
Qizx Programmer's Guide
Qizx/open v0.4

Table of Contents
1. Extension functions .. 2

1.1. Serialization .. 2
1.2. XSL Transformation .. 3
1.3. (Full) Text Search ... 4
1.4. Error handling ... 7
1.5. Miscellaneous ... 8

2. Date, Time, Duration functions ... 8
3. Java binding .. 10

3.1. Arguments .. 11
3.2. Type conversions .. 11

4. SQL Connection .. 12
4.1. Prepared and callable statements .. 13
4.2. Other query invocation style ... 14
4.3. Function Reference ... 15

5. Java API ... 16
5.1. Outline ... 17
5.2. Introductory Tutorial .. 18
5.3. Data Model interfaces ... 20

Qizx/open is basically a class library implementing a XQuery engine embeddable in different kinds of
applications. It has therefore a Java API which allows to compile and execute queries, define execution
environments, serialize the results or pass them to a SAX output. The API also provides access to the
Data Model, allowing to manipulate Nodes that constitute XML documents. This API is presented in
Section 5 (Java API) ; see also the Javadoc.

For XQuery programming, Qizx provides different kinds of extensions:

XQuery functions
Additional predefined functions which implement serialization, XSLT transformations, dynamic
evaluation, error handling, text searching and highlighting...

They belong to a private namespace referenced by the x: or qizx: prefixes.

Extensions to standard XQuery functions
Some standard functions (manipulation of date, time, duration) have been extended or modified to
become more powerful or more convenient.

Binding Java methods as supplementary functions
This mechanism (similar to those found in other XSLT and XQuery engines, for example Saxon)
provides an easy and very powerful way to extend XQuery by binding methods of any Java class,
making this methods appear as XQuery functions. Arguments and results are automatically converted
if possible (number, string, boolean) or can be manipulated as opaque wrapped objects with type
xdt:object. Qizx also converts Java arrays, vectors and enumerations to XQuery sequences and
conversely.

SQL Connection
An extension which allows to query data from relational databases (using SQL) and transform it on-
the-fly into XML, providing an easy way to merge relational data into XML documents.

1

#javapi
javadoc/index.html

Web applications
This extension uses XQuery as a powerful and convenient Web page template language: the results
of an expression evaluation are serialized to the HTTP output stream, or alternately can be piped
to a XSLT transformation. The whole Java Servlet API is available through the Java extension
mechanism mentioned above, or through convenience functions. This feature is described in a
separate document: XML Query Server Pages.

1. Extension functions
These functions belong to the namespace "qizx.extensions" for which the prefix x: is predefined.(qizx:
is deprecated).

1.1. Serialization
Though Serialization -- the process of converting XML nodes evaluated by XQuery into a stream of
characters-- is well-defined in the W3C specifications, there is no specific function for this purpose.

function x:serialize($tree as element(), $options as element(option))
 as xs:string?

Serializes the tree element into marked-up text. The output can be a file, or the default output of the
execution context.

Parameter $tree: a XML tree to be serialized to text.

Parameter $options: an element holding options in the form of attributes: see below.

Returned value: The path of the output file if specified, otherwise the empty sequence.

The options argument (which may be absent) has the form of a element of name "options" whose
attributes are used to specify different options. For example:

x:serialize($doc,
 <options output="out\doc.xml"
 encoding="ISO-8859-1" indent="yes"/>)

This mechanism reminds XSLT's xsl:output specification and is very convenient since the options
can be computed or extracted from a XML document.

2

Qizx Programmer's Guide

xqspguide.html

Table 1. Implemented options

descriptionvaluesoption name

output methodXML (default) XHTML, HTML, or
TEXT

method

output file. If this option is not
specified, the generated text is
written to default output, which
can be specified through the
Java control API.

a file pathoutput / file

version generated in the XML
declaration. No validity check.

default "1.0"version

No check is performed."yes" or "no".standalone

The name supplied is generated
in the XML declaration. If differ-
ent than UTF-8, it forces the
output of the XML declaration.

must be the name of an encod-
ing supported by the JRE.

encoding

output indented."yes" or "no". (default no)indent

(extension) specifies the number
of space characters used for in-
dentation.

integer valueindent-value

controls the output of a XML de-
claration.

"yes" or "no". (default no)omit-xml-declaration

for XHTML and HTML methods,
if the value is "yes", a META
element specifying the content
type is added at the beginning of
element HEAD.

"yes" or "no". (default no)include-content-type

for XHTML and HTML methods,
escapes URI attributes.

"yes" or "no".escape-uri-attributes

Triggers the output of the DOC-
TYPE declaration.

the public ID in the DOCTYPE
declaration.

doctype-public

Triggers the output of the DOC-
TYPE declaration.

the system ID in the DOCTYPE
declaration.

doctype-system

1.2. XSL Transformation
New in Qizx/open 0.4, this function invokes a XSLT stylesheet and can retrieve the results of the trans-
formation as a tree, or let the stylesheet output the results.

An example is given below.

function x:transform($source as node(),
 $stylesheet-URI as xs:string,
 $xslt-parameters as element(parameters)
 [, $options as element(options)])
 as node()?

Transforms the source tree through a XSLT stylesheet. If no output file is explicitly specified in the
options, the function returns a new tree.

3

Qizx Programmer's Guide

Parameter $source: a XML tree to be transformed. It does not need to be a complete document.

Parameter $stylesheet-URI: the URI of a XSLT stylesheet. Stylesheets are cached and reused
for consecutive transformations.

Parameter $xslt-parameters: an element holding parameter values to pass to the XSLT engine.
The parameters are specified in the form of attributes. The name of an attribute matches the name
of a xsl:param declaration in the stylesheet (namespaces can be used). The value of the attribute
is passed to the XSLT transformer.

