
Samba 4

(was exotic filesystem backends)

Andrew Tridgell
tridge@samba.org



Samba 4

� Started out as 'NTVFS rewrite', now expanded to 
much broader restructure. I hope this will be the 
basis of Samba version 4.

� Core architectural ideas are:

� heavily context oriented

� not tied to POSIX

� much more modular

� separation of parse and logic layers

� much more complete CIFS feature support



SMBD
CORE

PARSE
LAYER

AUTH
CORE

NTVFS
CORE

IPC PRINT DISK

POSIX CIFS SIMPLE REF

LIBSMB
RAW

AUTH
MODULES



Samba 3 structure

� Samba 3 still uses the same basic structure as the 
1992 code

� SMB parsing and logic mixed together

� tightly tied to POSIX

� static string handling

� tied to single SMB socket per process

� no unifying structure



Contexts

� Samba 4 is heavily context oriented

� server_context replaces globals

� tcon_context per tree connect

� request_context per packet

� All functions take a context of some sort

� Contexts contain back-pointers to server_context



Sub Contexts

� Context structures also contain sub-contexts

� For example, server_context contains:

� negotiate_context

� substitute_context

� socket_context

� tree_context

� users_context

� printing_context

� timers_context



Request context

� replaces inbuf/outbuf and many global variables

� separation of header, command word and data 
packet sections. Makes chaining clean.

� reduces ties to NBT encapsulation

� buffers allocated to right size, not maximum size

� talloc context for all request related allocation

� requests can be easily deferred, replacing several 
packet queue mechanisms

� unified bounds checking



Parse Layer

� Samba 4 has a separate SMB parse layer, 
producing structures describing each request

� unlike Samba 3, all SMB parameters are parsed

� unions used to combine varients on common 
concepts, such as the many open and read varients

� shares structures with new raw client interface

� shares structures with NTVFS backend API



Parse structures
enum fsinfo_level {SMB_FSINFO_GENERIC, SMB_FSINFO_DSKATTR};

union smb_fsinfo {
/* generic interface */
struct {

enum fsinfo_level level;
struct {

uint32 block_size;
SMB_BIG_UINT blocks_total;
SMB_BIG_UINT blocks_free;

} out;
} generic;

/* SMBdskattr interface */
struct {

enum fsinfo_level level;
struct {

uint16 units_total;
uint16 blocks_per_unit;
uint16 block_size;
uint16 units_free;

} out;
} dskattr;

};



NTVFS layer

� separate interfaces for IPC, DISK and PRINT 
backends

� receives fully parsed SMB requests with all 
parameters

� provides mapping for specific to generic backend 
functions

� modular replacement of backends



Level Mapping

� Allows most backends to only implement 'sane' 
generic functions

� Allows some backends to implement specific 
level handlers if need be

� Confines most esoteric SMB knowledge to one 
place



Backend registration

� Backends can be dynamically registered via 
modules

� Registration specifies type of backend

� Backends can ask for other backend functions

BOOL ntvfs_register(const char *name, enum ntvfs_type type, struct ntvfs_ops *ops);

struct ntvfs_ops *ntvfs_backend_byname(const char *name, enum ntvfs_type type);



POSIX backend

� much of the old smbd code will move to the new 
POSIX NTVFS backend

� consolidation into backend code should make 
POSIX semantic compromises much clearer

� should we keep the old POSIX VFS system?



CIFS backend

� a NTVFS disk backend that connects to a remote 
CIFS server

� provides a 'perfect' backend with all protocol 
features

� allows for testing of core code with MS backend

� not intended to be used in real systems

� ideal testbed for distributed Samba

� will integrate with server level security



Simple Backend

� a NTVFS disk backend mapping to a local 
filesystem

� no attempt at accurate POSIX mapping

� useful template for new backends

� allows performance cost of POSIX backend to be 
measured



New server models

� separation of contexts in smbd allows for new 
modes of operation

� can break 1-1 socket to process model

� possibility of threaded architecture

� interactive mode could handle multiple sockets, 
useful for debugging

� allows identification of components needed for 
distributed operation



Raw client interface

� a new raw client library

� aims to be much more complete than previous libs

� shares parse structures with smbd and NTVFS

� core component of new broad coverage testsuite



Storage Tank

� A distributed SAN filesystem developed by IBM

� NTVFS layer will talk directly to filesystem, not 
via the kernel

� Has rich non-POSIX semantic

� case insensitive

� DOS attributes

� Extended ACLs



Clustered Samba

� Context structures will allow for several possible 
clustering methods

� CIFS backend provides ideal clustered testbed

W2K

Samba Samba Samba Samba

CIFS clients



Code status

� Samba 4 codebase at very early stages of 
development

� can send and receive a few packets

� removed much of core functionality, will need to 
be replaced

� parse layer well defined, NTVFS interface 
defined, main contexts defined


