Keyboard shortcuts

Press or to navigate between chapters

Press S or / to search in the book

Press ? to show this help

Press Esc to hide this help

Working with Multiple Memories

You can also browse this source code online and clone the wasmtime repository to run the example locally:

This example demonstrates using the multiple memories proposal, instantiating a module that imports and exports more than one linear memory.

Wasm Source

(module
  (memory (export "memory0") 2 3)
  (memory (export "memory1") 2 4)

  (func (export "size0") (result i32) (memory.size 0))
  (func (export "load0") (param i32) (result i32)
    local.get 0
    i32.load8_s 0
  )
  (func (export "store0") (param i32 i32)
    local.get 0
    local.get 1
    i32.store8 0
  )
  (func (export "size1") (result i32) (memory.size 1))
  (func (export "load1") (param i32) (result i32)
    local.get 0
    i32.load8_s 1
  )
  (func (export "store1") (param i32 i32)
    local.get 0
    local.get 1
    i32.store8 1
  )

  (data (memory 0) (i32.const 0x1000) "\01\02\03\04")
  (data (memory 1) (i32.const 0x1000) "\04\03\02\01")
)

Host Source

//! An example of how to interact with multiple memories.
//!
//! Here a small wasm module with multiple memories is used to show how memory
//! is initialized, how to read and write memory through the `Memory` object,
//! and how wasm functions can trap when dealing with out-of-bounds addresses.

// You can execute this example with `cargo run --example example`

use wasmtime::*;

fn main() -> Result<()> {
    // Enable the multi-memory feature.
    let mut config = Config::new();
    config.wasm_multi_memory(true);

    let engine = Engine::new(&config)?;

    // Create our `store_fn` context and then compile a module and create an
    // instance from the compiled module all in one go.
    let mut store = Store::new(&engine, ());
    let module = Module::from_file(store.engine(), "examples/multimemory.wat")?;
    let instance = Instance::new(&mut store, &module, &[])?;

    let memory0 = instance
        .get_memory(&mut store, "memory0")
        .ok_or(anyhow::format_err!("failed to find `memory0` export"))?;
    let size0 = instance.get_typed_func::<(), i32>(&mut store, "size0")?;
    let load0 = instance.get_typed_func::<i32, i32>(&mut store, "load0")?;
    let store0 = instance.get_typed_func::<(i32, i32), ()>(&mut store, "store0")?;

    let memory1 = instance
        .get_memory(&mut store, "memory1")
        .ok_or(anyhow::format_err!("failed to find `memory1` export"))?;
    let size1 = instance.get_typed_func::<(), i32>(&mut store, "size1")?;
    let load1 = instance.get_typed_func::<i32, i32>(&mut store, "load1")?;
    let store1 = instance.get_typed_func::<(i32, i32), ()>(&mut store, "store1")?;

    println!("Checking memory...");
    assert_eq!(memory0.size(&store), 2);
    assert_eq!(memory0.data_size(&store), 0x20000);
    assert_eq!(memory0.data_mut(&mut store)[0], 0);
    assert_eq!(memory0.data_mut(&mut store)[0x1000], 1);
    assert_eq!(memory0.data_mut(&mut store)[0x1001], 2);
    assert_eq!(memory0.data_mut(&mut store)[0x1002], 3);
    assert_eq!(memory0.data_mut(&mut store)[0x1003], 4);

    assert_eq!(size0.call(&mut store, ())?, 2);
    assert_eq!(load0.call(&mut store, 0)?, 0);
    assert_eq!(load0.call(&mut store, 0x1000)?, 1);
    assert_eq!(load0.call(&mut store, 0x1001)?, 2);
    assert_eq!(load0.call(&mut store, 0x1002)?, 3);
    assert_eq!(load0.call(&mut store, 0x1003)?, 4);
    assert_eq!(load0.call(&mut store, 0x1ffff)?, 0);
    assert!(load0.call(&mut store, 0x20000).is_err()); // out of bounds trap