Parameter $options: [optional argument] an element holding options in the form of attributes:
see below.

Returned value: if the path of an output file is not specified in the options, the function returns a
new document tree which is the result of the transformation of the source tree. Otherwise, it returns
the empty sequence.

Table 2. available options

descriptionvaluesoption name

output file. If this option is not specified, the gen-
erated tree is returned y the function, otherwise
the function returns an empty sequence.

an absolute file
path

output-file

These options are used by the style-sheet for
outputting the transformed document. They are
ignored if no output-file option is specified.

 XSLT output properties (instruc-
tion xsl:output): version, stan-
dalone, encoding, indent, omit-
xml-declaration etc.

An invalid option may cause an error. Specific options of the XSLT en-
gine (Saxon or default XSLT en-
gine)

This example generates the transformed document $doc into a file out\doc.xml:

x:transform($doc, "ssheet1.xsl",
 <parameters param1="one" param2="two"/>,
 <options output-file="out\doc.xml" indent="yes"/>)

The next example returns a new document tree. Suppose we have this very simple stylesheet which
renames the element "doc" into "newdoc":

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version ="1.0" >
 <xsl:template match="doc">
 <newdoc><xsl:apply-templates/></newdoc>
 </xsl:template>
</xsl:stylesheet>

The following XQuery expression:

x:transform(<doc>text</doc>, "ssheet1.xsl", <parameters/>)

returns:

<newdoc>text</newdoc>

1.3. (Full) Text Search
In Qizx/open, full-text search functions are not index-based and therefore not meant for searching huge
volumes of XML. They can be used to query parsed documents or even constructed fragments, with a

4

Qizx Programmer's Guide

decent execution speed (for example the whole works of Shakespeare, about 8 Mb, can be searched
in less than one second on a recent machine).

function x:words($query as xs:string [, $context-nodes as node()*])
 as xs:boolean

function x:fulltext($query as xs:string [,$context-nodes as node()*])
 as xs:boolean

Note: x:words and x:fulltext are aliases for the same function.

This function implements context-sensitive full-text search: it can search boolean combinations of
words, word patterns and phrases, in the context of specific elements. It is typically used inside a
predicate. For example the following expression returns SPEECH elements which contain both
words "romeo" and "juliet":

//SPEECH [x:words(" romeo AND juliet ")]

Caution: in the open-source version, the function is implemented in a simple, "brute force" way:
though it achieves a decent search speed, it can in no way be compared with the index-based im-
plementation of the commercial query engine. This brute force implementation serves as a fall-back
in the (rare) cases where the query optimizer fails to find a query plan using indexes.

The function returns true if the string-value of at least one node of the context-nodes parameter
matches the full-text query. Matching is therefore not affected by element substructure. For example
the phrase 'to be or not to be' would be found in <line>To be or not to be
..</line>.

When context-nodes is not specified (it must be inside a predicate), the current context node '.'
is used implicitly like in the example above. When context-nodes parameter is present, it can be
relative to the current context node: for example this expression finds SPEECH elements which
contain a LINE element which in turn contains both words "romeo" and "Juliet":

//SPEECH [x:words(" romeo AND juliet ", LINE)]

Syntax of full text queries:

Simple term
A word without wildcard characters '*' and '?'. By default case and accents are ignored (i.e. "café
is equivalent with "CAFE").

Term with wildcard
Wildcard characters '*' and '?' can match several forms of a word, à la Unix. For example "intern*"
would match intern, internal, internals etc.

Approximate term
Notation: word~. Uses a generic phonetic distance algorithm (somewhat similar to Soundex).

Term alternative
Notation: term1 OR term2. The operator OR or the sign '|' can be used. It has precedence over
AND (see below).

Term conjunction
Notation: term1 AND term2. The operator AND or the sign '&' can be used or even simple juxta-
position: thus "romeo AND juliet", "romeo & Juliet" and "Roméo Juliet" are equivalent.

Term exclusion
Notation: sign '-' or keyword NOT. For example "Romeo -Juliet" is equivalent with "Romeo AND
NOT Juliet".

5

Qizx Programmer's Guide

Phrase
Ordered sequence of terms (simple words or patterns), surrounded by single or double quotes.
By default, terms must appear exactly in the order specified.

It is possible to specify a tolerance or distance, which is the maximum number of words inter-
spersed among the terms of the phrase query. The notation is phrase~N where N is a optional
count of words (4 by default). The two following examples match the phrase "to be or not to be,
that is the question":

//SPEECH [x:words(" 'to be that question'~ ", LINE)]
//SPEECH [x:words(" 'to be or question'~6 ", LINE)]

Notice that there are some limitations in this syntax: the OR cannot combine AND clauses or phrases,
however this problem can be solved by boolean combinations of calls to x:words, for example:

doc("r_and_j.xml")//LINE [x:words("name AND rose") or
 x:words(" 'smell as sweet' ")]

would yield the two lines (Romeo and Juliet, act II scene 2):

<LINE>What's in a name? that which we call a rose</LINE>
<LINE>By any other name would smell as sweet;</LINE>

function x:phrase($words as xs:string+ [, $spacing as xs:integer]
 [, $context-nodes as node()*])
 as xs:boolean

Convenience function: A variant of x:fulltext specialized in phrase search, which allows words to be
specified as a sequence of strings.

For example:

x:phrase(("to", "be", "or", "not"), 5)

is equivalent to

x:fulltext(" 'to be or not'~5 ")

function x:all-words($words as xs:string+ [, $context-nodes as node()*])
 as xs:boolean

Convenience function: a variant of x:fulltext which allows words to be specified as a sequence of
strings.

