
Qizx/open User's Guide

Table of Contents
1. Installing Qizx/open ... 1
2. Graphic User Interface ... 1
3. Command line application .. 2

3.1. Command line options ... 3
3.2. Display of results .. 4

4. Features ... 4
4.1. Implementation-defined features .. 4
4.2. Other features .. 5

5. XML Catalogs .. 6
6. Extensions .. 6

1. Installing Qizx/open
The installation of Qizx/open is straightforward, provided that Java 1.4 is already installed (JRE 1.4.2
recommended).

• Unpack the qizxopen.zip or qizxopen.tar.gz archives in the desired directory.

• The following files should be found:

• A short help in the file README.txt

• LICENSE.txt: the applicable license.

• A directory docs containing documentation.

• qizx-gui.jar : an executable jar that can be invoked directly to run a graphic user interface
for Qizx/open.

• qizxopen.jar : an executable jar that can be invoked directly as a command-line tool (see
below).

• directory net and subdirectories: the Java source code. See the LICENSE.txt file for information
about use conditions.

• a Ant file build.xml allows to rebuild a jar from the source code.

2. Graphic User Interface
New in release 0.4, this tool provides a simple graphic interface to Qizx/open (see snapshot below).
This simple tool should not be confused with the XQuery engine itself, which is basically a class library
integrable in a variety of Java applications.

The GUI features:

• An editor view with syntax highlighting and query history (top left).

• A result view displaying items as a table with item types and values (on the right top).

• Result items of type Node are displayed as a tree view (bottom right)

1

Figure 1. An example view of the GUI

Execution can be stopped or paused, and the current execution stack displayed. This is not yet very
useful, but it lays the basis for a future debugger. The interface will improve in next releases.

To start the tool, run the executable jar qizx-gui.jar, by double-clicking on the jar (on Windows) or running
it from the command line:

java -jar qizx-gui.jar options [XQuery file]

Options are listed with -help. They are similar to the options of the command-line tool presented hereafter.

3. Command line application
Qizx comes also with a simple application that can be used for running XQuery scripts from the command
line, or for executing queries in interactive mode. This simple tool should not be confused with the XQuery
engine itself, which is basically a class library integrable in a variety of Java applications.

This application is implemented by the class net.xfra.qizxopen.app.Qizx .

The command line demonstration can be invoked for execution of a file containing one query (if the file-
name is '-', the standard input is used) :

java -jar qizxopen.jar options query_filename

or it can be used in interactive mode:

java -jar qizxopen.jar

In this mode each line typed is interpreted as an independent query. It is possible (though not very
convenient) to enter a multi-line query by typing a backslash as first character and ending by a line
containing a single dot.

For example, on the prompt XML Query >, you type (in italics):

2

Qizx/open User's Guide

XML Query > for $i in 1 to 3 return element x { $i }
 <x>1</x>
 <x>2</x>
 <x>3</x>
-> 3 item(s)

To get help about command-line options:

java -jar qizxopen.jar -help

3.1. Command line options
Command line options can be specified before or after the path of file containing a query.

-input inputURI
specifies the location of a XML document used as input(). Can be any URL supported by Java.

-baseURI baseURI
default base URI for queries and for locating documents.

-modules moduleBaseURI
base URI for locating modules.

-serial
evaluates a XQuery expression directly into a XML serializer (i.e. without building nodes, in the style
of a XSLT processor). The evaluation of the query must yield a document or a single node.

XML serialization parameters can be specified with options of the form -Xparameter=value, for ex-
ample -Xindent=yes.

-out file
redirects display of results to a file.

-Dvariable_name=value
initializes a global variable defined in the query.

-Xoption=value
sets a XML serialization option. See below for the detail of serialization options.

-collation collation
specifies the default collation.

-timezone timezone
specifies the implicit timezone in duration format (eg -timezone P-5H). By defaut the local timezone
is used.

-wrap
Wrap each item of the results inside an element "item" bearing an attribute giving the type of the
item. This is no more the default.

