
GNU/Linux
Programmer’s Manual

Maintainers:
Alejandro Colomar <alx@kernel.org> 2020 - present (5.09 - HEAD)

Michael Kerrisk <mtk.manpages@gmail.com> 2004 - 2021 (2.00 - 5.13)
Andries Brouwer <aeb@cwi.nl> 1995 - 2004 (1.6 - 1.70)

Rik Faith 1993 - 1995 (1.0 - 1.5)

intro(1) General Commands Manual intro(1)

NAME
intro - introduction to user commands

DESCRIPTION
Section 1 of the manual describes user commands and tools, for example, file manipula-
tion tools, shells, compilers, web browsers, file and image viewers and editors, and so
on.

NOTES
Linux is a flavor of UNIX, and user commands under UNIX work similarly under Linux
(and lots of other UNIX-like systems too, like FreeBSD).

Under Linux, there are GUIs (graphical user interfaces), where you can point and click
and drag, and hopefully get work done without first reading lots of documentation. The
traditional UNIX environment is a CLI (command line interface), where you type com-
mands to tell the computer what to do. This is faster and more powerful, but requires
finding out what the commands are and how to use them. Below is a bare minimum
guide to get you started.

Login
In order to start working, you’ll probably first have to open a session. The program lo-
gin(1) will wait for you to type your username and password, and after that, it will start
a shell (command interpreter) for you. In case of a graphical login, you get a screen
with menus or icons and a mouse click will start a shell in a window. See also xterm(1)

The shell
One types commands into the shell, the command interpreter. It is not built-in; it is just
another program. You can change your shell, and everybody has their own favorite one.
The standard one is called sh. See also ash(1), bash(1), chsh(1), csh(1), dash(1),
ksh(1), zsh(1)

A session might look like this:

knuth login: aeb
Password: ********
$ date
Tue Aug 6 23:50:44 CEST 2002
$ cal

August 2002
Su Mo Tu We Th Fr Sa

1 2 3
4 5 6 7 8 9 10

11 12 13 14 15 16 17
18 19 20 21 22 23 24
25 26 27 28 29 30 31

$ ls
bin tel
$ ls -l
total 2

Linux man-pages 6.16 2025-09-21 2

intro(1) General Commands Manual intro(1)

drwxrwxr-x 2 aeb 1024 Aug 6 23:51 bin
-rw-rw-r-- 1 aeb 37 Aug 6 23:52 tel
$ cat tel
maja 0501-1136285
peter 0136-7399214
$ cp tel tel2
$ ls -l
total 3
drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
-rw-r--r-- 1 aeb 37 Aug 6 23:52 tel
-rw-r--r-- 1 aeb 37 Aug 6 23:53 tel2
$ mv tel tel1
$ ls -l
total 3
drwxr-xr-x 2 aeb 1024 Aug 6 23:51 bin
-rw-r--r-- 1 aeb 37 Aug 6 23:52 tel1
-rw-r--r-- 1 aeb 37 Aug 6 23:53 tel2
$ diff tel1 tel2
$ rm tel1
$ grep maja tel2
maja 0501-1136285
$

Here typing Control-D ended the session.

The $ here was the command prompt—it is the shell’s way of indicating that it is ready
for the next command. The prompt can be customized in lots of ways, and one might
include stuff like username, machine name, current directory, time, and so on. An as-
signment PS1="What next, master? " would change the prompt as indicated.

We see that there are commands date (that gives date and time), and cal (that gives a
calendar).

The command ls lists the contents of the current directory—it tells you what files you
have. With a -l option it gives a long listing, that includes the owner and size and date
of the file, and the permissions people have for reading and/or changing the file. For ex-
ample, the file "tel" here is 37 bytes long, owned by aeb and the owner can read and
write it, others can only read it. Owner and permissions can be changed by the com-
mands chown and chmod .

The command cat will show the contents of a file. (The name is from "concatenate and
print": all files given as parameters are concatenated and sent to "standard output" (see
stdout(3)), here the terminal screen.)

The command cp (from "copy") will copy a file.

The command mv (from "move"), on the other hand, only renames it.

The command diff lists the differences between two files. Here there was no output be-
cause there were no differences.

The command rm (from "remove") deletes the file, and be careful! it is gone. No

Linux man-pages 6.16 2025-09-21 3

intro(1) General Commands Manual intro(1)

wastepaper basket or anything. Deleted means lost.

The command grep (from "g/re/p") finds occurrences of a string in one or more files.
Here it finds Maja’s telephone number.

Pathnames and the current directory
Files live in a large tree, the file hierarchy. Each has a pathname describing the path
from the root of the tree (which is called /) to the file. For example, such a full path-
name might be /home/aeb/tel. Always using full pathnames would be inconvenient, and
the name of a file in the current directory may be abbreviated by giving only the last
component. That is why /home/aeb/tel can be abbreviated to tel when the current direc-
tory is /home/aeb.

The command pwd prints the current directory.

The command cd changes the current directory.

Try alternatively cd and pwd commands and explore cd usage: "cd", "cd .", "cd ..", "cd
/", and "cd ~".

Directories
The command mkdir makes a new directory.

The command rmdir removes a directory if it is empty, and complains otherwise.

The command find (with a rather baroque syntax) will find files with given name or
other properties. For example, "find . -name tel" would find the file tel starting in the
present directory (which is called .). And "find / -name tel" would do the same, but
starting at the root of the tree. Large searches on a multi-GB disk will be time-consum-
ing, and it may be better to use locate(1)

Disks and filesystems
The command mount will attach the filesystem found on some disk (or floppy, or
CDROM or so) to the big filesystem hierarchy. And umount detaches it again. The
command df will tell you how much of your disk is still free.

Processes
On a UNIX system many user and system processes run simultaneously. The one you
are talking to runs in the foreground , the others in the background . The command ps
will show you which processes are active and what numbers these processes have. The
command kill allows you to get rid of them. Without option this is a friendly request:
please go away. And "kill -9" followed by the number of the process is an immediate
kill. Foreground processes can often be killed by typing Control-C.

Getting information
There are thousands of commands, each with many options. Traditionally commands
are documented on man pages, (like this one), so that the command "man kill" will doc-
ument the use of the command "kill" (and "man man" document the command "man").
The program man sends the text through some pager, usually less. Hit the space bar to
get the next page, hit q to quit.

In documentation it is customary to refer to man pages by giving the name and section
number, as in man(1)Man pages are terse, and allow you to find quickly some forgotten
detail. For newcomers an introductory text with more examples and explanations is

Linux man-pages 6.16 2025-09-21 4

intro(1) General Commands Manual intro(1)

useful.

A lot of GNU/FSF software is provided with info files. Type "info info" for an introduc-
tion on the use of the program info.

Special topics are often treated in HOWTOs. Look in /usr/share/doc/howto/en and use
a browser if you find HTML files there.

SEE ALSO
ash(1), bash(1), chsh(1), csh(1), dash(1), ksh(1), locate(1), login(1), man(1), xterm(1),
zsh(1), wait(2), stdout(3), man-pages(7), standards(7)

Linux man-pages 6.16 2025-09-21 5

diffman-git(1) General Commands Manual diffman-git(1)

NAME
diffman-git - compare changes to manual pages line by line

SYNOPSIS
diffman-git [diff-options . . .] [[base-commit] commit]

DESCRIPTION
The diffman-git command formats a manual page at two git(1) commits, and then runs
diff (1) on the formatted outputs.

If the commit is not specified, it diffs the working directory against HEAD.

If the base-commit is not specified, the comparison is done against the previous commit.

OPTIONS
-s Report when two files are the same.

-Un output n (default 3) lines of unified context.

-w Ignore all white space.

ENVIRONMENT
See man(1)

EXAMPLES
$ MAN_KEEP_FORMATTING= diffman-git 437e4afec6ca | less -R;
--- 437e4afec6ca^:man/man3/sem_open.3
+++ 437e4afec6ca:man/man3/sem_open.3
@@ -14,3 +14,2 @@
- sem_t *sem_open(const char *name, int oflag);
- sem_t *sem_open(const char *name, int oflag,
- mode_t mode, unsigned int value);
+ sem_t *sem_open(const char *name, int oflag, ...
+ /* mode_t mode, unsigned int value */);

SEE ALSO
diff (1), man(1), git(1), less(1)

Linux man-pages 6.16 2025-05-17 6

getent(1) General Commands Manual getent(1)

NAME
getent - get entries from Name Service Switch libraries

SYNOPSIS
getent [option . . .] database key . . .

DESCRIPTION
The getent command displays entries from databases supported by the Name Service
Switch libraries, which are configured in /etc/nsswitch.conf . If one or more key argu-
ments are provided, then only the entries that match the supplied keys will be displayed.
Otherwise, if no key is provided, all entries will be displayed (unless the database does
not support enumeration).

The database may be any of those supported by the GNU C Library, listed below:

ahosts
When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to
enumerate the hosts database. This is identical to using hosts(5). When one or
more key arguments are provided, pass each key in succession to getaddrinfo(3)
with the address family AF_UNSPEC, enumerating each socket address struc-
ture returned.

ahostsv4
Same as ahosts, but use the address family AF_INET.

ahostsv6
Same as ahosts, but use the address family AF_INET6. The call to getad-
drinfo(3) in this case includes the AI_V4MAPPED flag.

aliases
When no key is provided, use setaliasent(3), getaliasent(3), and endaliasent(3) to
enumerate the aliases database. When one or more key arguments are provided,
pass each key in succession to getaliasbyname(3) and display the result.

ethers
When one or more key arguments are provided, pass each key in succession to
ether_aton(3) and ether_hostton(3) until a result is obtained, and display the re-
sult. Enumeration is not supported on ethers, so a key must be provided.

group
When no key is provided, use setgrent(3), getgrent(3), and endgrent(3) to enu-
merate the group database. When one or more key arguments are provided, pass
each numeric key to getgrgid(3) and each nonnumeric key to getgrnam(3) and
display the result.

gshadow
When no key is provided, use setsgent(3), getsgent(3), and endsgent(3) to enu-
merate the gshadow database. When one or more key arguments are provided,
pass each key in succession to getsgnam(3) and display the result.

hosts
When no key is provided, use sethostent(3), gethostent(3), and endhostent(3) to
enumerate the hosts database. When one or more key arguments are provided,
pass each key to gethostbyaddr(3) or gethostbyname2(3), depending on whether

Linux man-pages 6.16 2025-05-17 7

getent(1) General Commands Manual getent(1)

a call to inet_pton(3) indicates that the key is an IPv6 or IPv4 address or not, and
display the result.

initgroups
When one or more key arguments are provided, pass each key in succession to
getgrouplist(3) and display the result. Enumeration is not supported on init-
groups, so a key must be provided.

netgroup
When one key is provided, pass the key to setnetgrent(3) and, using getnet-
grent(3) display the resulting string triple (hostname, username, domainname).
Alternatively, three keys may be provided, which are interpreted as the hostname,
username, and domainname to match to a netgroup name via innetgr(3). Enu-
meration is not supported on netgroup, so either one or three keys must be pro-
vided.

networks
When no key is provided, use setnetent(3), getnetent(3), and endnetent(3) to enu-
merate the networks database. When one or more key arguments are provided,
pass each numeric key to getnetbyaddr(3) and each nonnumeric key to getnetby-
name(3) and display the result.

passwd
When no key is provided, use setpwent(3), getpwent(3), and endpwent(3) to enu-
merate the passwd database. When one or more key arguments are provided,
pass each numeric key to getpwuid(3) and each nonnumeric key to getpwnam(3)
and display the result.

protocols
When no key is provided, use setprotoent(3), getprotoent(3), and endprotoent(3)
to enumerate the protocols database. When one or more key arguments are pro-
vided, pass each numeric key to getprotobynumber(3) and each nonnumeric key
to getprotobyname(3) and display the result.

rpc When no key is provided, use setrpcent(3), getrpcent(3), and endrpcent(3) to
enumerate the rpc database. When one or more key arguments are provided,
pass each numeric key to getrpcbynumber(3) and each nonnumeric key to getr-
pcbyname(3) and display the result.

services
When no key is provided, use setservent(3), getservent(3), and endservent(3) to
enumerate the services database. When one or more key arguments are provided,
pass each numeric key to getservbynumber(3) and each nonnumeric key to get-
servbyname(3) and display the result.

shadow
When no key is provided, use setspent(3), getspent(3), and endspent(3) to enu-
merate the shadow database. When one or more key arguments are provided,
pass each key in succession to getspnam(3) and display the result.

Linux man-pages 6.16 2025-05-17 8

getent(1) General Commands Manual getent(1)

OPTIONS
--service service
-s service

Override all databases with the specified service. (Since glibc 2.2.5.)

--service database:service
-s database:service

Override only specified databases with the specified service. The option may be
used multiple times, but only the last service for each database will be used.
(Since glibc 2.4.)

--no-idn
-i Disables IDN encoding in lookups for ahosts/getaddrinfo(3) (Since glibc-2.13.)

--help
-? Print a usage summary and exit.

--usage
Print a short usage summary and exit.

--version
-V Print the version number, license, and disclaimer of warranty for getent.

EXIT STATUS
One of the following exit values can be returned by getent:

0 Command completed successfully.

1 Missing arguments, or database unknown.

2 One or more supplied key could not be found in the database.

3 Enumeration not supported on this database.

SEE ALSO
nsswitch.conf(5)

Linux man-pages 6.16 2025-05-17 9

iconv(1) General Commands Manual iconv(1)

NAME
iconv - convert text from one character encoding to another

SYNOPSIS
iconv [options] [-f from-encoding] [-t to-encoding] [inputfile . . .]

DESCRIPTION
The iconv program reads in text in one encoding and outputs the text in another encod-
ing. If no input files are given, or if it is given as a dash (-), iconv reads from standard
input. If no output file is given, iconv writes to standard output.

If no from-encoding is given, the default is derived from the current locale’s character
encoding. If no to-encoding is given, the default is derived from the current locale’s
character encoding.

OPTIONS
--from-code= from-encoding
-f from-encoding

Use from-encoding for input characters.

--to-code=to-encoding
-t to-encoding

Use to-encoding for output characters.

If the string //IGNORE is appended to to-encoding, characters that cannot be
converted are discarded and an error is printed after conversion. (Characters that
cannot be decoded are treated as an error with or without this flag.)

If the string //TRANSLIT is appended to to-encoding, characters being con-
verted are transliterated when needed and possible. This means that when a
character cannot be represented in the target character set, it can be approxi-
mated through one or several similar looking characters. Characters that are out-
side of the target character set and cannot be transliterated are replaced with a
question mark (?) in the output.

--list
-l List all known character set encodings.

-c Discard characters that cannot be converted instead of terminating when encoun-
tering such characters. POSIX requires that this option does not change the exit
status of the program.

--output=outputfile
-o outputfile

Use outputfile for output.

--silent
-s This option is ignored; it is provided only for compatibility.

--verbose
Print progress information on standard error when processing multiple files.

--help

Linux man-pages 6.16 2025-09-21 10

iconv(1) General Commands Manual iconv(1)

-? Print a usage summary and exit.

--usage
Print a short usage summary and exit.

--version
-V Print the version number, license, and disclaimer of warranty for iconv.

EXIT STATUS
Zero on success, nonzero on errors.

ENVIRONMENT
Internally, the iconv program uses the iconv(3) function which in turn uses gconv mod-
ules (dynamically loaded shared libraries) to convert to and from a character set. Before
calling iconv(3), the iconv program must first allocate a conversion descriptor using
iconv_open(3). The operation of the latter function is influenced by the setting of the
GCONV_PATH environment variable:

• If GCONV_PATH is not set, iconv_open(3) loads the system gconv module config-
uration cache file created by iconvconfig(8) and then, based on the configuration,
loads the gconv modules needed to perform the conversion. If the system gconv
module configuration cache file is not available then the system gconv module con-
figuration file is used.

• If GCONV_PATH is defined (as a colon-separated list of pathnames), the system
gconv module configuration cache is not used. Instead, iconv_open(3) first tries to
load the configuration files by searching the directories in GCONV_PATH in order,
followed by the system default gconv module configuration file. If a directory does
not contain a gconv module configuration file, any gconv modules that it may con-
tain are ignored. If a directory contains a gconv module configuration file and it is
determined that a module needed for this conversion is available in the directory,
then the needed module is loaded from that directory, the order being such that the
first suitable module found in GCONV_PATH is used. This allows users to use
custom modules and even replace system-provided modules by providing such mod-
ules in GCONV_PATH directories.

FILES
/usr/lib/gconv

Usual default gconv module path.

/usr/lib/gconv/gconv-modules
Usual system default gconv module configuration file.

/usr/lib/gconv/gconv-modules.cache
Usual system gconv module configuration cache.

Depending on the architecture, the above files may instead be located at directories with
the path prefix /usr/lib64.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 11

iconv(1) General Commands Manual iconv(1)

HISTORY
POSIX.1-2001.

EXAMPLES
Convert text from the ISO/IEC 8859-15 character encoding to UTF-8:

$ iconv -f ISO-8859-15 -t UTF-8 < input.txt > output.txt;

The next example converts from UTF-8 to ASCII, transliterating when possible:

$ echo abc ß α € àḃç | iconv -f UTF-8 -t ASCII//TRANSLIT;
abc ss ? EUR abc

SEE ALSO
locale(1), uconv(1), iconv(3), nl_langinfo(3), charsets(7), iconvconfig(8)

Linux man-pages 6.16 2025-09-21 12

ldd(1) General Commands Manual ldd(1)

NAME
ldd - print shared object dependencies

SYNOPSIS
ldd [option . . .] file . . .

DESCRIPTION
ldd prints the shared objects (shared libraries) required by each program or shared ob-
ject specified on the command line. An example of its use and output is the following:

$ ldd /bin/ls;
linux-vdso.so.1 (0x00007ffcc3563000)
libselinux.so.1 => /lib64/libselinux.so.1 (0x00007f87e5459000)
libcap.so.2 => /lib64/libcap.so.2 (0x00007f87e5254000)
libc.so.6 => /lib64/libc.so.6 (0x00007f87e4e92000)
libpcre.so.1 => /lib64/libpcre.so.1 (0x00007f87e4c22000)
libdl.so.2 => /lib64/libdl.so.2 (0x00007f87e4a1e000)
/lib64/ld-linux-x86-64.so.2 (0x00005574bf12e000)
libattr.so.1 => /lib64/libattr.so.1 (0x00007f87e4817000)
libpthread.so.0 => /lib64/libpthread.so.0 (0x00007f87e45fa000)

In the usual case, ldd invokes the standard dynamic linker (see ld.so(8)) with the
LD_TRACE_LOADED_OBJECTS environment variable set to 1. This causes the dy-
namic linker to inspect the program’s dynamic dependencies, and find (according to the
rules described in ld.so(8)) and load the objects that satisfy those dependencies. For
each dependency, ldd displays the location of the matching object and the (hexadecimal)
address at which it is loaded. (The linux-vdso and ld-linux shared dependencies are
special; see vdso(7) and ld.so(8).)

Security
Be aware that in some circumstances (e.g., where the program specifies an ELF inter-
preter other than ld-linux.so), some versions of ldd may attempt to obtain the depen-
dency information by attempting to directly execute the program, which may lead to the
execution of whatever code is defined in the program’s ELF interpreter, and perhaps to
execution of the program itself. (Before glibc 2.27, the upstream ldd implementation
did this for example, although most distributions provided a modified version that did
not.)

Thus, you should never employ ldd on an untrusted executable, since this may result in
the execution of arbitrary code. A safer alternative when dealing with untrusted exe-
cutables is:

$ objdump -p /path/to/program | grep NEEDED;

Note, however, that this alternative shows only the direct dependencies of the exe-
cutable, while ldd shows the entire dependency tree of the executable.

OPTIONS
--version

Print the version number of ldd.

Linux man-pages 6.16 2025-09-21 13

ldd(1) General Commands Manual ldd(1)

--verbose
-v Print all information, including, for example, symbol versioning information.

--unused
-u Print unused direct dependencies. (Since glibc 2.3.4.)

--data-relocs
-d Perform relocations and report any missing objects (ELF only).

--function-relocs
-r Perform relocations for both data objects and functions, and report any missing

objects or functions (ELF only).

--help
Usage information.

BUGS
ldd does not work on a.out shared libraries.

ldd does not work with some extremely old a.out programs which were built before ldd
support was added to the compiler releases. If you use ldd on one of these programs,
the program will attempt to run with argc = 0 and the results will be unpredictable.

SEE ALSO
pldd(1), sprof(1), ld.so(8), ldconfig(8)

Linux man-pages 6.16 2025-09-21 14

locale(1) General Commands Manual locale(1)

NAME
locale - get locale-specific information

SYNOPSIS
locale [option]
locale [option] -a
locale [option] -m
locale [option] name . . .

DESCRIPTION
The locale command displays information about the current locale, or all locales, on
standard output.

When invoked without arguments, locale displays the current locale settings for each lo-
cale category (see locale(5)), based on the settings of the environment variables that
control the locale (see locale(7)). Values for variables set in the environment are printed
without double quotes, implied values are printed with double quotes.

If either the -a or the -m option (or one of their long-format equivalents) is specified,
the behavior is as follows:

--all-locales
-a Display a list of all available locales. The -v option causes the LC_IDENTIFI-

CATION metadata about each locale to be included in the output.

--charmaps
-m Display the available charmaps (character set description files). To display the

current character set for the locale, use locale -c charmap.

The locale command can also be provided with one or more arguments, which are the
names of locale keywords (for example, date_fmt, ctype-class-names, yesexpr, or deci-
mal_point) or locale categories (for example, LC_CTYPE or LC_TIME). For each ar-
gument, the following is displayed:

• For a locale keyword, the value of that keyword to be displayed.

• For a locale category, the values of all keywords in that category are displayed.

When arguments are supplied, the following options are meaningful:

--category-name
-c For a category name argument, write the name of the locale category on a sepa-

rate line preceding the list of keyword values for that category.

For a keyword name argument, write the name of the locale category for this
keyword on a separate line preceding the keyword value.

This option improves readability when multiple name arguments are specified. It
can be combined with the -k option.

--keyword-name
-k For each keyword whose value is being displayed, include also the name of that

keyword, so that the output has the format:

keyword="value"

The locale command also knows about the following options:

Linux man-pages 6.16 2025-05-17 15

locale(1) General Commands Manual locale(1)

--verbose
-v Display additional information for some command-line option and argument

combinations.

--help
-? Display a summary of command-line options and arguments and exit.

--usage
Display a short usage message and exit.

--version
-V Display the program version and exit.

FILES
/usr/lib/locale/locale-archive

Usual default locale archive location.

/usr/share/i18n/locales
Usual default path for locale definition files.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
$ locale;
LANG=en_US.UTF-8
LC_CTYPE="en_US.UTF-8"
LC_NUMERIC="en_US.UTF-8"
LC_TIME="en_US.UTF-8"
LC_COLLATE="en_US.UTF-8"
LC_MONETARY="en_US.UTF-8"
LC_MESSAGES="en_US.UTF-8"
LC_PAPER="en_US.UTF-8"
LC_NAME="en_US.UTF-8"
LC_ADDRESS="en_US.UTF-8"
LC_TELEPHONE="en_US.UTF-8"
LC_MEASUREMENT="en_US.UTF-8"
LC_IDENTIFICATION="en_US.UTF-8"
LC_ALL=

$ locale date_fmt;
%a %b %e %H:%M:%S %Z %Y

$ locale -k date_fmt;
date_fmt="%a %b %e %H:%M:%S %Z %Y"

$ locale -ck date_fmt;
LC_TIME
date_fmt="%a %b %e %H:%M:%S %Z %Y"

Linux man-pages 6.16 2025-05-17 16

locale(1) General Commands Manual locale(1)

$ locale LC_TELEPHONE;
+%c (%a) %l
(%a) %l
11
1
UTF-8

$ locale -k LC_TELEPHONE;
tel_int_fmt="+%c (%a) %l"
tel_dom_fmt="(%a) %l"
int_select="11"
int_prefix="1"
telephone-codeset="UTF-8"

The following example compiles a custom locale from the ./wrk directory with the lo-
caledef(1) utility under the $HOME/.locale directory, then tests the result with the
date(1) command, and then sets the environment variables LOCPATH and LANG in
the shell profile file so that the custom locale will be used in the subsequent user ses-
sions:

$ mkdir -p $HOME/.locale;
$ I18NPATH=./wrk/ localedef -f UTF-8 -i fi_SE $HOME/.locale/fi_SE.UTF-8;
$ LOCPATH=$HOME/.locale LC_ALL=fi_SE.UTF-8 date;
$ echo "export LOCPATH=\$HOME/.locale" >> $HOME/.bashrc;
$ echo "export LANG=fi_SE.UTF-8" >> $HOME/.bashrc;

SEE ALSO
localedef(1), charmap(5), locale(5), locale(7)

Linux man-pages 6.16 2025-05-17 17

localedef (1) General Commands Manual localedef (1)

NAME
localedef - compile locale definition files

SYNOPSIS
localedef [options] outputpath
localedef --add-to-archive [options] compiledpath
localedef --delete-from-archive [options] localename . . .
localedef --list-archive [options]
localedef --help
localedef --usage
localedef --version

DESCRIPTION
The localedef program reads the indicated charmap and input files, compiles them to a
binary form quickly usable by the locale functions in the C library (setlocale(3), locale-
conv(3), etc.), and places the output in outputpath.

The outputpath argument is interpreted as follows:

• If outputpath contains a slash character (’/’), it is interpreted as the name of the di-
rectory where the output definitions are to be stored. In this case, there is a separate
output file for each locale category (LC_TIME, LC_NUMERIC, and so on).

• If the --no-archive option is used, outputpath is the name of a subdirectory in
/usr/lib/locale where per-category compiled files are placed.

• Otherwise, outputpath is the name of a locale and the compiled locale data is added
to the archive file /usr/lib/locale/locale-archive. A locale archive is a memory-
mapped file which contains all the system-provided locales; it is used by all local-
ized programs when the environment variable LOCPATH is not set.

In any case, localedef aborts if the directory in which it tries to write locale files has not
already been created.

If no charmapfile is given, the value ANSI_X3.4-1968 (for ASCII) is used by default.
If no inputfile is given, or if it is given as a dash (-), localedef reads from standard in-
put.

OPTIONS
Operation-selection options

A few options direct localedef to do something other than compile locale definitions.
Only one of these options should be used at a time.

--add-to-archive
Add the compiledpath directories to the locale archive file. The directories
should have been created by previous runs of localedef, using --no-archive.

--delete-from-archive
Delete the named locales from the locale archive file.

--list-archive
List the locales contained in the locale archive file.

Linux man-pages 6.16 2025-05-17 18

localedef (1) General Commands Manual localedef (1)

Other options
Some of the following options are sensible only for certain operations; generally, it
should be self-evident which ones. Notice that -f and -c are reversed from what you
might expect; that is, -f is not the same as --force.

-f charmapfile
--charmap=charmapfile

Specify the file that defines the character set that is used by the input file. If
charmapfile contains a slash character (’/’), it is interpreted as the name of the
character map. Otherwise, the file is sought in the current directory and the de-
fault directory for character maps. If the environment variable I18NPATH is set,
$I18NPATH/charmaps/ and $I18NPATH/ are also searched after the current di-
rectory. The default directory for character maps is printed by localedef --help.

-i inputfile
--inputfile=inputfile

Specify the locale definition file to compile. The file is sought in the current di-
rectory and the default directory for locale definition files. If the environment
variable I18NPATH is set, $I18NPATH/locales/ and $I18NPATH are also
searched after the current directory. The default directory for locale definition
files is printed by localedef --help.

-u repertoirefile
--repertoire-map=repertoirefile

Read mappings from symbolic names to Unicode code points from repertoire-
file. If repertoirefile contains a slash character (’/’), it is interpreted as the path-
name of the repertoire map. Otherwise, the file is sought in the current directory
and the default directory for repertoire maps. If the environment variable
I18NPATH is set, $I18NPATH/repertoiremaps/ and $I18NPATH are also
searched after the current directory. The default directory for repertoire maps is
printed by localedef --help.

-A aliasfile
--alias-file=aliasfile

Use aliasfile to look up aliases for locale names. There is no default aliases file.

--force
-c Write the output files even if warnings were generated about the input file.

--verbose
-v Generate extra warnings about errors that are normally ignored.

--big-endian
Generate big-endian output.

--little-endian
Generate little-endian output.

--no-archive
Do not use the locale archive file, instead create outputpath as a subdirectory in
the same directory as the locale archive file, and create separate output files for
locale categories in it. This is helpful to prevent system locale archive updates

Linux man-pages 6.16 2025-05-17 19

localedef (1) General Commands Manual localedef (1)

from overwriting custom locales created with localedef.

--no-hard-links
Do not create hard links between installed locales.

--no-warnings=warnings
Comma-separated list of warnings to disable. Supported warnings are ascii and
intcurrsym.

--posix
Conform strictly to POSIX. Implies --verbose. This option currently has no
other effect. POSIX conformance is assumed if the environment variable
POSIXLY_CORRECT is set.

--prefix=pathname
Set the prefix to be prepended to the full archive pathname. By default, the pre-
fix is empty. Setting the prefix to foo, the archive would be placed in
foo/usr/lib/locale/locale-archive.

--quiet
Suppress all notifications and warnings, and report only fatal errors.

--replace
Replace a locale in the locale archive file. Without this option, if the locale is in
the archive file already, an error occurs.

--warnings=warnings
Comma-separated list of warnings to enable. Supported warnings are ascii and
intcurrsym.

--help
-? Print a usage summary and exit. Also prints the default paths used by localedef.

--usage
Print a short usage summary and exit.

--version
-V Print the version number, license, and disclaimer of warranty for localedef.

EXIT STATUS
One of the following exit values can be returned by localedef:

0 Command completed successfully.

1 Warnings or errors occurred, output files were written.

4 Errors encountered, no output created.

ENVIRONMENT
POSIXLY_CORRECT

The --posix flag is assumed if this environment variable is set.

I18NPATH
A colon-separated list of search directories for files.

Linux man-pages 6.16 2025-05-17 20

localedef (1) General Commands Manual localedef (1)

FILES
/usr/share/i18n/charmaps

Usual default character map path.

/usr/share/i18n/locales
Usual default path for locale definition files.

/usr/share/i18n/repertoiremaps
Usual default repertoire map path.

/usr/lib/locale/locale-archive
Usual default locale archive location.

/usr/lib/locale
Usual default path for compiled individual locale data files.

outputpath/LC_ADDRESS
An output file that contains information about formatting of addresses and geog-
raphy-related items.

outputpath/LC_COLLATE
An output file that contains information about the rules for comparing strings.

outputpath/LC_CTYPE
An output file that contains information about character classes.

outputpath/LC_IDENTIFICATION
An output file that contains metadata about the locale.

outputpath/LC_MEASUREMENT
An output file that contains information about locale measurements (metric ver-
sus US customary).

outputpath/LC_MESSAGES/SYS_LC_MESSAGES
An output file that contains information about the language messages should be
printed in, and what an affirmative or negative answer looks like.

outputpath/LC_MONETARY
An output file that contains information about formatting of monetary values.

outputpath/LC_NAME
An output file that contains information about salutations for persons.

outputpath/LC_NUMERIC
An output file that contains information about formatting of nonmonetary nu-
meric values.

outputpath/LC_PAPER
An output file that contains information about settings related to standard paper
size.

outputpath/LC_TELEPHONE
An output file that contains information about formats to be used with telephone
services.

Linux man-pages 6.16 2025-05-17 21

localedef (1) General Commands Manual localedef (1)

outputpath/LC_TIME
An output file that contains information about formatting of data and time val-
ues.

STANDARDS
POSIX.1-2008.

EXAMPLES
Compile the locale files for Finnish in the UTF-8 character set and add it to the default
locale archive with the name fi_FI.UTF-8:

localedef -f UTF-8 -i fi_FI fi_FI.UTF-8

The next example does the same thing, but generates files into the fi_FI.UTF-8 direc-
tory which can then be used by programs when the environment variable LOCPATH is
set to the current directory (note that the last argument must contain a slash):

localedef -f UTF-8 -i fi_FI ./fi_FI.UTF-8

SEE ALSO
locale(1), charmap(5), locale(5), repertoiremap(5), locale(7)

Linux man-pages 6.16 2025-05-17 22

mansect(1) General Commands Manual mansect(1)

NAME
mansect - print the source code of sections of manual pages

SYNOPSIS
mansect section [file . . .]

DESCRIPTION
The mansect command prints the source code of the section of the given manual-page
files. If no files are specified, the standard input is used.

section is a PCRE2 regular expression.

The TH line is unconditionally printed.

The output of this program is suitable for piping to the groff (1) pipeline.

EXAMPLES
$ man -w strtol strtoul | xargs mansect 'NAME|SEE ALSO';
.lf 1 /usr/local/man/man3/strtol.3
.TH strtol 3 2024-07-23 "Linux man-pages 6.9.1"
.SH NAME
strtol, strtoll, strtoq - convert a string to a long integer
.SH SEE ALSO
.BR atof (3),
.BR atoi (3),
.BR atol (3),
.BR strtod (3),
.BR strtoimax (3),
.BR strtoul (3)
.lf 1 /usr/local/man/man3/strtoul.3
.TH strtoul 3 2024-07-23 "Linux man-pages 6.9.1"
.SH NAME
strtoul, strtoull, strtouq - convert a string to an unsigned long integer
.SH SEE ALSO
.BR a64l (3),
.BR atof (3),
.BR atoi (3),
.BR atol (3),
.BR strtod (3),
.BR strtol (3),
.BR strtoumax (3)

SEE ALSO
lexgrog(1), groff (1), pcre2grep(1), mandb(8)

Linux man-pages 6.16 2025-05-17 23

memusage(1) General Commands Manual memusage(1)

NAME
memusage - profile memory usage of a program

SYNOPSIS
memusage [option . . .] program [programoption . . .]

DESCRIPTION
memusage is a bash(1) script which profiles memory usage of the program, program.
It preloads the libmemusage.so library into the caller’s environment (via the LD_PRE-
LOAD environment variable; see ld.so(8)). The libmemusage.so library traces memory
allocation by intercepting calls to malloc(3), calloc(3), free(3), and realloc(3); option-
ally, calls to mmap(2), mremap(2), and munmap(2) can also be intercepted.

memusage can output the collected data in textual form, or it can use memusagestat(1)
(see the -p option, below) to create a PNG file containing graphical representation of
the collected data.

Memory usage summary
The "Memory usage summary" line output by memusage contains three fields:

heap total
Sum of size arguments of all malloc(3) calls, products of arguments
(n*size) of all calloc(3) calls, and sum of length arguments of all mmap(2)
calls. In the case of realloc(3) and mremap(2), if the new size of an alloca-
tion is larger than the previous size, the sum of all such differences (new
size minus old size) is added.

heap peak
Maximum of all size arguments of malloc(3), all products of n*size of cal-
loc(3), all size arguments of realloc(3), length arguments of mmap(2), and
new_size arguments of mremap(2).

stack peak
Before the first call to any monitored function, the stack pointer address
(base stack pointer) is saved. After each function call, the actual stack
pointer address is read and the difference from the base stack pointer com-
puted. The maximum of these differences is then the stack peak.

Immediately following this summary line, a table shows the number calls, total memory
allocated or deallocated, and number of failed calls for each intercepted function. For
realloc(3) and mremap(2), the additional field "nomove" shows reallocations that
changed the address of a block, and the additional "dec" field shows reallocations that
decreased the size of the block. For realloc(3), the additional field "free" shows reallo-
cations that caused a block to be freed (i.e., the reallocated size was 0).

The "realloc/total memory" of the table output by memusage does not reflect cases
where realloc(3) is used to reallocate a block of memory to have a smaller size than pre-
viously. This can cause sum of all "total memory" cells (excluding "free") to be larger
than the "free/total memory" cell.

Histogram for block sizes
The "Histogram for block sizes" provides a breakdown of memory allocations into vari-
ous bucket sizes.

Linux man-pages 6.16 2025-09-21 24

memusage(1) General Commands Manual memusage(1)

OPTIONS
-n name
--progname=name

Name of the program file to profile.

-p file
--png= file

Generate PNG graphic and store it in file.

-d file
--data= file

Generate binary data file and store it in file.

-u
--unbuffered

Do not buffer output.

-b size
--buffer=size

Collect size entries before writing them out.

--no-timer
Disable timer-based (SIGPROF) sampling of stack pointer value.

-m
--mmap

Also trace mmap(2), mremap(2), and munmap(2).

-?
--help

Print help and exit.

--usage
Print a short usage message and exit.

-V
--version

Print version information and exit.

The following options apply only when generating graphical output:

-t
--time-based

Use time (rather than number of function calls) as the scale for the X axis.

-T
--total

Also draw a graph of total memory use.

--title=name
Use name as the title of the graph.

-x size

Linux man-pages 6.16 2025-09-21 25

memusage(1) General Commands Manual memusage(1)

--x-size=size
Make the graph size pixels wide.

-y size
--y-size=size

Make the graph size pixels high.

EXIT STATUS
The exit status of memusage is equal to the exit status of the profiled program.

BUGS
To report bugs, see 〈http://www.gnu.org/software/libc/bugs.html〉

EXAMPLES
Below is a simple program that reallocates a block of memory in cycles that rise to a
peak before then cyclically reallocating the memory in smaller blocks that return to
zero. After compiling the program and running the following commands, a graph of the
memory usage of the program can be found in the file memusage.png:

$ memusage --data=memusage.dat ./a.out;
...
Memory usage summary: heap total: 45200, heap peak: 6440, stack peak: 224

total calls total memory failed calls
malloc| 1 400 0

realloc| 40 44800 0 (nomove:40, dec:19, free:0)
calloc| 0 0 0

free| 1 440
Histogram for block sizes:

192-207 1 2% ================
...

2192-2207 1 2% ================
2240-2255 2 4% =================================
2832-2847 2 4% =================================
3440-3455 2 4% =================================
4032-4047 2 4% =================================
4640-4655 2 4% =================================
5232-5247 2 4% =================================
5840-5855 2 4% =================================
6432-6447 1 2% ================

$ memusagestat memusage.dat memusage.png;

Program source
#include <stdio.h>
#include <stdlib.h>

#define CYCLES 20

int
main(int argc, char *argv[])
{

int i, j;

Linux man-pages 6.16 2025-09-21 26

memusage(1) General Commands Manual memusage(1)

size_t size;
int *p;

size = sizeof(*p) * 100;
printf("malloc: %zu\n", size);
p = malloc(size);

for (i = 0; i < CYCLES; i++) {
if (i < CYCLES / 2)

j = i;
else

j--;

size = sizeof(*p) * (j * 50 + 110);
printf("realloc: %zu\n", size);
p = realloc(p, size);

size = sizeof(*p) * ((j + 1) * 150 + 110);
printf("realloc: %zu\n", size);
p = realloc(p, size);

}

free(p);
exit(EXIT_SUCCESS);

}

SEE ALSO
memusagestat(1), mtrace(1), ld.so(8)

Linux man-pages 6.16 2025-09-21 27

memusagestat(1) General Commands Manual memusagestat(1)

NAME
memusagestat - generate graphic from memory profiling data

SYNOPSIS
memusagestat [option . . .] datafile [outfile]

DESCRIPTION
memusagestat creates a PNG file containing a graphical representation of the memory
profiling data in the file datafile; that file is generated via the -d (or --data) option of
memusage(1).

The red line in the graph shows the heap usage (allocated memory) and the green line
shows the stack usage. The x-scale is either the number of memory-handling function
calls or (if the -t option is specified) time.

OPTIONS
-o file
--output= file

Name of the output file.

-s string
--string=string

Use string as the title inside the output graph.

-t
--time

Use time (rather than number of function calls) as the scale for the X axis.

-T
--total

Also draw a graph of total memory consumption.

-x size
--x-size=size

Make the output graph size pixels wide.

-y size
--y-size=size

Make the output graph size pixels high.

-?
--help

Print a help message and exit.

--usage
Print a short usage message and exit.

-V
--version

Print version information and exit.

BUGS
To report bugs, see 〈http://www.gnu.org/software/libc/bugs.html〉

Linux man-pages 6.16 2025-05-17 28

memusagestat(1) General Commands Manual memusagestat(1)

EXAMPLES
See memusage(1).

SEE ALSO
memusage(1), mtrace(1)

Linux man-pages 6.16 2025-05-17 29

mtrace(1) General Commands Manual mtrace(1)

NAME
mtrace - interpret the malloc trace log

SYNOPSIS
mtrace [option . . .] [binary] mtracedata

DESCRIPTION
mtrace is a Perl script used to interpret and provide human readable output of the trace
log contained in the file mtracedata, whose contents were produced by mtrace(3). If bi-
nary is provided, the output of mtrace also contains the source file name with line num-
ber information for problem locations (assuming that binary was compiled with debug-
ging information).

For more information about the mtrace(3) function and mtrace script usage, see
mtrace(3).

OPTIONS
--help

Print help and exit.

--version
Print version information and exit.

BUGS
For bug reporting instructions, please see: 〈http://www.gnu.org/software/libc/bugs.html〉.

SEE ALSO
memusage(1), mtrace(3)

Linux man-pages 6.16 2025-05-17 30

pdfman(1) General Commands Manual pdfman(1)

NAME
pdfman - render a manual page in PDF

SYNOPSIS
pdfman [man-options] [section] page

DESCRIPTION
The pdfman command renders a manual page in PDF. All the arguments are inter-
preted by man(1)

SEE ALSO
man(1), groff (1), gropdf (1), xdg-open(1)

Linux man-pages 6.16 2025-05-17 31

pldd(1) General Commands Manual pldd(1)

NAME
pldd - display dynamic shared objects linked into a process

SYNOPSIS
pldd pid
pldd option

DESCRIPTION
The pldd command displays a list of the dynamic shared objects (DSOs) that are linked
into the process with the specified process ID (PID). The list includes the libraries that
have been dynamically loaded using dlopen(3).

OPTIONS
--help
-? Display a help message and exit.

--usage
Display a short usage message and exit.

--version
-V Display program version information and exit.

EXIT STATUS
On success, pldd exits with the status 0. If the specified process does not exist, the user
does not have permission to access its dynamic shared object list, or no command-line
arguments are supplied, pldd exists with a status of 1. If given an invalid option, it exits
with the status 64.

VERSIONS
Some other systems have a similar command.

STANDARDS
None.

HISTORY
glibc 2.15.

NOTES
The command

lsof -p PID

also shows output that includes the dynamic shared objects that are linked into a
process.

The gdb(1) info shared command also shows the shared libraries being used by a
process, so that one can obtain similar output to pldd using a command such as the fol-
lowing (to monitor the process with the specified pid):

$ gdb -ex "set confirm off" \
-ex "set height 0" \
-ex "info shared" \
-ex "quit" \
-p $pid \

| grep '^0x.*0x';

Linux man-pages 6.16 2025-05-17 32

pldd(1) General Commands Manual pldd(1)

BUGS
From glibc 2.19 to glibc 2.29, pldd was broken: it just hung when executed. This prob-
lem was fixed in glibc 2.30, and the fix has been backported to earlier glibc versions in
some distributions.

EXAMPLES
$ echo $$; # Display PID of shell
1143
$ pldd $$; # Display DSOs linked into the shell
1143: /usr/bin/bash
linux-vdso.so.1
/lib64/libtinfo.so.5
/lib64/libdl.so.2
/lib64/libc.so.6
/lib64/ld-linux-x86-64.so.2
/lib64/libnss_files.so.2

SEE ALSO
ldd(1), lsof (1), dlopen(3), ld.so(8)

Linux man-pages 6.16 2025-05-17 33

sortman(1) General Commands Manual sortman(1)

NAME
sortman - sort manual-page path names

SYNOPSIS
sortman

DESCRIPTION
The sortman command sorts manual-page path names in the order that they should ap-
pear in the manual.

The chapters and subchapters are first sorted. Then, within each (sub)chapter, the first
page is the corresponding intro(*) page, and the rest are sorted alphabetically (but treat-
ing specially some special characters).

SEE ALSO
intro(1), man(1), sort(1)

Linux man-pages 6.16 2025-05-17 34

sprof (1) General Commands Manual sprof (1)

NAME
sprof - read and display shared object profiling data

SYNOPSIS
sprof [option . . .] shared-object-path [profile-data-path]

DESCRIPTION
The sprof command displays a profiling summary for the shared object (shared library)
specified as its first command-line argument. The profiling summary is created using
previously generated profiling data in the (optional) second command-line argument. If
the profiling data pathname is omitted, then sprof will attempt to deduce it using the
soname of the shared object, looking for a file with the name <soname>.profile in the
current directory.

OPTIONS
The following command-line options specify the profile output to be produced:

--call-pairs
-c Print a list of pairs of call paths for the interfaces exported by the shared object,

along with the number of times each path is used.

--flat-profile
-p Generate a flat profile of all of the functions in the monitored object, with counts

and ticks.

--graph
-q Generate a call graph.

If none of the above options is specified, then the default behavior is to display a flat
profile and a call graph.

The following additional command-line options are available:

--help
-? Display a summary of command-line options and arguments and exit.

--usage
Display a short usage message and exit.

--version
-V Display the program version and exit.

STANDARDS
GNU.

EXAMPLES
The following example demonstrates the use of sprof. The example consists of a main
program that calls two functions in a shared object. First, the code of the main program:

$ cat prog.c;
#include <stdlib.h>

void x1(void);
void x2(void);

Linux man-pages 6.16 2025-09-21 35

sprof (1) General Commands Manual sprof (1)

int
main(int argc, char *argv[])
{

x1();
x2();
exit(EXIT_SUCCESS);

}

The functions x1() and x2() are defined in the following source file that is used to con-
struct the shared object:

$ cat libdemo.c;
#include <unistd.h>

void
consumeCpu1(int lim)
{

for (unsigned int j = 0; j < lim; j++)
getppid();

}

void
x1(void) {

for (unsigned int j = 0; j < 100; j++)
consumeCpu1(200000);

}

void
consumeCpu2(int lim)
{

for (unsigned int j = 0; j < lim; j++)
getppid();

}

void
x2(void)
{

for (unsigned int j = 0; j < 1000; j++)
consumeCpu2(10000);

}

Now we construct the shared object with the real name libdemo.so.1.0.1, and the son-
ame libdemo.so.1:

$ cc -g -fPIC -shared -Wl,-soname,libdemo.so.1 \
-o libdemo.so.1.0.1 libdemo.c;

Then we construct symbolic links for the library soname and the library linker name:

$ ln -sf libdemo.so.1.0.1 libdemo.so.1;
$ ln -sf libdemo.so.1 libdemo.so;

Linux man-pages 6.16 2025-09-21 36

sprof (1) General Commands Manual sprof (1)

Next, we compile the main program, linking it against the shared object, and then list
the dynamic dependencies of the program:

$ cc -g -o prog prog.c -L. -ldemo;
$ ldd prog;

linux-vdso.so.1 => (0x00007fff86d66000)
libdemo.so.1 => not found
libc.so.6 => /lib64/libc.so.6 (0x00007fd4dc138000)
/lib64/ld-linux-x86-64.so.2 (0x00007fd4dc51f000)

In order to get profiling information for the shared object, we define the environment
variable LD_PROFILE with the soname of the library:

$ export LD_PROFILE=libdemo.so.1;

We then define the environment variable LD_PROFILE_OUTPUT with the pathname
of the directory where profile output should be written, and create that directory if it
does not exist already:

$ export LD_PROFILE_OUTPUT=$(pwd)/prof_data;
$ mkdir -p $LD_PROFILE_OUTPUT;

LD_PROFILE causes profiling output to be appended to the output file if it already ex-
ists, so we ensure that there is no preexisting profiling data:

$ rm -f $LD_PROFILE_OUTPUT/$LD_PROFILE.profile;

We then run the program to produce the profiling output, which is written to a file in the
directory specified in LD_PROFILE_OUTPUT:

$ LD_LIBRARY_PATH=. ./prog;
$ ls prof_data;
libdemo.so.1.profile

We then use the sprof -p option to generate a flat profile with counts and ticks:

$ sprof -p libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile;
Flat profile:

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls us/call us/call name
60.00 0.06 0.06 100 600.00 consumeCpu1
40.00 0.10 0.04 1000 40.00 consumeCpu2

0.00 0.10 0.00 1 0.00 x1
0.00 0.10 0.00 1 0.00 x2

The sprof -q option generates a call graph:

$ sprof -q libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile;

index % time self children called name

0.00 0.00 100/100 x1 [1]
[0] 100.0 0.00 0.00 100 consumeCpu1 [0]

Linux man-pages 6.16 2025-09-21 37

sprof (1) General Commands Manual sprof (1)

0.00 0.00 1/1 <UNKNOWN>

[1] 0.0 0.00 0.00 1 x1 [1]
0.00 0.00 100/100 consumeCpu1 [0]

0.00 0.00 1000/1000 x2 [3]

[2] 0.0 0.00 0.00 1000 consumeCpu2 [2]

0.00 0.00 1/1 <UNKNOWN>
[3] 0.0 0.00 0.00 1 x2 [3]

0.00 0.00 1000/1000 consumeCpu2 [2]

Above and below, the "<UNKNOWN>" strings represent identifiers that are outside of
the profiled object (in this example, these are instances of main()).

The sprof -c option generates a list of call pairs and the number of their occurrences:

$ sprof -c libdemo.so.1 $LD_PROFILE_OUTPUT/libdemo.so.1.profile;
<UNKNOWN> x1 1
x1 consumeCpu1 100
<UNKNOWN> x2 1
x2 consumeCpu2 1000

SEE ALSO
gprof (1), ldd(1), ld.so(8)

Linux man-pages 6.16 2025-09-21 38

time(1) General Commands Manual time(1)

NAME
time - time a simple command or give resource usage

SYNOPSIS
time [option . . .] command [argument . . .]

DESCRIPTION
The time command runs the specified program command with the given arguments.
When command finishes, time writes a message to standard error giving timing statis-
tics about this program run. These statistics consist of (i) the elapsed real time between
invocation and termination, (ii) the user CPU time (the sum of the tms_utime and
tms_cutime values in a struct tms as returned by times(2)), and (iii) the system CPU time
(the sum of the tms_stime and tms_cstime values in a struct tms as returned by times(2)).

Note: some shells (e.g., bash(1)) have a built-in time command that provides similar in-
formation on the usage of time and possibly other resources. To access the real com-
mand, you may need to specify its pathname (something like /usr/bin/time).

OPTIONS
-p When in the POSIX locale, use the precise traditional format

"real %f\nuser %f\nsys %f\n"

(with numbers in seconds) where the number of decimals in the output for %f is
unspecified but is sufficient to express the clock tick accuracy, and at least one.

EXIT STATUS
If command was invoked, the exit status is that of command . Otherwise, it is 127 if
command could not be found, 126 if it could be found but could not be invoked, and
some other nonzero value (1–125) if something else went wrong.

ENVIRONMENT
The variables LANG, LC_ALL, LC_CTYPE, LC_MESSAGES, LC_NUMERIC,
and NLSPATH are used for the text and formatting of the output. PATH is used to
search for command .

GNU VERSION
Below a description of the GNU 1.7 version of time. Disregarding the name of the util-
ity, GNU makes it output lots of useful information, not only about time used, but also
on other resources like memory, I/O and IPC calls (where available). The output is for-
matted using a format string that can be specified using the -f option or the TIME envi-
ronment variable.

The default format string is:

%Uuser %Ssystem %Eelapsed %PCPU (%Xtext+%Ddata %Mmax)k
%Iinputs+%Ooutputs (%Fmajor+%Rminor)pagefaults %Wswaps

When the -p option is given, the (portable) output format is used:

real %e
user %U
sys %S

Linux man-pages 6.16 2025-05-17 39

time(1) General Commands Manual time(1)

The format string
The format is interpreted in the usual printf(3)-like way. Ordinary characters are di-
rectly copied, tab, newline, and backslash are escaped using \t, \n, and \\, a percent sign
is represented by %%, and otherwise % indicates a conversion. The program time will
always add a trailing newline itself. The conversions follow. All of those used by
tcsh(1) are supported.

Time

%E Elapsed real time (in [hours:]minutes:seconds).

%e (Not in tcsh(1)Elapsed real time (in seconds).

%S Total number of CPU-seconds that the process spent in kernel mode.

%U Total number of CPU-seconds that the process spent in user mode.

%P Percentage of the CPU that this job got, computed as (%U + %S) / %E.

Memory

%M Maximum resident set size of the process during its lifetime, in Kbytes.

%t (Not in tcsh(1)Average resident set size of the process, in Kbytes.

%K Average total (data+stack+text) memory use of the process, in Kbytes.

%D Average size of the process’s unshared data area, in Kbytes.

%p (Not in tcsh(1)Average size of the process’s unshared stack space, in Kbytes.

%X Average size of the process’s shared text space, in Kbytes.

%Z (Not in tcsh(1)System’s page size, in bytes. This is a per-system constant, but
varies between systems.

%F Number of major page faults that occurred while the process was running.
These are faults where the page has to be read in from disk.

%R Number of minor, or recoverable, page faults. These are faults for pages that are
not valid but which have not yet been claimed by other virtual pages. Thus the
data in the page is still valid but the system tables must be updated.

%W Number of times the process was swapped out of main memory.

%c Number of times the process was context-switched involuntarily (because the
time slice expired).

%w Number of waits: times that the program was context-switched voluntarily, for
instance while waiting for an I/O operation to complete.

I/O

%I Number of filesystem inputs by the process.

%O Number of filesystem outputs by the process.

%r Number of socket messages received by the process.

Linux man-pages 6.16 2025-05-17 40

time(1) General Commands Manual time(1)

%s Number of socket messages sent by the process.

%k Number of signals delivered to the process.

%C (Not in tcsh(1)Name and command-line arguments of the command being timed.

%x (Not in tcsh(1)Exit status of the command.

GNU options
-f format, --format= format

Specify output format, possibly overriding the format specified in the environ-
ment variable TIME.

-p, --portability
Use the portable output format.

-o file, --output= file
Do not send the results to stderr, but overwrite the specified file.

-a, --append
(Used together with -o.) Do not overwrite but append.

-v, --verbose
Give very verbose output about all the program knows about.

-q, --quiet
Don’t report abnormal program termination (where command is terminated by a
signal) or nonzero exit status.

GNU standard options
--help

Print a usage message on standard output and exit successfully.

-V, --version
Print version information on standard output, then exit successfully.

-- Terminate option list.

BUGS
Not all resources are measured by all versions of UNIX, so some of the values might be
reported as zero. The present selection was mostly inspired by the data provided by 4.2
or 4.3BSD.

GNU time version 1.7 is not yet localized. Thus, it does not implement the POSIX re-
quirements.

The environment variable TIME was badly chosen. It is not unusual for systems like
autoconf (1) or make(1) to use environment variables with the name of a utility to over-
ride the utility to be used. Uses like MORE or TIME for options to programs (instead of
program pathnames) tend to lead to difficulties.

It seems unfortunate that -o overwrites instead of appends. (That is, the -a option
should be the default.)

Mail suggestions and bug reports for GNU time to bug-time@gnu.org. Please include
the version of time, which you can get by running

time --version

Linux man-pages 6.16 2025-05-17 41

time(1) General Commands Manual time(1)

and the operating system and C compiler you used.

SEE ALSO
bash(1), tcsh(1), times(2), wait3(2)

Linux man-pages 6.16 2025-05-17 42

intro(2) System Calls Manual intro(2)

NAME
intro - introduction to system calls

DESCRIPTION
Section 2 of the manual describes the Linux system calls. A system call is an entry
point into the Linux kernel. Usually, system calls are not invoked directly: instead, most
system calls have corresponding C library wrapper functions which perform the steps re-
quired (e.g., trapping to kernel mode) in order to invoke the system call. Thus, making a
system call looks the same as invoking a normal library function.

In many cases, the C library wrapper function does nothing more than:

• copying arguments and the unique system call number to the registers where the ker-
nel expects them;

• trapping to kernel mode, at which point the kernel does the real work of the system
call;

• setting errno if the system call returns an error number when the kernel returns the
CPU to user mode.

However, in a few cases, a wrapper function may do rather more than this, for example,
performing some preprocessing of the arguments before trapping to kernel mode, or
postprocessing of values returned by the system call. Where this is the case, the manual
pages in Section 2 generally try to note the details of both the (usually GNU) C library
API interface and the raw system call. Most commonly, the main DESCRIPTION will
focus on the C library interface, and differences for the system call are covered in the
NOTES section.

For a list of the Linux system calls, see syscalls(2).

RETURN VALUE
On error, most system calls return a negative error number (i.e., the negated value of one
of the constants described in errno(3)). The C library wrapper hides this detail from the
caller: when a system call returns a negative value, the wrapper copies the absolute value
into the errno variable, and returns -1 as the return value of the wrapper.

The value returned by a successful system call depends on the call. Many system calls
return 0 on success, but some can return nonzero values from a successful call. The de-
tails are described in the individual manual pages.

In some cases, the programmer must define a feature test macro in order to obtain the
declaration of a system call from the header file specified in the man page SYNOPSIS
section. (Where required, these feature test macros must be defined before including
any header files.) In such cases, the required macro is described in the man page. For
further information on feature test macros, see feature_test_macros(7).

STANDARDS
Certain terms and abbreviations are used to indicate UNIX variants and standards to
which calls in this section conform. See standards(7).

NOTES

Linux man-pages 6.16 2025-05-17 43

intro(2) System Calls Manual intro(2)

Calling directly
In most cases, it is unnecessary to invoke a system call directly, but there are times when
the Standard C library does not implement a nice wrapper function for you. In this case,
the programmer must manually invoke the system call using syscall(2). Historically,
this was also possible using one of the _syscall macros described in _syscall(2).

Authors and copyright conditions
Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

SEE ALSO
_syscall(2), syscall(2), syscalls(2), errno(3), intro(3), capabilities(7), credentials(7),
feature_test_macros(7), mq_overview(7), path_resolution(7), pipe(7), pty(7),
sem_overview(7), shm_overview(7), signal(7), socket(7), standards(7), symlink(7),
system_data_types(7), sysvipc(7), time(7)

Linux man-pages 6.16 2025-05-17 44

accept(2) System Calls Manual accept(2)

NAME
accept, accept4 - accept a connection on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int accept(int sockfd , struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/socket.h>

int accept4(int sockfd , struct sockaddr *_Nullable restrict addr,
socklen_t *_Nullable restrict addrlen, int flags);

DESCRIPTION
The accept() system call is used with connection-based socket types
(SOCK_STREAM, SOCK_SEQPACKET). It extracts the first connection request on
the queue of pending connections for the listening socket, sockfd , creates a new con-
nected socket, and returns a new file descriptor referring to that socket. The newly cre-
ated socket is not in the listening state. The original socket sockfd is unaffected by this
call.

The argument sockfd is a socket that has been created with socket(2), bound to a local
address with bind(2), and is listening for connections after a listen(2).

The argument addr is a pointer to a sockaddr structure. This structure is filled in with
the address of the peer socket, as known to the communications layer. The exact format
of the address returned addr is determined by the socket’s address family (see socket(2)
and the respective protocol man pages). When addr is NULL, nothing is filled in; in
this case, addrlen is not used, and should also be NULL.

The addrlen argument is a value-result argument: the caller must initialize it to contain
the size (in bytes) of the structure pointed to by addr; on return it will contain the actual
size of the peer address.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

If no pending connections are present on the queue, and the socket is not marked as non-
blocking, accept() blocks the caller until a connection is present. If the socket is marked
nonblocking and no pending connections are present on the queue, accept() fails with
the error EAGAIN or EWOULDBLOCK.

In order to be notified of incoming connections on a socket, you can use select(2),
poll(2), or epoll(7). A readable event will be delivered when a new connection is at-
tempted and you may then call accept() to get a socket for that connection. Alterna-
tively, you can set the socket to deliver SIGIO when activity occurs on a socket; see
socket(7) for details.

If flags is 0, then accept4() is the same as accept(). The following values can be bit-
wise ORed in flags to obtain different behavior:

Linux man-pages 6.16 2025-10-29 45

accept(2) System Calls Manual accept(2)

SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file de-
scriptor. See the description of the O_CLOEXEC flag in open(2)
for reasons why this may be useful.

RETURN VALUE
On success, these system calls return a file descriptor for the accepted socket (a nonneg-
ative integer). On error, -1 is returned, errno is set to indicate the error, and addrlen is
left unchanged.

Error handling
Linux accept() (and accept4()) passes already-pending network errors on the new
socket as an error code from accept(). This behavior differs from other BSD socket im-
plementations. For reliable operation the application should detect the network errors
defined for the protocol after accept() and treat them like EAGAIN by retrying. In the
case of TCP/IP, these are ENETDOWN, EPROTO, ENOPROTOOPT, EHOST-
DOWN, ENONET, EHOSTUNREACH, EOPNOTSUPP, and ENETUNREACH.

ERRORS
EAGAIN or EWOULDBLOCK

The socket is marked nonblocking and no connections are present to be ac-
cepted. POSIX.1-2001 and POSIX.1-2008 allow either error to be returned for
this case, and do not require these constants to have the same value, so a portable
application should check for both possibilities.

EBADF
sockfd is not an open file descriptor.

ECONNABORTED
A connection has been aborted.

EFAULT
The addr argument is not in a writable part of the user address space.

EINTR
The system call was interrupted by a signal that was caught before a valid con-
nection arrived; see signal(7).

EINVAL
Socket is not listening for connections, or addrlen is invalid (e.g., is negative).

EINVAL
(accept4()) invalid value in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

Linux man-pages 6.16 2025-10-29 46

accept(2) System Calls Manual accept(2)

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOBUFS
ENOMEM

Not enough free memory. This often means that the memory allocation is lim-
ited by the socket buffer limits, not by the system memory.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
The referenced socket is not of type SOCK_STREAM.

EPERM
Firewall rules forbid connection.

EPROTO
Protocol error.

In addition, network errors for the new socket and as defined for the protocol may be re-
turned. Various Linux kernels can return other errors such as ENOSR, ESOCKTNO-
SUPPORT, EPROTONOSUPPORT, ETIMEDOUT. The value ERESTARTSYS
may be seen during a trace.

VERSIONS
On Linux, the new socket returned by accept() does not inherit file status flags such as
O_NONBLOCK and O_ASYNC from the listening socket. This behavior differs from
the canonical BSD sockets implementation. Portable programs should not rely on inher-
itance or noninheritance of file status flags and always explicitly set all required flags on
the socket returned from accept().

STANDARDS
POSIX.1-2024.

HISTORY
accept()

POSIX.1-2001, SVr4, 4.4BSD (accept() first appeared in 4.2BSD).

accept4()
POSIX.1-2024. Linux 2.6.28, glibc 2.10.

NOTES
There may not always be a connection waiting after a SIGIO is delivered or select(2),
poll(2), or epoll(7) return a readability event because the connection might have been re-
moved by an asynchronous network error or another thread before accept() is called. If
this happens, then the call will block waiting for the next connection to arrive. To en-
sure that accept() never blocks, the passed socket sockfd needs to have the O_NON-
BLOCK flag set (see socket(7)).

For certain protocols which require an explicit confirmation, such as DECnet, accept()
can be thought of as merely dequeuing the next connection request and not implying
confirmation. Confirmation can be implied by a normal read or write on the new file de-
scriptor, and rejection can be implied by closing the new socket. Currently, only

Linux man-pages 6.16 2025-10-29 47

accept(2) System Calls Manual accept(2)

DECnet has these semantics on Linux.

The socklen_t type
In the original BSD sockets implementation (and on other older systems) the third argu-
ment of accept() was declared as an int *. A POSIX.1g draft standard wanted to change
it into a size_t *; later POSIX standards and glibc 2.x have socklen_t * .

EXAMPLES
See bind(2).

SEE ALSO
bind(2), connect(2), listen(2), select(2), socket(2), socket(7)

Linux man-pages 6.16 2025-10-29 48

access(2) System Calls Manual access(2)

NAME
access, faccessat, faccessat2 - check user’s permissions for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int access(const char *path, int mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int faccessat(int dirfd , const char *path, int mode, int flags);
/* But see C library/kernel differences, below */

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_faccessat2,
int dirfd , const char *path, int mode, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

faccessat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
access() checks whether the calling process can access the file path. If path is a sym-
bolic link, it is dereferenced.

The mode specifies the accessibility check(s) to be performed, and is either the value
F_OK, or a mask consisting of the bitwise OR of one or more of R_OK, W_OK, and
X_OK. F_OK tests for the existence of the file. R_OK, W_OK, and X_OK test
whether the file exists and grants read, write, and execute permissions, respectively.

The check is done using the calling process’s real UID and GID, rather than the effec-
tive IDs as is done when actually attempting an operation (e.g., open(2)) on the file.
Similarly, for the root user, the check uses the set of permitted capabilities rather than
the set of effective capabilities; and for non-root users, the check uses an empty set of
capabilities.

This allows set-user-ID programs and capability-endowed programs to easily determine
the invoking user’s authority. In other words, access() does not answer the "can I
read/write/execute this file?" question. It answers a slightly different question: "(assum-
ing I’m a setuid binary) can the user who invoked me read/write/execute this file?",
which gives set-user-ID programs the possibility to prevent malicious users from caus-
ing them to read files which users shouldn’t be able to read.

If the calling process is privileged (i.e., its real UID is zero), then an X_OK check is

Linux man-pages 6.16 2025-10-29 49

access(2) System Calls Manual access(2)

successful for a regular file if execute permission is enabled for any of the file owner,
group, or other.

faccessat()
faccessat() operates in exactly the same way as access(), except for the differences de-
scribed here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by access() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like access())

If path is absolute, then dirfd is ignored.

flags is constructed by ORing together zero or more of the following values:

AT_EACCESS
Perform access checks using the effective user and group IDs. By default, fac-
cessat() uses the real IDs (like access())

AT_EMPTY_PATH (since Linux 5.8)
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag). In this case, dirfd can re-
fer to any type of file, not just a directory. If dirfd is AT_FDCWD, the call op-
erates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead return information about
the link itself.

See openat(2) for an explanation of the need for faccessat().

faccessat2()
The description of faccessat() given above corresponds to POSIX.1 and to the imple-
mentation provided by glibc. However, the glibc implementation was an imperfect emu-
lation (see BUGS) that papered over the fact that the raw Linux faccessat() system call
does not have a flags argument. To allow for a proper implementation, Linux 5.8 added
the faccessat2() system call, which supports the flags argument and allows a correct im-
plementation of the faccessat() wrapper function.

RETURN VALUE
On success (all requested permissions granted, or mode is F_OK and the file exists),
zero is returned. On error (at least one bit in mode asked for a permission that is denied,
or mode is F_OK and the file does not exist, or some other error occurred), -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EACCES

The requested access would be denied to the file, or search permission is denied
for one of the directories in the path prefix of path. (See also
path_resolution(7).)

Linux man-pages 6.16 2025-10-29 50

access(2) System Calls Manual access(2)

EBADF
(faccessat()) path is relative but dirfd is neither AT_FDCWD (faccessat()) nor
a valid file descriptor.

EFAULT
path points outside your accessible address space.

EINVAL
mode was incorrectly specified.

EINVAL
(faccessat()) Invalid flag specified in flags.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
A component of path does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component used as a directory in path is not, in fact, a directory.

ENOTDIR
(faccessat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

EPERM
Write permission was requested to a file that has the immutable flag set. See
also FS_IOC_SETFLAGS(2const).

EROFS
Write permission was requested for a file on a read-only filesystem.

ETXTBSY
Write access was requested to an executable which is being executed.

VERSIONS
If the calling process has appropriate privileges (i.e., is superuser), POSIX.1-2001 per-
mits an implementation to indicate success for an X_OK check even if none of the exe-
cute file permission bits are set. Linux does not do this.

C library/kernel differences
The raw faccessat() system call takes only the first three arguments. The AT_EAC-
CESS and AT_SYMLINK_NOFOLLOW flags are actually implemented within the
glibc wrapper function for faccessat(). If either of these flags is specified, then the
wrapper function employs fstatat(2) to determine access permissions, but see BUGS.

Linux man-pages 6.16 2025-10-29 51

access(2) System Calls Manual access(2)

glibc notes
On older kernels where faccessat() is unavailable (and when the AT_EACCESS and
AT_SYMLINK_NOFOLLOW flags are not specified), the glibc wrapper function falls
back to the use of access(). When path is relative, glibc constructs a pathname based on
the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
access()
faccessat()

POSIX.1-2024.

faccessat2()
Linux.

HISTORY
access()

SVr4, 4.3BSD, POSIX.1-2001.

faccessat()
Linux 2.6.16, glibc 2.4.

faccessat2()
Linux 5.8.

NOTES
Warning: Using these calls to check if a user is authorized to, for example, open a file
before actually doing so using open(2) creates a security hole, because the user might
exploit the short time interval between checking and opening the file to manipulate it.
For this reason, the use of this system call should be avoided. (In the example just
described, a safer alternative would be to temporarily switch the process’s effective user
ID to the real ID and then call open(2).)

access() always dereferences symbolic links. If you need to check the permissions on a
symbolic link, use faccessat() with the flag AT_SYMLINK_NOFOLLOW.

These calls return an error if any of the access types in mode is denied, even if some of
the other access types in mode are permitted.

A file is accessible only if the permissions on each of the directories in the path prefix of
path grant search (i.e., execute) access. If any directory is inaccessible, then the ac-
cess() call fails, regardless of the permissions on the file itself.

Only access bits are checked, not the file type or contents. Therefore, if a directory is
found to be writable, it probably means that files can be created in the directory, and not
that the directory can be written as a file. Similarly, a DOS file may be reported as exe-
cutable, but the execve(2) call will still fail.

These calls may not work correctly on NFSv2 filesystems with UID mapping enabled,
because UID mapping is done on the server and hidden from the client, which checks
permissions. (NFS versions 3 and higher perform the check on the server.) Similar
problems can occur to FUSE mounts.

Linux man-pages 6.16 2025-10-29 52

access(2) System Calls Manual access(2)

BUGS
Because the Linux kernel’s faccessat() system call does not support a flags argument,
the glibc faccessat() wrapper function provided in glibc 2.32 and earlier emulates the re-
quired functionality using a combination of the faccessat() system call and fstatat(2).
However, this emulation does not take ACLs into account. Starting with glibc 2.33, the
wrapper function avoids this bug by making use of the faccessat2() system call where it
is provided by the underlying kernel.

In Linux 2.4 (and earlier) there is some strangeness in the handling of X_OK tests for
superuser. If all categories of execute permission are disabled for a nondirectory file,
then the only access() test that returns -1 is when mode is specified as just X_OK; if
R_OK or W_OK is also specified in mode, then access() returns 0 for such files. Early
Linux 2.6 (up to and including Linux 2.6.3) also behaved in the same way as Linux 2.4.

Before Linux 2.6.20, these calls ignored the effect of the MS_NOEXEC flag if it was
used to mount(2) the underlying filesystem. Since Linux 2.6.20, the MS_NOEXEC flag
is honored.

SEE ALSO
chmod(2), chown(2), open(2), setgid(2), setuid(2), stat(2), euidaccess(3), credentials(7),
path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 53

acct(2) System Calls Manual acct(2)

NAME
acct - switch process accounting on or off

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int acct(const char *_Nullable path);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acct():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The acct() system call enables or disables process accounting. If called with the path-
name of an existing file as its argument, accounting is turned on, and records for each
terminating process are appended to the file as it terminates. An argument of NULL
causes accounting to be turned off.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Write permission is denied for the specified file, or search permission is denied
for one of the directories in the path prefix of path (see also path_resolution(7)),
or path is not a regular file.

EFAULT
path points outside your accessible address space.

EIO Error writing to the file path.

EISDIR
path is a directory.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

Linux man-pages 6.16 2025-05-17 54

acct(2) System Calls Manual acct(2)

ENOENT
The specified path does not exist.

ENOMEM
Out of memory.

ENOSYS
BSD process accounting has not been enabled when the operating system kernel
was compiled. The kernel configuration parameter controlling this feature is
CONFIG_BSD_PROCESS_ACCT.

ENOTDIR
A component used as a directory in path is not in fact a directory.

EPERM
The calling process has insufficient privilege to enable process accounting. On
Linux, the CAP_SYS_PACCT capability is required.

EROFS
path refers to a file on a read-only filesystem.

EUSERS
There are no more free file structures or we ran out of memory.

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

NOTES
No accounting is produced for programs running when a system crash occurs. In partic-
ular, nonterminating processes are never accounted for.

The structure of the records written to the accounting file is described in acct(5).

SEE ALSO
acct(5)

Linux man-pages 6.16 2025-05-17 55

add_key(2) System Calls Manual add_key(2)

NAME
add_key - add a key to the kernel’s key management facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <keyutils.h>

key_serial_t add_key(size_t size;
const char *type, const char *description,
const void payload[size], size_t size,
key_serial_t keyring);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
add_key() creates or updates a key of the given type and description, instantiates it with
the payload of size size, attaches it to the nominated keyring, and returns the key’s serial
number.

The key may be rejected if the provided data is in the wrong format or it is invalid in
some other way.

If the destination keyring already contains a key that matches the specified type and de-
scription, then, if the key type supports it, that key will be updated rather than a new key
being created; if not, a new key (with a different ID) will be created and it will displace
the link to the extant key from the keyring.

The destination keyring serial number may be that of a valid keyring for which the caller
has write permission. Alternatively, it may be one of the following special keyring IDs:

KEY_SPEC_THREAD_KEYRING
This specifies the caller’s thread-specific keyring (thread-keyring(7)).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring (process-keyring(7)).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring (session-keyring(7)).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring (user-keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring (user-session-keyring(7)).

Key types
The key type is a string that specifies the key’s type. Internally, the kernel defines a
number of key types that are available in the core key management code. Among the
types that are available for user-space use and can be specified as the type argument to
add_key() are the following:

"keyring"
Keyrings are special key types that may contain links to sequences of other keys
of any type. If this interface is used to create a keyring, then payload should be

Linux man-pages 6.16 2025-09-21 56

add_key(2) System Calls Manual add_key(2)

NULL and size should be zero.

"user"
This is a general purpose key type whose payload may be read and updated by
user-space applications. The key is kept entirely within kernel memory. The
payload for keys of this type is a blob of arbitrary data of up to 32,767 bytes.

"logon" (since Linux 3.3)
This key type is essentially the same as "user" , but it does not permit the key to
read. This is suitable for storing payloads that you do not want to be readable
from user space.

This key type vets the description to ensure that it is qualified by a "service" prefix, by
checking to ensure that the description contains a ’:’ that is preceded by other charac-
ters.

"big_key" (since Linux 3.13)
This key type is similar to "user" , but may hold a payload of up to 1 MiB. If the
key payload is large enough, then it may be stored encrypted in tmpfs (which can
be swapped out) rather than kernel memory.

For further details on these key types, see keyrings(7).

RETURN VALUE
On success, add_key() returns the serial number of the key it created or updated. On er-
ror, -1 is returned and errno is set to indicate the error.

ERRORS
EACCES

The keyring wasn’t available for modification by the user.

EDQUOT
The key quota for this user would be exceeded by creating this key or linking it
to the keyring.

EFAULT
One or more of type, description, and payload points outside process’s accessi-
ble address space.

EINVAL
The size of the string (including the terminating null byte) specified in type or
description exceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL
The payload data was invalid.

EINVAL
type was "logon" and the description was not qualified with a prefix string of the
form "service:".

EKEYEXPIRED
The keyring has expired.

Linux man-pages 6.16 2025-09-21 57

add_key(2) System Calls Manual add_key(2)

EKEYREVOKED
The keyring has been revoked.

ENOKEY
The keyring doesn’t exist.

ENOMEM
Insufficient memory to create a key.

EPERM
The type started with a period ('.'). Key types that begin with a period are re-
served to the implementation.

EPERM
type was "keyring" and the description started with a period ('.'). Keyrings with
descriptions (names) that begin with a period are reserved to the implementation.

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

NOTES
glibc does not provide a wrapper for this system call. A wrapper is provided in the
libkeyutils library. (The accompanying package provides the <keyutils.h> header file.)
When employing the wrapper in that library, link with -lkeyutils.

EXAMPLES
The program below creates a key with the type, description, and payload specified in its
command-line arguments, and links that key into the session keyring. The following
shell session demonstrates the use of the program:

$./a.out user mykey "Some payload";
Key ID is 64a4dca
$ grep '64a4dca' /proc/keys;
064a4dca I--Q--- 1 perm 3f010000 1000 1000 user mykey: 12

Program source

#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

key_serial_t key;

if (argc != 4) {
fprintf(stderr, "Usage: %s type description payload\n",

Linux man-pages 6.16 2025-09-21 58

add_key(2) System Calls Manual add_key(2)

argv[0]);
exit(EXIT_FAILURE);

}

key = add_key(argv[1], argv[2], argv[3], strlen(argv[3]),
KEY_SPEC_SESSION_KEYRING);

if (key == -1) {
perror("add_key");
exit(EXIT_FAILURE);

}

printf("Key ID is %jx\n", (uintmax_t) key);

exit(EXIT_SUCCESS);
}

SEE ALSO
keyctl(1), keyctl(2), request_key(2), keyctl(3), keyrings(7), keyutils(7), persistent-
keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-keyring(7),
user-session-keyring(7)

The kernel source files Documentation/security/keys/core.rst and
Documentation/keys/request-key.rst (or, before Linux 4.13, in the files
Documentation/security/keys.txt and Documentation/security/keys-request-key.txt).

Linux man-pages 6.16 2025-09-21 59

adjtimex(2) System Calls Manual adjtimex(2)

NAME
adjtimex, clock_adjtime, ntp_adjtime - tune kernel clock

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timex.h>

int adjtimex(struct timex *buf);

int clock_adjtime(clockid_t clk_id, struct timex *buf);

int ntp_adjtime(struct timex *buf);

DESCRIPTION
Linux uses David L. Mills’ clock adjustment algorithm (see RFC 5905). The system
call adjtimex() reads and optionally sets adjustment parameters for this algorithm. It
takes a pointer to a timex structure, updates kernel parameters from (selected) field val-
ues, and returns the same structure updated with the current kernel values. This struc-
ture is declared as follows:

struct timex {
int modes; /* Mode selector */
long offset; /* Time offset; nanoseconds, if STA_NANO

status flag is set, otherwise
microseconds */

long freq; /* Frequency offset; see NOTES for units */
long maxerror; /* Maximum error (microseconds) */
long esterror; /* Estimated error (microseconds) */
int status; /* Clock command/status */
long constant; /* PLL (phase-locked loop) time constant */
long precision; /* Clock precision

(microseconds, read-only) */
long tolerance; /* Clock frequency tolerance (read-only);

see NOTES for units */
struct timeval time;

/* Current time (read-only, except for
ADJ_SETOFFSET); upon return, time.tv_usec
contains nanoseconds, if STA_NANO status
flag is set, otherwise microseconds */

long tick; /* Microseconds between clock ticks */
long ppsfreq; /* PPS (pulse per second) frequency

(read-only); see NOTES for units */
long jitter; /* PPS jitter (read-only); nanoseconds, if

STA_NANO status flag is set, otherwise
microseconds */

int shift; /* PPS interval duration
(seconds, read-only) */

long stabil; /* PPS stability (read-only);
see NOTES for units */

Linux man-pages 6.16 2025-09-21 60

adjtimex(2) System Calls Manual adjtimex(2)

long jitcnt; /* PPS count of jitter limit exceeded
events (read-only) */

long calcnt; /* PPS count of calibration intervals
(read-only) */

long errcnt; /* PPS count of calibration errors
(read-only) */

long stbcnt; /* PPS count of stability limit exceeded
events (read-only) */

int tai; /* TAI offset, as set by previous ADJ_TAI
operation (seconds, read-only,
since Linux 2.6.26) */

/* Further padding bytes to allow for future expansion */
};

The modes field determines which parameters, if any, to set. (As described later in this
page, the constants used for ntp_adjtime() are equivalent but differently named.) It is a
bit mask containing a bitwise OR combination of zero or more of the following bits:

ADJ_OFFSET
Set time offset from buf.offset. Since Linux 2.6.26, the supplied value is
clamped to the range (-0.5s, +0.5s). In older kernels, an EINVAL error occurs
if the supplied value is out of range.

ADJ_FREQUENCY
Set frequency offset from buf.freq. Since Linux 2.6.26, the supplied value is
clamped to the range (-32768000, +32768000). In older kernels, an EINVAL
error occurs if the supplied value is out of range.

ADJ_MAXERROR
Set maximum time error from buf.maxerror.

ADJ_ESTERROR
Set estimated time error from buf.esterror.

ADJ_STATUS
Set clock status bits from buf.status. A description of these bits is provided be-
low.

ADJ_TIMECONST
Set PLL time constant from buf.constant. If the STA_NANO status flag (see be-
low) is clear, the kernel adds 4 to this value.

ADJ_SETOFFSET (since Linux 2.6.39)
Add buf.time to the current time. If buf.status includes the ADJ_NANO flag,
then buf.time.tv_usec is interpreted as a nanosecond value; otherwise it is inter-
preted as microseconds.

The value of buf.time is the sum of its two fields, but the field buf.time.tv_usec
must always be nonnegative. The following example shows how to normalize a
timeval with nanosecond resolution.

while (buf.time.tv_usec < 0) {
buf.time.tv_sec -= 1;

Linux man-pages 6.16 2025-09-21 61

adjtimex(2) System Calls Manual adjtimex(2)

buf.time.tv_usec += 1000000000;
}

ADJ_MICRO (since Linux 2.6.26)
Select microsecond resolution.

ADJ_NANO (since Linux 2.6.26)
Select nanosecond resolution. Only one of ADJ_MICRO and ADJ_NANO
should be specified.

ADJ_TAI (since Linux 2.6.26)
Set TAI (Atomic International Time) offset from buf.constant.

ADJ_TAI should not be used in conjunction with ADJ_TIMECONST, since
the latter mode also employs the buf.constant field.

For a complete explanation of TAI and the difference between TAI and UTC, see
BIPM 〈http://www.bipm.org/en/bipm/tai/tai.html〉

ADJ_TICK
Set tick value from buf.tick.

Alternatively, modes can be specified as either of the following (multibit mask) values,
in which case other bits should not be specified in modes:

ADJ_OFFSET_SINGLESHOT
Old-fashioned adjtime(3): (gradually) adjust time by value specified in buf.offset,
which specifies an adjustment in microseconds.

ADJ_OFFSET_SS_READ (functional since Linux 2.6.28)
Return (in buf.offset) the remaining amount of time to be adjusted after an earlier
ADJ_OFFSET_SINGLESHOT operation. This feature was added in Linux
2.6.24, but did not work correctly until Linux 2.6.28.

Ordinary users are restricted to a value of either 0 or ADJ_OFFSET_SS_READ for
modes. Only the superuser may set any parameters.

The buf.status field is a bit mask that is used to set and/or retrieve status bits associated
with the NTP implementation. Some bits in the mask are both readable and settable,
while others are read-only.

STA_PLL (read-write)
Enable phase-locked loop (PLL) updates via ADJ_OFFSET.

STA_PPSFREQ (read-write)
Enable PPS (pulse-per-second) frequency discipline.

STA_PPSTIME (read-write)
Enable PPS time discipline.

STA_FLL (read-write)
Select frequency-locked loop (FLL) mode.

STA_INS (read-write)
Insert a leap second after the last second of the UTC day, thus extending the last
minute of the day by one second. Leap-second insertion will occur each day, so
long as this flag remains set.

Linux man-pages 6.16 2025-09-21 62

adjtimex(2) System Calls Manual adjtimex(2)

STA_DEL (read-write)
Delete a leap second at the last second of the UTC day. Leap second deletion
will occur each day, so long as this flag remains set.

STA_UNSYNC (read-write)
Clock unsynchronized.

STA_FREQHOLD (read-write)
Hold frequency. Normally adjustments made via ADJ_OFFSET result in
dampened frequency adjustments also being made. So a single call corrects the
current offset, but as offsets in the same direction are made repeatedly, the small
frequency adjustments will accumulate to fix the long-term skew.

This flag prevents the small frequency adjustment from being made when cor-
recting for an ADJ_OFFSET value.

STA_PPSSIGNAL (read-only)
A valid PPS (pulse-per-second) signal is present.

STA_PPSJITTER (read-only)
PPS signal jitter exceeded.

STA_PPSWANDER (read-only)
PPS signal wander exceeded.

STA_PPSERROR (read-only)
PPS signal calibration error.

STA_CLOCKERR (read-only)
Clock hardware fault.

STA_NANO (read-only; since Linux 2.6.26)
Resolution (0 = microsecond, 1 = nanoseconds). Set via ADJ_NANO, cleared
via ADJ_MICRO.

STA_MODE (since Linux 2.6.26)
Mode (0 = Phase Locked Loop, 1 = Frequency Locked Loop).

STA_CLK (read-only; since Linux 2.6.26)
Clock source (0 = A, 1 = B); currently unused.

Attempts to set read-only status bits are silently ignored.

clock_adjtime ()
The clock_adjtime() system call (added in Linux 2.6.39) behaves like adjtimex() but
takes an additional clk_id argument to specify the particular clock on which to act.

ntp_adjtime ()
The ntp_adjtime() library function (described in the NTP "Kernel Application Program
API", KAPI) is a more portable interface for performing the same task as adjtimex().
Other than the following points, it is identical to adjtimex():

• The constants used in modes are prefixed with "MOD_" rather than "ADJ_", and
have the same suffixes (thus, MOD_OFFSET, MOD_FREQUENCY, and so on),
other than the exceptions noted in the following points.

Linux man-pages 6.16 2025-09-21 63

adjtimex(2) System Calls Manual adjtimex(2)

• MOD_CLKA is the synonym for ADJ_OFFSET_SINGLESHOT.

• MOD_CLKB is the synonym for ADJ_TICK.

• The is no synonym for ADJ_OFFSET_SS_READ, which is not described in the
KAPI.

RETURN VALUE
On success, adjtimex() and ntp_adjtime() return the clock state; that is, one of the fol-
lowing values:

TIME_OK Clock synchronized, no leap second adjustment pending.

TIME_INS Indicates that a leap second will be added at the end of the UTC day.

TIME_DEL
Indicates that a leap second will be deleted at the end of the UTC day.

TIME_OOP
Insertion of a leap second is in progress.

TIME_WAIT
A leap-second insertion or deletion has been completed. This value will
be returned until the next ADJ_STATUS operation clears the STA_INS
and STA_DEL flags.

TIME_ERROR
The system clock is not synchronized to a reliable server. This value is
returned when any of the following holds true:

• Either STA_UNSYNC or STA_CLOCKERR is set.

• STA_PPSSIGNAL is clear and either STA_PPSFREQ or STA_PP-
STIME is set.

• STA_PPSTIME and STA_PPSJITTER are both set.

• STA_PPSFREQ is set and either STA_PPSWANDER or STA_PP-
SJITTER is set.

The symbolic name TIME_BAD is a synonym for TIME_ERROR, pro-
vided for backward compatibility.

Note that starting with Linux 3.4, the call operates asynchronously and the return value
usually will not reflect a state change caused by the call itself.

On failure, these calls return -1 and set errno to indicate the error.

ERRORS
EFAULT

buf does not point to writable memory.

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.freq to a value outside the range (-33554432,
+33554432).

Linux man-pages 6.16 2025-09-21 64

adjtimex(2) System Calls Manual adjtimex(2)

EINVAL (before Linux 2.6.26)
An attempt was made to set buf.offset to a value outside the permitted range. Be-
fore Linux 2.0, the permitted range was (-131072, +131072). From Linux 2.0
onwards, the permitted range was (-512000, +512000).

EINVAL
An attempt was made to set buf.status to a value other than those listed above.

EINVAL
The clk_id given to clock_adjtime() is invalid for one of two reasons. Either the
System-V style hard-coded positive clock ID value is out of range, or the dy-
namic clk_id does not refer to a valid instance of a clock object. See clock_get-
time(2) for a discussion of dynamic clocks.

EINVAL
An attempt was made to set buf.tick to a value outside the range 900000/HZ to
1100000/HZ, where HZ is the system timer interrupt frequency.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk_id has disappeared after its character device was opened. See clock_get-
time(2) for a discussion of dynamic clocks.

EOPNOTSUPP
The given clk_id does not support adjustment.

EPERM
buf.modes is neither 0 nor ADJ_OFFSET_SS_READ, and the caller does not
have sufficient privilege. Under Linux, the CAP_SYS_TIME capability is re-
quired.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safentp_adjtime()

STANDARDS
adjtimex()
clock_adjtime()

Linux.

The preferred API for the NTP daemon is ntp_adjtime().

NOTES
In struct timex, freq, ppsfreq, and stabil are ppm (parts per million) with a 16-bit frac-
tional part, which means that a value of 1 in one of those fields actually means 2^-16
ppm, and 2^16=65536 is 1 ppm. This is the case for both input values (in the case of
freq) and output values.

The leap-second processing triggered by STA_INS and STA_DEL is done by the kernel
in timer context. Thus, it will take one tick into the second for the leap second to be in-
serted or deleted.

Linux man-pages 6.16 2025-09-21 65

adjtimex(2) System Calls Manual adjtimex(2)

SEE ALSO
clock_gettime(2), clock_settime(2), settimeofday(2), adjtime(3), ntp_gettime(3), capabil-
ities(7), time(7), adjtimex(8), hwclock(8)

NTP "Kernel Application Program Interface" 〈http://www.slac.stanford.edu/comp/unix/
package/rtems/src/ssrlApps/ntpNanoclock/api.htm〉

Linux man-pages 6.16 2025-09-21 66

alarm(2) System Calls Manual alarm(2)

NAME
alarm - set an alarm clock for delivery of a signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

unsigned int alarm(unsigned int seconds);

DESCRIPTION
alarm() arranges for a SIGALRM signal to be delivered to the calling process in sec-
onds seconds.

If seconds is zero, any pending alarm is canceled.

In any event any previously set alarm() is canceled.

RETURN VALUE
alarm() returns the number of seconds remaining until any previously scheduled alarm
was due to be delivered, or zero if there was no previously scheduled alarm.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
alarm() and setitimer(2) share the same timer; calls to one will interfere with use of the
other.

Alarms created by alarm() are preserved across execve(2) and are not inherited by chil-
dren created via fork(2).

sleep(3) may be implemented using SIGALRM; mixing calls to alarm() and sleep(3) is
a bad idea.

Scheduling delays can, as ever, cause the execution of the process to be delayed by an
arbitrary amount of time.

SEE ALSO
gettimeofday(2), pause(2), select(2), setitimer(2), sigaction(2), signal(2), timer_cre-
ate(2), timerfd_create(2), sleep(3), time(7)

Linux man-pages 6.16 2025-10-29 67

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

NAME
alloc_hugepages, free_hugepages - allocate or free huge pages

SYNOPSIS
void *syscall(size_t size;

SYS_alloc_hugepages, int key,
void addr[size], size_t size,
int prot, int flag);

int syscall(SYS_free_hugepages, void *addr);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The system calls alloc_hugepages() and free_hugepages() were introduced in Linux
2.5.36 and removed again in Linux 2.5.54. They existed only on i386 and ia64 (when
built with CONFIG_HUGETLB_PAGE). In Linux 2.4.20, the syscall numbers exist,
but the calls fail with the error ENOSYS.

On i386 the memory management hardware knows about ordinary pages (4 KiB) and
huge pages (2 or 4 MiB). Similarly ia64 knows about huge pages of several sizes.
These system calls serve to map huge pages into the process’s memory or to free them
again. Huge pages are locked into memory, and are not swapped.

The key argument is an identifier. When zero the pages are private, and not inherited by
children. When positive the pages are shared with other applications using the same
key, and inherited by child processes.

The addr argument of free_hugepages() tells which page is being freed: it was the re-
turn value of a call to alloc_hugepages(). (The memory is first actually freed when all
users have released it.) The addr argument of alloc_hugepages() is a hint, that the ker-
nel may or may not follow. Addresses must be properly aligned.

The size argument is the size of the required segment. It must be a multiple of the huge
page size.

The prot argument specifies the memory protection of the segment. It is one of
PROT_READ, PROT_WRITE, PROT_EXEC.

The flag argument is ignored, unless key is positive. In that case, if flag is
IPC_CREAT, then a new huge page segment is created when none with the given key
existed. If this flag is not set, then ENOENT is returned when no segment with the
given key exists.

RETURN VALUE
On success, alloc_hugepages() returns the allocated virtual address, and
free_hugepages() returns zero. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
ENOSYS

The system call is not supported on this kernel.

Linux man-pages 6.16 2025-09-07 68

alloc_hugepages(2) System Calls Manual alloc_hugepages(2)

FILES
/proc/sys/vm/nr_hugepages

Number of configured hugetlb pages. This can be read and written.

/proc/meminfo
Gives info on the number of configured hugetlb pages and on their size in the
three variables HugePages_Total, HugePages_Free, Hugepagesize.

STANDARDS
Linux on Intel processors.

HISTORY
These system calls are gone; they existed only in Linux 2.5.36 through to Linux 2.5.54.

NOTES
Now the hugetlbfs filesystem can be used instead. Memory backed by huge pages (if
the CPU supports them) is obtained by using mmap(2) to map files in this virtual filesys-
tem.

The maximal number of huge pages can be specified using the hugepages= boot para-
meter.

Linux man-pages 6.16 2025-09-07 69

arch_prctl(2) System Calls Manual arch_prctl(2)

NAME
arch_prctl - set architecture-specific thread state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/prctl.h> /* Definition of ARCH_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_arch_prctl, int op, unsigned long addr);
int syscall(SYS_arch_prctl, int op, unsigned long *addr);

Note: glibc provides no wrapper for arch_prctl(), necessitating the use of syscall(2).

DESCRIPTION
arch_prctl() sets architecture-specific process or thread state. op selects an operation
and passes argument addr to it; addr is interpreted as either an unsigned long for the
"set" operations, or as an unsigned long *, for the "get" operations.

Subfunctions for both x86 and x86-64 are:

ARCH_SET_CPUID (since Linux 4.12)
Enable (addr != 0) or disable (addr == 0) the cpuid instruction for the calling
thread. The instruction is enabled by default. If disabled, any execution of a
cpuid instruction will instead generate a SIGSEGV signal. This feature can be
used to emulate cpuid results that differ from what the underlying hardware
would have produced (e.g., in a paravirtualization setting).

The ARCH_SET_CPUID setting is preserved across fork(2) and clone(2) but
reset to the default (i.e., cpuid enabled) on execve(2).

ARCH_GET_CPUID (since Linux 4.12)
Return the setting of the flag manipulated by ARCH_SET_CPUID as the result
of the system call (1 for enabled, 0 for disabled). addr is ignored.

Subfunctions for x86-64 only are:

ARCH_SET_FS
Set the 64-bit base for the FS register to addr.

ARCH_GET_FS
Return the 64-bit base value for the FS register of the calling thread in the un-
signed long pointed to by addr.

ARCH_SET_GS
Set the 64-bit base for the GS register to addr.

ARCH_GET_GS
Return the 64-bit base value for the GS register of the calling thread in the un-
signed long pointed to by addr.

RETURN VALUE
On success, arch_prctl() returns 0; on error, -1 is returned, and errno is set to indicate
the error.

Linux man-pages 6.16 2025-09-21 70

arch_prctl(2) System Calls Manual arch_prctl(2)

ERRORS
EFAULT

addr points to an unmapped address or is outside the process address space.

EINVAL
op is not a valid operation.

ENODEV
ARCH_SET_CPUID was requested, but the underlying hardware does not sup-
port CPUID faulting.

EPERM
addr is outside the process address space.

STANDARDS
Linux/x86-64.

NOTES
arch_prctl() is supported only on Linux/x86-64 for 64-bit programs currently.

The 64-bit base changes when a new 32-bit segment selector is loaded.

ARCH_SET_GS is disabled in some kernels.

Context switches for 64-bit segment bases are rather expensive. As an optimization, if a
32-bit TLS base address is used, arch_prctl() may use a real TLS entry as if
set_thread_area(2) had been called, instead of manipulating the segment base register
directly. Memory in the first 2 GB of address space can be allocated by using mmap(2)
with the MAP_32BIT flag.

Because of the aforementioned optimization, using arch_prctl() and set_thread_area(2)
in the same thread is dangerous, as they may overwrite each other’s TLS entries.

FS may be already used by the threading library. Programs that use ARCH_SET_FS
directly are very likely to crash.

SEE ALSO
mmap(2), modify_ldt(2), prctl(2), set_thread_area(2)

AMD X86-64 Programmer’s manual

Linux man-pages 6.16 2025-09-21 71

bdflush(2) System Calls Manual bdflush(2)

NAME
bdflush - start, flush, or tune buffer-dirty-flush daemon

SYNOPSIS
#include <sys/kdaemon.h>

int bdflush(int func, long data);

DESCRIPTION
This system call used to turn the calling process into the bdflush daemon, or tune it, or
flush the "old buffers". It then progressively lost all of that functionality.

See fs/buffer.c in the kernel version you’re interested in to see what it actually does
there.

ERRORS
ENOSYS (this system call is unimplemented)

STANDARDS
Linux.

HISTORY
This system call was introduced in Linux 1.1.3, became effectively obsolete in Linux
1.3.50, mostly useless in Linux 2.3.23, entirely useless in Linux 2.5.12, officially depre-
cated in Linux 2.5.52, and removed outright in Linux 5.15.

Sometimes, if func was even, data actually represented a pointer.

The header and prototype were removed in glibc 2.23.

SEE ALSO
sync(1), fsync(2), sync(2)

Linux man-pages 6.16 2025-05-17 72

bind(2) System Calls Manual bind(2)

NAME
bind - bind a name to a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int bind(int sockfd , const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
When a socket is created with socket(2), it exists in a name space (address family) but
has no address assigned to it. bind() assigns the address specified by addr to the socket
referred to by the file descriptor sockfd . addrlen specifies the size, in bytes, of the ad-
dress structure pointed to by addr. Traditionally, this operation is called “assigning a
name to a socket”.

It is normally necessary to assign a local address using bind() before a
SOCK_STREAM socket may receive connections (see accept(2)).

The rules used in name binding vary between address families. Consult the manual en-
tries in Section 7 for detailed information. For AF_INET, see ip(7); for AF_INET6,
see ipv6(7); for AF_UNIX, see unix(7); for AF_APPLETALK, see ddp(7); for
AF_PACKET, see packet(7); for AF_X25, see x25(7); and for AF_NETLINK, see
netlink(7).

The actual structure passed for the addr argument will depend on the address family.
The sockaddr structure is defined as something like:

struct sockaddr {
sa_family_t sa_family;
char sa_data[14];

}

The only purpose of this structure is to cast the structure pointer passed in addr in order
to avoid compiler warnings. See EXAMPLES below.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

The address is protected, and the user is not the superuser.

EADDRINUSE
The given address is already in use.

EADDRINUSE
(Internet domain sockets) The port number was specified as zero in the socket
address structure, but, upon attempting to bind to an ephemeral port, it was deter-
mined that all port numbers in the ephemeral port range are currently in use. See
the discussion of /proc/sys/net/ipv4/ip_local_port_range ip(7).

Linux man-pages 6.16 2025-10-29 73

bind(2) System Calls Manual bind(2)

EBADF
sockfd is not a valid file descriptor.

EINVAL
The socket is already bound to an address.

EINVAL
addrlen is wrong, or addr is not a valid address for this socket’s domain.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EADDRNOTAVAIL
A nonexistent interface was requested or the requested address was not local.

The following errors are specific to UNIX domain (AF_UNIX) sockets:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EFAULT
addr points outside the user’s accessible address space.

ELOOP
Too many symbolic links were encountered in resolving addr.

ENAMETOOLONG
addr is too long.

ENOENT
A component in the directory prefix of the socket pathname does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

EROFS
The socket inode would reside on a read-only filesystem.

Other errors may be generated by the underlying protocol modules.

VERSIONS
Portable programs must ensure that addr.sun_path is a null-terminated string for
AF_UNIX sockets.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.2BSD.

BUGS
The transparent proxy options are not described.

Linux man-pages 6.16 2025-10-29 74

bind(2) System Calls Manual bind(2)

EXAMPLES
An example of the use of bind() with Internet domain sockets can be found in getad-
drinfo(3).

The following example shows how to bind a stream socket in the UNIX (AF_UNIX)
domain, and accept connections:

#include <err.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <unistd.h>

#define MY_SOCK_PATH "/somepath"
#define LISTEN_BACKLOG 50

int
main(void)
{

int sfd, cfd;
socklen_t peer_addr_size;
struct sockaddr_un my_addr, peer_addr;

sfd = socket(AF_UNIX, SOCK_STREAM, 0);
if (sfd == -1)

err(EXIT_FAILURE, "socket");

memset(&my_addr, 0, sizeof(my_addr));
my_addr.sun_family = AF_UNIX;
strncpy(my_addr.sun_path, MY_SOCK_PATH,

sizeof(my_addr.sun_path) - 1);

if (bind(sfd, (struct sockaddr *) &my_addr,
sizeof(my_addr)) == -1)

err(EXIT_FAILURE, "bind");

if (listen(sfd, LISTEN_BACKLOG) == -1)
err(EXIT_FAILURE, "listen");

/* Now we can accept incoming connections one
at a time using accept(2). */

peer_addr_size = sizeof(peer_addr);
cfd = accept(sfd, (struct sockaddr *) &peer_addr,

&peer_addr_size);
if (cfd == -1)

err(EXIT_FAILURE, "accept");

Linux man-pages 6.16 2025-10-29 75

bind(2) System Calls Manual bind(2)

/* Code to deal with incoming connection(s)... */

if (close(sfd) == -1)
err(EXIT_FAILURE, "close");

if (unlink(MY_SOCK_PATH) == -1)
err(EXIT_FAILURE, "unlink");

}

SEE ALSO
accept(2), connect(2), getsockname(2), listen(2), socket(2), getaddrinfo(3),
getifaddrs(3), ip(7), ipv6(7), path_resolution(7), socket(7), unix(7)

Linux man-pages 6.16 2025-10-29 76

bpf (2) System Calls Manual bpf (2)

NAME
bpf - perform a command on an extended BPF map or program

SYNOPSIS
#include <linux/bpf.h>

int bpf(int cmd , union bpf_attr *attr, unsigned int size);

DESCRIPTION
The bpf() system call performs a range of operations related to extended Berkeley
Packet Filters. Extended BPF (or eBPF) is similar to the original ("classic") BPF
(cBPF) used to filter network packets. For both cBPF and eBPF programs, the kernel
statically analyzes the programs before loading them, in order to ensure that they cannot
harm the running system.

eBPF extends cBPF in multiple ways, including the ability to call a fixed set of in-kernel
helper functions (via the BPF_CALL opcode extension provided by eBPF) and access
shared data structures such as eBPF maps.

Extended BPF Design/Architecture
eBPF maps are a generic data structure for storage of different data types. Data types
are generally treated as binary blobs, so a user just specifies the size of the key and the
size of the value at map-creation time. In other words, a key/value for a given map can
have an arbitrary structure.

A user process can create multiple maps (with key/value-pairs being opaque bytes of
data) and access them via file descriptors. Different eBPF programs can access the same
maps in parallel. It’s up to the user process and eBPF program to decide what they store
inside maps.

There’s one special map type, called a program array. This type of map stores file de-
scriptors referring to other eBPF programs. When a lookup in the map is performed, the
program flow is redirected in-place to the beginning of another eBPF program and does
not return back to the calling program. The level of nesting has a fixed limit of 32, so
that infinite loops cannot be crafted. At run time, the program file descriptors stored in
the map can be modified, so program functionality can be altered based on specific re-
quirements. All programs referred to in a program-array map must have been previ-
ously loaded into the kernel via bpf(). If a map lookup fails, the current program con-
tinues its execution. See BPF_MAP_TYPE_PROG_ARRAY below for further details.

Generally, eBPF programs are loaded by the user process and automatically unloaded
when the process exits. In some cases, for example, tc-bpf (8), the program will con-
tinue to stay alive inside the kernel even after the process that loaded the program exits.
In that case, the tc subsystem holds a reference to the eBPF program after the file de-
scriptor has been closed by the user-space program. Thus, whether a specific program
continues to live inside the kernel depends on how it is further attached to a given kernel
subsystem after it was loaded via bpf().

Each eBPF program is a set of instructions that is safe to run until its completion. An
in-kernel verifier statically determines that the eBPF program terminates and is safe to
execute. During verification, the kernel increments reference counts for each of the
maps that the eBPF program uses, so that the attached maps can’t be removed until the

Linux man-pages 6.16 2025-09-21 77

bpf (2) System Calls Manual bpf (2)

program is unloaded.

eBPF programs can be attached to different events. These events can be the arrival of
network packets, tracing events, classification events by network queueing disciplines
(for eBPF programs attached to a tc(8) classifier), and other types that may be added in
the future. A new event triggers execution of the eBPF program, which may store infor-
mation about the event in eBPF maps. Beyond storing data, eBPF programs may call a
fixed set of in-kernel helper functions.

The same eBPF program can be attached to multiple events and different eBPF pro-
grams can access the same map:

tracing tracing tracing packet packet packet
event A event B event C on eth0 on eth1 on eth2

| | | | | ^
| | | | v |
--> tracing <-- tracing socket tc ingress tc egress

prog_1 prog_2 prog_3 classifier action
| | | | prog_4 prog_5

|--- -----| |------| map_3 | |
map_1 map_2 --| map_4 |--

Arguments
The operation to be performed by the bpf() system call is determined by the cmd argu-
ment. Each operation takes an accompanying argument, provided via attr, which is a
pointer to a union of type bpf_attr (see below). The unused fields and padding must be
zeroed out before the call. The size argument is the size of the union pointed to by attr.

The value provided in cmd is one of the following:

BPF_MAP_CREATE
Create a map and return a file descriptor that refers to the map. The close-on-
exec file descriptor flag (see fcntl(2)) is automatically enabled for the new file de-
scriptor.

BPF_MAP_LOOKUP_ELEM
Look up an element by key in a specified map and return its value.

BPF_MAP_UPDATE_ELEM
Create or update an element (key/value pair) in a specified map.

BPF_MAP_DELETE_ELEM
Look up and delete an element by key in a specified map.

BPF_MAP_GET_NEXT_KEY
Look up an element by key in a specified map and return the key of the next ele-
ment.

BPF_PROG_LOAD
Verify and load an eBPF program, returning a new file descriptor associated with
the program. The close-on-exec file descriptor flag (see fcntl(2)) is automatically
enabled for the new file descriptor.

Linux man-pages 6.16 2025-09-21 78

bpf (2) System Calls Manual bpf (2)

The bpf_attr union consists of various anonymous structures that are used by
different bpf() commands:

union bpf_attr {
struct { /* Used by BPF_MAP_CREATE */

__u32 map_type;
__u32 key_size; /* size of key in bytes */
__u32 value_size; /* size of value in bytes */
__u32 max_entries; /* maximum number of entries

in a map */
};

struct { /* Used by BPF_MAP_*_ELEM and BPF_MAP_GET_NEXT_KEY
commands */

__u32 map_fd;
__aligned_u64 key;
union {

__aligned_u64 value;
__aligned_u64 next_key;

};
__u64 flags;

};

struct { /* Used by BPF_PROG_LOAD */
__u32 prog_type;
__u32 insn_cnt;
__aligned_u64 insns; /* 'const struct bpf_insn *' */
__aligned_u64 license; /* 'const char *' */
__u32 log_level; /* verbosity level of verifier */
__u32 log_size; /* size of user buffer */
__aligned_u64 log_buf; /* user supplied 'char *'

buffer */
__u32 kern_version;

/* checked when prog_type=kprobe
(since Linux 4.1) */

};
} __attribute__((aligned(8)));

eBPF maps
Maps are a generic data structure for storage of different types of data. They allow shar-
ing of data between eBPF kernel programs, and also between kernel and user-space ap-
plications.

Each map type has the following attributes:

• type

• maximum number of elements

Linux man-pages 6.16 2025-09-21 79

bpf (2) System Calls Manual bpf (2)

• key size in bytes

• value size in bytes

The following wrapper functions demonstrate how various bpf() commands can be used
to access the maps. The functions use the cmd argument to invoke different operations.

BPF_MAP_CREATE
The BPF_MAP_CREATE command creates a new map, returning a new file
descriptor that refers to the map.

int
bpf_create_map(enum bpf_map_type map_type,

unsigned int key_size,
unsigned int value_size,
unsigned int max_entries)

{
union bpf_attr attr = {

.map_type = map_type,

.key_size = key_size,

.value_size = value_size,

.max_entries = max_entries
};

return bpf(BPF_MAP_CREATE, &attr, sizeof(attr));
}

The new map has the type specified by map_type, and attributes as specified in
key_size, value_size, and max_entries. On success, this operation returns a file
descriptor. On error, -1 is returned and errno is set to EINVAL, EPERM, or
ENOMEM.

The key_size and value_size attributes will be used by the verifier during pro-
gram loading to check that the program is calling bpf_map_*_elem() helper
functions with a correctly initialized key and to check that the program doesn’t
access the map element value beyond the specified value_size. For example,
when a map is created with a key_size of 8 and the eBPF program calls

bpf_map_lookup_elem(map_fd, fp - 4)

the program will be rejected, since the in-kernel helper function

bpf_map_lookup_elem(map_fd, void *key)

expects to read 8 bytes from the location pointed to by key, but the fp - 4 (where
fp is the top of the stack) starting address will cause out-of-bounds stack access.

Similarly, when a map is created with a value_size of 1 and the eBPF program
contains

value = bpf_map_lookup_elem(...);
*(u32 *) value = 1;

the program will be rejected, since it accesses the value pointer beyond the spec-
ified 1 byte value_size limit.

Linux man-pages 6.16 2025-09-21 80

bpf (2) System Calls Manual bpf (2)

Currently, the following values are supported for map_type:

enum bpf_map_type {
BPF_MAP_TYPE_UNSPEC, /* Reserve 0 as invalid map type */
BPF_MAP_TYPE_HASH,
BPF_MAP_TYPE_ARRAY,
BPF_MAP_TYPE_PROG_ARRAY,
BPF_MAP_TYPE_PERF_EVENT_ARRAY,
BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_PERCPU_ARRAY,
BPF_MAP_TYPE_STACK_TRACE,
BPF_MAP_TYPE_CGROUP_ARRAY,
BPF_MAP_TYPE_LRU_HASH,
BPF_MAP_TYPE_LRU_PERCPU_HASH,
BPF_MAP_TYPE_LPM_TRIE,
BPF_MAP_TYPE_ARRAY_OF_MAPS,
BPF_MAP_TYPE_HASH_OF_MAPS,
BPF_MAP_TYPE_DEVMAP,
BPF_MAP_TYPE_SOCKMAP,
BPF_MAP_TYPE_CPUMAP,
BPF_MAP_TYPE_XSKMAP,
BPF_MAP_TYPE_SOCKHASH,
BPF_MAP_TYPE_CGROUP_STORAGE,
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY,
BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE,
BPF_MAP_TYPE_QUEUE,
BPF_MAP_TYPE_STACK,
/* See /usr/include/linux/bpf.h for the full list. */

};

map_type selects one of the available map implementations in the kernel. For all
map types, eBPF programs access maps with the same bpf_map_lookup_elem()
and bpf_map_update_elem() helper functions. Further details of the various
map types are given below.

BPF_MAP_LOOKUP_ELEM
The BPF_MAP_LOOKUP_ELEM command looks up an element with a given
key in the map referred to by the file descriptor fd .

int
bpf_lookup_elem(int fd, const void *key, void *value)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),
.value = ptr_to_u64(value),

};

return bpf(BPF_MAP_LOOKUP_ELEM, &attr, sizeof(attr));

Linux man-pages 6.16 2025-09-21 81

bpf (2) System Calls Manual bpf (2)

}

If an element is found, the operation returns zero and stores the element’s value
into value, which must point to a buffer of value_size bytes.

If no element is found, the operation returns -1 and sets errno to ENOENT.

BPF_MAP_UPDATE_ELEM
The BPF_MAP_UPDATE_ELEM command creates or updates an element
with a given key/value in the map referred to by the file descriptor fd .

int
bpf_update_elem(int fd, const void *key, const void *value,

uint64_t flags)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),
.value = ptr_to_u64(value),
.flags = flags,

};

return bpf(BPF_MAP_UPDATE_ELEM, &attr, sizeof(attr));
}

The flags argument should be specified as one of the following:

BPF_ANY
Create a new element or update an existing element.

BPF_NOEXIST
Create a new element only if it did not exist.

BPF_EXIST
Update an existing element.

On success, the operation returns zero. On error, -1 is returned and errno is set
to EINVAL, EPERM, ENOMEM, or E2BIG. E2BIG indicates that the num-
ber of elements in the map reached the max_entries limit specified at map cre-
ation time. EEXIST will be returned if flags specifies BPF_NOEXIST and the
element with key already exists in the map. ENOENT will be returned if flags
specifies BPF_EXIST and the element with key doesn’t exist in the map.

BPF_MAP_DELETE_ELEM
The BPF_MAP_DELETE_ELEM command deletes the element whose key is
key from the map referred to by the file descriptor fd .

int
bpf_delete_elem(int fd, const void *key)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),

};

Linux man-pages 6.16 2025-09-21 82

bpf (2) System Calls Manual bpf (2)

return bpf(BPF_MAP_DELETE_ELEM, &attr, sizeof(attr));
}

On success, zero is returned. If the element is not found, -1 is returned and er-
rno is set to ENOENT.

BPF_MAP_GET_NEXT_KEY
The BPF_MAP_GET_NEXT_KEY command looks up an element by key in
the map referred to by the file descriptor fd and sets the next_key pointer to the
key of the next element.

int
bpf_get_next_key(int fd, const void *key, void *next_key)
{

union bpf_attr attr = {
.map_fd = fd,
.key = ptr_to_u64(key),
.next_key = ptr_to_u64(next_key),

};

return bpf(BPF_MAP_GET_NEXT_KEY, &attr, sizeof(attr));
}

If key is found, the operation returns zero and sets the next_key pointer to the key
of the next element. If key is not found, the operation returns zero and sets the
next_key pointer to the key of the first element. If key is the last element, -1 is
returned and errno is set to ENOENT. Other possible errno values are
ENOMEM, EFAULT, EPERM, and EINVAL. This method can be used to it-
erate over all elements in the map.

close(map_fd)
Delete the map referred to by the file descriptor map_fd . When the user-space
program that created a map exits, all maps will be deleted automatically (but see
NOTES).

eBPF map types
The following map types are supported:

BPF_MAP_TYPE_HASH
Hash-table maps have the following characteristics:

• Maps are created and destroyed by user-space programs. Both user-space
and eBPF programs can perform lookup, update, and delete operations.

• The kernel takes care of allocating and freeing key/value pairs.

• The map_update_elem() helper will fail to insert new element when the
max_entries limit is reached. (This ensures that eBPF programs cannot ex-
haust memory.)

• map_update_elem() replaces existing elements atomically.

Linux man-pages 6.16 2025-09-21 83

bpf (2) System Calls Manual bpf (2)

Hash-table maps are optimized for speed of lookup.

BPF_MAP_TYPE_ARRAY
Array maps have the following characteristics:

• Optimized for fastest possible lookup. In the future the verifier/JIT compiler
may recognize lookup() operations that employ a constant key and optimize
it into constant pointer. It is possible to optimize a non-constant key into di-
rect pointer arithmetic as well, since pointers and value_size are constant for
the life of the eBPF program. In other words, array_map_lookup_elem()
may be ’inlined’ by the verifier/JIT compiler while preserving concurrent ac-
cess to this map from user space.

• All array elements pre-allocated and zero initialized at init time

• The key is an array index, and must be exactly four bytes.

• map_delete_elem() fails with the error EINVAL, since elements cannot be
deleted.

• map_update_elem() replaces elements in a nonatomic fashion; for atomic
updates, a hash-table map should be used instead. There is however one spe-
cial case that can also be used with arrays: the atomic built-in
__sync_fetch_and_add() can be used on 32 and 64 bit atomic counters. For
example, it can be applied on the whole value itself if it represents a single
counter, or in case of a structure containing multiple counters, it could be
used on individual counters. This is quite often useful for aggregation and
accounting of events.

Among the uses for array maps are the following:

• As "global" eBPF variables: an array of 1 element whose key is (index) 0 and
where the value is a collection of ’global’ variables which eBPF programs
can use to keep state between events.

• Aggregation of tracing events into a fixed set of buckets.

• Accounting of networking events, for example, number of packets and packet
sizes.

BPF_MAP_TYPE_PROG_ARRAY (since Linux 4.2)
A program array map is a special kind of array map whose map values contain
only file descriptors referring to other eBPF programs. Thus, both the key_size
and value_size must be exactly four bytes. This map is used in conjunction with
the bpf_tail_call() helper.

This means that an eBPF program with a program array map attached to it can
call from kernel side into

void bpf_tail_call(void *context, void *prog_map,
unsigned int index);

and therefore replace its own program flow with the one from the program at the
given program array slot, if present. This can be regarded as kind of a jump ta-
ble to a different eBPF program. The invoked program will then reuse the same

Linux man-pages 6.16 2025-09-21 84

bpf (2) System Calls Manual bpf (2)

stack. When a jump into the new program has been performed, it won’t return to
the old program anymore.

If no eBPF program is found at the given index of the program array (because
the map slot doesn’t contain a valid program file descriptor, the specified lookup
index/key is out of bounds, or the limit of 32 nested calls has been exceed), exe-
cution continues with the current eBPF program. This can be used as a fall-
through for default cases.

A program array map is useful, for example, in tracing or networking, to handle
individual system calls or protocols in their own subprograms and use their iden-
tifiers as an individual map index. This approach may result in performance ben-
efits, and also makes it possible to overcome the maximum instruction limit of a
single eBPF program. In dynamic environments, a user-space daemon might
atomically replace individual subprograms at run-time with newer versions to al-
ter overall program behavior, for instance, if global policies change.

eBPF programs
The BPF_PROG_LOAD command is used to load an eBPF program into the kernel.
The return value for this command is a new file descriptor associated with this eBPF
program.

char bpf_log_buf[LOG_BUF_SIZE];

int
bpf_prog_load(enum bpf_prog_type type,

const struct bpf_insn *insns, int insn_cnt,
const char *license)

{
union bpf_attr attr = {

.prog_type = type,

.insns = ptr_to_u64(insns),

.insn_cnt = insn_cnt,

.license = ptr_to_u64(license),

.log_buf = ptr_to_u64(bpf_log_buf),

.log_size = LOG_BUF_SIZE,

.log_level = 1,
};

return bpf(BPF_PROG_LOAD, &attr, sizeof(attr));
}

prog_type is one of the available program types:

enum bpf_prog_type {
BPF_PROG_TYPE_UNSPEC, /* Reserve 0 as invalid

program type */
BPF_PROG_TYPE_SOCKET_FILTER,
BPF_PROG_TYPE_KPROBE,
BPF_PROG_TYPE_SCHED_CLS,
BPF_PROG_TYPE_SCHED_ACT,

Linux man-pages 6.16 2025-09-21 85

bpf (2) System Calls Manual bpf (2)

BPF_PROG_TYPE_TRACEPOINT,
BPF_PROG_TYPE_XDP,
BPF_PROG_TYPE_PERF_EVENT,
BPF_PROG_TYPE_CGROUP_SKB,
BPF_PROG_TYPE_CGROUP_SOCK,
BPF_PROG_TYPE_LWT_IN,
BPF_PROG_TYPE_LWT_OUT,
BPF_PROG_TYPE_LWT_XMIT,
BPF_PROG_TYPE_SOCK_OPS,
BPF_PROG_TYPE_SK_SKB,
BPF_PROG_TYPE_CGROUP_DEVICE,
BPF_PROG_TYPE_SK_MSG,
BPF_PROG_TYPE_RAW_TRACEPOINT,
BPF_PROG_TYPE_CGROUP_SOCK_ADDR,
BPF_PROG_TYPE_LWT_SEG6LOCAL,
BPF_PROG_TYPE_LIRC_MODE2,
BPF_PROG_TYPE_SK_REUSEPORT,
BPF_PROG_TYPE_FLOW_DISSECTOR,
/* See /usr/include/linux/bpf.h for the full list. */

};

For further details of eBPF program types, see below.

The remaining fields of bpf_attr are set as follows:

• insns is an array of struct bpf_insn instructions.

• insn_cnt is the number of instructions in the program referred to by insns.

• license is a license string, which must be GPL compatible to call helper functions
marked gpl_only. (The licensing rules are the same as for kernel modules, so that
also dual licenses, such as "Dual BSD/GPL", may be used.)

• log_buf is a pointer to a caller-allocated buffer in which the in-kernel verifier can
store the verification log. This log is a multi-line string that can be checked by the
program author in order to understand how the verifier came to the conclusion that
the eBPF program is unsafe. The format of the output can change at any time as the
verifier evolves.

• log_size size of the buffer pointed to by log_buf . If the size of the buffer is not large
enough to store all verifier messages, -1 is returned and errno is set to ENOSPC.

• log_level verbosity level of the verifier. A value of zero means that the verifier will
not provide a log; in this case, log_buf must be a null pointer, and log_size must be
zero.

Applying close(2) to the file descriptor returned by BPF_PROG_LOAD will unload the
eBPF program (but see NOTES).

Maps are accessible from eBPF programs and are used to exchange data between eBPF
programs and between eBPF programs and user-space programs. For example, eBPF
programs can process various events (like kprobe, packets) and store their data into a
map, and user-space programs can then fetch data from the map. Conversely, user-space

Linux man-pages 6.16 2025-09-21 86

bpf (2) System Calls Manual bpf (2)

programs can use a map as a configuration mechanism, populating the map with values
checked by the eBPF program, which then modifies its behavior on the fly according to
those values.

eBPF program types
The eBPF program type (prog_type) determines the subset of kernel helper functions
that the program may call. The program type also determines the program input (con-
text)—the format of struct bpf_context (which is the data blob passed into the eBPF pro-
gram as the first argument).

For example, a tracing program does not have the exact same subset of helper functions
as a socket filter program (though they may have some helpers in common). Similarly,
the input (context) for a tracing program is a set of register values, while for a socket fil-
ter it is a network packet.

The set of functions available to eBPF programs of a given type may increase in the fu-
ture.

The following program types are supported:

BPF_PROG_TYPE_SOCKET_FILTER (since Linux 3.19)
Currently, the set of functions for BPF_PROG_TYPE_SOCKET_FILTER is:

bpf_map_lookup_elem(map_fd, void *key)
/* look up key in a map_fd */

bpf_map_update_elem(map_fd, void *key, void *value)
/* update key/value */

bpf_map_delete_elem(map_fd, void *key)
/* delete key in a map_fd */

The bpf_context argument is a pointer to a struct __sk_buff .

BPF_PROG_TYPE_KPROBE (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_CLS (since Linux 4.1)
[To be documented]

BPF_PROG_TYPE_SCHED_ACT (since Linux 4.1)
[To be documented]

Events
Once a program is loaded, it can be attached to an event. Various kernel subsystems
have different ways to do so.

Since Linux 3.19, the following call will attach the program prog_fd to the socket
sockfd , which was created by an earlier call to socket(2):

setsockopt(sockfd, SOL_SOCKET, SO_ATTACH_BPF,
&prog_fd, sizeof(prog_fd));

Since Linux 4.1, the following call may be used to attach the eBPF program referred to
by the file descriptor prog_fd to a perf event file descriptor, event_fd , that was created
by a previous call to perf_event_open(2):

ioctl(event_fd, PERF_EVENT_IOC_SET_BPF, prog_fd);

Linux man-pages 6.16 2025-09-21 87

bpf (2) System Calls Manual bpf (2)

RETURN VALUE
For a successful call, the return value depends on the operation:

BPF_MAP_CREATE
The new file descriptor associated with the eBPF map.

BPF_PROG_LOAD
The new file descriptor associated with the eBPF program.

All other commands
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
E2BIG

The eBPF program is too large or a map reached the max_entries limit (maxi-
mum number of elements).

EACCES
For BPF_PROG_LOAD, even though all program instructions are valid, the
program has been rejected because it was deemed unsafe. This may be because
it may have accessed a disallowed memory region or an uninitialized stack/regis-
ter or because the function constraints don’t match the actual types or because
there was a misaligned memory access. In this case, it is recommended to call
bpf() again with log_level = 1 and examine log_buf for the specific reason pro-
vided by the verifier.

EAGAIN
For BPF_PROG_LOAD, indicates that needed resources are blocked. This
happens when the verifier detects pending signals while it is checking the valid-
ity of the bpf program. In this case, just call bpf() again with the same parame-
ters.

EBADF
fd is not an open file descriptor.

EFAULT
One of the pointers (key or value or log_buf or insns) is outside the accessible
address space.

EINVAL
The value specified in cmd is not recognized by this kernel.

EINVAL
For BPF_MAP_CREATE, either map_type or attributes are invalid.

EINVAL
For BPF_MAP_*_ELEM commands, some of the fields of union bpf_attr that
are not used by this command are not set to zero.

EINVAL
For BPF_PROG_LOAD, indicates an attempt to load an invalid program. eBPF
programs can be deemed invalid due to unrecognized instructions, the use of re-
served fields, jumps out of range, infinite loops or calls of unknown functions.

Linux man-pages 6.16 2025-09-21 88

bpf (2) System Calls Manual bpf (2)

ENOENT
For BPF_MAP_LOOKUP_ELEM or BPF_MAP_DELETE_ELEM, indi-
cates that the element with the given key was not found.

ENOMEM
Cannot allocate sufficient memory.

EPERM
The call was made without sufficient privilege (without the CAP_SYS_ADMIN
capability).

STANDARDS
Linux.

HISTORY
Linux 3.18.

NOTES
Prior to Linux 4.4, all bpf() commands require the caller to have the CAP_SYS_AD-
MIN capability. From Linux 4.4 onwards, an unprivileged user may create limited pro-
grams of type BPF_PROG_TYPE_SOCKET_FILTER and associated maps. How-
ever they may not store kernel pointers within the maps and are presently limited to the
following helper functions:

• get_random
• get_smp_processor_id
• tail_call
• ktime_get_ns

Unprivileged access may be blocked by writing the value 1 to the file /proc/sys/ker-
nel/unprivileged_bpf_disabled .

eBPF objects (maps and programs) can be shared between processes. For example, after
fork(2), the child inherits file descriptors referring to the same eBPF objects. In addi-
tion, file descriptors referring to eBPF objects can be transferred over UNIX domain
sockets. File descriptors referring to eBPF objects can be duplicated in the usual way,
using dup(2) and similar calls. An eBPF object is deallocated only after all file descrip-
tors referring to the object have been closed.

eBPF programs can be written in a restricted C that is compiled (using the clang com-
piler) into eBPF bytecode. Various features are omitted from this restricted C, such as
loops, global variables, variadic functions, floating-point numbers, and passing struc-
tures as function arguments. Some examples can be found in the samples/bpf/*_kern.c
files in the kernel source tree.

The kernel contains a just-in-time (JIT) compiler that translates eBPF bytecode into na-
tive machine code for better performance. Before Linux 4.15, the JIT compiler is dis-
abled by default, but its operation can be controlled by writing one of the following inte-
ger strings to the file /proc/sys/net/core/bpf_jit_enable:

0 Disable JIT compilation (default).

Linux man-pages 6.16 2025-09-21 89

bpf (2) System Calls Manual bpf (2)

1 Normal compilation.

2 Debugging mode. The generated opcodes are dumped in hexadecimal into the
kernel log. These opcodes can then be disassembled using the program
tools/net/bpf_jit_disasm.c provided in the kernel source tree.

Since Linux 4.15, the kernel may be configured with the CONFIG_BPF_JIT_AL-
WAYS_ON option. In this case, the JIT compiler is always enabled, and the bpf_jit_en-
able is initialized to 1 and is immutable. (This kernel configuration option was provided
as a mitigation for one of the Spectre attacks against the BPF interpreter.)

The JIT compiler for eBPF is currently available for the following architectures:

• x86-64 (since Linux 3.18; cBPF since Linux 3.0);
• ARM32 (since Linux 3.18; cBPF since Linux 3.4);
• SPARC 32 (since Linux 3.18; cBPF since Linux 3.5);
• ARM-64 (since Linux 3.18);
• s390 (since Linux 4.1; cBPF since Linux 3.7);
• PowerPC 64 (since Linux 4.8; cBPF since Linux 3.1);
• SPARC 64 (since Linux 4.12);
• x86-32 (since Linux 4.18);
• MIPS 64 (since Linux 4.18; cBPF since Linux 3.16);
• riscv (since Linux 5.1).

EXAMPLES
#define NITEMS(a) (sizeof(a) / sizeof(*(a)))

/* bpf+sockets example:
* 1. create array map of 256 elements
* 2. load program that counts number of packets received
* r0 = skb->data[ETH_HLEN + offsetof(struct iphdr, protocol)]
* map[r0]++
* 3. attach prog_fd to raw socket via setsockopt()
* 4. print number of received TCP/UDP packets every second
*/

int
main(int argc, char *argv[])
{

int sock, map_fd, prog_fd, key;
long long value = 0, tcp_cnt, udp_cnt;

map_fd = bpf_create_map(BPF_MAP_TYPE_ARRAY, sizeof(key),
sizeof(value), 256);

if (map_fd < 0) {
printf("failed to create map '%s'\n", strerror(errno));
/* likely not run as root */
return 1;

}

struct bpf_insn prog[] = {

Linux man-pages 6.16 2025-09-21 90

bpf (2) System Calls Manual bpf (2)

BPF_MOV64_REG(BPF_REG_6, BPF_REG_1), /* r6 = r1 */
BPF_LD_ABS(BPF_B, ETH_HLEN + offsetof(struct iphdr, protocol)),

/* r0 = ip->proto */
BPF_STX_MEM(BPF_W, BPF_REG_10, BPF_REG_0, -4),

/* *(u32 *) (fp - 4) = r0 */
BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), /* r2 = fp */
BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), /* r2 = r2 - 4 */
BPF_LD_MAP_FD(BPF_REG_1, map_fd), /* r1 = map_fd */
BPF_CALL_FUNC(BPF_FUNC_map_lookup_elem),

/* r0 = map_lookup(r1, r2) */
BPF_JMP_IMM(BPF_JEQ, BPF_REG_0, 0, 2),

/* if (r0 == 0) goto pc+2 */
BPF_MOV64_IMM(BPF_REG_1, 1), /* r1 = 1 */
BPF_XADD(BPF_DW, BPF_REG_0, BPF_REG_1, 0, 0),

/* lock *(u64 *) r0 += r1 */
BPF_MOV64_IMM(BPF_REG_0, 0), /* r0 = 0 */
BPF_EXIT_INSN(), /* return r0 */

};

prog_fd = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, prog,
NITEMS(prog), "GPL");

sock = open_raw_sock("lo");

assert(setsockopt(sock, SOL_SOCKET, SO_ATTACH_BPF, &prog_fd,
sizeof(prog_fd)) == 0);

for (;;) {
key = IPPROTO_TCP;
assert(bpf_lookup_elem(map_fd, &key, &tcp_cnt) == 0);
key = IPPROTO_UDP;
assert(bpf_lookup_elem(map_fd, &key, &udp_cnt) == 0);
printf("TCP %lld UDP %lld packets\n", tcp_cnt, udp_cnt);
sleep(1);

}

return 0;
}

Some complete working code can be found in the samples/bpf directory in the kernel
source tree.

SEE ALSO
seccomp(2), bpf-helpers(7), socket(7), tc(8), tc-bpf (8)

Both classic and extended BPF are explained in the kernel source file Documenta-
tion/networking/filter.txt.

Linux man-pages 6.16 2025-09-21 91

brk(2) System Calls Manual brk(2)

NAME
brk, sbrk - change data segment size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int brk(void *addr);
void *sbrk(intptr_t increment);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

brk(), sbrk():
Since glibc 2.19:

_DEFAULT_SOURCE
|| ((_XOPEN_SOURCE >= 500) &&

! (_POSIX_C_SOURCE >= 200112L))
From glibc 2.12 to glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE
|| ((_XOPEN_SOURCE >= 500) &&

! (_POSIX_C_SOURCE >= 200112L))
Before glibc 2.12:

_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
brk() and sbrk() change the location of the program break, which defines the end of the
process’s data segment (i.e., the program break is the first location after the end of the
uninitialized data segment). Increasing the program break has the effect of allocating
memory to the process; decreasing the break deallocates memory.

brk() sets the end of the data segment to the value specified by addr, when that value is
reasonable, the system has enough memory, and the process does not exceed its maxi-
mum data size (see setrlimit(2)).

sbrk() increments the program’s data space by increment bytes. Calling sbrk() with an
increment of 0 can be used to find the current location of the program break.

RETURN VALUE
On success, brk() returns zero. On error, -1 is returned, and errno is set to ENOMEM.

On success, sbrk() returns the previous program break. (If the break was increased,
then this value is a pointer to the start of the newly allocated memory). On error,
(void *) -1 is returned, and errno is set to ENOMEM.

STANDARDS
None.

HISTORY
4.3BSD; SUSv1, marked LEGACY in SUSv2, removed in POSIX.1-2001.

NOTES
Avoid using brk() and sbrk(): the malloc(3) memory allocation package is the portable
and comfortable way of allocating memory.

Linux man-pages 6.16 2025-09-21 92

brk(2) System Calls Manual brk(2)

Various systems use various types for the argument of sbrk(). Common are int, ssize_t,
ptrdiff_t, intptr_t.

C library/kernel differences
The return value described above for brk() is the behavior provided by the glibc wrap-
per function for the Linux brk() system call. (On most other implementations, the re-
turn value from brk() is the same; this return value was also specified in SUSv2.) How-
ever, the actual Linux system call returns the new program break on success. On failure,
the system call returns the current break. The glibc wrapper function does some work
(i.e., checks whether the new break is less than addr) to provide the 0 and -1 return val-
ues described above.

On Linux, sbrk() is implemented as a library function that uses the brk() system call,
and does some internal bookkeeping so that it can return the old break value.

SEE ALSO
execve(2), getrlimit(2), end(3), malloc(3)

Linux man-pages 6.16 2025-09-21 93

cacheflush(2) System Calls Manual cacheflush(2)

NAME
cacheflush - flush contents of instruction and/or data cache

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/cachectl.h>

int cacheflush(int nbytes;
void addr[nbytes], int nbytes, int cache);

Note: On some architectures, there is no glibc wrapper for this system call; see VER-
SIONS.

DESCRIPTION
cacheflush() flushes the contents of the indicated cache(s) for the user addresses in the
range addr to (addr+nbytes-1). cache may be one of:

ICACHE
Flush the instruction cache.

DCACHE
Write back to memory and invalidate the affected valid cache lines.

BCACHE
Same as (ICACHE|DCACHE).

RETURN VALUE
cacheflush() returns 0 on success. On error, it returns -1 and sets errno to indicate the
error.

ERRORS
EFAULT

Some or all of the address range addr to (addr+nbytes-1) is not accessible.

EINVAL
cache is not one of ICACHE, DCACHE, or BCACHE (but see BUGS).

VERSIONS
cacheflush() should not be used in programs intended to be portable. On Linux, this
call first appeared on the MIPS architecture, but nowadays, Linux provides a
cacheflush() system call on some other architectures, but with different arguments.

Architecture-specific variants
glibc provides a wrapper for this system call, with the prototype shown in SYNOPSIS,
for the following architectures: ARC, CSKY, MIPS, and NIOS2.

On some other architectures, Linux provides this system call, with different arguments:

M68K:
int cacheflush(unsigned long addr, int scope, int cache,

unsigned long size);

SH:
int cacheflush(unsigned long addr, unsigned long size, int op);

Linux man-pages 6.16 2025-09-21 94

cacheflush(2) System Calls Manual cacheflush(2)

NDS32:
int cacheflush(unsigned int start, unsigned int end , int cache);

On the above architectures, glibc does not provide a wrapper for this system call; call it
using syscall(2).

GCC alternative
Unless you need the finer grained control that this system call provides, you probably
want to use the GCC built-in function __builtin___clear_cache(), which provides a
portable interface across platforms supported by GCC and compatible compilers:

void __builtin___clear_cache(void *begin, void *end);

On platforms that don’t require instruction cache flushes, __builtin___clear_cache()
has no effect.

Note: On some GCC-compatible compilers, the prototype for this built-in function uses
char * instead of void * for the parameters.

STANDARDS
Historically, this system call was available on all MIPS UNIX variants including
RISC/os, IRIX, Ultrix, NetBSD, OpenBSD, and FreeBSD (and also on some non-UNIX
MIPS operating systems), so that the existence of this call in MIPS operating systems is
a de-facto standard.

BUGS
Linux kernels older than Linux 2.6.11 ignore the addr and nbytes arguments, making
this function fairly expensive. Therefore, the whole cache is always flushed.

This function always behaves as if BCACHE has been passed for the cache argument
and does not do any error checking on the cache argument.

Linux man-pages 6.16 2025-09-21 95

cachestat(2) System Calls Manual cachestat(2)

NAME
cachestat - query the page cache statistics of a file

SYNOPSIS
#include <sys/mman.h>

int cachestat(unsigned int fd , struct cachestat_range *cstat_range,
struct cachestat *cstat, unsigned int flags);

struct cachestat_range {
__u64 off;
__u64 len;

};

struct cachestat {
__u64 nr_cache;
__u64 nr_dirty;
__u64 nr_writeback;
__u64 nr_evicted;
__u64 nr_recently_evicted;

};

DESCRIPTION
cachestat() queries the number of cached pages, dirty pages, pages marked for write-
back, evicted pages, and recently evicted pages in the byte range specified by .off and
.len in the cachestat_range structure.

An evicted page is one that was previously in the page cache but has since been evicted.
A page is considered recently evicted if its reentry into the cache would indicate active
usage under memory pressure.

The results are returned in a cachestat structure, pointed to by the cstat argument.

The .off and .len fields must be non-negative. If .len > 0, the queried range is
[.off , .off+.len]. If len == 0, the range is from .off to the end of the file.

The flags argument is reserved for future use and must be set to 0.

Currently, hugetlbfs files are not supported.

RETURN VALUE
On success, cachestat() returns 0. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EFAULT

cstat or cstat_range point to an invalid address.

EINVAL
Invalid flags value.

EBADF
Invalid file descriptor.

Linux man-pages 6.16 2025-06-28 96

cachestat(2) System Calls Manual cachestat(2)

EOPNOTSUPP
The file descriptor refers to a hugetlbfs file, which is unsupported.

STANDARDS
Linux.

HISTORY
Linux 6.5.

CAVEATS
Note that the status of a page may change after cachestat() retrieves it but before the
values are returned to the application; thus, the values may be slightly outdated.

Linux man-pages 6.16 2025-06-28 97

capget(2) System Calls Manual capget(2)

NAME
capget, capset - set/get capabilities of thread(s)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/capability.h> /* Definition of CAP_* and

_LINUX_CAPABILITY_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_capget, cap_user_header_t hdrp,
cap_user_data_t datap);

int syscall(SYS_capset, cap_user_header_t hdrp,
const cap_user_data_t datap);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These two system calls are the raw kernel interface for getting and setting thread capa-
bilities. Not only are these system calls specific to Linux, but the kernel API is likely to
change and use of these system calls (in particular the format of the cap_user_*_t types)
is subject to extension with each kernel revision, but old programs will keep working.

The portable interfaces are cap_set_proc(3) and cap_get_proc(3); if possible, you
should use those interfaces in applications; see NOTES.

Current details
Now that you have been warned, some current kernel details. The structures are defined
as follows.

#define _LINUX_CAPABILITY_VERSION_1 0x19980330
#define _LINUX_CAPABILITY_U32S_1 1

/* V2 added in Linux 2.6.25; deprecated */
#define _LINUX_CAPABILITY_VERSION_2 0x20071026
#define _LINUX_CAPABILITY_U32S_2 2

/* V3 added in Linux 2.6.26 */
#define _LINUX_CAPABILITY_VERSION_3 0x20080522
#define _LINUX_CAPABILITY_U32S_3 2

typedef struct __user_cap_header_struct {
__u32 version;
int pid;

} *cap_user_header_t;

typedef struct __user_cap_data_struct {
__u32 effective;
__u32 permitted;

Linux man-pages 6.16 2025-09-21 98

capget(2) System Calls Manual capget(2)

__u32 inheritable;
} *cap_user_data_t;

The effective, permitted , and inheritable fields are bit masks of the capabilities defined
in capabilities(7). Note that the CAP_* values are bit indexes and need to be bit-shifted
before ORing into the bit fields. To define the structures for passing to the system call,
you have to use the struct __user_cap_header_struct and struct
__user_cap_data_struct names because the typedefs are only pointers.

Kernels prior to Linux 2.6.25 prefer 32-bit capabilities with version _LINUX_CAPA-
BILITY_VERSION_1. Linux 2.6.25 added 64-bit capability sets, with version
_LINUX_CAPABILITY_VERSION_2. There was, however, an API glitch, and
Linux 2.6.26 added _LINUX_CAPABILITY_VERSION_3 to fix the problem.

Note that 64-bit capabilities use datap[0] and datap[1], whereas 32-bit capabilities use
only datap[0].

On kernels that support file capabilities (VFS capabilities support), these system calls
behave slightly differently. This support was added as an option in Linux 2.6.24, and
became fixed (nonoptional) in Linux 2.6.33.

For capget() calls, one can probe the capabilities of any process by specifying its
process ID with the hdrp->pid field value.

For details on the data, see capabilities(7).

With VFS capabilities support
VFS capabilities employ a file extended attribute (see xattr(7)) to allow capabilities to be
attached to executables. This privilege model obsoletes kernel support for one process
asynchronously setting the capabilities of another. That is, on kernels that have VFS ca-
pabilities support, when calling capset(), the only permitted values for hdrp->pid are 0
or, equivalently, the value returned by gettid(2).

Without VFS capabilities support
On older kernels that do not provide VFS capabilities support capset() can, if the caller
has the CAP_SETPCAP capability, be used to change not only the caller’s own capabil-
ities, but also the capabilities of other threads. The call operates on the capabilities of
the thread specified by the pid field of hdrp when that is nonzero, or on the capabilities
of the calling thread if pid is 0. If pid refers to a single-threaded process, then pid can
be specified as a traditional process ID; operating on a thread of a multithreaded process
requires a thread ID of the type returned by gettid(2). For capset(), pid can also be: -1,
meaning perform the change on all threads except the caller and init(1); or a value less
than -1, in which case the change is applied to all members of the process group whose
ID is -pid .

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

The calls fail with the error EINVAL, and set the version field of hdrp to the kernel pre-
ferred value of _LINUX_CAPABILITY_VERSION_? when an unsupported version
value is specified. In this way, one can probe what the current preferred capability revi-
sion is.

Linux man-pages 6.16 2025-09-21 99

capget(2) System Calls Manual capget(2)

ERRORS
EFAULT

Bad memory address. hdrp must not be NULL. datap may be NULL only
when the user is trying to determine the preferred capability version format sup-
ported by the kernel.

EINVAL
One of the arguments was invalid.

EPERM
An attempt was made to add a capability to the permitted set, or to set a capabil-
ity in the effective set that is not in the permitted set.

EPERM
An attempt was made to add a capability to the inheritable set, and either:

• that capability was not in the caller’s bounding set; or

• the capability was not in the caller’s permitted set and the caller lacked the
CAP_SETPCAP capability in its effective set.

EPERM
The caller attempted to use capset() to modify the capabilities of a thread other
than itself, but lacked sufficient privilege. For kernels supporting VFS capabili-
ties, this is never permitted. For kernels lacking VFS support, the CAP_SETP-
CAP capability is required. (A bug in kernels before Linux 2.6.11 meant that
this error could also occur if a thread without this capability tried to change its
own capabilities by specifying the pid field as a nonzero value (i.e., the value re-
turned by getpid(2)) instead of 0.)

ESRCH
No such thread.

STANDARDS
Linux.

NOTES
The portable interface to the capability querying and setting functions is provided by the
libcap library and is available here:
〈http://git.kernel.org/cgit/linux/kernel/git/morgan/libcap.git〉

SEE ALSO
clone(2), gettid(2), capabilities(7)

Linux man-pages 6.16 2025-09-21 100

chdir(2) System Calls Manual chdir(2)

NAME
chdir, fchdir - change working directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int chdir(const char *path);
int fchdir(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchdir():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc up to and including 2.19: */ _BSD_SOURCE

DESCRIPTION
chdir() changes the current working directory of the calling process to the directory
specified in path.

fchdir() is identical to chdir(); the only difference is that the directory is given as an
open file descriptor.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors for
chdir() are listed below:

EACCES
Search permission is denied for one of the components of path. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The directory specified in path does not exist.

ENOMEM
Insufficient kernel memory was available.

Linux man-pages 6.16 2025-10-29 101

chdir(2) System Calls Manual chdir(2)

ENOTDIR
A component of path is not a directory.

The general errors for fchdir() are listed below:

EACCES
Search permission was denied on the directory open on fd .

EBADF
fd is not a valid file descriptor.

ENOTDIR
fd does not refer to a directory.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

NOTES
The current working directory is the starting point for interpreting relative pathnames
(those not starting with '/').

A child process created via fork(2) inherits its parent’s current working directory. The
current working directory is left unchanged by execve(2).

SEE ALSO
chroot(2), getcwd(3), path_resolution(7)

Linux man-pages 6.16 2025-10-29 102

chmod(2) System Calls Manual chmod(2)

NAME
chmod, fchmod, fchmodat - change permissions of a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int chmod(const char *path, mode_t mode);
int fchmod(int fd , mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fchmodat(int dirfd , const char *path, mode_t mode, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchmod():
Since glibc 2.24:

_POSIX_C_SOURCE >= 199309L
glibc 2.19 to glibc 2.23

_POSIX_C_SOURCE
glibc 2.16 to glibc 2.19:

_BSD_SOURCE || _POSIX_C_SOURCE
glibc 2.12 to glibc 2.16:

_BSD_SOURCE || _XOPEN_SOURCE >= 500
|| _POSIX_C_SOURCE >= 200809L

glibc 2.11 and earlier:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

fchmodat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
The chmod() and fchmod() system calls change a file’s mode bits. (The file mode con-
sists of the file permission bits plus the set-user-ID, set-group-ID, and sticky bits.)
These system calls differ only in how the file is specified:

• chmod() changes the mode of the file specified whose pathname is given in path,
which is dereferenced if it is a symbolic link.

• fchmod() changes the mode of the file referred to by the open file descriptor fd .

The new file mode is specified in mode, which is a bit mask created by ORing together
zero or more of the following:

S_ISUID (04000) set-user-ID (set process effective user ID on execve(2))

Linux man-pages 6.16 2025-10-29 103

chmod(2) System Calls Manual chmod(2)

S_ISGID (02000) set-group-ID (set process effective group ID on execve(2); manda-
tory locking, as described in fcntl(2); take a new file’s group from
parent directory, as described in chown(2) and mkdir(2))

S_ISVTX (01000) sticky bit (restricted deletion flag, as described in unlink(2))

S_IRUSR (00400) read by owner

S_IWUSR (00200) write by owner

S_IXUSR (00100) execute/search by owner ("search" applies for directories, and
means that entries within the directory can be accessed)

S_IRGRP (00040) read by group

S_IWGRP (00020)
write by group

S_IXGRP (00010) execute/search by group

S_IROTH (00004) read by others

S_IWOTH (00002)
write by others

S_IXOTH (00001) execute/search by others

The effective UID of the calling process must match the owner of the file, or the process
must be privileged (Linux: it must have the CAP_FOWNER capability).

If the calling process is not privileged (Linux: does not have the CAP_FSETID capabil-
ity), and the group of the file does not match the effective group ID of the process or one
of its supplementary group IDs, the S_ISGID bit will be turned off, but this will not
cause an error to be returned.

As a security measure, depending on the filesystem, the set-user-ID and set-group-ID
execution bits may be turned off if a file is written. (On Linux, this occurs if the writing
process does not have the CAP_FSETID capability.) On some filesystems, only the su-
peruser can set the sticky bit, which may have a special meaning. For the sticky bit, and
for set-user-ID and set-group-ID bits on directories, see inode(7).

On NFS filesystems, restricting the permissions will immediately influence already open
files, because the access control is done on the server, but open files are maintained by
the client. Widening the permissions may be delayed for other clients if attribute
caching is enabled on them.

fchmodat()
The fchmodat() system call operates in exactly the same way as chmod(), except for
the differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by chmod() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like chmod())

If path is absolute, then dirfd is ignored.

Linux man-pages 6.16 2025-10-29 104

chmod(2) System Calls Manual chmod(2)

flags can either be 0, or include the following flags:

AT_EMPTY_PATH (since Linux 6.6)
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag). In this case, dirfd can re-
fer to any type of file, not just a directory. If dirfd is AT_FDCWD, the call op-
erates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead operate on the link itself.

See openat(2) for an explanation of the need for fchmodat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chmod() are listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchmod()) The file descriptor fd is not valid.

EBADF
(fchmodat()) path is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

EFAULT
path points outside your accessible address space.

EINVAL
(fchmodat()) Invalid flag specified in flags.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

Linux man-pages 6.16 2025-10-29 105

chmod(2) System Calls Manual chmod(2)

ENOTDIR
(fchmodat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

ENOTSUP
(fchmodat()) flags specified AT_SYMLINK_NOFOLLOW, which is not sup-
ported.

EPERM
The effective UID does not match the owner of the file, and the process is not
privileged (Linux: it does not have the CAP_FOWNER capability).

EPERM
The file is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

EROFS
The named file resides on a read-only filesystem.

VERSIONS
C library/kernel differences

The GNU C library fchmodat() wrapper function implements the POSIX-specified in-
terface described in this page. This interface differs from the underlying Linux system
call, which does not have a flags argument.

glibc notes
On older kernels where fchmodat() is unavailable, the glibc wrapper function falls back
to the use of chmod(). When path is a relative pathname, glibc constructs a pathname
based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
POSIX.1-2024.

HISTORY
chmod()
fchmod()

4.4BSD, SVr4, POSIX.1-2001.

fchmodat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

AT_SYMLINK_NOFOLLOW
glibc 2.32, Linux 6.5.

SEE ALSO
chmod(1), chown(2), execve(2), open(2), stat(2), inode(7), path_resolution(7), sym-
link(7)

Linux man-pages 6.16 2025-10-29 106

chown(2) System Calls Manual chown(2)

NAME
chown, fchown, lchown, fchownat - change ownership of a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int chown(const char *path, uid_t owner, gid_t group);
int fchown(int fd , uid_t owner, gid_t group);
int lchown(const char *path, uid_t owner, gid_t group);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int fchownat(int dirfd , const char *path,
uid_t owner, gid_t group, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fchown(), lchown():
/* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

|| _XOPEN_SOURCE >= 500
|| /* glibc <= 2.19: */ _BSD_SOURCE

fchownat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
These system calls change the owner and group of a file. The chown(), fchown(), and
lchown() system calls differ only in how the file is specified:

• chown() changes the ownership of the file specified by path, which is dereferenced
if it is a symbolic link.

• fchown() changes the ownership of the file referred to by the open file descriptor fd .

• lchown() is like chown(), but does not dereference symbolic links.

Only a privileged process (Linux: one with the CAP_CHOWN capability) may change
the owner of a file. The owner of a file may change the group of the file to any group of
which that owner is a member. A privileged process (Linux: with CAP_CHOWN) may
change the group arbitrarily.

If the owner or group is specified as -1, then that ID is not changed.

When the owner or group of an executable file is changed by an unprivileged user, the
S_ISUID and S_ISGID mode bits are cleared. POSIX does not specify whether this
also should happen when root does the chown(); the Linux behavior depends on the ker-
nel version, and since Linux 2.2.13, root is treated like other users. In case of a non-
group-executable file (i.e., one for which the S_IXGRP bit is not set) the S_ISGID bit
indicates mandatory locking, and is not cleared by a chown().

Linux man-pages 6.16 2025-10-29 107

chown(2) System Calls Manual chown(2)

When the owner or group of an executable file is changed (by any user), all capability
sets for the file are cleared.

fchownat()
The fchownat() system call operates in exactly the same way as chown(), except for the
differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by chown() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like chown())

If path is absolute, then dirfd is ignored.

The flags argument is a bit mask created by ORing together 0 or more of the following
values;

AT_EMPTY_PATH (since Linux 2.6.39)
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag). In this case, dirfd can re-
fer to any type of file, not just a directory. If dirfd is AT_FDCWD, the call op-
erates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead operate on the link itself,
like lchown(). (By default, fchownat() dereferences symbolic links, like
chown().)

See openat(2) for an explanation of the need for fchownat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, errors other than those listed below can be returned.

The more general errors for chown() are listed below.

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EBADF
(fchown()) fd is not a valid open file descriptor.

EBADF
(fchownat()) path is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

EFAULT
path points outside your accessible address space.

Linux man-pages 6.16 2025-10-29 108

chown(2) System Calls Manual chown(2)

EINVAL
(fchownat()) Invalid flag specified in flags.

EIO (fchown()) A low-level I/O error occurred while modifying the inode.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(fchownat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

EPERM
The calling process did not have the required permissions (see above) to change
owner and/or group.

EPERM
The file is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

EROFS
The named file resides on a read-only filesystem.

VERSIONS
The 4.4BSD version can be used only by the superuser (that is, ordinary users cannot
give away files).

STANDARDS
POSIX.1-2024.

HISTORY
chown()
fchown()
lchown()

4.4BSD, SVr4, POSIX.1-2001.

fchownat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Ownership of new files

When a new file is created (by, for example, open(2) or mkdir(2)), its owner is made the
same as the filesystem user ID of the creating process. The group of the file depends on
a range of factors, including the type of filesystem, the options used to mount the

Linux man-pages 6.16 2025-10-29 109

chown(2) System Calls Manual chown(2)

filesystem, and whether or not the set-group-ID mode bit is enabled on the parent direc-
tory. If the filesystem supports the -o grpid (or, synonymously -o bsdgroups) and
-o nogrpid (or, synonymously -o sysvgroups) mount(8) options, then the rules are as
follows:

• If the filesystem is mounted with -o grpid, then the group of a new file is made the
same as that of the parent directory.

• If the filesystem is mounted with -o nogrpid and the set-group-ID bit is disabled on
the parent directory, then the group of a new file is made the same as the process’s
filesystem GID.

• If the filesystem is mounted with -o nogrpid and the set-group-ID bit is enabled on
the parent directory, then the group of a new file is made the same as that of the par-
ent directory.

As at Linux 4.12, the -o grpid and -o nogrpid mount options are supported by ext2,
ext3, ext4, and XFS. Filesystems that don’t support these mount options follow the
-o nogrpid rules.

glibc notes
On older kernels where fchownat() is unavailable, the glibc wrapper function falls back
to the use of chown() and lchown(). When path is relative, glibc constructs a pathname
based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

NFS
The chown() semantics are deliberately violated on NFS filesystems which have UID
mapping enabled. Additionally, the semantics of all system calls which access the file
contents are violated, because chown() may cause immediate access revocation on al-
ready open files. Client side caching may lead to a delay between the time where own-
ership have been changed to allow access for a user and the time where the file can actu-
ally be accessed by the user on other clients.

Historical details
The original Linux chown(), fchown(), and lchown() system calls supported only 16-bit
user and group IDs. Subsequently, Linux 2.4 added chown32(), fchown32(), and
lchown32(), supporting 32-bit IDs. The glibc chown(), fchown(), and lchown() wrap-
per functions transparently deal with the variations across kernel versions.

Before Linux 2.1.81 (except 2.1.46), chown() did not follow symbolic links. Since
Linux 2.1.81, chown() does follow symbolic links, and there is a new system call
lchown() that does not follow symbolic links. Since Linux 2.1.86, this new call (that
has the same semantics as the old chown()) has got the same syscall number, and
chown() got the newly introduced number.

EXAMPLES
The following program changes the ownership of the file named in its second command-
line argument to the value specified in its first command-line argument. The new owner
can be specified either as a numeric user ID, or as a username (which is converted to a
user ID by using getpwnam(3) to perform a lookup in the system password file).

Linux man-pages 6.16 2025-10-29 110

chown(2) System Calls Manual chown(2)

Program source
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

char *endptr;
uid_t uid;
struct passwd *pwd;

if (argc != 3 || argv[1][0] == '\0') {
fprintf(stderr, "%s <owner> <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

uid = strtol(argv[1], &endptr, 10); /* Allow a numeric string */

if (*endptr != '\0') { /* Was not pure numeric string */
pwd = getpwnam(argv[1]); /* Try getting UID for username */
if (pwd == NULL) {

perror("getpwnam");
exit(EXIT_FAILURE);

}

uid = pwd->pw_uid;
}

if (chown(argv[2], uid, -1) == -1) {
perror("chown");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
chgrp(1), chown(1), chmod(2), flock(2), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 111

chroot(2) System Calls Manual chroot(2)

NAME
chroot - change root directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int chroot(const char *path);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

chroot():
Since glibc 2.2.2:

_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| /* Since glibc 2.20: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.2.2:
none

DESCRIPTION
chroot() changes the root directory of the calling process to that specified in path. This
directory will be used for pathnames beginning with / . The root directory is inherited
by all children of the calling process.

Only a privileged process (Linux: one with the CAP_SYS_CHROOT capability in its
user namespace) may call chroot().

This call changes an ingredient in the pathname resolution process and does nothing
else. In particular, it is not intended to be used for any kind of security purpose, neither
to fully sandbox a process nor to restrict filesystem system calls. In the past, chroot()
has been used by daemons to restrict themselves prior to passing paths supplied by un-
trusted users to system calls such as open(2). However, if a folder is moved out of the
chroot directory, an attacker can exploit that to get out of the chroot directory as well.
The easiest way to do that is to chdir(2) to the to-be-moved directory, wait for it to be
moved out, then open a path like ../../../etc/passwd.

A slightly trickier variation also works under some circumstances if chdir(2) is not per-
mitted. If a daemon allows a "chroot directory" to be specified, that usually means that
if you want to prevent remote users from accessing files outside the chroot directory, you
must ensure that folders are never moved out of it.

This call does not change the current working directory, so that after the call '.' can be
outside the tree rooted at ' / '. In particular, the superuser can escape from a "chroot jail"
by doing:

mkdir foo;
chroot foo;
cd ..;

This call does not close open file descriptors, and such file descriptors may allow access
to files outside the chroot tree.

Linux man-pages 6.16 2025-09-21 112

chroot(2) System Calls Manual chroot(2)

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Depending on the filesystem, other errors can be returned. The more general errors are
listed below:

EACCES
Search permission is denied on a component of the path prefix. (See also
path_resolution(7).)

EFAULT
path points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path is too long.

ENOENT
The file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of path is not a directory.

EPERM
The caller has insufficient privilege.

STANDARDS
None.

HISTORY
SVr4, 4.4BSD, SUSv2 (marked LEGACY). This function is not part of POSIX.1-2001.

NOTES
A child process created via fork(2) inherits its parent’s root directory. The root directory
is left unchanged by execve(2).

The magic symbolic link, /proc/ pid /root, can be used to discover a process’s root direc-
tory; see proc(5) for details.

FreeBSD has a stronger jail() system call.

SEE ALSO
chroot(1), chdir(2), pivot_root(2), path_resolution(7), switch_root(8)

Linux man-pages 6.16 2025-09-21 113

clock_getres(2) System Calls Manual clock_getres(2)

NAME
clock_getres, clock_gettime, clock_settime - clock and time functions

LIBRARY
Standard C library (libc, -lc), since glibc 2.17

Before glibc 2.17, Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int clock_getres(clockid_t clockid , struct timespec *_Nullable res);

int clock_gettime(clockid_t clockid , struct timespec *tp);
int clock_settime(clockid_t clockid , const struct timespec *tp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_getres(), clock_gettime(), clock_settime():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
The function clock_getres() finds the resolution (precision) of the specified clock
clockid , and, if res is non-NULL, stores it in the struct timespec pointed to by res. The
resolution of clocks depends on the implementation and cannot be configured by a par-
ticular process. If the time value pointed to by the argument tp of clock_settime() is not
a multiple of res, then it is truncated to a multiple of res.

The functions clock_gettime() and clock_settime() retrieve and set the time of the spec-
ified clock clockid .

The res and tp arguments are timespec(3) structures.

The clockid argument is the identifier of the particular clock on which to act. A clock
may be system-wide and hence visible for all processes, or per-process if it measures
time only within a single process.

All implementations support the system-wide real-time clock, which is identified by
CLOCK_REALTIME. Its time represents seconds and nanoseconds since the Epoch.
When its time is changed, timers for a relative interval are unaffected, but timers for an
absolute point in time are affected.

More clocks may be implemented. The interpretation of the corresponding time values
and the effect on timers is unspecified.

Sufficiently recent versions of glibc and the Linux kernel support the following clocks:

CLOCK_REALTIME
A settable system-wide clock that measures real (i.e., wall-clock) time. Setting
this clock requires appropriate privileges. This clock is affected by discontinu-
ous jumps in the system time (e.g., if the system administrator manually changes
the clock), and by frequency adjustments performed by NTP and similar applica-
tions via adjtime(3), adjtimex(2), clock_adjtime(2), and ntp_adjtime(3). This
clock normally counts the number of seconds since 1970-01-01 00:00:00 Coor-
dinated Universal Time (UTC) except that it ignores leap seconds; near a leap
second it is typically adjusted by NTP to stay roughly in sync with UTC.

Linux man-pages 6.16 2025-10-29 114

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_REALTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_REALTIME, but not settable. See timer_create(2) for further
details.

CLOCK_REALTIME_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_REALTIME. This clock is not
settable. Use when you need very fast, but not fine-grained timestamps. Re-
quires per-architecture support, and probably also architecture support for this
flag in the vdso(7).

CLOCK_TAI (since Linux 3.10; Linux-specific)
A nonsettable system-wide clock derived from wall-clock time but counting leap
seconds. This clock does not experience discontinuities or frequency adjust-
ments caused by inserting leap seconds as CLOCK_REALTIME does.

The acronym TAI refers to International Atomic Time.

CLOCK_MONOTONIC
A nonsettable system-wide clock that represents monotonic time since—as de-
scribed by POSIX—"some unspecified point in the past". On Linux, that point
corresponds to the number of seconds that the system has been running since it
was booted.

The CLOCK_MONOTONIC clock is not affected by discontinuous jumps in
the system time (e.g., if the system administrator manually changes the clock),
but is affected by frequency adjustments. This clock does not count time that the
system is suspended. All CLOCK_MONOTONIC variants guarantee that the
time returned by consecutive calls will not go backwards, but successive calls
may—depending on the architecture—return identical (not-increased) time val-
ues.

CLOCK_MONOTONIC_COARSE (since Linux 2.6.32; Linux-specific)
A faster but less precise version of CLOCK_MONOTONIC. Use when you
need very fast, but not fine-grained timestamps. Requires per-architecture sup-
port, and probably also architecture support for this flag in the vdso(7).

CLOCK_MONOTONIC_RAW (since Linux 2.6.28; Linux-specific)
Similar to CLOCK_MONOTONIC, but provides access to a raw hardware-
based time that is not subject to frequency adjustments. This clock does not
count time that the system is suspended.

CLOCK_BOOTTIME (since Linux 2.6.39; Linux-specific)
A nonsettable system-wide clock that is identical to CLOCK_MONOTONIC,
except that it also includes any time that the system is suspended. This allows
applications to get a suspend-aware monotonic clock without having to deal with
the complications of CLOCK_REALTIME, which may have discontinuities if
the time is changed using settimeofday(2) or similar.

CLOCK_BOOTTIME_ALARM (since Linux 3.0; Linux-specific)
Like CLOCK_BOOTTIME. See timer_create(2) for further details.

Linux man-pages 6.16 2025-10-29 115

clock_getres(2) System Calls Manual clock_getres(2)

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this process (i.e., CPU
time consumed by all threads in the process). On Linux, this clock is not set-
table.

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)
This is a clock that measures CPU time consumed by this thread. On Linux, this
clock is not settable.

Linux also implements dynamic clock instances as described below.

Dynamic clocks
In addition to the hard-coded System-V style clock IDs described above, Linux also sup-
ports POSIX clock operations on certain character devices. Such devices are called "dy-
namic" clocks, and are supported since Linux 2.6.39.

Using the appropriate macros, open file descriptors may be converted into clock IDs and
passed to clock_gettime(), clock_settime(), and clock_adjtime(2). The following ex-
ample shows how to convert a file descriptor into a dynamic clock ID.

#define CLOCKFD 3
#define FD_TO_CLOCKID(fd) ((~(clockid_t) (fd) << 3) | CLOCKFD)
#define CLOCKID_TO_FD(clk) ((unsigned int) ~((clk) >> 3))

struct timespec ts;
clockid_t clkid;
int fd;

fd = open("/dev/ptp0", O_RDWR);
clkid = FD_TO_CLOCKID(fd);
clock_gettime(clkid, &ts);

RETURN VALUE
clock_gettime(), clock_settime(), and clock_getres() return 0 for success. On error, -1
is returned and errno is set to indicate the error.

ERRORS
EACCES

clock_settime() does not have write permission for the dynamic POSIX clock
device indicated.

EFAULT
tp points outside the accessible address space.

EINVAL
The clockid specified is invalid for one of two reasons. Either the System-V
style hard coded positive value is out of range, or the dynamic clock ID does not
refer to a valid instance of a clock object.

EINVAL
(clock_settime()): tp.tv_sec is negative or tp.tv_nsec is outside the range [0,
999,999,999].

Linux man-pages 6.16 2025-10-29 116

clock_getres(2) System Calls Manual clock_getres(2)

EINVAL
The clockid specified in a call to clock_settime() is not a settable clock.

EINVAL (since Linux 4.3)
A call to clock_settime() with a clockid of CLOCK_REALTIME attempted to
set the time to a value less than the current value of the CLOCK_MONOTO-
NIC clock.

ENODEV
The hot-pluggable device (like USB for example) represented by a dynamic
clk_id has disappeared after its character device was opened.

ENOTSUP
The operation is not supported by the dynamic POSIX clock device specified.

EOVERFLOW
The timestamp would not fit in time_t range. This can happen if an executable
with 32-bit time_t is run on a 64-bit kernel when the time is 2038-01-19
03:14:08 UTC or later. However, when the system time is out of time_t range in
other situations, the behavior is undefined.

EPERM
clock_settime() does not have permission to set the clock indicated.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclock_getres(), clock_gettime(), clock_settime()

VERSIONS
POSIX.1 specifies the following:

Setting the value of the CLOCK_REALTIME clock via clock_settime() shall
have no effect on threads that are blocked waiting for a relative time service
based upon this clock, including the nanosleep() function; nor on the expiration
of relative timers based upon this clock. Consequently, these time services shall
expire when the requested relative interval elapses, independently of the new or
old value of the clock.

According to POSIX.1-2001, a process with "appropriate privileges" may set the
CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID
clocks using clock_settime(). On Linux, these clocks are not settable (i.e., no process
has "appropriate privileges").

C library/kernel differences
On some architectures, an implementation of clock_gettime() is provided in the vdso(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SUSv2. Linux 2.6.

On POSIX systems on which these functions are available, the symbol
_POSIX_TIMERS is defined in <unistd.h> to a value greater than 0. POSIX.1-2008

Linux man-pages 6.16 2025-10-29 117

clock_getres(2) System Calls Manual clock_getres(2)

makes these functions mandatory.

The symbols _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME,
_POSIX_THREAD_CPUTIME indicate that CLOCK_MONOTONIC,
CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID are avail-
able. (See also sysconf(3).)

POSIX.1-2024 made CLOCK_MONOTONIC mandatory.

Historical note for SMP systems
Before Linux added kernel support for CLOCK_PROCESS_CPUTIME_ID and
CLOCK_THREAD_CPUTIME_ID, glibc implemented these clocks on many plat-
forms using timer registers from the CPUs (TSC on i386, AR.ITC on Itanium). These
registers may differ between CPUs and as a consequence these clocks may return bogus
results if a process is migrated to another CPU.

If the CPUs in an SMP system have different clock sources, then there is no way to
maintain a correlation between the timer registers since each CPU will run at a slightly
different frequency. If that is the case, then clock_getcpuclockid(0) will return
ENOENT to signify this condition. The two clocks will then be useful only if it can be
ensured that a process stays on a certain CPU.

The processors in an SMP system do not start all at exactly the same time and therefore
the timer registers are typically running at an offset. Some architectures include code
that attempts to limit these offsets on bootup. However, the code cannot guarantee to ac-
curately tune the offsets. glibc contains no provisions to deal with these offsets (unlike
the Linux Kernel). Typically these offsets are small and therefore the effects may be
negligible in most cases.

Since glibc 2.4, the wrapper functions for the system calls described in this page avoid
the abovementioned problems by employing the kernel implementation of
CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID, on
systems that provide such an implementation (i.e., Linux 2.6.12 and later).

EXAMPLES
The program below demonstrates the use of clock_gettime() and clock_getres() with
various clocks. This is an example of what we might see when running the program:

$./clock_times x;
CLOCK_REALTIME : 1585985459.446 (18356 days + 7h 30m 59s)

resolution: 0.000000001
CLOCK_TAI : 1585985496.447 (18356 days + 7h 31m 36s)

resolution: 0.000000001
CLOCK_MONOTONIC: 52395.722 (14h 33m 15s)

resolution: 0.000000001
CLOCK_BOOTTIME : 72691.019 (20h 11m 31s)

resolution: 0.000000001

Program source

/* clock_times.c

Linux man-pages 6.16 2025-10-29 118

clock_getres(2) System Calls Manual clock_getres(2)

Licensed under GNU General Public License v2 or later.
*/
#define _XOPEN_SOURCE 600
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <time.h>

#define SECS_IN_DAY (24 * 60 * 60)

static void
displayClock(clockid_t clock, const char *name, bool showRes)
{

long days;
struct timespec ts;

if (clock_gettime(clock, &ts) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);

}

printf("%-15s: %10jd.%03ld (", name,
(intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

days = ts.tv_sec / SECS_IN_DAY;
if (days > 0)

printf("%ld days + ", days);

printf("%2dh %2dm %2ds",
(int) (ts.tv_sec % SECS_IN_DAY) / 3600,
(int) (ts.tv_sec % 3600) / 60,
(int) ts.tv_sec % 60);

printf(")\n");

if (clock_getres(clock, &ts) == -1) {
perror("clock_getres");
exit(EXIT_FAILURE);

}

if (showRes)
printf(" resolution: %10jd.%09ld\n",

(intmax_t) ts.tv_sec, ts.tv_nsec);
}

int

Linux man-pages 6.16 2025-10-29 119

clock_getres(2) System Calls Manual clock_getres(2)

main(int argc, char *[])
{

bool showRes = argc > 1;

displayClock(CLOCK_REALTIME, "CLOCK_REALTIME", showRes);
#ifdef CLOCK_TAI

displayClock(CLOCK_TAI, "CLOCK_TAI", showRes);
#endif

displayClock(CLOCK_MONOTONIC, "CLOCK_MONOTONIC", showRes);
#ifdef CLOCK_BOOTTIME

displayClock(CLOCK_BOOTTIME, "CLOCK_BOOTTIME", showRes);
#endif

exit(EXIT_SUCCESS);
}

SEE ALSO
date(1), gettimeofday(2), settimeofday(2), time(2), adjtime(3), clock_getcpuclockid(3),
ctime(3), ftime(3), pthread_getcpuclockid(3), sysconf(3), timespec(3), time(7),
time_namespaces(7), vdso(7), hwclock(8)

Linux man-pages 6.16 2025-10-29 120

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

NAME
clock_nanosleep - high-resolution sleep with specifiable clock

LIBRARY
Standard C library (libc, -lc), since glibc 2.17

Before glibc 2.17, Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int clock_nanosleep(clockid_t clockid , int flags,
const struct timespec *t,
struct timespec *_Nullable remain);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_nanosleep():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
Like nanosleep(2), clock_nanosleep() allows the calling thread to sleep for an interval
specified with nanosecond precision. It differs in allowing the caller to select the clock
against which the sleep interval is to be measured, and in allowing the sleep interval to
be specified as either an absolute or a relative value.

The time values passed to and returned by this call are specified using timespec(3) struc-
tures.

The clockid argument specifies the clock against which the sleep interval is to be mea-
sured. This argument can have one of the following values:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_TAI (since Linux 3.10)
A system-wide clock derived from wall-clock time but counting leap seconds.

CLOCK_MONOTONIC
A nonsettable, monotonically increasing clock that measures time since some
unspecified point in the past that does not change after system startup.

CLOCK_BOOTTIME (since Linux 2.6.39)
Identical to CLOCK_MONOTONIC, except that it also includes any time that
the system is suspended.

CLOCK_PROCESS_CPUTIME_ID
A settable per-process clock that measures CPU time consumed by all threads in
the process.

See clock_getres(2) for further details on these clocks. In addition, the CPU clock IDs
returned by clock_getcpuclockid(3) and pthread_getcpuclockid(3) can also be passed in
clockid .

If flags is 0, then the value specified in t is interpreted as an interval relative to the cur-
rent value of the clock specified by clockid .

Linux man-pages 6.16 2025-10-29 121

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

If flags is TIMER_ABSTIME, then t is interpreted as an absolute time as measured by
the clock, clockid . If t is less than or equal to the current value of the clock, then
clock_nanosleep() returns immediately without suspending the calling thread.

clock_nanosleep() suspends the execution of the calling thread until either at least the
time specified by t has elapsed, or a signal is delivered that causes a signal handler to be
called or that terminates the process.

If the call is interrupted by a signal handler, clock_nanosleep() fails with the error
EINTR. In addition, if remain is not NULL, and flags was not TIMER_ABSTIME, it
returns the remaining unslept time in remain. This value can then be used to call
clock_nanosleep() again and complete a (relative) sleep.

RETURN VALUE
On successfully sleeping for the requested interval, clock_nanosleep() returns 0. If the
call is interrupted by a signal handler or encounters an error, then it returns one of the
positive error number listed in ERRORS.

ERRORS
EFAULT

t or remain specified an invalid address.

EINTR
The sleep was interrupted by a signal handler; see signal(7).