For example:

x:all-words(("romeo", "juliet"), LINE)

is equivalent to

x:fulltext("romeo AND juliet", LINE)

function x:any-word($words as xs:string+ [, $context-nodes as node()*])
 as xs:boolean

Convenience function: a variant of x:fulltext which allows words to be specified as a sequence of
strings.

For example:

x:any-word(("romeo", "juliet"), LINE)

is equivalent to

6

Qizx Programmer's Guide

x:fulltext("romeo OR juliet", LINE)

function x:highlighter($query as xs:string, $fragment as element(),
 $parts as node()*, $options as element(option)])
 as element()

This function is a companion of x:words (fulltext search) which "highlights" matched terms, more
precisely it returns a copy of a document fragment where matched terms are surrounded by generated
elements. By default a generated element has the name 'span' and an attribute 'class' with a value
equal to the prefix 'hi' followed by the rank of the term in the query. Applied to a LINE in the example
above, this would produce something like:

<LINE>What's in a name?
 that which we call a rose</LINE>

The first argument is a fulltext query. The second argument is the root of the document fragment to
process, the optional third argument $parts is a list of sub-elements of the root which must be spe-
cifically highlighted (if empty, the whole root fragment is highlighted, otherwise only the specified
parts). The 4th argument specifies options: it allows to redefine the generated elements. For example:

<options element='el' attribute='at' prefix='pr'/>

would surround terms with <el at="pr0"></el> instead of .

1.4. Error handling
This currently no mechanism in XQuery to handle errors. Most errors must not be recovered (for example
type errors), however a problem arises for example with the function doc which loads a document: if
the document is not found or has parsing errors, the desired behavior is generally not that the whole
execution fails with a fatal error. Errors can also happen when calling bound Java methods.

There are two similar mechanisms in Qizx for handling errors:

• One is a new syntax extension: try/catch, somewhat similar to constructs of other languages. This
is the prefferred way of handling errors, as it gives access to the cause of an error.

• the other is an extension function x:catch-error. It is the older mechanism which is deprecated.

try { <expr> } catch($error) { <fallback-expr> }

The try/catch extended language construct first evaluates the first expression <expr>. If no error
occurs, then the result of the try/catch is the value of this expression.

If an error occurs, the local variable $error receives a string value which is the error message, and
the < fallback-expr> is evaluated (with possible access to the error message). The resulting value
of the try/catch is in this case the value of this fallback expression. An error in the evaluation of the
catch expression is of course not caught.

The type of this expression is the type that encompasses the types of both arguments.

Example: tries to open a document, returns an element 'error' with an attribute containing the
error message if the document cannot be opened.

try {
 doc("unreachable.xml")
} catch($err) {
 <error msg="{$err}"/>
}

7

Qizx Programmer's Guide

function x:catch-error($expression, $fallback)

This function catches a possible error in the evaluation of the first argument. If no error occurs, the
value of the first argument is returned, else the second argument is evaluated and its value returned.
An error in the evaluation of the second argument is not caught.

The type of the function is the type that encompasses the types of both arguments.

1.5. Miscellaneous

function x:eval($expression as xs:string) as xs:any

Dynamic evaluation: compiles and evaluates an expression given as a string.

The expression can use global variables, functions, namespaces of the current static context.
However it has no access to the local context (for example if x:eval is invoked inside a function, the
arguments or local variables of the function are not visible.)

Parameter $expression: a simple expression (cannot contain prolog declarations).

Returned value: evaluated value of the expression.

Example:

declare variable $x := 1;
declare function local:fun($p as xs:integer) { $p * 2 }
let $expr := "1 + $x, fun(3)"
return x:eval($expr)

this should return the sequence (2, 6).

function x:system-property($name as xs:string)
 as item()?

Returns the value of a "system" or application property. Similar to the function with same name in
XSLT.

Additional properties can be defined through the Java API.

Parameter $name: name of the system property.

Returned value: value of the property, or empty sequence if unknown property name.

Predefined properties:

• vendor : name of the vendor.

• vendor-url : URL of the vendor's site, here "http://www.xfra.net/qizxopen/".

• product-name : here "Qizx/open".

• product-version : the current version in string form.

2. Date, Time, Duration functions
Qizx/open does not currently implement all the functions and operators (some 20) specified in the current
XML Query Working Draft for manipulation of duration types. The types xdt:yearMonthDuration and
xdt:dayTimeDuration do exist in Qizx but are not really properly handled. We persist in believing that
these durations types are of very little utility for real applications (in addition to their peculiar properties
that make them difficult to use).

8

Qizx Programmer's Guide

Instead, Qizx provides more useful operators and extends the semantics of date and time constructors.

Additional constructors:
These constructor allow to build date, time, dateTime, and duration objects from numeric values (this
useful capability is not provided by the current XQuery specifications).

function xs:date($year as xs:integer, $month as xs:integer,
 $day as xs:integer)
 as xs:date

builds a date from a year, a month, and a day in integer form. The implicit timezone is used.

For example xs:date(1999, 12, 31) returns the same value as xs:date("1999-12-31").

function xs:time($hour as xs:integer, $minute as xs:integer,
 $second as xs:double)
 as xs:time

builds a xs:time from an hour, a minute as integer, and seconds as double. The implicit timezone is
used.

function xs:dateTime($year as xs:integer, $month as xs:integer,
 $day as xs:integer, $hour as xs:integer,
 $minute as xs:integer, $second as xs:double
 [, $timezone as xs:double])
 as xs:dateTime

builds a dateTime from the six components that constitute date and time.