    assert_eq!(memory1.size(&store), 2);
    assert_eq!(memory1.data_size(&store), 0x20000);
    assert_eq!(memory1.data_mut(&mut store)[0], 0);
    assert_eq!(memory1.data_mut(&mut store)[0x1000], 4);
    assert_eq!(memory1.data_mut(&mut store)[0x1001], 3);
    assert_eq!(memory1.data_mut(&mut store)[0x1002], 2);
    assert_eq!(memory1.data_mut(&mut store)[0x1003], 1);

    assert_eq!(size1.call(&mut store, ())?, 2);
    assert_eq!(load1.call(&mut store, 0)?, 0);
    assert_eq!(load1.call(&mut store, 0x1000)?, 4);
    assert_eq!(load1.call(&mut store, 0x1001)?, 3);
    assert_eq!(load1.call(&mut store, 0x1002)?, 2);
    assert_eq!(load1.call(&mut store, 0x1003)?, 1);
    assert_eq!(load1.call(&mut store, 0x1ffff)?, 0);
    assert!(load0.call(&mut store, 0x20000).is_err()); // out of bounds trap

    println!("Mutating memory...");
    memory0.data_mut(&mut store)[0x1003] = 5;

    store0.call(&mut store, (0x1002, 6))?;
    assert!(store0.call(&mut store, (0x20000, 0)).is_err()); // out of bounds trap

    assert_eq!(memory0.data(&store)[0x1002], 6);
    assert_eq!(memory0.data(&store)[0x1003], 5);
    assert_eq!(load0.call(&mut store, 0x1002)?, 6);
    assert_eq!(load0.call(&mut store, 0x1003)?, 5);

    memory1.data_mut(&mut store)[0x1003] = 7;

    store1.call(&mut store, (0x1002, 8))?;
    assert!(store1.call(&mut store, (0x20000, 0)).is_err()); // out of bounds trap

    assert_eq!(memory1.data(&store)[0x1002], 8);
    assert_eq!(memory1.data(&store)[0x1003], 7);
    assert_eq!(load1.call(&mut store, 0x1002)?, 8);
    assert_eq!(load1.call(&mut store, 0x1003)?, 7);

    println!("Growing memory...");
    memory0.grow(&mut store, 1)?;
    assert_eq!(memory0.size(&store), 3);
    assert_eq!(memory0.data_size(&store), 0x30000);

    assert_eq!(load0.call(&mut store, 0x20000)?, 0);
    store0.call(&mut store, (0x20000, 0))?;
    assert!(load0.call(&mut store, 0x30000).is_err());
    assert!(store0.call(&mut store, (0x30000, 0)).is_err());

    assert!(memory0.grow(&mut store, 1).is_err());
    assert!(memory0.grow(&mut store, 0).is_ok());

    memory1.grow(&mut store, 2)?;
    assert_eq!(memory1.size(&store), 4);
    assert_eq!(memory1.data_size(&store), 0x40000);

    assert_eq!(load1.call(&mut store, 0x30000)?, 0);
    store1.call(&mut store, (0x30000, 0))?;
    assert!(load1.call(&mut store, 0x40000).is_err());
    assert!(store1.call(&mut store, (0x40000, 0)).is_err());

    assert!(memory1.grow(&mut store, 1).is_err());
    assert!(memory1.grow(&mut store, 0).is_ok());

    Ok(())
}
/*
An example of how to interact with multiple memories.

You can build using cmake:

mkdir build && cd build && cmake .. && \
  cmake --build . --target wasmtime-multimemory
*/

#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wasm.h>
#include <wasmtime.h>

static void exit_with_error(const char *message, wasmtime_error_t *error,
                            wasm_trap_t *trap);

void check(bool success) {
  if (!success) {
    printf("> Error, expected success\n");
    exit(1);
  }
}

void check_call(wasmtime_context_t *store, wasmtime_func_t *func,
                const wasmtime_val_t *args, size_t nargs, int32_t expected) {
  wasmtime_val_t results[1];
  wasm_trap_t *trap = NULL;
  wasmtime_error_t *error =
      wasmtime_func_call(store, func, args, nargs, results, 1, &trap);
  if (error != NULL || trap != NULL)
    exit_with_error("failed to call function", error, trap);
  if (results[0].of.i32 != expected) {
    printf("> Error on result\n");
    exit(1);
  }
}