EINVAL
The value in the tv_nsec field was not in the range [0, 999999999] or tv_sec was
negative.

EINVAL
clockid was invalid. (CLOCK_THREAD_CPUTIME_ID is not a permitted
value for clockid .)

ENOTSUP
The kernel does not support sleeping against this clockid .

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001. Linux 2.6, glibc 2.1.

NOTES
If the interval specified in t is not an exact multiple of the granularity underlying clock
(see time(7)), then the interval will be rounded up to the next multiple. Furthermore, af-
ter the sleep completes, there may still be a delay before the CPU becomes free to once
again execute the calling thread.

Using an absolute timer is useful for preventing timer drift problems of the type de-
scribed in nanosleep(2). (Such problems are exacerbated in programs that try to restart
a relative sleep that is repeatedly interrupted by signals.) To perform a relative sleep that
avoids these problems, call clock_gettime(2) for the desired clock, add the desired inter-
val to the returned time value, and then call clock_nanosleep() with the TIMER_AB-
STIME flag.

Linux man-pages 6.16 2025-10-29 122

clock_nanosleep(2) System Calls Manual clock_nanosleep(2)

clock_nanosleep() is never restarted after being interrupted by a signal handler, regard-
less of the use of the sigaction(2) SA_RESTART flag.

The remain argument is unused, and unnecessary, when flags is TIMER_ABSTIME.
(An absolute sleep can be restarted using the same t argument.)

POSIX.1 specifies that clock_nanosleep() has no effect on signals dispositions or the
signal mask.

POSIX.1 specifies that after changing the value of the CLOCK_REALTIME clock via
clock_settime(2), the new clock value shall be used to determine the time at which a
thread blocked on an absolute clock_nanosleep() will wake up; if the new clock value
falls past the end of the sleep interval, then the clock_nanosleep() call will return imme-
diately.

POSIX.1 specifies that changing the value of the CLOCK_REALTIME clock via
clock_settime(2) shall have no effect on a thread that is blocked on a relative
clock_nanosleep().

SEE ALSO
clock_getres(2), nanosleep(2), restart_syscall(2), timer_create(2), sleep(3), timespec(3),
usleep(3), time(7)

Linux man-pages 6.16 2025-10-29 123

clone(2) System Calls Manual clone(2)

NAME
clone, __clone2, clone3 - create a child process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* Prototype for the glibc wrapper function */

#define _GNU_SOURCE
#include <sched.h>

int clone(typeof(int (void *_Nullable)) * fn,
void *stack,
int flags,
void *_Nullable arg, ...
/* pid_t *_Nullable parent_tid ,

void *_Nullable tls,
pid_t *_Nullable child_tid */);

/* For the prototype of the raw clone() system call, see VERSIONS. */

#include <linux/sched.h> /* Definition of struct clone_args */
#include <sched.h> /* Definition of CLONE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_clone3, struct clone_args *cl_args, size_t size);

Note: glibc provides no wrapper for clone3(), necessitating the use of syscall(2).

DESCRIPTION
These system calls create a new ("child") process, in a manner similar to fork(2).

By contrast with fork(2), these system calls provide more precise control over what
pieces of execution context are shared between the calling process and the child process.
For example, using these system calls, the caller can control whether or not the two
processes share the virtual address space, the table of file descriptors, and the table of
signal handlers. These system calls also allow the new child process to be placed in sep-
arate namespaces(7).

Note that in this manual page, "calling process" normally corresponds to "parent
process". But see the descriptions of CLONE_PARENT and CLONE_THREAD be-
low.

This page describes the following interfaces:

• The glibc clone() wrapper function and the underlying system call on which it is
based. The main text describes the wrapper function; the differences for the raw sys-
tem call are described toward the end of this page.

• The newer clone3() system call.

In the remainder of this page, the terminology "the clone call" is used when noting de-
tails that apply to all of these interfaces.

Linux man-pages 6.16 2025-10-12 124

clone(2) System Calls Manual clone(2)

The clone() wrapper function
When the child process is created with the clone() wrapper function, it commences exe-
cution by calling the function pointed to by the argument fn. (This differs from fork(2),
where execution continues in the child from the point of the fork(2) call.) The arg argu-
ment is passed as the argument of the function fn.

When the fn(arg) function returns, the child process terminates. The integer returned
by fn is the exit status for the child process. The child process may also terminate ex-
plicitly by calling exit(2) or after receiving a fatal signal.

The stack argument specifies the location of the stack used by the child process. Since
the child and calling process may share memory, it is not possible for the child process
to execute in the same stack as the calling process. The calling process must therefore
set up memory space for the child stack and pass a pointer to this space to clone().
Stacks grow downward on all processors that run Linux (except the HP PA processors),
so stack usually points to the topmost address of the memory space set up for the child
stack. Note that clone() does not provide a means whereby the caller can inform the
kernel of the size of the stack area.

The remaining arguments to clone() are discussed below.

clone3()
The clone3() system call provides a superset of the functionality of the older clone() in-
terface. It also provides a number of API improvements, including: space for additional
flags bits; cleaner separation in the use of various arguments; and the ability to specify
the size of the child’s stack area.

As with fork(2), clone3() returns in both the parent and the child. It returns 0 in the
child process and returns the PID of the child in the parent.

The cl_args argument of clone3() is a structure of the following form:

struct clone_args {
u64 flags; /* Flags bit mask */
u64 pidfd; /* Where to store PID file descriptor

(int *) */
u64 child_tid; /* Where to store child TID,

in child's memory (pid_t *) */
u64 parent_tid; /* Where to store child TID,

in parent's memory (pid_t *) */
u64 exit_signal; /* Signal to deliver to parent on

child termination */
u64 stack; /* Pointer to lowest byte of stack */
u64 stack_size; /* Size of stack */
u64 tls; /* Location of new TLS */
u64 set_tid; /* Pointer to a pid_t array

(since Linux 5.5) */
u64 set_tid_size; /* Number of elements in set_tid

(since Linux 5.5) */
u64 cgroup; /* File descriptor for target cgroup

of child (since Linux 5.7) */

Linux man-pages 6.16 2025-10-12 125

clone(2) System Calls Manual clone(2)

};

The size argument that is supplied to clone3() should be initialized to the size of this
structure. (The existence of the size argument permits future extensions to the
clone_args structure.)

The stack for the child process is specified via cl_args.stack, which points to the lowest
byte of the stack area, and cl_args.stack_size, which specifies the size of the stack in
bytes. In the case where the CLONE_VM flag (see below) is specified, a stack must be
explicitly allocated and specified. Otherwise, these two fields can be specified as NULL
and 0, which causes the child to use the same stack area as the parent (in the child’s own
virtual address space).

The remaining fields in the cl_args argument are discussed below.

Equivalence between clone() and clone3() arguments
Unlike the older clone() interface, where arguments are passed individually, in the newer
clone3() interface the arguments are packaged into the clone_args structure shown
above. This structure allows for a superset of the information passed via the clone() ar-
guments.

The following table shows the equivalence between the arguments of clone() and the
fields in the clone_args argument supplied to clone3():

clone() clone3() Notes
cl_args field

flags & ~0xff flags For most flags; details below
parent_tid pidfd See CLONE_PIDFD
child_tid child_tid See CLONE_CHILD_SETTID
parent_tid parent_tid See CLONE_PARENT_SETTID
flags & 0xff exit_signal
stack stack
--- stack_size
tls tls See CLONE_SETTLS
--- set_tid See below for details
--- set_tid_size
--- cgroup See CLONE_INTO_CGROUP

The child termination signal
When the child process terminates, a signal may be sent to the parent. The termination
signal is specified in the low byte of flags (clone()) or in cl_args.exit_signal (clone3()).
If this signal is specified as anything other than SIGCHLD, then the parent process
must specify the __WALL or __WCLONE options when waiting for the child with
wait(2). If no signal (i.e., zero) is specified, then the parent process is not signaled when
the child terminates.

The set_tid array
By default, the kernel chooses the next sequential PID for the new process in each of the
PID namespaces where it is present. When creating a process with clone3(), the set_tid
array (available since Linux 5.5) can be used to select specific PIDs for the process in
some or all of the PID namespaces where it is present. If the PID of the newly created
process should be set only for the current PID namespace or in the newly created PID

Linux man-pages 6.16 2025-10-12 126

clone(2) System Calls Manual clone(2)

namespace (if flags contains CLONE_NEWPID) then the first element in the set_tid
array has to be the desired PID and set_tid_size needs to be 1.

If the PID of the newly created process should have a certain value in multiple PID
namespaces, then the set_tid array can have multiple entries. The first entry defines the
PID in the most deeply nested PID namespace and each of the following entries contains
the PID in the corresponding ancestor PID namespace. The number of PID namespaces
in which a PID should be set is defined by set_tid_size which cannot be larger than the
number of currently nested PID namespaces.

To create a process with the following PIDs in a PID namespace hierarchy:
PID NS level Requested PID Notes
0 31496 Outermost PID namespace
1 42
2 7 Innermost PID namespace

Set the array to:

set_tid[0] = 7;
set_tid[1] = 42;
set_tid[2] = 31496;
set_tid_size = 3;

If only the PIDs in the two innermost PID namespaces need to be specified, set the array
to:

set_tid[0] = 7;
set_tid[1] = 42;
set_tid_size = 2;

The PID in the PID namespaces outside the two innermost PID namespaces is selected
the same way as any other PID is selected.

The set_tid feature requires CAP_SYS_ADMIN or (since Linux 5.9) CAP_CHECK-
POINT_RESTORE in all owning user namespaces of the target PID namespaces.

Callers may only choose a PID greater than 1 in a given PID namespace if an init
process (i.e., a process with PID 1) already exists in that namespace. Otherwise the PID
entry for this PID namespace must be 1.

The flags mask
Both clone() and clone3() allow a flags bit mask that modifies their behavior and allows
the caller to specify what is shared between the calling process and the child process.
This bit mask—the flags argument of clone() or the cl_args.flags field passed to
clone3()—is referred to as the flags mask in the remainder of this page.

The flags mask is specified as a bitwise OR of zero or more of the constants listed be-
low. Except as noted below, these flags are available (and have the same effect) in both
clone() and clone3().

CLONE_CHILD_CLEARTID (since Linux 2.5.49)
Clear (zero) the child thread ID at the location pointed to by child_tid (clone())
or cl_args.child_tid (clone3()) in child memory when the child exits, and do a
wakeup on the futex at that address. The address involved may be changed by

Linux man-pages 6.16 2025-10-12 127

clone(2) System Calls Manual clone(2)

the set_tid_address(2) system call. This is used by threading libraries.

CLONE_CHILD_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by child_tid (clone()) or
cl_args.child_tid (clone3()) in the child’s memory. The store operation com-
pletes before the clone call returns control to user space in the child process.
(Note that the store operation may not have completed before the clone call re-
turns in the parent process, which is relevant if the CLONE_VM flag is also em-
ployed.)

CLONE_CLEAR_SIGHAND (since Linux 5.5)
By default, signal dispositions in the child thread are the same as in the parent.
If this flag is specified, then all signals that are handled in the parent (and not set
to SIG_IGN) are reset to their default dispositions (SIG_DFL) in the child.

Specifying this flag together with CLONE_SIGHAND is nonsensical and disal-
lowed.

CLONE_DETACHED (historical)
For a while (during the Linux 2.5 development series) there was a CLONE_DE-
TACHED flag, which caused the parent not to receive a signal when the child
terminated. Ultimately, the effect of this flag was subsumed under the
CLONE_THREAD flag and by the time Linux 2.6.0 was released, this flag had
no effect. Since Linux 2.6.2, the need to give this flag together with
CLONE_THREAD disappeared.

This flag is still defined, but it is usually ignored when calling clone(). However,
see the description of CLONE_PIDFD for some exceptions.

CLONE_FILES (since Linux 2.0)
If CLONE_FILES is set, the calling process and the child process share the
same file descriptor table. Any file descriptor created by the calling process or
by the child process is also valid in the other process. Similarly, if one of the
processes closes a file descriptor, or changes its associated flags (using the fc-
ntl(2) F_SETFD operation), the other process is also affected. If a process shar-
ing a file descriptor table calls execve(2), its file descriptor table is duplicated
(unshared).

If CLONE_FILES is not set, the child process inherits a copy of all file descrip-
tors opened in the calling process at the time of the clone call. Subsequent oper-
ations that open or close file descriptors, or change file descriptor flags, per-
formed by either the calling process or the child process do not affect the other
process. Note, however, that the duplicated file descriptors in the child refer to
the same open file descriptions as the corresponding file descriptors in the calling
process, and thus share file offsets and file status flags (see open(2)).

CLONE_FS (since Linux 2.0)
If CLONE_FS is set, the caller and the child process share the same filesystem
information. This includes the root of the filesystem, the current working direc-
tory, and the umask. Any call to chroot(2), chdir(2), or umask(2) performed by
the calling process or the child process also affects the other process.

Linux man-pages 6.16 2025-10-12 128

clone(2) System Calls Manual clone(2)

If CLONE_FS is not set, the child process works on a copy of the filesystem in-
formation of the calling process at the time of the clone call. Calls to chroot(2),
chdir(2), or umask(2) performed later by one of the processes do not affect the
other process.

CLONE_INTO_CGROUP (since Linux 5.7)
By default, a child process is placed in the same version 2 cgroup as its parent.
The CLONE_INTO_CGROUP flag allows the child process to be created in a
different version 2 cgroup. (Note that CLONE_INTO_CGROUP has effect
only for version 2 cgroups.)

In order to place the child process in a different cgroup, the caller specifies
CLONE_INTO_CGROUP in cl_args.flags and passes a file descriptor that
refers to a version 2 cgroup in the cl_args.cgroup field. (This file descriptor can
be obtained by opening a cgroup v2 directory using either the O_RDONLY or
the O_PATH flag.) Note that all of the usual restrictions (described in
cgroups(7)) on placing a process into a version 2 cgroup apply.

Among the possible use cases for CLONE_INTO_CGROUP are the following:

• Spawning a process into a cgroup different from the parent’s cgroup makes it
possible for a service manager to directly spawn new services into dedicated
cgroups. This eliminates the accounting jitter that would be caused if the
child process was first created in the same cgroup as the parent and then
moved into the target cgroup. Furthermore, spawning the child process di-
rectly into a target cgroup is significantly cheaper than moving the child
process into the target cgroup after it has been created.

• The CLONE_INTO_CGROUP flag also allows the creation of frozen child
processes by spawning them into a frozen cgroup. (See cgroups(7) for a de-
scription of the freezer controller.)

• For threaded applications (or even thread implementations which make use
of cgroups to limit individual threads), it is possible to establish a fixed
cgroup layout before spawning each thread directly into its target cgroup.

CLONE_IO (since Linux 2.6.25)
If CLONE_IO is set, then the new process shares an I/O context with the calling
process. If this flag is not set, then (as with fork(2)) the new process has its own
I/O context.

The I/O context is the I/O scope of the disk scheduler (i.e., what the I/O sched-
uler uses to model scheduling of a process’s I/O). If processes share the same
I/O context, they are treated as one by the I/O scheduler. As a consequence, they
get to share disk time. For some I/O schedulers, if two processes share an I/O
context, they will be allowed to interleave their disk access. If several threads
are doing I/O on behalf of the same process (aio_read(3), for instance), they
should employ CLONE_IO to get better I/O performance.

If the kernel is not configured with the CONFIG_BLOCK option, this flag is a
no-op.

Linux man-pages 6.16 2025-10-12 129

clone(2) System Calls Manual clone(2)

CLONE_NEWCGROUP (since Linux 4.6)
Create the process in a new cgroup namespace. If this flag is not set, then (as
with fork(2)) the process is created in the same cgroup namespaces as the calling
process.

For further information on cgroup namespaces, see cgroup_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEWC-
GROUP.

CLONE_NEWIPC (since Linux 2.6.19)
If CLONE_NEWIPC is set, then create the process in a new IPC namespace. If
this flag is not set, then (as with fork(2)), the process is created in the same IPC
namespace as the calling process.

For further information on IPC namespaces, see ipc_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWIPC. This flag can’t be specified in conjunction with
CLONE_SYSVSEM.

CLONE_NEWNET (since Linux 2.6.24)
(The implementation of this flag was completed only by about Linux 2.6.29.)

If CLONE_NEWNET is set, then create the process in a new network name-
space. If this flag is not set, then (as with fork(2)) the process is created in the
same network namespace as the calling process.

For further information on network namespaces, see network_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWNET.

CLONE_NEWNS (since Linux 2.4.19)
If CLONE_NEWNS is set, the cloned child is started in a new mount name-
space, initialized with a copy of the namespace of the parent. If
CLONE_NEWNS is not set, the child lives in the same mount namespace as the
parent.

For further information on mount namespaces, see namespaces(7) and
mount_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWNS. It is not permitted to specify both CLONE_NEWNS and
CLONE_FS in the same clone call.

CLONE_NEWPID (since Linux 2.6.24)
If CLONE_NEWPID is set, then create the process in a new PID namespace. If
this flag is not set, then (as with fork(2)) the process is created in the same PID
namespace as the calling process.

For further information on PID namespaces, see namespaces(7) and pid_name-
spaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ CLONE_NEW-
PID. This flag can’t be specified in conjunction with CLONE_THREAD.

Linux man-pages 6.16 2025-10-12 130

clone(2) System Calls Manual clone(2)

CLONE_NEWUSER
(This flag first became meaningful for clone() in Linux 2.6.23, the current
clone() semantics were merged in Linux 3.5, and the final pieces to make the
user namespaces completely usable were merged in Linux 3.8.)

If CLONE_NEWUSER is set, then create the process in a new user namespace.
If this flag is not set, then (as with fork(2)) the process is created in the same user
namespace as the calling process.

For further information on user namespaces, see namespaces(7) and user_name-
spaces(7).

Before Linux 3.8, use of CLONE_NEWUSER required that the caller have
three capabilities: CAP_SYS_ADMIN, CAP_SETUID, and CAP_SETGID.
Starting with Linux 3.8, no privileges are needed to create a user namespace.

This flag can’t be specified in conjunction with CLONE_THREAD or
CLONE_PARENT. For security reasons, CLONE_NEWUSER cannot be
specified in conjunction with CLONE_FS.

CLONE_NEWUTS (since Linux 2.6.19)
If CLONE_NEWUTS is set, then create the process in a new UTS namespace,
whose identifiers are initialized by duplicating the identifiers from the UTS
namespace of the calling process. If this flag is not set, then (as with fork(2)) the
process is created in the same UTS namespace as the calling process.

For further information on UTS namespaces, see uts_namespaces(7).

Only a privileged process (CAP_SYS_ADMIN) can employ
CLONE_NEWUTS.

CLONE_PARENT (since Linux 2.3.12)
If CLONE_PARENT is set, then the parent of the new child (as returned by
getppid(2)) will be the same as that of the calling process.

If CLONE_PARENT is not set, then (as with fork(2)) the child’s parent is the
calling process.

Note that it is the parent process, as returned by getppid(2), which is signaled
when the child terminates, so that if CLONE_PARENT is set, then the parent of
the calling process, rather than the calling process itself, is signaled.

The CLONE_PARENT flag can’t be used in clone calls by the global init
process (PID 1 in the initial PID namespace) and init processes in other PID
namespaces. This restriction prevents the creation of multi-rooted process trees
as well as the creation of unreapable zombies in the initial PID namespace.

CLONE_PARENT_SETTID (since Linux 2.5.49)
Store the child thread ID at the location pointed to by parent_tid (clone()) or
cl_args.parent_tid (clone3()) in the parent’s memory. (In Linux 2.5.32-2.5.48
there was a flag CLONE_SETTID that did this.) The store operation completes
before the clone call returns control to user space.

Linux man-pages 6.16 2025-10-12 131

clone(2) System Calls Manual clone(2)

CLONE_PID (Linux 2.0 to Linux 2.5.15)
If CLONE_PID is set, the child process is created with the same process ID as
the calling process. This is good for hacking the system, but otherwise of not
much use. From Linux 2.3.21 onward, this flag could be specified only by the
system boot process (PID 0). The flag disappeared completely from the kernel
sources in Linux 2.5.16. Subsequently, the kernel silently ignored this bit if it
was specified in the flags mask. Much later, the same bit was recycled for use as
the CLONE_PIDFD flag.

CLONE_PIDFD (since Linux 5.2)
If this flag is specified, a PID file descriptor referring to the child process is allo-
cated and placed at a specified location in the parent’s memory. The close-on-
exec flag is set on this new file descriptor. PID file descriptors can be used for
the purposes described in pidfd_open(2).

• When using clone3(), the PID file descriptor is placed at the location pointed
to by cl_args.pidfd .

• When using clone(), the PID file descriptor is placed at the location pointed
to by parent_tid . Since the parent_tid argument is used to return the PID
file descriptor, CLONE_PIDFD cannot be used with CLONE_PAR-
ENT_SETTID when calling clone().

If CLONE_PIDFD is specified together with CLONE_THREAD, the obtained
PID file descriptor refers to a specific thread, as opposed to a thread-group leader
if CLONE_THREAD is not specified. This feature is available since Linux 6.9.

If the obsolete CLONE_DETACHED flag is specified alongside
CLONE_PIDFD when calling clone(), an error is returned. An error also re-
sults if CLONE_DETACHED is specified when calling clone3(). This error be-
havior ensures that the bit corresponding to CLONE_DETACHED can be
reused for further PID file descriptor features in the future.

CLONE_PTRACE (since Linux 2.2)
If CLONE_PTRACE is specified, and the calling process is being traced, then
trace the child also (see ptrace(2)).

CLONE_SETTLS (since Linux 2.5.32)
The TLS (Thread Local Storage) descriptor is set to tls.

The interpretation of tls and the resulting effect is architecture dependent. On
x86, tls is interpreted as a struct user_desc * (see set_thread_area(2)). On
x86-64 it is the new value to be set for the %fs base register (see the
ARCH_SET_FS argument to arch_prctl(2)). On architectures with a dedicated
TLS register, it is the new value of that register.

Use of this flag requires detailed knowledge and generally it should not be used
except in libraries implementing threading.

CLONE_SIGHAND (since Linux 2.0)
If CLONE_SIGHAND is set, the calling process and the child process share the
same table of signal handlers. If the calling process or child process calls sigac-
tion(2) to change the behavior associated with a signal, the behavior is changed

Linux man-pages 6.16 2025-10-12 132

clone(2) System Calls Manual clone(2)

in the other process as well. However, the calling process and child processes
still have distinct signal masks and sets of pending signals. So, one of them may
block or unblock signals using sigprocmask(2) without affecting the other
process.

If CLONE_SIGHAND is not set, the child process inherits a copy of the signal
handlers of the calling process at the time of the clone call. Calls to sigaction(2)
performed later by one of the processes have no effect on the other process.

Since Linux 2.6.0, the flags mask must also include CLONE_VM if
CLONE_SIGHAND is specified.

CLONE_STOPPED (since Linux 2.6.0)
If CLONE_STOPPED is set, then the child is initially stopped (as though it was
sent a SIGSTOP signal), and must be resumed by sending it a SIGCONT sig-
nal.

This flag was deprecated from Linux 2.6.25 onward, and was removed alto-
gether in Linux 2.6.38. Since then, the kernel silently ignores it without error.
Starting with Linux 4.6, the same bit was reused for the CLONE_NEWC-
GROUP flag.

CLONE_SYSVSEM (since Linux 2.5.10)
If CLONE_SYSVSEM is set, then the child and the calling process share a sin-
gle list of System V semaphore adjustment (semadj) values (see semop(2)). In
this case, the shared list accumulates semadj values across all processes sharing
the list, and semaphore adjustments are performed only when the last process
that is sharing the list terminates (or ceases sharing the list using unshare(2)). If
this flag is not set, then the child has a separate semadj list that is initially empty.

CLONE_THREAD (since Linux 2.4.0)
If CLONE_THREAD is set, the child is placed in the same thread group as the
calling process. To make the remainder of the discussion of
CLONE_THREAD more readable, the term "thread" is used to refer to the
processes within a thread group.

Thread groups were a feature added in Linux 2.4 to support the POSIX threads
notion of a set of threads that share a single PID. Internally, this shared PID is
the so-called thread group identifier (TGID) for the thread group. Since Linux
2.4, calls to getpid(2) return the TGID of the caller.

The threads within a group can be distinguished by their (system-wide) unique
thread IDs (TID). A new thread’s TID is available as the function result returned
to the caller, and a thread can obtain its own TID using gettid(2).

When a clone call is made without specifying CLONE_THREAD, then the re-
sulting thread is placed in a new thread group whose TGID is the same as the
thread’s TID. This thread is the leader of the new thread group.

A new thread created with CLONE_THREAD has the same parent process as
the process that made the clone call (i.e., like CLONE_PARENT), so that calls
to getppid(2) return the same value for all of the threads in a thread group.
When a CLONE_THREAD thread terminates, the thread that created it is not

Linux man-pages 6.16 2025-10-12 133

clone(2) System Calls Manual clone(2)

sent a SIGCHLD (or other termination) signal; nor can the status of such a
thread be obtained using wait(2). (The thread is said to be detached .)

After all of the threads in a thread group terminate the parent process of the
thread group is sent a SIGCHLD (or other termination) signal.

If any of the threads in a thread group performs an execve(2), then all threads
other than the thread group leader are terminated, and the new program is exe-
cuted in the thread group leader.

If one of the threads in a thread group creates a child using fork(2), then any
thread in the group can wait(2) for that child.

Since Linux 2.5.35, the flags mask must also include CLONE_SIGHAND if
CLONE_THREAD is specified (and note that, since Linux 2.6.0,
CLONE_SIGHAND also requires CLONE_VM to be included).

Signal dispositions and actions are process-wide: if an unhandled signal is deliv-
ered to a thread, then it will affect (terminate, stop, continue, be ignored in) all
members of the thread group.

Each thread has its own signal mask, as set by sigprocmask(2).

A signal may be process-directed or thread-directed. A process-directed signal
is targeted at a thread group (i.e., a TGID), and is delivered to an arbitrarily se-
lected thread from among those that are not blocking the signal. A signal may
be process-directed because it was generated by the kernel for reasons other than
a hardware exception, or because it was sent using kill(2) or sigqueue(3). A
thread-directed signal is targeted at (i.e., delivered to) a specific thread. A signal
may be thread directed because it was sent using tgkill(2) or
pthread_sigqueue(3), or because the thread executed a machine language in-
struction that triggered a hardware exception (e.g., invalid memory access trig-
gering SIGSEGV or a floating-point exception triggering SIGFPE).

A call to sigpending(2) returns a signal set that is the union of the pending
process-directed signals and the signals that are pending for the calling thread.

If a process-directed signal is delivered to a thread group, and the thread group
has installed a handler for the signal, then the handler is invoked in exactly one,
arbitrarily selected member of the thread group that has not blocked the signal.
If multiple threads in a group are waiting to accept the same signal using sig-
waitinfo(2), the kernel will arbitrarily select one of these threads to receive the
signal.

CLONE_UNTRACED (since Linux 2.5.46)
If CLONE_UNTRACED is specified, then a tracing process cannot force
CLONE_PTRACE on this child process.

CLONE_VFORK (since Linux 2.2)
If CLONE_VFORK is set, the execution of the calling process is suspended un-
til the child releases its virtual memory resources via a call to execve(2) or
_exit(2) (as with vfork(2)).

Linux man-pages 6.16 2025-10-12 134

clone(2) System Calls Manual clone(2)

If CLONE_VFORK is not set, then both the calling process and the child are
schedulable after the call, and an application should not rely on execution occur-
ring in any particular order.

CLONE_VM (since Linux 2.0)
If CLONE_VM is set, the calling process and the child process run in the same
memory space. In particular, memory writes performed by the calling process or
by the child process are also visible in the other process. Moreover, any memory
mapping or unmapping performed with mmap(2) or munmap(2) by the child or
calling process also affects the other process.

If CLONE_VM is not set, the child process runs in a separate copy of the mem-
ory space of the calling process at the time of the clone call. Memory writes or
file mappings/unmappings performed by one of the processes do not affect the
other, as with fork(2).

If the CLONE_VM flag is specified and the CLONE_VFORK flag is not speci-
fied, then any alternate signal stack that was established by sigaltstack(2) is
cleared in the child process.

RETURN VALUE
On success, the thread ID of the child process is returned in the caller’s thread of execu-
tion. On failure, -1 is returned in the caller’s context, no child process is created, and
errno is set to indicate the error.

ERRORS
EACCES (clone3() only)

CLONE_INTO_CGROUP was specified in cl_args.flags, but the restrictions
(described in cgroups(7)) on placing the child process into the version 2 cgroup
referred to by cl_args.cgroup are not met.

EAGAIN
Too many processes are already running; see fork(2).

EBUSY (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor
specified in cl_args.cgroup refers to a version 2 cgroup in which a domain con-
troller is enabled.

EEXIST (clone3() only)
One (or more) of the PIDs specified in set_tid already exists in the correspond-
ing PID namespace.

EINVAL
Both CLONE_SIGHAND and CLONE_CLEAR_SIGHAND were specified
in the flags mask.

EINVAL
CLONE_SIGHAND was specified in the flags mask, but CLONE_VM was
not. (Since Linux 2.6.0.)

EINVAL
CLONE_THREAD was specified in the flags mask, but CLONE_SIGHAND
was not. (Since Linux 2.5.35.)

Linux man-pages 6.16 2025-10-12 135

clone(2) System Calls Manual clone(2)

EINVAL
CLONE_THREAD was specified in the flags mask, but the current process
previously called unshare(2) with the CLONE_NEWPID flag or used setns(2)
to reassociate itself with a PID namespace.

EINVAL
Both CLONE_FS and CLONE_NEWNS were specified in the flags mask.

EINVAL (since Linux 3.9)
Both CLONE_NEWUSER and CLONE_FS were specified in the flags mask.

EINVAL
Both CLONE_NEWIPC and CLONE_SYSVSEM were specified in the flags
mask.

EINVAL
CLONE_NEWPID and one (or both) of CLONE_THREAD or
CLONE_PARENT were specified in the flags mask.

EINVAL
CLONE_NEWUSER and CLONE_THREAD were specified in the flags
mask.

EINVAL (since Linux 2.6.32)
CLONE_PARENT was specified, and the caller is an init process.

EINVAL
Returned by the glibc clone() wrapper function when fn or stack is specified as
NULL.

EINVAL
CLONE_NEWIPC was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL
CLONE_NEWNET was specified in the flags mask, but the kernel was not
configured with the CONFIG_NET_NS option.

EINVAL
CLONE_NEWPID was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_PID_NS option.

EINVAL
CLONE_NEWUSER was specified in the flags mask, but the kernel was not
configured with the CONFIG_USER_NS option.

EINVAL
CLONE_NEWUTS was specified in the flags mask, but the kernel was not con-
figured with the CONFIG_UTS_NS option.

EINVAL
stack is not aligned to a suitable boundary for this architecture. For example, on
aarch64, stack must be a multiple of 16.

Linux man-pages 6.16 2025-10-12 136

clone(2) System Calls Manual clone(2)

EINVAL (clone3() only)
CLONE_DETACHED was specified in the flags mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_DETACHED in the
flags mask.

EINVAL (before Linux 6.9)
CLONE_PIDFD was specified together with CLONE_THREAD in the flags
mask.

EINVAL (clone() only)
CLONE_PIDFD was specified together with CLONE_PARENT_SETTID in
the flags mask.

EINVAL (clone3() only)
set_tid_size is greater than the number of nested PID namespaces.

EINVAL (clone3() only)
One of the PIDs specified in set_tid was an invalid.

EINVAL (clone3() only)
CLONE_THREAD or CLONE_PARENT was specified in the flags mask, but
a signal was specified in exit_signal.

EINVAL (AArch64 only, Linux 4.6 and earlier)
stack was not aligned to a 128-bit boundary.

ENOMEM
Cannot allocate sufficient memory to allocate a task structure for the child, or to
copy those parts of the caller’s context that need to be copied.

ENOSPC (since Linux 3.7)
CLONE_NEWPID was specified in the flags mask, but the limit on the nesting
depth of PID namespaces would have been exceeded; see pid_namespaces(7).

ENOSPC (since Linux 4.9; beforehand EUSERS)
CLONE_NEWUSER was specified in the flags mask, and the call would cause
the limit on the number of nested user namespaces to be exceeded. See
user_namespaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

ENOSPC (since Linux 4.9)
One of the values in the flags mask specified the creation of a new user name-
space, but doing so would have caused the limit defined by the corresponding file
in /proc/sys/user to be exceeded. For further details, see namespaces(7).

EOPNOTSUPP (clone3() only)
CLONE_INTO_CGROUP was specified in cl_args.flags, but the file descriptor
specified in cl_args.cgroup refers to a version 2 cgroup that is in the domain in-
valid state.

Linux man-pages 6.16 2025-10-12 137

clone(2) System Calls Manual clone(2)

EPERM
CLONE_NEWCGROUP, CLONE_NEWIPC, CLONE_NEWNET,
CLONE_NEWNS, CLONE_NEWPID, or CLONE_NEWUTS was specified
by an unprivileged process (process without CAP_SYS_ADMIN).

EPERM
CLONE_PID was specified by a process other than process 0. (This error oc-
curs only on Linux 2.5.15 and earlier.)

EPERM
CLONE_NEWUSER was specified in the flags mask, but either the effective
user ID or the effective group ID of the caller does not have a mapping in the
parent namespace (see user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in the flags mask and the caller is in a ch-
root environment (i.e., the caller’s root directory does not match the root direc-
tory of the mount namespace in which it resides).

EPERM (clone3() only)
set_tid_size was greater than zero, and the caller lacks the CAP_SYS_ADMIN
capability in one or more of the user namespaces that own the corresponding
PID namespaces.

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be seen
only during a trace.)

EUSERS (Linux 3.11 to Linux 4.8)
CLONE_NEWUSER was specified in the flags mask, and the limit on the
number of nested user namespaces would be exceeded. See the discussion of the
ENOSPC error above.

VERSIONS
The glibc clone() wrapper function makes some changes in the memory pointed to by
stack (changes required to set the stack up correctly for the child) before invoking the
clone() system call. So, in cases where clone() is used to recursively create children, do
not use the buffer employed for the parent’s stack as the stack of the child.

On i386, clone() should not be called through vsyscall, but directly through int $0x80.

C library/kernel differences
The raw clone() system call corresponds more closely to fork(2) in that execution in the
child continues from the point of the call. As such, the fn and arg arguments of the
clone() wrapper function are omitted.

In contrast to the glibc wrapper, the raw clone() system call accepts NULL as a stack ar-
gument (and clone3() likewise allows cl_args.stack to be NULL). In this case, the child
uses a duplicate of the parent’s stack. (Copy-on-write semantics ensure that the child
gets separate copies of stack pages when either process modifies the stack.) In this case,
for correct operation, the CLONE_VM option should not be specified. (If the child
shares the parent’s memory because of the use of the CLONE_VM flag, then no copy-
on-write duplication occurs and chaos is likely to result.)

Linux man-pages 6.16 2025-10-12 138

clone(2) System Calls Manual clone(2)

The order of the arguments also differs in the raw system call, and there are variations in
the arguments across architectures, as detailed in the following paragraphs.

The raw system call interface on x86-64 and some other architectures (including sh, tile,
and alpha) is:

long clone(unsigned long flags, void *stack,
int *parent_tid, int *child_tid,
unsigned long tls);

On x86-32, and several other common architectures (including score, ARM, ARM 64,
PA-RISC, arc, Power PC, xtensa, and MIPS), the order of the last two arguments is re-
versed:

long clone(unsigned long flags, void *stack,
int *parent_tid, unsigned long tls,
int *child_tid);

On the cris and s390 architectures, the order of the first two arguments is reversed:

long clone(void *stack, unsigned long flags,
int *parent_tid, int *child_tid,
unsigned long tls);

On the microblaze architecture, an additional argument is supplied:

long clone(unsigned long flags, void *stack,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);

blackfin, m68k, and sparc
The argument-passing conventions on blackfin, m68k, and sparc are different from the
descriptions above. For details, see the kernel (and glibc) source.

STANDARDS
Linux.

HISTORY
clone3()

Linux 5.3.

Linux 2.4 and earlier
In the Linux 2.4.x series, CLONE_THREAD generally does not make the parent of the
new thread the same as the parent of the calling process. However, from Linux 2.4.7 to
Linux 2.4.18 the CLONE_THREAD flag implied the CLONE_PARENT flag (as in
Linux 2.6.0 and later).

In Linux 2.4 and earlier, clone() does not take arguments parent_tid , tls, and child_tid .

ia64
On ia64, a different interface is used:

int __clone2(typeof(int (void *)) *fn,
void *stack_base, size_t stack_size,
int flags, void *arg, ...

Linux man-pages 6.16 2025-10-12 139

clone(2) System Calls Manual clone(2)

/* pid_t *parent_tid, struct user_desc *tls,
pid_t *child_tid */);

The prototype shown above is for the glibc wrapper function; for the system call itself,
the prototype can be described as follows (it is identical to the clone() prototype on mi-
croblaze):

long clone2(unsigned long flags, void *stack_base,
int stack_size, /* Size of stack */
int *parent_tid, int *child_tid,
unsigned long tls);

__clone2() operates in the same way as clone(), except that stack_base points to the
lowest address of the child’s stack area, and stack_size specifies the size of the stack
pointed to by stack_base.

NOTES
One use of these system calls is to implement threads: multiple flows of control in a pro-
gram that run concurrently in a shared address space.

The kcmp(2) system call can be used to test whether two processes share various re-
sources such as a file descriptor table, System V semaphore undo operations, or a virtual
address space.

Handlers registered using pthread_atfork(3) are not executed during a clone call.

BUGS
GNU C library versions 2.3.4 up to and including 2.24 contained a wrapper function for
getpid(2) that performed caching of PIDs. This caching relied on support in the glibc
wrapper for clone(), but limitations in the implementation meant that the cache was not
up to date in some circumstances. In particular, if a signal was delivered to the child im-
mediately after the clone() call, then a call to getpid(2) in a handler for the signal could
return the PID of the calling process ("the parent"), if the clone wrapper had not yet had
a chance to update the PID cache in the child. (This discussion ignores the case where
the child was created using CLONE_THREAD, when getpid(2) should return the same
value in the child and in the process that called clone(), since the caller and the child are
in the same thread group. The stale-cache problem also does not occur if the flags argu-
ment includes CLONE_VM.) To get the truth, it was sometimes necessary to use code
such as the following:

#include <syscall.h>

pid_t mypid;

mypid = syscall(SYS_getpid);

Because of the stale-cache problem, as well as other problems noted in getpid(2), the
PID caching feature was removed in glibc 2.25.

EXAMPLES
The following program demonstrates the use of clone() to create a child process that ex-
ecutes in a separate UTS namespace. The child changes the hostname in its UTS name-
space. Both parent and child then display the system hostname, making it possible to

Linux man-pages 6.16 2025-10-12 140

clone(2) System Calls Manual clone(2)

see that the hostname differs in the UTS namespaces of the parent and child. For an ex-
ample of the use of this program, see setns(2).

Within the sample program, we allocate the memory that is to be used for the child’s
stack using mmap(2) rather than malloc(3) for the following reasons:

• mmap(2) allocates a block of memory that starts on a page boundary and is a multi-
ple of the page size. This is useful if we want to establish a guard page (a page with
protection PROT_NONE) at the end of the stack using mprotect(2).

• We can specify the MAP_STACK flag to request a mapping that is suitable for a
stack. For the moment, this flag is a no-op on Linux, but it exists and has effect on
some other systems, so we should include it for portability.

Program source
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>

static int /* Start function for cloned child */
childFunc(void *arg)
{

struct utsname uts;

/* Change hostname in UTS namespace of child. */

if (sethostname(arg, strlen(arg)) == -1)
err(EXIT_FAILURE, "sethostname");

/* Retrieve and display hostname. */

if (uname(&uts) == -1)
err(EXIT_FAILURE, "uname");

printf("uts.nodename in child: %s\n", uts.nodename);

/* Keep the namespace open for a while, by sleeping.
This allows some experimentation--for example, another
process might join the namespace. */

Linux man-pages 6.16 2025-10-12 141

clone(2) System Calls Manual clone(2)

sleep(200);

return 0; /* Child terminates now */
}

#define STACK_SIZE (1024 * 1024) /* Stack size for cloned child */

int
main(int argc, char *argv[])
{

char *stack; /* Start of stack buffer */
char *stackTop; /* End of stack buffer */
pid_t pid;
struct utsname uts;

if (argc < 2) {
fprintf(stderr, "Usage: %s <child-hostname>\n", argv[0]);
exit(EXIT_SUCCESS);

}

/* Allocate memory to be used for the stack of the child. */

stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);

if (stack == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

stackTop = stack + STACK_SIZE; /* Assume stack grows downward */

/* Create child that has its own UTS namespace;
child commences execution in childFunc(). */

pid = clone(childFunc, stackTop, CLONE_NEWUTS | SIGCHLD, argv[1]);
if (pid == -1)

err(EXIT_FAILURE, "clone");
if (munmap(stack, STACK_SIZE))

err(EXIT_FAILURE, "munmap");
printf("clone() returned %jd\n", (intmax_t) pid);

/* Parent falls through to here */

sleep(1); /* Give child time to change its hostname */

/* Display hostname in parent's UTS namespace. This will be
different from hostname in child's UTS namespace. */

if (uname(&uts) == -1)

Linux man-pages 6.16 2025-10-12 142

clone(2) System Calls Manual clone(2)

err(EXIT_FAILURE, "uname");
printf("uts.nodename in parent: %s\n", uts.nodename);

if (waitpid(pid, NULL, 0) == -1) /* Wait for child */
err(EXIT_FAILURE, "waitpid");

printf("child has terminated\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
fork(2), futex(2), getpid(2), gettid(2), kcmp(2), mmap(2), pidfd_open(2),
set_thread_area(2), set_tid_address(2), setns(2), tkill(2), unshare(2), wait(2), capabili-
ties(7), namespaces(7), pthreads(7)

Linux man-pages 6.16 2025-10-12 143

close(2) System Calls Manual close(2)

NAME
close - close a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int close(int fd);

DESCRIPTION
close() closes a file descriptor, so that it no longer refers to any file and may be reused.
Any record locks (see fcntl(2)) held on the file it was associated with, and owned by the
process, are removed regardless of the file descriptor that was used to obtain the lock.
This has some unfortunate consequences and one should be extra careful when using ad-
visory record locking. See fcntl(2) for discussion of the risks and consequences as well
as for the (probably preferred) open file description locks.

If fd is the last file descriptor referring to the underlying open file description (see
open(2)), the resources associated with the open file description are freed; if the file de-
scriptor was the last reference to a file which has been removed using unlink(2), the file
is deleted.

RETURN VALUE
close() returns zero on success. On error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EBADF

fd isn’t a valid open file descriptor.

EINTR
The close() call was interrupted by a signal; see signal(7).

EIO An I/O error occurred.

ENOSPC
EDQUOT

On NFS, these errors are not normally reported against the first write which ex-
ceeds the available storage space, but instead against a subsequent write(2),
fsync(2), or close().

See CAVEATS for a discussion of why close() should not be retried after an error.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
The close-on-exec file descriptor flag can be used to ensure that a file descriptor is auto-
matically closed upon a successful execve(2); see fcntl(2) for details.

Linux man-pages 6.16 2025-10-29 144

close(2) System Calls Manual close(2)

CAVEATS
A successful close does not guarantee that the data has been successfully saved to disk,
as the kernel uses the buffer cache to defer writes. Typically, filesystems do not flush
buffers when a file is closed. If you need to be sure that the data is physically stored on
the underlying disk, use fsync(2). (It will depend on the disk hardware at this point.)

Multithreaded processes and close()
It is probably unwise to close file descriptors while they may be in use by system calls in
other threads in the same process. Since a file descriptor may be reused, there are some
obscure race conditions that may cause unintended side effects.

Furthermore, consider the following scenario where two threads are performing opera-
tions on the same file descriptor:

(1) One thread is blocked in an I/O system call on the file descriptor. For example, it
is trying to write(2) to a pipe that is already full, or trying to read(2) from a stream
socket which currently has no available data.

(2) Another thread closes the file descriptor.

The behavior in this situation varies across systems. On some systems, when the file de-
scriptor is closed, the blocking system call returns immediately with an error.

On Linux (and possibly some other systems), the behavior is different: the blocking I/O
system call holds a reference to the underlying open file description, and this reference
keeps the description open until the I/O system call completes. (See open(2) for a dis-
cussion of open file descriptions.) Thus, the blocking system call in the first thread may
successfully complete after the close() in the second thread.

Dealing with error returns from close()
A careful programmer will check the return value of close(), since it is quite possible
that errors on a previous write(2) operation are reported only on the final close() that re-
leases the open file description. Failing to check the return value when closing a file
may lead to silent loss of data. This can especially be observed with NFS and with disk
quota.

Note, however, that a failure return should be used only for diagnostic purposes (i.e., a
warning to the application that there may still be I/O pending or there may have been
failed I/O) or remedial purposes (e.g., writing the file once more or creating a backup).

Retrying the close() after a failure return is the wrong thing to do, since this may cause a
reused file descriptor from another thread to be closed. This can occur because the
Linux kernel always releases the file descriptor early in the close operation, freeing it for
reuse; the steps that may return an error, such as flushing data to the filesystem or de-
vice, occur only later in the close operation.

Many other implementations similarly always close the file descriptor (except in the
case of EBADF, meaning that the file descriptor was invalid) even if they subsequently
report an error on return from close(). POSIX.1-2008 was silent on this point.

A careful programmer who wants to know about I/O errors may precede close() with a
call to fsync(2).

The EINTR error is a somewhat special case. Regarding the EINTR error,

Linux man-pages 6.16 2025-10-29 145

close(2) System Calls Manual close(2)

POSIX.1-2008 said:

If close() is interrupted by a signal that is to be caught, it shall return -1 with er-
rno set to EINTR and the state of fd is unspecified.

This permits the behavior that occurs on Linux and many other implementations, where,
as with other errors that may be reported by close(), the file descriptor is guaranteed to
be closed. However, it also permits another possibility: that the implementation returns
an EINTR error and keeps the file descriptor open. (According to its documentation,
HP-UX’s close() does this.) The caller must then once more use close() to close the file
descriptor, to avoid file descriptor leaks. This divergence in implementation behaviors
provides a difficult hurdle for portable applications, since on many implementations,
close() must not be called again after an EINTR error, and on at least one, close() must
be called again.

POSIX.1-2024 standardized the behavior of HP-UX, making Linux and many other im-
plementations non-conforming. There are no plans to change the behavior on Linux.

SEE ALSO
close_range(2), fcntl(2), fsync(2), open(2), shutdown(2), unlink(2), fclose(3)

Linux man-pages 6.16 2025-10-29 146

close_range(2) System Calls Manual close_range(2)

NAME
close_range - close all file descriptors in a given range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

#include <linux/close_range.h> /* Definition of CLOSE_RANGE_*
constants */

int close_range(unsigned int first, unsigned int last, int flags);

DESCRIPTION
The close_range() system call closes all open file descriptors from first to last (in-
cluded).

Errors closing a given file descriptor are currently ignored.

flags is a bit mask containing 0 or more of the following:

CLOSE_RANGE_CLOEXEC (since Linux 5.11)
Set the close-on-exec flag on the specified file descriptors, rather than immedi-
ately closing them.

CLOSE_RANGE_UNSHARE
Unshare the specified file descriptors from any other processes before closing
them, avoiding races with other threads sharing the file descriptor table.

RETURN VALUE
On success, close_range() returns 0. On error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EINVAL

flags is not valid, or first is greater than last.

The following can occur with CLOSE_RANGE_UNSHARE (when constructing the
new descriptor table):

EMFILE
The number of open file descriptors exceeds the limit specified in
/proc/sys/fs/nr_open (see proc(5)). This error can occur in situations where that
limit was lowered before a call to close_range() where the
CLOSE_RANGE_UNSHARE flag is specified.

ENOMEM
Insufficient kernel memory was available.

STANDARDS
None.

HISTORY
FreeBSD. Linux 5.9, glibc 2.34.

Linux man-pages 6.16 2025-05-17 147

close_range(2) System Calls Manual close_range(2)

NOTES
Closing all open file descriptors

To avoid blindly closing file descriptors in the range of possible file descriptors, this is
sometimes implemented (on Linux) by listing open file descriptors in /proc/self/fd/ and
calling close(2) on each one. close_range() can take care of this without requiring
/proc and within a single system call, which provides significant performance benefits.

Closing file descriptors before exec
File descriptors can be closed safely using

/* we don’t want anything past stderr here */
close_range(3, ~0U, CLOSE_RANGE_UNSHARE);
execve(....);

CLOSE_RANGE_UNSHARE is conceptually equivalent to

unshare(CLONE_FILES);
close_range(first, last, 0);

but can be more efficient: if the unshared range extends past the current maximum num-
ber of file descriptors allocated in the caller’s file descriptor table (the common case
when last is ~0U), the kernel will unshare a new file descriptor table for the caller up to
first, copying as few file descriptors as possible. This avoids subsequent close(2) calls
entirely; the whole operation is complete once the table is unshared.

Closing files on exec
This is particularly useful in cases where multiple pre-exec setup steps risk conflicting
with each other. For example, setting up a seccomp(2) profile can conflict with a
close_range() call: if the file descriptors are closed before the seccomp(2) profile is set
up, the profile setup can’t use them itself, or control their closure; if the file descriptors
are closed afterwards, the seccomp profile can’t block the close_range() call or any fall-
backs. Using CLOSE_RANGE_CLOEXEC avoids this: the descriptors can be
marked before the seccomp(2) profile is set up, and the profile can control access to
close_range() without affecting the calling process.

EXAMPLES
The program shown below opens the files named in its command-line arguments, dis-
plays the list of files that it has opened (by iterating through the entries in /proc/PID/fd),
uses close_range() to close all file descriptors greater than or equal to 3, and then once
more displays the process’s list of open files. The following example demonstrates the
use of the program:

$ touch /tmp/a /tmp/b /tmp/c;
$./a.out /tmp/a /tmp/b /tmp/c;
/tmp/a opened as FD 3
/tmp/b opened as FD 4
/tmp/c opened as FD 5
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /tmp/a
/proc/self/fd/4 ==> /tmp/b

Linux man-pages 6.16 2025-05-17 148

close_range(2) System Calls Manual close_range(2)

/proc/self/fd/5 ==> /tmp/c
/proc/self/fd/6 ==> /proc/9005/fd
========= About to call close_range() =======
/proc/self/fd/0 ==> /dev/pts/1
/proc/self/fd/1 ==> /dev/pts/1
/proc/self/fd/2 ==> /dev/pts/1
/proc/self/fd/3 ==> /proc/9005/fd

Note that the lines showing the pathname /proc/9005/fd result from the calls to
opendir(3).

Program source

#define _GNU_SOURCE
#include <dirent.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

/* Show the contents of the symbolic links in /proc/self/fd */

static void
show_fds(void)
{

DIR *dirp;
char path[PATH_MAX], target[PATH_MAX];
ssize_t len;
struct dirent *dp;

dirp = opendir("/proc/self/fd");
if (dirp == NULL) {

perror("opendir");
exit(EXIT_FAILURE);

}

for (;;) {
dp = readdir(dirp);
if (dp == NULL)

break;

if (dp->d_type == DT_LNK) {
snprintf(path, sizeof(path), "/proc/self/fd/%s",

dp->d_name);

len = readlink(path, target, sizeof(target));

Linux man-pages 6.16 2025-05-17 149

close_range(2) System Calls Manual close_range(2)

printf("%s ==> %.*s\n", path, (int) len, target);
}

}

closedir(dirp);
}

int
main(int argc, char *argv[])
{

int fd;

for (size_t j = 1; j < argc; j++) {
fd = open(argv[j], O_RDONLY);
if (fd == -1) {

perror(argv[j]);
exit(EXIT_FAILURE);

}
printf("%s opened as FD %d\n", argv[j], fd);

}

show_fds();

printf("========= About to call close_range() =======\n");

if (close_range(3, ~0U, 0) == -1) {
perror("close_range");
exit(EXIT_FAILURE);

}

show_fds();
exit(EXIT_FAILURE);

}

SEE ALSO
close(2)

Linux man-pages 6.16 2025-05-17 150

connect(2) System Calls Manual connect(2)

NAME
connect - initiate a connection on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int connect(int sockfd , const struct sockaddr *addr,
socklen_t addrlen);

DESCRIPTION
The connect() system call connects the socket referred to by the file descriptor sockfd to
the address specified by addr. The addrlen argument specifies the size of addr. The
format of the address in addr is determined by the address space of the socket sockfd;
see socket(2) for further details.

If the socket sockfd is of type SOCK_DGRAM, then addr is the address to which data-
grams are sent by default, and the only address from which datagrams are received. If
the socket is of type SOCK_STREAM or SOCK_SEQPACKET, this call attempts to
make a connection to the socket that is bound to the address specified by addr.

Some protocol sockets (e.g., UNIX domain stream sockets) may successfully connect()
only once.

Some protocol sockets (e.g., datagram sockets in the UNIX and Internet domains) may
use connect() multiple times to change their association.

Some protocol sockets (e.g., TCP sockets as well as datagram sockets in the UNIX and
Internet domains) may dissolve the association by connecting to an address with the
sa_family member of sockaddr set to AF_UNSPEC; thereafter, the socket can be con-
nected to another address. (AF_UNSPEC is supported since Linux 2.2.)

RETURN VALUE
If the connection or binding succeeds, zero is returned. On error, -1 is returned, and er-
rno is set to indicate the error.

ERRORS
The following are general socket errors only. There may be other domain-specific error
codes.

EACCES
For UNIX domain sockets, which are identified by pathname: Write permission
is denied on the socket file, or search permission is denied for one of the directo-
ries in the path prefix. (See also path_resolution(7).)

EACCES
EPERM

The user tried to connect to a broadcast address without having the socket broad-
cast flag enabled or the connection request failed because of a local firewall rule.

EACCES
It can also be returned if an SELinux policy denied a connection (for example, if
there is a policy saying that an HTTP proxy can only connect to ports associated

Linux man-pages 6.16 2025-10-29 151

connect(2) System Calls Manual connect(2)

with HTTP servers, and the proxy tries to connect to a different port).

EADDRINUSE
Local address is already in use.

EADDRNOTAVAIL
(Internet domain sockets) The socket referred to by sockfd had not previously
been bound to an address and, upon attempting to bind it to an ephemeral port, it
was determined that all port numbers in the ephemeral port range are currently in
use. See the discussion of /proc/sys/net/ipv4/ip_local_port_range in ip(7).

EAFNOSUPPORT
The passed address didn’t have the correct address family in its sa_family field.

EAGAIN
For nonblocking UNIX domain sockets, the socket is nonblocking, and the con-
nection cannot be completed immediately. For other socket families, there are
insufficient entries in the routing cache.

EALREADY
The socket is nonblocking and a previous connection attempt has not yet been
completed.

EBADF
sockfd is not a valid open file descriptor.

ECONNREFUSED
A connect() on a stream socket found no one listening on the remote address.

EFAULT
The socket structure address is outside the user’s address space.

EINPROGRESS
The socket is nonblocking and the connection cannot be completed immediately.
(UNIX domain sockets failed with EAGAIN instead.) It is possible to select(2)
or poll(2) for completion by selecting the socket for writing. After select(2) in-
dicates writability, use getsockopt(2) to read the SO_ERROR option at level
SOL_SOCKET to determine whether connect() completed successfully
(SO_ERROR is zero) or unsuccessfully (SO_ERROR is one of the usual error
codes listed here, explaining the reason for the failure).

EINTR
The system call was interrupted by a signal that was caught; see signal(7).

EISCONN
The socket is already connected.

ENETUNREACH
Network is unreachable.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

Linux man-pages 6.16 2025-10-29 152

connect(2) System Calls Manual connect(2)

EPROTOTYPE
The socket type does not support the requested communications protocol. This
error can occur, for example, on an attempt to connect a UNIX domain datagram
socket to a stream socket.

ETIMEDOUT
Timeout while attempting connection. The server may be too busy to accept new
connections. Note that for IP sockets the timeout may be very long when syn-
cookies are enabled on the server.

VERSIONS
Portable programs must ensure that addr.sun_path is a null-terminated string for
AF_UNIX sockets.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.2BSD.

NOTES
If connect() fails, consider the state of the socket as unspecified. Portable applications
should close the socket and create a new one for reconnecting.

EXAMPLES
An example of the use of connect() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), getsockname(2), listen(2), socket(2), path_resolution(7), selinux(8)

Linux man-pages 6.16 2025-10-29 153

copy_file_range(2) System Calls Manual copy_file_range(2)

NAME
copy_file_range - Copy a range of data from one file to another

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <unistd.h>

ssize_t copy_file_range(int fd_in, off_t *_Nullable off_in,
int fd_out, off_t *_Nullable off_out,
size_t size, unsigned int flags);

DESCRIPTION
The copy_file_range() system call performs an in-kernel copy between two file descrip-
tors without the additional cost of transferring data from the kernel to user space and
then back into the kernel. It copies up to size bytes of data from the source file descrip-
tor fd_in to the target file descriptor fd_out, overwriting any data that exists within the
requested range of the target file.

The following semantics apply for off_in, and similar statements apply to off_out:

• If off_in is NULL, then bytes are read from fd_in starting from the file offset, and
the file offset is adjusted by the number of bytes copied.

• If off_in is not NULL, then off_in must point to a buffer that specifies the starting
offset where bytes from fd_in will be read. The file offset of fd_in is not changed,
but off_in is adjusted appropriately.

fd_in and fd_out can refer to the same file. If they refer to the same file, then the
source and target ranges are not allowed to overlap.

The flags argument is provided to allow for future extensions and currently must be set
to 0.

RETURN VALUE
Upon successful completion, copy_file_range() will return the number of bytes copied
between files. This could be less than the size originally requested. If the file offset of
fd_in is at or past the end of file, no bytes are copied, and copy_file_range() returns
zero.

On error, copy_file_range() returns -1 and errno is set to indicate the error.

ERRORS
EBADF

One or more file descriptors are not valid.

EBADF
fd_in is not open for reading; or fd_out is not open for writing.

EBADF
The O_APPEND flag is set for the open file description (see open(2)) referred to
by the file descriptor fd_out.

Linux man-pages 6.16 2025-09-21 154

copy_file_range(2) System Calls Manual copy_file_range(2)

EFBIG
An attempt was made to write at a position past the maximum file offset the ker-
nel supports.

EFBIG
An attempt was made to write a range that exceeds the allowed maximum file
size. The maximum file size differs between filesystem implementations and can
be different from the maximum allowed file offset.

EFBIG
An attempt was made to write beyond the process’s file size resource limit. This
may also result in the process receiving a SIGXFSZ signal.

EINVAL
The flags argument is not 0.

EINVAL
fd_in and fd_out refer to the same file and the source and target ranges overlap.

EINVAL
Either fd_in or fd_out is not a regular file.

EIO A low-level I/O error occurred while copying.

EISDIR
Either fd_in or fd_out refers to a directory.

ENOMEM
Out of memory.

ENOSPC
There is not enough space on the target filesystem to complete the copy.

EOPNOTSUPP (since Linux 5.19)
The filesystem does not support this operation.

EOVERFLOW
The requested source or destination range is too large to represent in the speci-
fied data types.

EPERM
fd_out refers to an immutable file.

ETXTBSY
Either fd_in or fd_out refers to an active swap file.

EXDEV (before Linux 5.3)
The files referred to by fd_in and fd_out are not on the same filesystem.

EXDEV (since Linux 5.19)
The files referred to by fd_in and fd_out are not on the same filesystem, and the
source and target filesystems are not of the same type, or do not support cross-
filesystem copy.

VERSIONS
A major rework of the kernel implementation occurred in Linux 5.3. Areas of the API
that weren’t clearly defined were clarified and the API bounds are much more strictly

Linux man-pages 6.16 2025-09-21 155

copy_file_range(2) System Calls Manual copy_file_range(2)

checked than on earlier kernels.

Since Linux 5.19, cross-filesystem copies can be achieved when both filesystems are of
the same type, and that filesystem implements support for it. See BUGS for behavior
prior to Linux 5.19.

Applications should target the behaviour and requirements of Linux 5.19, that was also
backported to earlier stable kernels.

STANDARDS
Linux, GNU.

HISTORY
Linux 4.5, but glibc 2.27 provides a user-space emulation when it is not available.

NOTES
If fd_in is a sparse file, then copy_file_range() may expand any holes existing in the re-
quested range. Users may benefit from calling copy_file_range() in a loop, and using
the lseek(2) SEEK_DATA and SEEK_HOLE operations to find the locations of data
segments.

copy_file_range() gives filesystems an opportunity to implement "copy acceleration"
techniques, such as the use of reflinks (i.e., two or more inodes that share pointers to the
same copy-on-write disk blocks) or server-side-copy (in the case of NFS).

_FILE_OFFSET_BITS should be defined to be 64 in code that uses non-null off_in or
off_out or that takes the address of copy_file_range, if the code is intended to be
portable to traditional 32-bit x86 and ARM platforms where off_t’s width defaults to 32
bits.

BUGS
In Linux 5.3 to Linux 5.18, cross-filesystem copies were implemented by the kernel, if
the operation was not supported by individual filesystems. However, on some virtual
filesystems, the call failed to copy, while still reporting success.

EXAMPLES
#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd_in, fd_out;
off_t size, ret;
struct stat stat;

Linux man-pages 6.16 2025-09-21 156

copy_file_range(2) System Calls Manual copy_file_range(2)

if (argc != 3) {
fprintf(stderr, "Usage: %s <source> <destination>\n", argv[0]);
exit(EXIT_FAILURE);

}

fd_in = open(argv[1], O_RDONLY);
if (fd_in == -1) {

perror("open (argv[1])");
exit(EXIT_FAILURE);

}

if (fstat(fd_in, &stat) == -1) {
perror("fstat");
exit(EXIT_FAILURE);

}

size = stat.st_size;

fd_out = open(argv[2], O_CREAT | O_WRONLY | O_TRUNC, 0644);
if (fd_out == -1) {

perror("open (argv[2])");
exit(EXIT_FAILURE);

}

do {
ret = copy_file_range(fd_in, NULL, fd_out, NULL, size, 0);
if (ret == -1) {

perror("copy_file_range");
exit(EXIT_FAILURE);

}

size -= ret;
} while (size > 0 && ret > 0);

close(fd_in);
close(fd_out);
exit(EXIT_SUCCESS);

}

SEE ALSO
lseek(2), sendfile(2), splice(2)

Linux man-pages 6.16 2025-09-21 157

create_module(2) System Calls Manual create_module(2)

NAME
create_module - create a loadable module entry

SYNOPSIS
#include <linux/module.h>

[[deprecated]] caddr_t create_module(const char *name, size_t size);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

create_module() attempts to create a loadable module entry and reserve the kernel
memory that will be needed to hold the module. This system call requires privilege.

RETURN VALUE
On success, returns the kernel address at which the module will reside. On error, -1 is
returned and errno is set to indicate the error.

ERRORS
EEXIST

A module by that name already exists.

EFAULT
name is outside the program’s accessible address space.

EINVAL
The requested size is too small even for the module header information.

ENOMEM
The kernel could not allocate a contiguous block of memory large enough for the
module.

ENOSYS
create_module() is not supported in this version of the kernel (e.g., Linux 2.6 or
later).

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity).

STANDARDS
Linux.

HISTORY
Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in glibc
headers, but, through a quirk of history, glibc versions before glibc 2.23 did export an
ABI for this system call. Therefore, in order to employ this system call, it was sufficient
to manually declare the interface in your code; alternatively, you could invoke the sys-
tem call using syscall(2).

SEE ALSO
delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.16 2025-05-17 158

delete_module(2) System Calls Manual delete_module(2)

NAME
delete_module - unload a kernel module

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_delete_module, const char *name, unsigned int flags);

Note: glibc provides no wrapper for delete_module(), necessitating the use of
syscall(2).

DESCRIPTION
The delete_module() system call attempts to remove the unused loadable module entry
identified by name. If the module has an exit function, then that function is executed be-
fore unloading the module. The flags argument is used to modify the behavior of the
system call, as described below. This system call requires privilege.

Module removal is attempted according to the following rules:

(1) If there are other loaded modules that depend on (i.e., refer to symbols defined in)
this module, then the call fails.

(2) Otherwise, if the reference count for the module (i.e., the number of processes
currently using the module) is zero, then the module is immediately unloaded.

(3) If a module has a nonzero reference count, then the behavior depends on the bits
set in flags. In normal usage (see NOTES), the O_NONBLOCK flag is always
specified, and the O_TRUNC flag may additionally be specified.

The various combinations for flags have the following effect:

flags == O_NONBLOCK
The call returns immediately, with an error.

flags == (O_NONBLOCK | O_TRUNC)
The module is unloaded immediately, regardless of whether it has a
nonzero reference count.

(flags & O_NONBLOCK) == 0
If flags does not specify O_NONBLOCK, the following steps occur:

• The module is marked so that no new references are permitted.

• If the module’s reference count is nonzero, the caller is placed in an
uninterruptible sleep state (TASK_UNINTERRUPTIBLE) until the
reference count is zero, at which point the call unblocks.

• The module is unloaded in the usual way.

The O_TRUNC flag has one further effect on the rules described above. By default, if a
module has an init function but no exit function, then an attempt to remove the module
fails. However, if O_TRUNC was specified, this requirement is bypassed.

Linux man-pages 6.16 2025-10-05 159

delete_module(2) System Calls Manual delete_module(2)

Using the O_TRUNC flag is dangerous! If the kernel was not built with CON-
FIG_MODULE_FORCE_UNLOAD, this flag is silently ignored. (Normally, CON-
FIG_MODULE_FORCE_UNLOAD is enabled.) Using this flag taints the kernel
(TAINT_FORCED_RMMOD).

RETURN VALUE
On success, zero is returned. On error, -1 is returned and errno is set to indicate the er-
ror.

ERRORS
EBUSY

The module is not "live" (i.e., it is still being initialized or is already marked for
removal); or, the module has an init function but has no exit function, and
O_TRUNC was not specified in flags.

EFAULT
name refers to a location outside the process’s accessible address space.

ENOENT
No module by that name exists.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity), or module unloading is disabled (see /proc/sys/kernel/modules_disabled in
proc(5)).

EWOULDBLOCK
Other modules depend on this module; or, O_NONBLOCK was specified in
flags, but the reference count of this module is nonzero and O_TRUNC was not
specified in flags.

STANDARDS
Linux.

HISTORY
The delete_module() system call is not supported by glibc. No declaration is provided
in glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did ex-
port an ABI for this system call. Therefore, in order to employ this system call, it is (be-
fore glibc 2.23) sufficient to manually declare the interface in your code; alternatively,
you can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the system call took only one argument:

int delete_module(const char *name);

If name is NULL, all unused modules marked auto-clean are removed.

Some further details of differences in the behavior of delete_module() in Linux 2.4 and
earlier are not currently explained in this manual page.

NOTES
The uninterruptible sleep that may occur if O_NONBLOCK is omitted from flags is
considered undesirable, because the sleeping process is left in an unkillable state. As at
Linux 3.7, specifying O_NONBLOCK is optional, but in future kernels it is likely to

Linux man-pages 6.16 2025-10-05 160

delete_module(2) System Calls Manual delete_module(2)

become mandatory.

SEE ALSO
create_module(2), init_module(2), query_module(2), lsmod(8), modprobe(8), rmmod(8)

Linux man-pages 6.16 2025-10-05 161

dup(2) System Calls Manual dup(2)

NAME
dup, dup2, dup3 - duplicate a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int dup(int oldfd);
int dup2(int oldfd , int newfd);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of O_* constants */
#include <unistd.h>

int dup3(int oldfd , int newfd , int flags);

DESCRIPTION
The dup() system call allocates a new file descriptor that refers to the same open file de-
scription as the descriptor oldfd . (For an explanation of open file descriptions, see
open(2).) The new file descriptor number is guaranteed to be the lowest-numbered file
descriptor that was unused in the calling process.

After a successful return, the old and new file descriptors may be used interchangeably.
Since the two file descriptors refer to the same open file description, they share file off-
set and file status flags; for example, if the file offset is modified by using lseek(2) on
one of the file descriptors, the offset is also changed for the other file descriptor.

The two file descriptors do not share file descriptor flags (the close-on-exec flag). The
close-on-exec flag (FD_CLOEXEC; see fcntl(2)) for the duplicate descriptor is off.

dup2()
The dup2() system call performs the same task as dup(), but instead of using the lowest-
numbered unused file descriptor, it uses the file descriptor number specified in newfd .
In other words, the file descriptor newfd is adjusted so that it now refers to the same
open file description as oldfd .

If the file descriptor newfd was previously open, it is closed before being reused; the
close is performed silently (i.e., any errors during the close are not reported by dup2())

The steps of closing and reusing the file descriptor newfd are performed atomically.
This is important, because trying to implement equivalent functionality using close(2)
and dup() would be subject to race conditions, whereby newfd might be reused between
the two steps. Such reuse could happen because the main program is interrupted by a
signal handler that allocates a file descriptor, or because a parallel thread allocates a file
descriptor.

Note the following points:

• If oldfd is not a valid file descriptor, then the call fails, and newfd is not closed.

• If oldfd is a valid file descriptor, and newfd has the same value as oldfd , then dup2()
does nothing, and returns newfd .

Linux man-pages 6.16 2025-10-29 162

dup(2) System Calls Manual dup(2)

dup3()
dup3() is the same as dup2(), except that:

• The caller can force the close-on-exec flag to be set for the new file descriptor by
specifying O_CLOEXEC in flags. See the description of the same flag in open(2)
for reasons why this may be useful.

• If oldfd equals newfd , then dup3() fails with the error EINVAL.

RETURN VALUE
On success, these system calls return the new file descriptor. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EBADF

oldfd isn’t an open file descriptor.

EBADF
newfd is out of the allowed range for file descriptors (see the discussion of
RLIMIT_NOFILE in getrlimit(2)).

EBUSY
(Linux only) This may be returned by dup2() or dup3() during a race condition
with open(2) and dup().

EINTR
The dup2() or dup3() call was interrupted by a signal; see signal(7).

EINVAL
(dup3()) flags contain an invalid value.

EINVAL
(dup3()) oldfd was equal to newfd .

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the discussion of RLIMIT_NOFILE in getrlimit(2)).

ENOMEM
Insufficient kernel memory was available.

STANDARDS
POSIX.1-2024.

HISTORY
dup()
dup2()

POSIX.1-2001, SVr4, 4.3BSD.

dup3()
POSIX.1-2024. Linux 2.6.27, glibc 2.9.

NOTES
The error returned by dup2() is different from that returned by fcntl(..., F_DUPFD, ...)
when newfd is out of range. On some systems, dup2() also sometimes returns EINVAL
like F_DUPFD.

Linux man-pages 6.16 2025-10-29 163

dup(2) System Calls Manual dup(2)

If newfd was open, any errors that would have been reported at close(2) time are lost. If
this is of concern, then—unless the program is single-threaded and does not allocate file
descriptors in signal handlers—the correct approach is not to close newfd before calling
dup2(), because of the race condition described above. Instead, code something like the
following could be used:

/* Obtain a duplicate of 'newfd' that can subsequently
be used to check for close() errors; an EBADF error
means that 'newfd' was not open. */

tmpfd = dup(newfd);
if (tmpfd == -1 && errno != EBADF) {

/* Handle unexpected dup() error. */
}

/* Atomically duplicate 'oldfd' on 'newfd'. */

if (dup2(oldfd, newfd) == -1) {
/* Handle dup2() error. */

}

/* Now check for close() errors on the file originally
referred to by 'newfd'. */

if (tmpfd != -1) {
if (close(tmpfd) == -1) {

/* Handle errors from close. */
}

}

SEE ALSO
close(2), fcntl(2), open(2), pidfd_getfd(2)

Linux man-pages 6.16 2025-10-29 164

epoll_create(2) System Calls Manual epoll_create(2)

NAME
epoll_create, epoll_create1 - open an epoll file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h>

int epoll_create(int size);
int epoll_create1(int flags);

DESCRIPTION
epoll_create() creates a new epoll(7) instance. Since Linux 2.6.8, the size argument is
ignored, but must be greater than zero; see HISTORY.

epoll_create() returns a file descriptor referring to the new epoll instance. This file de-
scriptor is used for all the subsequent calls to the epoll interface. When no longer re-
quired, the file descriptor returned by epoll_create() should be closed by using close(2).
When all file descriptors referring to an epoll instance have been closed, the kernel de-
stroys the instance and releases the associated resources for reuse.

epoll_create1()
If flags is 0, then, other than the fact that the obsolete size argument is dropped,
epoll_create1() is the same as epoll_create(). The following value can be included in
flags to obtain different behavior:

EPOLL_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

RETURN VALUE
On success, these system calls return a file descriptor (a nonnegative integer). On error,
-1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

size is not positive.

EINVAL
(epoll_create1()) Invalid value specified in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
There was insufficient memory to create the kernel object.

STANDARDS
Linux.

Linux man-pages 6.16 2025-09-21 165

epoll_create(2) System Calls Manual epoll_create(2)

HISTORY
epoll_create()

Linux 2.6, glibc 2.3.2.

epoll_create1()
Linux 2.6.27, glibc 2.9.

In the initial epoll_create() implementation, the size argument informed the kernel of
the number of file descriptors that the caller expected to add to the epoll instance. The
kernel used this information as a hint for the amount of space to initially allocate in in-
ternal data structures describing events. (If necessary, the kernel would allocate more
space if the caller’s usage exceeded the hint given in size.) Nowadays, this hint is no
longer required (the kernel dynamically sizes the required data structures without need-
ing the hint), but size must still be greater than zero, in order to ensure backward com-
patibility when new epoll applications are run on older kernels.

Prior to Linux 2.6.29, a /proc/sys/fs/epoll/max_user_instances kernel parameter limited
live epolls for each real user ID, and caused epoll_create() to fail with EMFILE on
overrun.

SEE ALSO
close(2), epoll_ctl(2), epoll_wait(2), ioctl_eventpoll(2), epoll(7)

Linux man-pages 6.16 2025-09-21 166

epoll_ctl(2) System Calls Manual epoll_ctl(2)

NAME
epoll_ctl - control interface for an epoll file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h>

int epoll_ctl(int epfd , int op, int fd ,
struct epoll_event *_Nullable event);

DESCRIPTION
This system call is used to add, modify, or remove entries in the interest list of the
epoll(7) instance referred to by the file descriptor epfd . It requests that the operation op
be performed for the target file descriptor, fd .

Valid values for the op argument are:

EPOLL_CTL_ADD
Add an entry to the interest list of the epoll file descriptor, epfd . The entry in-
cludes the file descriptor, fd , a reference to the corresponding open file descrip-
tion (see epoll(7) and open(2)), and the settings specified in event.

EPOLL_CTL_MOD
Change the settings associated with fd in the interest list to the new settings
specified in event.

EPOLL_CTL_DEL
Remove (deregister) the target file descriptor fd from the interest list. The event
argument is ignored and can be NULL (but see BUGS below).

The event argument describes the object linked to the file descriptor fd . The struct
epoll_event is described in epoll_event(3type).

The data member of the epoll_event structure specifies data that the kernel should save
and then return (via epoll_wait(2)) when this file descriptor becomes ready.

The events member of the epoll_event structure is a bit mask composed by ORing to-
gether zero or more event types, returned by epoll_wait(2), and input flags, which affect
its behaviour, but aren’t returned. The available event types are:

EPOLLIN
The associated file is available for read(2) operations.

EPOLLOUT
The associated file is available for write(2) operations.

EPOLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connection.
(This flag is especially useful for writing simple code to detect peer shutdown
when using edge-triggered monitoring.)

EPOLLPRI
There is an exceptional condition on the file descriptor. See the discussion of
POLLPRI in poll(2).

Linux man-pages 6.16 2025-09-21 167

epoll_ctl(2) System Calls Manual epoll_ctl(2)

EPOLLERR
Error condition happened on the associated file descriptor. This event is also re-
ported for the write end of a pipe when the read end has been closed.

epoll_wait(2) will always report for this event; it is not necessary to set it in
events when calling epoll_ctl().

EPOLLHUP
Hang up happened on the associated file descriptor.

epoll_wait(2) will always wait for this event; it is not necessary to set it in events
when calling epoll_ctl().

Note that when reading from a channel such as a pipe or a stream socket, this
event merely indicates that the peer closed its end of the channel. Subsequent
reads from the channel will return 0 (end of file) only after all outstanding data in
the channel has been consumed.

And the available input flags are:

EPOLLET
Requests edge-triggered notification for the associated file descriptor. The de-
fault behavior for epoll is level-triggered. See epoll(7) for more detailed infor-
mation about edge-triggered and level-triggered notification.

EPOLLONESHOT (since Linux 2.6.2)
Requests one-shot notification for the associated file descriptor. This means that
after an event notified for the file descriptor by epoll_wait(2), the file descriptor
is disabled in the interest list and no other events will be reported by the epoll in-
terface. The user must call epoll_ctl() with EPOLL_CTL_MOD to rearm the
file descriptor with a new event mask.

EPOLLWAKEUP (since Linux 3.5)
If EPOLLONESHOT and EPOLLET are clear and the process has the
CAP_BLOCK_SUSPEND capability, ensure that the system does not enter
"suspend" or "hibernate" while this event is pending or being processed. The
event is considered as being "processed" from the time when it is returned by a
call to epoll_wait(2) until the next call to epoll_wait(2) on the same epoll(7) file
descriptor, the closure of that file descriptor, the removal of the event file de-
scriptor with EPOLL_CTL_DEL, or the clearing of EPOLLWAKEUP for the
event file descriptor with EPOLL_CTL_MOD. See also BUGS.

EPOLLEXCLUSIVE (since Linux 4.5)
Sets an exclusive wakeup mode for the epoll file descriptor that is being attached
to the target file descriptor, fd . When a wakeup event occurs and multiple epoll
file descriptors are attached to the same target file using EPOLLEXCLUSIVE,
one or more of the epoll file descriptors will receive an event with epoll_wait(2).
The default in this scenario (when EPOLLEXCLUSIVE is not set) is for all
epoll file descriptors to receive an event. EPOLLEXCLUSIVE is thus useful
for avoiding thundering herd problems in certain scenarios.

If the same file descriptor is in multiple epoll instances, some with the
EPOLLEXCLUSIVE flag, and others without, then events will be provided to

Linux man-pages 6.16 2025-09-21 168

epoll_ctl(2) System Calls Manual epoll_ctl(2)

all epoll instances that did not specify EPOLLEXCLUSIVE, and at least one of
the epoll instances that did specify EPOLLEXCLUSIVE.

The following values may be specified in conjunction with EPOLLEXCLU-
SIVE: EPOLLIN, EPOLLOUT, EPOLLWAKEUP, and EPOLLET.
EPOLLHUP and EPOLLERR can also be specified, but this is not required: as
usual, these events are always reported if they occur, regardless of whether they
are specified in events. Attempts to specify other values in events yield the error
EINVAL.

EPOLLEXCLUSIVE may be used only in an EPOLL_CTL_ADD operation;
attempts to employ it with EPOLL_CTL_MOD yield an error. If EPOLLEX-
CLUSIVE has been set using epoll_ctl(), then a subsequent
EPOLL_CTL_MOD on the same epfd , fd pair yields an error. A call to
epoll_ctl() that specifies EPOLLEXCLUSIVE in events and specifies the target
file descriptor fd as an epoll instance will likewise fail. The error in all of these
cases is EINVAL.

RETURN VALUE
When successful, epoll_ctl() returns zero. When an error occurs, epoll_ctl() returns -1
and errno is set to indicate the error.

ERRORS
EBADF

epfd or fd is not a valid file descriptor.

EEXIST
op was EPOLL_CTL_ADD, and the supplied file descriptor fd is already regis-
tered with this epoll instance.

EINVAL
epfd is not an epoll file descriptor, or fd is the same as epfd , or the requested op-
eration op is not supported by this interface.

EINVAL
An invalid event type was specified along with EPOLLEXCLUSIVE in events.

EINVAL
op was EPOLL_CTL_MOD and events included EPOLLEXCLUSIVE.

EINVAL
op was EPOLL_CTL_MOD and the EPOLLEXCLUSIVE flag has previously
been applied to this epfd , fd pair.

EINVAL
EPOLLEXCLUSIVE was specified in event and fd refers to an epoll instance.

ELOOP
fd refers to an epoll instance and this EPOLL_CTL_ADD operation would re-
sult in a circular loop of epoll instances monitoring one another or a nesting
depth of epoll instances greater than 5.

Linux man-pages 6.16 2025-09-21 169

epoll_ctl(2) System Calls Manual epoll_ctl(2)

ENOENT
op was EPOLL_CTL_MOD or EPOLL_CTL_DEL, and fd is not registered
with this epoll instance.

ENOMEM
There was insufficient memory to handle the requested op control operation.

ENOSPC
The limit imposed by /proc/sys/fs/epoll/max_user_watches was encountered
while trying to register (EPOLL_CTL_ADD) a new file descriptor on an epoll
instance. See epoll(7) for further details.

EPERM
The target file fd does not support epoll. This error can occur if fd refers to, for
example, a regular file or a directory.

STANDARDS
Linux.

HISTORY
Linux 2.6, glibc 2.3.2.

NOTES
The epoll interface supports all file descriptors that support poll(2).

BUGS
Before Linux 2.6.9, the EPOLL_CTL_DEL operation required a non-null pointer in
event, even though this argument is ignored. Since Linux 2.6.9, event can be specified
as NULL when using EPOLL_CTL_DEL. Applications that need to be portable to
kernels before Linux 2.6.9 should specify a non-null pointer in event.

If EPOLLWAKEUP is specified in flags, but the caller does not have the
CAP_BLOCK_SUSPEND capability, then the EPOLLWAKEUP flag is silently ig-
nored . This unfortunate behavior is necessary because no validity checks were per-
formed on the flags argument in the original implementation, and the addition of the
EPOLLWAKEUP with a check that caused the call to fail if the caller did not have the
CAP_BLOCK_SUSPEND capability caused a breakage in at least one existing user-
space application that happened to randomly (and uselessly) specify this bit. A robust
application should therefore double check that it has the CAP_BLOCK_SUSPEND ca-
pability if attempting to use the EPOLLWAKEUP flag.

SEE ALSO
epoll_create(2), epoll_wait(2), ioctl_eventpoll(2), poll(2), epoll(7)

Linux man-pages 6.16 2025-09-21 170

epoll_wait(2) System Calls Manual epoll_wait(2)

NAME
epoll_wait, epoll_pwait, epoll_pwait2 - wait for an I/O event on an epoll file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h>

int epoll_wait(int n;
int epfd , struct epoll_event events[n], int n,
int timeout);

int epoll_pwait(int n;
int epfd , struct epoll_event events[n], int n,
int timeout,
const sigset_t *_Nullable sigmask);

int epoll_pwait2(int n;
int epfd , struct epoll_event events[n], int n,
const struct timespec *_Nullable timeout,
const sigset_t *_Nullable sigmask);

DESCRIPTION
The epoll_wait() system call waits for events on the epoll(7) instance referred to by the
file descriptor epfd . The buffer pointed to by events is used to return information from
the ready list about file descriptors in the interest list that have some events available.
Up to n are returned by epoll_wait(). The n argument must be greater than zero.

The timeout argument specifies the number of milliseconds that epoll_wait() will block.
Time is measured against the CLOCK_MONOTONIC clock.

A call to epoll_wait() will block until either:

• a file descriptor delivers an event;

• the call is interrupted by a signal handler; or

• the timeout expires.

Note that the timeout interval will be rounded up to the system clock granularity, and
kernel scheduling delays mean that the blocking interval may overrun by a small
amount. Specifying a timeout of -1 causes epoll_wait() to block indefinitely, while
specifying a timeout equal to zero causes epoll_wait() to return immediately, even if no
events are available.

The struct epoll_event is described in epoll_event(3type).

The data field of each returned epoll_event structure contains the same data as was
specified in the most recent call to epoll_ctl(2) (EPOLL_CTL_ADD,
EPOLL_CTL_MOD) for the corresponding open file descriptor.

The events field is a bit mask that indicates the events that have occurred for the corre-
sponding open file description. See epoll_ctl(2) for a list of the bits that may appear in
this mask.

Linux man-pages 6.16 2025-09-21 171

epoll_wait(2) System Calls Manual epoll_wait(2)

epoll_pwait()
The relationship between epoll_wait() and epoll_pwait() is analogous to the relation-
ship between select(2) and pselect(2): like pselect(2), epoll_pwait() allows an applica-
tion to safely wait until either a file descriptor becomes ready or until a signal is caught.

The following epoll_pwait() call:

ready = epoll_pwait(epfd, &events, n, timeout, &sigmask);

is equivalent to atomically executing the following calls:

sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = epoll_wait(epfd, &events, n, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The sigmask argument may be specified as NULL, in which case epoll_pwait() is
equivalent to epoll_wait().

epoll_pwait2()
The epoll_pwait2() system call is equivalent to epoll_pwait() except for the timeout ar-
gument. It takes an argument of type timespec to be able to specify nanosecond resolu-
tion timeout. This argument functions the same as in pselect(2) and ppoll(2). If timeout
is NULL, then epoll_pwait2() can block indefinitely.

RETURN VALUE
On success, epoll_wait() returns the number of file descriptors ready for the requested
I/O operation, or zero if no file descriptor became ready during the requested timeout
milliseconds. On failure, epoll_wait() returns -1 and errno is set to indicate the error.

ERRORS
EBADF

epfd is not a valid file descriptor.

EFAULT
The memory area pointed to by events is not accessible with write permissions.

EINTR
The call was interrupted by a signal handler before either (1) any of the re-
quested events occurred or (2) the timeout expired; see signal(7).

EINVAL
epfd is not an epoll file descriptor, or n is less than or equal to zero.

STANDARDS
Linux.

HISTORY
epoll_wait()

Linux 2.6, glibc 2.3.2.

epoll_pwait()
Linux 2.6.19, glibc 2.6.

Linux man-pages 6.16 2025-09-21 172

epoll_wait(2) System Calls Manual epoll_wait(2)

epoll_pwait2()
Linux 5.11.

NOTES
While one thread is blocked in a call to epoll_wait(), it is possible for another thread to
add a file descriptor to the waited-upon epoll instance. If the new file descriptor be-
comes ready, it will cause the epoll_wait() call to unblock.

If more than n file descriptors are ready when epoll_wait() is called, then successive
epoll_wait() calls will round robin through the set of ready file descriptors. This behav-
ior helps avoid starvation scenarios, where a process fails to notice that additional file
descriptors are ready because it focuses on a set of file descriptors that are already
known to be ready.

Note that it is possible to call epoll_wait() on an epoll instance whose interest list is cur-
rently empty (or whose interest list becomes empty because file descriptors are closed or
removed from the interest in another thread). The call will block until some file descrip-
tor is later added to the interest list (in another thread) and that file descriptor becomes
ready.

C library/kernel differences
The raw epoll_pwait() and epoll_pwait2() system calls have a sixth argument, size_t
sigsetsize, which specifies the size in bytes of the sigmask argument. The glibc
epoll_pwait() wrapper function specifies this argument as a fixed value (equal to
sizeof(sigset_t)).

BUGS
Before Linux 2.6.37, a timeout value larger than approximately LONG_MAX / HZ mil-
liseconds is treated as -1 (i.e., infinity). Thus, for example, on a system where
sizeof(long) is 4 and the kernel HZ value is 1000, this means that timeouts greater than
35.79 minutes are treated as infinity.

SEE ALSO
epoll_create(2), epoll_ctl(2), epoll(7)

Linux man-pages 6.16 2025-09-21 173

eventfd(2) System Calls Manual eventfd(2)

NAME
eventfd - create a file descriptor for event notification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/eventfd.h>

int eventfd(unsigned int initval, int flags);

DESCRIPTION
eventfd() creates an "eventfd object" that can be used as an event wait/notify mechanism
by user-space applications, and by the kernel to notify user-space applications of events.
The object contains an unsigned 64-bit integer (uint64_t) counter that is maintained by
the kernel. This counter is initialized with the value specified in the argument initval.

As its return value, eventfd() returns a new file descriptor that can be used to refer to the
eventfd object.

The following values may be bitwise ORed in flags to change the behavior of eventfd():

EFD_CLOEXEC (since Linux 2.6.27)
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

EFD_NONBLOCK (since Linux 2.6.27)
Set the O_NONBLOCK file status flag on the open file description (see
open(2)) referred to by the new file descriptor. Using this flag saves extra calls
to fcntl(2) to achieve the same result.

EFD_SEMAPHORE (since Linux 2.6.30)
Provide semaphore-like semantics for reads from the new file descriptor. See be-
low.

Up to Linux 2.6.26, the flags argument is unused, and must be specified as zero.

The following operations can be performed on the file descriptor returned by eventfd():

read(2)
Each successful read(2) returns an 8-byte integer. A read(2) fails with the error
EINVAL if the size of the supplied buffer is less than 8 bytes.

The value returned by read(2) is in host byte order—that is, the native byte order
for integers on the host machine.

The semantics of read(2) depend on whether the eventfd counter currently has a
nonzero value and whether the EFD_SEMAPHORE flag was specified when
creating the eventfd file descriptor:

• If EFD_SEMAPHORE was not specified and the eventfd counter has a
nonzero value, then a read(2) returns 8 bytes containing that value, and the
counter’s value is reset to zero.

Linux man-pages 6.16 2025-09-21 174

eventfd(2) System Calls Manual eventfd(2)

• If EFD_SEMAPHORE was specified and the eventfd counter has a nonzero
value, then a read(2) returns 8 bytes containing the value 1, and the counter’s
value is decremented by 1.

• If the eventfd counter is zero at the time of the call to read(2), then the call
either blocks until the counter becomes nonzero (at which time, the read(2)
proceeds as described above) or fails with the error EAGAIN if the file de-
scriptor has been made nonblocking.

write(2)
A write(2) call adds the 8-byte integer value supplied in its buffer to the counter.
The maximum value that may be stored in the counter is the largest unsigned
64-bit value minus 1 (i.e., 0xfffffffffffffffe). If the addition would cause the
counter’s value to exceed the maximum, then the write(2) either blocks until a
read(2) is performed on the file descriptor, or fails with the error EAGAIN if the
file descriptor has been made nonblocking.

A write(2) fails with the error EINVAL if the size of the supplied buffer is less
than 8 bytes, or if an attempt is made to write the value 0xffffffffffffffff.

poll(2)
select(2)
(and similar)

The returned file descriptor supports poll(2) (and analogously epoll(7)) and se-
lect(2), as follows:

• The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if the counter has a value greater than 0.

• The file descriptor is writable (the select(2) writefds argument; the poll(2)
POLLOUT flag) if it is possible to write a value of at least "1" without
blocking.

• If an overflow of the counter value was detected, then select(2) indicates the
file descriptor as being both readable and writable, and poll(2) returns a
POLLERR event. As noted above, write(2) can never overflow the counter.
However an overflow can occur if 2^64 eventfd "signal posts" were per-
formed by the KAIO subsystem (theoretically possible, but practically un-
likely). If an overflow has occurred, then read(2) will return that maximum
uint64_t value (i.e., 0xffffffffffffffff).

The eventfd file descriptor also supports the other file-descriptor multiplexing
APIs: pselect(2) and ppoll(2).

close(2)
When the file descriptor is no longer required it should be closed. When all file
descriptors associated with the same eventfd object have been closed, the re-
sources for object are freed by the kernel.

A copy of the file descriptor created by eventfd() is inherited by the child produced by
fork(2). The duplicate file descriptor is associated with the same eventfd object. File
descriptors created by eventfd() are preserved across execve(2), unless the close-on-exec
flag has been set.

Linux man-pages 6.16 2025-09-21 175

eventfd(2) System Calls Manual eventfd(2)

RETURN VALUE
On success, eventfd() returns a new eventfd file descriptor. On error, -1 is returned and
errno is set to indicate the error.

ERRORS
EINVAL

An unsupported value was specified in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient memory to create a new eventfd file descriptor.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeeventfd()

VERSIONS
C library/kernel differences

There are two underlying Linux system calls: eventfd() and the more recent eventfd2().
The former system call does not implement a flags argument. The latter system call im-
plements the flags values described above. The glibc wrapper function will use
eventfd2() where it is available.

Additional glibc features
The GNU C library defines an additional type, and two functions that attempt to abstract
some of the details of reading and writing on an eventfd file descriptor:

typedef uint64_t eventfd_t;

int eventfd_read(int fd, eventfd_t *value);
int eventfd_write(int fd, eventfd_t value);

The functions perform the read and write operations on an eventfd file descriptor, return-
ing 0 if the correct number of bytes was transferred, or -1 otherwise.

STANDARDS
Linux, GNU.

HISTORY
eventfd()

Linux 2.6.22, glibc 2.8.

eventfd2()
Linux 2.6.27 (see VERSIONS). Since glibc 2.9, the eventfd() wrapper will em-
ploy the eventfd2() system call, if it is supported by the kernel.

Linux man-pages 6.16 2025-09-21 176

eventfd(2) System Calls Manual eventfd(2)

NOTES
Applications can use an eventfd file descriptor instead of a pipe (see pipe(2)) in all cases
where a pipe is used simply to signal events. The kernel overhead of an eventfd file de-
scriptor is much lower than that of a pipe, and only one file descriptor is required (versus
the two required for a pipe).

When used in the kernel, an eventfd file descriptor can provide a bridge from kernel to
user space, allowing, for example, functionalities like KAIO (kernel AIO) to signal to a
file descriptor that some operation is complete.

A key point about an eventfd file descriptor is that it can be monitored just like any other
file descriptor using select(2), poll(2), or epoll(7). This means that an application can si-
multaneously monitor the readiness of "traditional" files and the readiness of other ker-
nel mechanisms that support the eventfd interface. (Without the eventfd() interface,
these mechanisms could not be multiplexed via select(2), poll(2), or epoll(7).)

The current value of an eventfd counter can be viewed via the entry for the correspond-
ing file descriptor in the process’s /proc/ pid /fdinfo directory. See proc(5) for further de-
tails.

EXAMPLES
The following program creates an eventfd file descriptor and then forks to create a child
process. While the parent briefly sleeps, the child writes each of the integers supplied in
the program’s command-line arguments to the eventfd file descriptor. When the parent
has finished sleeping, it reads from the eventfd file descriptor.

The following shell session shows a sample run of the program:

$./a.out 1 2 4 7 14
Child writing 1 to efd
Child writing 2 to efd
Child writing 4 to efd
Child writing 7 to efd
Child writing 14 to efd
Child completed write loop
Parent about to read
Parent read 28 (0x1c) from efd

Program source

#include <err.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/eventfd.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

Linux man-pages 6.16 2025-09-21 177

eventfd(2) System Calls Manual eventfd(2)

int efd;
uint64_t u;
ssize_t s;

if (argc < 2) {
fprintf(stderr, "Usage: %s <num>...\n", argv[0]);
exit(EXIT_FAILURE);

}

efd = eventfd(0, 0);
if (efd == -1)

err(EXIT_FAILURE, "eventfd");

switch (fork()) {
case 0:

for (size_t j = 1; j < argc; j++) {
printf("Child writing %s to efd\n", argv[j]);
u = strtoull(argv[j], NULL, 0);

/* strtoull() allows various bases */
s = write(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))

err(EXIT_FAILURE, "write");
}
printf("Child completed write loop\n");

exit(EXIT_SUCCESS);

default:
sleep(2);

printf("Parent about to read\n");
s = read(efd, &u, sizeof(uint64_t));
if (s != sizeof(uint64_t))

err(EXIT_FAILURE, "read");
printf("Parent read %"PRIu64" (%#"PRIx64") from efd\n", u, u);
exit(EXIT_SUCCESS);

case -1:
err(EXIT_FAILURE, "fork");

}
}

SEE ALSO
futex(2), pipe(2), poll(2), read(2), select(2), signalfd(2), timerfd_create(2), write(2),
epoll(7), sem_overview(7)

Linux man-pages 6.16 2025-09-21 178

execve(2) System Calls Manual execve(2)

NAME
execve - execute program

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int execve(const char *path, char *const _Nullable argv[],
char *const _Nullable envp[]);

DESCRIPTION
execve() executes the program referred to by path. This causes the program that is cur-
rently being run by the calling process to be replaced with a new program, with newly
initialized stack, heap, and (initialized and uninitialized) data segments.

path must be either a binary executable, or a script starting with a line of the form:

#!interpreter [optional-arg]

For details of the latter case, see "Interpreter scripts" below.

argv is an array of pointers to strings passed to the new program as its command-line ar-
guments. By convention, the first of these strings (i.e., argv[0]) should contain the file-
name associated with the file being executed. The argv array must be terminated by a
null pointer. (Thus, in the new program, argv[argc] will be a null pointer.)

envp is an array of pointers to strings, conventionally of the form key=value, which are
passed as the environment of the new program. The envp array must be terminated by a
null pointer.

This manual page describes the Linux system call in detail; for an overview of the
nomenclature and the many, often preferable, standardised variants of this function pro-
vided by libc, including ones that search the PATH environment variable, see exec(3).

The argument vector and environment can be accessed by the new program’s main func-
tion, when it is defined as:

int main(int argc, char *argv[], char *envp[])

Note, however, that the use of a third argument to the main function is not specified in
POSIX.1; according to POSIX.1, the environment should be accessed via the external
variable environ(7).

execve() does not return on success, and the text, initialized data, uninitialized data
(bss), and stack of the calling process are overwritten according to the contents of the
newly loaded program.

If the current program is being ptraced, a SIGTRAP signal is sent to it after a successful
execve().

If the set-user-ID bit is set on the program file referred to by path, then the effective user
ID of the calling process is changed to that of the owner of the program file. Similarly,
if the set-group-ID bit is set on the program file, then the effective group ID of the call-
ing process is set to the group of the program file.

Linux man-pages 6.16 2025-10-29 179

execve(2) System Calls Manual execve(2)

The aforementioned transformations of the effective IDs are not performed (i.e., the set-
user-ID and set-group-ID bits are ignored) if any of the following is true:

• the no_new_privs attribute is set for the calling thread (see prctl(2));

• the underlying filesystem is mounted nosuid (the MS_NOSUID flag for mount(2));
or

• the calling process is being ptraced.

The capabilities of the program file (see capabilities(7)) are also ignored if any of the
above are true.

The effective user ID of the process is copied to the saved set-user-ID; similarly, the ef-
fective group ID is copied to the saved set-group-ID. This copying takes place after any
effective ID changes that occur because of the set-user-ID and set-group-ID mode bits.

The process’s real UID and real GID, as well as its supplementary group IDs, are un-
changed by a call to execve().

If the executable is an a.out dynamically linked binary executable containing shared-li-
brary stubs, the Linux dynamic linker ld.so(8) is called at the start of execution to bring
needed shared objects into memory and link the executable with them.

If the executable is a dynamically linked ELF executable, the interpreter named in the
PT_INTERP segment is used to load the needed shared objects. This interpreter is typi-
cally /lib/ld-linux.so.2 for binaries linked with glibc (see ld-linux.so(8)).

Effect on process attributes
All process attributes are preserved during an execve(), except the following:

• The dispositions of any signals that are being caught are reset to the default (sig-
nal(7)).

• Any alternate signal stack is not preserved (sigaltstack(2)).

• Memory mappings are not preserved (mmap(2)).

• Attached System V shared memory segments are detached (shmat(2)).

• POSIX shared memory regions are unmapped (shm_open(3)).

• Open POSIX message queue descriptors are closed (mq_overview(7)).

• Any open POSIX named semaphores are closed (sem_overview(7)).

• POSIX timers are not preserved (timer_create(2)).

• Any open directory streams are closed (opendir(3)).

• Memory locks are not preserved (mlock(2), mlockall(2)).

• Exit handlers are not preserved (atexit(3), on_exit(3)).

• The floating-point environment is reset to the default (see fenv(3)).

The process attributes in the preceding list are all specified in POSIX.1. The following
Linux-specific process attributes are also not preserved during an execve():

Linux man-pages 6.16 2025-10-29 180

execve(2) System Calls Manual execve(2)

• The process’s "dumpable" attribute is set to the value 1, unless a set-user-ID pro-
gram, a set-group-ID program, or a program with capabilities is being executed, in
which case the dumpable flag may instead be reset to the value in
/proc/sys/fs/suid_dumpable, in the circumstances described under
PR_SET_DUMPABLE in prctl(2). Note that changes to the "dumpable" attribute
may cause ownership of files in the process’s /proc/ pid directory to change to
root:root, as described in proc(5).

• The prctl(2) PR_SET_KEEPCAPS flag is cleared.

• (Since Linux 2.4.36 / 2.6.23) If a set-user-ID or set-group-ID program is being exe-
cuted, then the parent death signal set by prctl(2) PR_SET_PDEATHSIG flag is
cleared.

• The process name, as set by prctl(2) PR_SET_NAME (and displayed by ps -o
comm), is reset to the name of the new executable file.

• The SECBIT_KEEP_CAPS securebits flag is cleared. See capabilities(7).

• The termination signal is reset to SIGCHLD (see clone(2)).

• The file descriptor table is unshared, undoing the effect of the CLONE_FILES flag
of clone(2).

Note the following further points:

• All threads other than the calling thread are destroyed during an execve(). Mutexes,
condition variables, and other pthreads objects are not preserved.

• The equivalent of setlocale(LC_ALL, "C") is executed at program start-up.

• POSIX.1 specifies that the dispositions of any signals that are ignored or set to the
default are left unchanged. POSIX.1 specifies one exception: if SIGCHLD is being
ignored, then an implementation may leave the disposition unchanged or reset it to
the default; Linux does the former.

• Any outstanding asynchronous I/O operations are canceled (aio_read(3),
aio_write(3)).

• For the handling of capabilities during execve(), see capabilities(7).

• By default, file descriptors remain open across an execve(). File descriptors that are
marked close-on-exec are closed; see the description of FD_CLOEXEC in fcntl(2).
(If a file descriptor is closed, this will cause the release of all record locks obtained
on the underlying file by this process. See fcntl(2) for details.) POSIX.1 says that if
file descriptors 0, 1, and 2 would otherwise be closed after a successful execve(), and
the process would gain privilege because the set-user-ID or set-group-ID mode bit
was set on the executed file, then the system may open an unspecified file for each of
these file descriptors. As a general principle, no portable program, whether privi-
leged or not, can assume that these three file descriptors will remain closed across an
execve().

Interpreter scripts
An interpreter script is a text file that has execute permission enabled and whose first
line is of the form:

Linux man-pages 6.16 2025-10-29 181

execve(2) System Calls Manual execve(2)

#!interpreter [optional-arg]

The interpreter must be a valid pathname for an executable file.

interpreter will be invoked with the following arguments:

interpreter [optional-arg] path arg...

where arg... is the series of words pointed to by the argv argument of execve(), starting
at argv[1]. Note that there is no way to get the argv[0] that was passed to the execve()
call.

For portable use, optional-arg should either be absent, or be specified as a single word
(i.e., it should not contain white space); see VERSIONS below.

Since Linux 2.6.28, the kernel permits the interpreter of a script to itself be a script.
This permission is recursive, up to a limit of four recursions, so that the interpreter may
be a script which is interpreted by a script, and so on.

Limits on size of arguments and environment
Most UNIX implementations impose some limit on the total size of the command-line
argument (argv) and environment (envp) strings that may be passed to a new program.
POSIX.1 allows an implementation to advertise this limit using the ARG_MAX con-
stant (either defined in <limits.h> or available at run time using the call
sysconf(_SC_ARG_MAX)).

Before Linux 2.6.23, the memory used to store the environment and argument strings
was limited to 32 pages (defined by the kernel constant MAX_ARG_PAGES). On ar-
chitectures with a 4-kB page size, this yields a maximum size of 128 kB.

On Linux 2.6.23 and later, most architectures support a size limit derived from the soft
RLIMIT_STACK resource limit (see getrlimit(2)) that is in force at the time of the ex-
ecve() call. (Architectures with no memory management unit are excepted: they main-
tain the limit that was in effect before Linux 2.6.23.) This change allows programs to
have a much larger argument and/or environment list. For these architectures, the total
size is limited to 1/4 of the allowed stack size. (Imposing the 1/4-limit ensures that the
new program always has some stack space.) Additionally, the total size is limited to 3/4
of the value of the kernel constant _STK_LIM (8 MiB). Since Linux 2.6.25, the kernel
also places a floor of 32 pages on this size limit, so that, even when RLIMIT_STACK
is set very low, applications are guaranteed to have at least as much argument and envi-
ronment space as was provided by Linux 2.6.22 and earlier. (This guarantee was not
provided in Linux 2.6.23 and 2.6.24.) Additionally, the limit per string is 32 pages (the
kernel constant MAX_ARG_STRLEN), and the maximum number of strings is
0x7FFFFFFF.

RETURN VALUE
On success, execve() does not return, on error -1 is returned, and errno is set to indicate
the error.

ERRORS
E2BIG

The total number of bytes in the environment (envp) and argument list (argv) is
too large, an argument or environment string is too long, or the full path of the
executable is too long. The terminating null byte is counted as part of the string

Linux man-pages 6.16 2025-10-29 182

execve(2) System Calls Manual execve(2)

length.

EACCES
Search permission is denied on a component of the path prefix of path or the
name of a script interpreter. (See also path_resolution(7).)

EACCES
The file or a script interpreter is not a regular file.

EACCES
Execute permission is denied for the file or a script or ELF interpreter.

EACCES
The filesystem is mounted noexec.

EAGAIN (since Linux 3.1)
Having changed its real UID using one of the set*uid() calls, the caller was—
and is now still—above its RLIMIT_NPROC resource limit (see setrlimit(2)).
For a more detailed explanation of this error, see NOTES.

EFAULT
path or one of the pointers in the vectors argv or envp points outside your acces-
sible address space.

EINVAL
An ELF executable had more than one PT_INTERP segment (i.e., tried to name
more than one interpreter).

EIO An I/O error occurred.

EISDIR
An ELF interpreter was a directory.

ELIBBAD
An ELF interpreter was not in a recognized format.

ELOOP
Too many symbolic links were encountered in resolving path or the name of a
script or ELF interpreter.

ELOOP
The maximum recursion limit was reached during recursive script interpretation
(see "Interpreter scripts", above). Before Linux 3.8, the error produced for this
case was ENOEXEC.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
path is too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
path or a script or ELF interpreter does not exist.

Linux man-pages 6.16 2025-10-29 183

execve(2) System Calls Manual execve(2)

ENOEXEC
An executable is not in a recognized format, is for the wrong architecture, or has
some other format error that means it cannot be executed.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix of path or a script or ELF interpreter is not a di-
rectory.

EPERM
The filesystem is mounted nosuid , the user is not the superuser, and the file has
the set-user-ID or set-group-ID bit set.

EPERM
The process is being traced, the user is not the superuser and the file has the set-
user-ID or set-group-ID bit set.

EPERM
A "capability-dumb" applications would not obtain the full set of permitted capa-
bilities granted by the executable file. See capabilities(7).

ETXTBSY
The specified executable was open for writing by one or more processes.

VERSIONS
POSIX does not document the #! behavior, but it exists (with some variations) on other
UNIX systems.

On Linux, argv and envp can be specified as NULL. In both cases, this has the same ef-
fect as specifying the argument as a pointer to a list containing a single null pointer. Do
not take advantage of this nonstandard and nonportable misfeature! On many
other UNIX systems, specifying argv as NULL will result in an error (EFAULT). Some
other UNIX systems treat the envp==NULL case the same as Linux.

POSIX.1 says that values returned by sysconf(3) should be invariant over the lifetime of
a process. However, since Linux 2.6.23, if the RLIMIT_STACK resource limit
changes, then the value reported by _SC_ARG_MAX will also change, to reflect the
fact that the limit on space for holding command-line arguments and environment vari-
ables has changed.

Interpreter scripts
The kernel imposes a maximum length on the text that follows the "#!" characters at the
start of a script; characters beyond the limit are ignored. Before Linux 5.1, the limit is
127 characters. Since Linux 5.1, the limit is 255 characters.

The semantics of the optional-arg argument of an interpreter script vary across imple-
mentations. On Linux, the entire string following the interpreter name is passed as a
single argument to the interpreter, and this string can include white space. However, be-
havior differs on some other systems. Some systems use the first white space to termi-
nate optional-arg. On some systems, an interpreter script can have multiple arguments,
and white spaces in optional-arg are used to delimit the arguments.

Linux man-pages 6.16 2025-10-29 184

execve(2) System Calls Manual execve(2)

Linux (like most other modern UNIX systems) ignores the set-user-ID and set-group-ID
bits on scripts.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

With UNIX V6, the argument list of an exec() call was ended by 0, while the argument
list of main was ended by -1. Thus, this argument list was not directly usable in a fur-
ther exec() call. Since UNIX V7, both are NULL.

NOTES
One sometimes sees execve() (and the related functions described in exec(3)) described
as "executing a new process" (or similar). This is a highly misleading description: there
is no new process; many attributes of the calling process remain unchanged (in particu-
lar, its PID). All that execve() does is arrange for an existing process (the calling
process) to execute a new program.

Set-user-ID and set-group-ID processes can not be ptrace(2)d.

The result of mounting a filesystem nosuid varies across Linux kernel versions: some
will refuse execution of set-user-ID and set-group-ID executables when this would give
the user powers they did not have already (and return EPERM), some will just ignore
the set-user-ID and set-group-ID bits and exec() successfully.

In most cases where execve() fails, control returns to the original executable image, and
the caller of execve() can then handle the error. However, in (rare) cases (typically
caused by resource exhaustion), failure may occur past the point of no return: the origi-
nal executable image has been torn down, but the new image could not be completely
built. In such cases, the kernel kills the process with a SIGSEGV (SIGKILL until
Linux 3.17) signal.

execve() and EAGAIN
A more detailed explanation of the EAGAIN error that can occur (since Linux 3.1)
when calling execve() is as follows.

The EAGAIN error can occur when a preceding call to setuid(2), setreuid(2), or setre-
suid(2) caused the real user ID of the process to change, and that change caused the
process to exceed its RLIMIT_NPROC resource limit (i.e., the number of processes
belonging to the new real UID exceeds the resource limit). From Linux 2.6.0 to Linux
3.0, this caused the set*uid() call to fail. (Before Linux 2.6, the resource limit was not
imposed on processes that changed their user IDs.)

Since Linux 3.1, the scenario just described no longer causes the set*uid() call to fail,
because it too often led to security holes where buggy applications didn’t check the re-
turn status and assumed that—if the caller had root privileges—the call would always
succeed. Instead, the set*uid() calls now successfully change the real UID, but the ker-
nel sets an internal flag, named PF_NPROC_EXCEEDED, to note that the
RLIMIT_NPROC resource limit has been exceeded. If the PF_NPROC_EX-
CEEDED flag is set and the resource limit is still exceeded at the time of a subsequent
execve() call, that call fails with the error EAGAIN. This kernel logic ensures that the

Linux man-pages 6.16 2025-10-29 185

execve(2) System Calls Manual execve(2)

RLIMIT_NPROC resource limit is still enforced for the common privileged daemon
workflow—namely, fork(2) + set*uid() + execve().

If the resource limit was not still exceeded at the time of the execve() call (because other
processes belonging to this real UID terminated between the set*uid() call and the ex-
ecve() call), then the execve() call succeeds and the kernel clears the PF_NPROC_EX-
CEEDED process flag. The flag is also cleared if a subsequent call to fork(2) by this
process succeeds.

EXAMPLES
The following program is designed to be execed by the second program below. It just
echoes its command-line arguments, one per line.

/* myecho.c */

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

for (size_t j = 0; j < argc; j++)
printf("argv[%zu]: %s\n", j, argv[j]);

exit(EXIT_SUCCESS);
}

This program can be used to exec the program named in its command-line argument:

/* execve.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

static char *newargv[] = { NULL, "hello", "world", NULL };
static char *newenviron[] = { NULL };

if (argc != 2) {
fprintf(stderr, "Usage: %s <file-to-exec>\n", argv[0]);
exit(EXIT_FAILURE);

}

newargv[0] = argv[1];

execve(argv[1], newargv, newenviron);
perror("execve"); /* execve() returns only on error */

Linux man-pages 6.16 2025-10-29 186

execve(2) System Calls Manual execve(2)

exit(EXIT_FAILURE);
}

We can use the second program to exec the first as follows:

$ cc myecho.c -o myecho
$ cc execve.c -o execve
$./execve ./myecho
argv[0]: ./myecho
argv[1]: hello
argv[2]: world

We can also use these programs to demonstrate the use of a script interpreter. To do this
we create a script whose "interpreter" is our myecho program:

$ cat > script
#!./myecho script-arg
^D
$ chmod +x script

We can then use our program to exec the script:

$./execve ./script
argv[0]: ./myecho
argv[1]: script-arg
argv[2]: ./script
argv[3]: hello
argv[4]: world

SEE ALSO
chmod(2), execveat(2), fork(2), get_robust_list(2), ptrace(2), exec(3), fexecve(3), getaux-
val(3), getopt(3), system(3), capabilities(7), credentials(7), environ(7), path_resolu-
tion(7), ld.so(8)

Linux man-pages 6.16 2025-10-29 187

execveat(2) System Calls Manual execveat(2)

NAME
execveat - execute program relative to a directory file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int execveat(int dirfd , const char *path,
char *const _Nullable argv[],
char *const _Nullable envp[],
int flags);

DESCRIPTION
The execveat() system call executes the program referred to by the combination of dirfd
and path. It operates in exactly the same way as execve(2), except for the differences
described in this manual page.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by execve(2) for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like execve(2)).

If path is absolute, then dirfd is ignored.

If path is an empty string and the AT_EMPTY_PATH flag is specified, then the file de-
scriptor dirfd specifies the file to be executed (i.e., dirfd refers to an executable file,
rather than a directory).

The flags argument is a bit mask that can include zero or more of the following flags:

AT_EMPTY_PATH
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag).

AT_SYMLINK_NOFOLLOW
If the file identified by dirfd and a non-NULL path is a symbolic link, then the
call fails with the error ELOOP.

RETURN VALUE
On success, execveat() does not return. On error, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
The same errors that occur for execve(2) can also occur for execveat(). The following
additional errors can occur for execveat():

path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EINVAL
Invalid flag specified in flags.

Linux man-pages 6.16 2025-05-17 188

execveat(2) System Calls Manual execveat(2)

ELOOP
flags includes AT_SYMLINK_NOFOLLOW and the file identified by dirfd
and a non-NULL path is a symbolic link.

ENOENT
The program identified by dirfd and path requires the use of an interpreter pro-
gram (such as a script starting with "#!"), but the file descriptor dirfd was opened
with the O_CLOEXEC flag, with the result that the program file is inaccessible
to the launched interpreter. See BUGS.

ENOTDIR
path is relative and dirfd is a file descriptor referring to a file other than a direc-
tory.

STANDARDS
Linux.

HISTORY
Linux 3.19, glibc 2.34.

NOTES
In addition to the reasons explained in openat(2), the execveat() system call is also
needed to allow fexecve(3) to be implemented on systems that do not have the /proc
filesystem mounted.

When asked to execute a script file, the argv[0] that is passed to the script interpreter is
a string of the form /dev/fd/N or /dev/fd/N/P, where N is the number of the file descrip-
tor passed via the dirfd argument. A string of the first form occurs when
AT_EMPTY_PATH is employed. A string of the second form occurs when the script
is specified via both dirfd and path; in this case, P is the value given in path.

For the same reasons described in fexecve(3), the natural idiom when using execveat() is
to set the close-on-exec flag on dirfd . (But see BUGS.)

BUGS
The ENOENT error described above means that it is not possible to set the close-on-
exec flag on the file descriptor given to a call of the form:

execveat(fd, "", argv, envp, AT_EMPTY_PATH);

However, the inability to set the close-on-exec flag means that a file descriptor referring
to the script leaks through to the script itself. As well as wasting a file descriptor, this
leakage can lead to file-descriptor exhaustion in scenarios where scripts recursively em-
ploy execveat().

SEE ALSO
execve(2), openat(2), fexecve(3)

Linux man-pages 6.16 2025-05-17 189

_exit(2) System Calls Manual _exit(2)

NAME
_exit, _Exit - terminate the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

[[noreturn]] void _exit(int status);

#include <stdlib.h>

[[noreturn]] void _Exit(int status);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

_Exit():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
_exit() terminates the calling process "immediately". Any open file descriptors belong-
ing to the process are closed. Any children of the process are inherited by init(1) (or by
the nearest "subreaper" process as defined through the use of the prctl(2)
PR_SET_CHILD_SUBREAPER operation). The process’s parent is sent a
SIGCHLD signal.

The value status & 0xFF is returned to the parent process as the process’s exit status,
and can be collected by the parent using one of the wait(2) family of calls.

The function _Exit() is equivalent to _exit().

RETURN VALUE
These functions do not return.

STANDARDS
_exit()

POSIX.1-2024.

_Exit()
C11, POSIX.1-2024.

HISTORY
_exit()

POSIX.1-2001, SVr4, 4.3BSD.

_Exit()
C99, POSIX.1-2001.

NOTES
For a discussion on the effects of an exit, the transmission of exit status, zombie
processes, signals sent, and so on, see exit(3).

The function _exit() is like exit(3), but does not call any functions registered with
atexit(3) or on_exit(3). Open stdio(3) streams are not flushed. On the other hand,
_exit() does close open file descriptors, and this may cause an unknown delay, waiting
for pending output to finish. If the delay is undesired, it may be useful to call functions

Linux man-pages 6.16 2025-10-29 190

_exit(2) System Calls Manual _exit(2)

like tcflush(3) before calling _exit(). Whether any pending I/O is canceled, and which
pending I/O may be canceled upon _exit(), is implementation-dependent.

C library/kernel differences
The text above in DESCRIPTION describes the traditional effect of _exit(), which is to
terminate a process, and these are the semantics specified by POSIX.1 and implemented
by the C library wrapper function. On modern systems, this means termination of all
threads in the process.

By contrast with the C library wrapper function, the raw Linux _exit() system call termi-
nates only the calling thread, and actions such as reparenting child processes or sending
SIGCHLD to the parent process are performed only if this is the last thread in the
thread group.

Up to glibc 2.3, the _exit() wrapper function invoked the kernel system call of the same
name. Since glibc 2.3, the wrapper function invokes exit_group(2), in order to terminate
all of the threads in a process.

SEE ALSO
execve(2), exit_group(2), fork(2), kill(2), wait(2), wait4(2), waitpid(2), atexit(3), exit(3),
on_exit(3), termios(3)

Linux man-pages 6.16 2025-10-29 191

exit_group(2) System Calls Manual exit_group(2)

NAME
exit_group - exit all threads in a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[noreturn]] void syscall(SYS_exit_group, int status);

Note: glibc provides no wrapper for exit_group(), necessitating the use of syscall(2).

DESCRIPTION
This system call terminates all threads in the calling process’s thread group.

RETURN VALUE
This system call does not return.

STANDARDS
Linux.

HISTORY
Linux 2.5.35.

NOTES
Since glibc 2.3, this is the system call invoked when the _exit(2) wrapper function is
called.

SEE ALSO
_exit(2)

Linux man-pages 6.16 2025-05-17 192

fallocate(2) System Calls Manual fallocate(2)

NAME
fallocate - manipulate file space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

int fallocate(int fd , int mode, off_t offset, off_t size);

DESCRIPTION
This is a nonportable, Linux-specific system call. For the portable, POSIX.1-specified
method of ensuring that space is allocated for a file, see posix_fallocate(3).

fallocate() allows the caller to directly manipulate the allocated disk space for the file
referred to by fd for the byte range starting at offset and continuing for size bytes.

The mode argument determines the operation to be performed on the given range. De-
tails of the supported operations are given in the subsections below.

Allocating disk space
The default operation (i.e., mode is zero) of fallocate() allocates the disk space within
the range specified by offset and size. The file size (as reported by stat(2)) will be
changed if offset+size is greater than the file size. Any subregion within the range spec-
ified by offset and size that did not contain data before the call will be initialized to zero.
This default behavior closely resembles the behavior of the posix_fallocate(3) library
function, and is intended as a method of optimally implementing that function.

After a successful call, subsequent writes into the range specified by offset and size are
guaranteed not to fail because of lack of disk space.

If the FALLOC_FL_KEEP_SIZE flag is specified in mode, the behavior of the call is
similar, but the file size will not be changed even if offset+size is greater than the file
size. Preallocating zeroed blocks beyond the end of the file in this manner is useful for
optimizing append workloads.

If the FALLOC_FL_UNSHARE_RANGE flag is specified in mode, shared file data
extents will be made private to the file to guarantee that a subsequent write will not fail
due to lack of space. Typically, this will be done by performing a copy-on-write opera-
tion on all shared data in the file. This flag may not be supported by all filesystems.

Because allocation is done in block size chunks, fallocate() may allocate a larger range
of disk space than was specified.

Deallocating file space
Specifying the FALLOC_FL_PUNCH_HOLE flag (available since Linux 2.6.38) in
mode deallocates space (i.e., creates a hole) in the byte range starting at offset and con-
tinuing for size bytes. Within the specified range, partial filesystem blocks are zeroed,
and whole filesystem blocks are removed from the file. After a successful call, subse-
quent reads from this range will return zeros.

The FALLOC_FL_PUNCH_HOLE flag must be ORed with FAL-
LOC_FL_KEEP_SIZE in mode; in other words, even when punching off the end of

Linux man-pages 6.16 2025-09-21 193

fallocate(2) System Calls Manual fallocate(2)

the file, the file size (as reported by stat(2)) does not change.

Not all filesystems support FALLOC_FL_PUNCH_HOLE; if a filesystem doesn’t
support the operation, an error is returned. The operation is supported on at least the
following filesystems:

• XFS (since Linux 2.6.38)

• ext4 (since Linux 3.0)

• Btrfs (since Linux 3.7)

• tmpfs(5) (since Linux 3.5)

• gfs2(5) (since Linux 4.16)

Collapsing file space
Specifying the FALLOC_FL_COLLAPSE_RANGE flag (available since Linux 3.15)
in mode removes a byte range from a file, without leaving a hole. The byte range to be
collapsed starts at offset and continues for size bytes. At the completion of the opera-
tion, the contents of the file starting at the location offset+size will be appended at the
location offset, and the file will be size bytes smaller.

A filesystem may place limitations on the granularity of the operation, in order to ensure
efficient implementation. Typically, offset and size must be a multiple of the filesystem
logical block size, which varies according to the filesystem type and configuration. If a
filesystem has such a requirement, fallocate() fails with the error EINVAL if this re-
quirement is violated.

If the region specified by offset plus size reaches or passes the end of file, an error is re-
turned; instead, use ftruncate(2) to truncate a file.

No other flags may be specified in mode in conjunction with FALLOC_FL_COL-
LAPSE_RANGE.

As at Linux 3.15, FALLOC_FL_COLLAPSE_RANGE is supported by ext4 (only for
extent-based files) and XFS.

Zeroing file space
Specifying the FALLOC_FL_ZERO_RANGE flag (available since Linux 3.15) in
mode zeros space in the byte range starting at offset and continuing for size bytes.
Within the specified range, blocks are preallocated for the regions that span the holes in
the file. After a successful call, subsequent reads from this range will return zeros.

Zeroing is done within the filesystem preferably by converting the range into unwritten
extents. This approach means that the specified range will not be physically zeroed out
on the device (except for partial blocks at the either end of the range), and I/O is (other-
wise) required only to update metadata.

If the FALLOC_FL_KEEP_SIZE flag is additionally specified in mode, the behavior
of the call is similar, but the file size will not be changed even if offset+size is greater
than the file size. This behavior is the same as when preallocating space with FAL-
LOC_FL_KEEP_SIZE specified.

Not all filesystems support FALLOC_FL_ZERO_RANGE; if a filesystem doesn’t sup-
port the operation, an error is returned. The operation is supported on at least the

Linux man-pages 6.16 2025-09-21 194

fallocate(2) System Calls Manual fallocate(2)

following filesystems:

• XFS (since Linux 3.15)

• ext4, for extent-based files (since Linux 3.15)

• SMB3 (since Linux 3.17)

• Btrfs (since Linux 4.16)

Increasing file space
Specifying the FALLOC_FL_INSERT_RANGE flag (available since Linux 4.1) in
mode increases the file space by inserting a hole within the file size without overwriting
any existing data. The hole will start at offset and continue for size bytes. When insert-
ing the hole inside file, the contents of the file starting at offset will be shifted upward
(i.e., to a higher file offset) by size bytes. Inserting a hole inside a file increases the file
size by size bytes.

This mode has the same limitations as FALLOC_FL_COLLAPSE_RANGE regarding
the granularity of the operation. If the granularity requirements are not met, fallocate()
fails with the error EINVAL. If the offset is equal to or greater than the end of file, an
error is returned. For such operations (i.e., inserting a hole at the end of file), ftrun-
cate(2) should be used.

No other flags may be specified in mode in conjunction with FALLOC_FL_IN-
SERT_RANGE.

FALLOC_FL_INSERT_RANGE requires filesystem support. Filesystems that sup-
port this operation include XFS (since Linux 4.1) and ext4 (since Linux 4.2).

RETURN VALUE
On success, fallocate() returns zero. On error, -1 is returned and errno is set to indicate
the error.

ERRORS
EBADF

fd is not a valid file descriptor, or is not opened for writing.

EFBIG
offset+size exceeds the maximum file size.

EFBIG
mode is FALLOC_FL_INSERT_RANGE, and the current file size+len ex-
ceeds the maximum file size.

EINTR
A signal was caught during execution; see signal(7).

EINVAL
offset was less than 0, or size was less than or equal to 0.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE and the range specified by offset
plus size reaches or passes the end of the file.

Linux man-pages 6.16 2025-09-21 195

fallocate(2) System Calls Manual fallocate(2)

EINVAL
mode is FALLOC_FL_INSERT_RANGE and the range specified by offset
reaches or passes the end of the file.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE, but either offset or size is not a multiple of the filesystem block
size.

EINVAL
mode contains one of FALLOC_FL_COLLAPSE_RANGE or FAL-
LOC_FL_INSERT_RANGE and also other flags; no other flags are permitted
with FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE.

EINVAL
mode is FALLOC_FL_COLLAPSE_RANGE, FAL-
LOC_FL_ZERO_RANGE, or FALLOC_FL_INSERT_RANGE, but the file
referred to by fd is not a regular file.

EIO An I/O error occurred while reading from or writing to a filesystem.

ENODEV
fd does not refer to a regular file or a directory. (If fd is a pipe or FIFO, a dif-
ferent error results.)

ENOSPC
There is not enough space left on the device containing the file referred to by fd .

ENOSYS
This kernel does not implement fallocate().

EOPNOTSUPP
The filesystem containing the file referred to by fd does not support this opera-
tion; or the mode is not supported by the filesystem containing the file referred to
by fd .

EPERM
The file referred to by fd is marked immutable (see chattr(1)).

EPERM
mode specifies FALLOC_FL_PUNCH_HOLE, FALLOC_FL_COL-
LAPSE_RANGE, or FALLOC_FL_INSERT_RANGE and the file referred to
by fd is marked append-only (see chattr(1)).

EPERM
The operation was prevented by a file seal; see fcntl(2).

ESPIPE
fd refers to a pipe or FIFO.

ETXTBSY
mode specifies FALLOC_FL_COLLAPSE_RANGE or FALLOC_FL_IN-
SERT_RANGE, but the file referred to by fd is currently being executed.

Linux man-pages 6.16 2025-09-21 196

fallocate(2) System Calls Manual fallocate(2)

STANDARDS
Linux.

HISTORY
fallocate()

Linux 2.6.23, glibc 2.10.

FALLOC_FL_*
glibc 2.18.

SEE ALSO
fallocate(1), ftruncate(2), posix_fadvise(3), posix_fallocate(3)

Linux man-pages 6.16 2025-09-21 197

fanotify_init(2) System Calls Manual fanotify_init(2)

NAME
fanotify_init - create and initialize fanotify group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* constants */
#include <sys/fanotify.h>

int fanotify_init(unsigned int flags, unsigned int event_f_flags);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_init() initializes a new fanotify group and returns a file descriptor for the event
queue associated with the group.

The file descriptor is used in calls to fanotify_mark(2) to specify the files, directories,
mounts, or filesystems for which fanotify events shall be created. These events are re-
ceived by reading from the file descriptor. Some events are only informative, indicating
that a file has been accessed. Other events can be used to determine whether another ap-
plication is permitted to access a file or directory. Permission to access filesystem ob-
jects is granted by writing to the file descriptor.

Multiple programs may be using the fanotify interface at the same time to monitor the
same files.

The number of fanotify groups per user is limited. See fanotify(7) for details about this
limit.

The flags argument contains a multi-bit field defining the notification class of the listen-
ing application and further single bit fields specifying the behavior of the file descriptor.

If multiple listeners for permission events exist, the notification class is used to establish
the sequence in which the listeners receive the events.

Only one of the following notification classes may be specified in flags:

FAN_CLASS_PRE_CONTENT
This value allows the receipt of events notifying that a file has been accessed and
events for permission decisions if a file may be accessed. It is intended for event
listeners that may need to write data to files before their final data can be ac-
cessed. This notification class might be used by hierarchical storage managers,
for example. Use of this flag requires the CAP_SYS_ADMIN capability.

FAN_CLASS_CONTENT
This value allows the receipt of events notifying that a file has been accessed and
events for permission decisions if a file may be accessed. It is intended for event
listeners that need to access files when they already contain their final content.
This notification class might be used by malware detection programs, for exam-
ple. Use of this flag requires the CAP_SYS_ADMIN capability.

Linux man-pages 6.16 2025-05-17 198

fanotify_init(2) System Calls Manual fanotify_init(2)

FAN_CLASS_NOTIF
This is the default value. It does not need to be specified. This value only allows
the receipt of events notifying that a file has been accessed. Permission deci-
sions before the file is accessed are not possible.

Listeners with different notification classes will receive events in the order
FAN_CLASS_PRE_CONTENT, FAN_CLASS_CONTENT, FAN_CLASS_NOTIF.
The order of notification for listeners in the same notification class is undefined.

The following bits can additionally be set in flags:

FAN_CLOEXEC
Set the close-on-exec flag (FD_CLOEXEC) on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2).

FAN_NONBLOCK
Enable the nonblocking flag (O_NONBLOCK) for the file descriptor. Reading
from the file descriptor will not block. Instead, if no data is available, read(2)
fails with the error EAGAIN.

FAN_UNLIMITED_QUEUE
Remove the limit on the number of events in the event queue. See fanotify(7) for
details about this limit. Use of this flag requires the CAP_SYS_ADMIN capa-
bility.

FAN_UNLIMITED_MARKS
Remove the limit on the number of fanotify marks per user. See fanotify(7) for
details about this limit. Use of this flag requires the CAP_SYS_ADMIN capa-
bility.

FAN_REPORT_TID (since Linux 4.20)
Report thread ID (TID) instead of process ID (PID) in the pid field of the struct
fanotify_event_metadata supplied to read(2) (see fanotify(7)). Use of this flag
requires the CAP_SYS_ADMIN capability.

FAN_ENABLE_AUDIT (since Linux 4.15)
Enable generation of audit log records about access mediation performed by per-
mission events. The permission event response has to be marked with the
FAN_AUDIT flag for an audit log record to be generated. Use of this flag re-
quires the CAP_AUDIT_WRITE capability.

FAN_REPORT_FID (since Linux 5.1)
This value allows the receipt of events which contain additional information
about the underlying filesystem object correlated to an event. An additional
record of type FAN_EVENT_INFO_TYPE_FID encapsulates the information
about the object and is included alongside the generic event metadata structure.
The file descriptor that is used to represent the object correlated to an event is in-
stead substituted with a file handle. It is intended for applications that may find
the use of a file handle to identify an object more suitable than a file descriptor.
Additionally, it may be used for applications monitoring a directory or a filesys-
tem that are interested in the directory entry modification events FAN_CRE-
ATE, FAN_DELETE, FAN_MOVE, and FAN_RENAME, or in events such as

Linux man-pages 6.16 2025-05-17 199

fanotify_init(2) System Calls Manual fanotify_init(2)

FAN_ATTRIB, FAN_DELETE_SELF, and FAN_MOVE_SELF. All the
events above require an fanotify group that identifies filesystem objects by file
handles. Note that without the flag FAN_REPORT_TARGET_FID, for the di-
rectory entry modification events, there is an information record that identifies
the modified directory and not the created/deleted/moved child object. The use
of FAN_CLASS_CONTENT or FAN_CLASS_PRE_CONTENT is not per-
mitted with this flag and will result in the error EINVAL. See fanotify(7) for ad-
ditional details.

FAN_REPORT_DIR_FID (since Linux 5.9)
Events for fanotify groups initialized with this flag will contain (see exceptions
below) additional information about a directory object correlated to an event. An
additional record of type FAN_EVENT_INFO_TYPE_DFID encapsulates the
information about the directory object and is included alongside the generic
event metadata structure. For events that occur on a non-directory object, the ad-
ditional structure includes a file handle that identifies the parent directory filesys-
tem object. Note that there is no guarantee that the directory filesystem object
will be found at the location described by the file handle information at the time
the event is received. When combined with the flag FAN_REPORT_FID, two
records may be reported with events that occur on a non-directory object, one to
identify the non-directory object itself and one to identify the parent directory
object. Note that in some cases, a filesystem object does not have a parent, for
example, when an event occurs on an unlinked but open file. In that case, with
the FAN_REPORT_FID flag, the event will be reported with only one record to
identify the non-directory object itself, because there is no directory associated
with the event. Without the FAN_REPORT_FID flag, no event will be re-
ported. See fanotify(7) for additional details.

FAN_REPORT_NAME (since Linux 5.9)
Events for fanotify groups initialized with this flag will contain additional infor-
mation about the name of the directory entry correlated to an event. This flag
must be provided in conjunction with the flag FAN_REPORT_DIR_FID. Pro-
viding this flag value without FAN_REPORT_DIR_FID will result in the error
EINVAL. This flag may be combined with the flag FAN_REPORT_FID. An
additional record of type FAN_EVENT_INFO_TYPE_DFID_NAME, which
encapsulates the information about the directory entry, is included alongside the
generic event metadata structure and substitutes the additional information
record of type FAN_EVENT_INFO_TYPE_DFID. The additional record in-
cludes a file handle that identifies a directory filesystem object followed by a
name that identifies an entry in that directory. For the directory entry modifica-
tion events FAN_CREATE, FAN_DELETE, and FAN_MOVE, the reported
name is that of the created/deleted/moved directory entry. The event FAN_RE-
NAME may contain two information records. One of type
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME identifying the old direc-
tory entry, and another of type
FAN_EVENT_INFO_TYPE_NEW_DFID_NAME identifying the new direc-
tory entry. For other events that occur on a directory object, the reported file
handle is that of the directory object itself and the reported name is ’.’. For other

Linux man-pages 6.16 2025-05-17 200

fanotify_init(2) System Calls Manual fanotify_init(2)

events that occur on a non-directory object, the reported file handle is that of the
parent directory object and the reported name is the name of a directory entry
where the object was located at the time of the event. The rationale behind this
logic is that the reported directory file handle can be passed to open_by_han-
dle_at(2) to get an open directory file descriptor and that file descriptor along
with the reported name can be used to call fstatat(2). The same rule that applies
to record type FAN_EVENT_INFO_TYPE_DFID also applies to record type
FAN_EVENT_INFO_TYPE_DFID_NAME: if a non-directory object has no
parent, either the event will not be reported or it will be reported without the di-
rectory entry information. Note that there is no guarantee that the filesystem ob-
ject will be found at the location described by the directory entry information at
the time the event is received. See fanotify(7) for additional details.

FAN_REPORT_DFID_NAME
This is a synonym for (FAN_REPORT_DIR_FID|FAN_REPORT_NAME).

FAN_REPORT_TARGET_FID (since Linux 5.17, 5.15.154, and 5.10.220)
Events for fanotify groups initialized with this flag will contain additional infor-
mation about the child correlated with directory entry modification events. This
flag must be provided in conjunction with the flags FAN_REPORT_FID,
FAN_REPORT_DIR_FID and FAN_REPORT_NAME. or else the error
EINVAL will be returned. For the directory entry modification events
FAN_CREATE, FAN_DELETE, FAN_MOVE, and FAN_RENAME, an addi-
tional record of type FAN_EVENT_INFO_TYPE_FID, is reported in addition
to the information records of type FAN_EVENT_INFO_TYPE_DFID,
FAN_EVENT_INFO_TYPE_DFID_NAME,
FAN_EVENT_INFO_TYPE_OLD_DFID_NAME, and
FAN_EVENT_INFO_TYPE_NEW_DFID_NAME. The additional record in-
cludes a file handle that identifies the filesystem child object that the directory
entry is referring to.

FAN_REPORT_DFID_NAME_TARGET
This is a synonym for (FAN_REPORT_DFID_NAME|FAN_RE-
PORT_FID|FAN_REPORT_TARGET_FID).

FAN_REPORT_MNT (since Linux 6.14)
This value allows the receipt of events which contain additional information
about the underlying mount correlated to an event. An additional record of type
FAN_EVENT_INFO_TYPE_MNT encapsulates the information about the
mount and is included alongside the generic event metadata structure. The use
of FAN_CLASS_CONTENT, FAN_CLASS_PRE_CONTENT, or any of the
FAN_REPORT_DFID_NAME_TARGET flags along with this flag is not per-
mitted and will result in the error EINVAL. See fanotify(7) for additional de-
tails.

FAN_REPORT_PIDFD (since Linux 5.15 and 5.10.220)
Events for fanotify groups initialized with this flag will contain an additional in-
formation record alongside the generic fanotify_event_metadata structure. This
information record will be of type FAN_EVENT_INFO_TYPE_PIDFD and
will contain a pidfd for the process that was responsible for generating an event.

Linux man-pages 6.16 2025-05-17 201

fanotify_init(2) System Calls Manual fanotify_init(2)

A pidfd returned in this information record object is no different to the pidfd that
is returned when calling pidfd_open(2). Usage of this information record are for
applications that may be interested in reliably determining whether the process
responsible for generating an event has been recycled or terminated. The use of
the FAN_REPORT_TID flag along with FAN_REPORT_PIDFD is currently
not supported and attempting to do so will result in the error EINVAL being re-
turned. This limitation is currently imposed by the pidfd API as it currently only
supports the creation of pidfds for thread-group leaders. Creating pidfds for non-
thread-group leaders may be supported at some point in the future, so this re-
striction may eventually be lifted. For more details on information records, see
fanotify(7).

FAN_REPORT_FD_ERROR (since Linux 6.13 and 6.12.4 and 6.6.66)
Events for fanotify groups initialized with this flag may contain an error code
that explains the reason for failure to open a file descriptor. The .fd member of
the fanotify_event_metadata structure normally contains an open file descriptor
associated with the object of the event or FAN_NOFD in case a file descriptor
could not be opened. For a group initialized with this flag, instead of
FAN_NOFD, the .fd member of the fanotify_event_metadata structure will con-
tain a negative error value. When the group is also initialized with flag
FAN_REPORT_PIDFD, in case a process file descriptor could not be opened,
the .pidfd member of the fanotify_event_info_pidfd structure will also contain a
negative error value. For more details, see fanotify(7).

The event_f_flags argument defines the file status flags that will be set on the open file
descriptions that are created for fanotify events. For details of these flags, see the de-
scription of the flags values in open(2). event_f_flags includes a multi-bit field for the
access mode. This field can take the following values:

O_RDONLY
This value allows only read access.

O_WRONLY
This value allows only write access.

O_RDWR
This value allows read and write access.

Additional bits can be set in event_f_flags. The most useful values are:

O_LARGEFILE
Enable support for files exceeding 2 GB. Failing to set this flag will result in an
EOVERFLOW error when trying to open a large file which is monitored by an
fanotify group on a 32-bit system.

O_CLOEXEC (since Linux 3.18)
Enable the close-on-exec flag for the file descriptor. See the description of the
O_CLOEXEC flag in open(2) for reasons why this may be useful.

The following are also allowable: O_APPEND, O_DSYNC, O_NOATIME, O_NON-
BLOCK, and O_SYNC. Specifying any other flag in event_f_flags yields the error
EINVAL (but see BUGS).

Linux man-pages 6.16 2025-05-17 202

fanotify_init(2) System Calls Manual fanotify_init(2)

RETURN VALUE
On success, fanotify_init() returns a new file descriptor. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EINVAL

An invalid value was passed in flags or event_f_flags.
FAN_ALL_INIT_FLAGS (deprecated since Linux 4.20) defines all allowable
bits for flags.

EMFILE
The number of fanotify groups for this user exceeds the limit. See fanotify(7) for
details about this limit.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENOMEM
The allocation of memory for the notification group failed.

ENOSYS
This kernel does not implement fanotify_init(). The fanotify API is available
only if the kernel was configured with CONFIG_FANOTIFY.

EPERM
The operation is not permitted because the caller lacks a required capability.

VERSIONS
Prior to Linux 5.13 (and 5.10.220), calling fanotify_init() required the CAP_SYS_AD-
MIN capability. Since Linux 5.13 (and 5.10.220), users may call fanotify_init() with-
out the CAP_SYS_ADMIN capability to create and initialize an fanotify group with
limited functionality.

The limitations imposed on an event listener created by a user without the
CAP_SYS_ADMIN capability are as follows:

• The user cannot request for an unlimited event queue by using FAN_UN-
LIMITED_QUEUE.

• The user cannot request for an unlimited number of marks by using
FAN_UNLIMITED_MARKS.

• The user cannot request to use either notification classes
FAN_CLASS_CONTENT or FAN_CLASS_PRE_CONTENT. This
means that user cannot request permission events.

• The user is required to create a group that identifies filesystem objects by file
handles, for example, by providing the FAN_REPORT_FID flag.

• The user is limited to only mark inodes. The ability to mark a mount or
filesystem via fanotify_mark() through the use of FAN_MARK_MOUNT
or FAN_MARK_FILESYSTEM is not permitted.

Linux man-pages 6.16 2025-05-17 203

fanotify_init(2) System Calls Manual fanotify_init(2)

• The event object in the event queue is limited in terms of the information that
is made available to the unprivileged user. A user will also not receive the
pid that generated the event, unless the listening process itself generated the
event.

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

BUGS
The following bug was present before Linux 3.18:

• The O_CLOEXEC is ignored when passed in event_f_flags.

The following bug was present before Linux 3.14:

• The event_f_flags argument is not checked for invalid flags. Flags that are intended
only for internal use, such as FMODE_EXEC, can be set, and will consequently be
set for the file descriptors returned when reading from the fanotify file descriptor.

SEE ALSO
fanotify_mark(2), fanotify(7)

Linux man-pages 6.16 2025-05-17 204

fanotify_mark(2) System Calls Manual fanotify_mark(2)

NAME
fanotify_mark - add, remove, or modify an fanotify mark on a filesystem object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/fanotify.h>

int fanotify_mark(int fanotify_fd , unsigned int flags,
uint64_t mask, int dirfd ,
const char *_Nullable path);

DESCRIPTION
For an overview of the fanotify API, see fanotify(7).

fanotify_mark() adds, removes, or modifies an fanotify mark on a filesystem object.
The caller must have read permission on the filesystem object that is to be marked.

The fanotify_fd argument is a file descriptor returned by fanotify_init(2).

flags is a bit mask describing the modification to perform. It must include exactly one
of the following values:

FAN_MARK_ADD
The events in mask will be added to the mark mask (or to the ignore mask).
mask must be nonempty or the error EINVAL will occur.

FAN_MARK_REMOVE
The events in argument mask will be removed from the mark mask (or from the
ignore mask). mask must be nonempty or the error EINVAL will occur.

FAN_MARK_FLUSH
Remove either all marks for filesystems, all marks for mounts, or all marks for
directories and files from the fanotify group. If flags contains
FAN_MARK_MOUNT, all marks for mounts are removed from the group. If
flags contains FAN_MARK_FILESYSTEM, all marks for filesystems are re-
moved from the group. Otherwise, all marks for directories and files are re-
moved. No flag other than, and at most one of, the flags
FAN_MARK_MNTNS, FAN_MARK_MOUNT, or FAN_MARK_FILESYS-
TEM can be used in conjunction with FAN_MARK_FLUSH. mask is ignored.

If none of the values above is specified, or more than one is specified, the call fails with
the error EINVAL.

In addition, zero or more of the following values may be ORed into flags:

FAN_MARK_DONT_FOLLOW
If path is a symbolic link, mark the link itself, rather than the file to which it
refers. (By default, fanotify_mark() dereferences path if it is a symbolic link.)

FAN_MARK_ONLYDIR
If the filesystem object to be marked is not a directory, the error ENOTDIR shall
be raised.

Linux man-pages 6.16 2025-10-06 205

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_MARK_MNTNS (since Linux 6.14)
Mark the mount namespace specified by path. If path does not represent a
mount namespace (e.g. /proc/ pid /ns/mnt), the call fails with the error EINVAL.
An fanotify group that was initialized with flag FAN_REPORT_MNT is re-
quired.

FAN_MARK_MOUNT
Mark the mount specified by path. If path is not itself a mount point, the mount
containing path will be marked. All directories, subdirectories, and the con-
tained files of the mount will be monitored. The events which require that
filesystem objects are identified by file handles, such as FAN_CREATE,
FAN_ATTRIB, FAN_MOVE, and FAN_DELETE_SELF, cannot be provided
as a mask when flags contains FAN_MARK_MOUNT. Attempting to do so
will result in the error EINVAL being returned. Use of this flag requires the
CAP_SYS_ADMIN capability.

FAN_MARK_FILESYSTEM (since Linux 4.20)
Mark the filesystem specified by path. The filesystem containing path will be
marked. All the contained files and directories of the filesystem from any mount
point will be monitored. Use of this flag requires the CAP_SYS_ADMIN capa-
bility.

FAN_MARK_IGNORED_MASK
The events in mask shall be added to or removed from the ignore mask. Note
that the flags FAN_ONDIR, and FAN_EVENT_ON_CHILD have no effect
when provided with this flag. The effect of setting the flags FAN_ONDIR, and
FAN_EVENT_ON_CHILD in the mark mask on the events that are set in the
ignore mask is undefined and depends on the Linux kernel version. Specifically,
prior to Linux 5.9, setting a mark mask on a file and a mark with ignore mask on
its parent directory would not result in ignoring events on the file, regardless of
the FAN_EVENT_ON_CHILD flag in the parent directory’s mark mask. When
the ignore mask is updated with the FAN_MARK_IGNORED_MASK flag on
a mark that was previously updated with the FAN_MARK_IGNORE flag, the
update fails with EEXIST error.

FAN_MARK_IGNORE (since Linux 6.0, 5.15.154, and 5.10.220)
This flag has a similar effect as setting the FAN_MARK_IGNORED_MASK
flag. The events in mask shall be added to or removed from the ignore mask.
Unlike the FAN_MARK_IGNORED_MASK flag, this flag also has the effect
that the FAN_ONDIR, and FAN_EVENT_ON_CHILD flags take effect on the
ignore mask. Specifically, unless the FAN_ONDIR flag is set with
FAN_MARK_IGNORE, events on directories will not be ignored. If the flag
FAN_EVENT_ON_CHILD is set with FAN_MARK_IGNORE, events on
children will be ignored. For example, a mark on a directory with combination
of a mask with FAN_CREATE event and FAN_ONDIR flag and an ignore
mask with FAN_CREATE event and without FAN_ONDIR flag, will result in
getting only the events for creation of sub-directories. When using the
FAN_MARK_IGNORE flag to add to an ignore mask of a mount, filesystem, or
directory inode mark, the FAN_MARK_IGNORED_SURV_MODIFY flag

Linux man-pages 6.16 2025-10-06 206

fanotify_mark(2) System Calls Manual fanotify_mark(2)

must be specified. Failure to do so will results with EINVAL or EISDIR error.

FAN_MARK_IGNORED_SURV_MODIFY
The ignore mask shall survive modify events. If this flag is not set, the ignore
mask is cleared when a modify event occurs on the marked object. Omitting this
flag is typically used to suppress events (e.g., FAN_OPEN) for a specific file,
until that specific file’s content has been modified. It is far less useful to sup-
press events on an entire filesystem, or mount, or on all files inside a directory,
until some file’s content has been modified. For this reason, the
FAN_MARK_IGNORE flag requires the FAN_MARK_IG-
NORED_SURV_MODIFY flag on a mount, filesystem, or directory inode
mark. This flag cannot be removed from a mark once set. When the ignore
mask is updated without this flag on a mark that was previously updated with the
FAN_MARK_IGNORE and FAN_MARK_IGNORED_SURV_MODIFY
flags, the update fails with EEXIST error.

FAN_MARK_IGNORE_SURV
This is a synonym for (FAN_MARK_IGNORE|FAN_MARK_IG-
NORED_SURV_MODIFY).

FAN_MARK_EVICTABLE (since Linux 5.19, 5.15.154, and 5.10.220)
When an inode mark is created with this flag, the inode object will not be pinned
to the inode cache, therefore, allowing the inode object to be evicted from the in-
ode cache when the memory pressure on the system is high. The eviction of the
inode object results in the evictable mark also being lost. When the mask of an
evictable inode mark is updated without using the FAN_MARK_EVICATBLE
flag, the marked inode is pinned to inode cache and the mark is no longer
evictable. When the mask of a non-evictable inode mark is updated with the
FAN_MARK_EVICTABLE flag, the inode mark remains non-evictable and the
update fails with EEXIST error. Mounts and filesystems are not evictable ob-
jects, therefore, an attempt to create a mount mark or a filesystem mark with the
FAN_MARK_EVICTABLE flag, will result in the error EINVAL. For exam-
ple, inode marks can be used in combination with mount marks to reduce the
amount of events from noninteresting paths. The event listener reads events,
checks if the path reported in the event is of interest, and if it is not, the listener
sets a mark with an ignore mask on the directory. Evictable inode marks allow
using this method for a large number of directories without the concern of pin-
ning all inodes and exhausting the system’s memory.

mask defines which events shall be listened for (or which shall be ignored). It is a bit
mask composed of the following values:

FAN_ACCESS
Create an event when a file or directory (but see BUGS) is accessed (read).

FAN_MODIFY
Create an event when a file is modified (write).

FAN_CLOSE_WRITE
Create an event when a writable file is closed.

Linux man-pages 6.16 2025-10-06 207

fanotify_mark(2) System Calls Manual fanotify_mark(2)

FAN_CLOSE_NOWRITE
Create an event when a read-only file or directory is closed.

FAN_OPEN
Create an event when a file or directory is opened.

FAN_OPEN_EXEC (since Linux 5.0)
Create an event when a file is opened with the intent to be executed. See
NOTES for additional details.

FAN_ATTRIB (since Linux 5.1)
Create an event when the metadata for a file or directory has changed. An fan-
otify group that identifies filesystem objects by file handles is required.

FAN_CREATE (since Linux 5.1)
Create an event when a file or directory has been created in a marked parent di-
rectory. An fanotify group that identifies filesystem objects by file handles is re-
quired.

FAN_DELETE (since Linux 5.1)
Create an event when a file or directory has been deleted in a marked parent di-
rectory. An fanotify group that identifies filesystem objects by file handles is re-
quired.

FAN_DELETE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself is deleted. An fanotify
group that identifies filesystem objects by file handles is required.

FAN_MOVED_FROM (since Linux 5.1)
Create an event when a file or directory has been moved from a marked parent
directory. An fanotify group that identifies filesystem objects by file handles is
required.

FAN_MOVED_TO (since Linux 5.1)
Create an event when a file or directory has been moved to a marked parent di-
rectory. An fanotify group that identifies filesystem objects by file handles is re-
quired.

FAN_RENAME (since Linux 5.17, 5.15.154, and 5.10.220)
This event contains the same information provided by events
FAN_MOVED_FROM and FAN_MOVED_TO, however is represented by a
single event with up to two information records. An fanotify group that identi-
fies filesystem objects by file handles is required. If the filesystem object to be
marked is not a directory, the error ENOTDIR shall be raised.

FAN_MOVE_SELF (since Linux 5.1)
Create an event when a marked file or directory itself has been moved. An fan-
otify group that identifies filesystem objects by file handles is required.

FAN_MNT_ATTACH
FAN_MNT_DETACH (both since Linux 6.14)

Create an event when a mount was attached to or detached from a marked mount
namespace, respectively. An attempt to set this flag on an inode, mount, or
filesystem mark will result in the error EINVAL. An fanotify group that was

Linux man-pages 6.16 2025-10-06 208

fanotify_mark(2) System Calls Manual fanotify_mark(2)

initialized with flag FAN_REPORT_MNT and the mark flag
FAN_MARK_MNTNS are required. An additional information record of type
FAN_EVENT_INFO_TYPE_MNT is returned with the event. See fanotify(7)
for additional details.

FAN_FS_ERROR (since Linux 5.16, 5.15.154, and 5.10.220)
Create an event when a filesystem error leading to inconsistent filesystem meta-
data is detected. An additional information record of type
FAN_EVENT_INFO_TYPE_ERROR is returned for each event in the read
buffer. An fanotify group that identifies filesystem objects by file handles is re-
quired. Events of such type are dependent on support from the underlying
filesystem. At the time of writing, only the ext4 filesystem reports
FAN_FS_ERROR events. See fanotify(7) for additional details.

FAN_OPEN_PERM
Create an event when a permission to open a file or directory is requested. An
fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or
FAN_CLASS_CONTENT is required.

FAN_OPEN_EXEC_PERM (since Linux 5.0)
Create an event when a permission to open a file for execution is requested. An
fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or
FAN_CLASS_CONTENT is required. See NOTES for additional details.

FAN_ACCESS_PERM
Create an event when a permission to read a file or directory is requested. An
fanotify file descriptor created with FAN_CLASS_PRE_CONTENT or
FAN_CLASS_CONTENT is required.

FAN_PRE_ACCESS (since Linux 6.14)
Create an event before read or write access to a file range, that provides an op-
portunity for the event listener to modify the content of the file before access to
the content in the specified range. An additional information record of type
FAN_EVENT_INFO_TYPE_RANGE is returned for each event in the read
buffer. An fanotify file descriptor created with FAN_CLASS_PRE_CON-
TENT is required.

FAN_ONDIR
Create events for directories—for example, when opendir(3), readdir(3) (but see
BUGS), and closedir(3) are called. Without this flag, events are created only for
files. In the context of directory entry events, such as FAN_CREATE,
FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO, specifying
the flag FAN_ONDIR is required in order to create events when subdirectory
entries are modified (i.e., mkdir(2)/ rmdir(2)).

FAN_EVENT_ON_CHILD
Events for the immediate children of marked directories shall be created. The
flag has no effect when marking mounts and filesystems. Note that events are
not generated for children of the subdirectories of marked directories. More
specifically, the directory entry modification events FAN_CREATE,
FAN_DELETE, FAN_MOVED_FROM, and FAN_MOVED_TO are not

Linux man-pages 6.16 2025-10-06 209

fanotify_mark(2) System Calls Manual fanotify_mark(2)

generated for any entry modifications performed inside subdirectories of marked
directories. Note that the events FAN_DELETE_SELF and
FAN_MOVE_SELF are not generated for children of marked directories. To
monitor complete directory trees it is necessary to mark the relevant mount or
filesystem.

The following composed values are defined:

FAN_CLOSE
A file is closed (FAN_CLOSE_WRITE|FAN_CLOSE_NOWRITE).

FAN_MOVE
A file or directory has been moved
(FAN_MOVED_FROM|FAN_MOVED_TO).

The filesystem object to be marked is determined by the file descriptor dirfd and the
pathname specified in path:

• If path is NULL, dirfd defines the filesystem object to be marked.

• If path is NULL, and dirfd takes the special value AT_FDCWD, the current work-
ing directory is to be marked.

• If path is absolute, it defines the filesystem object to be marked, and dirfd is ig-
nored.

• If path is relative, and dirfd does not have the value AT_FDCWD, then the filesys-
tem object to be marked is determined by interpreting path relative the directory re-
ferred to by dirfd .

• If path is relative, and dirfd has the value AT_FDCWD, then the filesystem object
to be marked is determined by interpreting path relative to the current working di-
rectory. (See openat(2) for an explanation of why the dirfd argument is useful.)

RETURN VALUE
On success, fanotify_mark() returns 0. On error, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
EBADF

An invalid file descriptor was passed in fanotify_fd .

EBADF
path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EEXIST
The filesystem object indicated by dirfd and path has a mark that was updated
without the FAN_MARK_EVICTABLE flag, and the user attempted to update
the mark with FAN_MARK_EVICTABLE flag.

EEXIST
The filesystem object indicated by dirfd and path has a mark that was updated
with the FAN_MARK_IGNORE flag, and the user attempted to update the
mark with FAN_MARK_IGNORED_MASK flag.

Linux man-pages 6.16 2025-10-06 210

fanotify_mark(2) System Calls Manual fanotify_mark(2)

EEXIST
The filesystem object indicated by dirfd and path has a mark that was updated
with the FAN_MARK_IGNORE and FAN_MARK_IG-
NORED_SURV_MODIFY flags, and the user attempted to update the mark
only with FAN_MARK_IGNORE flag.

EINVAL
An invalid value was passed in flags or mask, or fanotify_fd was not an fanotify
file descriptor.

EINVAL
The fanotify file descriptor was opened with FAN_CLASS_NOTIF or the fan-
otify group identifies filesystem objects by file handles and mask contains a flag
for permission events (FAN_OPEN_PERM or FAN_ACCESS_PERM).

EINVAL
The group was initialized without FAN_REPORT_FID but one or more event
types specified in the mask require it.

EINVAL
flags contains FAN_MARK_IGNORE, and either FAN_MARK_MOUNT or
FAN_MARK_FILESYSTEM, but does not contain FAN_MARK_IG-
NORED_SURV_MODIFY.

EISDIR
flags contains FAN_MARK_IGNORE, but does not contain
FAN_MARK_IGNORED_SURV_MODIFY, and dirfd and path specify a di-
rectory.

ENODEV
The filesystem object indicated by dirfd and path is associated with a filesystem
that reports zero fsid (e.g., fuse(4)). This error can be returned only with an fan-
otify group that identifies filesystem objects by file handles. Since Linux 6.8,
this error can be returned when trying to add a mount or filesystem mark.

ENOENT
The filesystem object indicated by dirfd and path does not exist. This error also
occurs when trying to remove a mark from an object that is not marked.

ENOMEM
The necessary memory could not be allocated.

ENOSPC
The number of marks for this user exceeds the limit and the FAN_UNLIM-
ITED_MARKS flag was not specified when the fanotify file descriptor was cre-
ated with fanotify_init(2). See fanotify(7) for details about this limit.

ENOSYS
This kernel does not implement fanotify_mark(). The fanotify API is available
only if the kernel was configured with CONFIG_FANOTIFY.

ENOTDIR
flags contains FAN_MARK_ONLYDIR, and dirfd and path do not specify a
directory.

Linux man-pages 6.16 2025-10-06 211

fanotify_mark(2) System Calls Manual fanotify_mark(2)

ENOTDIR
mask contains FAN_RENAME, and dirfd and path do not specify a directory.

ENOTDIR
flags contains FAN_MARK_IGNORE, or the fanotify group was initialized
with flag FAN_REPORT_TARGET_FID, and mask contains directory entry
modification events (e.g., FAN_CREATE, FAN_DELETE), or directory event
flags (e.g., FAN_ONDIR, FAN_EVENT_ON_CHILD), and dirfd and path do
not specify a directory.

EOPNOTSUPP
The object indicated by path is associated with a filesystem that does not support
the encoding of file handles. This error can be returned only with an fanotify
group that identifies filesystem objects by file handles. Calling name_to_han-
dle_at(2) with the flag AT_HANDLE_FID (since Linux 6.5) can be used as a
test to check if a filesystem supports reporting events with file handles.

EPERM
The operation is not permitted because the caller lacks a required capability.

EXDEV
The filesystem object indicated by path resides within a filesystem subvolume
(e.g., btrfs(5)) which uses a different fsid than its root superblock. This error
can be returned only with an fanotify group that identifies filesystem objects by
file handles. Since Linux 6.8, this error will be returned when trying to add a
mount or filesystem mark on a subvolume, when trying to add inode marks in
different subvolumes, or when trying to add inode marks in a btrfs(5) subvolume
and in another filesystem. Since Linux 6.8, this error will also be returned when
trying to add marks in different filesystems, where one of the filesystems reports
zero fsid (e.g., fuse(4)).

STANDARDS
Linux.

HISTORY
Linux 2.6.37.

NOTES
FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM

When using either FAN_OPEN_EXEC or FAN_OPEN_EXEC_PERM within the
mask, events of these types will be returned only when the direct execution of a program
occurs. More specifically, this means that events of these types will be generated for
files that are opened using execve(2), execveat(2), or uselib(2). Events of these types
will not be raised in the situation where an interpreter is passed (or reads) a file for inter-
pretation.

Additionally, if a mark has also been placed on the Linux dynamic linker, a user should
also expect to receive an event for it when an ELF object has been successfully opened
using execve(2) or execveat(2).

For example, if the following ELF binary were to be invoked and a FAN_OPEN_EXEC
mark has been placed on /:

Linux man-pages 6.16 2025-10-06 212

fanotify_mark(2) System Calls Manual fanotify_mark(2)

$ /bin/echo foo

The listening application in this case would receive FAN_OPEN_EXEC events for both
the ELF binary and interpreter, respectively:

/bin/echo
/lib64/ld-linux-x86-64.so.2

BUGS
The following bugs were present in before Linux 3.16:

• If flags contains FAN_MARK_FLUSH, dirfd , and path must specify a valid
filesystem object, even though this object is not used.

• readdir(2) does not generate a FAN_ACCESS event.

• If fanotify_mark() is called with FAN_MARK_FLUSH, flags is not checked for
invalid values.

SEE ALSO
fanotify_init(2), fanotify(7)

Linux man-pages 6.16 2025-10-06 213

fcntl(2) System Calls Manual fcntl(2)

NAME
fcntl - manipulate file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , int op, ...);

DESCRIPTION
fcntl() performs one of the operations described below on the open file descriptor fd .
The operation is determined by op.

Certain of the operations below are supported only since a particular Linux kernel ver-
sion. The preferred method of checking whether the host kernel supports a particular
operation is to invoke fcntl() with the desired op value and then test whether the call
failed with EINVAL, indicating that the kernel does not recognize this value.

Duplicating a file descriptor
F_DUPFD(2const)
F_DUPFD_CLOEXEC(2const)

File descriptor flags
F_GETFD(2const)
F_SETFD(2const)

File status flags
F_GETFL(2const)
F_SETFL(2const)

Advisory record locking
F_SETLK(2const)
F_SETLKW(2const)
F_GETLK(2const)

Open file description locks (non-POSIX)
F_OFD_SETLK(2const)
F_OFD_SETLKW(2const)
F_OFD_GETLK(2const)

Managing signals
F_GETOWN(2const)
F_SETOWN(2const)
F_GETOWN_EX(2const)
F_SETOWN_EX(2const)
F_GETSIG(2const)
F_SETSIG(2const)

Leases
F_SETLEASE(2const)

Linux man-pages 6.16 2025-10-29 214

fcntl(2) System Calls Manual fcntl(2)

F_GETLEASE(2const)

File and directory change notification (dnotify)
F_NOTIFY(2const)

Changing the capacity of a pipe
F_SETPIPE_SZ(2const)
F_GETPIPE_SZ(2const)

File Sealing
F_ADD_SEALS(2const)
F_GET_SEALS(2const)

File read/write hints
F_GET_RW_HINT(2const)
F_SET_RW_HINT(2const)
F_GET_FILE_RW_HINT(2const)
F_SET_FILE_RW_HINT(2const)

RETURN VALUE
For a successful call, the return value depends on the operation.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES or EAGAIN

Operation is prohibited by locks held by other processes.

EAGAIN
The operation is prohibited because the file has been memory-mapped by an-
other process.

EBADF
fd is not an open file descriptor

EINVAL
The value specified in op is not recognized by this kernel.

VERSIONS
POSIX.1-2024 specifies FD_CLOFORK and F_DUPFD_CLOFORK, but Linux
doesn’t support them.

STANDARDS
POSIX.1-2024.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

SEE ALSO
dup2(2), flock(2), open(2), socket(2), lockf(3), capabilities(7), feature_test_macros(7),
lslocks(8)

Linux man-pages 6.16 2025-10-29 215

fcntl_locking(2) System Calls Manual fcntl_locking(2)

NAME
F_GETLK, F_SETLK, F_SETLKW, F_OFD_GETLK, F_OFD_SETLK,
F_OFD_SETLKW - locking

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , F_GETLK, struct flock *lock);
int fcntl(int fd , F_SETLK, const struct flock *lock);
int fcntl(int fd , F_SETLKW, const struct flock *lock);

int fcntl(int fd , F_OFD_GETLK, struct flock *lock);
int fcntl(int fd , F_OFD_SETLK, const struct flock *lock);
int fcntl(int fd , F_OFD_SETLKW, const struct flock *lock);

DESCRIPTION
Advisory record locking

Linux implements traditional ("process-associated") UNIX record locks, as standardized
by POSIX. For a Linux-specific alternative with better semantics, see the discussion of
open file description locks below.

F_SETLK, F_SETLKW, and F_GETLK are used to acquire, release, and test for the
existence of record locks (also known as byte-range, file-segment, or file-region locks).
The third argument, lock, is a pointer to a structure that has at least the following fields
(in unspecified order).

struct flock {
...
short l_type; /* Type of lock: F_RDLCK,

F_WRLCK, F_UNLCK */
short l_whence; /* How to interpret l_start:

SEEK_SET, SEEK_CUR, SEEK_END */
off_t l_start; /* Starting offset for lock */
off_t l_len; /* Number of bytes to lock */
pid_t l_pid; /* PID of process blocking our lock

(set by F_GETLK and F_OFD_GETLK) */
...

};

The l_whence, l_start, and l_len fields of this structure specify the range of bytes we
wish to lock. Bytes past the end of the file may be locked, but not bytes before the start
of the file.

l_start is the starting offset for the lock, and is interpreted relative to either: the start of
the file (if l_whence is SEEK_SET); the current file offset (if l_whence is
SEEK_CUR); or the end of the file (if l_whence is SEEK_END). In the final two
cases, l_start can be a negative number provided the offset does not lie before the start
of the file.

l_len specifies the number of bytes to be locked. If l_len is positive, then the range to be

Linux man-pages 6.16 2025-10-29 216

fcntl_locking(2) System Calls Manual fcntl_locking(2)

locked covers bytes l_start up to and including l_start+l_len-1. Specifying 0 for l_len
has the special meaning: lock all bytes starting at the location specified by l_whence and
l_start through to the end of file, no matter how large the file grows.

POSIX.1-2001 allows (but does not require) an implementation to support a negative
l_len value; if l_len is negative, the interval described by lock covers bytes l_start+l_len
up to and including l_start-1. This is supported since Linux 2.4.21 and Linux 2.5.49.

The l_type field can be used to place a read (F_RDLCK) or a write (F_WRLCK) lock
on a file. Any number of processes may hold a read lock (shared lock) on a file region,
but only one process may hold a write lock (exclusive lock). An exclusive lock excludes
all other locks, both shared and exclusive. A single process can hold only one type of
lock on a file region; if a new lock is applied to an already-locked region, then the exist-
ing lock is converted to the new lock type. (Such conversions may involve splitting,
shrinking, or coalescing with an existing lock if the byte range specified by the new lock
does not precisely coincide with the range of the existing lock.)

F_SETLK
Acquire a lock (when l_type is F_RDLCK or F_WRLCK) or release a lock
(when l_type is F_UNLCK) on the bytes specified by the l_whence, l_start, and
l_len fields of lock. If a conflicting lock is held by another process, this call re-
turns -1 and sets errno to EACCES or EAGAIN. (The error returned in this
case differs across implementations, so POSIX requires a portable application to
check for both errors.)

F_SETLKW
As for F_SETLK, but if a conflicting lock is held on the file, then wait for that
lock to be released. If a signal is caught while waiting, then the call is inter-
rupted and (after the signal handler has returned) returns immediately (with re-
turn value -1 and errno set to EINTR; see signal(7)).

F_GETLK
On input to this call, lock describes a lock we would like to place on the file. If
the lock could be placed, fcntl() does not actually place it, but returns
F_UNLCK in the l_type field of lock and leaves the other fields of the structure
unchanged.

If one or more incompatible locks would prevent this lock being placed, then fc-
ntl() returns details about one of those locks in the l_type, l_whence, l_start, and
l_len fields of lock. If the conflicting lock is a traditional (process-associated)
record lock, then the l_pid field is set to the PID of the process holding that lock.
If the conflicting lock is an open file description lock, then l_pid is set to -1.
Note that the returned information may already be out of date by the time the
caller inspects it.

In order to place a read lock, fd must be open for reading. In order to place a write
lock, fd must be open for writing. To place both types of lock, open a file read-write.

When placing locks with F_SETLKW, the kernel detects deadlocks, whereby two or
more processes have their lock requests mutually blocked by locks held by the other
processes. For example, suppose process A holds a write lock on byte 100 of a file, and
process B holds a write lock on byte 200. If each process then attempts to lock the byte

Linux man-pages 6.16 2025-10-29 217

fcntl_locking(2) System Calls Manual fcntl_locking(2)

already locked by the other process using F_SETLKW, then, without deadlock detec-
tion, both processes would remain blocked indefinitely. When the kernel detects such
deadlocks, it causes one of the blocking lock requests to immediately fail with the error
EDEADLK; an application that encounters such an error should release some of its
locks to allow other applications to proceed before attempting regain the locks that it re-
quires. Circular deadlocks involving more than two processes are also detected. Note,
however, that there are limitations to the kernel’s deadlock-detection algorithm; see
BUGS.

As well as being removed by an explicit F_UNLCK, record locks are automatically re-
leased when the process terminates.

Record locks are not inherited by a child created via fork(2), but are preserved across an
execve(2).

Because of the buffering performed by the stdio(3) library, the use of record locking
with routines in that package should be avoided; use read(2) and write(2) instead.

The record locks described above are associated with the process (unlike the open file
description locks described below). This has some unfortunate consequences:

• If a process closes any file descriptor referring to a file, then all of the process’s
locks on that file are released, regardless of the file descriptor(s) on which the locks
were obtained. This is bad: it means that a process can lose its locks on a file such
as /etc/passwd or /etc/mtab when for some reason a library function decides to
open, read, and close the same file.

• The threads in a process share locks. In other words, a multithreaded program can’t
use record locking to ensure that threads don’t simultaneously access the same re-
gion of a file.

Open file description locks solve both of these problems.

Open file description locks (non-POSIX)
Open file description locks are advisory byte-range locks whose operation is in most re-
spects identical to the traditional record locks described above. This lock type is Linux-
specific, and available since Linux 3.15. (There is a proposal with the Austin Group to
include this lock type in the next revision of POSIX.1.) For an explanation of open file
descriptions, see open(2).

The principal difference between the two lock types is that whereas traditional record
locks are associated with a process, open file description locks are associated with the
open file description on which they are acquired, much like locks acquired with flock(2).
Consequently (and unlike traditional advisory record locks), open file description locks
are inherited across fork(2) (and clone(2) with CLONE_FILES), and are only automati-
cally released on the last close of the open file description, instead of being released on
any close of the file.

Conflicting lock combinations (i.e., a read lock and a write lock or two write locks)
where one lock is an open file description lock and the other is a traditional record lock
conflict even when they are acquired by the same process on the same file descriptor.

Open file description locks placed via the same open file description (i.e., via the same
file descriptor, or via a duplicate of the file descriptor created by fork(2), dup(2),

Linux man-pages 6.16 2025-10-29 218

fcntl_locking(2) System Calls Manual fcntl_locking(2)

F_DUPFD(2const), and so on) are always compatible: if a new lock is placed on an al-
ready locked region, then the existing lock is converted to the new lock type. (Such con-
versions may result in splitting, shrinking, or coalescing with an existing lock as dis-
cussed above.)

On the other hand, open file description locks may conflict with each other when they
are acquired via different open file descriptions. Thus, the threads in a multithreaded
program can use open file description locks to synchronize access to a file region by
having each thread perform its own open(2) on the file and applying locks via the result-
ing file descriptor.

As with traditional advisory locks, the third argument to fcntl(), lock, is a pointer to an
flock structure. By contrast with traditional record locks, the l_pid field of that structure
must be set to zero when using the operations described below.

The operations for working with open file description locks are analogous to those used
with traditional locks:

F_OFD_SETLK
Acquire an open file description lock (when l_type is F_RDLCK or
F_WRLCK) or release an open file description lock (when l_type is
F_UNLCK) on the bytes specified by the l_whence, l_start, and l_len fields of
lock. If a conflicting lock is held by another process, this call returns -1 and sets
errno to EAGAIN.

F_OFD_SETLKW
As for F_OFD_SETLK, but if a conflicting lock is held on the file, then wait for
that lock to be released. If a signal is caught while waiting, then the call is inter-
rupted and (after the signal handler has returned) returns immediately (with re-
turn value -1 and errno set to EINTR; see signal(7)).

F_OFD_GETLK
On input to this call, lock describes an open file description lock we would like
to place on the file. If the lock could be placed, fcntl() does not actually place it,
but returns F_UNLCK in the l_type field of lock and leaves the other fields of
the structure unchanged. If one or more incompatible locks would prevent this
lock being placed, then details about one of these locks are returned via lock, as
described above for F_GETLK.

In the current implementation, no deadlock detection is performed for open file descrip-
tion locks. (This contrasts with process-associated record locks, for which the kernel
does perform deadlock detection.)

Mandatory locking
Warning: the Linux implementation of mandatory locking is unreliable. See BUGS be-
low. Because of these bugs, and the fact that the feature is believed to be little used,
since Linux 4.5, mandatory locking has been made an optional feature, governed by a
configuration option (CONFIG_MANDATORY_FILE_LOCKING). This feature is
no longer supported at all in Linux 5.15 and above.