A timezone can be specified: it is expressed as a signed number of hours (ranging from -14 to 14),
otherwise the implicit timezone is used.

function xs:duration($months as xs:integer, $seconds as xs:double)
 as xs:duration

Builds a general duration from a number of months and a duration in seconds. Generally used to
convert a duration in seconds to a xs:duration (first argument equal to 0).

Additional arithmetic:
The current XQuery specifications have functions or operators to compute the difference between two
dates or two dateTimes, unfortunately the result is a xdt:dayTimeDuration or xdt:yearMonthDuration:
when one wants a numeric duration (seconds or days) - we assume that it is the most frequent case -,
it is far from easy to convert from these types. Conversely, when one wants to add a numeric duration
to a date or dateTime, the current specifications provide a form of the operator + (for example op:add-
dayTimeDuration-to-dateTime), but the argument is also a duration, and converting from a number to
a duration is even more difficult...

Therefore more convenient operators are provided:

operator - ($date1 as xs:date, $date2 as xs:date) as xs:integer

returns the difference in days between two dates. Timezones are not taken into account - It seems
not to make much sense -, else the result should be decimal or double.

9

Qizx Programmer's Guide

operator - ($date1 as xs:dateTime, $date2 as xs:dateTime) as xs:double

returns the difference in seconds between two dateTimes. Here the timezone are taken into account.

operator - ($time1 as xs:time, $time2 as xs:time) as xs:double

returns the difference in seconds between two times. The timezone are taken into account.

operator + ($date as xs:date, $days as xs:integer) as xs:date

adds days (possibly negative) to a date and returns a new date.

operator + ($dateTime as xs:dateTime, $duration as xs:double) as xs:dateTime

add seconds to a dateTime and returns a new dateTime.

operator + ($time as xs:dateTime, $duration as xs:double) as xs:time

add seconds to a time and returns a new time.

Examples:

xs:date("2000-01-01") - xs:date("1999-12-31") --> 1
xs:dateTime("2000-01-01T00:00:00") - xs:dateTime("1999-12-31T23:59:59") --> 1
xs:date("1999-12-31Z") + 1 --> 2000-01-01Z
xs:dateTime("1999-12-31T23:59:59Z") + 1 --> 2000-01-01T00:00:00Z

Component extraction functions (no more difference):
The values returned by component extraction functions get-hours-from-xxx are relative to the timezone
of the date/time object or the local time). For example get-hours-from-dateTime(xs:dateTime("2003-09-
23T23:55:00")) returns 23 whatever the actual implicit timezone.

Since the W3C specifications have been improved in this respect, Qizx/open is now in compliance
without any change...

3. Java binding
This feature allows to call Java methods and to manipulate wrapped Java objects. This is very powerful
as it provides access to nearly all the Java APIs.

It is similar to the mechanism provided by XT or Saxon: a call to a function ns:fun() where ns is bound
to a namespace of the form java:fullyQualifiedClassName is treated as a call of the static method fun
of the class with name fullyQualifiedClassName.

Hyphens in method names are removed with the character following the hyphen being upper-cased
(aka 'camelCasing').

The following example calls the getInstance() method of class java.util.Calendar:

declare namespace cal = "java:java.util.Calendar"
cal:get-instance()

The mechanism is actually a little more flexible: a namespace can also refer to a package instead of a
class name. The class name is passed as a prefix of the function name, separated by a dot. For example:

declare namespace util = "java:java.util"
util:Calendar.get-instance()

10

Qizx Programmer's Guide

The following example invokes a constructor, gets a wrapped File in variable $f, then invokes the non-
static method createNewFile():

declare namespace file = "java:java.io.File"

let $f := file:new("myfile")
return file:createNewFile($f) (: or create-new-file() :)

This example lists the files of the current directory with their sizes :

declare namespace file = "java:java.io.File"

for $f in file:listFiles(file:new(".")) (: or list-files() :)
return
 <file name="{ $f }" size="{ file:length($f) }"/>

Notice that the File array returned by File.listFiles is conveniently converted into a XQuery sequence.
This works also with Vector, Enumeration and ArrayList.

Java-bound functions can return objects of arbitrary classes which can then be passed as arguments
to other extension functions or stored in variables. The type of such objects is xdt:object (formerly named
xs:wrappedObject). It is always possible to get the string value of a Java object [invokes the Java
method toString().]

Static and non-static methods: A non-static method is treated like a static method with an additional
first argument (this). The additional actual argument must of course match the class of the method.

Constructors: A call to a function named new invokes a constructor. Overloading is allowed on
constructors in the same way as on regular methods.

3.1. Arguments
Function arguments are automatically converted from XQuery to Java and conversely, when possible.
The following section lists the performed conversions.

Calling overloaded Java methods is generally correctly handled, but there is currently limitation if several
methods match the actual argument types: in that case which method is actually called is unpredictable.
For example, consider the Java method java.lang.Math.abs: it has 4 different instances for int, long,
float and double. If we call the bound function math:abs like this:

declare namespace math="java:java.lang.Math"
math:abs(-1)

then the exact type of the result is not guaranteed: it can be xs:integer (long), xs:float or xs:double, be-
cause the type of the argument (long) can match any of the three corresponding Java methods.

3.2. Type conversions
The following conversions apply to arguments passed to Java methods, and conversely to returned
values.

Notice that arrays, as well as Vector, Enumeration and ArrayList are handled as XQuery sequences.

