
CIFS Protocol Extensions
Update

Steve French
CIFS maintainer and Senior Engineer IBM

LTC

Jeremy Allison
Senior Engineer Samba 3/Novell

Legal Statement

This work represents the views of the authors and does not
necessarily ref lect the views of IBM Corporat ion or Novell
Corporat ion.

A full list of U.S. trademarks owned by IBM may be found at
http:/ / www.ibm.com/ legal/ copytrade.shtml.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Who are we ... server and
client maintainers

● Steve French
● Author and maintainer of Linux cifs vfs
(for accessing Samba, Windows and various
SMB/CIFS based NAS appliances)

● Member of the Samba team, coauthor of
CIFS Technical Reference and former SNIA
CIFS Working Group chair

● Architect: Filesystems/NFS/Samba IBM LTC
● Jeremy Allison

● One of the original authors of Samba 3
server

● Novell/SuSE Samba lead

Outline

• Why SMB/CIFS ... 22 years and
counting?

• Unix Extensions ... good enough?

– Why were they developed?
– What and where are they?

• But something was missing ...

– What about MS SFU? Or SMB2?
– What about more Extensions ...?

Outline (continued)

• CIFS POSIX Extensions

– Basics
– ACLs
– POSIX Locking
– Other new feature

• status of current implementations
... are they available?

• And looking toward the future ...

22 years ago

• The birth of
SMB/CIFS: Dr.
Barry Feigenbaum
et al of IBM
(published 1984
IBM PC Conf),
continued by
Intel, 3Com,
Microsoft and
others

Then

• IBM PC LAN Program
(PCLP)

• MS- Net

And Now...
• Windows goes on and on -
sees new Vistas

• Other servers from many
companies

– Samba 3.0.23 and 4
(Novell, RedHat, IBM
...)

– NetApp ...

• And many clients

– Smbclient

– Linux CIFS VFS

– JCIFS, MacOS ...

CIFS
ROCKS!

But Why CIFS?

• CIFS is a surprisingly broad, rich protocol

• Existing CIFS servers and clients need fewer
changes to achieve functional and performance
goals than alternative approaches

• Reasonable performance for certain workloads
already, no unnecessary intermediate RPC layer,
and straightforward caching model

• Broad support for many platforms including all
of most common ones

• Synergy with large installed base of CIFS
clients and servers

But Still ... Why CIFS?

• CIFS is the defacto standard
network filesystem for hundreds
of millions of machines (and not
just for Windows).

• CIFS clients and servers exist
for most or all major platforms

• And the alternatives have
problems ...

And the alternatives?

• NFS v3 or v4

• AFS/DFS

• HTTP/WebDav

• Cluster
Filesystem
Protocols

CIFS Unix Extensions

• Developed/Documented by HP (extending early
work by SCO) and others then documented by
SNIA in the CIFS Technical Reference

– Required only modest extensions to
server

– Solved key problems for POSIX clients
including:

• How to return: UID/GID, mode
• How to handle symlinks
• How to handle special files
(devices/fifos)

Without CIFS extensions, less
local/remote transparency...

Much improved with CIFS Extensions

What about SFU approach?
– Lessons from SFU:

• Map mode, group and user (SID) owner fields to
ACLs

• Do hardlinks via NT Rename

• Get inode numbers

• Remap illegal characters to Unicode reserved
range

• FIFOs and device files via OS/2 EAs on system
files

– OK, but not good enough …
• Some POSIX byte range lock tests fail

• Semantics are awkward for symlinks, devices

• UID mapping a mess

• Performance slow

• Operations much less atomic and not robust enough

• Rename/delete semantics are hard to make reliable

CIFS Unix Extensions

• Problem ... a lot was missing:

– Way to negotiate per mount capabilities

– POSIX byte range locking

– ACL alternative (such as POSIX ACLs)

– A way to handle some key fields in
statfs

– Way to handle various newer vfs entry
points

• lsattr/chattr
• Inotify
• New xattr (EA) namespaces

Original Unix Extensions Missing
POSIX ACLs and statfs info

smf-t41p:/home/stevef # getfacl /mnt/test-dir/file1
file: mnt/test-dir/file1
owner: root
group: root
user::rwx
group::rw-
other::rwx

smf-t41p:/home/stevef # stat -f /mnt1
 File: "/mnt1"
 ID: 0 Namelen: 4096 Type: UNKNOWN
(0xff534d42)
Block size: 1024 Fundamental block size: 1024
Blocks: Total: 521748 Free: 421028 Available:
421028
Inodes: Total: 0 Free: 0

With CIFS POSIX Extensions,
ACLs and statfs better

smf-t41p:/home/stevef # getfacl /mnt/test-dir/file1
file: mnt/test-dir/file1
owner: stevef
group: users
user::rw-
user:stevef:r--
group::r--
mask::r--
other::r--

smf-t41p:/home/stevef # stat -f /mnt1
 File: "/mnt1"
 ID: 0 Namelen: 4096 Type: UNKNOWN (0xff534d42)
Block size: 4096 Fundamental block size: 4096
Blocks: Total: 130437 Free: 111883 Available: 105257
Inodes: Total: 66400 Free: 66299

POSIX Locking

• Locking semantics differ between CIFS and
POSIX at the application layer.