By default, both traditional (process-associated) and open file description record locks
are advisory. Advisory locks are not enforced and are useful only between cooperating

Linux man-pages 6.16 2025-10-29 219

fcntl_locking(2) System Calls Manual fcntl_locking(2)

processes.

Both lock types can also be mandatory. Mandatory locks are enforced for all processes.
If a process tries to perform an incompatible access (e.g., read(2) or write(2)) on a file
region that has an incompatible mandatory lock, then the result depends upon whether
the O_NONBLOCK flag is enabled for its open file description. If the O_NON-
BLOCK flag is not enabled, then the system call is blocked until the lock is removed or
converted to a mode that is compatible with the access. If the O_NONBLOCK flag is
enabled, then the system call fails with the error EAGAIN.

To make use of mandatory locks, mandatory locking must be enabled both on the
filesystem that contains the file to be locked, and on the file itself. Mandatory locking is
enabled on a filesystem using the "-o mand" option to mount(8), or the MS_MAND-
LOCK flag for mount(2). Mandatory locking is enabled on a file by disabling group ex-
ecute permission on the file and enabling the set-group-ID permission bit (see chmod(1)
and chmod(2)).

Mandatory locking is not specified by POSIX. Some other systems also support manda-
tory locking, although the details of how to enable it vary across systems.

Lost locks
When an advisory lock is obtained on a networked filesystem such as NFS it is possible
that the lock might get lost. This may happen due to administrative action on the server,
or due to a network partition (i.e., loss of network connectivity with the server) which
lasts long enough for the server to assume that the client is no longer functioning.

When the filesystem determines that a lock has been lost, future read(2) or write(2) re-
quests may fail with the error EIO. This error will persist until the lock is removed or
the file descriptor is closed. Since Linux 3.12, this happens at least for NFSv4 (includ-
ing all minor versions).

Some versions of UNIX send a signal (SIGLOST) in this circumstance. Linux does not
define this signal, and does not provide any asynchronous notification of lost locks.

RETURN VALUE
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

EBADF
op is F_SETLK or F_SETLKW and the file descriptor open mode doesn’t
match with the type of lock requested.

EDEADLK
It was detected that the specified F_SETLKW operation would cause a dead-
lock.

EFAULT
lock is outside your accessible address space.

Linux man-pages 6.16 2025-10-29 220

fcntl_locking(2) System Calls Manual fcntl_locking(2)

EINTR
op is F_SETLKW or F_OFD_SETLKW and the operation was interrupted by
a signal; see signal(7).

EINTR
op is F_GETLK, F_SETLK, F_OFD_GETLK, or F_OFD_SETLK, and the
operation was interrupted by a signal before the lock was checked or acquired.
Most likely when locking a remote file (e.g., locking over NFS), but can some-
times happen locally.

EINVAL
op is F_OFD_SETLK, F_OFD_SETLKW, or F_OFD_GETLK, and l_pid
was not specified as zero.

ENOLCK
Too many segment locks open, lock table is full, or a remote locking protocol
failed (e.g., locking over NFS).

STANDARDS
POSIX.1-2024.

HISTORY
F_GETLK
F_SETLK
F_SETLKW

SVr4, 4.3BSD, POSIX.1-2001.

F_OFD_SETLK
F_OFD_SETLKW
F_OFD_GETLK

POSIX.1-2024.

NOTES
File locking

The original Linux fcntl() system call was not designed to handle large file offsets (in
the flock structure). Consequently, an fcntl64() system call was added in Linux 2.4.
The newer system call employs a different structure for file locking, flock64, and corre-
sponding operations, F_GETLK64, F_SETLK64, and F_SETLKW64. However,
these details can be ignored by applications using glibc, whose fcntl() wrapper function
transparently employs the more recent system call where it is available.

Record locks
Since Linux 2.0, there is no interaction between the types of lock placed by flock(2) and
fcntl().

Several systems have more fields in struct flock such as, for example, l_sysid (to identify
the machine where the lock is held). Clearly, l_pid alone is not going to be very useful
if the process holding the lock may live on a different machine; on Linux, while present
on some architectures (such as MIPS32), this field is not used.

The original Linux fcntl() system call was not designed to handle large file offsets (in
the flock structure). Consequently, an fcntl64() system call was added in Linux 2.4.
The newer system call employs a different structure for file locking, flock64, and

Linux man-pages 6.16 2025-10-29 221

fcntl_locking(2) System Calls Manual fcntl_locking(2)

corresponding operations, F_GETLK64, F_SETLK64, and F_SETLKW64. However,
these details can be ignored by applications using glibc, whose fcntl() wrapper function
transparently employs the more recent system call where it is available.

Record locking and NFS
Before Linux 3.12, if an NFSv4 client loses contact with the server for a period of time
(defined as more than 90 seconds with no communication), it might lose and regain a
lock without ever being aware of the fact. (The period of time after which contact is as-
sumed lost is known as the NFSv4 leasetime. On a Linux NFS server, this can be deter-
mined by looking at /proc/fs/nfsd/nfsv4leasetime, which expresses the period in seconds.
The default value for this file is 90.) This scenario potentially risks data corruption,
since another process might acquire a lock in the intervening period and perform file
I/O.

Since Linux 3.12, if an NFSv4 client loses contact with the server, any I/O to the file by
a process which "thinks" it holds a lock will fail until that process closes and reopens the
file. A kernel parameter, nfs.recover_lost_locks, can be set to 1 to obtain the pre-3.12
behavior, whereby the client will attempt to recover lost locks when contact is reestab-
lished with the server. Because of the attendant risk of data corruption, this parameter
defaults to 0 (disabled).

BUGS
Deadlock detection

The deadlock-detection algorithm employed by the kernel when dealing with
F_SETLKW requests can yield both false negatives (failures to detect deadlocks, leav-
ing a set of deadlocked processes blocked indefinitely) and false positives (EDEADLK
errors when there is no deadlock). For example, the kernel limits the lock depth of its
dependency search to 10 steps, meaning that circular deadlock chains that exceed that
size will not be detected. In addition, the kernel may falsely indicate a deadlock when
two or more processes created using the clone(2) CLONE_FILES flag place locks that
appear (to the kernel) to conflict.

Mandatory locking
The Linux implementation of mandatory locking is subject to race conditions which ren-
der it unreliable: a write(2) call that overlaps with a lock may modify data after the
mandatory lock is acquired; a read(2) call that overlaps with a lock may detect changes
to data that were made only after a write lock was acquired. Similar races exist between
mandatory locks and mmap(2). It is therefore inadvisable to rely on mandatory locking.

SEE ALSO
fcntl(2), flock(2), lockf(3), lslocks(8)

locks.txt, mandatory-locking.txt, and dnotify.txt in the Linux kernel source directory
Documentation/filesystems/ (on older kernels, these files are directly under the Docu-
mentation/ directory, and mandatory-locking.txt is called mandatory.txt)

Linux man-pages 6.16 2025-10-29 222

flock(2) System Calls Manual flock(2)

NAME
flock - apply or remove an advisory lock on an open file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/file.h>

int flock(int fd , int op);

DESCRIPTION
Apply or remove an advisory lock on the open file specified by fd . The argument op is
one of the following:

LOCK_SH
Place a shared lock. More than one process may hold a shared lock for
a given file at a given time.

LOCK_EX
Place an exclusive lock. Only one process may hold an exclusive lock
for a given file at a given time.

LOCK_UN
Remove an existing lock held by this process.

A call to flock() may block if an incompatible lock is held by another process. To make
a nonblocking request, include LOCK_NB (by ORing) with any of the above opera-
tions.

A single file may not simultaneously have both shared and exclusive locks.

Locks created by flock() are associated with an open file description (see open(2)). This
means that duplicate file descriptors (created by, for example, fork(2) or dup(2)) refer to
the same lock, and this lock may be modified or released using any of these file descrip-
tors. Furthermore, the lock is released either by an explicit LOCK_UN operation on
any of these duplicate file descriptors, or when all such file descriptors have been closed.

If a process uses open(2) (or similar) to obtain more than one file descriptor for the same
file, these file descriptors are treated independently by flock(). An attempt to lock the
file using one of these file descriptors may be denied by a lock that the calling process
has already placed via another file descriptor.

A process may hold only one type of lock (shared or exclusive) on a file. Subsequent
flock() calls on an already locked file will convert an existing lock to the new lock
mode.

Locks created by flock() are preserved across an execve(2).

A shared or exclusive lock can be placed on a file regardless of the mode in which the
file was opened.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Linux man-pages 6.16 2025-09-21 223

flock(2) System Calls Manual flock(2)

ERRORS
EBADF

fd is not an open file descriptor.

EINTR
While waiting to acquire a lock, the call was interrupted by delivery of a signal
caught by a handler; see signal(7).

EINVAL
op is invalid.

ENOLCK
The kernel ran out of memory for allocating lock records.

EWOULDBLOCK
The file is locked and the LOCK_NB flag was selected.

VERSIONS
Since Linux 2.0, flock() is implemented as a system call in its own right rather than be-
ing emulated in the GNU C library as a call to fcntl(2). With this implementation, there
is no interaction between the types of lock placed by flock() and fcntl(2), and flock()
does not detect deadlock. (Note, however, that on some systems, such as the modern
BSDs, flock() and fcntl(2) locks do interact with one another.)

CIFS details
Up to Linux 5.4, flock() is not propagated over SMB. A file with such locks will not ap-
pear locked for remote clients.

Since Linux 5.5, flock() locks are emulated with SMB byte-range locks on the entire
file. Similarly to NFS, this means that fcntl(2) and flock() locks interact with one an-
other. Another important side-effect is that the locks are not advisory anymore: any IO
on a locked file will always fail with EACCES when done from a separate file descrip-
tor. This difference originates from the design of locks in the SMB protocol, which pro-
vides mandatory locking semantics.

Remote and mandatory locking semantics may vary with SMB protocol, mount options
and server type. See mount.cifs(8) for additional information.

STANDARDS
BSD.

HISTORY
4.4BSD (the flock() call first appeared in 4.2BSD). A version of flock(), possibly im-
plemented in terms of fcntl(2), appears on most UNIX systems.

NFS details
Up to Linux 2.6.11, flock() does not lock files over NFS (i.e., the scope of locks was
limited to the local system). Instead, one could use fcntl(2) byte-range locking, which
does work over NFS, given a sufficiently recent version of Linux and a server which
supports locking.

Since Linux 2.6.12, NFS clients support flock() locks by emulating them as fcntl(2)
byte-range locks on the entire file. This means that fcntl(2) and flock() locks do interact
with one another over NFS. It also means that in order to place an exclusive lock, the

Linux man-pages 6.16 2025-09-21 224

flock(2) System Calls Manual flock(2)

file must be opened for writing.

Since Linux 2.6.37, the kernel supports a compatibility mode that allows flock() locks
(and also fcntl(2) byte region locks) to be treated as local; see the discussion of the lo-
cal_lock option in nfs(5)

NOTES
flock() places advisory locks only; given suitable permissions on a file, a process is free
to ignore the use of flock() and perform I/O on the file.

flock() and fcntl(2) locks have different semantics with respect to forked processes and
dup(2). On systems that implement flock() using fcntl(2), the semantics of flock() will
be different from those described in this manual page.

Converting a lock (shared to exclusive, or vice versa) is not guaranteed to be atomic: the
existing lock is first removed, and then a new lock is established. Between these two
steps, a pending lock request by another process may be granted, with the result that the
conversion either blocks, or fails if LOCK_NB was specified. (This is the original BSD
behavior, and occurs on many other implementations.)

SEE ALSO
flock(1), close(2), dup(2), execve(2), fcntl(2), fork(2), open(2), lockf(3), lslocks(8)

Documentation/filesystems/locks.txt in the Linux kernel source tree (Documenta-
tion/locks.txt in older kernels)

Linux man-pages 6.16 2025-09-21 225

fork(2) System Calls Manual fork(2)

NAME
fork - create a child process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t fork(void);

DESCRIPTION
fork() creates a new process by duplicating the calling process. The new process is re-
ferred to as the child process. The calling process is referred to as the parent process.

The child process and the parent process run in separate memory spaces. At the time of
fork() both memory spaces have the same content. Memory writes, file mappings
(mmap(2)), and unmappings (munmap(2)) performed by one of the processes do not
affect the other.

The child process is an exact duplicate of the parent process except for the following
points:

• The child has its own unique process ID, and this PID does not match the ID of any
existing process group (setpgid(2)) or session.

• The child’s parent process ID is the same as the parent’s process ID.

• The child does not inherit its parent’s memory locks (mlock(2), mlockall(2)).

• Process resource utilizations (getrusage(2)) and CPU time counters (times(2)) are
reset to zero in the child.

• The child’s set of pending signals is initially empty (sigpending(2)).

• The child does not inherit semaphore adjustments from its parent (semop(2)).

• The child does not inherit process-associated record locks from its parent (fcntl(2)).
(On the other hand, it does inherit fcntl(2) open file description locks and flock(2)
locks from its parent.)

• The child does not inherit timers from its parent (setitimer(2), alarm(2), timer_cre-
ate(2)).

• The child does not inherit outstanding asynchronous I/O operations from its parent
(aio_read(3), aio_write(3)), nor does it inherit any asynchronous I/O contexts from
its parent (see io_setup(2)).

The process attributes in the preceding list are all specified in POSIX.1. The parent and
child also differ with respect to the following Linux-specific process attributes:

• The child does not inherit directory change notifications (dnotify) from its parent
(see the description of F_NOTIFY in fcntl(2)).

• The prctl(2) PR_SET_PDEATHSIG setting is reset so that the child does not re-
ceive a signal when its parent terminates.

Linux man-pages 6.16 2025-10-29 226

fork(2) System Calls Manual fork(2)

• The default timer slack value is set to the parent’s current timer slack value. See the
description of PR_SET_TIMERSLACK in prctl(2).

• Memory mappings that have been marked with the madvise(2) MADV_DONT-
FORK flag are not inherited across a fork().

• Memory in address ranges that have been marked with the madvise(2)
MADV_WIPEONFORK flag is zeroed in the child after a fork(). (The
MADV_WIPEONFORK setting remains in place for those address ranges in the
child.)

• The termination signal of the child is always SIGCHLD (see clone(2)).

• The port access permission bits set by ioperm(2) are not inherited by the child; the
child must turn on any bits that it requires using ioperm(2).

Note the following further points:

• The child process is created with a single thread—the one that called fork(). The
entire virtual address space of the parent is replicated in the child, including the
states of mutexes, condition variables, and other pthreads objects; the use of
pthread_atfork(3) may be helpful for dealing with problems that this can cause.

• After a fork() in a multithreaded program, the child can safely call only async-sig-
nal-safe functions (see signal-safety(7)) until such time as it calls execve(2).

• The child inherits copies of the parent’s set of open file descriptors. Each file de-
scriptor in the child refers to the same open file description (see open(2)) as the cor-
responding file descriptor in the parent. This means that the two file descriptors
share open file status flags, file offset, and signal-driven I/O attributes (see the de-
scription of F_SETOWN and F_SETSIG in fcntl(2)).

• The child inherits copies of the parent’s set of open message queue descriptors (see
mq_overview(7)). Each file descriptor in the child refers to the same open message
queue description as the corresponding file descriptor in the parent. This means that
the two file descriptors share the same flags (mq_flags).

• The child inherits copies of the parent’s set of open directory streams (see
opendir(3)). POSIX.1 says that the corresponding directory streams in the parent
and child may share the directory stream positioning; on Linux/glibc they do not.

RETURN VALUE
On success, the PID of the child process is returned in the parent, and 0 is returned in
the child. On failure, -1 is returned in the parent, no child process is created, and errno
is set to indicate the error.

ERRORS
EAGAIN

A system-imposed limit on the number of threads was encountered. There are a
number of limits that may trigger this error:

• the RLIMIT_NPROC soft resource limit (set via setrlimit(2)), which limits
the number of processes and threads for a real user ID, was reached;

Linux man-pages 6.16 2025-10-29 227

fork(2) System Calls Manual fork(2)

• the kernel’s system-wide limit on the number of processes and threads,
/proc/sys/kernel/threads-max, was reached (see proc(5));

• the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see
proc(5)); or

• the PID limit (pids.max) imposed by the cgroup "process number" (PIDs)
controller was reached.

EAGAIN
The caller is operating under the SCHED_DEADLINE scheduling policy and
does not have the reset-on-fork flag set. See sched(7).

ENOMEM
fork() failed to allocate the necessary kernel structures because memory is tight.

ENOMEM
An attempt was made to create a child process in a PID namespace whose "init"
process has terminated. See pid_namespaces(7).

ENOSYS
fork() is not supported on this platform (for example, hardware without a Mem-
ory-Management Unit).

ERESTARTNOINTR (since Linux 2.6.17)
System call was interrupted by a signal and will be restarted. (This can be seen
only during a trace.)

VERSIONS
C library/kernel differences

Since glibc 2.3.3, rather than invoking the kernel’s fork() system call, the glibc fork()
wrapper that is provided as part of the NPTL threading implementation invokes clone(2)
with flags that provide the same effect as the traditional system call. (A call to fork() is
equivalent to a call to clone(2) specifying flags as just SIGCHLD.) The glibc wrapper
invokes any fork handlers that have been established using pthread_atfork(3).

Async-signal safety
_Fork(3) is an async-signal safe variant of fork(2).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
Under Linux, fork() is implemented using copy-on-write pages, so the only penalty that
it incurs is the time and memory required to duplicate the parent’s page tables, and to
create a unique task structure for the child.

EXAMPLES
See pipe(2) and wait(2) for more examples.

#include <signal.h>
#include <stdint.h>

Linux man-pages 6.16 2025-10-29 228

fork(2) System Calls Manual fork(2)

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)
{

pid_t pid;

if (signal(SIGCHLD, SIG_IGN) == SIG_ERR) {
perror("signal");
exit(EXIT_FAILURE);

}
pid = fork();
switch (pid) {
case -1:

perror("fork");
exit(EXIT_FAILURE);

case 0:
puts("Child exiting.");
fflush(stdout);
_exit(EXIT_SUCCESS);

default:
printf("Child is PID %jd\n", (intmax_t) pid);
puts("Parent exiting.");
exit(EXIT_SUCCESS);

}
}

SEE ALSO
clone(2), execve(2), exit(2), _exit(2), setrlimit(2), unshare(2), vfork(2), wait(2), dae-
mon(3), _Fork(3), pthread_atfork(3), capabilities(7), credentials(7)

Linux man-pages 6.16 2025-10-29 229

fsconfig(2) System Calls Manual fsconfig(2)

NAME
fsconfig - configure new or existing filesystem context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mount.h>

int fsconfig(int fd , unsigned int cmd ,
const char *_Nullable key,
const void *_Nullable value, int aux);

DESCRIPTION
The fsconfig() system call is part of the suite of file-descriptor-based mount facilities in
Linux.

fsconfig() is used to supply parameters to and issue commands against the filesystem
configuration context associated with the file descriptor fd . Filesystem configuration
contexts can be created with fsopen(2) or be instantiated from an extant filesystem in-
stance with fspick(2).

The cmd argument indicates the command to be issued. Some commands supply para-
meters to the context (equivalent to mount options specified with mount(8)), while oth-
ers are meta-operations on the filesystem context. The list of valid cmd values are:

FSCONFIG_SET_FLAG
Set the flag parameter named by key. value must be NULL, and aux
must be 0.

FSCONFIG_SET_STRING
Set the string parameter named by key to the value specified by value.
value points to a null-terminated string, and aux must be 0.

FSCONFIG_SET_BINARY
Set the blob parameter named by key to the contents of the binary blob
specified by value. value points to the start of a buffer that is aux bytes
in length.

FSCONFIG_SET_FD
Set the file parameter named by key to the open file description refer-
enced by the file descriptor aux. value must be NULL.

You may also use FSCONFIG_SET_STRING for file parameters, with
value set to a null-terminated string containing a base-10 representation
of the file descriptor number. This mechanism is primarily intended for
compatibility with older mount(2)-based programs, and only works for
parameters that only accept file descriptor arguments.

FSCONFIG_SET_PATH
Set the path parameter named by key to the object at a provided path, re-
solved in a similar manner to openat(2). value points to a null-termi-
nated pathname string, and aux is equivalent to the dirfd argument to
openat(2). See openat(2) for an explanation of the need for

Linux man-pages 6.16 2025-10-01 230

fsconfig(2) System Calls Manual fsconfig(2)

FSCONFIG_SET_PATH.

You may also use FSCONFIG_SET_STRING for path parameters, the
behaviour of which is equivalent to FSCONFIG_SET_PATH with aux
set to AT_FDCWD.

FSCONFIG_SET_PATH_EMPTY
As with FSCONFIG_SET_PATH, except that if value is an empty
string, the file descriptor specified by aux is operated on directly and may
be any type of file (not just a directory). This is equivalent to the behav-
iour of AT_EMPTY_PATH with most "*at()" system calls. If aux is
AT_FDCWD, the parameter will be set to the current working directory
of the calling process.

FSCONFIG_CMD_CREATE
This command instructs the filesystem driver to instantiate an instance of
the filesystem in the kernel with the parameters specified in the filesystem
configuration context. key and value must be NULL, and aux must be 0.

This command can only be issued once in the lifetime of a filesystem
context. If the operation succeeds, the filesystem context associated with
file descriptor fd now references the created filesystem instance, and is
placed into a special "awaiting-mount" mode that allows you to use fs-
mount(2) to create a mount object from the filesystem instance. If the op-
eration fails, in most cases the filesystem context is placed in a failed
mode and cannot be used for any further fsconfig() operations (though
you may still retrieve diagnostic messages through the message retrieval
interface, as described in the corresponding subsection of fsopen(2)).

This command can only be issued against filesystem configuration con-
texts that were created with fsopen(2). In order to create a filesystem in-
stance, the calling process must have the CAP_SYS_ADMIN capability.

An important thing to be aware of is that the Linux kernel will silently
reuse extant filesystem instances depending on the filesystem type and
the configured parameters (each filesystem driver has its own policy for
how filesystem instances are reused). This means that the filesystem in-
stance "created" by FSCONFIG_CMD_CREATE may, in fact, be a ref-
erence to an extant filesystem instance in the kernel. (For reference, this
behaviour also applies to mount(2).)

One side-effect of this behaviour is that if an extant filesystem instance is
reused, all parameters configured for this filesystem configuration con-
text are silently ignored (with the exception of the ro and rw flag parame-
ters; if the state of the read-only flag in the extant filesystem instance and
the filesystem configuration context do not match, this operation will re-
turn EBUSY). This also means that
FSCONFIG_CMD_RECONFIGURE commands issued against the
"created" filesystem instance will also affect any mount objects associ-
ated with the extant filesystem instance.

Linux man-pages 6.16 2025-10-01 231

fsconfig(2) System Calls Manual fsconfig(2)

Programs that need to ensure that they create a new filesystem instance
with specific parameters (notably, security-related parameters such as acl
to enable POSIX ACLs—as described in acl(5)) should use
FSCONFIG_CMD_CREATE_EXCL instead.

FSCONFIG_CMD_CREATE_EXCL (since Linux 6.6)
As with FSCONFIG_CMD_CREATE, except that the kernel is in-
structed to not reuse extant filesystem instances. If the operation would
be forced to reuse an extant filesystem instance, this operation will return
EBUSY instead.

As a result (unlike FSCONFIG_CMD_CREATE), if this operation suc-
ceeds then the calling process can be sure that all of the parameters suc-
cessfully configured with fsconfig() will actually be applied to the cre-
ated filesystem instance.

FSCONFIG_CMD_RECONFIGURE
This command instructs the filesystem driver to apply the parameters
specified in the filesystem configuration context to the extant filesystem
instance referenced by the filesystem configuration context. key and
value must be NULL, and aux must be 0.

This is primarily intended for use with fspick(2), but may also be used to
modify the parameters of a filesystem instance after
FSCONFIG_CMD_CREATE was used to create it and a mount object
was created using fsmount(2). In order to reconfigure an extant filesys-
tem instance, the calling process must have the CAP_SYS_ADMIN ca-
pability.

If the operation succeeds, the filesystem context is reset but remains in
reconfiguration mode and thus can be reused for subsequent
FSCONFIG_CMD_RECONFIGURE commands. If the operation
fails, in most cases the filesystem context is placed in a failed mode and
cannot be used for any further fsconfig() operations (though you may still
retrieve diagnostic messages through the message retrieval interface, as
described in the corresponding subsection of fsopen(2)).

Parameters specified with FSCONFIG_SET_* do not take effect until a corresponding
FSCONFIG_CMD_CREATE or FSCONFIG_CMD_RECONFIGURE command is
issued.

RETURN VALUE
On success, fsconfig() returns 0. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
If an error occurs, the filesystem driver may provide additional information about the er-
ror through the message retrieval interface for filesystem configuration contexts. This
additional information can be retrieved at any time by calling read(2) on the filesystem
instance or filesystem configuration context referenced by the file descriptor fd . (See
the "Message retrieval interface" subsection in fsopen(2) for more details on the mes-
sage format.)

Linux man-pages 6.16 2025-10-01 232

fsconfig(2) System Calls Manual fsconfig(2)

Even after an error occurs, the filesystem configuration context is not invalidated, and
thus can still be used with other fsconfig() commands. This means that users can probe
support for filesystem parameters on a per-parameter basis, and adjust which parameters
they wish to set.

The error values given below result from filesystem type independent errors. Each
filesystem type may have its own special errors and its own special behavior. See the
Linux kernel source code for details.

EACCES
A component of a path provided as a path parameter was not searchable. (See
also path_resolution(7).)

EACCES
FSCONFIG_CMD_CREATE was attempted for a read-only filesystem without
specifying the ’ro’ flag parameter.

EACCES
A specified block device parameter is located on a filesystem mounted with the
MS_NODEV option.

EBADF
The file descriptor given by fd (or possibly by aux, depending on the command)
is invalid.

EBUSY
The filesystem context associated with fd is in the wrong state for the given
command.

EBUSY
The filesystem instance cannot be reconfigured as read-only with
FSCONFIG_CMD_RECONFIGURE because some programs still hold files
open for writing.

EBUSY
A new filesystem instance was requested with
FSCONFIG_CMD_CREATE_EXCL but a matching superblock already ex-
isted.

EFAULT
One of the pointer arguments points to a location outside the calling process’s
accessible address space.

EINVAL
fd does not refer to a filesystem configuration context or filesystem instance.

EINVAL
One of the values of key, value, and/or aux were set to a non-zero value when
cmd required that they be zero (or NULL).

EINVAL
The parameter named by key cannot be set using the type specified with cmd .

Linux man-pages 6.16 2025-10-01 233

fsconfig(2) System Calls Manual fsconfig(2)

EINVAL
One of the source parameters referred to an invalid superblock.

ELOOP
Too many links encountered during pathname resolution of a path argument.

ENAMETOOLONG
A path argument was longer than PATH_MAX.

ENOENT
A path argument had a non-existent component.

ENOENT
A path argument is an empty string, but cmd is not
FSCONFIG_SET_PATH_EMPTY.

ENOMEM
The kernel could not allocate sufficient memory to complete the operation.

ENOTBLK
The parameter named by key must be a block device, but the provided parameter
value was not a block device.

ENOTDIR
A component of the path prefix of a path argument was not a directory.

EOPNOTSUPP
The command given by cmd is not valid.

ENXIO
The major number of a block device parameter is out of range.

EPERM
The command given by cmd was FSCONFIG_CMD_CREATE,
FSCONFIG_CMD_CREATE_EXCL, or
FSCONFIG_CMD_RECONFIGURE, but the calling process does not have
the required CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Linux 5.2. glibc 2.36.

NOTES
Generic filesystem parameters

Each filesystem driver is responsible for parsing most parameters specified with fscon-
fig(), meaning that individual filesystems may have very different behaviour when en-
countering parameters with the same name. In general, you should not assume that the
behaviour of fsconfig() when specifying a parameter to one filesystem type will match
the behaviour of the same parameter with a different filesystem type.

However, the following generic parameters apply to all filesystems and have unified be-
haviour. They are set using the listed FSCONFIG_SET_* command.

Linux man-pages 6.16 2025-10-01 234

fsconfig(2) System Calls Manual fsconfig(2)

ro and rw (FSCONFIG_SET_FLAG)
Configure whether the filesystem instance is read-only.

dirsync (FSCONFIG_SET_FLAG)
Make directory changes on this filesystem instance synchronous.

sync and async (FSCONFIG_SET_FLAG)
Configure whether writes on this filesystem instance will be made synchronous
(as though the O_SYNC flag to open(2) was specified for all file opens in this
filesystem instance).

lazytime and nolazytime (FSCONFIG_SET_FLAG)
Configure whether to reduce on-disk updates of inode timestamps on this filesys-
tem instance (as described in the MS_LAZYTIME section of mount(2)).

mand and nomand (FSCONFIG_SET_FLAG)
Configure whether the filesystem instance should permit mandatory locking.
Since Linux 5.15, mandatory locking has been deprecated and setting this flag is
a no-op.

source (FSCONFIG_SET_STRING)
This parameter is equivalent to the source parameter passed to mount(2) for the
same filesystem type, and is usually the pathname of a block device containing
the filesystem. This parameter may only be set once per filesystem configuration
context transaction.

In addition, any filesystem parameters associated with Linux Security Modules (LSMs)
are also generic with respect to the underlying filesystem. See the documentation for the
LSM you wish to configure for more details.

Mount attributes and filesystem parameters
Some filesystem parameters (traditionally associated with mount(8)-style options) have
a sibling mount attribute with superficially similar user-facing behaviour.

For a description of the distinction between mount attributes and filesystem parameters,
see the "Mount attributes and filesystem parameters" subsection of mount_setattr(2).

CAVEATS
Filesystem parameter types

As a result of each filesystem driver being responsible for parsing most parameters spec-
ified with fsconfig(), some filesystem drivers may have unintuitive behaviour with re-
gards to which FSCONFIG_SET_* commands are permitted to configure a given para-
meter.

In order for filesystem parameters to be backwards compatible with mount(2), they must
be parseable as strings; this almost universally means that FSCONFIG_SET_STRING
can also be used to configure them. However, other FSCONFIG_SET_* commands
need to be opted into by each filesystem driver’s parameter parser.

One of the most user-visible instances of this inconsistency is that many filesystems do
not support configuring path parameters with FSCONFIG_SET_PATH (despite the
name), which can lead to somewhat confusing EINVAL errors. (For example, the
generic source parameter—which is usually a path—can only be configured with
FSCONFIG_SET_STRING.)

Linux man-pages 6.16 2025-10-01 235

fsconfig(2) System Calls Manual fsconfig(2)

When writing programs that use fsconfig() to configure parameters with commands
other than FSCONFIG_SET_STRING, users should verify that the
FSCONFIG_SET_* commands used to configure each parameter are supported by the
corresponding filesystem driver.

EXAMPLES
To illustrate the different kinds of flags that can be configured with fsconfig(), here are a
few examples of some different filesystems being created:

int fsfd, mntfd;

fsfd = fsopen("tmpfs", FSOPEN_CLOEXEC);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "inode64", NULL, 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "uid", "1234", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "huge", "never", 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "casefold", NULL, 0);
fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
mntfd = fsmount(fsfd, FSMOUNT_CLOEXEC, MOUNT_ATTR_NOEXEC);
move_mount(mntfd, "", AT_FDCWD, "/tmp", MOVE_MOUNT_F_EMPTY_PATH);

fsfd = fsopen("erofs", FSOPEN_CLOEXEC);
fsconfig(fsfd, FSCONFIG_SET_STRING, "source", "/dev/loop0", 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "acl", NULL, 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "user_xattr", NULL, 0);
fsconfig(fsfd, FSCONFIG_CMD_CREATE_EXCL, NULL, NULL, 0);
mntfd = fsmount(fsfd, FSMOUNT_CLOEXEC, MOUNT_ATTR_NOSUID);
move_mount(mntfd, "", AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

Usually, specifying the same parameter named by key multiple times with fsconfig()
causes the parameter value to be replaced. However, some filesystems may have unique
behaviour:

int fsfd, mntfd;
int lowerdirfd = open("/o/ctr/lower1", O_DIRECTORY | O_CLOEXEC);

fsfd = fsopen("overlay", FSOPEN_CLOEXEC);
/* "lowerdir+" appends to the lower dir stack each time */
fsconfig(fsfd, FSCONFIG_SET_FD, "lowerdir+", NULL, lowerdirfd);
fsconfig(fsfd, FSCONFIG_SET_STRING, "lowerdir+", "/o/ctr/lower2", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "lowerdir+", "/o/ctr/lower3", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "lowerdir+", "/o/ctr/lower4", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "xino", "auto", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "nfs_export", "off", 0);
fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
mntfd = fsmount(fsfd, FSMOUNT_CLOEXEC, 0);
move_mount(mntfd, "", AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

And here is an example of how fspick(2) can be used with fsconfig() to reconfigure the
parameters of an extant filesystem instance attached to /proc:

Linux man-pages 6.16 2025-10-01 236

fsconfig(2) System Calls Manual fsconfig(2)

int fsfd = fspick(AT_FDCWD, "/proc", FSPICK_CLOEXEC);
fsconfig(fsfd, FSCONFIG_SET_STRING, "hidepid", "ptraceable", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "subset", "pid", 0);
fsconfig(fsfd, FSCONFIG_CMD_RECONFIGURE, NULL, NULL, 0);

SEE ALSO
fsmount(2), fsopen(2), fspick(2), mount(2), mount_setattr(2), move_mount(2),
open_tree(2), mount_namespaces(7)

Linux man-pages 6.16 2025-10-01 237

fsmount(2) System Calls Manual fsmount(2)

NAME
fsmount - instantiate mount object from filesystem context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mount.h>

int fsmount(int fsfd , unsigned int flags, unsigned int attr_flags);

DESCRIPTION
The fsmount() system call is part of the suite of file-descriptor-based mount facilities in
Linux.

fsmount() creates a new detached mount object for the root of the new filesystem in-
stance referenced by the filesystem context file descriptor fsfd . A new file descriptor as-
sociated with the detached mount object is then returned. In order to create a mount ob-
ject with fsmount(), the calling process must have the CAP_SYS_ADMIN capability.

The filesystem context must have been created with a call to fsopen(2) and then had a
filesystem instance instantiated with a call to fsconfig(2) with
FSCONFIG_CMD_CREATE or FSCONFIG_CMD_CREATE_EXCL in order to be
in the correct state for this operation (the "awaiting-mount" mode in kernel-developer
parlance). Unlike open_tree(2) with OPEN_TREE_CLONE, fsmount() can only be
called once in the lifetime of a filesystem context to produce a mount object.

As with file descriptors returned from open_tree(2) called with
OPEN_TREE_CLONE, the returned file descriptor can then be used with
move_mount(2), mount_setattr(2), or other such system calls to do further mount opera-
tions. This mount object will be unmounted and destroyed when the file descriptor is
closed if it was not otherwise attached to a mount point by calling move_mount(2).
(Note that the unmount operation on close(2) is lazy—akin to calling umount2(2) with
MNT_DETACH; any existing open references to files from the mount object will con-
tinue to work, and the mount object will only be completely destroyed once it ceases to
be busy.) The returned file descriptor also acts the same as one produced by open(2)
with O_PATH, meaning it can also be used as a dirfd argument to "*at()" system calls.

flags controls the creation of the returned file descriptor. A value for flags is con-
structed by bitwise ORing zero or more of the following constants:

FSMOUNT_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor.
See the description of the O_CLOEXEC flag in open(2) for reasons why
this may be useful.

attr_flags specifies mount attributes which will be applied to the created mount object,
in the form of MOUNT_ATTR_* flags. The flags are interpreted as though mount_se-
tattr(2) was called with attr.attr_set set to the same value as attr_flags.
MOUNT_ATTR_* flags which would require specifying additional fields in
mount_attr(2type) (such as MOUNT_ATTR_IDMAP) are not valid flag values for
attr_flags.

If the fsmount() operation is successful, the filesystem context associated with the file

Linux man-pages 6.16 2025-10-01 238

fsmount(2) System Calls Manual fsmount(2)

descriptor fsfd is reset and placed into reconfiguration mode, as if it were just returned
by fspick(2). You may continue to use fsconfig(2) with the now-reset filesystem context,
including issuing the FSCONFIG_CMD_RECONFIGURE command to reconfigure
the filesystem instance.

RETURN VALUE
On success, a new file descriptor is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EBUSY

The filesystem context associated with fsfd is not in the right state to be used by
fsmount().

EINVAL
flags had an invalid flag set.

EINVAL
attr_flags had an invalid MOUNT_ATTR_* flag set.

EMFILE
The calling process has too many open files to create more.

ENFILE
The system has too many open files to create more.

ENOSPC
The "anonymous" mount namespace necessary to contain the new mount object
could not be allocated, as doing so would exceed the configured per-user limit on
the number of mount namespaces in the current user namespace. (See also
namespaces(7).)

ENOMEM
The kernel could not allocate sufficient memory to complete the operation.

EPERM
The calling process does not have the required CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Linux 5.2. glibc 2.36.

EXAMPLES
int fsfd, mntfd, tmpfd;

fsfd = fsopen("tmpfs", FSOPEN_CLOEXEC);
fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
mntfd = fsmount(fsfd, FSMOUNT_CLOEXEC,

MOUNT_ATTR_NODEV | MOUNT_ATTR_NOEXEC);

/* Create a new file without attaching the mount object */
tmpfd = openat(mntfd, "tmpfile", O_CREAT | O_EXCL | O_RDWR, 0600);

Linux man-pages 6.16 2025-10-01 239

fsmount(2) System Calls Manual fsmount(2)

unlinkat(mntfd, "tmpfile", 0);

/* Attach the mount object to "/tmp" */
move_mount(mntfd, "", AT_FDCWD, "/tmp", MOVE_MOUNT_F_EMPTY_PATH);

SEE ALSO
fsconfig(2), fsopen(2), fspick(2), mount(2), mount_setattr(2), move_mount(2),
open_tree(2), mount_namespaces(7)

Linux man-pages 6.16 2025-10-01 240

fsopen(2) System Calls Manual fsopen(2)

NAME
fsopen - create a new filesystem context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mount.h>

int fsopen(const char * fsname, unsigned int flags);

DESCRIPTION
The fsopen() system call is part of the suite of file-descriptor-based mount facilities in
Linux.

fsopen() creates a blank filesystem configuration context within the kernel for the
filesystem named by fsname and places it into creation mode. A new file descriptor as-
sociated with the filesystem configuration context is then returned. The calling process
must have the CAP_SYS_ADMIN capability in order to create a new filesystem config-
uration context.

A filesystem configuration context is an in-kernel representation of a pending transac-
tion, containing a set of configuration parameters that are to be applied when creating a
new instance of a filesystem (or modifying the configuration of an existing filesystem in-
stance, such as when using fspick(2)).

After obtaining a filesystem configuration context with fsopen(), the general workflow
for operating on the context looks like the following:

(1) Pass the filesystem context file descriptor to fsconfig(2) to specify any desired
filesystem parameters. This may be done as many times as necessary.

(2) Pass the same filesystem context file descriptor to fsconfig(2) with
FSCONFIG_CMD_CREATE to create an instance of the configured filesystem.

(3) Pass the same filesystem context file descriptor to fsmount(2) to create a new de-
tached mount object for the root of the filesystem instance, which is then attached
to a new file descriptor. (This also places the filesystem context file descriptor
into reconfiguration mode, similar to the mode produced by fspick(2).) Once a
mount object has been created with fsmount(2), the filesystem context file descrip-
tor can be safely closed.

(4) Now that a mount object has been created, you may

• use the detached mount object file descriptor as a dirfd argument to "*at()"
system calls; and/or

• attach the mount object to a mount point by passing the mount object file de-
scriptor to move_mount(2). This will also prevent the mount object from be-
ing unmounted and destroyed when the mount object file descriptor is closed.

The mount object file descriptor will remain associated with the mount object
even after doing the above operations, so you may repeatedly use the mount ob-
ject file descriptor with move_mount(2) and/or "*at()" system calls as many times
as necessary.

Linux man-pages 6.16 2025-10-01 241

fsopen(2) System Calls Manual fsopen(2)

A filesystem context will move between different modes throughout its lifecycle (such
as the creation phase when created with fsopen(), the reconfiguration phase when an ex-
isting filesystem instance is selected with fspick(2), and the intermediate "awaiting-
mount" phase between FSCONFIG_CMD_CREATE and fsmount(2)), which has an
impact on what operations are permitted on the filesystem context.

The file descriptor returned by fsopen() also acts as a channel for filesystem drivers to
provide more comprehensive diagnostic information than is normally provided through
the standard errno(3) interface for system calls. If an error occurs at any time during the
workflow mentioned above, calling read(2) on the filesystem context file descriptor will
retrieve any ancillary information about the encountered errors. (See the "Message re-
trieval interface" section for more details on the message format.)

flags can be used to control aspects of the creation of the filesystem configuration con-
text file descriptor. A value for flags is constructed by bitwise ORing zero or more of
the following constants:

FSOPEN_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor.
See the description of the O_CLOEXEC flag in open(2) for reasons why
this may be useful.

A list of filesystems supported by the running kernel (and thus a list of valid values for
fsname) can be obtained from /proc/filesystems. (See also proc_filesystems(5).)

Message retrieval interface
When doing operations on a filesystem configuration context, the filesystem driver may
choose to provide ancillary information to userspace in the form of message strings.

The filesystem context file descriptors returned by fsopen() and fspick(2) may be
queried for message strings at any time by calling read(2) on the file descriptor. Each
call to read(2) will return a single message, prefixed to indicate its class:

e message
An error message was logged. This is usually associated with an error
being returned from the corresponding system call which triggered this
message.

w message
A warning message was logged.

i message
An informational message was logged.

Messages are removed from the queue as they are read. Note that the message queue
has limited depth, so it is possible for messages to get lost. If there are no messages in
the message queue, read(2) will return -1 and errno will be set to ENODATA. If the
buf argument to read(2) is not large enough to contain the entire message, read(2) will
return -1 and errno will be set to EMSGSIZE. (See BUGS.)

If there are multiple filesystem contexts referencing the same filesystem instance (such
as if you call fspick(2) multiple times for the same mount), each one gets its own inde-
pendent message queue. This does not apply to multiple file descriptors that are tied to
the same underlying open file description (such as those created with dup(2)).

Linux man-pages 6.16 2025-10-01 242

fsopen(2) System Calls Manual fsopen(2)

Message strings will usually be prefixed by the name of the filesystem or kernel subsys-
tem that logged the message, though this may not always be the case. See the Linux
kernel source code for details.

RETURN VALUE
On success, a new file descriptor is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EFAULT

fsname is NULL or a pointer to a location outside the calling process’s accessi-
ble address space.

EINVAL
flags had an invalid flag set.

EMFILE
The calling process has too many open files to create more.

ENFILE
The system has too many open files to create more.

ENODEV
The filesystem named by fsname is not supported by the kernel.

ENOMEM
The kernel could not allocate sufficient memory to complete the operation.

EPERM
The calling process does not have the required CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Linux 5.2. glibc 2.36.

BUGS
Message retrieval interface and EMSGSIZE

As described in the "Message retrieval interface" subsection above, calling read(2) with
too small a buffer to contain the next pending message in the message queue for the
filesystem configuration context will cause read(2) to return -1 and set errno(3) to
EMSGSIZE.

However, this failed operation still consumes the message from the message queue.
This effectively discards the message silently, as no data is copied into the read(2)
buffer.

Programs should take care to ensure that their buffers are sufficiently large to contain
any reasonable message string, in order to avoid silently losing valuable diagnostic in-
formation.

EXAMPLES
To illustrate the workflow for creating a new mount, the following is an example of how
to mount an ext4(5) filesystem stored on /dev/sdb1 onto /mnt.

Linux man-pages 6.16 2025-10-01 243

fsopen(2) System Calls Manual fsopen(2)

int fsfd, mntfd;

fsfd = fsopen("ext4", FSOPEN_CLOEXEC);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "ro", NULL, 0);
fsconfig(fsfd, FSCONFIG_SET_PATH, "source", "/dev/sdb1", AT_FDCWD);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "noatime", NULL, 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "acl", NULL, 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "user_xattr", NULL, 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "iversion", NULL, 0)
fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
mntfd = fsmount(fsfd, FSMOUNT_CLOEXEC, MOUNT_ATTR_RELATIME);
move_mount(mntfd, "", AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

First, an ext4 configuration context is created and attached to the file descriptor fsfd .
Then, a series of parameters (such as the source of the filesystem) are provided using fs-
config(2), followed by the filesystem instance being created with
FSCONFIG_CMD_CREATE. fsmount(2) is then used to create a new mount object
attached to the file descriptor mntfd , which is then attached to the intended mount point
using move_mount(2).

The above procedure is functionally equivalent to the following mount operation using
mount(2):

mount("/dev/sdb1", "/mnt", "ext4", MS_RELATIME,
"ro,noatime,acl,user_xattr,iversion");

And here’s an example of creating a mount object of an NFS server share and setting a
Smack security module label. However, instead of attaching it to a mount point, the pro-
gram uses the mount object directly to open a file from the NFS share.

int fsfd, mntfd, fd;

fsfd = fsopen("nfs", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "source", "example.com/pub", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "nfsvers", "3", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "rsize", "65536", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "wsize", "65536", 0);
fsconfig(fsfd, FSCONFIG_SET_STRING, "smackfsdef", "foolabel", 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "rdma", NULL, 0);
fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
mntfd = fsmount(fsfd, 0, MOUNT_ATTR_NODEV);
fd = openat(mntfd, "src/linux-5.2.tar.xz", O_RDONLY);

Unlike the previous example, this operation has no trivial equivalent with mount(2), as it
was not previously possible to create a mount object that is not attached to any mount
point.

SEE ALSO
fsconfig(2), fsmount(2), fspick(2), mount(2), mount_setattr(2), move_mount(2),
open_tree(2), mount_namespaces(7)

Linux man-pages 6.16 2025-10-01 244

fspick(2) System Calls Manual fspick(2)

NAME
fspick - select filesystem for reconfiguration

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/mount.h>

int fspick(int dirfd , const char *path, unsigned int flags);

DESCRIPTION
The fspick() system call is part of the suite of file-descriptor-based mount facilities in
Linux.

fspick() creates a new filesystem configuration context for the extant filesystem instance
associated with the path described by dirfd and path, places it into reconfiguration
mode (similar to mount(8) with the -o remount option). A new file descriptor associ-
ated with the filesystem configuration context is then returned. The calling process must
have the CAP_SYS_ADMIN capability in order to create a new filesystem configura-
tion context.

The resultant file descriptor can be used with fsconfig(2) to specify the desired set of
changes to filesystem parameters of the filesystem instance. Once the desired set of
changes have been configured, the changes can be effectuated by calling fsconfig(2) with
the FSCONFIG_CMD_RECONFIGURE command. In contrast to the behaviour of
MS_REMOUNT with mount(2), fspick() instantiates the filesystem configuration con-
text with a copy of the extant filesystem’s filesystem parameters; thus, subsequent
FSCONFIG_CMD_RECONFIGURE operations will only update filesystem parame-
ters explicitly modified with fsconfig(2).

As with "*at()" system calls, fspick() uses the dirfd argument in conjunction with the
path argument to determine the path to operate on, as follows:

• If the pathname given in path is absolute, then dirfd is ignored.

• If the pathname given in path is relative and dirfd is the special value AT_FDCWD,
then path is interpreted relative to the current working directory of the calling
process (like open(2)).

• If the pathname given in path is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by open(2) for a relative pathname).
In this case, dirfd must be a directory that was opened for reading (O_RDONLY) or
using the O_PATH flag.

• If path is an empty string, and flags contains FSPICK_EMPTY_PATH, then the
file descriptor dirfd is operated on directly. In this case, dirfd may refer to any type
of file, not just a directory.

See openat(2) for an explanation of why the dirfd argument is useful.

flags can be used to control aspects of how path is resolved and properties of the re-
turned file descriptor. A value for flags is constructed by bitwise ORing zero or more of

Linux man-pages 6.16 2025-10-01 245

fspick(2) System Calls Manual fspick(2)

the following constants:

FSPICK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor.
See the description of the O_CLOEXEC flag in open(2) for reasons why
this may be useful.

FSPICK_EMPTY_PATH
If path is an empty string, operate on the file referred to by dirfd (which
may have been obtained from open(2), fsmount(2), or open_tree(2)). In
this case, dirfd may refer to any type of file, not just a directory. If dirfd
is AT_FDCWD, fspick() will operate on the current working directory
of the calling process.

FSPICK_SYMLINK_NOFOLLOW
Do not follow symbolic links in the terminal component of path. If path
references a symbolic link, the returned filesystem context will reference
the filesystem that the symbolic link itself resides on.

FSPICK_NO_AUTOMOUNT
Do not automount the terminal ("basename") component of path if it is a
directory that is an automount point. This allows you to reconfigure an
automount point, rather than the location that would be mounted. This
flag has no effect if the automount point has already been mounted over.

As with filesystem contexts created with fsopen(2), the file descriptor returned by
fspick() may be queried for message strings at any time by calling read(2) on the file de-
scriptor. (See the "Message retrieval interface" subsection in fsopen(2) for more details
on the message format.)

RETURN VALUE
On success, a new file descriptor is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of path.
(See also path_resolution(7).)

EBADF
path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EFAULT
path is NULL or a pointer to a location outside the calling process’s accessible
address space.

EINVAL
Invalid flag specified in flags.

ELOOP
Too many symbolic links encountered when resolving path.

Linux man-pages 6.16 2025-10-01 246

fspick(2) System Calls Manual fspick(2)

EMFILE
The calling process has too many open files to create more.

ENAMETOOLONG
path is longer than PATH_MAX.

ENFILE
The system has too many open files to create more.

ENOENT
A component of path does not exist, or is a dangling symbolic link.

ENOENT
path is an empty string, but FSPICK_EMPTY_PATH is not specified in flags.

ENOTDIR
A component of the path prefix of path is not a directory; or path is relative and
dirfd is a file descriptor referring to a file other than a directory.

ENOMEM
The kernel could not allocate sufficient memory to complete the operation.

EPERM
The calling process does not have the required CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Linux 5.2. glibc 2.36.

EXAMPLES
The following example sets the read-only flag on the filesystem instance referenced by
the mount object attached at /tmp.

int fsfd = fspick(AT_FDCWD, "/tmp", FSPICK_CLOEXEC);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "ro", NULL, 0);
fsconfig(fsfd, FSCONFIG_CMD_RECONFIGURE, NULL, NULL, 0);

The above procedure is roughly equivalent to the following mount operation using
mount(2):

mount(NULL, "/tmp", NULL, MS_REMOUNT | MS_RDONLY, NULL);

With the notable caveat that in this example, mount(2) will clear all other filesystem pa-
rameters (such as MS_DIRSYNC or MS_SYNCHRONOUS); fsconfig(2) will only
modify the ro parameter.

SEE ALSO
fsconfig(2), fsmount(2), fsopen(2), mount(2), mount_setattr(2), move_mount(2),
open_tree(2), mount_namespaces(7)

Linux man-pages 6.16 2025-10-01 247

fspick(2) System Calls Manual fspick(2)

Linux man-pages 6.16 2025-10-01 248

fsync(2) System Calls Manual fsync(2)

NAME
fsync, fdatasync - synchronize a file’s in-core state with storage device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int fsync(int fd);

int fdatasync(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fsync():
glibc 2.16 and later:

No feature test macros need be defined
glibc up to and including 2.15:

_BSD_SOURCE || _XOPEN_SOURCE
|| /* Since glibc 2.8: */ _POSIX_C_SOURCE >= 200112L

fdatasync():
_POSIX_C_SOURCE >= 199309L || _XOPEN_SOURCE >= 500

DESCRIPTION
fsync() transfers ("flushes") all modified in-core data of (i.e., modified buffer cache
pages for) the file referred to by the file descriptor fd to the disk device (or other perma-
nent storage device) so that all changed information can be retrieved even if the system
crashes or is rebooted. This includes writing through or flushing a disk cache if present.
The call blocks until the device reports that the transfer has completed.

As well as flushing the file data, fsync() also flushes the metadata information associated
with the file (see inode(7)).

Calling fsync() does not necessarily ensure that the entry in the directory containing the
file has also reached disk. For that an explicit fsync() on a file descriptor for the direc-
tory is also needed.

fdatasync() is similar to fsync(), but does not flush modified metadata unless that meta-
data is needed in order to allow a subsequent data retrieval to be correctly handled. For
example, changes to st_atime or st_mtime (respectively, time of last access and time of
last modification; see inode(7)) do not require flushing because they are not necessary
for a subsequent data read to be handled correctly. On the other hand, a change to the
file size (st_size, as made by say ftruncate(2)), would require a metadata flush.

The aim of fdatasync() is to reduce disk activity for applications that do not require all
metadata to be synchronized with the disk.

RETURN VALUE
On success, these system calls return zero. On error, -1 is returned, and errno is set to
indicate the error.

Linux man-pages 6.16 2025-10-29 249

fsync(2) System Calls Manual fsync(2)

ERRORS
EBADF

fd is not a valid open file descriptor.

EINTR
The function was interrupted by a signal; see signal(7).

EIO An error occurred during synchronization. This error may relate to data written
to some other file descriptor on the same file. Since Linux 4.13, errors from
write-back will be reported to all file descriptors that might have written the data
which triggered the error. Some filesystems (e.g., NFS) keep close track of
which data came through which file descriptor, and give more precise reporting.
Other filesystems (e.g., most local filesystems) will report errors to all file de-
scriptors that were open on the file when the error was recorded.

ENOSPC
Disk space was exhausted while synchronizing.

EROFS
EINVAL

fd is bound to a special file (e.g., a pipe, FIFO, or socket) which does not sup-
port synchronization.

ENOSPC
EDQUOT

fd is bound to a file on NFS or another filesystem which does not allocate space
at the time of a write(2) system call, and some previous write failed due to insuf-
ficient storage space.

VERSIONS
On POSIX systems on which fdatasync() is available, _POSIX_SYNCHRO-
NIZED_IO is defined in <unistd.h> to a value greater than 0. (See also sysconf(3).)

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.2BSD.

In Linux 2.2 and earlier, fdatasync() is equivalent to fsync(), and so has no performance
advantage.

The fsync() implementations in older kernels and lesser used filesystems do not know
how to flush disk caches. In these cases disk caches need to be disabled using hd-
parm(8) or sdparm(8) to guarantee safe operation.

Under AT&T UNIX System V Release 4 fd needs to be opened for writing. This is by
itself incompatible with the original BSD interface and forbidden by POSIX, but never-
theless survives in HP-UX and AIX.

SEE ALSO
sync(1), bdflush(2), open(2), posix_fadvise(2), pwritev(2), sync(2), sync_file_range(2),
fflush(3), fileno(3), hdparm(8), mount(8)

Linux man-pages 6.16 2025-10-29 250

fsync(2) System Calls Manual fsync(2)

Linux man-pages 6.16 2025-10-29 251

futex(2) System Calls Manual futex(2)

NAME
futex - fast user-space locking

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, int op, ...);

DESCRIPTION
The futex() system call provides a method for waiting until a certain condition becomes
true. It is typically used as a blocking construct in the context of shared-memory syn-
chronization. When using futexes, the majority of the synchronization operations are
performed in user space. A user-space program employs the futex() system call only
when it is likely that the program has to block for a longer time until the condition be-
comes true. Other futex() operations can be used to wake any processes or threads wait-
ing for a particular condition.

A futex is a 32-bit value—referred to below as a futex word—whose address is supplied
to the futex() system call. (Futexes are 32 bits in size on all platforms, including 64-bit
systems.) All futex operations are governed by this value. In order to share a futex be-
tween processes, the futex is placed in a region of shared memory, created using (for ex-
ample) mmap(2) or shmat(2). (Thus, the futex word may have different virtual ad-
dresses in different processes, but these addresses all refer to the same location in physi-
cal memory.) In a multithreaded program, it is sufficient to place the futex word in a
global variable shared by all threads.

When executing a futex operation that requests to block a thread, the kernel will block
only if the futex word has the value that the calling thread supplied (as one of the argu-
ments of the futex() call) as the expected value of the futex word. The loading of the fu-
tex word’s value, the comparison of that value with the expected value, and the actual
blocking will happen atomically and will be totally ordered with respect to concurrent
operations performed by other threads on the same futex word. Thus, the futex word is
used to connect the synchronization in user space with the implementation of blocking
by the kernel. Analogously to an atomic compare-and-exchange operation that poten-
tially changes shared memory, blocking via a futex is an atomic compare-and-block op-
eration.

One use of futexes is for implementing locks. The state of the lock (i.e., acquired or not
acquired) can be represented as an atomically accessed flag in shared memory. In the
uncontended case, a thread can access or modify the lock state with atomic instructions,
for example atomically changing it from not acquired to acquired using an atomic com-
pare-and-exchange instruction. (Such instructions are performed entirely in user mode,
and the kernel maintains no information about the lock state.) On the other hand, a
thread may be unable to acquire a lock because it is already acquired by another thread.
It then may pass the lock’s flag as a futex word and the value representing the acquired
state as the expected value to a futex() wait operation. This futex() operation will block

Linux man-pages 6.16 2025-10-15 252

futex(2) System Calls Manual futex(2)

if and only if the lock is still acquired (i.e., the value in the futex word still matches the
"acquired state"). When releasing the lock, a thread has to first reset the lock state to not
acquired and then execute a futex operation that wakes threads blocked on the lock flag
used as a futex word (this can be further optimized to avoid unnecessary wake-ups). See
futex(7) for more detail on how to use futexes.

Besides the basic wait and wake-up futex functionality, there are further futex operations
aimed at supporting more complex use cases.

Note that no explicit initialization or destruction is necessary to use futexes; the kernel
maintains a futex (i.e., the kernel-internal implementation artifact) only while operations
such as FUTEX_WAIT(2const) are being performed on a particular futex word.

Arguments
The uaddr argument points to the futex word. On all platforms, futexes are four-byte in-
tegers that must be aligned on a four-byte boundary. The operation to perform on the
futex is specified in the op argument.

Futex operations
The op argument consists of two parts: a command that specifies the operation to be per-
formed, bitwise ORed with zero or more options that modify the behaviour of the opera-
tion. The options that may be included in op are as follows:

FUTEX_PRIVATE_FLAG (since Linux 2.6.22)
This option bit can be employed with all futex operations. It tells the kernel that
the futex is process-private and not shared with another process (i.e., it is being
used for synchronization only between threads of the same process). This allows
the kernel to make some additional performance optimizations.

As a convenience, <linux/futex.h> defines a set of constants with the suffix
_PRIVATE that are equivalents of all of the operations listed below, but with the
FUTEX_PRIVATE_FLAG ORed into the constant value. Thus, there are FU-
TEX_WAIT_PRIVATE, FUTEX_WAKE_PRIVATE, and so on.

FUTEX_CLOCK_REALTIME (since Linux 2.6.28)
This option bit can be employed only with the FUTEX_WAIT_BITSET(2const),
FUTEX_WAIT_REQUEUE_PI(2const), (since Linux 4.5)
FUTEX_WAIT(2const), and (since Linux 5.14) FUTEX_LOCK_PI2(2const) op-
erations.

If this option is set, the kernel measures the timeout against the CLOCK_RE-
ALTIME clock.

If this option is not set, the kernel measures the timeout against the
CLOCK_MONOTONIC clock.

The operation specified in op is one of the following:

FUTEX_WAIT(2const)
FUTEX_WAKE(2const)
FUTEX_FD(2const)
FUTEX_REQUEUE(2const)

Linux man-pages 6.16 2025-10-15 253

futex(2) System Calls Manual futex(2)

FUTEX_CMP_REQUEUE(2const)
FUTEX_WAKE_OP(2const)
FUTEX_WAIT_BITSET(2const)
FUTEX_WAKE_BITSET(2const)

Priority-inheritance futexes
Linux supports priority-inheritance (PI) futexes in order to handle priority-inversion
problems that can be encountered with normal futex locks. Priority inversion is the
problem that occurs when a high-priority task is blocked waiting to acquire a lock held
by a low-priority task, while tasks at an intermediate priority continuously preempt the
low-priority task from the CPU. Consequently, the low-priority task makes no progress
toward releasing the lock, and the high-priority task remains blocked.

Priority inheritance is a mechanism for dealing with the priority-inversion problem.
With this mechanism, when a high-priority task becomes blocked by a lock held by a
low-priority task, the priority of the low-priority task is temporarily raised to that of the
high-priority task, so that it is not preempted by any intermediate level tasks, and can
thus make progress toward releasing the lock. To be effective, priority inheritance must
be transitive, meaning that if a high-priority task blocks on a lock held by a lower-prior-
ity task that is itself blocked by a lock held by another intermediate-priority task (and so
on, for chains of arbitrary length), then both of those tasks (or more generally, all of the
tasks in a lock chain) have their priorities raised to be the same as the high-priority task.

From a user-space perspective, what makes a futex PI-aware is a policy agreement (de-
scribed below) between user space and the kernel about the value of the futex word, cou-
pled with the use of the PI-futex operations described below. (Unlike the other futex op-
erations described above, the PI-futex operations are designed for the implementation of
very specific IPC mechanisms.)

The PI-futex operations described below differ from the other futex operations in that
they impose policy on the use of the value of the futex word:

• If the lock is not acquired, the futex word’s value shall be 0.

• If the lock is acquired, the futex word’s value shall be the thread ID (TID; see get-
tid(2)) of the owning thread.

• If the lock is owned and there are threads contending for the lock, then the FU-
TEX_WAITERS bit shall be set in the futex word’s value; in other words, this value
is:

FUTEX_WAITERS | TID

(Note that is invalid for a PI futex word to have no owner and FUTEX_WAITERS
set.)

With this policy in place, a user-space application can acquire an unacquired lock or re-
lease a lock using atomic instructions executed in user mode (e.g., a compare-and-swap
operation such as cmpxchg on the x86 architecture). Acquiring a lock simply consists of
using compare-and-swap to atomically set the futex word’s value to the caller’s TID if
its previous value was 0. Releasing a lock requires using compare-and-swap to set the
futex word’s value to 0 if the previous value was the expected TID.

If a futex is already acquired (i.e., has a nonzero value), waiters must employ the

Linux man-pages 6.16 2025-10-15 254

futex(2) System Calls Manual futex(2)

FUTEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) operations to acquire the
lock. If other threads are waiting for the lock, then the FUTEX_WAITERS bit is set in
the futex value; in this case, the lock owner must employ the FUTEX_UN-
LOCK_PI(2const) operation to release the lock.

In the cases where callers are forced into the kernel (i.e., required to perform a futex()
call), they then deal directly with a so-called RT-mutex, a kernel locking mechanism
which implements the required priority-inheritance semantics. After the RT-mutex is
acquired, the futex value is updated accordingly, before the calling thread returns to user
space.

It is important to note that the kernel will update the futex word’s value prior to return-
ing to user space. (This prevents the possibility of the futex word’s value ending up in
an invalid state, such as having an owner but the value being 0, or having waiters but not
having the FUTEX_WAITERS bit set.)

If a futex has an associated RT-mutex in the kernel (i.e., there are blocked waiters) and
the owner of the futex/RT-mutex dies unexpectedly, then the kernel cleans up the
RT-mutex and hands it over to the next waiter. This in turn requires that the user-space
value is updated accordingly. To indicate that this is required, the kernel sets the FU-
TEX_OWNER_DIED bit in the futex word along with the thread ID of the new owner.
User space can detect this situation via the presence of the FUTEX_OWNER_DIED
bit and is then responsible for cleaning up the stale state left over by the dead owner.

PI futexes are operated on by specifying one of the values listed below in op. Note that
the PI futex operations must be used as paired operations and are subject to some addi-
tional requirements:

• FUTEX_LOCK_PI(2const), FUTEX_LOCK_PI2(2const), and FUTEX_TRY-
LOCK_PI(2const) pair with FUTEX_UNLOCK_PI(2const). FUTEX_UN-
LOCK_PI(2const) must be called only on a futex owned by the calling thread, as de-
fined by the value policy, otherwise the error EPERM results.

• FUTEX_WAIT_REQUEUE_PI(2const) pairs with FUTEX_CMP_RE-
QUEUE_PI(2const). This must be performed from a non-PI futex to a distinct PI
futex (or the error EINVAL results). Additionally, the number of waiters to be
woken must be 1 (or the error EINVAL results).

The PI futex operations are as follows:

FUTEX_LOCK_PI(2const)
FUTEX_LOCK_PI2(2const)
FUTEX_TRYLOCK_PI(2const)
FUTEX_UNLOCK_PI(2const)
FUTEX_CMP_REQUEUE_PI(2const)
FUTEX_WAIT_REQUEUE_PI(2const)

The FUTEX_WAIT_REQUEUE_PI(2const) and FUTEX_CMP_REQUEUE_PI(2const)
were added to support a fairly specific use case: support for priority-inheritance-aware
POSIX threads condition variables. The idea is that these operations should always be
paired, in order to ensure that user space and the kernel remain in sync. Thus, in the
FUTEX_WAIT_REQUEUE_PI(2const) operation, the user-space application pre-

Linux man-pages 6.16 2025-10-15 255

futex(2) System Calls Manual futex(2)

specifies the target of the requeue that takes place in the FUTEX_CMP_RE-
QUEUE_PI(2const) operation.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

The return value on success depends on the operation.

ERRORS
EACCES

No read access to the memory of a futex word.

EFAULT
uaddr did not point to a valid user-space address.

EINVAL
uaddr does not point to a valid object—that is, the address is not four-byte-
aligned.

EINVAL
Invalid argument.

ENOSYS
Invalid operation specified in op.

ENOSYS
The FUTEX_CLOCK_REALTIME option was specified in op, but the accom-
panying operation was neither FUTEX_WAIT_BITSET(2const), FU-
TEX_WAIT_REQUEUE_PI(2const), nor FUTEX_LOCK_PI2(2const).

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

Initial futex support was merged in Linux 2.5.7 but with different semantics from what
was described above. A four-argument system call with the semantics described in this
page was introduced in Linux 2.5.40. A fifth argument was added in Linux 2.5.70, and a
sixth argument was added in Linux 2.6.7.

EXAMPLES
The program below demonstrates use of futexes in a program where a parent process
and a child process use a pair of futexes located inside a shared anonymous mapping to
synchronize access to a shared resource: the terminal. The two processes each write
nloops (a command-line argument that defaults to 5 if omitted) messages to the terminal
and employ a synchronization protocol that ensures that they alternate in writing mes-
sages. Upon running this program we see output such as the following:

$./futex_demo;
Parent (18534) 0
Child (18535) 0
Parent (18534) 1
Child (18535) 1
Parent (18534) 2

Linux man-pages 6.16 2025-10-15 256

futex(2) System Calls Manual futex(2)

Child (18535) 2
Parent (18534) 3
Child (18535) 3
Parent (18534) 4
Child (18535) 4

Program source

/* futex_demo.c

Usage: futex_demo [nloops]
(Default: 5)

Demonstrate the use of futexes in a program where parent and child
use a pair of futexes located inside a shared anonymous mapping to
synchronize access to a shared resource: the terminal. The two
processes each write 'num-loops' messages to the terminal and employ
a synchronization protocol that ensures that they alternate in
writing messages.

*/
#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <linux/futex.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <sys/time.h>
#include <sys/wait.h>
#include <unistd.h>

static uint32_t *futex1, *futex2, *iaddr;

static int
futex(uint32_t *uaddr, int op, uint32_t val,

const struct timespec *timeout, uint32_t *uaddr2, uint32_t val3)
{

return syscall(SYS_futex, uaddr, op, val,
timeout, uaddr2, val3);

}

/* Acquire the futex pointed to by 'futexp': wait for its value to
become 1, and then set the value to 0. */

static void

Linux man-pages 6.16 2025-10-15 257

futex(2) System Calls Manual futex(2)

fwait(uint32_t *futexp)
{

long s;
const uint32_t one = 1;

/* atomic_compare_exchange_strong(ptr, oldval, newval)
atomically performs the equivalent of:

if (*ptr == *oldval)
*ptr = newval;

It returns true if the test yielded true and *ptr was updated. */

while (1) {

/* Is the futex available? */
if (atomic_compare_exchange_strong(futexp, &one, 0))

break; /* Yes */

/* Futex is not available; wait. */

s = futex(futexp, FUTEX_WAIT, 0, NULL, NULL, 0);
if (s == -1 && errno != EAGAIN)

err(EXIT_FAILURE, "futex-FUTEX_WAIT");
}

}

/* Release the futex pointed to by 'futexp': if the futex currently
has the value 0, set its value to 1 and then wake any futex waiters,
so that if the peer is blocked in fwait(), it can proceed. */

static void
fpost(uint32_t *futexp)
{

long s;
const uint32_t zero = 0;

/* atomic_compare_exchange_strong() was described
in comments above. */

if (atomic_compare_exchange_strong(futexp, &zero, 1)) {
s = futex(futexp, FUTEX_WAKE, 1, NULL, NULL, 0);
if (s == -1)

err(EXIT_FAILURE, "futex-FUTEX_WAKE");
}

}

Linux man-pages 6.16 2025-10-15 258

futex(2) System Calls Manual futex(2)

int
main(int argc, char *argv[])
{

pid_t childPid;
unsigned int nloops;

setbuf(stdout, NULL);

nloops = (argc > 1) ? atoi(argv[1]) : 5;

/* Create a shared anonymous mapping that will hold the futexes.
Since the futexes are being shared between processes, we
subsequently use the "shared" futex operations (i.e., not the
ones suffixed "_PRIVATE"). */

iaddr = mmap(NULL, sizeof(*iaddr) * 2, PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_SHARED, -1, 0);

if (iaddr == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

futex1 = &iaddr[0];
futex2 = &iaddr[1];

futex1 = 0; / State: unavailable */
futex2 = 1; / State: available */

/* Create a child process that inherits the shared anonymous
mapping. */

childPid = fork();
if (childPid == -1)

err(EXIT_FAILURE, "fork");

if (childPid == 0) { /* Child */
for (unsigned int j = 0; j < nloops; j++) {

fwait(futex1);
printf("Child (%jd) %u\n", (intmax_t) getpid(), j);
fpost(futex2);

}

exit(EXIT_SUCCESS);
}

/* Parent falls through to here. */

for (unsigned int j = 0; j < nloops; j++) {
fwait(futex2);

Linux man-pages 6.16 2025-10-15 259

futex(2) System Calls Manual futex(2)

printf("Parent (%jd) %u\n", (intmax_t) getpid(), j);
fpost(futex1);

}

wait(NULL);

exit(EXIT_SUCCESS);
}

SEE ALSO
get_robust_list(2), restart_syscall(2), pthread_mutexattr_getprotocol(3), futex(7),
sched(7)

The following kernel source files:

• Documentation/pi-futex.txt

• Documentation/futex-requeue-pi.txt

• Documentation/locking/rt-mutex.txt

• Documentation/locking/rt-mutex-design.txt

• Documentation/robust-futex-ABI.txt

Franke, H., Russell, R., and Kirwood, M., 2002.
Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux 〈http://kernel.org/doc/ols/
2002/ols2002-pages-479-495.pdf〉 (from proceedings of the Ottawa Linux Symposium
2002).

Hart, D., 2009. A futex overview and update 〈http://lwn.net/Articles/360699/〉.

Hart, D. and Guniguntala, D., 2009. Requeue-PI: Making glibc Condvars PI-Aware
〈http://lwn.net/images/conf/rtlws11/papers/proc/p10.pdf〉 (from proceedings of the 2009
Real-Time Linux Workshop).

Drepper, U., 2011. Futexes Are Tricky 〈http://www.akkadia.org/drepper/futex.pdf〉.

Futex example library, futex-*.tar.bz2 〈https://mirrors.kernel.org/pub/linux/kernel/
people/rusty/〉.

Linux man-pages 6.16 2025-10-15 260

futimesat(2) System Calls Manual futimesat(2)

NAME
futimesat - change timestamps of a file relative to a directory file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/time.h>

[[deprecated]] int futimesat(int dirfd , const char *path,
const struct timeval times[2]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

futimesat():
_GNU_SOURCE

DESCRIPTION
This system call is obsolete. Use utimensat(2) instead.

The futimesat() system call operates in exactly the same way as utimes(2), except for
the differences described in this manual page.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by utimes(2) for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like utimes(2)).

If path is absolute, then dirfd is ignored. (See openat(2) for an explanation of why the
dirfd argument is useful.)

RETURN VALUE
On success, futimesat() returns a 0. On error, -1 is returned and errno is set to indicate
the error.

ERRORS
The same errors that occur for utimes(2) can also occur for futimesat(). The following
additional errors can occur for futimesat():

EBADF
path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

ENOTDIR
path is relative and dirfd is a file descriptor referring to a file other than a direc-
tory.

VERSIONS
glibc

If path is NULL, then the glibc futimesat() wrapper function updates the times for the
file referred to by dirfd .

STANDARDS
None.

Linux man-pages 6.16 2025-05-17 261

futimesat(2) System Calls Manual futimesat(2)

HISTORY
Linux 2.6.16, glibc 2.4.

It was implemented from a specification that was proposed for POSIX.1, but that speci-
fication was replaced by the one for utimensat(2).

A similar system call exists on Solaris.

NOTES
SEE ALSO

stat(2), utimensat(2), utimes(2), futimes(3), path_resolution(7)

Linux man-pages 6.16 2025-05-17 262

get_kernel_syms(2) System Calls Manual get_kernel_syms(2)

NAME
get_kernel_syms - retrieve exported kernel and module symbols

SYNOPSIS
#include <linux/module.h>

[[deprecated]] int get_kernel_syms(struct kernel_sym *table);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

If table is NULL, get_kernel_syms() returns the number of symbols available for query.
Otherwise, it fills in a table of structures:

struct kernel_sym {
unsigned long value;
char name[60];

};

The symbols are interspersed with magic symbols of the form #module-name with the
kernel having an empty name. The value associated with a symbol of this form is the
address at which the module is loaded.

The symbols exported from each module follow their magic module tag and the mod-
ules are returned in the reverse of the order in which they were loaded.

RETURN VALUE
On success, returns the number of symbols copied to table. On error, -1 is returned and
errno is set to indicate the error.

ERRORS
There is only one possible error return:

ENOSYS
get_kernel_syms() is not supported in this version of the kernel.

STANDARDS
Linux.

HISTORY
Removed in Linux 2.6.

This obsolete system call is not supported by glibc. No declaration is provided in glibc
headers, but, through a quirk of history, glibc versions before glibc 2.23 did export an
ABI for this system call. Therefore, in order to employ this system call, it was sufficient
to manually declare the interface in your code; alternatively, you could invoke the sys-
tem call using syscall(2).

BUGS
There is no way to indicate the size of the buffer allocated for table. If symbols have
been added to the kernel since the program queried for the symbol table size, memory
will be corrupted.

The length of exported symbol names is limited to 59 characters.

Because of these limitations, this system call is deprecated in favor of query_module(2)
(which is itself nowadays deprecated in favor of other interfaces described on its manual

Linux man-pages 6.16 2025-05-17 263

get_kernel_syms(2) System Calls Manual get_kernel_syms(2)

page).

SEE ALSO
create_module(2), delete_module(2), init_module(2), query_module(2)

Linux man-pages 6.16 2025-05-17 264

get_mempolicy(2) System Calls Manual get_mempolicy(2)

NAME
get_mempolicy - retrieve NUMA memory policy for a thread

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long get_mempolicy(unsigned long maxnode;
int *mode,
unsigned long nodemask[(maxnode + ULONG_WIDTH - 1)

/ ULONG_WIDTH],
unsigned long maxnode, void *addr,
unsigned long flags);

DESCRIPTION
get_mempolicy() retrieves the NUMA policy of the calling thread or of a memory ad-
dress, depending on the setting of flags.

A NUMA machine has different memory controllers with different distances to specific
CPUs. The memory policy defines from which node memory is allocated for the thread.

If flags is specified as 0, then information about the calling thread’s default policy (as
set by set_mempolicy(2)) is returned, in the buffers pointed to by mode and nodemask.
The value returned in these arguments may be used to restore the thread’s policy to its
state at the time of the call to get_mempolicy() using set_mempolicy(2). When flags is
0, addr must be specified as NULL.

If flags specifies MPOL_F_MEMS_ALLOWED (available since Linux 2.6.24), the
mode argument is ignored and the set of nodes (memories) that the thread is allowed to
specify in subsequent calls to mbind(2) or set_mempolicy(2) (in the absence of any
mode flags) is returned in nodemask. It is not permitted to combine
MPOL_F_MEMS_ALLOWED with either MPOL_F_ADDR or MPOL_F_NODE.

If flags specifies MPOL_F_ADDR, then information is returned about the policy gov-
erning the memory address given in addr. This policy may be different from the
thread’s default policy if mbind(2) or one of the helper functions described in numa(3)
has been used to establish a policy for the memory range containing addr.

If the mode argument is not NULL, then get_mempolicy() will store the policy mode
and any optional mode flags of the requested NUMA policy in the location pointed to by
this argument. If nodemask is not NULL, then the nodemask associated with the policy
will be stored in the location pointed to by this argument. maxnode specifies the num-
ber of node IDs that can be stored into nodemask—that is, the maximum node ID plus
one. The value specified by maxnode is always rounded to a multiple of sizeof(un-
signed long)*8.

If flags specifies both MPOL_F_NODE and MPOL_F_ADDR, get_mempolicy() will
return the node ID of the node on which the address addr is allocated into the location
pointed to by mode. If no page has yet been allocated for the specified address,
get_mempolicy() will allocate a page as if the thread had performed a read (load) access
to that address, and return the ID of the node where that page was allocated.

Linux man-pages 6.16 2025-06-28 265

get_mempolicy(2) System Calls Manual get_mempolicy(2)

If flags specifies MPOL_F_NODE, but not MPOL_F_ADDR, and the thread’s current
policy is MPOL_INTERLEAVE or MPOL_WEIGHTED_INTERLEAVE, then
get_mempolicy() will return in the location pointed to by a non-NULL mode argument,
the node ID of the next node that will be used for interleaving of internal kernel pages
allocated on behalf of the thread. These allocations include pages for memory-mapped
files in process memory ranges mapped using the mmap(2) call with the MAP_PRI-
VATE flag for read accesses, and in memory ranges mapped with the MAP_SHARED
flag for all accesses.

Other flag values are reserved.

For an overview of the possible policies see set_mempolicy(2).

RETURN VALUE
On success, get_mempolicy() returns 0; on error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EFAULT

Part of all of the memory range specified by nodemask and maxnode points out-
side your accessible address space.

EINVAL
The value specified by maxnode is less than the number of node IDs supported
by the system. Or flags specified values other than MPOL_F_NODE or
MPOL_F_ADDR; or flags specified MPOL_F_ADDR and addr is NULL, or
flags did not specify MPOL_F_ADDR and addr is not NULL. Or, flags speci-
fied MPOL_F_NODE but not MPOL_F_ADDR and the current thread policy
is neither MPOL_INTERLEAVE nor MPOL_WEIGHTED_INTERLEAVE.
Or, flags specified MPOL_F_MEMS_ALLOWED with either
MPOL_F_ADDR or MPOL_F_NODE. (And there are other EINVAL cases.)

STANDARDS
Linux.

HISTORY
Linux 2.6.7.

NOTES
For information on library support, see numa(7).

SEE ALSO
getcpu(2), mbind(2), mmap(2), set_mempolicy(2), numa(3), numa(7), numactl(8)

Linux man-pages 6.16 2025-06-28 266

get_robust_list(2) System Calls Manual get_robust_list(2)

NAME
get_robust_list, set_robust_list - get/set list of robust futexes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of struct robust_list_head */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_get_robust_list, int pid ,
struct robust_list_head **head_ptr, size_t *sizep);

long syscall(SYS_set_robust_list,
struct robust_list_head *head , size_t size);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These system calls deal with per-thread robust futex lists. These lists are managed in
user space: the kernel knows only about the location of the head of the list. A thread can
inform the kernel of the location of its robust futex list using set_robust_list(). The ad-
dress of a thread’s robust futex list can be obtained using get_robust_list().

The purpose of the robust futex list is to ensure that if a thread accidentally fails to un-
lock a futex before terminating or calling execve(2), another thread that is waiting on
that futex is notified that the former owner of the futex has died. This notification con-
sists of two pieces: the FUTEX_OWNER_DIED bit is set in the futex word, and the
kernel performs a futex(2) FUTEX_WAKE operation on one of the threads waiting on
the futex.

The get_robust_list() system call returns the head of the robust futex list of the thread
whose thread ID is specified in pid . If pid is 0, the head of the list for the calling thread
is returned. The list head is stored in the location pointed to by head_ptr. The size of
the object pointed to by **head_ptr is stored in sizep.

Permission to employ get_robust_list() is governed by a ptrace access mode
PTRACE_MODE_READ_REALCREDS check; see ptrace(2).

The set_robust_list() system call requests the kernel to record the head of the list of ro-
bust futexes owned by the calling thread. The head argument is the list head to record.
The size argument should be sizeof(*head).

RETURN VALUE
The set_robust_list() and get_robust_list() system calls return zero when the operation
is successful, an error code otherwise.

ERRORS
The set_robust_list() system call can fail with the following error:

EINVAL
size does not equal sizeof(struct robust_list_head).

The get_robust_list() system call can fail with the following errors:

Linux man-pages 6.16 2025-09-21 267

get_robust_list(2) System Calls Manual get_robust_list(2)

EFAULT
The head of the robust futex list can’t be stored at the location head .

EPERM
The calling process does not have permission to see the robust futex list of the
thread with the thread ID pid , and does not have the CAP_SYS_PTRACE ca-
pability.

ESRCH
No thread with the thread ID pid could be found.

VERSIONS
These system calls were added in Linux 2.6.17.

NOTES
These system calls are not needed by normal applications.

A thread can have only one robust futex list; therefore applications that wish to use this
functionality should use the robust mutexes provided by glibc.

In the initial implementation, a thread waiting on a futex was notified that the owner had
died only if the owner terminated. Starting with Linux 2.6.28, notification was extended
to include the case where the owner performs an execve(2).

The thread IDs mentioned in the main text are kernel thread IDs of the kind returned by
clone(2) and gettid(2).

SEE ALSO
futex(2), pthread_mutexattr_setrobust(3)

Documentation/robust-futexes.txt and Documentation/robust-futex-ABI.txt in the
Linux kernel source tree

Linux man-pages 6.16 2025-09-21 268

getcpu(2) System Calls Manual getcpu(2)

NAME
getcpu - determine CPU and NUMA node on which the calling thread is running

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

int getcpu(unsigned int *_Nullable cpu, unsigned int *_Nullable node);

DESCRIPTION
The getcpu() system call identifies the processor and node on which the calling thread
or process is currently running and writes them into the integers pointed to by the cpu
and node arguments. The processor is a unique small integer identifying a CPU. The
node is a unique small identifier identifying a NUMA node. When either cpu or node is
NULL nothing is written to the respective pointer.

The information placed in cpu is guaranteed to be current only at the time of the call:
unless the CPU affinity has been fixed using sched_setaffinity(2), the kernel might
change the CPU at any time. (Normally this does not happen because the scheduler tries
to minimize movements between CPUs to keep caches hot, but it is possible.) The caller
must allow for the possibility that the information returned in cpu and node is no longer
current by the time the call returns.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

Arguments point outside the calling process’s address space.

STANDARDS
Linux.

HISTORY
Linux 2.6.19 (x86-64 and i386), glibc 2.29.

C library/kernel differences
The kernel system call has a third argument:

int getcpu(unsigned int *cpu, unsigned int *node,
struct getcpu_cache *tcache);

The tcache argument is unused since Linux 2.6.24, and (when invoking the system call
directly) should be specified as NULL, unless portability to Linux 2.6.23 or earlier is re-
quired.

In Linux 2.6.23 and earlier, if the tcache argument was non-NULL, then it specified a
pointer to a caller-allocated buffer in thread-local storage that was used to provide a
caching mechanism for getcpu(). Use of the cache could speed getcpu() calls, at the
cost that there was a very small chance that the returned information would be out of
date. The caching mechanism was considered to cause problems when migrating
threads between CPUs, and so the argument is now ignored.

Linux man-pages 6.16 2025-09-07 269

getcpu(2) System Calls Manual getcpu(2)

NOTES
Linux makes a best effort to make this call as fast as possible. (On some architectures,
this is done via an implementation in the vdso(7).) The intention of getcpu() is to allow
programs to make optimizations with per-CPU data or for NUMA optimization.

SEE ALSO
mbind(2), sched_setaffinity(2), set_mempolicy(2), sched_getcpu(3), cpuset(7), vdso(7)

Linux man-pages 6.16 2025-09-07 270

getdents(2) System Calls Manual getdents(2)

NAME
getdents, getdents64 - get directory entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_getdents, unsigned int fd , struct linux_dirent *dirp,
unsigned int count);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <dirent.h>

ssize_t getdents64(size_t count;
int fd , void dirp[count], size_t count);

Note: glibc provides no wrapper for getdents(), necessitating the use of syscall(2).

Note: There is no definition of struct linux_dirent in glibc; see NOTES.

DESCRIPTION
These are not the interfaces you are interested in. Look at readdir(3) for the POSIX-
conforming C library interface. This page documents the bare kernel system call inter-
faces.

getdents()
The system call getdents() reads several linux_dirent structures from the directory re-
ferred to by the open file descriptor fd into the buffer pointed to by dirp. The argument
count specifies the size of that buffer.

The linux_dirent structure is declared as follows:

struct linux_dirent {
unsigned long d_ino; /* Inode number */
unsigned long d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this linux_dirent */
char d_name[]; /* Filename (null-terminated) */

/* length is actually (d_reclen - 2 -
offsetof(struct linux_dirent, d_name)) */

/*
char pad; // Zero padding byte
char d_type; // File type (only since Linux

// 2.6.4); offset is (d_reclen - 1)
*/

}

d_ino is an inode number. d_off is a filesystem-specific value with no specific meaning
to user space, though on older filesystems it used to be the distance from the start of the
directory to the start of the next linux_dirent; see readdir(3). d_reclen is the size of this
entire linux_dirent. d_name is a null-terminated filename.

d_type is a byte at the end of the structure that indicates the file type. It contains one of

Linux man-pages 6.16 2025-09-21 271

getdents(2) System Calls Manual getdents(2)

the following values (defined in <dirent.h>):

DT_BLK This is a block device.

DT_CHR This is a character device.

DT_DIR This is a directory.

DT_FIFO This is a named pipe (FIFO).

DT_LNK This is a symbolic link.

DT_REG This is a regular file.

DT_SOCK This is a UNIX domain socket.

DT_UNKNOWN
The file type is unknown.

The d_type field is implemented since Linux 2.6.4. It occupies a space that was previ-
ously a zero-filled padding byte in the linux_dirent structure. Thus, on kernels up to and
including Linux 2.6.3, attempting to access this field always provides the value 0
(DT_UNKNOWN).

Currently, only some filesystems (among them: Btrfs, ext2, ext3, and ext4) have full
support for returning the file type in d_type. All applications must properly handle a re-
turn of DT_UNKNOWN.

getdents64()
The original Linux getdents() system call did not handle large filesystems and large file
offsets. Consequently, Linux 2.4 added getdents64(), with wider types for the d_ino
and d_off fields. In addition, getdents64() supports an explicit d_type field.

The getdents64() system call is like getdents(), except that its second argument is a
pointer to a buffer containing structures of the following type:

struct linux_dirent64 {
ino64_t d_ino; /* 64-bit inode number */
off64_t d_off; /* Not an offset; see getdents() */
unsigned short d_reclen; /* Size of this dirent */
unsigned char d_type; /* File type */
char d_name[]; /* Filename (null-terminated) */

};

RETURN VALUE
On success, the number of bytes read is returned. On end of directory, 0 is returned. On
error, -1 is returned, and errno is set to indicate the error.

ERRORS
EBADF

Invalid file descriptor fd .

EFAULT
Argument points outside the calling process’s address space.

Linux man-pages 6.16 2025-09-21 272

getdents(2) System Calls Manual getdents(2)

EINVAL
Result buffer is too small.

ENOENT
No such directory.

ENOTDIR
File descriptor does not refer to a directory.

STANDARDS
None.

HISTORY
SVr4.

getdents64()
glibc 2.30.

NOTES
glibc does not provide a wrapper for getdents(); call getdents() using syscall(2). In that
case you will need to define the linux_dirent or linux_dirent64 structure yourself.

Probably, you want to use readdir(3) instead of these system calls.

These calls supersede readdir(2).

EXAMPLES
The program below demonstrates the use of getdents(). The following output shows an
example of what we see when running this program on an ext2 directory:

$./a.out /testfs/
--------------- nread=120 ---------------
inode# file type d_reclen d_off d_name

2 directory 16 12 .
2 directory 16 24 ..

11 directory 24 44 lost+found
12 regular 16 56 a

228929 directory 16 68 sub
16353 directory 16 80 sub2

130817 directory 16 4096 sub3

Program source

#define _GNU_SOURCE
#include <dirent.h> /* Defines DT_* constants */
#include <err.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

Linux man-pages 6.16 2025-09-21 273

getdents(2) System Calls Manual getdents(2)

struct linux_dirent {
unsigned long d_ino;
off_t d_off;
unsigned short d_reclen;
char d_name[];

};

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{

int fd;
char d_type;
char buf[BUF_SIZE];
long nread;
struct linux_dirent *d;

fd = open(argc > 1 ? argv[1] : ".", O_RDONLY | O_DIRECTORY);
if (fd == -1)

err(EXIT_FAILURE, "open");

for (;;) {
nread = syscall(SYS_getdents, fd, buf, BUF_SIZE);
if (nread == -1)

err(EXIT_FAILURE, "getdents");

if (nread == 0)
break;

printf("--------------- nread=%ld ---------------\n", nread);
printf("inode# file type d_reclen d_off d_name\n");
for (size_t bpos = 0; bpos < nread;) {

d = (struct linux_dirent *) (buf + bpos);
printf("%8lu ", d->d_ino);
d_type = *(buf + bpos + d->d_reclen - 1);
printf("%-10s ", (d_type == DT_REG) ? "regular" :

(d_type == DT_DIR) ? "directory" :
(d_type == DT_FIFO) ? "FIFO" :
(d_type == DT_SOCK) ? "socket" :
(d_type == DT_LNK) ? "symlink" :
(d_type == DT_BLK) ? "block dev" :
(d_type == DT_CHR) ? "char dev" : "???");

printf("%4d %10jd %s\n", d->d_reclen,
(intmax_t) d->d_off, d->d_name);

bpos += d->d_reclen;
}

Linux man-pages 6.16 2025-09-21 274

getdents(2) System Calls Manual getdents(2)

}

exit(EXIT_SUCCESS);
}

SEE ALSO
readdir(2), readdir(3), inode(7)

Linux man-pages 6.16 2025-09-21 275

getdomainname(2) System Calls Manual getdomainname(2)

NAME
getdomainname, setdomainname - get/set NIS domain name

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getdomainname(size_t size;
char name[size], size_t size);

int setdomainname(size_t size;
const char name[size], size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdomainname(), setdomainname():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
These functions are used to access or to change the NIS domain name of the host sys-
tem. More precisely, they operate on the NIS domain name associated with the calling
process’s UTS namespace.

setdomainname() sets the domain name to the value given in the character array name.
The size argument specifies the number of bytes in name. (Thus, name does not require
a terminating null byte.)

getdomainname() returns the null-terminated domain name in the character array name,
which has a size of size bytes. If the null-terminated domain name requires more than
len bytes, getdomainname() returns the first len bytes (glibc) or gives an error (libc).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
setdomainname() can fail with the following errors:

EFAULT
name pointed outside of user address space.

EINVAL
size was negative or too large.

EPERM
The caller did not have the CAP_SYS_ADMIN capability in the user name-
space associated with its UTS namespace (see namespaces(7)).

getdomainname() can fail with the following errors:

Linux man-pages 6.16 2025-09-21 276

getdomainname(2) System Calls Manual getdomainname(2)

EINVAL
For getdomainname() under libc: name is NULL or name is equal or longer
than size bytes.

VERSIONS
On most Linux architectures (including x86), there is no getdomainname() system call;
instead, glibc implements getdomainname() as a library function that returns a copy of
the domainname field returned from a call to uname(2).

STANDARDS
None.

HISTORY
Since Linux 1.0, the limit on the size of a domain name, including the terminating null
byte, is 64 bytes. In older kernels, it was 8 bytes.

SEE ALSO
gethostname(2), sethostname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.16 2025-09-21 277

getgid(2) System Calls Manual getgid(2)

NAME
getgid, getegid - get group identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

gid_t getgid(void);
gid_t getegid(void);

DESCRIPTION
getgid() returns the real group ID of the calling process.

getegid() returns the effective group ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

VERSIONS
On Alpha, instead of a pair of getgid() and getegid() system calls, a single getxgid()
system call is provided, which returns a pair of real and effective GIDs. The glibc get-
gid() and getegid() wrapper functions transparently deal with this. See syscall(2) for
details regarding register mapping.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.3BSD.

The original Linux getgid() and getegid() system calls supported only 16-bit group IDs.
Subsequently, Linux 2.4 added getgid32() and getegid32(), supporting 32-bit IDs. The
glibc getgid() and getegid() wrapper functions transparently deal with the variations
across kernel versions.

SEE ALSO
getresgid(2), setgid(2), setregid(2), credentials(7)

Linux man-pages 6.16 2025-10-29 278

getgroups(2) System Calls Manual getgroups(2)

NAME
getgroups, setgroups - get/set list of supplementary group IDs

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getgroups(int size, gid_t list[_Nullable size]);

#include <grp.h>

int setgroups(size_t size, const gid_t list[size]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setgroups():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
getgroups() returns the supplementary group IDs of the calling process in list. The ar-
gument size should be set to the maximum number of items that can be stored in the
buffer pointed to by list. If the calling process is a member of more than size supple-
mentary groups, then an error results.

It is unspecified whether the effective group ID of the calling process is included in the
returned list. (Thus, an application should also call getegid(2) and add or remove the re-
sulting value.)

If size is zero, list is not modified, but the total number of supplementary group IDs for
the process is returned. This allows the caller to determine the size of a dynamically al-
located list to be used in a further call to getgroups().

setgroups() sets the supplementary group IDs for the calling process. Appropriate priv-
ileges are required (see the description of the EPERM error, below). The size argument
specifies the number of supplementary group IDs in the buffer pointed to by list. A
process can drop all of its supplementary groups with the call:

setgroups(0, (gid_t [0]){});

RETURN VALUE
On success, getgroups() returns the number of supplementary group IDs. On error, -1
is returned, and errno is set to indicate the error.

On success, setgroups() returns 0. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EFAULT

list has an invalid address.

getgroups() can additionally fail with the following error:

Linux man-pages 6.16 2025-10-29 279

getgroups(2) System Calls Manual getgroups(2)

EINVAL
size is less than the number of supplementary group IDs, but is not zero.

setgroups() can additionally fail with the following errors:

EINVAL
size is greater than NGROUPS_MAX (32 before Linux 2.6.4; 65536 since
Linux 2.6.4).

ENOMEM
Out of memory.

EPERM
The calling process has insufficient privilege (the caller does not have the
CAP_SETGID capability in the user namespace in which it resides).

EPERM (since Linux 3.19)
The use of setgroups() is denied in this user namespace. See the description of
/proc/ pid /setgroups in user_namespaces(7).

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX
requires that all threads in a process share the same credentials. The NPTL threading
implementation handles the POSIX requirements by providing wrapper functions for the
various system calls that change process UIDs and GIDs. These wrapper functions (in-
cluding the one for setgroups()) employ a signal-based technique to ensure that when
one thread changes credentials, all of the other threads in the process also change their
credentials. For details, see nptl(7).

STANDARDS
getgroups()

POSIX.1-2024.

setgroups()
None.

HISTORY
getgroups()

SVr4, 4.3BSD, POSIX.1-2001.

setgroups()
SVr4, 4.3BSD. Since setgroups() requires privilege, it is not covered by
POSIX.1.

The original Linux getgroups() system call supported only 16-bit group IDs. Subse-
quently, Linux 2.4 added getgroups32(), supporting 32-bit IDs. The glibc getgroups()
wrapper function transparently deals with the variation across kernel versions.

NOTES
A process can have up to NGROUPS_MAX supplementary group IDs in addition to the
effective group ID. The constant NGROUPS_MAX is defined in <limits.h>. The set
of supplementary group IDs is inherited from the parent process, and preserved across
an execve(2).

Linux man-pages 6.16 2025-10-29 280

getgroups(2) System Calls Manual getgroups(2)

The maximum number of supplementary group IDs can be found at run time using
sysconf(3):

long ngroups_max;
ngroups_max = sysconf(_SC_NGROUPS_MAX);

The maximum return value of getgroups() cannot be larger than one more than this
value. Since Linux 2.6.4, the maximum number of supplementary group IDs is also ex-
posed via the Linux-specific read-only file, /proc/sys/kernel/ngroups_max.

EXAMPLES
#include <err.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

#define MALLOC(n, T) ((T *) reallocarray(NULL, n, sizeof(T)))

static gid_t *agetgroups(size_t *ngids);

int
main(void)
{

gid_t *gids;
size_t n;

gids = agetgroups(&n);
if (gids == NULL)

err(EXIT_FAILURE, "agetgroups");

if (n != 0) {
printf("%jd", (intmax_t) gids[0]);
for (size_t i = 1; i < n; i++)

printf(" %jd", (intmax_t) gids[i]);
}
puts("");

free(gids);
exit(EXIT_SUCCESS);

}

static gid_t *
agetgroups(size_t *ngids)
{

int n;
gid_t *gids;

Linux man-pages 6.16 2025-10-29 281

getgroups(2) System Calls Manual getgroups(2)

n = getgroups(0, NULL);
if (n == -1)

return NULL;

gids = MALLOC(n, gid_t);
if (gids == NULL)

return NULL;

n = getgroups(n, gids);
if (n == -1) {

free(gids);
return NULL;

}

*ngids = n;
return gids;

}

SEE ALSO
getgid(2), setgid(2), getgrouplist(3), group_member(3), initgroups(3), capabilities(7),
credentials(7)

Linux man-pages 6.16 2025-10-29 282

gethostname(2) System Calls Manual gethostname(2)

NAME
gethostname, sethostname - get/set hostname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int gethostname(char *name, size_t size);
int sethostname(const char *name, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostname():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

|| /* glibc 2.19 and earlier */ _BSD_SOURCE

sethostname():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
These system calls are used to access or to change the system hostname. More pre-
cisely, they operate on the hostname associated with the calling process’s UTS name-
space.

sethostname() sets the hostname to the value given in the character array name. The
size argument specifies the number of bytes in name. (Thus, name does not require a
terminating null byte.)

gethostname() returns the null-terminated hostname in the character array name, which
has a size of size bytes. If the null-terminated hostname is too large to fit, then the name
is truncated, and no error is returned (but see VERSIONS below). POSIX.1 says that if
such truncation occurs, then it is unspecified whether the returned buffer includes a ter-
minating null byte.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

name is an invalid address.

EINVAL
size is negative or, for sethostname(), size is larger than the maximum allowed
size.

Linux man-pages 6.16 2025-10-29 283

gethostname(2) System Calls Manual gethostname(2)

ENAMETOOLONG
(glibc gethostname()) size is smaller than the actual size. (Before glibc 2.1,
glibc uses EINVAL for this case.)

EPERM
For sethostname(), the caller did not have the CAP_SYS_ADMIN capability in
the user namespace associated with its UTS namespace (see namespaces(7)).

VERSIONS
SUSv2 guarantees that "Host names are limited to 255 bytes". POSIX.1 guarantees that
"Host names (not including the terminating null byte) are limited to
HOST_NAME_MAX bytes". On Linux, HOST_NAME_MAX is defined with the
value 64, which has been the limit since Linux 1.0 (earlier kernels imposed a limit of 8
bytes).

C library/kernel differences
The GNU C library does not employ the gethostname() system call; instead, it imple-
ments gethostname() as a library function that calls uname(2) and copies up to size
bytes from the returned nodename field into name. Having performed the copy, the
function then checks if the length of the nodename was greater than or equal to size, and
if it is, then the function returns -1 with errno set to ENAMETOOLONG; in this case,
a terminating null byte is not included in the returned name.

STANDARDS
gethostname()

POSIX.1-2024.

sethostname()
None.

HISTORY
SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD). POSIX.1 specifies gethost-
name() but not sethostname().

Versions of glibc before glibc 2.2 handle the case where the length of the nodename was
greater than or equal to size differently: nothing is copied into name and the function re-
turns -1 with errno set to ENAMETOOLONG.

SEE ALSO
hostname(1), getdomainname(2), setdomainname(2), uname(2), uts_namespaces(7)

Linux man-pages 6.16 2025-10-29 284

getitimer(2) System Calls Manual getitimer(2)

NAME
getitimer, setitimer - get or set value of an interval timer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

int getitimer(int which, struct itimerval *curr_value);
int setitimer(int which, const struct itimerval *restrict new_value,

struct itimerval *_Nullable restrict old_value);

DESCRIPTION
These system calls provide access to interval timers, that is, timers that initially expire at
some point in the future, and (optionally) at regular intervals after that. When a timer
expires, a signal is generated for the calling process, and the timer is reset to the speci-
fied interval (if the interval is nonzero).

Three types of timers—specified via the which argument—are provided, each of which
counts against a different clock and generates a different signal on timer expiration:

ITIMER_REAL
This timer counts down in real (i.e., wall clock) time. At each expiration, a
SIGALRM signal is generated.

ITIMER_VIRTUAL
This timer counts down against the user-mode CPU time consumed by the
process. (The measurement includes CPU time consumed by all threads in the
process.) At each expiration, a SIGVTALRM signal is generated.

ITIMER_PROF
This timer counts down against the total (i.e., both user and system) CPU time
consumed by the process. (The measurement includes CPU time consumed by
all threads in the process.) At each expiration, a SIGPROF signal is generated.

In conjunction with ITIMER_VIRTUAL, this timer can be used to profile user
and system CPU time consumed by the process.

A process has only one of each of the three types of timers.

Timer values are defined by the following structures:

struct itimerval {
struct timeval it_interval; /* Interval for periodic timer */
struct timeval it_value; /* Time until next expiration */

};

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

Linux man-pages 6.16 2025-10-29 285

getitimer(2) System Calls Manual getitimer(2)

getitimer()
The function getitimer() places the current value of the timer specified by which in the
buffer pointed to by curr_value.

The it_value substructure is populated with the amount of time remaining until the next
expiration of the specified timer. This value changes as the timer counts down, and will
be reset to it_interval when the timer expires. If both fields of it_value are zero, then
this timer is currently disarmed (inactive).

The it_interval substructure is populated with the timer interval. If both fields of it_in-
terval are zero, then this is a single-shot timer (i.e., it expires just once).

setitimer()
The function setitimer() arms or disarms the timer specified by which, by setting the
timer to the value specified by new_value. If old_value is non-NULL, the buffer it
points to is used to return the previous value of the timer (i.e., the same information that
is returned by getitimer())

If either field in new_value.it_value is nonzero, then the timer is armed to initially expire
at the specified time. If both fields in new_value.it_value are zero, then the timer is dis-
armed.

The new_value.it_interval field specifies the new interval for the timer; if both of its
subfields are zero, the timer is single-shot.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

new_value, old_value, or curr_value is not a valid pointer.

EINVAL
which is not one of ITIMER_REAL, ITIMER_VIRTUAL, or
ITIMER_PROF; or (since Linux 2.6.22) one of the tv_usec fields in the struc-
ture pointed to by new_value contains a value outside the range [0, 999999].

VERSIONS
The standards are silent on the meaning of the call:

setitimer(which, NULL, &old_value);

Many systems (Solaris, the BSDs, and perhaps others) treat this as equivalent to:

getitimer(which, &old_value);

In Linux, this is treated as being equivalent to a call in which the new_value fields are
zero; that is, the timer is disabled. Don’t use this Linux misfeature: it is nonportable and
unnecessary.

STANDARDS
None.

Linux man-pages 6.16 2025-10-29 286

getitimer(2) System Calls Manual getitimer(2)

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (this call first appeared in 4.2BSD). POSIX.1-2008
marked getitimer() and setitimer() obsolete, recommending the use of the POSIX
timers API (timer_gettime(2), timer_settime(2), etc.) instead. POSIX.1-2024 removed
them.

NOTES
Timers will never expire before the requested time, but may expire some (short) time af-
terward, which depends on the system timer resolution and on the system load; see
time(7). (But see BUGS below.) If the timer expires while the process is active (always
true for ITIMER_VIRTUAL), the signal will be delivered immediately when gener-
ated.

A child created via fork(2) does not inherit its parent’s interval timers. Interval timers
are preserved across an execve(2).

POSIX.1 leaves the interaction between setitimer() and the three interfaces alarm(2),
sleep(3), and usleep(3) unspecified.

BUGS
The generation and delivery of a signal are distinct, and only one instance of each of the
signals listed above may be pending for a process. Under very heavy loading, an
ITIMER_REAL timer may expire before the signal from a previous expiration has
been delivered. The second signal in such an event will be lost.

Before Linux 2.6.16, timer values are represented in jiffies. If a request is made set a
timer with a value whose jiffies representation exceeds MAX_SEC_IN_JIFFIES (de-
fined in include/linux/jiffies.h), then the timer is silently truncated to this ceiling value.
On Linux/i386 (where, since Linux 2.6.13, the default jiffy is 0.004 seconds), this means
that the ceiling value for a timer is approximately 99.42 days. Since Linux 2.6.16, the
kernel uses a different internal representation for times, and this ceiling is removed.

On certain systems (including i386), Linux kernels before Linux 2.6.12 have a bug
which will produce premature timer expirations of up to one jiffy under some circum-
stances. This bug is fixed in Linux 2.6.12.

POSIX.1-2001 says that setitimer() should fail if a tv_usec value is specified that is out-
side of the range [0, 999999]. However, up to and including Linux 2.6.21, Linux does
not give an error, but instead silently adjusts the corresponding seconds value for the
timer. From Linux 2.6.22 onward, this nonconformance has been repaired: an improper
tv_usec value results in an EINVAL error.

SEE ALSO
gettimeofday(2), sigaction(2), signal(2), timer_create(2), timerfd_create(2), time(7)

Linux man-pages 6.16 2025-10-29 287

getpagesize(2) System Calls Manual getpagesize(2)

NAME
getpagesize - get memory page size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getpagesize(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpagesize():
Since glibc 2.20:

_DEFAULT_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
glibc 2.12 to glibc 2.19:

_BSD_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
Before glibc 2.12:

_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The function getpagesize() returns the number of bytes in a memory page, where "page"
is a fixed-length block, the unit for memory allocation and file mapping performed by
mmap(2).

VERSIONS
A user program should not hard-code a page size, neither as a literal nor using the
PAGE_SIZE macro, because some architectures support multiple page sizes.

This manual page is in section 2 because Alpha, SPARC, and SPARC64 all have a
Linux system call getpagesize() though other architectures do not, and use the ELF aux-
iliary vector instead.

STANDARDS
None.

HISTORY
This call first appeared in 4.2BSD. SVr4, 4.4BSD, SUSv2. In SUSv2 the getpagesize()
call was labeled LEGACY, and it was removed in POSIX.1-2001.

glibc 2.0 returned a constant even on architectures with multiple page sizes.

SEE ALSO
mmap(2), sysconf(3)

Linux man-pages 6.16 2025-05-17 288

getpeername(2) System Calls Manual getpeername(2)

NAME
getpeername - get name of connected peer socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int getpeername(int sockfd , struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION
getpeername() returns the address of the peer connected to the socket sockfd , in the
buffer pointed to by addr. The addrlen argument should be initialized to indicate the
amount of space pointed to by addr. On return it contains the actual size of the name
returned (in bytes). The name is truncated if the buffer provided is too small.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBADF

The argument sockfd is not a valid file descriptor.

EFAULT
The addr argument points to memory not in a valid part of the process address
space.

EINVAL
addrlen is invalid (e.g., is negative).

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOTCONN
The socket is not connected.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

NOTES
For stream sockets, once a connect(2) has been performed, either socket can call get-
peername() to obtain the address of the peer socket. On the other hand, datagram sock-
ets are connectionless. Calling connect(2) on a datagram socket merely sets the peer ad-
dress for outgoing datagrams sent with write(2) or recv(2). The caller of connect(2) can

Linux man-pages 6.16 2025-10-29 289

getpeername(2) System Calls Manual getpeername(2)

use getpeername() to obtain the peer address that it earlier set for the socket. However,
the peer socket is unaware of this information, and calling getpeername() on the peer
socket will return no useful information (unless a connect(2) call was also executed on
the peer). Note also that the receiver of a datagram can obtain the address of the sender
when using recvfrom(2).

SEE ALSO
accept(2), bind(2), getsockname(2), ip(7), socket(7), unix(7)

Linux man-pages 6.16 2025-10-29 290

getpid(2) System Calls Manual getpid(2)

NAME
getpid, getppid - get process identification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t getpid(void);
pid_t getppid(void);

DESCRIPTION
getpid() returns the process ID (PID) of the calling process. (This is often used by rou-
tines that generate unique temporary filenames.)

getppid() returns the process ID of the parent of the calling process. This will be either
the ID of the process that created this process using fork(), or, if that process has already
terminated, the ID of the process to which this process has been reparented (either
init(1) or a "subreaper" process defined via the prctl(2) PR_SET_CHILD_SUB-
REAPER operation).

ERRORS
These functions are always successful.

VERSIONS
On Alpha, instead of a pair of getpid() and getppid() system calls, a single getxpid()
system call is provided, which returns a pair of PID and parent PID. The glibc getpid()
and getppid() wrapper functions transparently deal with this. See syscall(2) for details
regarding register mapping.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.3BSD, SVr4.

C library/kernel differences
From glibc 2.3.4 up to and including glibc 2.24, the glibc wrapper function for getpid()
cached PIDs, with the goal of avoiding additional system calls when a process calls get-
pid() repeatedly. Normally this caching was invisible, but its correct operation relied on
support in the wrapper functions for fork(2), vfork(2), and clone(2): if an application by-
passed the glibc wrappers for these system calls by using syscall(2), then a call to get-
pid() in the child would return the wrong value (to be precise: it would return the PID of
the parent process). In addition, there were cases where getpid() could return the wrong
value even when invoking clone(2) via the glibc wrapper function. (For a discussion of
one such case, see BUGS in clone(2).) Furthermore, the complexity of the caching code
had been the source of a few bugs within glibc over the years.

Because of the aforementioned problems, since glibc 2.25, the PID cache is removed:
calls to getpid() always invoke the actual system call, rather than returning a cached
value.

Linux man-pages 6.16 2025-10-29 291

getpid(2) System Calls Manual getpid(2)

NOTES
If the caller’s parent is in a different PID namespace (see pid_namespaces(7)), getppid()
returns 0.

From a kernel perspective, the PID (which is shared by all of the threads in a multi-
threaded process) is sometimes also known as the thread group ID (TGID). This con-
trasts with the kernel thread ID (TID), which is unique for each thread. For further de-
tails, see gettid(2) and the discussion of the CLONE_THREAD flag in clone(2).

SEE ALSO
clone(2), fork(2), gettid(2), kill(2), exec(3), mkstemp(3), tempnam(3), tmpfile(3), tmp-
nam(3), credentials(7), pid_namespaces(7)

Linux man-pages 6.16 2025-10-29 292

getpriority(2) System Calls Manual getpriority(2)

NAME
getpriority, setpriority - get/set program scheduling priority

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/resource.h>

int getpriority(int which, id_t who);
int setpriority(int which, id_t who, int prio);

DESCRIPTION
The scheduling priority of the process, process group, or user, as indicated by which and
who is obtained with the getpriority() call and set with the setpriority() call. The
process attribute dealt with by these system calls is the same attribute (also known as the
"nice" value) that is dealt with by nice(2).

The value which is one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER, and
who is interpreted relative to which (a process identifier for PRIO_PROCESS, process
group identifier for PRIO_PGRP, and a user ID for PRIO_USER). A zero value for
who denotes (respectively) the calling process, the process group of the calling process,
or the real user ID of the calling process.

The prio argument is a value in the range -20 to 19 (but see NOTES below), with -20
being the highest priority and 19 being the lowest priority. Attempts to set a priority
outside this range are silently clamped to the range. The default priority is 0; lower val-
ues give a process a higher scheduling priority.

The getpriority() call returns the highest priority (lowest numerical value) enjoyed by
any of the specified processes. The setpriority() call sets the priorities of all of the
specified processes to the specified value.

Traditionally, only a privileged process could lower the nice value (i.e., set a higher pri-
ority). However, since Linux 2.6.12, an unprivileged process can decrease the nice
value of a target process that has a suitable RLIMIT_NICE soft limit; see getrlimit(2)
for details.

RETURN VALUE
On success, getpriority() returns the calling thread’s nice value, which may be a nega-
tive number. On error, it returns -1 and sets errno to indicate the error.

Since a successful call to getpriority() can legitimately return the value -1, it is neces-
sary to clear errno prior to the call, then check errno afterward to determine if -1 is an
error or a legitimate value.

setpriority() returns 0 on success. On failure, it returns -1 and sets errno to indicate
the error.

ERRORS
EACCES

The caller attempted to set a lower nice value (i.e., a higher process priority), but
did not have the required privilege (on Linux: did not have the CAP_SYS_NICE
capability).

Linux man-pages 6.16 2025-10-29 293

getpriority(2) System Calls Manual getpriority(2)

EINVAL
which was not one of PRIO_PROCESS, PRIO_PGRP, or PRIO_USER.

EPERM
A process was located, but its effective user ID did not match either the effective
or the real user ID of the caller, and was not privileged (on Linux: did not have
the CAP_SYS_NICE capability). But see HISTORY below.

ESRCH
No process was located using the which and who values specified.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (these interfaces first appeared in 4.2BSD).

The details on the condition for EPERM depend on the system. The above description
is what POSIX.1-2001 says, and seems to be followed on all System V-like systems.
Linux kernels before Linux 2.6.12 required the real or effective user ID of the caller to
match the real user of the process who (instead of its effective user ID). Linux 2.6.12
and later require the effective user ID of the caller to match the real or effective user ID
of the process who. All BSD-like systems (SunOS 4.1.3, Ultrix 4.2, 4.3BSD, FreeBSD
4.3, OpenBSD-2.5, ...) behave in the same manner as Linux 2.6.12 and later.

NOTES
For further details on the nice value, see sched(7).

Note: the addition of the "autogroup" feature in Linux 2.6.38 means that the nice value
no longer has its traditional effect in many circumstances. For details, see sched(7).

A child created by fork(2) inherits its parent’s nice value. The nice value is preserved
across execve(2).

C library/kernel differences
The getpriority system call returns nice values translated to the range 40..1, since a neg-
ative return value would be interpreted as an error. The glibc wrapper function for get-
priority() translates the value back according to the formula unice = 20 - knice (thus,
the 40..1 range returned by the kernel corresponds to the range -20..19 as seen by user
space).

BUGS
According to POSIX, the nice value is a per-process setting. However, under the current
Linux/NPTL implementation of POSIX threads, the nice value is a per-thread attribute:
different threads in the same process can have different nice values. Portable applica-
tions should avoid relying on the Linux behavior, which may be made standards confor-
mant in the future.

SEE ALSO
nice(1), renice(1), fork(2), capabilities(7), sched(7)

Documentation/scheduler/sched-nice-design.txt in the Linux kernel source tree (since
Linux 2.6.23)

Linux man-pages 6.16 2025-10-29 294

getrandom(2) System Calls Manual getrandom(2)

NAME
getrandom - obtain a series of random bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/random.h>

ssize_t getrandom(size_t size;
void buf [size], size_t size, unsigned int flags);

DESCRIPTION
The getrandom() system call fills the buffer pointed to by buf with up to size random
bytes. These bytes can be used to seed user-space random number generators or for
cryptographic purposes.

By default, getrandom() draws entropy from the urandom source (i.e., the same source
as the /dev/urandom device). This behavior can be changed via the flags argument.

If the urandom source has been initialized, reads of up to 256 bytes will always return as
many bytes as requested and will not be interrupted by signals. No such guarantees ap-
ply for larger buffer sizes. For example, if the call is interrupted by a signal handler, it
may return a partially filled buffer, or fail with the error EINTR.

If the urandom source has not yet been initialized, then getrandom() will block, unless
GRND_NONBLOCK is specified in flags.

The flags argument is a bit mask that can contain zero or more of the following values
ORed together:

GRND_RANDOM
If this bit is set, then random bytes are drawn from the random source (i.e., the
same source as the /dev/random device) instead of the urandom source. The
random source is limited based on the entropy that can be obtained from envi-
ronmental noise. If the number of available bytes in the random source is less
than requested in size, the call returns just the available random bytes. If no ran-
dom bytes are available, the behavior depends on the presence of GRND_NON-
BLOCK in the flags argument.

GRND_NONBLOCK
By default, when reading from the random source, getrandom() blocks if no
random bytes are available, and when reading from the urandom source, it
blocks if the entropy pool has not yet been initialized. If the GRND_NON-
BLOCK flag is set, then getrandom() does not block in these cases, but instead
immediately returns -1 with errno set to EAGAIN.

RETURN VALUE
On success, getrandom() returns the number of bytes that were copied to the buffer buf .
This may be less than the number of bytes requested via size if either GRND_RAN-
DOM was specified in flags and insufficient entropy was present in the random source
or the system call was interrupted by a signal.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-09-21 295

getrandom(2) System Calls Manual getrandom(2)

ERRORS
EAGAIN

The requested entropy was not available, and getrandom() would have blocked
if the GRND_NONBLOCK flag was not set.

EFAULT
The address referred to by buf is outside the accessible address space.

EINTR
The call was interrupted by a signal handler; see the description of how inter-
rupted read(2) calls on "slow" devices are handled with and without the
SA_RESTART flag in the signal(7) man page.

EINVAL
An invalid flag was specified in flags.

ENOSYS
The glibc wrapper function for getrandom() determined that the underlying ker-
nel does not implement this system call.

STANDARDS
Linux.

HISTORY
Linux 3.17, glibc 2.25.

NOTES
For an overview and comparison of the various interfaces that can be used to obtain ran-
domness, see random(7).

Unlike /dev/random and /dev/urandom, getrandom() does not involve the use of path-
names or file descriptors. Thus, getrandom() can be useful in cases where chroot(2)
makes /dev pathnames invisible, and where an application (e.g., a daemon during start-
up) closes a file descriptor for one of these files that was opened by a library.

Maximum number of bytes returned
As of Linux 3.19 the following limits apply:

• When reading from the urandom source, a maximum of 32Mi-1 bytes is returned by
a single call to getrandom() on systems where int has a size of 32 bits.

• When reading from the random source, a maximum of 512 bytes is returned.

Interruption by a signal handler
When reading from the urandom source (GRND_RANDOM is not set), getrandom()
will block until the entropy pool has been initialized (unless the GRND_NONBLOCK
flag was specified). If a request is made to read a large number of bytes (more than
256), getrandom() will block until those bytes have been generated and transferred
from kernel memory to buf . When reading from the random source (GRND_RAN-
DOM is set), getrandom() will block until some random bytes become available (un-
less the GRND_NONBLOCK flag was specified).

The behavior when a call to getrandom() that is blocked while reading from the uran-
dom source is interrupted by a signal handler depends on the initialization state of the
entropy buffer and on the request size, size. If the entropy is not yet initialized, then the

Linux man-pages 6.16 2025-09-21 296

getrandom(2) System Calls Manual getrandom(2)

call fails with the EINTR error. If the entropy pool has been initialized and the request
size is large (size > 256), the call either succeeds, returning a partially filled buffer, or
fails with the error EINTR. If the entropy pool has been initialized and the request size
is small (size <= 256), then getrandom() will not fail with EINTR. Instead, it will re-
turn all of the bytes that have been requested.

When reading from the random source, blocking requests of any size can be interrupted
by a signal handler (the call fails with the error EINTR).

Using getrandom() to read small buffers (<= 256 bytes) from the urandom source is the
preferred mode of usage.

The special treatment of small values of size was designed for compatibility with
OpenBSD’s getentropy(3), which is nowadays supported by glibc.

The user of getrandom() must always check the return value, to determine whether ei-
ther an error occurred or fewer bytes than requested were returned. In the case where
GRND_RANDOM is not specified and size is less than or equal to 256, a return of
fewer bytes than requested should never happen, but the careful programmer will check
for this anyway!

BUGS
As of Linux 3.19, the following bug exists:

• Depending on CPU load, getrandom() does not react to interrupts before reading all
bytes requested.

SEE ALSO
getentropy(3), random(4), urandom(4), random(7), signal(7)

Linux man-pages 6.16 2025-09-21 297

getresuid(2) System Calls Manual getresuid(2)

NAME
getresuid, getresgid - get real, effective, and saved user/group IDs

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

int getresuid(uid_t *ruid , uid_t *euid , uid_t *suid);
int getresgid(gid_t *rgid , gid_t *egid , gid_t *sgid);

DESCRIPTION
getresuid() returns the real UID, the effective UID, and the saved set-user-ID of the call-
ing process, in the arguments ruid , euid , and suid , respectively. getresgid() performs
the analogous task for the process’s group IDs.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

One of the arguments specified an address outside the calling program’s address
space.

STANDARDS
None. These calls also appear on HP-UX and some of the BSDs.

HISTORY
Linux 2.1.44, glibc 2.3.2.

The original Linux getresuid() and getresgid() system calls supported only 16-bit user
and group IDs. Subsequently, Linux 2.4 added getresuid32() and getresgid32(), sup-
porting 32-bit IDs. The glibc getresuid() and getresgid() wrapper functions transpar-
ently deal with the variations across kernel versions.

SEE ALSO
getuid(2), setresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.16 2025-05-17 298

getrlimit(2) System Calls Manual getrlimit(2)

NAME
getrlimit, setrlimit, prlimit - get/set resource limits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/resource.h>

int getrlimit(int resource, struct rlimit *rlim);
int setrlimit(int resource, const struct rlimit *rlim);

int prlimit(pid_t pid , int resource,
const struct rlimit *_Nullable new_limit,
struct rlimit *_Nullable old_limit);

struct rlimit {
rlim_t rlim_cur; /* Soft limit */
rlim_t rlim_max; /* Hard limit (ceiling for rlim_cur) */

};

typedef /* ... */ rlim_t; /* Unsigned integer type */

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

prlimit():
_GNU_SOURCE

DESCRIPTION
The getrlimit() and setrlimit() system calls get and set resource limits. Each resource
has an associated soft and hard limit, as defined by the rlimit structure.

The soft limit is the value that the kernel enforces for the corresponding resource. The
hard limit acts as a ceiling for the soft limit: an unprivileged process may set only its
soft limit to a value in the range from 0 up to the hard limit, and (irreversibly) lower its
hard limit. A privileged process (under Linux: one with the CAP_SYS_RESOURCE
capability in the initial user namespace) may make arbitrary changes to either limit
value.

The value RLIM_INFINITY denotes no limit on a resource (both in the structure re-
turned by getrlimit() and in the structure passed to setrlimit())

The resource argument must be one of:

RLIMIT_AS
This is the maximum size of the process’s virtual memory (address space). The
limit is specified in bytes, and is rounded down to the system page size. This
limit affects calls to brk(2), mmap(2), and mremap(2), which fail with the error
ENOMEM upon exceeding this limit. In addition, automatic stack expansion
fails (and generates a SIGSEGV that kills the process if no alternate stack has
been made available via sigaltstack(2)). Since the value is a long, on machines
with a 32-bit long either this limit is at most 2 GiB, or this resource is unlimited.

Linux man-pages 6.16 2025-10-29 299

getrlimit(2) System Calls Manual getrlimit(2)

RLIMIT_CORE
This is the maximum size of a core file (see core(5)) in bytes that the process
may dump. When 0 no core dump files are created. When nonzero, larger
dumps are truncated to this size.

RLIMIT_CPU
This is a limit, in seconds, on the amount of CPU time that the process can con-
sume. When the process reaches the soft limit, it is sent a SIGXCPU signal.
The default action for this signal is to terminate the process. However, the signal
can be caught, and the handler can return control to the main program. If the
process continues to consume CPU time, it will be sent SIGXCPU once per sec-
ond until the hard limit is reached, at which time it is sent SIGKILL. (This lat-
ter point describes Linux behavior. Implementations vary in how they treat
processes which continue to consume CPU time after reaching the soft limit.
Portable applications that need to catch this signal should perform an orderly ter-
mination upon first receipt of SIGXCPU.)

RLIMIT_DATA
This is the maximum size of the process’s data segment (initialized data, unini-
tialized data, and heap). The limit is specified in bytes, and is rounded down to
the system page size. This limit affects calls to brk(2), sbrk(2), and (since Linux
4.7) mmap(2), which fail with the error ENOMEM upon encountering the soft
limit of this resource.

RLIMIT_FSIZE
This is the maximum size in bytes of files that the process may create. Attempts
to extend a file beyond this limit result in delivery of a SIGXFSZ signal. By de-
fault, this signal terminates a process, but a process can catch this signal instead,
in which case the relevant system call (e.g., write(2), truncate(2)) fails with the
error EFBIG.

RLIMIT_LOCKS (Linux 2.4.0 to Linux 2.4.24)
This is a limit on the combined number of flock(2) locks and fcntl(2) leases that
this process may establish.

RLIMIT_MEMLOCK
This is the maximum number of bytes of memory that may be locked into RAM.
This limit is in effect rounded down to the nearest multiple of the system page
size. This limit affects mlock(2), mlockall(2), and the mmap(2)
MAP_LOCKED operation. Since Linux 2.6.9, it also affects the shmctl(2)
SHM_LOCK operation, where it sets a maximum on the total bytes in shared
memory segments (see shmget(2)) that may be locked by the real user ID of the
calling process. The shmctl(2) SHM_LOCK locks are accounted for separately
from the per-process memory locks established by mlock(2), mlockall(2), and
mmap(2) MAP_LOCKED; a process can lock bytes up to this limit in each of
these two categories.

Before Linux 2.6.9, this limit controlled the amount of memory that could be
locked by a privileged process. Since Linux 2.6.9, no limits are placed on the
amount of memory that a privileged process may lock, and this limit instead gov-
erns the amount of memory that an unprivileged process may lock.

Linux man-pages 6.16 2025-10-29 300

getrlimit(2) System Calls Manual getrlimit(2)

RLIMIT_MSGQUEUE (since Linux 2.6.8)
This is a limit on the number of bytes that can be allocated for POSIX message
queues for the real user ID of the calling process. This limit is enforced for
mq_open(3). Each message queue that the user creates counts (until it is re-
moved) against this limit according to the formula:

Since Linux 3.5:

bytes = attr.mq_maxmsg * sizeof(struct msg_msg) +
MIN(attr.mq_maxmsg, MQ_PRIO_MAX) *

sizeof(struct posix_msg_tree_node)+
/* For overhead */

attr.mq_maxmsg * attr.mq_msgsize;
/* For message data */

Linux 3.4 and earlier:

bytes = attr.mq_maxmsg * sizeof(struct msg_msg *) +
/* For overhead */

attr.mq_maxmsg * attr.mq_msgsize;
/* For message data */

where attr is the mq_attr structure specified as the fourth argument to
mq_open(3), and the msg_msg and posix_msg_tree_node structures are kernel-
internal structures.

The "overhead" addend in the formula accounts for overhead bytes required by
the implementation and ensures that the user cannot create an unlimited number
of zero-length messages (such messages nevertheless each consume some sys-
tem memory for bookkeeping overhead).

RLIMIT_NICE (since Linux 2.6.12, but see BUGS below)
This specifies a ceiling to which the process’s nice value can be raised using set-
priority(2) or nice(2). The actual ceiling for the nice value is calculated as
20 - rlim_cur. The useful range for this limit is thus from 1 (corresponding to a
nice value of 19) to 40 (corresponding to a nice value of -20). This unusual
choice of range was necessary because negative numbers cannot be specified as
resource limit values, since they typically have special meanings. For example,
RLIM_INFINITY typically is the same as -1. For more detail on the nice
value, see sched(7).

RLIMIT_NOFILE
This specifies a value one greater than the maximum file descriptor number that
can be opened by this process. Attempts (open(2), pipe(2), dup(2), etc.) to ex-
ceed this limit yield the error EMFILE. (Historically, this limit was named
RLIMIT_OFILE on BSD.)

Since Linux 4.5, this limit also defines the maximum number of file descriptors
that an unprivileged process (one without the CAP_SYS_RESOURCE capabil-
ity) may have "in flight" to other processes, by being passed across UNIX do-
main sockets. This limit applies to the sendmsg(2) system call. For further de-
tails, see unix(7).

Linux man-pages 6.16 2025-10-29 301

getrlimit(2) System Calls Manual getrlimit(2)

RLIMIT_NPROC
This is a limit on the number of extant process (or, more precisely on Linux,
threads) for the real user ID of the calling process. So long as the current num-
ber of processes belonging to this process’s real user ID is greater than or equal
to this limit, fork(2) fails with the error EAGAIN.

The RLIMIT_NPROC limit is not enforced for processes that have either the
CAP_SYS_ADMIN or the CAP_SYS_RESOURCE capability, or run with real
user ID 0.

RLIMIT_RSS
This is a limit (in bytes) on the process’s resident set (the number of virtual
pages resident in RAM). This limit has effect only in Linux 2.4.x, x < 30, and
there affects only calls to madvise(2) specifying MADV_WILLNEED.

RLIMIT_RTPRIO (since Linux 2.6.12, but see BUGS)
This specifies a ceiling on the real-time priority that may be set for this process
using sched_setscheduler(2) and sched_setparam(2).

For further details on real-time scheduling policies, see sched(7)

RLIMIT_RTTIME (since Linux 2.6.25)
This is a limit (in microseconds) on the amount of CPU time that a process
scheduled under a real-time scheduling policy may consume without making a
blocking system call. For the purpose of this limit, each time a process makes a
blocking system call, the count of its consumed CPU time is reset to zero. The
CPU time count is not reset if the process continues trying to use the CPU but is
preempted, its time slice expires, or it calls sched_yield(2).

Upon reaching the soft limit, the process is sent a SIGXCPU signal. If the
process catches or ignores this signal and continues consuming CPU time, then
SIGXCPU will be generated once each second until the hard limit is reached, at
which point the process is sent a SIGKILL signal.

The intended use of this limit is to stop a runaway real-time process from lock-
ing up the system.

For further details on real-time scheduling policies, see sched(7)

RLIMIT_SIGPENDING (since Linux 2.6.8)
This is a limit on the number of signals that may be queued for the real user ID
of the calling process. Both standard and real-time signals are counted for the
purpose of checking this limit. However, the limit is enforced only for
sigqueue(3); it is always possible to use kill(2) to queue one instance of any of
the signals that are not already queued to the process.

RLIMIT_STACK
This is the maximum size of the process stack, in bytes. Upon reaching this
limit, a SIGSEGV signal is generated. To handle this signal, a process must em-
ploy an alternate signal stack (sigaltstack(2)).

Since Linux 2.6.23, this limit also determines the amount of space used for the
process’s command-line arguments and environment variables; for details, see
execve(2).

Linux man-pages 6.16 2025-10-29 302

getrlimit(2) System Calls Manual getrlimit(2)

prlimit()
The Linux-specific prlimit() system call combines and extends the functionality of setr-
limit() and getrlimit(). It can be used to both set and get the resource limits of an arbi-
trary process.

The resource argument has the same meaning as for setrlimit() and getrlimit().

If the new_limit argument is not NULL, then the rlimit structure to which it points is
used to set new values for the soft and hard limits for resource. If the old_limit argu-
ment is not NULL, then a successful call to prlimit() places the previous soft and hard
limits for resource in the rlimit structure pointed to by old_limit.

The pid argument specifies the ID of the process on which the call is to operate. If pid
is 0, then the call applies to the calling process. To set or get the resources of a process
other than itself, the caller must have the CAP_SYS_RESOURCE capability in the
user namespace of the process whose resource limits are being changed, or the real, ef-
fective, and saved set user IDs of the target process must match the real user ID of the
caller and the real, effective, and saved set group IDs of the target process must match
the real group ID of the caller.

RETURN VALUE
On success, these system calls return 0. On error, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
EFAULT

A pointer argument points to a location outside the accessible address space.

EINVAL
The value specified in resource is not valid; or, for setrlimit() or prlimit():
rlim->rlim_cur was greater than rlim->rlim_max.

EPERM
An unprivileged process tried to raise the hard limit; the CAP_SYS_RE-
SOURCE capability is required to do this.

EPERM
The caller tried to increase the hard RLIMIT_NOFILE limit above the maxi-
mum defined by /proc/sys/fs/nr_open (see proc(5))

EPERM
(prlimit()) The calling process did not have permission to set limits for the
process specified by pid .

ESRCH
Could not find a process with the ID specified in pid .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetrlimit(), setrlimit(), prlimit()

Linux man-pages 6.16 2025-10-29 303

getrlimit(2) System Calls Manual getrlimit(2)

STANDARDS
getrlimit()
setrlimit()

POSIX.1-2024.

prlimit()
Linux.

RLIMIT_MEMLOCK and RLIMIT_NPROC derive from BSD and are not specified
in POSIX.1; they are present on the BSDs and Linux, but on few other implementations.
RLIMIT_RSS derives from BSD and is not specified in POSIX.1; it is nevertheless
present on most implementations. RLIMIT_MSGQUEUE, RLIMIT_NICE,
RLIMIT_RTPRIO, RLIMIT_RTTIME, and RLIMIT_SIGPENDING are Linux-
specific.

HISTORY
getrlimit()
setrlimit()

POSIX.1-2001, SVr4, 4.3BSD.

prlimit()
Linux 2.6.36, glibc 2.13.

NOTES
A child process created via fork(2) inherits its parent’s resource limits. Resource limits
are preserved across execve(2).

Resource limits are per-process attributes that are shared by all of the threads in a
process.

Lowering the soft limit for a resource below the process’s current consumption of that
resource will succeed (but will prevent the process from further increasing its consump-
tion of the resource).

One can set the resource limits of the shell using the built-in ulimit command (limit in
csh(1)). The shell’s resource limits are inherited by the processes that it creates to exe-
cute commands.

Since Linux 2.6.24, the resource limits of any process can be inspected via
/proc/ pid /limits; see proc(5).

Ancient systems provided a vlimit() function with a similar purpose to setrlimit(). For
backward compatibility, glibc also provides vlimit(). All new applications should be
written using setrlimit().

C library/kernel ABI differences
Since glibc 2.13, the glibc getrlimit() and setrlimit() wrapper functions no longer in-
voke the corresponding system calls, but instead employ prlimit(), for the reasons de-
scribed in BUGS.

The name of the glibc wrapper function is prlimit(); the underlying system call is
prlimit64().

Linux man-pages 6.16 2025-10-29 304

getrlimit(2) System Calls Manual getrlimit(2)

BUGS
In older Linux kernels, the SIGXCPU and SIGKILL signals delivered when a process
encountered the soft and hard RLIMIT_CPU limits were delivered one (CPU) second
later than they should have been. This was fixed in Linux 2.6.8.

In Linux 2.6.x kernels before Linux 2.6.17, a RLIMIT_CPU limit of 0 is wrongly
treated as "no limit" (like RLIM_INFINITY). Since Linux 2.6.17, setting a limit of 0
does have an effect, but is actually treated as a limit of 1 second.

A kernel bug means that RLIMIT_RTPRIO does not work in Linux 2.6.12; the prob-
lem is fixed in Linux 2.6.13.

In Linux 2.6.12, there was an off-by-one mismatch between the priority ranges returned
by getpriority(2) and RLIMIT_NICE. This had the effect that the actual ceiling for the
nice value was calculated as 19 - rlim_cur. This was fixed in Linux 2.6.13.

Since Linux 2.6.12, if a process reaches its soft RLIMIT_CPU limit and has a handler
installed for SIGXCPU, then, in addition to invoking the signal handler, the kernel in-
creases the soft limit by one second. This behavior repeats if the process continues to
consume CPU time, until the hard limit is reached, at which point the process is killed.
Other implementations do not change the RLIMIT_CPU soft limit in this manner, and
the Linux behavior is probably not standards conformant; portable applications should
avoid relying on this Linux-specific behavior. The Linux-specific RLIMIT_RTTIME
limit exhibits the same behavior when the soft limit is encountered.

Kernels before Linux 2.4.22 did not diagnose the error EINVAL for setrlimit() when
rlim->rlim_cur was greater than rlim->rlim_max.

Linux doesn’t return an error when an attempt to set RLIMIT_CPU has failed, for com-
patibility reasons.

Representation of "large" resource limit values on 32-bit platforms
The glibc getrlimit() and setrlimit() wrapper functions use a 64-bit rlim_t data type,
even on 32-bit platforms. However, the rlim_t data type used in the getrlimit() and
setrlimit() system calls is a (32-bit) unsigned long. Furthermore, in Linux, the kernel
represents resource limits on 32-bit platforms as unsigned long. However, a 32-bit data
type is not wide enough. The most pertinent limit here is RLIMIT_FSIZE, which
specifies the maximum size to which a file can grow: to be useful, this limit must be rep-
resented using a type that is as wide as the type used to represent file offsets—that is, as
wide as a 64-bit off_t (assuming a program compiled with _FILE_OFFSET_BITS=64).

To work around this kernel limitation, if a program tried to set a resource limit to a value
larger than can be represented in a 32-bit unsigned long, then the glibc setrlimit() wrap-
per function silently converted the limit value to RLIM_INFINITY. In other words,
the requested resource limit setting was silently ignored.

Since glibc 2.13, glibc works around the limitations of the getrlimit() and setrlimit()
system calls by implementing setrlimit() and getrlimit() as wrapper functions that call
prlimit().

EXAMPLES
The program below demonstrates the use of prlimit().

#define _GNU_SOURCE

Linux man-pages 6.16 2025-10-29 305

getrlimit(2) System Calls Manual getrlimit(2)

#define _FILE_OFFSET_BITS 64
#include <err.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/resource.h>
#include <time.h>

int
main(int argc, char *argv[])
{

pid_t pid;
struct rlimit old, new;
struct rlimit *newp;

if (!(argc == 2 || argc == 4)) {
fprintf(stderr, "Usage: %s <pid> [<new-soft-limit> "

"<new-hard-limit>]\n", argv[0]);
exit(EXIT_FAILURE);

}

pid = atoi(argv[1]); /* PID of target process */

newp = NULL;
if (argc == 4) {

new.rlim_cur = atoi(argv[2]);
new.rlim_max = atoi(argv[3]);
newp = &new;

}

/* Set CPU time limit of target process; retrieve and display
previous limit */

if (prlimit(pid, RLIMIT_CPU, newp, &old) == -1)
err(EXIT_FAILURE, "prlimit-1");

printf("Previous limits: soft=%jd; hard=%jd\n",
(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

/* Retrieve and display new CPU time limit */

if (prlimit(pid, RLIMIT_CPU, NULL, &old) == -1)
err(EXIT_FAILURE, "prlimit-2");

printf("New limits: soft=%jd; hard=%jd\n",
(intmax_t) old.rlim_cur, (intmax_t) old.rlim_max);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.16 2025-10-29 306

getrlimit(2) System Calls Manual getrlimit(2)

SEE ALSO
prlimit(1), dup(2), fcntl(2), fork(2), getrusage(2), mlock(2), mmap(2), open(2), quo-
tactl(2), sbrk(2), shmctl(2), malloc(3), sigqueue(3), ulimit(3), core(5), capabilities(7),
cgroups(7), credentials(7), signal(7)

Linux man-pages 6.16 2025-10-29 307

getrusage(2) System Calls Manual getrusage(2)

NAME
getrusage - get resource usage

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/resource.h>

int getrusage(int who, struct rusage *usage);

DESCRIPTION
getrusage() returns resource usage measures for who, which can be one of the follow-
ing:

RUSAGE_SELF
Return resource usage statistics for the calling process, which is the sum of re-
sources used by all threads in the process.

RUSAGE_CHILDREN
Return resource usage statistics for all children of the calling process that have
terminated and been waited for. These statistics will include the resources used
by grandchildren, and further removed descendants, if all of the intervening de-
scendants waited on their terminated children.

RUSAGE_THREAD (since Linux 2.6.26)
Return resource usage statistics for the calling thread. The _GNU_SOURCE
feature test macro must be defined (before including any header file) in order to
obtain the definition of this constant from <sys/resource.h>.

The resource usages are returned in the structure pointed to by usage, which has the fol-
lowing form:

struct rusage {
struct timeval ru_utime; /* user CPU time used */
struct timeval ru_stime; /* system CPU time used */
long ru_maxrss; /* maximum resident set size */
long ru_ixrss; /* integral shared memory size */
long ru_idrss; /* integral unshared data size */
long ru_isrss; /* integral unshared stack size */
long ru_minflt; /* page reclaims (soft page faults) */
long ru_majflt; /* page faults (hard page faults) */
long ru_nswap; /* swaps */
long ru_inblock; /* block input operations */
long ru_oublock; /* block output operations */
long ru_msgsnd; /* IPC messages sent */
long ru_msgrcv; /* IPC messages received */
long ru_nsignals; /* signals received */
long ru_nvcsw; /* voluntary context switches */
long ru_nivcsw; /* involuntary context switches */

};

Not all fields are completed; unmaintained fields are set to zero by the kernel. (The

Linux man-pages 6.16 2025-10-29 308

getrusage(2) System Calls Manual getrusage(2)

unmaintained fields are provided for compatibility with other systems, and because they
may one day be supported on Linux.) The fields are interpreted as follows:

ru_utime
This is the total amount of time spent executing in user mode, expressed in a
timeval structure (seconds plus microseconds).

ru_stime
This is the total amount of time spent executing in kernel mode, expressed in a
timeval structure (seconds plus microseconds).

ru_maxrss (since Linux 2.6.32)
This is the maximum resident set size used (in KiB). For RUSAGE_CHIL-
DREN, this is the resident set size of the largest child, not the maximum resident
set size of the process tree.

ru_ixrss (unmaintained)
This field is currently unused on Linux.

ru_idrss (unmaintained)
This field is currently unused on Linux.

ru_isrss (unmaintained)
This field is currently unused on Linux.

ru_minflt
The number of page faults serviced without any I/O activity; here, I/O activity is
avoided by “reclaiming” a page frame from the list of pages awaiting realloca-
tion.

ru_majflt
The number of page faults serviced that required I/O activity.

ru_nswap (unmaintained)
This field is currently unused on Linux.

ru_inblock (since Linux 2.6.22)
The number of times the filesystem had to perform input.

ru_oublock (since Linux 2.6.22)
The number of times the filesystem had to perform output.

ru_msgsnd (unmaintained)
This field is currently unused on Linux.

ru_msgrcv (unmaintained)
This field is currently unused on Linux.

ru_nsignals (unmaintained)
This field is currently unused on Linux.

ru_nvcsw (since Linux 2.6)
The number of times a context switch resulted due to a process voluntarily giv-
ing up the processor before its time slice was completed (usually to await avail-
ability of a resource).

Linux man-pages 6.16 2025-10-29 309

getrusage(2) System Calls Manual getrusage(2)

ru_nivcsw (since Linux 2.6)
The number of times a context switch resulted due to a higher priority process
becoming runnable or because the current process exceeded its time slice.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

usage points outside the accessible address space.

EINVAL
who is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetrusage()

STANDARDS
POSIX.1-2024.

POSIX.1 specifies getrusage(), but specifies only the fields ru_utime and ru_stime.

RUSAGE_THREAD is Linux-specific.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Before Linux 2.6.9, if the disposition of SIGCHLD is set to SIG_IGN then the re-
source usages of child processes are automatically included in the value returned by
RUSAGE_CHILDREN, although POSIX.1-2001 explicitly prohibits this. This non-
conformance is rectified in Linux 2.6.9 and later.

The structure definition shown at the start of this page was taken from 4.3BSD Reno.

Ancient systems provided a vtimes() function with a similar purpose to getrusage().
For backward compatibility, glibc (up until Linux 2.32) also provides vtimes(). All new
applications should be written using getrusage(). (Since Linux 2.33, glibc no longer
provides an vtimes() implementation.)

NOTES
Resource usage metrics are preserved across an execve(2).

SEE ALSO
clock_gettime(2), getrlimit(2), times(2), wait(2), wait4(2), clock(3), proc_pid_stat(5),
proc_pid_io(5)

Linux man-pages 6.16 2025-10-29 310

getsid(2) System Calls Manual getsid(2)

NAME
getsid - get session ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t getsid(pid_t pid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getsid():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
getsid() returns the session ID of the process with process ID pid . If pid is 0, getsid()
returns the session ID of the calling process.

RETURN VALUE
On success, a session ID is returned. On error, (pid_t) -1 is returned, and errno is set to
indicate the error.

ERRORS
EPERM

A process with process ID pid exists, but it is not in the same session as the call-
ing process, and the implementation considers this an error.

ESRCH
No process with process ID pid was found.

VERSIONS
Linux does not return EPERM.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4. Linux 2.0.

NOTES
See credentials(7) for a description of sessions and session IDs.

SEE ALSO
getpgid(2), setsid(2), credentials(7)

Linux man-pages 6.16 2025-10-29 311

getsockname(2) System Calls Manual getsockname(2)

NAME
getsockname - get socket name

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int getsockname(int sockfd , struct sockaddr *restrict addr,
socklen_t *restrict addrlen);

DESCRIPTION
getsockname() returns the current address to which the socket sockfd is bound, in the
buffer pointed to by addr. The addrlen argument should be initialized to indicate the
amount of space (in bytes) pointed to by addr. On return it contains the actual size of
the socket address.

The returned address is truncated if the buffer provided is too small; in this case, ad-
drlen will return a value greater than was supplied to the call.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBADF

The argument sockfd is not a valid file descriptor.

EFAULT
The addr argument points to memory not in a valid part of the process address
space.

EINVAL
addrlen is invalid (e.g., is negative).

ENOBUFS
Insufficient resources were available in the system to perform the operation.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.2BSD.

SEE ALSO
bind(2), socket(2), getifaddrs(3), ip(7), socket(7), unix(7)

Linux man-pages 6.16 2025-10-29 312

getsockopt(2) System Calls Manual getsockopt(2)

NAME
getsockopt, setsockopt - get and set options on sockets

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int getsockopt(socklen_t *restrict optlen;
int sockfd , int level, int optname,
void optval[_Nullable restrict *optlen],
socklen_t *restrict optlen);

int setsockopt(socklen_t optlen;
int sockfd , int level, int optname,
const void optval[optlen],
socklen_t optlen);

DESCRIPTION
getsockopt() and setsockopt() manipulate options for the socket referred to by the file
descriptor sockfd . Options may exist at multiple protocol levels; they are always present
at the uppermost socket level.

When manipulating socket options, the level at which the option resides and the name of
the option must be specified. To manipulate options at the sockets API level, level is
specified as SOL_SOCKET. To manipulate options at any other level the protocol
number of the appropriate protocol controlling the option is supplied. For example, to
indicate that an option is to be interpreted by the TCP protocol, level should be set to
the protocol number of TCP; see getprotoent(3).

The arguments optval and optlen are used to access option values for setsockopt(). For
getsockopt() they identify a buffer in which the value for the requested option(s) are to
be returned. For getsockopt(), optlen is a value-result argument, initially containing the
size of the buffer pointed to by optval, and modified on return to indicate the actual size
of the value returned. If no option value is to be supplied or returned, optval may be
NULL.

Optname and any specified options are passed uninterpreted to the appropriate protocol
module for interpretation. The include file <sys/socket.h> contains definitions for
socket level options, described below. Options at other protocol levels vary in format
and name; consult the appropriate entries in section 4 of the manual.

Most socket-level options utilize an int argument for optval. For setsockopt(), the argu-
ment should be nonzero to enable a boolean option, or zero if the option is to be dis-
abled.

For a description of the available socket options see socket(7) and the appropriate proto-
col man pages.

RETURN VALUE
On success, zero is returned for the standard options. On error, -1 is returned, and er-
rno is set to indicate the error.

Netfilter allows the programmer to define custom socket options with associated

Linux man-pages 6.16 2025-10-29 313

getsockopt(2) System Calls Manual getsockopt(2)

handlers; for such options, the return value on success is the value returned by the han-
dler.

ERRORS
EBADF

The argument sockfd is not a valid file descriptor.

EFAULT
The address pointed to by optval is not in a valid part of the process address
space. For getsockopt(), this error may also be returned if optlen is not in a
valid part of the process address space.

EINVAL
optlen invalid in setsockopt(). In some cases this error can also occur for an in-
valid value in optval (e.g., for the IP_ADD_MEMBERSHIP option described
in ip(7)).

ENOPROTOOPT
The option is unknown at the level indicated.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4.2BSD).

BUGS
Several of the socket options should be handled at lower levels of the system.

SEE ALSO
ioctl(2), socket(2), getprotoent(3), protocols(5), ip(7), packet(7), socket(7), tcp(7),
udp(7), unix(7)

Linux man-pages 6.16 2025-10-29 314

gettid(2) System Calls Manual gettid(2)

NAME
gettid - get thread identification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#include <unistd.h>

pid_t gettid(void);

DESCRIPTION
gettid() returns the caller’s thread ID (TID). In a single-threaded process, the thread ID
is equal to the process ID (PID, as returned by getpid(2)). In a multithreaded process,
all threads have the same PID, but each one has a unique TID. For further details, see
the discussion of CLONE_THREAD in clone(2).

RETURN VALUE
On success, returns the thread ID of the calling thread.

ERRORS
This call is always successful.

STANDARDS
Linux.

HISTORY
Linux 2.4.11, glibc 2.30.

NOTES
The thread ID returned by this call is not the same thing as a POSIX thread ID (i.e., the
opaque value returned by pthread_self(3)).

In a new thread group created by a clone(2) call that does not specify the
CLONE_THREAD flag (or, equivalently, a new process created by fork(2)), the new
process is a thread group leader, and its thread group ID (the value returned by
getpid(2)) is the same as its thread ID (the value returned by gettid())

SEE ALSO
capget(2), clone(2), fcntl(2), fork(2), get_robust_list(2), getpid(2), ioprio_set(2),
perf_event_open(2), sched_setaffinity(2), sched_setparam(2), sched_setscheduler(2),
tgkill(2), timer_create(2)

Linux man-pages 6.16 2025-05-17 315

gettimeofday(2) System Calls Manual gettimeofday(2)

NAME
gettimeofday, settimeofday - get / set time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

[[deprecated]]
int gettimeofday(struct timeval *restrict tv,

struct timezone *_Nullable restrict tz);
[[deprecated]]
int settimeofday(const struct timeval *tv,

const struct timezone *_Nullable tz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

settimeofday():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The functions gettimeofday() and settimeofday() can get and set the time as well as a
timezone.

The tv argument is a struct timeval (as specified in <sys/time.h>):

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

and gives the number of seconds and microseconds since the Epoch (see time(2)).

The tz argument is a struct timezone:

struct timezone {
int tz_minuteswest; /* minutes west of Greenwich */
int tz_dsttime; /* type of DST correction */

};

If either tv or tz is NULL, the corresponding structure is not set or returned. (However,
compilation warnings will result if tv is NULL.)

The use of the timezone structure is obsolete; the tz argument should normally be speci-
fied as NULL. See VERSIONS.

Under Linux, there are some peculiar "warp clock" semantics associated with the set-
timeofday() system call if on the very first call (after booting) that has a non-NULL tz
argument, the tv argument is NULL and the tz_minuteswest field is nonzero. (The
tz_dsttime field should be zero for this case.) In such a case it is assumed that the
CMOS clock is on local time, and that it has to be incremented by this amount to get

Linux man-pages 6.16 2025-10-29 316

gettimeofday(2) System Calls Manual gettimeofday(2)

UTC system time. No doubt it is a bad idea to use this feature.

RETURN VALUE
gettimeofday() and settimeofday() return 0 for success. On error, -1 is returned and
errno is set to indicate the error.

ERRORS
EFAULT

One of tv or tz pointed outside the accessible address space.

EINVAL
(settimeofday()): timezone is invalid.

EINVAL
(settimeofday()): tv.tv_sec is negative or tv.tv_usec is outside the range [0,
999,999].

EINVAL (since Linux 4.3)
(settimeofday()): An attempt was made to set the time to a value less than the
current value of the CLOCK_MONOTONIC clock (see clock_gettime(2)).

EPERM
The calling process has insufficient privilege to call settimeofday(); under Linux
the CAP_SYS_TIME capability is required.

VERSIONS
C library/kernel differences

On some architectures, an implementation of gettimeofday() is provided in the vdso(7).

The kernel accepts NULL for both tv and tz. The timezone argument is ignored by glibc
and musl, and not passed to/from the kernel. Android’s bionic passes the timezone ar-
gument to/from the kernel, but Android does not update the kernel timezone based on
the device timezone in Settings, so the kernel’s timezone is typically UTC.

STANDARDS
None.

HISTORY
SVr4, 4.3BSD. POSIX.1-2001 described gettimeofday() but not settimeofday().
POSIX.1-2008 marked gettimeofday() as obsolete, recommending the use of clock_get-
time(2) instead. Likewise, clock_settime(2) should be used instead of settimeofday().
POSIX.1-2024 removed gettimeofday().

Traditionally, the fields of struct timeval were of type long.

The tz_dsttime field
On a non-Linux kernel, with glibc, the tz_dsttime field of struct timezone will be set to a
nonzero value by gettimeofday() if the current timezone has ever had or will have a
daylight saving rule applied. In this sense it exactly mirrors the meaning of daylight(3)
for the current zone. On Linux, with glibc, the setting of the tz_dsttime field of struct
timezone has never been used by settimeofday() or gettimeofday(). Thus, the follow-
ing is purely of historical interest.

On old systems, the field tz_dsttime contains a symbolic constant (values are given be-
low) that indicates in which part of the year Daylight Saving Time is in force. (Note:

Linux man-pages 6.16 2025-10-29 317

gettimeofday(2) System Calls Manual gettimeofday(2)

this value is constant throughout the year: it does not indicate that DST is in force, it just
selects an algorithm.) The daylight saving time algorithms defined are as follows:

DST_NONE /* not on DST */
DST_USA /* USA style DST */
DST_AUST /* Australian style DST */
DST_WET /* Western European DST */
DST_MET /* Middle European DST */
DST_EET /* Eastern European DST */
DST_CAN /* Canada */
DST_GB /* Great Britain and Eire */
DST_RUM /* Romania */
DST_TUR /* Turkey */
DST_AUSTALT /* Australian style with shift in 1986 */

Of course, it turned out that the period in which Daylight Saving Time is in force cannot
be given by a simple algorithm, one per country; indeed, this period is determined by
unpredictable political decisions. So this method of representing timezones has been
abandoned.

NOTES
The time returned by gettimeofday() is affected by discontinuous jumps in the system
time (e.g., if the system administrator manually changes the system time). If you need a
monotonically increasing clock, see clock_gettime(2).

Macros for operating on timeval structures are described in timeradd(3).

SEE ALSO
date(1), adjtimex(2), clock_gettime(2), time(2), ctime(3), ftime(3), timeradd(3), capabili-
ties(7), time(7), vdso(7), hwclock(8)

Linux man-pages 6.16 2025-10-29 318

getuid(2) System Calls Manual getuid(2)

NAME
getuid, geteuid - get user identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

uid_t getuid(void);
uid_t geteuid(void);

DESCRIPTION
getuid() returns the real user ID of the calling process.

geteuid() returns the effective user ID of the calling process.

ERRORS
These functions are always successful and never modify errno.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.3BSD.

In UNIX V6 the getuid() call returned (euid << 8) + uid . UNIX V7 introduced sepa-
rate calls getuid() and geteuid().

The original Linux getuid() and geteuid() system calls supported only 16-bit user IDs.
Subsequently, Linux 2.4 added getuid32() and geteuid32(), supporting 32-bit IDs. The
glibc getuid() and geteuid() wrapper functions transparently deal with the variations
across kernel versions.

On Alpha, instead of a pair of getuid() and geteuid() system calls, a single getxuid()
system call is provided, which returns a pair of real and effective UIDs. The glibc ge-
tuid() and geteuid() wrapper functions transparently deal with this. See syscall(2) for
details regarding register mapping.

SEE ALSO
getresuid(2), setreuid(2), setuid(2), credentials(7)

Linux man-pages 6.16 2025-10-29 319

getunwind(2) System Calls Manual getunwind(2)

NAME
getunwind - copy the unwind data to caller’s buffer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/unwind.h>
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] long syscall(size_t buf_size;
SYS_getunwind, void buf [buf_size],
size_t buf_size);

DESCRIPTION
Note: this system call is obsolete.

The IA-64-specific getunwind() system call copies the kernel’s call frame unwind data
into the buffer pointed to by buf and returns the size of the unwind data; this data de-
scribes the gate page (kernel code that is mapped into user space).

The size of the buffer buf is specified in buf_size. The data is copied only if buf_size is
greater than or equal to the size of the unwind data and buf is not NULL; otherwise, no
data is copied, and the call succeeds, returning the size that would be needed to store the
unwind data.

The first part of the unwind data contains an unwind table. The rest contains the associ-
ated unwind information, in no particular order. The unwind table contains entries of
the following form:

u64 start; (64-bit address of start of function)
u64 end; (64-bit address of end of function)
u64 info; (BUF-relative offset to unwind info)

An entry whose start value is zero indicates the end of the table. For more information
about the format, see the IA-64 Software Conventions and Runtime Architecture manual.

RETURN VALUE
On success, getunwind() returns the size of the unwind data. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
getunwind() fails with the error EFAULT if the unwind info can’t be stored in the space
specified by buf .

STANDARDS
Linux on IA-64.

HISTORY
Linux 2.4.

This system call has been deprecated. The modern way to obtain the kernel’s unwind
data is via the vdso(7).

Linux man-pages 6.16 2025-06-28 320

getunwind(2) System Calls Manual getunwind(2)

SEE ALSO
getauxval(3)

Linux man-pages 6.16 2025-06-28 321

getxattr(2) System Calls Manual getxattr(2)

NAME
getxattr, lgetxattr, fgetxattr - retrieve an extended attribute value

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

ssize_t getxattr(size_t size;
const char *path, const char *name,
void value[size], size_t size);

ssize_t lgetxattr(size_t size;
const char *path, const char *name,
void value[size], size_t size);

ssize_t fgetxattr(size_t size;
int fd , const char *name,
void value[size], size_t size);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories, sym-
bolic links, etc.). They are extensions to the normal attributes which are associated with
all inodes in the system (i.e., the stat(2) data). A complete overview of extended attrib-
utes concepts can be found in xattr(7).

getxattr() retrieves the value of the extended attribute identified by name and associated
with the given path in the filesystem. The attribute value is placed in the buffer pointed
to by value; size specifies the size of that buffer. The return value of the call is the num-
ber of bytes placed in value.

lgetxattr() is identical to getxattr(), except in the case of a symbolic link, where the
link itself is interrogated, not the file that it refers to.

fgetxattr() is identical to getxattr(), only the open file referred to by fd (as returned by
open(2)) is interrogated in place of path.

An extended attribute name is a null-terminated string. The name includes a namespace
prefix; there may be several, disjoint namespaces associated with an individual inode.
The value of an extended attribute is a chunk of arbitrary textual or binary data that was
assigned using setxattr(2).

If size is specified as zero, these calls return the current size of the named extended at-
tribute (and leave value unchanged). This can be used to determine the size of the buffer
that should be supplied in a subsequent call. (But, bear in mind that there is a possibility
that the attribute value may change between the two calls, so that it is still necessary to
check the return status from the second call.)

RETURN VALUE
On success, these calls return a nonnegative value which is the size (in bytes) of the ex-
tended attribute value. On failure, -1 is returned and errno is set to indicate the error.

ERRORS

Linux man-pages 6.16 2025-09-21 322

getxattr(2) System Calls Manual getxattr(2)

E2BIG
The size of the attribute value is larger than the maximum size allowed; the at-
tribute cannot be retrieved. This can happen on filesystems that support very
large attribute values such as NFSv4, for example.

ENODATA
The named attribute does not exist, or the process has no access to this attribute.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.

ERANGE
The size of the value buffer is too small to hold the result.

In addition, the errors documented in stat(2) can also occur.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

EXAMPLES
See listxattr(2).

SEE ALSO
getfattr(1), setfattr(1), listxattr(2), open(2), removexattr(2), setxattr(2), stat(2), sym-
link(7), xattr(7)

Linux man-pages 6.16 2025-09-21 323

idle(2) System Calls Manual idle(2)

NAME
idle - make process 0 idle

SYNOPSIS
#include <unistd.h>

[[deprecated]] int idle(void);

DESCRIPTION
idle() is an internal system call used during bootstrap. It marks the process’s pages as
swappable, lowers its priority, and enters the main scheduling loop. idle() never returns.

Only process 0 may call idle(). Any user process, even a process with superuser permis-
sion, will receive EPERM.

RETURN VALUE
idle() never returns for process 0, and always returns -1 for a user process.

ERRORS
EPERM

Always, for a user process.

STANDARDS
Linux.

HISTORY
Removed in Linux 2.3.13.

Linux man-pages 6.16 2025-05-17 324

init_module(2) System Calls Manual init_module(2)

NAME
init_module, finit_module - load a kernel module

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/module.h> /* Definition of MODULE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(unsigned long size;
SYS_init_module,
void module_image[size], unsigned long size,
const char *param_values);

int syscall(SYS_finit_module, int fd ,
const char *param_values, int flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
init_module() loads an ELF image into kernel space, performs any necessary symbol
relocations, initializes module parameters to values provided by the caller, and then runs
the module’s init function. This system call requires privilege.

The module_image argument points to a buffer containing the binary image to be
loaded; size specifies the size of that buffer. The module image should be a valid ELF
image, built for the running kernel.

The param_values argument is a string containing space-delimited specifications of the
values for module parameters (defined inside the module using module_param() and
module_param_array())The kernel parses this string and initializes the specified para-
meters. Each of the parameter specifications has the form:

name[=value[,value...]]

The parameter name is one of those defined within the module using module_param()
(see the Linux kernel source file include/linux/moduleparam.h). The parameter value is
optional in the case of bool and invbool parameters. Values for array parameters are
specified as a comma-separated list.

finit_module()
The finit_module() system call is like init_module(), but reads the module to be loaded
from the file descriptor fd . It is useful when the authenticity of a kernel module can be
determined from its location in the filesystem; in cases where that is possible, the over-
head of using cryptographically signed modules to determine the authenticity of a mod-
ule can be avoided. The param_values argument is as for init_module().

The flags argument modifies the operation of finit_module(). It is a bit mask value cre-
ated by ORing together zero or more of the following flags:

Linux man-pages 6.16 2025-09-07 325

init_module(2) System Calls Manual init_module(2)

MODULE_INIT_IGNORE_MODVERSIONS
Ignore symbol version hashes.

MODULE_INIT_IGNORE_VERMAGIC
Ignore kernel version magic.

MODULE_INIT_COMPRESSED_FILE (since Linux 5.17)
Use in-kernel module decompression.

There are some safety checks built into a module to ensure that it matches the kernel
against which it is loaded. These checks are recorded when the module is built and veri-
fied when the module is loaded. First, the module records a "vermagic" string contain-
ing the kernel version number and prominent features (such as the CPU type). Second,
if the module was built with the CONFIG_MODVERSIONS configuration option en-
abled, a version hash is recorded for each symbol the module uses. This hash is based
on the types of the arguments and return value for the function named by the symbol. In
this case, the kernel version number within the "vermagic" string is ignored, as the sym-
bol version hashes are assumed to be sufficiently reliable.

Using the MODULE_INIT_IGNORE_VERMAGIC flag indicates that the "vermagic"
string is to be ignored, and the MODULE_INIT_IGNORE_MODVERSIONS flag in-
dicates that the symbol version hashes are to be ignored. If the kernel is built to permit
forced loading (i.e., configured with CONFIG_MODULE_FORCE_LOAD), then
loading continues, otherwise it fails with the error ENOEXEC as expected for mal-
formed modules.

If the kernel was build with CONFIG_MODULE_DECOMPRESS, the in-kernel de-
compression feature can be used. User-space code can check if the kernel supports de-
compression by reading the /sys/module/compression attribute. If the kernel supports
decompression, the compressed file can directly be passed to finit_module() using the
MODULE_INIT_COMPRESSED_FILE flag. The in-kernel module decompressor
supports the following compression algorithms:

• gzip (since Linux 5.17)
• xz (since Linux 5.17)
• zstd (since Linux 6.2)

The kernel only implements a single decompression method. This is selected during
module generation accordingly to the compression method chosen in the kernel configu-
ration.

RETURN VALUE
On success, these system calls return 0. On error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EBADMSG (since Linux 3.7)

Module signature is misformatted.

EBUSY
Timeout while trying to resolve a symbol reference by this module.

Linux man-pages 6.16 2025-09-07 326

init_module(2) System Calls Manual init_module(2)

EFAULT
An address argument referred to a location that is outside the process’s accessi-
ble address space.

ENOKEY (since Linux 3.7)
Module signature is invalid or the kernel does not have a key for this module.
This error is returned only if the kernel was configured with CONFIG_MOD-
ULE_SIG_FORCE; if the kernel was not configured with this option, then an
invalid or unsigned module simply taints the kernel.

ENOMEM
Out of memory.

EPERM
The caller was not privileged (did not have the CAP_SYS_MODULE capabil-
ity), or module loading is disabled (see /proc/sys/kernel/modules_disabled in
proc(5)).

The following errors may additionally occur for init_module():

EEXIST
A module with this name is already loaded.

EINVAL
param_values is invalid, or some part of the ELF image in module_image con-
tains inconsistencies.

ENOEXEC
The binary image supplied in module_image is not an ELF image, or is an ELF
image that is invalid or for a different architecture.

The following errors may additionally occur for finit_module():

EBADF
The file referred to by fd is not opened for reading.

EFBIG
The file referred to by fd is too large.

EINVAL
flags is invalid.

EINVAL
The decompressor sanity checks failed, while loading a compressed module with
flag MODULE_INIT_COMPRESSED_FILE set.

ENOEXEC
fd does not refer to an open file.

EOPNOTSUPP (since Linux 5.17)
The flag MODULE_INIT_COMPRESSED_FILE is set to load a compressed
module, and the kernel was built without CONFIG_MODULE_DECOM-
PRESS.

Linux man-pages 6.16 2025-09-07 327

init_module(2) System Calls Manual init_module(2)

ETXTBSY (since Linux 4.7)
The file referred to by fd is opened for read-write.

In addition to the above errors, if the module’s init function is executed and returns an
error, then init_module() or finit_module() fails and errno is set to the value returned
by the init function.

STANDARDS
Linux.

HISTORY
finit_module()

Linux 3.8.

The init_module() system call is not supported by glibc. No declaration is provided in
glibc headers, but, through a quirk of history, glibc versions before glibc 2.23 did export
an ABI for this system call. Therefore, in order to employ this system call, it is (before
glibc 2.23) sufficient to manually declare the interface in your code; alternatively, you
can invoke the system call using syscall(2).

Linux 2.4 and earlier
In Linux 2.4 and earlier, the init_module() system call was rather different:

#include <linux/module.h>

int init_module(const char *name, struct module *image);

(User-space applications can detect which version of init_module() is available by call-
ing query_module(); the latter call fails with the error ENOSYS on Linux 2.6 and
later.)

The older version of the system call loads the relocated module image pointed to by im-
age into kernel space and runs the module’s init function. The caller is responsible for
providing the relocated image (since Linux 2.6, the init_module() system call does the
relocation).

The module image begins with a module structure and is followed by code and data as
appropriate. Since Linux 2.2, the module structure is defined as follows:

struct module {
unsigned long size_of_struct;
struct module *next;
const char *name;
unsigned long size;
long usecount;
unsigned long flags;
unsigned int nsyms;
unsigned int ndeps;
struct module_symbol *syms;
struct module_ref *deps;
struct module_ref *refs;
typeof(int (void)) *init;
typeof(void (void)) *cleanup;
const struct exception_table_entry *ex_table_start;

Linux man-pages 6.16 2025-09-07 328

init_module(2) System Calls Manual init_module(2)

const struct exception_table_entry *ex_table_end;
#ifdef __alpha__

unsigned long gp;
#endif
};

All of the pointer fields, with the exception of next and refs, are expected to point within
the module body and be initialized as appropriate for kernel space, that is, relocated with
the rest of the module.

NOTES
Information about currently loaded modules can be found in /proc/modules and in the
file trees under the per-module subdirectories under /sys/module.

See the Linux kernel source file include/linux/module.h for some useful background in-
formation.

SEE ALSO
create_module(2), delete_module(2), query_module(2), lsmod(8), modprobe(8)

Linux man-pages 6.16 2025-09-07 329

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

NAME
inotify_add_watch - add a watch to an initialized inotify instance

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/inotify.h>

int inotify_add_watch(int fd , const char *path, uint32_t mask);

DESCRIPTION
inotify_add_watch() adds a new watch, or modifies an existing watch, for the file
whose location is specified in path; the caller must have read permission for this file.
The fd argument is a file descriptor referring to the inotify instance whose watch list is
to be modified. The events to be monitored for path are specified in the mask bit-mask
argument. See inotify(7) for a description of the bits that can be set in mask.

A successful call to inotify_add_watch() returns a unique watch descriptor for this ino-
tify instance, for the filesystem object (inode) that corresponds to path. If the filesystem
object was not previously being watched by this inotify instance, then the watch descrip-
tor is newly allocated. If the filesystem object was already being watched (perhaps via a
different link to the same object), then the descriptor for the existing watch is returned.

The watch descriptor is returned by later read(2)s from the inotify file descriptor. These
reads fetch inotify_event structures (see inotify(7)) indicating filesystem events; the
watch descriptor inside this structure identifies the object for which the event occurred.

RETURN VALUE
On success, inotify_add_watch() returns a watch descriptor (a nonnegative integer).
On error, -1 is returned and errno is set to indicate the error.

ERRORS
EACCES

Read access to the given file is not permitted.

EBADF
The given file descriptor is not valid.

EEXIST
mask contains IN_MASK_CREATE and path refers to a file already being
watched by the same fd .

EFAULT
path points outside of the process’s accessible address space.

EINVAL
The given event mask contains no valid events; or mask contains both
IN_MASK_ADD and IN_MASK_CREATE; or fd is not an inotify file de-
scriptor.

ENAMETOOLONG
path is too long.

Linux man-pages 6.16 2025-09-21 330

inotify_add_watch(2) System Calls Manual inotify_add_watch(2)

ENOENT
A directory component in path does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The user limit on the total number of inotify watches was reached or the kernel
failed to allocate a needed resource.

ENOTDIR
mask contains IN_ONLYDIR and path is not a directory.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

EXAMPLES
See inotify(7).

SEE ALSO
inotify_init(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.16 2025-09-21 331

inotify_init(2) System Calls Manual inotify_init(2)

NAME
inotify_init, inotify_init1 - initialize an inotify instance

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/inotify.h>

int inotify_init(void);
int inotify_init1(int flags);

DESCRIPTION
For an overview of the inotify API, see inotify(7).

inotify_init() initializes a new inotify instance and returns a file descriptor associated
with a new inotify event queue.

If flags is 0, then inotify_init1() is the same as inotify_init(). The following values can
be bitwise ORed in flags to obtain different behavior:

IN_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description (see
open(2)) referred to by the new file descriptor. Using this flag saves extra calls
to fcntl(2) to achieve the same result.

IN_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

RETURN VALUE
On success, these system calls return a new file descriptor. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EINVAL

(inotify_init1()) An invalid value was specified in flags.

EMFILE
The user limit on the total number of inotify instances has been reached.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient kernel memory is available.

STANDARDS
Linux.

HISTORY

Linux man-pages 6.16 2025-05-17 332

inotify_init(2) System Calls Manual inotify_init(2)

inotify_init()
Linux 2.6.13, glibc 2.4.

inotify_init1()
Linux 2.6.27, glibc 2.9.

SEE ALSO
inotify_add_watch(2), inotify_rm_watch(2), inotify(7)

Linux man-pages 6.16 2025-05-17 333

inotify_rm_watch(2) System Calls Manual inotify_rm_watch(2)

NAME
inotify_rm_watch - remove an existing watch from an inotify instance

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/inotify.h>

int inotify_rm_watch(int fd , int wd);

DESCRIPTION
inotify_rm_watch() removes the watch associated with the watch descriptor wd from
the inotify instance associated with the file descriptor fd .

Removing a watch causes an IN_IGNORED event to be generated for this watch de-
scriptor. (See inotify(7).)

RETURN VALUE
On success, inotify_rm_watch() returns zero. On error, -1 is returned and errno is set
to indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
The watch descriptor wd is not valid; or fd is not an inotify file descriptor.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

SEE ALSO
inotify_add_watch(2), inotify_init(2), inotify(7)

Linux man-pages 6.16 2025-09-21 334

io_cancel(2) System Calls Manual io_cancel(2)

NAME
io_cancel - cancel an outstanding asynchronous I/O operation

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of needed types */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_cancel, aio_context_t ctx_id , struct iocb *iocb,
struct io_event *result);

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_cancel() system call attempts to cancel an asynchronous I/O operation previ-
ously submitted with io_submit(2). The iocb argument describes the operation to be
canceled and the ctx_id argument is the AIO context to which the operation was submit-
ted. If the operation is successfully canceled, the event will be copied into the memory
pointed to by result without being placed into the completion queue.

RETURN VALUE
On success, io_cancel() returns 0. For the failure return, see VERSIONS.

ERRORS
EAGAIN

The iocb specified was not canceled.

EFAULT
One of the data structures points to invalid data.

EINVAL
The AIO context specified by ctx_id is invalid.

ENOSYS
io_cancel() is not implemented on this architecture.

VERSIONS
You probably want to use the io_cancel() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id
argument. Note also that the libaio wrapper does not follow the usual C library conven-
tions for indicating errors: on error it returns a negated error number (the negative of one
of the values listed in ERRORS). If the system call is invoked via syscall(2), then the
return value follows the usual conventions for indicating an error: -1, with errno set to a
(positive) value that indicates the error.

STANDARDS
Linux.

Linux man-pages 6.16 2025-05-17 335

io_cancel(2) System Calls Manual io_cancel(2)

HISTORY
Linux 2.5.