11

Qizx Programmer's Guide

Table 3. Types conversions

XML Query typeJava type

empty()void (return type)

xs:stringString

xs:booleanboolean, Boolean

xs:doubledouble, Double

xs:floatfloat, Float

xs:integerlong, Long

xs:intint, Integer

xs:shortshort, Short

xs:bytebyte, Byte

xs:integerchar, Char

node()net.xfra.qizxopen.xquery.dm.Node

xdt:objectother class

xs:string *String[]

xs:double *double[], float[]

xs:integer *long[], int[], short[], byte[], char[]

node()*net.xfra.qizxopen.xquery.dm.Node[]

xdt:object *other array

xdt:object *java.util.Enumeration, java.util.Vector, java.util.Ar-
rayList

4. SQL Connection
The "SQL Connection" is an extension which allows to query data from relational databases, using SQL,
and transform it on-the-fly into XML, providing an easy way to merge relational data into XML documents.

This is a simple implementation, mainly based on JDBC (Java Database Connectivity) and the Java
binding mechanism, which does not attempt to compile XQuery into SQL.

We assume in this section that the reader has some knowledge of SQL and JDBC.

Basically, the SQL Connection provides functions which take a SQL query statement as argument and
return the result set as a sequence of "row" XML elements. These elements have sub-elements corres-
ponding with the columns/fields returned by the SQL query.

A simple example: we suppose the existence of a MySQL database "db1" with a table "pets" containing
the description of a few animals. Here is a XQuery expression which opens a connection to the database
and queries the table:

let $conn := sqlx:get-connection("jdbc:mysql://localhost/db1", "user", "password")
return
 sqlx:execute($conn, "SELECT name, species, weight FROM pets")

Returning results like:

<row>
 <name>Albert</name>
 <species>cat</species>
 <weight>2.5</weight>

12

Qizx Programmer's Guide

</row>
<row>
 <name>Bertha</name>
 <species>boa constrictor</species>
 <weight>45</weight>
</row>

The function has returned two row elements each containing the three sub-elements name, species,
and weight for the corresponding fields used in the SQL query.

You may also want to produce a HTML table with this data:

let $conn := sqlx:get-connection("jdbc:mysql://localhost/db1", "user", "password")
return
 <table width="80%">
 <tr><th>Name</th><th>Species</th><th>Weight</th></tr>
 {
 for $row in sqlx:execute($conn, "SELECT name, species, weight FROM pets")
 return <tr>
 <td>{ $row/name/text() }</td>
 <td>{ $row/species/text() }</td>
 <td>{ $row/weight/text() }</td>
 </tr>
 }
 </table>

Notes:

• To run the examples above it is assumed that your JRE has access to a JDBC driver for MySQL (or
any other JDBC enabled database). For this you must have the jar of the driver in your class-path
and you must register the driver (either by using the system property jdbc.drivers or by explicitly re-
gistering the driver with the helper function sqlx:register-driver() -- see below).

• The namespace prefix sqlx is predefined: it is used for the functions of the SQL extension. Some
other namespaces are predefined for convenient access to the main JDBC classes or interfaces:
sqlc for java.sql.Connection, sqlr for java.sql.ResultSet, sqlp for java.sql.PreparedStatement.

• The object returned by sqlx:get-connection is simply the Connection object of JDBC, therefore all its
methods are accessible through the Java binding mechanism. For example, sqlc:commit($conn)
would call the commit method of interface java.sql.Connection (remember that sqlc: is a predefined
namespace prefix for java.sql.Connection).

As a consequence the connection can be obtained by other means, for example using JDBC Data-
Sources, of course still using the Java binding mechanism.

4.1. Prepared and callable statements
JDBC has a notion of Prepared or Callable Statement, which is a precompiled query or update instruction
with place-holders for parameterized values.

Qizx's SQL Connection API makes easy to pass actual parameters to such statements:

declare variable $QUERY := text {
 SELECT * from pets WHERE name = ?
};

let $conn := sqlx:get-connection("jdbc:mysql://localhost/db1", "user", "password")
 (: prepare a statement for later execution :)
 $prStatement := sqlx:prepare($conn, $QUERY)
return
 sqlx:execute($prStatement, "Albert")

This would return the first row matching the parameter value "Albert" for the field "name":

13

Qizx Programmer's Guide

<row>
 <name>Albert</name>
 <species>cat</species>
 <weight>2.5</weight>
</row>

More generally, several parameters can be passed this way in the same call to sqlx:execute (this
function accepts a variable number of arguments). The parameter types must be compatible with the
expected field types, otherwise an error is raised.

To illustrate this, let's introduce another function: sqlx:execUpdate (the equivalent of the JDBC ex-
ecuteUpdate method of PreparedStatement):

declare variable $STATEMENT := text {
 INSERT INTO pets VALUES (?, ?, ?)
};
let (: prepare a statement for later execution :)
 $insert := sqlx:prepare($conn, $STATEMENT)
return (
 sqlx:execUpdate($insert, "Donald", "duck", 4),
 sqlx:execUpdate($insert, "Pooh", "bear", ())
)

This piece of code inserts two new rows into the pets table.

• sqlx:execUpdate returns an integer which is the number of rows affected.

• Each parameter must evaluate as a single item or an empty sequence.

• The empty sequence stands for a NULL field value.

Notice the useful trick of typing SQL inside a text constructor: this saves escaping of quote characters.

4.2. Other query invocation style
The function sqlx:execute provides an easy way to perform the fusion of tabular data by manipulating
SQL query results as XML elements. However a finer and maybe more efficient style may also be desir-
able.

This is achieved by the function sqlx:rawExec : it allows to deal directly with the ResultSet interface
and retrieve field values as typed items, instead of plain text.

The HTML example above could be changed like this, converting a weight from kilograms to pounds:

let $conn := sqlx:get-connection("jdbc:mysql://localhost/db1", "user", "password")
return
 <table width="80%">
 <tr><th>Name</th><th>Species</th><th>Weight</th></tr>
 {
 for $r in sqlx:rawExec($conn, "SELECT name, species, weight FROM pets")
 return <tr>
 <td>{ sqlr:getString($r, 1) }</td>
 <td>{ sqlr:getString($r, "species") }</td>
 <td>{ sqlr:getDouble($r, "weight") / 0.463 }</td>
 </tr>
 }
 </table>

Notes:

• sqlr:getString for example is a binding of the method ResultSet.getString(int columnIndex). The
prefix sqlr is predefined for ResultSet.