-jt
Trace lookups of Java methods bound by the Java extension mechanism, and calls to these functions.
This helps finding why a Java method cannot be bound.

-tex
full trace of exceptions.

-help
prints the help.

3

Qizx/open User's Guide

-- arguments...
The double dash indicates that all following arguments are passed to the XQuery script: they are
accessible by the predefined variable $arguments of type xs:string*.

3.2. Display of results
Results are now (from version 0.3) displayed in a simpler form: atomic values are separated by a simple
space, nodes are separated by a newline.

The former mode, in which each item was wrapped inside an element item with an attribute giving the
item type, is still accessible through the option -wrap.

For example, by default the display is like below (the user's input is in italics):

XML Query> true(), 1, 0.5, "string", element a {attribute x {1}}
true 1 0.5 string
-> 5 item(s)
evaluation time: 0 ms, display time: 1 ms

With the option -wrap, the following display is obtained:

XML Query> true(), 1, 0.5, "string", element a {attribute x {1}}
<?xml version='1.0'?>
<query-results>
 <item type="xs:boolean">true</item>
 <item type="xs:integer">1</item>
 <item type="xs:decimal">0.5</item>
 <item type="xs:string">string</item>
 <item type="element()">

 </item>
</query-results>
-> 5 item(s)
evaluation time: 0 ms, display time: 1 ms

4. Features

4.1. Implementation-defined features
This section documents features or properties described in the XML Query specifications as "implement-
ation-defined".

Implicit timezone
The implicit timezone is currently the default timezone of the Java locale. It can be set by the API
and as an option of the command line utility.

Collations
Collations are supported through Java collators. A custom collation can be registered using the API.
The URI of a collation follows the Java convention for locales: for example "en" or "fr-CH" can be
used as collation URIs.

• A collation URI can be followed by a "fragment" or "reference" that has the value "primary",
"secondary" or "tertiary", defining the "strength" of the collator (see the Java documentation for
m o r e d e t a i l s) . F o r e x a m p l e , t h e e x p r e s s i o n c o n -
tains("The next café", "CAFE", "en#primary") should return true, because the
collation with strength primary ignores case and accents.

• The special URIs codepoint and "http://www.w3.org/2003/05/xpath-functions/col-
lation/codepoint" and refer to the basic Unicode codepoint matching (or absence of colla-
tion).

4

Qizx/open User's Guide

Default collation
The default collation is Unicode codepoint. The default collation can be set by the API and by an
option in the command line utility.

Input
Can be defined as a parsed XML document. See the documentation of the command line tool and
of the API.

Serialization
An extension function is provided for serialization to files from within XQuery (see below). The
command line utility can also directly serialize the result of an evaluation (which must be a whole
document).

The supported options are described in the documentation of the x:serialize extension function
(see the Programmer's Guide).

Pragmas
No pragma is recognized by default. The servlet extensions uses pragmas to specify serialization
and XSLT transformations.

Must-understand-extensions
No extension is recognized: an error is always raised when an extension is encountered.

Stable sort
The sort in FLWOR expressions (order by) is always stable, with or without the stable keyword.

empty least
empty least is the default In order by clauses of the FLWOR expression.

Precision of type xs:integer
This type is implemented with Java long (64 bits). This is compatible with the XML Schema standard
which specifies that "minimally conforming· processors ·must· support [decimal] numbers with a
minimum of 18 decimal digits".

Note: xs:decimal is implemented with unlimited precision (Java BigDecimal). For most applications,
there is no performance issue here, but for intensive numeric computations, xs:double is preferable
because much more efficient.

4.2. Other features
Static Type-checking

Currently, Qizx enforces a strict control of types (more precisely: of basic types, because schema
import is not yet implemented). This policy allows to optimize the execution, especially of arithmetic
operators and functions.

It means that static analysis errors will be detected if for example one writes the Fibonacci function
like this:

declare function local:fibo($n) {
 if($n lt 2) then $n
 else local:fibo($n - 1) + local:fibo($n - 2)
}

This is because the variable $n and the function have no defined type, so the operators + and - have
no matching signature.