SEE ALSO
io_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.16 2025-05-17 336

io_destroy(2) System Calls Manual io_destroy(2)

NAME
io_destroy - destroy an asynchronous I/O context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of aio_context_t */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_destroy, aio_context_t ctx_id);

Note: glibc provides no wrapper for io_destroy(), necessitating the use of syscall(2).

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_destroy() system call will attempt to cancel all outstanding asynchronous I/O
operations against ctx_id , will block on the completion of all operations that could not
be canceled, and will destroy the ctx_id .

RETURN VALUE
On success, io_destroy() returns 0. For the failure return, see VERSIONS.

ERRORS
EFAULT

The context pointed to is invalid.

EINVAL
The AIO context specified by ctx_id is invalid.

ENOSYS
io_destroy() is not implemented on this architecture.

VERSIONS
You probably want to use the io_destroy() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id
argument. Note also that the libaio wrapper does not follow the usual C library conven-
tions for indicating errors: on error it returns a negated error number (the negative of one
of the values listed in ERRORS). If the system call is invoked via syscall(2), then the
return value follows the usual conventions for indicating an error: -1, with errno set to a
(positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_getevents(2), io_setup(2), io_submit(2), aio(7)

Linux man-pages 6.16 2025-05-17 337

io_getevents(2) System Calls Manual io_getevents(2)

NAME
io_getevents - read asynchronous I/O events from the completion queue

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Definition of *io_* types */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_io_getevents, aio_context_t ctx_id ,
long min_nr, long nr, struct io_event *events,
struct timespec *timeout);

Note: glibc provides no wrapper for io_getevents(), necessitating the use of syscall(2).

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_getevents() system call attempts to read at least min_nr events and up to nr
events from the completion queue of the AIO context specified by ctx_id .

The timeout argument specifies the amount of time to wait for events, and is specified as
a relative timeout in a timespec(3) structure.

The specified time will be rounded up to the system clock granularity and is guaranteed
not to expire early.

Specifying timeout as NULL means block indefinitely until at least min_nr events have
been obtained.

RETURN VALUE
On success, io_getevents() returns the number of events read. This may be 0, or a value
less than min_nr, if the timeout expired. It may also be a nonzero value less than
min_nr, if the call was interrupted by a signal handler.

For the failure return, see VERSIONS.

ERRORS
EFAULT

Either events or timeout is an invalid pointer.

EINTR
Interrupted by a signal handler; see signal(7).

EINVAL
ctx_id is invalid. min_nr is out of range or nr is out of range.

ENOSYS
io_getevents() is not implemented on this architecture.

Linux man-pages 6.16 2025-09-21 338

io_getevents(2) System Calls Manual io_getevents(2)

VERSIONS
You probably want to use the io_getevents() wrapper function provided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id
argument. Note also that the libaio wrapper does not follow the usual C library conven-
tions for indicating errors: on error it returns a negated error number (the negative of one
of the values listed in ERRORS). If the system call is invoked via syscall(2), then the
return value follows the usual conventions for indicating an error: -1, with errno set to a
(positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

BUGS
An invalid ctx_id may cause a segmentation fault instead of generating the error EIN-
VAL.

SEE ALSO
io_cancel(2), io_destroy(2), io_setup(2), io_submit(2), timespec(3), aio(7), time(7)

Linux man-pages 6.16 2025-09-21 339

io_setup(2) System Calls Manual io_setup(2)

NAME
io_setup - create an asynchronous I/O context

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Defines needed types */

long io_setup(unsigned int nr_events, aio_context_t *ctx_idp);

Note: There is no glibc wrapper for this system call; see VERSIONS.

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_idp argument. See VERSIONS.

The io_setup() system call creates an asynchronous I/O context suitable for concur-
rently processing nr_events operations. The ctx_idp argument must not point to an AIO
context that already exists, and must be initialized to 0 prior to the call. On successful
creation of the AIO context, *ctx_idp is filled in with the resulting handle.

RETURN VALUE
On success, io_setup() returns 0. For the failure return, see VERSIONS.

ERRORS
EAGAIN

The specified nr_events exceeds the limit of available events, as defined in
/proc/sys/fs/aio-max-nr (see proc(5)).

EFAULT
An invalid pointer is passed for ctx_idp.

EINVAL
ctx_idp is not initialized, or the specified nr_events exceeds internal limits.
nr_events should be greater than 0.

ENOMEM
Insufficient kernel resources are available.

ENOSYS
io_setup() is not implemented on this architecture.

VERSIONS
glibc does not provide a wrapper for this system call. You could invoke it using
syscall(2). But instead, you probably want to use the io_setup() wrapper function pro-
vided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t *) for the
ctx_idp argument. Note also that the libaio wrapper does not follow the usual C library
conventions for indicating errors: on error it returns a negated error number (the negative
of one of the values listed in ERRORS). If the system call is invoked via syscall(2), then
the return value follows the usual conventions for indicating an error: -1, with errno set
to a (positive) value that indicates the error.

Linux man-pages 6.16 2025-09-21 340

io_setup(2) System Calls Manual io_setup(2)

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_submit(2), aio(7)

Linux man-pages 6.16 2025-09-21 341

io_submit(2) System Calls Manual io_submit(2)

NAME
io_submit - submit asynchronous I/O blocks for processing

LIBRARY
Standard C library (libc, -lc)

Alternatively, Asynchronous I/O library (libaio, -laio); see VERSIONS.

SYNOPSIS
#include <linux/aio_abi.h> /* Defines needed types */

int io_submit(aio_context_t ctx_id , long nr, struct iocb **iocbpp);

Note: There is no glibc wrapper for this system call; see VERSIONS.

DESCRIPTION
Note: this page describes the raw Linux system call interface. The wrapper function
provided by libaio uses a different type for the ctx_id argument. See VERSIONS.

The io_submit() system call queues nr I/O request blocks for processing in the AIO
context ctx_id . The iocbpp argument should be an array of nr AIO control blocks,
which will be submitted to context ctx_id .

The iocb (I/O control block) structure defined in linux/aio_abi.h defines the parameters
that control the I/O operation.

#include <linux/aio_abi.h>

struct iocb {
__u64 aio_data;
__u32 PADDED(aio_key, aio_rw_flags);
__u16 aio_lio_opcode;
__s16 aio_reqprio;
__u32 aio_fildes;
__u64 aio_buf;
__u64 aio_nbytes;
__s64 aio_offset;
__u64 aio_reserved2;
__u32 aio_flags;
__u32 aio_resfd;

};

The fields of this structure are as follows:

aio_data
This data is copied into the data field of the io_event structure upon I/O comple-
tion (see io_getevents(2)).

aio_key
This is an internal field used by the kernel. Do not modify this field after an
io_submit() call.

aio_rw_flags
This defines the R/W flags passed with structure. The valid values are:

Linux man-pages 6.16 2025-09-21 342

io_submit(2) System Calls Manual io_submit(2)

RWF_APPEND (since Linux 4.16)
Append data to the end of the file. See the description of the flag of the
same name in pwritev2(2) as well as the description of O_APPEND in
open(2). The aio_offset field is ignored. The file offset is not changed.

RWF_DSYNC (since Linux 4.13)
Write operation complete according to requirement of synchronized I/O
data integrity. See the description of the flag of the same name in
pwritev2(2) as well the description of O_DSYNC in open(2).

RWF_HIPRI (since Linux 4.13)
High priority request, poll if possible

RWF_NOWAIT (since Linux 4.14)
Don’t wait if the I/O will block for operations such as file block alloca-
tions, dirty page flush, mutex locks, or a congested block device inside
the kernel. If any of these conditions are met, the control block is re-
turned immediately with a return value of -EAGAIN in the res field of
the io_event structure (see io_getevents(2)).

RWF_SYNC (since Linux 4.13)
Write operation complete according to requirement of synchronized I/O
file integrity. See the description of the flag of the same name in
pwritev2(2) as well the description of O_SYNC in open(2).

RWF_NOAPPEND (since Linux 6.9)
Do not honor O_APPEND open(2) flag. See the description of
RWF_NOAPPEND in pwritev2(2).

RWF_ATOMIC (since Linux 6.11)
Write a block of data such that a write will never be torn from power fail
or similar. See the description of RWF_ATOMIC in pwritev2(2). For
usage with IOCB_CMD_PWRITEV, the upper vector limit is
stx_atomic_write_segments_max. See STATX_WRITE_ATOMIC and
stx_atomic_write_segments_max description in statx(2).

aio_lio_opcode
This defines the type of I/O to be performed by the iocb structure. The valid val-
ues are defined by the enum defined in linux/aio_abi.h:

enum {
IOCB_CMD_PREAD = 0,
IOCB_CMD_PWRITE = 1,
IOCB_CMD_FSYNC = 2,
IOCB_CMD_FDSYNC = 3,
IOCB_CMD_POLL = 5,
IOCB_CMD_NOOP = 6,
IOCB_CMD_PREADV = 7,
IOCB_CMD_PWRITEV = 8,

};

Linux man-pages 6.16 2025-09-21 343

io_submit(2) System Calls Manual io_submit(2)

aio_reqprio
This defines the requests priority.

aio_fildes
The file descriptor on which the I/O operation is to be performed.

aio_buf
This is the buffer used to transfer data for a read or write operation.

aio_nbytes
This is the size of the buffer pointed to by aio_buf .

aio_offset
This is the file offset at which the I/O operation is to be performed.

aio_flags
This is the set of flags associated with the iocb structure. The valid values are:

IOCB_FLAG_RESFD
Asynchronous I/O control must signal the file descriptor mentioned in
aio_resfd upon completion.

IOCB_FLAG_IOPRIO (since Linux 4.18)
Interpret the aio_reqprio field as an IOPRIO_VALUE as defined by
linux/ioprio.h.

aio_resfd
The file descriptor to signal in the event of asynchronous I/O completion.

RETURN VALUE
On success, io_submit() returns the number of iocbs submitted (which may be less than
nr, or 0 if nr is zero). For the failure return, see VERSIONS.

ERRORS
EAGAIN

Insufficient resources are available to queue any iocbs.

EBADF
The file descriptor specified in the first iocb is invalid.

EFAULT
One of the data structures points to invalid data.

EINVAL
The AIO context specified by ctx_id is invalid. nr is less than 0. The iocb at
*iocbpp[0] is not properly initialized, the operation specified is invalid for the
file descriptor in the iocb, or the value in the aio_reqprio field is invalid.

ENOSYS
io_submit() is not implemented on this architecture.

EPERM
The aio_reqprio field is set with the class IOPRIO_CLASS_RT, but the sub-
mitting context does not have the CAP_SYS_ADMIN capability.

Linux man-pages 6.16 2025-09-21 344

io_submit(2) System Calls Manual io_submit(2)

VERSIONS
glibc does not provide a wrapper for this system call. You could invoke it using
syscall(2). But instead, you probably want to use the io_submit() wrapper function pro-
vided by libaio.

Note that the libaio wrapper function uses a different type (io_context_t) for the ctx_id
argument. Note also that the libaio wrapper does not follow the usual C library conven-
tions for indicating errors: on error it returns a negated error number (the negative of one
of the values listed in ERRORS). If the system call is invoked via syscall(2), then the
return value follows the usual conventions for indicating an error: -1, with errno set to a
(positive) value that indicates the error.

STANDARDS
Linux.

HISTORY
Linux 2.5.

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2), aio(7)

Linux man-pages 6.16 2025-09-21 345

ioctl(2) System Calls Manual ioctl(2)

NAME
ioctl - control device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...); /* glibc, BSD */
int ioctl(int fd , int op, ...); /* musl, other UNIX */

DESCRIPTION
The ioctl() system call manipulates the underlying device parameters of special files. In
particular, many operating characteristics of character special files (e.g., terminals) may
be controlled with ioctl() operations. The argument fd must be an open file descriptor.

The second argument is a device-dependent operation code. The third argument is an
untyped pointer to memory. It’s traditionally char *argp (from the days before void *
was valid C), and will be so named for this discussion.

An ioctl() op has encoded in it whether the argument is an in parameter or out parame-
ter, and the size of the argument argp in bytes. Macros and defines used in specifying
an ioctl() op are located in the file <sys/ioctl.h>. See NOTES.

RETURN VALUE
Usually, on success zero is returned. A few ioctl() operations use the return value as an
output parameter and return a nonnegative value on success. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EFAULT
argp references an inaccessible memory area.

EINVAL
op or argp is not valid.

ENOTTY
fd is not associated with a character special device.

ENOTTY
The specified operation does not apply to the kind of object that the file descrip-
tor fd references.

VERSIONS
Arguments, returns, and semantics of ioctl() vary according to the device driver in ques-
tion (the call is used as a catch-all for operations that don’t cleanly fit the UNIX stream
I/O model).

STANDARDS
None.

Linux man-pages 6.16 2025-09-21 346

ioctl(2) System Calls Manual ioctl(2)

HISTORY
Version 7 AT&T UNIX has

ioctl(int fd , int op, struct sgttyb *argp);
(where struct sgttyb has historically been used by stty(2) and gtty(2), and is polymor-
phic by operation type (like a void * would be, if it had been available)).

SysIII documents arg without a type at all.

4.3BSD has
ioctl(int d , unsigned long op, char *argp);

(with char * similarly in for void *).

SysVr4 has
int ioctl(int fd , int op, ... /* arg */);

NOTES
In order to use this call, one needs an open file descriptor. Often the open(2) call has un-
wanted side effects, that can be avoided under Linux by giving it the O_NONBLOCK
flag.

ioctl structure
Ioctl op values are 32-bit constants. In principle these constants are completely arbi-
trary, but people have tried to build some structure into them.

The old Linux situation was that of mostly 16-bit constants, where the last byte is a ser-
ial number, and the preceding byte(s) give a type indicating the driver. Sometimes the
major number was used: 0x03 for the HDIO_* ioctls, 0x06 for the LP* ioctls. And
sometimes one or more ASCII letters were used. For example, TCGETS has value
0x00005401, with 0x54 = 'T' indicating the terminal driver, and CYGETTIMEOUT
has value 0x00435906, with 0x43 0x59 = 'C' 'Y' indicating the cyclades driver.

Later (0.98p5) some more information was built into the number. One has 2 direction
bits (00: none, 01: write, 10: read, 11: read/write) followed by 14 size bits (giving the
size of the argument), followed by an 8-bit type (collecting the ioctls in groups for a
common purpose or a common driver), and an 8-bit serial number.

The macros describing this structure live in <asm/ioctl.h> and are _IO(type,nr) and
{_IOR,_IOW,_IOWR}(type,nr,size). They use sizeof(size) so that size is a misnomer
here: this third argument is a data type.

Note that the size bits are very unreliable: in lots of cases they are wrong, either because
of buggy macros using sizeof(sizeof(struct)), or because of legacy values.

Thus, it seems that the new structure only gave disadvantages: it does not help in check-
ing, but it causes varying values for the various architectures.

SEE ALSO
execve(2), fcntl(2), ioctl_console(2), ioctl_fat(2), ioctl_fs(2), ioctl_fsmap(2),
ioctl_nsfs(2), ioctl_tty(2), ioctl_userfaultfd(2), ioctl_eventpoll(2), open(2), sd(4), tty(4)

Linux man-pages 6.16 2025-09-21 347

ioctl_console(2) System Calls Manual ioctl_console(2)

NAME
ioctl_console - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
The following Linux-specific ioctl(2) operations are supported for console terminals and
virtual consoles.

KDGETLED(2const)
KDSETLED(2const)
KDGKBLED(2const)
KDSKBLED(2const)
KDGKBTYPE(2const)
KDADDIO(2const)
KDDELIO(2const)
KDENABIO(2const)
KDDISABIO(2const)
KDSETMODE(2const)
KDGETMODE(2const)
KDMKTONE(2const)
KIOCSOUND(2const)
GIO_CMAP(2const)
PIO_CMAP(2const)
GIO_FONT(2const)
GIO_FONTX(2const)
PIO_FONT(2const)
PIO_FONTX(2const)
PIO_FONTRESET(2const)
GIO_SCRNMAP(2const)
GIO_UNISCRNMAP(2const)
PIO_SCRNMAP(2const)
PIO_UNISCRNMAP(2const)
GIO_UNIMAP(2const)
PIO_UNIMAP(2const)
PIO_UNIMAPCLR(2const)
KDGKBMODE(2const)
KDSKBMODE(2const)
KDGKBMETA(2const)
KDSKBMETA(2const)
KDGKBENT(2const)
KDSKBENT(2const)
KDGKBSENT(2const)
KDSKBSENT(2const)

Linux man-pages 6.16 2025-05-17 348

ioctl_console(2) System Calls Manual ioctl_console(2)

KDGKBDIACR(2const)
KDGETKEYCODE(2const)
KDSETKEYCODE(2const)
KDSIGACCEPT(2const)

See ioctl_kd(2).

TIOCLINUX(2const)

VT_OPENQRY(2const)
VT_GETMODE(2const)
VT_SETMODE(2const)
VT_GETSTATE(2const)
VT_RELDISP(2const)
VT_ACTIVATE(2const)
VT_WAITACTIVE(2const)
VT_DISALLOCATE(2const)
VT_RESIZE(2const)
VT_RESIZEX(2const)

See ioctl_vt(2).

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and errno
is set to indicate the error.

STANDARDS
Linux.

CAVEATS
Do not regard this man page as documentation of the Linux console ioctls. This is pro-
vided for the curious only, as an alternative to reading the source. Ioctl’s are undocu-
mented Linux internals, liable to be changed without warning. (And indeed, this page
more or less describes the situation as of kernel version 1.1.94; there are many minor
and not-so-minor differences with earlier versions.)

Very often, ioctls are introduced for communication between the kernel and one particu-
lar well-known program (fdisk, hdparm, setserial, tunelp, loadkeys, selection, setfont,
etc.), and their behavior will be changed when required by this particular program.

SEE ALSO
ioctl(2), TIOCLINUX(2const), ioctl_kd(2), ioctl_vt(2), dumpkeys(1), kbd_mode(1),
loadkeys(1), mknod(1), setleds(1), setmetamode(1), execve(2), fcntl(2), ioctl_tty(2), iop-
erm(2), termios(3), console_codes(4), mt(4), sd(4), tty(4), ttyS(4), vcs(4), vcsa(4),
charsets(7), mapscrn(8), resizecons(8), setfont(8)

Linux man-pages 6.16 2025-05-17 349

ioctl_eventpoll(2) System Calls Manual ioctl_eventpoll(2)

NAME
ioctl_eventpoll, EPIOCSPARAMS, EPIOCGPARAMS - ioctl() operations for epoll file
descriptors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/epoll.h> /* Definition of EPIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , EPIOCSPARAMS, const struct epoll_params *argp);
int ioctl(int fd , EPIOCGPARAMS, struct epoll_params *argp);

#include <sys/epoll.h>

struct epoll_params {
uint32_t busy_poll_usecs; /* Number of usecs to busy poll */
uint16_t busy_poll_budget; /* Max packets per poll */
uint8_t prefer_busy_poll; /* Boolean preference */

/* pad the struct to a multiple of 64bits */
uint8_t __pad; /* Must be zero */

};

DESCRIPTION
EPIOCSPARAMS

Set the epoll_params structure to configure the operation of epoll. Refer to the
structure description below to learn what configuration is supported.

EPIOCGPARAMS
Get the current epoll_params configuration settings.

All operations documented above must be performed on an epoll file descriptor, which
can be obtained with a call to epoll_create(2) or epoll_create1(2).

The epoll_params structure
argp.busy_poll_usecs denotes the number of microseconds that the network stack will
busy poll. During this time period, the network device will be polled repeatedly for
packets. This value cannot exceed INT_MAX.

argp.busy_poll_budget denotes the maximum number of packets that the network stack
will retrieve on each poll attempt. This value cannot exceed NAPI_POLL_WEIGHT
(which is 64 as of Linux 6.9), unless the process is run with CAP_NET_ADMIN.

argp.prefer_busy_poll is a boolean field and must be either 0 (disabled) or 1 (enabled).
If enabled, this indicates to the network stack that busy poll is the preferred method of
processing network data and the network stack should give the application the opportu-
nity to busy poll. Without this option, very busy systems may continue to do network
processing via the normal method of IRQs triggering softIRQ and NAPI.

argp.__pad must be zero.

Linux man-pages 6.16 2025-05-17 350

ioctl_eventpoll(2) System Calls Manual ioctl_eventpoll(2)

RETURN VALUE
On success, 0 is returned. On failure, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EOPNOTSUPP

The kernel was not compiled with busy poll support.

EINVAL
fd is not a valid file descriptor.

EINVAL
argp.__pad is not zero.

EINVAL
argp.busy_poll_usecs exceeds INT_MAX.

EINVAL
argp.prefer_busy_poll is not 0 or 1.

EPERM
The process is being run without CAP_NET_ADMIN and the specified
argp.busy_poll_budget exceeds NAPI_POLL_WEIGHT.

EFAULT
argp is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 6.9. glibc 2.40.

EXAMPLES
/* Code to set the epoll params to enable busy polling */

int epollfd = epoll_create1(0);
struct epoll_params params;

if (epollfd == -1) {
perror("epoll_create1");
exit(EXIT_FAILURE);

}

memset(¶ms, 0, sizeof(struct epoll_params));

params.busy_poll_usecs = 25;
params.busy_poll_budget = 8;
params.prefer_busy_poll = 1;

if (ioctl(epollfd, EPIOCSPARAMS, ¶ms) == -1) {
perror("ioctl");
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-05-17 351

ioctl_eventpoll(2) System Calls Manual ioctl_eventpoll(2)

}

/* Code to show how to retrieve the current settings */

memset(¶ms, 0, sizeof(struct epoll_params));

if (ioctl(epollfd, EPIOCGPARAMS, ¶ms) == -1) {
perror("ioctl");
exit(EXIT_FAILURE);

}

/* params struct now contains the current parameters */

fprintf(stderr, "epoll usecs: %lu\n", params.busy_poll_usecs);
fprintf(stderr, "epoll packet budget: %u\n", params.busy_poll_budget);
fprintf(stderr, "epoll prefer busy poll: %u\n", params.prefer_busy_poll);

SEE ALSO
ioctl(2), epoll_create(2), epoll_create1(2), epoll(7)

linux.git/Documentation/networking/napi.rst

linux.git/Documentation/admin-guide/sysctl/net.rst

Linux man-pages 6.16 2025-05-17 352

ioctl_fat(2) System Calls Manual ioctl_fat(2)

NAME
ioctl_fat - manipulating the FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
The ioctl(2) system call can be used to read and write metadata of FAT filesystems that
are not accessible using other system calls. The following op values are available.

Reading and setting file attributes
FAT_IOCTL_GET_ATTRIBUTES(2const)
FAT_IOCTL_SET_ATTRIBUTES(2const)

Reading the volume ID
FAT_IOCTL_GET_VOLUME_ID(2const)

Reading short filenames of a directory
VFAT_IOCTL_READDIR_BOTH(2const)
VFAT_IOCTL_READDIR_SHORT(2const)

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS
ENOTTY

The file descriptor fd does not refer to an object in a FAT filesystem.

STANDARDS
Linux.

SEE ALSO
ioctl(2)

Linux man-pages 6.16 2025-05-17 353

ioctl_fs(2) System Calls Manual ioctl_fs(2)

NAME
ioctl_fs - filesystem operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of op constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
The following op values are available.

Share some of the data of one file with another file
FICLONE(2const)
FICLONERANGE(2const)

FIDEDUPERANGE(2const)

Operations for inode flags
FS_IOC_GETFLAGS(2const)
FS_IOC_SETFLAGS(2const)

Get or set a filesystem label
FS_IOC_GETFSLABEL(2const)
FS_IOC_SETFSLABEL(2const)

Get and/or clear page flags
PAGEMAP_SCAN(2const)

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set to
indicate the error.

STANDARDS
Linux.

SEE ALSO
ioctl(2)

Linux man-pages 6.16 2025-05-17 354

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

NAME
ioctl_fsmap, FS_IOC_GETFSMAP - retrieve the physical layout of the filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fsmap.h> /* Definition of FS_IOC_GETFSMAP,

FM?_OF_*, and *FMR_OWN_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FS_IOC_GETFSMAP, struct fsmap_head * arg);

DESCRIPTION
This ioctl(2) operation retrieves physical extent mappings for a filesystem. This infor-
mation can be used to discover which files are mapped to a physical block, examine free
space, or find known bad blocks, among other things.

The sole argument to this operation should be a pointer to a single struct fsmap_head:

struct fsmap {
__u32 fmr_device; /* Device ID */
__u32 fmr_flags; /* Mapping flags */
__u64 fmr_physical; /* Device offset of segment */
__u64 fmr_owner; /* Owner ID */
__u64 fmr_offset; /* File offset of segment */
__u64 fmr_length; /* Length of segment */
__u64 fmr_reserved[3]; /* Must be zero */

};

struct fsmap_head {
__u32 fmh_iflags; /* Control flags */
__u32 fmh_oflags; /* Output flags */
__u32 fmh_count; /* # of entries in array including input */
__u32 fmh_entries; /* # of entries filled in (output) */
__u64 fmh_reserved[6]; /* Must be zero */

struct fsmap fmh_keys[2]; /* Low and high keys for
the mapping search */

struct fsmap fmh_recs[]; /* Returned records */
};

The two fmh_keys array elements specify the lowest and highest reverse-mapping key
for which the application would like physical mapping information. A reverse mapping
key consists of the tuple (device, block, owner, offset). The owner and offset fields are
part of the key because some filesystems support sharing physical blocks between multi-
ple files and therefore may return multiple mappings for a given physical block.

Filesystem mappings are copied into the fmh_recs array, which immediately follows the
header data.

Linux man-pages 6.16 2025-09-21 355

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

Fields of struct fsmap_head
The fmh_iflags field is a bit mask passed to the kernel to alter the output. No flags are
currently defined, so the caller must set this value to zero.

The fmh_oflags field is a bit mask of flags set by the kernel concerning the returned
mappings. If FMH_OF_DEV_T is set, then the fmr_device field represents a dev_t
structure containing the major and minor numbers of the block device.

The fmh_count field contains the number of elements in the array being passed to the
kernel. If this value is 0, fmh_entries will be set to the number of records that would
have been returned had the array been large enough; no mapping information will be re-
turned.

The fmh_entries field contains the number of elements in the fmh_recs array that con-
tain useful information.

The fmh_reserved fields must be set to zero.

Keys
The two key records in fsmap_head.fmh_keys specify the lowest and highest extent
records in the keyspace that the caller wants returned. A filesystem that can share
blocks between files likely requires the tuple (device, physical, owner, offset, flags) to
uniquely index any filesystem mapping record. Classic non-sharing filesystems might
be able to identify any record with only (device, physical, flags). For example, if the
low key is set to (8:0, 36864, 0, 0, 0), the filesystem will only return records for extents
starting at or above 36 KiB on disk. If the high key is set to (8:0, 1048576, 0, 0, 0), only
records below 1 MiB will be returned. The format of fmr_device in the keys must
match the format of the same field in the output records, as defined below. By conven-
tion, the field fsmap_head.fmh_keys[0] must contain the low key and
fsmap_head.fmh_keys[1] must contain the high key for the operation.

For convenience, if fmr_length is set in the low key, it will be added to fmr_block or
fmr_offset as appropriate. The caller can take advantage of this subtlety to set up subse-
quent calls by copying fsmap_head.fmh_recs[fsmap_head.fmh_entries - 1] into the low
key. The function fsmap_advance (defined in linux/fsmap.h) provides this functionality.

Fields of struct fsmap
The fmr_device field uniquely identifies the underlying storage device. If the
FMH_OF_DEV_T flag is set in the header’s fmh_oflags field, this field contains a
dev_t from which major and minor numbers can be extracted. If the flag is not set, this
field contains a value that must be unique for each unique storage device.

The fmr_physical field contains the disk address of the extent in bytes.

The fmr_owner field contains the owner of the extent. This is an inode number unless
FMR_OF_SPECIAL_OWNER is set in the fmr_flags field, in which case the value is
determined by the filesystem. See the section below about owner values for more de-
tails.

The fmr_offset field contains the logical address in the mapping record in bytes. This
field has no meaning if the FMR_OF_SPECIAL_OWNER or FMR_OF_EX-
TENT_MAP flags are set in fmr_flags.

The fmr_length field contains the length of the extent in bytes.

Linux man-pages 6.16 2025-09-21 356

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

The fmr_flags field is a bit mask of extent state flags. The bits are:

FMR_OF_PREALLOC
The extent is allocated but not yet written.

FMR_OF_ATTR_FORK
This extent contains extended attribute data.

FMR_OF_EXTENT_MAP
This extent contains extent map information for the owner.

FMR_OF_SHARED
Parts of this extent may be shared.

FMR_OF_SPECIAL_OWNER
The fmr_owner field contains a special value instead of an inode number.

FMR_OF_LAST
This is the last record in the data set.

The fmr_reserved field will be set to zero.

Owner values
Generally, the value of the fmr_owner field for non-metadata extents should be an inode
number. However, filesystems are under no obligation to report inode numbers; they
may instead report FMR_OWN_UNKNOWN if the inode number cannot easily be re-
trieved, if the caller lacks sufficient privilege, if the filesystem does not support stable in-
ode numbers, or for any other reason. If a filesystem wishes to condition the reporting
of inode numbers based on process capabilities, it is strongly urged that the
CAP_SYS_ADMIN capability be used for this purpose.

The following special owner values are generic to all filesystems:

FMR_OWN_FREE
Free space.

FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

FMR_OWN_METADATA
This extent is filesystem metadata.

XFS can return the following special owner values:

XFS_FMR_OWN_FREE
Free space.

XFS_FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

XFS_FMR_OWN_FS
Static filesystem metadata which exists at a fixed address. These are the
AG superblock, the AGF, the AGFL, and the AGI headers.

XFS_FMR_OWN_LOG
The filesystem journal.

Linux man-pages 6.16 2025-09-21 357

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

XFS_FMR_OWN_AG
Allocation group metadata, such as the free space btrees and the reverse
mapping btrees.

XFS_FMR_OWN_INOBT
The inode and free inode btrees.

XFS_FMR_OWN_INODES
Inode records.

XFS_FMR_OWN_REFC
Reference count information.

XFS_FMR_OWN_COW
This extent is being used to stage a copy-on-write.

XFS_FMR_OWN_DEFECTIVE:
This extent has been marked defective either by the filesystem or the un-
derlying device.

ext4 can return the following special owner values:

EXT4_FMR_OWN_FREE
Free space.

EXT4_FMR_OWN_UNKNOWN
This extent is in use but its owner is not known or not easily retrieved.

EXT4_FMR_OWN_FS
Static filesystem metadata which exists at a fixed address. This is the su-
perblock and the group descriptors.

EXT4_FMR_OWN_LOG
The filesystem journal.

EXT4_FMR_OWN_INODES
Inode records.

EXT4_FMR_OWN_BLKBM
Block bit map.

EXT4_FMR_OWN_INOBM
Inode bit map.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
The error placed in errno can be one of, but is not limited to, the following:

EBADF
fd is not open for reading.

EBADMSG
The filesystem has detected a checksum error in the metadata.

Linux man-pages 6.16 2025-09-21 358

ioctl_fsmap(2) System Calls Manual ioctl_fsmap(2)

EFAULT
The pointer passed in was not mapped to a valid memory address.

EINVAL
The array is not long enough, the keys do not point to a valid part of the filesys-
tem, the low key points to a higher point in the filesystem’s physical storage ad-
dress space than the high key, or a nonzero value was passed in one of the fields
that must be zero.

ENOMEM
Insufficient memory to process the operation.

EOPNOTSUPP
The filesystem does not support this operation.

EUCLEAN
The filesystem metadata is corrupt and needs repair.

STANDARDS
Linux.

Not all filesystems support it.

HISTORY
Linux 4.12.

EXAMPLES
See io/fsmap.c in the xfsprogs distribution for a sample program.

SEE ALSO
ioctl(2)

Linux man-pages 6.16 2025-09-21 359

ioctl_kd(2) System Calls Manual ioctl_kd(2)

NAME
ioctl_kd - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <linux/kd.h> /* Definition of op constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, void *argp);

DESCRIPTION
The following Linux-specific ioctl(2) operations are supported for console terminals and
virtual consoles.

KDGETLED
Get state of LEDs. argp points to a char. The lower three bits of *argp are set
to the state of the LEDs, as follows:
LED_CAP 0x04 caps lock led
LED_NUM 0x02 num lock led
LED_SCR 0x01 scroll lock led

KDSETLED
Set the LEDs. The LEDs are set to correspond to the lower three bits of the un-
signed long integer in argp. However, if a higher order bit is set, the LEDs re-
vert to normal: displaying the state of the keyboard functions of caps lock, num
lock, and scroll lock.

Before Linux 1.1.54, the LEDs just reflected the state of the corresponding keyboard
flags, and KDGETLED/KDSETLED would also change the keyboard flags. Since
Linux 1.1.54 the LEDs can be made to display arbitrary information, but by default they
display the keyboard flags. The following two ioctls are used to access the keyboard
flags.

KDGKBLED
Get keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp points to
a char which is set to the flag state. The low order three bits (mask 0x7) get the
current flag state, and the low order bits of the next nibble (mask 0x70) get the
default flag state. (Since Linux 1.1.54.)

KDSKBLED
Set keyboard flags CapsLock, NumLock, ScrollLock (not lights). argp is an un-
signed long integer that has the desired flag state. The low order three bits (mask
0x7) have the flag state, and the low order bits of the next nibble (mask 0x70)
have the default flag state. (Since Linux 1.1.54.)

KDGKBTYPE
Get keyboard type. This returns the value KB_101, defined as 0x02.

KDADDIO
Add I/O port as valid. Equivalent to ioperm(arg,1,1).

KDDELIO
Delete I/O port as valid. Equivalent to ioperm(arg,1,0).

Linux man-pages 6.16 2025-10-05 360

ioctl_kd(2) System Calls Manual ioctl_kd(2)

KDENABIO
Enable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+1, 1).

KDDISABIO
Disable I/O to video board. Equivalent to ioperm(0x3b4, 0x3df-0x3b4+1, 0).

KDSETMODE
Set text/graphics mode. argp is an unsigned integer containing one of:
KD_TEXT 0x00
KD_GRAPHICS 0x01

KDGETMODE
Get text/graphics mode. argp points to an int which is set to one of the values
shown above for KDSETMODE.

KDMKTONE
Generate tone of specified length. The lower 16 bits of the unsigned long integer
in argp specify the period in clock cycles, and the upper 16 bits give the duration
in msec. If the duration is zero, the sound is turned off. Control returns immedi-
ately. For example, argp = (125<<16) + 0x637 would specify the beep normally
associated with a ctrl-G. (Thus, since Linux 0.99pl1; broken in Linux
2.1.49-50.)

KIOCSOUND
Start or stop sound generation. The lower 16 bits of argp specify the period in
clock cycles (that is, argp = 1193180/frequency). argp = 0 turns sound off. In
either case, control returns immediately.

GIO_CMAP
Get the current default color map from kernel. argp points to a 48-byte array.
(Since Linux 1.3.3.)

PIO_CMAP
Change the default text-mode color map. argp points to a 48-byte array which
contains, in order, the Red, Green, and Blue values for the 16 available screen
colors: 0 is off, and 255 is full intensity. The default colors are, in order: black,
dark red, dark green, brown, dark blue, dark purple, dark cyan, light grey, dark
grey, bright red, bright green, yellow, bright blue, bright purple, bright cyan, and
white. (Since Linux 1.3.3.)

GIO_FONT
Gets 256-character screen font in expanded form. argp points to an 8192-byte
array. Fails with error code EINVAL if the currently loaded font is a 512-char-
acter font, or if the console is not in text mode.

GIO_FONTX
Gets screen font and associated information. argp points to a struct consolefont-
desc (see PIO_FONTX). On call, the charcount field should be set to the maxi-
mum number of characters that would fit in the buffer pointed to by chardata.
On return, the charcount and charheight are filled with the respective data for
the currently loaded font, and the chardata array contains the font data if the ini-
tial value of charcount indicated enough space was available; otherwise, the

Linux man-pages 6.16 2025-10-05 361

ioctl_kd(2) System Calls Manual ioctl_kd(2)

buffer is untouched and errno is set to ENOMEM. (Since Linux 1.3.1.)

PIO_FONT
Sets 256-character screen font. Load font into the EGA/VGA character genera-
tor. argp points to an 8192-byte map, with 32 bytes per character. Only the first
N of them are used for an 8xN font (0 < N <= 32). This call also invalidates the
Unicode mapping.

PIO_FONTX
Sets screen font and associated rendering information. argp points to a

struct consolefontdesc {
unsigned short charcount; /* characters in font

(256 or 512) */
unsigned short charheight; /* scan lines per

character (1-32) */
char *chardata; /* font data in

expanded form */
};

If necessary, the screen will be appropriately resized, and SIGWINCH sent to
the appropriate processes. This call also invalidates the Unicode mapping.
(Since Linux 1.3.1.)

PIO_FONTRESET
Resets the screen font, size, and Unicode mapping to the bootup defaults. argp
is unused, but should be set to NULL to ensure compatibility with future ver-
sions of Linux. (Since Linux 1.3.28.)

GIO_SCRNMAP
Get screen mapping from kernel. argp points to an area of size E_TABSZ,
which is loaded with the font positions used to display each character. This call
is likely to return useless information if the currently loaded font is more than
256 characters.

GIO_UNISCRNMAP
Get full Unicode screen mapping from kernel. argp points to an area of size
E_TABSZ*sizeof(unsigned short), which is loaded with the Unicodes each char-
acter represent. A special set of Unicodes, starting at U+F000, are used to repre-
sent "direct to font" mappings. (Since Linux 1.3.1.)

PIO_SCRNMAP
Loads the "user definable" (fourth) table in the kernel which maps bytes into
console screen symbols. argp points to an area of size E_TABSZ.

PIO_UNISCRNMAP
Loads the "user definable" (fourth) table in the kernel which maps bytes into
Unicodes, which are then translated into screen symbols according to the cur-
rently loaded Unicode-to-font map. Special Unicodes starting at U+F000 can be
used to map directly to the font symbols. (Since Linux 1.3.1.)

Linux man-pages 6.16 2025-10-05 362

ioctl_kd(2) System Calls Manual ioctl_kd(2)

GIO_UNIMAP
Get Unicode-to-font mapping from kernel. argp points to a

struct unimapdesc {
unsigned short entry_ct;
struct unipair *entries;

};

where entries points to an array of

struct unipair {
unsigned short unicode;
unsigned short fontpos;

};

(Since Linux 1.1.92.)

PIO_UNIMAP
Put unicode-to-font mapping in kernel. argp points to a struct unimapdesc.
(Since Linux 1.1.92)

PIO_UNIMAPCLR
Clear table, possibly advise hash algorithm. argp points to a

struct unimapinit {
unsigned short advised_hashsize; /* 0 if no opinion */
unsigned short advised_hashstep; /* 0 if no opinion */
unsigned short advised_hashlevel; /* 0 if no opinion */

};

(Since Linux 1.1.92.)

KDGKBMODE
Gets current keyboard mode. argp points to a long which is set to one of these:
K_RAW 0x00 /* Raw (scancode) mode */
K_XLATE 0x01 /* Translate keycodes using keymap */
K_MEDIUMRAW 0x02 /* Medium raw (scancode) mode */
K_UNICODE 0x03 /* Unicode mode */
K_OFF 0x04 /* Disabled mode (since Linux 2.6.39) */

KDSKBMODE
Sets current keyboard mode. argp is a long equal to one of the values shown for
KDGKBMODE.

KDGKBMETA
Gets meta key handling mode. argp points to a long which is set to one of these:
K_METABIT 0x03 set high order bit
K_ESCPREFIX 0x04 escape prefix

KDSKBMETA
Sets meta key handling mode. argp is a long equal to one of the values shown
above for KDGKBMETA.

Linux man-pages 6.16 2025-10-05 363

ioctl_kd(2) System Calls Manual ioctl_kd(2)

KDGKBENT
Gets one entry in key translation table (keycode to action code). argp points to a

struct kbentry {
unsigned char kb_table;
unsigned char kb_index;
unsigned short kb_value;

};

with the first two members filled in: kb_table selects the key table (0 <= kb_ta-
ble < MAX_NR_KEYMAPS), and kb_index is the keycode (0 <= kb_index <
NR_KEYS). kb_value is set to the corresponding action code, or K_HOLE if
there is no such key, or K_NOSUCHMAP if kb_table is invalid.

KDSKBENT
Sets one entry in translation table. argp points to a struct kbentry.

KDGKBSENT
Gets one function key string. argp points to a

struct kbsentry {
unsigned char kb_func;
unsigned char kb_string[512];

};

kb_string is set to the (null-terminated) string corresponding to the kb_functh
function key action code.

KDSKBSENT
Sets one function key string entry. argp points to a struct kbsentry.

KDGKBDIACR
Read kernel accent table. argp points to a

struct kbdiacrs {
unsigned int kb_cnt;
struct kbdiacr kbdiacr[256];

};

where kb_cnt is the number of entries in the array, each of which is a

struct kbdiacr {
unsigned char diacr;
unsigned char base;
unsigned char result;

};

KDGETKEYCODE
Read kernel keycode table entry (scan code to keycode). argp points to a

struct kbkeycode {
unsigned int scancode;
unsigned int keycode;

};

Linux man-pages 6.16 2025-10-05 364

ioctl_kd(2) System Calls Manual ioctl_kd(2)

keycode is set to correspond to the given scancode. (89 <= scancode <= 255
only. For 1 <= scancode <= 88, keycode==scancode.) (Since Linux 1.1.63.)

KDSETKEYCODE
Write kernel keycode table entry. argp points to a struct kbkeycode. (Since
Linux 1.1.63.)

KDSIGACCEPT
The calling process indicates its willingness to accept the signal argp when it is
generated by pressing an appropriate key combination. (1 <= argp <= NSIG).
(See spawn_console() in linux/drivers/char/keyboard.c.)

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and errno
is set to indicate the error.

ERRORS
EINVAL

argp is invalid.

STANDARDS
Linux.

SEE ALSO
ioctl(2), ioctl_console(2)

Linux man-pages 6.16 2025-10-05 365

ioctl_nsfs(2) System Calls Manual ioctl_nsfs(2)

NAME
ioctl_nsfs - ioctl() operations for Linux namespaces

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, ...);

DESCRIPTION
Discovering namespace relationships

NS_GET_USERNS(2const)
NS_GET_PARENT(2const)

Discovering the namespace type
NS_GET_NSTYPE(2const)

Discovering the owner of a user namespace
NS_GET_OWNER_UID(2const)

ERRORS
ENOTTY

fd does not refer to a /proc/ pid /ns/ * file.

STANDARDS
Linux.

SEE ALSO
ioctl(2), fstat(2), proc(5), namespaces(7)

Linux man-pages 6.16 2025-05-17 366

ioctl_pipe(2) System Calls Manual ioctl_pipe(2)

NAME
ioctl_pipe - ioctl() operations for general notification mechanism

SYNOPSIS
#include <linux/watch_queue.h> /* Definition of IOC_WATCH_QUEUE_* */
#include <sys/ioctl.h>

int ioctl(int pipefd , IOC_WATCH_QUEUE_SET_SIZE, int size);
int ioctl(int pipefd , IOC_WATCH_QUEUE_SET_FILTER,

struct watch_notification_filter * filter);

DESCRIPTION
The following ioctl(2) operations are provided to set up general notification queue para-
meters. The notification queue is built on the top of a pipe(2) opened with the O_NO-
TIFICATION_PIPE flag.

IOC_WATCH_QUEUE_SET_SIZE (since Linux 5.8)
Preallocates the pipe buffer memory so that it can fit size notification messages.
Currently, size must be between 1 and 512.

IOC_WATCH_QUEUE_SET_FILTER (since Linux 5.8)
Watch queue filter can limit events that are received. Filters are passed in a
struct watch_notification_filter and each filter is described by a struct watch_no-
tification_type_filter structure.

struct watch_notification_filter {
__u32 nr_filters;
__u32 __reserved;
struct watch_notification_type_filter filters[];

};

struct watch_notification_type_filter {
__u32 type;
__u32 info_filter;
__u32 info_mask;
__u32 subtype_filter[8];

};

SEE ALSO
pipe(2), ioctl(2)

Linux man-pages 6.16 2025-09-06 367

ioctl_tty(2) System Calls Manual ioctl_tty(2)

NAME
ioctl_tty - ioctls for terminals and serial lines

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of constants */
#include <sys/ioctl.h>

int ioctl(int fd , int op, ...);

DESCRIPTION
The ioctl(2) call for terminals and serial ports accepts many possible operation argu-
ments. Most require a third argument, of varying type, here called argp or arg.

Use of ioctl() makes for nonportable programs. Use the POSIX interface described in
termios(3) whenever possible.

Get and set terminal attributes
TCGETS(2const)
TCSETS(2const)
TCSETSW(2const)
TCSETSF(2const)

TCGETS(2const)
TCSETS(2const)
TCSETSW(2const)
TCSETSF(2const)

TCGETS(2const)
TCSETS(2const)
TCSETSW(2const)
TCSETSF(2const)

Locking the termios structure
TIOCGLCKTRMIOS(2const)
TIOCSLCKTRMIOS(2const)

Get and set window size
TIOCGWINSZ(2const)
TIOCSWINSZ(2const)

Sending a break
TCSBRK(2const)
TCSBRKP(2const)
TIOCSBRK(2const)
TIOCCBRK(2const)

Software flow control
TCXONC(2const)

Buffer count and flushing

Linux man-pages 6.16 2025-05-17 368

ioctl_tty(2) System Calls Manual ioctl_tty(2)

FIONREAD(2const)
TIOCINQ(2const)
TIOCOUTQ(2const)
TCFLSH(2const)
TIOCSERGETLSR(2const)

Faking input
TIOCSTI(2const)

Redirecting console output
TIOCCONS(2const)

Controlling terminal
TIOCSCTTY(2const)
TIOCNOTTY(2const)

Process group and session ID
TIOCGPGRP(2const)
TIOCSPGRP(2const)
TIOCGSID(2const)

Exclusive mode
TIOCEXCL(2const)
TIOCGEXCL(2const)
TIOCNXCL(2const)

Line discipline
TIOCGETD(2const)
TIOCSETD(2const)

Pseudoterminal ioctls
TIOCPKT(2const)
TIOCGPKT(2const)

TIOCSPTLCK(2const)
TIOCGPTLCK(2const)

TIOCGPTPEER(2const)

Modem control
TIOCMGET(2const)
TIOCMSET(2const)
TIOCMBIC(2const)
TIOCMBIS(2const)

TIOCMIWAIT(2const)

TIOCGICOUNT(2const)

Marking a line as local
TIOCGSOFTCAR(2const)
TIOCSSOFTCAR(2const)

Linux man-pages 6.16 2025-05-17 369

ioctl_tty(2) System Calls Manual ioctl_tty(2)

Linux-specific
For the TIOCLINUX(2const) ioctl, see ioctl_console(2).

Kernel debugging
TIOCTTYGSTRUCT(2const)

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

SEE ALSO
ioctl(2), ldattach(8), ioctl_console(2), termios(3), pty(7)

Linux man-pages 6.16 2025-05-17 370

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

NAME
ioctl_userfaultfd - create a file descriptor for handling page faults in user space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , int op, ...);

DESCRIPTION
Various ioctl(2) operations can be performed on a userfaultfd object (created by a call to
userfaultfd(2)) using calls of the form:

ioctl(fd, op, argp);

In the above, fd is a file descriptor referring to a userfaultfd object, op is one of the op-
erations listed below, and argp is a pointer to a data structure that is specific to op.

The various ioctl(2) operations are described below. The UFFDIO_API, UFF-
DIO_REGISTER, and UFFDIO_UNREGISTER operations are used to configure
userfaultfd behavior. These operations allow the caller to choose what features will be
enabled and what kinds of events will be delivered to the application. The remaining
operations are range operations. These operations enable the calling application to re-
solve page-fault events.

UFFDIO_API(2const)
UFFDIO_REGISTER(2const)
UFFDIO_UNREGISTER(2const)
UFFDIO_COPY(2const)
UFFDIO_MOVE(2const)
UFFDIO_ZEROPAGE(2const)
UFFDIO_WAKE(2const)
UFFDIO_WRITEPROTECT(2const)
UFFDIO_CONTINUE(2const)
UFFDIO_POISON(2const)

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
The following general errors can occur for all of the operations described above:

EFAULT
argp does not point to a valid memory address.

EINVAL
(For all operations except UFFDIO_API.) The userfaultfd object has not yet
been enabled (via the UFFDIO_API operation).

STANDARDS
Linux.

Linux man-pages 6.16 2025-05-17 371

ioctl_userfaultfd(2) System Calls Manual ioctl_userfaultfd(2)

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), mmap(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-05-17 372

ioctl_vt(2) System Calls Manual ioctl_vt(2)

NAME
ioctl_vt - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <linux/vt.h> /* Definition of VT_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op, void *argp);

DESCRIPTION
The following Linux-specific ioctl(2) operations are supported for console terminals and
virtual consoles.

VT_OPENQRY
Returns the first available (non-opened) console. argp points to an int which is
set to the number of the vt (1 <= *argp <= MAX_NR_CONSOLES).

VT_GETMODE
Get mode of active vt. argp points to a

struct vt_mode {
char mode; /* vt mode */
char waitv; /* if set, hang on writes if not active */
short relsig; /* signal to raise on release op */
short acqsig; /* signal to raise on acquisition */
short frsig; /* unused (set to 0) */

};

which is set to the mode of the active vt. mode is set to one of these values:
VT_AUTO auto vt switching
VT_PROCESS process controls switching
VT_ACKACQ acknowledge switch

VT_SETMODE
Set mode of active vt. argp points to a struct vt_mode.

VT_GETSTATE
Get global vt state info. argp points to a

struct vt_stat {
unsigned short v_active; /* active vt */
unsigned short v_signal; /* signal to send */
unsigned short v_state; /* vt bit mask */

};

For each vt in use, the corresponding bit in the v_state member is set. (Linux 1.0
through Linux 1.1.92.)

VT_RELDISP
Release a display.

VT_ACTIVATE
Switch to vt argp (1 <= argp <= MAX_NR_CONSOLES).

Linux man-pages 6.16 2025-06-11 373

ioctl_vt(2) System Calls Manual ioctl_vt(2)

VT_WAITACTIVE
Wait until vt argp has been activated.

VT_DISALLOCATE
Deallocate the memory associated with vt argp. (Since Linux 1.1.54.)

VT_RESIZE
Set the kernel’s idea of screensize. argp points to a

struct vt_sizes {
unsigned short v_rows; /* # rows */
unsigned short v_cols; /* # columns */
unsigned short v_scrollsize; /* no longer used */

};

Note that this does not change the videomode. See resizecons(8)(Since Linux
1.1.54.)

VT_RESIZEX
Set the kernel’s idea of various screen parameters. argp points to a

struct vt_consize {
unsigned short v_rows; /* number of rows */
unsigned short v_cols; /* number of columns */
unsigned short v_vlin; /* number of pixel rows

on screen */
unsigned short v_clin; /* number of pixel rows

per character */
unsigned short v_vcol; /* number of pixel columns

on screen */
unsigned short v_ccol; /* number of pixel columns

per character */
};

Any parameter may be set to zero, indicating "no change", but if multiple para-
meters are set, they must be self-consistent. Note that this does not change the
videomode. See resizecons(8)(Since Linux 1.3.3.)

VT_GETCONSIZECSRPOS
Get console size and cursor position. argp points to a

struct vt_consizecsrpos {
__u16 con_rows; /* number of console rows */
__u16 con_cols; /* number of console columns */
__u16 csr_row; /* current cursor’s row */
__u16 csr_col; /* current cursor’s column */

};

(Since Linux 6.16.)

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and errno
is set to indicate the error.

Linux man-pages 6.16 2025-06-11 374

ioctl_vt(2) System Calls Manual ioctl_vt(2)

ERRORS
EINVAL

argp is invalid.

STANDARDS
Linux.

SEE ALSO
ioctl(2), ioctl_console(2)

Linux man-pages 6.16 2025-06-11 375

ioperm(2) System Calls Manual ioperm(2)

NAME
ioperm - set port input/output permissions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/io.h>

int ioperm(unsigned long from, unsigned long num, int turn_on);

DESCRIPTION
ioperm() sets the port access permission bits for the calling thread for num bits starting
from port address from. If turn_on is nonzero, then permission for the specified bits is
enabled; otherwise it is disabled. If turn_on is nonzero, the calling thread must be privi-
leged (CAP_SYS_RAWIO).

Before Linux 2.6.8, only the first 0x3ff I/O ports could be specified in this manner. For
more ports, the iopl(2) system call had to be used (with a level argument of 3). Since
Linux 2.6.8, 65,536 I/O ports can be specified.

Permissions are inherited by the child created by fork(2) (but see HISTORY). Permis-
sions are preserved across execve(2); this is useful for giving port access permissions to
unprivileged programs.

This call is mostly for the i386 architecture. On many other architectures it does not ex-
ist or will always return an error.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

Invalid values for from or num.

EIO (on PowerPC) This call is not supported.

ENOMEM
Out of memory.

EPERM
The calling thread has insufficient privilege.

VERSIONS
glibc has an ioperm() prototype both in <sys/io.h> and in <sys/perm.h>. Avoid the lat-
ter, it is available on i386 only.

STANDARDS
Linux.

HISTORY
Before Linux 2.4, permissions were not inherited by a child created by fork(2).

NOTES
The /proc/ioports file shows the I/O ports that are currently allocated on the system.

Linux man-pages 6.16 2025-05-17 376

ioperm(2) System Calls Manual ioperm(2)

SEE ALSO
iopl(2), outb(2), capabilities(7)

Linux man-pages 6.16 2025-05-17 377

iopl(2) System Calls Manual iopl(2)

NAME
iopl - change I/O privilege level

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/io.h>

[[deprecated]] int iopl(int level);

DESCRIPTION
iopl() changes the I/O privilege level of the calling thread, as specified by the two least
significant bits in level.

The I/O privilege level for a normal thread is 0. Permissions are inherited from parents
to children.

This call is deprecated, is significantly slower than ioperm(2), and is only provided for
older X servers which require access to all 65536 I/O ports. It is mostly for the i386 ar-
chitecture. On many other architectures it does not exist or will always return an error.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

level is greater than 3.

ENOSYS
This call is unimplemented.

EPERM
The calling thread has insufficient privilege to call iopl(); the
CAP_SYS_RAWIO capability is required to raise the I/O privilege level above
its current value.

VERSIONS
glibc2 has a prototype both in <sys/io.h> and in <sys/perm.h>. Avoid the latter, it is
available on i386 only.

STANDARDS
Linux.

HISTORY
Prior to Linux 5.5 iopl() allowed the thread to disable interrupts while running at a
higher I/O privilege level. This will probably crash the system, and is not recom-
mended.

Prior to Linux 3.7, on some architectures (such as i386), permissions were inherited by
the child produced by fork(2) and were preserved across execve(2). This behavior was
inadvertently changed in Linux 3.7, and won’t be reinstated.

Linux man-pages 6.16 2025-05-17 378

iopl(2) System Calls Manual iopl(2)

SEE ALSO
ioperm(2), outb(2), capabilities(7)

Linux man-pages 6.16 2025-05-17 379

ioprio_set(2) System Calls Manual ioprio_set(2)

NAME
ioprio_get, ioprio_set - get/set I/O scheduling class and priority

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/ioprio.h> /* Definition of IOPRIO_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_ioprio_get, int which, int who);
int syscall(SYS_ioprio_set, int which, int who, int ioprio);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The ioprio_get() and ioprio_set() system calls get and set the I/O scheduling class and
priority of one or more threads.

The which and who arguments identify the thread(s) on which the system calls operate.
The which argument determines how who is interpreted, and has one of the following
values:

IOPRIO_WHO_PROCESS
who is a process ID or thread ID identifying a single process or thread. If who is
0, then operate on the calling thread.

IOPRIO_WHO_PGRP
who is a process group ID identifying all the members of a process group. If
who is 0, then operate on the process group of which the caller is a member.

IOPRIO_WHO_USER
who is a user ID identifying all of the processes that have a matching real UID.

If which is specified as IOPRIO_WHO_PGRP or IOPRIO_WHO_USER when call-
ing ioprio_get(), and more than one process matches who, then the returned priority will
be the highest one found among all of the matching processes. One priority is said to be
higher than another one if it belongs to a higher priority class (IOPRIO_CLASS_RT is
the highest priority class; IOPRIO_CLASS_IDLE is the lowest) or if it belongs to the
same priority class as the other process but has a higher priority level (a lower priority
number means a higher priority level).

The ioprio argument given to ioprio_set() is a bit mask that specifies both the schedul-
ing class and the priority to be assigned to the target process(es). The following macros
are used for assembling and dissecting ioprio values:

IOPRIO_PRIO_VALUE(class, data)
Given a scheduling class and priority (data), this macro combines the two values
to produce an ioprio value, which is returned as the result of the macro.

IOPRIO_PRIO_CLASS(mask)
Given mask (an ioprio value), this macro returns its I/O class component, that is,
one of the values IOPRIO_CLASS_RT, IOPRIO_CLASS_BE, or

Linux man-pages 6.16 2025-09-21 380

ioprio_set(2) System Calls Manual ioprio_set(2)

IOPRIO_CLASS_IDLE.

IOPRIO_PRIO_DATA(mask)
Given mask (an ioprio value), this macro returns its priority (data) component.

See the NOTES section for more information on scheduling classes and priorities, as
well as the meaning of specifying ioprio as 0.

I/O priorities are supported for reads and for synchronous (O_DIRECT, O_SYNC)
writes. I/O priorities are not supported for asynchronous writes because they are issued
outside the context of the program dirtying the memory, and thus program-specific pri-
orities do not apply.

RETURN VALUE
On success, ioprio_get() returns the ioprio value of the process with highest I/O priority
of any of the processes that match the criteria specified in which and who. On error, -1
is returned, and errno is set to indicate the error.

On success, ioprio_set() returns 0. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EINVAL

Invalid value for which or ioprio. Refer to the NOTES section for available
scheduler classes and priority levels for ioprio.

EPERM
The calling process does not have the privilege needed to assign this ioprio to the
specified process(es). See the NOTES section for more information on required
privileges for ioprio_set().

ESRCH
No process(es) could be found that matched the specification in which and who.

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

NOTES
Two or more processes or threads can share an I/O context. This will be the case when
clone(2) was called with the CLONE_IO flag. However, by default, the distinct threads
of a process will not share the same I/O context. This means that if you want to change
the I/O priority of all threads in a process, you may need to call ioprio_set() on each of
the threads. The thread ID that you would need for this operation is the one that is re-
turned by gettid(2) or clone(2).

These system calls have an effect only when used in conjunction with an I/O scheduler
that supports I/O priorities. As at kernel 2.6.17 the only such scheduler is the Com-
pletely Fair Queuing (CFQ) I/O scheduler.

If no I/O scheduler has been set for a thread, then by default the I/O priority will follow
the CPU nice value (setpriority(2)). Before Linux 2.6.24, once an I/O priority had been
set using ioprio_set(), there was no way to reset the I/O scheduling behavior to the

Linux man-pages 6.16 2025-09-21 381

ioprio_set(2) System Calls Manual ioprio_set(2)

default. Since Linux 2.6.24, specifying ioprio as 0 can be used to reset to the default I/O
scheduling behavior.

Selecting an I/O scheduler
I/O schedulers are selected on a per-device basis via the special file /sys/block/ de-
vice /queue/scheduler.

One can view the current I/O scheduler via the /sys filesystem. For example, the follow-
ing command displays a list of all schedulers currently loaded in the kernel:

$ cat /sys/block/sda/queue/scheduler
noop anticipatory deadline [cfq]

The scheduler surrounded by brackets is the one actually in use for the device (sda in
the example). Setting another scheduler is done by writing the name of the new sched-
uler to this file. For example, the following command will set the scheduler for the sda
device to cfq:

$ su
Password:
echo cfq > /sys/block/sda/queue/scheduler

The Completely Fair Queuing (CFQ) I/O scheduler
Since version 3 (also known as CFQ Time Sliced), CFQ implements I/O nice levels sim-
ilar to those of CPU scheduling. These nice levels are grouped into three scheduling
classes, each one containing one or more priority levels:

IOPRIO_CLASS_RT (1)
This is the real-time I/O class. This scheduling class is given higher priority than
any other class: processes from this class are given first access to the disk every
time. Thus, this I/O class needs to be used with some care: one I/O real-time
process can starve the entire system. Within the real-time class, there are 8 lev-
els of class data (priority) that determine exactly how much time this process
needs the disk for on each service. The highest real-time priority level is 0; the
lowest is 7. In the future, this might change to be more directly mappable to per-
formance, by passing in a desired data rate instead.

IOPRIO_CLASS_BE (2)
This is the best-effort scheduling class, which is the default for any process that
hasn’t set a specific I/O priority. The class data (priority) determines how much
I/O bandwidth the process will get. Best-effort priority levels are analogous to
CPU nice values (see getpriority(2)). The priority level determines a priority rel-
ative to other processes in the best-effort scheduling class. Priority levels range
from 0 (highest) to 7 (lowest).

IOPRIO_CLASS_IDLE (3)
This is the idle scheduling class. Processes running at this level get I/O time
only when no one else needs the disk. The idle class has no class data. Atten-
tion is required when assigning this priority class to a process, since it may be-
come starved if higher priority processes are constantly accessing the disk.

Refer to the kernel source file Documentation/block/ioprio.txt for more information on
the CFQ I/O Scheduler and an example program.

Linux man-pages 6.16 2025-09-21 382

ioprio_set(2) System Calls Manual ioprio_set(2)

Required permissions to set I/O priorities
Permission to change a process’s priority is granted or denied based on two criteria:

Process ownership
An unprivileged process may set the I/O priority only for a process whose real
UID matches the real or effective UID of the calling process. A process which
has the CAP_SYS_NICE capability can change the priority of any process.

What is the desired priority
Attempts to set very high priorities (IOPRIO_CLASS_RT) require the
CAP_SYS_ADMIN capability. Up to Linux 2.6.24 also required
CAP_SYS_ADMIN to set a very low priority (IOPRIO_CLASS_IDLE), but
since Linux 2.6.25, this is no longer required.

A call to ioprio_set() must follow both rules, or the call will fail with the error EPERM.

BUGS
glibc does not yet provide a suitable header file defining the function prototypes and
macros described on this page. Suitable definitions can be found in linux/ioprio.h.

SEE ALSO
ionice(1), getpriority(2), open(2), capabilities(7), cgroups(7)

Documentation/block/ioprio.txt in the Linux kernel source tree

Linux man-pages 6.16 2025-09-21 383

ipc(2) System Calls Manual ipc(2)

NAME
ipc - System V IPC system calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/ipc.h> /* Definition of needed constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_ipc, unsigned int call, int first,
unsigned long second , unsigned long third , void *ptr,
long fifth);

Note: glibc provides no wrapper for ipc(), necessitating the use of syscall(2).

DESCRIPTION
ipc() is a common kernel entry point for the System V IPC calls for messages, sema-
phores, and shared memory. call determines which IPC function to invoke; the other ar-
guments are passed through to the appropriate call.

User-space programs should call the appropriate functions by their usual names. Only
standard library implementors and kernel hackers need to know about ipc().

VERSIONS
On some architectures —for example x86-64 and ARM— there is no ipc() system call;
instead, msgctl(2), semctl(2), shmctl(2), and so on really are implemented as separate
system calls.

STANDARDS
Linux.

SEE ALSO
msgctl(2), msgget(2), msgrcv(2), msgsnd(2), semctl(2), semget(2), semop(2), semtime-
dop(2), shmat(2), shmctl(2), shmdt(2), shmget(2), sysvipc(7)

Linux man-pages 6.16 2025-09-21 384

kcmp(2) System Calls Manual kcmp(2)

NAME
kcmp - compare two processes to determine if they share a kernel resource

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/kcmp.h> /* Definition of KCMP_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_kcmp, pid_t pid1, pid_t pid2, int type,
unsigned long idx1, unsigned long idx2);

Note: glibc provides no wrapper for kcmp(), necessitating the use of syscall(2).

DESCRIPTION
The kcmp() system call can be used to check whether the two processes identified by
pid1 and pid2 share a kernel resource such as virtual memory, file descriptors, and so
on.

Permission to employ kcmp() is governed by ptrace access mode
PTRACE_MODE_READ_REALCREDS checks against both pid1 and pid2; see
ptrace(2).

The type argument specifies which resource is to be compared in the two processes. It
has one of the following values:

KCMP_FILE
Check whether a file descriptor idx1 in the process pid1 refers to the same open
file description (see open(2)) as file descriptor idx2 in the process pid2. The ex-
istence of two file descriptors that refer to the same open file description can oc-
cur as a result of dup(2) (and similar) fork(2), or passing file descriptors via a do-
main socket (see unix(7)).

KCMP_FILES
Check whether the processes share the same set of open file descriptors. The ar-
guments idx1 and idx2 are ignored. See the discussion of the CLONE_FILES
flag in clone(2).

KCMP_FS
Check whether the processes share the same filesystem information (i.e., file
mode creation mask, working directory, and filesystem root). The arguments
idx1 and idx2 are ignored. See the discussion of the CLONE_FS flag in
clone(2).

KCMP_IO
Check whether the processes share I/O context. The arguments idx1 and idx2 are
ignored. See the discussion of the CLONE_IO flag in clone(2).

KCMP_SIGHAND
Check whether the processes share the same table of signal dispositions. The ar-
guments idx1 and idx2 are ignored. See the discussion of the CLONE_SIG-
HAND flag in clone(2).

Linux man-pages 6.16 2025-09-21 385

kcmp(2) System Calls Manual kcmp(2)

KCMP_SYSVSEM
Check whether the processes share the same list of System V semaphore undo
operations. The arguments idx1 and idx2 are ignored. See the discussion of the
CLONE_SYSVSEM flag in clone(2).

KCMP_VM
Check whether the processes share the same address space. The arguments idx1
and idx2 are ignored. See the discussion of the CLONE_VM flag in clone(2).

KCMP_EPOLL_TFD (since Linux 4.13)
Check whether the file descriptor idx1 of the process pid1 is present in the
epoll(7) instance described by idx2 of the process pid2. The argument idx2 is a
pointer to a structure where the target file is described. This structure has the
form:

struct kcmp_epoll_slot {
__u32 efd;
__u32 tfd;
__u64 toff;

};

Within this structure, efd is an epoll file descriptor returned from epoll_create(2), tfd is
a target file descriptor number, and toff is a target file offset counted from zero. Several
different targets may be registered with the same file descriptor number and setting a
specific offset helps to investigate each of them.

Note the kcmp() is not protected against false positives which may occur if the
processes are currently running. One should stop the processes by sending SIGSTOP
(see signal(7)) prior to inspection with this system call to obtain meaningful results.

RETURN VALUE
The return value of a successful call to kcmp() is simply the result of arithmetic com-
parison of kernel pointers (when the kernel compares resources, it uses their memory
addresses).

The easiest way to explain is to consider an example. Suppose that v1 and v2 are the ad-
dresses of appropriate resources, then the return value is one of the following:

0 v1 is equal to v2; in other words, the two processes share the resource.

1 v1 is less than v2.

2 v1 is greater than v2.

3 v1 is not equal to v2, but ordering information is unavailable.

On error, -1 is returned, and errno is set to indicate the error.

kcmp() was designed to return values suitable for sorting. This is particularly handy if
one needs to compare a large number of file descriptors.

ERRORS
EBADF

type is KCMP_FILE and fd1 or fd2 is not an open file descriptor.

Linux man-pages 6.16 2025-09-21 386

kcmp(2) System Calls Manual kcmp(2)

EFAULT
The epoll slot addressed by idx2 is outside of the user’s address space.

EINVAL
type is invalid.

ENOENT
The target file is not present in epoll(7) instance.

EPERM
Insufficient permission to inspect process resources. The CAP_SYS_PTRACE
capability is required to inspect processes that you do not own. Other ptrace lim-
itations may also apply, such as CONFIG_SECURITY_YAMA, which, when
/proc/sys/kernel/yama/ptrace_scope is 2, limits kcmp() to child processes; see
ptrace(2).

ESRCH
Process pid1 or pid2 does not exist.

STANDARDS
Linux.

HISTORY
Linux 3.5.

Before Linux 5.12, this system call is available only if the kernel is configured with
CONFIG_CHECKPOINT_RESTORE, since the original purpose of the system call
was for the checkpoint/restore in user space (CRIU) feature. (The alternative to this sys-
tem call would have been to expose suitable process information via the proc(5) filesys-
tem; this was deemed to be unsuitable for security reasons.) Since Linux 5.12, this sys-
tem call is also available if the kernel is configured with CONFIG_KCMP.

NOTES
See clone(2) for some background information on the shared resources referred to on
this page.

EXAMPLES
The program below uses kcmp() to test whether pairs of file descriptors refer to the
same open file description. The program tests different cases for the file descriptor
pairs, as described in the program output. An example run of the program is as follows:

$./a.out;
Parent PID is 1144
Parent opened file on FD 3

PID of child of fork() is 1145
Compare duplicate FDs from different processes:

kcmp(1145, 1144, KCMP_FILE, 3, 3) ==> same
Child opened file on FD 4

Compare FDs from distinct open()s in same process:
kcmp(1145, 1145, KCMP_FILE, 3, 4) ==> different

Child duplicated FD 3 to create FD 5
Compare duplicated FDs in same process:

Linux man-pages 6.16 2025-09-21 387

kcmp(2) System Calls Manual kcmp(2)

kcmp(1145, 1145, KCMP_FILE, 3, 5) ==> same

Program source

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <linux/kcmp.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

static int
kcmp(pid_t pid1, pid_t pid2, int type,

unsigned long idx1, unsigned long idx2)
{

return syscall(SYS_kcmp, pid1, pid2, type, idx1, idx2);
}

static void
test_kcmp(char *msg, pid_t pid1, pid_t pid2, int fd_a, int fd_b)
{

printf("\t%s\n", msg);
printf("\t\tkcmp(%jd, %jd, KCMP_FILE, %d, %d) ==> %s\n",

(intmax_t) pid1, (intmax_t) pid2, fd_a, fd_b,
(kcmp(pid1, pid2, KCMP_FILE, fd_a, fd_b) == 0) ?

"same" : "different");
}

int
main(void)
{

int fd1, fd2, fd3;
static const char pathname[] = "/tmp/kcmp.test";

fd1 = open(pathname, O_CREAT | O_RDWR, 0600);
if (fd1 == -1)

err(EXIT_FAILURE, "open");

printf("Parent PID is %jd\n", (intmax_t) getpid());
printf("Parent opened file on FD %d\n\n", fd1);

switch (fork()) {
case -1:

Linux man-pages 6.16 2025-09-21 388

kcmp(2) System Calls Manual kcmp(2)

err(EXIT_FAILURE, "fork");

case 0:
printf("PID of child of fork() is %jd\n", (intmax_t) getpid());

test_kcmp("Compare duplicate FDs from different processes:",
getpid(), getppid(), fd1, fd1);

fd2 = open(pathname, O_CREAT | O_RDWR, 0600);
if (fd2 == -1)

err(EXIT_FAILURE, "open");
printf("Child opened file on FD %d\n", fd2);

test_kcmp("Compare FDs from distinct open()s in same process:",
getpid(), getpid(), fd1, fd2);

fd3 = dup(fd1);
if (fd3 == -1)

err(EXIT_FAILURE, "dup");
printf("Child duplicated FD %d to create FD %d\n", fd1, fd3);

test_kcmp("Compare duplicated FDs in same process:",
getpid(), getpid(), fd1, fd3);

break;

default:
wait(NULL);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
clone(2), unshare(2)

Linux man-pages 6.16 2025-09-21 389

kexec_load(2) System Calls Manual kexec_load(2)

NAME
kexec_load, kexec_file_load - load a new kernel for later execution

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/kexec.h> /* Definition of KEXEC_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_kexec_load, unsigned long entry,
unsigned long nr_segments,
struct kexec_segment segments[nr_segments],
unsigned long flags);

long syscall(SYS_kexec_file_load, int kernel_fd , int initrd_fd ,
unsigned long cmdline_len, const char cmdline[cmdline_len],
unsigned long flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The kexec_load() system call loads a new kernel that can be executed later by reboot(2).

The flags argument is a bit mask that controls the operation of the call. The following
values can be specified in flags:

KEXEC_ON_CRASH (since Linux 2.6.13)
Execute the new kernel automatically on a system crash. This "crash kernel" is
loaded into an area of reserved memory that is determined at boot time using the
crashkernel kernel command-line parameter. The location of this reserved mem-
ory is exported to user space via the /proc/iomem file, in an entry labeled "Crash
kernel". A user-space application can parse this file and prepare a list of seg-
ments (see below) that specify this reserved memory as destination. If this flag
is specified, the kernel checks that the target segments specified in segments fall
within the reserved region.

KEXEC_PRESERVE_CONTEXT (since Linux 2.6.27)
Preserve the system hardware and software states before executing the new ker-
nel. This could be used for system suspend. This flag is available only if the
kernel was configured with CONFIG_KEXEC_JUMP, and is effective only if
nr_segments is greater than 0.

The high-order bits (corresponding to the mask 0xffff0000) of flags contain the archi-
tecture of the to-be-executed kernel. Specify (OR) the constant KEXEC_ARCH_DE-
FAULT to use the current architecture, or one of the following architecture constants
KEXEC_ARCH_386, KEXEC_ARCH_68K, KEXEC_ARCH_X86_64,
KEXEC_ARCH_PPC, KEXEC_ARCH_PPC64, KEXEC_ARCH_IA_64,
KEXEC_ARCH_ARM, KEXEC_ARCH_S390, KEXEC_ARCH_SH,
KEXEC_ARCH_MIPS, and KEXEC_ARCH_MIPS_LE. The architecture must be
executable on the CPU of the system.

Linux man-pages 6.16 2025-06-05 390

kexec_load(2) System Calls Manual kexec_load(2)

The entry argument is the physical entry address in the kernel image. The nr_segments
argument is the number of segments pointed to by the segments pointer; the kernel im-
poses an (arbitrary) limit of 16 on the number of segments. The segments argument is
an array of kexec_segment structures which define the kernel layout:

struct kexec_segment {
void *buf; /* Buffer in user space */
size_t bufsz; /* Buffer length in user space */
void *mem; /* Physical address of kernel */
size_t memsz; /* Physical address length */

};

The kernel image defined by segments is copied from the calling process into the kernel
either in regular memory or in reserved memory (if KEXEC_ON_CRASH is set). The
kernel first performs various sanity checks on the information passed in segments. If
these checks pass, the kernel copies the segment data to kernel memory. Each segment
specified in segments is copied as follows:

• buf and bufsz identify a memory region in the caller’s virtual address space that is
the source of the copy. The value in bufsz may not exceed the value in the memsz
field.

• mem and memsz specify a physical address range that is the target of the copy. The
values specified in both fields must be multiples of the system page size.

• bufsz bytes are copied from the source buffer to the target kernel buffer. If bufsz is
less than memsz, then the excess bytes in the kernel buffer are zeroed out.

In case of a normal kexec (i.e., the KEXEC_ON_CRASH flag is not set), the segment
data is loaded in any available memory and is moved to the final destination at kexec re-
boot time (e.g., when the kexec(8) command is executed with the -e option).

In case of kexec on panic (i.e., the KEXEC_ON_CRASH flag is set), the segment data
is loaded to reserved memory at the time of the call, and, after a crash, the kexec mecha-
nism simply passes control to that kernel.

The kexec_load() system call is available only if the kernel was configured with CON-
FIG_KEXEC.

kexec_file_load()
The kexec_file_load() system call is similar to kexec_load(), but it takes a different set
of arguments. It reads the kernel to be loaded from the file referred to by the file de-
scriptor kernel_fd , and the initrd (initial RAM disk) to be loaded from file referred to by
the file descriptor initrd_fd . The cmdline argument is a pointer to a buffer containing
the command line for the new kernel. The cmdline_len argument specifies size of the
buffer. The last byte in the buffer must be a null byte ('\0').

The flags argument is a bit mask which modifies the behavior of the call. The following
values can be specified in flags:

KEXEC_FILE_UNLOAD
Unload the currently loaded kernel.

Linux man-pages 6.16 2025-06-05 391

kexec_load(2) System Calls Manual kexec_load(2)

KEXEC_FILE_ON_CRASH
Load the new kernel in the memory region reserved for the crash kernel (as for
KEXEC_ON_CRASH). This kernel is booted if the currently running kernel
crashes.

KEXEC_FILE_NO_INITRAMFS
Loading initrd/initramfs is optional. Specify this flag if no initramfs is being
loaded. If this flag is set, the value passed in initrd_fd is ignored.

The kexec_file_load() system call was added to provide support for systems where
"kexec" loading should be restricted to only kernels that are signed. This system call is
available only if the kernel was configured with CONFIG_KEXEC_FILE.

RETURN VALUE
On success, these system calls returns 0. On error, -1 is returned and errno is set to in-
dicate the error.

ERRORS
EADDRNOTAVAIL

The KEXEC_ON_CRASH flags was specified, but the region specified by the
mem and memsz fields of one of the segments entries lies outside the range of
memory reserved for the crash kernel.

EADDRNOTAVAIL
The value in a mem or memsz field in one of the segments entries is not a multi-
ple of the system page size.

EBADF
kernel_fd or initrd_fd is not a valid file descriptor.

EBUSY
Another crash kernel is already being loaded or a crash kernel is already in use.

EINVAL
flags is invalid.

EINVAL
The value of a bufsz field in one of the segments entries exceeds the value in the
corresponding memsz field.

EINVAL
nr_segments exceeds KEXEC_SEGMENT_MAX (16).

EINVAL
Two or more of the kernel target buffers overlap.

EINVAL
The value in cmdline[cmdline_len-1] is not '\0'.

EINVAL
The file referred to by kernel_fd or initrd_fd is empty (length zero).

ENOEXEC
kernel_fd does not refer to an open file, or the kernel can’t load this file. Cur-
rently, the file must be a bzImage and contain an x86 kernel that is loadable

Linux man-pages 6.16 2025-06-05 392

kexec_load(2) System Calls Manual kexec_load(2)

above 4 GiB in memory (see the kernel source file Documentation/x86/boot.txt).

ENOMEM
Could not allocate memory.

EPERM
The caller does not have the CAP_SYS_BOOT capability.

STANDARDS
Linux.

HISTORY
kexec_load()

Linux 2.6.13.

kexec_file_load()
Linux 3.17.

SEE ALSO
reboot(2), syscall(2), kexec(8)

The kernel source files Documentation/kdump/kdump.txt and Documentation/ad-
min-guide/kernel-parameters.txt

Linux man-pages 6.16 2025-06-05 393

keyctl(2) System Calls Manual keyctl(2)

NAME
keyctl - manipulate the kernel’s key management facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, int op, ...);

DESCRIPTION
keyctl() allows user-space programs to perform key manipulation.

The operation performed by keyctl() is determined by the value of the op argument.
Each of these operations is wrapped by the libkeyutils library (provided by the keyutils
package) into individual functions (see keyctl(3)) to permit the compiler to check types.

The permitted values for op are:

KEYCTL_GET_KEYRING_ID(2const)
KEYCTL_JOIN_SESSION_KEYRING(2const)
KEYCTL_UPDATE(2const)
KEYCTL_REVOKE(2const)
KEYCTL_CHOWN(2const)
KEYCTL_SETPERM(2const)
KEYCTL_DESCRIBE(2const)
KEYCTL_CLEAR(2const)
KEYCTL_LINK(2const)
KEYCTL_UNLINK(2const)
KEYCTL_SEARCH(2const)
KEYCTL_READ(2const)
KEYCTL_INSTANTIATE(2const)
KEYCTL_INSTANTIATE_IOV(2const)
KEYCTL_NEGATE(2const)
KEYCTL_REJECT(2const)
KEYCTL_SET_REQKEY_KEYRING(2const)
KEYCTL_SET_TIMEOUT(2const)
KEYCTL_ASSUME_AUTHORITY(2const)
KEYCTL_GET_SECURITY(2const)
KEYCTL_SESSION_TO_PARENT(2const)
KEYCTL_INVALIDATE(2const)
KEYCTL_GET_PERSISTENT(2const)
KEYCTL_DH_COMPUTE(2const)
KEYCTL_RESTRICT_KEYRING(2const)

RETURN VALUE
For a successful call, the return value depends on the operation.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-09-21 394

keyctl(2) System Calls Manual keyctl(2)

ERRORS
EACCES

The requested operation wasn’t permitted.

EDQUOT
The key quota for the caller’s user would be exceeded by creating a key or link-
ing it to the keyring.

EINVAL
size of the string (including the terminating null byte) specified in arg3 (the key
type) or arg4 (the key description) exceeded the limit (32 bytes and 4096 bytes
respectively).

EKEYEXPIRED
An expired key was found or specified.

EKEYREJECTED
A rejected key was found or specified.

EKEYREVOKED
A revoked key was found or specified.

ENOKEY
No matching key was found or an invalid key was specified.

ENOMEM
One of kernel memory allocation routines failed during the execution of the
syscall.

ENOTDIR
A key of keyring type was expected but the ID of a key with a different type was
provided.

VERSIONS
A wrapper is provided in the libkeyutils library. (The accompanying package provides
the <keyutils.h> header file.) However, rather than using this system call directly, you
probably want to use the various library functions mentioned in the descriptions of indi-
vidual operations above.

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

EXAMPLES
The program below provide subset of the functionality of the request-key(8) program
provided by the keyutils package. For informational purposes, the program records vari-
ous information in a log file.

As described in request_key(2), the request-key(8) program is invoked with command-
line arguments that describe a key that is to be instantiated. The example program
fetches and logs these arguments. The program assumes authority to instantiate the re-
quested key, and then instantiates that key.

Linux man-pages 6.16 2025-09-21 395

keyctl(2) System Calls Manual keyctl(2)

The following shell session demonstrates the use of this program. In the session, we
compile the program and then use it to temporarily replace the standard request-key(8)
program. (Note that temporarily disabling the standard request-key(8) program may not
be safe on some systems.) While our example program is installed, we use the example
program shown in request_key(2) to request a key.

$ cc -o key_instantiate key_instantiate.c -lkeyutils;
$ sudo mv /sbin/request-key /sbin/request-key.backup;
$ sudo cp key_instantiate /sbin/request-key;
$./t_request_key user mykey somepayloaddata;
Key ID is 20d035bf
$ sudo mv /sbin/request-key.backup /sbin/request-key;

Looking at the log file created by this program, we can see the command-line arguments
supplied to our example program:

$ cat /tmp/key_instantiate.log;
Time: Mon Nov 7 13:06:47 2016

Command line arguments:
argv[0]: /sbin/request-key
operation: create
key_to_instantiate: 20d035bf
UID: 1000
GID: 1000
thread_keyring: 0
process_keyring: 0
session_keyring: 256e6a6

Key description: user;1000;1000;3f010000;mykey
Auth key payload: somepayloaddata
Destination keyring: 256e6a6
Auth key description: .request_key_auth;1000;1000;0b010000;20d035bf

The last few lines of the above output show that the example program was able to fetch:

• the description of the key to be instantiated, which included the name of the key
(mykey);

• the payload of the authorization key, which consisted of the data (somepayloaddata)
passed to request_key(2);

• the destination keyring that was specified in the call to request_key(2); and

• the description of the authorization key, where we can see that the name of the au-
thorization key matches the ID of the key that is to be instantiated (20d035bf).

The example program in request_key(2) specified the destination keyring as
KEY_SPEC_SESSION_KEYRING. By examining the contents of /proc/keys, we can
see that this was translated to the ID of the destination keyring (0256e6a6) shown in the
log output above; we can also see the newly created key with the name mykey and ID
20d035bf .

Linux man-pages 6.16 2025-09-21 396

keyctl(2) System Calls Manual keyctl(2)

$ cat /proc/keys | egrep 'mykey|256e6a6';
0256e6a6 I--Q--- 194 perm 3f030000 1000 1000 keyring _ses: 3
20d035bf I--Q--- 1 perm 3f010000 1000 1000 user mykey: 16

Program source

/* key_instantiate.c */

#include <errno.h>
#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <time.h>

#ifndef KEY_SPEC_REQUESTOR_KEYRING
#define KEY_SPEC_REQUESTOR_KEYRING (-8)
#endif

int
main(int argc, char *argv[])
{

int akp_size; /* Size of auth_key_payload */
int auth_key;
char dbuf[256];
char auth_key_payload[256];
char *operation;
FILE *fp;
gid_t gid;
uid_t uid;
time_t t;
key_serial_t key_to_instantiate, dest_keyring;
key_serial_t thread_keyring, process_keyring, session_keyring;

if (argc != 8) {
fprintf(stderr, "Usage: %s op key uid gid thread_keyring "

"process_keyring session_keyring\n", argv[0]);
exit(EXIT_FAILURE);

}

fp = fopen("/tmp/key_instantiate.log", "w");
if (fp == NULL)

exit(EXIT_FAILURE);

setbuf(fp, NULL);

Linux man-pages 6.16 2025-09-21 397

keyctl(2) System Calls Manual keyctl(2)

t = time(NULL);
fprintf(fp, "Time: %s\n", ctime(&t));

/*
* The kernel passes a fixed set of arguments to the program
* that it execs; fetch them.
*/

operation = argv[1];
key_to_instantiate = atoi(argv[2]);
uid = atoi(argv[3]);
gid = atoi(argv[4]);
thread_keyring = atoi(argv[5]);
process_keyring = atoi(argv[6]);
session_keyring = atoi(argv[7]);

fprintf(fp, "Command line arguments:\n");
fprintf(fp, " argv[0]: %s\n", argv[0]);
fprintf(fp, " operation: %s\n", operation);
fprintf(fp, " key_to_instantiate: %jx\n",

(uintmax_t) key_to_instantiate);
fprintf(fp, " UID: %jd\n", (intmax_t) uid);
fprintf(fp, " GID: %jd\n", (intmax_t) gid);
fprintf(fp, " thread_keyring: %jx\n",

(uintmax_t) thread_keyring);
fprintf(fp, " process_keyring: %jx\n",

(uintmax_t) process_keyring);
fprintf(fp, " session_keyring: %jx\n",

(uintmax_t) session_keyring);
fprintf(fp, "\n");

/*
* Assume the authority to instantiate the key named in argv[2].
*/

if (keyctl(KEYCTL_ASSUME_AUTHORITY, key_to_instantiate) == -1) {
fprintf(fp, "KEYCTL_ASSUME_AUTHORITY failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

/*
* Fetch the description of the key that is to be instantiated.
*/

if (keyctl(KEYCTL_DESCRIBE, key_to_instantiate,
dbuf, sizeof(dbuf)) == -1) {

fprintf(fp, "KEYCTL_DESCRIBE failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-09-21 398

keyctl(2) System Calls Manual keyctl(2)

fprintf(fp, "Key description: %s\n", dbuf);

/*
* Fetch the payload of the authorization key, which is
* actually the callout data given to request_key().
*/

akp_size = keyctl(KEYCTL_READ, KEY_SPEC_REQKEY_AUTH_KEY,
auth_key_payload, sizeof(auth_key_payload));

if (akp_size == -1) {
fprintf(fp, "KEYCTL_READ failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);

}

auth_key_payload[akp_size] = '\0';
fprintf(fp, "Auth key payload: %s\n", auth_key_payload);

/*
* For interest, get the ID of the authorization key and
* display it.
*/

auth_key = keyctl(KEYCTL_GET_KEYRING_ID,
KEY_SPEC_REQKEY_AUTH_KEY);

if (auth_key == -1) {
fprintf(fp, "KEYCTL_GET_KEYRING_ID failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

fprintf(fp, "Auth key ID: %jx\n", (uintmax_t) auth_key);

/*
* Fetch key ID for the request_key(2) destination keyring.
*/

dest_keyring = keyctl(KEYCTL_GET_KEYRING_ID,
KEY_SPEC_REQUESTOR_KEYRING);

if (dest_keyring == -1) {
fprintf(fp, "KEYCTL_GET_KEYRING_ID failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

fprintf(fp, "Destination keyring: %jx\n", (uintmax_t) dest_keyring);

/*
* Fetch the description of the authorization key. This
* allows us to see the key type, UID, GID, permissions,

Linux man-pages 6.16 2025-09-21 399

keyctl(2) System Calls Manual keyctl(2)

* and description (name) of the key. Among other things,
* we will see that the name of the key is a hexadecimal
* string representing the ID of the key to be instantiated.
*/

if (keyctl(KEYCTL_DESCRIBE, KEY_SPEC_REQKEY_AUTH_KEY,
dbuf, sizeof(dbuf)) == -1)

{
fprintf(fp, "KEYCTL_DESCRIBE failed: %s\n", strerror(errno));
exit(EXIT_FAILURE);

}

fprintf(fp, "Auth key description: %s\n", dbuf);

/*
* Instantiate the key using the callout data that was supplied
* in the payload of the authorization key.
*/

if (keyctl(KEYCTL_INSTANTIATE, key_to_instantiate,
auth_key_payload, akp_size + 1, dest_keyring) == -1)

{
fprintf(fp, "KEYCTL_INSTANTIATE failed: %s\n",

strerror(errno));
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
keyctl(1), add_key(2), request_key(2), keyctl(3), recursive_key_scan(3),
recursive_session_key_scan(3), capabilities(7), credentials(7), keyrings(7), keyutils(7),
persistent-keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-
keyring(7), user_namespaces(7), user-session-keyring(7), request-key(8)

The kernel source files under Documentation/security/keys/ (or, before Linux 4.13, in
the file Documentation/security/keys.txt).

Linux man-pages 6.16 2025-09-21 400

kill(2) System Calls Manual kill(2)

NAME
kill - send signal to a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int kill(pid_t pid , int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

kill():
_POSIX_C_SOURCE

DESCRIPTION
The kill() system call can be used to send any signal to any process group or process.

If pid is positive, then signal sig is sent to the process with the ID specified by pid .

If pid equals 0, then sig is sent to every process in the process group of the calling
process.

If pid equals -1, then sig is sent to every process for which the calling process has per-
mission to send signals, except for process 1 (init), but see below.

If pid is less than -1, then sig is sent to every process in the process group whose ID is
-pid .

If sig is 0, then no signal is sent, but existence and permission checks are still per-
formed; this can be used to check for the existence of a process ID or process group ID
that the caller is permitted to signal.

For a process to have permission to send a signal, it must either be privileged (under
Linux: have the CAP_KILL capability in the user namespace of the target process), or
the real or effective user ID of the sending process must equal the real or saved set-user-
ID of the target process. In the case of SIGCONT, it suffices when the sending and re-
ceiving processes belong to the same session. (Historically, the rules were different; see
HISTORY.)

RETURN VALUE
On success, zero is returned. If signals were sent to a process group, success means that
at least one signal was delivered. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EINVAL

An invalid signal was specified.

EPERM
The calling process does not have permission to send the signal to any of the tar-
get processes.

ESRCH
The target process or process group does not exist. Note that an existing process
might be a zombie, a process that has terminated execution, but has not yet been

Linux man-pages 6.16 2025-10-29 401

kill(2) System Calls Manual kill(2)

wait(2)ed for.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

Linux notes
Across different kernel versions, Linux has enforced different rules for the permissions
required for an unprivileged process to send a signal to another process. In Linux 1.0 to
1.2.2, a signal could be sent if the effective user ID of the sender matched effective user
ID of the target, or the real user ID of the sender matched the real user ID of the target.
From Linux 1.2.3 until 1.3.77, a signal could be sent if the effective user ID of the
sender matched either the real or effective user ID of the target. The current rules,
which conform to POSIX.1, were adopted in Linux 1.3.78.

NOTES
The only signals that can be sent to process ID 1, the init process, are those for which
init has explicitly installed signal handlers. This is done to assure the system is not
brought down accidentally.

POSIX.1 requires that kill(-1,sig) send sig to all processes that the calling process may
send signals to, except possibly for some implementation-defined system processes.
Linux allows a process to signal itself, but on Linux the call kill(-1,sig) does not signal
the calling process.

POSIX.1 requires that if a process sends a signal to itself, and the sending thread does
not have the signal blocked, and no other thread has it unblocked or is waiting for it in
sigwait(3), at least one unblocked signal must be delivered to the sending thread before
the kill() returns.

BUGS
In Linux 2.6 up to and including Linux 2.6.7, there was a bug that meant that when
sending signals to a process group, kill() failed with the error EPERM if the caller did
not have permission to send the signal to any (rather than all) of the members of the
process group. Notwithstanding this error return, the signal was still delivered to all of
the processes for which the caller had permission to signal.

SEE ALSO
kill(1), _exit(2), pidfd_send_signal(2), signal(2), tkill(2), exit(3), killpg(3), sigqueue(3),
capabilities(7), credentials(7), signal(7)

Linux man-pages 6.16 2025-10-29 402

landlock_add_rule(2) System Calls Manual landlock_add_rule(2)

NAME
landlock_add_rule - add a new Landlock rule to a ruleset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/landlock.h> /* Definition of LANDLOCK_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */

int syscall(SYS_landlock_add_rule, int ruleset_fd ,
enum landlock_rule_type rule_type,
const void *rule_attr, uint32_t flags);

DESCRIPTION
A Landlock rule describes an action on an object which the process intends to perform.
A set of rules is aggregated in a ruleset, which can then restrict the thread enforcing it,
and its future children.

The landlock_add_rule() system call adds a new Landlock rule to an existing ruleset.
See landlock(7) for a global overview.

ruleset_fd is a Landlock ruleset file descriptor obtained with landlock_create_ruleset(2).

rule_type identifies the structure type pointed to by rule_attr. Currently, Linux supports
the following rule_type values:

LANDLOCK_RULE_PATH_BENEATH
For these rules, the object is a file hierarchy, and the related filesystem actions
are defined with filesystem access rights.

In this case, rule_attr points to the following structure:

struct landlock_path_beneath_attr {
__u64 allowed_access;
__s32 parent_fd;

} __attribute__((packed));

allowed_access contains a bitmask of allowed filesystem actions, which can be
applied on the given parent_fd (see Filesystem actions in landlock(7)).

parent_fd is an opened file descriptor, preferably with the O_PATH flag, which
identifies the parent directory of the file hierarchy or just a file.

LANDLOCK_RULE_NET_PORT
For these rules, the object is a TCP port, and the related actions are defined with
network access rights.

In this case, rule_attr points to the following structure:

struct landlock_net_port_attr {
__u64 allowed_access;
__u64 port;

};

allowed_access contains a bitmask of allowed network actions, which can be ap-
plied on the given port.

Linux man-pages 6.16 2025-05-17 403

landlock_add_rule(2) System Calls Manual landlock_add_rule(2)

port is the network port in host endianness.

It should be noted that port 0 passed to bind(2) will bind to an available port
from the ephemeral port range. This can be configured in the
/proc/sys/net/ipv4/ip_local_port_range sysctl (also used for IPv6).

A Landlock rule with port 0 and the LANDLOCK_AC-
CESS_NET_BIND_TCP right means that requesting to bind on port 0 is al-
lowed and it will automatically translate to binding on the related port range.

flags must be 0.

RETURN VALUE
On success, landlock_add_rule() returns 0. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
landlock_add_rule() can fail for the following reasons:

EAFNOSUPPORT
rule_type is LANDLOCK_RULE_NET_PORT, but TCP is not supported by
the running kernel.

EOPNOTSUPP
Landlock is supported by the kernel but disabled at boot time.

EINVAL
flags is not 0.

EINVAL
The rule accesses are inconsistent (i.e., rule_attr->allowed_access is not a sub-
set of the ruleset handled accesses).

EINVAL
In struct landlock_path_beneath_attr, the rule accesses are not applicable to the
file (i.e., some access rights in rule_attr->allowed_access are only applicable to
directories, but rule_attr->parent_fd does not refer to a directory).

EINVAL
In struct landlock_net_port_attr, the port number is greater than 65535.

ENOMSG
Empty accesses (i.e., rule_attr->allowed_access is 0).

EBADF
ruleset_fd is not a file descriptor for the current thread, or a member of rule_attr
is not a file descriptor as expected.

EBADFD
ruleset_fd is not a ruleset file descriptor, or a member of rule_attr is not the ex-
pected file descriptor type.

EPERM
ruleset_fd has no write access to the underlying ruleset.

Linux man-pages 6.16 2025-05-17 404

landlock_add_rule(2) System Calls Manual landlock_add_rule(2)

EFAULT
rule_attr was not a valid address.

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See landlock(7).

SEE ALSO
landlock_create_ruleset(2), landlock_restrict_self(2), landlock(7)

Linux man-pages 6.16 2025-05-17 405

landlock_create_ruleset(2) System Calls Manual landlock_create_ruleset(2)

NAME
landlock_create_ruleset - create a new Landlock ruleset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/landlock.h> /* Definition of LANDLOCK_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_landlock_create_ruleset,
const struct landlock_ruleset_attr *attr,
size_t size , uint32_t flags);

DESCRIPTION
A Landlock ruleset identifies a set of rules (i.e., actions on objects). This landlock_cre-
ate_ruleset() system call creates a new file descriptor which identifies a ruleset. This
file descriptor can then be used by landlock_add_rule(2) and landlock_restrict_self(2).
See landlock(7) for a global overview.

attr specifies the properties of the new ruleset. It points to the following structure:

struct landlock_ruleset_attr {
__u64 handled_access_fs;
__u64 handled_access_net;

};

handled_access_fs is a bitmask of handled filesystem actions (see Filesystem
actions in landlock(7)).

handled_access_net is a bitmask of handled network actions (see Network ac-
tions in landlock(7)).

This structure defines a set of handled access rights, a set of actions on different
object types, which should be denied by default when the ruleset is enacted.
Vice versa, access rights that are not specifically listed here are not going to be
denied by this ruleset when it is enacted.

For historical reasons, the LANDLOCK_ACCESS_FS_REFER right is always
denied by default, even when its bit is not set in handled_access_fs. In order to
add new rules with this access right, the bit must still be set explicitly (see
Filesystem actions in landlock(7)).

The explicit listing of handled access rights is required for backwards compati-
bility reasons. In most use cases, processes that use Landlock will handle a wide
range or all access rights that they know about at build time (and that they have
tested with a kernel that supported them all).

This structure can grow in future Landlock versions.

size must be specified as sizeof(struct landlock_ruleset_attr) for compatibility reasons.

flags must be 0 if attr is used. Otherwise, flags can be set to:

Linux man-pages 6.16 2025-05-17 406

landlock_create_ruleset(2) System Calls Manual landlock_create_ruleset(2)

LANDLOCK_CREATE_RULESET_VERSION
If attr is NULL and size is 0, then the returned value is the highest supported
Landlock ABI version (starting at 1). This version can be used for a best-effort
security approach, which is encouraged when user space is not pinned to a spe-
cific kernel version. All features documented in these man pages are available
with the version 1.

RETURN VALUE
On success, landlock_create_ruleset() returns a new Landlock ruleset file descriptor, or
a Landlock ABI version, according to flags. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
landlock_create_ruleset() can fail for the following reasons:

EOPNOTSUPP
Landlock is supported by the kernel but disabled at boot time.

EINVAL
Unknown flags, or unknown access, or too small size.

E2BIG
size is too big.

EFAULT
attr was not a valid address.

ENOMSG
Empty accesses (i.e., attr did not specify any access rights to restrict).

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See landlock(7).

SEE ALSO
landlock_add_rule(2), landlock_restrict_self(2), landlock(7)

Linux man-pages 6.16 2025-05-17 407

landlock_restrict_self (2) System Calls Manual landlock_restrict_self (2)

NAME
landlock_restrict_self - enforce a Landlock ruleset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/landlock.h> /* Definition of LANDLOCK_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */

int syscall(SYS_landlock_restrict_self, int ruleset_fd ,
uint32_t flags);

DESCRIPTION
Once a Landlock ruleset is populated with the desired rules, the landlock_re-
strict_self() system call enforces this ruleset on the calling thread. See landlock(7) for a
global overview.

A thread can be restricted with multiple rulesets that are then composed together to form
the thread’s Landlock domain. This can be seen as a stack of rulesets but it is imple-
mented in a more efficient way. A domain can only be updated in such a way that the
constraints of each past and future composed rulesets will restrict the thread and its fu-
ture children for their entire life. It is then possible to gradually enforce tailored access
control policies with multiple independent rulesets coming from different sources (e.g.,
init system configuration, user session policy, built-in application policy). However,
most applications should only need one call to landlock_restrict_self() and they should
avoid arbitrary numbers of such calls because of the composed rulesets limit. Instead,
developers are encouraged to build a single tailored ruleset with multiple calls to land-
lock_add_rule(2).

In order to enforce a ruleset, either the caller must have the CAP_SYS_ADMIN capa-
bility in its user namespace, or the thread must already have the no_new_privs bit set.
As for seccomp(2), this avoids scenarios where unprivileged processes can affect the be-
havior of privileged children (e.g., because of set-user-ID binaries). If that bit was not
already set by an ancestor of this thread, the thread must make the following call:

prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0);

ruleset_fd is a Landlock ruleset file descriptor obtained with landlock_create_ruleset(2)
and fully populated with a set of calls to landlock_add_rule(2).

flags must be 0.

RETURN VALUE
On success, landlock_restrict_self() returns 0. On error, -1 is returned and errno is set
to indicate the error.

ERRORS
landlock_restrict_self() can fail for the following reasons:

EOPNOTSUPP
Landlock is supported by the kernel but disabled at boot time.

Linux man-pages 6.16 2025-05-17 408

landlock_restrict_self (2) System Calls Manual landlock_restrict_self (2)

EINVAL
flags is not 0.

EBADF
ruleset_fd is not a file descriptor for the current thread.

EBADFD
ruleset_fd is not a ruleset file descriptor.

EPERM
ruleset_fd has no read access to the underlying ruleset, or the calling thread is
not running with no_new_privs, or it doesn’t have the CAP_SYS_ADMIN in its
user namespace.

E2BIG
The maximum number of composed rulesets is reached for the calling thread.
This limit is currently 64.

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See landlock(7).

SEE ALSO
landlock_create_ruleset(2), landlock_add_rule(2), landlock(7)

Linux man-pages 6.16 2025-05-17 409

link(2) System Calls Manual link(2)

NAME
link, linkat - make a new name for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int link(const char *oldpath, const char *newpath);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int linkat(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

linkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
link() creates a new link (also known as a hard link) to an existing file.

If newpath exists, it will not be overwritten.

This new name may be used exactly as the old one for any operation; both names refer
to the same file (and so have the same permissions and ownership) and it is impossible
to tell which name was the "original".

linkat()
The linkat() system call operates in exactly the same way as link(), except for the differ-
ences described here.

If the pathname given in oldpath is relative, then it is interpreted relative to the directory
referred to by the file descriptor olddirfd (rather than relative to the current working di-
rectory of the calling process, as is done by link() for a relative pathname).

If oldpath is relative and olddirfd is the special value AT_FDCWD, then oldpath is in-
terpreted relative to the current working directory of the calling process (like link())

If oldpath is absolute, then olddirfd is ignored.

The interpretation of newpath is as for oldpath, except that a relative pathname is inter-
preted relative to the directory referred to by the file descriptor newdirfd .

The following values can be bitwise ORed in flags:

AT_EMPTY_PATH (since Linux 2.6.39)
If oldpath is an empty string, create a link to the file referenced by olddirfd
(which may have been obtained using the open(2) O_PATH flag). In this case,
olddirfd can refer to any type of file except a directory. This will generally not
work if the file has a link count of zero (files created with O_TMPFILE and

Linux man-pages 6.16 2025-10-29 410

link(2) System Calls Manual link(2)

without O_EXCL are an exception). The caller must have the
CAP_DAC_READ_SEARCH capability in order to use this flag. This flag is
Linux-specific; define _GNU_SOURCE to obtain its definition.

AT_SYMLINK_FOLLOW (since Linux 2.6.18)
By default, linkat(), does not dereference oldpath if it is a symbolic link (like
link())The flag AT_SYMLINK_FOLLOW can be specified in flags to cause
oldpath to be dereferenced if it is a symbolic link. If procfs is mounted, this can
be used as an alternative to AT_EMPTY_PATH, like this:

linkat(AT_FDCWD, "/proc/self/fd/<fd>", newdirfd,
newname, AT_SYMLINK_FOLLOW);

Before Linux 2.6.18, the flags argument was unused, and had to be specified as 0.

See openat(2) for an explanation of the need for linkat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Write access to the directory containing newpath is denied, or search permission
is denied for one of the directories in the path prefix of oldpath or newpath. (See
also path_resolution(7).)

EDQUOT
The user’s quota of disk blocks on the filesystem has been exhausted.

EEXIST
newpath already exists.

EFAULT
oldpath or newpath points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK
The file referred to by oldpath already has the maximum number of links to it.
For example, on an ext4(5) filesystem that does not employ the dir_index fea-
ture, the limit on the number of hard links to a file is 65,000; on btrfs(5), the
limit is 65,535 links.

ENAMETOOLONG
oldpath or newpath was too long.

ENOENT
A directory component in oldpath or newpath does not exist or is a dangling
symbolic link.

Linux man-pages 6.16 2025-10-29 411

link(2) System Calls Manual link(2)

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing the file has no room for the new directory entry.

ENOTDIR
A component used as a directory in oldpath or newpath is not, in fact, a direc-
tory.

EPERM
oldpath is a directory.

EPERM
The filesystem containing oldpath and newpath does not support the creation of
hard links.

EPERM (since Linux 3.6)
The caller does not have permission to create a hard link to this file (see the de-
scription of /proc/sys/fs/protected_hardlinks in proc_sys_fs(5)).

EPERM
oldpath is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

EROFS
The file is on a read-only filesystem.

EXDEV
oldpath and newpath are not on the same mounted filesystem. (Linux permits a
filesystem to be mounted at multiple points, but link() does not work across dif-
ferent mounts, even if the same filesystem is mounted on both.)

The following additional errors can occur for linkat():

EBADF
oldpath (newpath) is relative but olddirfd (newdirfd) is neither AT_FDCWD
nor a valid file descriptor.

EINVAL
An invalid flag value was specified in flags.

ENOENT
AT_EMPTY_PATH was specified in flags, but the caller did not have the
CAP_DAC_READ_SEARCH capability.

ENOENT
An attempt was made to link to the /proc/self/fd/NN file corresponding to a file
descriptor created with

open(path, O_TMPFILE | O_EXCL, mode);

See open(2).

ENOENT
An attempt was made to link to a /proc/self/fd/NN file corresponding to a file
that has been deleted.

Linux man-pages 6.16 2025-10-29 412

link(2) System Calls Manual link(2)

ENOENT
oldpath is a relative pathname and olddirfd refers to a directory that has been
deleted, or newpath is a relative pathname and newdirfd refers to a directory that
has been deleted.

ENOTDIR
oldpath is relative and olddirfd is a file descriptor referring to a file other than a
directory; or similar for newpath and newdirfd

EPERM
AT_EMPTY_PATH was specified in flags, oldpath is an empty string, and old-
dirfd refers to a directory.

VERSIONS
POSIX.1-2001 says that link() should dereference oldpath if it is a symbolic link. How-
ever, since Linux 2.0, Linux does not do so: if oldpath is a symbolic link, then newpath
is created as a (hard) link to the same symbolic link file (i.e., newpath becomes a sym-
bolic link to the same file that oldpath refers to). Some other implementations behave in
the same manner as Linux. POSIX.1-2008 changes the specification of link(), making it
implementation-dependent whether or not oldpath is dereferenced if it is a symbolic
link. For precise control over the treatment of symbolic links when creating a link, use
linkat().

glibc
On older kernels where linkat() is unavailable, the glibc wrapper function falls back to
the use of link(), unless the AT_SYMLINK_FOLLOW is specified. When oldpath
and newpath are relative pathnames, glibc constructs pathnames based on the symbolic
links in /proc/self/fd that correspond to the olddirfd and newdirfd arguments.

STANDARDS
POSIX.1-2024.

HISTORY
link()

SVr4, 4.3BSD, POSIX.1-2001 (but see VERSIONS).

linkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
Hard links, as created by link(), cannot span filesystems. Use symlink(2) if this is re-
quired.

BUGS
On NFS filesystems, the return code may be wrong in case the NFS server performs the
link creation and dies before it can say so. Use stat(2) to find out if the link got created.

SEE ALSO
ln(1), open(2), rename(2), stat(2), symlink(2), unlink(2), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 413

listen(2) System Calls Manual listen(2)

NAME
listen - listen for connections on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int listen(int sockfd , int backlog);

DESCRIPTION
listen() marks the socket referred to by sockfd as a passive socket, that is, as a socket
that will be used to accept incoming connection requests using accept(2).

The sockfd argument is a file descriptor that refers to a socket of type
SOCK_STREAM or SOCK_SEQPACKET.

The backlog argument defines the maximum length to which the queue of pending con-
nections for sockfd may grow. If a connection request arrives when the queue is full, the
client may receive an error with an indication of ECONNREFUSED or, if the underly-
ing protocol supports retransmission, the request may be ignored so that a later reat-
tempt at connection succeeds.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EADDRINUSE

Another socket is already listening on the same port.

EADDRINUSE
(Internet domain sockets) The socket referred to by sockfd had not previously
been bound to an address and, upon attempting to bind it to an ephemeral port, it
was determined that all port numbers in the ephemeral port range are currently in
use. See the discussion of /proc/sys/net/ipv4/ip_local_port_range in ip(7).

EBADF
The argument sockfd is not a valid file descriptor.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
The socket is not of a type that supports the listen() operation.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

NOTES
To accept connections, the following steps are performed:

Linux man-pages 6.16 2025-10-29 414

listen(2) System Calls Manual listen(2)

(1) A socket is created with socket(2).

(2) The socket is bound to a local address using bind(2), so that other sockets
may be connect(2)ed to it.

(3) A willingness to accept incoming connections and a queue limit for incom-
ing connections are specified with listen().

(4) Connections are accepted with accept(2).

The behavior of the backlog argument on TCP sockets changed with Linux 2.2. Now it
specifies the queue length for completely established sockets waiting to be accepted, in-
stead of the number of incomplete connection requests. The maximum length of the
queue for incomplete sockets can be set using /proc/sys/net/ipv4/tcp_max_syn_backlog.
When syncookies are enabled there is no logical maximum length and this setting is ig-
nored. See tcp(7) for more information.

If the backlog argument is greater than the value in /proc/sys/net/core/somaxconn, then
it is silently capped to that value. Since Linux 5.4, the default in this file is 4096; in ear-
lier kernels, the default value is 128. Before Linux 2.4.25, this limit was a hard coded
value, SOMAXCONN, with the value 128.

EXAMPLES
See bind(2).

SEE ALSO
accept(2), bind(2), connect(2), socket(2), socket(7)

Linux man-pages 6.16 2025-10-29 415

listmount(2) System Calls Manual listmount(2)

NAME
listmount - get a list of mount ID’s

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/mount.h> /* Definition of struct mnt_id_req constants */
#include <unistd.h>

int syscall(size_t n;
SYS_listmount, struct mnt_id_req *req,
uint64_t mnt_ids[n], size_t n,
unsigned long flags);

#include <linux/mount.h>

struct mnt_id_req {
__u32 size; /* sizeof(struct mnt_id_req) */
__u64 mnt_id; /* The parent mnt_id being searched */
__u64 param; /* The next mnt_id we want to find */

};

Note: glibc provides no wrapper for listmount(), necessitating the use of syscall(2).

DESCRIPTION
To access the mounts in your namespace, you must have CAP_SYS_ADMIN in the user
namespace.

This function returns a list of mount IDs under the req.mnt_id. This is meant to be
used in conjuction with statmount(2) in order to provide a way to iterate and discover
mounted file systems.

The mnt_id_req structure
req.size is used by the kernel to determine which struct mnt_id_req is being passed in, it
should always be set to sizeof(struct mnt_id_req).

req.mnt_id is the parent mnt_id that we will list from, which can either be
LSMT_ROOT which means the root mount of the current mount namespace, or a
mount ID obtained from either statx(2) using STATX_MNT_ID_UNIQUE or from list-
mount(2).

req.param is used to tell the kernel what mount ID to start the list from. This is useful if
multiple calls to listmount(2) are required. This can be set to the last mount ID returned
in order to resume from a previous spot in the list.

RETURN VALUE
On success, the number of entries filled into mnt_ids is returned; 0 if there are no more
mounts left. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

The caller does not have CAP_SYS_ADMIN in the user namespace.

Linux man-pages 6.16 2025-09-06 416

listmount(2) System Calls Manual listmount(2)

EFAULT
req or mnt_ids points to a location outside the process’s accessible address
space.

EINVAL
Invalid flag specified in flags.

EINVAL
req is of insufficient size to be utilized.

E2BIG
req is too large, the limit is the architectures page size.

ENOENT
The specified req.mnt_id doesn’t exist.

ENOMEM
Out of memory (i.e., kernel memory).

STANDARDS
Linux.

SEE ALSO
statmount(2), statx(2)

Linux man-pages 6.16 2025-09-06 417

listxattr(2) System Calls Manual listxattr(2)

NAME
listxattr, llistxattr, flistxattr - list extended attribute names

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

ssize_t listxattr(const char *path, char *_Nullable list, size_t size);
ssize_t llistxattr(const char *path, char *_Nullable list, size_t size);
ssize_t flistxattr(int fd , char *_Nullable list, size_t size);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories, sym-
bolic links, etc.). They are extensions to the normal attributes which are associated with
all inodes in the system (i.e., the stat(2) data). A complete overview of extended attrib-
utes concepts can be found in xattr(7).

listxattr() retrieves the list of extended attribute names associated with the given path in
the filesystem. The retrieved list is placed in list, a caller-allocated buffer whose size (in
bytes) is specified in the argument size. The list is the set of (null-terminated) names,
one after the other. Names of extended attributes to which the calling process does not
have access may be omitted from the list. The length of the attribute name list is re-
turned.

llistxattr() is identical to listxattr(), except in the case of a symbolic link, where the list
of names of extended attributes associated with the link itself is retrieved, not the file
that it refers to.

flistxattr() is identical to listxattr(), only the open file referred to by fd (as returned by
open(2)) is interrogated in place of path.

A single extended attribute name is a null-terminated string. The name includes a
namespace prefix; there may be several, disjoint namespaces associated with an individ-
ual inode.

If size is specified as zero, these calls return the current size of the list of extended at-
tribute names (and leave list unchanged). This can be used to determine the size of the
buffer that should be supplied in a subsequent call. (But, bear in mind that there is a
possibility that the set of extended attributes may change between the two calls, so that it
is still necessary to check the return status from the second call.)

Example
The list of names is returned as an unordered array of null-terminated character strings
(attribute names are separated by null bytes ('\0')), like this:

user.name1\0system.name1\0user.name2\0

Filesystems that implement POSIX ACLs using extended attributes might return a list
like this:

system.posix_acl_access\0system.posix_acl_default\0

Linux man-pages 6.16 2025-09-21 418

listxattr(2) System Calls Manual listxattr(2)

RETURN VALUE
On success, a nonnegative number is returned indicating the size of the extended at-
tribute name list. On failure, -1 is returned and errno is set to indicate the error.

ERRORS
E2BIG

The size of the list of extended attribute names is larger than the maximum size
allowed; the list cannot be retrieved. This can happen on filesystems that support
an unlimited number of extended attributes per file, such as XFS, for example.
See BUGS.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.

ERANGE
The size of the list buffer is too small to hold the result.

In addition, the errors documented in stat(2) can also occur.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

BUGS
As noted in xattr(7), the VFS imposes a limit of 64 kB on the size of the extended at-
tribute name list returned by listxattr(). If the total size of attribute names attached to a
file exceeds this limit, it is no longer possible to retrieve the list of attribute names.

EXAMPLES
The following program demonstrates the usage of listxattr() and getxattr(2). For the
file whose pathname is provided as a command-line argument, it lists all extended file
attributes and their values.

To keep the code simple, the program assumes that attribute keys and values are con-
stant during the execution of the program. A production program should expect and
handle changes during execution of the program. For example, the number of bytes re-
quired for attribute keys might increase between the two calls to listxattr(). An applica-
tion could handle this possibility using a loop that retries the call (perhaps up to a prede-
termined maximum number of attempts) with a larger buffer each time it fails with the
error ERANGE. Calls to getxattr(2) could be handled similarly.

The following output was recorded by first creating a file, setting some extended file at-
tributes, and then listing the attributes with the example program.

Example output
$ touch /tmp/foo;
$ setfattr -n user.fred -v chocolate /tmp/foo;
$ setfattr -n user.frieda -v bar /tmp/foo;
$ setfattr -n user.empty /tmp/foo;
$./listxattr /tmp/foo;
user.fred: chocolate
user.frieda: bar

Linux man-pages 6.16 2025-09-21 419

listxattr(2) System Calls Manual listxattr(2)

user.empty: <no value>

Program source (listxattr.c)
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/xattr.h>

int
main(int argc, char *argv[])
{

char *buf, *key, *val;
ssize_t buflen, keylen, vallen;

if (argc != 2) {
fprintf(stderr, "Usage: %s path\n", argv[0]);
exit(EXIT_FAILURE);

}

/*
* Determine the length of the buffer needed.
*/

buflen = listxattr(argv[1], NULL, 0);
if (buflen == -1) {

perror("listxattr");
exit(EXIT_FAILURE);

}
if (buflen == 0) {

printf("%s has no attributes.\n", argv[1]);
exit(EXIT_SUCCESS);

}

/*
* Allocate the buffer.
*/

buf = malloc(buflen);
if (buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/*
* Copy the list of attribute keys to the buffer.
*/

buflen = listxattr(argv[1], buf, buflen);
if (buflen == -1) {

perror("listxattr");
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-09-21 420

listxattr(2) System Calls Manual listxattr(2)

}

/*
* Loop over the list of zero terminated strings with the
* attribute keys. Use the remaining buffer length to determine
* the end of the list.
*/

key = buf;
while (buflen > 0) {

/*
* Output attribute key.
*/

printf("%s: ", key);

/*
* Determine length of the value.
*/

vallen = getxattr(argv[1], key, NULL, 0);
if (vallen == -1)

perror("getxattr");

if (vallen > 0) {

/*
* Allocate value buffer.
* One extra byte is needed to append 0x00.
*/

val = malloc(vallen + 1);
if (val == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/*
* Copy value to buffer.
*/

vallen = getxattr(argv[1], key, val, vallen);
if (vallen == -1) {

perror("getxattr");
} else {

/*
* Output attribute value.
*/

val[vallen] = 0;
printf("%s", val);

}

Linux man-pages 6.16 2025-09-21 421

listxattr(2) System Calls Manual listxattr(2)

free(val);
} else if (vallen == 0) {

printf("<no value>");
}

printf("\n");

/*
* Forward to next attribute key.
*/

keylen = strlen(key) + 1;
buflen -= keylen;
key += keylen;

}

free(buf);
exit(EXIT_SUCCESS);

}

SEE ALSO
getfattr(1), setfattr(1), getxattr(2), open(2), removexattr(2), setxattr(2), stat(2), sym-
link(7), xattr(7)

Linux man-pages 6.16 2025-09-21 422

_llseek(2) System Calls Manual _llseek(2)

NAME
_llseek - reposition read/write file offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS__llseek, unsigned int fd , unsigned long offset_high,
unsigned long offset_low, loff_t *result,
unsigned int whence);

Note: glibc provides no wrapper for _llseek(), necessitating the use of syscall(2).

DESCRIPTION
Note: for information about the llseek(3) library function, see lseek64(3).

The _llseek() system call repositions the offset of the open file description associated
with the file descriptor fd to the value

(offset_high << 32) | offset_low

This new offset is a byte offset relative to the beginning of the file, the current file offset,
or the end of the file, depending on whether whence is SEEK_SET, SEEK_CUR, or
SEEK_END, respectively.

The new file offset is returned in the argument result. The type loff_t is a 64-bit signed
type.

This system call exists on various 32-bit platforms to support seeking to large file off-
sets.

RETURN VALUE
Upon successful completion, _llseek() returns 0. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
EBADF

fd is not an open file descriptor.

EFAULT
Problem with copying results to user space.

EINVAL
whence is invalid.

VERSIONS
You probably want to use the lseek(2) wrapper function instead.

STANDARDS
Linux.

SEE ALSO
lseek(2), open(2), lseek64(3)

Linux man-pages 6.16 2025-08-29 423

lookup_dcookie(2) System Calls Manual lookup_dcookie(2)

NAME
lookup_dcookie - return a directory entry’s path

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(size_t size;
SYS_lookup_dcookie, uint64_t cookie, char buffer[size],
size_t size);

Note: glibc provides no wrapper for lookup_dcookie(), necessitating the use of
syscall(2).

DESCRIPTION
Look up the full path of the directory entry specified by the value cookie. The cookie is
an opaque identifier uniquely identifying a particular directory entry. The buffer given is
filled in with the full path of the directory entry.

For lookup_dcookie() to return successfully, the kernel must still hold a cookie refer-
ence to the directory entry.

RETURN VALUE
On success, lookup_dcookie() returns the length of the path string copied into the
buffer. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

The buffer was not valid.

EINVAL
The kernel has no registered cookie/directory entry mappings at the time of
lookup, or the cookie does not refer to a valid directory entry.

ENAMETOOLONG
The name could not fit in the buffer.

ENOMEM
The kernel could not allocate memory for the temporary buffer holding the path.

EPERM
The process does not have the capability CAP_SYS_ADMIN required to look
up cookie values.

ERANGE
The buffer was not large enough to hold the path of the directory entry.

STANDARDS
Linux.

HISTORY
Linux 2.5.43.

The ENAMETOOLONG error was added in Linux 2.5.70.

Linux man-pages 6.16 2025-06-28 424

lookup_dcookie(2) System Calls Manual lookup_dcookie(2)

NOTES
lookup_dcookie() is a special-purpose system call, currently used only by the opro-
file(1) profiler. It relies on a kernel driver to register cookies for directory entries.

The path returned may be suffixed by the string " (deleted)" if the directory entry has
been removed.

SEE ALSO
oprofile(1)

Linux man-pages 6.16 2025-06-28 425

lseek(2) System Calls Manual lseek(2)

NAME
lseek - reposition read/write file offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

off_t lseek(int fd , off_t offset, int whence);

DESCRIPTION
lseek() repositions the file offset of the open file description associated with the file de-
scriptor fd to the argument offset according to the directive whence as follows:

SEEK_SET
The file offset is set to offset bytes.

SEEK_CUR
The file offset is set to its current location plus offset bytes.

SEEK_END
The file offset is set to the size of the file plus offset bytes.

lseek() allows the file offset to be set beyond the end of the file (but this does not change
the size of the file). If data is later written at this point, subsequent reads of the data in
the gap (a "hole") return null bytes ('\0') until data is actually written into the gap.

Seeking file data and holes
Since Linux 3.1, Linux supports the following additional values for whence:

SEEK_DATA
Adjust the file offset to the next location in the file greater than or equal to offset
containing data. If offset points to data, then the file offset is set to offset.

SEEK_HOLE
Adjust the file offset to the next hole in the file greater than or equal to offset. If
offset points into the middle of a hole, then the file offset is set to offset. If there
is no hole past offset, then the file offset is adjusted to the end of the file (i.e.,
there is an implicit hole at the end of any file).

In both of the above cases, lseek() fails if offset points past the end of the file.

These operations allow applications to map holes in a sparsely allocated file. This can
be useful for applications such as file backup tools, which can save space when creating
backups and preserve holes, if they have a mechanism for discovering holes.

For the purposes of these operations, a hole is a sequence of zeros that (normally) has
not been allocated in the underlying file storage. However, a filesystem is not obliged to
report holes, so these operations are not a guaranteed mechanism for mapping the stor-
age space actually allocated to a file. (Furthermore, a sequence of zeros that actually has
been written to the underlying storage may not be reported as a hole.) In the simplest
implementation, a filesystem can support the operations by making SEEK_HOLE al-
ways return the offset of the end of the file, and making SEEK_DATA always return off-
set (i.e., even if the location referred to by offset is a hole, it can be considered to consist

Linux man-pages 6.16 2025-10-29 426

lseek(2) System Calls Manual lseek(2)

of data that is a sequence of zeros).

The _GNU_SOURCE feature test macro must be defined in order to obtain the defini-
tions of SEEK_DATA and SEEK_HOLE from <unistd.h>.

The SEEK_HOLE and SEEK_DATA operations are supported for the following
filesystems:

• Btrfs (since Linux 3.1)

• OCFS (since Linux 3.2)

• XFS (since Linux 3.5)

• ext4 (since Linux 3.8)

• tmpfs(5) (since Linux 3.8)

• NFS (since Linux 3.18)

• FUSE (since Linux 4.5)

• GFS2 (since Linux 4.15)

RETURN VALUE
Upon successful completion, lseek() returns the resulting offset location as measured in
bytes from the beginning of the file. On error, the value (off_t) -1 is returned and errno
is set to indicate the error.

ERRORS
EBADF

fd is not an open file descriptor.

EINVAL
whence is not valid. Or: the resulting file offset would be negative, or beyond
the end of a seekable device.

ENXIO
whence is SEEK_DATA or SEEK_HOLE, and offset is beyond the end of the
file, or whence is SEEK_DATA and offset is within a hole at the end of the file.

EOVERFLOW
The resulting file offset cannot be represented in an off_t.

ESPIPE
fd is associated with a pipe, socket, or FIFO.

VERSIONS
On Linux, using lseek() on a terminal device fails with the error ESPIPE.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEEK_DATA

Linux man-pages 6.16 2025-10-29 427

lseek(2) System Calls Manual lseek(2)

SEEK_HOLE
POSIX.1-2024; Solaris, FreeBSD, DragonFly BSD.

NOTES
See open(2) for a discussion of the relationship between file descriptors, open file de-
scriptions, and files.

If the O_APPEND file status flag is set on the open file description, then a write(2) al-
ways moves the file offset to the end of the file, regardless of the use of lseek().

Some devices are incapable of seeking and POSIX does not specify which devices must
support lseek().

SEE ALSO
dup(2), fallocate(2), fork(2), open(2), fseek(3), lseek64(3), posix_fallocate(3)

Linux man-pages 6.16 2025-10-29 428

madvise(2) System Calls Manual madvise(2)

NAME
madvise - give advice about use of memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int madvise(size_t size;
void addr[size], size_t size, int advice);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

madvise():
Since glibc 2.19:

_DEFAULT_SOURCE
Up to and including glibc 2.19:

_BSD_SOURCE

DESCRIPTION
The madvise() system call is used to give advice or directions to the kernel about the ad-
dress range beginning at address addr and with size size. madvise() only operates on
whole pages, therefore addr must be page-aligned. The value of size is rounded up to a
multiple of page size. In most cases, the goal of such advice is to improve system or ap-
plication performance.

Initially, the system call supported a set of "conventional" advice values, which are also
available on several other implementations. (Note, though, that madvise() is not speci-
fied in POSIX.) Subsequently, a number of Linux-specific advice values have been
added.

Conventional advice values
The advice values listed below allow an application to tell the kernel how it expects to
use some mapped or shared memory areas, so that the kernel can choose appropriate
read-ahead and caching techniques. These advice values do not influence the semantics
of the application (except in the case of MADV_DONTNEED), but may influence its
performance. All of the advice values listed here have analogs in the POSIX-specified
posix_madvise(3) function, and the values have the same meanings, with the exception
of MADV_DONTNEED.

The advice is indicated in the advice argument, which is one of the following:

MADV_NORMAL
No special treatment. This is the default.

MADV_RANDOM
Expect page references in random order. (Hence, read ahead may be less useful
than normally.)

MADV_SEQUENTIAL
Expect page references in sequential order. (Hence, pages in the given range can
be aggressively read ahead, and may be freed soon after they are accessed.)

Linux man-pages 6.16 2025-09-21 429

madvise(2) System Calls Manual madvise(2)

MADV_WILLNEED
Expect access in the near future. (Hence, it might be a good idea to read some
pages ahead.)

MADV_DONTNEED
Do not expect access in the near future. (For the time being, the application is
finished with the given range, so the kernel can free resources associated with it.)

After a successful MADV_DONTNEED operation, the semantics of memory
access in the specified region are changed: subsequent accesses of pages in the
range will succeed, but will result in either repopulating the memory contents
from the up-to-date contents of the underlying mapped file (for shared file map-
pings, shared anonymous mappings, and shmem-based techniques such as Sys-
tem V shared memory segments) or zero-fill-on-demand pages for anonymous
private mappings.

Note that, when applied to shared mappings, MADV_DONTNEED might not
lead to immediate freeing of the pages in the range. The kernel is free to delay
freeing the pages until an appropriate moment. The resident set size (RSS) of
the calling process will be immediately reduced however.

MADV_DONTNEED cannot be applied to locked pages, or VM_PFNMAP
pages. (Pages marked with the kernel-internal VM_PFNMAP flag are special
memory areas that are not managed by the virtual memory subsystem. Such
pages are typically created by device drivers that map the pages into user space.)

Support for Huge TLB pages was added in Linux v5.18. Addresses within a
mapping backed by Huge TLB pages must be aligned to the underlying Huge
TLB page size, and the range size is rounded up to a multiple of the underlying
Huge TLB page size.

Linux-specific advice values
The following Linux-specific advice values have no counterparts in the POSIX-specified
posix_madvise(3), and may or may not have counterparts in the madvise() interface
available on other implementations. Note that some of these operations change the se-
mantics of memory accesses.

MADV_REMOVE (since Linux 2.6.16)
Free up a given range of pages and its associated backing store. This is equiva-
lent to punching a hole in the corresponding range of the backing store (see fal-
locate(2)). Subsequent accesses in the specified address range will see data with
a value of zero.

The specified address range must be mapped shared and writable. This flag can-
not be applied to locked pages, or VM_PFNMAP pages.

In the initial implementation, only tmpfs(5) supported MADV_REMOVE; but
since Linux 3.5, any filesystem which supports the fallocate(2) FAL-
LOC_FL_PUNCH_HOLE mode also supports MADV_REMOVE. Filesys-
tems which do not support MADV_REMOVE fail with the error EOPNOT-
SUPP.

Linux man-pages 6.16 2025-09-21 430

madvise(2) System Calls Manual madvise(2)

Support for the Huge TLB filesystem was added in Linux v4.3.

MADV_DONTFORK (since Linux 2.6.16)
Do not make the pages in this range available to the child after a fork(2). This is
useful to prevent copy-on-write semantics from changing the physical location of
a page if the parent writes to it after a fork(2). (Such page relocations cause
problems for hardware that DMAs into the page.)

MADV_DOFORK (since Linux 2.6.16)
Undo the effect of MADV_DONTFORK, restoring the default behavior,
whereby a mapping is inherited across fork(2).

MADV_HWPOISON (since Linux 2.6.32)
Poison the pages in the range specified by addr and size and handle subsequent
references to those pages like a hardware memory corruption. This operation is
available only for privileged (CAP_SYS_ADMIN) processes. This operation
may result in the calling process receiving a SIGBUS and the page being un-
mapped.

This feature is intended for testing of memory error-handling code; it is available
only if the kernel was configured with CONFIG_MEMORY_FAILURE.

MADV_MERGEABLE (since Linux 2.6.32)
Enable Kernel Samepage Merging (KSM) for the pages in the range specified by
addr and size. The kernel regularly scans those areas of user memory that have
been marked as mergeable, looking for pages with identical content. These are
replaced by a single write-protected page (which is automatically copied if a
process later wants to update the content of the page). KSM merges only private
anonymous pages (see mmap(2)).

The KSM feature is intended for applications that generate many instances of the
same data (e.g., virtualization systems such as KVM). It can consume a lot of
processing power; use with care. See the Linux kernel source file Documenta-
tion/admin-guide/mm/ksm.rst for more details.

The MADV_MERGEABLE and MADV_UNMERGEABLE operations are
available only if the kernel was configured with CONFIG_KSM.

MADV_UNMERGEABLE (since Linux 2.6.32)
Undo the effect of an earlier MADV_MERGEABLE operation on the specified
address range; KSM unmerges whatever pages it had merged in the address
range specified by addr and size.

MADV_SOFT_OFFLINE (since Linux 2.6.33)
Soft offline the pages in the range specified by addr and size. The memory of
each page in the specified range is preserved (i.e., when next accessed, the same
content will be visible, but in a new physical page frame), and the original page
is offlined (i.e., no longer used, and taken out of normal memory management).
The effect of the MADV_SOFT_OFFLINE operation is invisible to (i.e., does
not change the semantics of) the calling process.

This feature is intended for testing of memory error-handling code; it is available
only if the kernel was configured with CONFIG_MEMORY_FAILURE.

Linux man-pages 6.16 2025-09-21 431

madvise(2) System Calls Manual madvise(2)

MADV_HUGEPAGE (since Linux 2.6.38)
Enable Transparent Huge Pages (THP) for pages in the range specified by addr
and size. The kernel will regularly scan the areas marked as huge page candi-
dates to replace them with huge pages. The kernel will also allocate huge pages
directly when the region is naturally aligned to the huge page size (see
posix_memalign(2)).

This feature is primarily aimed at applications that use large mappings of data
and access large regions of that memory at a time (e.g., virtualization systems
such as QEMU). It can very easily waste memory (e.g., a 2 MB mapping that
only ever accesses 1 byte will result in 2 MB of wired memory instead of one
4 KB page). See the Linux kernel source file Documentation/ad-
min-guide/mm/transhuge.rst for more details.

Most common kernels configurations provide MADV_HUGEPAGE-style be-
havior by default, and thus MADV_HUGEPAGE is normally not necessary. It
is mostly intended for embedded systems, where MADV_HUGEPAGE-style
behavior may not be enabled by default in the kernel. On such systems, this flag
can be used in order to selectively enable THP. Whenever
MADV_HUGEPAGE is used, it should always be in regions of memory with an
access pattern that the developer knows in advance won’t risk to increase the
memory footprint of the application when transparent hugepages are enabled.

Since Linux 5.4, automatic scan of eligible areas and replacement by huge pages
works with private anonymous pages (see mmap(2)), shmem pages, and file-
backed pages. For all memory types, memory may only be replaced by huge
pages on hugepage-aligned boundaries. For file-mapped memory —including
tmpfs (see tmpfs(2))— the mapping must also be naturally hugepage-aligned
within the file. Additionally, for file-backed, non-tmpfs memory, the file must
not be open for write and the mapping must be executable.

The VMA must not be marked VM_NOHUGEPAGE, VM_HUGETLB,
VM_IO, VM_DONTEXPAND, VM_MIXEDMAP, or VM_PFNMAP, nor
can it be stack memory or backed by a DAX-enabled device (unless the DAX de-
vice is hot-plugged as System RAM). The process must also not have
PR_SET_THP_DISABLE set (see prctl(2)).

The MADV_HUGEPAGE, MADV_NOHUGEPAGE, and MADV_COL-
LAPSE operations are available only if the kernel was configured with CON-
FIG_TRANSPARENT_HUGEPAGE and file/shmem memory is only sup-
ported if the kernel was configured with CON-
FIG_READ_ONLY_THP_FOR_FS.

MADV_NOHUGEPAGE (since Linux 2.6.38)
Ensures that memory in the address range specified by addr and size will not be
backed by transparent hugepages.

MADV_COLLAPSE (since Linux 6.1)
Perform a best-effort synchronous collapse of the native pages mapped by the
memory range into Transparent Huge Pages (THPs). MADV_COLLAPSE op-
erates on the current state of memory of the calling process and makes no

Linux man-pages 6.16 2025-09-21 432

madvise(2) System Calls Manual madvise(2)

persistent changes or guarantees on how pages will be mapped, constructed, or
faulted in the future.

MADV_COLLAPSE supports private anonymous pages (see mmap(2)), shmem
pages, and file-backed pages. See MADV_HUGEPAGE for general informa-
tion on memory requirements for THP. If the range provided spans multiple
VMAs, the semantics of the collapse over each VMA is independent from the
others. If collapse of a given huge page-aligned/sized region fails, the operation
may continue to attempt collapsing the remainder of the specified memory.
MADV_COLLAPSE will automatically clamp the provided range to be
hugepage-aligned.

All non-resident pages covered by the range will first be swapped/faulted-in, be-
fore being copied onto a freshly allocated hugepage. If the native pages com-
pose the same PTE-mapped hugepage, and are suitably aligned, allocation of a
new hugepage may be elided and collapse may happen in-place. Unmapped
pages will have their data directly initialized to 0 in the new hugepage. How-
ever, for every eligible hugepage-aligned/sized region to be collapsed, at least
one page must currently be backed by physical memory.

MADV_COLLAPSE is independent of any sysfs (see sysfs(5)) setting under
/sys/kernel/mm/transparent_hugepage, both in terms of determining THP eligi-
bility, and allocation semantics. See Linux kernel source file Documentation/ad-
min-guide/mm/transhuge.rst for more information. MADV_COLLAPSE also
ignores huge= tmpfs mount when operating on tmpfs files. Allocation for the
new hugepage may enter direct reclaim and/or compaction, regardless of VMA
flags (though VM_NOHUGEPAGE is still respected).

When the system has multiple NUMA nodes, the hugepage will be allocated
from the node providing the most native pages.

If all hugepage-sized/aligned regions covered by the provided range were either
successfully collapsed, or were already PMD-mapped THPs, this operation will
be deemed successful. Note that this doesn’t guarantee anything about other
possible mappings of the memory. In the event multiple hugepage-aligned/sized
areas fail to collapse, only the most-recently–failed code will be set in errno.

MADV_DONTDUMP (since Linux 3.4)
Exclude from a core dump those pages in the range specified by addr and size.
This is useful in applications that have large areas of memory that are known not
to be useful in a core dump. The effect of MADV_DONTDUMP takes prece-
dence over the bit mask that is set via the /proc/ pid /coredump_filter file (see
core(5)).

MADV_DODUMP (since Linux 3.4)
Undo the effect of an earlier MADV_DONTDUMP.

MADV_FREE (since Linux 4.5)
The application no longer requires the pages in the range specified by addr and
size. The kernel can thus free these pages, but the freeing could be delayed until
memory pressure occurs. For each of the pages that has been marked to be freed
but has not yet been freed, the free operation will be canceled if the caller writes

Linux man-pages 6.16 2025-09-21 433

madvise(2) System Calls Manual madvise(2)

into the page. After a successful MADV_FREE operation, any stale data (i.e.,
dirty, unwritten pages) will be lost when the kernel frees the pages. However,
subsequent writes to pages in the range will succeed and then kernel cannot free
those dirtied pages, so that the caller can always see just written data. If there is
no subsequent write, the kernel can free the pages at any time. Once pages in the
range have been freed, the caller will see zero-fill-on-demand pages upon subse-
quent page references.

The MADV_FREE operation can be applied only to private anonymous pages
(see mmap(2)). Before Linux 4.12, when freeing pages on a swapless system,
the pages in the given range are freed instantly, regardless of memory pressure.

MADV_WIPEONFORK (since Linux 4.14)
Present the child process with zero-filled memory in this range after a fork(2).
This is useful in forking servers in order to ensure that sensitive per-process data
(for example, PRNG seeds, cryptographic secrets, and so on) is not handed to
child processes.

The MADV_WIPEONFORK operation can be applied only to private anony-
mous pages (see mmap(2)).

Within the child created by fork(2), the MADV_WIPEONFORK setting re-
mains in place on the specified address range. This setting is cleared during ex-
ecve(2).

MADV_KEEPONFORK (since Linux 4.14)
Undo the effect of an earlier MADV_WIPEONFORK.

MADV_COLD (since Linux 5.4)
Deactivate a given range of pages. This will make the pages a more probable re-
claim target should there be a memory pressure. This is a nondestructive opera-
tion. The advice might be ignored for some pages in the range when it is not ap-
plicable.

MADV_PAGEOUT (since Linux 5.4)
Reclaim a given range of pages. This is done to free up memory occupied by
these pages. If a page is anonymous, it will be swapped out. If a page is file-
backed and dirty, it will be written back to the backing storage. The advice
might be ignored for some pages in the range when it is not applicable.

MADV_POPULATE_READ (since Linux 5.14)
"Populate (prefault) page tables readable, faulting in all pages in the range just as
if manually reading from each page; however, avoid the actual memory access
that would have been performed after handling the fault.

In contrast to MAP_POPULATE, MADV_POPULATE_READ does not hide
errors, can be applied to (parts of) existing mappings and will always populate
(prefault) page tables readable. One example use case is prefaulting a file map-
ping, reading all file content from disk; however, pages won’t be dirtied and con-
sequently won’t have to be written back to disk when evicting the pages from
memory.

Linux man-pages 6.16 2025-09-21 434

madvise(2) System Calls Manual madvise(2)

Depending on the underlying mapping, map the shared zeropage, preallocate
memory or read the underlying file; files with holes might or might not preallo-
cate blocks. If populating fails, a SIGBUS signal is not generated; instead, an
error is returned.

If MADV_POPULATE_READ succeeds, all page tables have been populated
(prefaulted) readable once. If MADV_POPULATE_READ fails, some page ta-
bles might have been populated.

MADV_POPULATE_READ cannot be applied to mappings without read per-
missions and special mappings, for example, mappings marked with kernel-in-
ternal flags such as VM_PFNMAP or VM_IO, or secret memory regions cre-
ated using memfd_secret(2).

Note that with MADV_POPULATE_READ, the process can be killed at any
moment when the system runs out of memory.

MADV_POPULATE_WRITE (since Linux 5.14)
Populate (prefault) page tables writable, faulting in all pages in the range just as
if manually writing to each each page; however, avoid the actual memory access
that would have been performed after handling the fault.

In contrast to MAP_POPULATE, MADV_POPULATE_WRITE does not hide
errors, can be applied to (parts of) existing mappings and will always populate
(prefault) page tables writable. One example use case is preallocating memory,
breaking any CoW (Copy on Write).

Depending on the underlying mapping, preallocate memory or read the underly-
ing file; files with holes will preallocate blocks. If populating fails, a SIGBUS
signal is not generated; instead, an error is returned.

If MADV_POPULATE_WRITE succeeds, all page tables have been populated
(prefaulted) writable once. If MADV_POPULATE_WRITE fails, some page
tables might have been populated.

MADV_POPULATE_WRITE cannot be applied to mappings without write
permissions and special mappings, for example, mappings marked with kernel-
internal flags such as VM_PFNMAP or VM_IO, or secret memory regions cre-
ated using memfd_secret(2).

Note that with MADV_POPULATE_WRITE, the process can be killed at any
moment when the system runs out of memory.

MADV_GUARD_INSTALL (since Linux 6.13)
Install a lightweight guard region into the range specified by addr and size, caus-
ing any read or write in the range to result in a SIGSEGV signal being raised.

If the region maps memory pages those mappings will be replaced as part of the
operation, though if MADV_GUARD_INSTALL is applied to regions contain-
ing pre-existing lightweight guard regions, they are left in place.

Prior to Linux 6.15, this operation was supported only for writable anonymous
private mappings. Since Linux 6.15, both anonymous and file-backed mappings
are supported, including read-only mappings.

Linux man-pages 6.16 2025-09-21 435

madvise(2) System Calls Manual madvise(2)

The mapping must not be mlock’d, map hugetlb ranges, nor contain special map-
pings. For example, mappings marked with kernel-internal flags such as
VM_PFNMAP or VM_IO, or secret memory regions created using memfd_se-
cret(2).

An EINVAL error is returned if it is attempted on any other kind of mapping.

This operation is more efficient than mapping a new region of memory
PROT_NONE, as it does not require the establishment of new mappings. In-
stead, regions of an existing mapping simply have their page tables manipulated
to establish the desired behavior. No additional memory is used.

Lightweight guard regions remain on fork (except for any parts which have had
MADV_WIPEONFORK applied to them), and are not removed by
MADV_DONTNEED, MADV_FREE, MADV_PAGEOUT, or
MADV_COLD.

Attempting to mlock(2) lightweight guard regions will fail, as will
MADV_POPULATE_READ or MADV_POPULATE_WRITE.

If the mapping has its attributes changed, or is split or partially unmapped, any
existing guard regions remain in place (except if they are unmapped).

If a mapping is moved using mremap(2), lightweight guard regions are moved
with it.

Lightweight guard regions are removed when unmapped, on process teardown,
or when the MADV_GUARD_REMOVE operation is applied to them.

MADV_GUARD_REMOVE (since Linux 6.13)
Remove any lightweight guard regions which exist in the range specified by
addr and size.

All mappings in the range other than lightweight guard regions are left in place.
The operation is supported on those mappings permitted by
MADV_GUARD_INSTALL in addition to mlock()’d mappings, returning an
EINVAL error otherwise.

When lightweight guard regions are removed, they act as empty regions of the
containing mapping. Therefore, anonymous private mappings become zero-fill-
on-demand pages, and file-backed mappings are repopulated with the memory
contents from the up-to-date contents of the underlying mapped file.

If any transparent huge pages are encountered in the operation, they are left in
place.

RETURN VALUE
On success, madvise() returns zero. On error, it returns -1 and errno is set to indicate
the error.

ERRORS
EACCES

advice is MADV_REMOVE, but the specified address range is not a shared
writable mapping.

Linux man-pages 6.16 2025-09-21 436

madvise(2) System Calls Manual madvise(2)

EAGAIN
A kernel resource was temporarily unavailable.

EBADF
The map exists, but the area maps something that isn’t a file.

EBUSY
(for MADV_COLLAPSE) Could not charge hugepage to cgroup: cgroup limit
exceeded.

EBUSY
(for MADV_SOFT_OFFLINE) Any pages within the specified address range
could not be offlined. This might occur if the page is currently in use or locked.

EFAULT
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE, and
populating (prefaulting) page tables failed because a SIGBUS would have been
generated on actual memory access and the reason is not a HW poisoned page
(HW poisoned pages can, for example, be created using the MADV_HWPOI-
SON flag described elsewhere in this page).

EINVAL
addr is not page-aligned or size is negative.

EINVAL
advice is not a valid.

EINVAL
advice is MADV_COLD or MADV_PAGEOUT and the specified address
range includes locked, Huge TLB pages, or VM_PFNMAP pages.

EINVAL
advice is MADV_DONTNEED or MADV_REMOVE and the specified ad-
dress range includes locked, Huge TLB pages, or VM_PFNMAP pages.

EINVAL
advice is MADV_MERGEABLE or MADV_UNMERGEABLE, but the ker-
nel was not configured with CONFIG_KSM.

EINVAL
advice is MADV_FREE or MADV_WIPEONFORK but the specified address
range includes file, Huge TLB, MAP_SHARED, or VM_PFNMAP ranges.

EINVAL
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE, but
the specified address range includes ranges with insufficient permissions or spe-
cial mappings, for example, mappings marked with kernel-internal flags such a
VM_IO or VM_PFNMAP, or secret memory regions created using memfd_se-
cret(2).

EINVAL
advice is MADV_GUARD_INSTALL or MADV_GUARD_REMOVE, but the
specified address range contains an unsupported mapping.

Linux man-pages 6.16 2025-09-21 437

madvise(2) System Calls Manual madvise(2)

EIO (for MADV_WILLNEED) Paging in this area would exceed the process’s max-
imum resident set size.

ENOMEM
(for MADV_WILLNEED) Not enough memory: paging in failed.

ENOMEM
(for MADV_COLLAPSE) Not enough memory: could not allocate hugepage.

ENOMEM
Addresses in the specified range are not currently mapped, or are outside the ad-
dress space of the process.

ENOMEM
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE, and
populating (prefaulting) page tables failed because there was not enough mem-
ory.

EPERM
advice is MADV_HWPOISON, but the caller does not have the
CAP_SYS_ADMIN capability.

EHWPOISON
advice is MADV_POPULATE_READ or MADV_POPULATE_WRITE, and
populating (prefaulting) page tables failed because a HW poisoned page (HW
poisoned pages can, for example, be created using the MADV_HWPOISON
flag described elsewhere in this page) was encountered.

VERSIONS
Versions of this system call, implementing a wide variety of advice values, exist on
many other implementations. Other implementations typically implement at least the
flags listed above under Conventional advice flags, albeit with some variation in seman-
tics.

POSIX.1-2001 describes posix_madvise(3) with constants POSIX_MADV_NORMAL,
POSIX_MADV_RANDOM, POSIX_MADV_SEQUENTIAL,
POSIX_MADV_WILLNEED, and POSIX_MADV_DONTNEED, and so on, with
behavior close to the similarly named flags listed above.

Linux
The Linux implementation requires that the address addr be page-aligned, and allows
size to be zero. If there are some parts of the specified address range that are not
mapped, the Linux version of madvise() ignores them and applies the call to the rest
(but returns ENOMEM from the system call, as it should).

madvise(0, 0, advice) will return zero iff advice is supported by the kernel and can be
relied on to probe for support.

STANDARDS
None.

HISTORY
First appeared in 4.4BSD.

Since Linux 3.18, support for this system call is optional, depending on the setting of the

Linux man-pages 6.16 2025-09-21 438

madvise(2) System Calls Manual madvise(2)

CONFIG_ADVISE_SYSCALLS configuration option.

SEE ALSO
getrlimit(2), memfd_secret(2), mincore(2), mmap(2), mprotect(2), msync(2), munmap(2),
prctl(2), process_madvise(2), posix_madvise(3), core(5)

Linux man-pages 6.16 2025-09-21 439

mbind(2) System Calls Manual mbind(2)

NAME
mbind - set memory policy for a memory range

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long mbind(unsigned long size, unsigned long maxnode;
void addr[size], unsigned long size, int mode,
const unsigned long nodemask[(maxnode + ULONG_WIDTH - 1)

/ ULONG_WIDTH],
unsigned long maxnode, unsigned int flags);

DESCRIPTION
mbind() sets the NUMA memory policy, which consists of a policy mode and zero or
more nodes, for the memory range starting with addr and continuing for size bytes. The
memory policy defines from which node memory is allocated.

If the memory range specified by the addr and size arguments includes an "anonymous"
region of memory—that is a region of memory created using the mmap(2) system call
with the MAP_ANONYMOUS—or a memory-mapped file, mapped using the mmap(2)
system call with the MAP_PRIVATE flag, pages will be allocated only according to the
specified policy when the application writes (stores) to the page. For anonymous re-
gions, an initial read access will use a shared page in the kernel containing all zeros. For
a file mapped with MAP_PRIVATE, an initial read access will allocate pages according
to the memory policy of the thread that causes the page to be allocated. This may not be
the thread that called mbind().

The specified policy will be ignored for any MAP_SHARED mappings in the specified
memory range. Rather the pages will be allocated according to the memory policy of
the thread that caused the page to be allocated. Again, this may not be the thread that
called mbind().

If the specified memory range includes a shared memory region created using the
shmget(2) system call and attached using the shmat(2) system call, pages allocated for
the anonymous or shared memory region will be allocated according to the policy speci-
fied, regardless of which process attached to the shared memory segment causes the al-
location. If, however, the shared memory region was created with the
SHM_HUGETLB flag, the huge pages will be allocated according to the policy speci-
fied only if the page allocation is caused by the process that calls mbind() for that re-
gion.

By default, mbind() has an effect only for new allocations; if the pages inside the range
have been already touched before setting the policy, then the policy has no effect. This
default behavior may be overridden by the MPOL_MF_MOVE and
MPOL_MF_MOVE_ALL flags described below.

The mode argument must specify one of MPOL_DEFAULT, MPOL_BIND,
MPOL_INTERLEAVE, MPOL_WEIGHTED_INTERLEAVE, MPOL_PRE-
FERRED, MPOL_PREFERRED_MANY, or MPOL_LOCAL (which are described

Linux man-pages 6.16 2025-09-21 440

mbind(2) System Calls Manual mbind(2)

in detail below). All policy modes except MPOL_DEFAULT require the caller to spec-
ify the node or nodes to which the mode applies, via the nodemask argument.

The mode argument may also include an optional mode flag. The supported mode flags
are:

MPOL_F_NUMA_BALANCING (since Linux 5.15)
When mode is MPOL_BIND, enable the kernel NUMA balancing for the task if
it is supported by the kernel. If the flag isn’t supported by the kernel, or is used
with mode other than MPOL_BIND, -1 is returned and errno is set to EIN-
VAL.

MPOL_F_STATIC_NODES (since Linux-2.6.26)
A nonempty nodemask specifies physical node IDs. Linux does not remap the
nodemask when the thread moves to a different cpuset context, nor when the set
of nodes allowed by the thread’s current cpuset context changes.

MPOL_F_RELATIVE_NODES (since Linux-2.6.26)
A nonempty nodemask specifies node IDs that are relative to the set of node IDs
allowed by the thread’s current cpuset.

nodemask points to a bit mask of nodes containing up to maxnode bits. The bit mask
size is rounded to the next multiple of sizeof(unsigned long), but the kernel will use bits
only up to maxnode. A NULL value of nodemask or a maxnode value of zero specifies
the empty set of nodes. If the value of maxnode is zero, the nodemask argument is ig-
nored. Where a nodemask is required, it must contain at least one node that is on-line,
allowed by the thread’s current cpuset context (unless the MPOL_F_STATIC_NODES
mode flag is specified), and contains memory.

The mode argument must include one of the following values:

MPOL_DEFAULT
This mode requests that any nondefault policy be removed, restoring default be-
havior. When applied to a range of memory via mbind(), this means to use the
thread memory policy, which may have been set with set_mempolicy(2). If the
mode of the thread memory policy is also MPOL_DEFAULT, the system-wide
default policy will be used. The system-wide default policy allocates pages on
the node of the CPU that triggers the allocation. For MPOL_DEFAULT, the
nodemask and maxnode arguments must be specify the empty set of nodes.

MPOL_BIND
This mode specifies a strict policy that restricts memory allocation to the nodes
specified in nodemask. If nodemask specifies more than one node, page alloca-
tions will come from the node with sufficient free memory that is closest to the
node where the allocation takes place. Pages will not be allocated from any node
not specified in the IR nodemask . (Before Linux 2.6.26, page allocations came
from the node with the lowest numeric node ID first, until that node contained no
free memory. Allocations then came from the node with the next highest node
ID specified in nodemask and so forth, until none of the specified nodes con-
tained free memory.)

Linux man-pages 6.16 2025-09-21 441

mbind(2) System Calls Manual mbind(2)

MPOL_INTERLEAVE
This mode specifies that page allocations be interleaved across the set of nodes
specified in nodemask. This optimizes for bandwidth instead of latency by
spreading out pages and memory accesses to those pages across multiple nodes.
To be effective the memory area should be fairly large, at least 1 MB or bigger
with a fairly uniform access pattern. Accesses to a single page of the area will
still be limited to the memory bandwidth of a single node.

MPOL_WEIGHTED_INTERLEAVE (since Linux 6.9)
This mode interleaves page allocations across the nodes specified in nodemask
according to the weights in /sys/kernel/mm/mempolicy/weighted_interleave. For
example, if bits 0, 2, and 5 are set in nodemask, and the contents of /sys/ker-
nel/mm/mempolicy/weighted_interleave/node0, /sys/ . . . /node2, and
/sys/ . . . /node5 are 4, 7, and 9, respectively, then pages in this region will be allo-
cated on nodes 0, 2, and 5 in a 4:7:9 ratio.

MPOL_PREFERRED
This mode sets the preferred node for allocation. The kernel will try to allocate
pages from this node first and fall back to other nodes if the preferred nodes is
low on free memory. If nodemask specifies more than one node ID, the first
node in the mask will be selected as the preferred node. If the nodemask and
maxnode arguments specify the empty set, then the memory is allocated on the
node of the CPU that triggered the allocation.

MPOL_PREFERRED_MANY (since Linux 5.15)
Specifies a set of nodes for allocation; see set_mempolicy(2).

MPOL_LOCAL (since Linux 3.8)
This mode specifies "local allocation"; the memory is allocated on the node of
the CPU that triggered the allocation (the "local node"). The nodemask and
maxnode arguments must specify the empty set. If the "local node" is low on
free memory, the kernel will try to allocate memory from other nodes. The ker-
nel will allocate memory from the "local node" whenever memory for this node
is available. If the "local node" is not allowed by the thread’s current cpuset con-
text, the kernel will try to allocate memory from other nodes. The kernel will al-
locate memory from the "local node" whenever it becomes allowed by the
thread’s current cpuset context. By contrast, MPOL_DEFAULT reverts to the
memory policy of the thread (which may be set via set_mempolicy(2)); that pol-
icy may be something other than "local allocation".

If MPOL_MF_STRICT is passed in flags and mode is not MPOL_DEFAULT, then
the call fails with the error EIO if the existing pages in the memory range don’t follow
the policy.

If MPOL_MF_MOVE is specified in flags, then the kernel will attempt to move all the
existing pages in the memory range so that they follow the policy. Pages that are shared
with other processes will not be moved. If MPOL_MF_STRICT is also specified, then
the call fails with the error EIO if some pages could not be moved. If the MPOL_IN-
TERLEAVE policy was specified, pages already residing on the specified nodes will
not be moved such that they are interleaved.

Linux man-pages 6.16 2025-09-21 442

mbind(2) System Calls Manual mbind(2)

If MPOL_MF_MOVE_ALL is passed in flags, then the kernel will attempt to move all
existing pages in the memory range regardless of whether other processes use the pages.
The calling thread must be privileged (CAP_SYS_NICE) to use this flag. If
MPOL_MF_STRICT is also specified, then the call fails with the error EIO if some
pages could not be moved. If the MPOL_INTERLEAVE policy was specified, pages
already residing on the specified nodes will not be moved such that they are interleaved.

RETURN VALUE
On success, mbind() returns 0; on error, -1 is returned and errno is set to indicate the
error.

ERRORS
EFAULT

Part or all of the memory range specified by nodemask and maxnode points out-
side your accessible address space. Or, there was an unmapped hole in the speci-
fied memory range specified by addr and size.

EINVAL
An invalid value was specified for flags or mode; or addr + size was less than
addr; or addr is not a multiple of the system page size. Or, mode is
MPOL_DEFAULT and nodemask specified a nonempty set; or mode is
MPOL_BIND or MPOL_INTERLEAVE and nodemask is empty. Or, maxn-
ode exceeds a kernel-imposed limit. Or, nodemask specifies one or more node
IDs that are greater than the maximum supported node ID. Or, none of the node
IDs specified by nodemask are on-line and allowed by the thread’s current cpuset
context, or none of the specified nodes contain memory. Or, the mode argument
specified both MPOL_F_STATIC_NODES and MPOL_F_RELA-
TIVE_NODES.

EIO MPOL_MF_STRICT was specified and an existing page was already on a node
that does not follow the policy; or MPOL_MF_MOVE or
MPOL_MF_MOVE_ALL was specified and the kernel was unable to move all
existing pages in the range.

ENOMEM
Insufficient kernel memory was available.

EPERM
The flags argument included the MPOL_MF_MOVE_ALL flag and the caller
does not have the CAP_SYS_NICE privilege.

STANDARDS
Linux.

HISTORY
Linux 2.6.7.

Support for huge page policy was added with Linux 2.6.16. For interleave policy to be
effective on huge page mappings the policied memory needs to be tens of megabytes or
larger.

Before Linux 5.7. MPOL_MF_STRICT was ignored on huge page mappings.

MPOL_MF_MOVE and MPOL_MF_MOVE_ALL are available only on Linux

Linux man-pages 6.16 2025-09-21 443

mbind(2) System Calls Manual mbind(2)

2.6.16 and later.

NOTES
For information on library support, see numa(7).

NUMA policy is not supported on a memory-mapped file range that was mapped with
the MAP_SHARED flag.

The MPOL_DEFAULT mode can have different effects for mbind() and set_mempol-
icy(2). When MPOL_DEFAULT is specified for set_mempolicy(2), the thread’s mem-
ory policy reverts to the system default policy or local allocation. When MPOL_DE-
FAULT is specified for a range of memory using mbind(), any pages subsequently allo-
cated for that range will use the thread’s memory policy, as set by set_mempolicy(2).
This effectively removes the explicit policy from the specified range, "falling back" to a
possibly nondefault policy. To select explicit "local allocation" for a memory range,
specify a mode of MPOL_LOCAL or MPOL_PREFERRED with an empty set of
nodes. This method will work for set_mempolicy(2), as well.

SEE ALSO
get_mempolicy(2), getcpu(2), mmap(2), set_mempolicy(2), shmat(2), shmget(2),
numa(3), cpuset(7), numa(7), numactl(8)

Linux man-pages 6.16 2025-09-21 444

membarrier(2) System Calls Manual membarrier(2)

NAME
membarrier - issue memory barriers on a set of threads

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/membarrier.h> /* Definition of MEMBARRIER_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_membarrier, int cmd , unsigned int flags, int cpu_id);

Note: glibc provides no wrapper for membarrier(), necessitating the use of syscall(2).

DESCRIPTION
The membarrier() system call helps reducing the overhead of the memory barrier in-
structions required to order memory accesses on multi-core systems. However, this sys-
tem call is heavier than a memory barrier, so using it effectively is not as simple as re-
placing memory barriers with this system call, but requires understanding of the details
below.

Use of memory barriers needs to be done taking into account that a memory barrier al-
ways needs to be either matched with its memory barrier counterparts, or that the archi-
tecture’s memory model doesn’t require the matching barriers.

There are cases where one side of the matching barriers (which we will refer to as "fast
side") is executed much more often than the other (which we will refer to as "slow
side"). This is a prime target for the use of membarrier(). The key idea is to replace,
for these matching barriers, the fast-side memory barriers by simple compiler barriers,
for example:

asm volatile ("" : : : "memory")

and replace the slow-side memory barriers by calls to membarrier().

This will add overhead to the slow side, and remove overhead from the fast side, thus re-
sulting in an overall performance increase as long as the slow side is infrequent enough
that the overhead of the membarrier() calls does not outweigh the performance gain on
the fast side.

The cmd argument is one of the following:

MEMBARRIER_CMD_QUERY (since Linux 4.3)
Query the set of supported commands. The return value of the call is a bit mask
of supported commands. MEMBARRIER_CMD_QUERY, which has the
value 0, is not itself included in this bit mask. This command is always sup-
ported (on kernels where membarrier() is provided).

MEMBARRIER_CMD_GLOBAL (since Linux 4.16)
Ensure that all threads from all processes on the system pass through a state
where all memory accesses to user-space addresses match program order be-
tween entry to and return from the membarrier() system call. All threads on the
system are targeted by this command.

Linux man-pages 6.16 2025-09-21 445

membarrier(2) System Calls Manual membarrier(2)

MEMBARRIER_CMD_GLOBAL_EXPEDITED (since Linux 4.16)
Execute a memory barrier on all running threads of all processes that previously
registered with MEMBARRIER_CMD_REGISTER_GLOBAL_EXPE-
DITED.

Upon return from the system call, the calling thread has a guarantee that all run-
ning threads have passed through a state where all memory accesses to user-
space addresses match program order between entry to and return from the sys-
tem call (non-running threads are de facto in such a state). This guarantee is pro-
vided only for the threads of processes that previously registered with MEM-
BARRIER_CMD_REGISTER_GLOBAL_EXPEDITED.

Given that registration is about the intent to receive the barriers, it is valid to in-
voke MEMBARRIER_CMD_GLOBAL_EXPEDITED from a process that
has not employed MEMBARRIER_CMD_REGISTER_GLOBAL_EXPE-
DITED.

The "expedited" commands complete faster than the non-expedited ones; they
never block, but have the downside of causing extra overhead.

MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED (since Linux 4.16)
Register the process’s intent to receive MEMBAR-
RIER_CMD_GLOBAL_EXPEDITED memory barriers.

MEMBARRIER_CMD_PRIVATE_EXPEDITED (since Linux 4.14)
Execute a memory barrier on each running thread belonging to the same process
as the calling thread.

Upon return from the system call, the calling thread has a guarantee that all its
running thread siblings have passed through a state where all memory accesses
to user-space addresses match program order between entry to and return from
the system call (non-running threads are de facto in such a state). This guarantee
is provided only for threads in the same process as the calling thread.

The "expedited" commands complete faster than the non-expedited ones; they
never block, but have the downside of causing extra overhead.

A process must register its intent to use the private expedited command prior to
using it.

MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED (since Linux 4.14)
Register the process’s intent to use MEMBARRIER_CMD_PRIVATE_EXPE-
DITED.

MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE (since Linux 4.16)
In addition to providing the memory ordering guarantees described in MEM-
BARRIER_CMD_PRIVATE_EXPEDITED, upon return from system call the
calling thread has a guarantee that all its running thread siblings have executed a
core serializing instruction. This guarantee is provided only for threads in the
same process as the calling thread.

The "expedited" commands complete faster than the non-expedited ones, they
never block, but have the downside of causing extra overhead.

Linux man-pages 6.16 2025-09-21 446

membarrier(2) System Calls Manual membarrier(2)

A process must register its intent to use the private expedited sync core com-
mand prior to using it.

MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE
(since Linux 4.16)

Register the process’s intent to use MEMBARRIER_CMD_PRIVATE_EXPE-
DITED_SYNC_CORE.

MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ (since Linux 5.10)
Ensure the caller thread, upon return from system call, that all its running thread
siblings have any currently running rseq critical sections restarted if flags para-
meter is 0; if flags parameter is MEMBARRIER_CMD_FLAG_CPU, then
this operation is performed only on CPU indicated by cpu_id . This guarantee is
provided only for threads in the same process as the calling thread.

RSEQ membarrier is only available in the "private expedited" form.

A process must register its intent to use the private expedited rseq command
prior to using it.

MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ (since Linux
5.10)

Register the process’s intent to use MEMBARRIER_CMD_PRIVATE_EXPE-
DITED_RSEQ.

MEMBARRIER_CMD_SHARED (since Linux 4.3)
This is an alias for MEMBARRIER_CMD_GLOBAL that exists for header
backward compatibility.

The flags argument must be specified as 0 unless the command is MEMBAR-
RIER_CMD_PRIVATE_EXPEDITED_RSEQ, in which case flags can be either 0 or
MEMBARRIER_CMD_FLAG_CPU.

The cpu_id argument is ignored unless flags is MEMBARRIER_CMD_FLAG_CPU,
in which case it must specify the CPU targeted by this membarrier command.

All memory accesses performed in program order from each targeted thread are guaran-
teed to be ordered with respect to membarrier().

If we use the semantic barrier() to represent a compiler barrier forcing memory accesses
to be performed in program order across the barrier, and smp_mb() to represent explicit
memory barriers forcing full memory ordering across the barrier, we have the following
ordering table for each pairing of barrier(), membarrier(), and smp_mb(). The pair or-
dering is detailed as (O: ordered, X: not ordered):

barrier() smp_mb() membarrier()
barrier() X X O
smp_mb() X O O
membarrier() O O O

RETURN VALUE
On success, the MEMBARRIER_CMD_QUERY operation returns a bit mask of sup-
ported commands, and the MEMBARRIER_CMD_GLOBAL, MEMBAR-
RIER_CMD_GLOBAL_EXPEDITED,

Linux man-pages 6.16 2025-09-21 447

membarrier(2) System Calls Manual membarrier(2)

MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED, MEMBAR-
RIER_CMD_PRIVATE_EXPEDITED, MEMBARRIER_CMD_REGISTER_PRI-
VATE_EXPEDITED, MEMBARRIER_CMD_PRIVATE_EXPE-
DITED_SYNC_CORE, and MEMBARRIER_CMD_REGISTER_PRIVATE_EX-
PEDITED_SYNC_CORE operations return zero. On error, -1 is returned, and errno
is set to indicate the error.

For a given command, with flags set to 0, this system call is guaranteed to always return
the same value until reboot. Further calls with the same arguments will lead to the same
result. Therefore, with flags set to 0, error handling is required only for the first call to
membarrier().

ERRORS
EINVAL

cmd is invalid, or flags is nonzero, or the MEMBARRIER_CMD_GLOBAL
command is disabled because the nohz_full CPU parameter has been set, or the
MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE and
MEMBARRIER_CMD_REGISTER_PRIVATE_EXPE-
DITED_SYNC_CORE commands are not implemented by the architecture.

ENOSYS
The membarrier() system call is not implemented by this kernel.

EPERM
The current process was not registered prior to using private expedited com-
mands.

STANDARDS
Linux.

HISTORY
Linux 4.3.

Before Linux 5.10, the prototype was:

int membarrier(int cmd, int flags);

NOTES
A memory barrier instruction is part of the instruction set of architectures with weakly
ordered memory models. It orders memory accesses prior to the barrier and after the
barrier with respect to matching barriers on other cores. For instance, a load fence can
order loads prior to and following that fence with respect to stores ordered by store
fences.

Program order is the order in which instructions are ordered in the program assembly
code.

Examples where membarrier() can be useful include implementations of Read-Copy-
Update libraries and garbage collectors.

EXAMPLES
Assuming a multithreaded application where "fast_path()" is executed very frequently,
and where "slow_path()" is executed infrequently, the following code (x86) can be trans-
formed using membarrier():

Linux man-pages 6.16 2025-09-21 448

membarrier(2) System Calls Manual membarrier(2)

#include <stdlib.h>

static volatile int a, b;

static void
fast_path(int *read_b)
{

a = 1;
asm volatile ("mfence" : : : "memory");
*read_b = b;

}

static void
slow_path(int *read_a)
{

b = 1;
asm volatile ("mfence" : : : "memory");
*read_a = a;

}

int
main(void)
{

int read_a, read_b;

/*
* Real applications would call fast_path() and slow_path()
* from different threads. Call those from main() to keep
* this example short.
*/

slow_path(&read_a);
fast_path(&read_b);

/*
* read_b == 0 implies read_a == 1 and
* read_a == 0 implies read_b == 1.
*/

if (read_b == 0 && read_a == 0)
abort();

exit(EXIT_SUCCESS);
}

The code above transformed to use membarrier() becomes:

#define _GNU_SOURCE

Linux man-pages 6.16 2025-09-21 449

membarrier(2) System Calls Manual membarrier(2)

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/syscall.h>
#include <linux/membarrier.h>

static volatile int a, b;

static int
membarrier(int cmd, unsigned int flags, int cpu_id)
{

return syscall(__NR_membarrier, cmd, flags, cpu_id);
}

static int
init_membarrier(void)
{

int ret;

/* Check that membarrier() is supported. */

ret = membarrier(MEMBARRIER_CMD_QUERY, 0, 0);
if (ret < 0) {

perror("membarrier");
return -1;

}

if (!(ret & MEMBARRIER_CMD_GLOBAL)) {
fprintf(stderr,

"membarrier does not support MEMBARRIER_CMD_GLOBAL\n");
return -1;

}

return 0;
}

static void
fast_path(int *read_b)
{

a = 1;
asm volatile ("" : : : "memory");
*read_b = b;

}

static void
slow_path(int *read_a)
{

Linux man-pages 6.16 2025-09-21 450

membarrier(2) System Calls Manual membarrier(2)

b = 1;
membarrier(MEMBARRIER_CMD_GLOBAL, 0, 0);
*read_a = a;

}

int
main(int argc, char *argv[])
{

int read_a, read_b;

if (init_membarrier())
exit(EXIT_FAILURE);

/*
* Real applications would call fast_path() and slow_path()
* from different threads. Call those from main() to keep
* this example short.
*/

slow_path(&read_a);
fast_path(&read_b);

/*
* read_b == 0 implies read_a == 1 and
* read_a == 0 implies read_b == 1.
*/

if (read_b == 0 && read_a == 0)
abort();

exit(EXIT_SUCCESS);
}

Linux man-pages 6.16 2025-09-21 451

memfd_create(2) System Calls Manual memfd_create(2)

NAME
memfd_create - create an anonymous file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

int memfd_create(const char *name, unsigned int flags);

DESCRIPTION
memfd_create() creates an anonymous file and returns a file descriptor that refers to it.
The file behaves like a regular file, and so can be modified, truncated, memory-mapped,
and so on. However, unlike a regular file, it lives in RAM and has a volatile backing
storage. Once all references to the file are dropped, it is automatically released. Anony-
mous memory is used for all backing pages of the file. Therefore, files created by
memfd_create() have the same semantics as other anonymous memory allocations such
as those allocated using mmap(2) with the MAP_ANONYMOUS flag.

The initial size of the file is set to 0. Following the call, the file size should be set using
ftruncate(2). (Alternatively, the file may be populated by calls to write(2) or similar.)

The name supplied in name is used as a filename and will be displayed as the target of
the corresponding symbolic link in the directory /proc/self/fd/ . The displayed name is
always prefixed with memfd: and serves only for debugging purposes. Names do not af-
fect the behavior of the file descriptor, and as such multiple files can have the same
name without any side effects.

The following values may be bitwise ORed in flags to change the behavior of
memfd_create():

MFD_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor. See the
description of the O_CLOEXEC flag in open(2) for reasons why this may be
useful.

MFD_ALLOW_SEALING
Allow sealing operations on this file. See the discussion of the F_ADD_SEALS
and F_GET_SEALS operations in fcntl(2), and also NOTES, below. The initial
set of seals is empty. If this flag is not set, the initial set of seals will be
F_SEAL_SEAL, meaning that no other seals can be set on the file.

MFD_HUGETLB (since Linux 4.14)
The anonymous file will be created in the hugetlbfs filesystem using huge pages.
See the Linux kernel source file Documentation/admin-guide/mm/hugetlb-
page.rst for more information about hugetlbfs. Specifying both
MFD_HUGETLB and MFD_ALLOW_SEALING in flags is supported since
Linux 4.16.

MFD_HUGE_2MB

Linux man-pages 6.16 2025-09-21 452

memfd_create(2) System Calls Manual memfd_create(2)

MFD_HUGE_1GB
. . . Used in conjunction with MFD_HUGETLB to select alternative hugetlb page

sizes (respectively, 2 MB, 1 GB, ...) on systems that support multiple hugetlb
page sizes. Definitions for known huge page sizes are included in the header file
<linux/memfd.h>.

For details on encoding huge page sizes not included in the header file, see the
discussion of the similarly named constants in mmap(2).

Unused bits in flags must be 0.

As its return value, memfd_create() returns a new file descriptor that can be used to re-
fer to the file. This file descriptor is opened for both reading and writing (O_RDWR)
and O_LARGEFILE is set for the file descriptor.

