Using XQuery as a template language
In Web applications.

Table of Contents

I o) 0o 18 Tox £ o PP 1
FZ2 Y @ 11T o PP 2
3. QIZX SEIVEN ENVIFONMENT ..ottt e e et e e e e e e e et e et e et e e e e e e eaeenaeanaes 2
B TR I T] PPN 3
I €11 g =T o] =Y oV [PP PSPEP 3
B3 AP e 3
3.4. Serialization and XSLT TransfOrMScouiiiiiiee e 5
R T T = Tol U] 1Y TSP PTUPTUPTR 5
Abstract

XML Query shows an interesting capacity to be used as a "Server Pages" technology, a template language
for generating Web pages. Several implementations of this functionality have already been proposed
(GNU/Qexo[1], eXist[2]). This paper introduces XQuery Server Pages (*), a fairly complete implementation
which is part of Qizx/open. We assume that the reader has a some knowledge of both XML Query and
writing web applications with servlets or JSP.

A demonstration .war (Web Application Archive) with a few simple examples can be downloaded from
Qizx/open's site. See the download page[3].

(*) this obvious reference to JSP or ASP should be regarded as humorous, as XQSP has no pretension
to compete with these widely used technologies. However an effort to standardize the use of XQuery
in Web applications could become of interest in a not-so-distant future.

1. Introduction

Many template languages are available today for generating Web pages: JSP, ASP, PHP... Most of
these formalisms rely on some special markup that allows to distinguish between instructions or expres-
sions in a particular programming language (to be evaluated) and raw HTML or XML (to be simply sent
to the HTTP pipe): for example ASP and JSP use <% . .. % tags, PHP uses processing-instructions
<?php ... ?>.

The advantages of this approach are: simplicity; efficiency (templates are in general preprocessed and
compiled); compatibility with HTML editors.

The drawbacks are also well-known: see for example the article by Jason Hunter "the problems with
JSP[4]": unstructured mixing of HTML markup and executable instructions produce cluttered source
code, incline programmers to put too much code in templates, hence a poor separation between logic
and presentation. In addition a language like Java is sometimes not very convenient in some common
tasks like iterating on data structures.

Several techniques have been used to palliate such problems: components (COM, Java Beans) encap-
sulate business logic complexities; Tag Libraries delegate control logic to specialized tags a la XSLT;
Model-View-Controller approach ("JSP Model 2") completely separate logic and presentation;

[1
[2
[3
[4

http://www.gnu.org/software/gexo/XQ-Gen-XML.html
http://exist.sourceforge.net/devguide.html
http://lwww.xfra.net/qizxopen/download.html
http://www.servlets.com/soapbox/problems-jsp.html

http://www.gnu.org/software/qexo/XQ-Gen-XML.html
http://exist.sourceforge.net/devguide.html
http:///www.xfra.net/qizxopen/download.html
http://www.servlets.com/soapbox/problems-jsp.html
http://www.servlets.com/soapbox/problems-jsp.html

Using XQuery as a template lan-
guage in Web applications.

2. XML Query

XML Query is not merely a query language to retrieve XML from databases; Itis in itself a quite powerful
processing language which can very well be used as a "Server Pages" technology:

» A XML Query expression evaluating as a document or an element is actually a template, that always
generates a well-formed XML structure. XQuery is basically capable of generating XML documents:
it has powerful instructions to construct, access and combine XML nodes.

« XML Query mixes executable instructions and "tags" in a clean way: instructions and tags can be
nested at any level with a consistent syntax. In fact, "tags" are not different than instructions. They
are integral part of the XML Query language (they are called "element constructors").

* Hence using XQuery as a template language can be very interesting in applications

« which directly manipulate XML fragments: this is typically the case when XQuery is used as the
guery and processing language of a native XML database / search engine.

By contrast, manipulating XML fragments for example with Java and DOM is fairly uneasy.
* Where the generation task is non-trivial:
» Unlimited nesting of instructions and "tags" allow sophisticated yet clean coding.
» Functions (returning elements) can be used as building-blocks or templates, at several levels.

By contrast, with classical template languages it is hardly possible to go beyond simple and fixed
template structures.

« Limitations: XQuery in web applications cannot be as efficient as JSP, however this will rarely be an
issue.