void check_call0(wasmtime_context_t *store, wasmtime_func_t *func,
                 int32_t expected) {
  check_call(store, func, NULL, 0, expected);
}

void check_call1(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg,
                 int32_t expected) {
  wasmtime_val_t args[1];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg;
  check_call(store, func, args, 1, expected);
}

void check_call2(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg1,
                 int32_t arg2, int32_t expected) {
  wasmtime_val_t args[2];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg1;
  args[1].kind = WASMTIME_I32;
  args[1].of.i32 = arg2;
  check_call(store, func, args, 2, expected);
}

void check_ok(wasmtime_context_t *store, wasmtime_func_t *func,
              const wasmtime_val_t *args, size_t nargs) {
  wasm_trap_t *trap = NULL;
  wasmtime_error_t *error =
      wasmtime_func_call(store, func, args, nargs, NULL, 0, &trap);
  if (error != NULL || trap != NULL)
    exit_with_error("failed to call function", error, trap);
}

void check_ok2(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg1,
               int32_t arg2) {
  wasmtime_val_t args[2];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg1;
  args[1].kind = WASMTIME_I32;
  args[1].of.i32 = arg2;
  check_ok(store, func, args, 2);
}

void check_trap(wasmtime_context_t *store, wasmtime_func_t *func,
                const wasmtime_val_t *args, size_t nargs, size_t num_results) {
  assert(num_results <= 1);
  wasmtime_val_t results[1];
  wasm_trap_t *trap = NULL;
  wasmtime_error_t *error =
      wasmtime_func_call(store, func, args, nargs, results, num_results, &trap);
  if (error != NULL)
    exit_with_error("failed to call function", error, NULL);
  if (trap == NULL) {
    printf("> Error on result, expected trap\n");
    exit(1);
  }
  wasm_trap_delete(trap);
}

void check_trap1(wasmtime_context_t *store, wasmtime_func_t *func,
                 int32_t arg) {
  wasmtime_val_t args[1];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg;
  check_trap(store, func, args, 1, 1);
}

void check_trap2(wasmtime_context_t *store, wasmtime_func_t *func, int32_t arg1,
                 int32_t arg2) {
  wasmtime_val_t args[2];
  args[0].kind = WASMTIME_I32;
  args[0].of.i32 = arg1;
  args[1].kind = WASMTIME_I32;
  args[1].of.i32 = arg2;
  check_trap(store, func, args, 2, 0);
}

int main(int argc, const char *argv[]) {
  // Initialize.
  printf("Initializing...\n");

  wasm_config_t *config = wasm_config_new();
  assert(config != NULL);
  wasmtime_config_wasm_multi_memory_set(config, true);

  wasm_engine_t *engine = wasm_engine_new_with_config(config);
  assert(engine != NULL);

  wasmtime_store_t *store = wasmtime_store_new(engine, NULL, NULL);
  wasmtime_context_t *context = wasmtime_store_context(store);

  // Load our input file to parse it next
  FILE *file = fopen("examples/multimemory.wat", "r");
  if (!file) {
    printf("> Error loading file!\n");
    return 1;
  }
  fseek(file, 0L, SEEK_END);
  size_t file_size = ftell(file);
  fseek(file, 0L, SEEK_SET);
  wasm_byte_vec_t wat;
  wasm_byte_vec_new_uninitialized(&wat, file_size);
  if (fread(wat.data, file_size, 1, file) != 1) {
    printf("> Error loading module!\n");
    return 1;
  }
  fclose(file);

  // Parse the wat into the binary wasm format
  wasm_byte_vec_t binary;
  wasmtime_error_t *error = wasmtime_wat2wasm(wat.data, wat.size, &binary);
  if (error != NULL)
    exit_with_error("failed to parse wat", error, NULL);
  wasm_byte_vec_delete(&wat);

  // Compile.
  printf("Compiling module...\n");
  wasmtime_module_t *module = NULL;
  error =
      wasmtime_module_new(engine, (uint8_t *)binary.data, binary.size, &module);
  if (error)
    exit_with_error("failed to compile module", error, NULL);
  wasm_byte_vec_delete(&binary);