With respect to fork(2) and execve(2), the usual semantics apply for the file descriptor
created by memfd_create(). A copy of the file descriptor is inherited by the child pro-
duced by fork(2) and refers to the same file. The file descriptor is preserved across ex-
ecve(2), unless the close-on-exec flag has been set.

RETURN VALUE
On success, memfd_create() returns a new file descriptor. On error, -1 is returned and
errno is set to indicate the error.

ERRORS
EFAULT

The address in name points to invalid memory.

EINVAL
flags included unknown bits.

EINVAL
name was too long. (The limit is 249 bytes, excluding the terminating null byte.)

EINVAL
Both MFD_HUGETLB and MFD_ALLOW_SEALING were specified in
flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
There was insufficient memory to create a new anonymous file.

EPERM
The MFD_HUGETLB flag was specified, but the caller was not privileged (did
not have the CAP_IPC_LOCK capability) and is not a member of the
hugetlb_shm_group group; see the description of
/proc/sys/vm/hugetlb_shm_group in proc_sys_vm(5).

Linux man-pages 6.16 2025-09-21 453

memfd_create(2) System Calls Manual memfd_create(2)

STANDARDS
Linux.

HISTORY
Linux 3.17, glibc 2.27.

NOTES
The memfd_create() system call provides a simple alternative to manually mounting a
tmpfs(5) filesystem and creating and opening a file in that filesystem. The primary pur-
pose of memfd_create() is to create files and associated file descriptors that are used
with the file-sealing APIs provided by fcntl(2).

The memfd_create() system call also has uses without file sealing (which is why file-
sealing is disabled, unless explicitly requested with the MFD_ALLOW_SEALING
flag). In particular, it can be used as an alternative to creating files in tmp or as an alter-
native to using the open(2) O_TMPFILE in cases where there is no intention to actually
link the resulting file into the filesystem.

File sealing
In the absence of file sealing, processes that communicate via shared memory must ei-
ther trust each other, or take measures to deal with the possibility that an untrusted peer
may manipulate the shared memory region in problematic ways. For example, an un-
trusted peer might modify the contents of the shared memory at any time, or shrink the
shared memory region. The former possibility leaves the local process vulnerable to
time-of-check-to-time-of-use race conditions (typically dealt with by copying data from
the shared memory region before checking and using it). The latter possibility leaves
the local process vulnerable to SIGBUS signals when an attempt is made to access a
now-nonexistent location in the shared memory region. (Dealing with this possibility
necessitates the use of a handler for the SIGBUS signal.)

Dealing with untrusted peers imposes extra complexity on code that employs shared
memory. Memory sealing enables that extra complexity to be eliminated, by allowing a
process to operate secure in the knowledge that its peer can’t modify the shared memory
in an undesired fashion.

An example of the usage of the sealing mechanism is as follows:

(1) The first process creates a tmpfs(5) file using memfd_create(). The call yields a
file descriptor used in subsequent steps.

(2) The first process sizes the file created in the previous step using ftruncate(2),
maps it using mmap(2), and populates the shared memory with the desired data.

(3) The first process uses the fcntl(2) F_ADD_SEALS operation to place one or more
seals on the file, in order to restrict further modifications on the file. (If placing
the seal F_SEAL_WRITE, then it will be necessary to first unmap the shared
writable mapping created in the previous step. Otherwise, behavior similar to
F_SEAL_WRITE can be achieved by using F_SEAL_FUTURE_WRITE,
which will prevent future writes via mmap(2) and write(2) from succeeding while
keeping existing shared writable mappings).

Linux man-pages 6.16 2025-09-21 454

memfd_create(2) System Calls Manual memfd_create(2)

(4) A second process obtains a file descriptor for the tmpfs(5) file and maps it.
Among the possible ways in which this could happen are the following:

• The process that called memfd_create() could transfer the resulting file de-
scriptor to the second process via a UNIX domain socket (see unix(7) and
cmsg(3)). The second process then maps the file using mmap(2).

• The second process is created via fork(2) and thus automatically inherits the
file descriptor and mapping. (Note that in this case and the next, there is a nat-
ural trust relationship between the two processes, since they are running under
the same user ID. Therefore, file sealing would not normally be necessary.)

• The second process opens the file /proc/ pid /fd/ fd, where <pid> is the PID of
the first process (the one that called memfd_create()), and <fd> is the number
of the file descriptor returned by the call to memfd_create() in that process.
The second process then maps the file using mmap(2).

(5) The second process uses the fcntl(2) F_GET_SEALS operation to retrieve the bit
mask of seals that has been applied to the file. This bit mask can be inspected in
order to determine what kinds of restrictions have been placed on file modifica-
tions. If desired, the second process can apply further seals to impose additional
restrictions (so long as the F_SEAL_SEAL seal has not yet been applied).

EXAMPLES
Below are shown two example programs that demonstrate the use of memfd_create()
and the file sealing API.

The first program, t_memfd_create.c, creates a tmpfs(5) file using memfd_create(), sets
a size for the file, maps it into memory, and optionally places some seals on the file. The
program accepts up to three command-line arguments, of which the first two are re-
quired. The first argument is the name to associate with the file, the second argument is
the size to be set for the file, and the optional third argument is a string of characters that
specify seals to be set on the file.

The second program, t_get_seals.c, can be used to open an existing file that was created
via memfd_create() and inspect the set of seals that have been applied to that file.

The following shell session demonstrates the use of these programs. First we create a
tmpfs(5) file and set some seals on it:

$./t_memfd_create my_memfd_file 4096 sw &
[1] 11775
PID: 11775; fd: 3; /proc/11775/fd/3

At this point, the t_memfd_create program continues to run in the background. From
another program, we can obtain a file descriptor for the file created by memfd_create()
by opening the /proc/ pid /fd file that corresponds to the file descriptor opened by
memfd_create(). Using that pathname, we inspect the content of the /proc/ pid /fd sym-
bolic link, and use our t_get_seals program to view the seals that have been placed on
the file:

$ readlink /proc/11775/fd/3;
/memfd:my_memfd_file (deleted)
$./t_get_seals /proc/11775/fd/3;

Linux man-pages 6.16 2025-09-21 455

memfd_create(2) System Calls Manual memfd_create(2)

Existing seals: WRITE SHRINK

Program source: t_memfd_create.c

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;
char *name, *seals_arg;
ssize_t size;
unsigned int seals;

if (argc < 3) {
fprintf(stderr, "%s name size [seals]\n", argv[0]);
fprintf(stderr, "\t'seals' can contain any of the "

"following characters:\n");
fprintf(stderr, "\t\tg - F_SEAL_GROW\n");
fprintf(stderr, "\t\ts - F_SEAL_SHRINK\n");
fprintf(stderr, "\t\tw - F_SEAL_WRITE\n");
fprintf(stderr, "\t\tW - F_SEAL_FUTURE_WRITE\n");
fprintf(stderr, "\t\tS - F_SEAL_SEAL\n");
exit(EXIT_FAILURE);

}

name = argv[1];
size = atoi(argv[2]);
seals_arg = argv[3];

/* Create an anonymous file in tmpfs; allow seals to be
placed on the file. */

fd = memfd_create(name, MFD_ALLOW_SEALING);
if (fd == -1)

err(EXIT_FAILURE, "memfd_create");

/* Size the file as specified on the command line. */

Linux man-pages 6.16 2025-09-21 456

memfd_create(2) System Calls Manual memfd_create(2)

if (ftruncate(fd, size) == -1)
err(EXIT_FAILURE, "truncate");

printf("PID: %jd; fd: %d; /proc/%jd/fd/%d\n",
(intmax_t) getpid(), fd, (intmax_t) getpid(), fd);

/* Code to map the file and populate the mapping with data
omitted. */

/* If a 'seals' command-line argument was supplied, set some
seals on the file. */

if (seals_arg != NULL) {
seals = 0;

if (strchr(seals_arg, 'g') != NULL)
seals |= F_SEAL_GROW;

if (strchr(seals_arg, 's') != NULL)
seals |= F_SEAL_SHRINK;

if (strchr(seals_arg, 'w') != NULL)
seals |= F_SEAL_WRITE;

if (strchr(seals_arg, 'W') != NULL)
seals |= F_SEAL_FUTURE_WRITE;

if (strchr(seals_arg, 'S') != NULL)
seals |= F_SEAL_SEAL;

if (fcntl(fd, F_ADD_SEALS, seals) == -1)
err(EXIT_FAILURE, "fcntl");

}

/* Keep running, so that the file created by memfd_create()
continues to exist. */

pause();

exit(EXIT_SUCCESS);
}

Program source: t_get_seals.c

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])

Linux man-pages 6.16 2025-09-21 457

memfd_create(2) System Calls Manual memfd_create(2)

{
int fd;
unsigned int seals;

if (argc != 2) {
fprintf(stderr, "%s /proc/PID/fd/FD\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDWR);
if (fd == -1)

err(EXIT_FAILURE, "open");

seals = fcntl(fd, F_GET_SEALS);
if (seals == -1)

err(EXIT_FAILURE, "fcntl");

printf("Existing seals:");
if (seals & F_SEAL_SEAL)

printf(" SEAL");
if (seals & F_SEAL_GROW)

printf(" GROW");
if (seals & F_SEAL_WRITE)

printf(" WRITE");
if (seals & F_SEAL_FUTURE_WRITE)

printf(" FUTURE_WRITE");
if (seals & F_SEAL_SHRINK)

printf(" SHRINK");
printf("\n");

/* Code to map the file and access the contents of the
resulting mapping omitted. */

exit(EXIT_SUCCESS);
}

SEE ALSO
fcntl(2), ftruncate(2), memfd_secret(2), mmap(2), shmget(2), shm_open(3)

Linux man-pages 6.16 2025-09-21 458

memfd_secret(2) System Calls Manual memfd_secret(2)

NAME
memfd_secret - create an anonymous RAM-based file to access secret memory regions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_memfd_secret, unsigned int flags);

Note: glibc provides no wrapper for memfd_secret(), necessitating the use of syscall(2).

DESCRIPTION
memfd_secret() creates an anonymous RAM-based file and returns a file descriptor that
refers to it. The file provides a way to create and access memory regions with stronger
protection than usual RAM-based files and anonymous memory mappings. Once all
open references to the file are closed, it is automatically released. The initial size of the
file is set to 0. Following the call, the file size should be set using ftruncate(2).

The memory areas backing the file created with memfd_secret(2) are visible only to the
processes that have access to the file descriptor. The memory region is removed from
the kernel page tables and only the page tables of the processes holding the file descrip-
tor map the corresponding physical memory. (Thus, the pages in the region can’t be ac-
cessed by the kernel itself, so that, for example, pointers to the region can’t be passed to
system calls.)

The following values may be bitwise ORed in flags to control the behavior of
memfd_secret():

FD_CLOEXEC
Set the close-on-exec flag on the new file descriptor, which causes the region to
be removed from the process on execve(2). See the description of the
O_CLOEXEC flag in open(2)

As its return value, memfd_secret() returns a new file descriptor that refers to an anony-
mous file. This file descriptor is opened for both reading and writing (O_RDWR) and
O_LARGEFILE is set for the file descriptor.

With respect to fork(2) and execve(2), the usual semantics apply for the file descriptor
created by memfd_secret(). A copy of the file descriptor is inherited by the child pro-
duced by fork(2) and refers to the same file. The file descriptor is preserved across ex-
ecve(2), unless the close-on-exec flag has been set.

The memory region is locked into memory in the same way as with mlock(2), so that it
will never be written into swap, and hibernation is inhibited for as long as any
memfd_secret() descriptions exist. However the implementation of memfd_secret()
will not try to populate the whole range during the mmap(2) call that attaches the region
into the process’s address space; instead, the pages are only actually allocated as they
are faulted in. The amount of memory allowed for memory mappings of the file de-
scriptor obeys the same rules as mlock(2) and cannot exceed RLIMIT_MEMLOCK.

Linux man-pages 6.16 2025-05-17 459

memfd_secret(2) System Calls Manual memfd_secret(2)

RETURN VALUE
On success, memfd_secret() returns a new file descriptor. On error, -1 is returned and
errno is set to indicate the error.

ERRORS
EINVAL

flags included unknown bits.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

EMFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
There was insufficient memory to create a new anonymous file.

ENOSYS
memfd_secret() is not implemented on this architecture, or has not been enabled
on the kernel command-line with secretmem_enable=1.

STANDARDS
Linux.

HISTORY
Linux 5.14.

Before Linux 6.5, memfd_secret() was disabled by default and only available if the sys-
tem administrator turned it on using "secretmem.enable=y" kernel parameter.

NOTES
The memfd_secret() system call is designed to allow a user-space process to create a
range of memory that is inaccessible to anybody else - kernel included. There is no
100% guarantee that kernel won’t be able to access memory ranges backed by
memfd_secret() in any circumstances, but nevertheless, it is much harder to exfiltrate
data from these regions.

memfd_secret() provides the following protections:

• Enhanced protection (in conjunction with all the other in-kernel attack prevention
systems) against ROP attacks. Absence of any in-kernel primitive for accessing
memory backed by memfd_secret() means that one-gadget ROP attack can’t work
to perform data exfiltration. The attacker would need to find enough ROP gadgets to
reconstruct the missing page table entries, which significantly increases difficulty of
the attack, especially when other protections like the kernel stack size limit and ad-
dress space layout randomization are in place.

• Prevent cross-process user-space memory exposures. Once a region for a
memfd_secret() memory mapping is allocated, the user can’t accidentally pass it
into the kernel to be transmitted somewhere. The memory pages in this region can-
not be accessed via the direct map and they are disallowed in get_user_pages.

• Harden against exploited kernel flaws. In order to access memory areas backed by
memfd_secret(), a kernel-side attack would need to either walk the page tables and
create new ones, or spawn a new privileged user-space process to perform secrets

Linux man-pages 6.16 2025-05-17 460

memfd_secret(2) System Calls Manual memfd_secret(2)

exfiltration using ptrace(2).

To prevent potential data leaks of memory regions backed by memfd_secret() from a
hybernation image, hybernation is prevented when there are active memfd_secret()
users.

SEE ALSO
fcntl(2), ftruncate(2), mlock(2), memfd_create(2), mmap(2), setrlimit(2)

Linux man-pages 6.16 2025-05-17 461

migrate_pages(2) System Calls Manual migrate_pages(2)

NAME
migrate_pages - move all pages in a process to another set of nodes

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long migrate_pages(int pid , unsigned long maxnode,
const unsigned long *old_nodes,
const unsigned long *new_nodes);

DESCRIPTION
migrate_pages() attempts to move all pages of the process pid that are in memory
nodes old_nodes to the memory nodes in new_nodes. Pages not located in any node in
old_nodes will not be migrated. As far as possible, the kernel maintains the relative
topology relationship inside old_nodes during the migration to new_nodes.

The old_nodes and new_nodes arguments are pointers to bit masks of node numbers,
with up to maxnode bits in each mask. These masks are maintained as arrays of un-
signed long integers (in the last long integer, the bits beyond those specified by maxnode
are ignored). The maxnode argument is the maximum node number in the bit mask plus
one (this is the same as in mbind(2), but different from select(2)).

The pid argument is the ID of the process whose pages are to be moved. To move pages
in another process, the caller must be privileged (CAP_SYS_NICE) or the real or effec-
tive user ID of the calling process must match the real or saved-set user ID of the target
process. If pid is 0, then migrate_pages() moves pages of the calling process.

Pages shared with another process will be moved only if the initiating process has the
CAP_SYS_NICE privilege.

RETURN VALUE
On success migrate_pages() returns the number of pages that could not be moved (i.e.,
a return of zero means that all pages were successfully moved). On error, it returns -1,
and sets errno to indicate the error.

ERRORS
EFAULT

Part or all of the memory range specified by old_nodes/new_nodes and maxnode
points outside your accessible address space.

EINVAL
The value specified by maxnode exceeds a kernel-imposed limit. Or, old_nodes
or new_nodes specifies one or more node IDs that are greater than the maximum
supported node ID. Or, none of the node IDs specified by new_nodes are on-line
and allowed by the process’s current cpuset context, or none of the specified
nodes contain memory.

EPERM
Insufficient privilege (CAP_SYS_NICE) to move pages of the process specified
by pid , or insufficient privilege (CAP_SYS_NICE) to access the specified target
nodes.

Linux man-pages 6.16 2025-05-17 462

migrate_pages(2) System Calls Manual migrate_pages(2)

ESRCH
No process matching pid could be found.

STANDARDS
Linux.

HISTORY
Linux 2.6.16.

NOTES
For information on library support, see numa(7).

Use get_mempolicy(2) with the MPOL_F_MEMS_ALLOWED flag to obtain the set
of nodes that are allowed by the calling process’s cpuset. Note that this information is
subject to change at any time by manual or automatic reconfiguration of the cpuset.

Use of migrate_pages() may result in pages whose location (node) violates the memory
policy established for the specified addresses (see mbind(2)) and/or the specified process
(see set_mempolicy(2)). That is, memory policy does not constrain the destination
nodes used by migrate_pages().

The <numaif.h> header is not included with glibc, but requires installing libnuma-de-
vel or a similar package.

SEE ALSO
get_mempolicy(2), mbind(2), set_mempolicy(2), numa(3), numa_maps(5), cpuset(7),
numa(7), migratepages(8), numastat(8)

Documentation/vm/page_migration.rst in the Linux kernel source tree

Linux man-pages 6.16 2025-05-17 463

mincore(2) System Calls Manual mincore(2)

NAME
mincore - determine whether pages are resident in memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int mincore(size_t length;
void addr[length], size_t length, unsigned char *vec);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mincore():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
mincore() returns a vector that indicates whether pages of the calling process’s virtual
memory are resident in core (RAM), and so will not cause a disk access (page fault) if
referenced. The kernel returns residency information about the pages starting at the ad-
dress addr, and continuing for length bytes.

The addr argument must be a multiple of the system page size. The length argument
need not be a multiple of the page size, but since residency information is returned for
whole pages, length is effectively rounded up to the next multiple of the page size. One
may obtain the page size (PAGE_SIZE) using sysconf(_SC_PAGESIZE).

The vec argument must point to an array containing at least (length+PAGE_SIZE-1) /
PAGE_SIZE bytes. On return, the least significant bit of each byte will be set if the cor-
responding page is currently resident in memory, and be clear otherwise. (The settings
of the other bits in each byte are undefined; these bits are reserved for possible later
use.) Of course the information returned in vec is only a snapshot: pages that are not
locked in memory can come and go at any moment, and the contents of vec may already
be stale by the time this call returns.

RETURN VALUE
On success, mincore() returns zero. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EAGAIN kernel is temporarily out of resources.

EFAULT
vec points to an invalid address.

EINVAL
addr is not a multiple of the page size.

ENOMEM
length is greater than (TASK_SIZE - addr). (This could occur if a negative
value is specified for length, since that value will be interpreted as a large

Linux man-pages 6.16 2025-06-28 464

mincore(2) System Calls Manual mincore(2)

unsigned integer.) In Linux 2.6.11 and earlier, the error EINVAL was returned
for this condition.

ENOMEM
addr to addr + length contained unmapped memory.

STANDARDS
None.

HISTORY
Linux 2.3.99pre1, glibc 2.2.

First appeared in 4.4BSD.

NetBSD, FreeBSD, OpenBSD, Solaris 8, AIX 5.1, SunOS 4.1.

BUGS
Before Linux 2.6.21, mincore() did not return correct information for MAP_PRIVATE
mappings, or for nonlinear mappings (established using remap_file_pages(2)).

SEE ALSO
fincore(1), madvise(2), mlock(2), mmap(2), posix_fadvise(2), posix_madvise(3)

Linux man-pages 6.16 2025-06-28 465

mkdir(2) System Calls Manual mkdir(2)

NAME
mkdir, mkdirat - create a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int mkdir(const char *path, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int mkdirat(int dirfd , const char *path, mode_t mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkdirat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
mkdir() attempts to create a directory named path.

The argument mode specifies the mode for the new directory (see inode(7)). It is modi-
fied by the process’s umask in the usual way: in the absence of a default ACL, the mode
of the created directory is (mode & ~umask & 0777). Whether other mode bits are hon-
ored for the created directory depends on the operating system. For Linux, see VER-
SIONS below.

The newly created directory will be owned by the effective user ID of the process. If the
directory containing the file has the set-group-ID bit set, or if the filesystem is mounted
with BSD group semantics (mount -o bsdgroups or, synonymously mount -o grpid), the
new directory will inherit the group ownership from its parent; otherwise it will be
owned by the effective group ID of the process.

If the parent directory has the set-group-ID bit set, then so will the newly created direc-
tory.

mkdirat()
The mkdirat() system call operates in exactly the same way as mkdir(), except for the
differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by mkdir() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like mkdir())

If path is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for mkdirat().

Linux man-pages 6.16 2025-10-29 466

mkdir(2) System Calls Manual mkdir(2)

RETURN VALUE
mkdir() and mkdirat() return zero on success. On error, -1 is returned and errno is set
to indicate the error.

ERRORS
EACCES

The parent directory does not allow write permission to the process, or one of the
directories in path did not allow search permission. (See also
path_resolution(7).)

EBADF
(mkdirat()) path is relative but dirfd is neither AT_FDCWD nor a valid file de-
scriptor.

EDQUOT
The user’s quota of disk blocks or inodes on the filesystem has been exhausted.

EEXIST
path already exists (not necessarily as a directory). This includes the case where
path is a symbolic link, dangling or not.

EFAULT
path points outside your accessible address space.

EINVAL
The final component ("basename") of the new directory’s path is invalid (e.g., it
contains characters not permitted by the underlying filesystem).

ELOOP
Too many symbolic links were encountered in resolving path.

EMLINK
The number of links to the parent directory would exceed LINK_MAX.

ENAMETOOLONG
path was too long.

ENOENT
A directory component in path does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing path has no room for the new directory.

ENOSPC
The new directory cannot be created because the user’s disk quota is exhausted.

ENOTDIR
A component used as a directory in path is not, in fact, a directory.

ENOTDIR
(mkdirat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

Linux man-pages 6.16 2025-10-29 467

mkdir(2) System Calls Manual mkdir(2)

EPERM
The filesystem containing path does not support the creation of directories.

EROFS
path refers to a file on a read-only filesystem.

EOVERFLOW
UID or GID mappings (see user_namespaces(7)) have not been configured.

VERSIONS
Under Linux, apart from the permission bits, the S_ISVTX mode bit is also honored.

glibc notes
On older kernels where mkdirat() is unavailable, the glibc wrapper function falls back
to the use of mkdir(). When path is relative, glibc constructs a pathname based on the
symbolic link in /proc/self/fd that corresponds to the dirfd argument.

STANDARDS
POSIX.1-2024.

HISTORY
mkdir()

SVr4, BSD, POSIX.1-2001.

mkdirat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

NOTES
There are many infelicities in the protocol underlying NFS. Some of these affect
mkdir().

SEE ALSO
mkdir(1), chmod(2), chown(2), mknod(2), mount(2), rmdir(2), stat(2), umask(2), un-
link(2), acl(5), path_resolution(7)

Linux man-pages 6.16 2025-10-29 468

mknod(2) System Calls Manual mknod(2)

NAME
mknod, mknodat - create a special or ordinary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int mknod(const char *path, mode_t mode, dev_t dev);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int mknodat(int dirfd , const char *path, mode_t mode, dev_t dev);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mknod():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The system call mknod() creates a filesystem node (file, device special file, or named
pipe) named path, with attributes specified by mode and dev.

The mode argument specifies both the file mode to use and the type of node to be cre-
ated. It should be a combination (using bitwise OR) of one of the file types listed below
and zero or more of the file mode bits listed in inode(7).

The file mode is modified by the process’s umask in the usual way: in the absence of a
default ACL, the permissions of the created node are (mode & ~umask).

The file type must be one of S_IFREG, S_IFCHR, S_IFBLK, S_IFIFO, or S_IF-
SOCK to specify a regular file (which will be created empty), character special file,
block special file, FIFO (named pipe), or UNIX domain socket, respectively. (Zero file
type is equivalent to type S_IFREG.)

If the file type is S_IFCHR or S_IFBLK, then dev specifies the major and minor num-
bers of the newly created device special file (makedev(3) may be useful to build the
value for dev); otherwise it is ignored.

If path already exists, or is a symbolic link, this call fails with an EEXIST error.

The newly created node will be owned by the effective user ID of the process. If the di-
rectory containing the node has the set-group-ID bit set, or if the filesystem is mounted
with BSD group semantics, the new node will inherit the group ownership from its par-
ent directory; otherwise it will be owned by the effective group ID of the process.

mknodat()
The mknodat() system call operates in exactly the same way as mknod(), except for the
differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by mknod() for a relative pathname).

Linux man-pages 6.16 2025-10-29 469

mknod(2) System Calls Manual mknod(2)

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like mknod())

If path is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for mknodat().

RETURN VALUE
mknod() and mknodat() return zero on success. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
EACCES

The parent directory does not allow write permission to the process, or one of the
directories in the path prefix of path did not allow search permission. (See also
path_resolution(7).)

EBADF
(mknodat()) path is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

EDQUOT
The user’s quota of disk blocks or inodes on the filesystem has been exhausted.

EEXIST
path already exists. This includes the case where path is a symbolic link, dan-
gling or not.

EFAULT
path points outside your accessible address space.

EINVAL
mode requested creation of something other than a regular file, device special
file, FIFO or socket.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path was too long.

ENOENT
A directory component in path does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing path has no room for the new node.

ENOTDIR
A component used as a directory in path is not, in fact, a directory.

ENOTDIR
(mknodat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

Linux man-pages 6.16 2025-10-29 470

mknod(2) System Calls Manual mknod(2)

EPERM
mode requested creation of something other than a regular file, FIFO (named
pipe), or UNIX domain socket, and the caller is not privileged (Linux: does not
have the CAP_MKNOD capability); also returned if the filesystem containing
path does not support the type of node requested.

EROFS
path refers to a file on a read-only filesystem.

VERSIONS
POSIX.1-2001 says: "The only portable use of mknod() is to create a FIFO-special file.
If mode is not S_IFIFO or dev is not 0, the behavior of mknod() is unspecified." How-
ever, nowadays one should never use mknod() for this purpose; one should use
mkfifo(3), a function especially defined for this purpose.

Under Linux, mknod() cannot be used to create directories. One should make directo-
ries with mkdir(2).

STANDARDS
POSIX.1-2024.

HISTORY
mknod()

SVr4, 4.4BSD, POSIX.1-2001 (but see VERSIONS).

mknodat()
Linux 2.6.16, glibc 2.4. POSIX.1-2008.

NOTES
There are many infelicities in the protocol underlying NFS. Some of these affect
mknod() and mknodat().

SEE ALSO
mknod(1), chmod(2), chown(2), fcntl(2), mkdir(2), mount(2), socket(2), stat(2),
umask(2), unlink(2), makedev(3), mkfifo(3), acl(5), path_resolution(7)

Linux man-pages 6.16 2025-10-29 471

mlock(2) System Calls Manual mlock(2)

NAME
mlock, mlock2, munlock, mlockall, munlockall - lock and unlock memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int mlock(size_t size;
const void addr[size], size_t size);

int mlock2(size_t size;
const void addr[size], size_t size, unsigned int flags);

int munlock(size_t size;
const void addr[size], size_t size);

int mlockall(int flags);
int munlockall(void);

DESCRIPTION
mlock(), mlock2(), and mlockall() lock part or all of the calling process’s virtual ad-
dress space into RAM, preventing that memory from being paged to the swap area.

munlock() and munlockall() perform the converse operation, unlocking part or all of
the calling process’s virtual address space, so that pages in the specified virtual address
range can be swapped out again if required by the kernel memory manager.

Memory locking and unlocking are performed in units of whole pages.

mlock(), mlock2(), and munlock()
mlock() locks pages in the address range starting at addr and continuing for size bytes.
All pages that contain a part of the specified address range are guaranteed to be resident
in RAM when the call returns successfully; the pages are guaranteed to stay in RAM un-
til later unlocked.

mlock2() also locks pages in the specified range starting at addr and continuing for size
bytes. However, the state of the pages contained in that range after the call returns suc-
cessfully will depend on the value in the flags argument.

The flags argument can be either 0 or the following constant:

MLOCK_ONFAULT
Lock pages that are currently resident and mark the entire range so that the re-
maining nonresident pages are locked when they are populated by a page fault.

If flags is 0, mlock2() behaves exactly the same as mlock().

munlock() unlocks pages in the address range starting at addr and continuing for size
bytes. After this call, all pages that contain a part of the specified memory range can be
moved to external swap space again by the kernel.

mlockall() and munlockall()
mlockall() locks all pages mapped into the address space of the calling process. This
includes the pages of the code, data, and stack segment, as well as shared libraries, user
space kernel data, shared memory, and memory-mapped files. All mapped pages are

Linux man-pages 6.16 2025-10-29 472

mlock(2) System Calls Manual mlock(2)

guaranteed to be resident in RAM when the call returns successfully; the pages are guar-
anteed to stay in RAM until later unlocked.

The flags argument is constructed as the bitwise OR of one or more of the following
constants:

MCL_CURRENT
Lock all pages which are currently mapped into the address space of the process.

MCL_FUTURE
Lock all pages which will become mapped into the address space of the process
in the future. These could be, for instance, new pages required by a growing
heap and stack as well as new memory-mapped files or shared memory regions.

MCL_ONFAULT (since Linux 4.4)
Used together with MCL_CURRENT, MCL_FUTURE, or both. Mark all cur-
rent (with MCL_CURRENT) or future (with MCL_FUTURE) mappings to
lock pages when they are faulted in. When used with MCL_CURRENT, all
present pages are locked, but mlockall() will not fault in non-present pages.
When used with MCL_FUTURE, all future mappings will be marked to lock
pages when they are faulted in, but they will not be populated by the lock when
the mapping is created. MCL_ONFAULT must be used with either
MCL_CURRENT or MCL_FUTURE or both.

If MCL_FUTURE has been specified, then a later system call (e.g., mmap(2), sbrk(2),
malloc(3)), may fail if it would cause the number of locked bytes to exceed the permit-
ted maximum (see below). In the same circumstances, stack growth may likewise fail:
the kernel will deny stack expansion and deliver a SIGSEGV signal to the process.

munlockall() unlocks all pages mapped into the address space of the calling process.

RETURN VALUE
On success, these system calls return 0. On error, -1 is returned, errno is set to indicate
the error, and no changes are made to any locks in the address space of the process.

ERRORS
EAGAIN

(mlock(), mlock2(), and munlock()) Some or all of the specified address range
could not be locked.

EINVAL
(mlock(), mlock2(), and munlock()) The result of the addition addr+size was
less than addr (e.g., the addition may have resulted in an overflow).

EINVAL
(mlock2()) Unknown flags were specified.

EINVAL
(mlockall()) Unknown flags were specified or MCL_ONFAULT was specified
without either MCL_FUTURE or MCL_CURRENT.

EINVAL
(Not on Linux) addr was not a multiple of the page size.

Linux man-pages 6.16 2025-10-29 473

mlock(2) System Calls Manual mlock(2)

ENOMEM
(mlock(), mlock2(), and munlock()) Some of the specified address range does
not correspond to mapped pages in the address space of the process.

ENOMEM
(mlock(), mlock2(), and munlock()) Locking or unlocking a region would result
in the total number of mappings with distinct attributes (e.g., locked versus un-
locked) exceeding the allowed maximum. (For example, unlocking a range in
the middle of a currently locked mapping would result in three mappings: two
locked mappings at each end and an unlocked mapping in the middle.)

ENOMEM
(Linux 2.6.9 and later) the caller had a nonzero RLIMIT_MEMLOCK soft re-
source limit, but tried to lock more memory than the limit permitted. This limit
is not enforced if the process is privileged (CAP_IPC_LOCK).

ENOMEM
(Linux 2.4 and earlier) the calling process tried to lock more than half of RAM.

EPERM
The caller is not privileged, but needs privilege (CAP_IPC_LOCK) to perform
the requested operation.

EPERM
(munlockall()) (Linux 2.6.8 and earlier) The caller was not privileged
(CAP_IPC_LOCK).

VERSIONS
Linux

Under Linux, mlock(), mlock2(), and munlock() automatically round addr down to the
nearest page boundary. However, the POSIX.1 specification of mlock() and munlock()
allows an implementation to require that addr is page aligned, so portable applications
should ensure this.

The VmLck field of the Linux-specific /proc/ pid /status file shows how many kilobytes
of memory the process with ID PID has locked using mlock(), mlock2(), mlockall(),
and mmap(2) MAP_LOCKED.

STANDARDS
mlock()
munlock()
mlockall()
munlockall()

POSIX.1-2024.

mlock2()
Linux.

On POSIX systems on which mlock() and munlock() are available, _POSIX_MEM-
LOCK_RANGE is defined in <unistd.h> and the number of bytes in a page can be de-
termined from the constant PAGESIZE (if defined) in <limits.h> or by calling
sysconf(_SC_PAGESIZE).

On POSIX systems on which mlockall() and munlockall() are available,

Linux man-pages 6.16 2025-10-29 474

mlock(2) System Calls Manual mlock(2)

_POSIX_MEMLOCK is defined in <unistd.h> to a value greater than 0. (See also
sysconf(3).)

HISTORY
mlock()
munlock()
mlockall()
munlockall()

POSIX.1-2001, POSIX.1-2008, SVr4.

mlock2()
Linux 4.4, glibc 2.27.

NOTES
Memory locking has two main applications: real-time algorithms and high-security data
processing. Real-time applications require deterministic timing, and, like scheduling,
paging is one major cause of unexpected program execution delays. Real-time applica-
tions will usually also switch to a real-time scheduler with sched_setscheduler(2).
Cryptographic security software often handles critical bytes like passwords or secret
keys as data structures. As a result of paging, these secrets could be transferred onto a
persistent swap store medium, where they might be accessible to the enemy long after
the security software has erased the secrets in RAM and terminated. (But be aware that
the suspend mode on laptops and some desktop computers will save a copy of the sys-
tem’s RAM to disk, regardless of memory locks.)

Real-time processes that are using mlockall() to prevent delays on page faults should re-
serve enough locked stack pages before entering the time-critical section, so that no
page fault can be caused by function calls. This can be achieved by calling a function
that allocates a sufficiently large automatic variable (an array) and writes to the memory
occupied by this array in order to touch these stack pages. This way, enough pages will
be mapped for the stack and can be locked into RAM. The dummy writes ensure that
not even copy-on-write page faults can occur in the critical section.

Memory locks are not inherited by a child created via fork(2) and are automatically re-
moved (unlocked) during an execve(2) or when the process terminates. The mlockall()
MCL_FUTURE and MCL_FUTURE | MCL_ONFAULT settings are not inherited by
a child created via fork(2) and are cleared during an execve(2).

Note that fork(2) will prepare the address space for a copy-on-write operation. The con-
sequence is that any write access that follows will cause a page fault that in turn may
cause high latencies for a real-time process. Therefore, it is crucial not to invoke fork(2)
after an mlockall() or mlock() operation—not even from a thread which runs at a low
priority within a process which also has a thread running at elevated priority.

The memory lock on an address range is automatically removed if the address range is
unmapped via munmap(2).

Memory locks do not stack, that is, pages which have been locked several times by calls
to mlock(), mlock2(), or mlockall() will be unlocked by a single call to munlock() for
the corresponding range or by munlockall(). Pages which are mapped to several loca-
tions or by several processes stay locked into RAM as long as they are locked at least at
one location or by at least one process.

Linux man-pages 6.16 2025-10-29 475

mlock(2) System Calls Manual mlock(2)

If a call to mlockall() which uses the MCL_FUTURE flag is followed by another call
that does not specify this flag, the changes made by the MCL_FUTURE call will be
lost.

The mlock2() MLOCK_ONFAULT flag and the mlockall() MCL_ONFAULT flag al-
low efficient memory locking for applications that deal with large mappings where only
a (small) portion of pages in the mapping are touched. In such cases, locking all of the
pages in a mapping would incur a significant penalty for memory locking.

Limits and permissions
In Linux 2.6.8 and earlier, a process must be privileged (CAP_IPC_LOCK) in order to
lock memory and the RLIMIT_MEMLOCK soft resource limit defines a limit on how
much memory the process may lock.

Since Linux 2.6.9, no limits are placed on the amount of memory that a privileged
process can lock and the RLIMIT_MEMLOCK soft resource limit instead defines a
limit on how much memory an unprivileged process may lock.

BUGS
In Linux 4.8 and earlier, a bug in the kernel’s accounting of locked memory for unprivi-
leged processes (i.e., without CAP_IPC_LOCK) meant that if the region specified by
addr and size overlapped an existing lock, then the already locked bytes in the overlap-
ping region were counted twice when checking against the limit. Such double account-
ing could incorrectly calculate a "total locked memory" value for the process that ex-
ceeded the RLIMIT_MEMLOCK limit, with the result that mlock() and mlock2()
would fail on requests that should have succeeded. This bug was fixed in Linux 4.9.

In Linux 2.4 series of kernels up to and including Linux 2.4.17, a bug caused the mlock-
all() MCL_FUTURE flag to be inherited across a fork(2). This was rectified in Linux
2.4.18.

Since Linux 2.6.9, if a privileged process calls mlockall(MCL_FUTURE) and later drops
privileges (loses the CAP_IPC_LOCK capability by, for example, setting its effective
UID to a nonzero value), then subsequent memory allocations (e.g., mmap(2), brk(2))
will fail if the RLIMIT_MEMLOCK resource limit is encountered.

SEE ALSO
mincore(2), mmap(2), setrlimit(2), shmctl(2), sysconf(3), proc(5), capabilities(7)

Linux man-pages 6.16 2025-10-29 476

mmap(2) System Calls Manual mmap(2)

NAME
mmap, munmap - map or unmap files or devices into memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

void *mmap(size_t length;
void addr[length], size_t length, int prot, int flags,
int fd , off_t offset);

int munmap(size_t length;
void addr[length], size_t length);

See VERSIONS for information on feature test macro requirements.

DESCRIPTION
mmap() creates a new mapping in the virtual address space of the calling process. The
starting address for the new mapping is specified in addr. The length argument speci-
fies the length of the mapping (which must be greater than 0).

If addr is NULL, then the kernel chooses the (page-aligned) address at which to create
the mapping; this is the most portable method of creating a new mapping. If addr is not
NULL, then the kernel takes it as a hint about where to place the mapping; on Linux, the
kernel will pick a nearby page boundary (but always above or equal to the value speci-
fied by /proc/sys/vm/mmap_min_addr) and attempt to create the mapping there. If an-
other mapping already exists there, the kernel picks a new address that may or may not
depend on the hint. The address of the new mapping is returned as the result of the call.

The contents of a file mapping (as opposed to an anonymous mapping; see
MAP_ANONYMOUS below), are initialized using length bytes starting at offset offset
in the file (or other object) referred to by the file descriptor fd . offset must be a multiple
of the page size as returned by sysconf(_SC_PAGE_SIZE).

After the mmap() call has returned, the file descriptor, fd , can be closed immediately
without invalidating the mapping.

The prot argument describes the desired memory protection of the mapping (and must
not conflict with the open mode of the file). It is either PROT_NONE or the bitwise
OR of one or more of the following flags:

PROT_EXEC
Pages may be executed.

PROT_READ
Pages may be read.

PROT_WRITE
Pages may be written.

PROT_NONE
Pages may not be accessed.

Linux man-pages 6.16 2025-10-29 477

mmap(2) System Calls Manual mmap(2)

The flags argument
The flags argument determines whether updates to the mapping are visible to other
processes mapping the same region, and whether updates are carried through to the un-
derlying file. This behavior is determined by including exactly one of the following val-
ues in flags:

MAP_SHARED
Share this mapping. Updates to the mapping are visible to other processes map-
ping the same region, and (in the case of file-backed mappings) are carried
through to the underlying file. (To precisely control when updates are carried
through to the underlying file requires the use of msync(2).)

MAP_SHARED_VALIDATE (since Linux 4.15)
This flag provides the same behavior as MAP_SHARED except that
MAP_SHARED mappings ignore unknown flags in flags. By contrast, when
creating a mapping using MAP_SHARED_VALIDATE, the kernel verifies all
passed flags are known and fails the mapping with the error EOPNOTSUPP for
unknown flags. This mapping type is also required to be able to use some map-
ping flags (e.g., MAP_SYNC).

MAP_PRIVATE
Create a private copy-on-write mapping. Updates to the mapping are not visible
to other processes mapping the same file, and are not carried through to the un-
derlying file. It is unspecified whether changes made to the file after the mmap()
call are visible in the mapped region.

Both MAP_SHARED and MAP_PRIVATE are described in POSIX.1-2001 and
POSIX.1-2008. MAP_SHARED_VALIDATE is a Linux extension.

In addition, zero or more of the following values can be ORed in flags:

MAP_32BIT (since Linux 2.4.20, 2.6)
Put the mapping into the first 2 Gigabytes of the process address space. This flag
is supported only on x86-64, for 64-bit programs. It was added to allow thread
stacks to be allocated somewhere in the first 2 GB of memory, so as to improve
context-switch performance on some early 64-bit processors. Modern x86-64
processors no longer have this performance problem, so use of this flag is not re-
quired on those systems. The MAP_32BIT flag is ignored when MAP_FIXED
is set.

MAP_ANON
Synonym for MAP_ANONYMOUS; provided for compatibility with other im-
plementations.

MAP_ANONYMOUS
The mapping is not backed by any file; its contents are initialized to zero. The
fd argument is ignored; however, some implementations require fd to be -1 if
MAP_ANONYMOUS (or MAP_ANON) is specified, and portable applications
should ensure this. The offset argument should be zero. Support for
MAP_ANONYMOUS in conjunction with MAP_SHARED was added in
Linux 2.4.

Linux man-pages 6.16 2025-10-29 478

mmap(2) System Calls Manual mmap(2)

MAP_DENYWRITE
This flag is ignored. (Long ago—Linux 2.0 and earlier—it signaled that at-
tempts to write to the underlying file should fail with ETXTBSY. But this was a
source of denial-of-service attacks.)

MAP_EXECUTABLE
This flag is ignored.

MAP_FILE
Compatibility flag. Ignored.

MAP_FIXED
Don’t interpret addr as a hint: place the mapping at exactly that address. addr
must be suitably aligned: for most architectures a multiple of the page size is suf-
ficient; however, some architectures may impose additional restrictions. If the
memory region specified by addr and length overlaps pages of any existing map-
ping(s), then the overlapped part of the existing mapping(s) will be discarded. If
the specified address cannot be used, mmap() will fail.

Software that aspires to be portable should use the MAP_FIXED flag with care,
keeping in mind that the exact layout of a process’s memory mappings is al-
lowed to change significantly between Linux versions, C library versions, and
operating system releases. Carefully read the discussion of this flag in NOTES!

MAP_FIXED_NOREPLACE (since Linux 4.17)
This flag provides behavior that is similar to MAP_FIXED with respect to the
addr enforcement, but differs in that MAP_FIXED_NOREPLACE never clob-
bers a preexisting mapped range. If the requested range would collide with an
existing mapping, then this call fails with the error EEXIST. This flag can there-
fore be used as a way to atomically (with respect to other threads) attempt to
map an address range: one thread will succeed; all others will report failure.

Note that older kernels which do not recognize the MAP_FIXED_NORE-
PLACE flag will typically (upon detecting a collision with a preexisting map-
ping) fall back to a “non-MAP_FIXED” type of behavior: they will return an
address that is different from the requested address. Therefore, backward-com-
patible software should check the returned address against the requested address.

MAP_GROWSDOWN
This flag is used for stacks. It indicates to the kernel virtual memory system that
the mapping should extend downward in memory. The return address is one
page lower than the memory area that is actually created in the process’s virtual
address space. Touching an address in the "guard" page below the mapping will
cause the mapping to grow by a page. This growth can be repeated until the
mapping grows to within a page of the high end of the next lower mapping, at
which point touching the "guard" page will result in a SIGSEGV signal.

MAP_HUGETLB (since Linux 2.6.32)
Allocate the mapping using "huge" pages. See the Linux kernel source file Doc-
umentation/admin-guide/mm/hugetlbpage.rst for further information, as well as
NOTES, below.

Linux man-pages 6.16 2025-10-29 479

mmap(2) System Calls Manual mmap(2)

MAP_HUGE_2MB
MAP_HUGE_1GB (since Linux 3.8)

Used in conjunction with MAP_HUGETLB to select alternative hugetlb page
sizes (respectively, 2 MB and 1 GB) on systems that support multiple hugetlb
page sizes.

More generally, the desired huge page size can be configured by encoding the
base-2 logarithm of the desired page size in the six bits at the offset
MAP_HUGE_SHIFT. (A value of zero in this bit field provides the default
huge page size; the default huge page size can be discovered via the Hugepage-
size field exposed by /proc/meminfo.) Thus, the above two constants are defined
as:

#define MAP_HUGE_2MB (21 << MAP_HUGE_SHIFT)
#define MAP_HUGE_1GB (30 << MAP_HUGE_SHIFT)

The range of huge page sizes that are supported by the system can be discovered
by listing the subdirectories in /sys/kernel/mm/hugepages.

MAP_LOCKED (since Linux 2.5.37)
Mark the mapped region to be locked in the same way as mlock(2). This imple-
mentation will try to populate (prefault) the whole range but the mmap() call
doesn’t fail with ENOMEM if this fails. Therefore major faults might happen
later on. So the semantic is not as strong as mlock(2). One should use mmap()
plus mlock(2) when major faults are not acceptable after the initialization of the
mapping. The MAP_LOCKED flag is ignored in older kernels.

MAP_NONBLOCK (since Linux 2.5.46)
This flag is meaningful only in conjunction with MAP_POPULATE. Don’t
perform read-ahead: create page tables entries only for pages that are already
present in RAM. Since Linux 2.6.23, this flag causes MAP_POPULATE to do
nothing. One day, the combination of MAP_POPULATE and MAP_NON-
BLOCK may be reimplemented.

MAP_NORESERVE
Do not reserve swap space for this mapping. When swap space is reserved, one
has the guarantee that it is possible to modify the mapping. When swap space is
not reserved one might get SIGSEGV upon a write if no physical memory is
available. See also the discussion of the file /proc/sys/vm/overcommit_memory
in proc_sys_vm(5). Before Linux 2.6, this flag had effect only for private
writable mappings.

MAP_POPULATE (since Linux 2.5.46)
Populate (prefault) page tables for a mapping. For a file mapping, this causes
read-ahead on the file. This will help to reduce blocking on page faults later.
The mmap() call doesn’t fail if the mapping cannot be populated (for example,
due to limitations on the number of mapped huge pages when using
MAP_HUGETLB). Support for MAP_POPULATE in conjunction with pri-
vate mappings was added in Linux 2.6.23.

Linux man-pages 6.16 2025-10-29 480

mmap(2) System Calls Manual mmap(2)

MAP_STACK (since Linux 2.6.27)
Allocate the mapping at an address suitable for a process or thread stack.

This flag is currently a no-op on Linux. However, by employing this flag, appli-
cations can ensure that they transparently obtain support if the flag is imple-
mented in the future. Thus, it is used in the glibc threading implementation to
allow for the fact that some architectures may (later) require special treatment for
stack allocations. A further reason to employ this flag is portability:
MAP_STACK exists (and has an effect) on some other systems (e.g., some of
the BSDs).

MAP_SYNC (since Linux 4.15)
This flag is available only with the MAP_SHARED_VALIDATE mapping type;
mappings of type MAP_SHARED will silently ignore this flag. This flag is
supported only for files supporting DAX (direct mapping of persistent memory).
For other files, creating a mapping with this flag results in an EOPNOTSUPP
error.

Shared file mappings with this flag provide the guarantee that while some mem-
ory is mapped writable in the address space of the process, it will be visible in
the same file at the same offset even after the system crashes or is rebooted. In
conjunction with the use of appropriate CPU instructions, this provides users of
such mappings with a more efficient way of making data modifications persis-
tent.

MAP_UNINITIALIZED (since Linux 2.6.33)
Don’t clear anonymous pages. This flag is intended to improve performance on
embedded devices. This flag is honored only if the kernel was configured with
the CONFIG_MMAP_ALLOW_UNINITIALIZED option. Because of the
security implications, that option is normally enabled only on embedded devices
(i.e., devices where one has complete control of the contents of user memory).

Of the above flags, only MAP_FIXED is specified in POSIX.1-2001 and
POSIX.1-2008. However, most systems also support MAP_ANONYMOUS (or its
synonym MAP_ANON).

munmap()
The munmap() system call deletes the mappings for the specified address range, and
causes further references to addresses within the range to generate invalid memory refer-
ences. The region is also automatically unmapped when the process is terminated. On
the other hand, closing the file descriptor does not unmap the region.

The address addr must be a multiple of the page size (but length need not be). All
pages containing a part of the indicated range are unmapped, and subsequent references
to these pages will generate SIGSEGV. It is not an error if the indicated range does not
contain any mapped pages.

RETURN VALUE
On success, mmap() returns a pointer to the mapped area. On error, the value
MAP_FAILED (that is, (void *) -1) is returned, and errno is set to indicate the error.

On success, munmap() returns 0. On failure, it returns -1, and errno is set to indicate

Linux man-pages 6.16 2025-10-29 481

mmap(2) System Calls Manual mmap(2)

the error (probably to EINVAL).

ERRORS
EACCES

A file descriptor refers to a non-regular file. Or a file mapping was requested,
but fd is not open for reading. Or MAP_SHARED was requested and
PROT_WRITE is set, but fd is not open in read/write (O_RDWR) mode. Or
PROT_WRITE is set, but the file is append-only.

EAGAIN
The file has been locked, or too much memory has been locked (see setrlimit(2)).

EBADF
fd is not a valid file descriptor (and MAP_ANONYMOUS was not set).

EEXIST
MAP_FIXED_NOREPLACE was specified in flags, and the range covered by
addr and length clashes with an existing mapping.

EINVAL
We don’t like addr, length, or offset (e.g., they are too large, or not aligned on a
page boundary).

EINVAL
(since Linux 2.6.12) length was 0.

EINVAL
flags contained none of MAP_PRIVATE, MAP_SHARED, or
MAP_SHARED_VALIDATE.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
The underlying filesystem of the specified file does not support memory map-
ping.

ENOMEM
No memory is available.

ENOMEM
The process’s maximum number of mappings would have been exceeded. This
error can also occur for munmap(), when unmapping a region in the middle of
an existing mapping, since this results in two smaller mappings on either side of
the region being unmapped.

ENOMEM
(since Linux 4.7) The process’s RLIMIT_DATA limit, described in getrlimit(2),
would have been exceeded.

ENOMEM
We don’t like addr, because it exceeds the virtual address space of the CPU.

Linux man-pages 6.16 2025-10-29 482

mmap(2) System Calls Manual mmap(2)

EOVERFLOW
On 32-bit architecture together with the large file extension (i.e., using 64-bit
off_t): the number of pages used for length plus number of pages used for offset
would overflow unsigned long (32 bits).

EPERM
The prot argument asks for PROT_EXEC but the mapped area belongs to a file
on a filesystem that was mounted no-exec.

EPERM
The operation was prevented by a file seal; see fcntl(2).

EPERM
The MAP_HUGETLB flag was specified, but the caller was not privileged (did
not have the CAP_IPC_LOCK capability) and is not a member of the
hugetlb_shm_group group; see the description of
/proc/sys/vm/hugetlb_shm_group in proc_sys_vm(5).

ETXTBSY
MAP_DENYWRITE was set but the object specified by fd is open for writing.

Use of a mapped region can result in these signals:

SIGSEGV
Attempted write into a region mapped as read-only.

SIGBUS
Attempted access to a page of the buffer that lies beyond the end of the mapped
file. For an explanation of the treatment of the bytes in the page that corresponds
to the end of a mapped file that is not a multiple of the page size, see NOTES.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemmap(), munmap()

VERSIONS
On some hardware architectures (e.g., i386), PROT_WRITE implies PROT_READ.
It is architecture dependent whether PROT_READ implies PROT_EXEC or not.
Portable programs should always set PROT_EXEC if they intend to execute code in the
new mapping.

The portable way to create a mapping is to specify addr as 0 (NULL), and omit
MAP_FIXED from flags. In this case, the system chooses the address for the mapping;
the address is chosen so as not to conflict with any existing mapping, and will not be 0.
If the MAP_FIXED flag is specified, and addr is 0 (NULL), then the mapped address
will be 0 (NULL).

Certain flags constants are defined only if suitable feature test macros are defined (pos-
sibly by default): _DEFAULT_SOURCE with glibc 2.19 or later; or _BSD_SOURCE
or _SVID_SOURCE in glibc 2.19 and earlier. (Employing _GNU_SOURCE also suf-
fices, and requiring that macro specifically would have been more logical, since these
flags are all Linux-specific.) The relevant flags are: MAP_32BIT,

Linux man-pages 6.16 2025-10-29 483

mmap(2) System Calls Manual mmap(2)

MAP_ANONYMOUS (and the synonym MAP_ANON), MAP_DENYWRITE,
MAP_EXECUTABLE, MAP_FILE, MAP_GROWSDOWN, MAP_HUGETLB,
MAP_LOCKED, MAP_NONBLOCK, MAP_NORESERVE, MAP_POPULATE,
and MAP_STACK.

C library/kernel differences
This page describes the interface provided by the glibc mmap() wrapper function. Orig-
inally, this function invoked a system call of the same name. Since Linux 2.4, that sys-
tem call has been superseded by mmap2(2), and nowadays the glibc mmap() wrapper
function invokes mmap2(2) with a suitably adjusted value for offset.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

On POSIX systems on which mmap(), msync(2), and munmap() are available,
_POSIX_MAPPED_FILES is defined in <unistd.h> to a value greater than 0. (See
also sysconf(3).)

NOTES
Memory mapped by mmap() is preserved across fork(2), with the same attributes.

A file is mapped in multiples of the page size. For a file that is not a multiple of the
page size, the remaining bytes in the partial page at the end of the mapping are zeroed
when mapped, and modifications to that region are not written out to the file. The effect
of changing the size of the underlying file of a mapping on the pages that correspond to
added or removed regions of the file is unspecified.

An application can determine which pages of a mapping are currently resident in the
buffer/page cache using mincore(2).

Using MAP_FIXED safely
The only safe use for MAP_FIXED is where the address range specified by addr and
length was previously reserved using another mapping; otherwise, the use of
MAP_FIXED is hazardous because it forcibly removes preexisting mappings, making it
easy for a multithreaded process to corrupt its own address space.

For example, suppose that thread A looks through /proc/ pid /maps in order to locate an
unused address range that it can map using MAP_FIXED, while thread B simultane-
ously acquires part or all of that same address range. When thread A subsequently em-
ploys mmap(MAP_FIXED), it will effectively clobber the mapping that thread B cre-
ated. In this scenario, thread B need not create a mapping directly; simply making a li-
brary call that, internally, uses dlopen(3) to load some other shared library, will suffice.
The dlopen(3) call will map the library into the process’s address space. Furthermore,
almost any library call may be implemented in a way that adds memory mappings to the
address space, either with this technique, or by simply allocating memory. Examples in-
clude brk(2), malloc(3), pthread_create(3), and the PAM libraries 〈http://www.linux-
pam.org〉.

Since Linux 4.17, a multithreaded program can use the MAP_FIXED_NOREPLACE
flag to avoid the hazard described above when attempting to create a mapping at a fixed

Linux man-pages 6.16 2025-10-29 484

mmap(2) System Calls Manual mmap(2)

address that has not been reserved by a preexisting mapping.

Timestamps changes for file-backed mappings
For file-backed mappings, the st_atime field for the mapped file may be updated at any
time between the mmap() and the corresponding unmapping; the first reference to a
mapped page will update the field if it has not been already.

The st_ctime and st_mtime field for a file mapped with PROT_WRITE and
MAP_SHARED will be updated after a write to the mapped region, and before a subse-
quent msync(2) with the MS_SYNC or MS_ASYNC flag, if one occurs.

Huge page (Huge TLB) mappings
For mappings that employ huge pages, the requirements for the arguments of mmap()
and munmap() differ somewhat from the requirements for mappings that use the native
system page size.

For mmap(), offset must be a multiple of the underlying huge page size. The system
automatically aligns length to be a multiple of the underlying huge page size.

For munmap(), addr, and length must both be a multiple of the underlying huge page
size.

CAVEATS
Unlike typical malloc(3) implementations, mmap() does not prevent creating objects
larger than PTRDIFF_MAX. Objects that are larger than PTRDIFF_MAX only work
in limited ways in C (in particular, pointer subtraction results in undefined behavior if
the result would be bigger than PTRDIFF_MAX). On top of that, GCC also assumes
that no object is bigger than PTRDIFF_MAX. PTRDIFF_MAX is usually half of the
address space size; so for 32-bit processes, it is usually 0x7fffffff (almost 2 GiB).

BUGS
On Linux, there are no guarantees like those suggested above under MAP_NORE-
SERVE. By default, any process can be killed at any moment when the system runs out
of memory.

Before Linux 2.6.7, the MAP_POPULATE flag has effect only if prot is specified as
PROT_NONE.

SUSv3 specifies that mmap() should fail if length is 0. However, before Linux 2.6.12,
mmap() succeeded in this case: no mapping was created and the call returned addr.
Since Linux 2.6.12, mmap() fails with the error EINVAL for this case.

POSIX specifies that the system shall always zero fill any partial page at the end of the
object and that system will never write any modification of the object beyond its end.
On Linux, when you write data to such partial page after the end of the object, the data
stays in the page cache even after the file is closed and unmapped and even though the
data is never written to the file itself, subsequent mappings may see the modified con-
tent. In some cases, this could be fixed by calling msync(2) before the unmap takes
place; however, this doesn’t work on tmpfs(5) (for example, when using the POSIX
shared memory interface documented in shm_overview(7)).

EXAMPLES
The following program prints part of the file specified in its first command-line argu-
ment to standard output. The range of bytes to be printed is specified via offset and

Linux man-pages 6.16 2025-10-29 485

mmap(2) System Calls Manual mmap(2)

length values in the second and third command-line arguments. The program creates a
memory mapping of the required pages of the file and then uses write(2) to output the
desired bytes.

Program source
#include <err.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;
char *addr;
off_t offset, pa_offset;
size_t length;
ssize_t s;
struct stat sb;

if (argc < 3 || argc > 4) {
fprintf(stderr, "%s file offset [length]\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1)

err(EXIT_FAILURE, "open");

if (fstat(fd, &sb) == -1) /* To obtain file size */
err(EXIT_FAILURE, "fstat");

offset = atoi(argv[2]);
pa_offset = offset & ~(sysconf(_SC_PAGE_SIZE) - 1);

/* offset for mmap() must be page aligned */

if (offset >= sb.st_size) {
fprintf(stderr, "offset is past end of file\n");
exit(EXIT_FAILURE);

}

if (argc == 4) {
length = atoi(argv[3]);
if (offset + length > sb.st_size)

Linux man-pages 6.16 2025-10-29 486

mmap(2) System Calls Manual mmap(2)

length = sb.st_size - offset;
/* Can't display bytes past end of file */

} else { /* No length arg ==> display to end of file */
length = sb.st_size - offset;

}

addr = mmap(NULL, length + offset - pa_offset, PROT_READ,
MAP_PRIVATE, fd, pa_offset);

if (addr == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

s = write(STDOUT_FILENO, addr + offset - pa_offset, length);
if (s != length) {

if (s == -1)
err(EXIT_FAILURE, "write");

fprintf(stderr, "partial write");
exit(EXIT_FAILURE);

}

munmap(addr, length + offset - pa_offset);
close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ftruncate(2), getpagesize(2), memfd_create(2), mincore(2), mlock(2), mmap2(2), mpro-
tect(2), mremap(2), msync(2), remap_file_pages(2), setrlimit(2), shmat(2),
userfaultfd(2), shm_open(3), shm_overview(7)

The descriptions of the following files in proc(5): /proc/ pid /maps, /proc/ pid /map_files,
and /proc/ pid /smaps.

B.O. Gallmeister, POSIX.4, O’Reilly, pp. 128–129 and 389–391.

Linux man-pages 6.16 2025-10-29 487

mmap2(2) System Calls Manual mmap2(2)

NAME
mmap2 - map files or devices into memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h> /* Definition of MAP_* and PROT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

void *syscall(SYS_mmap2, unsigned long addr, unsigned long length,
unsigned long prot, unsigned long flags,
unsigned long fd , unsigned long pgoffset);

DESCRIPTION
This is probably not the system call that you are interested in; instead, see mmap(2),
which describes the glibc wrapper function that invokes this system call.

The mmap2() system call provides the same interface as mmap(2), except that the final
argument specifies the offset into the file in 4096-byte units (instead of bytes, as is done
by mmap(2)). This enables applications that use a 32-bit off_t to map large files (up to
2^44 bytes).

RETURN VALUE
On success, mmap2() returns a pointer to the mapped area. On error, -1 is returned and
errno is set to indicate the error.

ERRORS
EFAULT

Problem with getting the data from user space.

EINVAL
(Various platforms where the page size is not 4096 bytes.) offset * 4096 is not a
multiple of the system page size.

mmap2() can also return any of the errors described in mmap(2).

VERSIONS
On architectures where this system call is present, the glibc mmap() wrapper function
invokes this system call rather than the mmap(2) system call.

This system call does not exist on x86-64.

On ia64, the unit for offset is actually the system page size, rather than 4096 bytes.

STANDARDS
Linux.

HISTORY
Linux 2.3.31.

SEE ALSO
getpagesize(2), mmap(2), mremap(2), msync(2), shm_open(3)

Linux man-pages 6.16 2025-09-21 488

modify_ldt(2) System Calls Manual modify_ldt(2)

NAME
modify_ldt - get or set a per-process LDT entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/ldt.h> /* Definition of struct user_desc */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(unsigned long bytecount;
SYS_modify_ldt, int func, void ptr[bytecount],
unsigned long bytecount);

Note: glibc provides no wrapper for modify_ldt(), necessitating the use of syscall(2).

DESCRIPTION
modify_ldt() reads or writes the local descriptor table (LDT) for a process. The LDT is
an array of segment descriptors that can be referenced by user code. Linux allows
processes to configure a per-process (actually per-mm) LDT. For more information
about the LDT, see the Intel Software Developer’s Manual or the AMD Architecture
Programming Manual.

When func is 0, modify_ldt() reads the LDT into the memory pointed to by ptr. The
number of bytes read is the smaller of bytecount and the actual size of the LDT, al-
though the kernel may act as though the LDT is padded with additional trailing zero
bytes. On success, modify_ldt() will return the number of bytes read.

When func is 1 or 0x11, modify_ldt() modifies the LDT entry indicated by ptr->en-
try_number. ptr points to a user_desc structure and bytecount must equal the size of
this structure.

The user_desc structure is defined in <asm/ldt.h> as:

struct user_desc {
unsigned int entry_number;
unsigned int base_addr;
unsigned int limit;
unsigned int seg_32bit:1;
unsigned int contents:2;
unsigned int read_exec_only:1;
unsigned int limit_in_pages:1;
unsigned int seg_not_present:1;
unsigned int useable:1;

};

In Linux 2.4 and earlier, this structure was named modify_ldt_ldt_s.

The contents field is the segment type (data, expand-down data, non-conforming code,
or conforming code). The other fields match their descriptions in the CPU manual, al-
though modify_ldt() cannot set the hardware-defined "accessed" bit described in the
CPU manual.

Linux man-pages 6.16 2025-06-28 489

modify_ldt(2) System Calls Manual modify_ldt(2)

A user_desc is considered "empty" if read_exec_only and seg_not_present are set to 1
and all of the other fields are 0. An LDT entry can be cleared by setting it to an "empty"
user_desc or, if func is 1, by setting both base and limit to 0.

A conforming code segment (i.e., one with contents==3) will be rejected if func is 1 or
if seg_not_present is 0.

When func is 2, modify_ldt() will read zeros. This appears to be a leftover from Linux
2.4.

RETURN VALUE
On success, modify_ldt() returns either the actual number of bytes read (for reading) or
0 (for writing). On failure, modify_ldt() returns -1 and sets errno to indicate the error.

ERRORS
EFAULT

ptr points outside the address space.

EINVAL
ptr is 0, or func is 1 and bytecount is not equal to the size of the structure
user_desc, or func is 1 or 0x11 and the new LDT entry has invalid values.

ENOSYS
func is neither 0, 1, 2, nor 0x11.

STANDARDS
Linux.

NOTES
modify_ldt() should not be used for thread-local storage, as it slows down context
switches and only supports a limited number of threads. Threading libraries should use
set_thread_area(2) or arch_prctl(2) instead, except on extremely old kernels that do not
support those system calls.

The normal use for modify_ldt() is to run legacy 16-bit or segmented 32-bit code. Not
all kernels allow 16-bit segments to be installed, however.

Even on 64-bit kernels, modify_ldt() cannot be used to create a long mode (i.e., 64-bit)
code segment. The undocumented field "lm" in user_desc is not useful, and, despite its
name, does not result in a long mode segment.

BUGS
On 64-bit kernels before Linux 3.19, setting the "lm" bit in user_desc prevents the de-
scriptor from being considered empty. Keep in mind that the "lm" bit does not exist in
the 32-bit headers, but these buggy kernels will still notice the bit even when set in a
32-bit process.

SEE ALSO
arch_prctl(2), set_thread_area(2), vm86(2)

Linux man-pages 6.16 2025-06-28 490

mount(2) System Calls Manual mount(2)

NAME
mount - mount filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mount.h>

int mount(const char *source, const char *target,
const char * filesystemtype, unsigned long mountflags,
const void *_Nullable data);

DESCRIPTION
mount() attaches the filesystem specified by source (which is often a pathname referring
to a device, but can also be the pathname of a directory or file, or a dummy string) to the
location (a directory or file) specified by the pathname in target.

Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required to mount
filesystems.

Values for the filesystemtype argument supported by the kernel are listed in
/proc/filesystems (e.g., "btrfs", "ext4", "jfs", "xfs", "vfat", "fuse", "tmpfs", "cgroup",
"proc", "mqueue", "nfs", "cifs", "iso9660"). Further types may become available when
the appropriate modules are loaded.

The data argument is interpreted by the different filesystems. Typically it is a string of
comma-separated options understood by this filesystem. See mount(8) for details of the
options available for each filesystem type. This argument may be specified as NULL, if
there are no options.

A call to mount() performs one of a number of general types of operation, depending on
the bits specified in mountflags. The choice of which operation to perform is deter-
mined by testing the bits set in mountflags, with the tests being conducted in the order
listed here:

• Remount an existing mount: mountflags includes MS_REMOUNT.

• Create a bind mount: mountflags includes MS_BIND.

• Change the propagation type of an existing mount: mountflags includes one of
MS_SHARED, MS_PRIVATE, MS_SLAVE, or MS_UNBINDABLE.

• Move an existing mount to a new location: mountflags includes MS_MOVE.

• Create a new mount: mountflags includes none of the above flags.

Each of these operations is detailed later in this page. Further flags may be specified in
mountflags to modify the behavior of mount(), as described below.

Additional mount flags
The list below describes the additional flags that can be specified in mountflags. Note
that some operation types ignore some or all of these flags, as described later in this
page.

Linux man-pages 6.16 2025-09-21 491

mount(2) System Calls Manual mount(2)

MS_DIRSYNC (since Linux 2.5.19)
Make directory changes on this filesystem synchronous. (This property can be
obtained for individual directories or subtrees using chattr(1)

MS_LAZYTIME (since Linux 4.0)
Reduce on-disk updates of inode timestamps (atime, mtime, ctime) by maintain-
ing these changes only in memory. The on-disk timestamps are updated only
when:

• the inode needs to be updated for some change unrelated to file timestamps;

• the application employs fsync(2), syncfs(2), or sync(2);

• an undeleted inode is evicted from memory; or

• more than 24 hours have passed since the inode was written to disk.

This mount option significantly reduces writes needed to update the inode’s
timestamps, especially mtime and atime. However, in the event of a system
crash, the atime and mtime fields on disk might be out of date by up to 24 hours.

Examples of workloads where this option could be of significant benefit include
frequent random writes to preallocated files, as well as cases where the
MS_STRICTATIME mount option is also enabled. (The advantage of combin-
ing MS_STRICTATIME and MS_LAZYTIME is that stat(2) will return the
correctly updated atime, but the atime updates will be flushed to disk only in the
cases listed above.)

MS_MANDLOCK
Permit mandatory locking on files in this filesystem. (Mandatory locking must
still be enabled on a per-file basis, as described in fcntl(2).) Since Linux 4.5, this
mount option requires the CAP_SYS_ADMIN capability and a kernel config-
ured with the CONFIG_MANDATORY_FILE_LOCKING option. Manda-
tory locking has been fully deprecated in Linux 5.15, so this flag should be con-
sidered deprecated.

MS_NOATIME
Do not update access times for (all types of) files on this filesystem.

MS_NODEV
Do not allow access to devices (special files) on this filesystem.

MS_NODIRATIME
Do not update access times for directories on this filesystem. This flag provides
a subset of the functionality provided by MS_NOATIME; that is, MS_NOAT-
IME implies MS_NODIRATIME.

MS_NOEXEC
Do not allow programs to be executed from this filesystem.

MS_NOSUID
Do not honor set-user-ID and set-group-ID bits or file capabilities when execut-
ing programs from this filesystem. In addition, SELinux domain transitions re-
quire the permission nosuid_transition, which in turn needs also the policy capa-
bility nnp_nosuid_transition.

Linux man-pages 6.16 2025-09-21 492

mount(2) System Calls Manual mount(2)

MS_RDONLY
Mount filesystem read-only.

MS_REC (since Linux 2.4.11)
Used in conjunction with MS_BIND to create a recursive bind mount, and in
conjunction with the propagation type flags to recursively change the propaga-
tion type of all of the mounts in a subtree. See below for further details.

MS_RELATIME (since Linux 2.6.20)
When a file on this filesystem is accessed, update the file’s last access time
(atime) only if the current value of atime is less than or equal to the file’s last
modification time (mtime) or last status change time (ctime). This option is use-
ful for programs, such as mutt(1), that need to know when a file has been read
since it was last modified. Since Linux 2.6.30, the kernel defaults to the behav-
ior provided by this flag (unless MS_NOATIME was specified), and the
MS_STRICTATIME flag is required to obtain traditional semantics. In addi-
tion, since Linux 2.6.30, the file’s last access time is always updated if it is more
than 1 day old.

MS_SILENT (since Linux 2.6.17)
Suppress the display of certain (printk()) warning messages in the kernel log.
This flag supersedes the misnamed and obsolete MS_VERBOSE flag (available
since Linux 2.4.12), which has the same meaning.

MS_STRICTATIME (since Linux 2.6.30)
Always update the last access time (atime) when files on this filesystem are ac-
cessed. (This was the default behavior before Linux 2.6.30.) Specifying this
flag overrides the effect of setting the MS_NOATIME and MS_RELATIME
flags.

MS_SYNCHRONOUS
Make writes on this filesystem synchronous (as though the O_SYNC flag to
open(2) was specified for all file opens to this filesystem).

MS_NOSYMFOLLOW (since Linux 5.10)
Do not follow symbolic links when resolving paths. Symbolic links can still be
created, and readlink(1), readlink(2), realpath(1), and realpath(3) all still work
properly.

From Linux 2.4 onward, some of the above flags are settable on a per-mount basis,
while others apply to the superblock of the mounted filesystem, meaning that all mounts
of the same filesystem share those flags. (Previously, all of the flags were per-su-
perblock.)

The per-mount-point flags are as follows:

• Since Linux 2.4: MS_NODEV, MS_NOEXEC, and MS_NOSUID flags are set-
table on a per-mount-point basis.

• Additionally, since Linux 2.6.16: MS_NOATIME and MS_NODIRATIME.

• Additionally, since Linux 2.6.20: MS_RELATIME.

The following flags are per-superblock: MS_DIRSYNC, MS_LAZYTIME,

Linux man-pages 6.16 2025-09-21 493

mount(2) System Calls Manual mount(2)

MS_MANDLOCK, MS_SILENT, and MS_SYNCHRONOUS. The initial settings of
these flags are determined on the first mount of the filesystem, and will be shared by all
subsequent mounts of the same filesystem. Subsequently, the settings of the flags can be
changed via a remount operation (see below). Such changes will be visible via all
mounts associated with the filesystem.

Since Linux 2.6.16, MS_RDONLY can be set or cleared on a per-mount-point basis as
well as on the underlying filesystem superblock. The mounted filesystem will be
writable only if neither the filesystem nor the mount point are flagged as read-only.

Remounting an existing mount
An existing mount may be remounted by specifying MS_REMOUNT in mountflags.
This allows you to change the mountflags and data of an existing mount without having
to unmount and remount the filesystem. target should be the same value specified in the
initial mount() call.

The source and filesystemtype arguments are ignored.

The mountflags and data arguments should match the values used in the original
mount() call, except for those parameters that are being deliberately changed.

The following mountflags can be changed: MS_LAZYTIME, MS_MANDLOCK,
MS_NOATIME, MS_NODEV, MS_NODIRATIME, MS_NOEXEC, MS_NOSUID,
MS_RELATIME, MS_RDONLY, MS_STRICTATIME (whose effect is to clear the
MS_NOATIME and MS_RELATIME flags), and MS_SYNCHRONOUS. Attempts
to change the setting of the MS_DIRSYNC and MS_SILENT flags during a remount
are silently ignored. Note that changes to per-superblock flags are visible via all mounts
of the associated filesystem (because the per-superblock flags are shared by all mounts).

Since Linux 3.17, if none of MS_NOATIME, MS_NODIRATIME, MS_RELATIME,
or MS_STRICTATIME is specified in mountflags, then the remount operation pre-
serves the existing values of these flags (rather than defaulting to MS_RELATIME).

Since Linux 2.6.26, the MS_REMOUNT flag can be used with MS_BIND to modify
only the per-mount-point flags. This is particularly useful for setting or clearing the
"read-only" flag on a mount without changing the filesystem parameters of the underly-
ing filesystem. The data argument is ignored. The existing per-mount-point flags of the
mount point are cleared and replaced with those in mountflags. This means that if you
wish to preserve any existing per-mount-point flags, you need to include them in mount-
flags, along with the per-mount-point flags you wish to set (or with the flags you wish to
clear missing). Specifying mountflags as:

MS_REMOUNT | MS_BIND | MS_RDONLY

will make access through this mount point read-only (clearing all other per-mount-point
flags), without affecting other mounts of this filesystem.

Creating a bind mount
If mountflags includes MS_BIND (available since Linux 2.4), then perform a bind
mount. A bind mount makes a file or a directory subtree visible at another point within
the single directory hierarchy. Bind mounts may cross filesystem boundaries and span
chroot(2) jails.

The filesystemtype and data arguments are ignored.

Linux man-pages 6.16 2025-09-21 494

mount(2) System Calls Manual mount(2)

The remaining bits (other than MS_REC, described below) in the mountflags argument
are also ignored. (The bind mount has the same mount options as the underlying
mount.) However, see the discussion of remounting above, for a method of making an
existing bind mount read-only.

By default, when a directory is bind mounted, only that directory is mounted; if there are
any submounts under the directory tree, they are not bind mounted. If the MS_REC
flag is also specified, then a recursive bind mount operation is performed: all submounts
under the source subtree (other than unbindable mounts) are also bind mounted at the
corresponding location in the target subtree.

Changing the propagation type of an existing mount
If mountflags includes one of MS_SHARED, MS_PRIVATE, MS_SLAVE, or
MS_UNBINDABLE (all available since Linux 2.6.15), then the propagation type of an
existing mount is changed. If more than one of these flags is specified, an error results.

The only other flags that can be specified while changing the propagation type are
MS_REC (described below) and MS_SILENT (which is ignored).

The source, filesystemtype, and data arguments are ignored.

The meanings of the propagation type flags are as follows:

MS_SHARED
Make this mount shared. Mount and unmount events immediately under this
mount will propagate to the other mounts that are members of this mount’s peer
group. Propagation here means that the same mount or unmount will automati-
cally occur under all of the other mounts in the peer group. Conversely, mount
and unmount events that take place under peer mounts will propagate to this
mount.

MS_PRIVATE
Make this mount private. Mount and unmount events do not propagate into or
out of this mount.

MS_SLAVE
If this is a shared mount that is a member of a peer group that contains other
members, convert it to a slave mount. If this is a shared mount that is a member
of a peer group that contains no other members, convert it to a private mount.
Otherwise, the propagation type of the mount is left unchanged.

When a mount is a slave, mount and unmount events propagate into this mount
from the (master) shared peer group of which it was formerly a member. Mount
and unmount events under this mount do not propagate to any peer.

A mount can be the slave of another peer group while at the same time sharing
mount and unmount events with a peer group of which it is a member.

MS_UNBINDABLE
Make this mount unbindable. This is like a private mount, and in addition this
mount can’t be bind mounted. When a recursive bind mount (mount() with the
MS_BIND and MS_REC flags) is performed on a directory subtree, any un-
bindable mounts within the subtree are automatically pruned (i.e., not replicated)
when replicating that subtree to produce the target subtree.

Linux man-pages 6.16 2025-09-21 495

mount(2) System Calls Manual mount(2)

By default, changing the propagation type affects only the target mount. If the
MS_REC flag is also specified in mountflags, then the propagation type of all mounts
under target is also changed.

For further details regarding mount propagation types (including the default propagation
type assigned to new mounts), see mount_namespaces(7).

Moving a mount
If mountflags contains the flag MS_MOVE (available since Linux 2.4.18), then move a
subtree: source specifies an existing mount and target specifies the new location to
which that mount is to be relocated. The move is atomic: at no point is the subtree un-
mounted.

The remaining bits in the mountflags argument are ignored, as are the filesystemtype and
data arguments.

Creating a new mount
If none of MS_REMOUNT, MS_BIND, MS_MOVE, MS_SHARED, MS_PRI-
VATE, MS_SLAVE, or MS_UNBINDABLE is specified in mountflags, then mount()
performs its default action: creating a new mount. source specifies the source for the
new mount, and target specifies the directory at which to create the mount point.

The filesystemtype and data arguments are employed, and further bits may be specified
in mountflags to modify the behavior of the call.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
The error values given below result from filesystem type independent errors. Each
filesystem type may have its own special errors and its own special behavior. See the
Linux kernel source code for details.

EACCES
A component of a path was not searchable. (See also path_resolution(7).)

EACCES
Mounting a read-only filesystem was attempted without giving the
MS_RDONLY flag.

The filesystem may be read-only for various reasons, including: it resides on a
read-only optical disk; it is resides on a device with a physical switch that has
been set to mark the device read-only; the filesystem implementation was com-
piled with read-only support; or errors were detected when initially mounting the
filesystem, so that it was marked read-only and can’t be remounted as read-write
(until the errors are fixed).

Some filesystems instead return the error EROFS on an attempt to mount a read-
only filesystem.

EACCES
The block device source is located on a filesystem mounted with the
MS_NODEV option.

Linux man-pages 6.16 2025-09-21 496

mount(2) System Calls Manual mount(2)

EBUSY
An attempt was made to stack a new mount directly on top of an existing mount
point that was created in this mount namespace with the same source and target.

EBUSY
source cannot be remounted read-only, because it still holds files open for writ-
ing.

EFAULT
One of the pointer arguments points outside the user address space.

EINVAL
source had an invalid superblock.

EINVAL
A remount operation (MS_REMOUNT) was attempted, but source was not al-
ready mounted on target.

EINVAL
A move operation (MS_MOVE) was attempted, but the mount tree under source
includes unbindable mounts and target is a mount that has propagation type
MS_SHARED.

EINVAL
A move operation (MS_MOVE) was attempted, but the parent mount of source
mount has propagation type MS_SHARED.

EINVAL
A move operation (MS_MOVE) was attempted, but source was not a mount, or
was '/'.

EINVAL
A bind operation (MS_BIND) was requested where source referred a mount
namespace magic link (i.e., a /proc/ pid /ns/mnt magic link or a bind mount to
such a link) and the propagation type of the parent mount of target was
MS_SHARED, but propagation of the requested bind mount could lead to a cir-
cular dependency that might prevent the mount namespace from ever being
freed.

EINVAL
mountflags includes more than one of MS_SHARED, MS_PRIVATE,
MS_SLAVE, or MS_UNBINDABLE.

EINVAL
mountflags includes MS_SHARED, MS_PRIVATE, MS_SLAVE, or MS_UN-
BINDABLE and also includes a flag other than MS_REC or MS_SILENT.

EINVAL
An attempt was made to bind mount an unbindable mount.

EINVAL
In an unprivileged mount namespace (i.e., a mount namespace owned by a user
namespace that was created by an unprivileged user), a bind mount operation
(MS_BIND) was attempted without specifying (MS_REC), which would have

Linux man-pages 6.16 2025-09-21 497

mount(2) System Calls Manual mount(2)

revealed the filesystem tree underneath one of the submounts of the directory be-
ing bound.

ELOOP
Too many links encountered during pathname resolution.

ELOOP
A move operation was attempted, and target is a descendant of source.

EMFILE
(In case no block device is required:) Table of dummy devices is full.

ENAMETOOLONG
A pathname was longer than MAXPATHLEN.

ENODEV
filesystemtype not configured in the kernel.

ENOENT
A pathname was empty or had a nonexistent component.

ENOMEM
The kernel could not allocate a free page to copy filenames or data into.

ENOTBLK
source is not a block device (and a device was required).

ENOTDIR
target, or a prefix of source, is not a directory.

ENXIO
The major number of the block device source is out of range.

EPERM
The caller does not have the required privileges.

EPERM
An attempt was made to modify (MS_REMOUNT) the MS_RDONLY,
MS_NOSUID, or MS_NOEXEC flag, or one of the "atime" flags (MS_NOAT-
IME, MS_NODIRATIME, MS_RELATIME) of an existing mount, but the
mount is locked; see mount_namespaces(7).

EROFS
Mounting a read-only filesystem was attempted without giving the
MS_RDONLY flag. See EACCES, above.

STANDARDS
Linux.

HISTORY
The definitions of MS_DIRSYNC, MS_MOVE, MS_PRIVATE, MS_REC, MS_RE-
LATIME, MS_SHARED, MS_SLAVE, MS_STRICTATIME, and MS_UNBIND-
ABLE were added to glibc headers in glibc 2.12.

Since Linux 2.4 a single filesystem can be mounted at multiple mount points, and multi-
ple mounts can be stacked on the same mount point.

Linux man-pages 6.16 2025-09-21 498

mount(2) System Calls Manual mount(2)

The mountflags argument may have the magic number 0xC0ED (MS_MGC_VAL) in
the top 16 bits. (All of the other flags discussed in DESCRIPTION occupy the low or-
der 16 bits of mountflags.) Specifying MS_MGC_VAL was required before Linux 2.4,
but since Linux 2.4 is no longer required and is ignored if specified.

The original MS_SYNC flag was renamed MS_SYNCHRONOUS in 1.1.69 when a
different MS_SYNC was added to <mman.h>.

Before Linux 2.4 an attempt to execute a set-user-ID or set-group-ID program on a
filesystem mounted with MS_NOSUID would fail with EPERM. Since Linux 2.4 the
set-user-ID and set-group-ID bits are just silently ignored in this case.

NOTES
Mount namespaces

Starting with Linux 2.4.19, Linux provides mount namespaces. A mount namespace is
the set of filesystem mounts that are visible to a process. Mount namespaces can be
(and usually are) shared between multiple processes, and changes to the namespace (i.e.,
mounts and unmounts) by one process are visible to all other processes sharing the same
namespace. (The pre-2.4.19 Linux situation can be considered as one in which a single
namespace was shared by every process on the system.)

A child process created by fork(2) shares its parent’s mount namespace; the mount
namespace is preserved across an execve(2).

A process can obtain a private mount namespace if: it was created using the clone(2)
CLONE_NEWNS flag, in which case its new namespace is initialized to be a copy of
the namespace of the process that called clone(2); or it calls unshare(2) with the
CLONE_NEWNS flag, which causes the caller’s mount namespace to obtain a private
copy of the namespace that it was previously sharing with other processes, so that future
mounts and unmounts by the caller are invisible to other processes (except child
processes that the caller subsequently creates) and vice versa.

For further details on mount namespaces, see mount_namespaces(7).

Parental relationship between mounts
Each mount has a parent mount. The overall parental relationship of all mounts defines
the single directory hierarchy seen by the processes within a mount namespace.

The parent of a new mount is defined when the mount is created. In the usual case, the
parent of a new mount is the mount of the filesystem containing the directory or file at
which the new mount is attached. In the case where a new mount is stacked on top of an
existing mount, the parent of the new mount is the previous mount that was stacked at
that location.

The parental relationship between mounts can be discovered via the
/proc/ pid /mountinfo file (see below).

/proc/pid/mounts and /proc/pid/mountinfo
The Linux-specific /proc/ pid /mounts file exposes the list of mounts in the mount name-
space of the process with the specified ID. The /proc/ pid /mountinfo file exposes even
more information about mounts, including the propagation type and mount ID informa-
tion that makes it possible to discover the parental relationship between mounts. See
proc(5) and mount_namespaces(7) for details of this file.

Linux man-pages 6.16 2025-09-21 499

mount(2) System Calls Manual mount(2)

SEE ALSO
mountpoint(1), chroot(2), FS_IOC_SETFLAGS(2const), mount_setattr(2),
pivot_root(2), umount(2), mount_namespaces(7), path_resolution(7), findmnt(8), ls-
blk(8), mount(8), umount(8)

Linux man-pages 6.16 2025-09-21 500

mount_setattr(2) System Calls Manual mount_setattr(2)

NAME
mount_setattr - change properties of a mount or mount tree

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/mount.h>

int mount_setattr(int dirfd , const char *path, unsigned int flags,
struct mount_attr *attr, size_t size);

DESCRIPTION
The mount_setattr() system call is part of the suite of file-descriptor-based mount facil-
ities in Linux.

mount_setattr() changes the mount properties of a mount or an entire mount tree. If
path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd . If dirfd is the special value AT_FDCWD, then path is interpreted rela-
tive to the current working directory of the calling process. If path is the empty string
and AT_EMPTY_PATH is specified in flags, then the mount properties of the mount
identified by dirfd are changed. (See openat(2) for an explanation of why the dirfd ar-
gument is useful.)

The mount_setattr() system call uses an extensible structure (struct mount_attr) to al-
low for future extensions. Any non-flag extensions to mount_setattr() will be imple-
mented as new fields appended to the this structure, with a zero value in a new field re-
sulting in the kernel behaving as though that extension field was not present. Therefore,
the caller must zero-fill this structure on initialization. See the "Extensibility" subsec-
tion under NOTES for more details.

The size argument should usually be specified as sizeof(struct mount_attr). However, if
the caller is using a kernel that supports an extended struct mount_attr, but the caller
does not intend to make use of these features, it is possible to pass the size of an earlier
version of the structure together with the extended structure. This allows the kernel to
not copy later parts of the structure that aren’t used anyway. With each extension that
changes the size of struct mount_attr, the kernel will expose a definition of the form
MOUNT_ATTR_SIZE_VERnumber. For example, the macro for the size of the ini-
tial version of struct mount_attr is MOUNT_ATTR_SIZE_VER0.

The flags argument can be used to alter the pathname resolution behavior. The sup-
ported values are:

AT_EMPTY_PATH
If path is the empty string, change the mount properties on dirfd itself.

AT_RECURSIVE
Change the mount properties of the entire mount tree.

AT_SYMLINK_NOFOLLOW
Don’t follow trailing symbolic links.

Linux man-pages 6.16 2025-10-01 501

mount_setattr(2) System Calls Manual mount_setattr(2)

AT_NO_AUTOMOUNT
Don’t trigger automounts.

The attr argument of mount_setattr() is a pointer to a mount_attr structure, described
in mount_attr(2type).

The attr_set and attr_clr members are used to specify the mount properties that are sup-
posed to be set or cleared for a mount or mount tree. Flags set in attr_set enable a prop-
erty on a mount or mount tree, and flags set in attr_clr remove a property from a mount
or mount tree.

When changing mount properties, the kernel will first clear the flags specified in the
attr_clr field, and then set the flags specified in the attr_set field. For example, these
settings:

struct mount_attr attr = {
.attr_clr = MOUNT_ATTR_NOEXEC | MOUNT_ATTR_NODEV,
.attr_set = MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID,

};

are equivalent to the following steps:

unsigned int current_mnt_flags = mnt->mnt_flags;

/*
* Clear all flags set in .attr_clr,
* clearing MOUNT_ATTR_NOEXEC and MOUNT_ATTR_NODEV.
*/

current_mnt_flags &= ~attr->attr_clr;

/*
* Now set all flags set in .attr_set,
* applying MOUNT_ATTR_RDONLY and MOUNT_ATTR_NOSUID.
*/

current_mnt_flags |= attr->attr_set;

mnt->mnt_flags = current_mnt_flags;

As a result of this change, the mount or mount tree (a) is read-only; (b) blocks the exe-
cution of set-user-ID and set-group-ID programs; (c) allows execution of programs; and
(d) allows access to devices.

Multiple changes with the same set of flags requested in attr_clr and attr_set are guar-
anteed to be idempotent after the changes have been applied.

The following mount attributes can be specified in the attr_set or attr_clr fields:

MOUNT_ATTR_RDONLY
If set in attr_set, makes the mount read-only. If set in attr_clr, removes the
read-only setting if set on the mount.

MOUNT_ATTR_NOSUID
If set in attr_set, causes the mount not to honor the set-user-ID and set-group-ID
mode bits and file capabilities when executing programs. If set in attr_clr,

Linux man-pages 6.16 2025-10-01 502

mount_setattr(2) System Calls Manual mount_setattr(2)

clears the set-user-ID, set-group-ID, and file capability restriction if set on this
mount.

MOUNT_ATTR_NODEV
If set in attr_set, prevents access to devices on this mount. If set in attr_clr, re-
moves the restriction that prevented accessing devices on this mount.

MOUNT_ATTR_NOEXEC
If set in attr_set, prevents executing programs on this mount. If set in attr_clr,
removes the restriction that prevented executing programs on this mount.

MOUNT_ATTR_NOSYMFOLLOW
If set in attr_set, prevents following symbolic links on this mount. If set in
attr_clr, removes the restriction that prevented following symbolic links on this
mount.

MOUNT_ATTR_NODIRATIME
If set in attr_set, prevents updating access time for directories on this mount. If
set in attr_clr, removes the restriction that prevented updating access time for di-
rectories. Note that MOUNT_ATTR_NODIRATIME can be combined with
other access-time settings and is implied by the noatime setting. All other ac-
cess-time settings are mutually exclusive.

MOUNT_ATTR__ATIME - changing access-time settings
The access-time values listed below are an enumeration that includes the value
zero, expressed in the bits defined by the mask MOUNT_ATTR__ATIME.
Even though these bits are an enumeration (in contrast to the other mount flags
such as MOUNT_ATTR_NOEXEC), they are nonetheless passed in attr_set
and attr_clr for consistency with fsmount(2), which introduced this behavior.

Note that, since the access-time values are an enumeration rather than bit values,
a caller wanting to transition to a different access-time setting cannot simply
specify the access-time setting in attr_set, but must also include
MOUNT_ATTR__ATIME in the attr_clr field. The kernel will verify that
MOUNT_ATTR__ATIME isn’t partially set in attr_clr (i.e., either all bits in
the MOUNT_ATTR__ATIME bit field are either set or clear), and that attr_set
doesn’t have any access-time bits set if MOUNT_ATTR__ATIME isn’t set in
attr_clr.

MOUNT_ATTR_RELATIME
When a file is accessed via this mount, update the file’s last access time
(atime) only if the current value of atime is less than or equal to the file’s
last modification time (mtime) or last status change time (ctime).

To enable this access-time setting on a mount or mount tree,
MOUNT_ATTR_RELATIME must be set in attr_set and
MOUNT_ATTR__ATIME must be set in the attr_clr field.

MOUNT_ATTR_NOATIME
Do not update access times for (all types of) files on this mount.

To enable this access-time setting on a mount or mount tree,
MOUNT_ATTR_NOATIME must be set in attr_set and

Linux man-pages 6.16 2025-10-01 503

mount_setattr(2) System Calls Manual mount_setattr(2)

MOUNT_ATTR__ATIME must be set in the attr_clr field.

MOUNT_ATTR_STRICTATIME
Always update the last access time (atime) when files are accessed on
this mount.

To enable this access-time setting on a mount or mount tree,
MOUNT_ATTR_STRICTATIME must be set in attr_set and
MOUNT_ATTR__ATIME must be set in the attr_clr field.

MOUNT_ATTR_IDMAP
If set in attr_set, creates an ID-mapped mount. The ID mapping is taken from
the user namespace specified in userns_fd and attached to the mount.

Since it is not supported to change the ID mapping of a mount after it has been
ID mapped, it is invalid to specify MOUNT_ATTR_IDMAP in attr_clr.

For further details, see the subsection "ID-mapped mounts" under NOTES.

The propagation field is used to specify the propagation type of the mount or mount
tree. This field either has the value zero, meaning leave the propagation type un-
changed, or it has one of the following values:

MS_PRIVATE
Turn all mounts into private mounts.

MS_SHARED
Turn all mounts into shared mounts.

MS_SLAVE
Turn all mounts into dependent mounts.

MS_UNBINDABLE
Turn all mounts into unbindable mounts.

For further details on the above propagation types, see mount_namespaces(7).

RETURN VALUE
On success, mount_setattr() returns zero. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
EBADF

path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EBADF
userns_fd is not a valid file descriptor.

EBUSY
The caller tried to change the mount to MOUNT_ATTR_RDONLY, but the
mount still holds files open for writing.

EBUSY
The caller tried to create an ID-mapped mount raising
MOUNT_ATTR_IDMAP and specifying userns_fd but the mount still holds
files open for writing.

Linux man-pages 6.16 2025-10-01 504

mount_setattr(2) System Calls Manual mount_setattr(2)

EINVAL
The pathname specified via the dirfd and path arguments to mount_setattr()
isn’t a mount point.

EINVAL
An unsupported value was set in flags.

EINVAL
An unsupported value was specified in the attr_set field of mount_attr.

EINVAL
An unsupported value was specified in the attr_clr field of mount_attr.

EINVAL
An unsupported value was specified in the propagation field of mount_attr.

EINVAL
More than one of MS_SHARED, MS_SLAVE, MS_PRIVATE, or MS_UN-
BINDABLE was set in the propagation field of mount_attr.

EINVAL
An access-time setting was specified in the attr_set field without
MOUNT_ATTR__ATIME being set in the attr_clr field.

EINVAL
MOUNT_ATTR_IDMAP was specified in attr_clr.

EINVAL
A file descriptor value was specified in userns_fd which exceeds INT_MAX.

EINVAL
A valid file descriptor value was specified in userns_fd , but the file descriptor did
not refer to a user namespace.

EINVAL
The underlying filesystem does not support ID-mapped mounts.

EINVAL
The mount that is to be ID mapped is not a detached mount; that is, the mount
has not previously been visible in a mount namespace.

EINVAL
A partial access-time setting was specified in attr_clr instead of
MOUNT_ATTR__ATIME being set.

EINVAL
The mount is located outside the caller’s mount namespace.

EINVAL
The underlying filesystem has been mounted in a mount namespace that is
owned by a noninitial user namespace

ENOENT
A pathname was empty or had a nonexistent component.

Linux man-pages 6.16 2025-10-01 505

mount_setattr(2) System Calls Manual mount_setattr(2)

ENOMEM
When changing mount propagation to MS_SHARED, a new peer group ID
needs to be allocated for all mounts without a peer group ID set. This allocation
failed because there was not enough memory to allocate the relevant internal
structures.

ENOSPC
When changing mount propagation to MS_SHARED, a new peer group ID
needs to be allocated for all mounts without a peer group ID set. This allocation
failed because the kernel has run out of IDs.

EPERM
One of the mounts had at least one of MOUNT_ATTR_NOATIME,
MOUNT_ATTR_NODEV, MOUNT_ATTR_NODIRATIME,
MOUNT_ATTR_NOEXEC, MOUNT_ATTR_NOSUID, or
MOUNT_ATTR_RDONLY set and the flag is locked. Mount attributes be-
come locked on a mount if:

• A new mount or mount tree is created causing mount propagation across user
namespaces (i.e., propagation to a mount namespace owned by a different
user namespace). The kernel will lock the aforementioned flags to prevent
these sensitive properties from being altered.

• A new mount and user namespace pair is created. This happens for example
when specifying CLONE_NEWUSER | CLONE_NEWNS in unshare(2),
clone(2), or clone3(2). The aforementioned flags become locked in the new
mount namespace to prevent sensitive mount properties from being altered.
Since the newly created mount namespace will be owned by the newly cre-
ated user namespace, a calling process that is privileged in the new user
namespace would—in the absence of such locking—be able to alter sensitive
mount properties (e.g., to remount a mount that was marked read-only as
read-write in the new mount namespace).

EPERM
A valid file descriptor value was specified in userns_fd , but the file descriptor
refers to the initial user namespace.

EPERM
An attempt was made to add an ID mapping to a mount that is already ID
mapped.

EPERM
The caller does not have CAP_SYS_ADMIN in the initial user namespace.

STANDARDS
Linux.

HISTORY
Linux 5.12. glibc 2.36.

NOTES

Linux man-pages 6.16 2025-10-01 506

mount_setattr(2) System Calls Manual mount_setattr(2)

ID-mapped mounts
Creating an ID-mapped mount makes it possible to change the ownership of all files lo-
cated under a mount. Thus, ID-mapped mounts make it possible to change ownership in
a temporary and localized way. It is a localized change because the ownership changes
are visible only via a specific mount. All other users and locations where the filesystem
is exposed are unaffected. It is a temporary change because the ownership changes are
tied to the lifetime of the mount.

Whenever callers interact with the filesystem through an ID-mapped mount, the ID map-
ping of the mount will be applied to user and group IDs associated with filesystem ob-
jects. This encompasses the user and group IDs associated with inodes and also the fol-
lowing xattr(7) keys:

• security.capability, whenever filesystem capabilities are stored or returned in the
VFS_CAP_REVISION_3 format, which stores a root user ID alongside the capa-
bilities (see capabilities(7)).

• system.posix_acl_access and system.posix_acl_default, whenever user IDs or group
IDs are stored in ACL_USER or ACL_GROUP entries.

The following conditions must be met in order to create an ID-mapped mount:

• The caller must have the CAP_SYS_ADMIN capability in the user namespace the
filesystem was mounted in.

• The underlying filesystem must support ID-mapped mounts. Currently, the follow-
ing filesystems support ID-mapped mounts:

• xfs(5) (since Linux 5.12)
• ext4(5) (since Linux 5.12)
• FAT (since Linux 5.12)
• btrfs(5) (since Linux 5.15)
• ntfs3 (since Linux 5.15)
• f2fs (since Linux 5.18)
• erofs (since Linux 5.19)
• overlayfs (ID-mapped lower and upper layers supported since Linux 5.19)
• squashfs (since Linux 6.2)
• tmpfs (since Linux 6.3)
• cephfs (since Linux 6.7)
• hugetlbfs (since Linux 6.9)

• The mount must not already be ID-mapped. This also implies that the ID mapping
of a mount cannot be altered.

• The mount must not have any writers.

• The mount must be a detached mount; that is, it must have been created by calling
open_tree(2) with the OPEN_TREE_CLONE flag and it must not already have
been visible in a mount namespace. (To put things another way: the mount must not
have been attached to the filesystem hierarchy with a system call such as
move_mount(2).)

ID mappings can be created for user IDs, group IDs, and project IDs. An ID mapping is
essentially a mapping of a range of user or group IDs into another or the same range of

Linux man-pages 6.16 2025-10-01 507

mount_setattr(2) System Calls Manual mount_setattr(2)

user or group IDs. ID mappings are written to map files as three numbers separated by
white space. The first two numbers specify the starting user or group ID in each of the
two user namespaces. The third number specifies the range of the ID mapping. For ex-
ample, a mapping for user IDs such as "1000 1001 1" would indicate that user ID 1000
in the caller’s user namespace is mapped to user ID 1001 in its ancestor user namespace.
Since the map range is 1, only user ID 1000 is mapped.

It is possible to specify up to 340 ID mappings for each ID mapping type. If any user
IDs or group IDs are not mapped, all files owned by that unmapped user or group ID
will appear as being owned by the overflow user ID or overflow group ID respectively.

Further details on setting up ID mappings can be found in user_namespaces(7).

In the common case, the user namespace passed in userns_fd (together with
MOUNT_ATTR_IDMAP in attr_set) to create an ID-mapped mount will be the user
namespace of a container. In other scenarios it will be a dedicated user namespace asso-
ciated with a user’s login session as is the case for portable home directories in systemd-
homed.service(8)). It is also perfectly fine to create a dedicated user namespace for the
sake of ID mapping a mount.

ID-mapped mounts can be useful in the following and a variety of other scenarios:

• Sharing files or filesystems between multiple users or multiple machines, especially
in complex scenarios. For example, ID-mapped mounts are used to implement
portable home directories in systemd-homed.service(8), where they allow users to
move their home directory to an external storage device and use it on multiple com-
puters where they are assigned different user IDs and group IDs. This effectively
makes it possible to assign random user IDs and group IDs at login time.

• Sharing files or filesystems from the host with unprivileged containers. This allows
a user to avoid having to change ownership permanently through chown(2).

• ID mapping a container’s root filesystem. Users don’t need to change ownership
permanently through chown(2). Especially for large root filesystems, using
chown(2) can be prohibitively expensive.

• Sharing files or filesystems between containers with non-overlapping ID mappings.

• Implementing discretionary access (DAC) permission checking for filesystems lack-
ing a concept of ownership.

• Efficiently changing ownership on a per-mount basis. In contrast to chown(2),
changing ownership of large sets of files is instantaneous with ID-mapped mounts.
This is especially useful when ownership of an entire root filesystem of a virtual ma-
chine or container is to be changed as mentioned above. With ID-mapped mounts, a
single mount_setattr() system call will be sufficient to change the ownership of all
files.

• Taking the current ownership into account. ID mappings specify precisely what a
user or group ID is supposed to be mapped to. This contrasts with the chown(2) sys-
tem call which cannot by itself take the current ownership of the files it changes into
account. It simply changes the ownership to the specified user ID and group ID.

Linux man-pages 6.16 2025-10-01 508

mount_setattr(2) System Calls Manual mount_setattr(2)

• Locally and temporarily restricted ownership changes. ID-mapped mounts make it
possible to change ownership locally, restricting the ownership changes to specific
mounts, and temporarily as the ownership changes only apply as long as the mount
exists. By contrast, changing ownership via the chown(2) system call changes the
ownership globally and permanently.

Mount attributes and filesystem parameters
Some mount attributes (traditionally associated with mount(8)-style options) have a sib-
ling filesystem parameter with superficially similar user-facing behaviour. For example,
the -o ro option to mount(8) can refer to the "read-only" filesystem parameter, or the
"read-only" mount attribute. Both of these result in mount objects becoming read-only,
but they do have different behaviour.

The distinction between these two kinds of option is that mount object attributes are ap-
plied per-mount-object (allowing different mount objects derived from a given filesys-
tem instance to have different attributes), while filesystem instance parameters ("su-
perblock flags" in kernel-developer parlance) apply to all mount objects derived from
the same filesystem instance.

When using mount(2), the line between these two types of mount options was blurred.
However, with mount_setattr() and fsconfig(2), the distinction is made much clearer.
Mount attributes are configured with mount_setattr(), while filesystem parameters are
configured using fsconfig(2).

Extensibility
In order to allow for future extensibility, mount_setattr() requires the user-space appli-
cation to specify the size of the mount_attr structure that it is passing. By providing this
information, it is possible for mount_setattr() to provide both forwards- and back-
wards-compatibility, with size acting as an implicit version number. (Because new ex-
tension fields will always be appended, the structure size will always increase.) This ex-
tensibility design is very similar to other system calls such as perf_setattr(2),
perf_event_open(2), clone3(2) and openat2(2).

Let usize be the size of the structure as specified by the user-space application, and let
ksize be the size of the structure which the kernel supports, then there are three cases to
consider:

• If ksize equals usize, then there is no version mismatch and attr can be used verba-
tim.

• If ksize is larger than usize, then there are some extension fields that the kernel sup-
ports which the user-space application is unaware of. Because a zero value in any
added extension field signifies a no-op, the kernel treats all of the extension fields
not provided by the user-space application as having zero values. This provides
backwards-compatibility.

• If ksize is smaller than usize, then there are some extension fields which the user-
space application is aware of but which the kernel does not support. Because any
extension field must have its zero values signify a no-op, the kernel can safely ignore
the unsupported extension fields if they are all zero. If any unsupported extension
fields are non-zero, then -1 is returned and errno is set to E2BIG. This provides
forwards-compatibility.

Linux man-pages 6.16 2025-10-01 509

mount_setattr(2) System Calls Manual mount_setattr(2)

Because the definition of struct mount_attr may change in the future (with new fields
being added when system headers are updated), user-space applications should zero-fill
struct mount_attr to ensure that recompiling the program with new headers will not re-
sult in spurious errors at run time. The simplest way is to use a designated initializer:

struct mount_attr attr = {
.attr_set = MOUNT_ATTR_RDONLY,
.attr_clr = MOUNT_ATTR_NODEV

};

Alternatively, the structure can be zero-filled using memset(3) or similar functions:

struct mount_attr attr;
memset(&attr, 0, sizeof(attr));
attr.attr_set = MOUNT_ATTR_RDONLY;
attr.attr_clr = MOUNT_ATTR_NODEV;

A user-space application that wishes to determine which extensions the running kernel
supports can do so by conducting a binary search on size with a structure which has
every byte nonzero (to find the largest value which doesn’t produce an error of E2BIG).

EXAMPLES
/*

* This program allows the caller to create a new detached mount
* and set various properties on it.
*/

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <getopt.h>
#include <sys/mount.h>
#include <sys/types.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

static const struct option longopts[] = {
{"map-mount", required_argument, NULL, 'a'},
{"recursive", no_argument, NULL, 'b'},
{"read-only", no_argument, NULL, 'c'},
{"block-setid", no_argument, NULL, 'd'},
{"block-devices", no_argument, NULL, 'e'},
{"block-exec", no_argument, NULL, 'f'},
{"no-access-time", no_argument, NULL, 'g'},
{ NULL, 0, NULL, 0 },

};

int

Linux man-pages 6.16 2025-10-01 510

mount_setattr(2) System Calls Manual mount_setattr(2)

main(int argc, char *argv[])
{

int fd_userns = -1;
int fd_tree;
int index = 0;
int ret;
bool recursive = false;
const char *source;
const char *target;
struct mount_attr *attr = &(struct mount_attr){};

while ((ret = getopt_long_only(argc, argv, "",
longopts, &index)) != -1) {

switch (ret) {
case 'a':

fd_userns = open(optarg, O_RDONLY | O_CLOEXEC);
if (fd_userns == -1)

err(EXIT_FAILURE, "open(%s)", optarg);
break;

case 'b':
recursive = true;
break;

case 'c':
attr->attr_set |= MOUNT_ATTR_RDONLY;
break;

case 'd':
attr->attr_set |= MOUNT_ATTR_NOSUID;
break;

case 'e':
attr->attr_set |= MOUNT_ATTR_NODEV;
break;

case 'f':
attr->attr_set |= MOUNT_ATTR_NOEXEC;
break;

case 'g':
attr->attr_set |= MOUNT_ATTR_NOATIME;
attr->attr_clr |= MOUNT_ATTR__ATIME;
break;

default:
errx(EXIT_FAILURE, "Invalid argument specified");

}
}

if ((argc - optind) < 2)
errx(EXIT_FAILURE, "Missing source or target mount point");

source = argv[optind];

Linux man-pages 6.16 2025-10-01 511

mount_setattr(2) System Calls Manual mount_setattr(2)

target = argv[optind + 1];

/* In the following, -1 as the 'dirfd' argument ensures that
open_tree() fails if 'source' is not an absolute pathname. */

fd_tree = open_tree(-1, source,
OPEN_TREE_CLONE | OPEN_TREE_CLOEXEC |
AT_EMPTY_PATH | (recursive ? AT_RECURSIVE : 0));

if (fd_tree == -1)
err(EXIT_FAILURE, "open(%s)", source);

if (fd_userns >= 0) {
attr->attr_set |= MOUNT_ATTR_IDMAP;
attr->userns_fd = fd_userns;

}

ret = mount_setattr(fd_tree, "",
AT_EMPTY_PATH | (recursive ? AT_RECURSIVE : 0),
attr, sizeof(struct mount_attr));

if (ret == -1)
err(EXIT_FAILURE, "mount_setattr");

close(fd_userns);

/* In the following, -1 as the 'to_dirfd' argument ensures that
open_tree() fails if 'target' is not an absolute pathname. */

ret = move_mount(fd_tree, "", -1, target,
MOVE_MOUNT_F_EMPTY_PATH);

if (ret == -1)
err(EXIT_FAILURE, "move_mount() to %s", target);

close(fd_tree);

exit(EXIT_SUCCESS);
}

SEE ALSO
newgidmap(1), newuidmap(1), clone(2), mount(2), unshare(2), proc(5), capabilities(7),
mount_namespaces(7), user_namespaces(7), xattr(7)

Linux man-pages 6.16 2025-10-01 512

move_mount(2) System Calls Manual move_mount(2)

NAME
move_mount - move or attach mount object to filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/mount.h>

int move_mount(int from_dirfd , const char * from_path,
int to_dirfd , const char *to_path,
unsigned int flags);

DESCRIPTION
The move_mount() system call is part of the suite of file-descriptor-based mount facili-
ties in Linux.

move_mount() moves the mount object indicated by from_dirfd and from_path to the
path indicated by to_dirfd and to_path. The mount object being moved can be an exist-
ing mount point in the current mount namespace, or a detached mount object created by
fsmount(2) or open_tree(2) with OPEN_TREE_CLONE.

To access the source mount object or the destination mount point, no permissions are re-
quired on the object itself, but if either pathname is supplied, execute (search) permis-
sion is required on all of the directories specified in from_path or to_path.

The calling process must have the CAP_SYS_ADMIN capability in order to move or
attach a mount object.

As with "*at()" system calls, move_mount() uses the from_dirfd and to_dirfd argu-
ments in conjunction with the from_path and to_path arguments to determine the
source and destination objects to operate on (respectively), as follows:

• If the pathname given in *_path is absolute, then the corresponding *_dirfd is ig-
nored.

• If the pathname given in *_path is relative and the corresponding *_dirfd is the spe-
cial value AT_FDCWD, then *_path is interpreted relative to the current working
directory of the calling process (like open(2)).

• If the pathname given in *_path is relative, then it is interpreted relative to the direc-
tory referred to by the corresponding file descriptor *_dirfd (rather than relative to
the current working directory of the calling process, as is done by open(2) for a rela-
tive pathname). In this case, the corresponding *_dirfd must be a directory that was
opened for reading (O_RDONLY) or using the O_PATH flag.

• If *_path is an empty string, and flags contains the appropriate
MOVE_MOUNT_*_EMPTY_PATH flag, then the corresponding file descriptor
*_dirfd is operated on directly. In this case, the corresponding *_dirfd may refer to
any type of file, not just a directory.

See openat(2) for an explanation of why the *_dirfd arguments are useful.

flags can be used to control aspects of the path lookup for both the source and

Linux man-pages 6.16 2025-10-01 513

move_mount(2) System Calls Manual move_mount(2)

destination objects, as well as other properties of the mount operation. A value for flags
is constructed by bitwise ORing zero or more of the following constants:

MOVE_MOUNT_F_EMPTY_PATH
If from_path is an empty string, operate on the file referred to by
from_dirfd (which may have been obtained from open(2), fsmount(2), or
open_tree(2)). In this case, from_dirfd may refer to any type of file, not
just a directory. If from_dirfd is AT_FDCWD, move_mount() will op-
erate on the current working directory of the calling process.

This is the most common mechanism used to attach detached mount ob-
jects produced by fsmount(2) and open_tree(2) to a mount point.

MOVE_MOUNT_T_EMPTY_PATH
As with MOVE_MOUNT_F_EMPTY_PATH, except operating on
to_dirfd and to_path.

MOVE_MOUNT_F_SYMLINKS
If from_path references a symbolic link, then dereference it. The default
behaviour for move_mount() is to not follow symbolic links.

MOVE_MOUNT_T_SYMLINKS
As with MOVE_MOUNT_F_SYMLINKS, except operating on
to_dirfd and to_path.

MOVE_MOUNT_F_NO_AUTOMOUNT
Do not automount the terminal ("basename") component of from_path if
it is a directory that is an automount point. This allows a mount object
that has an automount point at its root to be moved and prevents unin-
tended triggering of an automount point. This flag has no effect if the au-
tomount point has already been mounted over.

MOVE_MOUNT_T_NO_AUTOMOUNT
As with MOVE_MOUNT_F_NO_AUTOMOUNT, except operating on
to_dirfd and to_path. This allows an automount point to be manually
mounted over.

MOVE_MOUNT_SET_GROUP (since Linux 5.15)
Add the attached private-propagation mount object indicated by to_dirfd
and to_path into the mount propagation "peer group" of the attached non-
private-propagation mount object indicated by from_dirfd and
from_path.

Unlike other move_mount() operations, this operation does not move or
attach any mount objects. Instead, it only updates the metadata of at-
tached mount objects. (Also, take careful note of the argument order—
the mount object being modified by this operation is the one specified by
to_dirfd and to_path.)

This makes it possible to first create a mount tree consisting only of pri-
vate mounts and then configure the desired propagation layout after-
wards. (See the "SHARED SUBTREES" section of mount_name-
spaces(7) for more information about mount propagation and peer

Linux man-pages 6.16 2025-10-01 514

move_mount(2) System Calls Manual move_mount(2)

groups.)

MOVE_MOUNT_BENEATH (since Linux 6.5)
If the path indicated by to_dirfd and to_path is an existing mount object,
rather than attaching or moving the mount object indicated by
from_dirfd and from_path on top of the mount stack, attach or move it
beneath the current top mount on the mount stack.

After using MOVE_MOUNT_BENEATH, it is possible to umount(2)
the top mount in order to reveal the mount object which was attached be-
neath it earlier. This allows for the seamless (and atomic) replacement of
intricate mount trees, which can further be used to "upgrade" a mount
tree with a newer version.

This operation has several restrictions:

• Mount objects cannot be attached beneath the filesystem root, includ-
ing cases where the filesystem root was configured by chroot(2) or
pivot_root(2). To mount beneath the filesystem root, pivot_root(2)
must be used.

• The target path indicated by to_dirfd and to_path must not be a de-
tached mount object, such as those produced by open_tree(2) with
OPEN_TREE_CLONE or fsmount(2).

• The current top mount of the target path’s mount stack and its parent
mount must be in the calling process’s mount namespace.

• The caller must have sufficient privileges to unmount the top mount
of the target path’s mount stack, to prove they have privileges to re-
veal the underlying mount.

• Mount propagation events triggered by this move_mount() operation
(as described in mount_namespaces(7)) are calculated based on the
parent mount of the current top mount of the target path’s mount
stack.

• The target path’s mount cannot be an ancestor in the mount tree of the
source mount object.

• The source mount object must not have any overmounts, otherwise it
would be possible to create "shadow mounts" (i.e., two mounts
mounted on the same parent mount at the same mount point).

• It is not possible to move a mount beneath a top mount if the parent
mount of the current top mount propagates to the top mount itself.
Otherwise, MOVE_MOUNT_BENEATH would cause the mount
object to be propagated to the top mount from the parent mount, de-
feating the purpose of using MOVE_MOUNT_BENEATH.

• It is not possible to move a mount beneath a top mount if the parent
mount of the current top mount propagates to the mount object being
mounted beneath. Otherwise, this would cause a similar propagation
issue to the previous point, also defeating the purpose of using

Linux man-pages 6.16 2025-10-01 515

move_mount(2) System Calls Manual move_mount(2)

MOVE_MOUNT_BENEATH.

If from_dirfd is a mount object file descriptor and move_mount() is operating on it di-
rectly, from_dirfd will remain associated with the mount object after move_mount()
succeeds, so you may repeatedly use from_dirfd with move_mount(2) and/or "*at()"
system calls as many times as necessary.

RETURN VALUE
On success, move_mount() returns 0. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of one of
from_path or to_path. (See also path_resolution(7).)

EBADF
One of from_dirfd or to_dirfd is not a valid file descriptor.

EFAULT
One of from_path or to_path is NULL or a pointer to a location outside the call-
ing process’s accessible address space.

EINVAL
Invalid flag specified in flags.

EINVAL
The path indicated by from_dirfd and from_path is not a mount object.

EINVAL
The mount object type of the source mount object and target inode are not com-
patible (i.e., the source is a file but the target is a directory, or vice-versa).

EINVAL
The source mount object or target path are not in the calling process’s mount
namespace (or an anonymous mount namespace of the calling process).

EINVAL
The source mount object’s parent mount has shared mount propagation, and thus
cannot be moved (as described in mount_namespaces(7)).

EINVAL
The source mount has MS_UNBINDABLE child mounts but the target path re-
sides on a mount tree with shared mount propagation, which would otherwise
cause the unbindable mounts to be propagated (as described in mount_name-
spaces(7)).

EINVAL
MOVE_MOUNT_BENEATH was attempted, but one of the listed restrictions
was violated.

ELOOP
Too many symbolic links encountered when resolving one of from_path or
to_path.

Linux man-pages 6.16 2025-10-01 516

move_mount(2) System Calls Manual move_mount(2)

ENAMETOOLONG
One of from_path or to_path is longer than PATH_MAX.

ENOENT
A component of one of from_path or to_path does not exist.

ENOENT
One of from_path or to_path is an empty string, but the corresponding
MOVE_MOUNT_*_EMPTY_PATH flag is not specified in flags.

ENOTDIR
A component of the path prefix of one of from_path or to_path is not a direc-
tory, or one of from_path or to_path is relative and the corresponding
from_dirfd or to_dirfd is a file descriptor referring to a file other than a direc-
tory.

ENOMEM
The kernel could not allocate sufficient memory to complete the operation.

EPERM
The calling process does not have the required CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Linux 5.2. glibc 2.36.

EXAMPLES
move_mount() can be used to move attached mounts like the following:

move_mount(AT_FDCWD, "/a", AT_FDCWD, "/b", 0);

This would move the mount object mounted on /a to /b. The above procedure is func-
tionally equivalent to the following mount operation using mount(2):

mount("/a", "/b", NULL, MS_MOVE, NULL);

move_mount() can also be used in conjunction with file descriptors returned from
open_tree(2) or open(2):

int fd = open_tree(AT_FDCWD, "/mnt", 0); /* open("/mnt", O_PATH); */
move_mount(fd, "", AT_FDCWD, "/mnt2", MOVE_MOUNT_F_EMPTY_PATH);
move_mount(fd, "", AT_FDCWD, "/mnt3", MOVE_MOUNT_F_EMPTY_PATH);
move_mount(fd, "", AT_FDCWD, "/mnt4", MOVE_MOUNT_F_EMPTY_PATH);

This would move the mount object mounted at /mnt to /mnt2, then /mnt3, and then
/mnt4.

If the source mount object indicated by from_dirfd and from_path is a detached mount
object, move_mount() can be used to attach it to a mount point:

int fsfd, mntfd;

fsfd = fsopen("ext4", FSOPEN_CLOEXEC);
fsconfig(fsfd, FSCONFIG_SET_STRING, "source", "/dev/sda1", 0);
fsconfig(fsfd, FSCONFIG_SET_FLAG, "user_xattr", NULL, 0);

Linux man-pages 6.16 2025-10-01 517

move_mount(2) System Calls Manual move_mount(2)

fsconfig(fsfd, FSCONFIG_CMD_CREATE, NULL, NULL, 0);
mntfd = fsmount(fsfd, FSMOUNT_CLOEXEC, MOUNT_ATTR_NODEV);
move_mount(mntfd, "", AT_FDCWD, "/home", MOVE_MOUNT_F_EMPTY_PATH);

This would create a new filesystem configuration context for ext4, configure it, create a
detached mount object, and then attach it to /home. The above procedure is functionally
equivalent to the following mount operation using mount(2):

mount("/dev/sda1", "/home", "ext4", MS_NODEV, "user_xattr");

The same operation also works with detached bind-mounts created with open_tree(2)
with OPEN_TREE_CLONE:

int mntfd = open_tree(AT_FDCWD, "/home/cyphar", OPEN_TREE_CLONE);
move_mount(mntfd, "", AT_FDCWD, "/root", MOVE_MOUNT_F_EMPTY_PATH);

This would create a new bind-mount of /home/cyphar as a detached mount object, and
then attach it to /root. The above procedure is functionally equivalent to the following
mount operation using mount(2):

mount("/home/cyphar", "/root", NULL, MS_BIND, NULL);

SEE ALSO
fsconfig(2), fsmount(2), fsopen(2), fspick(2), mount(2), mount_setattr(2), open_tree(2),
mount_namespaces(7)

Linux man-pages 6.16 2025-10-01 518

move_pages(2) System Calls Manual move_pages(2)

NAME
move_pages - move individual pages of a process to another node

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long move_pages(int pid , unsigned long count, void *pages[count],
const int nodes[count], int status[count],
int flags);

DESCRIPTION
move_pages() moves the specified pages of the process pid to the memory nodes speci-
fied by nodes. The result of the move is reflected in status. The flags indicate con-
straints on the pages to be moved.

pid is the ID of the process in which pages are to be moved. If pid is 0, then
move_pages() moves pages of the calling process.

To move pages in another process requires the following privileges:

• Up to and including Linux 4.12: the caller must be privileged (CAP_SYS_NICE) or
the real or effective user ID of the calling process must match the real or saved-set
user ID of the target process.

• The older rules allowed the caller to discover various virtual address choices made
by the kernel that could lead to the defeat of address-space-layout randomization for
a process owned by the same UID as the caller, the rules were changed starting with
Linux 4.13. Since Linux 4.13, permission is governed by a ptrace access mode
PTRACE_MODE_READ_REALCREDS check with respect to the target process;
see ptrace(2).

count is the number of pages to move. It defines the size of the three arrays pages,
nodes, and status.

pages is an array of pointers to the pages that should be moved. These are pointers that
should be aligned to page boundaries. Addresses are specified as seen by the process
specified by pid .

nodes is an array of integers that specify the desired location for each page. Each ele-
ment in the array is a node number. nodes can also be NULL, in which case
move_pages() does not move any pages but instead will return the node where each
page currently resides, in the status array. Obtaining the status of each page may be
necessary to determine pages that need to be moved.

status is an array of integers that return the status of each page. The array contains valid
values only if move_pages() did not return an error. Preinitialization of the array to a
value which cannot represent a real numa node or valid error of status array could help
to identify pages that have been migrated.

flags specify what types of pages to move. MPOL_MF_MOVE means that only pages
that are in exclusive use by the process are to be moved. MPOL_MF_MOVE_ALL
means that pages shared between multiple processes can also be moved. The process

Linux man-pages 6.16 2025-09-21 519

move_pages(2) System Calls Manual move_pages(2)

must be privileged (CAP_SYS_NICE) to use MPOL_MF_MOVE_ALL.

Page states in the status array
The following values can be returned in each element of the status array.

0..MAX_NUMNODES
Identifies the node on which the page resides.

-EACCES
The page is mapped by multiple processes and can be moved only if
MPOL_MF_MOVE_ALL is specified.

-EBUSY
The page is currently busy and cannot be moved. Try again later. This occurs if
a page is undergoing I/O or another kernel subsystem is holding a reference to
the page.

-EFAULT
This is a zero page or the memory area is not mapped by the process.

-EIO
Unable to write back a page. The page has to be written back in order to move it
since the page is dirty and the filesystem does not provide a migration function
that would allow the move of dirty pages.

-EINVAL
A dirty page cannot be moved. The filesystem does not provide a migration
function and has no ability to write back pages.

-ENOENT
The page is not present.

-ENOMEM
Unable to allocate memory on target node.

RETURN VALUE
On success move_pages() returns zero. On error, it returns -1, and sets errno to indi-
cate the error. If positive value is returned, it is the number of nonmigrated pages.

ERRORS
Positive value

The number of nonmigrated pages if they were the result of nonfatal reasons
(since Linux 4.17).

E2BIG
Too many pages to move. Since Linux 2.6.29, the kernel no longer generates
this error.

EACCES
One of the target nodes is not allowed by the current cpuset.

EFAULT
Parameter array could not be accessed.

Linux man-pages 6.16 2025-09-21 520

move_pages(2) System Calls Manual move_pages(2)

EINVAL
Flags other than MPOL_MF_MOVE and MPOL_MF_MOVE_ALL was
specified or an attempt was made to migrate pages of a kernel thread.

ENODEV
One of the target nodes is not online.

EPERM
The caller specified MPOL_MF_MOVE_ALL without sufficient privileges
(CAP_SYS_NICE). Or, the caller attempted to move pages of a process be-
longing to another user but did not have privilege to do so (CAP_SYS_NICE).

ESRCH
Process does not exist.

STANDARDS
Linux.

HISTORY
Linux 2.6.18.

NOTES
For information on library support, see numa(7).

Use get_mempolicy(2) with the MPOL_F_MEMS_ALLOWED flag to obtain the set
of nodes that are allowed by the current cpuset. Note that this information is subject to
change at any time by manual or automatic reconfiguration of the cpuset.

Use of this function may result in pages whose location (node) violates the memory pol-
icy established for the specified addresses (See mbind(2)) and/or the specified process
(See set_mempolicy(2)). That is, memory policy does not constrain the destination
nodes used by move_pages().

The <numaif.h> header is not included with glibc, but requires installing libnuma-de-
vel or a similar package.

SEE ALSO
get_mempolicy(2), mbind(2), set_mempolicy(2), numa(3), numa_maps(5), cpuset(7),
numa(7), migratepages(8), numastat(8)

Linux man-pages 6.16 2025-09-21 521

mprotect(2) System Calls Manual mprotect(2)

NAME
mprotect, pkey_mprotect - set protection on a region of memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int mprotect(size_t size;
void addr[size], size_t size, int prot);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

int pkey_mprotect(size_t size;
void addr[size], size_t size, int prot, int pkey);

DESCRIPTION
mprotect() changes the access protections for the calling process’s memory pages con-
taining any part of the address range in the interval [addr, addr+size-1]. addr must be
aligned to a page boundary.

If the calling process tries to access memory in a manner that violates the protections,
then the kernel generates a SIGSEGV signal for the process.

prot is a combination of the following access flags: PROT_NONE or a bitwise OR of
the other values in the following list:

PROT_NONE
The memory cannot be accessed at all.

PROT_READ
The memory can be read.

PROT_WRITE
The memory can be modified.

PROT_EXEC
The memory can be executed.

PROT_SEM (since Linux 2.5.7)
The memory can be used for atomic operations. This flag was introduced as part
of the futex(2) implementation (in order to guarantee the ability to perform
atomic operations required by commands such as FUTEX_WAIT), but is not
currently used in on any architecture.

PROT_SAO (since Linux 2.6.26)
The memory should have strong access ordering. This feature is specific to the
PowerPC architecture (version 2.06 of the architecture specification adds the
SAO CPU feature, and it is available on POWER 7 or PowerPC A2, for exam-
ple).

Additionally (since Linux 2.6.0), prot can have one of the following flags set:

Linux man-pages 6.16 2025-10-29 522

mprotect(2) System Calls Manual mprotect(2)

PROT_GROWSUP
Apply the protection mode up to the end of a mapping that grows upwards.
(Such mappings are created for the stack area on architectures—for example,
HP-PARISC—that have an upwardly growing stack.)

PROT_GROWSDOWN
Apply the protection mode down to the beginning of a mapping that grows
downward (which should be a stack segment or a segment mapped with the
MAP_GROWSDOWN flag set).

Like mprotect(), pkey_mprotect() changes the protection on the pages specified by
addr and size. The pkey argument specifies the protection key (see pkeys(7)) to assign
to the memory. The protection key must be allocated with pkey_alloc(2) before it is
passed to pkey_mprotect(). For an example of the use of this system call, see pkeys(7).

RETURN VALUE
On success, mprotect() and pkey_mprotect() return zero. On error, these system calls
return -1, and errno is set to indicate the error.

ERRORS
EACCES

The memory cannot be given the specified access. This can happen, for exam-
ple, if you mmap(2) a file to which you have read-only access, then ask mpro-
tect() to mark it PROT_WRITE.

EINVAL
addr is not a valid pointer, or not a multiple of the system page size.

EINVAL
(pkey_mprotect()) pkey has not been allocated with pkey_alloc(2)

EINVAL
Both PROT_GROWSUP and PROT_GROWSDOWN were specified in prot.

EINVAL
Invalid flags specified in prot.

EINVAL
(PowerPC architecture) PROT_SAO was specified in prot, but SAO hardware
feature is not available.

ENOMEM
Internal kernel structures could not be allocated.

ENOMEM
Addresses in the range [addr, addr+size-1] are invalid for the address space of
the process, or specify one or more pages that are not mapped. (Before Linux
2.4.19, the error EFAULT was incorrectly produced for these cases.)

ENOMEM
Changing the protection of a memory region would result in the total number of
mappings with distinct attributes (e.g., read versus read/write protection) exceed-
ing the allowed maximum. (For example, making the protection of a range
PROT_READ in the middle of a region currently protected as

Linux man-pages 6.16 2025-10-29 523

mprotect(2) System Calls Manual mprotect(2)

PROT_READ|PROT_WRITE would result in three mappings: two read/write
mappings at each end and a read-only mapping in the middle.)

VERSIONS
POSIX says that the behavior of mprotect() is unspecified if it is applied to a region of
memory that was not obtained via mmap(2).

On Linux, it is always permissible to call mprotect() on any address in a process’s ad-
dress space (except for the kernel vsyscall area). In particular, it can be used to change
existing code mappings to be writable.

Whether PROT_EXEC has any effect different from PROT_READ depends on
processor architecture, kernel version, and process state. If READ_IMPLIES_EXEC
is set in the process’s personality flags (see personality(2)), specifying PROT_READ
will implicitly add PROT_EXEC.

On some hardware architectures (e.g., i386), PROT_WRITE implies PROT_READ.

POSIX.1 says that an implementation may permit access other than that specified in
prot, but at a minimum can allow write access only if PROT_WRITE has been set, and
must not allow any access if PROT_NONE has been set.

Applications should be careful when mixing use of mprotect() and pkey_mprotect().
On x86, when mprotect() is used with prot set to PROT_EXEC a pkey may be allo-
cated and set on the memory implicitly by the kernel, but only when the pkey was 0 pre-
viously.

On systems that do not support protection keys in hardware, pkey_mprotect() may still
be used, but pkey must be set to -1. When called this way, the operation of
pkey_mprotect() is equivalent to mprotect().

STANDARDS
mprotect()

POSIX.1-2024.

pkey_mprotect()
Linux.

HISTORY
mprotect()

POSIX.1-2001, SVr4.

pkey_mprotect()
Linux 4.9, glibc 2.27.

NOTES
EXAMPLES

The program below demonstrates the use of mprotect(). The program allocates four
pages of memory, makes the third of these pages read-only, and then executes a loop that
walks upward through the allocated region modifying bytes.

An example of what we might see when running the program is the following:

$./a.out
Start of region: 0x804c000

Linux man-pages 6.16 2025-10-29 524

mprotect(2) System Calls Manual mprotect(2)

Got SIGSEGV at address: 0x804e000

Program source

#include <err.h>
#include <malloc.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>

static char *buffer;

static void
handler(int sig, siginfo_t *si, void *unused)
{

/* Note: calling printf() from a signal handler is not safe
(and should not be done in production programs), since
printf() is not async-signal-safe; see signal-safety(7).
Nevertheless, we use printf() here as a simple way of
showing that the handler was called. */

printf("Got SIGSEGV at address: %p\n", si->si_addr);
exit(EXIT_FAILURE);

}

int
main(void)
{

int pagesize;
struct sigaction sa;

sa.sa_flags = SA_SIGINFO;
sigemptyset(&sa.sa_mask);
sa.sa_sigaction = handler;
if (sigaction(SIGSEGV, &sa, NULL) == -1)

err(EXIT_FAILURE, "sigaction");

pagesize = sysconf(_SC_PAGE_SIZE);
if (pagesize == -1)

err(EXIT_FAILURE, "sysconf");

/* Allocate a buffer aligned on a page boundary;
initial protection is PROT_READ | PROT_WRITE. */

buffer = memalign(pagesize, 4 * pagesize);
if (buffer == NULL)

Linux man-pages 6.16 2025-10-29 525

mprotect(2) System Calls Manual mprotect(2)

err(EXIT_FAILURE, "memalign");

printf("Start of region: %p\n", buffer);

if (mprotect(buffer + pagesize * 2, pagesize,
PROT_READ) == -1)

err(EXIT_FAILURE, "mprotect");

for (char *p = buffer ; ;)
*(p++) = 'a';

printf("Loop completed\n"); /* Should never happen */
exit(EXIT_SUCCESS);

}

SEE ALSO
mmap(2), sysconf(3), pkeys(7)

Linux man-pages 6.16 2025-10-29 526

mq_getsetattr(2) System Calls Manual mq_getsetattr(2)

NAME
mq_getsetattr - get/set message queue attributes

SYNOPSIS
#include <mqueue.h> /* Definition of struct mq_attr */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_mq_getsetattr, mqd_t mqdes,
const struct mq_attr *newattr, struct mq_attr *oldattr);

DESCRIPTION
Do not use this system call.

This is the low-level system call used to implement mq_getattr(3) and mq_setattr(3).
For an explanation of how this system call operates, see the description of mq_setattr(3).

STANDARDS
None.

NOTES
Never call it unless you are writing a C library!

SEE ALSO
mq_getattr(3), mq_overview(7)

Linux man-pages 6.16 2025-05-17 527

mremap(2) System Calls Manual mremap(2)

NAME
mremap - remap a virtual memory address

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

void *mremap(size_t old_size;
void old_address[old_size], size_t old_size,
size_t new_size, int flags, ... /* void *new_address */);

DESCRIPTION
mremap() expands (or shrinks) an existing memory mapping, potentially moving it at
the same time (controlled by the flags argument and the available virtual address space).

Mappings can also simply be moved (without any resizing) by specifying equal old_size
and new_size and using the MREMAP_FIXED flag (see below). Since Linux 6.17,
while old_address must be mapped, old_size may span multiple mappings including un-
mapped areas between them when performing a simple move. The MREMAP_DON-
TUNMAP flag may also be specified.

Similarly, if the operation performs a shrink, that is, if old_size is greater than new_size,
then old_size may also span multiple mappings, which do not have to be adjacent to one
another. If this shrink is performed in-place, that is, neither MREMAP_FIXED, nor
MREMAP_DONTUNMAP are specified, new_size may also span multiple VMAs.
However, if the range is moved, then new_size must span only a single mapping.

If the operation is neither a MREMAP_FIXED move nor a shrink, then old_size must
span only a single mapping.

old_address is the old address of the first virtual memory block that you want to expand,
shrink, and/or move. Note that old_address has to be page aligned. old_size is the size
of the range containing virtual memory blocks to be manipulated. new_size is the re-
quested size of the virtual memory blocks after the resize. An optional fifth argument,
new_address, may be provided; see the description of MREMAP_FIXED below.

If the value of old_size is zero, and old_address refers to a shareable mapping (see the
description of MAP_SHARED in mmap(2)), then mremap() will create a new mapping
of the same pages. new_size will be the size of the new mapping and the location of the
new mapping may be specified with new_address; see the description of
MREMAP_FIXED below. If a new mapping is requested via this method, then the
MREMAP_MAYMOVE flag must also be specified.

The flags bit-mask argument may be 0, or include the following flags:

MREMAP_MAYMOVE
By default, if there is not sufficient space to expand a mapping at its current loca-
tion, then mremap() fails. If this flag is specified, then the kernel is permitted to
relocate the mapping to a new virtual address, if necessary. If the mapping is re-
located, then absolute pointers into the old mapping location become invalid
(offsets relative to the starting address of the mapping should be employed).

Linux man-pages 6.16 2025-09-21 528

mremap(2) System Calls Manual mremap(2)

MREMAP_FIXED (since Linux 2.3.31)
This flag serves a similar purpose to the MAP_FIXED flag of mmap(2). If this
flag is specified, then mremap() accepts a fifth argument, void *new_address,
which specifies a page-aligned address to which the mapping must be moved.
Any previous mapping at the address range specified by new_address and
new_size is unmapped.

If MREMAP_FIXED is specified, then MREMAP_MAYMOVE must also be
specified.

Since Linux 6.17, if old_size is equal to new_size and MREMAP_FIXED is
specified, then old_size may span beyond the mapping in which old_address re-
sides. In this case, gaps between mappings in the original range are maintained
in the new range. The whole operation is performed atomically unless an error
arises, in which case the operation may be partially completed, that is, some
mappings may be moved and others not.

Moving multiple mappings is not permitted if any of those mappings have either
been registered with userfaultfd(2), or map drivers that specify their own custom
address mapping logic.

MREMAP_DONTUNMAP (since Linux 5.7)
This flag, which must be used in conjunction with MREMAP_MAYMOVE,
remaps mappings to a new address but does not unmap them from their original
address.

The MREMAP_DONTUNMAP flag can be used only with mappings that are
not VM_DONTEXPAND or VM_MIXEDMAP. Before Linux 5.13, the
MREMAP_DONTUNMAP flag could be used only with private anonymous
mappings (see the description of MAP_PRIVATE and MAP_ANONYMOUS
in mmap(2)).

After completion, any access to the range specified by old_address and old_size
will result in a page fault. The page fault will be handled by a userfaultfd(2)
handler if the address is in a range previously registered with userfaultfd(2).
Otherwise, the kernel allocates a zero-filled page to handle the fault.

The MREMAP_DONTUNMAP flag may be used to atomically move a map-
ping while leaving the source mapped. See NOTES for some possible applica-
tions of MREMAP_DONTUNMAP.

If the memory segments specified by old_address and old_size are locked (using
mlock(2) or similar), then this lock is maintained when the segments are resized and/or
relocated. As a consequence, the amount of memory locked by the process may change.

RETURN VALUE
On success mremap() returns a pointer to the new virtual memory area. On error, the
value MAP_FAILED (that is, (void *) -1) is returned, and errno is set to indicate the er-
ror.

ERRORS

Linux man-pages 6.16 2025-09-21 529

mremap(2) System Calls Manual mremap(2)

EAGAIN
The caller tried to expand a memory segment that is locked, but this was not pos-
sible without exceeding the RLIMIT_MEMLOCK resource limit.

EFAULT
Some address in the range old_address to old_address+old_size is an invalid vir-
tual memory address for this process. You can also get EFAULT even if there
exist mappings that cover the whole address space requested, but those mappings
are of different types, and the mremap() operation being performed does not
support this.

EINVAL
An invalid argument was given. Possible causes are:

• old_address was not page aligned;

• a value other than MREMAP_MAYMOVE or MREMAP_FIXED or
MREMAP_DONTUNMAP was specified in flags;

• new_size was zero;

• new_size or new_address was invalid;

• the new address range specified by new_address and new_size overlapped
the old address range specified by old_address and old_size;

• MREMAP_FIXED or MREMAP_DONTUNMAP was specified without
also specifying MREMAP_MAYMOVE;

• MREMAP_DONTUNMAP was specified, but one or more pages in the
range specified by old_address and old_size were not private anonymous;

• MREMAP_DONTUNMAP was specified and old_size was not equal to
new_size;

• old_size was zero and old_address does not refer to a shareable mapping (but
see BUGS);

• old_size was zero and the MREMAP_MAYMOVE flag was not specified.

ENOMEM
Not enough memory was available to complete the operation. Possible causes
are:

• The memory area cannot be expanded at the current virtual address, and the
MREMAP_MAYMOVE flag is not set in flags. Or, there is not enough
(virtual) memory available.

• MREMAP_DONTUNMAP was used causing a new mapping to be created
that would exceed the (virtual) memory available. Or, it would exceed the
maximum number of allowed mappings.

STANDARDS
Linux.

Linux man-pages 6.16 2025-09-21 530

mremap(2) System Calls Manual mremap(2)

HISTORY
Prior to glibc 2.4, glibc did not expose the definition of MREMAP_FIXED, and the
prototype for mremap() did not allow for the new_address argument.

NOTES
mremap() changes the mapping between virtual addresses and memory pages. This can
be used to implement a very efficient realloc(3).

In Linux, memory is divided into pages. A process has (one or) several linear virtual
memory segments. Each virtual memory segment has one or more mappings to real
memory pages (in the page table). Each virtual memory segment has its own protection
(access rights), which may cause a segmentation violation (SIGSEGV) if the memory is
accessed incorrectly (e.g., writing to a read-only segment). Accessing virtual memory
outside of the segments will also cause a segmentation violation.

If mremap() is used to move or expand an area locked with mlock(2) or equivalent, the
mremap() call will make a best effort to populate the new area but will not fail with
ENOMEM if the area cannot be populated.

MREMAP_DONTUNMAP use cases
Possible applications for MREMAP_DONTUNMAP include:

• Non-cooperative userfaultfd(2): an application can yank out a virtual address range
using MREMAP_DONTUNMAP and then employ a userfaultfd(2) handler to han-
dle the page faults that subsequently occur as other threads in the process touch
pages in the yanked range.

• Garbage collection: MREMAP_DONTUNMAP can be used in conjunction with
userfaultfd(2) to implement garbage collection algorithms (e.g., in a Java virtual ma-
chine). Such an implementation can be cheaper (and simpler) than conventional
garbage collection techniques that involve marking pages with protection
PROT_NONE in conjunction with the use of a SIGSEGV handler to catch accesses
to those pages.

BUGS
Before Linux 4.14, if old_size was zero and the mapping referred to by old_address was
a private mapping (see the description of MAP_PRIVATE in mmap(2)), mremap() cre-
ated a new private mapping unrelated to the original mapping. This behavior was unin-
tended and probably unexpected in user-space applications (since the intention of
mremap() is to create a new mapping based on the original mapping). Since Linux
4.14, mremap() fails with the error EINVAL in this scenario.

SEE ALSO
brk(2), getpagesize(2), getrlimit(2), mlock(2), mmap(2), sbrk(2), malloc(3), realloc(3)

Your favorite text book on operating systems for more information on paged memory
(e.g., Modern Operating Systems by Andrew S. Tanenbaum, Inside Linux by Randolph
Bentson, The Design of the UNIX Operating System by Maurice J. Bach)

Linux man-pages 6.16 2025-09-21 531

msgctl(2) System Calls Manual msgctl(2)

NAME
msgctl - System V message control operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/msg.h>

int msgctl(int msqid , int op, struct msqid_ds *buf);

DESCRIPTION
msgctl() performs the control operation specified by op on the System V message queue
with identifier msqid .

The msqid_ds data structure is defined in <sys/msg.h> as follows:

struct msqid_ds {
struct ipc_perm msg_perm; /* Ownership and permissions */
time_t msg_stime; /* Time of last msgsnd(2) */
time_t msg_rtime; /* Time of last msgrcv(2) */
time_t msg_ctime; /* Time of creation or last

modification by msgctl() */
unsigned long msg_cbytes; /* # of bytes in queue */
msgqnum_t msg_qnum; /* # number of messages in queue */
msglen_t msg_qbytes; /* Maximum # of bytes in queue */
pid_t msg_lspid; /* PID of last msgsnd(2) */
pid_t msg_lrpid; /* PID of last msgrcv(2) */

};

The fields of the msqid_ds structure are as follows:

msg_perm This is an ipc_perm structure (see below) that specifies the access permis-
sions on the message queue.

msg_stime Time of the last msgsnd(2) system call.

msg_rtime Time of the last msgrcv(2) system call.

msg_ctime Time of creation of queue or time of last msgctl() IPC_SET operation.

msg_cbytes
Number of bytes in all messages currently on the message queue. This is
a nonstandard Linux extension that is not specified in POSIX.

msg_qnum Number of messages currently on the message queue.

msg_qbytes
Maximum number of bytes of message text allowed on the message queue.

msg_lspid ID of the process that performed the last msgsnd(2) system call.

msg_lrpid ID of the process that performed the last msgrcv(2) system call.

The ipc_perm structure is defined as follows (the highlighted fields are settable using
IPC_SET):

struct ipc_perm {

Linux man-pages 6.16 2025-10-29 532

msgctl(2) System Calls Manual msgctl(2)

key_t __key; /* Key supplied to msgget(2) */
uid_t uid; /* Effective UID of owner */
gid_t gid; /* Effective GID of owner */
uid_t cuid; /* Effective UID of creator */
gid_t cgid; /* Effective GID of creator */
unsigned short mode; /* Permissions */
unsigned short __seq; /* Sequence number */

};

The least significant 9 bits of the mode field of the ipc_perm structure define the access
permissions for the message queue. The permission bits are as follows:
0400 Read by user
0200 Write by user
0040 Read by group
0020 Write by group
0004 Read by others
0002 Write by others

Bits 0100, 0010, and 0001 (the execute bits) are unused by the system.

Valid values for op are:

IPC_STAT
Copy information from the kernel data structure associated with msqid into the
msqid_ds structure pointed to by buf . The caller must have read permission on
the message queue.

IPC_SET
Write the values of some members of the msqid_ds structure pointed to by buf
to the kernel data structure associated with this message queue, updating also its
msg_ctime member.

The following members of the structure are updated: msg_qbytes,
msg_perm.uid , msg_perm.gid , and (the least significant 9 bits of)
msg_perm.mode.

The effective UID of the calling process must match the owner (msg_perm.uid)
or creator (msg_perm.cuid) of the message queue, or the caller must be privi-
leged. Appropriate privilege (Linux: the CAP_SYS_RESOURCE capability) is
required to raise the msg_qbytes value beyond the system parameter MSGMNB.

IPC_RMID
Immediately remove the message queue, awakening all waiting reader and writer
processes (with an error return and errno set to EIDRM). The calling process
must have appropriate privileges or its effective user ID must be either that of the
creator or owner of the message queue. The third argument to msgctl() is ig-
nored in this case.

IPC_INFO (Linux-specific)
Return information about system-wide message queue limits and parameters in
the structure pointed to by buf . This structure is of type msginfo (thus, a cast is
required), defined in <sys/msg.h> if the _GNU_SOURCE feature test macro is

Linux man-pages 6.16 2025-10-29 533

msgctl(2) System Calls Manual msgctl(2)

defined:

struct msginfo {
int msgpool; /* Size in kibibytes of buffer pool

used to hold message data;
unused within kernel */

int msgmap; /* Maximum number of entries in message
map; unused within kernel */

int msgmax; /* Maximum number of bytes that can be
written in a single message */

int msgmnb; /* Maximum number of bytes that can be
written to queue; used to initialize
msg_qbytes during queue creation
(msgget(2)) */

int msgmni; /* Maximum number of message queues */
int msgssz; /* Message segment size;

unused within kernel */
int msgtql; /* Maximum number of messages on all queues

in system; unused within kernel */
unsigned short msgseg;

/* Maximum number of segments;
unused within kernel */

};

The msgmni, msgmax, and msgmnb settings can be changed via /proc files of
the same name; see proc(5) for details.

MSG_INFO (Linux-specific)
Return a msginfo structure containing the same information as for IPC_INFO,
except that the following fields are returned with information about system re-
sources consumed by message queues: the msgpool field returns the number of
message queues that currently exist on the system; the msgmap field returns the
total number of messages in all queues on the system; and the msgtql field re-
turns the total number of bytes in all messages in all queues on the system.

MSG_STAT (Linux-specific)
Return a msqid_ds structure as for IPC_STAT. However, the msqid argument is
not a queue identifier, but instead an index into the kernel’s internal array that
maintains information about all message queues on the system.

MSG_STAT_ANY (Linux-specific, since Linux 4.17)
Return a msqid_ds structure as for MSG_STAT. However, msg_perm.mode is
not checked for read access for msqid meaning that any user can employ this op-
eration (just as any user may read /proc/sysvipc/msg to obtain the same informa-
tion).

RETURN VALUE
On success, IPC_STAT, IPC_SET, and IPC_RMID return 0. A successful
IPC_INFO or MSG_INFO operation returns the index of the highest used entry in the
kernel’s internal array recording information about all message queues. (This informa-
tion can be used with repeated MSG_STAT or MSG_STAT_ANY operations to obtain

Linux man-pages 6.16 2025-10-29 534

msgctl(2) System Calls Manual msgctl(2)

information about all queues on the system.) A successful MSG_STAT or
MSG_STAT_ANY operation returns the identifier of the queue whose index was given
in msqid .

On failure, -1 is returned and errno is set to indicate the error.

ERRORS
EACCES

The argument op is equal to IPC_STAT or MSG_STAT, but the calling process
does not have read permission on the message queue msqid , and does not have
the CAP_IPC_OWNER capability in the user namespace that governs its IPC
namespace.

EFAULT
The argument op has the value IPC_SET or IPC_STAT, but the address pointed
to by buf isn’t accessible.

EIDRM
The message queue was removed.

EINVAL
Invalid value for op or msqid . Or: for a MSG_STAT operation, the index value
specified in msqid referred to an array slot that is currently unused.

EPERM
The argument op has the value IPC_SET or IPC_RMID, but the effective user
ID of the calling process is not the creator (as found in msg_perm.cuid) or the
owner (as found in msg_perm.uid) of the message queue, and the caller is not
privileged (Linux: does not have the CAP_SYS_ADMIN capability).

EPERM
An attempt (IPC_SET) was made to increase msg_qbytes beyond the system pa-
rameter MSGMNB, but the caller is not privileged (Linux: does not have the
CAP_SYS_RESOURCE capability).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

Various fields in the struct msqid_ds were typed as short under Linux 2.2 and have be-
come long under Linux 2.4. To take advantage of this, a recompilation under
glibc-2.1.91 or later should suffice. (The kernel distinguishes old and new calls by an
IPC_64 flag in op.)

NOTES
The IPC_INFO, MSG_STAT, and MSG_INFO operations are used by the ipcs(1) pro-
gram to provide information on allocated resources. In the future these may modified or
moved to a /proc filesystem interface.

SEE ALSO
msgget(2), msgrcv(2), msgsnd(2), capabilities(7), mq_overview(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 535

msgget(2) System Calls Manual msgget(2)

NAME
msgget - get a System V message queue identifier

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/msg.h>

int msgget(key_t key, int msgflg);

DESCRIPTION
The msgget() system call returns the System V message queue identifier associated with
the value of the key argument. It may be used either to obtain the identifier of a previ-
ously created message queue (when msgflg is zero and key does not have the value
IPC_PRIVATE), or to create a new set.

A new message queue is created if key has the value IPC_PRIVATE or key isn’t
IPC_PRIVATE, no message queue with the given key key exists, and IPC_CREAT is
specified in msgflg.

If msgflg specifies both IPC_CREAT and IPC_EXCL and a message queue already ex-
ists for key, then msgget() fails with errno set to EEXIST. (This is analogous to the ef-
fect of the combination O_CREAT | O_EXCL for open(2).)

Upon creation, the least significant bits of the argument msgflg define the permissions of
the message queue. These permission bits have the same format and semantics as the
permissions specified for the mode argument of open(2). (The execute permissions are
not used.)

If a new message queue is created, then its associated data structure msqid_ds (see ms-
gctl(2)) is initialized as follows:

• msg_perm.cuid and msg_perm.uid are set to the effective user ID of the calling
process.

• msg_perm.cgid and msg_perm.gid are set to the effective group ID of the calling
process.

• The least significant 9 bits of msg_perm.mode are set to the least significant 9 bits of
msgflg.

• msg_qnum, msg_lspid , msg_lrpid , msg_stime, and msg_rtime are set to 0.

• msg_ctime is set to the current time.

• msg_qbytes is set to the system limit MSGMNB.

If the message queue already exists the permissions are verified, and a check is made to
see if it is marked for destruction.

RETURN VALUE
On success, msgget() returns the message queue identifier (a nonnegative integer). On
failure, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-10-29 536

msgget(2) System Calls Manual msgget(2)

ERRORS
EACCES

A message queue exists for key, but the calling process does not have permission
to access the queue, and does not have the CAP_IPC_OWNER capability in the
user namespace that governs its IPC namespace.

EEXIST
IPC_CREAT and IPC_EXCL were specified in msgflg, but a message queue
already exists for key.

ENOENT
No message queue exists for key and msgflg did not specify IPC_CREAT.

ENOMEM
A message queue has to be created but the system does not have enough memory
for the new data structure.

ENOSPC
A message queue has to be created but the system limit for the maximum num-
ber of message queues (MSGMNI) would be exceeded.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

Linux
Until Linux 2.3.20, Linux would return EIDRM for a msgget() on a message queue
scheduled for deletion.

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key,
the system call ignores everything but the least significant 9 bits of msgflg and creates a
new message queue (on success).

The following is a system limit on message queue resources affecting a msgget() call:

MSGMNI
System-wide limit on the number of message queues. Before Linux 3.19, the de-
fault value for this limit was calculated using a formula based on available sys-
tem memory. Since Linux 3.19, the default value is 32,000. On Linux, this limit
can be read and modified via /proc/sys/kernel/msgmni.

BUGS
The name choice IPC_PRIVATE was perhaps unfortunate, IPC_NEW would more
clearly show its function.

SEE ALSO
msgctl(2), msgrcv(2), msgsnd(2), ftok(3), capabilities(7), mq_overview(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 537

MSGOP(2) System Calls Manual MSGOP(2)

NAME
msgrcv, msgsnd - System V message queue operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/msg.h>

ssize_t msgrcv(size_t msgsz;
int msqid , void msgp[msgsz], size_t msgsz, long msgtyp,
int msgflg);

int msgsnd(size_t msgsz;
int msqid , const void msgp[msgsz], size_t msgsz,
int msgflg);

DESCRIPTION
The msgsnd() and msgrcv() system calls are used to send messages to, and receive mes-
sages from, a System V message queue. The calling process must have write permission
on the message queue in order to send a message, and read permission to receive a mes-
sage.

The msgp argument is a pointer to a caller-defined structure of the following general
form:

struct msgbuf {
long mtype; /* message type, must be > 0 */
char mtext[1]; /* message data */

};

The mtext field is an array (or other structure) whose size is specified by msgsz, a non-
negative integer value. Messages of zero length (i.e., no mtext field) are permitted. The
mtype field must have a strictly positive integer value. This value can be used by the re-
ceiving process for message selection (see the description of msgrcv() below).

msgsnd()
The msgsnd() system call appends a copy of the message pointed to by msgp to the
message queue whose identifier is specified by msqid .

If sufficient space is available in the queue, msgsnd() succeeds immediately. The queue
capacity is governed by the msg_qbytes field in the associated data structure for the
message queue. During queue creation this field is initialized to MSGMNB bytes, but
this limit can be modified using msgctl(2). A message queue is considered to be full if
either of the following conditions is true:

• Adding a new message to the queue would cause the total number of bytes in the
queue to exceed the queue’s maximum size (the msg_qbytes field).

• Adding another message to the queue would cause the total number of messages in
the queue to exceed the queue’s maximum size (the msg_qbytes field). This check is
necessary to prevent an unlimited number of zero-length messages being placed on
the queue. Although such messages contain no data, they nevertheless consume
(locked) kernel memory.

Linux man-pages 6.16 2025-10-29 538

MSGOP(2) System Calls Manual MSGOP(2)

If insufficient space is available in the queue, then the default behavior of msgsnd() is to
block until space becomes available. If IPC_NOWAIT is specified in msgflg, then the
call instead fails with the error EAGAIN.

A blocked msgsnd() call may also fail if:

• the queue is removed, in which case the system call fails with errno set to EIDRM;
or

• a signal is caught, in which case the system call fails with errno set to EINTR; see
signal(7). (msgsnd() is never automatically restarted after being interrupted by a
signal handler, regardless of the setting of the SA_RESTART flag when establishing
a signal handler.)

Upon successful completion the message queue data structure is updated as follows:

• msg_lspid is set to the process ID of the calling process.

• msg_qnum is incremented by 1.

• msg_stime is set to the current time.

msgrcv()
The msgrcv() system call removes a message from the queue specified by msqid and
places it in the buffer pointed to by msgp.

The argument msgsz specifies the maximum size in bytes for the member mtext of the
structure pointed to by the msgp argument. If the message text has length greater than
msgsz, then the behavior depends on whether MSG_NOERROR is specified in msgflg.
If MSG_NOERROR is specified, then the message text will be truncated (and the trun-
cated part will be lost); if MSG_NOERROR is not specified, then the message isn’t re-
moved from the queue and the system call fails returning -1 with errno set to E2BIG.

Unless MSG_COPY is specified in msgflg (see below), the msgtyp argument specifies
the type of message requested, as follows:

• If msgtyp is 0, then the first message in the queue is read.

• If msgtyp is greater than 0, then the first message in the queue of type msgtyp is
read, unless MSG_EXCEPT was specified in msgflg, in which case the first mes-
sage in the queue of type not equal to msgtyp will be read.

• If msgtyp is less than 0, then the first message in the queue with the lowest type less
than or equal to the absolute value of msgtyp will be read.

The msgflg argument is a bit mask constructed by ORing together zero or more of the
following flags:

IPC_NOWAIT
Return immediately if no message of the requested type is in the queue. The
system call fails with errno set to ENOMSG.

MSG_COPY (since Linux 3.8)
Nondestructively fetch a copy of the message at the ordinal position in the queue
specified by msgtyp (messages are considered to be numbered starting at 0).

Linux man-pages 6.16 2025-10-29 539

MSGOP(2) System Calls Manual MSGOP(2)

This flag must be specified in conjunction with IPC_NOWAIT, with the result
that, if there is no message available at the given position, the call fails immedi-
ately with the error ENOMSG. Because they alter the meaning of msgtyp in or-
thogonal ways, MSG_COPY and MSG_EXCEPT may not both be specified in
msgflg.

The MSG_COPY flag was added for the implementation of the kernel check-
point-restore facility and is available only if the kernel was built with the CON-
FIG_CHECKPOINT_RESTORE option.

MSG_EXCEPT
Used with msgtyp greater than 0 to read the first message in the queue with mes-
sage type that differs from msgtyp.

MSG_NOERROR
To truncate the message text if longer than msgsz bytes.

If no message of the requested type is available and IPC_NOWAIT isn’t specified in
msgflg, the calling process is blocked until one of the following conditions occurs:

• A message of the desired type is placed in the queue.

• The message queue is removed from the system. In this case, the system call fails
with errno set to EIDRM.

• The calling process catches a signal. In this case, the system call fails with errno set
to EINTR. (msgrcv() is never automatically restarted after being interrupted by a
signal handler, regardless of the setting of the SA_RESTART flag when establishing
a signal handler.)

Upon successful completion the message queue data structure is updated as follows:

msg_lrpid is set to the process ID of the calling process.

msg_qnum is decremented by 1.

msg_rtime is set to the current time.

RETURN VALUE
On success, msgsnd() returns 0 and msgrcv() returns the number of bytes actually
copied into the mtext array. On failure, both functions return -1, and set errno to indi-
cate the error.

ERRORS
msgsnd() can fail with the following errors:

EACCES
The calling process does not have write permission on the message queue, and
does not have the CAP_IPC_OWNER capability in the user namespace that
governs its IPC namespace.

EAGAIN
The message can’t be sent due to the msg_qbytes limit for the queue and
IPC_NOWAIT was specified in msgflg.

Linux man-pages 6.16 2025-10-29 540

MSGOP(2) System Calls Manual MSGOP(2)

EFAULT
The address pointed to by msgp isn’t accessible.

EIDRM
The message queue was removed.

EINTR
Sleeping on a full message queue condition, the process caught a signal.

EINVAL
Invalid msqid value, or nonpositive mtype value, or invalid msgsz value (less
than 0 or greater than the system value MSGMAX).

ENOMEM
The system does not have enough memory to make a copy of the message
pointed to by msgp.

msgrcv() can fail with the following errors:

E2BIG
The message text length is greater than msgsz and MSG_NOERROR isn’t spec-
ified in msgflg.

EACCES
The calling process does not have read permission on the message queue, and
does not have the CAP_IPC_OWNER capability in the user namespace that
governs its IPC namespace.

EFAULT
The address pointed to by msgp isn’t accessible.

EIDRM
While the process was sleeping to receive a message, the message queue was re-
moved.

EINTR
While the process was sleeping to receive a message, the process caught a signal;
see signal(7).

EINVAL
msqid was invalid, or msgsz was less than 0.

EINVAL (since Linux 3.14)
msgflg specified MSG_COPY, but not IPC_NOWAIT.

EINVAL (since Linux 3.14)
msgflg specified both MSG_COPY and MSG_EXCEPT.

ENOMSG
IPC_NOWAIT was specified in msgflg and no message of the requested type
existed on the message queue.

ENOMSG
IPC_NOWAIT and MSG_COPY were specified in msgflg and the queue con-
tains fewer than msgtyp messages.

Linux man-pages 6.16 2025-10-29 541

MSGOP(2) System Calls Manual MSGOP(2)

ENOSYS (since Linux 3.8)
Both MSG_COPY and IPC_NOWAIT were specified in msgflg, and this kernel
was configured without CONFIG_CHECKPOINT_RESTORE.

STANDARDS
POSIX.1-2024.

The MSG_EXCEPT and MSG_COPY flags are Linux-specific; their definitions can be
obtained by defining the _GNU_SOURCE feature test macro.

HISTORY
POSIX.1-2001, SVr4.

The msgp argument is declared as struct msgbuf * in glibc 2.0 and 2.1. It is declared as
void * in glibc 2.2 and later, as required by SUSv2 and SUSv3.

NOTES
The following limits on message queue resources affect the msgsnd() call:

MSGMAX
Maximum size of a message text, in bytes (default value: 8192 bytes). On
Linux, this limit can be read and modified via /proc/sys/kernel/msgmax.

MSGMNB
Maximum number of bytes that can be held in a message queue (default value:
16384 bytes). On Linux, this limit can be read and modified via /proc/sys/ker-
nel/msgmnb. A privileged process (Linux: a process with the CAP_SYS_RE-
SOURCE capability) can increase the size of a message queue beyond MS-
GMNB using the msgctl(2) IPC_SET operation.

The implementation has no intrinsic system-wide limits on the number of message head-
ers (MSGTQL) and the number of bytes in the message pool (MSGPOOL).

BUGS
In Linux 3.13 and earlier, if msgrcv() was called with the MSG_COPY flag, but with-
out IPC_NOWAIT, and the message queue contained less than msgtyp messages, then
the call would block until the next message is written to the queue. At that point, the
call would return a copy of the message, regardless of whether that message was at the
ordinal position msgtyp. This bug is fixed in Linux 3.14.

Specifying both MSG_COPY and MSC_EXCEPT in msgflg is a logical error (since
these flags impose different interpretations on msgtyp). In Linux 3.13 and earlier, this
error was not diagnosed by msgrcv(). This bug is fixed in Linux 3.14.

EXAMPLES
The program below demonstrates the use of msgsnd() and msgrcv().

The example program is first run with the -s option to send a message and then run
again with the -r option to receive a message.

The following shell session shows a sample run of the program:

$./a.out -s
sent: a message at Wed Mar 4 16:25:45 2015

Linux man-pages 6.16 2025-10-29 542

MSGOP(2) System Calls Manual MSGOP(2)

$./a.out -r
message received: a message at Wed Mar 4 16:25:45 2015

Program source

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/msg.h>
#include <time.h>
#include <unistd.h>

struct msgbuf {
long mtype;
char mtext[80];

};

static void
usage(char *prog_name, char *msg)
{

if (msg != NULL)
fputs(msg, stderr);

fprintf(stderr, "Usage: %s [options]\n", prog_name);
fprintf(stderr, "Options are:\n");
fprintf(stderr, "-s send message using msgsnd()\n");
fprintf(stderr, "-r read message using msgrcv()\n");
fprintf(stderr, "-t message type (default is 1)\n");
fprintf(stderr, "-k message queue key (default is 1234)\n");
exit(EXIT_FAILURE);

}

static void
send_msg(int qid, int msgtype)
{

time_t t;
struct msgbuf msg;

msg.mtype = msgtype;

time(&t);
snprintf(msg.mtext, sizeof(msg.mtext), "a message at %s",

ctime(&t));

if (msgsnd(qid, &msg, sizeof(msg.mtext),
IPC_NOWAIT) == -1)

{

Linux man-pages 6.16 2025-10-29 543

MSGOP(2) System Calls Manual MSGOP(2)

perror("msgsnd error");
exit(EXIT_FAILURE);

}
printf("sent: %s\n", msg.mtext);

}

static void
get_msg(int qid, int msgtype)
{

struct msgbuf msg;

if (msgrcv(qid, &msg, sizeof(msg.mtext), msgtype,
MSG_NOERROR | IPC_NOWAIT) == -1) {

if (errno != ENOMSG) {
perror("msgrcv");
exit(EXIT_FAILURE);

}
printf("No message available for msgrcv()\n");

} else {
printf("message received: %s\n", msg.mtext);

}
}

int
main(int argc, char *argv[])
{

int qid, opt;
int mode = 0; /* 1 = send, 2 = receive */
int msgtype = 1;
int msgkey = 1234;

while ((opt = getopt(argc, argv, "srt:k:")) != -1) {
switch (opt) {
case 's':

mode = 1;
break;

case 'r':
mode = 2;
break;

case 't':
msgtype = atoi(optarg);
if (msgtype <= 0)

usage(argv[0], "-t option must be greater than 0\n");
break;

case 'k':
msgkey = atoi(optarg);
break;

Linux man-pages 6.16 2025-10-29 544

MSGOP(2) System Calls Manual MSGOP(2)

default:
usage(argv[0], "Unrecognized option\n");

}
}

if (mode == 0)
usage(argv[0], "must use either -s or -r option\n");

qid = msgget(msgkey, IPC_CREAT | 0666);

if (qid == -1) {
perror("msgget");
exit(EXIT_FAILURE);

}

if (mode == 2)
get_msg(qid, msgtype);

else
send_msg(qid, msgtype);

exit(EXIT_SUCCESS);
}

SEE ALSO
msgctl(2), msgget(2), capabilities(7), mq_overview(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 545

msync(2) System Calls Manual msync(2)

NAME
msync - synchronize a file with a memory map

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int msync(size_t length;
void addr[length], size_t length, int flags);

DESCRIPTION
msync() flushes changes made to the in-core copy of a file that was mapped into mem-
ory using mmap(2) back to the filesystem. Without use of this call, there is no guarantee
that changes are written back before munmap(2) is called. To be more precise, the part
of the file that corresponds to the memory area starting at addr and having length length
is updated.

The flags argument should specify exactly one of MS_ASYNC and MS_SYNC, and
may additionally include the MS_INVALIDATE bit. These bits have the following
meanings:

MS_ASYNC
Specifies that an update be scheduled, but the call returns immediately.

MS_SYNC
Requests an update and waits for it to complete.

MS_INVALIDATE
Asks to invalidate other mappings of the same file (so that they can be updated
with the fresh values just written).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBUSY

MS_INVALIDATE was specified in flags, and a memory lock exists for the
specified address range.

EINVAL
addr is not a multiple of PAGESIZE; or any bit other than MS_ASYNC |
MS_INVALIDATE | MS_SYNC is set in flags; or both MS_SYNC and
MS_ASYNC are set in flags.

ENOMEM
The indicated memory (or part of it) was not mapped.

VERSIONS
According to POSIX, either MS_SYNC or MS_ASYNC must be specified in flags, and
indeed failure to include one of these flags will cause msync() to fail on some systems.
However, Linux permits a call to msync() that specifies neither of these flags, with se-
mantics that are (currently) equivalent to specifying MS_ASYNC. (Since Linux 2.6.19,

Linux man-pages 6.16 2025-10-29 546

msync(2) System Calls Manual msync(2)

MS_ASYNC is in fact a no-op, since the kernel properly tracks dirty pages and flushes
them to storage as necessary.) Notwithstanding the Linux behavior, portable, future-
proof applications should ensure that they specify either MS_SYNC or MS_ASYNC in
flags.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

This call was introduced in Linux 1.3.21, and then used EFAULT instead of
ENOMEM. In Linux 2.4.19, this was changed to the POSIX value ENOMEM.

On POSIX systems on which msync() is available, both _POSIX_MAPPED_FILES
and _POSIX_SYNCHRONIZED_IO are defined in <unistd.h> to a value greater than
0. (See also sysconf(3).)

SEE ALSO
mmap(2)

B.O. Gallmeister, POSIX.4, O’Reilly, pp. 128–129 and 389–391.

Linux man-pages 6.16 2025-10-29 547

nanosleep(2) System Calls Manual nanosleep(2)

NAME
nanosleep - high-resolution sleep

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

int nanosleep(const struct timespec *duration,
struct timespec *_Nullable rem);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nanosleep():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
nanosleep() suspends the execution of the calling thread until either at least the time
specified in *duration has elapsed, or the delivery of a signal that triggers the invocation
of a handler in the calling thread or that terminates the process.

If the call is interrupted by a signal handler, nanosleep() returns -1, sets errno to
EINTR, and writes the remaining time into the structure pointed to by rem unless rem is
NULL. The value of *rem can then be used to call nanosleep() again and complete the
specified pause (but see NOTES).

The timespec(3) structure is used to specify intervals of time with nanosecond precision.

The value of the nanoseconds field must be in the range [0, 999999999].

Compared to sleep(3) and usleep(3), nanosleep() has the following advantages: it pro-
vides a higher resolution for specifying the sleep interval; POSIX.1 explicitly specifies
that it does not interact with signals; and it makes the task of resuming a sleep that has
been interrupted by a signal handler easier.

RETURN VALUE
On successfully sleeping for the requested duration, nanosleep() returns 0. If the call is
interrupted by a signal handler or encounters an error, then it returns -1, with errno set
to indicate the error.

ERRORS
EFAULT

Problem with copying information from user space.

EINTR
The pause has been interrupted by a signal that was delivered to the thread (see
signal(7)). The remaining sleep time has been written into *rem so that the
thread can easily call nanosleep() again and continue with the pause.

EINVAL
The value in the tv_nsec field was not in the range [0, 999999999] or tv_sec was
negative.

Linux man-pages 6.16 2025-10-29 548

nanosleep(2) System Calls Manual nanosleep(2)

VERSIONS
POSIX.1 specifies that nanosleep() should measure time against the CLOCK_REAL-
TIME clock. However, Linux measures the time using the CLOCK_MONOTONIC
clock. This probably does not matter, since the POSIX.1 specification for clock_set-
time(2) says that discontinuous changes in CLOCK_REALTIME should not affect
nanosleep():

Setting the value of the CLOCK_REALTIME clock via clock_settime(2) shall
have no effect on threads that are blocked waiting for a relative time service
based upon this clock, including the nanosleep() function. Consequently, these
time services shall expire when the requested duration elapses, independently of
the new or old value of the clock.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

In order to support applications requiring much more precise pauses (e.g., in order to
control some time-critical hardware), nanosleep() would handle pauses of up to 2 mil-
liseconds by busy waiting with microsecond precision when called from a thread sched-
uled under a real-time policy like SCHED_FIFO or SCHED_RR. This special exten-
sion was removed in Linux 2.5.39, and is thus not available in Linux 2.6.0 and later ker-
nels.

NOTES
If the duration is not an exact multiple of the granularity underlying clock (see time(7)),
then the interval will be rounded up to the next multiple. Furthermore, after the sleep
completes, there may still be a delay before the CPU becomes free to once again execute
the calling thread.

The fact that nanosleep() sleeps for a relative interval can be problematic if the call is
repeatedly restarted after being interrupted by signals, since the time between the inter-
ruptions and restarts of the call will lead to drift in the time when the sleep finally com-
pletes. This problem can be avoided by using clock_nanosleep(2) with an absolute time
value.

BUGS
If a program that catches signals and uses nanosleep() receives signals at a very high
rate, then scheduling delays and rounding errors in the kernel’s calculation of the sleep
interval and the returned remain value mean that the remain value may steadily increase
on successive restarts of the nanosleep() call. To avoid such problems, use
clock_nanosleep(2) with the TIMER_ABSTIME flag to sleep to an absolute deadline.

In Linux 2.4, if nanosleep() is stopped by a signal (e.g., SIGTSTP), then the call fails
with the error EINTR after the thread is resumed by a SIGCONT signal. If the system
call is subsequently restarted, then the time that the thread spent in the stopped state is
not counted against the sleep interval. This problem is fixed in Linux 2.6.0 and later
kernels.

Linux man-pages 6.16 2025-10-29 549

nanosleep(2) System Calls Manual nanosleep(2)

SEE ALSO
clock_nanosleep(2), restart_syscall(2), sched_setscheduler(2), timer_create(2), sleep(3),
timespec(3), usleep(3), time(7)

Linux man-pages 6.16 2025-10-29 550

nfsservctl(2) System Calls Manual nfsservctl(2)

NAME
nfsservctl - syscall interface to kernel nfs daemon

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/nfsd/syscall.h>

long nfsservctl(int cmd , struct nfsctl_arg *argp,
union nfsctl_res *resp);

DESCRIPTION
Note: Since Linux 3.1, this system call no longer exists. It has been replaced by a set of
files in the nfsd filesystem; see nfsd(7)

/*
* These are the commands understood by nfsctl().
*/

#define NFSCTL_SVC 0 /* This is a server process. */
#define NFSCTL_ADDCLIENT 1 /* Add an NFS client. */
#define NFSCTL_DELCLIENT 2 /* Remove an NFS client. */
#define NFSCTL_EXPORT 3 /* Export a filesystem. */
#define NFSCTL_UNEXPORT 4 /* Unexport a filesystem. */
#define NFSCTL_UGIDUPDATE 5 /* Update a client's UID/GID map

(only in Linux 2.4.x and earlier). */
#define NFSCTL_GETFH 6 /* Get a file handle (used by mountd(8))

(only in Linux 2.4.x and earlier). */

struct nfsctl_arg {
int ca_version; /* safeguard */
union {

struct nfsctl_svc u_svc;
struct nfsctl_client u_client;
struct nfsctl_export u_export;
struct nfsctl_uidmap u_umap;
struct nfsctl_fhparm u_getfh;
unsigned int u_debug;

} u;
}

union nfsctl_res {
struct knfs_fh cr_getfh;
unsigned int cr_debug;

};

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Linux man-pages 6.16 2025-09-21 551

nfsservctl(2) System Calls Manual nfsservctl(2)

STANDARDS
Linux.