A sample: when setup in the XQSP environment provided by Qizx, the following snippet is able to echo
the headers of an HTTP request:

Figure 1. echo headers:

<html =<hody >
<pr Date: { current-date() }, time: { current—time() i</p:
<h?>§our request contains these headers: </hd>
<yl

for Sh in request:getHeaderNames() return

<1i:{ $h 3 = { request:getHeader(string($h)) }</1i:

3
<fuls
<fhody </ html >

Expressions embedded in element constructors are marked in blue. A nested element constructor
itself containing expressions can be noticed inside the FLWOR loop. The template contains calls to
standard functions (current-date and current-time) and to Java extension functions (request:getHeader-
Names and request:getHeader).

3. Qizx Server Environment

A Web Application Archive (WAR) containing the XQuery Server implementation and a few simple ex-
amples is available on Qizx/open's download page[5]. This distribution can also serve as a basis for
developing new applications.

[5] download.html

download.html

Using XQuery as a template lan-
guage in Web applications.

Installation: deploying this example should be very simple. Most J2EE-compliant servlet containers
simply require to drop the war archive in a directory named webapps, then it is deployed automatically.
Refer to the documentation of your servlet container.

3.1. Features

The XQuery Server Pages implemented by Qizx provide the following features:

» Ageneric servlet recognizes requests with .xqsp extension, is able to load and cache corresponding
queries and to run them with the XQuery engine. The result is serialized and sent back as HTTP re-
sponse.

» Access to the entire Java Servlet API through the Java extension mechanism available in Qizx.

» Convenience functions to ease basic tasks (access HTTP request and response, manipulate attributes
and beans in page/request/session/application, forward request to other pages etc...)

» Serialization options can be specified through pragmas.

» Optional XSLT post-processing of the query output: provides additional means for separating pro-
cessing and presentation.

3.2. Generic Servlet

In the example Web Application, this servlet (net.xfra.qizxopen.server.XQServlet) is configured to invoke
XQuery Pages on HTTP requests which have a path ending with ".xgsp". This is achieved through a
mapping in application descriptor web.xml:

<servl et - mappi ng>
<servl et - name>XQSer vl et </ servl et - nane>
<url - pattern>*. xqsp</url - pattern>

</ servl et - mappi ng>

Itis generally possible to define a server-wide mapping from the .xqsp extension to the generic XQServlet:
this is however a server-dependent issue. Refer to the documentation of your preferred Servlet Container.

The generic servlet compiles XQuery Pages as needed and caches them. If a page resource was
modified, it is automatically reloaded. Similarly, the servlet can load and cache XSLT templates, optionally
used as a post processing of XQuery output. The cache sizes can be defined in configuration file web.xml.

3.3. API

The HttpServlet API is accessible through the Java extension mechanism. To make programming in
XQuery easier, three namespace prefixes are predefined:

Xqgsp: gives access to a few convenience functions (de-
scribed below), for example xqgsp: header -
Nanmes(), xqgsp: forward(path), xqsp: use-
bean(...).

request: gives access to interface j avax. servl et. ht -
tp. H t pSer vl et Request

response: gives access to interface j avax. servl et. ht -
tp. H t pServl et Response

It means that all methods of these interfaces HttpServletRequest and HttpServletResponse are accessible
in XQuery. For exampler equest : get - par anet er (nane) , or equivalently r equest : get Par anet -
er (nanme) maps the Java method Ht t pSer vl et Request . get Paranet er (Stri ng nane).

Notice that it is not necessary to pass the request object itself (this is done implicitly). However the request
and response objects can be accessed through variables $xqsp: r equest and $xgsp:response.

Using XQuery as a template lan-
guage in Web applications.

An example using several methods of interfaces HttpServietRequest and HttpSession. Notice that
method names are written in the two possible styles: normal (aka camelCase) or in lowercase with
dashes:

Figure 2. A more comprehensive excerpt of echo.xqsp

declare namespace session = "java:javaz.servlet.http.HttpSession”