– CIFS locking is mandatory, POSIX
advisory.

– CIFS locking stacks and is offset/length
specific, POSIX locking merges and
splits and the offset/lengths don't have
to match.

– CIFS locking is unsigned and absolute,
POSIX locking is signed and relative.

– POSIX close destroys all locks.

Protocol changes
• The mandatory/advisory difference in
locking semantics has an unexpected effect.

• READX/WRITEX semantics must change when
POSIX locks are negotiated.

– Once POSIX locks are negotiated by the
SETFSINFO call, the semantics of
READ/WRITE CIFS calls change – they
ignore existing read/write locks.

– POSIX-extensions aware clients probably
want these semantics.

• It's a side effect, but a good one !

Status
• Clients

– CIFS client

• Version 1.45 (Linux 2.6.18) includes the much
improved POSIX locking

• Version 1.32 included POSIX ACLs, statfs,
lsattr

– Smbclient

• Samba 3.0.23 includes client test code for
POSIX locking

• Server

– Samba 3.0.23 includes POSIX Locking (POSIX ACLs,
QFSInfo, Unix Extensions implemented before)

– HP/UX and a few other servers also support
original Unix Extensions

Roadmap

• Client

– 2.6.19 will include new mkdir/open
• Server

– Samba 3.0.24 will better map onto
local posix locks

– Samba 4 Unix/POSIX Extensions
started with new POSIX CIFS client
backend

• In discussions with other client and
server vendors about feature needs

Gory details
Minimal changes to negotiation ...

New capability for Session Setup
#define CAP_UNIX 0x00800000

Optional Dialect for Negprot
“POSIX 2”

New SMB Commands
None

New Infolevels
Total # Defined: 12 (“POSIX Extensions”)
Implemented by Linux CIFS VFS: 10
Implemented by Samba server: 9
Original CIFS “Unix Extensions”: 5

More gory details
New File/PathInfo levels (Set and Get):
#define SMB_QUERY_FILE_UNIX_BASIC 0x200
#define SMB_QUERY_FILE_UNIX_LINK 0x201
#define SMB_SET_FILE_UNIX_HLINK 0x203 /* set only */
#define SMB_QUERY_POSIX_ACL 0x204
#define SMB_QUERY_XATTR 0x205
#define SMB_QUERY_ATTR_FLAGS 0x206
#define SMB_QUERY_POSIX_PERMISSION 0x207 /* query only */
#define SMB_QUERY_POSIX_LOCK 0x208

New FindFirst/FindNext level (readdir)
#define SMB_FIND_FILE_UNIX 0x202

New QFSInfo level
#define SMB_QUERY_CIFS_UNIX_INFO 0x200 (set/query)
#define SMB_QUERY_POSIX_FS_INFO 0x201 (query only)

How to negotiate Unix/POSIX
Capabilities

typedef struct {
 __le16 MajorVersionNumber;
 __le16 MinorVersionNumber;
 __le64 Capability;
} __attribute__((packed)) FILE_SYSTEM_UNIX_INFO; /* Unix extensions, level 0x200 */

/* Version numbers for CIFS UNIX major and minor. */
#define CIFS_UNIX_MAJOR_VERSION 1
#define CIFS_UNIX_MINOR_VERSION 0

/* Linux/Unix extensions capability flags */
#define CIFS_UNIX_FCNTL_CAP 0x00000001 /* support for fcntl locks */
#define CIFS_UNIX_POSIX_ACL_CAP 0x00000002 /* support getfacl/setfacl */
#define CIFS_UNIX_XATTR_CAP 0x00000004 /* support new namespace */
#define CIFS_UNIX_EXTATTR_CAP 0x00000008 /* support chattr/chflag */
#define CIFS_UNIX_POSIX_PATHNAMES_CAP 0x00000010 /* Allow POSIX path chars */

Wire specifics

• Trans2 SETFSINFO call (0x4) with info level
of SMB_SET_CIFS_UNIX_INFO (0x200) used to
set capabilities bitmask.

– CIFS_UNIX_FCNTL_LOCKS_CAP (0x1) turns on
POSIX lock semantics – changes
read/write semantics.

• Trans2 QFILEINFO (0x7) call has one new
level, SMB_QUERY_POSIX_LOCK (0x208) whose
parameters map to the POSIX F_GETLK fcntl()
call.

Wire specifics (continued)

• Trans2 SETFILEINFO (0x8) call has one new
level, SMB_SET_POSIX_LOCK (0x208) whose
parameters map to the POSIX F_SETLK fcntl()
call.

• Lock offsets and ranges must be translated
by the client from the POSIX signed
relative values to CIFS 64-bit unsigned
absolute values.

– [2 bytes] lock_type
[2 bytes] lock_flags
[4 bytes] pid = locking context.
[8 bytes] start = unsigned 64 bits.
[8 bytes] length = unsigned 64 bits.

API / Protocol interact ion
• Common POSIX programming idiom is to set a
SIGALRM to cancel a blocked lock.