HISTORY
Removed in Linux 3.1. Removed in glibc 2.28.

SEE ALSO
nfsd(7)

Linux man-pages 6.16 2025-09-21 552

nice(2) System Calls Manual nice(2)

NAME
nice - change process priority

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int nice(int inc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nice():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
nice() adds inc to the nice value for the calling thread. (A higher nice value means a
lower priority.)

The range of the nice value is +19 (low priority) to -20 (high priority). Attempts to set
a nice value outside the range are clamped to the range.

Traditionally, only a privileged process could lower the nice value (i.e., set a higher pri-
ority). However, since Linux 2.6.12, an unprivileged process can decrease the nice
value of a target process that has a suitable RLIMIT_NICE soft limit; see getrlimit(2)
for details.

RETURN VALUE
On success, the new nice value is returned (but see VERSIONS below). On error, -1 is
returned, and errno is set to indicate the error.

A successful call can legitimately return -1. To detect an error, set errno to 0 before the
call, and check whether it is nonzero after nice() returns -1.

ERRORS
EPERM

The calling process attempted to increase its priority by supplying a negative inc
but has insufficient privileges. Under Linux, the CAP_SYS_NICE capability is
required. (But see the discussion of the RLIMIT_NICE resource limit in setr-
limit(2).)

VERSIONS
C library/kernel differences

POSIX.1 specifies that nice() should return the new nice value. However, the raw Linux
system call returns 0 on success. Likewise, the nice() wrapper function provided in
glibc 2.2.3 and earlier returns 0 on success.

Since glibc 2.2.4, the nice() wrapper function provided by glibc provides conformance
to POSIX.1 by calling getpriority(2) to obtain the new nice value, which is then returned
to the caller.

Linux man-pages 6.16 2025-10-29 553

nice(2) System Calls Manual nice(2)

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
For further details on the nice value, see sched(7).

Note: the addition of the "autogroup" feature in Linux 2.6.38 means that the nice value
no longer has its traditional effect in many circumstances. For details, see sched(7).

SEE ALSO
nice(1), renice(1), fork(2), getpriority(2), getrlimit(2), setpriority(2), capabilities(7),
sched(7)

Linux man-pages 6.16 2025-10-29 554

open(2) System Calls Manual open(2)

NAME
open, openat, creat - open and possibly create a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int open(const char *path, int flags, ...
/* mode_t mode */);

int creat(const char *path, mode_t mode);

int openat(int dirfd , const char *path, int flags, ...
/* mode_t mode */);

/* Documented separately, in openat2(2): */
int openat2(int dirfd , const char *path,

const struct open_how *how, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

openat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
The open() system call opens the file specified by path. If the specified file does not ex-
ist, it may optionally (if O_CREAT is specified in flags) be created by open().

The return value of open() is a file descriptor, a small, nonnegative integer that is an in-
dex to an entry in the process’s table of open file descriptors. The file descriptor is used
in subsequent system calls (read(2), write(2), lseek(2), fcntl(2), etc.) to refer to the open
file. The file descriptor returned by a successful call will be the lowest-numbered file
descriptor not currently open for the process.

By default, the new file descriptor is set to remain open across an execve(2) (i.e., the
FD_CLOEXEC file descriptor flag described in fcntl(2) is initially disabled); the
O_CLOEXEC flag, described below, can be used to change this default. The file offset
is set to the beginning of the file (see lseek(2)).

A call to open() creates a new open file description, an entry in the system-wide table of
open files. The open file description records the file offset and the file status flags (see
below). A file descriptor is a reference to an open file description; this reference is unaf-
fected if path is subsequently removed or modified to refer to a different file. For fur-
ther details on open file descriptions, see NOTES.

The argument flags must include one of the following access modes: O_RDONLY,
O_WRONLY, or O_RDWR. These request opening the file read-only, write-only, or
read/write, respectively.

In addition, zero or more file creation flags and file status flags can be bitwise ORed in

Linux man-pages 6.16 2025-10-29 555

open(2) System Calls Manual open(2)

flags. The file creation flags are O_CLOEXEC, O_CREAT, O_DIRECTORY,
O_EXCL, O_NOCTTY, O_NOFOLLOW, O_TMPFILE, and O_TRUNC. The file
status flags are all of the remaining flags listed below. The distinction between these
two groups of flags is that the file creation flags affect the semantics of the open opera-
tion itself, while the file status flags affect the semantics of subsequent I/O operations.
The file status flags can be retrieved and (in some cases) modified; see fcntl(2) for de-
tails.

The full list of file creation flags and file status flags is as follows:

O_APPEND
The file is opened in append mode. Before each write(2), the file offset is posi-
tioned at the end of the file, as if with lseek(2). The modification of the file off-
set and the write operation are performed as a single atomic step.

O_APPEND may lead to corrupted files on NFS filesystems if more than one
process appends data to a file at once. This is because NFS does not support ap-
pending to a file, so the client kernel has to simulate it, which can’t be done
without a race condition.

O_ASYNC
Enable signal-driven I/O: generate a signal (SIGIO by default, but this can be
changed via fcntl(2)) when input or output becomes possible on this file descrip-
tor. This feature is available only for terminals, pseudoterminals, sockets, and
(since Linux 2.6) pipes and FIFOs. See fcntl(2) for further details. See also
BUGS, below.

O_CLOEXEC (since Linux 2.6.23)
Enable the close-on-exec flag for the new file descriptor. Specifying this flag
permits a program to avoid additional fcntl(2) F_SETFD operations to set the
FD_CLOEXEC flag.

Note that the use of this flag is essential in some multithreaded programs, be-
cause using a separate fcntl(2) F_SETFD operation to set the FD_CLOEXEC
flag does not suffice to avoid race conditions where one thread opens a file de-
scriptor and attempts to set its close-on-exec flag using fcntl(2) at the same time
as another thread does a fork(2) plus execve(2). Depending on the order of exe-
cution, the race may lead to the file descriptor returned by open() being uninten-
tionally leaked to the program executed by the child process created by fork(2).
(This kind of race is in principle possible for any system call that creates a file
descriptor whose close-on-exec flag should be set, and various other Linux sys-
tem calls provide an equivalent of the O_CLOEXEC flag to deal with this prob-
lem.)

O_CREAT
If path does not exist, create it as a regular file.

The owner (user ID) of the new file is set to the effective user ID of the process.

The group ownership (group ID) of the new file is set either to the effective
group ID of the process (System V semantics) or to the group ID of the parent
directory (BSD semantics). On Linux, the behavior depends on whether the set-

Linux man-pages 6.16 2025-10-29 556

open(2) System Calls Manual open(2)

group-ID mode bit is set on the parent directory: if that bit is set, then BSD se-
mantics apply; otherwise, System V semantics apply. For some filesystems, the
behavior also depends on the bsdgroups and sysvgroups mount options described
in mount(8)

The mode argument specifies the file mode bits to be applied when a new file is
created. If neither O_CREAT nor O_TMPFILE is specified in flags, then
mode is ignored (and can thus be specified as 0, or simply omitted). The mode
argument must be supplied if O_CREAT or O_TMPFILE is specified in flags;
if it is not supplied, some arbitrary bytes from the stack will be applied as the file
mode.

The effective mode is modified by the process’s umask in the usual way: in the
absence of a default ACL, the mode of the created file is (mode & ~umask).

Note that mode applies only to future accesses of the newly created file; the
open() call that creates a read-only file may well return a read/write file descrip-
tor.

The following symbolic constants are provided for mode:

S_IRWXU
00700 user (file owner) has read, write, and execute permission

S_IRUSR
00400 user has read permission

S_IWUSR
00200 user has write permission

S_IXUSR
00100 user has execute permission

S_IRWXG
00070 group has read, write, and execute permission

S_IRGRP
00040 group has read permission

S_IWGRP
00020 group has write permission

S_IXGRP
00010 group has execute permission

S_IRWXO
00007 others have read, write, and execute permission

S_IROTH
00004 others have read permission

S_IWOTH
00002 others have write permission

S_IXOTH
00001 others have execute permission

Linux man-pages 6.16 2025-10-29 557

open(2) System Calls Manual open(2)

According to POSIX, the effect when other bits are set in mode is unspecified.
On Linux, the following bits are also honored in mode:

S_ISUID
0004000 set-user-ID bit

S_ISGID
0002000 set-group-ID bit (see inode(7)).

S_ISVTX
0001000 sticky bit (see inode(7)).

O_DIRECT (since Linux 2.4.10)
Try to minimize cache effects of the I/O to and from this file. In general this will
degrade performance, but it is useful in special situations, such as when applica-
tions do their own caching. File I/O is done directly to/from user-space buffers.
The O_DIRECT flag on its own makes an effort to transfer data synchronously,
but does not give the guarantees of the O_SYNC flag that data and necessary
metadata are transferred. To guarantee synchronous I/O, O_SYNC must be used
in addition to O_DIRECT. See NOTES below for further discussion.

A semantically similar (but deprecated) interface for block devices is described
in raw(8)

O_DIRECTORY
If path is not a directory, cause open() to fail. This flag was added in Linux
2.1.126, to avoid denial-of-service problems if opendir(3) is called on a FIFO or
tape device.

O_DSYNC
Write operations on the file will complete according to the requirements of syn-
chronized I/O data integrity completion.

By the time write(2) (and similar) return, the output data has been transferred to
the underlying hardware, along with any file metadata that would be required to
retrieve that data (i.e., as though each write(2) was followed by a call to fdata-
sync(2)). See VERSIONS.

O_EXCL
Ensure that this call creates the file: if this flag is specified in conjunction with
O_CREAT, and path already exists, then open() fails with the error EEXIST.

When these two flags are specified, symbolic links are not followed: if path is a
symbolic link, then open() fails regardless of where the symbolic link points.

In general, the behavior of O_EXCL is undefined if it is used without
O_CREAT. There is one exception: on Linux 2.6 and later, O_EXCL can be
used without O_CREAT if path refers to a block device. If the block device is
in use by the system (e.g., mounted), open() fails with the error EBUSY.

On NFS, O_EXCL is supported only when using NFSv3 or later on kernel 2.6
or later. In NFS environments where O_EXCL support is not provided, pro-
grams that rely on it for performing locking tasks will contain a race condition.
Portable programs that want to perform atomic file locking using a lockfile, and

Linux man-pages 6.16 2025-10-29 558

open(2) System Calls Manual open(2)

need to avoid reliance on NFS support for O_EXCL, can create a unique file on
the same filesystem (e.g., incorporating hostname and PID), and use link(2) to
make a link to the lockfile. If link(2) returns 0, the lock is successful. Other-
wise, use stat(2) on the unique file to check if its link count has increased to 2, in
which case the lock is also successful.

O_LARGEFILE
(LFS) Allow files whose sizes cannot be represented in an off_t (but can be rep-
resented in an off64_t) to be opened. The _LARGEFILE64_SOURCE macro
must be defined (before including any header files) in order to obtain this defini-
tion. Setting the _FILE_OFFSET_BITS feature test macro to 64 (rather than
using O_LARGEFILE) is the preferred method of accessing large files on
32-bit systems (see feature_test_macros(7)).

O_NOATIME (since Linux 2.6.8)
Do not update the file last access time (st_atime in the inode) when the file is
read(2).

This flag can be employed only if one of the following conditions is true:

• The effective UID of the process matches the owner UID of the file.

• The calling process has the CAP_FOWNER capability in its user name-
space and the owner UID of the file has a mapping in the namespace.

This flag is intended for use by indexing or backup programs, where its use can
significantly reduce the amount of disk activity. This flag may not be effective
on all filesystems. One example is NFS, where the server maintains the access
time.

O_NOCTTY
If path refers to a terminal device—see tty(4)—it will not become the process’s
controlling terminal even if the process does not have one.

O_NOFOLLOW
If the trailing component (i.e., basename) of path is a symbolic link, then the
open fails, with the error ELOOP. Symbolic links in earlier components of the
pathname will still be followed. (Note that the ELOOP error that can occur in
this case is indistinguishable from the case where an open fails because there are
too many symbolic links found while resolving components in the path prefix of
the pathname.)

This flag is a FreeBSD extension, which was added in Linux 2.1.126, and has
subsequently been standardized in POSIX.1-2008.

See also O_PATH below.

O_NONBLOCK or O_NDELAY
When possible, the file is opened in nonblocking mode. Neither the open() nor
any subsequent I/O operations on the file descriptor which is returned will cause
the calling process to wait.

Note that the setting of this flag has no effect on the operation of poll(2), se-
lect(2), epoll(7), and similar, since those interfaces merely inform the caller

Linux man-pages 6.16 2025-10-29 559

open(2) System Calls Manual open(2)

about whether a file descriptor is "ready", meaning that an I/O operation per-
formed on the file descriptor with the O_NONBLOCK flag clear would not
block.

Note that this flag has no effect for regular files and block devices; that is, I/O
operations will (briefly) block when device activity is required, regardless of
whether O_NONBLOCK is set. Since O_NONBLOCK semantics might even-
tually be implemented, applications should not depend upon blocking behavior
when specifying this flag for regular files and block devices.

For the handling of FIFOs (named pipes), see also fifo(7). For a discussion of
the effect of O_NONBLOCK in conjunction with mandatory file locks and with
file leases, see fcntl(2).

O_PATH (since Linux 2.6.39)
Obtain a file descriptor that can be used for two purposes: to indicate a location
in the filesystem tree and to perform operations that act purely at the file descrip-
tor level. The file itself is not opened, and other file operations (e.g., read(2),
write(2), fchmod(2), fchown(2), fgetxattr(2), ioctl(2), mmap(2)) fail with the er-
ror EBADF.

The following operations can be performed on the resulting file descriptor:

• close(2).

• fchdir(2), if the file descriptor refers to a directory (since Linux 3.5).

• fstat(2) (since Linux 3.6).

• fstatfs(2) (since Linux 3.12).

• Duplicating the file descriptor (dup(2), fcntl(2) F_DUPFD, etc.).

• Getting and setting file descriptor flags (fcntl(2) F_GETFD and F_SETFD).

• Retrieving open file status flags using the fcntl(2) F_GETFL operation: the
returned flags will include the bit O_PATH.

• Passing the file descriptor as the dirfd argument of openat() and the other
"*at()" system calls. This includes linkat(2) with AT_EMPTY_PATH (or
via procfs using AT_SYMLINK_FOLLOW) even if the file is not a direc-
tory.

• Passing the file descriptor to another process via a UNIX domain socket (see
SCM_RIGHTS in unix(7)).

When O_PATH is specified in flags, flag bits other than O_CLOEXEC, O_DI-
RECTORY, and O_NOFOLLOW are ignored.

Opening a file or directory with the O_PATH flag requires no permissions on the
object itself (but does require execute permission on the directories in the path
prefix). Depending on the subsequent operation, a check for suitable file permis-
sions may be performed (e.g., fchdir(2) requires execute permission on the direc-
tory referred to by its file descriptor argument). By contrast, obtaining a refer-
ence to a filesystem object by opening it with the O_RDONLY flag requires that
the caller have read permission on the object, even when the subsequent

Linux man-pages 6.16 2025-10-29 560

open(2) System Calls Manual open(2)

operation (e.g., fchdir(2), fstat(2)) does not require read permission on the ob-
ject.

If path is a symbolic link and the O_NOFOLLOW flag is also specified, then
the call returns a file descriptor referring to the symbolic link. This file descrip-
tor can be used as the dirfd argument in calls to fchownat(2), fstatat(2), linkat(2),
and readlinkat(2) with an empty pathname to have the calls operate on the sym-
bolic link.

If path refers to an automount point that has not yet been triggered, so no other
filesystem is mounted on it, then the call returns a file descriptor referring to the
automount directory without triggering a mount. fstatfs(2) can then be used to
determine if it is, in fact, an untriggered automount point (.f_type == AUT-
OFS_SUPER_MAGIC).

One use of O_PATH for regular files is to provide the equivalent of POSIX.1’s
O_EXEC functionality. This permits us to open a file for which we have exe-
cute permission but not read permission, and then execute that file, with steps
something like the following:

char buf[PATH_MAX];
fd = open("some_prog", O_PATH);
snprintf(buf, PATH_MAX, "/proc/self/fd/%d", fd);
execl(buf, "some_prog", (char *) NULL);

An O_PATH file descriptor can also be passed as the argument of fexecve(3).

O_SYNC
Write operations on the file will complete according to the requirements of syn-
chronized I/O file integrity completion (by contrast with the synchronized I/O
data integrity completion provided by O_DSYNC.)

By the time write(2) (or similar) returns, the output data and associated file meta-
data have been transferred to the underlying hardware (i.e., as though each
write(2) was followed by a call to fsync(2)). See VERSIONS.

O_TMPFILE (since Linux 3.11)
Create an unnamed temporary regular file. The path argument specifies a direc-
tory; an unnamed inode will be created in that directory’s filesystem. Anything
written to the resulting file will be lost when the last file descriptor is closed, un-
less the file is given a name.

O_TMPFILE must be specified with one of O_RDWR or O_WRONLY and,
optionally, O_EXCL. If O_EXCL is not specified, then linkat(2) can be used to
link the temporary file into the filesystem, making it permanent, using code like
the following:

char path[PATH_MAX];
fd = open("/path/to/dir", O_TMPFILE | O_RDWR,

S_IRUSR | S_IWUSR);

/* File I/O on 'fd'... */

Linux man-pages 6.16 2025-10-29 561

open(2) System Calls Manual open(2)

linkat(fd, "", AT_FDCWD, "/path/for/file", AT_EMPTY_PATH);

/* If the caller doesn't have the CAP_DAC_READ_SEARCH
capability (needed to use AT_EMPTY_PATH with linkat(2)),
and there is a proc(5) filesystem mounted, then the
linkat(2) call above can be replaced with:

snprintf(path, PATH_MAX, "/proc/self/fd/%d", fd);
linkat(AT_FDCWD, path, AT_FDCWD, "/path/for/file",

AT_SYMLINK_FOLLOW);
*/

In this case, the open() mode argument determines the file permission mode, as
with O_CREAT.

Specifying O_EXCL in conjunction with O_TMPFILE prevents a temporary
file from being linked into the filesystem in the above manner. (Note that the
meaning of O_EXCL in this case is different from the meaning of O_EXCL
otherwise.)

There are two main use cases for O_TMPFILE:

• Improved tmpfile(3) functionality: race-free creation of temporary files that
(1) are automatically deleted when closed; (2) can never be reached via any
pathname; (3) are not subject to symlink attacks; and (4) do not require the
caller to devise unique names.

• Creating a file that is initially invisible, which is then populated with data and
adjusted to have appropriate filesystem attributes (fchown(2), fchmod(2),
fsetxattr(2), etc.) before being atomically linked into the filesystem in a fully
formed state (using linkat(2) as described above).

O_TMPFILE requires support by the underlying filesystem; only a subset of
Linux filesystems provide that support. In the initial implementation, support
was provided in the ext2, ext3, ext4, UDF, Minix, and tmpfs filesystems. Sup-
port for other filesystems has subsequently been added as follows: XFS (Linux
3.15); Btrfs (Linux 3.16); F2FS (Linux 3.16); and ubifs (Linux 4.9)

O_TRUNC
If the file already exists and is a regular file and the access mode allows writing
(i.e., is O_RDWR or O_WRONLY) it will be truncated to length 0. If the file is
a FIFO or terminal device file, the O_TRUNC flag is ignored. Otherwise, the
effect of O_TRUNC is unspecified.

creat()
A call to creat() is equivalent to calling open() with flags equal to
O_CREAT|O_WRONLY|O_TRUNC.

openat()
The openat() system call operates in exactly the same way as open(), except for the dif-
ferences described here.

The dirfd argument is used in conjunction with the path argument as follows:

Linux man-pages 6.16 2025-10-29 562

open(2) System Calls Manual open(2)

• If the pathname given in path is absolute, then dirfd is ignored.

• If the pathname given in path is relative and dirfd is the special value AT_FDCWD,
then path is interpreted relative to the current working directory of the calling
process (like open())

• If the pathname given in path is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by open() for a relative pathname). In
this case, dirfd must be a directory that was opened for reading (O_RDONLY) or
using the O_PATH flag.

If the pathname given in path is relative, and dirfd is not a valid file descriptor, an error
(EBADF) results. (Specifying an invalid file descriptor number in dirfd can be used as
a means to ensure that path is absolute.)

openat2(2)
The openat2(2) system call is an extension of openat(), and provides a superset of the
features of openat(). It is documented separately, in openat2(2).

RETURN VALUE
On success, open(), openat(), and creat() return the new file descriptor (a nonnegative
integer). On error, -1 is returned and errno is set to indicate the error.

ERRORS
open(), openat(), and creat() can fail with the following errors:

EACCES
The requested access to the file is not allowed, or search permission is denied for
one of the directories in the path prefix of path, or the file did not exist yet and
write access to the parent directory is not allowed. (See also path_resolution(7).)

EACCES
Where O_CREAT is specified, the protected_fifos or protected_regular sysctl is
enabled, the file already exists and is a FIFO or regular file, the owner of the file
is neither the current user nor the owner of the containing directory, and the con-
taining directory is both world- or group-writable and sticky. For details, see the
descriptions of /proc/sys/fs/protected_fifos and /proc/sys/fs/protected_regular in
proc_sys_fs(5).

EBADF
(openat()) path is relative but dirfd is neither AT_FDCWD nor a valid file de-
scriptor.

EBUSY
O_EXCL was specified in flags and path refers to a block device that is in use
by the system (e.g., it is mounted).

EDQUOT
Where O_CREAT is specified, the file does not exist, and the user’s quota of
disk blocks or inodes on the filesystem has been exhausted.

Linux man-pages 6.16 2025-10-29 563

open(2) System Calls Manual open(2)

EEXIST
path already exists and O_CREAT and O_EXCL were used.

EFAULT
path points outside your accessible address space.

EFBIG
See EOVERFLOW.

EINTR
While blocked waiting to complete an open of a slow device (e.g., a FIFO; see
fifo(7)), the call was interrupted by a signal handler; see signal(7).

EINVAL
The filesystem does not support the O_DIRECT flag. See NOTES for more in-
formation.

EINVAL
Invalid value in flags.

EINVAL
O_TMPFILE was specified in flags, but neither O_WRONLY nor O_RDWR
was specified.

EINVAL
O_CREAT and O_DIRECTORY were both specified in flags , and the Linux
kernel version is 6.4 or later. (Earlier kernels were inconsistent in this area, and
POSIX does not specify the behavior.)

EINVAL
O_CREAT was specified in flags and the final component ("basename") of the
new file’s path is invalid (e.g., it contains characters not permitted by the under-
lying filesystem).

EINVAL
The final component ("basename") of path is invalid (e.g., it contains characters
not permitted by the underlying filesystem).

EISDIR
path refers to a directory and the access requested involved writing (that is,
O_WRONLY or O_RDWR is set).

EISDIR
path refers to an existing directory, O_TMPFILE and one of O_WRONLY or
O_RDWR were specified in flags, but this kernel version does not provide the
O_TMPFILE functionality.

ELOOP
Too many symbolic links were encountered in resolving path.

ELOOP
path was a symbolic link, and flags specified O_NOFOLLOW but not
O_PATH.

Linux man-pages 6.16 2025-10-29 564

open(2) System Calls Manual open(2)

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the description of RLIMIT_NOFILE in getrlimit(2)).

ENAMETOOLONG
path was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
path refers to a device special file and no corresponding device exists. (This is a
Linux kernel bug; in this situation ENXIO must be returned.)

ENOENT
O_CREAT is not set and the named file does not exist.

ENOENT
A directory component in path does not exist or is a dangling symbolic link.

ENOENT
path refers to a nonexistent directory, O_TMPFILE and one of O_WRONLY
or O_RDWR were specified in flags, but this kernel version does not provide
the O_TMPFILE functionality.

ENOMEM
The named file is a FIFO, but memory for the FIFO buffer can’t be allocated be-
cause the per-user hard limit on memory allocation for pipes has been reached
and the caller is not privileged; see pipe(7).

ENOMEM
Insufficient kernel memory was available.

ENOSPC
path was to be created but the device containing path has no room for the new
file.

ENOTDIR
A component used as a directory in path is not, in fact, a directory, or O_DI-
RECTORY was specified and path was not a directory.

ENOTDIR
(openat()) path is a relative pathname and dirfd is a file descriptor referring to a
file other than a directory.

ENXIO
O_NONBLOCK | O_WRONLY is set, the named file is a FIFO, and no process
has the FIFO open for reading.

ENXIO
The file is a device special file and no corresponding device exists.

ENXIO
The file is a UNIX domain socket.

Linux man-pages 6.16 2025-10-29 565

open(2) System Calls Manual open(2)

EOPNOTSUPP
The filesystem containing path does not support O_TMPFILE.

EOVERFLOW
path refers to a regular file that is too large to be opened. The usual scenario
here is that an application compiled on a 32-bit platform without
-D_FILE_OFFSET_BITS=64 tried to open a file whose size exceeds
(1<<31)-1 bytes; see also O_LARGEFILE above. This is the error specified
by POSIX.1; before Linux 2.6.24, Linux gave the error EFBIG for this case.

EPERM
The O_NOATIME flag was specified, but the effective user ID of the caller did
not match the owner of the file and the caller was not privileged.

EPERM
The operation was prevented by a file seal; see fcntl(2).

EROFS
path refers to a file on a read-only filesystem and write access was requested.

ETXTBSY
path refers to an executable image which is currently being executed and write
access was requested.

ETXTBSY
path refers to a file that is currently in use as a swap file, and the O_TRUNC
flag was specified.

ETXTBSY
path refers to a file that is currently being read by the kernel (e.g., for mod-
ule/firmware loading), and write access was requested.

EWOULDBLOCK
The O_NONBLOCK flag was specified, and an incompatible lease was held on
the file (see fcntl(2)).

VERSIONS
The (undefined) effect of O_RDONLY | O_TRUNC varies among implementations.
On many systems the file is actually truncated.

Synchronized I/O
The POSIX.1-2008 "synchronized I/O" option specifies different variants of synchro-
nized I/O, and specifies the open() flags O_SYNC, O_DSYNC, and O_RSYNC for
controlling the behavior. Regardless of whether an implementation supports this option,
it must at least support the use of O_SYNC for regular files.

Linux implements O_SYNC and O_DSYNC, but not O_RSYNC. Somewhat incor-
rectly, glibc defines O_RSYNC to have the same value as O_SYNC. (O_RSYNC is
defined in the Linux header file <asm/fcntl.h> on HP PA-RISC, but it is not used.)

O_SYNC provides synchronized I/O file integrity completion, meaning write opera-
tions will flush data and all associated metadata to the underlying hardware.
O_DSYNC provides synchronized I/O data integrity completion, meaning write opera-
tions will flush data to the underlying hardware, but will only flush metadata updates

Linux man-pages 6.16 2025-10-29 566

open(2) System Calls Manual open(2)

that are required to allow a subsequent read operation to complete successfully. Data in-
tegrity completion can reduce the number of disk operations that are required for appli-
cations that don’t need the guarantees of file integrity completion.

To understand the difference between the two types of completion, consider two pieces
of file metadata: the file last modification timestamp (st_mtime) and the file length. All
write operations will update the last file modification timestamp, but only writes that add
data to the end of the file will change the file length. The last modification timestamp is
not needed to ensure that a read completes successfully, but the file length is. Thus,
O_DSYNC would only guarantee to flush updates to the file length metadata (whereas
O_SYNC would also always flush the last modification timestamp metadata).

Before Linux 2.6.33, Linux implemented only the O_SYNC flag for open(). However,
when that flag was specified, most filesystems actually provided the equivalent of syn-
chronized I/O data integrity completion (i.e., O_SYNC was actually implemented as
the equivalent of O_DSYNC).

Since Linux 2.6.33, proper O_SYNC support is provided. However, to ensure backward
binary compatibility, O_DSYNC was defined with the same value as the historical
O_SYNC, and O_SYNC was defined as a new (two-bit) flag value that includes the
O_DSYNC flag value. This ensures that applications compiled against new headers get
at least O_DSYNC semantics before Linux 2.6.33.

C library/kernel differences
Since glibc 2.26, the glibc wrapper function for open() employs the openat() system
call, rather than the kernel’s open() system call. For certain architectures, this is also
true before glibc 2.26.

POSIX
POSIX.1-2024 specifies O_CLOFORK, but Linux doesn’t support it.

STANDARDS
open()
creat()
openat()

POSIX.1-2024.

openat2(2)
Linux.

O_DIRECT
O_NOATIME
O_PATH
O_TMPFILE

Linux.

HISTORY
open()
creat()

SVr4, 4.3BSD, POSIX.1-2001.

Linux man-pages 6.16 2025-10-29 567

open(2) System Calls Manual open(2)

openat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

O_CLOEXEC
O_DIRECTORY
O_NOFOLLOW

POSIX.1-2008.

NOTES
Under Linux, the O_NONBLOCK flag is sometimes used in cases where one wants to
open but does not necessarily have the intention to read or write. For example, this may
be used to open a device in order to get a file descriptor for use with ioctl(2).

Note that open() can open device special files, but creat() cannot create them; use
mknod(2) instead.

If the file is newly created, its st_atime, st_ctime, st_mtime fields (respectively, time of
last access, time of last status change, and time of last modification; see stat(2)) are set
to the current time, and so are the st_ctime and st_mtime fields of the parent directory.
Otherwise, if the file is modified because of the O_TRUNC flag, its st_ctime and
st_mtime fields are set to the current time.

The files in the /proc/ pid /fd directory show the open file descriptors of the process with
the PID pid . The files in the /proc/ pid /fdinfo directory show even more information
about these file descriptors. See proc(5) for further details of both of these directories.

The Linux header file <asm/fcntl.h> doesn’t define O_ASYNC; the (BSD-derived) FA-
SYNC synonym is defined instead.

Open file descriptions
The term open file description is the one used by POSIX to refer to the entries in the
system-wide table of open files. In other contexts, this object is variously also called an
"open file object", a "file handle", an "open file table entry", or—in kernel-developer
parlance—a struct file.

When a file descriptor is duplicated (using dup(2) or similar), the duplicate refers to the
same open file description as the original file descriptor, and the two file descriptors con-
sequently share the file offset and file status flags. Such sharing can also occur between
processes: a child process created via fork(2) inherits duplicates of its parent’s file de-
scriptors, and those duplicates refer to the same open file descriptions.

Each open() of a file creates a new open file description; thus, there may be multiple
open file descriptions corresponding to a file inode.

On Linux, one can use the kcmp(2) KCMP_FILE operation to test whether two file de-
scriptors (in the same process or in two different processes) refer to the same open file
description.

NFS
There are many infelicities in the protocol underlying NFS, affecting amongst others
O_SYNC and O_NDELAY.

On NFS filesystems with UID mapping enabled, open() may return a file descriptor but,
for example, read(2) requests are denied with EACCES. This is because the client

Linux man-pages 6.16 2025-10-29 568

open(2) System Calls Manual open(2)

performs open() by checking the permissions, but UID mapping is performed by the
server upon read and write requests.

FIFOs
Opening the read or write end of a FIFO blocks until the other end is also opened (by
another process or thread). See fifo(7) for further details.

File access mode
Unlike the other values that can be specified in flags, the access mode values
O_RDONLY, O_WRONLY, and O_RDWR do not specify individual bits. Rather,
they define the low order two bits of flags, and are defined respectively as 0, 1, and 2.
In other words, the combination O_RDONLY | O_WRONLY is a logical error, and cer-
tainly does not have the same meaning as O_RDWR.

Linux reserves the special, nonstandard access mode 3 (binary 11) in flags to mean:
check for read and write permission on the file and return a file descriptor that can’t be
used for reading or writing. This nonstandard access mode is used by some Linux dri-
vers to return a file descriptor that is to be used only for device-specific ioctl(2) opera-
tions.

Rationale for openat() and other directory file descriptor APIs
openat() and the other system calls and library functions that take a directory file de-
scriptor argument (i.e., execveat(2), faccessat(2), fanotify_mark(2), fchmodat(2), fchow-
nat(2), fspick(2), fstatat(2), futimesat(2), linkat(2), mkdirat(2), mknodat(2), mount_se-
tattr(2), move_mount(2), name_to_handle_at(2), open_tree(2), openat2(2),
readlinkat(2), renameat(2), renameat2(2), statx(2), symlinkat(2), unlinkat(2), utimen-
sat(2), mkfifoat(3), and scandirat(3)) address two problems with the older interfaces that
preceded them. Here, the explanation is in terms of the openat() call, but the rationale
is analogous for the other interfaces.

First, openat() allows an application to avoid race conditions that could occur when us-
ing open() to open files in directories other than the current working directory. These
race conditions result from the fact that some component of the directory prefix given to
open() could be changed in parallel with the call to open(). Suppose, for example, that
we wish to create the file dir1/dir2/xxx.dep if the file dir1/dir2/xxx exists. The problem
is that between the existence check and the file-creation step, dir1 or dir2 (which might
be symbolic links) could be modified to point to a different location. Such races can be
avoided by opening a file descriptor for the target directory, and then specifying that file
descriptor as the dirfd argument of (say) fstatat(2) and openat(). The use of the dirfd
file descriptor also has other benefits:

• the file descriptor is a stable reference to the directory, even if the directory is re-
named; and

• the open file descriptor prevents the underlying filesystem from being dismounted,
just as when a process has a current working directory on a filesystem.

Second, openat() allows the implementation of a per-thread "current working direc-
tory", via file descriptor(s) maintained by the application. (This functionality can also
be obtained by tricks based on the use of /proc/self/fd/ dirfd, but less efficiently.)

The dirfd argument for these APIs can be obtained by using open() or openat() to open

Linux man-pages 6.16 2025-10-29 569

open(2) System Calls Manual open(2)

a directory (with either the O_RDONLY or the O_PATH flag). Alternatively, such a
file descriptor can be obtained by applying dirfd(3) to a directory stream created using
opendir(3).

When these APIs are given a dirfd argument of AT_FDCWD or the specified pathname
is absolute, then they handle their pathname argument in the same way as the corre-
sponding conventional APIs. However, in this case, several of the APIs have a flags ar-
gument that provides access to functionality that is not available with the corresponding
conventional APIs.

O_DIRECT
The O_DIRECT flag may impose alignment restrictions on the length and address of
user-space buffers and the file offset of I/Os. In Linux alignment restrictions vary by
filesystem and kernel version and might be absent entirely. The handling of misaligned
O_DIRECT I/Os also varies; they can either fail with EINVAL or fall back to buffered
I/O.

Since Linux 6.1, O_DIRECT support and alignment restrictions for a file can be
queried using statx(2), using the STATX_DIOALIGN flag. Support for
STATX_DIOALIGN varies by filesystem; see statx(2).

Some filesystems provide their own interfaces for querying O_DIRECT alignment re-
strictions, for example the XFS_IOC_DIOINFO operation in xf-
sctl(3)STATX_DIOALIGN should be used instead when it is available.

If none of the above is available, then direct I/O support and alignment restrictions can
only be assumed from known characteristics of the filesystem, the individual file, the un-
derlying storage device(s), and the kernel version. In Linux 2.4, most filesystems based
on block devices require that the file offset and the length and memory address of all I/O
segments be multiples of the filesystem block size (typically 4096 bytes). In Linux
2.6.0, this was relaxed to the logical block size of the block device (typically 512 bytes).
A block device’s logical block size can be determined using the ioctl(2) BLKSSZGET
operation or from the shell using the command:

blockdev --getss

O_DIRECT I/Os should never be run concurrently with the fork(2) system call, if the
memory buffer is a private mapping (i.e., any mapping created with the mmap(2)
MAP_PRIVATE flag; this includes memory allocated on the heap and statically allo-
cated buffers). Any such I/Os, whether submitted via an asynchronous I/O interface or
from another thread in the process, should be completed before fork(2) is called. Failure
to do so can result in data corruption and undefined behavior in parent and child
processes. This restriction does not apply when the memory buffer for the O_DIRECT
I/Os was created using shmat(2) or mmap(2) with the MAP_SHARED flag. Nor does
this restriction apply when the memory buffer has been advised as MADV_DONT-
FORK with madvise(2), ensuring that it will not be available to the child after fork(2).

The O_DIRECT flag was introduced in SGI IRIX, where it has alignment restrictions
similar to those of Linux 2.4. IRIX has also a fcntl(2) call to query appropriate align-
ments, and sizes. FreeBSD 4.x introduced a flag of the same name, but without align-
ment restrictions.

Linux man-pages 6.16 2025-10-29 570

open(2) System Calls Manual open(2)

O_DIRECT support was added in Linux 2.4.10. Older Linux kernels simply ignore
this flag. Some filesystems may not implement the flag, in which case open() fails with
the error EINVAL if it is used.

Applications should avoid mixing O_DIRECT and normal I/O to the same file, and es-
pecially to overlapping byte regions in the same file. Even when the filesystem correctly
handles the coherency issues in this situation, overall I/O throughput is likely to be
slower than using either mode alone. Likewise, applications should avoid mixing
mmap(2) of files with direct I/O to the same files.

The behavior of O_DIRECT with NFS will differ from local filesystems. Older ker-
nels, or kernels configured in certain ways, may not support this combination. The NFS
protocol does not support passing the flag to the server, so O_DIRECT I/O will bypass
the page cache only on the client; the server may still cache the I/O. The client asks the
server to make the I/O synchronous to preserve the synchronous semantics of O_DI-
RECT. Some servers will perform poorly under these circumstances, especially if the
I/O size is small. Some servers may also be configured to lie to clients about the I/O
having reached stable storage; this will avoid the performance penalty at some risk to
data integrity in the event of server power failure. The Linux NFS client places no
alignment restrictions on O_DIRECT I/O.

In summary, O_DIRECT is a potentially powerful tool that should be used with cau-
tion. It is recommended that applications treat use of O_DIRECT as a performance op-
tion which is disabled by default.

BUGS
Currently, it is not possible to enable signal-driven I/O by specifying O_ASYNC when
calling open(); use fcntl(2) to enable this flag.

One must check for two different error codes, EISDIR and ENOENT, when trying to
determine whether the kernel supports O_TMPFILE functionality.

SEE ALSO
chmod(2), chown(2), close(2), dup(2), fcntl(2), link(2), lseek(2), mknod(2), mmap(2),
mount(2), open_by_handle_at(2), openat2(2), read(2), socket(2), stat(2), umask(2), un-
link(2), write(2), fopen(3), acl(5), fifo(7), inode(7), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 571

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

NAME
name_to_handle_at, open_by_handle_at - obtain handle for a pathname and open file
via a handle

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

int name_to_handle_at(int dirfd , const char *path,
struct file_handle *handle,
int *mount_id , int flags);

int open_by_handle_at(int mount_fd , struct file_handle *handle,
int flags);

DESCRIPTION
The name_to_handle_at() and open_by_handle_at() system calls split the functional-
ity of openat(2) into two parts: name_to_handle_at() returns an opaque handle that cor-
responds to a specified file; open_by_handle_at() opens the file corresponding to a han-
dle returned by a previous call to name_to_handle_at() and returns an open file de-
scriptor.

name_to_handle_at()
The name_to_handle_at() system call returns a file handle and a mount ID correspond-
ing to the file specified by the dirfd and path arguments. The file handle is returned via
the argument handle, which is a pointer to a structure of the following form:

struct file_handle {
unsigned int handle_bytes; /* Size of f_handle [in, out] */
int handle_type; /* Handle type [out] */
unsigned char f_handle[0]; /* File identifier (sized by

caller) [out] */
};

It is the caller’s responsibility to allocate the structure with a size large enough to hold
the handle returned in f_handle. Before the call, the handle_bytes field should be ini-
tialized to contain the allocated size for f_handle. (The constant MAX_HANDLE_SZ,
defined in <fcntl.h>, specifies the maximum expected size for a file handle. It is not a
guaranteed upper limit as future filesystems may require more space.) Upon successful
return, the handle_bytes field is updated to contain the number of bytes actually written
to f_handle.

The caller can discover the required size for the file_handle structure by making a call
in which handle->handle_bytes is zero; in this case, the call fails with the error
EOVERFLOW and handle->handle_bytes is set to indicate the required size; the
caller can then use this information to allocate a structure of the correct size (see EX-
AMPLES below). Some care is needed here as EOVERFLOW can also indicate that
no file handle is available for this particular name in a filesystem which does normally
support file-handle lookup. This case can be detected when the EOVERFLOW error is
returned without handle_bytes being increased.

Linux man-pages 6.16 2025-09-21 572

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

Other than the use of the handle_bytes field, the caller should treat the file_handle struc-
ture as an opaque data type: the handle_type and f_handle fields can be used in a subse-
quent call to open_by_handle_at(). The caller can also use the opaque file_handle to
compare the identity of filesystem objects that were queried at different times and possi-
bly at different paths. The fanotify(7) subsystem can report events with an information
record containing a file_handle to identify the filesystem object.

The flags argument is a bit mask constructed by ORing together zero or more of
AT_HANDLE_FID, AT_HANDLE_MNT_ID_UNIQUE, AT_HANDLE_CON-
NECTABLE, AT_EMPTY_PATH, and AT_SYMLINK_FOLLOW, described below.

When flags contain the AT_HANDLE_FID (since Linux 6.5) flag, the caller indicates
that the returned file_handle is needed to identify the filesystem object, and not for
opening the file later, so it should be expected that a subsequent call to open_by_han-
dle_at() with the returned file_handle may fail.

When flags contain the AT_HANDLE_MNT_ID_UNIQUE (since Linux 6.12) flag,
the caller indicates that the width of the mount_id buffer is at least 64 bits, and then the
mount id returned in that buffer is the unique mount id as the one returned by statx(2)
with the STATX_MNT_ID_UNIQUE flag.

When flags contain the AT_HANDLE_CONNECTABLE (since Linux 6.13) flag, the
caller indicates that the returned file_handle is needed to open a file with known path
later, so it should be expected that a subsequent call to open_by_handle_at() with the
returned file_handle may fail if the file was moved, but otherwise, the path of the
opened file is expected to be visible from the /proc/ pid /fd/ * magic link. This flag can
not be used in combination with the flags AT_HANDLE_FID and/or
AT_EMPTY_PATH.

Together, the path and dirfd arguments identify the file for which a handle is to be ob-
tained. There are four distinct cases:

• If path is a nonempty string containing an absolute pathname, then a handle is re-
turned for the file referred to by that pathname. In this case, dirfd is ignored.

• If path is a nonempty string containing a relative pathname and dirfd has the special
value AT_FDCWD, then path is interpreted relative to the current working direc-
tory of the caller, and a handle is returned for the file to which it refers.

• If path is a nonempty string containing a relative pathname and dirfd is a file de-
scriptor referring to a directory, then path is interpreted relative to the directory re-
ferred to by dirfd , and a handle is returned for the file to which it refers. (See ope-
nat(2) for an explanation of why "directory file descriptors" are useful.)

• If path is an empty string and flags specifies the value AT_EMPTY_PATH, then
dirfd can be an open file descriptor referring to any type of file, or AT_FDCWD,
meaning the current working directory, and a handle is returned for the file to which
it refers.

The mount_id argument returns an identifier for the filesystem mount that corresponds
to path. This corresponds to the first field in one of the records in /proc/self/mountinfo.
Opening the pathname in the fifth field of that record yields a file descriptor for the
mount point; that file descriptor can be used in a subsequent call to

Linux man-pages 6.16 2025-09-21 573

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

open_by_handle_at(). mount_id is returned both for a successful call and for a call
that results in the error EOVERFLOW.

By default, name_to_handle_at() does not dereference path if it is a symbolic link, and
thus returns a handle for the link itself. If AT_SYMLINK_FOLLOW is specified in
flags, path is dereferenced if it is a symbolic link (so that the call returns a handle for
the file referred to by the link).

name_to_handle_at() does not trigger a mount when the final component of the path-
name is an automount point. When a filesystem supports both file handles and auto-
mount points, a name_to_handle_at() call on an automount point will return with error
EOVERFLOW without having increased handle_bytes. This can happen since Linux
4.13 with NFS when accessing a directory which is on a separate filesystem on the
server. In this case, the automount can be triggered by adding a "/" to the end of the
pathname.

open_by_handle_at()
The open_by_handle_at() system call opens the file referred to by handle, a file handle
returned by a previous call to name_to_handle_at().

The mount_fd argument is a file descriptor for any object (file, directory, etc.) in the
mounted filesystem with respect to which handle should be interpreted. The special
value AT_FDCWD can be specified, meaning the current working directory of the
caller.

The flags argument is as for open(2). If handle refers to a symbolic link, the caller must
specify the O_PATH flag, and the symbolic link is not dereferenced; the O_NOFOL-
LOW flag, if specified, is ignored.

The caller must have the CAP_DAC_READ_SEARCH capability to invoke
open_by_handle_at().

RETURN VALUE
On success, name_to_handle_at() returns 0, and open_by_handle_at() returns a file
descriptor (a nonnegative integer).

In the event of an error, both system calls return -1 and set errno to indicate the error.

ERRORS
name_to_handle_at() and open_by_handle_at() can fail for the same errors as ope-
nat(2). In addition, they can fail with the errors noted below.

name_to_handle_at() can fail with the following errors:

EFAULT
path, mount_id , or handle points outside your accessible address space.

EINVAL
flags includes an invalid bit value or an invalid bit combination.

EINVAL
handle->handle_bytes is greater than MAX_HANDLE_SZ.

Linux man-pages 6.16 2025-09-21 574

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

ENOENT
path is an empty string, but AT_EMPTY_PATH was not specified in flags.

ENOTDIR
The file descriptor supplied in dirfd does not refer to a directory, and it is not the
case that both flags includes AT_EMPTY_PATH and path is an empty string.

EOPNOTSUPP
The filesystem does not support decoding of a pathname to a file handle.

EOVERFLOW
The handle->handle_bytes value passed into the call was too small. When this
error occurs, handle->handle_bytes is updated to indicate the required size for
the handle.

open_by_handle_at() can fail with the following errors:

EBADF
mount_fd is not an open file descriptor.

EBADF
path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EFAULT
handle points outside your accessible address space.

EINVAL
handle->handle_bytes is greater than MAX_HANDLE_SZ or is equal to zero.

ELOOP
handle refers to a symbolic link, but O_PATH was not specified in flags.

EPERM
The caller does not have the CAP_DAC_READ_SEARCH capability.

ESTALE
The specified handle is not valid for opening a file. This error will occur if, for
example, the file has been deleted. This error can also occur if the handle was
acquired using the AT_HANDLE_FID flag and the filesystem does not support
open_by_handle_at(). This error can also occur if the handle was acquired us-
ing the AT_HANDLE_CONNECTABLE flag and the file was moved to a dif-
ferent parent.

VERSIONS
FreeBSD has a broadly similar pair of system calls in the form of getfh() and fhopen().

STANDARDS
Linux.

HISTORY
Linux 2.6.39, glibc 2.14.

NOTES
A file handle can be generated in one process using name_to_handle_at() and later
used in a different process that calls open_by_handle_at().

Some filesystem don’t support the translation of pathnames to file handles, for example,

Linux man-pages 6.16 2025-09-21 575

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

/proc, /sys, and various network filesystems. Some filesystems support the translation
of pathnames to file handles, but do not support using those file handles in
open_by_handle_at().

A file handle may become invalid ("stale") if a file is deleted, or for other filesystem-
specific reasons. Invalid handles are notified by an ESTALE error from open_by_han-
dle_at().

These system calls are designed for use by user-space file servers. For example, a user-
space NFS server might generate a file handle and pass it to an NFS client. Later, when
the client wants to open the file, it could pass the handle back to the server. This sort of
functionality allows a user-space file server to operate in a stateless fashion with respect
to the files it serves.

If path refers to a symbolic link and flags does not specify AT_SYMLINK_FOL-
LOW, then name_to_handle_at() returns a handle for the link (rather than the file to
which it refers). The process receiving the handle can later perform operations on the
symbolic link by converting the handle to a file descriptor using open_by_handle_at()
with the O_PATH flag, and then passing the file descriptor as the dirfd argument in sys-
tem calls such as readlinkat(2) and fchownat(2).

Obtaining a persistent filesystem ID
The mount IDs in /proc/self/mountinfo can be reused as filesystems are unmounted and
mounted. Therefore, the mount ID returned by name_to_handle_at() (in *mount_id)
should not be treated as a persistent identifier for the corresponding mounted filesystem.
However, an application can use the information in the mountinfo record that corre-
sponds to the mount ID to derive a persistent identifier.

For example, one can use the device name in the fifth field of the mountinfo record to
search for the corresponding device UUID via the symbolic links in /dev/disks/by-uuid .
(A more comfortable way of obtaining the UUID is to use the libblkid(3) library.) That
process can then be reversed, using the UUID to look up the device name, and then ob-
taining the corresponding mount point, in order to produce the mount_fd argument used
by open_by_handle_at().

EXAMPLES
The two programs below demonstrate the use of name_to_handle_at() and
open_by_handle_at(). The first program (t_name_to_handle_at.c) uses name_to_han-
dle_at() to obtain the file handle and mount ID for the file specified in its command-line
argument; the handle and mount ID are written to standard output.

The second program (t_open_by_handle_at.c) reads a mount ID and file handle from
standard input. The program then employs open_by_handle_at() to open the file using
that handle. If an optional command-line argument is supplied, then the mount_fd argu-
ment for open_by_handle_at() is obtained by opening the directory named in that argu-
ment. Otherwise, mount_fd is obtained by scanning /proc/self/mountinfo to find a
record whose mount ID matches the mount ID read from standard input, and the mount
directory specified in that record is opened. (These programs do not deal with the fact
that mount IDs are not persistent.)

The following shell session demonstrates the use of these two programs:

Linux man-pages 6.16 2025-09-21 576

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

$ echo 'Can you please think about it?' > cecilia.txt;
$./t_name_to_handle_at cecilia.txt > fh;
$./t_open_by_handle_at < fh;
open_by_handle_at: Operation not permitted
$ sudo ./t_open_by_handle_at < fh; # Need CAP_SYS_ADMIN
Read 31 bytes
$ rm cecilia.txt;

Now we delete and (quickly) re-create the file so that it has the same content and (by
chance) the same inode. Nevertheless, open_by_handle_at() recognizes that the origi-
nal file referred to by the file handle no longer exists.

$ stat --printf="%i\n" cecilia.txt; # Display inode number
4072121
$ rm cecilia.txt;
$ echo 'Can you please think about it?' > cecilia.txt;
$ stat --printf="%i\n" cecilia.txt; # Check inode number
4072121
$ sudo ./t_open_by_handle_at < fh;
open_by_handle_at: Stale NFS file handle

Program source: t_name_to_handle_at.c

#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int mount_id, fhsize, flags, dirfd;
char *path;
struct file_handle *fhp;

if (argc != 2) {
fprintf(stderr, "Usage: %s path\n", argv[0]);
exit(EXIT_FAILURE);

}

path = argv[1];

/* Allocate file_handle structure. */

fhsize = sizeof(*fhp);
fhp = malloc(fhsize);
if (fhp == NULL)

Linux man-pages 6.16 2025-09-21 577

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

err(EXIT_FAILURE, "malloc");

/* Make an initial call to name_to_handle_at() to discover
the size required for file handle. */

dirfd = AT_FDCWD; /* For name_to_handle_at() calls */
flags = 0; /* For name_to_handle_at() calls */
fhp->handle_bytes = 0;
if (name_to_handle_at(dirfd, path, fhp, &mount_id, flags) != -1

|| errno != EOVERFLOW)
{

fprintf(stderr, "Unexpected result from name_to_handle_at()\n");
exit(EXIT_FAILURE);

}

/* Reallocate file_handle structure with correct size. */

fhsize = sizeof(*fhp) + fhp->handle_bytes;
fhp = realloc(fhp, fhsize); /* Copies fhp->handle_bytes */
if (fhp == NULL)

err(EXIT_FAILURE, "realloc");

/* Get file handle from pathname supplied on command line. */

if (name_to_handle_at(dirfd, path, fhp, &mount_id, flags) == -1)
err(EXIT_FAILURE, "name_to_handle_at");

/* Write mount ID, file handle size, and file handle to stdout,
for later reuse by t_open_by_handle_at.c. */

printf("%d\n", mount_id);
printf("%u %d ", fhp->handle_bytes, fhp->handle_type);
for (size_t j = 0; j < fhp->handle_bytes; j++)

printf(" %02x", fhp->f_handle[j]);
printf("\n");

exit(EXIT_SUCCESS);
}

Program source: t_open_by_handle_at.c

#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Linux man-pages 6.16 2025-09-21 578

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

#include <sys/types.h>
#include <unistd.h>

/* Scan /proc/self/mountinfo to find the line whose mount ID matches
'mount_id'. (An easier way to do this is to install and use the
'libmount' library provided by the 'util-linux' project.)
Open the corresponding mount path and return the resulting file
descriptor. */

static int
open_mount_path_by_id(int mount_id)
{

int mi_mount_id, found;
char mount_path[PATH_MAX];
char *linep;
FILE *fp;
size_t lsize;
ssize_t nread;

fp = fopen("/proc/self/mountinfo", "r");
if (fp == NULL)

err(EXIT_FAILURE, "fopen");

found = 0;
linep = NULL;
while (!found) {

nread = getline(&linep, &lsize, fp);
if (nread == -1)

break;

nread = sscanf(linep, "%d %*d %*s %*s %s",
&mi_mount_id, mount_path);

if (nread != 2) {
fprintf(stderr, "Bad sscanf()\n");
exit(EXIT_FAILURE);

}

if (mi_mount_id == mount_id)
found = 1;

}
free(linep);

fclose(fp);

if (!found) {
fprintf(stderr, "Could not find mount point\n");
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-09-21 579

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

}

return open(mount_path, O_RDONLY);
}

int
main(int argc, char *argv[])
{

int mount_id, fd, mount_fd, handle_bytes;
char buf[1000];

#define LINE_SIZE 100
char line1[LINE_SIZE], line2[LINE_SIZE];
char *nextp;
ssize_t nread;
struct file_handle *fhp;

if ((argc > 1 && strcmp(argv[1], "--help") == 0) || argc > 2) {
fprintf(stderr, "Usage: %s [mount-path]\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Standard input contains mount ID and file handle information:

Line 1: <mount_id>
Line 2: <handle_bytes> <handle_type> <bytes of handle in hex>

*/

if (fgets(line1, sizeof(line1), stdin) == NULL ||
fgets(line2, sizeof(line2), stdin) == NULL)

{
fprintf(stderr, "Missing mount_id / file handle\n");
exit(EXIT_FAILURE);

}

mount_id = atoi(line1);

handle_bytes = strtoul(line2, &nextp, 0);

/* Given handle_bytes, we can now allocate file_handle structure. */

fhp = malloc(sizeof(*fhp) + handle_bytes);
if (fhp == NULL)

err(EXIT_FAILURE, "malloc");

fhp->handle_bytes = handle_bytes;

fhp->handle_type = strtoul(nextp, &nextp, 0);

Linux man-pages 6.16 2025-09-21 580

open_by_handle_at(2) System Calls Manual open_by_handle_at(2)

for (size_t j = 0; j < fhp->handle_bytes; j++)
fhp->f_handle[j] = strtoul(nextp, &nextp, 16);

/* Obtain file descriptor for mount point, either by opening
the pathname specified on the command line, or by scanning
/proc/self/mounts to find a mount that matches the 'mount_id'
that we received from stdin. */

if (argc > 1)
mount_fd = open(argv[1], O_RDONLY);

else
mount_fd = open_mount_path_by_id(mount_id);

if (mount_fd == -1)
err(EXIT_FAILURE, "opening mount fd");

/* Open file using handle and mount point. */

fd = open_by_handle_at(mount_fd, fhp, O_RDONLY);
if (fd == -1)

err(EXIT_FAILURE, "open_by_handle_at");

/* Try reading a few bytes from the file. */

nread = read(fd, buf, sizeof(buf));
if (nread == -1)

err(EXIT_FAILURE, "read");

printf("Read %zd bytes\n", nread);

exit(EXIT_SUCCESS);
}

SEE ALSO
open(2), libblkid(3), blkid(8), findfs(8), mount(8)

The libblkid and libmount documentation in the latest util-linux release at
〈https://www.kernel.org/pub/linux/utils/util-linux/〉

Linux man-pages 6.16 2025-09-21 581

open_tree(2) System Calls Manual open_tree(2)

NAME
open_tree - open path or create detached mount object and attach to fd

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/mount.h>

int open_tree(int dirfd , const char *path, unsigned int flags);

#include <sys/syscall.h> /* Definition of SYS_* constants */

int syscall(SYS_open_tree_attr,
int dirfd , const char *path, unsigned int flags,
struct mount_attr *_Nullable attr, size_t size);

Note: glibc provides no wrapper for open_tree_attr(), necessitating the use of
syscall(2).

DESCRIPTION
The open_tree() system call is part of the suite of file-descriptor-based mount facilities
in Linux.

• If flags contains OPEN_TREE_CLONE, open_tree() creates a detached mount
object which consists of a bind-mount of the path specified by the path. A new file
descriptor associated with the detached mount object is then returned. The mount
object is equivalent to a bind-mount that would be created by mount(2) called with
MS_BIND, except that it is tied to a file descriptor and is not mounted onto the
filesystem.

As with file descriptors returned from fsmount(2), the resultant file descriptor can
then be used with move_mount(2), mount_setattr(2), or other such system calls to do
further mount operations.

This mount object will be unmounted and destroyed when the file descriptor is
closed if it was not otherwise attached to a mount point by calling move_mount(2).
This implicit unmount operation is lazy—akin to calling umount2(2) with
MNT_DETACH; thus, any existing open references to files from the mount object
will continue to work, and the mount object will only be completely destroyed once
it ceases to be busy.

• If flags does not contain OPEN_TREE_CLONE, open_tree() returns a file de-
scriptor that is exactly equivalent to one produced by openat(2) when called with the
same dirfd and path.

In either case, the resultant file descriptor acts the same as one produced by open(2) with
O_PATH, meaning it can also be used as a dirfd argument to "*at()" system calls.
However, unlike open(2) called with O_PATH, automounts will by default be triggered
by open_tree() unless AT_NO_AUTOMOUNT is included in flags.

As with "*at()" system calls, open_tree() uses the dirfd argument in conjunction with
the path argument to determine the path to operate on, as follows:

Linux man-pages 6.16 2025-10-01 582

open_tree(2) System Calls Manual open_tree(2)

• If the pathname given in path is absolute, then dirfd is ignored.

• If the pathname given in path is relative and dirfd is the special value AT_FDCWD,
then path is interpreted relative to the current working directory of the calling
process (like open(2)).

• If the pathname given in path is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor dirfd (rather than relative to the current work-
ing directory of the calling process, as is done by open(2) for a relative pathname).
In this case, dirfd must be a directory that was opened for reading (O_RDONLY) or
using the O_PATH flag.

• If path is an empty string, and flags contains AT_EMPTY_PATH, then the file de-
scriptor dirfd is operated on directly. In this case, dirfd may refer to any type of file,
not just a directory.

See openat(2) for an explanation of why the dirfd argument is useful.

flags can be used to control aspects of the path lookup and properties of the returned file
descriptor. A value for flags is constructed by bitwise ORing zero or more of the fol-
lowing constants:

AT_EMPTY_PATH
If path is an empty string, operate on the file referred to by dirfd (which
may have been obtained from open(2), fsmount(2), or from another
open_tree() call). In this case, dirfd may refer to any type of file, not
just a directory. If dirfd is AT_FDCWD, open_tree() will operate on the
current working directory of the calling process. This flag is Linux-spe-
cific; define _GNU_SOURCE to obtain its definition.

AT_NO_AUTOMOUNT
Do not automount the terminal ("basename") component of path if it is a
directory that is an automount point. This allows you to create a handle
to the automount point itself, rather than the location it would mount.
This flag has no effect if the mount point has already been mounted over.
This flag is Linux-specific; define _GNU_SOURCE to obtain its defini-
tion.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it; instead, create either a
handle to the link itself or a bind-mount of it. The resultant file descrip-
tor is indistinguishable from one produced by openat(2) with
O_PATH|O_NOFOLLLOW.

OPEN_TREE_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descriptor.
See the description of the O_CLOEXEC flag in open(2) for reasons why
this may be useful.

OPEN_TREE_CLONE
Rather than creating an openat(2)-style O_PATH file descriptor, create a
bind-mount of path (akin to mount --bind) as a detached mount object.
In order to do this operation, the calling process must have the

Linux man-pages 6.16 2025-10-01 583

open_tree(2) System Calls Manual open_tree(2)

CAP_SYS_ADMIN capability.

AT_RECURSIVE
Create a recursive bind-mount of the path (akin to mount --rbind) as a de-
tached mount object. This flag is only permitted in conjunction with
OPEN_TREE_CLONE.

open_tree_attr()
The open_tree_attr() system call operates in exactly the same way as open_tree(), ex-
cept for the differences described here.

After performing the same operation as with open_tree(), open_tree_attr() will apply
the mount attribute changes described in attr to the file descriptor before it is returned.
(See mount_attr(2type) for a description of the mount_attr structure. As described in
mount_setattr(2), size must be set to sizeof(struct mount_attr) in order to support future
extensions.) If attr is NULL, or has attr.attr_clr, attr.attr_set, and attr.propagation all
set to zero, then open_tree_attr() has identical behaviour to open_tree().

The application of attr to the resultant file descriptor has identical semantics to
mount_setattr(2), except for the following extensions and general caveats:

• Unlike mount_setattr(2) called with a regular OPEN_TREE_CLONE detached
mount object from open_tree(), open_tree_attr() can specify a different setting for
MOUNT_ATTR_IDMAP to the original mount object cloned with
OPEN_TREE_CLONE.

Adding MOUNT_ATTR_IDMAP to attr.attr_clr will disable ID-mapping for the
new mount object; adding MOUNT_ATTR_IDMAP to attr.attr_set will configure
the mount object to have the ID-mapping defined by the user namespace referenced
by the file descriptor attr.userns_fd . (The semantics of which are identical to when
mount_setattr(2) is used to configure MOUNT_ATTR_IDMAP.)

Changing or removing the mapping of an ID-mapped mount is only permitted if a
new detached mount object is being created with flags including
OPEN_TREE_CLONE.

• If flags contains AT_RECURSIVE, then the attributes described in attr are applied
recursively (just as when mount_setattr(2) is called with AT_RECURSIVE). How-
ever, this applies in addition to the open_tree()-specific behaviour regarding
AT_RECURSIVE, and thus flags must also contain OPEN_TREE_CLONE.

Note that if flags does not contain OPEN_TREE_CLONE, open_tree_attr() will at-
tempt to modify the mount attributes of the mount object attached at the path described
by dirfd and path. As with mount_setattr(2), if said path is not a mount point,
open_tree_attr() will return an error.

RETURN VALUE
On success, a new file descriptor is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of path.
(See also path_resolution(7).)

Linux man-pages 6.16 2025-10-01 584

open_tree(2) System Calls Manual open_tree(2)

EBADF
path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EFAULT
path is NULL or a pointer to a location outside the calling process’s accessible
address space.

EINVAL
Invalid flag specified in flags.

ELOOP
Too many symbolic links encountered when resolving path.

EMFILE
The calling process has too many open files to create more.

ENAMETOOLONG
path is longer than PATH_MAX.

ENFILE
The system has too many open files to create more.

ENOENT
A component of path does not exist, or is a dangling symbolic link.

ENOENT
path is an empty string, but AT_EMPTY_PATH is not specified in flags.

ENOTDIR
A component of the path prefix of path is not a directory, or path is relative and
dirfd is a file descriptor referring to a file other than a directory.

ENOSPC
The "anonymous" mount namespace necessary to contain the
OPEN_TREE_CLONE detached bind-mount mount object could not be allo-
cated, as doing so would exceed the configured per-user limit on the number of
mount namespaces in the current user namespace. (See also namespaces(7).)

ENOMEM
The kernel could not allocate sufficient memory to complete the operation.

EPERM
flags contains OPEN_TREE_CLONE but the calling process does not have the
required CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
open_tree()

Linux 5.2. glibc 2.36.

open_tree_attr()
Linux 6.15.

Linux man-pages 6.16 2025-10-01 585

open_tree(2) System Calls Manual open_tree(2)

NOTES
Mount propagation

The bind-mount mount objects created by open_tree() with OPEN_TREE_CLONE
are not associated with the mount namespace of the calling process. Instead, each
mount object is placed in a newly allocated "anonymous" mount namespace associated
with the calling process.

One of the side-effects of this is that (unlike bind-mounts created with mount(2)), mount
propagation (as described in mount_namespaces(7)) will not be applied to bind-mounts
created by open_tree() until the bind-mount is attached with move_mount(2), at which
point the mount object will be associated with the mount namespace where it was at-
tached and mount propagation will resume. Note that any mount propagation events
that occurred before the mount object was attached will not be propagated to the mount
object, even after it is attached.

EXAMPLES
The following examples show how open_tree() can be used in place of more traditional
mount(2) calls with MS_BIND.

int srcfd = open_tree(AT_FDCWD, "/var", OPEN_TREE_CLONE);
move_mount(srcfd, "", AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

First, a detached bind-mount mount object of /var is created and associated with the file
descriptor srcfd . Then, the mount object is attached to /mnt using move_mount(2) with
MOVE_MOUNT_F_EMPTY_PATH to request that the detached mount object associ-
ated with the file descriptor srcfd be moved (and thus attached) to /mnt.

The above procedure is functionally equivalent to the following mount operation using
mount(2):

mount("/var", "/mnt", NULL, MS_BIND, NULL);

OPEN_TREE_CLONE can be combined with AT_RECURSIVE to create recursive
detached bind-mount mount objects, which in turn can be attached to mount points to
create recursive bind-mounts.

int srcfd = open_tree(AT_FDCWD, "/var",
OPEN_TREE_CLONE | AT_RECURSIVE);

move_mount(srcfd, "", AT_FDCWD, "/mnt", MOVE_MOUNT_F_EMPTY_PATH);

The above procedure is functionally equivalent to the following mount operation using
mount(2):

mount("/var", "/mnt", NULL, MS_BIND | MS_REC, NULL);

One of the primary benefits of using open_tree() and move_mount(2) over the tradi-
tional mount(2) is that operating with dirfd-style file descriptors is far easier and more
intuitive.

int srcfd = open_tree(100, "", AT_EMPTY_PATH | OPEN_TREE_CLONE);
move_mount(srcfd, "", 200, "foo", MOVE_MOUNT_F_EMPTY_PATH);

The above procedure is roughly equivalent to the following mount operation using
mount(2):

Linux man-pages 6.16 2025-10-01 586

open_tree(2) System Calls Manual open_tree(2)

mount("/proc/self/fd/100",
"/proc/self/fd/200/foo",
NULL, MS_BIND, NULL);

In addition, you can use the file descriptor returned by open_tree() as the dirfd argu-
ment to any "*at()" system calls:

int dirfd, fd;

dirfd = open_tree(AT_FDCWD, "/etc", OPEN_TREE_CLONE);
fd = openat(dirfd, "passwd", O_RDONLY);
fchmodat(dirfd, "shadow", 0000, 0);
close(dirfd);
close(fd);
/* The bind-mount is now destroyed */

open_tree_attr()
The following is an example of how open_tree_attr() can be used to take an existing id-
mapped mount and construct a new bind-mount mount object with a different
MOUNT_ATTR_IDMAP attribute. The resultant detached mount object can be used
like any other mount object returned by open_tree().

int nsfd1, nsfd2;
int mntfd1, mntfd2, mntfd3;
struct mount_attr attr;
mntfd1 = open_tree(AT_FDCWD, "/foo", OPEN_TREE_CLONE);

/* Configure the id-mapping of mntfd1 */
nsfd1 = open("/proc/1234/ns/user", O_RDONLY);
memset(&attr, 0, sizeof(attr));
attr.attr_set = MOUNT_ATTR_IDMAP;
attr.userns_fd = nsfd1;
mount_setattr(mntfd1, "", AT_EMPTY_PATH, &attr, sizeof(attr));

/* Create a new copy with a different id-mapping */
nsfd2 = open("/proc/5678/ns/user", O_RDONLY);
memset(&attr, 0, sizeof(attr));
attr.attr_clr = MOUNT_ATTR_IDMAP;
attr.attr_set = MOUNT_ATTR_IDMAP;
attr.userns_fd = nsfd2;
mntfd2 = open_tree_attr(mntfd1, "", OPEN_TREE_CLONE,

&attr, sizeof(attr));

/* Create a new copy with the id-mapping cleared */
memset(&attr, 0, sizeof(attr));
attr.attr_clr = MOUNT_ATTR_IDMAP;
mntfd3 = open_tree_attr(mntfd1, "", OPEN_TREE_CLONE,

&attr, sizeof(attr));

open_tree_attr() can also be used with attached mount objects; the above example is

Linux man-pages 6.16 2025-10-01 587

open_tree(2) System Calls Manual open_tree(2)

only intended to be illustrative.

SEE ALSO
fsconfig(2), fsmount(2), fsopen(2), fspick(2), mount(2), mount_setattr(2),
move_mount(2), mount_namespaces(7)

Linux man-pages 6.16 2025-10-01 588

openat2(2) System Calls Manual openat2(2)

NAME
openat2 - open and possibly create a file (extended)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* and S_* constants */
#include <linux/openat2.h> /* Definition of RESOLVE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_openat2, int dirfd , const char *path,
struct open_how *how, size_t size);

Note: glibc provides no wrapper for openat2(), necessitating the use of syscall(2).

DESCRIPTION
The openat2() system call is an extension of openat(2) and provides a superset of its
functionality.

The openat2() system call opens the file specified by path. If the specified file does not
exist, it may optionally (if O_CREAT is specified in how.flags) be created.

As with openat(2), if path is relative, then it is interpreted relative to the directory re-
ferred to by the file descriptor dirfd (or the current working directory of the calling
process, if dirfd is the special value AT_FDCWD). If path is absolute, then dirfd is ig-
nored (unless how.resolve contains RESOLVE_IN_ROOT, in which case path is re-
solved relative to dirfd).

Rather than taking a single flags argument, an extensible structure (how) is passed to al-
low for future extensions. The size argument must be specified as sizeof(struct
open_how).

The open_how structure
The how argument specifies how path should be opened, and acts as a superset of the
flags and mode arguments to openat(2). This argument is a pointer to an open_how
structure, described in open_how(2type).

Any future extensions to openat2() will be implemented as new fields appended to the
open_how structure, with a zero value in a new field resulting in the kernel behaving as
though that extension field was not present. Therefore, the caller must zero-fill this
structure on initialization. (See the "Extensibility" section of the NOTES for more de-
tail on why this is necessary.)

The fields of the open_how structure are as follows:

flags This field specifies the file creation and file status flags to use when opening the
file. All of the O_* flags defined for openat(2) are valid openat2() flag values.

Whereas openat(2) ignores unknown bits in its flags argument, openat2() re-
turns an error if unknown or conflicting flags are specified in how.flags.

Linux man-pages 6.16 2025-07-24 589

openat2(2) System Calls Manual openat2(2)

mode
This field specifies the mode for the new file, with identical semantics to the
mode argument of openat(2).

Whereas openat(2) ignores bits other than those in the range 07777 in its mode
argument, openat2() returns an error if how.mode contains bits other than
07777 . Similarly, an error is returned if openat2() is called with a nonzero
how.mode and how.flags does not contain O_CREAT or O_TMPFILE.

resolve
This is a bit-mask of flags that modify the way in which all components of path
will be resolved. (See path_resolution(7) for background information.)

The primary use case for these flags is to allow trusted programs to restrict how
untrusted paths (or paths inside untrusted directories) are resolved. The full list
of resolve flags is as follows:

RESOLVE_BENEATH
Do not permit the path resolution to succeed if any component of the res-
olution is not a descendant of the directory indicated by dirfd . This
causes absolute symbolic links (and absolute values of path) to be re-
jected.

Currently, this flag also disables magic-link resolution (see below). How-
ever, this may change in the future. Therefore, to ensure that magic links
are not resolved, the caller should explicitly specify RE-
SOLVE_NO_MAGICLINKS.

RESOLVE_IN_ROOT
Treat the directory referred to by dirfd as the root directory while resolv-
ing path. Absolute symbolic links are interpreted relative to dirfd . If a
prefix component of path equates to dirfd , then an immediately follow-
ing .. component likewise equates to dirfd (just as /.. is traditionally
equivalent to /). If path is absolute, it is also interpreted relative to
dirfd .

The effect of this flag is as though the calling process had used chroot(2)
to (temporarily) modify its root directory (to the directory referred to by
dirfd). However, unlike chroot(2) (which changes the filesystem root
permanently for a process), RESOLVE_IN_ROOT allows a program to
efficiently restrict path resolution on a per-open basis.

Currently, this flag also disables magic-link resolution. However, this
may change in the future. Therefore, to ensure that magic links are not
resolved, the caller should explicitly specify RESOLVE_NO_MAGI-
CLINKS.

RESOLVE_NO_MAGICLINKS
Disallow all magic-link resolution during path resolution.

Magic links are symbolic link-like objects that are most notably found in
proc(5); examples include /proc/ pid /exe and /proc/ pid /fd/*. (See sym-
link(7) for more details.)

Linux man-pages 6.16 2025-07-24 590

openat2(2) System Calls Manual openat2(2)

Unknowingly opening magic links can be risky for some applications.
Examples of such risks include the following:

• If the process opening a pathname is a controlling process that cur-
rently has no controlling terminal (see credentials(7)), then opening a
magic link inside /proc/ pid /fd that happens to refer to a terminal
would cause the process to acquire a controlling terminal.

• In a containerized environment, a magic link inside /proc may refer
to an object outside the container, and thus may provide a means to
escape from the container.

Because of such risks, an application may prefer to disable magic link
resolution using the RESOLVE_NO_MAGICLINKS flag.

If the trailing component (i.e., basename) of path is a magic link, how.re-
solve contains RESOLVE_NO_MAGICLINKS, and how.flags contains
both O_PATH and O_NOFOLLOW, then an O_PATH file descriptor
referencing the magic link will be returned.

RESOLVE_NO_SYMLINKS
Disallow resolution of symbolic links during path resolution. This option
implies RESOLVE_NO_MAGICLINKS.

If the trailing component (i.e., basename) of path is a symbolic link,
how.resolve contains RESOLVE_NO_SYMLINKS, and how.flags con-
tains both O_PATH and O_NOFOLLOW, then an O_PATH file de-
scriptor referencing the symbolic link will be returned.

Note that the effect of the RESOLVE_NO_SYMLINKS flag, which af-
fects the treatment of symbolic links in all of the components of path,
differs from the effect of the O_NOFOLLOW file creation flag (in
how.flags), which affects the handling of symbolic links only in the final
component of path.

Applications that employ the RESOLVE_NO_SYMLINKS flag are en-
couraged to make its use configurable (unless it is used for a specific se-
curity purpose), as symbolic links are very widely used by end-users.
Setting this flag indiscriminately—i.e., for purposes not specifically re-
lated to security—for all uses of openat2() may result in spurious errors
on previously functional systems. This may occur if, for example, a sys-
tem pathname that is used by an application is modified (e.g., in a new
distribution release) so that a pathname component (now) contains a sym-
bolic link.

RESOLVE_NO_XDEV
Disallow traversal of mount points during path resolution (including all
bind mounts). Consequently, path must either be on the same mount as
the directory referred to by dirfd , or on the same mount as the current
working directory if dirfd is specified as AT_FDCWD.

Applications that employ the RESOLVE_NO_XDEV flag are encour-
aged to make its use configurable (unless it is used for a specific security

Linux man-pages 6.16 2025-07-24 591

openat2(2) System Calls Manual openat2(2)

purpose), as bind mounts are widely used by end-users. Setting this flag
indiscriminately—i.e., for purposes not specifically related to security—
for all uses of openat2() may result in spurious errors on previously
functional systems. This may occur if, for example, a system pathname
that is used by an application is modified (e.g., in a new distribution re-
lease) so that a pathname component (now) contains a bind mount.

RESOLVE_CACHED (since Linux 5.12)
Make the open operation fail unless all path components are already
present in the kernel’s lookup cache. If any kind of revalidation or I/O is
needed to satisfy the lookup, openat2() fails with the error EAGAIN.
This is useful in providing a fast-path open that can be performed without
resorting to thread offload, or other mechanisms that an application might
use to offload slower operations.

If any bits other than those listed above are set in how.resolve, an error is re-
turned.

RETURN VALUE
On success, a new file descriptor is returned. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
The set of errors returned by openat2() includes all of the errors returned by openat(2),
as well as the following additional errors:

E2BIG
An extension that this kernel does not support was specified in how. (See the
"Extensibility" section of NOTES for more detail on how extensions are han-
dled.)

EAGAIN
how.resolve contains either RESOLVE_IN_ROOT or RESOLVE_BENEATH,
and the kernel could not ensure that a ".." component didn’t escape (due to a race
condition or potential attack). The caller may choose to retry the openat2() call.

EAGAIN
RESOLVE_CACHED was set, and the open operation cannot be performed us-
ing only cached information. The caller should retry without RE-
SOLVE_CACHED set in how.resolve.

EINVAL
An unknown flag or invalid value was specified in how.

EINVAL
mode is nonzero, but how.flags does not contain O_CREAT or O_TMPFILE.

EINVAL
size was smaller than any known version of struct open_how.

ELOOP
how.resolve contains RESOLVE_NO_SYMLINKS, and one of the path com-
ponents was a symbolic link (or magic link).

Linux man-pages 6.16 2025-07-24 592

openat2(2) System Calls Manual openat2(2)

ELOOP
how.resolve contains RESOLVE_NO_MAGICLINKS, and one of the path
components was a magic link.

EXDEV
how.resolve contains either RESOLVE_IN_ROOT or RESOLVE_BENEATH,
and an escape from the root during path resolution was detected.

EXDEV
how.resolve contains RESOLVE_NO_XDEV, and a path component crosses a
mount point.

STANDARDS
Linux.

HISTORY
Linux 5.6.

The semantics of RESOLVE_BENEATH were modeled after FreeBSD’s O_BE-
NEATH, but avoided a well-known correctness bug in FreeBSD’s implementation that
rendered it effectively insecure. Later, FreeBSD 13 introduced O_RESOLVE_BE-
NEATH to replace the insecure O_BENEATH. FreeBSD’s O_RESOLVE_BE-
NEATH semantics are based on Linux’s RESOLVE_BENEATH and the two are now
functionally equivalent.

NOTES
Extensibility

In order to allow for future extensibility, openat2() requires the user-space application to
specify the size of the open_how structure that it is passing. By providing this informa-
tion, it is possible for openat2() to provide both forwards- and backwards-compatibility,
with size acting as an implicit version number. (Because new extension fields will al-
ways be appended, the structure size will always increase.) This extensibility design is
very similar to other system calls such as sched_setattr(2), perf_event_open(2), and
clone3(2).

If we let usize be the size of the structure as specified by the user-space application, and
ksize be the size of the structure which the kernel supports, then there are three cases to
consider:

• If ksize equals usize, then there is no version mismatch and how can be used verba-
tim.

• If ksize is larger than usize, then there are some extension fields that the kernel sup-
ports which the user-space application is unaware of. Because a zero value in any
added extension field signifies a no-op, the kernel treats all of the extension fields
not provided by the user-space application as having zero values. This provides
backwards-compatibility.

• If ksize is smaller than usize, then there are some extension fields which the user-
space application is aware of but which the kernel does not support. Because any
extension field must have its zero values signify a no-op, the kernel can safely ignore
the unsupported extension fields if they are all-zero. If any unsupported extension
fields are nonzero, then -1 is returned and errno is set to E2BIG. This provides

Linux man-pages 6.16 2025-07-24 593

openat2(2) System Calls Manual openat2(2)

forwards-compatibility.

Because the definition of struct open_how may change in the future (with new fields be-
ing added when system headers are updated), user-space applications should zero-fill
struct open_how to ensure that recompiling the program with new headers will not re-
sult in spurious errors at run time. The simplest way is to use a designated initializer:

struct open_how how = { .flags = O_RDWR,
.resolve = RESOLVE_IN_ROOT };

or explicitly using memset(3) or similar:

struct open_how how;
memset(&how, 0, sizeof(how));
how.flags = O_RDWR;
how.resolve = RESOLVE_IN_ROOT;

A user-space application that wishes to determine which extensions the running kernel
supports can do so by conducting a binary search on size with a structure which has
every byte nonzero (to find the largest value which doesn’t produce an error of E2BIG).

SEE ALSO
openat(2), open_how(2type), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-07-24 594

outb(2) System Calls Manual outb(2)

NAME
outb, outw, outl, outsb, outsw, outsl, inb, inw, inl, insb, insw, insl, outb_p, outw_p,
outl_p, inb_p, inw_p, inl_p - port I/O

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/io.h>

unsigned char inb(unsigned short port);
unsigned char inb_p(unsigned short port);
unsigned short inw(unsigned short port);
unsigned short inw_p(unsigned short port);
unsigned int inl(unsigned short port);
unsigned int inl_p(unsigned short port);

void outb(unsigned char value, unsigned short port);
void outb_p(unsigned char value, unsigned short port);
void outw(unsigned short value, unsigned short port);
void outw_p(unsigned short value, unsigned short port);
void outl(unsigned int value, unsigned short port);
void outl_p(unsigned int value, unsigned short port);

void insb(unsigned long count;
unsigned short port, void addr[count],
unsigned long count);

void insw(unsigned long count;
unsigned short port, void addr[count],
unsigned long count);

void insl(unsigned long count;
unsigned short port, void addr[count],
unsigned long count);

void outsb(unsigned long count;
unsigned short port, const void addr[count],
unsigned long count);

void outsw(unsigned long count;
unsigned short port, const void addr[count],
unsigned long count);

void outsl(unsigned long count;
unsigned short port, const void addr[count],
unsigned long count);

DESCRIPTION
This family of functions is used to do low-level port input and output. The out* func-
tions do port output, the in* functions do port input; the b-suffix functions are byte-
width and the w-suffix functions word-width; the _p-suffix functions pause until the I/O
completes.

They are primarily designed for internal kernel use, but can be used from user space.

You must compile with -O or -O2 or similar. The functions are defined as inline

Linux man-pages 6.16 2025-09-21 595

outb(2) System Calls Manual outb(2)

macros, and will not be substituted in without optimization enabled, causing unresolved
references at link time.

You use ioperm(2) or alternatively iopl(2) to tell the kernel to allow the user space appli-
cation to access the I/O ports in question. Failure to do this will cause the application to
receive a segmentation fault.

VERSIONS
outb() and friends are hardware-specific. The value argument is passed first and the
port argument is passed second, which is the opposite order from most DOS implemen-
tations.

STANDARDS
None.

SEE ALSO
ioperm(2), iopl(2)

Linux man-pages 6.16 2025-09-21 596

pause(2) System Calls Manual pause(2)

NAME
pause - wait for signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int pause(void);

DESCRIPTION
pause() causes the calling process (or thread) to sleep until a signal is delivered that ei-
ther terminates the process or causes the invocation of a signal-catching function.

RETURN VALUE
pause() returns only when a signal was caught and the signal-catching function re-
turned. In this case, pause() returns -1, and errno is set to EINTR.

ERRORS
EINTR

a signal was caught and the signal-catching function returned.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
kill(2), select(2), signal(2), sigsuspend(2)

Linux man-pages 6.16 2025-10-29 597

pciconfig_read(2) System Calls Manual pciconfig_read(2)

NAME
pciconfig_read, pciconfig_write, pciconfig_iobase - pci device information handling

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <pci.h>

int pciconfig_read(unsigned long bus, unsigned long dfn,
unsigned long off , unsigned long size,
unsigned char *buf);

int pciconfig_write(unsigned long bus, unsigned long dfn,
unsigned long off , unsigned long size,
unsigned char *buf);

int pciconfig_iobase(int which, unsigned long bus,
unsigned long devfn);

DESCRIPTION
Most of the interaction with PCI devices is already handled by the kernel PCI layer, and
thus these calls should not normally need to be accessed from user space.

pciconfig_read()
Reads to buf from device dev at offset off value.

pciconfig_write()
Writes from buf to device dev at offset off value.

pciconfig_iobase()
You pass it a bus/devfn pair and get a physical address for either the memory off-
set (for things like prep, this is 0xc0000000), the IO base for PIO cycles, or the
ISA holes if any.

RETURN VALUE
pciconfig_read()

On success, zero is returned. On error, -1 is returned and errno is set to indicate
the error.

pciconfig_write()
On success, zero is returned. On error, -1 is returned and errno is set to indicate
the error.

pciconfig_iobase()
Returns information on locations of various I/O regions in physical memory ac-
cording to the which value. Values for which are: IOBASE_BRIDGE_NUM-
BER, IOBASE_MEMORY, IOBASE_IO, IOBASE_ISA_IO,
IOBASE_ISA_MEM.

ERRORS
EINVAL

size value is invalid. This does not apply to pciconfig_iobase().

Linux man-pages 6.16 2025-05-17 598

pciconfig_read(2) System Calls Manual pciconfig_read(2)

EIO I/O error.

ENODEV
For pciconfig_iobase(), "hose" value is NULL. For the other calls, could not
find a slot.

ENOSYS
The system has not implemented these calls (CONFIG_PCI not defined).

EOPNOTSUPP
This return value is valid only for pciconfig_iobase(). It is returned if the value
for which is invalid.

EPERM
User does not have the CAP_SYS_ADMIN capability. This does not apply to
pciconfig_iobase().

STANDARDS
Linux.

HISTORY
Linux 2.0.26/2.1.11.

SEE ALSO
capabilities(7)

Linux man-pages 6.16 2025-05-17 599

perf_event_open(2) System Calls Manual perf_event_open(2)

NAME
perf_event_open - set up performance monitoring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/perf_event.h> /* Definition of PERF_* constants */
#include <linux/hw_breakpoint.h> /* Definition of HW_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_perf_event_open, struct perf_event_attr *attr,
pid_t pid , int cpu, int group_fd , unsigned long flags);

Note: glibc provides no wrapper for perf_event_open(), necessitating the use of
syscall(2).

DESCRIPTION
Given a list of parameters, perf_event_open() returns a file descriptor, for use in subse-
quent system calls (read(2), mmap(2), prctl(2), fcntl(2), etc.).

A call to perf_event_open() creates a file descriptor that allows measuring performance
information. Each file descriptor corresponds to one event that is measured; these can
be grouped together to measure multiple events simultaneously.

Events can be enabled and disabled in two ways: via ioctl(2) and via prctl(2). When an
event is disabled it does not count or generate overflows but does continue to exist and
maintain its count value.

Events come in two flavors: counting and sampled. A counting event is one that is used
for counting the aggregate number of events that occur. In general, counting event re-
sults are gathered with a read(2) call. A sampling event periodically writes measure-
ments to a buffer that can then be accessed via mmap(2).

Arguments
The pid and cpu arguments allow specifying which process and CPU to monitor:

pid == 0 and cpu == -1
This measures the calling process/thread on any CPU.

pid == 0 and cpu >= 0
This measures the calling process/thread only when running on the specified
CPU.

pid > 0 and cpu == -1
This measures the specified process/thread on any CPU.

pid > 0 and cpu >= 0
This measures the specified process/thread only when running on the specified
CPU.

pid == -1 and cpu >= 0
This measures all processes/threads on the specified CPU. This requires
CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN capability or a

Linux man-pages 6.16 2025-09-21 600

perf_event_open(2) System Calls Manual perf_event_open(2)

/proc/sys/kernel/perf_event_paranoid value of less than 1.

pid == -1 and cpu == -1
This setting is invalid and will return an error.

When pid is greater than zero, permission to perform this system call is governed by
CAP_PERFMON (since Linux 5.9) and a ptrace access mode
PTRACE_MODE_READ_REALCREDS check on older Linux versions; see
ptrace(2).

The group_fd argument allows event groups to be created. An event group has one
event which is the group leader. The leader is created first, with group_fd = -1. The rest
of the group members are created with subsequent perf_event_open() calls with
group_fd being set to the file descriptor of the group leader. (A single event on its own
is created with group_fd = -1 and is considered to be a group with only 1 member.) An
event group is scheduled onto the CPU as a unit: it will be put onto the CPU only if all
of the events in the group can be put onto the CPU. This means that the values of the
member events can be meaningfully compared —added, divided (to get ratios), and so
on— with each other, since they have counted events for the same set of executed in-
structions.

The flags argument is formed by ORing together zero or more of the following values:

PERF_FLAG_FD_CLOEXEC (since Linux 3.14)
This flag enables the close-on-exec flag for the created event file descriptor, so
that the file descriptor is automatically closed on execve(2). Setting the close-on-
exec flags at creation time, rather than later with fcntl(2), avoids potential race
conditions where the calling thread invokes perf_event_open() and fcntl(2) at
the same time as another thread calls fork(2) then execve(2).

PERF_FLAG_FD_NO_GROUP
This flag tells the event to ignore the group_fd parameter except for the purpose
of setting up output redirection using the PERF_FLAG_FD_OUTPUT flag.

PERF_FLAG_FD_OUTPUT (broken since Linux 2.6.35)
This flag re-routes the event’s sampled output to instead be included in the mmap
buffer of the event specified by group_fd .

PERF_FLAG_PID_CGROUP (since Linux 2.6.39)
This flag activates per-container system-wide monitoring. A container is an ab-
straction that isolates a set of resources for finer-grained control (CPUs, memory,
etc.). In this mode, the event is measured only if the thread running on the moni-
tored CPU belongs to the designated container (cgroup). The cgroup is identi-
fied by passing a file descriptor opened on its directory in the cgroupfs filesys-
tem. For instance, if the cgroup to monitor is called test, then a file descriptor
opened on /dev/cgroup/test (assuming cgroupfs is mounted on /dev/cgroup)
must be passed as the pid parameter. cgroup monitoring is available only for
system-wide events and may therefore require extra permissions.

The perf_event_attr structure provides detailed configuration information for the event
being created.

struct perf_event_attr {

Linux man-pages 6.16 2025-09-21 601

perf_event_open(2) System Calls Manual perf_event_open(2)

__u32 type; /* Type of event */
__u32 size; /* Size of attribute structure */
__u64 config; /* Type-specific configuration */

union {
__u64 sample_period; /* Period of sampling */
__u64 sample_freq; /* Frequency of sampling */

};

__u64 sample_type; /* Specifies values included in sample */
__u64 read_format; /* Specifies values returned in read */

__u64 disabled : 1, /* off by default */
inherit : 1, /* children inherit it */
pinned : 1, /* must always be on PMU */
exclusive : 1, /* only group on PMU */
exclude_user : 1, /* don't count user */
exclude_kernel : 1, /* don't count kernel */
exclude_hv : 1, /* don't count hypervisor */
exclude_idle : 1, /* don't count when idle */
mmap : 1, /* include mmap data */
comm : 1, /* include comm data */
freq : 1, /* use freq, not period */
inherit_stat : 1, /* per task counts */
enable_on_exec : 1, /* next exec enables */
task : 1, /* trace fork/exit */
watermark : 1, /* wakeup_watermark */
precise_ip : 2, /* skid constraint */
mmap_data : 1, /* non-exec mmap data */
sample_id_all : 1, /* sample_type all events */
exclude_host : 1, /* don't count in host */
exclude_guest : 1, /* don't count in guest */
exclude_callchain_kernel : 1,

/* exclude kernel callchains */
exclude_callchain_user : 1,

/* exclude user callchains */
mmap2 : 1, /* include mmap with inode data */
comm_exec : 1, /* flag comm events that are

due to exec */
use_clockid : 1, /* use clockid for time fields */
context_switch : 1, /* context switch data */
write_backward : 1, /* Write ring buffer from end

to beginning */
namespaces : 1, /* include namespaces data */
ksymbol : 1, /* include ksymbol events */
bpf_event : 1, /* include bpf events */
aux_output : 1, /* generate AUX records

Linux man-pages 6.16 2025-09-21 602

perf_event_open(2) System Calls Manual perf_event_open(2)

instead of events */
cgroup : 1, /* include cgroup events */
text_poke : 1, /* include text poke events */
build_id : 1, /* use build id in mmap2 events */
inherit_thread : 1, /* children only inherit */

/* if cloned with CLONE_THREAD */
remove_on_exec : 1, /* event is removed from task

on exec */
sigtrap : 1, /* send synchronous SIGTRAP

on event */

__reserved_1 : 26;

union {
__u32 wakeup_events; /* wakeup every n events */
__u32 wakeup_watermark; /* bytes before wakeup */

};

__u32 bp_type; /* breakpoint type */

union {
__u64 bp_addr; /* breakpoint address */
__u64 kprobe_func; /* for perf_kprobe */
__u64 uprobe_path; /* for perf_uprobe */
__u64 config1; /* extension of config */

};

union {
__u64 bp_len; /* breakpoint size */
__u64 kprobe_addr; /* with kprobe_func == NULL */
__u64 probe_offset; /* for perf_[k,u]probe */
__u64 config2; /* extension of config1 */

};
__u64 branch_sample_type; /* enum perf_branch_sample_type */
__u64 sample_regs_user; /* user regs to dump on samples */
__u32 sample_stack_user; /* size of stack to dump on

samples */
__s32 clockid; /* clock to use for time fields */
__u64 sample_regs_intr; /* regs to dump on samples */
__u32 aux_watermark; /* aux bytes before wakeup */
__u16 sample_max_stack; /* max frames in callchain */
__u16 __reserved_2; /* align to u64 */
__u32 aux_sample_size; /* max aux sample size */
__u32 __reserved_3; /* align to u64 */
__u64 sig_data; /* user data for sigtrap */

};

Linux man-pages 6.16 2025-09-21 603

perf_event_open(2) System Calls Manual perf_event_open(2)

The fields of the perf_event_attr structure are described in more detail below:

type This field specifies the overall event type. It has one of the following values:

PERF_TYPE_HARDWARE
This indicates one of the "generalized" hardware events provided by the
kernel. See the config field definition for more details.

PERF_TYPE_SOFTWARE
This indicates one of the software-defined events provided by the kernel
(even if no hardware support is available).

PERF_TYPE_TRACEPOINT
This indicates a tracepoint provided by the kernel tracepoint infrastruc-
ture.

PERF_TYPE_HW_CACHE
This indicates a hardware cache event. This has a special encoding, de-
scribed in the config field definition.

PERF_TYPE_RAW
This indicates a "raw" implementation-specific event in the config field.

PERF_TYPE_BREAKPOINT (since Linux 2.6.33)
This indicates a hardware breakpoint as provided by the CPU. Break-
points can be read/write accesses to an address as well as execution of an
instruction address.

dynamic PMU
Since Linux 2.6.38, perf_event_open() can support multiple PMUs. To
enable this, a value exported by the kernel can be used in the type field to
indicate which PMU to use. The value to use can be found in the sysfs
filesystem: there is a subdirectory per PMU instance under
/sys/bus/event_source/devices. In each subdirectory there is a type file
whose content is an integer that can be used in the type field. For in-
stance, /sys/bus/event_source/devices/cpu/type contains the value for the
core CPU PMU, which is usually 4.

kprobe
uprobe (both since Linux 4.17)

These two dynamic PMUs create a kprobe/uprobe and attach it to the file
descriptor generated by perf_event_open. The kprobe/uprobe will be de-
stroyed on the destruction of the file descriptor. See fields kprobe_func,
uprobe_path, kprobe_addr, and probe_offset for more details.

size The size of the perf_event_attr structure for forward/backward compatibility.
Set this using sizeof(struct perf_event_attr) to allow the kernel to see the struct
size at the time of compilation.

The related define PERF_ATTR_SIZE_VER0 is set to 64; this was the size of
the first published struct. PERF_ATTR_SIZE_VER1 is 72, corresponding to
the addition of breakpoints in Linux 2.6.33. PERF_ATTR_SIZE_VER2 is 80
corresponding to the addition of branch sampling in Linux 3.4.
PERF_ATTR_SIZE_VER3 is 96 corresponding to the addition of

Linux man-pages 6.16 2025-09-21 604

perf_event_open(2) System Calls Manual perf_event_open(2)

sample_regs_user and sample_stack_user in Linux 3.7.
PERF_ATTR_SIZE_VER4 is 104 corresponding to the addition of sam-
ple_regs_intr in Linux 3.19. PERF_ATTR_SIZE_VER5 is 112 corresponding
to the addition of aux_watermark in Linux 4.1.

config
This specifies which event you want, in conjunction with the type field. The
config1 and config2 fields are also taken into account in cases where 64 bits is
not enough to fully specify the event. The encoding of these fields are event de-
pendent.

There are various ways to set the config field that are dependent on the value of
the previously described type field. What follows are various possible settings
for config separated out by type.

If type is PERF_TYPE_HARDWARE, we are measuring one of the general-
ized hardware CPU events. Not all of these are available on all platforms. Set
config to one of the following:

PERF_COUNT_HW_CPU_CYCLES
Total cycles. Be wary of what happens during CPU frequency
scaling.

PERF_COUNT_HW_INSTRUCTIONS
Retired instructions. Be careful, these can be affected by various
issues, most notably hardware interrupt counts.

PERF_COUNT_HW_CACHE_REFERENCES
Cache accesses. Usually this indicates Last Level Cache accesses
but this may vary depending on your CPU. This may include
prefetches and coherency messages; again, this depends on the
design of your CPU.

PERF_COUNT_HW_CACHE_MISSES
Cache misses. Usually this indicates Last Level Cache misses;
this is intended to be used in conjunction with the
PERF_COUNT_HW_CACHE_REFERENCES event to calcu-
late cache miss rates.

PERF_COUNT_HW_BRANCH_INSTRUCTIONS
Retired branch instructions. Prior to Linux 2.6.35, this used the
wrong event on AMD processors.

PERF_COUNT_HW_BRANCH_MISSES
Mispredicted branch instructions.

PERF_COUNT_HW_BUS_CYCLES
Bus cycles, which can be different from total cycles.

PERF_COUNT_HW_STALLED_CYCLES_FRONTEND (since
Linux 3.0)

Stalled cycles during issue.

Linux man-pages 6.16 2025-09-21 605

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_COUNT_HW_STALLED_CYCLES_BACKEND (since Linux
3.0)

Stalled cycles during retirement.

PERF_COUNT_HW_REF_CPU_CYCLES (since Linux 3.3)
Total cycles; not affected by CPU frequency scaling.

If type is PERF_TYPE_SOFTWARE, we are measuring software events pro-
vided by the kernel. Set config to one of the following:

PERF_COUNT_SW_CPU_CLOCK
This reports the CPU clock, a high-resolution per-CPU timer.

PERF_COUNT_SW_TASK_CLOCK
This reports a clock count specific to the task that is running.

PERF_COUNT_SW_PAGE_FAULTS
This reports the number of page faults.

PERF_COUNT_SW_CONTEXT_SWITCHES
This counts context switches. Until Linux 2.6.34, these were all
reported as user-space events, after that they are reported as hap-
pening in the kernel.

PERF_COUNT_SW_CPU_MIGRATIONS
This reports the number of times the process has migrated to a
new CPU.

PERF_COUNT_SW_PAGE_FAULTS_MIN
This counts the number of minor page faults. These did not re-
quire disk I/O to handle.

PERF_COUNT_SW_PAGE_FAULTS_MAJ
This counts the number of major page faults. These required disk
I/O to handle.

PERF_COUNT_SW_ALIGNMENT_FAULTS (since Linux 2.6.33)
This counts the number of alignment faults. These happen when
unaligned memory accesses happen; the kernel can handle these
but it reduces performance. This happens only on some architec-
tures (never on x86).

PERF_COUNT_SW_EMULATION_FAULTS (since Linux 2.6.33)
This counts the number of emulation faults. The kernel some-
times traps on unimplemented instructions and emulates them for
user space. This can negatively impact performance.

PERF_COUNT_SW_DUMMY (since Linux 3.12)
This is a placeholder event that counts nothing. Informational
sample record types such as mmap or comm must be associated
with an active event. This dummy event allows gathering such
records without requiring a counting event.

Linux man-pages 6.16 2025-09-21 606

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_COUNT_SW_BPF_OUTPUT (since Linux 4.4)
This is used to generate raw sample data from BPF. BPF pro-
grams can write to this event using bpf_perf_event_output
helper.

PERF_COUNT_SW_CGROUP_SWITCHES (since Linux 5.13)
This counts context switches to a task in a different cgroup. In
other words, if the next task is in the same cgroup, it won’t count
the switch.

If type is PERF_TYPE_TRACEPOINT, then we are measuring kernel trace-
points. The value to use in config can be obtained from under debugfs trac-
ing/events/*/*/id if ftrace is enabled in the kernel.

If type is PERF_TYPE_HW_CACHE, then we are measuring a hardware CPU
cache event. To calculate the appropriate config value, use the following equa-
tion:

config = (perf_hw_cache_id) |
(perf_hw_cache_op_id << 8) |
(perf_hw_cache_op_result_id << 16);

where perf_hw_cache_id is one of:

PERF_COUNT_HW_CACHE_L1D
for measuring Level 1 Data Cache

PERF_COUNT_HW_CACHE_L1I
for measuring Level 1 Instruction Cache

PERF_COUNT_HW_CACHE_LL
for measuring Last-Level Cache

PERF_COUNT_HW_CACHE_DTLB
for measuring the Data TLB

PERF_COUNT_HW_CACHE_ITLB
for measuring the Instruction TLB

PERF_COUNT_HW_CACHE_BPU
for measuring the branch prediction unit

PERF_COUNT_HW_CACHE_NODE (since Linux 3.1)
for measuring local memory accesses

and perf_hw_cache_op_id is one of:

PERF_COUNT_HW_CACHE_OP_READ
for read accesses

PERF_COUNT_HW_CACHE_OP_WRITE
for write accesses

PERF_COUNT_HW_CACHE_OP_PREFETCH
for prefetch accesses

and perf_hw_cache_op_result_id is one of:

Linux man-pages 6.16 2025-09-21 607

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_COUNT_HW_CACHE_RESULT_ACCESS
to measure accesses

PERF_COUNT_HW_CACHE_RESULT_MISS
to measure misses

If type is PERF_TYPE_RAW, then a custom "raw" config value is needed.
Most CPUs support events that are not covered by the "generalized" events.
These are implementation defined; see your CPU manual (for example, the Intel
Volume 3B documentation, or the AMD BIOS and Kernel Developer Guide).
The libpfm4 library can be used to translate from the name in the architectural
manuals to the raw hex value perf_event_open() expects in this field.

If type is PERF_TYPE_BREAKPOINT, then leave config set to zero. Its para-
meters are set in other places.

If type is kprobe or uprobe, set retprobe (bit 0 of config, see
/sys/bus/event_source/devices/[k,u]probe/format/retprobe) for kretprobe/uret-
probe. See fields kprobe_func, uprobe_path, kprobe_addr, and probe_offset for
more details.

kprobe_func
uprobe_path
kprobe_addr
probe_offset

These fields describe the kprobe/uprobe for dynamic PMUs kprobe and uprobe.
For kprobe: use kprobe_func and probe_offset, or use kprobe_addr and leave
kprobe_func as NULL. For uprobe: use uprobe_path and probe_offset.

sample_period
sample_freq

A "sampling" event is one that generates an overflow notification every N events,
where N is given by sample_period . A sampling event has sample_period > 0.
When an overflow occurs, requested data is recorded in the mmap buffer. The
sample_type field controls what data is recorded on each overflow.

sample_freq can be used if you wish to use frequency rather than period. In this
case, you set the freq flag. The kernel will adjust the sampling period to try and
achieve the desired rate. The rate of adjustment is a timer tick.

sample_type
The various bits in this field specify which values to include in the sample. They
will be recorded in a ring-buffer, which is available to user space using mmap(2).
The order in which the values are saved in the sample are documented in the
MMAP Layout subsection below; it is not the enum perf_event_sample_format
order.

PERF_SAMPLE_IP
Records instruction pointer.

PERF_SAMPLE_TID
Records the process and thread IDs.

Linux man-pages 6.16 2025-09-21 608

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_SAMPLE_TIME
Records a timestamp.

PERF_SAMPLE_ADDR
Records an address, if applicable.

PERF_SAMPLE_READ
Record counter values for all events in a group, not just the group leader.

PERF_SAMPLE_CALLCHAIN
Records the callchain (stack backtrace).

PERF_SAMPLE_ID
Records a unique ID for the opened event’s group leader.

PERF_SAMPLE_CPU
Records CPU number.

PERF_SAMPLE_PERIOD
Records the current sampling period.

PERF_SAMPLE_STREAM_ID
Records a unique ID for the opened event. Unlike PERF_SAMPLE_ID
the actual ID is returned, not the group leader. This ID is the same as the
one returned by PERF_FORMAT_ID.

PERF_SAMPLE_RAW
Records additional data, if applicable. Usually returned by tracepoint
events.

PERF_SAMPLE_BRANCH_STACK (since Linux 3.4)
This provides a record of recent branches, as provided by CPU branch
sampling hardware (such as Intel Last Branch Record). Not all hardware
supports this feature.

See the branch_sample_type field for how to filter which branches are re-
ported.

PERF_SAMPLE_REGS_USER (since Linux 3.7)
Records the current user-level CPU register state (the values in the
process before the kernel was called).

PERF_SAMPLE_STACK_USER (since Linux 3.7)
Records the user level stack, allowing stack unwinding.

PERF_SAMPLE_WEIGHT (since Linux 3.10)
Records a hardware provided weight value that expresses how costly the
sampled event was. This allows the hardware to highlight expensive
events in a profile.

PERF_SAMPLE_DATA_SRC (since Linux 3.10)
Records the data source: where in the memory hierarchy the data associ-
ated with the sampled instruction came from. This is available only if the
underlying hardware supports this feature.

Linux man-pages 6.16 2025-09-21 609

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_SAMPLE_IDENTIFIER (since Linux 3.12)
Places the SAMPLE_ID value in a fixed position in the record, either at
the beginning (for sample events) or at the end (if a non-sample event).

This was necessary because a sample stream may have records from vari-
ous different event sources with different sample_type settings. Parsing
the event stream properly was not possible because the format of the
record was needed to find SAMPLE_ID, but the format could not be
found without knowing what event the sample belonged to (causing a cir-
cular dependency).

The PERF_SAMPLE_IDENTIFIER setting makes the event stream al-
ways parsable by putting SAMPLE_ID in a fixed location, even though
it means having duplicate SAMPLE_ID values in records.

PERF_SAMPLE_TRANSACTION (since Linux 3.13)
Records reasons for transactional memory abort events (for example,
from Intel TSX transactional memory support).

The precise_ip setting must be greater than 0 and a transactional memory
abort event must be measured or no values will be recorded. Also note
that some perf_event measurements, such as sampled cycle counting,
may cause extraneous aborts (by causing an interrupt during a transac-
tion).

PERF_SAMPLE_REGS_INTR (since Linux 3.19)
Records a subset of the current CPU register state as specified by sam-
ple_regs_intr. Unlike PERF_SAMPLE_REGS_USER the register val-
ues will return kernel register state if the overflow happened while kernel
code is running. If the CPU supports hardware sampling of register state
(i.e., PEBS on Intel x86) and precise_ip is set higher than zero then the
register values returned are those captured by hardware at the time of the
sampled instruction’s retirement.

PERF_SAMPLE_PHYS_ADDR (since Linux 4.13)
Records physical address of data like in PERF_SAMPLE_ADDR.

PERF_SAMPLE_CGROUP (since Linux 5.7)
Records (perf_event) cgroup ID of the process. This corresponds to the
id field in the PERF_RECORD_CGROUP event.

PERF_SAMPLE_DATA_PAGE_SIZE (since Linux 5.11)
Records page size of data like in PERF_SAMPLE_ADDR.

PERF_SAMPLE_CODE_PAGE_SIZE (since Linux 5.11)
Records page size of ip like in PERF_SAMPLE_IP.

PERF_SAMPLE_WEIGHT_STRUCT (since Linux 5.12)
Records hardware provided weight values like in PERF_SAM-
PLE_WEIGHT, but it can represent multiple values in a struct. This
shares the same space as PERF_SAMPLE_WEIGHT, so users can ap-
ply either of those, not both. It has the following format and the meaning
of each field is dependent on the hardware implementation.

Linux man-pages 6.16 2025-09-21 610

perf_event_open(2) System Calls Manual perf_event_open(2)

union perf_sample_weight {
u64 full; /* PERF_SAMPLE_WEIGHT */
struct { /* PERF_SAMPLE_WEIGHT_STRUCT */

u32 var1_dw;
u16 var2_w;
u16 var3_w;

};
};

read_format
This field specifies the format of the data returned by read(2) on a
perf_event_open() file descriptor.

PERF_FORMAT_TOTAL_TIME_ENABLED
Adds the 64-bit time_enabled field. This can be used to calculate esti-
mated totals if the PMU is overcommitted and multiplexing is happening.

PERF_FORMAT_TOTAL_TIME_RUNNING
Adds the 64-bit time_running field. This can be used to calculate esti-
mated totals if the PMU is overcommitted and multiplexing is happening.

PERF_FORMAT_ID
Adds a 64-bit unique value that corresponds to the event group.

PERF_FORMAT_GROUP
Allows all counter values in an event group to be read with one read.

PERF_FORMAT_LOST (since Linux 6.0)
Adds a 64-bit value that is the number of lost samples for this event.
This would be only meaningful when sample_period or sample_freq is
set.

disabled
The disabled bit specifies whether the counter starts out disabled or enabled. If
disabled, the event can later be enabled by ioctl(2), prctl(2), or enable_on_exec.

When creating an event group, typically the group leader is initialized with dis-
abled set to 1 and any child events are initialized with disabled set to 0. Despite
disabled being 0, the child events will not start until the group leader is enabled.

inherit
The inherit bit specifies that this counter should count events of child tasks as
well as the task specified. This applies only to new children, not to any existing
children at the time the counter is created (nor to any new children of existing
children).

Inherit does not work for some combinations of read_format values, such as
PERF_FORMAT_GROUP. Additionally, using it together with cpu == -1
prevents the creation of the mmap ring-buffer used for logging asynchronous
events in sampled mode.

pinned
The pinned bit specifies that the counter should always be on the CPU if at all
possible. It applies only to hardware counters and only to group leaders. If a

Linux man-pages 6.16 2025-09-21 611

perf_event_open(2) System Calls Manual perf_event_open(2)

pinned counter cannot be put onto the CPU (e.g., because there are not enough
hardware counters or because of a conflict with some other event), then the
counter goes into an ’error’ state, where reads return end-of-file (i.e., read(2) re-
turns 0) until the counter is subsequently enabled or disabled.

exclusive
The exclusive bit specifies that when this counter’s group is on the CPU, it
should be the only group using the CPU’s counters. In the future this may allow
monitoring programs to support PMU features that need to run alone so that they
do not disrupt other hardware counters.

Note that many unexpected situations may prevent events with the exclusive bit
set from ever running. This includes any users running a system-wide measure-
ment as well as any kernel use of the performance counters (including the com-
monly enabled NMI Watchdog Timer interface).

exclude_user
If this bit is set, the count excludes events that happen in user space.

exclude_kernel
If this bit is set, the count excludes events that happen in kernel space.

exclude_hv
If this bit is set, the count excludes events that happen in the hypervisor. This is
mainly for PMUs that have built-in support for handling this (such as POWER).
Extra support is needed for handling hypervisor measurements on most ma-
chines.

exclude_idle
If set, don’t count when the CPU is running the idle task. While you can cur-
rently enable this for any event type, it is ignored for all but software events.

mmap
The mmap bit enables generation of PERF_RECORD_MMAP samples for
every mmap(2) call that has PROT_EXEC set. This allows tools to notice new
executable code being mapped into a program (dynamic shared libraries for ex-
ample) so that addresses can be mapped back to the original code.

comm
The comm bit enables tracking of process command name as modified by the ex-
ecve(2) and prctl(PR_SET_NAME) system calls as well as writing to
/proc/self/comm. If the comm_exec flag is also successfully set (possible since
Linux 3.16), then the misc flag PERF_RECORD_MISC_COMM_EXEC can
be used to differentiate the execve(2) case from the others.

freq If this bit is set, then sample_frequency not sample_period is used when setting
up the sampling interval.

inherit_stat
This bit enables saving of event counts on context switch for inherited tasks.
This is meaningful only if the inherit field is set.

Linux man-pages 6.16 2025-09-21 612

perf_event_open(2) System Calls Manual perf_event_open(2)

enable_on_exec
If this bit is set, a counter is automatically enabled after a call to execve(2).

task If this bit is set, then fork/exit notifications are included in the ring buffer.

watermark
If set, have an overflow notification happen when we cross the wakeup_water-
mark boundary. Otherwise, overflow notifications happen after wakeup_events
samples.

precise_ip (since Linux 2.6.35)
This controls the amount of skid. Skid is how many instructions execute be-
tween an event of interest happening and the kernel being able to stop and record
the event. Smaller skid is better and allows more accurate reporting of which
events correspond to which instructions, but hardware is often limited with how
small this can be.

The possible values of this field are the following:

0 SAMPLE_IP can have arbitrary skid.

1 SAMPLE_IP must have constant skid.

2 SAMPLE_IP requested to have 0 skid.

3 SAMPLE_IP must have 0 skid. See also the description of
PERF_RECORD_MISC_EXACT_IP.

mmap_data (since Linux 2.6.36)
This is the counterpart of the mmap field. This enables generation of
PERF_RECORD_MMAP samples for mmap(2) calls that do not have
PROT_EXEC set (for example data and SysV shared memory).

sample_id_all (since Linux 2.6.38)
If set, then TID, TIME, ID, STREAM_ID, and CPU can additionally be included
in non-PERF_RECORD_SAMPLEs if the corresponding sample_type is se-
lected.

If PERF_SAMPLE_IDENTIFIER is specified, then an additional ID value is
included as the last value to ease parsing the record stream. This may lead to the
id value appearing twice.

The layout is described by this pseudo-structure:

struct sample_id {
{ u32 pid, tid; } /* if PERF_SAMPLE_TID set */
{ u64 time; } /* if PERF_SAMPLE_TIME set */
{ u64 id; } /* if PERF_SAMPLE_ID set */
{ u64 stream_id;} /* if PERF_SAMPLE_STREAM_ID set */
{ u32 cpu, res; } /* if PERF_SAMPLE_CPU set */
{ u64 id; } /* if PERF_SAMPLE_IDENTIFIER set */

};

Linux man-pages 6.16 2025-09-21 613

perf_event_open(2) System Calls Manual perf_event_open(2)

exclude_host (since Linux 3.2)
When conducting measurements that include processes running VM instances
(i.e., have executed a KVM_RUN ioctl(2)), only measure events happening in-
side a guest instance. This is only meaningful outside the guests; this setting
does not change counts gathered inside of a guest. Currently, this functionality is
x86 only.

exclude_guest (since Linux 3.2)
When conducting measurements that include processes running VM instances
(i.e., have executed a KVM_RUN ioctl(2)), do not measure events happening in-
side guest instances. This is only meaningful outside the guests; this setting does
not change counts gathered inside of a guest. Currently, this functionality is x86
only.

exclude_callchain_kernel (since Linux 3.7)
Do not include kernel callchains.

exclude_callchain_user (since Linux 3.7)
Do not include user callchains.

mmap2 (since Linux 3.16)
Generate an extended executable mmap record that contains enough additional
information to uniquely identify shared mappings. The mmap flag must also be
set for this to work.

comm_exec (since Linux 3.16)
This is purely a feature-detection flag, it does not change kernel behavior. If this
flag can successfully be set, then, when comm is enabled, the
PERF_RECORD_MISC_COMM_EXEC flag will be set in the misc field of a
comm record header if the rename event being reported was caused by a call to
execve(2). This allows tools to distinguish between the various types of process
renaming.

use_clockid (since Linux 4.1)
This allows selecting which internal Linux clock to use when generating time-
stamps via the clockid field. This can make it easier to correlate perf sample
times with timestamps generated by other tools.

context_switch (since Linux 4.3)
This enables the generation of PERF_RECORD_SWITCH records when a
context switch occurs. It also enables the generation of
PERF_RECORD_SWITCH_CPU_WIDE records when sampling in CPU-
wide mode. This functionality is in addition to existing tracepoint and software
events for measuring context switches. The advantage of this method is that it
will give full information even with strict perf_event_paranoid settings.

write_backward (since Linux 4.6)
This causes the ring buffer to be written from the end to the beginning. This is to
support reading from overwritable ring buffer.

Linux man-pages 6.16 2025-09-21 614

perf_event_open(2) System Calls Manual perf_event_open(2)

namespaces (since Linux 4.11)
This enables the generation of PERF_RECORD_NAMESPACES records
when a task enters a new namespace. Each namespace has a combination of de-
vice and inode numbers.

ksymbol (since Linux 5.0)
This enables the generation of PERF_RECORD_KSYMBOL records when
new kernel symbols are registered or unregistered. This is analyzing dynamic
kernel functions like eBPF.

bpf_event (since Linux 5.0)
This enables the generation of PERF_RECORD_BPF_EVENT records when
an eBPF program is loaded or unloaded.

aux_output (since Linux 5.4)
This allows normal (non-AUX) events to generate data for AUX events if the
hardware supports it.

cgroup (since Linux 5.7)
This enables the generation of PERF_RECORD_CGROUP records when a
new cgroup is created (and activated).

text_poke (since Linux 5.8)
This enables the generation of PERF_RECORD_TEXT_POKE records when
there’s a change to the kernel text (i.e., self-modifying code).

build_id (since Linux 5.12)
This changes the contents in the PERF_RECORD_MMAP2 to have a build-id
instead of device and inode numbers.

inherit_thread (since Linux 5.13)
This disables the inheritance of the event to a child process. Only new threads in
the same process (which is cloned with CLONE_THREAD) will inherit the
event.

remove_on_exec (since Linux 5.13)
This closes the event when it starts a new process image by execve(2).

sigtrap (since Linux 5.13)
This enables synchronous signal delivery of SIGTRAP on event overflow.

wakeup_events
wakeup_watermark

This union sets how many samples (wakeup_events) or bytes (wakeup_water-
mark) happen before an overflow notification happens. Which one is used is se-
lected by the watermark bit flag.

wakeup_events counts only PERF_RECORD_SAMPLE record types. To re-
ceive overflow notification for all PERF_RECORD types choose watermark
and set wakeup_watermark to 1.

Prior to Linux 3.0, setting wakeup_events to 0 resulted in no overflow notifica-
tions; more recent kernels treat 0 the same as 1.

Linux man-pages 6.16 2025-09-21 615

perf_event_open(2) System Calls Manual perf_event_open(2)

bp_type (since Linux 2.6.33)
This chooses the breakpoint type. It is one of:

HW_BREAKPOINT_EMPTY
No breakpoint.

HW_BREAKPOINT_R
Count when we read the memory location.

HW_BREAKPOINT_W
Count when we write the memory location.

HW_BREAKPOINT_RW
Count when we read or write the memory location.

HW_BREAKPOINT_X
Count when we execute code at the memory location.

The values can be combined via a bitwise or, but the combination of
HW_BREAKPOINT_R or HW_BREAKPOINT_W with HW_BREAK-
POINT_X is not allowed.

bp_addr (since Linux 2.6.33)
This is the address of the breakpoint. For execution breakpoints, this is the
memory address of the instruction of interest; for read and write breakpoints, it is
the memory address of the memory location of interest.

config1 (since Linux 2.6.39)
config1 is used for setting events that need an extra register or otherwise do not
fit in the regular config field. Raw OFFCORE_EVENTS on Nehalem/West-
mere/SandyBridge use this field on Linux 3.3 and later kernels.

bp_len (since Linux 2.6.33)
bp_len is the size of the breakpoint being measured if type is
PERF_TYPE_BREAKPOINT. Options are HW_BREAKPOINT_LEN_1,
HW_BREAKPOINT_LEN_2, HW_BREAKPOINT_LEN_4, and
HW_BREAKPOINT_LEN_8. For an execution breakpoint, set this to
sizeof(long).

config2 (since Linux 2.6.39)
config2 is a further extension of the config1 field.

branch_sample_type (since Linux 3.4)
If PERF_SAMPLE_BRANCH_STACK is enabled, then this specifies what
branches to include in the branch record.

The first part of the value is the privilege level, which is a combination of one of
the values listed below. If the user does not set privilege level explicitly, the ker-
nel will use the event’s privilege level. Event and branch privilege levels do not
have to match.

PERF_SAMPLE_BRANCH_USER
Branch target is in user space.

Linux man-pages 6.16 2025-09-21 616

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_SAMPLE_BRANCH_KERNEL
Branch target is in kernel space.

PERF_SAMPLE_BRANCH_HV
Branch target is in hypervisor.

PERF_SAMPLE_BRANCH_PLM_ALL
A convenience value that is the three preceding values ORed together.

In addition to the privilege value, at least one or more of the following bits must
be set.

PERF_SAMPLE_BRANCH_ANY
Any branch type.

PERF_SAMPLE_BRANCH_ANY_CALL
Any call branch (includes direct calls, indirect calls, and far jumps).

PERF_SAMPLE_BRANCH_IND_CALL
Indirect calls.

PERF_SAMPLE_BRANCH_CALL (since Linux 4.4)
Direct calls.

PERF_SAMPLE_BRANCH_ANY_RETURN
Any return branch.

PERF_SAMPLE_BRANCH_IND_JUMP (since Linux 4.2)
Indirect jumps.

PERF_SAMPLE_BRANCH_COND (since Linux 3.16)
Conditional branches.

PERF_SAMPLE_BRANCH_ABORT_TX (since Linux 3.11)
Transactional memory aborts.

PERF_SAMPLE_BRANCH_IN_TX (since Linux 3.11)
Branch in transactional memory transaction.

PERF_SAMPLE_BRANCH_NO_TX (since Linux 3.11)
Branch not in transactional memory transaction. PERF_SAM-
PLE_BRANCH_CALL_STACK (since Linux 4.1) Branch is part of a
hardware-generated call stack. This requires hardware support, currently
only found on Intel x86 Haswell or newer.

sample_regs_user (since Linux 3.7)
This bit mask defines the set of user CPU registers to dump on samples. The
layout of the register mask is architecture-specific and is described in the kernel
header file arch/ARCH/include/uapi/asm/perf_regs.h.

sample_stack_user (since Linux 3.7)
This defines the size of the user stack to dump if PERF_SAM-
PLE_STACK_USER is specified.

clockid (since Linux 4.1)
If use_clockid is set, then this field selects which internal Linux timer to use for
timestamps. The available timers are defined in linux/time.h, with

Linux man-pages 6.16 2025-09-21 617

perf_event_open(2) System Calls Manual perf_event_open(2)

CLOCK_MONOTONIC, CLOCK_MONOTONIC_RAW, CLOCK_REAL-
TIME, CLOCK_BOOTTIME, and CLOCK_TAI currently supported.

aux_watermark (since Linux 4.1)
This specifies how much data is required to trigger a PERF_RECORD_AUX
sample.

sample_max_stack (since Linux 4.8)
When sample_type includes PERF_SAMPLE_CALLCHAIN, this field speci-
fies how many stack frames to report when generating the callchain.

aux_sample_size (since Linux 5.5)
When PERF_SAMPLE_AUX flag is set, specify the desired size of AUX data.
Note that it can get smaller data than the specified size.

sig_data (since Linux 5.13)
This data will be copied to user’s signal handler (through si_perf in the sig-
info_t) to disambiguate which event triggered the signal.

Reading results
Once a perf_event_open() file descriptor has been opened, the values of the events can
be read from the file descriptor. The values that are there are specified by the read_for-
mat field in the attr structure at open time.

If you attempt to read into a buffer that is not big enough to hold the data, the error
ENOSPC results.

Here is the layout of the data returned by a read:

• If PERF_FORMAT_GROUP was specified to allow reading all events in a group
at once:

struct read_format {
u64 nr; /* The number of events */
u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
struct {

u64 value; /* The value of the event */
u64 id; /* if PERF_FORMAT_ID */
u64 lost; /* if PERF_FORMAT_LOST */

} values[nr];
};

• If PERF_FORMAT_GROUP was not specified:

struct read_format {
u64 value; /* The value of the event */
u64 time_enabled; /* if PERF_FORMAT_TOTAL_TIME_ENABLED */
u64 time_running; /* if PERF_FORMAT_TOTAL_TIME_RUNNING */
u64 id; /* if PERF_FORMAT_ID */
u64 lost; /* if PERF_FORMAT_LOST */

};

The values read are as follows:

Linux man-pages 6.16 2025-09-21 618

perf_event_open(2) System Calls Manual perf_event_open(2)

nr The number of events in this file descriptor. Available only if PERF_FOR-
MAT_GROUP was specified.

time_enabled
time_running

Total time the event was enabled and running. Normally these values are the
same. Multiplexing happens if the number of events is more than the number of
available PMU counter slots. In that case the events run only part of the time
and the time_enabled and time running values can be used to scale an estimated
value for the count.

value
An unsigned 64-bit value containing the counter result.

id A globally unique value for this particular event; only present if PERF_FOR-
MAT_ID was specified in read_format.

lost The number of lost samples of this event; only present if PERF_FOR-
MAT_LOST was specified in read_format.

MMAP layout
When using perf_event_open() in sampled mode, asynchronous events (like counter
overflow or PROT_EXEC mmap tracking) are logged into a ring-buffer. This ring-
buffer is created and accessed through mmap(2).

The mmap size should be 1+2^n pages, where the first page is a metadata page (struct
perf_event_mmap_page) that contains various bits of information such as where the
ring-buffer head is.

Before Linux 2.6.39, there is a bug that means you must allocate an mmap ring buffer
when sampling even if you do not plan to access it.

The structure of the first metadata mmap page is as follows:

struct perf_event_mmap_page {
__u32 version; /* version number of this structure */
__u32 compat_version; /* lowest version this is compat with */
__u32 lock; /* seqlock for synchronization */
__u32 index; /* hardware counter identifier */
__s64 offset; /* add to hardware counter value */
__u64 time_enabled; /* time event active */
__u64 time_running; /* time event on CPU */
union {

__u64 capabilities;
struct {

__u64 cap_usr_time / cap_usr_rdpmc / cap_bit0 : 1,
cap_bit0_is_deprecated : 1,
cap_user_rdpmc : 1,
cap_user_time : 1,
cap_user_time_zero : 1,

};
};

Linux man-pages 6.16 2025-09-21 619

perf_event_open(2) System Calls Manual perf_event_open(2)

__u16 pmc_width;
__u16 time_shift;
__u32 time_mult;
__u64 time_offset;
__u64 __reserved[120]; /* Pad to 1 k */
__u64 data_head; /* head in the data section */
__u64 data_tail; /* user-space written tail */
__u64 data_offset; /* where the buffer starts */
__u64 data_size; /* data buffer size */
__u64 aux_head;
__u64 aux_tail;
__u64 aux_offset;
__u64 aux_size;

}

The following list describes the fields in the perf_event_mmap_page structure in more
detail:

version
Version number of this structure.

compat_version
The lowest version this is compatible with.

lock A seqlock for synchronization.

index
A unique hardware counter identifier.

offset
When using rdpmc for reads this offset value must be added to the one returned
by rdpmc to get the current total event count.

time_enabled
Time the event was active.

time_running
Time the event was running.

cap_usr_time / cap_usr_rdpmc / cap_bit0 (since Linux 3.4)
There was a bug in the definition of cap_usr_time and cap_usr_rdpmc from
Linux 3.4 until Linux 3.11. Both bits were defined to point to the same location,
so it was impossible to know if cap_usr_time or cap_usr_rdpmc were actually
set.

Starting with Linux 3.12, these are renamed to cap_bit0 and you should use the
cap_user_time and cap_user_rdpmc fields instead.

cap_bit0_is_deprecated (since Linux 3.12)
If set, this bit indicates that the kernel supports the properly separated
cap_user_time and cap_user_rdpmc bits.

Linux man-pages 6.16 2025-09-21 620

perf_event_open(2) System Calls Manual perf_event_open(2)

If not-set, it indicates an older kernel where cap_usr_time and cap_usr_rdpmc
map to the same bit and thus both features should be used with caution.

cap_user_rdpmc (since Linux 3.12)
If the hardware supports user-space read of performance counters without syscall
(this is the "rdpmc" instruction on x86), then the following code can be used to
do a read:

u32 seq, time_mult, time_shift, idx, width;
u64 count, enabled, running;
u64 cyc, time_offset;

do {
seq = pc->lock;
barrier();
enabled = pc->time_enabled;
running = pc->time_running;

if (pc->cap_usr_time && enabled != running) {
cyc = rdtsc();
time_offset = pc->time_offset;
time_mult = pc->time_mult;
time_shift = pc->time_shift;

}

idx = pc->index;
count = pc->offset;

if (pc->cap_usr_rdpmc && idx) {
width = pc->pmc_width;
count += rdpmc(idx - 1);

}

barrier();
} while (pc->lock != seq);

cap_user_time (since Linux 3.12)
This bit indicates the hardware has a constant, nonstop timestamp counter (TSC
on x86).

cap_user_time_zero (since Linux 3.12)
Indicates the presence of time_zero which allows mapping timestamp values to
the hardware clock.

pmc_width
If cap_usr_rdpmc, this field provides the bit-width of the value read using the
rdpmc or equivalent instruction. This can be used to sign extend the result like:

pmc <<= 64 - pmc_width;
pmc >>= 64 - pmc_width; // signed shift right
count += pmc;

Linux man-pages 6.16 2025-09-21 621

perf_event_open(2) System Calls Manual perf_event_open(2)

time_shift
time_mult
time_offset

If cap_usr_time, these fields can be used to compute the time delta since
time_enabled (in nanoseconds) using rdtsc or similar.

u64 quot, rem;
u64 delta;

quot = cyc >> time_shift;
rem = cyc & (((u64)1 << time_shift) - 1);
delta = time_offset + quot * time_mult +

((rem * time_mult) >> time_shift);

Where time_offset, time_mult, time_shift, and cyc are read in the seqcount loop
described above. This delta can then be added to enabled and possible running
(if idx), improving the scaling:

enabled += delta;
if (idx)

running += delta;
quot = count / running;
rem = count % running;
count = quot * enabled + (rem * enabled) / running;

time_zero (since Linux 3.12)

If cap_usr_time_zero is set, then the hardware clock (the TSC timestamp counter
on x86) can be calculated from the time_zero, time_mult, and time_shift values:

time = timestamp - time_zero;
quot = time / time_mult;
rem = time % time_mult;
cyc = (quot << time_shift) + (rem << time_shift) / time_mult;

And vice versa:

quot = cyc >> time_shift;
rem = cyc & (((u64)1 << time_shift) - 1);
timestamp = time_zero + quot * time_mult +

((rem * time_mult) >> time_shift);

data_head
This points to the head of the data section. The value continuously increases, it
does not wrap. The value needs to be manually wrapped by the size of the
mmap buffer before accessing the samples.

On SMP-capable platforms, after reading the data_head value, user space
should issue an rmb().

data_tail
When the mapping is PROT_WRITE, the data_tail value should be written by
user space to reflect the last read data. In this case, the kernel will not overwrite

Linux man-pages 6.16 2025-09-21 622

perf_event_open(2) System Calls Manual perf_event_open(2)

unread data.

data_offset (since Linux 4.1)
Contains the offset of the location in the mmap buffer where perf sample data
begins.

data_size (since Linux 4.1)
Contains the size of the perf sample region within the mmap buffer.

aux_head
aux_tail
aux_offset
aux_size (since Linux 4.1)

The AUX region allows mmap(2)-ing a separate sample buffer for high-band-
width data streams (separate from the main perf sample buffer). An example of
a high-bandwidth stream is instruction tracing support, as is found in newer Intel
processors.

To set up an AUX area, first aux_offset needs to be set with an offset greater than
data_offset+data_size and aux_size needs to be set to the desired buffer size.
The desired offset and size must be page aligned, and the size must be a power
of two. These values are then passed to mmap in order to map the AUX buffer.
Pages in the AUX buffer are included as part of the RLIMIT_MEMLOCK re-
source limit (see setrlimit(2)), and also as part of the perf_event_mlock_kb al-
lowance.

By default, the AUX buffer will be truncated if it will not fit in the available
space in the ring buffer. If the AUX buffer is mapped as a read only buffer, then
it will operate in ring buffer mode where old data will be overwritten by new. In
overwrite mode, it might not be possible to infer where the new data began, and
it is the consumer’s job to disable measurement while reading to avoid possible
data races.

The aux_head and aux_tail ring buffer pointers have the same behavior and or-
dering rules as the previous described data_head and data_tail.

The following 2ˆn ring-buffer pages have the layout described below.

If perf_event_attr.sample_id_all is set, then all event types will have the sample_type
selected fields related to where/when (identity) an event took place (TID, TIME, ID,
CPU, STREAM_ID) described in PERF_RECORD_SAMPLE below, it will be
stashed just after the perf_event_header and the fields already present for the existing
fields, that is, at the end of the payload. This allows a newer perf.data file to be sup-
ported by older perf tools, with the new optional fields being ignored.

The mmap values start with a header:

struct perf_event_header {
__u32 type;
__u16 misc;
__u16 size;

};

Below, we describe the perf_event_header fields in more detail. For ease of reading,

Linux man-pages 6.16 2025-09-21 623

perf_event_open(2) System Calls Manual perf_event_open(2)

the fields with shorter descriptions are presented first.

size This indicates the size of the record.

misc The misc field contains additional information about the sample.

The CPU mode can be determined from this value by masking with
PERF_RECORD_MISC_CPUMODE_MASK and looking for one of the fol-
lowing (note these are not bit masks, only one can be set at a time):

PERF_RECORD_MISC_CPUMODE_UNKNOWN
Unknown CPU mode.

PERF_RECORD_MISC_KERNEL
Sample happened in the kernel.

PERF_RECORD_MISC_USER
Sample happened in user code.

PERF_RECORD_MISC_HYPERVISOR
Sample happened in the hypervisor.

PERF_RECORD_MISC_GUEST_KERNEL (since Linux 2.6.35)
Sample happened in the guest kernel.

PERF_RECORD_MISC_GUEST_USER (since Linux 2.6.35)
Sample happened in guest user code.

Since the following three statuses are generated by different record types, they
alias to the same bit:

PERF_RECORD_MISC_MMAP_DATA (since Linux 3.10)
This is set when the mapping is not executable; otherwise the mapping is
executable.

PERF_RECORD_MISC_COMM_EXEC (since Linux 3.16)
This is set for a PERF_RECORD_COMM record on kernels more re-
cent than Linux 3.16 if a process name change was caused by an ex-
ecve(2) system call.

PERF_RECORD_MISC_SWITCH_OUT (since Linux 4.3)
When a PERF_RECORD_SWITCH or
PERF_RECORD_SWITCH_CPU_WIDE record is generated, this bit
indicates that the context switch is away from the current process (instead
of into the current process).

In addition, the following bits can be set:

PERF_RECORD_MISC_EXACT_IP
This indicates that the content of PERF_SAMPLE_IP points to the ac-
tual instruction that triggered the event. See also perf_event_attr.pre-
cise_ip.

PERF_RECORD_MISC_SWITCH_OUT_PREEMPT (since Linux 4.17)
When a PERF_RECORD_SWITCH or
PERF_RECORD_SWITCH_CPU_WIDE record is generated, this in-
dicates the context switch was a preemption.

Linux man-pages 6.16 2025-09-21 624

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_RECORD_MISC_MMAP_BUILD_ID (since Linux 5.12)
This indicates that the content of PERF_SAMPLE_MMAP2 contains
build-ID data instead of device major and minor numbers as well as the
inode number.

PERF_RECORD_MISC_EXT_RESERVED (since Linux 2.6.35)
This indicates there is extended data available (currently not used).

PERF_RECORD_MISC_PROC_MAP_PARSE_TIMEOUT
This bit is not set by the kernel. It is reserved for the user-space perf util-
ity to indicate that /proc/ pid /maps parsing was taking too long and was
stopped, and thus the mmap records may be truncated.

type The type value is one of the below. The values in the corresponding record (that
follows the header) depend on the type selected as shown.

PERF_RECORD_MMAP
The MMAP events record the PROT_EXEC mappings so that we can cor-
relate user-space IPs to code. They have the following structure:

struct {
struct perf_event_header header;
u32 pid, tid;
u64 addr;
u64 len;
u64 pgoff;
char filename[];

};

pid is the process ID.

tid is the thread ID.

addr is the address of the allocated memory. len is the size of the allo-
cated memory. pgoff is the page offset of the allocated memory.
filename is a string describing the backing of the allocated memory.

PERF_RECORD_LOST
This record indicates when events are lost.

struct {
struct perf_event_header header;
u64 id;
u64 lost;
struct sample_id sample_id;

};

id is the unique event ID for the samples that were lost.

lost is the number of events that were lost.

PERF_RECORD_COMM
This record indicates a change in the process name.

Linux man-pages 6.16 2025-09-21 625

perf_event_open(2) System Calls Manual perf_event_open(2)

struct {
struct perf_event_header header;
u32 pid;
u32 tid;
char comm[];
struct sample_id sample_id;

};

pid is the process ID.

tid is the thread ID.

comm
is a string containing the new name of the process.

PERF_RECORD_EXIT
This record indicates a process exit event.

struct {
struct perf_event_header header;
u32 pid, ppid;
u32 tid, ptid;
u64 time;
struct sample_id sample_id;

};

PERF_RECORD_THROTTLE
PERF_RECORD_UNTHROTTLE

This record indicates a throttle/unthrottle event.

struct {
struct perf_event_header header;
u64 time;
u64 id;
u64 stream_id;
struct sample_id sample_id;

};

PERF_RECORD_FORK
This record indicates a fork event.

struct {
struct perf_event_header header;
u32 pid, ppid;
u32 tid, ptid;
u64 time;
struct sample_id sample_id;

};

PERF_RECORD_READ
This record indicates a read event.

struct {
struct perf_event_header header;

Linux man-pages 6.16 2025-09-21 626

perf_event_open(2) System Calls Manual perf_event_open(2)

u32 pid, tid;
struct read_format values;
struct sample_id sample_id;

};

PERF_RECORD_SAMPLE
This record indicates a sample.

struct {
struct perf_event_header header;
u64 sample_id; /* if PERF_SAMPLE_IDENTIFIER */
u64 ip; /* if PERF_SAMPLE_IP */
u32 pid, tid; /* if PERF_SAMPLE_TID */
u64 time; /* if PERF_SAMPLE_TIME */
u64 addr; /* if PERF_SAMPLE_ADDR */
u64 id; /* if PERF_SAMPLE_ID */
u64 stream_id; /* if PERF_SAMPLE_STREAM_ID */
u32 cpu, res; /* if PERF_SAMPLE_CPU */
u64 period; /* if PERF_SAMPLE_PERIOD */
struct read_format v;

/* if PERF_SAMPLE_READ */
u64 nr; /* if PERF_SAMPLE_CALLCHAIN */
u64 ips[nr]; /* if PERF_SAMPLE_CALLCHAIN */
u32 size; /* if PERF_SAMPLE_RAW */
char data[size]; /* if PERF_SAMPLE_RAW */
u64 bnr; /* if PERF_SAMPLE_BRANCH_STACK */
struct perf_branch_entry lbr[bnr];

/* if PERF_SAMPLE_BRANCH_STACK */
u64 abi; /* if PERF_SAMPLE_REGS_USER */
u64 regs[weight(mask)];

/* if PERF_SAMPLE_REGS_USER */
u64 size; /* if PERF_SAMPLE_STACK_USER */
char data[size]; /* if PERF_SAMPLE_STACK_USER */
u64 dyn_size; /* if PERF_SAMPLE_STACK_USER &&

size != 0 */
union perf_sample_weight weight;

/* if PERF_SAMPLE_WEIGHT */
/* || PERF_SAMPLE_WEIGHT_STRUCT */

u64 data_src; /* if PERF_SAMPLE_DATA_SRC */
u64 transaction; /* if PERF_SAMPLE_TRANSACTION */
u64 abi; /* if PERF_SAMPLE_REGS_INTR */
u64 regs[weight(mask)];

/* if PERF_SAMPLE_REGS_INTR */
u64 phys_addr; /* if PERF_SAMPLE_PHYS_ADDR */
u64 cgroup; /* if PERF_SAMPLE_CGROUP */
u64 data_page_size;

/* if PERF_SAMPLE_DATA_PAGE_SIZE */
u64 code_page_size;

Linux man-pages 6.16 2025-09-21 627

perf_event_open(2) System Calls Manual perf_event_open(2)

/* if PERF_SAMPLE_CODE_PAGE_SIZE */
u64 size; /* if PERF_SAMPLE_AUX */
char data[size]; /* if PERF_SAMPLE_AUX */

};

sample_id
If PERF_SAMPLE_IDENTIFIER is enabled, a 64-bit unique ID is
included. This is a duplication of the PERF_SAMPLE_ID id value,
but included at the beginning of the sample so parsers can easily obtain
the value.

ip If PERF_SAMPLE_IP is enabled, then a 64-bit instruction pointer
value is included.

pid
tid If PERF_SAMPLE_TID is enabled, then a 32-bit process ID and

32-bit thread ID are included.

time
If PERF_SAMPLE_TIME is enabled, then a 64-bit timestamp is in-
cluded. This is obtained via local_clock() which is a hardware time-
stamp if available and the jiffies value if not.

addr
If PERF_SAMPLE_ADDR is enabled, then a 64-bit address is in-
cluded. This is usually the address of a tracepoint, breakpoint, or soft-
ware event; otherwise the value is 0.

id If PERF_SAMPLE_ID is enabled, a 64-bit unique ID is included. If
the event is a member of an event group, the group leader ID is re-
turned. This ID is the same as the one returned by PERF_FOR-
MAT_ID.

stream_id
If PERF_SAMPLE_STREAM_ID is enabled, a 64-bit unique ID is
included. Unlike PERF_SAMPLE_ID the actual ID is returned, not
the group leader. This ID is the same as the one returned by
PERF_FORMAT_ID.

cpu
res

If PERF_SAMPLE_CPU is enabled, this is a 32-bit value indicating
which CPU was being used, in addition to a reserved (unused) 32-bit
value.

period
If PERF_SAMPLE_PERIOD is enabled, a 64-bit value indicating
the current sampling period is written.

v If PERF_SAMPLE_READ is enabled, a structure of type read_for-
mat is included which has values for all events in the event group. The
values included depend on the read_format value used at
perf_event_open() time.

Linux man-pages 6.16 2025-09-21 628

perf_event_open(2) System Calls Manual perf_event_open(2)

nr
ips[nr]

If PERF_SAMPLE_CALLCHAIN is enabled, then a 64-bit number
is included which indicates how many following 64-bit instruction
pointers will follow. This is the current callchain.

size
data[size]

If PERF_SAMPLE_RAW is enabled, then a 32-bit value indicating
size is included followed by an array of 8-bit values of size size. The
values are padded with 0 to have 64-bit alignment.

This RAW record data is opaque with respect to the ABI. The ABI
doesn’t make any promises with respect to the stability of its content, it
may vary depending on event, hardware, and kernel version.

bnr
lbr[bnr]

If PERF_SAMPLE_BRANCH_STACK is enabled, then a 64-bit
value indicating the number of records is included, followed by bnr
perf_branch_entry structures which each include the fields:

from This indicates the source instruction (may not be a branch).

to The branch target.

mispred
The branch target was mispredicted.

predicted
The branch target was predicted.

in_tx (since Linux 3.11)
The branch was in a transactional memory transaction.

abort (since Linux 3.11)
The branch was in an aborted transactional memory transac-
tion.

cycles (since Linux 4.3)
This reports the number of cycles elapsed since the previous
branch stack update.

The entries are from most to least recent, so the first entry has the most
recent branch.

Support for mispred , predicted , and cycles is optional; if not sup-
ported, those values will be 0.

The type of branches recorded is specified by the branch_sample_type
field.

abi

Linux man-pages 6.16 2025-09-21 629

perf_event_open(2) System Calls Manual perf_event_open(2)

regs[weight(mask)]
If PERF_SAMPLE_REGS_USER is enabled, then the user CPU reg-
isters are recorded.

The abi field is one of PERF_SAMPLE_REGS_ABI_NONE,
PERF_SAMPLE_REGS_ABI_32, or PERF_SAM-
PLE_REGS_ABI_64.

The regs field is an array of the CPU registers that were specified by
the sample_regs_user attr field. The number of values is the number
of bits set in the sample_regs_user bit mask.

size
data[size]
dyn_size

If PERF_SAMPLE_STACK_USER is enabled, then the user stack is
recorded. This can be used to generate stack backtraces. size is the
size requested by the user in sample_stack_user or else the maximum
record size. data is the stack data (a raw dump of the memory pointed
to by the stack pointer at the time of sampling). dyn_size is the
amount of data actually dumped (can be less than size). Note that
dyn_size is omitted if size is 0.

weight
If PERF_SAMPLE_WEIGHT or PERF_SAM-
PLE_WEIGHT_STRUCT is enabled, then a 64-bit value provided by
the hardware is recorded that indicates how costly the event was. This
allows expensive events to stand out more clearly in profiles.

data_src
If PERF_SAMPLE_DATA_SRC is enabled, then a 64-bit value is
recorded that is made up of the following fields:

mem_op
Type of opcode, a bitwise combination of:

PERF_MEM_OP_NA Not available
PERF_MEM_OP_LOAD Load instruction
PERF_MEM_OP_STORE

Store instruction
PERF_MEM_OP_PFETCH

Prefetch
PERF_MEM_OP_EXEC Executable code

mem_lvl
Memory hierarchy level hit or miss, a bitwise combination of the
following, shifted left by PERF_MEM_LVL_SHIFT:

PERF_MEM_LVL_NA Not available
PERF_MEM_LVL_HIT Hit

Linux man-pages 6.16 2025-09-21 630

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_MEM_LVL_MISS Miss
PERF_MEM_LVL_L1 Level 1 cache
PERF_MEM_LVL_LFB Line fill buffer
PERF_MEM_LVL_L2 Level 2 cache
PERF_MEM_LVL_L3 Level 3 cache
PERF_MEM_LVL_LOC_RAM

Local DRAM
PERF_MEM_LVL_REM_RAM1

Remote DRAM 1 hop
PERF_MEM_LVL_REM_RAM2

Remote DRAM 2 hops
PERF_MEM_LVL_REM_CCE1

Remote cache 1 hop
PERF_MEM_LVL_REM_CCE2

Remote cache 2 hops
PERF_MEM_LVL_IO I/O memory
PERF_MEM_LVL_UNC Uncached memory

mem_snoop
Snoop mode, a bitwise combination of the following, shifted left
by PERF_MEM_SNOOP_SHIFT:

PERF_MEM_SNOOP_NA
Not available

PERF_MEM_SNOOP_NONE
No snoop

PERF_MEM_SNOOP_HIT
Snoop hit

PERF_MEM_SNOOP_MISS
Snoop miss

PERF_MEM_SNOOP_HITM
Snoop hit modified

mem_lock
Lock instruction, a bitwise combination of the following, shifted
left by PERF_MEM_LOCK_SHIFT:

PERF_MEM_LOCK_NA Not available
PERF_MEM_LOCK_LOCKED

Locked transaction

mem_dtlb
TLB access hit or miss, a bitwise combination of the following,
shifted left by PERF_MEM_TLB_SHIFT:

PERF_MEM_TLB_NA Not available
PERF_MEM_TLB_HIT Hit
PERF_MEM_TLB_MISS Miss
PERF_MEM_TLB_L1 Level 1 TLB

Linux man-pages 6.16 2025-09-21 631

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_MEM_TLB_L2 Level 2 TLB
PERF_MEM_TLB_WK Hardware walker
PERF_MEM_TLB_OS OS fault handler

transaction
If the PERF_SAMPLE_TRANSACTION flag is set, then a 64-bit
field is recorded describing the sources of any transactional memory
aborts.

The field is a bitwise combination of the following values:

PERF_TXN_ELISION
Abort from an elision type transaction (Intel-CPU-specific).

PERF_TXN_TRANSACTION
Abort from a generic transaction.

PERF_TXN_SYNC
Synchronous abort (related to the reported instruction).

PERF_TXN_ASYNC
Asynchronous abort (not related to the reported instruction).

PERF_TXN_RETRY
Retryable abort (retrying the transaction may have succeeded).

PERF_TXN_CONFLICT
Abort due to memory conflicts with other threads.

PERF_TXN_CAPACITY_WRITE
Abort due to write capacity overflow.

PERF_TXN_CAPACITY_READ
Abort due to read capacity overflow.

In addition, a user-specified abort code can be obtained from the high
32 bits of the field by shifting right by PERF_TXN_ABORT_SHIFT
and masking with the value PERF_TXN_ABORT_MASK.

abi
regs[weight(mask)]

If PERF_SAMPLE_REGS_INTR is enabled, then the user CPU reg-
isters are recorded.

The abi field is one of PERF_SAMPLE_REGS_ABI_NONE,
PERF_SAMPLE_REGS_ABI_32, or PERF_SAM-
PLE_REGS_ABI_64.

The regs field is an array of the CPU registers that were specified by
the sample_regs_intr attr field. The number of values is the number of
bits set in the sample_regs_intr bit mask.

phys_addr
If the PERF_SAMPLE_PHYS_ADDR flag is set, then the 64-bit
physical address is recorded.

Linux man-pages 6.16 2025-09-21 632

perf_event_open(2) System Calls Manual perf_event_open(2)

cgroup
If the PERF_SAMPLE_CGROUP flag is set, then the 64-bit cgroup
ID (for the perf_event subsystem) is recorded. To get the pathname of
the cgroup, the ID should match to one in a
PERF_RECORD_CGROUP.

data_page_size
If the PERF_SAMPLE_DATA_PAGE_SIZE flag is set, then the
64-bit page size value of the data address is recorded.

code_page_size
If the PERF_SAMPLE_CODE_PAGE_SIZE flag is set, then the
64-bit page size value of the ip address is recorded.

size
data[size]

If PERF_SAMPLE_AUX is enabled, a snapshot of the aux buffer is
recorded.

PERF_RECORD_MMAP2
This record includes extended information on mmap(2) calls returning exe-
cutable mappings. The format is similar to that of the
PERF_RECORD_MMAP record, but includes extra values that allow
uniquely identifying shared mappings. Depending on the
PERF_RECORD_MISC_MMAP_BUILD_ID bit in the header, the extra
values have different layout and meanings.

struct {
struct perf_event_header header;
u32 pid;
u32 tid;
u64 addr;
u64 len;
u64 pgoff;
union {

struct {
u32 maj;
u32 min;
u64 ino;
u64 ino_generation;

};
struct { /* if PERF_RECORD_MISC_MMAP_BUILD_ID */

u8 build_id_size;
u8 __reserved_1;
u16 __reserved_2;
u8 build_id[20];

};
};
u32 prot;
u32 flags;

Linux man-pages 6.16 2025-09-21 633

perf_event_open(2) System Calls Manual perf_event_open(2)

char filename[];
struct sample_id sample_id;

};

pid is the process ID.

tid is the thread ID.

addr is the address of the allocated memory.

len is the size of the allocated memory.

pgoff
is the page offset of the allocated memory.

maj is the major ID of the underlying device.

min is the minor ID of the underlying device.

ino is the inode number.

ino_generation
is the inode generation.

build_id_size
is the actual size of build_id field (up to 20).

build_id
is a raw data to identify a binary.

prot is the protection information.

flags is the flags information.

filename
is a string describing the backing of the allocated memory.

PERF_RECORD_AUX (since Linux 4.1)
This record reports that new data is available in the separate AUX buffer re-
gion.

struct {
struct perf_event_header header;
u64 aux_offset;
u64 aux_size;
u64 flags;
struct sample_id sample_id;

};

aux_offset
offset in the AUX mmap region where the new data begins.

aux_size
size of the data made available.

flags describes the AUX update.

Linux man-pages 6.16 2025-09-21 634

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_AUX_FLAG_TRUNCATED
if set, then the data returned was truncated to fit the available
buffer size.

PERF_AUX_FLAG_OVERWRITE
if set, then the data returned has overwritten previous data.

PERF_RECORD_ITRACE_START (since Linux 4.1)
This record indicates which process has initiated an instruction trace event,
allowing tools to properly correlate the instruction addresses in the AUX
buffer with the proper executable.

struct {
struct perf_event_header header;
u32 pid;
u32 tid;

};

pid process ID of the thread starting an instruction trace.

tid thread ID of the thread starting an instruction trace.

PERF_RECORD_LOST_SAMPLES (since Linux 4.2)
When using hardware sampling (such as Intel PEBS) this record indicates
some number of samples that may have been lost.

struct {
struct perf_event_header header;
u64 lost;
struct sample_id sample_id;

};

lost the number of potentially lost samples.

PERF_RECORD_SWITCH (since Linux 4.3)
This record indicates a context switch has happened. The
PERF_RECORD_MISC_SWITCH_OUT bit in the misc field indicates
whether it was a context switch into or away from the current process.

struct {
struct perf_event_header header;
struct sample_id sample_id;

};

PERF_RECORD_SWITCH_CPU_WIDE (since Linux 4.3)
As with PERF_RECORD_SWITCH this record indicates a context switch
has happened, but it only occurs when sampling in CPU-wide mode and
provides additional information on the process being switched to/from. The
PERF_RECORD_MISC_SWITCH_OUT bit in the misc field indicates
whether it was a context switch into or away from the current process.

struct {
struct perf_event_header header;
u32 next_prev_pid;

Linux man-pages 6.16 2025-09-21 635

perf_event_open(2) System Calls Manual perf_event_open(2)

u32 next_prev_tid;
struct sample_id sample_id;

};

next_prev_pid
The process ID of the previous (if switching in) or next (if switching
out) process on the CPU.

next_prev_tid
The thread ID of the previous (if switching in) or next (if switching
out) thread on the CPU.

PERF_RECORD_NAMESPACES (since Linux 4.11)
This record includes various namespace information of a process.

struct {
struct perf_event_header header;
u32 pid;
u32 tid;
u64 nr_namespaces;
struct { u64 dev, inode } [nr_namespaces];
struct sample_id sample_id;

};

pid is the process ID

tid is the thread ID

nr_namespace
is the number of namespaces in this record

Each namespace has dev and inode fields and is recorded in the fixed posi-
tion like below:

NET_NS_INDEX=0
Network namespace

UTS_NS_INDEX=1
UTS namespace

IPC_NS_INDEX=2
IPC namespace

PID_NS_INDEX=3
PID namespace

USER_NS_INDEX=4
User namespace

MNT_NS_INDEX=5
Mount namespace

CGROUP_NS_INDEX=6
Cgroup namespace

Linux man-pages 6.16 2025-09-21 636

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_RECORD_KSYMBOL (since Linux 5.0)
This record indicates kernel symbol register/unregister events.

struct {
struct perf_event_header header;
u64 addr;
u32 len;
u16 ksym_type;
u16 flags;
char name[];
struct sample_id sample_id;

};

addr is the address of the kernel symbol.

len is the size of the kernel symbol.

ksym_type
is the type of the kernel symbol. Currently the following types are
available:

PERF_RECORD_KSYMBOL_TYPE_BPF
The kernel symbol is a BPF function.

flags If the PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER is
set, then this event is for unregistering the kernel symbol.

PERF_RECORD_BPF_EVENT (since Linux 5.0)
This record indicates BPF program is loaded or unloaded.

struct {
struct perf_event_header header;
u16 type;
u16 flags;
u32 id;
u8 tag[BPF_TAG_SIZE];
struct sample_id sample_id;

};

type is one of the following values:

PERF_BPF_EVENT_PROG_LOAD
A BPF program is loaded

PERF_BPF_EVENT_PROG_UNLOAD
A BPF program is unloaded

id is the ID of the BPF program.

tag is the tag of the BPF program. Currently, BPF_TAG_SIZE is de-
fined as 8.

PERF_RECORD_CGROUP (since Linux 5.7)
This record indicates a new cgroup is created and activated.

Linux man-pages 6.16 2025-09-21 637

perf_event_open(2) System Calls Manual perf_event_open(2)

struct {
struct perf_event_header header;
u64 id;
char path[];
struct sample_id sample_id;

};

id is the cgroup identifier. This can be also retrieved by name_to_han-
dle_at(2) on the cgroup path (as a file handle).

path is the path of the cgroup from the root.

PERF_RECORD_TEXT_POKE (since Linux 5.8)
This record indicates a change in the kernel text. This includes addition and
removal of the text and the corresponding size is zero in this case.

struct {
struct perf_event_header header;
u64 addr;
u16 old_len;
u16 new_len;
u8 bytes[];
struct sample_id sample_id;

};

addr is the address of the change

old_len
is the old size

new_len
is the new size

bytes contains old bytes immediately followed by new bytes.

Overflow handling
Events can be set to notify when a threshold is crossed, indicating an overflow. Over-
flow conditions can be captured by monitoring the event file descriptor with poll(2), se-
lect(2), or epoll(7). Alternatively, the overflow events can be captured via sa signal han-
dler, by enabling I/O signaling on the file descriptor; see the discussion of the F_SE-
TOWN and F_SETSIG operations in fcntl(2).

Overflows are generated only by sampling events (sample_period must have a nonzero
value).

There are two ways to generate overflow notifications.

The first is to set a wakeup_events or wakeup_watermark value that will trigger if a cer-
tain number of samples or bytes have been written to the mmap ring buffer. In this case,
POLL_IN is indicated.

The other way is by use of the PERF_EVENT_IOC_REFRESH ioctl. This ioctl adds
to a counter that decrements each time the event overflows. When nonzero, POLL_IN
is indicated, but once the counter reaches 0 POLL_HUP is indicated and the underlying
event is disabled.

Linux man-pages 6.16 2025-09-21 638

perf_event_open(2) System Calls Manual perf_event_open(2)

Refreshing an event group leader refreshes all siblings and refreshing with a parameter
of 0 currently enables infinite refreshes; these behaviors are unsupported and should not
be relied on.

Starting with Linux 3.18, POLL_HUP is indicated if the event being monitored is at-
tached to a different process and that process exits.

rdpmc instruction
Starting with Linux 3.4 on x86, you can use the rdpmc instruction to get low-latency
reads without having to enter the kernel. Note that using rdpmc is not necessarily faster
than other methods for reading event values.

Support for this can be detected with the cap_usr_rdpmc field in the mmap page; docu-
mentation on how to calculate event values can be found in that section.

Originally, when rdpmc support was enabled, any process (not just ones with an active
perf event) could use the rdpmc instruction to access the counters. Starting with Linux
4.0, rdpmc support is only allowed if an event is currently enabled in a process’s con-
text. To restore the old behavior, write the value 2 to /sys/devices/cpu/rdpmc.

perf_event ioctl calls
Various ioctls act on perf_event_open() file descriptors:

PERF_EVENT_IOC_ENABLE
This enables the individual event or event group specified by the file descriptor
argument.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all
events in a group are enabled, even if the event specified is not the group leader
(but see BUGS).

PERF_EVENT_IOC_DISABLE
This disables the individual counter or event group specified by the file descrip-
tor argument.

Enabling or disabling the leader of a group enables or disables the entire group;
that is, while the group leader is disabled, none of the counters in the group will
count. Enabling or disabling a member of a group other than the leader affects
only that counter; disabling a non-leader stops that counter from counting but
doesn’t affect any other counter.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all
events in a group are disabled, even if the event specified is not the group leader
(but see BUGS).

PERF_EVENT_IOC_REFRESH
Non-inherited overflow counters can use this to enable a counter for a number of
overflows specified by the argument, after which it is disabled. Subsequent calls
of this ioctl add the argument value to the current count. An overflow notifica-
tion with POLL_IN set will happen on each overflow until the count reaches 0;
when that happens a notification with POLL_HUP set is sent and the event is
disabled. Using an argument of 0 is considered undefined behavior.

Linux man-pages 6.16 2025-09-21 639

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_EVENT_IOC_RESET
Reset the event count specified by the file descriptor argument to zero. This re-
sets only the counts; there is no way to reset the multiplexing time_enabled or
time_running values.

If the PERF_IOC_FLAG_GROUP bit is set in the ioctl argument, then all
events in a group are reset, even if the event specified is not the group leader (but
see BUGS).

PERF_EVENT_IOC_PERIOD
This updates the overflow period for the event.

Since Linux 3.7 (on ARM) and Linux 3.14 (all other architectures), the new pe-
riod takes effect immediately. On older kernels, the new period did not take ef-
fect until after the next overflow.

The argument is a pointer to a 64-bit value containing the desired new period.

Prior to Linux 2.6.36, this ioctl always failed due to a bug in the kernel.

PERF_EVENT_IOC_SET_OUTPUT
This tells the kernel to report event notifications to the specified file descriptor
rather than the default one. The file descriptors must all be on the same CPU.

The argument specifies the desired file descriptor, or -1 if output should be ig-
nored.

PERF_EVENT_IOC_SET_FILTER (since Linux 2.6.33)
This adds an ftrace filter to this event.

The argument is a pointer to the desired ftrace filter.

PERF_EVENT_IOC_ID (since Linux 3.12)
This returns the event ID value for the given event file descriptor.

The argument is a pointer to a 64-bit unsigned integer to hold the result.

PERF_EVENT_IOC_SET_BPF (since Linux 4.1)
This allows attaching a Berkeley Packet Filter (BPF) program to an existing
kprobe tracepoint event. You need CAP_PERFMON (since Linux 5.8) or
CAP_SYS_ADMIN privileges to use this ioctl.

The argument is a BPF program file descriptor that was created by a previous
bpf(2) system call.

PERF_EVENT_IOC_PAUSE_OUTPUT (since Linux 4.7)
This allows pausing and resuming the event’s ring-buffer. A paused ring-buffer
does not prevent generation of samples, but simply discards them. The discarded
samples are considered lost, and cause a PERF_RECORD_LOST sample to be
generated when possible. An overflow signal may still be triggered by the dis-
carded sample even though the ring-buffer remains empty.

The argument is an unsigned 32-bit integer. A nonzero value pauses the ring-
buffer, while a zero value resumes the ring-buffer.

Linux man-pages 6.16 2025-09-21 640

perf_event_open(2) System Calls Manual perf_event_open(2)

PERF_EVENT_MODIFY_ATTRIBUTES (since Linux 4.17)
This allows modifying an existing event without the overhead of closing and re-
opening a new event. Currently this is supported only for breakpoint events.

The argument is a pointer to a perf_event_attr structure containing the updated
event settings.

PERF_EVENT_IOC_QUERY_BPF (since Linux 4.16)
This allows querying which Berkeley Packet Filter (BPF) programs are attached
to an existing kprobe tracepoint. You can only attach one BPF program per
event, but you can have multiple events attached to a tracepoint. Querying this
value on one tracepoint event returns the ID of all BPF programs in all events at-
tached to the tracepoint. You need CAP_PERFMON (since Linux 5.8) or
CAP_SYS_ADMIN privileges to use this ioctl.

The argument is a pointer to a structure
struct perf_event_query_bpf {

__u32 ids_len;
__u32 prog_cnt;
__u32 ids[0];

};

The ids_len field indicates the number of ids that can fit in the provided ids ar-
ray. The prog_cnt value is filled in by the kernel with the number of attached
BPF programs. The ids array is filled with the ID of each attached BPF pro-
gram. If there are more programs than will fit in the array, then the kernel will
return ENOSPC and ids_len will indicate the number of program IDs that were
successfully copied.

Using prctl(2)
A process can enable or disable all currently open event groups using the prctl(2)
PR_TASK_PERF_EVENTS_ENABLE and PR_TASK_PERF_EVENTS_DIS-
ABLE operations. This applies only to events created locally by the calling process.
This does not apply to events created by other processes attached to the calling process
or inherited events from a parent process. Only group leaders are enabled and disabled,
not any other members of the groups.

perf_event related configuration files
Files in /proc/sys/kernel/

/proc/sys/kernel/perf_event_paranoid
The perf_event_paranoid file can be set to restrict access to the perfor-
mance counters.

2 allow only user-space measurements (default since Linux 4.6).
1 allow both kernel and user measurements (default before Linux 4.6).
0 allow access to CPU-specific data but not raw tracepoint samples.
-1 no restrictions.

The existence of the perf_event_paranoid file is the official method for de-
termining if a kernel supports perf_event_open().

Linux man-pages 6.16 2025-09-21 641

perf_event_open(2) System Calls Manual perf_event_open(2)

/proc/sys/kernel/perf_event_max_sample_rate
This sets the maximum sample rate. Setting this too high can allow users to
sample at a rate that impacts overall machine performance and potentially
lock up the machine. The default value is 100000 (samples per second).

/proc/sys/kernel/perf_event_max_stack
This file sets the maximum depth of stack frame entries reported when gen-
erating a call trace.

/proc/sys/kernel/perf_event_mlock_kb
Maximum number of pages an unprivileged user can mlock(2). The default
is 516 (kB).

Files in /sys/bus/event_source/devices/

Since Linux 2.6.34, the kernel supports having multiple PMUs available for moni-
toring. Information on how to program these PMUs can be found under
/sys/bus/event_source/devices/ . Each subdirectory corresponds to a different
PMU.

/sys/bus/event_source/devices/*/type (since Linux 2.6.38)
This contains an integer that can be used in the type field of perf_event_attr
to indicate that you wish to use this PMU.

/sys/bus/event_source/devices/cpu/rdpmc (since Linux 3.4)
If this file is 1, then direct user-space access to the performance counter reg-
isters is allowed via the rdpmc instruction. This can be disabled by echoing
0 to the file.

As of Linux 4.0 the behavior has changed, so that 1 now means only allow
access to processes with active perf events, with 2 indicating the old allow-
anyone-access behavior.

/sys/bus/event_source/devices/*/format/ (since Linux 3.4)
This subdirectory contains information on the architecture-specific subfields
available for programming the various config fields in the perf_event_attr
struct.

The content of each file is the name of the config field, followed by a colon,
followed by a series of integer bit ranges separated by commas. For exam-
ple, the file event may contain the value config1:1,6-10,44 which indicates
that event is an attribute that occupies bits 1,6–10, and 44 of
perf_event_attr::config1.

/sys/bus/event_source/devices/*/events/ (since Linux 3.4)
This subdirectory contains files with predefined events. The contents are
strings describing the event settings expressed in terms of the fields found in
the previously mentioned ./format/ directory. These are not necessarily
complete lists of all events supported by a PMU, but usually a subset of
events deemed useful or interesting.

The content of each file is a list of attribute names separated by commas.
Each entry has an optional value (either hex or decimal). If no value is
specified, then it is assumed to be a single-bit field with a value of 1. An

Linux man-pages 6.16 2025-09-21 642

perf_event_open(2) System Calls Manual perf_event_open(2)

example entry may look like this: event=0x2,inv,ldlat=3.

/sys/bus/event_source/devices/*/uevent
This file is the standard kernel device interface for injecting hotplug events.

/sys/bus/event_source/devices/*/cpumask (since Linux 3.7)
The cpumask file contains a comma-separated list of integers that indicate a
representative CPU number for each socket (package) on the motherboard.
This is needed when setting up uncore or northbridge events, as those
PMUs present socket-wide events.

RETURN VALUE
On success, perf_event_open() returns the new file descriptor. On error, -1 is returned
and errno is set to indicate the error.

ERRORS
The errors returned by perf_event_open() can be inconsistent, and may vary across
processor architectures and performance monitoring units.

E2BIG
Returned if the perf_event_attr size value is too small (smaller than
PERF_ATTR_SIZE_VER0), too big (larger than the page size), or larger than
the kernel supports and the extra bytes are not zero. When E2BIG is returned,
the perf_event_attr size field is overwritten by the kernel to be the size of the
structure it was expecting.

EACCES
Returned when the requested event requires CAP_PERFMON (since Linux 5.8)
or CAP_SYS_ADMIN permissions (or a more permissive perf_event paranoid
setting). Some common cases where an unprivileged process may encounter this
error: attaching to a process owned by a different user; monitoring all processes
on a given CPU (i.e., specifying the pid argument as -1); and not setting
exclude_kernel when the paranoid setting requires it.

EBADF
Returned if the group_fd file descriptor is not valid, or, if
PERF_FLAG_PID_CGROUP is set, the cgroup file descriptor in pid is not
valid.

EBUSY (since Linux 4.1)
Returned if another event already has exclusive access to the PMU.

EFAULT
Returned if the attr pointer points at an invalid memory address.

EINTR
Returned when trying to mix perf and ftrace handling for a uprobe.

EINVAL
Returned if the specified event is invalid. There are many possible reasons for
this. A not-exhaustive list: sample_freq is higher than the maximum setting; the
cpu to monitor does not exist; read_format is out of range; sample_type is out of
range; the flags value is out of range; exclusive or pinned set and the event is not
a group leader; the event config values are out of range or set reserved bits; the

Linux man-pages 6.16 2025-09-21 643

perf_event_open(2) System Calls Manual perf_event_open(2)

generic event selected is not supported; or there is not enough room to add the
selected event.

EMFILE
Each opened event uses one file descriptor. If a large number of events are
opened, the per-process limit on the number of open file descriptors will be
reached, and no more events can be created.

ENODEV
Returned when the event involves a feature not supported by the current CPU.

ENOENT
Returned if the type setting is not valid. This error is also returned for some un-
supported generic events.

ENOSPC
Prior to Linux 3.3, if there was not enough room for the event, ENOSPC was re-
turned. In Linux 3.3, this was changed to EINVAL. ENOSPC is still returned
if you try to add more breakpoint events than supported by the hardware.

ENOSYS
Returned if PERF_SAMPLE_STACK_USER is set in sample_type and it is
not supported by hardware.

EOPNOTSUPP
Returned if an event requiring a specific hardware feature is requested but there
is no hardware support. This includes requesting low-skid events if not sup-
ported, branch tracing if it is not available, sampling if no PMU interrupt is avail-
able, and branch stacks for software events.

EOVERFLOW (since Linux 4.8)
Returned if PERF_SAMPLE_CALLCHAIN is requested and sam-
ple_max_stack is larger than the maximum specified in /proc/sys/ker-
nel/perf_event_max_stack.

EPERM
Returned on many (but not all) architectures when an unsupported exclude_hv,
exclude_idle, exclude_user, or exclude_kernel setting is specified.

It can also happen, as with EACCES, when the requested event requires
CAP_PERFMON (since Linux 5.8) or CAP_SYS_ADMIN permissions (or a
more permissive perf_event paranoid setting). This includes setting a breakpoint
on a kernel address, and (since Linux 3.13) setting a kernel function-trace trace-
point.

ESRCH
Returned if attempting to attach to a process that does not exist.

STANDARDS
Linux.

HISTORY
perf_event_open() was introduced in Linux 2.6.31 but was called
perf_counter_open(). It was renamed in Linux 2.6.32.

Linux man-pages 6.16 2025-09-21 644

perf_event_open(2) System Calls Manual perf_event_open(2)

NOTES
The official way of knowing if perf_event_open() support is enabled is checking for the
existence of the file /proc/sys/kernel/perf_event_paranoid .

CAP_PERFMON capability (since Linux 5.8) provides secure approach to perfor-
mance monitoring and observability operations in a system according to the principal of
least privilege (POSIX IEEE 1003.1e). Accessing system performance monitoring and
observability operations using CAP_PERFMON rather than the much more powerful
CAP_SYS_ADMIN excludes chances to misuse credentials and makes operations more
secure. CAP_SYS_ADMIN usage for secure system performance monitoring and ob-
servability is discouraged in favor of the CAP_PERFMON capability.

BUGS
The F_SETOWN_EX option to fcntl(2) is needed to properly get overflow signals in
threads. This was introduced in Linux 2.6.32.

Prior to Linux 2.6.33 (at least for x86), the kernel did not check if events could be
scheduled together until read time. The same happens on all known kernels if the NMI
watchdog is enabled. This means to see if a given set of events works you have to
perf_event_open(), start, then read before you know for sure you can get valid measure-
ments.

Prior to Linux 2.6.34, event constraints were not enforced by the kernel. In that case,
some events would silently return "0" if the kernel scheduled them in an improper
counter slot.

Prior to Linux 2.6.34, there was a bug when multiplexing where the wrong results could
be returned.

Kernels from Linux 2.6.35 to Linux 2.6.39 can quickly crash the kernel if "inherit" is
enabled and many threads are started.

Prior to Linux 2.6.35, PERF_FORMAT_GROUP did not work with attached
processes.

There is a bug in the kernel code between Linux 2.6.36 and Linux 3.0 that ignores the
"watermark" field and acts as if a wakeup_event was chosen if the union has a nonzero
value in it.

From Linux 2.6.31 to Linux 3.4, the PERF_IOC_FLAG_GROUP ioctl argument was
broken and would repeatedly operate on the event specified rather than iterating across
all sibling events in a group.

From Linux 3.4 to Linux 3.11, the mmap cap_usr_rdpmc and cap_usr_time bits
mapped to the same location. Code should migrate to the new cap_user_rdpmc and
cap_user_time fields instead.

Always double-check your results! Various generalized events have had wrong values.
For example, retired branches measured the wrong thing on AMD machines until Linux
2.6.35.

EXAMPLES
The following is a short example that measures the total instruction count of a call to
printf(3).