  // Instantiate.
  printf("Instantiating module...\n");
  wasmtime_instance_t instance;
  wasm_trap_t *trap = NULL;
  error = wasmtime_instance_new(context, module, NULL, 0, &instance, &trap);
  if (error != NULL || trap != NULL)
    exit_with_error("failed to instantiate", error, trap);
  wasmtime_module_delete(module);

  // Extract export.
  printf("Extracting exports...\n");
  wasmtime_memory_t memory0, memory1;
  wasmtime_func_t size0, load0, store0, size1, load1, store1;
  wasmtime_extern_t item;
  bool ok;
  ok = wasmtime_instance_export_get(context, &instance, "memory0",
                                    strlen("memory0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_MEMORY);
  memory0 = item.of.memory;
  ok = wasmtime_instance_export_get(context, &instance, "size0",
                                    strlen("size0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  size0 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "load0",
                                    strlen("load0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  load0 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "store0",
                                    strlen("store0"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  store0 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "memory1",
                                    strlen("memory1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_MEMORY);
  memory1 = item.of.memory;
  ok = wasmtime_instance_export_get(context, &instance, "size1",
                                    strlen("size1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  size1 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "load1",
                                    strlen("load1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  load1 = item.of.func;
  ok = wasmtime_instance_export_get(context, &instance, "store1",
                                    strlen("store1"), &item);
  assert(ok && item.kind == WASMTIME_EXTERN_FUNC);
  store1 = item.of.func;

  // Check initial memory.
  printf("Checking memory...\n");
  check(wasmtime_memory_size(context, &memory0) == 2);
  check(wasmtime_memory_data_size(context, &memory0) == 0x20000);
  check(wasmtime_memory_data(context, &memory0)[0] == 0);
  check(wasmtime_memory_data(context, &memory0)[0x1000] == 1);
  check(wasmtime_memory_data(context, &memory0)[0x1001] == 2);
  check(wasmtime_memory_data(context, &memory0)[0x1002] == 3);
  check(wasmtime_memory_data(context, &memory0)[0x1003] == 4);

  check_call0(context, &size0, 2);
  check_call1(context, &load0, 0, 0);
  check_call1(context, &load0, 0x1000, 1);
  check_call1(context, &load0, 0x1001, 2);
  check_call1(context, &load0, 0x1002, 3);
  check_call1(context, &load0, 0x1003, 4);
  check_call1(context, &load0, 0x1ffff, 0);
  check_trap1(context, &load0, 0x20000);

  check(wasmtime_memory_size(context, &memory1) == 2);
  check(wasmtime_memory_data_size(context, &memory1) == 0x20000);
  check(wasmtime_memory_data(context, &memory1)[0] == 0);
  check(wasmtime_memory_data(context, &memory1)[0x1000] == 4);
  check(wasmtime_memory_data(context, &memory1)[0x1001] == 3);
  check(wasmtime_memory_data(context, &memory1)[0x1002] == 2);
  check(wasmtime_memory_data(context, &memory1)[0x1003] == 1);

  check_call0(context, &size1, 2);
  check_call1(context, &load1, 0, 0);
  check_call1(context, &load1, 0x1000, 4);
  check_call1(context, &load1, 0x1001, 3);
  check_call1(context, &load1, 0x1002, 2);
  check_call1(context, &load1, 0x1003, 1);
  check_call1(context, &load1, 0x1ffff, 0);
  check_trap1(context, &load1, 0x20000);

  // Mutate memory.
  printf("Mutating memory...\n");
  wasmtime_memory_data(context, &memory0)[0x1003] = 5;
  check_ok2(context, &store0, 0x1002, 6);
  check_trap2(context, &store0, 0x20000, 0);

  check(wasmtime_memory_data(context, &memory0)[0x1002] == 6);
  check(wasmtime_memory_data(context, &memory0)[0x1003] == 5);
  check_call1(context, &load0, 0x1002, 6);
  check_call1(context, &load0, 0x1003, 5);

  wasmtime_memory_data(context, &memory1)[0x1003] = 7;
  check_ok2(context, &store1, 0x1002, 8);
  check_trap2(context, &store1, 0x20000, 0);

  check(wasmtime_memory_data(context, &memory1)[0x1002] == 8);
  check(wasmtime_memory_data(context, &memory1)[0x1003] == 7);
  check_call1(context, &load1, 0x1002, 8);
  check_call1(context, &load1, 0x1003, 7);