14

Qizx Programmer's Guide

• The "get" methods can of course be called either with an integer columnIndex or a String column
name.

• The "update" methods can be called.

• Methods which move the cursor of the result set (first, beforeFirst) will most probably have undesirable
effects.

4.3. Function Reference

function sqlx:get-connection($dbURL as xs:string,
 $user as xs:string, $passwd as xs:string)
 as xdt:object[Connection]

A thin wrapper on the DriverManager.getConnection method.

Parameter $dbURI: a database url accepted by JDBC.

Parameter $user: database user name.

Parameter $user: database user password.

Returned value: a wrapped Connection object. If no connection can be opened, an error is raised.

Note: the connection can be closed by sqlc:close($conn). There is no specific function for this
purpose.

function sqlx:prepare($connection as xdt:object, $statement as xs:string)
 as xdt:object[PreparedStatement]

A thin wrapper on the Connection.prepareStatement(String) method.

Parameter $connection: a valid database connection.

Parameter $statement: a SQL statement.

Returned value: a wrapped PreparedStatement object. An error can be raised on an erroneous
statement.

function sqlx:execute($connection as xdt:object, $statement as xs:string)
 as element()*

function sqlx:execute($preparedStatement as xdt:object,
 $param1 as item()?, $param2...)
 as element()*

Query execution, accepting simple or prepared statement.

Parameter $connection: a valid database connection.

Parameter $preparedStatement: a prepared SQL statement.

Parameters $param1 ...: values passed as parameters of the SQL statement.

15

Qizx Programmer's Guide

Returned value: a sequence of nodes. Each node has the name "row" (without namespace) and
contain as many children elements as there are fields in the query result. Each child element has
the name of a queried field.

A field with a NULL value appears as an empty child element.

function sqlx:execUpdate($connection as xdt:object, $statement as xs:string
)
 as xs:integer

function sqlx:execUpdate($preparedStatement as xdt:object,
 $param1 as item()?, $param2...)
 as xs:integer

Update statement execution, accepting simple or prepared statement.

Parameter $connection: a valid database connection.

Parameter $preparedStatement: a prepared SQL statement.

Parameters $param1 ...: values passed as parameters of the SQL statement.

Returned value: an integer which is the number of rows affected.

function sqlx:rawExec($connection as xdt:object, $statement as xs:string)
 as xdt:object*

function sqlx:rawExec($preparedStatement as xdt:object,
 $param1 as item()?, $param2...)
 as xdt:object*

Raw statement execution, accepting simple or prepared statement.

This function returns a wrapped ResultSet sequence. In order to iterate on this result set, it is com-
pulsory to use a for loop: for $rs in sqlx:rawExec(...) return ...

Parameter $connection: a valid database connection.

Parameter $preparedStatement: a prepared SQL statement.

Parameters $param1 ...: values passed as parameters of the SQL statement.

Returned value: a sequence of ResultSet states.

5. Java API
This interface provides the methods for compiling and executing XQuery scripts from Java and exploiting
results, thus offering a high-level query interface.

It is used in GUI or Command-line Interface applications provided with XQuest, as well as in the "Server
Pages" extension, which embeds the XQuery engine in a Servlet.

The API allows to:

16

Qizx Programmer's Guide

• setup compilation and execution environments (also known as static context and dynamic context
respectively). These environments are provided by a class named XQueryProcessor.

• Compile queries

• execute queries

• exploit results of query evaluations. The result sets are iterators similar to iterators of the XML Library
API, though more general since the XQuery language can return sequences of any item kinds, not
merely Nodes.

Packages: To use the API, classes from the following packages may have to be imported:

Table 4. packages

This is the root package for XQuery, it contains in
particular XQueryProcessor, Query, Value,
Item, Type, Log.

net.xfra.qizxopen.xquery

(XQuery Data Model) Can be used for lower-level
operations: contains principally the XQuery Node
interface.

net.xfra.qizxopen.xquery.dm

Data Model independent of XQuery: contains sup-
port for serialization (XMLSerializer) and a su-
per-interface Node.

net.xfra.qizxopen.dm

Utilitiesnet.xfra.qizxopen.util

5.1. Outline
The fundamental API object is XQueryProcessor.

XQueryProcessor provides a static environment to compile a query from text source, and a dynamic
environment (in particular a Document Manager) to execute this query.

A typical Qizx application will perform the following steps:

1. Instantiate a XQueryProcessor: this can be done from scratch or by cloning a "master"
XQueryProcessor that serves as a model.

2. Optionally set options or specify ancillary Module Manager or Document Manager that can be
shared by several XQueryProcessors.

A Module Manager is in charge of compiling/loading and caching library modules. A Document
Manager performs document loading/parsing and optionally caching (Documents are read-only and
thread-safe).

3. Compile a query from a file, a URL, a string: this requires a Log object which is used for printing
messages. A successful compilation returns a Query object. The compiled Query can be used
several times and in several threads.

4. Before executing a compiled Query, other options can be set in the processor, and global variables
can be initialized.

5. Running a Query with the can be performed in different ways (methods executeQuery of
XQueryProcessor):

17

Qizx Programmer's Guide

• The simplest way is to serialize directly the result into an output stream (this implies that the
result is a well-formed document). The serializer (XMLSerializer) supports a number of options,
notably it can generate XML, HTML, XHTML markup, or plain text.