Linux man-pages 6.16 2025-09-21 645

perf_event_open(2) System Calls Manual perf_event_open(2)

#include <err.h>
#include <linux/perf_event.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,

int cpu, int group_fd, unsigned long flags)
{

int ret;

ret = syscall(SYS_perf_event_open, hw_event, pid, cpu,
group_fd, flags);

return ret;
}

int
main(void)
{

int fd;
long long count;
struct perf_event_attr pe;

memset(&pe, 0, sizeof(pe));
pe.type = PERF_TYPE_HARDWARE;
pe.size = sizeof(pe);
pe.config = PERF_COUNT_HW_INSTRUCTIONS;
pe.disabled = 1;
pe.exclude_kernel = 1;
pe.exclude_hv = 1;

fd = perf_event_open(&pe, 0, -1, -1, 0);
if (fd == -1)

err(EXIT_FAILURE, "Error opening leader %llx\n", pe.config);

if (ioctl(fd, PERF_EVENT_IOC_RESET, 0) == -1)
err(EXIT_FAILURE, "PERF_EVENT_IOC_RESET");

if (ioctl(fd, PERF_EVENT_IOC_ENABLE, 0) == -1)
err(EXIT_FAILURE, "PERF_EVENT_IOC_ENABLE");

printf("Measuring instruction count for this printf\n");

Linux man-pages 6.16 2025-09-21 646

perf_event_open(2) System Calls Manual perf_event_open(2)

if (ioctl(fd, PERF_EVENT_IOC_DISABLE, 0) == -1)
err(EXIT_FAILURE, "PERF_EVENT_IOC_DISABLE");

if (read(fd, &count, sizeof(count)) != sizeof(count))
err(EXIT_FAILURE, "read");

printf("Used %lld instructions\n", count);

if (close(fd) == -1)
err(EXIT_FAILURE, "close");

}

SEE ALSO
perf (1), fcntl(2), mmap(2), open(2), prctl(2), read(2)

Documentation/admin-guide/perf-security.rst in the kernel source tree

Linux man-pages 6.16 2025-09-21 647

perfmonctl(2) System Calls Manual perfmonctl(2)

NAME
perfmonctl - interface to IA-64 performance monitoring unit

SYNOPSIS
#include <syscall.h>
#include <perfmon.h>

long perfmonctl(int narg;
int fd , int cmd , void arg[narg], int narg);

Note: There is no glibc wrapper for this system call; see HISTORY.

DESCRIPTION
The IA-64-specific perfmonctl() system call provides an interface to the PMU (perfor-
mance monitoring unit). The PMU consists of PMD (performance monitoring data) reg-
isters and PMC (performance monitoring control) registers, which gather hardware sta-
tistics.

perfmonctl() applies the operation cmd to the input arguments specified by arg. The
number of arguments is defined by narg. The fd argument specifies the perfmon con-
text to operate on.

Supported values for cmd are:

PFM_CREATE_CONTEXT
perfmonctl(int fd , PFM_CREATE_CONTEXT, pfarg_context_t *ctxt, 1);
Set up a context.

The fd parameter is ignored. A new perfmon context is created as specified in
ctxt and its file descriptor is returned in ctxt->ctx_fd .

The file descriptor can be used in subsequent calls to perfmonctl() and can be
used to read event notifications (type pfm_msg_t) using read(2). The file de-
scriptor is pollable using select(2), poll(2), and epoll(7).

The context can be destroyed by calling close(2) on the file descriptor.

PFM_WRITE_PMCS
perfmonctl(int fd , PFM_WRITE_PMCS, pfarg_reg_t *pmcs, n);
Set PMC registers.

PFM_WRITE_PMDS
perfmonctl(int fd , PFM_WRITE_PMDS, pfarg_reg_t *pmds, n);
Set PMD registers.

PFM_READ_PMDS
perfmonctl(int fd , PFM_READ_PMDS, pfarg_reg_t *pmds, n);
Read PMD registers.

PFM_START
perfmonctl(int fd , PFM_START, NULL, 0);
Start monitoring.

PFM_STOP
perfmonctl(int fd , PFM_STOP, NULL, 0);
Stop monitoring.

Linux man-pages 6.16 2025-09-21 648

perfmonctl(2) System Calls Manual perfmonctl(2)

PFM_LOAD_CONTEXT
perfmonctl(int fd , PFM_LOAD_CONTEXT, pfarg_load_t *largs, 1);
Attach the context to a thread.

PFM_UNLOAD_CONTEXT
perfmonctl(int fd , PFM_UNLOAD_CONTEXT, NULL, 0);
Detach the context from a thread.

PFM_RESTART
perfmonctl(int fd , PFM_RESTART, NULL, 0);
Restart monitoring after receiving an overflow notification.

PFM_GET_FEATURES
perfmonctl(int fd , PFM_GET_FEATURES, pfarg_features_t *arg, 1);

PFM_DEBUG
perfmonctl(int fd , PFM_DEBUG, val, 0);
If val is nonzero, enable debugging mode, otherwise disable.

PFM_GET_PMC_RESET_VAL
perfmonctl(int fd , PFM_GET_PMC_RESET_VAL, pfarg_reg_t *req, n);
Reset PMC registers to default values.

RETURN VALUE
perfmonctl() returns zero when the operation is successful. On error, -1 is returned and
errno is set to indicate the error.

STANDARDS
Linux on IA-64.

HISTORY
Added in Linux 2.4; removed in Linux 5.10.

This system call was broken for many years, and ultimately removed in Linux 5.10.

glibc does not provide a wrapper for this system call; on kernels where it exists, call it
using syscall(2).

SEE ALSO
gprof (1)

The perfmon2 interface specification

Linux man-pages 6.16 2025-09-21 649

personality(2) System Calls Manual personality(2)

NAME
personality - set the process execution domain

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/personality.h>

int personality(unsigned long persona);

DESCRIPTION
Linux supports different execution domains, or personalities, for each process. Among
other things, execution domains tell Linux how to map signal numbers into signal ac-
tions. The execution domain system allows Linux to provide limited support for bina-
ries compiled under other UNIX-like operating systems.

If persona is not 0xffffffff, then personality() sets the caller’s execution domain to the
value specified by persona. Specifying persona as 0xffffffff provides a way of retriev-
ing the current persona without changing it.

A list of the available execution domains can be found in <sys/personality.h>. The exe-
cution domain is a 32-bit value in which the top three bytes are set aside for flags that
cause the kernel to modify the behavior of certain system calls so as to emulate histori-
cal or architectural quirks. The least significant byte is a value defining the personality
the kernel should assume. The flag values are as follows:

ADDR_COMPAT_LAYOUT (since Linux 2.6.9)
With this flag set, provide legacy virtual address space layout.

ADDR_NO_RANDOMIZE (since Linux 2.6.12)
With this flag set, disable address-space-layout randomization.

ADDR_LIMIT_32BIT (since Linux 2.2)
Limit the address space to 32 bits.

ADDR_LIMIT_3GB (since Linux 2.4.0)
With this flag set, use 0xc0000000 as the offset at which to search a virtual mem-
ory chunk on mmap(2); otherwise use 0xffffe000. Applies to 32-bit x86
processes only.

FDPIC_FUNCPTRS (since Linux 2.6.11)
User-space function pointers to signal handlers point to descriptors. Applies
only to ARM if BINFMT_ELF_FDPIC and SuperH.

MMAP_PAGE_ZERO (since Linux 2.4.0)
Map page 0 as read-only (to support binaries that depend on this SVr4 behavior).

READ_IMPLIES_EXEC (since Linux 2.6.8)
With this flag set, PROT_READ implies PROT_EXEC for mmap(2).

SHORT_INODE (since Linux 2.4.0)
No effect.

Linux man-pages 6.16 2025-09-21 650

personality(2) System Calls Manual personality(2)

STICKY_TIMEOUTS (since Linux 1.2.0)
With this flag set, select(2), pselect(2), and ppoll(2) do not modify the returned
timeout argument when interrupted by a signal handler.

UNAME26 (since Linux 3.1)
Have uname(2) report a 2.6.(40+x) version number rather than a MAJOR.x ver-
sion number. Added as a stopgap measure to support broken applications that
could not handle the kernel version-numbering switch from Linux 2.6.x to Linux
3.x.

WHOLE_SECONDS (since Linux 1.2.0)
No effect.

The available execution domains are:

PER_BSD (since Linux 1.2.0)
BSD. (No effects.)

PER_HPUX (since Linux 2.4)
Support for 32-bit HP/UX. This support was never complete, and was dropped
so that since Linux 4.0, this value has no effect.

PER_IRIX32 (since Linux 2.2)
IRIX 5 32-bit. Never fully functional; support dropped in Linux 2.6.27. Implies
STICKY_TIMEOUTS.

PER_IRIX64 (since Linux 2.2)
IRIX 6 64-bit. Implies STICKY_TIMEOUTS; otherwise no effect.

PER_IRIXN32 (since Linux 2.2)
IRIX 6 new 32-bit. Implies STICKY_TIMEOUTS; otherwise no effect.

PER_ISCR4 (since Linux 1.2.0)
Implies STICKY_TIMEOUTS; otherwise no effect.

PER_LINUX (since Linux 1.2.0)
Linux.

PER_LINUX32 (since Linux 2.2)
uname(2) returns the name of the 32-bit architecture in the machine field ("i686"
instead of "x86_64", &c.).

Under ia64 (Itanium), processes with this personality don’t have the O_LARGE-
FILE open(2) flag forced.

Under 64-bit ARM, setting this personality is forbidden if execve(2)ing a 32-bit
process would also be forbidden (cf. the allow_mismatched_32bit_el0 kernel pa-
rameter and Documentation/arm64/asymmetric-32bit.rst).

PER_LINUX32_3GB (since Linux 2.4)
Same as PER_LINUX32, but implies ADDR_LIMIT_3GB.

PER_LINUX_32BIT (since Linux 2.0)
Same as PER_LINUX, but implies ADDR_LIMIT_32BIT.

Linux man-pages 6.16 2025-09-21 651

personality(2) System Calls Manual personality(2)

PER_LINUX_FDPIC (since Linux 2.6.11)
Same as PER_LINUX, but implies FDPIC_FUNCPTRS.

PER_OSF4 (since Linux 2.4)
OSF/1 v4. No effect since Linux 6.1, which removed a.out binary support. Be-
fore, on alpha, would clear top 32 bits of iov_len in the user’s buffer for compati-
bility with old versions of OSF/1 where iov_len was defined as. int.

PER_OSR5 (since Linux 2.4)
SCO OpenServer 5. Implies STICKY_TIMEOUTS and WHOLE_SEC-
ONDS; otherwise no effect.

PER_RISCOS (since Linux 2.3.7; macro since Linux 2.3.13)
Acorn RISC OS/Arthur (MIPS). No effect. Up to Linux v4.0, would set the em-
ulation altroot to /usr/gnemul/riscos (cf. PER_SUNOS, below). Before then, up
to Linux 2.6.3, just Arthur emulation.

PER_SCOSVR3 (since Linux 1.2.0)
SCO UNIX System V Release 3. Same as PER_OSR5, but also implies
SHORT_INODE.

PER_SOLARIS (since Linux 2.4)
Solaris. Implies STICKY_TIMEOUTS; otherwise no effect.

PER_SUNOS (since Linux 2.4.0)
Sun OS. Same as PER_BSD, but implies STICKY_TIMEOUTS. Prior to
Linux 2.6.26, diverted library and dynamic linker searches to /usr/gnemul.
Buggy, largely unmaintained, and almost entirely unused.

PER_SVR3 (since Linux 1.2.0)
AT&T UNIX System V Release 3. Implies STICKY_TIMEOUTS and
SHORT_INODE; otherwise no effect.

PER_SVR4 (since Linux 1.2.0)
AT&T UNIX System V Release 4. Implies STICKY_TIMEOUTS and
MMAP_PAGE_ZERO; otherwise no effect.

PER_UW7 (since Linux 2.4)
UnixWare 7. Implies STICKY_TIMEOUTS and MMAP_PAGE_ZERO; oth-
erwise no effect.

PER_WYSEV386 (since Linux 1.2.0)
WYSE UNIX System V/386. Implies STICKY_TIMEOUTS and
SHORT_INODE; otherwise no effect.

PER_XENIX (since Linux 1.2.0)
XENIX. Implies STICKY_TIMEOUTS and SHORT_INODE; otherwise no
effect.

RETURN VALUE
On success, the previous persona is returned. On error, -1 is returned, and errno is set
to indicate the error.

Linux man-pages 6.16 2025-09-21 652

personality(2) System Calls Manual personality(2)

ERRORS
EINVAL

The kernel was unable to change the personality.

STANDARDS
Linux.

HISTORY
Linux 1.1.20, glibc 2.3.

SEE ALSO
setarch(8)

Linux man-pages 6.16 2025-09-21 653

pidfd_getfd(2) System Calls Manual pidfd_getfd(2)

NAME
pidfd_getfd - obtain a duplicate of another process’s file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pidfd_getfd, int pidfd , int targetfd ,
unsigned int flags);

Note: glibc provides no wrapper for pidfd_getfd(), necessitating the use of syscall(2).

DESCRIPTION
The pidfd_getfd() system call allocates a new file descriptor in the calling process. This
new file descriptor is a duplicate of an existing file descriptor, targetfd , in the process re-
ferred to by the PID file descriptor pidfd .

The duplicate file descriptor refers to the same open file description (see open(2)) as the
original file descriptor in the process referred to by pidfd . The two file descriptors thus
share file status flags and file offset. Furthermore, operations on the underlying file ob-
ject (for example, assigning an address to a socket object using bind(2)) can equally be
performed via the duplicate file descriptor.

The close-on-exec flag (FD_CLOEXEC; see fcntl(2)) is set on the file descriptor re-
turned by pidfd_getfd().

The flags argument is reserved for future use. Currently, it must be specified as 0.

Permission to duplicate another process’s file descriptor is governed by a ptrace access
mode PTRACE_MODE_ATTACH_REALCREDS check (see ptrace(2)).

RETURN VALUE
On success, pidfd_getfd() returns a file descriptor (a nonnegative integer). On error, -1
is returned and errno is set to indicate the error.

ERRORS
EBADF

pidfd is not a valid PID file descriptor.

EBADF
targetfd is not an open file descriptor in the process referred to by pidfd .

EINVAL
flags is not 0.

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the description of RLIMIT_NOFILE in getrlimit(2)).

ENFILE
The system-wide limit on the total number of open files has been reached.

Linux man-pages 6.16 2025-08-29 654

pidfd_getfd(2) System Calls Manual pidfd_getfd(2)

EPERM
The calling process did not have PTRACE_MODE_ATTACH_REALCREDS
permissions (see ptrace(2)) over the process referred to by pidfd .

ESRCH
The process referred to by pidfd does not exist (i.e., it has terminated and been
waited on).

STANDARDS
Linux.

HISTORY
Linux 5.6.

NOTES
For a description of PID file descriptors, see pidfd_open(2).

The effect of pidfd_getfd() is similar to the use of SCM_RIGHTS messages described
in unix(7), but differs in the following respects:

• In order to pass a file descriptor using an SCM_RIGHTS message, the two
processes must first establish a UNIX domain socket connection.

• The use of SCM_RIGHTS requires cooperation on the part of the process whose
file descriptor is being copied. By contrast, no such cooperation is necessary when
using pidfd_getfd().

• The ability to use pidfd_getfd() is restricted by a PTRACE_MODE_AT-
TACH_REALCREDS ptrace access mode check.

SEE ALSO
clone3(2), dup(2), kcmp(2), pidfd_open(2)

Linux man-pages 6.16 2025-08-29 655

pidfd_open(2) System Calls Manual pidfd_open(2)

NAME
pidfd_open - obtain a file descriptor that refers to a task

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pidfd_open, pid_t pid , unsigned int flags);

Note: glibc provides no wrapper for pidfd_open(), necessitating the use of syscall(2).

DESCRIPTION
The pidfd_open() system call creates a file descriptor that refers to the task referenced
by pid . The file descriptor is returned as the function result; the close-on-exec flag is set
on the file descriptor.

The flags argument either has the value 0, or contains the following flags:

PIDFD_NONBLOCK (since Linux 5.10)
Return a nonblocking file descriptor. If the task referred to by the file descriptor
has not yet terminated, then an attempt to wait on the file descriptor using
waitid(2) will immediately return the error EAGAIN rather than blocking.

PIDFD_THREAD (since Linux 6.9)
Create a file descriptor that refers to a specific thread, rather than a process
(thread-group leader). If this flag is not set, pid must refer to a process.

RETURN VALUE
On success, pidfd_open() returns a file descriptor (a nonnegative integer). On error, -1
is returned and errno is set to indicate the error.

ERRORS
EINVAL

flags is not valid.

EINVAL
pid is not valid.

EMFILE
The per-process limit on the number of open file descriptors has been reached
(see the description of RLIMIT_NOFILE in getrlimit(2)).

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
The anonymous inode filesystem is not available in this kernel.

ENOMEM
Insufficient kernel memory was available.

ESRCH
The process specified by pid does not exist.

Linux man-pages 6.16 2025-10-29 656

pidfd_open(2) System Calls Manual pidfd_open(2)

STANDARDS
Linux.

HISTORY
Linux 5.3.

NOTES
The following code sequence can be used to obtain a file descriptor for the child of
fork(2):

pid = fork();
if (pid > 0) { /* If parent */

pidfd = pidfd_open(pid, 0);
...

}

Even if the child has already terminated by the time of the pidfd_open() call, its PID
will not have been recycled and the returned file descriptor will refer to the resulting
zombie process. Note, however, that this is guaranteed only if the following conditions
hold true:

• the disposition of SIGCHLD has not been explicitly set to SIG_IGN (see sigac-
tion(2));

• the SA_NOCLDWAIT flag was not specified while establishing a handler for
SIGCHLD or while setting the disposition of that signal to SIG_DFL (see sigac-
tion(2)); and

• the zombie process was not reaped elsewhere in the program (e.g., either by an asyn-
chronously executed signal handler or by wait(2) or similar in another thread).

If any of these conditions does not hold, then the child process (along with a PID file de-
scriptor that refers to it) should instead be created using clone(2) with the
CLONE_PIDFD flag.

Use cases for PID file descriptors
A PID file descriptor returned by pidfd_open() (or by clone(2) with the CLONE_PID
flag) can be used for the following purposes:

• The pidfd_send_signal(2) system call can be used to send a signal to the process re-
ferred to by a PID file descriptor.

• A PID file descriptor can be monitored using poll(2), select(2), and epoll(7).

When the task that it refers to terminates and becomes a zombie, these interfaces in-
dicate the file descriptor as readable (EPOLLIN). When the task is reaped, these in-
terfaces produce a hangup event (EPOLLHUP).

Note, however, that in the current implementation, nothing can be read from the file
descriptor (read(2) on the file descriptor fails with the error EINVAL). The polling
behavior depends on whether PIDFD_THREAD flag was used when obtaining the
file descriptor:

Linux man-pages 6.16 2025-10-29 657

pidfd_open(2) System Calls Manual pidfd_open(2)

• With PIDFD_THREAD, the file descriptor becomes readable when the task ex-
its and becomes a zombie, even if the thread-group is not empty.

• Without PIDFD_THREAD, the file descriptor becomes readable only when the
last thread in the thread group exits.

• If the PID file descriptor refers to a child of the calling process, then it can be waited
on using waitid(2).

• The pidfd_getfd(2) system call can be used to obtain a duplicate of a file descriptor
of another process referred to by a PID file descriptor.

• A PID file descriptor can be used as the argument of setns(2) in order to move into
one or more of the same namespaces as the process referred to by the file descriptor.

• A PID file descriptor can be used as the argument of process_madvise(2) in order to
provide advice on the memory usage patterns of the process referred to by the file
descriptor.

The pidfd_open() system call is the preferred way of obtaining a PID file descriptor for
an already existing process. The alternative is to obtain a file descriptor by opening a
/proc/ pid directory. However, the latter technique is possible only if the proc(5) filesys-
tem is mounted; furthermore, the file descriptor obtained in this way is not pollable and
can’t be waited on with waitid(2).

EXAMPLES
The program below opens a PID file descriptor for the process whose PID is specified as
its command-line argument. It then uses poll(2) to monitor the file descriptor for
process exit, as indicated by an EPOLLIN event.

Program source

#define _GNU_SOURCE
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

static int
pidfd_open(pid_t pid, unsigned int flags)
{

return syscall(SYS_pidfd_open, pid, flags);
}

int
main(int argc, char *argv[])
{

int pidfd, ready;
struct pollfd pollfd;

Linux man-pages 6.16 2025-10-29 658

pidfd_open(2) System Calls Manual pidfd_open(2)

if (argc != 2) {
fprintf(stderr, "Usage: %s <pid>\n", argv[0]);
exit(EXIT_SUCCESS);

}

pidfd = pidfd_open(atoi(argv[1]), 0);
if (pidfd == -1) {

perror("pidfd_open");
exit(EXIT_FAILURE);

}

pollfd.fd = pidfd;
pollfd.events = POLLIN;

ready = poll(&pollfd, 1, -1);
if (ready == -1) {

perror("poll");
exit(EXIT_FAILURE);

}

printf("Events (%#x): POLLIN is %sset\n", pollfd.revents,
(pollfd.revents & POLLIN) ? "" : "not ");

close(pidfd);
exit(EXIT_SUCCESS);

}

SEE ALSO
clone(2), kill(2), pidfd_getfd(2), pidfd_send_signal(2), poll(2), process_madvise(2), se-
lect(2), setns(2), waitid(2), epoll(7)

Linux man-pages 6.16 2025-10-29 659

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

NAME
pidfd_send_signal - send a signal to a process specified by a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/signal.h> /* Definition of SIG* constants */
#include <signal.h> /* Definition of SI_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pidfd_send_signal, int pidfd , int sig,
siginfo_t *_Nullable info, unsigned int flags);

Note: glibc provides no wrapper for pidfd_send_signal(), necessitating the use of
syscall(2).

DESCRIPTION
The pidfd_send_signal() system call sends the signal sig to the target process referred
to by pidfd , a PID file descriptor that refers to a process.

If the info argument points to a siginfo_t buffer, that buffer should be populated as de-
scribed in rt_sigqueueinfo(2).

If the info argument is a null pointer, this is equivalent to specifying a pointer to a sig-
info_t buffer whose fields match the values that are implicitly supplied when a signal is
sent using kill(2):

• si_signo is set to the signal number;
• si_errno is set to 0;
• si_code is set to SI_USER;
• si_pid is set to the caller’s PID; and
• si_uid is set to the caller’s real user ID.

The calling process must either be in the same PID namespace as the process referred to
by pidfd , or be in an ancestor of that namespace.

The flags argument allows to modify the scope of the signal. By default, the scope of
the signal will be inferred from the pidfd argument. For example, if pidfd refers to a
specific thread —i.e., the pidfd was created through pidfd_open(2) using the
PIDFD_THREAD flag or through clone3(2) using the CLONE_PIDFD flag together
with the CLONE_THREAD flag— then passing pidfd to pidfd_send_signal(2) and
leaving the flags argument as 0 will cause the signal to be sent to the specific thread ref-
erenced by the pidfd .

PIDFD_SIGNAL_THREAD (since Linux 6.9)
Ensure that the signal is sent to the specific thread referenced by pidfd .

PIDFD_SIGNAL_THREAD_GROUP (since Linux 6.9)
If pidfd refers to a thread-group leader, ensure that the signal is sent to the
thread-group, even if pidfd was created to refer to a specific thread.

Linux man-pages 6.16 2025-10-29 660

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

PIDFD_SIGNAL_PROCESS_GROUP (since Linux 6.9)
If pidfd refers to a process-group leader, ensure that the signal is sent to the
process-group, even if pidfd was created to refer to a specific thread or to a
thread-group leader.

RETURN VALUE
On success, pidfd_send_signal() returns 0. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
EBADF

pidfd is not a valid PID file descriptor.

EINVAL
sig is not a valid signal.

EINVAL
The calling process is not in a PID namespace from which it can send a signal to
the target process.

EINVAL
flags is not valid.

EPERM
The calling process does not have permission to send the signal to the target
process.

EPERM
pidfd doesn’t refer to the calling process, and info.si_code is invalid (see
rt_sigqueueinfo(2)).

ESRCH
The target process does not exist (i.e., it has terminated and been waited on).

STANDARDS
Linux.

HISTORY
Linux 5.1.

NOTES
PID file descriptors

The pidfd argument is a PID file descriptor, a file descriptor that refers to process. Such
a file descriptor can be obtained in any of the following ways:

• by opening a /proc/ pid directory;

• using pidfd_open(2); or

• via the PID file descriptor that is returned by a call to clone(2) or clone3(2) that
specifies the CLONE_PIDFD flag.

The pidfd_send_signal() system call allows the avoidance of race conditions that occur
when using traditional interfaces (such as kill(2)) to signal a process. The problem is
that the traditional interfaces specify the target process via a process ID (PID), with the
result that the sender may accidentally send a signal to the wrong process if the

Linux man-pages 6.16 2025-10-29 661

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

originally intended target process has terminated and its PID has been recycled for an-
other process. By contrast, a PID file descriptor is a stable reference to a specific
process; if that process terminates, pidfd_send_signal() fails with the error ESRCH.

EXAMPLES
#define _GNU_SOURCE
#include <fcntl.h>
#include <limits.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/syscall.h>
#include <unistd.h>

static int
pidfd_send_signal(int pidfd, int sig, siginfo_t *info,

unsigned int flags)
{

return syscall(SYS_pidfd_send_signal, pidfd, sig, info, flags);
}

int
main(int argc, char *argv[])
{

int pidfd, sig;
char path[PATH_MAX];
siginfo_t info;

if (argc != 3) {
fprintf(stderr, "Usage: %s <pid> <signal>\n", argv[0]);
exit(EXIT_FAILURE);

}

sig = atoi(argv[2]);

/* Obtain a PID file descriptor by opening the /proc/PID directory
of the target process. */

snprintf(path, sizeof(path), "/proc/%s", argv[1]);

pidfd = open(path, O_RDONLY);
if (pidfd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/* Populate a 'siginfo_t' structure for use with

Linux man-pages 6.16 2025-10-29 662

pidfd_send_signal(2) System Calls Manual pidfd_send_signal(2)

pidfd_send_signal(). */

memset(&info, 0, sizeof(info));
info.si_code = SI_QUEUE;
info.si_signo = sig;
info.si_errno = 0;
info.si_uid = getuid();
info.si_pid = getpid();
info.si_value.sival_int = 1234;

/* Send the signal. */

if (pidfd_send_signal(pidfd, sig, &info, 0) == -1) {
perror("pidfd_send_signal");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
clone(2), kill(2), pidfd_open(2), rt_sigqueueinfo(2), sigaction(2), pid_namespaces(7),
signal(7)

Linux man-pages 6.16 2025-10-29 663

pipe(2) System Calls Manual pipe(2)

NAME
pipe, pipe2 - create pipe

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int pipe(int pipefd[2]);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of O_* constants */
#include <unistd.h>

int pipe2(int pipefd[2], int flags);

/* On Alpha, IA-64, MIPS, SuperH, and SPARC/SPARC64, pipe() has the
following prototype; see VERSIONS */

#include <unistd.h>

struct fd_pair {
long fd[2];

};
struct fd_pair pipe(void);

DESCRIPTION
pipe() creates a pipe, a unidirectional data channel that can be used for interprocess
communication. The array pipefd is used to return two file descriptors referring to the
ends of the pipe. pipefd[0] refers to the read end of the pipe. pipefd[1] refers to the
write end of the pipe. Data written to the write end of the pipe is buffered by the kernel
until it is read from the read end of the pipe. For further details, see pipe(7).

If flags is 0, then pipe2() is the same as pipe(). The following values can be bitwise
ORed in flags to obtain different behavior:

O_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the two new file descriptors.
See the description of the same flag in open(2) for reasons why this may be use-
ful.

O_DIRECT (since Linux 3.4)
Create a pipe that performs I/O in "packet" mode. Each write(2) to the pipe is
dealt with as a separate packet, and read(2)s from the pipe will read one packet
at a time. Note the following points:

• Writes of greater than PIPE_BUF bytes (see pipe(7)) will be split into multi-
ple packets. The constant PIPE_BUF is defined in <limits.h>.

• If a read(2) specifies a buffer size that is smaller than the next packet, then
the requested number of bytes are read, and the excess bytes in the packet are
discarded. Specifying a buffer size of PIPE_BUF will be sufficient to read
the largest possible packets (see the previous point).

Linux man-pages 6.16 2025-10-29 664

pipe(2) System Calls Manual pipe(2)

• Zero-length packets are not supported. (A read(2) that specifies a buffer size
of zero is a no-op, and returns 0.)

Older kernels that do not support this flag will indicate this via an EINVAL er-
ror.

Since Linux 4.5, it is possible to change the O_DIRECT setting of a pipe file
descriptor using fcntl(2).

O_NONBLOCK
Set the O_NONBLOCK file status flag on the open file descriptions referred to
by the new file descriptors. Using this flag saves extra calls to fcntl(2) to achieve
the same result.

O_NOTIFICATION_PIPE
Since Linux 5.8, general notification mechanism is built on the top of the pipe
where kernel splices notification messages into pipes opened by user space. The
owner of the pipe has to tell the kernel which sources of events to watch and fil-
ters can also be applied to select which subevents should be placed into the pipe.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, errno is set to indicate the error,
and pipefd is left unchanged.

On Linux (and other systems), pipe() does not modify pipefd on failure. A requirement
standardizing this behavior was added in POSIX.1-2008 TC2. The Linux-specific
pipe2() system call likewise does not modify pipefd on failure.

ERRORS
EFAULT

pipefd is not valid.

EINVAL
(pipe2()) Invalid value in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENFILE
The user hard limit on memory that can be allocated for pipes has been reached
and the caller is not privileged; see pipe(7).

ENOPKG
(pipe2()) O_NOTIFICATION_PIPE was passed in flags and support for noti-
fications (CONFIG_WATCH_QUEUE) is not compiled into the kernel.

VERSIONS
The System V ABI on some architectures allows the use of more than one register for
returning multiple values; several architectures (namely, Alpha, IA-64, MIPS, SuperH,
and SPARC/SPARC64) (ab)use this feature in order to implement the pipe() system call
in a functional manner: the call doesn’t take any arguments and returns a pair of file de-
scriptors as the return value on success. The glibc pipe() wrapper function transparently

Linux man-pages 6.16 2025-10-29 665

pipe(2) System Calls Manual pipe(2)

deals with this. See syscall(2) for information regarding registers used for storing sec-
ond file descriptor.

STANDARDS
POSIX.1-2024.

HISTORY
pipe()

POSIX.1-2001.

pipe2()
POSIX.1-2024. Linux 2.6.27, glibc 2.9.

EXAMPLES
The following program creates a pipe, and then fork(2)s to create a child process; the
child inherits a duplicate set of file descriptors that refer to the same pipe. After the
fork(2), each process closes the file descriptors that it doesn’t need for the pipe (see
pipe(7)). The parent then writes the string contained in the program’s command-line ar-
gument to the pipe, and the child reads this string a byte at a time from the pipe and
echoes it on standard output.

Program source
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int pipefd[2];
char buf;
pid_t cpid;

if (argc != 2) {
fprintf(stderr, "Usage: %s <string>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (pipe(pipefd) == -1)
err(EXIT_FAILURE, "pipe");

cpid = fork();
if (cpid == -1)

err(EXIT_FAILURE, "fork");

if (cpid == 0) { /* Child reads from pipe */

Linux man-pages 6.16 2025-10-29 666

pipe(2) System Calls Manual pipe(2)

if (close(pipefd[1]) == -1) /* Close unused write end */
err(EXIT_FAILURE, "close");

while (read(pipefd[0], &buf, 1) > 0) {
if (write(STDOUT_FILENO, &buf, 1) != 1)

err(EXIT_FAILURE, "write");
}

if (write(STDOUT_FILENO, "\n", 1) != 1)
err(EXIT_FAILURE, "write");

if (close(pipefd[0]) == -1)
err(EXIT_FAILURE, "close");

_exit(EXIT_SUCCESS);

} else { /* Parent writes argv[1] to pipe */
if (close(pipefd[0]) == -1) /* Close unused read end */

err(EXIT_FAILURE, "close");
if (write(pipefd[1], argv[1], strlen(argv[1])) != strlen(argv[1]))

err(EXIT_FAILURE, "write");
if (close(pipefd[1]) == -1) /* Reader will see EOF */

err(EXIT_FAILURE, "close");
if (wait(NULL) == -1) /* Wait for child */

err(EXIT_FAILURE, "wait");
exit(EXIT_SUCCESS);

}
}

SEE ALSO
fork(2), read(2), socketpair(2), splice(2), tee(2), vmsplice(2), write(2), popen(3), pipe(7)

Linux man-pages 6.16 2025-10-29 667

pivot_root(2) System Calls Manual pivot_root(2)

NAME
pivot_root - change the root mount

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_pivot_root, const char *new_root, const char *put_old);

Note: glibc provides no wrapper for pivot_root(), necessitating the use of syscall(2).

DESCRIPTION
pivot_root() changes the root mount in the mount namespace of the calling process.
More precisely, it moves the root mount to the directory put_old and makes new_root
the new root mount. The calling process must have the CAP_SYS_ADMIN capability
in the user namespace that owns the caller’s mount namespace.

pivot_root() changes the root directory and the current working directory of each
process or thread in the same mount namespace to new_root if they point to the old root
directory. (See also NOTES.) On the other hand, pivot_root() does not change the
caller’s current working directory (unless it is on the old root directory), and thus it
should be followed by a chdir("/") call.

The following restrictions apply:

• new_root and put_old must be directories.

• new_root and put_old must not be on the same mount as the current root.

• put_old must be at or underneath new_root; that is, adding some nonnegative num-
ber of " /.." suffixes to the pathname pointed to by put_old must yield the same di-
rectory as new_root.

• new_root must be a path to a mount point, but can’t be "/". A path that is not al-
ready a mount point can be converted into one by bind mounting the path onto itself.

• The propagation type of the parent mount of new_root and the parent mount of the
current root directory must not be MS_SHARED; similarly, if put_old is an exist-
ing mount point, its propagation type must not be MS_SHARED. These restrictions
ensure that pivot_root() never propagates any changes to another mount namespace.

• The current root directory must be a mount point.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
pivot_root() may fail with any of the same errors as stat(2). Additionally, it may fail
with the following errors:

EBUSY
new_root or put_old is on the current root mount. (This error covers the patho-
logical case where new_root is "/".)

Linux man-pages 6.16 2025-09-21 668

pivot_root(2) System Calls Manual pivot_root(2)

EINVAL
new_root is not a mount point.

EINVAL
put_old is not at or underneath new_root.

EINVAL
The current root directory is not a mount point (because of an earlier chroot(2)).

EINVAL
The current root is on the rootfs (initial ramfs) mount; see NOTES.

EINVAL
Either the mount point at new_root, or the parent mount of that mount point, has
propagation type MS_SHARED.

EINVAL
put_old is a mount point and has the propagation type MS_SHARED.

ENOTDIR
new_root or put_old is not a directory.

EPERM
The calling process does not have the CAP_SYS_ADMIN capability.

STANDARDS
Linux.

HISTORY
Linux 2.3.41.

NOTES
A command-line interface for this system call is provided by pivot_root(8)

pivot_root() allows the caller to switch to a new root filesystem while at the same time
placing the old root mount at a location under new_root from where it can subsequently
be unmounted. (The fact that it moves all processes that have a root directory or current
working directory on the old root directory to the new root frees the old root directory of
users, allowing the old root mount to be unmounted more easily.)

One use of pivot_root() is during system startup, when the system mounts a temporary
root filesystem (e.g., an initrd(4)), then mounts the real root filesystem, and eventually
turns the latter into the root directory of all relevant processes and threads. A modern
use is to set up a root filesystem during the creation of a container.

The fact that pivot_root() modifies process root and current working directories in the
manner noted in DESCRIPTION is necessary in order to prevent kernel threads from
keeping the old root mount busy with their root and current working directories, even if
they never access the filesystem in any way.

The rootfs (initial ramfs) cannot be pivot_root()ed. The recommended method of
changing the root filesystem in this case is to delete everything in rootfs, overmount
rootfs with the new root, attach stdin/stdout/stderr to the new /dev/console, and exec
the new init(1)Helper programs for this process exist; see switch_root(8)

Linux man-pages 6.16 2025-09-21 669

pivot_root(2) System Calls Manual pivot_root(2)

pivot_root(".", ".")
new_root and put_old may be the same directory. In particular, the following sequence
allows a pivot-root operation without needing to create and remove a temporary direc-
tory:

chdir(new_root);
pivot_root(".", ".");
umount2(".", MNT_DETACH);

This sequence succeeds because the pivot_root() call stacks the old root mount point on
top of the new root mount point at / . At that point, the calling process’s root directory
and current working directory refer to the new root mount point (new_root). During the
subsequent umount() call, resolution of "." starts with new_root and then moves up the
list of mounts stacked at / , with the result that old root mount point is unmounted.

Historical notes
For many years, this manual page carried the following text:

pivot_root() may or may not change the current root and the current working di-
rectory of any processes or threads which use the old root directory. The caller
of pivot_root() must ensure that processes with root or current working direc-
tory at the old root operate correctly in either case. An easy way to ensure this is
to change their root and current working directory to new_root before invoking
pivot_root().

This text, written before the system call implementation was even finalized in the kernel,
was probably intended to warn users at that time that the implementation might change
before final release. However, the behavior stated in DESCRIPTION has remained con-
sistent since this system call was first implemented and will not change now.

EXAMPLES
The program below demonstrates the use of pivot_root() inside a mount namespace that
is created using clone(2). After pivoting to the root directory named in the program’s
first command-line argument, the child created by clone(2) then executes the program
named in the remaining command-line arguments.

We demonstrate the program by creating a directory that will serve as the new root
filesystem and placing a copy of the (statically linked) busybox(1) executable in that di-
rectory.

$ mkdir /tmp/rootfs;
$ ls -id /tmp/rootfs; # Show inode number of new root directory
319459 /tmp/rootfs
$ cp $(which busybox) /tmp/rootfs;
$ PS1='bbsh$ ' sudo ./pivot_root_demo /tmp/rootfs /busybox sh;
bbsh$ PATH=/;
bbsh$ busybox ln busybox ln;
bbsh$ ln busybox echo;
bbsh$ ln busybox ls;
bbsh$ ls;
busybox echo ln ls
bbsh$ ls -id /; # Compare with inode number above

Linux man-pages 6.16 2025-09-21 670

pivot_root(2) System Calls Manual pivot_root(2)

319459 /
bbsh$ echo 'hello world';
hello world

Program source

/* pivot_root_demo.c */

#define _GNU_SOURCE
#include <err.h>
#include <limits.h>
#include <sched.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <sys/mount.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/wait.h>
#include <unistd.h>

static int
pivot_root(const char *new_root, const char *put_old)
{

return syscall(SYS_pivot_root, new_root, put_old);
}

#define STACK_SIZE (1024 * 1024)

static int /* Startup function for cloned child */
child(void *arg)
{

char path[PATH_MAX];
char **args = arg;
char *new_root = args[0];
const char *put_old = "/oldrootfs";

/* Ensure that 'new_root' and its parent mount don't have
shared propagation (which would cause pivot_root() to
return an error), and prevent propagation of mount
events to the initial mount namespace. */

if (mount(NULL, "/", NULL, MS_REC | MS_PRIVATE, NULL) == -1)
err(EXIT_FAILURE, "mount-MS_PRIVATE");

/* Ensure that 'new_root' is a mount point. */

Linux man-pages 6.16 2025-09-21 671

pivot_root(2) System Calls Manual pivot_root(2)

if (mount(new_root, new_root, NULL, MS_BIND, NULL) == -1)
err(EXIT_FAILURE, "mount-MS_BIND");

/* Create directory to which old root will be pivoted. */

snprintf(path, sizeof(path), "%s/%s", new_root, put_old);
if (mkdir(path, 0777) == -1)

err(EXIT_FAILURE, "mkdir");

/* And pivot the root filesystem. */

if (pivot_root(new_root, path) == -1)
err(EXIT_FAILURE, "pivot_root");

/* Switch the current working directory to "/". */

if (chdir("/") == -1)
err(EXIT_FAILURE, "chdir");

/* Unmount old root and remove mount point. */

if (umount2(put_old, MNT_DETACH) == -1)
perror("umount2");

if (rmdir(put_old) == -1)
perror("rmdir");

/* Execute the command specified in argv[1]... */

execv(args[1], &args[1]);
err(EXIT_FAILURE, "execv");

}

int
main(int argc, char *argv[])
{

char *stack;

/* Create a child process in a new mount namespace. */

stack = mmap(NULL, STACK_SIZE, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS | MAP_STACK, -1, 0);

if (stack == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

if (clone(child, stack + STACK_SIZE,
CLONE_NEWNS | SIGCHLD, &argv[1]) == -1)

Linux man-pages 6.16 2025-09-21 672

pivot_root(2) System Calls Manual pivot_root(2)

err(EXIT_FAILURE, "clone");

/* Parent falls through to here; wait for child. */

if (wait(NULL) == -1)
err(EXIT_FAILURE, "wait");

exit(EXIT_SUCCESS);
}

SEE ALSO
chdir(2), chroot(2), mount(2), stat(2), initrd(4), mount_namespaces(7), pivot_root(8),
switch_root(8)

Linux man-pages 6.16 2025-09-21 673

pkey_alloc(2) System Calls Manual pkey_alloc(2)

NAME
pkey_alloc, pkey_free - allocate or free a protection key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

int pkey_alloc(unsigned int flags, unsigned int access_rights);
int pkey_free(int pkey);

DESCRIPTION
pkey_alloc() allocates a protection key (pkey) and allows it to be passed to pkey_mpro-
tect(2).

The pkey_alloc() flags is reserved for future use and currently must always be specified
as 0.

The pkey_alloc() access_rights argument may contain zero or more disable operations:

PKEY_DISABLE_ACCESS
Disable all data access to memory covered by the returned protection key.

PKEY_DISABLE_WRITE
Disable write access to memory covered by the returned protection key.

pkey_free() frees a protection key and makes it available for later allocations. After a
protection key has been freed, it may no longer be used in any protection-key-related op-
erations.

An application should not call pkey_free() on any protection key which has been as-
signed to an address range by pkey_mprotect(2) and which is still in use. The behavior
in this case is undefined and may result in an error.

RETURN VALUE
On success, pkey_alloc() returns a positive protection key value. On success,
pkey_free() returns zero. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

pkey, flags, or access_rights is invalid.

ENOSPC
(pkey_alloc()) All protection keys available for the current process have been al-
located. The number of keys available is architecture-specific and implementa-
tion-specific and may be reduced by kernel-internal use of certain keys. There
are currently 15 keys available to user programs on x86.

This error will also be returned if the processor or operating system does not
support protection keys. Applications should always be prepared to handle this
error, since factors outside of the application’s control can reduce the number of
available pkeys.

Linux man-pages 6.16 2025-05-17 674

pkey_alloc(2) System Calls Manual pkey_alloc(2)

STANDARDS
Linux.

HISTORY
Linux 4.9, glibc 2.27.

NOTES
pkey_alloc() is always safe to call regardless of whether or not the operating system
supports protection keys. It can be used in lieu of any other mechanism for detecting
pkey support and will simply fail with the error ENOSPC if the operating system has no
pkey support.

The kernel guarantees that the contents of the hardware rights register (PKRU) will be
preserved only for allocated protection keys. Any time a key is unallocated (either be-
fore the first call returning that key from pkey_alloc() or after it is freed via
pkey_free()), the kernel may make arbitrary changes to the parts of the rights register af-
fecting access to that key.

EXAMPLES
See pkeys(7).

SEE ALSO
pkey_mprotect(2), pkeys(7)

Linux man-pages 6.16 2025-05-17 675

poll(2) System Calls Manual poll(2)

NAME
poll, ppoll - wait for some event on a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <poll.h>

int poll(struct pollfd * fds, nfds_t nfds, int timeout);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <poll.h>

int ppoll(struct pollfd * fds, nfds_t nfds,
const struct timespec *_Nullable tmo_p,
const sigset_t *_Nullable sigmask);

DESCRIPTION
poll() performs a similar task to select(2): it waits for one of a set of file descriptors to
become ready to perform I/O. The Linux-specific epoll(7) API performs a similar task,
but offers features beyond those found in poll().

The set of file descriptors to be monitored is specified in the fds argument, which is an
array of structures of the following form:

struct pollfd {
int fd; /* file descriptor */
short events; /* requested events */
short revents; /* returned events */

};

The caller should specify the number of items in the fds array in nfds.

The field fd contains a file descriptor for an open file. If this field is negative, then the
corresponding events field is ignored and the revents field returns zero. (This provides
an easy way of ignoring a file descriptor for a single poll() call: simply set the fd field to
its bitwise complement.)

The field events is an input parameter, a bit mask specifying the events the application is
interested in for the file descriptor fd . This field may be specified as zero, in which case
the only events that can be returned in revents are POLLHUP, POLLERR, and POLL-
NVAL (see below).

The field revents is an output parameter, filled by the kernel with the events that actually
occurred. The bits returned in revents can include any of those specified in events, or
one of the values POLLERR, POLLHUP, or POLLNVAL. (These three bits are
meaningless in the events field, and will be set in the revents field whenever the corre-
sponding condition is true.)

If none of the events requested (and no error) has occurred for any of the file descriptors,
then poll() blocks until one of the events occurs.

The timeout argument specifies the number of milliseconds that poll() should block
waiting for a file descriptor to become ready. The call will block until either:

Linux man-pages 6.16 2025-10-29 676

poll(2) System Calls Manual poll(2)

• a file descriptor becomes ready;

• the call is interrupted by a signal handler; or

• the timeout expires.

Being "ready" means that the requested operation will not block; thus, poll()ing regular
files, block devices, and other files with no reasonable polling semantic always returns
instantly as ready to read and write.

Note that the timeout interval will be rounded up to the system clock granularity, and
kernel scheduling delays mean that the blocking interval may overrun by a small
amount. Specifying a negative value in timeout means an infinite timeout. Specifying a
timeout of zero causes poll() to return immediately, even if no file descriptors are ready.

The bits that may be set/returned in events and revents are defined in <poll.h>:

POLLIN
There is data to read.

POLLPRI
There is some exceptional condition on the file descriptor. Possibilities include:

• There is out-of-band data on a TCP socket (see tcp(7)).

• A pseudoterminal master in packet mode has seen a state change on the slave
(see ioctl_tty(2)).

• A cgroup.events file has been modified (see cgroups(7)).

POLLOUT
Writing is now possible, though a write larger than the available space in a
socket or pipe will still block (unless O_NONBLOCK is set).

POLLRDHUP (since Linux 2.6.17)
Stream socket peer closed connection, or shut down writing half of connection.
The _GNU_SOURCE feature test macro must be defined (before including any
header files) in order to obtain this definition.

POLLERR
Error condition (only returned in revents; ignored in events). This bit is also set
for a file descriptor referring to the write end of a pipe when the read end has
been closed.

POLLHUP
Hang up (only returned in revents; ignored in events). Note that when reading
from a channel such as a pipe or a stream socket, this event merely indicates that
the peer closed its end of the channel. Subsequent reads from the channel will
return 0 (end of file) only after all outstanding data in the channel has been con-
sumed.

POLLNVAL
Invalid request: fd not open (only returned in revents; ignored in events).

When compiling with _XOPEN_SOURCE defined, one also has the following, which
convey no further information beyond the bits listed above:

Linux man-pages 6.16 2025-10-29 677

poll(2) System Calls Manual poll(2)

POLLRDNORM
Equivalent to POLLIN.

POLLRDBAND
Priority band data can be read (generally unused on Linux).

POLLWRNORM
Equivalent to POLLOUT.

POLLWRBAND
Priority data may be written.

Linux also knows about, but does not use POLLMSG.

ppoll()
The relationship between poll() and ppoll() is analogous to the relationship between se-
lect(2) and pselect(2): like pselect(2), ppoll() allows an application to safely wait until
either a file descriptor becomes ready or until a signal is caught.

Other than the difference in the precision of the timeout argument, the following ppoll()
call:

ready = ppoll(&fds, nfds, tmo_p, &sigmask);

is nearly equivalent to atomically executing the following calls:

sigset_t origmask;
int timeout;

timeout = (tmo_p == NULL) ? -1 :
(tmo_p->tv_sec * 1000 + tmo_p->tv_nsec / 1000000);

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = poll(&fds, nfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The above code segment is described as nearly equivalent because whereas a negative
timeout value for poll() is interpreted as an infinite timeout, a negative value expressed
in *tmo_p results in an error from ppoll().

See the description of pselect(2) for an explanation of why ppoll() is necessary.

If the sigmask argument is specified as NULL, then no signal mask manipulation is per-
formed (and thus ppoll() differs from poll() only in the precision of the timeout argu-
ment).

The tmo_p argument specifies an upper limit on the amount of time that ppoll() will
block. This argument is a pointer to a timespec(3) structure.

If tmo_p is specified as NULL, then ppoll() can block indefinitely.

RETURN VALUE
On success, poll() returns a nonnegative value which is the number of elements in the
pollfds whose revents fields have been set to a nonzero value (indicating an event or an
error). A return value of zero indicates that the system call timed out before any file de-
scriptors became ready.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-10-29 678

poll(2) System Calls Manual poll(2)

ERRORS
EFAULT

fds points outside the process’s accessible address space. The array given as ar-
gument was not contained in the calling program’s address space.

EINTR
A signal occurred before any requested event; see signal(7).

EINVAL
The nfds value exceeds the RLIMIT_NOFILE value.

EINVAL
(ppoll()) The timeout value expressed in *tmo_p is invalid (negative).

ENOMEM
Unable to allocate memory for kernel data structures.

VERSIONS
On some other UNIX systems, poll() can fail with the error EAGAIN if the system fails
to allocate kernel-internal resources, rather than ENOMEM as Linux does. POSIX per-
mits this behavior. Portable programs may wish to check for EAGAIN and loop, just as
with EINTR.

Some implementations define the nonstandard constant INFTIM with the value -1 for
use as a timeout for poll(). This constant is not provided in glibc.

C library/kernel differences
The Linux ppoll() system call modifies its tmo_p argument. However, the glibc wrapper
function hides this behavior by using a local variable for the timeout argument that is
passed to the system call. Thus, the glibc ppoll() function does not modify its tmo_p ar-
gument.

The raw ppoll() system call has a fifth argument, size_t sigsetsize, which specifies the
size in bytes of the sigmask argument. The glibc ppoll() wrapper function specifies this
argument as a fixed value (equal to sizeof(kernel_sigset_t)). See sigprocmask(2) for a
discussion on the differences between the kernel and the libc notion of the sigset.

STANDARDS
POSIX.1-2024.

HISTORY
poll()

POSIX.1-2001. Linux 2.1.23.

On older kernels that lack this system call, the glibc poll() wrapper function pro-
vides emulation using select(2).

ppoll()
POSIX.1-2024. Linux 2.6.16, glibc 2.4.

NOTES
The operation of poll() and ppoll() is not affected by the O_NONBLOCK flag.

For a discussion of what may happen if a file descriptor being monitored by poll() is
closed in another thread, see select(2).

Linux man-pages 6.16 2025-10-29 679

poll(2) System Calls Manual poll(2)

BUGS
See the discussion of spurious readiness notifications under the BUGS section of se-
lect(2).

EXAMPLES
The program below opens each of the files named in its command-line arguments and
monitors the resulting file descriptors for readiness to read (POLLIN). The program
loops, repeatedly using poll() to monitor the file descriptors, printing the number of
ready file descriptors on return. For each ready file descriptor, the program:

• displays the returned revents field in a human-readable form;

• if the file descriptor is readable, reads some data from it, and displays that data on
standard output; and

• if the file descriptor was not readable, but some other event occurred (presumably
POLLHUP), closes the file descriptor.

Suppose we run the program in one terminal, asking it to open a FIFO:

$ mkfifo myfifo;
$./poll_input myfifo;

In a second terminal window, we then open the FIFO for writing, write some data to it,
and close the FIFO:

$ echo aaaaabbbbbccccc > myfifo;

In the terminal where we are running the program, we would then see:

Opened "myfifo" on fd 3
About to poll()
Ready: 1

fd=3; events: POLLIN POLLHUP
read 10 bytes: aaaaabbbbb

About to poll()
Ready: 1

fd=3; events: POLLIN POLLHUP
read 6 bytes: ccccc

About to poll()
Ready: 1

fd=3; events: POLLHUP
closing fd 3

All file descriptors closed. Bye.

In the above output, we see that poll() returned three times:

• On the first return, the bits returned in the revents field were POLLIN, indicating
that the file descriptor is readable, and POLLHUP, indicating that the other end of
the FIFO has been closed. The program then consumed some of the available input.

• The second return from poll() also indicated POLLIN and POLLHUP; the program
then consumed the last of the available input.

Linux man-pages 6.16 2025-10-29 680

poll(2) System Calls Manual poll(2)

• On the final return, poll() indicated only POLLHUP on the FIFO, at which point the
file descriptor was closed and the program terminated.

Program source

/* poll_input.c

Licensed under GNU General Public License v2 or later.
*/
#include <err.h>
#include <fcntl.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int ready;
char buf[10];
nfds_t num_open_fds, nfds;
ssize_t s;
struct pollfd *pfds;

if (argc < 2) {
fprintf(stderr, "Usage: %s file...\n", argv[0]);
exit(EXIT_FAILURE);

}

num_open_fds = nfds = argc - 1;
pfds = calloc(nfds, sizeof(struct pollfd));
if (pfds == NULL)

err(EXIT_FAILURE, "malloc");

/* Open each file on command line, and add it to 'pfds' array. */

for (nfds_t j = 0; j < nfds; j++) {
pfds[j].fd = open(argv[j + 1], O_RDONLY);
if (pfds[j].fd == -1)

err(EXIT_FAILURE, "open");

printf("Opened \"%s\" on fd %d\n", argv[j + 1], pfds[j].fd);

pfds[j].events = POLLIN;
}

Linux man-pages 6.16 2025-10-29 681

poll(2) System Calls Manual poll(2)

/* Keep calling poll() as long as at least one file descriptor is
open. */

while (num_open_fds > 0) {
printf("About to poll()\n");
ready = poll(pfds, nfds, -1);
if (ready == -1)

err(EXIT_FAILURE, "poll");

printf("Ready: %d\n", ready);

/* Deal with array returned by poll(). */

for (nfds_t j = 0; j < nfds; j++) {
if (pfds[j].revents != 0) {

printf(" fd=%d; events: %s%s%s\n", pfds[j].fd,
(pfds[j].revents & POLLIN) ? "POLLIN " : "",
(pfds[j].revents & POLLHUP) ? "POLLHUP " : "",
(pfds[j].revents & POLLERR) ? "POLLERR " : "");

if (pfds[j].revents & POLLIN) {
s = read(pfds[j].fd, buf, sizeof(buf));
if (s == -1)

err(EXIT_FAILURE, "read");
printf(" read %zd bytes: %.*s\n",

s, (int) s, buf);
} else { /* POLLERR | POLLHUP */

printf(" closing fd %d\n", pfds[j].fd);
if (close(pfds[j].fd) == -1)

err(EXIT_FAILURE, "close");
num_open_fds--;

}
}

}
}

printf("All file descriptors closed. Bye.\n");
exit(EXIT_SUCCESS);

}

SEE ALSO
restart_syscall(2), select(2), select_tut(2), timespec(3), epoll(7), time(7)

Linux man-pages 6.16 2025-10-29 682

posix_fadvise(2) System Calls Manual posix_fadvise(2)

NAME
posix_fadvise - predeclare an access pattern for file data

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int posix_fadvise(int fd , off_t offset, off_t size, int advice);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_fadvise():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
Programs can use posix_fadvise() to announce an intention to access file data in a spe-
cific pattern in the future, thus allowing the kernel to perform appropriate optimizations.

The advice applies to a (not necessarily existent) region starting at offset and extending
for size bytes (or until the end of the file if size is 0) within the file referred to by fd .
The advice is not binding; it merely constitutes an expectation on behalf of the applica-
tion.

Permissible values for advice include:

POSIX_FADV_NORMAL
Indicates that the application has no advice to give about its access pattern for
the specified data. If no advice is given for an open file, this is the default as-
sumption.

POSIX_FADV_SEQUENTIAL
The application expects to access the specified data sequentially (with lower off-
sets read before higher ones).

POSIX_FADV_RANDOM
The specified data will be accessed in random order.

POSIX_FADV_NOREUSE
The specified data will be accessed only once.

Before Linux 2.6.18, POSIX_FADV_NOREUSE had the same semantics as
POSIX_FADV_WILLNEED. This was probably a bug; from Linux 2.6.18 un-
til Linux 6.2 this flag was a no-op. Since Linux 6.3,
POSIX_FADV_NOREUSE signals that the kernel page replacement algorithm
can ignore access to mapped page cache marked by this flag. This is useful, for
example, while streaming large files.

POSIX_FADV_WILLNEED
The specified data will be accessed in the near future.

POSIX_FADV_WILLNEED initiates a nonblocking read of the specified re-
gion into the page cache. The amount of data read may be decreased by the ker-
nel depending on virtual memory load. (A few megabytes will usually be fully
satisfied, and more is rarely useful.)

Linux man-pages 6.16 2025-10-29 683

posix_fadvise(2) System Calls Manual posix_fadvise(2)

POSIX_FADV_DONTNEED
The specified data will not be accessed in the near future.

POSIX_FADV_DONTNEED attempts to free cached pages associated with the
specified region. This is useful, for example, while streaming large files. A pro-
gram may periodically request the kernel to free cached data that has already
been used, so that more useful cached pages are not discarded instead.

Requests to discard partial pages are ignored. It is preferable to preserve needed
data than discard unneeded data. If the application requires that data be consid-
ered for discarding, then offset and size must be page-aligned.

The implementation may attempt to write back dirty pages in the specified re-
gion, but this is not guaranteed. Any unwritten dirty pages will not be freed. If
the application wishes to ensure that dirty pages will be released, it should call
fsync(2) or fdatasync(2) first.

RETURN VALUE
On success, zero is returned. On error, an error number is returned.

ERRORS
EBADF

The fd argument was not a valid file descriptor.

EINVAL
An invalid value was specified for advice.

ESPIPE
The specified file descriptor refers to a pipe or FIFO. (ESPIPE is the error spec-
ified by POSIX, but before Linux 2.6.16, Linux returned EINVAL in this case.)

VERSIONS
Under Linux, POSIX_FADV_NORMAL sets the readahead window to the default size
for the backing device; POSIX_FADV_SEQUENTIAL doubles this size, and
POSIX_FADV_RANDOM disables file readahead entirely.
POSIX_FADV_NOREUSE does not modify the readahead window size. These
changes affect the entire file, not just the specified region (but other open file handles to
the same file are unaffected).

C library/kernel differences
The name of the wrapper function in the C library is posix_fadvise(). The underlying
system call is called fadvise64() (or, on some architectures, fadvise64_64()); the differ-
ence between the two is that the former system call assumes that the type of the size ar-
gument is size_t, while the latter expects loff_t there.

Architecture-specific variants
Some architectures require 64-bit arguments to be aligned in a suitable pair of registers
(see syscall(2) for further detail). On such architectures, the call signature of posix_fad-
vise() shown in the SYNOPSIS would force a register to be wasted as padding between
the fd and offset arguments. Therefore, these architectures define a version of the sys-
tem call that orders the arguments suitably, but is otherwise exactly the same as
posix_fadvise().

For example, since Linux 2.6.14, ARM has the following system call:

Linux man-pages 6.16 2025-10-29 684

posix_fadvise(2) System Calls Manual posix_fadvise(2)

long arm_fadvise64_64(int fd, int advice,
loff_t offset, loff_t size);

These architecture-specific details are generally hidden from applications by the glibc
posix_fadvise() wrapper function, which invokes the appropriate architecture-specific
system call.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

Kernel support first appeared in Linux 2.5.60; the underlying system call is called fad-
vise64(). Library support has been provided since glibc 2.2, via the wrapper function
posix_fadvise().

Since Linux 3.18, support for the underlying system call is optional, depending on the
setting of the CONFIG_ADVISE_SYSCALLS configuration option.

The type of the size argument was changed from size_t to off_t in POSIX.1-2001 TC1.

NOTES
The contents of the kernel buffer cache can be cleared via the /proc/sys/vm/drop_caches
interface described in proc(5).

One can obtain a snapshot of which pages of a file are resident in the buffer cache by
opening a file, mapping it with mmap(2), and then applying mincore(2) to the mapping.

BUGS
Before Linux 2.6.6, if size was specified as 0, then this was interpreted literally as "zero
bytes", rather than as meaning "all bytes through to the end of the file".

SEE ALSO
fincore(1), mincore(2), readahead(2), sync_file_range(2), posix_fallocate(3),
posix_madvise(3)

Linux man-pages 6.16 2025-10-29 685

prctl(2) System Calls Manual prctl(2)

NAME
prctl - operations on a process or thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(int op, ...);

DESCRIPTION
prctl() manipulates various aspects of the behavior of the calling thread or process.

prctl() is called with a first argument describing what to do, and further arguments with
a significance depending on the first one. The first argument can be:

PR_CAP_AMBIENT
PR_CAPBSET_READ
PR_CAPBSET_DROP
PR_SET_CHILD_SUBREAPER
PR_GET_CHILD_SUBREAPER
PR_SET_DUMPABLE
PR_GET_DUMPABLE
PR_SET_ENDIAN
PR_GET_ENDIAN
PR_SET_FP_MODE
PR_GET_FP_MODE
PR_SET_FPEMU
PR_GET_FPEMU
PR_SET_FPEXC
PR_GET_FPEXC
PR_SET_IO_FLUSHER
PR_GET_IO_FLUSHER
PR_SET_KEEPCAPS
PR_GET_KEEPCAPS
PR_MCE_KILL
PR_MCE_KILL_GET
PR_SET_MM
PR_SET_VMA
PR_MPX_ENABLE_MANAGEMENT
PR_MPX_DISABLE_MANAGEMENT
PR_SET_NAME
PR_GET_NAME
PR_SET_NO_NEW_PRIVS
PR_GET_NO_NEW_PRIVS
PR_PAC_RESET_KEYS
PR_SET_PDEATHSIG

Linux man-pages 6.16 2025-06-11 686

prctl(2) System Calls Manual prctl(2)

PR_GET_PDEATHSIG
PR_SET_PTRACER
PR_SET_SECCOMP
PR_GET_SECCOMP
PR_SET_SECUREBITS
PR_GET_SECUREBITS
PR_GET_SPECULATION_CTRL
PR_SET_SPECULATION_CTRL
PR_SVE_SET_VL
PR_SVE_GET_VL
PR_SET_SYSCALL_USER_DISPATCH
PR_SET_TAGGED_ADDR_CTRL
PR_GET_TAGGED_ADDR_CTRL
PR_TASK_PERF_EVENTS_DISABLE
PR_TASK_PERF_EVENTS_ENABLE
PR_SET_THP_DISABLE
PR_GET_THP_DISABLE
PR_GET_TID_ADDRESS
PR_SET_TIMERSLACK
PR_GET_TIMERSLACK
PR_SET_TIMING
PR_GET_TIMING
PR_SET_TSC
PR_GET_TSC
PR_SET_UNALIGN
PR_GET_UNALIGN
PR_GET_AUXV
PR_SET_MDWE
PR_GET_MDWE
PR_RISCV_SET_ICACHE_FLUSH_CTX
PR_FUTEX_HASH

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS
EINVAL

The value of op is not recognized, or not supported on this system.

EINVAL
An unused argument is nonzero.

VERSIONS
IRIX has a prctl() system call (also introduced in Linux 2.1.44 as irix_prctl on the MIPS
architecture), with prototype

ptrdiff_t prctl(int op, int arg2, int arg3);

and operations to get the maximum number of processes per user, get the maximum
number of processors the calling process can use, find out whether a specified process is

Linux man-pages 6.16 2025-06-11 687

prctl(2) System Calls Manual prctl(2)

currently blocked, get or set the maximum stack size, and so on.

STANDARDS
Linux.

HISTORY
Linux 2.1.57, glibc 2.0.6

CAVEATS
The prototype of the libc wrapper uses a variadic argument list. This makes it necessary
to pass the arguments with the right width. When passing numeric constants, such as 0,
use a suffix: 0L.

Careless use of some prctl() operations can confuse the user-space run-time environ-
ment, so these operations should be used with care.

SEE ALSO
signal(2), PR_CAP_AMBIENT(2const), PR_CAPBSET_READ(2const), PR_CAPB-
SET_DROP(2const), PR_SET_CHILD_SUBREAPER(2const), PR_GET_CHILD_SUB-
REAPER(2const), PR_SET_DUMPABLE(2const), PR_GET_DUMPABLE(2const),
PR_SET_ENDIAN(2const), PR_GET_ENDIAN(2const), PR_SET_FP_MODE(2const),
PR_GET_FP_MODE(2const), PR_SET_FPEMU(2const), PR_GET_FPEMU(2const),
PR_SET_FPEXC(2const), PR_GET_FPEXC(2const), PR_SET_IO_FLUSHER(2const),
PR_GET_IO_FLUSHER(2const), PR_SET_KEEPCAPS(2const), PR_GET_KEEP-
CAPS(2const), PR_MCE_KILL(2const), PR_MCE_KILL_GET(2const),
PR_SET_MM(2const), PR_SET_VMA(2const), PR_MPX_ENABLE_MANAGE-
MENT(2const), PR_MPX_DISABLE_MANAGEMENT(2const),
PR_SET_NAME(2const), PR_GET_NAME(2const),
PR_SET_NO_NEW_PRIVS(2const), PR_GET_NO_NEW_PRIVS(2const), PR_PAC_RE-
SET_KEYS(2const), PR_SET_PDEATHSIG(2const), PR_GET_PDEATHSIG(2const),
PR_SET_PTRACER(2const), PR_SET_SECCOMP(2const), PR_GET_SEC-
COMP(2const), PR_SET_SECUREBITS(2const), PR_GET_SECUREBITS(2const),
PR_SET_SPECULATION_CTRL(2const), PR_GET_SPECULATION_CTRL(2const),
PR_SVE_SET_VL(2const), PR_SVE_GET_VL(2const), PR_SET_SYSCALL_USER_DIS-
PATCH(2const), PR_SET_TAGGED_ADDR_CTRL(2const),
PR_GET_TAGGED_ADDR_CTRL(2const), PR_TASK_PERF_EVENTS_DIS-
ABLE(2const), PR_TASK_PERF_EVENTS_ENABLE(2const), PR_SET_THP_DIS-
ABLE(2const), PR_GET_THP_DISABLE(2const), PR_GET_TID_ADDRESS(2const),
PR_SET_TIMERSLACK(2const), PR_GET_TIMERSLACK(2const), PR_SET_TIM-
ING(2const), PR_GET_TIMING(2const), PR_SET_TSC(2const),
PR_GET_TSC(2const), PR_SET_UNALIGN(2const), PR_GET_UNALIGN(2const),
PR_GET_AUXV(2const), PR_SET_MDWE(2const), PR_GET_MDWE(2const),
PR_RISCV_SET_ICACHE_FLUSH_CTX(2const), PR_FUTEX_HASH(2const), core(5)

Linux man-pages 6.16 2025-06-11 688

pread(2) System Calls Manual pread(2)

NAME
pread, pwrite - read from or write to a file descriptor at a given offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t pread(size_t count;
int fd , void buf [count], size_t count,
off_t offset);

ssize_t pwrite(size_t count;
int fd , const void buf [count], size_t count,
off_t offset);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pread(), pwrite():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
pread() reads up to count bytes from file descriptor fd at offset offset (from the start of
the file) into the buffer starting at buf . The file offset is not changed.

pwrite() writes up to count bytes from the buffer starting at buf to the file descriptor fd
at offset offset. The file offset is not changed.

The file referenced by fd must be capable of seeking.

RETURN VALUE
On success, pread() returns the number of bytes read (a return of zero indicates end of
file) and pwrite() returns the number of bytes written.

Note that it is not an error for a successful call to transfer fewer bytes than requested
(see read(2) and write(2)).

On error, -1 is returned and errno is set to indicate the error.

ERRORS
pread() can fail and set errno to any error specified for read(2) or lseek(2). pwrite()
can fail and set errno to any error specified for write(2) or lseek(2).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

Added in Linux 2.1.60; the entries in the i386 system call table were added in Linux
2.1.69. C library support (including emulation using lseek(2) on older kernels without
the system calls) was added in glibc 2.1.

C library/kernel differences
On Linux, the underlying system calls were renamed in Linux 2.6: pread() became
pread64(), and pwrite() became pwrite64(). The system call numbers remained the

Linux man-pages 6.16 2025-10-29 689

pread(2) System Calls Manual pread(2)

same. The glibc pread() and pwrite() wrapper functions transparently deal with the
change.

On some 32-bit architectures, the calling signature for these system calls differ, for the
reasons described in syscall(2).

NOTES
The pread() and pwrite() system calls are especially useful in multithreaded applica-
tions. They allow multiple threads to perform I/O on the same file descriptor without
being affected by changes to the file offset by other threads.

BUGS
POSIX requires that opening a file with the O_APPEND flag should have no effect on
the location at which pwrite() writes data. However, on Linux, if a file is opened with
O_APPEND, pwrite() appends data to the end of the file, regardless of the value of off-
set.

SEE ALSO
lseek(2), read(2), readv(2), write(2)

Linux man-pages 6.16 2025-10-29 690

process_madvise(2) System Calls Manual process_madvise(2)

NAME
process_madvise - give advice about use of memory to a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

ssize_t process_madvise(size_t n;
int pidfd , const struct iovec iovec[n],
size_t n, int advice, unsigned int flags);

DESCRIPTION
The process_madvise() system call is used to give advice or directions to the kernel
about the address ranges of another process or of the calling process. It provides the ad-
vice for the address ranges described by iovec and n. The goal of such advice is to im-
prove system or application performance.

The pidfd argument is a PID file descriptor (see pidfd_open(2)) that specifies the
process to which the advice is to be applied.

The pointer iovec points to an array of iovec structures, described in iovec(3type).

n specifies the number of elements in the array of iovec structures. This value must be
less than or equal to IOV_MAX (defined in <limits.h> or accessible via the call
sysconf(_SC_IOV_MAX)).

If manipulating another process, or before Linux 6.13, the advice argument is one of the
following values:

MADV_COLD
See madvise(2).

MADV_COLLAPSE
See madvise(2).

MADV_PAGEOUT
See madvise(2).

MADV_WILLNEED
See madvise(2).

Since Linux 6.13, when manipulating the calling process, any advice flag is permitted.

The flags argument is reserved for future use; currently, this argument must be specified
as 0.

The n and iovec arguments are checked before applying any advice. If n is too big, or
iovec is invalid, then an error will be returned immediately and no advice will be ap-
plied.

The advice might be applied to only a part of iovec if one of its elements points to an in-
valid memory region in the remote process. No further elements will be processed be-
yond that point. (See the discussion regarding partial advice in RETURN VALUE.)

Since Linux 5.12, permission to apply advice to another process is governed by ptrace

Linux man-pages 6.16 2025-09-21 691

process_madvise(2) System Calls Manual process_madvise(2)

access mode PTRACE_MODE_READ_FSCREDS check (see ptrace(2)); in addition,
because of the performance implications of applying the advice, the caller must have the
CAP_SYS_NICE capability (see capabilities(7)).

RETURN VALUE
On success, process_madvise() returns the number of bytes advised. This return value
may be less than the total number of requested bytes, if an error occurred after some
iovec elements were already processed. The caller should check the return value to de-
termine whether a partial advice occurred.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EBADF

pidfd is not a valid PID file descriptor.

EFAULT
The memory described by iovec is outside the accessible address space of the
process referred to by pidfd .

EINVAL
flags is not 0.

EINVAL
The sum of the iov_len values of iovec overflows a ssize_t value.

EINVAL
n is too large.

ENOMEM
Could not allocate memory for internal copies of the iovec structures.

EPERM
The caller does not have permission to access the address space of the process
pidfd .

ESRCH
The target process does not exist (i.e., it has terminated and been waited on).

See madvise(2) for advice-specific errors.

STANDARDS
Linux.

HISTORY
Linux 5.10. glibc 2.36.

Support for this system call is optional, depending on the setting of the CONFIG_AD-
VISE_SYSCALLS configuration option.

When this system call first appeared in Linux 5.10, permission to apply advice to an-
other process was entirely governed by ptrace access mode PTRACE_MODE_AT-
TACH_FSCREDS check (see ptrace(2)). This requirement was relaxed in Linux 5.12
so that the caller didn’t require full control over the target process.

Linux man-pages 6.16 2025-09-21 692

process_madvise(2) System Calls Manual process_madvise(2)

SEE ALSO
madvise(2), pidfd_open(2), process_vm_readv(2), process_vm_write(2)

Linux man-pages 6.16 2025-09-21 693

process_vm_readv(2) System Calls Manual process_vm_readv(2)

NAME
process_vm_readv, process_vm_writev - transfer data between process address spaces

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/uio.h>

ssize_t process_vm_readv(pid_t pid ,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags);

ssize_t process_vm_writev(pid_t pid ,
const struct iovec *local_iov,
unsigned long liovcnt,
const struct iovec *remote_iov,
unsigned long riovcnt,
unsigned long flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

process_vm_readv(), process_vm_writev():
_GNU_SOURCE

DESCRIPTION
These system calls transfer data between the address space of the calling process ("the
local process") and the process identified by pid ("the remote process"). The data
moves directly between the address spaces of the two processes, without passing
through kernel space.

The process_vm_readv() system call transfers data from the remote process to the local
process. The data to be transferred is identified by remote_iov and riovcnt: remote_iov
is a pointer to an array describing address ranges in the process pid , and riovcnt speci-
fies the number of elements in remote_iov. The data is transferred to the locations spec-
ified by local_iov and liovcnt: local_iov is a pointer to an array describing address
ranges in the calling process, and liovcnt specifies the number of elements in local_iov.

The process_vm_writev() system call is the converse of process_vm_readv()—it trans-
fers data from the local process to the remote process. Other than the direction of the
transfer, the arguments liovcnt, local_iov, riovcnt, and remote_iov have the same mean-
ing as for process_vm_readv().

The local_iov and remote_iov arguments point to an array of iovec structures, described
in iovec(3type).

Buffers are processed in array order. This means that process_vm_readv() completely
fills local_iov[0] before proceeding to local_iov[1], and so on. Likewise,
remote_iov[0] is completely read before proceeding to remote_iov[1], and so on.

Similarly, process_vm_writev() writes out the entire contents of local_iov[0] before
proceeding to local_iov[1], and it completely fills remote_iov[0] before proceeding to

Linux man-pages 6.16 2025-09-21 694

process_vm_readv(2) System Calls Manual process_vm_readv(2)

remote_iov[1].

The lengths of remote_iov[i].iov_len and local_iov[i].iov_len do not have to be the
same. Thus, it is possible to split a single local buffer into multiple remote buffers, or
vice versa.

The flags argument is currently unused and must be set to 0.

The values specified in the liovcnt and riovcnt arguments must be less than or equal to
IOV_MAX (defined in <limits.h> or accessible via the call sysconf(_SC_IOV_MAX)).

The count arguments and local_iov are checked before doing any transfers. If the
counts are too big, or local_iov is invalid, or the addresses refer to regions that are inac-
cessible to the local process, none of the vectors will be processed and an error will be
returned immediately.

Note, however, that these system calls do not check the memory regions in the remote
process until just before doing the read/write. Consequently, a partial read/write (see
RETURN VALUE) may result if one of the remote_iov elements points to an invalid
memory region in the remote process. No further reads/writes will be attempted beyond
that point. Keep this in mind when attempting to read data of unknown length (such as
C strings that are null-terminated) from a remote process, by avoiding spanning memory
pages (typically 4 KiB) in a single remote iovec element. (Instead, split the remote read
into two remote_iov elements and have them merge back into a single write local_iov
entry. The first read entry goes up to the page boundary, while the second starts on the
next page boundary.)

Permission to read from or write to another process is governed by a ptrace access mode
PTRACE_MODE_ATTACH_REALCREDS check; see ptrace(2).

RETURN VALUE
On success, process_vm_readv() returns the number of bytes read and
process_vm_writev() returns the number of bytes written. This return value may be
less than the total number of requested bytes, if a partial read/write occurred. (Partial
transfers apply at the granularity of iovec elements. These system calls won’t perform a
partial transfer that splits a single iovec element.) The caller should check the return
value to determine whether a partial read/write occurred.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EFAULT

The memory described by local_iov is outside the caller’s accessible address
space.

EFAULT
The memory described by remote_iov is outside the accessible address space of
the process pid .

EINVAL
The sum of the iov_len values of either local_iov or remote_iov overflows a
ssize_t value.

Linux man-pages 6.16 2025-09-21 695

process_vm_readv(2) System Calls Manual process_vm_readv(2)

EINVAL
flags is not 0.

EINVAL
liovcnt or riovcnt is too large.

ENOMEM
Could not allocate memory for internal copies of the iovec structures.

EPERM
The caller does not have permission to access the address space of the process
pid .

ESRCH
No process with ID pid exists.

STANDARDS
Linux.

HISTORY
Linux 3.2, glibc 2.15.

NOTES
The data transfers performed by process_vm_readv() and process_vm_writev() are not
guaranteed to be atomic in any way.

These system calls were designed to permit fast message passing by allowing messages
to be exchanged with a single copy operation (rather than the double copy that would be
required when using, for example, shared memory or pipes).

EXAMPLES
The following code sample demonstrates the use of process_vm_readv(). It reads 20
bytes at the address 0x10000 from the process with PID 10 and writes the first 10 bytes
into buf1 and the second 10 bytes into buf2.

#define _GNU_SOURCE
#include <stdlib.h>
#include <sys/types.h>
#include <sys/uio.h>

int
main(void)
{

char buf1[10];
char buf2[10];
pid_t pid = 10; /* PID of remote process */
ssize_t nread;
struct iovec local[2];
struct iovec remote[1];

local[0].iov_base = buf1;
local[0].iov_len = 10;
local[1].iov_base = buf2;

Linux man-pages 6.16 2025-09-21 696

process_vm_readv(2) System Calls Manual process_vm_readv(2)

local[1].iov_len = 10;
remote[0].iov_base = (void *) 0x10000;
remote[0].iov_len = 20;

nread = process_vm_readv(pid, local, 2, remote, 1, 0);
if (nread != 20)

exit(EXIT_FAILURE);

exit(EXIT_SUCCESS);
}

SEE ALSO
readv(2), writev(2)

Linux man-pages 6.16 2025-09-21 697

ptrace(2) System Calls Manual ptrace(2)

NAME
ptrace - process trace

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ptrace.h>

long ptrace(enum __ptrace_request op, pid_t pid ,
void *addr, void *data);

DESCRIPTION
The ptrace() system call provides a means by which one process (the "tracer") may ob-
serve and control the execution of another process (the "tracee"), and examine and
change the tracee’s memory and registers. It is primarily used to implement breakpoint
debugging and system call tracing.

A tracee first needs to be attached to the tracer. Attachment and subsequent commands
are per thread: in a multithreaded process, every thread can be individually attached to a
(potentially different) tracer, or left not attached and thus not debugged. Therefore,
"tracee" always means "(one) thread", never "a (possibly multithreaded) process".
Ptrace commands are always sent to a specific tracee using a call of the form

ptrace(PTRACE_foo, pid, ...)

where pid is the thread ID of the corresponding Linux thread.

(Note that in this page, a "multithreaded process" means a thread group consisting of
threads created using the clone(2) CLONE_THREAD flag.)

A process can initiate a trace by calling fork(2) and having the resulting child do a
PTRACE_TRACEME, followed (typically) by an execve(2). Alternatively, one
process may commence tracing another process using PTRACE_ATTACH or
PTRACE_SEIZE.

While being traced, the tracee will stop each time a signal is delivered, even if the signal
is being ignored. (An exception is SIGKILL, which has its usual effect.) The tracer
will be notified at its next call to waitpid(2) (or one of the related "wait" system calls);
that call will return a status value containing information that indicates the cause of the
stop in the tracee. While the tracee is stopped, the tracer can use various ptrace opera-
tions to inspect and modify the tracee. The tracer then causes the tracee to continue, op-
tionally ignoring the delivered signal (or even delivering a different signal instead).

If the PTRACE_O_TRACEEXEC option is not in effect, all successful calls to ex-
ecve(2) by the traced process will cause it to be sent a SIGTRAP signal, giving the par-
ent a chance to gain control before the new program begins execution.

When the tracer is finished tracing, it can cause the tracee to continue executing in a nor-
mal, untraced mode via PTRACE_DETACH.

The value of op determines the operation to be performed:

Linux man-pages 6.16 2025-10-05 698

ptrace(2) System Calls Manual ptrace(2)

PTRACE_TRACEME
Indicate that this process is to be traced by its parent. A process probably
shouldn’t make this operation if its parent isn’t expecting to trace it. (pid , addr,
and data are ignored.)

The PTRACE_TRACEME operation is used only by the tracee; the remaining
operations are used only by the tracer. In the following operations, pid specifies
the thread ID of the tracee to be acted on. For operations other than
PTRACE_ATTACH, PTRACE_SEIZE, PTRACE_INTERRUPT, and
PTRACE_KILL, the tracee must be stopped.

PTRACE_PEEKTEXT
PTRACE_PEEKDATA

Read a word at the address addr in the tracee’s memory, returning the word as
the result of the ptrace() call. Linux does not have separate text and data ad-
dress spaces, so these two operations are currently equivalent. (data is ignored;
but see NOTES.)

PTRACE_PEEKUSER
Read a word at offset addr in the tracee’s USER area, which holds the registers
and other information about the process (see <sys/user.h>). The word is re-
turned as the result of the ptrace() call. Typically, the offset must be word-
aligned, though this might vary by architecture. See NOTES. (data is ignored;
but see NOTES.)

PTRACE_POKETEXT
PTRACE_POKEDATA

Copy the word data to the address addr in the tracee’s memory. As for
PTRACE_PEEKTEXT and PTRACE_PEEKDATA, these two operations are
currently equivalent.

PTRACE_POKEUSER
Copy the word data to offset addr in the tracee’s USER area. As for
PTRACE_PEEKUSER, the offset must typically be word-aligned. In order to
maintain the integrity of the kernel, some modifications to the USER area are
disallowed.

PTRACE_GETREGS
PTRACE_GETFPREGS

Copy the tracee’s general-purpose or floating-point registers, respectively, to the
address data in the tracer. See <sys/user.h> for information on the format of this
data. (addr is ignored.) Note that SPARC systems have the meaning of data
and addr reversed; that is, data is ignored and the registers are copied to the ad-
dress addr. PTRACE_GETREGS and PTRACE_GETFPREGS are not
present on all architectures.

PTRACE_GETREGSET (since Linux 2.6.34)
Read the tracee’s registers. addr specifies, in an architecture-dependent way, the
type of registers to be read. NT_PRSTATUS (with numerical value 1) usually
results in reading of general-purpose registers. If the CPU has, for example,
floating-point and/or vector registers, they can be retrieved by setting addr to the

Linux man-pages 6.16 2025-10-05 699

ptrace(2) System Calls Manual ptrace(2)

corresponding NT_foo constant. data points to a struct iovec, which describes
the destination buffer’s location and size. On return, the kernel modifies iov.len
to indicate the actual number of bytes returned.

PTRACE_SETREGS
PTRACE_SETFPREGS

Modify the tracee’s general-purpose or floating-point registers, respectively,
from the address data in the tracer. As for PTRACE_POKEUSER, some gen-
eral-purpose register modifications may be disallowed. (addr is ignored.) Note
that SPARC systems have the meaning of data and addr reversed; that is, data is
ignored and the registers are copied from the address addr. PTRACE_SE-
TREGS and PTRACE_SETFPREGS are not present on all architectures.

PTRACE_SETREGSET (since Linux 2.6.34)
Modify the tracee’s registers. The meaning of addr and data is analogous to
PTRACE_GETREGSET.

PTRACE_GETSIGINFO (since Linux 2.3.99-pre6)
Retrieve information about the signal that caused the stop. Copy a siginfo_t
structure (see sigaction(2)) from the tracee to the address data in the tracer.
(addr is ignored.)

PTRACE_SETSIGINFO (since Linux 2.3.99-pre6)
Set signal information: copy a siginfo_t structure from the address data in the
tracer to the tracee. This will affect only signals that would normally be deliv-
ered to the tracee and were caught by the tracer. It may be difficult to tell these
normal signals from synthetic signals generated by ptrace() itself. (addr is ig-
nored.)

PTRACE_PEEKSIGINFO (since Linux 3.10)
Retrieve siginfo_t structures without removing signals from a queue. addr
points to a ptrace_peeksiginfo_args structure that specifies the ordinal position
from which copying of signals should start, and the number of signals to copy.
siginfo_t structures are copied into the buffer pointed to by data. The return
value contains the number of copied signals (zero indicates that there is no signal
corresponding to the specified ordinal position). Within the returned siginfo
structures, the si_code field includes information (__SI_CHLD, __SI_FAULT,
etc.) that are not otherwise exposed to user space.

struct ptrace_peeksiginfo_args {
u64 off; /* Ordinal position in queue at which

to start copying signals */
u32 flags; /* PTRACE_PEEKSIGINFO_SHARED or 0 */
s32 nr; /* Number of signals to copy */

};

Currently, there is only one flag, PTRACE_PEEKSIGINFO_SHARED, for
dumping signals from the process-wide signal queue. If this flag is not set, sig-
nals are read from the per-thread queue of the specified thread.

Linux man-pages 6.16 2025-10-05 700

ptrace(2) System Calls Manual ptrace(2)

PTRACE_GETSIGMASK (since Linux 3.11)
Place a copy of the mask of blocked signals (see sigprocmask(2)) in the buffer
pointed to by data, which should be a pointer to a buffer of type sigset_t. The
addr argument contains the size of the buffer pointed to by data (i.e.,
sizeof(sigset_t)).

PTRACE_SETSIGMASK (since Linux 3.11)
Change the mask of blocked signals (see sigprocmask(2)) to the value specified
in the buffer pointed to by data, which should be a pointer to a buffer of type
sigset_t. The addr argument contains the size of the buffer pointed to by data
(i.e., sizeof(sigset_t)).

PTRACE_SETOPTIONS (since Linux 2.4.6; see BUGS for caveats)
Set ptrace options from data. (addr is ignored.) data is interpreted as a bit
mask of options, which are specified by the following flags:

PTRACE_O_EXITKILL (since Linux 3.8)
Send a SIGKILL signal to the tracee if the tracer exits. This option is
useful for ptrace jailers that want to ensure that tracees can never escape
the tracer’s control.

PTRACE_O_TRACECLONE (since Linux 2.5.46)
Stop the tracee at the next clone(2) and automatically start tracing the
newly cloned process, which will start with a SIGSTOP, or
PTRACE_EVENT_STOP if PTRACE_SEIZE was used. A waitpid(2)
by the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_CLONE<<8))

The PID of the new process can be retrieved with
PTRACE_GETEVENTMSG.

This option may not catch clone(2) calls in all cases. If the tracee calls
clone(2) with the CLONE_VFORK flag, PTRACE_EVENT_VFORK
will be delivered instead if PTRACE_O_TRACEVFORK is set; other-
wise if the tracee calls clone(2) with the exit signal set to SIGCHLD,
PTRACE_EVENT_FORK will be delivered if PTRACE_O_TRACE-
FORK is set.

PTRACE_O_TRACEEXEC (since Linux 2.5.46)
Stop the tracee at the next execve(2). A waitpid(2) by the tracer will re-
turn a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_EXEC<<8))

If the execing thread is not a thread group leader, the thread ID is reset to
thread group leader’s ID before this stop. Since Linux 3.0, the former
thread ID can be retrieved with PTRACE_GETEVENTMSG.

PTRACE_O_TRACEEXIT (since Linux 2.5.60)
Stop the tracee at exit. A waitpid(2) by the tracer will return a status
value such that

Linux man-pages 6.16 2025-10-05 701

ptrace(2) System Calls Manual ptrace(2)

status>>8 == (SIGTRAP | (PTRACE_EVENT_EXIT<<8))

The tracee’s exit status can be retrieved with
PTRACE_GETEVENTMSG.

The tracee is stopped early during process exit, when registers are still
available, allowing the tracer to see where the exit occurred, whereas the
normal exit notification is done after the process is finished exiting. Even
though context is available, the tracer cannot prevent the exit from hap-
pening at this point.

PTRACE_O_TRACEFORK (since Linux 2.5.46)
Stop the tracee at the next fork(2) and automatically start tracing the
newly forked process, which will start with a SIGSTOP, or
PTRACE_EVENT_STOP if PTRACE_SEIZE was used. A waitpid(2)
by the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_FORK<<8))

The PID of the new process can be retrieved with
PTRACE_GETEVENTMSG.

PTRACE_O_TRACESYSGOOD (since Linux 2.4.6)
When delivering system call traps, set bit 7 in the signal number (i.e., de-
liver SIGTRAP|0x80). This makes it easy for the tracer to distinguish
normal traps from those caused by a system call.

PTRACE_O_TRACEVFORK (since Linux 2.5.46)
Stop the tracee at the next vfork(2) and automatically start tracing the
newly vforked process, which will start with a SIGSTOP, or
PTRACE_EVENT_STOP if PTRACE_SEIZE was used. A waitpid(2)
by the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_VFORK<<8))

The PID of the new process can be retrieved with
PTRACE_GETEVENTMSG.

PTRACE_O_TRACEVFORKDONE (since Linux 2.5.60)
Stop the tracee at the completion of the next vfork(2). A waitpid(2) by
the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_VFORK_DONE<<8))

The PID of the new process can (since Linux 2.6.18) be retrieved with
PTRACE_GETEVENTMSG.

PTRACE_O_TRACESECCOMP (since Linux 3.5)
Stop the tracee when a seccomp(2) SECCOMP_RET_TRACE rule is
triggered. A waitpid(2) by the tracer will return a status value such that

status>>8 == (SIGTRAP | (PTRACE_EVENT_SECCOMP<<8))

While this triggers a PTRACE_EVENT stop, it is similar to a syscall-
enter-stop. For details, see the note on PTRACE_EVENT_SECCOMP
below. The seccomp event message data (from the

Linux man-pages 6.16 2025-10-05 702

ptrace(2) System Calls Manual ptrace(2)

SECCOMP_RET_DATA portion of the seccomp filter rule) can be re-
trieved with PTRACE_GETEVENTMSG.

PTRACE_O_SUSPEND_SECCOMP (since Linux 4.3)
Suspend the tracee’s seccomp protections. This applies regardless of
mode, and can be used when the tracee has not yet installed seccomp fil-
ters. That is, a valid use case is to suspend a tracee’s seccomp protec-
tions before they are installed by the tracee, let the tracee install the fil-
ters, and then clear this flag when the filters should be resumed. Setting
this option requires that the tracer have the CAP_SYS_ADMIN capabil-
ity, not have any seccomp protections installed, and not have
PTRACE_O_SUSPEND_SECCOMP set on itself.

PTRACE_GETEVENTMSG (since Linux 2.5.46)
Retrieve a message (as an unsigned long) about the ptrace event that just hap-
pened, placing it at the address data in the tracer. For
PTRACE_EVENT_EXIT, this is the tracee’s exit status. For
PTRACE_EVENT_FORK, PTRACE_EVENT_VFORK,
PTRACE_EVENT_VFORK_DONE, and PTRACE_EVENT_CLONE, this
is the PID of the new process. For PTRACE_EVENT_SECCOMP, this is the
seccomp(2) filter’s SECCOMP_RET_DATA associated with the triggered rule.
(addr is ignored.)

PTRACE_CONT
Restart the stopped tracee process. If data is nonzero, it is interpreted as the
number of a signal to be delivered to the tracee; otherwise, no signal is delivered.
Thus, for example, the tracer can control whether a signal sent to the tracee is de-
livered or not. (addr is ignored.)

PTRACE_SYSCALL
PTRACE_SINGLESTEP

Restart the stopped tracee as for PTRACE_CONT, but arrange for the tracee to
be stopped at the next entry to or exit from a system call, or after execution of a
single instruction, respectively. (The tracee will also, as usual, be stopped upon
receipt of a signal.) From the tracer’s perspective, the tracee will appear to have
been stopped by receipt of a SIGTRAP. So, for PTRACE_SYSCALL, for ex-
ample, the idea is to inspect the arguments to the system call at the first stop,
then do another PTRACE_SYSCALL and inspect the return value of the system
call at the second stop. The data argument is treated as for PTRACE_CONT.
(addr is ignored.)

PTRACE_SET_SYSCALL (since Linux 2.6.16)
When in syscall-enter-stop, change the number of the system call that is about to
be executed to the number specified in the data argument. The addr argument is
ignored. This operation is currently supported only on arm (and arm64, though
only for backwards compatibility), but most other architectures have other means
of accomplishing this (usually by changing the register that the userland code
passed the system call number in).

Linux man-pages 6.16 2025-10-05 703

ptrace(2) System Calls Manual ptrace(2)

PTRACE_SYSEMU
PTRACE_SYSEMU_SINGLESTEP (since Linux 2.6.14)

For PTRACE_SYSEMU, continue and stop on entry to the next system call,
which will not be executed. See the documentation on syscall-stops below. For
PTRACE_SYSEMU_SINGLESTEP, do the same but also singlestep if not a
system call. This call is used by programs like User Mode Linux that want to
emulate all the tracee’s system calls. The data argument is treated as for
PTRACE_CONT. The addr argument is ignored. These operations are cur-
rently supported only on x86.

PTRACE_LISTEN (since Linux 3.4)
Restart the stopped tracee, but prevent it from executing. The resulting state of
the tracee is similar to a process which has been stopped by a SIGSTOP (or
other stopping signal). See the "group-stop" subsection for additional informa-
tion. PTRACE_LISTEN works only on tracees attached by PTRACE_SEIZE.

PTRACE_KILL
Send the tracee a SIGKILL to terminate it. (addr and data are ignored.)

This operation is deprecated; do not use it! Instead, send a SIGKILL directly
using kill(2) or tgkill(2). The problem with PTRACE_KILL is that it requires
the tracee to be in signal-delivery-stop, otherwise it may not work (i.e., may
complete successfully but won’t kill the tracee). By contrast, sending a
SIGKILL directly has no such limitation.

PTRACE_INTERRUPT (since Linux 3.4)
Stop a tracee. If the tracee is running or sleeping in kernel space and
PTRACE_SYSCALL is in effect, the system call is interrupted and syscall-exit-
stop is reported. (The interrupted system call is restarted when the tracee is
restarted.) If the tracee was already stopped by a signal and PTRACE_LISTEN
was sent to it, the tracee stops with PTRACE_EVENT_STOP and WSTOP-
SIG(status) returns the stop signal. If any other ptrace-stop is generated at the
same time (for example, if a signal is sent to the tracee), this ptrace-stop hap-
pens. If none of the above applies (for example, if the tracee is running in user
space), it stops with PTRACE_EVENT_STOP with WSTOPSIG(status) ==
SIGTRAP. PTRACE_INTERRUPT only works on tracees attached by
PTRACE_SEIZE.

PTRACE_ATTACH
Attach to the process specified in pid , making it a tracee of the calling process.
The tracee is sent a SIGSTOP, but will not necessarily have stopped by the com-
pletion of this call; use waitpid(2) to wait for the tracee to stop. See the "Attach-
ing and detaching" subsection for additional information. (addr and data are ig-
nored.)

Permission to perform a PTRACE_ATTACH is governed by a ptrace access
mode PTRACE_MODE_ATTACH_REALCREDS check; see below.

PTRACE_SEIZE (since Linux 3.4)
Attach to the process specified in pid , making it a tracee of the calling process.
Unlike PTRACE_ATTACH, PTRACE_SEIZE does not stop the process.

Linux man-pages 6.16 2025-10-05 704

ptrace(2) System Calls Manual ptrace(2)

Group-stops are reported as PTRACE_EVENT_STOP and WSTOPSIG(status)
returns the stop signal. Automatically attached children stop with
PTRACE_EVENT_STOP and WSTOPSIG(status) returns SIGTRAP instead
of having SIGSTOP signal delivered to them. execve(2) does not deliver an ex-
tra SIGTRAP. Only a PTRACE_SEIZEd process can accept PTRACE_IN-
TERRUPT and PTRACE_LISTEN commands. The "seized" behavior just de-
scribed is inherited by children that are automatically attached using
PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, and
PTRACE_O_TRACECLONE. addr must be zero. data contains a bit mask
of ptrace options to activate immediately.

Permission to perform a PTRACE_SEIZE is governed by a ptrace access mode
PTRACE_MODE_ATTACH_REALCREDS check; see below.

PTRACE_SECCOMP_GET_FILTER (since Linux 4.4)
This operation allows the tracer to dump the tracee’s classic BPF filters.

addr is an integer specifying the index of the filter to be dumped. The most re-
cently installed filter has the index 0. If addr is greater than the number of in-
stalled filters, the operation fails with the error ENOENT.

data is either a pointer to a struct sock_filter array that is large enough to store
the BPF program, or NULL if the program is not to be stored.

Upon success, the return value is the number of instructions in the BPF program.
If data was NULL, then this return value can be used to correctly size the struct
sock_filter array passed in a subsequent call.

This operation fails with the error EACCES if the caller does not have the
CAP_SYS_ADMIN capability or if the caller is in strict or filter seccomp mode.
If the filter referred to by addr is not a classic BPF filter, the operation fails with
the error EMEDIUMTYPE.

This operation is available if the kernel was configured with both the CON-
FIG_SECCOMP_FILTER and the CONFIG_CHECKPOINT_RESTORE
options.

PTRACE_DETACH
Restart the stopped tracee as for PTRACE_CONT, but first detach from it. Un-
der Linux, a tracee can be detached in this way regardless of which method was
used to initiate tracing. (addr is ignored.)

PTRACE_GET_THREAD_AREA (since Linux 2.6.0)
This operation performs a similar task to get_thread_area(2). It reads the TLS
entry in the GDT whose index is given in addr, placing a copy of the entry into
the struct user_desc pointed to by data. (By contrast with get_thread_area(2),
the entry_number of the struct user_desc is ignored.)

PTRACE_SET_THREAD_AREA (since Linux 2.6.0)
This operation performs a similar task to set_thread_area(2). It sets the TLS en-
try in the GDT whose index is given in addr, assigning it the data supplied in the
struct user_desc pointed to by data. (By contrast with set_thread_area(2), the
entry_number of the struct user_desc is ignored; in other words, this ptrace

Linux man-pages 6.16 2025-10-05 705

ptrace(2) System Calls Manual ptrace(2)

operation can’t be used to allocate a free TLS entry.)

PTRACE_GET_SYSCALL_INFO (since Linux 5.3)
Retrieve information about the system call that caused the stop. The information
is placed into the buffer pointed by the data argument, which should be a pointer
to a buffer of type struct ptrace_syscall_info. The addr argument contains the
size of the buffer pointed to by the data argument (i.e., sizeof(struct
ptrace_syscall_info)). The return value contains the number of bytes available to
be written by the kernel. If the size of the data to be written by the kernel ex-
ceeds the size specified by the addr argument, the output data is truncated.

The ptrace_syscall_info structure contains the following fields:

struct ptrace_syscall_info {
__u8 op; /* Type of system call stop */
__u32 arch; /* AUDIT_ARCH_* value; see seccomp(2) */
__u64 instruction_pointer; /* CPU instruction pointer */
__u64 stack_pointer; /* CPU stack pointer */
union {

struct { /* op == PTRACE_SYSCALL_INFO_ENTRY */
__u64 nr; /* System call number */
__u64 args[6]; /* System call arguments */

} entry;
struct { /* op == PTRACE_SYSCALL_INFO_EXIT */

__s64 rval; /* System call return value */
__u8 is_error; /* System call error flag;

Boolean: does rval contain
an error value (-ERRCODE) or
a nonerror return value? */

} exit;
struct { /* op == PTRACE_SYSCALL_INFO_SECCOMP */

__u64 nr; /* System call number */
__u64 args[6]; /* System call arguments */
__u32 ret_data; /* SECCOMP_RET_DATA portion

of SECCOMP_RET_TRACE
return value */

} seccomp;
};

};

The op, arch, instruction_pointer, and stack_pointer fields are defined for all
kinds of ptrace system call stops. The rest of the structure is a union; one should
read only those fields that are meaningful for the kind of system call stop speci-
fied by the op field.

The op field has one of the following values (defined in <linux/ptrace.h>) indi-
cating what type of stop occurred and which part of the union is filled:

PTRACE_SYSCALL_INFO_ENTRY
The entry component of the union contains information relating to a sys-
tem call entry stop.

Linux man-pages 6.16 2025-10-05 706

ptrace(2) System Calls Manual ptrace(2)

PTRACE_SYSCALL_INFO_EXIT
The exit component of the union contains information relating to a sys-
tem call exit stop.

PTRACE_SYSCALL_INFO_SECCOMP
The seccomp component of the union contains information relating to a
PTRACE_EVENT_SECCOMP stop.

PTRACE_SYSCALL_INFO_NONE
No component of the union contains relevant information.

In case of system call entry or exit stops, the data returned by
PTRACE_GET_SYSCALL_INFO is limited to type
PTRACE_SYSCALL_INFO_NONE unless PTRACE_O_TRACESYS-
GOOD option is set before the corresponding system call stop has occurred.

Death under ptrace
When a (possibly multithreaded) process receives a killing signal (one whose disposi-
tion is set to SIG_DFL and whose default action is to kill the process), all threads exit.
Tracees report their death to their tracer(s). Notification of this event is delivered via
waitpid(2).

Note that the killing signal will first cause signal-delivery-stop (on one tracee only), and
only after it is injected by the tracer (or after it was dispatched to a thread which isn’t
traced), will death from the signal happen on all tracees within a multithreaded process.
(The term "signal-delivery-stop" is explained below.)

SIGKILL does not generate signal-delivery-stop and therefore the tracer can’t suppress
it. SIGKILL kills even within system calls (syscall-exit-stop is not generated prior to
death by SIGKILL). The net effect is that SIGKILL always kills the process (all its
threads), even if some threads of the process are ptraced.

When the tracee calls _exit(2), it reports its death to its tracer. Other threads are not af-
fected.

When any thread executes exit_group(2), every tracee in its thread group reports its
death to its tracer.

If the PTRACE_O_TRACEEXIT option is on, PTRACE_EVENT_EXIT will happen
before actual death. This applies to exits via exit(2), exit_group(2), and signal deaths
(except SIGKILL, depending on the kernel version; see BUGS below), and when
threads are torn down on execve(2) in a multithreaded process.

The tracer cannot assume that the ptrace-stopped tracee exists. There are many scenar-
ios when the tracee may die while stopped (such as SIGKILL). Therefore, the tracer
must be prepared to handle an ESRCH error on any ptrace operation. Unfortunately,
the same error is returned if the tracee exists but is not ptrace-stopped (for commands
which require a stopped tracee), or if it is not traced by the process which issued the
ptrace call. The tracer needs to keep track of the stopped/running state of the tracee, and
interpret ESRCH as "tracee died unexpectedly" only if it knows that the tracee has been
observed to enter ptrace-stop. Note that there is no guarantee that waitpid(WNOHANG)
will reliably report the tracee’s death status if a ptrace operation returned ESRCH.
waitpid(WNOHANG) may return 0 instead. In other words, the tracee may be "not yet

Linux man-pages 6.16 2025-10-05 707

ptrace(2) System Calls Manual ptrace(2)

fully dead", but already refusing ptrace operations.

The tracer can’t assume that the tracee always ends its life by reporting WIFEX-
ITED(status) or WIFSIGNALED(status); there are cases where this does not occur. For
example, if a thread other than thread group leader does an execve(2), it disappears; its
PID will never be seen again, and any subsequent ptrace stops will be reported under the
thread group leader’s PID.

Stopped states
A tracee can be in two states: running or stopped. For the purposes of ptrace, a tracee
which is blocked in a system call (such as read(2), pause(2), etc.) is nevertheless con-
sidered to be running, even if the tracee is blocked for a long time. The state of the
tracee after PTRACE_LISTEN is somewhat of a gray area: it is not in any ptrace-stop
(ptrace commands won’t work on it, and it will deliver waitpid(2) notifications), but it
also may be considered "stopped" because it is not executing instructions (is not sched-
uled), and if it was in group-stop before PTRACE_LISTEN, it will not respond to sig-
nals until SIGCONT is received.

There are many kinds of states when the tracee is stopped, and in ptrace discussions they
are often conflated. Therefore, it is important to use precise terms.

In this manual page, any stopped state in which the tracee is ready to accept ptrace com-
mands from the tracer is called ptrace-stop. Ptrace-stops can be further subdivided into
signal-delivery-stop, group-stop, syscall-stop, PTRACE_EVENT stops, and so on.
These stopped states are described in detail below.

When the running tracee enters ptrace-stop, it notifies its tracer using waitpid(2) (or one
of the other "wait" system calls). Most of this manual page assumes that the tracer waits
with:

pid = waitpid(pid_or_minus_1, &status, __WALL);

Ptrace-stopped tracees are reported as returns with pid greater than 0 and WIF-
STOPPED(status) true.

The __WALL flag does not include the WSTOPPED and WEXITED flags, but implies
their functionality.

Setting the WCONTINUED flag when calling waitpid(2) is not recommended: the
"continued" state is per-process and consuming it can confuse the real parent of the
tracee.

Use of the WNOHANG flag may cause waitpid(2) to return 0 ("no wait results available
yet") even if the tracer knows there should be a notification. Example:

errno = 0;
ptrace(PTRACE_CONT, pid, 0L, 0L);
if (errno == ESRCH) {

/* tracee is dead */
r = waitpid(tracee, &status, __WALL | WNOHANG);
/* r can still be 0 here! */

}

The following kinds of ptrace-stops exist: signal-delivery-stops, group-stops,

Linux man-pages 6.16 2025-10-05 708

ptrace(2) System Calls Manual ptrace(2)

PTRACE_EVENT stops, syscall-stops. They all are reported by waitpid(2) with WIF-
STOPPED(status) true. They may be differentiated by examining the value status>>8,
and if there is ambiguity in that value, by querying PTRACE_GETSIGINFO. (Note:
the WSTOPSIG(status) macro can’t be used to perform this examination, because it re-
turns the value (status>>8) & 0xff .)

Signal-delivery-stop
When a (possibly multithreaded) process receives any signal except SIGKILL, the ker-
nel selects an arbitrary thread which handles the signal. (If the signal is generated with
tgkill(2), the target thread can be explicitly selected by the caller.) If the selected thread
is traced, it enters signal-delivery-stop. At this point, the signal is not yet delivered to
the process, and can be suppressed by the tracer. If the tracer doesn’t suppress the sig-
nal, it passes the signal to the tracee in the next ptrace restart operation. This second
step of signal delivery is called signal injection in this manual page. Note that if the sig-
nal is blocked, signal-delivery-stop doesn’t happen until the signal is unblocked, with
the usual exception that SIGSTOP can’t be blocked.

Signal-delivery-stop is observed by the tracer as waitpid(2) returning with WIF-
STOPPED(status) true, with the signal returned by WSTOPSIG(status). If the signal is
SIGTRAP, this may be a different kind of ptrace-stop; see the "Syscall-stops" and "ex-
ecve" sections below for details. If WSTOPSIG(status) returns a stopping signal, this
may be a group-stop; see below.

Signal injection and suppression
After signal-delivery-stop is observed by the tracer, the tracer should restart the tracee
with the call

ptrace(PTRACE_restart, pid, 0, sig)

where PTRACE_restart is one of the restarting ptrace operations. If sig is 0, then a
signal is not delivered. Otherwise, the signal sig is delivered. This operation is called
signal injection in this manual page, to distinguish it from signal-delivery-stop.

The sig value may be different from the WSTOPSIG(status) value: the tracer can cause a
different signal to be injected.

Note that a suppressed signal still causes system calls to return prematurely. In this
case, system calls will be restarted: the tracer will observe the tracee to reexecute the in-
terrupted system call (or restart_syscall(2) system call for a few system calls which use
a different mechanism for restarting) if the tracer uses PTRACE_SYSCALL. Even
system calls (such as poll(2)) which are not restartable after signal are restarted after sig-
nal is suppressed; however, kernel bugs exist which cause some system calls to fail with
EINTR even though no observable signal is injected to the tracee.

Restarting ptrace commands issued in ptrace-stops other than signal-delivery-stop are
not guaranteed to inject a signal, even if sig is nonzero. No error is reported; a nonzero
sig may simply be ignored. Ptrace users should not try to "create a new signal" this
way: use tgkill(2) instead.

The fact that signal injection operations may be ignored when restarting the tracee after
ptrace stops that are not signal-delivery-stops is a cause of confusion among ptrace
users. One typical scenario is that the tracer observes group-stop, mistakes it for signal-

Linux man-pages 6.16 2025-10-05 709

ptrace(2) System Calls Manual ptrace(2)

delivery-stop, restarts the tracee with

ptrace(PTRACE_restart, pid, 0, stopsig)

with the intention of injecting stopsig, but stopsig gets ignored and the tracee continues
to run.

The SIGCONT signal has a side effect of waking up (all threads of) a group-stopped
process. This side effect happens before signal-delivery-stop. The tracer can’t suppress
this side effect (it can only suppress signal injection, which only causes the SIGCONT
handler to not be executed in the tracee, if such a handler is installed). In fact, waking
up from group-stop may be followed by signal-delivery-stop for signal(s) other than
SIGCONT, if they were pending when SIGCONT was delivered. In other words, SIG-
CONT may be not the first signal observed by the tracee after it was sent.

Stopping signals cause (all threads of) a process to enter group-stop. This side effect
happens after signal injection, and therefore can be suppressed by the tracer.

In Linux 2.4 and earlier, the SIGSTOP signal can’t be injected.

PTRACE_GETSIGINFO can be used to retrieve a siginfo_t structure which corre-
sponds to the delivered signal. PTRACE_SETSIGINFO may be used to modify it. If
PTRACE_SETSIGINFO has been used to alter siginfo_t, the si_signo field and the sig
parameter in the restarting command must match, otherwise the result is undefined.

Group-stop
When a (possibly multithreaded) process receives a stopping signal, all threads stop. If
some threads are traced, they enter a group-stop. Note that the stopping signal will first
cause signal-delivery-stop (on one tracee only), and only after it is injected by the tracer
(or after it was dispatched to a thread which isn’t traced), will group-stop be initiated on
all tracees within the multithreaded process. As usual, every tracee reports its group-
stop separately to the corresponding tracer.

Group-stop is observed by the tracer as waitpid(2) returning with WIFSTOPPED(status)
true, with the stopping signal available via WSTOPSIG(status). The same result is re-
turned by some other classes of ptrace-stops, therefore the recommended practice is to
perform the call

ptrace(PTRACE_GETSIGINFO, pid, 0, &siginfo)

The call can be avoided if the signal is not SIGSTOP, SIGTSTP, SIGTTIN, or SIGT-
TOU; only these four signals are stopping signals. If the tracer sees something else, it
can’t be a group-stop. Otherwise, the tracer needs to call PTRACE_GETSIGINFO. If
PTRACE_GETSIGINFO fails with EINVAL, then it is definitely a group-stop. (Other
failure codes are possible, such as ESRCH ("no such process") if a SIGKILL killed the
tracee.)

If tracee was attached using PTRACE_SEIZE, group-stop is indicated by
PTRACE_EVENT_STOP: status>>16 == PTRACE_EVENT_STOP. This allows de-
tection of group-stops without requiring an extra PTRACE_GETSIGINFO call.

As of Linux 2.6.38, after the tracer sees the tracee ptrace-stop and until it restarts or kills
it, the tracee will not run, and will not send notifications (except SIGKILL death) to the
tracer, even if the tracer enters into another waitpid(2) call.

Linux man-pages 6.16 2025-10-05 710

ptrace(2) System Calls Manual ptrace(2)

The kernel behavior described in the previous paragraph causes a problem with transpar-
ent handling of stopping signals. If the tracer restarts the tracee after group-stop, the
stopping signal is effectively ignored—the tracee doesn’t remain stopped, it runs. If the
tracer doesn’t restart the tracee before entering into the next waitpid(2), future SIG-
CONT signals will not be reported to the tracer; this would cause the SIGCONT sig-
nals to have no effect on the tracee.

Since Linux 3.4, there is a method to overcome this problem: instead of
PTRACE_CONT, a PTRACE_LISTEN command can be used to restart a tracee in a
way where it does not execute, but waits for a new event which it can report via wait-
pid(2) (such as when it is restarted by a SIGCONT).

PTRACE_EVENT stops
If the tracer sets PTRACE_O_TRACE_* options, the tracee will enter ptrace-stops
called PTRACE_EVENT stops.

PTRACE_EVENT stops are observed by the tracer as waitpid(2) returning with WIF-
STOPPED(status), and WSTOPSIG(status) returns SIGTRAP (or for
PTRACE_EVENT_STOP, returns the stopping signal if tracee is in a group-stop). An
additional bit is set in the higher byte of the status word: the value status>>8 will be

((PTRACE_EVENT_foo<<8) | SIGTRAP).

The following events exist:

PTRACE_EVENT_VFORK
Stop before return from vfork(2) or clone(2) with the CLONE_VFORK flag.
When the tracee is continued after this stop, it will wait for child to exit/exec be-
fore continuing its execution (in other words, the usual behavior on vfork(2)).

PTRACE_EVENT_FORK
Stop before return from fork(2) or clone(2) with the exit signal set to
SIGCHLD.

PTRACE_EVENT_CLONE
Stop before return from clone(2).

PTRACE_EVENT_VFORK_DONE
Stop before return from vfork(2) or clone(2) with the CLONE_VFORK flag,
but after the child unblocked this tracee by exiting or execing.

For all four stops described above, the stop occurs in the parent (i.e., the tracee), not in
the newly created thread. PTRACE_GETEVENTMSG can be used to retrieve the new
thread’s ID.

PTRACE_EVENT_EXEC
Stop before return from execve(2). Since Linux 3.0,
PTRACE_GETEVENTMSG returns the former thread ID.

PTRACE_EVENT_EXIT
Stop before exit (including death from exit_group(2)), signal death, or exit
caused by execve(2) in a multithreaded process. PTRACE_GETEVENTMSG
returns the exit status. Registers can be examined (unlike when "real" exit hap-
pens). The tracee is still alive; it needs to be PTRACE_CONTed or

Linux man-pages 6.16 2025-10-05 711

ptrace(2) System Calls Manual ptrace(2)

PTRACE_DETACHed to finish exiting.

PTRACE_EVENT_STOP
Stop induced by PTRACE_INTERRUPT command, or group-stop, or initial
ptrace-stop when a new child is attached (only if attached using
PTRACE_SEIZE).

PTRACE_EVENT_SECCOMP
Stop triggered by a seccomp(2) rule on tracee syscall entry when
PTRACE_O_TRACESECCOMP has been set by the tracer. The seccomp
event message data (from the SECCOMP_RET_DATA portion of the seccomp
filter rule) can be retrieved with PTRACE_GETEVENTMSG. The semantics
of this stop are described in detail in a separate section below.

PTRACE_GETSIGINFO on PTRACE_EVENT stops returns SIGTRAP in si_signo,
with si_code set to (event<<8) | SIGTRAP.

Syscall-stops
If the tracee was restarted by PTRACE_SYSCALL or PTRACE_SYSEMU, the tracee
enters syscall-enter-stop just prior to entering any system call (which will not be exe-
cuted if the restart was using PTRACE_SYSEMU, regardless of any change made to
registers at this point or how the tracee is restarted after this stop). No matter which
method caused the syscall-entry-stop, if the tracer restarts the tracee with
PTRACE_SYSCALL, the tracee enters syscall-exit-stop when the system call is fin-
ished, or if it is interrupted by a signal. (That is, signal-delivery-stop never happens be-
tween syscall-enter-stop and syscall-exit-stop; it happens after syscall-exit-stop.). If the
tracee is continued using any other method (including PTRACE_SYSEMU), no
syscall-exit-stop occurs. Note that all mentions PTRACE_SYSEMU apply equally to
PTRACE_SYSEMU_SINGLESTEP.

However, even if the tracee was continued using PTRACE_SYSCALL, it is not guaran-
teed that the next stop will be a syscall-exit-stop. Other possibilities are that the tracee
may stop in a PTRACE_EVENT stop (including seccomp stops), exit (if it entered
_exit(2) or exit_group(2)), be killed by SIGKILL, or die silently (if it is a thread group
leader, the execve(2) happened in another thread, and that thread is not traced by the
same tracer; this situation is discussed later).

Syscall-enter-stop and syscall-exit-stop are observed by the tracer as waitpid(2) return-
ing with WIFSTOPPED(status) true, and WSTOPSIG(status) giving SIGTRAP. If the
PTRACE_O_TRACESYSGOOD option was set by the tracer, then WSTOPSIG(sta-
tus) will give the value (SIGTRAP | 0x80).

Syscall-stops can be distinguished from signal-delivery-stop with SIGTRAP by query-
ing PTRACE_GETSIGINFO for the following cases:

si_code <= 0
SIGTRAP was delivered as a result of a user-space action, for example, a sys-
tem call (tgkill(2), kill(2), sigqueue(3), etc.), expiration of a POSIX timer,
change of state on a POSIX message queue, or completion of an asynchronous
I/O operation.

Linux man-pages 6.16 2025-10-05 712

ptrace(2) System Calls Manual ptrace(2)

si_code == SI_KERNEL (0x80)
SIGTRAP was sent by the kernel.

si_code == SIGTRAP or si_code == (SIGTRAP|0x80)
This is a syscall-stop.

However, syscall-stops happen very often (twice per system call), and performing
PTRACE_GETSIGINFO for every syscall-stop may be somewhat expensive.

Some architectures allow the cases to be distinguished by examining registers. For ex-
ample, on x86, rax == -ENOSYS in syscall-enter-stop. Since SIGTRAP (like any
other signal) always happens after syscall-exit-stop, and at this point rax almost never
contains -ENOSYS, the SIGTRAP looks like "syscall-stop which is not syscall-enter-
stop"; in other words, it looks like a "stray syscall-exit-stop" and can be detected this
way. But such detection is fragile and is best avoided.

Using the PTRACE_O_TRACESYSGOOD option is the recommended method to dis-
tinguish syscall-stops from other kinds of ptrace-stops, since it is reliable and does not
incur a performance penalty.

Syscall-enter-stop and syscall-exit-stop are indistinguishable from each other by the
tracer. The tracer needs to keep track of the sequence of ptrace-stops in order to not
misinterpret syscall-enter-stop as syscall-exit-stop or vice versa. In general, a syscall-
enter-stop is always followed by syscall-exit-stop, PTRACE_EVENT stop, or the
tracee’s death; no other kinds of ptrace-stop can occur in between. However, note that
seccomp stops (see below) can cause syscall-exit-stops, without preceding syscall-entry-
stops. If seccomp is in use, care needs to be taken not to misinterpret such stops as
syscall-entry-stops.

If after syscall-enter-stop, the tracer uses a restarting command other than
PTRACE_SYSCALL, syscall-exit-stop is not generated.

PTRACE_GETSIGINFO on syscall-stops returns SIGTRAP in si_signo, with
si_code set to SIGTRAP or (SIGTRAP|0x80).

PTRACE_EVENT_SECCOMP stops (Linux 3.5 to Linux 4.7)
The behavior of PTRACE_EVENT_SECCOMP stops and their interaction with other
kinds of ptrace stops has changed between kernel versions. This documents the behav-
ior from their introduction until Linux 4.7 (inclusive). The behavior in later kernel ver-
sions is documented in the next section.

A PTRACE_EVENT_SECCOMP stop occurs whenever a SEC-
COMP_RET_TRACE rule is triggered. This is independent of which methods was
used to restart the system call. Notably, seccomp still runs even if the tracee was
restarted using PTRACE_SYSEMU and this system call is unconditionally skipped.

Restarts from this stop will behave as if the stop had occurred right before the system
call in question. In particular, both PTRACE_SYSCALL and PTRACE_SYSEMU
will normally cause a subsequent syscall-entry-stop. However, if after the
PTRACE_EVENT_SECCOMP the system call number is negative, both the syscall-
entry-stop and the system call itself will be skipped. This means that if the system call
number is negative after a PTRACE_EVENT_SECCOMP and the tracee is restarted
using PTRACE_SYSCALL, the next observed stop will be a syscall-exit-stop, rather

Linux man-pages 6.16 2025-10-05 713

ptrace(2) System Calls Manual ptrace(2)

than the syscall-entry-stop that might have been expected.

PTRACE_EVENT_SECCOMP stops (since Linux 4.8)
Starting with Linux 4.8, the PTRACE_EVENT_SECCOMP stop was reordered to oc-
cur between syscall-entry-stop and syscall-exit-stop. Note that seccomp no longer runs
(and no PTRACE_EVENT_SECCOMP will be reported) if the system call is skipped
due to PTRACE_SYSEMU.

Functionally, a PTRACE_EVENT_SECCOMP stop functions comparably to a
syscall-entry-stop (i.e., continuations using PTRACE_SYSCALL will cause syscall-
exit-stops, the system call number may be changed and any other modified registers are
visible to the to-be-executed system call as well). Note that there may be, but need not
have been a preceding syscall-entry-stop.

After a PTRACE_EVENT_SECCOMP stop, seccomp will be rerun, with a SEC-
COMP_RET_TRACE rule now functioning the same as a SECCOMP_RET_AL-
LOW. Specifically, this means that if registers are not modified during the
PTRACE_EVENT_SECCOMP stop, the system call will then be allowed.

PTRACE_SINGLESTEP stops
[Details of these kinds of stops are yet to be documented.]

Informational and restarting ptrace commands
Most ptrace commands (all except PTRACE_ATTACH, PTRACE_SEIZE,
PTRACE_TRACEME, PTRACE_INTERRUPT, and PTRACE_KILL) require the
tracee to be in a ptrace-stop, otherwise they fail with ESRCH.

When the tracee is in ptrace-stop, the tracer can read and write data to the tracee using
informational commands. These commands leave the tracee in ptrace-stopped state:

ptrace(PTRACE_PEEKTEXT/PEEKDATA/PEEKUSER, pid, addr, 0);
ptrace(PTRACE_POKETEXT/POKEDATA/POKEUSER, pid, addr, long_val);
ptrace(PTRACE_GETREGS/GETFPREGS, pid, 0, &struct);
ptrace(PTRACE_SETREGS/SETFPREGS, pid, 0, &struct);
ptrace(PTRACE_GETREGSET, pid, NT_foo, &iov);
ptrace(PTRACE_SETREGSET, pid, NT_foo, &iov);
ptrace(PTRACE_GETSIGINFO, pid, 0, &siginfo);
ptrace(PTRACE_SETSIGINFO, pid, 0, &siginfo);
ptrace(PTRACE_GETEVENTMSG, pid, 0, &long_var);
ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_flags);

Note that some errors are not reported. For example, setting signal information (siginfo)
may have no effect in some ptrace-stops, yet the call may succeed (return 0 and not set
errno); querying PTRACE_GETEVENTMSG may succeed and return some random
value if current ptrace-stop is not documented as returning a meaningful event message.

The call

ptrace(PTRACE_SETOPTIONS, pid, 0, PTRACE_O_flags);

affects one tracee. The tracee’s current flags are replaced. Flags are inherited by new
tracees created and "auto-attached" via active PTRACE_O_TRACEFORK,
PTRACE_O_TRACEVFORK, or PTRACE_O_TRACECLONE options.

Linux man-pages 6.16 2025-10-05 714

ptrace(2) System Calls Manual ptrace(2)

Another group of commands makes the ptrace-stopped tracee run. They have the form:

ptrace(cmd, pid, 0, sig);

where cmd is PTRACE_CONT, PTRACE_LISTEN, PTRACE_DETACH,
PTRACE_SYSCALL, PTRACE_SINGLESTEP, PTRACE_SYSEMU, or
PTRACE_SYSEMU_SINGLESTEP. If the tracee is in signal-delivery-stop, sig is the
signal to be injected (if it is nonzero). Otherwise, sig may be ignored. (When restarting
a tracee from a ptrace-stop other than signal-delivery-stop, recommended practice is to
always pass 0 in sig.)

Attaching and detaching
A thread can be attached to the tracer using the call

ptrace(PTRACE_ATTACH, pid, 0, 0);

or

ptrace(PTRACE_SEIZE, pid, 0, PTRACE_O_flags);

PTRACE_ATTACH sends SIGSTOP to this thread. If the tracer wants this SIGSTOP
to have no effect, it needs to suppress it. Note that if other signals are concurrently sent
to this thread during attach, the tracer may see the tracee enter signal-delivery-stop with
other signal(s) first! The usual practice is to reinject these signals until SIGSTOP is
seen, then suppress SIGSTOP injection. The design bug here is that a ptrace attach and
a concurrently delivered SIGSTOP may race and the concurrent SIGSTOP may be lost.

Since attaching sends SIGSTOP and the tracer usually suppresses it, this may cause a
stray EINTR return from the currently executing system call in the tracee, as described
in the "Signal injection and suppression" section.

Since Linux 3.4, PTRACE_SEIZE can be used instead of PTRACE_ATTACH.
PTRACE_SEIZE does not stop the attached process. If you need to stop it after attach
(or at any other time) without sending it any signals, use PTRACE_INTERRUPT com-
mand.

The operation

ptrace(PTRACE_TRACEME, 0, 0, 0);

turns the calling thread into a tracee. The thread continues to run (doesn’t enter ptrace-
stop). A common practice is to follow the PTRACE_TRACEME with

raise(SIGSTOP);

and allow the parent (which is our tracer now) to observe our signal-delivery-stop.

If the PTRACE_O_TRACEFORK, PTRACE_O_TRACEVFORK, or
PTRACE_O_TRACECLONE options are in effect, then children created by, respec-
tively, vfork(2) or clone(2) with the CLONE_VFORK flag, fork(2) or clone(2) with the
exit signal set to SIGCHLD, and other kinds of clone(2), are automatically attached to
the same tracer which traced their parent. SIGSTOP is delivered to the children, caus-
ing them to enter signal-delivery-stop after they exit the system call which created them.

Detaching of the tracee is performed by:

ptrace(PTRACE_DETACH, pid, 0, sig);

Linux man-pages 6.16 2025-10-05 715

ptrace(2) System Calls Manual ptrace(2)

PTRACE_DETACH is a restarting operation; therefore it requires the tracee to be in
ptrace-stop. If the tracee is in signal-delivery-stop, a signal can be injected. Otherwise,
the sig parameter may be silently ignored.

If the tracee is running when the tracer wants to detach it, the usual solution is to send
SIGSTOP (using tgkill(2), to make sure it goes to the correct thread), wait for the tracee
to stop in signal-delivery-stop for SIGSTOP and then detach it (suppressing SIGSTOP
injection). A design bug is that this can race with concurrent SIGSTOPs. Another
complication is that the tracee may enter other ptrace-stops and needs to be restarted and
waited for again, until SIGSTOP is seen. Yet another complication is to be sure that the
tracee is not already ptrace-stopped, because no signal delivery happens while it is—not
even SIGSTOP.

If the tracer dies, all tracees are automatically detached and restarted, unless they were
in group-stop. Handling of restart from group-stop is currently buggy, but the "as
planned" behavior is to leave tracee stopped and waiting for SIGCONT. If the tracee is
restarted from signal-delivery-stop, the pending signal is injected.

execve(2) under ptrace
When one thread in a multithreaded process calls execve(2), the kernel destroys all other
threads in the process, and resets the thread ID of the execing thread to the thread group
ID (process ID). (Or, to put things another way, when a multithreaded process does an
execve(2), at completion of the call, it appears as though the execve(2) occurred in the
thread group leader, regardless of which thread did the execve(2).) This resetting of the
thread ID looks very confusing to tracers:

• All other threads stop in PTRACE_EVENT_EXIT stop, if the
PTRACE_O_TRACEEXIT option was turned on. Then all other threads except
the thread group leader report death as if they exited via _exit(2) with exit code 0.

• The execing tracee changes its thread ID while it is in the execve(2). (Remember,
under ptrace, the "pid" returned from waitpid(2), or fed into ptrace calls, is the
tracee’s thread ID.) That is, the tracee’s thread ID is reset to be the same as its
process ID, which is the same as the thread group leader’s thread ID.

• Then a PTRACE_EVENT_EXEC stop happens, if the PTRACE_O_TRACE-
EXEC option was turned on.

• If the thread group leader has reported its PTRACE_EVENT_EXIT stop by this
time, it appears to the tracer that the dead thread leader "reappears from nowhere".
(Note: the thread group leader does not report death via WIFEXITED(status) until
there is at least one other live thread. This eliminates the possibility that the tracer
will see it dying and then reappearing.) If the thread group leader was still alive, for
the tracer this may look as if thread group leader returns from a different system call
than it entered, or even "returned from a system call even though it was not in any
system call". If the thread group leader was not traced (or was traced by a different
tracer), then during execve(2) it will appear as if it has become a tracee of the tracer
of the execing tracee.

All of the above effects are the artifacts of the thread ID change in the tracee.

The PTRACE_O_TRACEEXEC option is the recommended tool for dealing with this

Linux man-pages 6.16 2025-10-05 716

ptrace(2) System Calls Manual ptrace(2)

situation. First, it enables PTRACE_EVENT_EXEC stop, which occurs before ex-
ecve(2) returns. In this stop, the tracer can use PTRACE_GETEVENTMSG to re-
trieve the tracee’s former thread ID. (This feature was introduced in Linux 3.0.) Sec-
ond, the PTRACE_O_TRACEEXEC option disables legacy SIGTRAP generation on
execve(2).

When the tracer receives PTRACE_EVENT_EXEC stop notification, it is guaranteed
that except this tracee and the thread group leader, no other threads from the process are
alive.

On receiving the PTRACE_EVENT_EXEC stop notification, the tracer should clean
up all its internal data structures describing the threads of this process, and retain only
one data structure—one which describes the single still running tracee, with

thread ID == thread group ID == process ID.

Example: two threads call execve(2) at the same time:

*** we get syscall-enter-stop in thread 1: **
PID1 execve("/bin/foo", "foo" <unfinished ...>
*** we issue PTRACE_SYSCALL for thread 1 **
*** we get syscall-enter-stop in thread 2: **
PID2 execve("/bin/bar", "bar" <unfinished ...>
*** we issue PTRACE_SYSCALL for thread 2 **
*** we get PTRACE_EVENT_EXEC for PID0, we issue PTRACE_SYSCALL **
*** we get syscall-exit-stop for PID0: **
PID0 <... execve resumed>) = 0

If the PTRACE_O_TRACEEXEC option is not in effect for the execing tracee, and if
the tracee was PTRACE_ATTACHed rather that PTRACE_SEIZEd, the kernel deliv-
ers an extra SIGTRAP to the tracee after execve(2) returns. This is an ordinary signal
(similar to one which can be generated by kill -TRAP), not a special kind of ptrace-stop.
Employing PTRACE_GETSIGINFO for this signal returns si_code set to 0
(SI_USER). This signal may be blocked by signal mask, and thus may be delivered
(much) later.

Usually, the tracer (for example, strace(1)) would not want to show this extra post-ex-
ecve SIGTRAP signal to the user, and would suppress its delivery to the tracee (if SIG-
TRAP is set to SIG_DFL, it is a killing signal). However, determining which SIG-
TRAP to suppress is not easy. Setting the PTRACE_O_TRACEEXEC option or using
PTRACE_SEIZE and thus suppressing this extra SIGTRAP is the recommended ap-
proach.

Real parent
The ptrace API (ab)uses the standard UNIX parent/child signaling over waitpid(2). This
used to cause the real parent of the process to stop receiving several kinds of waitpid(2)
notifications when the child process is traced by some other process.

Many of these bugs have been fixed, but as of Linux 2.6.38 several still exist; see BUGS
below.

As of Linux 2.6.38, the following is believed to work correctly:

Linux man-pages 6.16 2025-10-05 717

ptrace(2) System Calls Manual ptrace(2)

• exit/death by signal is reported first to the tracer, then, when the tracer consumes the
waitpid(2) result, to the real parent (to the real parent only when the whole multi-
threaded process exits). If the tracer and the real parent are the same process, the re-
port is sent only once.

RETURN VALUE
On success, the PTRACE_PEEK* operations return the requested data (but see
NOTES), the PTRACE_SECCOMP_GET_FILTER operation returns the number of
instructions in the BPF program, the PTRACE_GET_SYSCALL_INFO operation re-
turns the number of bytes available to be written by the kernel, and other operations re-
turn zero.

On error, all operations return -1, and errno is set to indicate the error. Since the value
returned by a successful PTRACE_PEEK* operation may be -1, the caller must clear
errno before the call, and then check it afterward to determine whether or not an error
occurred.

ERRORS
EBUSY

(i386 only) There was an error with allocating or freeing a debug register.

EFAULT
There was an attempt to read from or write to an invalid area in the tracer’s or the
tracee’s memory, probably because the area wasn’t mapped or accessible. Un-
fortunately, under Linux, different variations of this fault will return EIO or
EFAULT more or less arbitrarily.

EINVAL
An attempt was made to set an invalid option.

EIO op is invalid, or an attempt was made to read from or write to an invalid area in
the tracer’s or the tracee’s memory, or there was a word-alignment violation, or
an invalid signal was specified during a restart operation.

EPERM
The specified process cannot be traced. This could be because the tracer has in-
sufficient privileges (the required capability is CAP_SYS_PTRACE); unprivi-
leged processes cannot trace processes that they cannot send signals to or those
running set-user-ID/set-group-ID programs, for obvious reasons. Alternatively,
the process may already be being traced, or (before Linux 2.6.26) be init(1) (PID
1).

ESRCH
The specified process does not exist, or is not currently being traced by the
caller, or is not stopped (for operations that require a stopped tracee).

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

Before Linux 2.6.26, init(1), the process with PID 1, may not be traced.

Linux man-pages 6.16 2025-10-05 718

ptrace(2) System Calls Manual ptrace(2)

NOTES
Although arguments to ptrace() are interpreted according to the prototype given, glibc
currently declares ptrace() as a variadic function with only the op argument fixed. It is
recommended to always supply four arguments, even if the requested operation does not
use them, setting unused/ignored arguments to 0L or (void *) 0.

A tracees parent continues to be the tracer even if that tracer calls execve(2).

The layout of the contents of memory and the USER area are quite operating-system-
and architecture-specific. The offset supplied, and the data returned, might not entirely
match with the definition of struct user.

The size of a "word" is determined by the operating-system variant (e.g., for 32-bit
Linux it is 32 bits).

This page documents the way the ptrace() call works currently in Linux. Its behavior
differs significantly on other flavors of UNIX. In any case, use of ptrace() is highly
specific to the operating system and architecture.

Ptrace access mode checking
Various parts of the kernel-user-space API (not just ptrace() operations), require so-
called "ptrace access mode" checks, whose outcome determines whether an operation is
permitted (or, in a few cases, causes a "read" operation to return sanitized data). These
checks are performed in cases where one process can inspect sensitive information
about, or in some cases modify the state of, another process. The checks are based on
factors such as the credentials and capabilities of the two processes, whether or not the
"target" process is dumpable, and the results of checks performed by any enabled Linux
Security Module (LSM)—for example, SELinux, Yama, or Smack—and by the com-
moncap LSM (which is always invoked).

Prior to Linux 2.6.27, all access checks were of a single type. Since Linux 2.6.27, two
access mode levels are distinguished:

PTRACE_MODE_READ
For "read" operations or other operations that are less dangerous, such as:
get_robust_list(2); kcmp(2); reading /proc/ pid /auxv, /proc/ pid /environ, or
/proc/ pid /stat; or readlink(2) of a /proc/ pid /ns/* file.

PTRACE_MODE_ATTACH
For "write" operations, or other operations that are more dangerous, such as:
ptrace attaching (PTRACE_ATTACH) to another process or calling
process_vm_writev(2). (PTRACE_MODE_ATTACH was effectively the de-
fault before Linux 2.6.27.)

Since Linux 4.5, the above access mode checks are combined (ORed) with one of the
following modifiers:

PTRACE_MODE_FSCREDS
Use the caller’s filesystem UID and GID (see credentials(7)) or effective capabil-
ities for LSM checks.

PTRACE_MODE_REALCREDS
Use the caller’s real UID and GID or permitted capabilities for LSM checks.
This was effectively the default before Linux 4.5.

Linux man-pages 6.16 2025-10-05 719

ptrace(2) System Calls Manual ptrace(2)

Because combining one of the credential modifiers with one of the aforementioned ac-
cess modes is typical, some macros are defined in the kernel sources for the combina-
tions:

PTRACE_MODE_READ_FSCREDS
Defined as PTRACE_MODE_READ | PTRACE_MODE_FSCREDS.

PTRACE_MODE_READ_REALCREDS
Defined as PTRACE_MODE_READ | PTRACE_MODE_REALCREDS.

PTRACE_MODE_ATTACH_FSCREDS
Defined as PTRACE_MODE_ATTACH | PTRACE_MODE_FSCREDS.

PTRACE_MODE_ATTACH_REALCREDS
Defined as PTRACE_MODE_ATTACH | PTRACE_MODE_REALCREDS.

One further modifier can be ORed with the access mode:

PTRACE_MODE_NOAUDIT (since Linux 3.3)
Don’t audit this access mode check. This modifier is employed for ptrace access
mode checks (such as checks when reading /proc/ pid /stat) that merely cause the
output to be filtered or sanitized, rather than causing an error to be returned to
the caller. In these cases, accessing the file is not a security violation and there is
no reason to generate a security audit record. This modifier suppresses the gen-
eration of such an audit record for the particular access check.

Note that all of the PTRACE_MODE_* constants described in this subsection are ker-
nel-internal, and not visible to user space. The constant names are mentioned here in or-
der to label the various kinds of ptrace access mode checks that are performed for vari-
ous system calls and accesses to various pseudofiles (e.g., under /proc). These names
are used in other manual pages to provide a simple shorthand for labeling the different
kernel checks.

The algorithm employed for ptrace access mode checking determines whether the call-
ing process is allowed to perform the corresponding action on the target process. (In the
case of opening /proc/ pid files, the "calling process" is the one opening the file, and the
process with the corresponding PID is the "target process".) The algorithm is as fol-
lows:

(1) If the calling thread and the target thread are in the same thread group, access is
always allowed.

(2) If the access mode specifies PTRACE_MODE_FSCREDS, then, for the check
in the next step, employ the caller’s filesystem UID and GID. (As noted in cre-
dentials(7), the filesystem UID and GID almost always have the same values as
the corresponding effective IDs.)

Otherwise, the access mode specifies PTRACE_MODE_REALCREDS, so use
the caller’s real UID and GID for the checks in the next step. (Most APIs that
check the caller’s UID and GID use the effective IDs. For historical reasons, the
PTRACE_MODE_REALCREDS check uses the real IDs instead.)

Linux man-pages 6.16 2025-10-05 720

ptrace(2) System Calls Manual ptrace(2)

(3) Deny access if neither of the following is true:

• The real, effective, and saved-set user IDs of the target match the caller’s user
ID, and the real, effective, and saved-set group IDs of the target match the
caller’s group ID.

• The caller has the CAP_SYS_PTRACE capability in the user namespace of
the target.

(4) Deny access if the target process "dumpable" attribute has a value other than 1
(SUID_DUMP_USER; see the discussion of PR_SET_DUMPABLE in
prctl(2)), and the caller does not have the CAP_SYS_PTRACE capability in the
user namespace of the target process.

(5) The kernel LSM security_ptrace_access_check() interface is invoked to see if
ptrace access is permitted. The results depend on the LSM(s). The implementa-
tion of this interface in the commoncap LSM performs the following steps:

(5.1) If the access mode includes PTRACE_MODE_FSCREDS, then use the
caller’s effective capability set in the following check; otherwise (the ac-
cess mode specifies PTRACE_MODE_REALCREDS, so) use the
caller’s permitted capability set.

(5.2) Deny access if neither of the following is true:

• The caller and the target process are in the same user namespace, and
the caller’s capabilities are a superset of the target process’s permit-
ted capabilities.

• The caller has the CAP_SYS_PTRACE capability in the target
process’s user namespace.

Note that the commoncap LSM does not distinguish between
PTRACE_MODE_READ and PTRACE_MODE_ATTACH.

(6) If access has not been denied by any of the preceding steps, then access is al-
lowed.

/proc/sys/kernel/yama/ptrace_scope
On systems with the Yama Linux Security Module (LSM) installed (i.e., the kernel was
configured with CONFIG_SECURITY_YAMA), the /proc/sys/ker-
nel/yama/ptrace_scope file (available since Linux 3.4) can be used to restrict the ability
to trace a process with ptrace() (and thus also the ability to use tools such as strace(1)
and gdb(1)). The goal of such restrictions is to prevent attack escalation whereby a
compromised process can ptrace-attach to other sensitive processes (e.g., a GPG agent
or an SSH session) owned by the user in order to gain additional credentials that may
exist in memory and thus expand the scope of the attack.

More precisely, the Yama LSM limits two types of operations:

• Any operation that performs a ptrace access mode PTRACE_MODE_ATTACH
check—for example, ptrace() PTRACE_ATTACH. (See the "Ptrace access mode
checking" discussion above.)

Linux man-pages 6.16 2025-10-05 721

ptrace(2) System Calls Manual ptrace(2)

• ptrace() PTRACE_TRACEME.

A process that has the CAP_SYS_PTRACE capability can update the /proc/sys/ker-
nel/yama/ptrace_scope file with one of the following values:

0 ("classic ptrace permissions")
No additional restrictions on operations that perform PTRACE_MODE_AT-
TACH checks (beyond those imposed by the commoncap and other LSMs).

The use of PTRACE_TRACEME is unchanged.

1 ("restricted ptrace") [default value]
When performing an operation that requires a PTRACE_MODE_ATTACH
check, the calling process must either have the CAP_SYS_PTRACE capability
in the user namespace of the target process or it must have a predefined relation-
ship with the target process. By default, the predefined relationship is that the
target process must be a descendant of the caller.

A target process can employ the prctl(2) PR_SET_PTRACER operation to de-
clare an additional PID that is allowed to perform PTRACE_MODE_ATTACH
operations on the target. See the kernel source file Documentation/ad-
min-guide/LSM/Yama.rst (or Documentation/security/Yama.txt before Linux
4.13) for further details.

The use of PTRACE_TRACEME is unchanged.

2 ("admin-only attach")
Only processes with the CAP_SYS_PTRACE capability in the user namespace
of the target process may perform PTRACE_MODE_ATTACH operations or
trace children that employ PTRACE_TRACEME.

3 ("no attach")
No process may perform PTRACE_MODE_ATTACH operations or trace chil-
dren that employ PTRACE_TRACEME.

Once this value has been written to the file, it cannot be changed.

With respect to values 1 and 2, note that creating a new user namespace effectively re-
moves the protection offered by Yama. This is because a process in the parent user
namespace whose effective UID matches the UID of the creator of a child namespace
has all capabilities (including CAP_SYS_PTRACE) when performing operations
within the child user namespace (and further-removed descendants of that namespace).
Consequently, when a process tries to use user namespaces to sandbox itself, it inadver-
tently weakens the protections offered by the Yama LSM.

C library/kernel differences
At the system call level, the PTRACE_PEEKTEXT, PTRACE_PEEKDATA, and
PTRACE_PEEKUSER operations have a different API: they store the result at the ad-
dress specified by the data parameter, and the return value is the error flag. The glibc
wrapper function provides the API given in DESCRIPTION above, with the result being
returned via the function return value.

Linux man-pages 6.16 2025-10-05 722

ptrace(2) System Calls Manual ptrace(2)

BUGS
On hosts with Linux 2.6 kernel headers, PTRACE_SETOPTIONS is declared with a
different value than the one for Linux 2.4. This leads to applications compiled with
Linux 2.6 kernel headers failing when run on Linux 2.4. This can be worked around by
redefining PTRACE_SETOPTIONS to PTRACE_OLDSETOPTIONS, if that is de-
fined.

Group-stop notifications are sent to the tracer, but not to real parent. Last confirmed on
2.6.38.6.

If a thread group leader is traced and exits by calling _exit(2), a
PTRACE_EVENT_EXIT stop will happen for it (if requested), but the subsequent
WIFEXITED notification will not be delivered until all other threads exit. As ex-
plained above, if one of other threads calls execve(2), the death of the thread group
leader will never be reported. If the execed thread is not traced by this tracer, the tracer
will never know that execve(2) happened. One possible workaround is to
PTRACE_DETACH the thread group leader instead of restarting it in this case. Last
confirmed on 2.6.38.6.

A SIGKILL signal may still cause a PTRACE_EVENT_EXIT stop before actual sig-
nal death. This may be changed in the future; SIGKILL is meant to always immedi-
ately kill tasks even under ptrace. Last confirmed on Linux 3.13.

Some system calls return with EINTR if a signal was sent to a tracee, but delivery was
suppressed by the tracer. (This is very typical operation: it is usually done by debuggers
on every attach, in order to not introduce a bogus SIGSTOP). As of Linux 3.2.9, the
following system calls are affected (this list is likely incomplete): epoll_wait(2), and
read(2) from an inotify(7) file descriptor. The usual symptom of this bug is that when
you attach to a quiescent process with the command

strace -p <process-ID>

then, instead of the usual and expected one-line output such as

restart_syscall(<... resuming interrupted call ...>_

or

select(6, [5], NULL, [5], NULL_

(’_’ denotes the cursor position), you observe more than one line. For example:

clock_gettime(CLOCK_MONOTONIC, {15370, 690928118}) = 0
epoll_wait(4,_

What is not visible here is that the process was blocked in epoll_wait(2) before strace(1)
has attached to it. Attaching caused epoll_wait(2) to return to user space with the error
EINTR. In this particular case, the program reacted to EINTR by checking the current
time, and then executing epoll_wait(2) again. (Programs which do not expect such
"stray" EINTR errors may behave in an unintended way upon an strace(1) attach.)

Contrary to the normal rules, the glibc wrapper for ptrace() can set errno to zero.

Linux man-pages 6.16 2025-10-05 723

ptrace(2) System Calls Manual ptrace(2)

SEE ALSO
gdb(1), ltrace(1), strace(1), clone(2), execve(2), fork(2), gettid(2), prctl(2), seccomp(2),
sigaction(2), tgkill(2), vfork(2), waitpid(2), exec(3), capabilities(7), signal(7)

Linux man-pages 6.16 2025-10-05 724

query_module(2) System Calls Manual query_module(2)

NAME
query_module - query the kernel for various bits pertaining to modules

SYNOPSIS
#include <linux/module.h>

[[deprecated]] int query_module(size_t bufsize;
const char *name, int which,
void buf [bufsize], size_t bufsize,
size_t *ret);

DESCRIPTION
Note: This system call is present only before Linux 2.6.

query_module() requests information from the kernel about loadable modules. The re-
turned information is placed in the buffer pointed to by buf . The caller must specify the
size of buf in bufsize. The precise nature and format of the returned information depend
on the operation specified by which. Some operations require name to identify a cur-
rently loaded module, some allow name to be NULL, indicating the kernel proper.

The following values can be specified for which:

0 Returns success, if the kernel supports query_module(). Used to probe for
availability of the system call.

QM_MODULES
Returns the names of all loaded modules. The returned buffer consists of a se-
quence of null-terminated strings; ret is set to the number of modules.

QM_DEPS
Returns the names of all modules used by the indicated module. The returned
buffer consists of a sequence of null-terminated strings; ret is set to the number
of modules.

QM_REFS
Returns the names of all modules using the indicated module. This is the inverse
of QM_DEPS. The returned buffer consists of a sequence of null-terminated
strings; ret is set to the number of modules.

QM_SYMBOLS
Returns the symbols and values exported by the kernel or the indicated module.
The returned buffer is an array of structures of the following form

struct module_symbol {
unsigned long value;
unsigned long name;

};

followed by null-terminated strings. The value of name is the character offset of
the string relative to the start of buf ; ret is set to the number of symbols.

QM_INFO
Returns miscellaneous information about the indicated module. The output
buffer format is:

Linux man-pages 6.16 2025-09-07 725

query_module(2) System Calls Manual query_module(2)

struct module_info {
unsigned long address;
unsigned long size;
unsigned long flags;

};

where address is the kernel address at which the module resides, size is the size
of the module in bytes, and flags is a mask of MOD_RUNNING, MOD_AU-
TOCLEAN, and so on, that indicates the current status of the module (see the
Linux kernel source file include/linux/module.h). ret is set to the size of the
module_info structure.

RETURN VALUE
On success, zero is returned. On error, -1 is returned and errno is set to indicate the er-
ror.

ERRORS
EFAULT

At least one of name, buf , or ret was outside the program’s accessible address
space.

EINVAL
Invalid which; or name is NULL (indicating "the kernel"), but this is not permit-
ted with the specified value of which.

ENOENT
No module by that name exists.

ENOSPC
The buffer size provided was too small. ret is set to the minimum size needed.

ENOSYS
query_module() is not supported in this version of the kernel (e.g., Linux 2.6 or
later).

STANDARDS
Linux.

VERSIONS
Removed in Linux 2.6.

Some of the information that was formerly available via query_module() can be ob-
tained from /proc/modules, /proc/kallsyms, and the files under the directory /sys/mod-
ule.

The query_module() system call is not supported by glibc. No declaration is provided
in glibc headers, but, through a quirk of history, glibc does export an ABI for this system
call. Therefore, in order to employ this system call, it is sufficient to manually declare
the interface in your code; alternatively, you can invoke the system call using syscall(2).

SEE ALSO
create_module(2), delete_module(2), get_kernel_syms(2), init_module(2), lsmod(8),
modinfo(8)

Linux man-pages 6.16 2025-09-07 726

quotactl(2) System Calls Manual quotactl(2)

NAME
quotactl, quotactl_fd - manipulate disk quotas

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/quota.h>
#include <xfs/xqm.h> /* Definition of Q_X* and XFS_QUOTA_* constants

(or <linux/dqblk_xfs.h>; see NOTES) */

int quotactl(int op, const char *_Nullable special, int id ,
caddr_t addr);

#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_quotactl_fd, int fd , int op, int id , caddr_t addr);

Note: glibc provides no wrapper for quotactl_fd(), necessitating the use of syscall(2).

DESCRIPTION
The quota system can be used to set per-user, per-group, and per-project limits on the
amount of disk space used on a filesystem. For each user and/or group, a soft limit and
a hard limit can be set for each filesystem. The hard limit can’t be exceeded. The soft
limit can be exceeded, but warnings will ensue. Moreover, the user can’t exceed the soft
limit for more than grace period duration (one week by default) at a time; after this, the
soft limit counts as a hard limit.

The quotactl() and quotactl_fd() calls manipulate disk quotas. The difference between
these functions is the way the filesystem being manipulated is specified, see description
of the arguments below. See NOTES for why one variant might be preferred over the
other.

The op argument indicates an operation to be applied to the user or group ID specified in
id . To initialize the op argument, use the QCMD(subop, type) macro. The type value is
either USRQUOTA, for user quotas, GRPQUOTA, for group quotas, or (since Linux
4.1) PRJQUOTA, for project quotas. The subop value is described below.

For quotactl(), the special argument is a pointer to a null-terminated string containing
the pathname of the (mounted) block special device for the filesystem being manipu-
lated.

For quotactl_fd(), the fd argument is a file descriptor (which may be opened with the
O_PATH flag) referring to a file or directory on the filesystem being manipulated.

The addr argument is the address of an optional, operation-specific, data structure that is
copied in or out of the system. The interpretation of addr is given with each operation
below.

The subop value is one of the following operations:

Q_QUOTAON
Turn on quotas for a filesystem. The id argument is the identification number of
the quota format to be used. Currently, there are three supported quota formats:

Linux man-pages 6.16 2025-09-21 727

quotactl(2) System Calls Manual quotactl(2)

QFMT_VFS_OLD
The original quota format.

QFMT_VFS_V0
The standard VFS v0 quota format, which can handle 32-bit
UIDs and GIDs and quota limits up to 2^42 bytes and 2^32 in-
odes.

QFMT_VFS_V1
A quota format that can handle 32-bit UIDs and GIDs and quota
limits of 2^63 - 1 bytes and 2^63 - 1 inodes.

The addr argument points to the pathname of a file containing the quotas for the
filesystem. The quota file must exist; it is normally created with the quo-
tacheck(8) program

Quota information can be also stored in hidden system inodes for ext4, XFS, and
other filesystems if the filesystem is configured so. In this case, there are no visi-
ble quota files and there is no need to use quotacheck(8)Quota information is al-
ways kept consistent by the filesystem and the Q_QUOTAON operation serves
only to enable enforcement of quota limits. The presence of hidden system in-
odes with quota information is indicated by the DQF_SYS_FILE flag in the
dqi_flags field returned by the Q_GETINFO operation.

The quotactl_fd() variant of this system call ignores the addr and id arguments,
so the Q_QUOTAON operation of quotactl_fd() is only suitable for work with
hidden system inodes.

This operation requires privilege (CAP_SYS_ADMIN).

Q_QUOTAOFF
Turn off quotas for a filesystem. The addr and id arguments are ignored. This
operation requires privilege (CAP_SYS_ADMIN).

Q_GETQUOTA
Get disk quota limits and current usage for user or group id . The addr argument
is a pointer to a dqblk structure defined in <sys/quota.h> as follows:

/* uint64_t is an unsigned 64-bit integer;
uint32_t is an unsigned 32-bit integer */

struct dqblk { /* Definition since Linux 2.4.22 */
uint64_t dqb_bhardlimit; /* Absolute limit on disk

quota blocks alloc */
uint64_t dqb_bsoftlimit; /* Preferred limit on

disk quota blocks */
uint64_t dqb_curspace; /* Current occupied space

(in bytes) */
uint64_t dqb_ihardlimit; /* Maximum number of

allocated inodes */
uint64_t dqb_isoftlimit; /* Preferred inode limit */
uint64_t dqb_curinodes; /* Current number of

Linux man-pages 6.16 2025-09-21 728

quotactl(2) System Calls Manual quotactl(2)

allocated inodes */
uint64_t dqb_btime; /* Time limit for excessive

disk use */
uint64_t dqb_itime; /* Time limit for excessive

files */
uint32_t dqb_valid; /* Bit mask of QIF_*

constants */
};

/* Flags in dqb_valid that indicate which fields in
dqblk structure are valid. */

#define QIF_BLIMITS 1
#define QIF_SPACE 2
#define QIF_ILIMITS 4
#define QIF_INODES 8
#define QIF_BTIME 16
#define QIF_ITIME 32
#define QIF_LIMITS (QIF_BLIMITS | QIF_ILIMITS)
#define QIF_USAGE (QIF_SPACE | QIF_INODES)
#define QIF_TIMES (QIF_BTIME | QIF_ITIME)
#define QIF_ALL (QIF_LIMITS | QIF_USAGE | QIF_TIMES)

The dqb_valid field is a bit mask that is set to indicate the entries in the dqblk
structure that are valid. Currently, the kernel fills in all entries of the dqblk
structure and marks them as valid in the dqb_valid field. Unprivileged users
may retrieve only their own quotas; a privileged user (CAP_SYS_ADMIN) can
retrieve the quotas of any user.

Q_GETNEXTQUOTA (since Linux 4.6)
This operation is the same as Q_GETQUOTA, but it returns quota information
for the next ID greater than or equal to id that has a quota set.

The addr argument is a pointer to a nextdqblk structure whose fields are as for
the dqblk, except for the addition of a dqb_id field that is used to return the ID
for which quota information is being returned:

struct nextdqblk {
uint64_t dqb_bhardlimit;
uint64_t dqb_bsoftlimit;
uint64_t dqb_curspace;
uint64_t dqb_ihardlimit;
uint64_t dqb_isoftlimit;
uint64_t dqb_curinodes;
uint64_t dqb_btime;
uint64_t dqb_itime;
uint32_t dqb_valid;
uint32_t dqb_id;

};

Linux man-pages 6.16 2025-09-21 729

quotactl(2) System Calls Manual quotactl(2)

Q_SETQUOTA
Set quota information for user or group id , using the information supplied in the
dqblk structure pointed to by addr. The dqb_valid field of the dqblk structure
indicates which entries in the structure have been set by the caller. This opera-
tion supersedes the Q_SETQLIM and Q_SETUSE operations in the previous
quota interfaces. This operation requires privilege (CAP_SYS_ADMIN).

Q_GETINFO (since Linux 2.4.22)
Get information (like grace times) about quotafile. The addr argument should
be a pointer to a dqinfo structure. This structure is defined in <sys/quota.h> as
follows:

/* uint64_t is an unsigned 64-bit integer;
uint32_t is an unsigned 32-bit integer */

struct dqinfo { /* Defined since Linux 2.4.22 */
uint64_t dqi_bgrace; /* Time before block soft limit

becomes hard limit */
uint64_t dqi_igrace; /* Time before inode soft limit

becomes hard limit */
uint32_t dqi_flags; /* Flags for quotafile

(DQF_*) */
uint32_t dqi_valid;

};

/* Bits for dqi_flags */

/* Quota format QFMT_VFS_OLD */

#define DQF_ROOT_SQUASH (1 << 0) /* Root squash enabled */
/* Before Linux v4.0, this had been defined

privately as V1_DQF_RSQUASH */

/* Quota format QFMT_VFS_V0 / QFMT_VFS_V1 */

#define DQF_SYS_FILE (1 << 16) /* Quota stored in
a system file */

/* Flags in dqi_valid that indicate which fields in
dqinfo structure are valid. */

#define IIF_BGRACE 1
#define IIF_IGRACE 2
#define IIF_FLAGS 4
#define IIF_ALL (IIF_BGRACE | IIF_IGRACE | IIF_FLAGS)

The dqi_valid field in the dqinfo structure indicates the entries in the structure
that are valid. Currently, the kernel fills in all entries of the dqinfo structure and
marks them all as valid in the dqi_valid field. The id argument is ignored.

Linux man-pages 6.16 2025-09-21 730

quotactl(2) System Calls Manual quotactl(2)

Q_SETINFO (since Linux 2.4.22)
Set information about quotafile. The addr argument should be a pointer to a
dqinfo structure. The dqi_valid field of the dqinfo structure indicates the entries
in the structure that have been set by the caller. This operation supersedes the
Q_SETGRACE and Q_SETFLAGS operations in the previous quota inter-
faces. The id argument is ignored. This operation requires privilege
(CAP_SYS_ADMIN).

Q_GETFMT (since Linux 2.4.22)
Get quota format used on the specified filesystem. The addr argument should be
a pointer to a 4-byte buffer where the format number will be stored.

Q_SYNC
Update the on-disk copy of quota usages for a filesystem. For quotactl(), if spe-
cial is NULL, then all filesystems with active quotas are sync’ed. (quotactl_fd()
always sync’s only one filesystem.) In both cases, the addr and id arguments are
ignored.

Q_GETSTATS (supported up to Linux 2.4.21)
Get statistics and other generic information about the quota subsystem. The
addr argument should be a pointer to a dqstats structure in which data should be
stored. This structure is defined in <sys/quota.h>. The special and id argu-
ments are ignored.

This operation is obsolete and was removed in Linux 2.4.22. Files in
/proc/sys/fs/quota/ carry the information instead.

For XFS filesystems making use of the XFS Quota Manager (XQM), the above opera-
tions are bypassed and the following operations are used:

Q_XQUOTAON
Turn on quotas for an XFS filesystem. XFS provides the ability to turn on/off
quota limit enforcement with quota accounting. Therefore, XFS expects addr to
be a pointer to an unsigned int that contains a bitwise combination of the follow-
ing flags (defined in <xfs/xqm.h>):

XFS_QUOTA_UDQ_ACCT /* User quota accounting */
XFS_QUOTA_UDQ_ENFD /* User quota limits enforcement */
XFS_QUOTA_GDQ_ACCT /* Group quota accounting */
XFS_QUOTA_GDQ_ENFD /* Group quota limits enforcement */
XFS_QUOTA_PDQ_ACCT /* Project quota accounting */
XFS_QUOTA_PDQ_ENFD /* Project quota limits enforcement */

This operation requires privilege (CAP_SYS_ADMIN). The id argument is ig-
nored.

Q_XQUOTAOFF
Turn off quotas for an XFS filesystem. As with Q_QUOTAON, XFS filesys-
tems expect a pointer to an unsigned int that specifies whether quota accounting
and/or limit enforcement need to be turned off (using the same flags as for
Q_XQUOTAON operation). This operation requires privilege (CAP_SYS_AD-
MIN). The id argument is ignored.

Linux man-pages 6.16 2025-09-21 731

quotactl(2) System Calls Manual quotactl(2)

Q_XGETQUOTA
Get disk quota limits and current usage for user id . The addr argument is a
pointer to an fs_disk_quota structure, which is defined in <xfs/xqm.h> as fol-
lows:

/* All the blk units are in BBs (Basic Blocks) of
512 bytes. */

#define FS_DQUOT_VERSION 1 /* fs_disk_quota.d_version */

#define XFS_USER_QUOTA (1<<0) /* User quota type */
#define XFS_PROJ_QUOTA (1<<1) /* Project quota type */
#define XFS_GROUP_QUOTA (1<<2) /* Group quota type */

struct fs_disk_quota {
int8_t d_version; /* Version of this structure */
int8_t d_flags; /* XFS_{USER,PROJ,GROUP}_QUOTA */
uint16_t d_fieldmask; /* Field specifier */
uint32_t d_id; /* User, project, or group ID */
uint64_t d_blk_hardlimit; /* Absolute limit on

disk blocks */
uint64_t d_blk_softlimit; /* Preferred limit on

disk blocks */
uint64_t d_ino_hardlimit; /* Maximum # allocated

inodes */
uint64_t d_ino_softlimit; /* Preferred inode limit */
uint64_t d_bcount; /* # disk blocks owned by

the user */
uint64_t d_icount; /* # inodes owned by the user */
int32_t d_itimer; /* Zero if within inode limits */

/* If not, we refuse service */
int32_t d_btimer; /* Similar to above; for

disk blocks */
uint16_t d_iwarns; /* # warnings issued with

respect to # of inodes */
uint16_t d_bwarns; /* # warnings issued with

respect to disk blocks */
int32_t d_padding2; /* Padding - for future use */
uint64_t d_rtb_hardlimit; /* Absolute limit on realtime

(RT) disk blocks */
uint64_t d_rtb_softlimit; /* Preferred limit on RT

disk blocks */
uint64_t d_rtbcount; /* # realtime blocks owned */
int32_t d_rtbtimer; /* Similar to above; for RT

disk blocks */
uint16_t d_rtbwarns; /* # warnings issued with

respect to RT disk blocks */
int16_t d_padding3; /* Padding - for future use */

Linux man-pages 6.16 2025-09-21 732

quotactl(2) System Calls Manual quotactl(2)

char d_padding4[8]; /* Yet more padding */
};

Unprivileged users may retrieve only their own quotas; a privileged user
(CAP_SYS_ADMIN) may retrieve the quotas of any user.

Q_XGETNEXTQUOTA (since Linux 4.6)
This operation is the same as Q_XGETQUOTA, but it returns (in the
fs_disk_quota structure pointed by addr) quota information for the next ID
greater than or equal to id that has a quota set. Note that since fs_disk_quota al-
ready has q_id field, no separate structure type is needed (in contrast with
Q_GETQUOTA and Q_GETNEXTQUOTA operations)

Q_XSETQLIM
Set disk quota limits for user id . The addr argument is a pointer to an
fs_disk_quota structure. This operation requires privilege (CAP_SYS_AD-
MIN).

Q_XGETQSTAT
Returns XFS filesystem-specific quota information in the fs_quota_stat structure
pointed by addr. This is useful for finding out how much space is used to store
quota information, and also to get the quota on/off status of a given local XFS
filesystem. The fs_quota_stat structure itself is defined as follows:

#define FS_QSTAT_VERSION 1 /* fs_quota_stat.qs_version */

struct fs_qfilestat {
uint64_t qfs_ino; /* Inode number */
uint64_t qfs_nblks; /* Number of BBs

512-byte-blocks */
uint32_t qfs_nextents; /* Number of extents */

};

struct fs_quota_stat {
int8_t qs_version; /* Version number for

future changes */
uint16_t qs_flags; /* XFS_QUOTA_{U,P,G}DQ_{ACCT,ENFD} */
int8_t qs_pad; /* Unused */
struct fs_qfilestat qs_uquota; /* User quota storage

information */
struct fs_qfilestat qs_gquota; /* Group quota storage

information */
uint32_t qs_incoredqs; /* Number of dquots in core */
int32_t qs_btimelimit; /* Limit for blocks timer */
int32_t qs_itimelimit; /* Limit for inodes timer */
int32_t qs_rtbtimelimit;/* Limit for RT

blocks timer */
uint16_t qs_bwarnlimit; /* Limit for # of warnings */
uint16_t qs_iwarnlimit; /* Limit for # of warnings */

};

Linux man-pages 6.16 2025-09-21 733

quotactl(2) System Calls Manual quotactl(2)

The id argument is ignored.

Q_XGETQSTATV
Returns XFS filesystem-specific quota information in the fs_quota_statv pointed
to by addr. This version of the operation uses a structure with proper versioning
support, along with appropriate layout (all fields are naturally aligned) and
padding to avoiding special compat handling; it also provides the ability to get
statistics regarding the project quota file. The fs_quota_statv structure itself is
defined as follows:

#define FS_QSTATV_VERSION1 1 /* fs_quota_statv.qs_version */

struct fs_qfilestatv {
uint64_t qfs_ino; /* Inode number */
uint64_t qfs_nblks; /* Number of BBs

512-byte-blocks */
uint32_t qfs_nextents; /* Number of extents */
uint32_t qfs_pad; /* Pad for 8-byte alignment */

};

struct fs_quota_statv {
int8_t qs_version; /* Version for future

changes */
uint8_t qs_pad1; /* Pad for 16-bit alignment */
uint16_t qs_flags; /* XFS_QUOTA_.* flags */
uint32_t qs_incoredqs; /* Number of dquots incore */
struct fs_qfilestatv qs_uquota; /* User quota

information */
struct fs_qfilestatv qs_gquota; /* Group quota

information */
struct fs_qfilestatv qs_pquota; /* Project quota

information */
int32_t qs_btimelimit; /* Limit for blocks timer */
int32_t qs_itimelimit; /* Limit for inodes timer */
int32_t qs_rtbtimelimit; /* Limit for RT blocks

timer */
uint16_t qs_bwarnlimit; /* Limit for # of warnings */
uint16_t qs_iwarnlimit; /* Limit for # of warnings */
uint64_t qs_pad2[8]; /* For future proofing */

};

The qs_version field of the structure should be filled with the version of the
structure supported by the callee (for now, only FS_QSTAT_VERSION1 is sup-
ported). The kernel will fill the structure in accordance with version provided.
The id argument is ignored.

Q_XQUOTARM (buggy until Linux 3.16)
Free the disk space taken by disk quotas. The addr argument should be a pointer
to an unsigned int value containing flags (the same as in d_flags field of

Linux man-pages 6.16 2025-09-21 734

quotactl(2) System Calls Manual quotactl(2)

fs_disk_quota structure) which identify what types of quota should be removed.
(Note that the quota type passed in the op argument is ignored, but should re-
main valid in order to pass preliminary quotactl syscall handler checks.)

Quotas must have already been turned off. The id argument is ignored.

Q_XQUOTASYNC (since Linux 2.6.15; no-op since Linux 3.4)
This operation was an XFS quota equivalent to Q_SYNC, but it is no-op since
Linux 3.4, as sync(1) writes quota information to disk now (in addition to the
other filesystem metadata that it writes out). The special, id and addr arguments
are ignored.

RETURN VALUE
On success, quotactl() returns 0; on error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EACCES

op is Q_QUOTAON, and the quota file pointed to by addr exists, but is not a
regular file or is not on the filesystem pointed to by special.

EBUSY
op is Q_QUOTAON, but another Q_QUOTAON had already been performed.

EFAULT
addr or special is invalid.

EINVAL
op or type is invalid.

EINVAL
op is Q_QUOTAON, but the specified quota file is corrupted.

EINVAL (since Linux 5.5)
op is Q_XQUOTARM, but addr does not point to valid quota types.

ENOENT
The file specified by special or addr does not exist.

ENOSYS
The kernel has not been compiled with the CONFIG_QUOTA option.

ENOTBLK
special is not a block device.

EPERM
The caller lacked the required privilege (CAP_SYS_ADMIN) for the specified
operation.

ERANGE
op is Q_SETQUOTA, but the specified limits are out of the range allowed by
the quota format.

ESRCH
No disk quota is found for the indicated user. Quotas have not been turned on
for this filesystem.

Linux man-pages 6.16 2025-09-21 735

quotactl(2) System Calls Manual quotactl(2)

ESRCH
op is Q_QUOTAON, but the specified quota format was not found.

ESRCH
op is Q_GETNEXTQUOTA or Q_XGETNEXTQUOTA, but there is no ID
greater than or equal to id that has an active quota.

NOTES
Alternative XFS header

Instead of <xfs/xqm.h> one can use <linux/dqblk_xfs.h>, taking into account that there
are several naming discrepancies:

• Quota enabling flags (of format XFS_QUOTA_[UGP]DQ_{ACCT,ENFD}) are de-
fined without a leading "X", as FS_QUOTA_[UGP]DQ_{ACCT,ENFD}.

• The same is true for XFS_{USER,GROUP,PROJ}_QUOTA quota type flags,
which are defined as FS_{USER,GROUP,PROJ}_QUOTA.

• The dqblk_xfs.h header file defines its own XQM_USRQUOTA, XQM_GR-
PQUOTA, and XQM_PRJQUOTA constants for the available quota types, but their
values are the same as for constants without the XQM_ prefix.

quotactl() versus quotactl_fd()
The original quotactl() variant of this system call requires specifying the block device
containing the filesystem to operate on. This makes it impossible to use in cases where
the filesystem has no backing block device (e.g., tmpfs). Even when the block device
does exist, it might be difficult to locate (requires scanning /proc/self/mounts and even
some filesystem-specific parsing in the case of, for example, bcachefs). quotactl_fd()
instead works on the mount point, which avoids this limitation and is simpler to use
(since the filesystem to manipulate is typically specified by its mount point anyway).

STANDARDS
Linux.

HISTORY
quotactl_fd()

Linux 5.14.

SEE ALSO
quota(1), getrlimit(2), quotacheck(8), quotaon(8)

Linux man-pages 6.16 2025-09-21 736

read(2) System Calls Manual read(2)

NAME
read - read from a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t read(size_t count;
int fd , void buf [count], size_t count);

DESCRIPTION
read() attempts to read up to count bytes from file descriptor fd into the buffer starting
at buf .

On files that support seeking, the read operation commences at the file offset, and the
file offset is incremented by the number of bytes read. If the file offset is at or past the
end of file, no bytes are read, and read() returns zero.

If count is zero, read() may detect the errors described below. In the absence of any er-
rors, or if read() does not check for errors, a read() with a count of 0 returns zero and
has no other effects.

According to POSIX.1, if count is greater than SSIZE_MAX, the result is implementa-
tion-defined; see NOTES for the upper limit on Linux.

RETURN VALUE
On success, the number of bytes read is returned (zero indicates end of file), and the file
position is advanced by this number. It is not an error if this number is smaller than the
number of bytes requested; this may happen for example because fewer bytes are actu-
ally available right now (maybe because we were close to end-of-file, or because we are
reading from a pipe, or from a terminal), or because read() was interrupted by a signal.
See also NOTES.

On error, -1 is returned, and errno is set to indicate the error. In this case, it is left un-
specified whether the file position (if any) changes.

ERRORS
EAGAIN

The file descriptor fd refers to a file other than a socket and has been marked
nonblocking (O_NONBLOCK), and the read would block. See open(2) for fur-
ther details on the O_NONBLOCK flag.

EAGAIN or EWOULDBLOCK
The file descriptor fd refers to a socket and has been marked nonblocking
(O_NONBLOCK), and the read would block. POSIX.1-2001 allows either er-
ror to be returned for this case, and does not require these constants to have the
same value, so a portable application should check for both possibilities.

EBADF
fd is not a valid file descriptor or is not open for reading.

Linux man-pages 6.16 2025-09-21 737

read(2) System Calls Manual read(2)

EFAULT
buf is outside your accessible address space.

EINTR
The call was interrupted by a signal before any data was read; see signal(7).

EINVAL
fd is attached to an object which is unsuitable for reading; or the file was opened
with the O_DIRECT flag, and either the address specified in buf , the value
specified in count, or the file offset is not suitably aligned.

EINVAL
fd was created via a call to timerfd_create(2) and the wrong size buffer was
given to read(); see timerfd_create(2) for further information.

EIO I/O error. This will happen for example when the process is in a background
process group, tries to read from its controlling terminal, and either it is ignoring
or blocking SIGTTIN or its process group is orphaned. It may also occur when
there is a low-level I/O error while reading from a disk or tape. A further possi-
ble cause of EIO on networked filesystems is when an advisory lock had been
taken out on the file descriptor and this lock has been lost. See the Lost locks
section of fcntl(2) for further details.

EISDIR
fd refers to a directory.

Other errors may occur, depending on the object connected to fd .

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

NOTES
On Linux, read() (and similar system calls) will transfer at most 0x7ffff000
(2,147,479,552) bytes, returning the number of bytes actually transferred. (This is true
on both 32-bit and 64-bit systems.)

On NFS filesystems, reading small amounts of data will update the timestamp only the
first time, subsequent calls may not do so. This is caused by client side attribute
caching, because most if not all NFS clients leave st_atime (last file access time) up-
dates to the server, and client side reads satisfied from the client’s cache will not cause
st_atime updates on the server as there are no server-side reads. UNIX semantics can be
obtained by disabling client-side attribute caching, but in most situations this will sub-
stantially increase server load and decrease performance.

BUGS
According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with Regu-
lar File Operations"):

All of the following functions shall be atomic with respect to each other in the ef-
fects specified in POSIX.1-2008 when they operate on regular files or symbolic
links: ...

Linux man-pages 6.16 2025-09-21 738

read(2) System Calls Manual read(2)

Among the APIs subsequently listed are read() and readv(2). And among the effects
that should be atomic across threads (and processes) are updates of the file offset. How-
ever, before Linux 3.14, this was not the case: if two processes that share an open file
description (see open(2)) perform a read() (or readv(2)) at the same time, then the I/O
operations were not atomic with respect to updating the file offset, with the result that
the reads in the two processes might (incorrectly) overlap in the blocks of data that they
obtained. This problem was fixed in Linux 3.14.

SEE ALSO
close(2), fcntl(2), ioctl(2), lseek(2), open(2), pread(2), readdir(2), readlink(2), readv(2),
select(2), write(2), fread(3)

Linux man-pages 6.16 2025-09-21 739

readahead(2) System Calls Manual readahead(2)

NAME
readahead - initiate file readahead into page cache

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

ssize_t readahead(int fd , off_t offset, size_t count);

DESCRIPTION
readahead() initiates readahead on a file so that subsequent reads from that file will be
satisfied from the cache, and not block on disk I/O (assuming the readahead was initi-
ated early enough and that other activity on the system did not in the meantime flush
pages from the cache).

