication Sources
	3.7.9. Securing the server with SSL
	3.7.10. Using client certificates with virtual SSL hosts

	Chapter 4. Daily Use Guide
	4.1. Getting Started
	4.1.1. Icon Overlays
	4.1.2. Context Menus
	4.1.3. Drag and Drop
	4.1.4. Common Shortcuts
	4.1.5. Authentication
	4.1.6. Maximizing Windows

	4.2. Importing Data Into A Repository
	4.2.1. Import
	4.2.2. Import in Place
	4.2.3. Special Files

	4.3. Checking Out A Working Copy
	4.3.1. Checkout Depth

	4.4. Committing Your Changes To The Repository
	4.4.1. The Commit Dialog
	4.4.2. Change Lists
	4.4.3. Excluding Items from the Commit List
	4.4.4. Commit Log Messages
	4.4.5. Commit Progress

	4.5. Update Your Working Copy With Changes From Others
	4.6. Resolving Conflicts
	4.6.1. File Conflicts
	4.6.2. Tree Conflicts
	4.6.2.1. Local delete, incoming edit upon update
	4.6.2.2. Local edit, incoming delete upon update
	4.6.2.3. Local delete, incoming delete upon update
	4.6.2.4. Local missing, incoming edit upon merge
	4.6.2.5. Local edit, incoming delete upon merge
	4.6.2.6. Local delete, incoming delete upon merge

	4.7. Getting Status Information
	4.7.1. Icon Overlays
	4.7.2. TortoiseSVN Columns In Windows Explorer
	4.7.3. Local and Remote Status
	4.7.4. Viewing Diffs

	4.8. Change Lists
	4.9. Revision Log Dialog
	4.9.1. Invoking the Revision Log Dialog
	4.9.2. Revision Log Actions
	4.9.3. Getting Additional Information
	4.9.4. Getting more log messages
	4.9.5. Current Working Copy Revision
	4.9.6. Merge Tracking Features
	4.9.7. Changing the Log Message and Author
	4.9.8. Filtering Log Messages
	4.9.9. Statistical Information
	4.9.9.1. Statistics Page
	4.9.9.2. Commits by Author Page
	4.9.9.3. Commits by date Page

	4.9.10. Offline Mode
	4.9.11. Refreshing the View

	4.10. Viewing Differences
	4.10.1. File Differences
	4.10.2. Line-end and Whitespace Options
	4.10.3. Comparing Folders
	4.10.4. Diffing Images Using TortoiseIDiff
	4.10.5. External Diff/Merge Tools

	4.11. Adding New Files And Directories
	4.12. Copying/Moving/Renaming Files and Folders
	4.13. Ignoring Files And Directories
	4.13.1. Pattern Matching in Ignore Lists

	4.14. Deleting, Moving and Renaming
	4.14.1. Deleting files and folders
	4.14.2. Moving files and folders
	4.14.3. Changing case in a filename
	4.14.4. Dealing with filename case conflicts
	4.14.5. Repairing File Renames
	4.14.6. Deleting Unversioned Files

	4.15. Undo Changes
	4.16. Cleanup
	4.17. Project Settings
	4.17.1. Subversion Properties
	4.17.1.1. svn:keywords
	4.17.1.2. Adding and Editing Properties
	4.17.1.3. Exporting and Importing Properties
	4.17.1.4. Binary Properties
	4.17.1.5. Automatic property setting

	4.17.2. TortoiseSVN Project Properties

	4.18. External Items
	4.18.1. External Folders
	4.18.2. External Files

	4.19. Branching / Tagging
	4.19.1. Creating a Branch or Tag
	4.19.2. To Checkout or to Switch...

	4.20. Merging
	4.20.1. Merging a Range of Revisions
	4.20.2. Reintegrate a branch
	4.20.3. Merging Two Different Trees
	4.20.4. Merge Options
	4.20.5. Reviewing the Merge Results
	4.20.6. Merge Tracking
	4.20.7. Handling Conflicts during Merge
	4.20.8. Merge a Completed Branch
	4.20.9. Feature Branch Maintenance

	4.21. Locking
	4.21.1. How Locking Works in Subversion
	4.21.2. Getting a Lock
	4.21.3. Releasing a Lock
	4.21.4. Checking Lock Status
	4.21.5. Making Non-locked Files Read-Only
	4.21.6. The Locking Hook Scripts

	4.22. Creating and Applying Patches
	4.22.1. Creating a Patch File
	4.22.2. Applying a Patch File

	4.23. Who Changed Which Line?
	4.23.1. Blame for Files
	4.23.2. Blame Differences

	4.24. The Repository Browser
	4.25. Revision Graphs
	4.25.1. Revision Graph Nodes
	4.25.2. Changing the View
	4.25.3. Using the Graph
	4.25.4. Refreshing the View
	4.25.5. Pruning Trees