• With the same method, one can generate a tree using a EventDrivenBuilder (package
net.xfra.qizxopen.xquery.dm). This tree can then be manipulated through the Node interface.
Notice that according to the "functional" approach used in XPath/XQuery/XSLT, the tree cannot
be modified once built.

• Another possibility is to generate the result into a SAX interface, for example to pass it to a XSLT
processor. This is conveniently achieved by using SAXXQueryProcessor, a subclass of
XQueryProcessor.

• A third, more general way is to obtain the results as a Value, i.e. an Item sequence and enumer-
ate the items. Items can be Nodes or atomic values (like string, double, boolean etc.). This implies
to check the types of items and extract values appropriately through a set of specialized methods.
This is more complicated and generally not necessary.

5.2. Introductory Tutorial
For the details of each class, interface or method, please see the Java documentation.

1. Instantiate a XQueryProcessor, for example like this:

import net.xfra.qizxopen.xquery.*;
...
XQueryProcessor processor =
 new XQueryProcessor(moduleBaseURI, documentBaseURI);

The parameters are base URIs (in String form) respectively for resolution of module and document
relative URIs. This constructor automatically creates a private ModuleManager and a private Docu-
mentManager.

A XQueryProcessor can also be created from a master XQueryProcessor, inheriting the Module
Manager and the Document Manager and default settings from the master. This can be convenient
for server side applications to share the same resources among different clients.

XQueryProcessor processor = new XQueryProcessor(masterProcessor);

Note: modules and queries are thread-safe and can be shared. Documents are read-only (this is
implied by the XQuery Data Model) and can also be shared without difficulty. However this capab-
ility has not yet been tested extensively.

2. Setting static options: there are quite a few possible settings:

• Predefine a namespace (prefix + URI) that is visible by compiled queries (method predefine-
NameSpace).

processor.predefineNameSpace("myns", "my.uri");

This allows to use the myns: prefix to designate the namespace, without declaring it explicitly
in queries.

• Predefine a global variable visible by compiled queries (method predefineGlobal): for example
the command line application predefines a variable $arguments of type xs:string* that collects
the options passed on the command line.

processor.predefineGlobal("arguments", Type.STRING.star);

• Register a collation, define the default collation.

18

Qizx Programmer's Guide

• Define or redefine the ModuleManager: this can be useful if a different implementation is used.

• Define or redefine the DocumentManager: this can be useful if a different implementation is
used.

• Explicitly authorize Java classes to be used by the Java binding mechanism: this is a security
feature.

3. Compile a Query:

there are different variants of method XQueryProcessor.compileQuery. Basically it needs a piece
of text (a CharSequence, i.e. typically a String) which can also be read from a stream or a File.

An URI must be specified for use by error message and traces. For a file or URL input this would
typically be the string value of the path or the URL.

A third parameter is a Log that is used for receiving messages. By default it writes to System.err
and can be redirected to a stream. It has overridable display methods for easier subclassing (for
example display in a GUI).

String querySource =
 " for $i in 1 to 3 return element E { attribute A { $i } } ";
Log log = new Log(); // Writes on System.err by default
try {
 Query query = processor.compileQuery(querySource, "<source>", log);
 ...
} catch(XQueryException e) {
 ...
}

Exceptions can be raised on a syntax error (prevents further compilation) or by static analysis errors
(at end of compilation).

4. Setting run-time options:

Typically, global variables (declared external in queries) can be initialized here. Initial values specified
in queries can also be overridden. The method initGlobal has different variants, according to the
value passed. An exception is raised if the value does not match the declared type.

Initial values are part of the execution environment and do not affect compiled Queries which can
be shared by several threads.

Other options: default output for function x:serialize, node or node sequence used for XQuery
function input(), implicit timezone, message log.

5. Executing a compiled query and exploit results:

a. Direct serialization:

XMLSerializer serial = new XMLSerializer();
serial.setOutput(new FileWriter("out.xml"));
serial.setOption("method", "xhtml");
serial.setOption("indent", "yes");
 // ... other options can be set on the serializer...
processor.executeQuery(query, serial);

b. Tree building:

EventDrivenBuilder builder = new EventDrivenBuilder();
processor.executeQuery(query, builder);
Node result = builder.crop();

19

Qizx Programmer's Guide

c. SAX output: SAXXQueryProcessor implements the interface org.xml.sax.XMLReader and can
therefore be used to build a SAXSource for use with APIS javax.xml.transform: for example
pipe a XQuery execution with a XSLT transformation.

d. Get a Value and enumerate Items:

Value v = processor.executeQuery(query);
while(v.next()) // When next() returns true, an item is available
{
 if(v.isNode()) {
 Node n = v.asNode();
 ... // use the Node (Data Model) interface to navigate in the
 // subtree, extract element names, attributes, string values...
 }
 else {
 ItemType type = v.getType(); // type of current item
 if (type == Type.DOUBLE) {
 double d = v.asDouble();
 }
 ... // use the different asX() methods, according to the type
 }
}

This approach requires a good knowledge of the API. See the next section "Data Model" for
an introduction to Node manipulation.

6. Handle errors: execution can raise an EvalException. The message of the exception gives the
reason for the error. It is also possible to display the call trace:

try {
 Value v = processor.executeQuery(query);
 ...
} catch (EvalException ee) {
 ee.printStack(log, 20);
}

The stack trace is printed to a Log object. The second argument gives a depth maximum for the
trace (0 means no maximum).

5.3. Data Model interfaces
This section describes the Java interfaces to the XML/XQuery Data Model. The Data Model is defined
by a W3C specification: http://www.w3.org/TR/xpath-datamodel/. It is an extension of the XML Infoset
which describes precisely the abstract objects (their contents, possible values, and relationship) which
constitute XML Documents handled by XPath 2, XQuery and XSLT 2.