To eliminate the errors, the function must be rewritten like follows:

declare function local:fibo($n as xs:integer) as xs:integer {
 if($n lt 2) then $n

5

Qizx/open User's Guide

devguide.html

 else local:fibo($n - 1) + local:fibo($n - 2)
}

This constraint might be relaxed in future versions of Qizx, however using sloppy typing will be at
the cost of execution speed.

Automatic optimization of join queries
Joins are frequently used when processing tabular data. Consider this example:

for $client in doc("clients.xml")//client
 return <tr>
 <td>{ $client/id }</td>
 <td>{ sum(for $inv in doc("invoices.xml")//INVOICE
 where $inv/@client-id = $client/id
 return $inv/amount) }</td>
 </tr>

It joins client elements and INVOICE elements through the value of the client id, and returns the
total amount of invoices related to each client.

If executed naively on a database containing 10,000 clients and 30,000 invoices, the expression
might imply 300 millions iterations and require more than one hour to be computed on a recent PC.
With the join optimization implemented by Qizx 0.3, the computation time on a Pentium4 2.5GHz is
around 2 seconds! (including parsing and output).

A join is detected when the optimizer sees a for loop with a where clause which is a relation (oper-
ators = <= < >= >) between an expression involving the loop variable ($inv in the example above)
and an expression involving the control variable of an enclosing loop ($client in the example). The
two expressions can have any type, though numeric and string values are specially optimized.

The optimizer has some limitations: currently a where clause with a or prevents optimization. It does
not treat the possible case where the join relation is a predicate in a path, like in the equivalent
query:

for $client in doc("clients.xml")//client
 return <tr>
 <td>{ $client/id }</td>
 <td>{
 sum(doc("invoices.xml")//INVOICE[@client-id = $client/id]/amount)
 }</td>
 </tr>

This latter case will be treated in future versions.

5. XML Catalogs
To access DTD specified in XML documents, Qizx implements the OASIS Open Catalog using Suns's
implementation. The resolver.jar class library must be present in the classpath.

Catalogs are specified as described in the reference documentation: through CatalogManager.prop-
erties or through system properties, for example -Dxml.catalog.files="mycatalog1;mycata-
log2".

For more details, see the Oasis documentation.

6. Extensions
All these extensions are documented in the Programmer's Guide. They are just mentioned here:

6

Qizx/open User's Guide

devguide.html

XQuery functions
Additional predefined functions. They belong to a private namespace "qizx.extensions" referenced
by the x: or qizx: prefixes.

They implement in particular serialization, error handling, text searching and highlighting.

Extensions to standard XQuery functions
Some standard functions (manipulation of date, time, duration) have been extended or modified to
become more powerful or more convenient.

Binding Java methods as supplementary functions
This mechanism (similar to those found in other XSLT and XQuery engines, for example Saxon)
provides an easy way to extend XQuery by binding methods of any Java class, making this methods
appear as XQuery functions. Arguments and results are automatically converted if possible (number,
string, boolean) or can be manipulated as opaque wrapped objects with type xdt:object. Qizx
also converts Java arrays, vectors and enumerations to XQuery sequences and conversely.

SQL Connection
The "SQL Connection" is an extension which allows to query data from relational databases, using
SQL, and transform it on-the-fly into XML, providing an easy way to merge relational data into XML
documents.

This is a simple implementation, mainly based on JDBC (Java Database Connectivity) and the Java
binding mechanism, which uses SQL directly (without attempting to compile XQuery into SQL).

Web applications
This extension uses XQuery as a powerful and convenient Web page template language: the results
of an expression evaluation are serialized to the HTTP output stream, or alternately can be piped
to a XSLT transformation. The whole Java Servlet API is available through the Java extension
mechanism mentioned above, or through convenience functions. This feature is described in a
separate document: XML Query Server Pages.

7

Qizx/open User's Guide

xqspguide.html