<html »
<hody >
<h2:Echo of your request:</h2:
<prReceived on §{ request:get-server-name() ¥ from {
» request:get-remote-host(), " address: ", request:get-remote-addr()
<pr
<uls
<1ir<brmethod: { request:getMethod(} }</7i>
<1i=<b:protocol: </b:{ request:getProtocol() }, { request:getScheme(} }</11:
<1ir<brrequest—uri: { request:getRequestURI(} </ 11>
<11=<b*locale: </b:{ request:getlocale() }</1i:
<1ir<brcontent—length: { request:getContentLength() %</11>
<1ir<hrsession: </hx{

let %5 := request:getSession() return

{ "1d=", session:getId($s),

", last access=", session:getlasticcessedTime($s),
", timeout=", session:getMaxInactiveInterval($s),

: f159551un:setMaxInactiueInterva]($5, ws:int(10) 3)

/19
<fuls

Convenience functions (prototypes are given in XQuery style, prefix is always xqsp:):

function xqsp: get ResourceAsString($nane as xs:string) as xs:string?

Loads a text file as a string: the file must be a resource of the current web application context.

function xgsp:forward($path as xs:string) as xs:bool ean

Forwards the request to another page on the server. The path must begin with the "/ and be relative
to the application context.

function xgsp: paranet er Nanes() as xs:string*

Returns a sequence of HTTP parameter names. This is simply a convenience wrapper: request:get-
ParameterNames() is almost equivalent, but this function's type is xs:string*, which makes easier
to use.

function xqsp: header Names() as xs:string*
function xqsp:initParameterNanes() as xs:string*

similar wrappers for header names and init parameter names.

function xqgsp:get-attribute($name as xs:string) as item()?
function xqsp:set-attribute($name as xs:string, value as iten())
function xqsp: renmove-attribute($nane as xs:string)

Manage attributes on the current page. Arbitrary objects can be associated as named attributes of
the page.

function xgsp: use-bean($nane as xs:string, $classname as xs:string,
$scope as xs:string) as item()?

This is similar to the use-bean functionality in JSP: an object can be instantiated from a Java class
(if necessary) and associated as an attribute in a particular scope: the scope can be " page", "r e-
guest " (attributes survive to a forward), "sessi on" (attributes are valid along the same user ses-
sion), "appl i cat i on" (attributes are shared by all users of the same web application).

Using XQuery as a template lan-
guage in Web applications.

Argument $classname must be the fully qualified name of a loadable class. If it does not exist yet,
it is instantiated like a Java Bean.

function xqgsp:get-attribute($name as xs:string, $scope as xs:string)
as item)?

Retrieves an attribute i.e a bean) from a scope. Returns the empty sequence if not found (no instan-
tiation performed).

3.4. Serialization and XSLT Transforms

Serialization
Serialization options can be specified inside pages by a pragma put anywhere in the page: the name
of the pragma must be gizx:serialization or x:serialize. The body of the pragma contains name=
value pairs for serialization options, with the same semantics as the x:serialize function.

(::pragma x:serialize
met hod=XHTM. medi a-t ype=t ext i ndent=no encodi ng=i so8859-1 ::)

It is not currently possible to specify such options dynamically.

Pipelining with XSLT transformations
The result of a XQuery Page evaluation can be passed to a XSLT1 stylesheet. This allows a kind
of separation between presentation and logic. It can also be more convenient for formatting data
extracted from databases.

This is also achieved by using a pragma. The name of the pragma must be x:transform.

A particular option is stylesheet: it specifies the path of a XSLT stylesheet resource. Other options
are passed as parameters of the stylesheet.

(::pragma x:transform
styl esheet =shakespear e. xsl paraml=val uel paranR=val ue2 ::)

3.5. Security

The Java binding feature, which allows to call any Java method from inside a XQuery script, can represent
a serious security hole in a server environment, at least if clients are allowed to execute arbitrary expres-
sions. If they are not, no real issue exists here.

For this reason, the Java binding feature has a security mechanism, by which it is possible to specify
selectively which Java classes may be used. In the Server pages environment, it is brought in operation
in the following way:

» By default, only Servlet-related classes are allowed: HttpServlet, HttpServietRequest, HttpServietRe-
sponse, HttpSession.

» To allow other classes, modify the web application descriptor web.xml: there is an initialization
parameter called al | owed- cl asses which specifies a list of fully-qualified class names, for example:

<i ni t - par an>
<par am nane>al | owed- cl asses</ par am nane>
<descri ption>Cl asses all owed for Java extension
(comma or space-separated |list of class nanmes.) </description>
<param val ue> java.util.Vector java.util.Cal endar </param val ue>
</init-paran>