	4.26. Exporting a Subversion Working Copy
	4.26.1. Removing a working copy from version control

	4.27. Relocating a working copy
	4.28. Integration with Bug Tracking Systems / Issue Trackers
	4.28.1. Adding Issue Numbers to Log Messages
	4.28.1.1. Issue Number in Text Box
	4.28.1.2. Issue Numbers Using Regular Expressions

	4.28.2. Getting Information from the Issue Tracker

	4.29. Integration with Web-based Repository Viewers
	4.30. TortoiseSVN's Settings
	4.30.1. General Settings
	4.30.1.1. Context Menu Settings
	4.30.1.2. TortoiseSVN Dialog Settings 1
	4.30.1.3. TortoiseSVN Dialog Settings 2
	4.30.1.4. TortoiseSVN Colour Settings

	4.30.2. Revision Graph Settings
	4.30.2.1. Revision Graph Colors

	4.30.3. Icon Overlay Settings
	4.30.3.1. Icon Set Selection

	4.30.4. Network Settings
	4.30.5. External Program Settings
	4.30.5.1. Diff Viewer
	4.30.5.2. Merge Tool
	4.30.5.3. Diff/Merge Advanced Settings
	4.30.5.4. Unified Diff Viewer

	4.30.6. Saved Data Settings
	4.30.7. Log Caching
	4.30.7.1. Cached Repositories
	4.30.7.2. Log Cache Statistics

	4.30.8. Client Side Hook Scripts
	4.30.8.1. Issue Tracker Integration

	4.30.9. TortoiseBlame Settings
	4.30.10. Registry Settings
	4.30.11. Subversion Working Folders

	4.31. Final Step

	Chapter 5. The SubWCRev Program
	5.1. The SubWCRev Command Line
	5.2. Keyword Substitution
	5.3. Keyword Example
	5.4. COM interface

	Chapter 6. IBugtraqProvider interface
	6.1. The IBugtraqProvider interface
	6.2. The IBugtraqProvider2 interface

	Appendix A. Frequently Asked Questions (FAQ)
	Appendix B. How Do I...
	B.1. Move/copy a lot of files at once
	B.2. Force users to enter a log message
	B.2.1. Hook-script on the server
	B.2.2. Project properties

	B.3. Update selected files from the repository
	B.4. Roll back (Undo) revisions in the repository
	B.4.1. Use the revision log dialog
	B.4.2. Use the merge dialog
	B.4.3. Use svndumpfilter

	B.5. Compare two revisions of a file or folder
	B.6. Include a common sub-project
	B.6.1. Use svn:externals
	B.6.2. Use a nested working copy
	B.6.3. Use a relative location

	B.7. Create a shortcut to a repository
	B.8. Ignore files which are already versioned
	B.9. Unversion a working copy
	B.10. Remove a working copy

	Appendix C. Useful Tips For Administrators
	C.1. Deploy TortoiseSVN via group policies
	C.2. Redirect the upgrade check
	C.3. Setting the SVN_ASP_DOT_NET_HACK environment variable
	C.4. Disable context menu entries

	Appendix D. Automating TortoiseSVN
	D.1. TortoiseSVN Commands
	D.2. TortoiseIDiff Commands

	Appendix E. Command Line Interface Cross Reference
	E.1. Conventions and Basic Rules
	E.2. TortoiseSVN Commands
	E.2.1. Checkout
	E.2.2. Update
	E.2.3. Update to Revision
	E.2.4. Commit
	E.2.5. Diff
	E.2.6. Show Log
	E.2.7. Check for Modifications
	E.2.8. Revision Graph
	E.2.9. Repo Browser
	E.2.10. Edit Conflicts
	E.2.11. Resolved
	E.2.12. Rename
	E.2.13. Delete
	E.2.14. Revert
	E.2.15. Cleanup
	E.2.16. Get Lock
	E.2.17. Release Lock
	E.2.18. Branch/Tag
	E.2.19. Switch
	E.2.20. Merge
	E.2.21. Export
	E.2.22. Relocate
	E.2.23. Create Repository Here
	E.2.24. Add
	E.2.25. Import
	E.2.26. Blame
	E.2.27. Add to Ignore List
	E.2.28. Create Patch
	E.2.29. Apply Patch

	Appendix F. Implementation Details
	F.1. Icon Overlays

	Appendix G. Securing Svnserve using SSH
	G.1. Setting Up a Linux Server
	G.2. Setting Up a Windows Server
	G.3. SSH Client Tools for use with TortoiseSVN
	G.4. Creating OpenSSH Certificates
	G.4.1. Create Keys using ssh-keygen
	G.4.2. Create Keys using PuTTYgen

	G.5. Test using PuTTY
	G.6. Testing SSH with TortoiseSVN
	G.7. SSH Configuration Variants

	Glossary
	Index