This Data Model differs from the W3C DOM in the following respects:

• It does not keep track of physical features like entity boundaries, marked sections, characters refer-
ences.

• It defines neither language bindings, nor updating operations,

• It supports XML Schema types and the notion of collections.

In XQuest the XML Data Model is seen mainly through the Node interface (net.xfra.qizx-
open.dm.Node). It supports the accessors defined in the Data Model specifications plus extensions.

The net.xfra.qizxopen.dm package also contains few related interfaces or classes, like
NodeSequence, NodeTest, and service classes like XMLSerializer and FulltextQuery.

The utility package net.xfra.qizxopen.util contains ancillary classes for handling qualified names
(QName and Namespace).

20

Qizx Programmer's Guide

http://www.w3.org/TR/xpath-datamodel/

What follows is a short primer. For detailed information, refer to the Java Documentation.

Basic information access:
We present here some of the basic accessors:

String getNodekind()
represents the accessor dm:node-kind() which returns string values like "document", "element",
"attribute" etc.

int getNature()
returns the node kinds as integer values, more convenient for programming, like ELEMENT,
DOCUMENT, TEXT, COMMENT etc.

QName getNodeName()
represents the accessor dm:node-name() which returns a qualified name if applicable (elements,
attributes) or the null value.

Node parent()
Returns the parent node or null.

String getStringValue()
Returns the textual contents of the node, as defined in the DM specifications.

NodeSequence children()
For documents and elements, returns a NodeSequence, an abstract iiterator which can enumerate
the children nodes in document order. To iterate on children, the following code pattern is typically
used:

NodeSequence children = node.children();
while(children.next()) {
 Node child = children.currentNode();
 //...
}

For other node kinds, the sequence is always empty.

NodeSequence attributes()
This method returns the sequence of attribute nodes belonging to an element. Example: a crude
serialization of an element:

if(node.getNature() == Node.ELEMENT) {
 output.print("<");
 // print element name: needs to convert QName to string
 output.printName(node.getNodeName());

 NodeSequence attributes = node.attributes();
 for(; attributes.next();) {
 Node attr = attributes.next.currentNode();
 output.print(" ");
 // print attribute name: needs to convert QName to string
 output.printName(attr.getNodeName());
 output.print("='");
 // print attribute value (needs escaping)
 output.printName(attr.getStringValue());
 output.print('");
 }
 output.print(">");
}

Extended accessors:
XQuest has extended methods which return sequences filtered by an abstract NodeTest. A most
useful implementation of NodeTest is BaseNodeTest which can filter nodes according to their
kind and their name. It can also perform wildcard name matching.

21

Qizx Programmer's Guide

NodeSequence children(NodeTest test)
Returns the sequence of children which pass the test. For example, this code returns an iterator
on children which have the name "section", with a blank namespace:

node.children(new BaseNodeTest(Node.ELEMENT,
 Namespace.NONE, "section"))

NodeSequence attributes(NodeTest test)
Returns the sequence of attributes which pass the test. For example, this code returns an iter-
ator on all attributes which have a name with namespace ns:

node.children(new BaseNodeTest(Node.ATTRIBUTE, ns, null))

NodeSequence ancestors(NodeTest test), NodeSequence ancestorsOrSelf(Node-
Test test), NodeSequence descendants(NodeTest test), NodeSequence descend-
antsOrSelf(NodeTest test), NodeSequence followingSiblings(NodeTest test),
NodeSequence following(NodeTest test), NodeSequence precedingSiblings(No-
deTest test), NodeSequence preceding(NodeTest test)

Similar filtered iterators which implement XPath axes like ancestor, descendant etc.

Comparisons
There are methods for comparing the value or document order of two nodes:

int orderCompare(Node otherNode)
Returns -1 if this node is strictly before the other node in document order, 0 if nodes are
identical, 1 if after the argument node.

This method is generally very efficient.

int compareStringValues(Node node, java.text.Collator collator)
compares the string values of two nodes, whatever their kinds, with an optional Collator.

Serialization
XMLSerializer is a class which supports all serialization tasks. It converts any node into a serialized
form in XML, XHTML or HTML (if applicable) or plain text (discarding the tags).

After creating a XMLSerializer, options can be set, in particular an output stream:

XMLSerializer serial = new XMLSerializer("HTML");
FileOutputStream outputStream = new FileOutputStream("out.html");
serial.setOutput(outputStream, "ISO8859_1");
serial.setOption(XMLSerializer.OMIT_XML_DECLARATION, "yes");
serial.setOption(XMLSerializer.INDENT, "no");

Then a node can be serialized:

serial.output(node);

A Serializer can be reused. The XML or DOCTYPE declarations are output only if the node is a
document node. It is also possible to control this at a lower level by using methods reset, terminate,
startDocument, endDocument.

Serialization options are described in the Java documentation and in the User's Guide.

Parsing
To obtain a Node from a document residing in a file or accessible through an URL, one can use the
services of a DocumentParser or a DocumentManager.

• DocumentParser provides basic parsing and tree construction services. It supports XML catalogs.

• DocumentManager is an extension of DocumentParser which supports URI resolution, and
caching (so that a document accessed several times needs not be reparsed). It can be used
concurrently by several threads.

22

Qizx Programmer's Guide

The simplest way of parsing a document given its URI (system Identifier in SAX terminology) is to
use a static method of DocumentParser:

Node root = DocumentParser.parse(new InputSource(uri));

To use document caching, a DocumentManager has to be instantiated, then its findDocumentNode
method can be used to get the root node of the document from its URI.

23

Qizx Programmer's Guide