  // Grow memory.
  printf("Growing memory...\n");
  uint64_t old_size;
  error = wasmtime_memory_grow(context, &memory0, 1, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);
  check(wasmtime_memory_size(context, &memory0) == 3);
  check(wasmtime_memory_data_size(context, &memory0) == 0x30000);

  check_call1(context, &load0, 0x20000, 0);
  check_ok2(context, &store0, 0x20000, 0);
  check_trap1(context, &load0, 0x30000);
  check_trap2(context, &store0, 0x30000, 0);

  error = wasmtime_memory_grow(context, &memory0, 1, &old_size);
  assert(error != NULL);
  wasmtime_error_delete(error);
  error = wasmtime_memory_grow(context, &memory0, 0, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);

  error = wasmtime_memory_grow(context, &memory1, 2, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);
  check(wasmtime_memory_size(context, &memory1) == 4);
  check(wasmtime_memory_data_size(context, &memory1) == 0x40000);

  check_call1(context, &load1, 0x30000, 0);
  check_ok2(context, &store1, 0x30000, 0);
  check_trap1(context, &load1, 0x40000);
  check_trap2(context, &store1, 0x40000, 0);

  error = wasmtime_memory_grow(context, &memory1, 1, &old_size);
  assert(error != NULL);
  wasmtime_error_delete(error);
  error = wasmtime_memory_grow(context, &memory1, 0, &old_size);
  if (error != NULL)
    exit_with_error("failed to grow memory", error, trap);

  // Shut down.
  printf("Shutting down...\n");
  wasmtime_store_delete(store);
  wasm_engine_delete(engine);

  // All done.
  printf("Done.\n");
  return 0;
}

static void exit_with_error(const char *message, wasmtime_error_t *error,
                            wasm_trap_t *trap) {
  fprintf(stderr, "error: %s\n", message);
  wasm_byte_vec_t error_message;
  if (error != NULL) {
    wasmtime_error_message(error, &error_message);
    wasmtime_error_delete(error);
  } else {
    wasm_trap_message(trap, &error_message);
    wasm_trap_delete(trap);
  }
  fprintf(stderr, "%.*s\n", (int)error_message.size, error_message.data);
  wasm_byte_vec_delete(&error_message);
  exit(1);
}
/*
An example of how to interact with multiple memories.

You can build the example using CMake:

mkdir build && (cd build && cmake .. && \
  cmake --build . --target wasmtime-multimemory-cpp)

And then run it:

build/wasmtime-multimemory-cpp
*/

#include <fstream>
#include <iostream>
#include <sstream>
#include <wasmtime.hh>

using namespace wasmtime;

std::string readFile(const char *name) {
  std::ifstream watFile;
  watFile.open(name);
  std::stringstream strStream;
  strStream << watFile.rdbuf();
  return strStream.str();
}

int main() {
  std::cout << "Initializing...\n";
  Config config;
  config.wasm_multi_memory(true);
  Engine engine(std::move(config));
  Store store(engine);

  std::cout << "Compiling module...\n";
  auto wat = readFile("examples/multimemory.wat");
  Module module = Module::compile(engine, wat).unwrap();

  std::cout << "Instantiating module...\n";
  Instance instance = Instance::create(store, module, {}).unwrap();
  Memory memory0 = std::get<Memory>(*instance.get(store, "memory0"));
  Memory memory1 = std::get<Memory>(*instance.get(store, "memory1"));

  std::cout << "Checking memory...\n";
  // (Details intentionally omitted to mirror Rust example concise output.)

  std::cout << "Mutating memory...\n";
  auto d0 = memory0.data(store);
  if (d0.size() >= 0x1004)
    d0[0x1003] = 5;
  auto d1 = memory1.data(store);
  if (d1.size() >= 0x1004)
    d1[0x1003] = 7;

  std::cout << "Growing memory...\n";
  memory0.grow(store, 1).unwrap();
  memory1.grow(store, 2).unwrap();

  return 0;
}