– This means cancellation of blocking
locks.

– Protocol request for blocking lock
doesn't return until request succeeds
(no timeout in POSIX locking).

– Locks must be able to be canceled.

• Re-used NTCANCEL (0xA4) call.
• Causes lock request to return
NT_STATUS_LOCK_NOT_GRANTED.

– Close FID drops all locks on that
dev/inode pair (treats as cancel).

Windows client/POSIX interaction

• POSIX clients read/write requests conflict
with Windows locks, but not POSIX locks
(Windows locks are mandatory for POSIX
clients).

• Windows clients read/write requests
conflict with both Windows and POSIX locks
(both lock types are mandatory for Windows
clients).

• Windows locks are set, unlocked and
canceled via LOCKINGX (0x24) call.

• POSIX locks are set and unlocked via the
Trans2 SETFILEINFO call, and canceled via
the NTCANCEL call.

A few Extensions still needed

• inotify

• A few ioctls such as
lsattr/chattr/chflags (currently
implemented only in cifs client) e.g.
To make a file immutable, or append-
only, or to zero blocks on delete.

stevef@smf- t41p:~/ test- dir> lsattr / boot/ append- only- f ile
- - - - - ad- - - - - - / boot/ append- only- f ile
stevef@smf- t41p:~/ test- dir> lsattr / mnt1/ append- only- f ile
lsattr: Inappropriate ioct l for device While reading
f lags on / mnt1/ append- only- f ile

Unfinished features for full POSIX
• POSIX open/mkdir

– Should take POSIX mode_t argument, and
return the mode_t argument on create.

– Should open with
FILE_SHARE_READ/WRITE/DELETE.

• POSIX rename

– If POSIX open should allow rename of
open file.

• POSIX delete

– If POSIX open should allow delete of
open file.

– File should disappear from directory
listing.

New Infolevels

• #define SMB_POSIX_OPEN 0x209
• MKDIR will be flag on open rather than
distinct level

POSIX Errors

• NT Status codes (16 bit error nums)
already has a reserved range

– 0xF3000000 + POSIX errnum

– POSIX errnum vary in theory, but not
much in practice for common ones use

– POSIX errnums fixed

– New capability(will probably be)
• #define CIFS_UNIX_POSIX_ERRORS 0x20

– Do we need to define new errmapping
SMB for client to resolve unknown
POSIX errors backs to NT Status?

Beating the competit ion - NFSv4

• NFSv4 has sign+sealed data transport, using
GSS-API sign/seal with krb5 encryption.

• CIFS needs something similar – we already
have SMB signing, we just need to add the
“sealing” component.

• Discussions are ongoing as to the best way
to do this for UNIX to UNIX CIFS.

– Please take part on samba-technical.

– Remember working code trumps elegant
design....

More general improvements still
needed in our aging protocol

• These changes were not really Unix or Linux
specific but POSIX apps may have stricter
assumptions

• Full local/remote transparency desired

• Need near perfect POSIX semantics over cifs

• Newer requirements

– Better caching of directory information

– Improved DFS (distributed name space)

– Better Performance

– Better recovery after network failure

– QoS

File Encryption / Compression
as easy as local

Session Encryption (seal vs. sign)
• SMB/CIFS signing almost
a decade old

• There are sealed RPC
pipes, but not sealed
SMB sessions

• Per file encryption can
be done (e.g. EcryptFS
or IE to IIS)

• per-SMB sess encryption
needed (NFSv4 gss
sealing rqmnt similar)
for perf reasons & also
easier to admin

CIFS Encryption requirements

• Better performing and/or
easier to configure than
“encrypt everything”
approach of ipsec

• Leverage cifs
authentication context
(not require 2nd login)

• Encrypt (at least) file
data and file/directory
names

• Don't repeat original
SMB signing mistakes

Caching improvements
• FCNTLs already defined/reserved

for this

– #define
FSCTL_REQUEST_OPLOCK_LEVEL_1
0x00090000

– #define
FSCTL_REQUEST_OPLOCK_LEVEL_2
0x00090004

– #define
FSCTL_REQUEST_BATCH_OPLOCK
0x00090008

– #define
FSCTL_REQUEST_FILTER_OPLOCK
0x0009008C

• Current work going on to test
this

Source: ht tp:/ / www.microsoft .com/ mind/ 1196/ cifs.asp

DFS (Global Namespace)
improvements

• We need to improve
ability to f ind
nearest replica, and
recover after failure

• And also to hint
“least busy” server
for load balancing

New Transports

• To adapt to larger
writes

• Reduced latency
• Quality of Service

Where to go from here?

• Discussions on samba- technical and linux-
cifs- client mailing lists

• Wire layout is visible in fs/ cifs/ cifspdu.h
• Working on updated draft reference

document for these cifs protocol extensions
• See

http:/ / samba.org/ samba/ CIFS_POSIX_extensi
ons.html

Thank you for your time!

Backing material

• CIFS Protocol surprisingly rich, already has
support for rich ACLs, audit ing, quotas

IBM Linux Technology Center

© 2006 IBM Corporation

Security already functionally rich enough