The fd argument is a file descriptor identifying the file which is to be read. The offset
argument specifies the starting point from which data is to be read and count specifies
the number of bytes to be read. I/O is performed in whole pages, so that offset is effec-
tively rounded down to a page boundary and bytes are read up to the next page boundary
greater than or equal to (offset+count). readahead() does not read beyond the end of
the file. The file offset of the open file description referred to by the file descriptor fd is
left unchanged.

RETURN VALUE
On success, readahead() returns 0; on failure, -1 is returned, and errno is set to indicate
the error.

ERRORS
EBADF

fd is not a valid file descriptor or is not open for reading.

EINVAL
fd does not refer to a file type to which readahead() can be applied.

VERSIONS
On some 32-bit architectures, the calling signature for this system call differs, for the
reasons described in syscall(2).

STANDARDS
Linux.

HISTORY
Linux 2.4.13, glibc 2.3.

NOTES
_FILE_OFFSET_BITS should be defined to be 64 in code that uses a pointer to reada-
head, if the code is intended to be portable to traditional 32-bit x86 and ARM platforms
where off_t’s width defaults to 32 bits.

Linux man-pages 6.16 2025-09-21 740

readahead(2) System Calls Manual readahead(2)

BUGS
readahead() attempts to schedule the reads in the background and return immediately.
However, it may block while it reads the filesystem metadata needed to locate the re-
quested blocks. This occurs frequently with ext[234] on large files using indirect blocks
instead of extents, giving the appearance that the call blocks until the requested data has
been read.

SEE ALSO
lseek(2), madvise(2), mmap(2), posix_fadvise(2), read(2)

Linux man-pages 6.16 2025-09-21 741

readdir(2) System Calls Manual readdir(2)

NAME
readdir - read directory entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_readdir, unsigned int fd ,
struct old_linux_dirent *dirp, unsigned int count);

Note: There is no definition of struct old_linux_dirent; see VERSIONS.

DESCRIPTION
This is not the function you are interested in. Look at readdir(3) for the POSIX con-
forming C library interface. This page documents the bare kernel system call interface,
which is superseded by getdents(2).

readdir() reads one old_linux_dirent structure from the directory referred to by the file
descriptor fd into the buffer pointed to by dirp. The argument count is ignored; at most
one old_linux_dirent structure is read.

The old_linux_dirent structure is declared (privately in Linux kernel file fs/readdir.c) as
follows:

struct old_linux_dirent {
unsigned long d_ino; /* inode number */
unsigned long d_offset; /* offset to this old_linux_dirent */
unsigned short d_namlen; /* length of this d_name */
char d_name[1]; /* filename (null-terminated) */

}

d_ino is an inode number. d_offset is the distance from the start of the directory to this
old_linux_dirent. d_reclen is the size of d_name, not counting the terminating null byte
('\0'). d_name is a null-terminated filename.

RETURN VALUE
On success, 1 is returned. On end of directory, 0 is returned. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EBADF

Invalid file descriptor fd .

EFAULT
Argument points outside the calling process’s address space.

EINVAL
Result buffer is too small.

ENOENT
No such directory.

Linux man-pages 6.16 2025-09-21 742

readdir(2) System Calls Manual readdir(2)

ENOTDIR
File descriptor does not refer to a directory.

VERSIONS
You will need to define the old_linux_dirent structure yourself. However, probably you
should use readdir(3) instead.

This system call does not exist on x86-64.

STANDARDS
Linux.

SEE ALSO
getdents(2), readdir(3)

Linux man-pages 6.16 2025-09-21 743

readlink(2) System Calls Manual readlink(2)

NAME
readlink, readlinkat - read value of a symbolic link

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t readlink(size_t bufsiz;
const char *restrict path,
char buf [restrict bufsiz], size_t bufsiz);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

ssize_t readlinkat(size_t bufsiz;
int dirfd , const char *restrict path,
char buf [restrict bufsiz], size_t bufsiz);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

readlink():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

readlinkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
readlink() places the contents of the symbolic link path in the buffer buf , which has
size bufsiz. readlink() does not append a terminating null byte to buf . It will (silently)
truncate the contents (to a length of bufsiz characters), in case the buffer is too small to
hold all of the contents.

readlinkat()
The readlinkat() system call operates in exactly the same way as readlink(), except for
the differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by readlink() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like readlink())

If path is absolute, then dirfd is ignored.

Since Linux 2.6.39, path can be an empty string, in which case the call operates on the
symbolic link referred to by dirfd (which should have been obtained using open(2) with
the O_PATH and O_NOFOLLOW flags).

See openat(2) for an explanation of the need for readlinkat().

Linux man-pages 6.16 2025-10-29 744

readlink(2) System Calls Manual readlink(2)

RETURN VALUE
On success, these calls return the number of bytes placed in buf . (If the returned value
equals bufsiz, then truncation may have occurred.) On error, -1 is returned and errno is
set to indicate the error.

ERRORS
EACCES

Search permission is denied for a component of the path prefix. (See also
path_resolution(7).)

EBADF
(readlinkat()) path is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

EFAULT
buf extends outside the process’s allocated address space.

EINVAL
bufsiz is not positive.

EINVAL
The named file (i.e., the final filename component of path) is not a symbolic
link.

EIO An I/O error occurred while reading from the filesystem.

ELOOP
Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG
A pathname, or a component of a pathname, was too long.

ENOENT
The named file does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component of the path prefix is not a directory.

ENOTDIR
(readlinkat()) path is relative and dirfd is a file descriptor referring to a file
other than a directory.

STANDARDS
POSIX.1-2024.

HISTORY
readlink()

4.4BSD (first appeared in 4.2BSD), POSIX.1-2001, POSIX.1-2008.

readlinkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

Up to and including glibc 2.4, the return type of readlink() was declared as int. Nowa-
days, the return type is declared as ssize_t, as (newly) required in POSIX.1-2001.

Linux man-pages 6.16 2025-10-29 745

readlink(2) System Calls Manual readlink(2)

glibc
On older kernels where readlinkat() is unavailable, the glibc wrapper function falls
back to the use of readlink(). When path is relative, glibc constructs a pathname based
on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

NOTES
Using a statically sized buffer might not provide enough room for the symbolic link con-
tents. The required size for the buffer can be obtained from the stat.st_size value re-
turned by a call to lstat(2) on the link. However, the number of bytes written by read-
link() and readlinkat() should be checked to make sure that the size of the symbolic
link did not increase between the calls. Dynamically allocating the buffer for readlink()
and readlinkat() also addresses a common portability problem when using
PATH_MAX for the buffer size, as this constant is not guaranteed to be defined per
POSIX if the system does not have such limit.

EXAMPLES
The following program allocates the buffer needed by readlink() dynamically from the
information provided by lstat(2), falling back to a buffer of size PATH_MAX in cases
where lstat(2) reports a size of zero.

#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

char *buf;
ssize_t nbytes, bufsiz;
struct stat sb;

if (argc != 2) {
fprintf(stderr, "Usage: %s <path>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (lstat(argv[1], &sb) == -1) {
perror("lstat");
exit(EXIT_FAILURE);

}

/* Add one to the link size, so that we can determine whether
the buffer returned by readlink() was truncated. */

bufsiz = sb.st_size + 1;

Linux man-pages 6.16 2025-10-29 746

readlink(2) System Calls Manual readlink(2)

/* Some magic symlinks under (for example) /proc and /sys
report 'st_size' as zero. In that case, take PATH_MAX as
a "good enough" estimate. */

if (sb.st_size == 0)
bufsiz = PATH_MAX;

buf = malloc(bufsiz);
if (buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

nbytes = readlink(argv[1], buf, bufsiz);
if (nbytes == -1) {

perror("readlink");
exit(EXIT_FAILURE);

}

/* Print only 'nbytes' of 'buf', as it doesn’t contain a terminating
null byte ('\0'). */

printf("'%s' points to '%.*s'\n", argv[1], (int) nbytes, buf);

/* If the return value was equal to the buffer size, then
the link target was larger than expected (perhaps because the
target was changed between the call to lstat() and the call to
readlink()). Warn the user that the returned target may have
been truncated. */

if (nbytes == bufsiz)
printf("(Returned buffer may have been truncated)\n");

free(buf);
exit(EXIT_SUCCESS);

}

SEE ALSO
readlink(1), lstat(2), stat(2), symlink(2), realpath(3), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 747

readv(2) System Calls Manual readv(2)

NAME
readv, writev, preadv, pwritev, preadv2, pwritev2 - read or write data into multiple
buffers

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/uio.h>

ssize_t readv(int fd , const struct iovec *iov, int iovcnt);
ssize_t writev(int fd , const struct iovec *iov, int iovcnt);

ssize_t preadv(int fd , const struct iovec *iov, int iovcnt,
off_t offset);

ssize_t pwritev(int fd , const struct iovec *iov, int iovcnt,
off_t offset);

ssize_t preadv2(int fd , const struct iovec *iov, int iovcnt,
off_t offset, int flags);

ssize_t pwritev2(int fd , const struct iovec *iov, int iovcnt,
off_t offset, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

preadv(), pwritev():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The readv() system call reads iovcnt buffers from the file associated with the file de-
scriptor fd into the buffers described by iov ("scatter input").

The writev() system call writes iovcnt buffers of data described by iov to the file associ-
ated with the file descriptor fd ("gather output").

The pointer iov points to an array of iovec structures, described in iovec(3type).

The readv() system call works just like read(2) except that multiple buffers are filled.

The writev() system call works just like write(2) except that multiple buffers are written
out.

Buffers are processed in array order. This means that readv() completely fills iov[0] be-
fore proceeding to iov[1], and so on. (If there is insufficient data, then not all buffers
pointed to by iov may be filled.) Similarly, writev() writes out the entire contents of
iov[0] before proceeding to iov[1], and so on.

The data transfers performed by readv() and writev() are atomic: the data written by
writev() is written as a single block that is not intermingled with output from writes in
other processes; analogously, readv() is guaranteed to read a contiguous block of data
from the file, regardless of read operations performed in other threads or processes that
have file descriptors referring to the same open file description (see open(2)).

Linux man-pages 6.16 2025-10-29 748

readv(2) System Calls Manual readv(2)

preadv() and pwritev()
The preadv() system call combines the functionality of readv() and pread(2). It per-
forms the same task as readv(), but adds a fourth argument, offset, which specifies the
file offset at which the input operation is to be performed.

The pwritev() system call combines the functionality of writev() and pwrite(2). It per-
forms the same task as writev(), but adds a fourth argument, offset, which specifies the
file offset at which the output operation is to be performed.

The file offset is not changed by these system calls. The file referred to by fd must be
capable of seeking.

preadv2() and pwritev2()
These system calls are similar to preadv() and pwritev() calls, but add a fifth argument,
flags, which modifies the behavior on a per-call basis.

Unlike preadv() and pwritev(), if the offset argument is -1, then the current file offset is
used and updated.

The flags argument contains a bitwise OR of zero or more of the following flags:

RWF_DSYNC (since Linux 4.7)
Provide a per-write equivalent of the O_DSYNC open(2) flag. This flag is
meaningful only for pwritev2(), and its effect applies only to the data range writ-
ten by the system call.

RWF_HIPRI (since Linux 4.6)
High priority read/write. Allows block-based filesystems to use polling of the
device, which provides lower latency, but may use additional resources. (Cur-
rently, this feature is usable only on a file descriptor opened using the O_DI-
RECT flag.)

RWF_SYNC (since Linux 4.7)
Provide a per-write equivalent of the O_SYNC open(2) flag. This flag is mean-
ingful only for pwritev2(), and its effect applies only to the data range written by
the system call.

RWF_NOWAIT (since Linux 4.14)
Do not wait for data which is not immediately available. If this flag is specified,
the preadv2() system call will return instantly if it would have to read data from
the backing storage or wait for a lock. If some data was successfully read, it will
return the number of bytes read. If no bytes were read, it will return -1 and set
errno to EAGAIN (but see BUGS). Currently, this flag is meaningful only for
preadv2().

RWF_APPEND (since Linux 4.16)
Provide a per-write equivalent of the O_APPEND open(2) flag. This flag is
meaningful only for pwritev2(), and its effect applies only to the data range writ-
ten by the system call. The offset argument does not affect the write operation;
the data is always appended to the end of the file. However, if the offset argu-
ment is -1, the current file offset is updated.

Linux man-pages 6.16 2025-10-29 749

readv(2) System Calls Manual readv(2)

RWF_NOAPPEND (since Linux 6.9)
Do not honor the O_APPEND open(2) flag. This flag is meaningful only for
pwritev2(). Historically, Linux honored O_APPEND flag if set and ignored the
offset argument, which is a bug. For pwritev2(), the offset argument is honored
as expected if RWF_NOAPPEND flag is set, the same as if O_APPEND flag
were not set.

RWF_ATOMIC (since Linux 6.11)
Requires that writes to regular files in block-based filesystems be issued with
torn-write protection. Torn-write protection means that for a power or any other
hardware failure, all or none of the data from the write will be stored, but never a
mix of old and new data. This flag is meaningful only for pwritev2(), and its ef-
fect applies only to the data range written by the system call. The total write
length must be power-of-2 and must be sized in the range
[stx_atomic_write_unit_min, stx_atomic_write_unit_max]. The write must be at
a naturally-aligned offset within the file with respect to the total write length.
For example, a write of length 32KiB at a file offset of 32KiB is permitted, how-
ever a write of length 32KiB at a file offset of 48KiB is not permitted. The upper
limit of iovcnt for pwritev2() is given by the value in stx_atomic_write_seg-
ments_max. Torn-write protection only works with O_DIRECT flag, that is,
buffered writes are not supported. To guarantee consistency from the write be-
tween a file’s in-core state with the storage device, O_SYNC or O_DSYNC
must be specified for open(2). The same synchronized I/O guarantees as de-
scribed in open(2) are provided when these flags or their equivalent flags and
system calls are used (e.g., if RWF_SYNC is specified for pwritev2())

RWF_DONTCACHE (since Linux 6.14)
Reads or writes to a regular file will prune instantiated page cache content when
the operation completes. This is different than normal buffered I/O, where the
data usually remains in cache until such time that it gets reclaimed due to mem-
ory pressure. If ranges of the read or written I/O were already in cache before
this read or write, then those ranges will not be pruned at I/O completion time.

Additionally, any range dirtied by a write operation with RWF_DONTCACHE
set will get kicked off for writeback. This is similar to calling sync_file_range(2)
with SYNC_FILE_RANGE_WRITE to start writeback on the given range.
RWF_DONTCACHE is a hint, or best effort, where no hard guarantees are
given on the state of the page cache once the operation completes.

If used on a file system or block device that doesn’t support it, it will return -1,
and errno will be set to EOPNOTSUPP.

RETURN VALUE
On success, readv(), preadv(), and preadv2() return the number of bytes read;
writev(), pwritev(), and pwritev2() return the number of bytes written.

Note that it is not an error for a successful call to transfer fewer bytes than requested
(see read(2) and write(2)).

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-10-29 750

readv(2) System Calls Manual readv(2)

ERRORS
The errors are as given for read(2) and write(2). Furthermore, preadv(), preadv2(),
pwritev(), and pwritev2() can also fail for the same reasons as lseek(2). Additionally,
the following errors are defined:

EINVAL
The sum of the iov_len values overflows an ssize_t value.

EINVAL
If RWF_ATOMIC is specified, the combination of the sum of the iov_len val-
ues and the offset value does not comply with the length and offset torn-write
protection rules.

EINVAL
The vector count, iovcnt, is less than zero or greater than the permitted maxi-
mum. If RWF_ATOMIC is specified, this maximum is given by the
stx_atomic_write_segments_max value from statx.

EOPNOTSUPP
RWF_DONTCACHE was set in flags and the file doesn’t support it.

EOPNOTSUPP
An unknown flag is specified in flags.

VERSIONS
C library/kernel differences

The raw preadv() and pwritev() system calls have call signatures that differ slightly
from that of the corresponding GNU C library wrapper functions shown in the SYNOP-
SIS. The final argument, offset, is unpacked by the wrapper functions into two argu-
ments in the system calls:

unsigned long pos_l, unsigned long pos

These arguments contain, respectively, the low order and high order 32 bits of offset.

STANDARDS
readv()
writev()

POSIX.1-2024.

preadv()
pwritev()

BSD.

preadv2()
pwritev2()

Linux.

HISTORY
readv()
writev()

POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

preadv(), pwritev(): Linux 2.6.30, glibc 2.10.

Linux man-pages 6.16 2025-10-29 751

readv(2) System Calls Manual readv(2)

preadv2(), pwritev2(): Linux 4.6, glibc 2.26.

Historical C library/kernel differences
To deal with the fact that IOV_MAX was so low on early versions of Linux, the glibc
wrapper functions for readv() and writev() did some extra work if they detected that the
underlying kernel system call failed because this limit was exceeded. In the case of
readv(), the wrapper function allocated a temporary buffer large enough for all of the
items specified by iov, passed that buffer in a call to read(2), copied data from the buffer
to the locations specified by the iov_base fields of the elements of iov, and then freed the
buffer. The wrapper function for writev() performed the analogous task using a tempo-
rary buffer and a call to write(2).

The need for this extra effort in the glibc wrapper functions went away with Linux 2.2
and later. However, glibc continued to provide this behavior until glibc 2.10. Starting
with glibc 2.9, the wrapper functions provide this behavior only if the library detects that
the system is running a Linux kernel older than Linux 2.6.18 (an arbitrarily selected ker-
nel version). And since glibc 2.20 (which requires a minimum of Linux 2.6.32), the
glibc wrapper functions always just directly invoke the system calls.

NOTES
POSIX.1 allows an implementation to place a limit on the number of items that can be
passed in iov. An implementation can advertise its limit by defining IOV_MAX in
<limits.h> or at run time via the return value from sysconf(_SC_IOV_MAX). On mod-
ern Linux systems, the limit is 1024. Back in Linux 2.0 days, this limit was 16.

BUGS
Linux 5.9 and Linux 5.10 have a bug where preadv2() with the RWF_NOWAIT flag
may return 0 even when not at end of file.

EXAMPLES
The following code sample demonstrates the use of writev():

char *str0 = "hello ";
char *str1 = "world\n";
ssize_t nwritten;
struct iovec iov[2];

iov[0].iov_base = str0;
iov[0].iov_len = strlen(str0);
iov[1].iov_base = str1;
iov[1].iov_len = strlen(str1);

nwritten = writev(STDOUT_FILENO, iov, 2);

SEE ALSO
pread(2), read(2), write(2)

Linux man-pages 6.16 2025-10-29 752

reboot(2) System Calls Manual reboot(2)

NAME
reboot - reboot or enable/disable Ctrl-Alt-Del

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* Since Linux 2.1.30 there are symbolic names LINUX_REBOOT_*

for the constants and a fourth argument to the call: */

#include <linux/reboot.h> /* Definition of LINUX_REBOOT_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_reboot, int magic, int magic2, int op, void *arg);

/* Under glibc and most alternative libc’s (including uclibc, dietlibc,
musl and a few others), some of the constants involved have gotten
symbolic names RB_*, and the library call is a 1-argument
wrapper around the system call: */

#include <sys/reboot.h> /* Definition of RB_* constants */
#include <unistd.h>

int reboot(int op);

DESCRIPTION
The reboot() call reboots the system, or enables/disables the reboot keystroke (abbrevi-
ated CAD, since the default is Ctrl-Alt-Delete; it can be changed using loadkeys(1)).

This system call fails (with the error EINVAL) unless magic equals LINUX_RE-
BOOT_MAGIC1 (that is, 0xfee1dead) and magic2 equals LINUX_RE-
BOOT_MAGIC2 (that is, 0x28121969). However, since Linux 2.1.17 also
LINUX_REBOOT_MAGIC2A (that is, 0x05121996) and since Linux 2.1.97 also
LINUX_REBOOT_MAGIC2B (that is, 0x16041998) and since Linux 2.5.71 also
LINUX_REBOOT_MAGIC2C (that is, 0x20112000) are permitted as values for
magic2. (The hexadecimal values of these constants are meaningful.)

The op argument can have the following values:

LINUX_REBOOT_CMD_CAD_OFF
(RB_DISABLE_CAD, 0). CAD is disabled. This means that the CAD key-
stroke will cause a SIGINT signal to be sent to init (process 1), whereupon this
process may decide upon a proper action (maybe: kill all processes, sync, re-
boot).

LINUX_REBOOT_CMD_CAD_ON
(RB_ENABLE_CAD, 0x89abcdef). CAD is enabled. This means that the
CAD keystroke will immediately cause the action associated with LINUX_RE-
BOOT_CMD_RESTART.

LINUX_REBOOT_CMD_HALT
(RB_HALT_SYSTEM, 0xcdef0123; since Linux 1.1.76). The message "Sys-
tem halted." is printed, and the system is halted. Control is given to the ROM
monitor, if there is one. If not preceded by a sync(2), data will be lost.

Linux man-pages 6.16 2025-09-21 753

reboot(2) System Calls Manual reboot(2)

LINUX_REBOOT_CMD_KEXEC
(RB_KEXEC, 0x45584543, since Linux 2.6.13). Execute a kernel that has been
loaded earlier with kexec_load(2). This option is available only if the kernel was
configured with CONFIG_KEXEC.

LINUX_REBOOT_CMD_POWER_OFF
(RB_POWER_OFF, 0x4321fedc; since Linux 2.1.30). The message "Power
down." is printed, the system is stopped, and all power is removed from the sys-
tem, if possible. If not preceded by a sync(2), data will be lost.

LINUX_REBOOT_CMD_RESTART
(RB_AUTOBOOT, 0x1234567). The message "Restarting system." is printed,
and a default restart is performed immediately. If not preceded by a sync(2),
data will be lost.

LINUX_REBOOT_CMD_RESTART2
(0xa1b2c3d4; since Linux 2.1.30). The message "Restarting system with com-
mand '%s'" is printed, and a restart (using the command string given in arg) is
performed immediately. If not preceded by a sync(2), data will be lost.

LINUX_REBOOT_CMD_SW_SUSPEND
(RB_SW_SUSPEND, 0xd000fce1; since Linux 2.5.18). The system is sus-
pended (hibernated) to disk. This option is available only if the kernel was con-
figured with CONFIG_HIBERNATION.

Only the superuser may call reboot().

The precise effect of the above actions depends on the architecture. For the i386 archi-
tecture, the additional argument does not do anything at present (2.1.122), but the type
of reboot can be determined by kernel command-line arguments ("reboot=...") to be ei-
ther warm or cold, and either hard or through the BIOS.

Behavior inside PID namespaces
Since Linux 3.4, if reboot() is called from a PID namespace other than the initial PID
namespace with one of the op values listed below, it performs a "reboot" of that name-
space: the "init" process of the PID namespace is immediately terminated, with the ef-
fects described in pid_namespaces(7).

The values that can be supplied in op when calling reboot() in this case are as follows:

LINUX_REBOOT_CMD_RESTART
LINUX_REBOOT_CMD_RESTART2

The "init" process is terminated, and wait(2) in the parent process reports that the
child was killed with a SIGHUP signal.

LINUX_REBOOT_CMD_POWER_OFF
LINUX_REBOOT_CMD_HALT

The "init" process is terminated, and wait(2) in the parent process reports that the
child was killed with a SIGINT signal.

For the other op values, reboot() returns -1 and errno is set to EINVAL.

Linux man-pages 6.16 2025-09-21 754

reboot(2) System Calls Manual reboot(2)

RETURN VALUE
For the values of op that stop or restart the system, a successful call to reboot() does not
return. For the other op values, zero is returned on success. In all cases, -1 is returned
on failure, and errno is set to indicate the error.

ERRORS
EFAULT

Problem with getting user-space data under LINUX_RE-
BOOT_CMD_RESTART2.

EINVAL
Bad magic numbers or op.

EPERM
The calling process has insufficient privilege to call reboot(); the caller must
have the CAP_SYS_BOOT inside its user namespace.

STANDARDS
Linux.

SEE ALSO
systemctl(1), systemd(1), kexec_load(2), sync(2), bootparam(7), capabilities(7), ctrlalt-
del(8), halt(8), shutdown(8)

Linux man-pages 6.16 2025-09-21 755

recv(2) System Calls Manual recv(2)

NAME
recv, recvfrom, recvmsg - receive a message from a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

ssize_t recv(size_t size;
int sockfd , void buf [size], size_t size,
int flags);

ssize_t recvfrom(size_t size;
int sockfd , void buf [restrict size], size_t size,
int flags,
struct sockaddr *_Nullable restrict src_addr,
socklen_t *_Nullable restrict addrlen);

ssize_t recvmsg(int sockfd , struct msghdr *msg, int flags);

DESCRIPTION
The recv(), recvfrom(), and recvmsg() calls are used to receive messages from a socket.
They may be used to receive data on both connectionless and connection-oriented sock-
ets. This page first describes common features of all three system calls, and then de-
scribes the differences between the calls.

The only difference between recv() and read(2) is the presence of flags. With a zero
flags argument, recv() is generally equivalent to read(2) (but see NOTES). Also, the
following call

recv(sockfd, buf, size, flags);

is equivalent to

recvfrom(sockfd, buf, size, flags, NULL, NULL);

All three calls return the size of the message on successful completion. If a message is
too long to fit in the supplied buffer, excess bytes may be discarded depending on the
type of socket the message is received from.

If no messages are available at the socket, the receive calls wait for a message to arrive,
unless the socket is nonblocking (see fcntl(2)), in which case the value -1 is returned
and errno is set to EAGAIN or EWOULDBLOCK. The receive calls normally return
any data available, up to the requested amount, rather than waiting for receipt of the full
amount requested.

An application can use select(2), poll(2), or epoll(7) to determine when more data ar-
rives on a socket.

The flags argument
The flags argument is formed by ORing one or more of the following values:

MSG_CMSG_CLOEXEC (recvmsg() only; since Linux 2.6.23)
Set the close-on-exec flag for the file descriptor received via a UNIX domain file
descriptor using the SCM_RIGHTS operation (described in unix(7)). This flag
is useful for the same reasons as the O_CLOEXEC flag of open(2).

Linux man-pages 6.16 2025-10-29 756

recv(2) System Calls Manual recv(2)

MSG_DONTWAIT (since Linux 2.2)
Enables nonblocking operation; if the operation would block, the call fails with
EAGAIN or EWOULDBLOCK. This provides similar behavior to setting the
O_NONBLOCK flag (via the fcntl(2) F_SETFL operation), but differs in that
MSG_DONTWAIT is a per-call option, whereas O_NONBLOCK is a setting
on the open file description (see open(2)), which will affect all threads in the
calling process as well as other processes that hold file descriptors referring to
the same open file description.

MSG_ERRQUEUE (since Linux 2.2)
This flag specifies that queued errors should be received from the socket error
queue. The error is passed in an ancillary message with a type dependent on the
protocol (for IPv4 IP_RECVERR). The user should supply a buffer of suffi-
cient size. See cmsg(3) and ip(7) for more information. The payload of the orig-
inal packet that caused the error is passed as normal data via msg_iovec. The
original destination address of the datagram that caused the error is supplied via
msg_name.

The error is supplied in a sock_extended_err structure:

#define SO_EE_ORIGIN_NONE 0
#define SO_EE_ORIGIN_LOCAL 1
#define SO_EE_ORIGIN_ICMP 2
#define SO_EE_ORIGIN_ICMP6 3

struct sock_extended_err
{

uint32_t ee_errno; /* Error number */
uint8_t ee_origin; /* Where the error originated */
uint8_t ee_type; /* Type */
uint8_t ee_code; /* Code */
uint8_t ee_pad; /* Padding */
uint32_t ee_info; /* Additional information */
uint32_t ee_data; /* Other data */
/* More data may follow */

};

struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

ee_errno contains the errno number of the queued error. ee_origin is the origin
code of where the error originated. The other fields are protocol-specific. The
macro SO_EE_OFFENDER returns a pointer to the address of the network ob-
ject where the error originated from given a pointer to the ancillary message. If
this address is not known, the sa_family member of the sockaddr contains
AF_UNSPEC and the other fields of the sockaddr are undefined. The payload
of the packet that caused the error is passed as normal data.

For local errors, no address is passed (this can be checked with the cmsg_len
member of the cmsghdr). For error receives, the MSG_ERRQUEUE flag is set
in the msghdr. After an error has been passed, the pending socket error is

Linux man-pages 6.16 2025-10-29 757

recv(2) System Calls Manual recv(2)

regenerated based on the next queued error and will be passed on the next socket
operation.

MSG_OOB
This flag requests receipt of out-of-band data that would not be received in the
normal data stream. Some protocols place expedited data at the head of the nor-
mal data queue, and thus this flag cannot be used with such protocols.

MSG_PEEK
This flag causes the receive operation to return data from the beginning of the re-
ceive queue without removing that data from the queue. Thus, a subsequent re-
ceive call will return the same data.

MSG_TRUNC (since Linux 2.2)
For raw (AF_PACKET), Internet datagram (since Linux 2.4.27/2.6.8), netlink
(since Linux 2.6.22), and UNIX datagram as well as sequenced-packet (since
Linux 3.4) sockets: return the real size of the packet or datagram, even when it
was longer than the passed buffer.

For use with Internet stream sockets, see tcp(7).

MSG_WAITALL (since Linux 2.2)
This flag requests that the operation block until the full request is satisfied.
However, the call may still return less data than requested if a signal is caught,
an error or disconnect occurs, or the next data to be received is of a different type
than that returned. This flag has no effect for datagram sockets.

recvfrom()
recvfrom() places the received message into the buffer buf . The caller must specify the
size of the buffer in size.

If src_addr is not NULL, and the underlying protocol provides the source address of the
message, that source address is placed in the buffer pointed to by src_addr. In this case,
addrlen is a value-result argument. Before the call, it should be initialized to the size of
the buffer associated with src_addr. Upon return, addrlen is updated to contain the ac-
tual size of the source address. The returned address is truncated if the buffer provided
is too small; in this case, addrlen will return a value greater than was supplied to the
call.

If the caller is not interested in the source address, src_addr and addrlen should be
specified as NULL.

recv()
The recv() call is normally used only on a connected socket (see connect(2)). It is
equivalent to the call:

recvfrom(fd, buf, size, flags, NULL, NULL);

recvmsg()
The recvmsg() call uses a msghdr structure to minimize the number of directly supplied
arguments. This structure is defined as follows in <sys/socket.h>:

struct msghdr {
void *msg_name; /* Optional address */

Linux man-pages 6.16 2025-10-29 758

recv(2) System Calls Manual recv(2)

socklen_t msg_namelen; /* Size of address */
struct iovec *msg_iov; /* Scatter/gather array */
size_t msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* Ancillary data, see below */
size_t msg_controllen; /* Ancillary data buffer size */
int msg_flags; /* Flags on received message */

};

The msg_name field points to a caller-allocated buffer that is used to return the source
address if the socket is unconnected. The caller should set msg_namelen to the size of
this buffer before this call; upon return from a successful call, msg_namelen will contain
the size of the returned address. If the application does not need to know the source ad-
dress, msg_name can be specified as NULL.

The fields msg_iov and msg_iovlen describe scatter-gather locations, as discussed in
readv(2).

The field msg_control, which has size msg_controllen, points to a buffer for other proto-
col control-related messages or miscellaneous ancillary data. When recvmsg() is called,
msg_controllen should contain the size of the available buffer in msg_control; upon re-
turn from a successful call it will contain the size of the control message sequence.

The messages are of the form:

struct cmsghdr {
size_t cmsg_len; /* Data byte count, including header

(type is socklen_t in POSIX) */
int cmsg_level; /* Originating protocol */
int cmsg_type; /* Protocol-specific type */

/* followed by
unsigned char cmsg_data[]; */

};

Ancillary data should be accessed only by the macros defined in cmsg(3).

As an example, Linux uses this ancillary data mechanism to pass extended errors, IP op-
tions, or file descriptors over UNIX domain sockets. For further information on the use
of ancillary data in various socket domains, see unix(7) and ip(7).

The msg_flags field in the msghdr is set on return of recvmsg(). It can contain several
flags:

MSG_EOR
indicates end-of-record; the data returned completed a record (generally, used
with sockets of type SOCK_SEQPACKET).

MSG_TRUNC
indicates that the trailing portion of a datagram was discarded because the data-
gram was larger than the buffer supplied.

MSG_CTRUNC
indicates that some control data was discarded due to lack of space in the buffer
for ancillary data.

Linux man-pages 6.16 2025-10-29 759

recv(2) System Calls Manual recv(2)

MSG_OOB
is returned to indicate that expedited or out-of-band data was received.

MSG_ERRQUEUE
indicates that no data was received but an extended error from the socket error
queue.

MSG_CMSG_CLOEXEC (since Linux 2.6.23)
indicates that MSG_CMSG_CLOEXEC was specified in the flags argument of
recvmsg().

RETURN VALUE
These calls return the number of bytes received, or -1 if an error occurred. In the event
of an error, errno is set to indicate the error.

When a stream socket peer has performed an orderly shutdown, the return value will be
0 (the traditional "end-of-file" return).

Datagram sockets in various domains (e.g., the UNIX and Internet domains) permit
zero-size datagrams. When such a datagram is received, the return value is 0.

The value 0 may also be returned if the requested number of bytes to receive from a
stream socket was 0.

ERRORS
These are some standard errors generated by the socket layer. Additional errors may be
generated and returned from the underlying protocol modules; see their manual pages.

EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and the receive operation would block, or a
receive timeout had been set and the timeout expired before data was received.
POSIX.1 allows either error to be returned for this case, and does not require
these constants to have the same value, so a portable application should check
for both possibilities.

EBADF
The argument sockfd is an invalid file descriptor.

ECONNREFUSED
A remote host refused to allow the network connection (typically because it is
not running the requested service).

EFAULT
The receive buffer pointer(s) point outside the process’s address space.

EINTR
The receive was interrupted by delivery of a signal before any data was avail-
able; see signal(7).

EINVAL
Invalid argument passed.

ENOMEM
Could not allocate memory for recvmsg().

Linux man-pages 6.16 2025-10-29 760

recv(2) System Calls Manual recv(2)

ENOTCONN
The socket is associated with a connection-oriented protocol and has not been
connected (see connect(2) and accept(2)).

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

VERSIONS
According to POSIX.1, the msg_controllen field of the msghdr structure should be
typed as socklen_t, and the msg_iovlen field should be typed as int, but glibc currently
types both as size_t.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.2BSD.

POSIX.1 describes only the MSG_OOB, MSG_PEEK, and MSG_WAITALL flags.

NOTES
If a zero-size datagram is pending, read(2) and recv() with a flags argument of zero pro-
vide different behavior. In this circumstance, read(2) has no effect (the datagram re-
mains pending), while recv() consumes the pending datagram.

See recvmmsg(2) for information about a Linux-specific system call that can be used to
receive multiple datagrams in a single call.

EXAMPLES
An example of the use of recvfrom() is shown in getaddrinfo(3).

SEE ALSO
fcntl(2), getsockopt(2), read(2), recvmmsg(2), select(2), shutdown(2), socket(2),
cmsg(3), sockatmark(3), ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)

Linux man-pages 6.16 2025-10-29 761

recvmmsg(2) System Calls Manual recvmmsg(2)

NAME
recvmmsg - receive multiple messages on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/socket.h>

int recvmmsg(unsigned int n;
int sockfd , struct mmsghdr msgvec[n], unsigned int n,
int flags, struct timespec *timeout);

DESCRIPTION
The recvmmsg() system call is an extension of recvmsg(2) that allows the caller to re-
ceive multiple messages from a socket using a single system call. (This has perfor-
mance benefits for some applications.) A further extension over recvmsg(2) is support
for a timeout on the receive operation.

The sockfd argument is the file descriptor of the socket to receive data from.

The msgvec argument is a pointer to an array of mmsghdr structures. The size of this
array is specified in n.

The mmsghdr structure is defined in <sys/socket.h> as:

struct mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of received bytes for header */

};

The msg_hdr field is a msghdr structure, as described in recvmsg(2). The msg_len field
is the number of bytes returned for the message in the entry. This field has the same
value as the return value of a single recvmsg(2) on the header.

The flags argument contains flags ORed together. The flags are the same as docu-
mented for recvmsg(2), with the following addition:

MSG_WAITFORONE (since Linux 2.6.34)
Turns on MSG_DONTWAIT after the first message has been received.

The timeout argument points to a struct timespec (see clock_gettime(2)) defining a time-
out (seconds plus nanoseconds) for the receive operation (but see BUGS!). (This inter-
val will be rounded up to the system clock granularity, and kernel scheduling delays
mean that the blocking interval may overrun by a small amount.) If timeout is NULL,
then the operation blocks indefinitely.

A blocking recvmmsg() call blocks until n messages have been received or until the
timeout expires. A nonblocking call reads as many messages as are available (up to the
limit specified by n) and returns immediately.

On return from recvmmsg(), successive elements of msgvec are updated to contain in-
formation about each received message: msg_len contains the size of the received mes-
sage; the subfields of msg_hdr are updated as described in recvmsg(2). The return value

Linux man-pages 6.16 2025-08-20 762

recvmmsg(2) System Calls Manual recvmmsg(2)

of the call indicates the number of elements of msgvec that have been updated.

RETURN VALUE
On success, recvmmsg() returns the number of messages received in msgvec; on error,
-1 is returned, and errno is set to indicate the error.

ERRORS
Errors are as for recvmsg(2). In addition, the following error can occur:

EINVAL
timeout is invalid.

See also BUGS.

STANDARDS
Linux.

HISTORY
Linux 2.6.33, glibc 2.12.

BUGS
The timeout argument does not work as intended. The timeout is checked only after the
receipt of each datagram, so that if up to n-1 datagrams are received before the timeout
expires, but then no further datagrams are received, the call will block forever.

If an error occurs after at least one message has been received, the call succeeds, and re-
turns the number of messages received. The error code is expected to be returned on a
subsequent call to recvmmsg(). In the current implementation, however, the error code
can be overwritten in the meantime by an unrelated network event on a socket, for ex-
ample an incoming ICMP packet.

EXAMPLES
The following program uses recvmmsg() to receive multiple messages on a socket and
stores them in multiple buffers. The call returns if all buffers are filled or if the timeout
specified has expired.

The following snippet periodically generates UDP datagrams containing a random num-
ber:

$ while true; do echo $RANDOM > /dev/udp/127.0.0.1/1234;
sleep 0.25; done

These datagrams are read by the example application, which can give the following out-
put:

$./a.out
5 messages received
1 11782
2 11345
3 304
4 13514
5 28421

Linux man-pages 6.16 2025-08-20 763

recvmmsg(2) System Calls Manual recvmmsg(2)

Program source

#define _GNU_SOURCE
#include <arpa/inet.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <time.h>

int
main(void)
{
#define VLEN 10
#define BUFSIZE 200
#define TIMEOUT 1

int sockfd, retval;
char bufs[VLEN][BUFSIZE+1];
struct iovec iovecs[VLEN];
struct mmsghdr msgs[VLEN];
struct timespec timeout;
struct sockaddr_in addr;

sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd == -1) {

perror("socket()");
exit(EXIT_FAILURE);

}

addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(1234);
if (bind(sockfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

perror("bind()");
exit(EXIT_FAILURE);

}

memset(msgs, 0, sizeof(msgs));
for (size_t i = 0; i < VLEN; i++) {

iovecs[i].iov_base = bufs[i];
iovecs[i].iov_len = BUFSIZE;
msgs[i].msg_hdr.msg_iov = &iovecs[i];
msgs[i].msg_hdr.msg_iovlen = 1;

}

timeout.tv_sec = TIMEOUT;

Linux man-pages 6.16 2025-08-20 764

recvmmsg(2) System Calls Manual recvmmsg(2)

timeout.tv_nsec = 0;

retval = recvmmsg(sockfd, msgs, VLEN, 0, &timeout);
if (retval == -1) {

perror("recvmmsg()");
exit(EXIT_FAILURE);

}

printf("%d messages received\n", retval);
for (size_t i = 0; i < retval; i++) {

bufs[i][msgs[i].msg_len] = 0;
printf("%zu %s", i+1, bufs[i]);

}
exit(EXIT_SUCCESS);

}

SEE ALSO
clock_gettime(2), recvmsg(2), sendmmsg(2), sendmsg(2), socket(2), socket(7)

Linux man-pages 6.16 2025-08-20 765

remap_file_pages(2) System Calls Manual remap_file_pages(2)

NAME
remap_file_pages - create a nonlinear file mapping

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/mman.h>

[[deprecated]] int remap_file_pages(size_t size;
void addr[size], size_t size,
int prot, size_t pgoff , int flags);

DESCRIPTION
Note: this system call was marked as deprecated starting with Linux 3.16. In Linux 4.0,
the implementation was replaced by a slower in-kernel emulation. Those few applica-
tions that use this system call should consider migrating to alternatives. This change
was made because the kernel code for this system call was complex, and it is believed to
be little used or perhaps even completely unused. While it had some use cases in data-
base applications on 32-bit systems, those use cases don’t exist on 64-bit systems.

The remap_file_pages() system call is used to create a nonlinear mapping, that is, a
mapping in which the pages of the file are mapped into a nonsequential order in mem-
ory. The advantage of using remap_file_pages() over using repeated calls to mmap(2)
is that the former approach does not require the kernel to create additional VMA (Vir-
tual Memory Area) data structures.

To create a nonlinear mapping we perform the following steps:

1.
Use mmap(2) to create a mapping (which is initially linear). This mapping must be
created with the MAP_SHARED flag.

2.
Use one or more calls to remap_file_pages() to rearrange the correspondence be-
tween the pages of the mapping and the pages of the file. It is possible to map the
same page of a file into multiple locations within the mapped region.

The pgoff and size arguments specify the region of the file that is to be relocated within
the mapping: pgoff is a file offset in units of the system page size; size is the length of
the region in bytes.

The addr argument serves two purposes. First, it identifies the mapping whose pages
we want to rearrange. Thus, addr must be an address that falls within a region previ-
ously mapped by a call to mmap(2). Second, addr specifies the address at which the file
pages identified by pgoff and size will be placed.

The values specified in addr and size should be multiples of the system page size. If
they are not, then the kernel rounds both values down to the nearest multiple of the page
size.

The prot argument must be specified as 0.

The flags argument has the same meaning as for mmap(2), but all flags other than

Linux man-pages 6.16 2025-09-07 766

remap_file_pages(2) System Calls Manual remap_file_pages(2)

MAP_NONBLOCK are ignored.

RETURN VALUE
On success, remap_file_pages() returns 0. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS
EINVAL

addr does not refer to a valid mapping created with the MAP_SHARED flag.

EINVAL
addr, size, prot, or pgoff is invalid.

STANDARDS
Linux.

HISTORY
Linux 2.5.46, glibc 2.3.3.

NOTES
Since Linux 2.6.23, remap_file_pages() creates non-linear mappings only on in-mem-
ory filesystems such as tmpfs(5), hugetlbfs or ramfs. On filesystems with a backing
store, remap_file_pages() is not much more efficient than using mmap(2) to adjust
which parts of the file are mapped to which addresses.

SEE ALSO
getpagesize(2), mmap(2), mmap2(2), mprotect(2), mremap(2), msync(2)

Linux man-pages 6.16 2025-09-07 767

removexattr(2) System Calls Manual removexattr(2)

NAME
removexattr, lremovexattr, fremovexattr - remove an extended attribute

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

int removexattr(const char *path, const char *name);
int lremovexattr(const char *path, const char *name);
int fremovexattr(int fd , const char *name);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories, sym-
bolic links, etc.). They are extensions to the normal attributes which are associated with
all inodes in the system (i.e., the stat(2) data). A complete overview of extended attrib-
utes concepts can be found in xattr(7).

removexattr() removes the extended attribute identified by name and associated with
the given path in the filesystem.

lremovexattr() is identical to removexattr(), except in the case of a symbolic link,
where the extended attribute is removed from the link itself, not the file that it refers to.

fremovexattr() is identical to removexattr(), only the extended attribute is removed
from the open file referred to by fd (as returned by open(2)) in place of path.

An extended attribute name is a null-terminated string. The name includes a namespace
prefix; there may be several, disjoint namespaces associated with an individual inode.

RETURN VALUE
On success, zero is returned. On failure, -1 is returned and errno is set to indicate the
error.

ERRORS
ENODATA

The named attribute does not exist.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled.

In addition, the errors documented in stat(2) can also occur.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

SEE ALSO
getfattr(1), setfattr(1), getxattr(2), listxattr(2), open(2), setxattr(2), stat(2), symlink(7),
xattr(7)

Linux man-pages 6.16 2025-09-21 768

rename(2) System Calls Manual rename(2)

NAME
rename, renameat, renameat2 - change the name or location of a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int rename(const char *oldpath, const char *newpath);

#include <fcntl.h> /* Definition of AT_* constants */
#include <stdio.h>

int renameat(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath);

int renameat2(int olddirfd , const char *oldpath,
int newdirfd , const char *newpath, unsigned int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

renameat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

renameat2():
_GNU_SOURCE

DESCRIPTION
rename() renames a file, moving it between directories if required. Any other hard links
to the file (as created using link(2)) are unaffected. Open file descriptors for oldpath are
also unaffected.

Various restrictions determine whether or not the rename operation succeeds: see ER-
RORS below.

If newpath already exists, it will be atomically replaced, so that there is no point at
which another process attempting to access newpath will find it missing. However,
there will probably be a window in which both oldpath and newpath refer to the file be-
ing renamed.

If oldpath and newpath are existing hard links referring to the same file, then rename()
does nothing, and returns a success status.

If newpath exists but the operation fails for some reason, rename() guarantees to leave
an instance of newpath in place.

oldpath can specify a directory. In this case, newpath must either not exist, or it must
specify an empty directory.

If oldpath refers to a symbolic link, the link is renamed; if newpath refers to a symbolic
link, the link will be overwritten.

Linux man-pages 6.16 2025-10-29 769

rename(2) System Calls Manual rename(2)

renameat()
The renameat() system call operates in exactly the same way as rename(), except for
the differences described here.

If the pathname given in oldpath is relative, then it is interpreted relative to the directory
referred to by the file descriptor olddirfd (rather than relative to the current working di-
rectory of the calling process, as is done by rename() for a relative pathname).

If oldpath is relative and olddirfd is the special value AT_FDCWD, then oldpath is in-
terpreted relative to the current working directory of the calling process (like rename())

If oldpath is absolute, then olddirfd is ignored.

The interpretation of newpath is as for oldpath, except that a relative pathname is inter-
preted relative to the directory referred to by the file descriptor newdirfd .

See openat(2) for an explanation of the need for renameat().

renameat2()
renameat2() has an additional flags argument. A renameat2() call with a zero flags
argument is equivalent to renameat().

The flags argument is a bit mask consisting of zero or more of the following flags:

RENAME_EXCHANGE
Atomically exchange oldpath and newpath. Both pathnames must exist but may
be of different types (e.g., one could be a non-empty directory and the other a
symbolic link).

RENAME_NOREPLACE
Don’t overwrite newpath of the rename. Return an error if newpath already ex-
ists.

RENAME_NOREPLACE can’t be employed together with RENAME_EX-
CHANGE.

RENAME_NOREPLACE requires support from the underlying filesystem.
Support for various filesystems was added as follows:

• ext4 (Linux 3.15);

• btrfs, tmpfs, and cifs (Linux 3.17);

• xfs (Linux 4.0);

• Support for many other filesystems was added in Linux 4.9, including ext2,
minix, reiserfs, jfs, vfat, and bpf.

RENAME_WHITEOUT (since Linux 3.18)
This operation makes sense only for overlay/union filesystem implementations.

Specifying RENAME_WHITEOUT creates a "whiteout" object at the source
of the rename at the same time as performing the rename. The whole operation
is atomic, so that if the rename succeeds then the whiteout will also have been
created.

A "whiteout" is an object that has special meaning in union/overlay filesystem
constructs. In these constructs, multiple layers exist and only the top one is ever

Linux man-pages 6.16 2025-10-29 770

rename(2) System Calls Manual rename(2)

modified. A whiteout on an upper layer will effectively hide a matching file in
the lower layer, making it appear as if the file didn’t exist.

When a file that exists on the lower layer is renamed, the file is first copied up (if
not already on the upper layer) and then renamed on the upper, read-write layer.
At the same time, the source file needs to be "whiteouted" (so that the version of
the source file in the lower layer is rendered invisible). The whole operation
needs to be done atomically.

When not part of a union/overlay, the whiteout appears as a character device
with a {0,0} device number. (Note that other union/overlay implementations
may employ different methods for storing whiteout entries; specifically, BSD
union mount employs a separate inode type, DT_WHT, which, while supported
by some filesystems available in Linux, such as CODA and XFS, is ignored by
the kernel’s whiteout support code, as of Linux 4.19, at least.)

RENAME_WHITEOUT requires the same privileges as creating a device node
(i.e., the CAP_MKNOD capability).

RENAME_WHITEOUT can’t be employed together with RENAME_EX-
CHANGE.

RENAME_WHITEOUT requires support from the underlying filesystem.
Among the filesystems that support it are tmpfs (since Linux 3.18), ext4 (since
Linux 3.18), XFS (since Linux 4.1), f2fs (since Linux 4.2), btrfs (since Linux
4.7), and ubifs (since Linux 4.9).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Write permission is denied for the directory containing oldpath or newpath, or,
search permission is denied for one of the directories in the path prefix of old-
path or newpath, or oldpath is a directory and does not allow write permission
(needed to update the .. entry). (See also path_resolution(7).)

EBUSY
The rename fails because oldpath or newpath is a directory that is in use by
some process (perhaps as current working directory, or as root directory, or be-
cause it was open for reading) or is in use by the system (for example as a mount
point), while the system considers this an error. (Note that there is no require-
ment to return EBUSY in such cases—there is nothing wrong with doing the re-
name anyway—but it is allowed to return EBUSY if the system cannot other-
wise handle such situations.)

EDQUOT
The user’s quota of disk blocks on the filesystem has been exhausted.

EFAULT
oldpath or newpath points outside your accessible address space.

Linux man-pages 6.16 2025-10-29 771

rename(2) System Calls Manual rename(2)

EINVAL
The new pathname contained a path prefix of the old, or, more generally, an at-
tempt was made to make a directory a subdirectory of itself.

EISDIR
newpath is an existing directory, but oldpath is not a directory.

ELOOP
Too many symbolic links were encountered in resolving oldpath or newpath.

EMLINK
oldpath already has the maximum number of links to it, or it was a directory and
the directory containing newpath has the maximum number of links.

ENAMETOOLONG
oldpath or newpath was too long.

ENOENT
The link named by oldpath does not exist; or, a directory component in newpath
does not exist; or, oldpath or newpath is an empty string.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing the file has no room for the new directory entry.

ENOTDIR
A component used as a directory in oldpath or newpath is not, in fact, a direc-
tory. Or, oldpath is a directory, and newpath exists but is not a directory.

ENOTEMPTY or EEXIST
newpath is a nonempty directory, that is, contains entries other than "." and "..".

EPERM or EACCES
The directory containing oldpath has the sticky bit (S_ISVTX) set and the
process’s effective user ID is neither the user ID of the file to be deleted nor that
of the directory containing it, and the process is not privileged (Linux: does not
have the CAP_FOWNER capability); or newpath is an existing file and the di-
rectory containing it has the sticky bit set and the process’s effective user ID is
neither the user ID of the file to be replaced nor that of the directory containing
it, and the process is not privileged (Linux: does not have the CAP_FOWNER
capability); or the filesystem containing oldpath does not support renaming of
the type requested.

EROFS
The file is on a read-only filesystem.

EXDEV
oldpath and newpath are not on the same mounted filesystem. (Linux permits a
filesystem to be mounted at multiple points, but rename() does not work across
different mount points, even if the same filesystem is mounted on both.)

The following additional errors can occur for renameat() and renameat2():

Linux man-pages 6.16 2025-10-29 772

rename(2) System Calls Manual rename(2)

EBADF
oldpath (newpath) is relative but olddirfd (newdirfd) is not a valid file descrip-
tor.

ENOTDIR
oldpath is relative and olddirfd is a file descriptor referring to a file other than a
directory; or similar for newpath and newdirfd

The following additional errors can occur for renameat2():

EEXIST
flags contains RENAME_NOREPLACE and newpath already exists.

EINVAL
An invalid flag was specified in flags.

EINVAL
Both RENAME_NOREPLACE and RENAME_EXCHANGE were specified
in flags.

EINVAL
Both RENAME_WHITEOUT and RENAME_EXCHANGE were specified in
flags.

EINVAL
The filesystem does not support one of the flags in flags.

ENOENT
flags contains RENAME_EXCHANGE and newpath does not exist.

EPERM
RENAME_WHITEOUT was specified in flags, but the caller does not have the
CAP_MKNOD capability.

STANDARDS
rename()

C11, POSIX.1-2024.

renameat()
POSIX.1-2024.

renameat2()
Linux.

HISTORY
rename()

C89, POSIX.1-2001, 4.3BSD.

renameat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

renameat2()
Linux 3.15, glibc 2.28.

glibc notes
On older kernels where renameat() is unavailable, the glibc wrapper function falls back
to the use of rename(). When oldpath and newpath are relative pathnames, glibc

Linux man-pages 6.16 2025-10-29 773

rename(2) System Calls Manual rename(2)

constructs pathnames based on the symbolic links in /proc/self/fd that correspond to the
olddirfd and newdirfd arguments.

BUGS
On NFS filesystems, you can not assume that if the operation failed, the file was not re-
named. If the server does the rename operation and then crashes, the retransmitted RPC
which will be processed when the server is up again causes a failure. The application is
expected to deal with this. See link(2) for a similar problem.

SEE ALSO
mv(1), rename(1), chmod(2), link(2), symlink(2), unlink(2), path_resolution(7), sym-
link(7)

Linux man-pages 6.16 2025-10-29 774

request_key(2) System Calls Manual request_key(2)

NAME
request_key - request a key from the kernel’s key management facility

LIBRARY
Linux Key Management Utilities (libkeyutils, -lkeyutils)

SYNOPSIS
#include <keyutils.h>

key_serial_t request_key(const char *type, const char *description,
const char *_Nullable callout_info,
key_serial_t dest_keyring);

DESCRIPTION
request_key() attempts to find a key of the given type with a description (name) that
matches the specified description. If such a key could not be found, then the key is op-
tionally created. If the key is found or created, request_key() attaches it to the keyring
whose ID is specified in dest_keyring and returns the key’s serial number.

request_key() first recursively searches for a matching key in all of the keyrings at-
tached to the calling process. The keyrings are searched in the order: thread-specific
keyring, process-specific keyring, and then session keyring.

If request_key() is called from a program invoked by request_key() on behalf of some
other process to generate a key, then the keyrings of that other process will be searched
next, using that other process’s user ID, group ID, supplementary group IDs, and secu-
rity context to determine access.

The search of the keyring tree is breadth-first: the keys in each keyring searched are
checked for a match before any child keyrings are recursed into. Only keys for which
the caller has search permission be found, and only keyrings for which the caller has
search permission may be searched.

If the key is not found and callout is NULL, then the call fails with the error ENOKEY.

If the key is not found and callout is not NULL, then the kernel attempts to invoke a
user-space program to instantiate the key. The details are given below.

The dest_keyring serial number may be that of a valid keyring for which the caller has
write permission, or it may be one of the following special keyring IDs:

KEY_SPEC_THREAD_KEYRING
This specifies the caller’s thread-specific keyring (see thread-keyring(7)).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring (see process-keyring(7)).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring (see session-keyring(7)).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring (see user-keyring(7)).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring (see user-session-keyring(7)).

When the dest_keyring is specified as 0 and no key construction has been performed,

Linux man-pages 6.16 2025-09-21 775

request_key(2) System Calls Manual request_key(2)

then no additional linking is done.

Otherwise, if dest_keyring is 0 and a new key is constructed, the new key will be linked
to the "default" keyring. More precisely, when the kernel tries to determine to which
keyring the newly constructed key should be linked, it tries the following keyrings, be-
ginning with the keyring set via the keyctl(2) KEYCTL_SET_REQKEY_KEYRING
operation and continuing in the order shown below until it finds the first keyring that ex-
ists:

• The requestor keyring (KEY_REQKEY_DEFL_REQUESTOR_KEYRING,
since Linux 2.6.29).

• The thread-specific keyring (KEY_REQKEY_DEFL_THREAD_KEYRING; see
thread-keyring(7)).

• The process-specific keyring (KEY_REQKEY_DEFL_PROCESS_KEYRING;
see process-keyring(7)).

• The session-specific keyring (KEY_REQKEY_DEFL_SESSION_KEYRING; see
session-keyring(7)).

• The session keyring for the process’s user ID (KEY_RE-
QKEY_DEFL_USER_SESSION_KEYRING; see user-session-keyring(7)). This
keyring is expected to always exist.

• The UID-specific keyring (KEY_REQKEY_DEFL_USER_KEYRING; see user-
keyring(7)). This keyring is also expected to always exist.

If the keyctl(2) KEYCTL_SET_REQKEY_KEYRING operation specifies KEY_RE-
QKEY_DEFL_DEFAULT (or no KEYCTL_SET_REQKEY_KEYRING operation
is performed), then the kernel looks for a keyring starting from the beginning of the list.

Requesting user-space instantiation of a key
If the kernel cannot find a key matching type and description, and callout is not NULL,
then the kernel attempts to invoke a user-space program to instantiate a key with the
given type and description. In this case, the following steps are performed:

(1) The kernel creates an uninstantiated key, U, with the requested type and descrip-
tion.

(2) The kernel creates an authorization key, V, that refers to the key U and records the
facts that the caller of request_key() is:

(2.1) the context in which the key U should be instantiated and secured, and

(2.2) the context from which associated key requests may be satisfied.

The authorization key is constructed as follows:

• The key type is ".request_key_auth".

• The key’s UID and GID are the same as the corresponding filesystem IDs of
the requesting process.

• The key grants view, read , and search permissions to the key possessor as
well as view permission for the key user.

Linux man-pages 6.16 2025-09-21 776

request_key(2) System Calls Manual request_key(2)

• The description (name) of the key is the hexadecimal string representing the
ID of the key that is to be instantiated in the requesting program.

• The payload of the key is taken from the data specified in callout_info.

• Internally, the kernel also records the PID of the process that called re-
quest_key().

(3) The kernel creates a process that executes a user-space service such as request-
key(8) with a new session keyring that contains a link to the authorization key, V.

This program is supplied with the following command-line arguments:

[0] The string "/sbin/request-key".

[1] The string "create" (indicating that a key is to be created).

[2] The ID of the key that is to be instantiated.

[3] The filesystem UID of the caller of request_key().

[4] The filesystem GID of the caller of request_key().

[5] The ID of the thread keyring of the caller of request_key(). This may be
zero if that keyring hasn’t been created.

[6] The ID of the process keyring of the caller of request_key(). This may be
zero if that keyring hasn’t been created.

[7] The ID of the session keyring of the caller of request_key().

Note: each of the command-line arguments that is a key ID is encoded in decimal
(unlike the key IDs shown in /proc/keys, which are shown as hexadecimal values).

(4) The program spawned in the previous step:

• Assumes the authority to instantiate the key U using the keyctl(2)
KEYCTL_ASSUME_AUTHORITY operation (typically via the keyctl_as-
sume_authority(3) function).

• Obtains the callout data from the payload of the authorization key V (using the
keyctl(2) KEYCTL_READ operation (or, more commonly, the keyctl_read(3)
function) with a key ID value of KEY_SPEC_REQKEY_AUTH_KEY).

• Instantiates the key (or execs another program that performs that task), speci-
fying the payload and destination keyring. (The destination keyring that the
requestor specified when calling request_key() can be accessed using the spe-
cial key ID KEY_SPEC_REQUESTOR_KEYRING.) Instantiation is per-
formed using the keyctl(2) KEYCTL_INSTANTIATE operation (or, more
commonly, the keyctl_instantiate(3) function). At this point, the re-
quest_key() call completes, and the requesting program can continue execu-
tion.

If these steps are unsuccessful, then an ENOKEY error will be returned to the caller of
request_key() and a temporary, negatively instantiated key will be installed in the
keyring specified by dest_keyring. This will expire after a few seconds, but will cause
subsequent calls to request_key() to fail until it does. The purpose of this negatively in-
stantiated key is to prevent (possibly different) processes making repeated requests (that

Linux man-pages 6.16 2025-09-21 777

request_key(2) System Calls Manual request_key(2)

require expensive request-key(8) upcalls) for a key that can’t (at the moment) be posi-
tively instantiated.

Once the key has been instantiated, the authorization key (KEY_SPEC_RE-
QKEY_AUTH_KEY) is revoked, and the destination keyring (KEY_SPEC_RE-
QUESTOR_KEYRING) is no longer accessible from the request-key(8) program.

If a key is created, then—regardless of whether it is a valid key or a negatively instanti-
ated key—it will displace any other key with the same type and description from the
keyring specified in dest_keyring.

RETURN VALUE
On success, request_key() returns the serial number of the key it found or caused to be
created. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EACCES

The keyring wasn’t available for modification by the user.

EDQUOT
The key quota for this user would be exceeded by creating this key or linking it
to the keyring.

EFAULT
One of type, description, or callout_info points outside the process’s accessible
address space.

EINTR
The request was interrupted by a signal; see signal(7).

EINVAL
The size of the string (including the terminating null byte) specified in type or
description exceeded the limit (32 bytes and 4096 bytes respectively).

EINVAL
The size of the string (including the terminating null byte) specified in call-
out_info exceeded the system page size.

EKEYEXPIRED
An expired key was found, but no replacement could be obtained.

EKEYREJECTED
The attempt to generate a new key was rejected.

EKEYREVOKED
A revoked key was found, but no replacement could be obtained.

ENOKEY
No matching key was found.

ENOMEM
Insufficient memory to create a key.

EPERM
The type argument started with a period ('.').

Linux man-pages 6.16 2025-09-21 778

request_key(2) System Calls Manual request_key(2)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

The ability to instantiate keys upon request was added in Linux 2.6.13.

EXAMPLES
The program below demonstrates the use of request_key(). The type, description, and
callout_info arguments for the system call are taken from the values supplied in the
command-line arguments. The call specifies the session keyring as the target keyring.

In order to demonstrate this program, we first create a suitable entry in the file /etc/re-
quest-key.conf .

$ sudo sh;
echo 'create user mtk:* * /bin/keyctl instantiate %k %c %S' \

> /etc/request-key.conf;
exit;

This entry specifies that when a new "user" key with the prefix "mtk:" must be instanti-
ated, that task should be performed via the keyctl(1) command’s instantiate operation.
The arguments supplied to the instantiate operation are: the ID of the uninstantiated key
(%k); the callout data supplied to the request_key() call (%c); and the session keyring
(%S) of the requestor (i.e., the caller of request_key())See request-key.conf (5) for details
of these % specifiers.

Then we run the program and check the contents of /proc/keys to verify that the re-
quested key has been instantiated:

$./t_request_key user mtk:key1 "Payload data";
$ grep '2dddaf50' /proc/keys;
2dddaf50 I--Q--- 1 perm 3f010000 1000 1000 user mtk:key1: 12

For another example of the use of this program, see keyctl(2).

Program source

/* t_request_key.c */

#include <keyutils.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

key_serial_t key;

if (argc != 4) {
fprintf(stderr, "Usage: %s type description callout-data\n",

Linux man-pages 6.16 2025-09-21 779

request_key(2) System Calls Manual request_key(2)

argv[0]);
exit(EXIT_FAILURE);

}

key = request_key(argv[1], argv[2], argv[3],
KEY_SPEC_SESSION_KEYRING);

if (key == -1) {
perror("request_key");
exit(EXIT_FAILURE);

}

printf("Key ID is %jx\n", (uintmax_t) key);

exit(EXIT_SUCCESS);
}

SEE ALSO
keyctl(1), add_key(2), keyctl(2), keyctl(3), capabilities(7), keyrings(7), keyutils(7),
persistent-keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-
keyring(7), user-session-keyring(7), request-key(8)

The kernel source files Documentation/security/keys/core.rst and
Documentation/keys/request-key.rst (or, before Linux 4.13, in the files
Documentation/security/keys.txt and Documentation/security/keys-request-key.txt).

Linux man-pages 6.16 2025-09-21 780

restart_syscall(2) System Calls Manual restart_syscall(2)

NAME
restart_syscall - restart a system call after interruption by a stop signal

SYNOPSIS
long restart_syscall(void);

Note: There is no glibc wrapper for this system call; see NOTES.

DESCRIPTION
The restart_syscall() system call is used to restart certain system calls after a process
that was stopped by a signal (e.g., SIGSTOP or SIGTSTP) is later resumed after re-
ceiving a SIGCONT signal. This system call is designed only for internal use by the
kernel.

restart_syscall() is used for restarting only those system calls that, when restarted,
should adjust their time-related parameters—namely poll(2) (since Linux 2.6.24),
nanosleep(2) (since Linux 2.6), clock_nanosleep(2) (since Linux 2.6), and futex(2),
when employed with the FUTEX_WAIT (since Linux 2.6.22) and FU-
TEX_WAIT_BITSET (since Linux 2.6.31) operations. restart_syscall() restarts the
interrupted system call with a time argument that is suitably adjusted to account for the
time that has already elapsed (including the time where the process was stopped by a
signal). Without the restart_syscall() mechanism, restarting these system calls would
not correctly deduct the already elapsed time when the process continued execution.

RETURN VALUE
The return value of restart_syscall() is the return value of whatever system call is being
restarted.

ERRORS
errno is set as per the errors for whatever system call is being restarted by
restart_syscall().

STANDARDS
Linux.

HISTORY
Linux 2.6.

NOTES
There is no glibc wrapper for this system call, because it is intended for use only by the
kernel and should never be called by applications.

The kernel uses restart_syscall() to ensure that when a system call is restarted after a
process has been stopped by a signal and then resumed by SIGCONT, then the time
that the process spent in the stopped state is counted against the timeout interval speci-
fied in the original system call. In the case of system calls that take a timeout argument
and automatically restart after a stop signal plus SIGCONT, but which do not have the
restart_syscall() mechanism built in, then, after the process resumes execution, the time
that the process spent in the stop state is not counted against the timeout value. Notable
examples of system calls that suffer this problem are ppoll(2), select(2), and pselect(2).

From user space, the operation of restart_syscall() is largely invisible: to the process
that made the system call that is restarted, it appears as though that system call executed
and returned in the usual fashion.

Linux man-pages 6.16 2025-09-21 781

restart_syscall(2) System Calls Manual restart_syscall(2)

SEE ALSO
sigaction(2), sigreturn(2), signal(7)

Linux man-pages 6.16 2025-09-21 782

rmdir(2) System Calls Manual rmdir(2)

NAME
rmdir - delete a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int rmdir(const char *path);

DESCRIPTION
rmdir() deletes a directory, which must be empty.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Write access to the directory containing path was not allowed, or one of the di-
rectories in the path prefix of path did not allow search permission. (See also
path_resolution(7).)

EBUSY
path is currently in use by the system or some process that prevents its removal.
On Linux, this means path is currently used as a mount point or is the root direc-
tory of the calling process.

EFAULT
path points outside your accessible address space.

EINVAL
path has . as last component.

ELOOP
Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
path was too long.

ENOENT
A directory component in path does not exist or is a dangling symbolic link.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
path, or a component used as a directory in path, is not, in fact, a directory.

ENOTEMPTY
path contains entries other than . and ..; or, path has .. as its final component.
POSIX.1 also allows EEXIST for this condition.

EPERM
The directory containing path has the sticky bit (S_ISVTX) set and the
process’s effective user ID is neither the user ID of the file to be deleted nor that

Linux man-pages 6.16 2025-10-29 783

rmdir(2) System Calls Manual rmdir(2)

of the directory containing it, and the process is not privileged (Linux: does not
have the CAP_FOWNER capability).

EPERM
The filesystem containing path does not support the removal of directories.

EROFS
path refers to a directory on a read-only filesystem.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of
directories which are still being used.

SEE ALSO
rm(1), rmdir(1), chdir(2), chmod(2), mkdir(2), rename(2), unlink(2), unlinkat(2)

Linux man-pages 6.16 2025-10-29 784

rt_sigqueueinfo(2) System Calls Manual rt_sigqueueinfo(2)

NAME
rt_sigqueueinfo, rt_tgsigqueueinfo - queue a signal and data

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/signal.h> /* Definition of SI_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_rt_sigqueueinfo, pid_t tgid ,
int sig, siginfo_t *info);

int syscall(SYS_rt_tgsigqueueinfo, pid_t tgid , pid_t tid ,
int sig, siginfo_t *info);

Note: There are no glibc wrappers for these system calls; see NOTES.

DESCRIPTION
The rt_sigqueueinfo() and rt_tgsigqueueinfo() system calls are the low-level interfaces
used to send a signal plus data to a process or thread. The receiver of the signal can ob-
tain the accompanying data by establishing a signal handler with the sigaction(2)
SA_SIGINFO flag.

These system calls are not intended for direct application use; they are provided to allow
the implementation of sigqueue(3) and pthread_sigqueue(3).

The rt_sigqueueinfo() system call sends the signal sig to the thread group with the ID
tgid . (The term "thread group" is synonymous with "process", and tgid corresponds to
the traditional UNIX process ID.) The signal will be delivered to an arbitrary member
of the thread group (i.e., one of the threads that is not currently blocking the signal).

The info argument specifies the data to accompany the signal. This argument is a
pointer to a structure of type siginfo_t, described in sigaction(2) (and defined by includ-
ing <sigaction.h>). The caller should set the following fields in this structure:

si_code
This should be one of the SI_* codes in the Linux kernel source file in-
clude/asm-generic/siginfo.h. If the signal is being sent to any process other than
the caller itself, the following restrictions apply:

• The code can’t be a value greater than or equal to zero. In particular, it can’t
be SI_USER, which is used by the kernel to indicate a signal sent by kill(2),
and nor can it be SI_KERNEL, which is used to indicate a signal generated
by the kernel.

• The code can’t (since Linux 2.6.39) be SI_TKILL, which is used by the ker-
nel to indicate a signal sent using tgkill(2).

si_pid
This should be set to a process ID, typically the process ID of the sender.

si_uid
This should be set to a user ID, typically the real user ID of the sender.

Linux man-pages 6.16 2025-10-01 785

rt_sigqueueinfo(2) System Calls Manual rt_sigqueueinfo(2)

si_value
This field contains the user data to accompany the signal. For more information,
see the description of the last (union sigval) argument of sigqueue(3).

Internally, the kernel sets the si_signo field to the value specified in sig, so that the re-
ceiver of the signal can also obtain the signal number via that field.

The rt_tgsigqueueinfo() system call is like rt_sigqueueinfo(), but sends the signal and
data to the single thread specified by the combination of tgid , a thread group ID, and tid ,
a thread in that thread group.

RETURN VALUE
On success, these system calls return 0. On error, they return -1 and errno is set to indi-
cate the error.

ERRORS
EAGAIN

The limit of signals that may be queued has been reached. (See signal(7) for fur-
ther information.)

EINVAL
sig, tgid , or tid was invalid.

EPERM
The caller does not have permission to send the signal to the target. For the re-
quired permissions, see kill(2).

EPERM
tgid specifies a process other than the caller and info->si_code is invalid.

ESRCH
rt_sigqueueinfo(): No thread group matching tgid was found.

rt_tgsigqueinfo(): No thread matching tgid and tid was found.

STANDARDS
Linux.

HISTORY
rt_sigqueueinfo()

Linux 2.2.

rt_tgsigqueueinfo()
Linux 2.6.31.

NOTES
Since these system calls are not intended for application use, there are no glibc wrapper
functions; use syscall(2) in the unlikely case that you want to call them directly.

As with kill(2), the null signal (0) can be used to check if the specified process or thread
exists.

SEE ALSO
kill(2), pidfd_send_signal(2), sigaction(2), sigprocmask(2), tgkill(2),
pthread_sigqueue(3), sigqueue(3), signal(7)

Linux man-pages 6.16 2025-10-01 786

rt_sigqueueinfo(2) System Calls Manual rt_sigqueueinfo(2)

Linux man-pages 6.16 2025-10-01 787

s390_guarded_storage(2) System Calls Manual s390_guarded_storage(2)

NAME
s390_guarded_storage - operations with z/Architecture guarded storage facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/guarded_storage.h> /* Definition of GS_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_s390_guarded_storage, int command ,
struct gs_cb *gs_cb);

Note: glibc provides no wrapper for s390_guarded_storage(), necessitating the use of
syscall(2).

DESCRIPTION
The s390_guarded_storage() system call enables the use of the Guarded Storage Facil-
ity (a z/Architecture-specific feature) for user-space processes.

The guarded storage facility is a hardware feature that allows marking up to 64 memory
regions (as of z14) as guarded; reading a pointer with a newly introduced "Load
Guarded" (LGG) or "Load Logical and Shift Guarded" (LLGFSG) instructions will
cause a range check on the loaded value and invoke a (previously set up) user-space han-
dler if one of the guarded regions is affected.

The command argument indicates which function to perform. The following commands
are supported:

GS_ENABLE
Enable the guarded storage facility for the calling task. The initial content of the
guarded storage control block will be all zeros. After enablement, user-space
code can use the "Load Guarded Storage Controls" (LGSC) instruction (or the
load_gs_cb() function wrapper provided in the asm/guarded_storage.h header)
to load an arbitrary control block. While a task is enabled, the kernel will save
and restore the calling content of the guarded storage registers on context switch.

GS_DISABLE
Disables the use of the guarded storage facility for the calling task. The kernel
will cease to save and restore the content of the guarded storage registers, the
task-specific content of these registers is lost.

GS_SET_BC_CB
Set a broadcast guarded storage control block to the one provided in the gs_cb
argument. This is called per thread and associates a specific guarded storage
control block with the calling task. This control block will be used in the broad-
cast command GS_BROADCAST.

GS_CLEAR_BC_CB
Clears the broadcast guarded storage control block. The guarded storage control
block will no longer have the association established by the GS_SET_BC_CB
command.

Linux man-pages 6.16 2025-09-21 788

s390_guarded_storage(2) System Calls Manual s390_guarded_storage(2)

GS_BROADCAST
Sends a broadcast to all thread siblings of the calling task. Every sibling that has
established a broadcast guarded storage control block will load this control block
and will be enabled for guarded storage. The broadcast guarded storage control
block is consumed; a second broadcast without a refresh of the stored control
block with GS_SET_BC_CB will not have any effect.

The gs_cb argument specifies the address of a guarded storage control block structure
and is currently used only by the GS_SET_BC_CB command; all other aforementioned
commands ignore this argument.

RETURN VALUE
On success, the return value of s390_guarded_storage() is 0.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

command was GS_SET_BC_CB and the copying of the guarded storage control
block structure pointed by the gs_cb argument has failed.

EINVAL
The value provided in the command argument was not valid.

ENOMEM
command was one of GS_ENABLE or GS_SET_BC_CB, and the allocation of
a new guarded storage control block has failed.

EOPNOTSUPP
The guarded storage facility is not supported by the hardware.

STANDARDS
Linux on s390.

HISTORY
Linux 4.12. System z14.

NOTES
The description of the guarded storage facility along with related instructions and
Guarded Storage Control Block and Guarded Storage Event Parameter List structure
layouts is available in "z/Architecture Principles of Operations" beginning from the
twelfth edition.

The gs_cb structure has a field gsepla (Guarded Storage Event Parameter List Address),
which is a user-space pointer to a Guarded Storage Event Parameter List structure (that
contains the address of the aforementioned event handler in the gseha field), and its lay-
out is available as a gs_epl structure type definition in the asm/guarded_storage.h
header.

SEE ALSO
syscall(2)

Linux man-pages 6.16 2025-09-21 789

s390_pci_mmio_write(2) System Calls Manual s390_pci_mmio_write(2)

NAME
s390_pci_mmio_write, s390_pci_mmio_read - transfer data to/from PCI MMIO mem-
ory page

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(size_t length;
SYS_s390_pci_mmio_write, unsigned long mmio_addr,
const void user_buffer[length], size_t length);

int syscall(size_t length;
SYS_s390_pci_mmio_read, unsigned long mmio_addr,
void user_buffer[length], size_t length);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
The s390_pci_mmio_write() system call writes length bytes of data from the user-space
buffer user_buffer to the PCI MMIO memory location specified by mmio_addr. The
s390_pci_mmio_read() system call reads length bytes of data from the PCI MMIO
memory location specified by mmio_addr to the user-space buffer user_buffer.

These system calls must be used instead of the simple assignment or data-transfer opera-
tions that are used to access the PCI MMIO memory areas mapped to user space on the
Linux System z platform. The address specified by mmio_addr must belong to a PCI
MMIO memory page mapping in the caller’s address space, and the data being written
or read must not cross a page boundary. The length value cannot be greater than the
system page size.

RETURN VALUE
On success, s390_pci_mmio_write() and s390_pci_mmio_read() return 0. On failure,
-1 is returned and errno is set to indicate the error.

ERRORS
EFAULT

The address in mmio_addr is invalid.

EFAULT
user_buffer does not point to a valid location in the caller’s address space.

EINVAL
Invalid length argument.

ENODEV
PCI support is not enabled.

ENOMEM
Insufficient memory.

Linux man-pages 6.16 2025-06-28 790

s390_pci_mmio_write(2) System Calls Manual s390_pci_mmio_write(2)

STANDARDS
Linux on s390.

HISTORY
Linux 3.19. System z EC12.

SEE ALSO
syscall(2)

Linux man-pages 6.16 2025-06-28 791

s390_runtime_instr(2) System Calls Manual s390_runtime_instr(2)

NAME
s390_runtime_instr - enable/disable s390 CPU run-time instrumentation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/runtime_instr.h> /* Definition of S390_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_s390_runtime_instr, int command , int signum);

Note: glibc provides no wrapper for s390_runtime_instr(), necessitating the use of
syscall(2).

DESCRIPTION
The s390_runtime_instr() system call starts or stops CPU run-time instrumentation for
the calling thread.

The command argument controls whether run-time instrumentation is started
(S390_RUNTIME_INSTR_START, 1) or stopped (S390_RUNTIME_IN-
STR_STOP, 2) for the calling thread.

The signum argument specifies the number of a real-time signal. This argument was
used to specify a signal number that should be delivered to the thread if the run-time in-
strumentation buffer was full or if the run-time-instrumentation-halted interrupt had oc-
curred. This feature was never used, and in Linux 4.4 support for this feature was re-
moved; thus, in current kernels, this argument is ignored.

RETURN VALUE
On success, s390_runtime_instr() returns 0 and enables the thread for run-time instru-
mentation by assigning the thread a default run-time instrumentation control block. The
caller can then read and modify the control block and start the run-time instrumentation.
On error, -1 is returned and errno is set to indicate the error.

ERRORS
EINVAL

The value specified in command is not a valid command.

EINVAL
The value specified in signum is not a real-time signal number. From Linux 4.4
onwards, the signum argument has no effect, so that an invalid signal number
will not result in an error.

ENOMEM
Allocating memory for the run-time instrumentation control block failed.

EOPNOTSUPP
The run-time instrumentation facility is not available.

STANDARDS
Linux on s390.

Linux man-pages 6.16 2025-05-17 792

s390_runtime_instr(2) System Calls Manual s390_runtime_instr(2)

HISTORY
Linux 3.7. System z EC12.

NOTES
The asm/runtime_instr.h header file is available since Linux 4.16.

Starting with Linux 4.4, support for signalling was removed, as was the check whether
signum is a valid real-time signal. For backwards compatibility with older kernels, it is
recommended to pass a valid real-time signal number in signum and install a handler for
that signal.

SEE ALSO
syscall(2), signal(7)

Linux man-pages 6.16 2025-05-17 793

s390_sthyi(2) System Calls Manual s390_sthyi(2)

NAME
s390_sthyi - emulate STHYI instruction

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/sthyi.h> /* Definition of STHYI_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_s390_sthyi, unsigned long function_code,
void *resp_buffer, uint64_t *return_code,
unsigned long flags);

Note: glibc provides no wrapper for s390_sthyi(), necessitating the use of syscall(2).

DESCRIPTION
The s390_sthyi() system call emulates the STHYI (Store Hypervisor Information) in-
struction. It provides hardware resource information for the machine and its virtualiza-
tion levels. This includes CPU type and capacity, as well as the machine model and
other metrics.

The function_code argument indicates which function to perform. The following
code(s) are supported:

STHYI_FC_CP_IFL_CAP
Return CP (Central Processor) and IFL (Integrated Facility for Linux) capacity
information.

The resp_buffer argument specifies the address of a response buffer. When the func-
tion_code is STHYI_FC_CP_IFL_CAP, the buffer must be one page (4K) in size. If
the system call returns 0, the response buffer will be filled with CPU capacity informa-
tion. Otherwise, the response buffer’s content is unchanged.

The return_code argument stores the return code of the STHYI instruction, using one of
the following values:

Success.

4 Unsupported function code.

For further details about return_code, function_code, and resp_buffer, see the reference
given in NOTES.

The flags argument is provided to allow for future extensions and currently must be set
to 0.

RETURN VALUE
On success (that is: emulation succeeded), the return value of s390_sthyi() matches the
condition code of the STHYI instructions, which is a value in the range [0..3]. A return
value of 0 indicates that CPU capacity information is stored in *resp_buffer. A return
value of 3 indicates "unsupported function code" and the content of *resp_buffer is un-
changed. The return values 1 and 2 are reserved.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-05-17 794

s390_sthyi(2) System Calls Manual s390_sthyi(2)

ERRORS
EFAULT

The value specified in resp_buffer or return_code is not a valid address.

EINVAL
The value specified in flags is nonzero.

ENOMEM
Allocating memory for handling the CPU capacity information failed.

EOPNOTSUPP
The value specified in function_code is not valid.

STANDARDS
Linux on s390.

HISTORY
Linux 4.15.

NOTES
For details of the STHYI instruction, see the documentation page 〈https://www.ibm.com
/support/knowledgecenter/SSB27U_6.3.0/com.ibm.zvm.v630.hcpb4/hcpb4sth.htm〉.

When the system call interface is used, the response buffer doesn’t have to fulfill align-
ment requirements described in the STHYI instruction definition.

The kernel caches the response (for up to one second, as of Linux 4.16). Subsequent
system call invocations may return the cached response.

SEE ALSO
syscall(2)

Linux man-pages 6.16 2025-05-17 795

sched_get_priority_max(2) System Calls Manual sched_get_priority_max(2)

NAME
sched_get_priority_max, sched_get_priority_min - get static priority range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_get_priority_max(int policy);
int sched_get_priority_min(int policy);

DESCRIPTION
sched_get_priority_max() returns the maximum priority value that can be used with
the scheduling algorithm identified by policy. sched_get_priority_min() returns the
minimum priority value that can be used with the scheduling algorithm identified by
policy. Supported policy values are SCHED_FIFO, SCHED_RR, SCHED_OTHER,
SCHED_BATCH, SCHED_IDLE, and SCHED_DEADLINE. Further details about
these policies can be found in sched(7).

Processes with numerically higher priority values are scheduled before processes with
numerically lower priority values. Thus, the value returned by sched_get_prior-
ity_max() will be greater than the value returned by sched_get_priority_min().

Linux allows the static priority range 1 to 99 for the SCHED_FIFO and SCHED_RR
policies, and the priority 0 for the remaining policies. Scheduling priority ranges for the
various policies are not alterable.

The range of scheduling priorities may vary on other POSIX systems, thus it is a good
idea for portable applications to use a virtual priority range and map it to the interval
given by sched_get_priority_max() and sched_get_priority_min(). POSIX.1 requires
a spread of at least 32 between the maximum and the minimum values for
SCHED_FIFO and SCHED_RR.

POSIX systems on which sched_get_priority_max() and sched_get_priority_min()
are available define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_get_priority_max() and sched_get_priority_min() return the maxi-
mum/minimum priority value for the named scheduling policy. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
EINVAL

The argument policy does not identify a defined scheduling policy.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

SEE ALSO
sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2), sched_setaffinity(2),
sched_setparam(2), sched_setscheduler(2), sched(7)

Linux man-pages 6.16 2025-10-29 796

sched_get_priority_max(2) System Calls Manual sched_get_priority_max(2)

Linux man-pages 6.16 2025-10-29 797

sched_rr_get_interval(2) System Calls Manual sched_rr_get_interval(2)

NAME
sched_rr_get_interval - get the SCHED_RR interval for the named process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_rr_get_interval(pid_t pid , struct timespec *tp);

DESCRIPTION
sched_rr_get_interval() writes into the timespec(3) structure pointed to by tp the
round-robin time quantum for the process identified by pid . The specified process
should be running under the SCHED_RR scheduling policy.

If pid is zero, the time quantum for the calling process is written into *tp.

RETURN VALUE
On success, sched_rr_get_interval() returns 0. On error, -1 is returned, and errno is
set to indicate the error.

ERRORS
EFAULT

Problem with copying information to user space.

EINVAL
Invalid pid .

ENOSYS
The system call is not yet implemented (only on rather old kernels).

ESRCH
Could not find a process with the ID pid .

VERSIONS
Linux

Linux 3.9 added a new mechanism for adjusting (and viewing) the SCHED_RR quan-
tum: the /proc/sys/kernel/sched_rr_timeslice_ms file exposes the quantum as a millisec-
ond value, whose default is 100. Writing 0 to this file resets the quantum to the default
value.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

Linux
POSIX does not specify any mechanism for controlling the size of the round-robin time
quantum. Older Linux kernels provide a (nonportable) method of doing this. The quan-
tum can be controlled by adjusting the process’s nice value (see setpriority(2)). Assign-
ing a negative (i.e., high) nice value results in a longer quantum; assigning a positive
(i.e., low) nice value results in a shorter quantum. The default quantum is 0.1 seconds;
the degree to which changing the nice value affects the quantum has varied somewhat

Linux man-pages 6.16 2025-10-29 798

sched_rr_get_interval(2) System Calls Manual sched_rr_get_interval(2)

across kernel versions. This method of adjusting the quantum was removed starting
with Linux 2.6.24.

NOTES
POSIX systems on which sched_rr_get_interval() is available define _POSIX_PRI-
ORITY_SCHEDULING in <unistd.h>.

SEE ALSO
timespec(3), sched(7)

Linux man-pages 6.16 2025-10-29 799

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

NAME
sched_setaffinity, sched_getaffinity - set and get a thread’s CPU affinity mask

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

int sched_setaffinity(pid_t pid , size_t cpusetsize,
const cpu_set_t *mask);

int sched_getaffinity(pid_t pid , size_t cpusetsize,
cpu_set_t *mask);

DESCRIPTION
A thread’s CPU affinity mask determines the set of CPUs on which it is eligible to run.
On a multiprocessor system, setting the CPU affinity mask can be used to obtain perfor-
mance benefits. For example, by dedicating one CPU to a particular thread (i.e., setting
the affinity mask of that thread to specify a single CPU, and setting the affinity mask of
all other threads to exclude that CPU), it is possible to ensure maximum execution speed
for that thread. Restricting a thread to run on a single CPU also avoids the performance
cost caused by the cache invalidation that occurs when a thread ceases to execute on one
CPU and then recommences execution on a different CPU.

A CPU affinity mask is represented by the cpu_set_t structure, a "CPU set", pointed to
by mask. A set of macros for manipulating CPU sets is described in CPU_SET(3).

sched_setaffinity() sets the CPU affinity mask of the thread whose ID is pid to the
value specified by mask. If pid is zero, then the calling thread is used. The argument
cpusetsize is the length (in bytes) of the data pointed to by mask. Normally this argu-
ment would be specified as sizeof(cpu_set_t).

If the thread specified by pid is not currently running on one of the CPUs specified in
mask, then that thread is migrated to one of the CPUs specified in mask.

sched_getaffinity() writes the affinity mask of the thread whose ID is pid into the
cpu_set_t structure pointed to by mask. The cpusetsize argument specifies the size (in
bytes) of mask. If pid is zero, then the mask of the calling thread is returned.

RETURN VALUE
On success, sched_setaffinity() and sched_getaffinity() return 0 (but see "C library/ker-
nel differences" below, which notes that the underlying sched_getaffinity() differs in its
return value). On failure, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

A supplied memory address was invalid.

EINVAL
The affinity bit mask mask contains no processors that are currently physically
on the system and permitted to the thread according to any restrictions that may
be imposed by cpuset cgroups or the "cpuset" mechanism described in cpuset(7).

Linux man-pages 6.16 2025-09-21 800

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

EINVAL
(sched_getaffinity() and, before Linux 2.6.9, sched_setaffinity()) cpusetsize is
smaller than the size of the affinity mask used by the kernel.

EPERM
(sched_setaffinity()) The calling thread does not have appropriate privileges.
The caller needs an effective user ID equal to the real user ID or effective user
ID of the thread identified by pid , or it must possess the CAP_SYS_NICE capa-
bility in the user namespace of the thread pid .

ESRCH
The thread whose ID is pid could not be found.

STANDARDS
Linux.

HISTORY
Linux 2.5.8, glibc 2.3.

Initially, the glibc interfaces included a cpusetsize argument, typed as unsigned int. In
glibc 2.3.3, the cpusetsize argument was removed, but was then restored in glibc 2.3.4,
with type size_t.

NOTES
After a call to sched_setaffinity(), the set of CPUs on which the thread will actually run
is the intersection of the set specified in the mask argument and the set of CPUs actually
present on the system. The system may further restrict the set of CPUs on which the
thread runs if the "cpuset" mechanism described in cpuset(7) is being used. These re-
strictions on the actual set of CPUs on which the thread will run are silently imposed by
the kernel.

There are various ways of determining the number of CPUs available on the system, in-
cluding: inspecting the contents of /proc/cpuinfo; using sysconf(3) to obtain the values
of the _SC_NPROCESSORS_CONF and _SC_NPROCESSORS_ONLN parameters;
and inspecting the list of CPU directories under /sys/devices/system/cpu/ .

sched(7) has a description of the Linux scheduling scheme.

The affinity mask is a per-thread attribute that can be adjusted independently for each of
the threads in a thread group. The value returned from a call to gettid(2) can be passed
in the argument pid . Specifying pid as 0 will set the attribute for the calling thread, and
passing the value returned from a call to getpid(2) will set the attribute for the main
thread of the thread group. (If you are using the POSIX threads API, then use
pthread_setaffinity_np(3) instead of sched_setaffinity().)

The isolcpus boot option can be used to isolate one or more CPUs at boot time, so that
no processes are scheduled onto those CPUs. Following the use of this boot option, the
only way to schedule processes onto the isolated CPUs is via sched_setaffinity() or the
cpuset(7) mechanism. For further information, see the kernel source file Documenta-
tion/admin-guide/kernel-parameters.txt. As noted in that file, isolcpus is the preferred
mechanism of isolating CPUs (versus the alternative of manually setting the CPU affin-
ity of all processes on the system).

A child created via fork(2) inherits its parent’s CPU affinity mask. The affinity mask is

Linux man-pages 6.16 2025-09-21 801

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

preserved across an execve(2).

C library/kernel differences
This manual page describes the glibc interface for the CPU affinity calls. The actual
system call interface is slightly different, with the mask being typed as unsigned long *,
reflecting the fact that the underlying implementation of CPU sets is a simple bit mask.

On success, the raw sched_getaffinity() system call returns the number of bytes placed
copied into the mask buffer; this will be the minimum of cpusetsize and the size (in
bytes) of the cpumask_t data type that is used internally by the kernel to represent the
CPU set bit mask.

Handling systems with large CPU affinity masks
The underlying system calls (which represent CPU masks as bit masks of type unsigned
long *) impose no restriction on the size of the CPU mask. However, the cpu_set_t data
type used by glibc has a fixed size of 128 bytes, meaning that the maximum CPU num-
ber that can be represented is 1023. If the kernel CPU affinity mask is larger than 1024,
then calls of the form:

sched_getaffinity(pid, sizeof(cpu_set_t), &mask);

fail with the error EINVAL, the error produced by the underlying system call for the
case where the mask size specified in cpusetsize is smaller than the size of the affinity
mask used by the kernel. (Depending on the system CPU topology, the kernel affinity
mask can be substantially larger than the number of active CPUs in the system.)

When working on systems with large kernel CPU affinity masks, one must dynamically
allocate the mask argument (see CPU_ALLOC(3)). Currently, the only way to do this is
by probing for the size of the required mask using sched_getaffinity() calls with in-
creasing mask sizes (until the call does not fail with the error EINVAL).

Be aware that CPU_ALLOC(3) may allocate a slightly larger CPU set than requested
(because CPU sets are implemented as bit masks allocated in units of sizeof(long)).
Consequently, sched_getaffinity() can set bits beyond the requested allocation size, be-
cause the kernel sees a few additional bits. Therefore, the caller should iterate over the
bits in the returned set, counting those which are set, and stop upon reaching the value
returned by CPU_COUNT(3) (rather than iterating over the number of bits requested to
be allocated).

EXAMPLES
The program below creates a child process. The parent and child then each assign them-
selves to a specified CPU and execute identical loops that consume some CPU time.
Before terminating, the parent waits for the child to complete. The program takes three
command-line arguments: the CPU number for the parent, the CPU number for the
child, and the number of loop iterations that both processes should perform.

As the sample runs below demonstrate, the amount of real and CPU time consumed
when running the program will depend on intra-core caching effects and whether the
processes are using the same CPU.

We first employ lscpu(1) to determine that this (x86) system has two cores, each with
two CPUs:

$ lscpu | egrep -i 'core.*:|socket';

Linux man-pages 6.16 2025-09-21 802

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

Thread(s) per core: 2
Core(s) per socket: 2
Socket(s): 1

We then time the operation of the example program for three cases: both processes run-
ning on the same CPU; both processes running on different CPUs on the same core; and
both processes running on different CPUs on different cores.

$ time -p ./a.out 0 0 100000000;
real 14.75
user 3.02
sys 11.73
$ time -p ./a.out 0 1 100000000;
real 11.52
user 3.98
sys 19.06
$ time -p ./a.out 0 3 100000000;
real 7.89
user 3.29
sys 12.07

Program source

#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int parentCPU, childCPU;
cpu_set_t set;
unsigned int nloops;

if (argc != 4) {
fprintf(stderr, "Usage: %s parent-cpu child-cpu num-loops\n",

argv[0]);
exit(EXIT_FAILURE);

}

parentCPU = atoi(argv[1]);
childCPU = atoi(argv[2]);
nloops = atoi(argv[3]);

CPU_ZERO(&set);

Linux man-pages 6.16 2025-09-21 803

sched_setaffinity(2) System Calls Manual sched_setaffinity(2)

switch (fork()) {
case -1: /* Error */

err(EXIT_FAILURE, "fork");

case 0: /* Child */
CPU_SET(childCPU, &set);

if (sched_setaffinity(0, sizeof(set), &set) == -1)
err(EXIT_FAILURE, "sched_setaffinity");

for (unsigned int j = 0; j < nloops; j++)
getppid();

exit(EXIT_SUCCESS);

default: /* Parent */
CPU_SET(parentCPU, &set);

if (sched_setaffinity(0, sizeof(set), &set) == -1)
err(EXIT_FAILURE, "sched_setaffinity");

for (unsigned int j = 0; j < nloops; j++)
getppid();

wait(NULL); /* Wait for child to terminate */
exit(EXIT_SUCCESS);

}
}

SEE ALSO
lscpu(1), nproc(1), taskset(1), clone(2), getcpu(2), getpriority(2), gettid(2), nice(2),
sched_get_priority_max(2), sched_get_priority_min(2), sched_getscheduler(2),
sched_setscheduler(2), setpriority(2), CPU_SET(3), get_nprocs(3),
pthread_setaffinity_np(3), sched_getcpu(3), capabilities(7), cpuset(7), sched(7),
numactl(8)

Linux man-pages 6.16 2025-09-21 804

sched_setattr(2) System Calls Manual sched_setattr(2)

NAME
sched_setattr, sched_getattr - set and get scheduling policy and attributes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h> /* Definition of SCHED_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_sched_setattr, pid_t pid , struct sched_attr *attr,
unsigned int flags);

int syscall(SYS_sched_getattr, pid_t pid , struct sched_attr *attr,
unsigned int size, unsigned int flags);

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
sched_setattr()

The sched_setattr() system call sets the scheduling policy and associated attributes for
the thread whose ID is specified in pid . If pid equals zero, the scheduling policy and at-
tributes of the calling thread will be set.

Currently, Linux supports the following "normal" (i.e., non-real-time) scheduling poli-
cies as values that may be specified in policy:

SCHED_OTHER
the standard round-robin time-sharing policy;

SCHED_BATCH
for "batch" style execution of processes; and

SCHED_IDLE
for running very low priority background jobs.

Various "real-time" policies are also supported, for special time-critical applications that
need precise control over the way in which runnable threads are selected for execution.
For the rules governing when a process may use these policies, see sched(7). The real-
time policies that may be specified in policy are:

SCHED_FIFO
a first-in, first-out policy; and

SCHED_RR a round-robin policy.

Linux also provides the following policy:

SCHED_DEADLINE
a deadline scheduling policy; see sched(7) for details.

The attr argument is a pointer to a structure that defines the new scheduling policy and
attributes for the specified thread. This structure has the following form:

struct sched_attr {
u32 size; /* Size of this structure */

Linux man-pages 6.16 2025-09-21 805

sched_setattr(2) System Calls Manual sched_setattr(2)

u32 sched_policy; /* Policy (SCHED_*) */
u64 sched_flags; /* Flags */
s32 sched_nice; /* Nice value (SCHED_OTHER,

SCHED_BATCH) */
u32 sched_priority; /* Static priority (SCHED_FIFO,

SCHED_RR) */
/* For SCHED_DEADLINE */
u64 sched_runtime;
u64 sched_deadline;
u64 sched_period;

/* Utilization hints */
u32 sched_util_min;
u32 sched_util_max;

};

The fields of the sched_attr structure are as follows:

size This field should be set to the size of the structure in bytes, as in sizeof(struct
sched_attr). If the provided structure is smaller than the kernel structure, any ad-
ditional fields are assumed to be ’0’. If the provided structure is larger than the
kernel structure, the kernel verifies that all additional fields are 0; if they are not,
sched_setattr() fails with the error E2BIG and updates size to contain the size
of the kernel structure.

The above behavior when the size of the user-space sched_attr structure does not
match the size of the kernel structure allows for future extensibility of the inter-
face. Malformed applications that pass oversize structures won’t break in the fu-
ture if the size of the kernel sched_attr structure is increased. In the future, it
could also allow applications that know about a larger user-space sched_attr
structure to determine whether they are running on an older kernel that does not
support the larger structure.

sched_policy
This field specifies the scheduling policy, as one of the SCHED_* values listed
above.

sched_flags
This field contains zero or more of the following flags that are ORed together to
control scheduling behavior:

SCHED_FLAG_RESET_ON_FORK
Children created by fork(2) do not inherit privileged scheduling policies.
See sched(7) for details.

SCHED_FLAG_RECLAIM (since Linux 4.13)
This flag allows a SCHED_DEADLINE thread to reclaim bandwidth
unused by other real-time threads.

SCHED_FLAG_DL_OVERRUN (since Linux 4.16)
This flag allows an application to get informed about run-time overruns
in SCHED_DEADLINE threads. Such overruns may be caused by (for

Linux man-pages 6.16 2025-09-21 806

sched_setattr(2) System Calls Manual sched_setattr(2)

example) coarse execution time accounting or incorrect parameter assign-
ment. Notification takes the form of a SIGXCPU signal which is gener-
ated on each overrun.

This SIGXCPU signal is process-directed (see signal(7)) rather than
thread-directed. This is probably a bug. On the one hand, sched_se-
tattr() is being used to set a per-thread attribute. On the other hand, if
the process-directed signal is delivered to a thread inside the process
other than the one that had a run-time overrun, the application has no way
of knowing which thread overran.

SCHED_FLAG_UTIL_CLAMP_MIN
SCHED_FLAG_UTIL_CLAMP_MAX (both since Linux 5.3)

These flags indicate that the sched_util_min or sched_util_max fields, re-
spectively, are present, representing the expected minimum and maxi-
mum utilization of the thread.

The utilization attributes provide the scheduler with boundaries within
which it should schedule the thread, potentially informing its decisions
regarding task placement and frequency selection.

sched_nice
This field specifies the nice value to be set when specifying sched_policy as
SCHED_OTHER or SCHED_BATCH. The nice value is a number in the
range -20 (high priority) to +19 (low priority); see sched(7).

sched_priority
This field specifies the static priority to be set when specifying sched_policy as
SCHED_FIFO or SCHED_RR. The allowed range of priorities for these poli-
cies can be determined using sched_get_priority_min(2) and sched_get_prior-
ity_max(2). For other policies, this field must be specified as 0.

sched_runtime
This field specifies the "Runtime" parameter for deadline scheduling. The value
is expressed in nanoseconds. This field, and the next two fields, are used only
for SCHED_DEADLINE scheduling; for further details, see sched(7).

sched_deadline
This field specifies the "Deadline" parameter for deadline scheduling. The value
is expressed in nanoseconds.

sched_period
This field specifies the "Period" parameter for deadline scheduling. The value is
expressed in nanoseconds.

sched_util_min
sched_util_max (both since Linux 5.3)

These fields specify the expected minimum and maximum utilization, respec-
tively. They are ignored unless their corresponding
SCHED_FLAG_UTIL_CLAMP_MIN or
SCHED_FLAG_UTIL_CLAMP_MAX is set in sched_flags.

Linux man-pages 6.16 2025-09-21 807

sched_setattr(2) System Calls Manual sched_setattr(2)

Utilization is a value in the range [0, 1024], representing the percentage of CPU
time used by a task when running at the maximum frequency on the highest ca-
pacity CPU of the system. This is a fixed point representation, where 1024 cor-
responds to 100%, and 0 corresponds to 0%. For example, a 20% utilization task
is a task running for 2ms every 10ms at maximum frequency and is represented
by a utilization value of 0.2 * 1024 = 205.

A task with a minimum utilization value larger than 0 is more likely scheduled
on a CPU with a capacity big enough to fit the specified value. A task with a
maximum utilization value smaller than 1024 is more likely scheduled on a CPU
with no more capacity than the specified value.

A task utilization boundary can be reset by setting its field to UINT32_MAX
(since Linux 5.11).

The flags argument is provided to allow for future extensions to the interface; in the cur-
rent implementation it must be specified as 0.

sched_getattr()
The sched_getattr() system call fetches the scheduling policy and the associated attrib-
utes for the thread whose ID is specified in pid . If pid equals zero, the scheduling pol-
icy and attributes of the calling thread will be retrieved.

The size argument should be set to the size of the sched_attr structure as known to user
space. The value must be at least as large as the size of the initially published
sched_attr structure, or the call fails with the error EINVAL.

The retrieved scheduling attributes are placed in the fields of the sched_attr structure
pointed to by attr. The kernel sets attr.size to the size of its sched_attr structure.

If the caller-provided attr buffer is larger than the kernel’s sched_attr structure, the ad-
ditional bytes in the user-space structure are not touched. If the caller-provided structure
is smaller than the kernel sched_attr structure, the kernel will silently not return any val-
ues which would be stored outside the provided space. As with sched_setattr(), these
semantics allow for future extensibility of the interface.

The flags argument is provided to allow for future extensions to the interface; in the cur-
rent implementation it must be specified as 0.

RETURN VALUE
On success, sched_setattr() and sched_getattr() return 0. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
sched_getattr() and sched_setattr() can both fail for the following reasons:

EINVAL
attr is NULL; or pid is negative; or flags is not zero.

ESRCH
The thread whose ID is pid could not be found.

In addition, sched_getattr() can fail for the following reasons:

Linux man-pages 6.16 2025-09-21 808

sched_setattr(2) System Calls Manual sched_setattr(2)

E2BIG
The buffer specified by size and attr is too small.

EINVAL
size is invalid; that is, it is smaller than the initial version of the sched_attr struc-
ture (48 bytes) or larger than the system page size.

In addition, sched_setattr() can fail for the following reasons:

E2BIG
The buffer specified by size and attr is larger than the kernel structure, and one
or more of the excess bytes is nonzero.

EBUSY
SCHED_DEADLINE admission control failure, see sched(7).

EINVAL
attr.sched_policy is not one of the recognized policies.

EINVAL
attr.sched_flags contains a flag other than SCHED_FLAG_RE-
SET_ON_FORK.

EINVAL
attr.sched_priority is invalid.

EINVAL
attr.sched_policy is SCHED_DEADLINE, and the deadline scheduling parame-
ters in attr are invalid.

EINVAL
attr.sched_flags contains SCHED_FLAG_UTIL_CLAMP_MIN or
SCHED_FLAG_UTIL_CLAMP_MAX, and attr.sched_util_min or
attr.sched_util_max are out of bounds.

EOPNOTSUPP
SCHED_FLAG_UTIL_CLAMP was provided, but the kernel was not built
with CONFIG_UCLAMP_TASK support.

EPERM
The caller does not have appropriate privileges.

EPERM
The CPU affinity mask of the thread specified by pid does not include all CPUs
in the system (see sched_setaffinity(2)).

STANDARDS
Linux.

HISTORY
Linux 3.14.

NOTES
glibc does not provide wrappers for these system calls; call them using syscall(2).

sched_setattr() provides a superset of the functionality of sched_setscheduler(2),
sched_setparam(2), nice(2), and (other than the ability to set the priority of all processes

Linux man-pages 6.16 2025-09-21 809

sched_setattr(2) System Calls Manual sched_setattr(2)

belonging to a specified user or all processes in a specified group) setpriority(2). Analo-
gously, sched_getattr() provides a superset of the functionality of sched_getsched-
uler(2), sched_getparam(2), and (partially) getpriority(2).

BUGS
In Linux versions up to 3.15, sched_setattr() failed with the error EFAULT instead of
E2BIG for the case described in ERRORS.

Up to Linux 5.3, sched_getattr() failed with the error EFBIG if the in-kernel
sched_attr structure was larger than the size passed by user space.

SEE ALSO
chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),
sched_getaffinity(2), sched_getparam(2), sched_getscheduler(2),
sched_rr_get_interval(2), sched_setaffinity(2), sched_setparam(2),
sched_setscheduler(2), sched_yield(2), setpriority(2), pthread_getschedparam(3),
pthread_setschedparam(3), pthread_setschedprio(3), capabilities(7), cpuset(7), sched(7)

Linux man-pages 6.16 2025-09-21 810

sched_setparam(2) System Calls Manual sched_setparam(2)

NAME
sched_setparam, sched_getparam - set and get scheduling parameters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_setparam(pid_t pid , const struct sched_param *param);
int sched_getparam(pid_t pid , struct sched_param *param);

struct sched_param {
...
int sched_priority;
...

};

DESCRIPTION
sched_setparam() sets the scheduling parameters associated with the scheduling policy
for the thread whose thread ID is specified in pid . If pid is zero, then the parameters of
the calling thread are set. The interpretation of the argument param depends on the
scheduling policy of the thread identified by pid . See sched(7) for a description of the
scheduling policies supported under Linux.

sched_getparam() retrieves the scheduling parameters for the thread identified by pid .
If pid is zero, then the parameters of the calling thread are retrieved.

sched_setparam() checks the validity of param for the scheduling policy of the thread.
The value param->sched_priority must lie within the range given by sched_get_prior-
ity_min(2) and sched_get_priority_max(2).

For a discussion of the privileges and resource limits related to scheduling priority and
policy, see sched(7).

POSIX systems on which sched_setparam() and sched_getparam() are available de-
fine _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

RETURN VALUE
On success, sched_setparam() and sched_getparam() return 0. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EINVAL

Invalid arguments: param is NULL or pid is negative

EINVAL
(sched_setparam()) The argument param does not make sense for the current
scheduling policy.

EPERM
(sched_setparam()) The caller does not have appropriate privileges (Linux: does
not have the CAP_SYS_NICE capability).

Linux man-pages 6.16 2025-10-29 811

sched_setparam(2) System Calls Manual sched_setparam(2)

ESRCH
The thread whose ID is pid could not be found.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

SEE ALSO
getpriority(2), gettid(2), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),
sched_getaffinity(2), sched_getscheduler(2), sched_setaffinity(2), sched_setattr(2),
sched_setscheduler(2), setpriority(2), capabilities(7), sched(7)

Linux man-pages 6.16 2025-10-29 812

sched_setscheduler(2) System Calls Manual sched_setscheduler(2)

NAME
sched_setscheduler, sched_getscheduler - set and get scheduling policy/parameters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_setscheduler(pid_t pid , int policy,
const struct sched_param *param);

int sched_getscheduler(pid_t pid);

DESCRIPTION
The sched_setscheduler() system call sets both the scheduling policy and parameters
for the thread whose ID is specified in pid . If pid equals zero, the scheduling policy
and parameters of the calling thread will be set.

The scheduling parameters are specified in the param argument, which is a pointer to a
structure of the following form:

struct sched_param {
...
int sched_priority;
...

};

In the current implementation, the structure contains only one field, sched_priority. The
interpretation of param depends on the selected policy.

Currently, Linux supports the following "normal" (i.e., non-real-time) scheduling poli-
cies as values that may be specified in policy:

SCHED_OTHER
the standard round-robin time-sharing policy;

SCHED_BATCH
for "batch" style execution of processes; and

SCHED_IDLE
for running very low priority background jobs.

For each of the above policies, param->sched_priority must be 0.

Various "real-time" policies are also supported, for special time-critical applications that
need precise control over the way in which runnable threads are selected for execution.
For the rules governing when a process may use these policies, see sched(7). The real-
time policies that may be specified in policy are:

SCHED_FIFO
a first-in, first-out policy; and

SCHED_RR a round-robin policy.

For each of the above policies, param->sched_priority specifies a scheduling priority
for the thread. This is a number in the range returned by calling sched_get_prior-
ity_min(2) and sched_get_priority_max(2) with the specified policy. On Linux, these

Linux man-pages 6.16 2025-10-29 813

sched_setscheduler(2) System Calls Manual sched_setscheduler(2)

system calls return, respectively, 1 and 99.

Since Linux 2.6.32, the SCHED_RESET_ON_FORK flag can be ORed in policy
when calling sched_setscheduler(). As a result of including this flag, children created
by fork(2) do not inherit privileged scheduling policies. See sched(7) for details.

sched_getscheduler() returns the current scheduling policy of the thread identified by
pid . If pid equals zero, the policy of the calling thread will be retrieved.

RETURN VALUE
On success, sched_setscheduler() returns zero. On success, sched_getscheduler() re-
turns the policy for the thread (a nonnegative integer). On error, both calls return -1,
and errno is set to indicate the error.

ERRORS
EINVAL

Invalid arguments: pid is negative or param is NULL.

EINVAL
(sched_setscheduler()) policy is not one of the recognized policies.

EINVAL
(sched_setscheduler()) param does not make sense for the specified policy.

EPERM
The calling thread does not have appropriate privileges.

ESRCH
The thread whose ID is pid could not be found.

VERSIONS
POSIX.1 does not detail the permissions that an unprivileged thread requires in order to
call sched_setscheduler(), and details vary across systems. For example, the Solaris 7
manual page says that the real or effective user ID of the caller must match the real user
ID or the save set-user-ID of the target.

The scheduling policy and parameters are in fact per-thread attributes on Linux. The
value returned from a call to gettid(2) can be passed in the argument pid . Specifying
pid as 0 will operate on the attributes of the calling thread, and passing the value re-
turned from a call to getpid(2) will operate on the attributes of the main thread of the
thread group. (If you are using the POSIX threads API, then use pthread_setsched-
param(3), pthread_getschedparam(3), and pthread_setschedprio(3), instead of the
sched_*(2) system calls.)

STANDARDS
POSIX.1-2024 (but see BUGS below).

SCHED_BATCH and SCHED_IDLE are Linux-specific.

HISTORY
POSIX.1-2001.

NOTES
Further details of the semantics of all of the above "normal" and "real-time" scheduling
policies can be found in the sched(7) manual page. That page also describes an

Linux man-pages 6.16 2025-10-29 814

sched_setscheduler(2) System Calls Manual sched_setscheduler(2)

additional policy, SCHED_DEADLINE, which is settable only via sched_setattr(2).

POSIX systems on which sched_setscheduler() and sched_getscheduler() are available
define _POSIX_PRIORITY_SCHEDULING in <unistd.h>.

BUGS
POSIX.1 says that on success, sched_setscheduler() should return the previous sched-
uling policy. Linux sched_setscheduler() does not conform to this requirement, since it
always returns 0 on success.

SEE ALSO
chrt(1), nice(2), sched_get_priority_max(2), sched_get_priority_min(2),
sched_getaffinity(2), sched_getattr(2), sched_getparam(2), sched_rr_get_interval(2),
sched_setaffinity(2), sched_setattr(2), sched_setparam(2), sched_yield(2), setpriority(2),
capabilities(7), cpuset(7), sched(7)

Linux man-pages 6.16 2025-10-29 815

sched_yield(2) System Calls Manual sched_yield(2)

NAME
sched_yield - yield the processor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_yield(void);

DESCRIPTION
sched_yield() causes the calling thread to relinquish the CPU. The thread is moved to
the end of the queue for its static priority and a new thread gets to run.

RETURN VALUE
On success, sched_yield() returns 0. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
In the Linux implementation, sched_yield() always succeeds.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001 (but optional). POSIX.1-2008.

Before POSIX.1-2008, systems on which sched_yield() is available defined
_POSIX_PRIORITY_SCHEDULING in <unistd.h>.

CAVEATS
sched_yield() is intended for use with real-time scheduling policies (i.e.,
SCHED_FIFO or SCHED_RR). Use of sched_yield() with nondeterministic schedul-
ing policies such as SCHED_OTHER is unspecified and very likely means your appli-
cation design is broken.

If the calling thread is the only thread in the highest priority list at that time, it will con-
tinue to run after a call to sched_yield().

Avoid calling sched_yield() unnecessarily or inappropriately (e.g., when resources
needed by other schedulable threads are still held by the caller), since doing so will re-
sult in unnecessary context switches, which will degrade system performance.

SEE ALSO
sched(7)

Linux man-pages 6.16 2025-10-29 816

seccomp(2) System Calls Manual seccomp(2)

NAME
seccomp - operate on Secure Computing state of the process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/seccomp.h> /* Definition of SECCOMP_* constants */
#include <linux/filter.h> /* Definition of struct sock_fprog */
#include <linux/audit.h> /* Definition of AUDIT_* constants */
#include <linux/signal.h> /* Definition of SIG* constants */
#include <sys/ptrace.h> /* Definition of PTRACE_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_seccomp, unsigned int operation, unsigned int flags,
void *args);

Note: glibc provides no wrapper for seccomp(), necessitating the use of syscall(2).

DESCRIPTION
The seccomp() system call operates on the Secure Computing (seccomp) state of the
calling process.

Currently, Linux supports the following operation values:

SECCOMP_SET_MODE_STRICT
The only system calls that the calling thread is permitted to make are read(2),
write(2), _exit(2) (but not exit_group(2)), and sigreturn(2). Other system calls
result in the termination of the calling thread, or termination of the entire process
with the SIGKILL signal when there is only one thread. Strict secure comput-
ing mode is useful for number-crunching applications that may need to execute
untrusted byte code, perhaps obtained by reading from a pipe or socket.

Note that although the calling thread can no longer call sigprocmask(2), it can
use sigreturn(2) to block all signals apart from SIGKILL and SIGSTOP. This
means that alarm(2) (for example) is not sufficient for restricting the process’s
execution time. Instead, to reliably terminate the process, SIGKILL must be
used. This can be done by using timer_create(2) with SIGEV_SIGNAL and
sigev_signo set to SIGKILL, or by using setrlimit(2) to set the hard limit for
RLIMIT_CPU.

This operation is available only if the kernel is configured with CONFIG_SEC-
COMP enabled.

The value of flags must be 0, and args must be NULL.

This operation is functionally identical to the call:

prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT);

SECCOMP_SET_MODE_FILTER
The system calls allowed are defined by a pointer to a Berkeley Packet Filter
(BPF) passed via args. This argument is a pointer to a struct sock_fprog; it can
be designed to filter arbitrary system calls and system call arguments. If the

Linux man-pages 6.16 2025-09-21 817

seccomp(2) System Calls Manual seccomp(2)

filter is invalid, seccomp() fails, returning EINVAL in errno.

If fork(2) or clone(2) is allowed by the filter, any child processes will be con-
strained to the same system call filters as the parent. If execve(2) is allowed, the
existing filters will be preserved across a call to execve(2).

In order to use the SECCOMP_SET_MODE_FILTER operation, either the
calling thread must have the CAP_SYS_ADMIN capability in its user name-
space, or the thread must already have the no_new_privs bit set. If that bit was
not already set by an ancestor of this thread, the thread must make the following
call:

prctl(PR_SET_NO_NEW_PRIVS, 1);

Otherwise, the SECCOMP_SET_MODE_FILTER operation fails and returns
EACCES in errno. This requirement ensures that an unprivileged process can-
not apply a malicious filter and then invoke a set-user-ID or other privileged pro-
gram using execve(2), thus potentially compromising that program. (Such a ma-
licious filter might, for example, cause an attempt to use setuid(2) to set the
caller’s user IDs to nonzero values to instead return 0 without actually making
the system call. Thus, the program might be tricked into retaining superuser
privileges in circumstances where it is possible to influence it to do dangerous
things because it did not actually drop privileges.)

If prctl(2) or seccomp() is allowed by the attached filter, further filters may be
added. This will increase evaluation time, but allows for further reduction of the
attack surface during execution of a thread.

The SECCOMP_SET_MODE_FILTER operation is available only if the ker-
nel is configured with CONFIG_SECCOMP_FILTER enabled.

When flags is 0, this operation is functionally identical to the call:

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, args);

The recognized flags are:

SECCOMP_FILTER_FLAG_LOG (since Linux 4.14)
All filter return actions except SECCOMP_RET_ALLOW should be
logged. An administrator may override this filter flag by preventing spe-
cific actions from being logged via the /proc/sys/kernel/seccomp/ac-
tions_logged file.

SECCOMP_FILTER_FLAG_NEW_LISTENER (since Linux 5.0)
After successfully installing the filter program, return a new user-space
notification file descriptor. (The close-on-exec flag is set for the file de-
scriptor.) When the filter returns SECCOMP_RET_USER_NOTIF a
notification will be sent to this file descriptor.

At most one seccomp filter using the SECCOMP_FIL-
TER_FLAG_NEW_LISTENER flag can be installed for a thread.

See seccomp_unotify(2) for further details.

Linux man-pages 6.16 2025-09-21 818

seccomp(2) System Calls Manual seccomp(2)

SECCOMP_FILTER_FLAG_SPEC_ALLOW (since Linux 4.17)
Disable Speculative Store Bypass mitigation.

SECCOMP_FILTER_FLAG_TSYNC
When adding a new filter, synchronize all other threads of the calling
process to the same seccomp filter tree. A "filter tree" is the ordered list
of filters attached to a thread. (Attaching identical filters in separate sec-
comp() calls results in different filters from this perspective.)

If any thread cannot synchronize to the same filter tree, the call will not
attach the new seccomp filter, and will fail, returning the first thread ID
found that cannot synchronize. Synchronization will fail if another
thread in the same process is in SECCOMP_MODE_STRICT or if it
has attached new seccomp filters to itself, diverging from the calling
thread’s filter tree.

SECCOMP_GET_ACTION_AVAIL (since Linux 4.14)
Test to see if an action is supported by the kernel. This operation is helpful to
confirm that the kernel knows of a more recently added filter return action since
the kernel treats all unknown actions as SECCOMP_RET_KILL_PROCESS.

The value of flags must be 0, and args must be a pointer to an unsigned 32-bit
filter return action.

SECCOMP_GET_NOTIF_SIZES (since Linux 5.0)
Get the sizes of the seccomp user-space notification structures. Since these
structures may evolve and grow over time, this command can be used to deter-
mine how much memory to allocate for sending and receiving notifications.

The value of flags must be 0, and args must be a pointer to a struct seccomp_no-
tif_sizes, which has the following form:

struct seccomp_notif_sizes
__u16 seccomp_notif; /* Size of notification structure */
__u16 seccomp_notif_resp; /* Size of response structure */
__u16 seccomp_data; /* Size of 'struct seccomp_data' */

};

See seccomp_unotify(2) for further details.

Filters
When adding filters via SECCOMP_SET_MODE_FILTER, args points to a filter pro-
gram:

struct sock_fprog {
unsigned short len; /* Number of BPF instructions */
struct sock_filter *filter; /* Pointer to array of

BPF instructions */
};

Each program must contain one or more BPF instructions:

struct sock_filter { /* Filter block */
__u16 code; /* Actual filter code */

Linux man-pages 6.16 2025-09-21 819

seccomp(2) System Calls Manual seccomp(2)

__u8 jt; /* Jump true */
__u8 jf; /* Jump false */
__u32 k; /* Generic multiuse field */

};

When executing the instructions, the BPF program operates on the system call informa-
tion made available (i.e., use the BPF_ABS addressing mode) as a (read-only) buffer of
the following form:

struct seccomp_data {
int nr; /* System call number */
__u32 arch; /* AUDIT_ARCH_* value

(see <linux/audit.h>) */
__u64 instruction_pointer; /* CPU instruction pointer */
__u64 args[6]; /* Up to 6 system call arguments */

};

Because numbering of system calls varies between architectures and some architectures
(e.g., x86-64) allow user-space code to use the calling conventions of multiple architec-
tures (and the convention being used may vary over the life of a process that uses ex-
ecve(2) to execute binaries that employ the different conventions), it is usually necessary
to verify the value of the arch field.

It is strongly recommended to use an allow-list approach whenever possible because
such an approach is more robust and simple. A deny-list will have to be updated when-
ever a potentially dangerous system call is added (or a dangerous flag or option if those
are deny-listed), and it is often possible to alter the representation of a value without al-
tering its meaning, leading to a deny-list bypass. See also Caveats below.

The arch field is not unique for all calling conventions. The x86-64 ABI and the x32
ABI both use AUDIT_ARCH_X86_64 as arch, and they run on the same processors.
Instead, the mask __X32_SYSCALL_BIT is used on the system call number to tell the
two ABIs apart.

This means that a policy must either deny all syscalls with __X32_SYSCALL_BIT or it
must recognize syscalls with and without __X32_SYSCALL_BIT set. A list of system
calls to be denied based on nr that does not also contain nr values with
__X32_SYSCALL_BIT set can be bypassed by a malicious program that sets
__X32_SYSCALL_BIT.

Additionally, kernels prior to Linux 5.4 incorrectly permitted nr in the ranges 512-547
as well as the corresponding non-x32 syscalls ORed with __X32_SYSCALL_BIT. For
example, nr == 521 and nr == (101 | __X32_SYSCALL_BIT) would result in invoca-
tions of ptrace(2) with potentially confused x32-vs-x86_64 semantics in the kernel.
Policies intended to work on kernels before Linux 5.4 must ensure that they deny or oth-
erwise correctly handle these system calls. On Linux 5.4 and newer, such system calls
will fail with the error ENOSYS, without doing anything.

The instruction_pointer field provides the address of the machine-language instruction
that performed the system call. This might be useful in conjunction with the use of
/proc/ pid /maps to perform checks based on which region (mapping) of the program
made the system call. (Probably, it is wise to lock down the mmap(2) and mprotect(2)

Linux man-pages 6.16 2025-09-21 820

seccomp(2) System Calls Manual seccomp(2)

system calls to prevent the program from subverting such checks.)

When checking values from args, keep in mind that arguments are often silently trun-
cated before being processed, but after the seccomp check. For example, this happens if
the i386 ABI is used on an x86-64 kernel: although the kernel will normally not look be-
yond the 32 lowest bits of the arguments, the values of the full 64-bit registers will be
present in the seccomp data. A less surprising example is that if the x86-64 ABI is used
to perform a system call that takes an argument of type int, the more-significant half of
the argument register is ignored by the system call, but visible in the seccomp data.

A seccomp filter returns a 32-bit value consisting of two parts: the most significant 16
bits (corresponding to the mask defined by the constant SECCOMP_RET_AC-
TION_FULL) contain one of the "action" values listed below; the least significant
16-bits (defined by the constant SECCOMP_RET_DATA) are "data" to be associated
with this return value.

If multiple filters exist, they are all executed, in reverse order of their addition to the fil-
ter tree—that is, the most recently installed filter is executed first. (Note that all filters
will be called even if one of the earlier filters returns SECCOMP_RET_KILL. This is
done to simplify the kernel code and to provide a tiny speed-up in the execution of sets
of filters by avoiding a check for this uncommon case.) The return value for the evalua-
tion of a given system call is the first-seen action value of highest precedence (along
with its accompanying data) returned by execution of all of the filters.

In decreasing order of precedence, the action values that may be returned by a seccomp
filter are:

SECCOMP_RET_KILL_PROCESS (since Linux 4.14)
This value results in immediate termination of the process, with a core dump.
The system call is not executed. By contrast with SEC-
COMP_RET_KILL_THREAD below, all threads in the thread group are ter-
minated. (For a discussion of thread groups, see the description of the
CLONE_THREAD flag in clone(2).)

The process terminates as though killed by a SIGSYS signal. Even if a signal
handler has been registered for SIGSYS, the handler will be ignored in this case
and the process always terminates. To a parent process that is waiting on this
process (using waitpid(2) or similar), the returned wstatus will indicate that its
child was terminated as though by a SIGSYS signal.

SECCOMP_RET_KILL_THREAD (or SECCOMP_RET_KILL)
This value results in immediate termination of the thread that made the system
call. The system call is not executed. Other threads in the same thread group
will continue to execute.

The thread terminates as though killed by a SIGSYS signal. See SEC-
COMP_RET_KILL_PROCESS above.

Before Linux 4.11, any process terminated in this way would not trigger a core-
dump (even though SIGSYS is documented in signal(7) as having a default ac-
tion of termination with a core dump). Since Linux 4.11, a single-threaded
process will dump core if terminated in this way.

Linux man-pages 6.16 2025-09-21 821

seccomp(2) System Calls Manual seccomp(2)

With the addition of SECCOMP_RET_KILL_PROCESS in Linux 4.14, SEC-
COMP_RET_KILL_THREAD was added as a synonym for SEC-
COMP_RET_KILL, in order to more clearly distinguish the two actions.

Note: the use of SECCOMP_RET_KILL_THREAD to kill a single thread in a
multithreaded process is likely to leave the process in a permanently inconsistent
and possibly corrupt state.

SECCOMP_RET_TRAP
This value results in the kernel sending a thread-directed SIGSYS signal to the
triggering thread. (The system call is not executed.) Various fields will be set in
the siginfo_t structure (see sigaction(2)) associated with signal:

• si_signo will contain SIGSYS.

• si_call_addr will show the address of the system call instruction.

• si_syscall and si_arch will indicate which system call was attempted.

• si_code will contain SYS_SECCOMP.

• si_errno will contain the SECCOMP_RET_DATA portion of the filter re-
turn value.

The program counter will be as though the system call happened (i.e., the pro-
gram counter will not point to the system call instruction). The return value reg-
ister will contain an architecture-dependent value; if resuming execution, set it
to something appropriate for the system call. (The architecture dependency is
because replacing it with ENOSYS could overwrite some useful information.)

SECCOMP_RET_ERRNO
This value results in the SECCOMP_RET_DATA portion of the filter’s return
value being passed to user space as the errno value without executing the system
call.

SECCOMP_RET_USER_NOTIF (since Linux 5.0)
Forward the system call to an attached user-space supervisor process to allow
that process to decide what to do with the system call. If there is no attached su-
pervisor (either because the filter was not installed with the SECCOMP_FIL-
TER_FLAG_NEW_LISTENER flag or because the file descriptor was closed),
the filter returns ENOSYS (similar to what happens when a filter returns SEC-
COMP_RET_TRACE and there is no tracer). See seccomp_unotify(2) for fur-
ther details.

Note that the supervisor process will not be notified if another filter returns an
action value with a precedence greater than SECCOMP_RET_USER_NOTIF.

SECCOMP_RET_TRACE
When returned, this value will cause the kernel to attempt to notify a
ptrace(2)-based tracer prior to executing the system call. If there is no tracer
present, the system call is not executed and returns a failure status with errno set
to ENOSYS.

A tracer will be notified if it requests PTRACE_O_TRACESECCOMP using
ptrace(PTRACE_SETOPTIONS). The tracer will be notified of a

Linux man-pages 6.16 2025-09-21 822

seccomp(2) System Calls Manual seccomp(2)

PTRACE_EVENT_SECCOMP and the SECCOMP_RET_DATA portion of
the filter’s return value will be available to the tracer via
PTRACE_GETEVENTMSG.

The tracer can skip the system call by changing the system call number to -1.
Alternatively, the tracer can change the system call requested by changing the
system call to a valid system call number. If the tracer asks to skip the system
call, then the system call will appear to return the value that the tracer puts in the
return value register.

Before Linux 4.8, the seccomp check will not be run again after the tracer is no-
tified. (This means that, on older kernels, seccomp-based sandboxes must not
allow use of ptrace(2)—even of other sandboxed processes—without extreme
care; ptracers can use this mechanism to escape from the seccomp sandbox.)

Note that a tracer process will not be notified if another filter returns an action
value with a precedence greater than SECCOMP_RET_TRACE.

SECCOMP_RET_LOG (since Linux 4.14)
This value results in the system call being executed after the filter return action is
logged. An administrator may override the logging of this action via the
/proc/sys/kernel/seccomp/actions_logged file.

SECCOMP_RET_ALLOW
This value results in the system call being executed.

If an action value other than one of the above is specified, then the filter action is treated
as either SECCOMP_RET_KILL_PROCESS (since Linux 4.14) or SEC-
COMP_RET_KILL_THREAD (in Linux 4.13 and earlier).

/proc interfaces
The files in the directory /proc/sys/kernel/seccomp provide additional seccomp informa-
tion and configuration:

actions_avail (since Linux 4.14)
A read-only ordered list of seccomp filter return actions in string form. The or-
dering, from left-to-right, is in decreasing order of precedence. The list repre-
sents the set of seccomp filter return actions supported by the kernel.

actions_logged (since Linux 4.14)
A read-write ordered list of seccomp filter return actions that are allowed to be
logged. Writes to the file do not need to be in ordered form but reads from the
file will be ordered in the same way as the actions_avail file.

It is important to note that the value of actions_logged does not prevent certain
filter return actions from being logged when the audit subsystem is configured to
audit a task. If the action is not found in the actions_logged file, the final deci-
sion on whether to audit the action for that task is ultimately left up to the audit
subsystem to decide for all filter return actions other than SEC-
COMP_RET_ALLOW.

The "allow" string is not accepted in the actions_logged file as it is not possible
to log SECCOMP_RET_ALLOW actions. Attempting to write "allow" to the
file will fail with the error EINVAL.

Linux man-pages 6.16 2025-09-21 823

seccomp(2) System Calls Manual seccomp(2)

Audit logging of seccomp actions
Since Linux 4.14, the kernel provides the facility to log the actions returned by seccomp
filters in the audit log. The kernel makes the decision to log an action based on the ac-
tion type, whether or not the action is present in the actions_logged file, and whether
kernel auditing is enabled (e.g., via the kernel boot option audit=1). The rules are as
follows:

• If the action is SECCOMP_RET_ALLOW, the action is not logged.

• Otherwise, if the action is either SECCOMP_RET_KILL_PROCESS or SEC-
COMP_RET_KILL_THREAD, and that action appears in the actions_logged file,
the action is logged.

• Otherwise, if the filter has requested logging (the SECCOMP_FIL-
TER_FLAG_LOG flag) and the action appears in the actions_logged file, the ac-
tion is logged.

• Otherwise, if kernel auditing is enabled and the process is being audited (au-
trace(8)), the action is logged.

• Otherwise, the action is not logged.

RETURN VALUE
On success, seccomp() returns 0. On error, if SECCOMP_FILTER_FLAG_TSYNC
was used, the return value is the ID of the thread that caused the synchronization failure.
(This ID is a kernel thread ID of the type returned by clone(2) and gettid(2).) On other
errors, -1 is returned, and errno is set to indicate the error.

ERRORS
seccomp() can fail for the following reasons:

EACCES
The caller did not have the CAP_SYS_ADMIN capability in its user namespace,
or had not set no_new_privs before using SECCOMP_SET_MODE_FILTER.

EBUSY
While installing a new filter, the SECCOMP_FILTER_FLAG_NEW_LIS-
TENER flag was specified, but a previous filter had already been installed with
that flag.

EFAULT
args was not a valid address.

EINVAL
operation is unknown or is not supported by this kernel version or configuration.

EINVAL
The specified flags are invalid for the given operation.

EINVAL
operation included BPF_ABS, but the specified offset was not aligned to a
32-bit boundary or exceeded sizeof(struct seccomp_data).

Linux man-pages 6.16 2025-09-21 824

seccomp(2) System Calls Manual seccomp(2)

EINVAL
A secure computing mode has already been set, and operation differs from the
existing setting.

EINVAL
operation specified SECCOMP_SET_MODE_FILTER, but the filter program
pointed to by args was not valid or the length of the filter program was zero or
exceeded BPF_MAXINSNS (4096) instructions.

ENOMEM
Out of memory.

ENOMEM
The total length of all filter programs attached to the calling thread would exceed
MAX_INSNS_PER_PATH (32768) instructions. Note that for the purposes of
calculating this limit, each already existing filter program incurs an overhead
penalty of 4 instructions.

EOPNOTSUPP
operation specified SECCOMP_GET_ACTION_AVAIL, but the kernel does
not support the filter return action specified by args.

ESRCH
Another thread caused a failure during thread sync, but its ID could not be deter-
mined.

STANDARDS
Linux.

HISTORY
Linux 3.17.

NOTES
Rather than hand-coding seccomp filters as shown in the example below, you may prefer
to employ the libseccomp library, which provides a front-end for generating seccomp fil-
ters.

The Seccomp field of the /proc/ pid /status file provides a method of viewing the sec-
comp mode of a process; see proc(5).

seccomp() provides a superset of the functionality provided by the prctl(2)
PR_SET_SECCOMP operation (which does not support flags).

Since Linux 4.4, the ptrace(2) PTRACE_SECCOMP_GET_FILTER operation can be
used to dump a process’s seccomp filters.

Architecture support for seccomp BPF
Architecture support for seccomp BPF filtering is available on the following architec-
tures:

• x86-64, i386, x32 (since Linux 3.5)
• ARM (since Linux 3.8)
• s390 (since Linux 3.8)

Linux man-pages 6.16 2025-09-21 825

seccomp(2) System Calls Manual seccomp(2)

• MIPS (since Linux 3.16)
• ARM-64 (since Linux 3.19)
• PowerPC (since Linux 4.3)
• Tile (since Linux 4.3)
• PA-RISC (since Linux 4.6)

Caveats
There are various subtleties to consider when applying seccomp filters to a program, in-
cluding the following:

• Some traditional system calls have user-space implementations in the vdso(7) on
many architectures. Notable examples include clock_gettime(2), gettimeofday(2),
and time(2). On such architectures, seccomp filtering for these system calls will
have no effect. (However, there are cases where the vdso(7) implementations may
fall back to invoking the true system call, in which case seccomp filters would see
the system call.)

• Seccomp filtering is based on system call numbers. However, applications typically
do not directly invoke system calls, but instead call wrapper functions in the C li-
brary which in turn invoke the system calls. Consequently, one must be aware of the
following:

• The glibc wrappers for some traditional system calls may actually employ sys-
tem calls with different names in the kernel. For example, the exit(2) wrapper
function actually employs the exit_group(2) system call, and the fork(2) wrapper
function actually calls clone(2).

• The behavior of wrapper functions may vary across architectures, according to
the range of system calls provided on those architectures. In other words, the
same wrapper function may invoke different system calls on different architec-
tures.

• Finally, the behavior of wrapper functions can change across glibc versions. For
example, in older versions, the glibc wrapper function for open(2) invoked the
system call of the same name, but starting in glibc 2.26, the implementation
switched to calling openat(2) on all architectures.

The consequence of the above points is that it may be necessary to filter for a system
call other than might be expected. Various manual pages in Section 2 provide helpful
details about the differences between wrapper functions and the underlying system calls
in subsections entitled C library/kernel differences.

Furthermore, note that the application of seccomp filters even risks causing bugs in an
application, when the filters cause unexpected failures for legitimate operations that the
application might need to perform. Such bugs may not easily be discovered when test-
ing the seccomp filters if the bugs occur in rarely used application code paths.

Seccomp-specific BPF details
Note the following BPF details specific to seccomp filters:

• The BPF_H and BPF_B size modifiers are not supported: all operations must load
and store (4-byte) words (BPF_W).

Linux man-pages 6.16 2025-09-21 826

seccomp(2) System Calls Manual seccomp(2)

• To access the contents of the seccomp_data buffer, use the BPF_ABS addressing
mode modifier.

• The BPF_LEN addressing mode modifier yields an immediate mode operand whose
value is the size of the seccomp_data buffer.

EXAMPLES
The program below accepts four or more arguments. The first three arguments are a
system call number, a numeric architecture identifier, and an error number. The pro-
gram uses these values to construct a BPF filter that is used at run time to perform the
following checks:

• If the program is not running on the specified architecture, the BPF filter causes sys-
tem calls to fail with the error ENOSYS.

• If the program attempts to execute the system call with the specified number, the
BPF filter causes the system call to fail, with errno being set to the specified error
number.

The remaining command-line arguments specify the pathname and additional arguments
of a program that the example program should attempt to execute using execv(3) (a li-
brary function that employs the execve(2) system call). Some example runs of the pro-
gram are shown below.

First, we display the architecture that we are running on (x86-64) and then construct a
shell function that looks up system call numbers on this architecture:

$ uname -m;
x86_64
$ syscall_nr() {

cat /usr/src/linux/arch/x86/syscalls/syscall_64.tbl | \
awk '$2 != "x32" && $3 == "'$1'" { print $1 }'

};

When the BPF filter rejects a system call (case [2] above), it causes the system call to
fail with the error number specified on the command line. In the experiments shown
here, we’ll use error number 99:

$ errno 99;
EADDRNOTAVAIL 99 Cannot assign requested address

In the following example, we attempt to run the command whoami(1), but the BPF filter
rejects the execve(2) system call, so that the command is not even executed:

$ syscall_nr execve;
59
$./a.out;
Usage: ./a.out <syscall_nr> <arch> <errno> <prog> [<args>]
Hint for <arch>: AUDIT_ARCH_I386: 0x40000003

AUDIT_ARCH_X86_64: 0xC000003E
$./a.out 59 0xC000003E 99 /bin/whoami;
execv: Cannot assign requested address

In the next example, the BPF filter rejects the write(2) system call, so that, although it is

Linux man-pages 6.16 2025-09-21 827

seccomp(2) System Calls Manual seccomp(2)

successfully started, the whoami(1) command is not able to write output:

$ syscall_nr write;
1
$./a.out 1 0xC000003E 99 /bin/whoami;

In the final example, the BPF filter rejects a system call that is not used by the
whoami(1) command, so it is able to successfully execute and produce output:

$ syscall_nr preadv;
295
$./a.out 295 0xC000003E 99 /bin/whoami;
cecilia

Program source
#include <linux/audit.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/prctl.h>
#include <sys/syscall.h>
#include <unistd.h>

#define X32_SYSCALL_BIT 0x40000000
#define NITEMS(arr) (sizeof(arr) / sizeof((arr)[0]))

static int
install_filter(int syscall_nr, unsigned int t_arch, int f_errno)
{

unsigned int upper_nr_limit = 0xffffffff;

/* Assume that AUDIT_ARCH_X86_64 means the normal x86-64 ABI
(in the x32 ABI, all system calls have bit 30 set in the
'nr' field, meaning the numbers are >= X32_SYSCALL_BIT). */

if (t_arch == AUDIT_ARCH_X86_64)
upper_nr_limit = X32_SYSCALL_BIT - 1;

struct sock_filter filter[] = {
/* [0] Load architecture from 'seccomp_data' buffer into

accumulator. */
BPF_STMT(BPF_LD | BPF_W | BPF_ABS,

(offsetof(struct seccomp_data, arch))),

/* [1] Jump forward 5 instructions if architecture does not
match 't_arch'. */

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, t_arch, 0, 5),

Linux man-pages 6.16 2025-09-21 828

seccomp(2) System Calls Manual seccomp(2)

/* [2] Load system call number from 'seccomp_data' buffer into
accumulator. */

BPF_STMT(BPF_LD | BPF_W | BPF_ABS,
(offsetof(struct seccomp_data, nr))),

/* [3] Check ABI - only needed for x86-64 in deny-list use
cases. Use BPF_JGT instead of checking against the bit
mask to avoid having to reload the syscall number. */

BPF_JUMP(BPF_JMP | BPF_JGT | BPF_K, upper_nr_limit, 3, 0),

/* [4] Jump forward 1 instruction if system call number
does not match 'syscall_nr'. */

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, syscall_nr, 0, 1),

/* [5] Matching architecture and system call: don't execute
the system call, and return 'f_errno' in 'errno'. */

BPF_STMT(BPF_RET | BPF_K,
SECCOMP_RET_ERRNO | (f_errno & SECCOMP_RET_DATA)),

/* [6] Destination of system call number mismatch: allow other
system calls. */

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),

/* [7] Destination of architecture mismatch: kill process. */
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS),

};

struct sock_fprog prog = {
.len = NITEMS(filter),
.filter = filter,

};

if (syscall(SYS_seccomp, SECCOMP_SET_MODE_FILTER, 0, &prog)) {
perror("seccomp");
return 1;

}

return 0;
}

int
main(int argc, char *argv[])
{

if (argc < 5) {
fprintf(stderr, "Usage: "

"%s <syscall_nr> <arch> <errno> <prog> [<args>]\n"
"Hint for <arch>: AUDIT_ARCH_I386: 0x%X\n"

Linux man-pages 6.16 2025-09-21 829

seccomp(2) System Calls Manual seccomp(2)

" AUDIT_ARCH_X86_64: 0x%X\n"
"\n", argv[0], AUDIT_ARCH_I386, AUDIT_ARCH_X86_64);

exit(EXIT_FAILURE);
}

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
perror("prctl");
exit(EXIT_FAILURE);

}

if (install_filter(strtol(argv[1], NULL, 0),
strtoul(argv[2], NULL, 0),
strtol(argv[3], NULL, 0)))

exit(EXIT_FAILURE);

execv(argv[4], &argv[4]);
perror("execv");
exit(EXIT_FAILURE);

}

SEE ALSO
bpfc(1), strace(1), bpf(2), prctl(2), ptrace(2), seccomp_unotify(2), sigaction(2), proc(5),
signal(7), socket(7)

Various pages from the libseccomp library, including: scmp_sys_resolver(1), sec-
comp_export_bpf (3), seccomp_init(3), seccomp_load(3), and seccomp_rule_add(3)

The kernel source files Documentation/networking/filter.txt and Documentation/user-
space-api/seccomp_filter.rst (or Documentation/prctl/seccomp_filter.txt before Linux
4.13).

McCanne, S. and Jacobson, V. (1992) The BSD Packet Filter: A New Architecture for
User-level Packet Capture, Proceedings of the USENIX Winter 1993 Conference
〈http://www.tcpdump.org/papers/bpf-usenix93.pdf〉

Terence Kelly and Edison Fuh (2025) Sandboxing: Foolproof Boundaries vs. Un-
bounded Foolishness 〈https://dl.acm.org/doi/pdf/10.1145/3733699〉

Linux man-pages 6.16 2025-09-21 830

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

NAME
seccomp_unotify - Seccomp user-space notification mechanism

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/seccomp.h>
#include <linux/filter.h>
#include <linux/audit.h>

int seccomp(unsigned int operation, unsigned int flags, void *args);

#include <sys/ioctl.h>

int ioctl(int fd , SECCOMP_IOCTL_NOTIF_RECV,
struct seccomp_notif *req);

int ioctl(int fd , SECCOMP_IOCTL_NOTIF_SEND,
struct seccomp_notif_resp *resp);

int ioctl(int fd , SECCOMP_IOCTL_NOTIF_ID_VALID, __u64 *id);
int ioctl(int fd , SECCOMP_IOCTL_NOTIF_ADDFD,

struct seccomp_notif_addfd *addfd);

DESCRIPTION
This page describes the user-space notification mechanism provided by the Secure Com-
puting (seccomp) facility. As well as the use of the SECCOMP_FIL-
TER_FLAG_NEW_LISTENER flag, the SECCOMP_RET_USER_NOTIF action
value, and the SECCOMP_GET_NOTIF_SIZES operation described in seccomp(2),
this mechanism involves the use of a number of related ioctl(2) operations (described
below).

Overview
In conventional usage of a seccomp filter, the decision about how to treat a system call is
made by the filter itself. By contrast, the user-space notification mechanism allows the
seccomp filter to delegate the handling of the system call to another user-space process.
Note that this mechanism is explicitly not intended as a method implementing security
policy; see NOTES.

In the discussion that follows, the thread(s) on which the seccomp filter is installed is
(are) referred to as the target, and the process that is notified by the user-space notifica-
tion mechanism is referred to as the supervisor.

A suitably privileged supervisor can use the user-space notification mechanism to per-
form actions on behalf of the target. The advantage of the user-space notification mech-
anism is that the supervisor will usually be able to retrieve information about the target
and the performed system call that the seccomp filter itself cannot. (A seccomp filter is
limited in the information it can obtain and the actions that it can perform because it is
running on a virtual machine inside the kernel.)

An overview of the steps performed by the target and the supervisor is as follows:

(1) The target establishes a seccomp filter in the usual manner, but with two differ-
ences:

Linux man-pages 6.16 2025-09-21 831

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

• The seccomp(2) flags argument includes the flag SECCOMP_FIL-
TER_FLAG_NEW_LISTENER. Consequently, the return value of the (suc-
cessful) seccomp(2) call is a new "listening" file descriptor that can be used to
receive notifications. Only one "listening" seccomp filter can be installed for a
thread.

• In cases where it is appropriate, the seccomp filter returns the action value
SECCOMP_RET_USER_NOTIF. This return value will trigger a notifica-
tion event.

(2) In order that the supervisor can obtain notifications using the listening file descrip-
tor, (a duplicate of) that file descriptor must be passed from the target to the super-
visor. One way in which this could be done is by passing the file descriptor over a
UNIX domain socket connection between the target and the supervisor (using the
SCM_RIGHTS ancillary message type described in unix(7)). Another way to do
this is through the use of pidfd_getfd(2).

(3) The supervisor will receive notification events on the listening file descriptor.
These events are returned as structures of type seccomp_notif . Because this
structure and its size may evolve over kernel versions, the supervisor must first de-
termine the size of this structure using the seccomp(2) SECCOMP_GET_NO-
TIF_SIZES operation, which returns a structure of type seccomp_notif_sizes.
The supervisor allocates a buffer of size seccomp_notif_sizes.seccomp_notif bytes
to receive notification events. In addition,the supervisor allocates another buffer
of size seccomp_notif_sizes.seccomp_notif_resp bytes for the response (a struct
seccomp_notif_resp structure) that it will provide to the kernel (and thus the tar-
get).

(4) The target then performs its workload, which includes system calls that will be
controlled by the seccomp filter. Whenever one of these system calls causes the
filter to return the SECCOMP_RET_USER_NOTIF action value, the kernel
does not (yet) execute the system call; instead, execution of the target is temporar-
ily blocked inside the kernel (in a sleep state that is interruptible by signals) and a
notification event is generated on the listening file descriptor.

(5) The supervisor can now repeatedly monitor the listening file descriptor for SEC-
COMP_RET_USER_NOTIF-triggered events. To do this, the supervisor uses
the SECCOMP_IOCTL_NOTIF_RECV ioctl(2) operation to read information
about a notification event; this operation blocks until an event is available. The
operation returns a seccomp_notif structure containing information about the sys-
tem call that is being attempted by the target. (As described in NOTES, the file
descriptor can also be monitored with select(2), poll(2), or epoll(7).)

(6) The seccomp_notif structure returned by the SECCOMP_IOCTL_NO-
TIF_RECV operation includes the same information (a seccomp_data structure)
that was passed to the seccomp filter. This information allows the supervisor to
discover the system call number and the arguments for the target’s system call. In
addition, the notification event contains the ID of the thread that triggered the no-
tification and a unique cookie value that is used in subsequent SEC-
COMP_IOCTL_NOTIF_ID_VALID and SECCOMP_IOCTL_NO-
TIF_SEND operations.

Linux man-pages 6.16 2025-09-21 832

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

The information in the notification can be used to discover the values of pointer
arguments for the target’s system call. (This is something that can’t be done from
within a seccomp filter.) One way in which the supervisor can do this is to open
the corresponding /proc/ tid /mem file (see proc(5)) and read bytes from the loca-
tion that corresponds to one of the pointer arguments whose value is supplied in
the notification event. (The supervisor must be careful to avoid a race condition
that can occur when doing this; see the description of the SEC-
COMP_IOCTL_NOTIF_ID_VALID ioctl(2) operation below.) In addition, the
supervisor can access other system information that is visible in user space but
which is not accessible from a seccomp filter.

(7) Having obtained information as per the previous step, the supervisor may then
choose to perform an action in response to the target’s system call (which, as
noted above, is not executed when the seccomp filter returns the SEC-
COMP_RET_USER_NOTIF action value).

One example use case here relates to containers. The target may be located inside
a container where it does not have sufficient capabilities to mount a filesystem in
the container’s mount namespace. However, the supervisor may be a more privi-
leged process that does have sufficient capabilities to perform the mount opera-
tion.

(8) The supervisor then sends a response to the notification. The information in this
response is used by the kernel to construct a return value for the target’s system
call and provide a value that will be assigned to the errno variable of the target.

The response is sent using the SECCOMP_IOCTL_NOTIF_SEND ioctl(2) op-
eration, which is used to transmit a seccomp_notif_resp structure to the kernel.
This structure includes a cookie value that the supervisor obtained in the sec-
comp_notif structure returned by the SECCOMP_IOCTL_NOTIF_RECV oper-
ation. This cookie value allows the kernel to associate the response with the tar-
get. This structure must include the cookie value that the supervisor obtained in
the seccomp_notif structure returned by the SECCOMP_IOCTL_NO-
TIF_RECV operation; the cookie allows the kernel to associate the response with
the target.

(9) Once the notification has been sent, the system call in the target thread unblocks,
returning the information that was provided by the supervisor in the notification
response.

As a variation on the last two steps, the supervisor can send a response that tells the ker-
nel that it should execute the target thread’s system call; see the discussion of SEC-
COMP_USER_NOTIF_FLAG_CONTINUE, below.

IOCTL OPERATIONS
The following ioctl(2) operations are supported by the seccomp user-space notification
file descriptor. For each of these operations, the first (file descriptor) argument of
ioctl(2) is the listening file descriptor returned by a call to seccomp(2) with the SEC-
COMP_FILTER_FLAG_NEW_LISTENER flag.

Linux man-pages 6.16 2025-09-21 833

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

SECCOMP_IOCTL_NOTIF_RECV
The SECCOMP_IOCTL_NOTIF_RECV operation (available since Linux 5.0) is used
to obtain a user-space notification event. If no such event is currently pending, the oper-
ation blocks until an event occurs. The third ioctl(2) argument is a pointer to a structure
of the following form which contains information about the event. This structure must
be zeroed out before the call.

struct seccomp_notif {
__u64 id; /* Cookie */
__u32 pid; /* TID of target thread */
__u32 flags; /* Currently unused (0) */
struct seccomp_data data; /* See seccomp(2) */

};

The fields in this structure are as follows:

id This is a cookie for the notification. Each such cookie is guaranteed to be unique
for the corresponding seccomp filter.

• The cookie can be used with the SECCOMP_IOCTL_NOTIF_ID_VALID
ioctl(2) operation described below.

• When returning a notification response to the kernel, the supervisor must in-
clude the cookie value in the seccomp_notif_resp structure that is specified as
the argument of the SECCOMP_IOCTL_NOTIF_SEND operation.

pid This is the thread ID of the target thread that triggered the notification event.

flags This is a bit mask of flags providing further information on the event. In the cur-
rent implementation, this field is always zero.

data This is a seccomp_data structure containing information about the system call
that triggered the notification. This is the same structure that is passed to the
seccomp filter. See seccomp(2) for details of this structure.

On success, this operation returns 0; on failure, -1 is returned, and errno is set to indi-
cate the error. This operation can fail with the following errors:

EINVAL (since Linux 5.5)
The seccomp_notif structure that was passed to the call contained nonzero fields.

ENOENT
The target thread was killed by a signal as the notification information was being
generated, or the target’s (blocked) system call was interrupted by a signal han-
dler.

SECCOMP_IOCTL_NOTIF_ID_VALID
The SECCOMP_IOCTL_NOTIF_ID_VALID operation (available since Linux 5.0) is
used to check that a notification ID returned by an earlier SECCOMP_IOCTL_NO-
TIF_RECV operation is still valid (i.e., that the target still exists and its system call is
still blocked waiting for a response).

The third ioctl(2) argument is a pointer to the cookie (id) returned by the SEC-
COMP_IOCTL_NOTIF_RECV operation.

Linux man-pages 6.16 2025-09-21 834

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

This operation is necessary to avoid race conditions that can occur when the pid re-
turned by the SECCOMP_IOCTL_NOTIF_RECV operation terminates, and that
process ID is reused by another process. An example of this kind of race is the follow-
ing

(1) A notification is generated on the listening file descriptor. The returned sec-
comp_notif contains the TID of the target thread (in the pid field of the structure).

(2) The target terminates.

(3) Another thread or process is created on the system that by chance reuses the TID
that was freed when the target terminated.

(4) The supervisor open(2)s the /proc/ tid /mem file for the TID obtained in step 1,
with the intention of (say) inspecting the memory location(s) that containing the
argument(s) of the system call that triggered the notification in step 1.

In the above scenario, the risk is that the supervisor may try to access the memory of a
process other than the target. This race can be avoided by following the call to open(2)
with a SECCOMP_IOCTL_NOTIF_ID_VALID operation to verify that the process
that generated the notification is still alive. (Note that if the target terminates after the
latter step, a subsequent read(2) from the file descriptor may return 0, indicating end of
file.)

See NOTES for a discussion of other cases where SECCOMP_IOCTL_NO-
TIF_ID_VALID checks must be performed.

On success (i.e., the notification ID is still valid), this operation returns 0. On failure
(i.e., the notification ID is no longer valid), -1 is returned, and errno is set to ENOENT.

SECCOMP_IOCTL_NOTIF_SEND
The SECCOMP_IOCTL_NOTIF_SEND operation (available since Linux 5.0) is used
to send a notification response back to the kernel. The third ioctl(2) argument of this
structure is a pointer to a structure of the following form:

struct seccomp_notif_resp {
__u64 id; /* Cookie value */
__s64 val; /* Success return value */
__s32 error; /* 0 (success) or negative error number */
__u32 flags; /* See below */

};

The fields of this structure are as follows:

id This is the cookie value that was obtained using the SECCOMP_IOCTL_NO-
TIF_RECV operation. This cookie value allows the kernel to correctly asso-
ciate this response with the system call that triggered the user-space notification.

val This is the value that will be used for a spoofed success return for the target’s
system call; see below.

error This is the value that will be used as the error number (errno) for a spoofed error
return for the target’s system call; see below.

Linux man-pages 6.16 2025-09-21 835

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

flags This is a bit mask that includes zero or more of the following flags:

SECCOMP_USER_NOTIF_FLAG_CONTINUE (since Linux 5.5)
Tell the kernel to execute the target’s system call.

Two kinds of response are possible:

• A response to the kernel telling it to execute the target’s system call. In this case, the
flags field includes SECCOMP_USER_NOTIF_FLAG_CONTINUE and the er-
ror and val fields must be zero.

This kind of response can be useful in cases where the supervisor needs to do deeper
analysis of the target’s system call than is possible from a seccomp filter (e.g., exam-
ining the values of pointer arguments), and, having decided that the system call does
not require emulation by the supervisor, the supervisor wants the system call to be
executed normally in the target.

The SECCOMP_USER_NOTIF_FLAG_CONTINUE flag should be used with
caution; see NOTES.

• A spoofed return value for the target’s system call. In this case, the kernel does not
execute the target’s system call, instead causing the system call to return a spoofed
value as specified by fields of the seccomp_notif_resp structure. The supervisor
should set the fields of this structure as follows:

• flags does not contain SECCOMP_USER_NOTIF_FLAG_CONTINUE.

• error is set either to 0 for a spoofed "success" return or to a negative error num-
ber for a spoofed "failure" return. In the former case, the kernel causes the tar-
get’s system call to return the value specified in the val field. In the latter case,
the kernel causes the target’s system call to return -1, and errno is assigned the
negated error value.

• val is set to a value that will be used as the return value for a spoofed "success"
return for the target’s system call. The value in this field is ignored if the error
field contains a nonzero value.

On success, this operation returns 0; on failure, -1 is returned, and errno is set to indi-
cate the error. This operation can fail with the following errors:

EINPROGRESS
A response to this notification has already been sent.

EINVAL
An invalid value was specified in the flags field.

EINVAL
The flags field contained SECCOMP_USER_NOTIF_FLAG_CONTINUE,
and the error or val field was not zero.

ENOENT
The blocked system call in the target has been interrupted by a signal handler or
the target has terminated.

Linux man-pages 6.16 2025-09-21 836

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

SECCOMP_IOCTL_NOTIF_ADDFD
The SECCOMP_IOCTL_NOTIF_ADDFD operation (available since Linux 5.9) al-
lows the supervisor to install a file descriptor into the target’s file descriptor table. Much
like the use of SCM_RIGHTS messages described in unix(7), this operation is semanti-
cally equivalent to duplicating a file descriptor from the supervisor’s file descriptor table
into the target’s file descriptor table.

The SECCOMP_IOCTL_NOTIF_ADDFD operation permits the supervisor to emu-
late a target system call (such as socket(2) or openat(2)) that generates a file descriptor.
The supervisor can perform the system call that generates the file descriptor (and associ-
ated open file description) and then use this operation to allocate a file descriptor that
refers to the same open file description in the target. (For an explanation of open file de-
scriptions, see open(2).)

Once this operation has been performed, the supervisor can close its copy of the file de-
scriptor.

In the target, the received file descriptor is subject to the same Linux Security Module
(LSM) checks as are applied to a file descriptor that is received in an SCM_RIGHTS
ancillary message. If the file descriptor refers to a socket, it inherits the cgroup version
1 network controller settings (classid and netprioidx) of the target.

The third ioctl(2) argument is a pointer to a structure of the following form:

struct seccomp_notif_addfd {
__u64 id; /* Cookie value */
__u32 flags; /* Flags */
__u32 srcfd; /* Local file descriptor number */
__u32 newfd; /* 0 or desired file descriptor

number in target */
__u32 newfd_flags; /* Flags to set on target file

descriptor */
};

The fields in this structure are as follows:

id This field should be set to the notification ID (cookie value) that was obtained
via SECCOMP_IOCTL_NOTIF_RECV.

flags This field is a bit mask of flags that modify the behavior of the operation. Cur-
rently, only one flag is supported:

SECCOMP_ADDFD_FLAG_SETFD
When allocating the file descriptor in the target, use the file descriptor
number specified in the newfd field.

SECCOMP_ADDFD_FLAG_SEND (since Linux 5.14)
Perform the equivalent of SECCOMP_IOCTL_NOTIF_ADDFD plus
SECCOMP_IOCTL_NOTIF_SEND as an atomic operation. On suc-
cessful invocation, the target process’s errno will be 0 and the return
value will be the file descriptor number that was allocated in the target.
If allocating the file descriptor in the target fails, the target’s system call
continues to be blocked until a successful response is sent.

Linux man-pages 6.16 2025-09-21 837

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

srcfd This field should be set to the number of the file descriptor in the supervisor that
is to be duplicated.

newfd
This field determines which file descriptor number is allocated in the target. If
the SECCOMP_ADDFD_FLAG_SETFD flag is set, then this field specifies
which file descriptor number should be allocated. If this file descriptor number
is already open in the target, it is atomically closed and reused. If the descriptor
duplication fails due to an LSM check, or if srcfd is not a valid file descriptor,
the file descriptor newfd will not be closed in the target process.

If the SECCOMP_ADDFD_FLAG_SETFD flag it not set, then this field must
be 0, and the kernel allocates the lowest unused file descriptor number in the tar-
get.

newfd_flags
This field is a bit mask specifying flags that should be set on the file descriptor
that is received in the target process. Currently, only the following flag is imple-
mented:

O_CLOEXEC
Set the close-on-exec flag on the received file descriptor.

On success, this ioctl(2) call returns the number of the file descriptor that was allocated
in the target. Assuming that the emulated system call is one that returns a file descriptor
as its function result (e.g., socket(2)), this value can be used as the return value
(resp.val) that is supplied in the response that is subsequently sent with the SEC-
COMP_IOCTL_NOTIF_SEND operation.

On error, -1 is returned and errno is set to indicate the error.

This operation can fail with the following errors:

EBADF
Allocating the file descriptor in the target would cause the target’s
RLIMIT_NOFILE limit to be exceeded (see getrlimit(2)).

EBUSY
If the flag SECCOMP_IOCTL_NOTIF_SEND is used, this means the opera-
tion can’t proceed until other SECCOMP_IOCTL_NOTIF_ADDFD requests
are processed.

EINPROGRESS
The user-space notification specified in the id field exists but has not yet been
fetched (by a SECCOMP_IOCTL_NOTIF_RECV) or has already been re-
sponded to (by a SECCOMP_IOCTL_NOTIF_SEND).

EINVAL
An invalid flag was specified in the flags or newfd_flags field, or the newfd field
is nonzero and the SECCOMP_ADDFD_FLAG_SETFD flag was not specified
in the flags field.

Linux man-pages 6.16 2025-09-21 838

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

EMFILE
The file descriptor number specified in newfd exceeds the limit specified in
/proc/sys/fs/nr_open.

ENOENT
The blocked system call in the target has been interrupted by a signal handler or
the target has terminated.

Here is some sample code (with error handling omitted) that uses the SEC-
COMP_ADDFD_FLAG_SETFD operation (here, to emulate a call to openat(2)):

int fd, removeFd;

fd = openat(req->data.args[0], path, req->data.args[2],
req->data.args[3]);

struct seccomp_notif_addfd addfd;
addfd.id = req->id; /* Cookie from SECCOMP_IOCTL_NOTIF_RECV */
addfd.srcfd = fd;
addfd.newfd = 0;
addfd.flags = 0;
addfd.newfd_flags = O_CLOEXEC;

targetFd = ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_ADDFD, &addfd);

close(fd); /* No longer needed in supervisor */

struct seccomp_notif_resp *resp;
/* Code to allocate ’resp’ omitted */

resp->id = req->id;
resp->error = 0; /* "Success" */
resp->val = targetFd;
resp->flags = 0;
ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_SEND, resp);

NOTES
One example use case for the user-space notification mechanism is to allow a container
manager (a process which is typically running with more privilege than the processes in-
side the container) to mount block devices or create device nodes for the container. The
mount use case provides an example of where the SECCOMP_USER_NO-
TIF_FLAG_CONTINUE ioctl(2) operation is useful. Upon receiving a notification for
the mount(2) system call, the container manager (the "supervisor") can distinguish a re-
quest to mount a block filesystem (which would not be possible for a "target" process in-
side the container) and mount that file system. If, on the other hand, the container man-
ager detects that the operation could be performed by the process inside the container
(e.g., a mount of a tmpfs(5) filesystem), it can notify the kernel that the target process’s
mount(2) system call can continue.

Linux man-pages 6.16 2025-09-21 839

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

select()/poll()/epoll semantics
The file descriptor returned when seccomp(2) is employed with the SECCOMP_FIL-
TER_FLAG_NEW_LISTENER flag can be monitored using poll(2), epoll(7), and se-
lect(2). These interfaces indicate that the file descriptor is ready as follows:

• When a notification is pending, these interfaces indicate that the file descriptor is
readable. Following such an indication, a subsequent SECCOMP_IOCTL_NO-
TIF_RECV ioctl(2) will not block, returning either information about a notification
or else failing with the error EINTR if the target has been killed by a signal or its
system call has been interrupted by a signal handler.

• After the notification has been received (i.e., by the SECCOMP_IOCTL_NO-
TIF_RECV ioctl(2) operation), these interfaces indicate that the file descriptor is
writable, meaning that a notification response can be sent using the SEC-
COMP_IOCTL_NOTIF_SEND ioctl(2) operation.

• After the last thread using the filter has terminated and been reaped using waitpid(2)
(or similar), the file descriptor indicates an end-of-file condition (readable in se-
lect(2); POLLHUP/EPOLLHUP in poll(2)/ epoll_wait(2)).

Design goals; use of SECCOMP_USER_NOTIF_FLAG_CONTINUE
The intent of the user-space notification feature is to allow system calls to be performed
on behalf of the target. The target’s system call should either be handled by the supervi-
sor or allowed to continue normally in the kernel (where standard security policies will
be applied).

Note well: this mechanism must not be used to make security policy decisions about the
system call, which would be inherently race-prone for reasons described next.

The SECCOMP_USER_NOTIF_FLAG_CONTINUE flag must be used with caution.
If set by the supervisor, the target’s system call will continue. However, there is a time-
of-check, time-of-use race here, since an attacker could exploit the interval of time
where the target is blocked waiting on the "continue" response to do things such as
rewriting the system call arguments.

Note furthermore that a user-space notifier can be bypassed if the existing filters allow
the use of seccomp(2) or prctl(2) to install a filter that returns an action value with a
higher precedence than SECCOMP_RET_USER_NOTIF (see seccomp(2)).

It should thus be absolutely clear that the seccomp user-space notification mechanism
can not be used to implement a security policy! It should only ever be used in scenarios
where a more privileged process supervises the system calls of a lesser privileged target
to get around kernel-enforced security restrictions when the supervisor deems this safe.
In other words, in order to continue a system call, the supervisor should be sure that an-
other security mechanism or the kernel itself will sufficiently block the system call if its
arguments are rewritten to something unsafe.

Caveats regarding the use of
/proc/ tid /mem The discussion above noted the need to use the SEC-
COMP_IOCTL_NOTIF_ID_VALID ioctl(2) when opening the /proc/ tid /mem file of
the target to avoid the possibility of accessing the memory of the wrong process in the
event that the target terminates and its ID is recycled by another (unrelated) thread.

Linux man-pages 6.16 2025-09-21 840

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

However, the use of this ioctl(2) operation is also necessary in other situations, as ex-
plained in the following paragraphs.

Consider the following scenario, where the supervisor tries to read the pathname argu-
ment of a target’s blocked mount(2) system call:

(1) From one of its functions (func()), the target calls mount(2), which triggers a user-
space notification and causes the target to block.

(2) The supervisor receives the notification, opens /proc/ tid /mem, and (successfully)
performs the SECCOMP_IOCTL_NOTIF_ID_VALID check.

(3) The target receives a signal, which causes the mount(2) to abort.

(4) The signal handler executes in the target, and returns.

(5) Upon return from the handler, the execution of func() resumes, and it returns (and
perhaps other functions are called, overwriting the memory that had been used for
the stack frame of func()).

(6) Using the address provided in the notification information, the supervisor reads
from the target’s memory location that used to contain the pathname.

(7) The supervisor now calls mount(2) with some arbitrary bytes obtained in the pre-
vious step.

The conclusion from the above scenario is this: since the target’s blocked system call
may be interrupted by a signal handler, the supervisor must be written to expect that the
target may abandon its system call at any time; in such an event, any information that
the supervisor obtained from the target’s memory must be considered invalid.

To prevent such scenarios, every read from the target’s memory must be separated from
use of the bytes so obtained by a SECCOMP_IOCTL_NOTIF_ID_VALID check. In
the above example, the check would be placed between the two final steps. An example
of such a check is shown in EXAMPLES.

Following on from the above, it should be clear that a write by the supervisor into the
target’s memory can never be considered safe.

Caveats regarding blocking system calls
Suppose that the target performs a blocking system call (e.g., accept(2)) that the super-
visor should handle. The supervisor might then in turn execute the same blocking sys-
tem call.

In this scenario, it is important to note that if the target’s system call is now interrupted
by a signal, the supervisor is not informed of this. If the supervisor does not take suit-
able steps to actively discover that the target’s system call has been canceled, various
difficulties can occur. Taking the example of accept(2), the supervisor might remain
blocked in its accept(2) holding a port number that the target (which, after the interrup-
tion by the signal handler, perhaps closed its listening socket) might expect to be able to
reuse in a bind(2) call.

Therefore, when the supervisor wishes to emulate a blocking system call, it must do so
in such a way that it gets informed if the target’s system call is interrupted by a signal
handler. For example, if the supervisor itself executes the same blocking system call,

Linux man-pages 6.16 2025-09-21 841

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

then it could employ a separate thread that uses the SECCOMP_IOCTL_NO-
TIF_ID_VALID operation to check if the target is still blocked in its system call. Alter-
natively, in the accept(2) example, the supervisor might use poll(2) to monitor both the
notification file descriptor (so as to discover when the target’s accept(2) call has been in-
terrupted) and the listening file descriptor (so as to know when a connection is avail-
able).

If the target’s system call is interrupted, the supervisor must take care to release re-
sources (e.g., file descriptors) that it acquired on behalf of the target.

Interaction with SA_RESTART signal handlers
Consider the following scenario:

(1) The target process has used sigaction(2) to install a signal handler with the
SA_RESTART flag.

(2) The target has made a system call that triggered a seccomp user-space notification
and the target is currently blocked until the supervisor sends a notification re-
sponse.

(3) A signal is delivered to the target and the signal handler is executed.

(4) When (if) the supervisor attempts to send a notification response, the SEC-
COMP_IOCTL_NOTIF_SEND ioctl(2)) operation will fail with the ENOENT
error.

In this scenario, the kernel will restart the target’s system call. Consequently, the super-
visor will receive another user-space notification. Thus, depending on how many times
the blocked system call is interrupted by a signal handler, the supervisor may receive
multiple notifications for the same instance of a system call in the target.

One oddity is that system call restarting as described in this scenario will occur even for
the blocking system calls listed in signal(7) that would never normally be restarted by
the SA_RESTART flag.

Furthermore, if the supervisor response is a file descriptor added with SEC-
COMP_IOCTL_NOTIF_ADDFD, then the flag SECCOMP_ADDFD_FLAG_SEND
can be used to atomically add the file descriptor and return that value, making sure no
file descriptors are inadvertently leaked into the target.

BUGS
If a SECCOMP_IOCTL_NOTIF_RECV ioctl(2) operation is performed after the tar-
get terminates, then the ioctl(2) call simply blocks (rather than returning an error to indi-
cate that the target no longer exists).

EXAMPLES
The (somewhat contrived) program shown below demonstrates the use of the interfaces
described in this page. The program creates a child process that serves as the "target"
process. The child process installs a seccomp filter that returns the SEC-
COMP_RET_USER_NOTIF action value if a call is made to mkdir(2). The child
process then calls mkdir(2) once for each of the supplied command-line arguments, and
reports the result returned by the call. After processing all arguments, the child process
terminates.

Linux man-pages 6.16 2025-09-21 842

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

The parent process acts as the supervisor, listening for the notifications that are gener-
ated when the target process calls mkdir(2). When such a notification occurs, the super-
visor examines the memory of the target process (using /proc/ pid /mem) to discover the
pathname argument that was supplied to the mkdir(2) call, and performs one of the fol-
lowing actions:

• If the pathname begins with the prefix "/tmp/", then the supervisor attempts to create
the specified directory, and then spoofs a return for the target process based on the
return value of the supervisor’s mkdir(2) call. In the event that that call succeeds, the
spoofed success return value is the length of the pathname.

• If the pathname begins with "./" (i.e., it is a relative pathname), the supervisor sends
a SECCOMP_USER_NOTIF_FLAG_CONTINUE response to the kernel to say
that the kernel should execute the target process’s mkdir(2) call.

• If the pathname begins with some other prefix, the supervisor spoofs an error return
for the target process, so that the target process’s mkdir(2) call appears to fail with
the error EOPNOTSUPP ("Operation not supported"). Additionally, if the specified
pathname is exactly "/bye", then the supervisor terminates.

This program can be used to demonstrate various aspects of the behavior of the seccomp
user-space notification mechanism. To help aid such demonstrations, the program logs
various messages to show the operation of the target process (lines prefixed "T:") and the
supervisor (indented lines prefixed "S:").

In the following example, the target attempts to create the directory /tmp/x. Upon re-
ceiving the notification, the supervisor creates the directory on the target’s behalf, and
spoofs a success return to be received by the target process’s mkdir(2) call.

$./seccomp_unotify /tmp/x;
T: PID = 23168

T: about to mkdir("/tmp/x")
S: got notification (ID 0x17445c4a0f4e0e3c) for PID 23168
S: executing: mkdir("/tmp/x", 0700)
S: success! spoofed return = 6
S: sending response (flags = 0; val = 6; error = 0)

T: SUCCESS: mkdir(2) returned 6

T: terminating
S: target has terminated; bye

In the above output, note that the spoofed return value seen by the target process is 6
(the length of the pathname /tmp/x), whereas a normal mkdir(2) call returns 0 on suc-
cess.

In the next example, the target attempts to create a directory using the relative pathname
./sub. Since this pathname starts with "./", the supervisor sends a SEC-
COMP_USER_NOTIF_FLAG_CONTINUE response to the kernel, and the kernel
then (successfully) executes the target process’s mkdir(2) call.

$./seccomp_unotify ./sub;

Linux man-pages 6.16 2025-09-21 843

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

T: PID = 23204

T: about to mkdir("./sub")
S: got notification (ID 0xddb16abe25b4c12) for PID 23204
S: target can execute system call
S: sending response (flags = 0x1; val = 0; error = 0)

T: SUCCESS: mkdir(2) returned 0

T: terminating
S: target has terminated; bye

If the target process attempts to create a directory with a pathname that doesn’t start
with "." and doesn’t begin with the prefix "/tmp/", then the supervisor spoofs an error re-
turn (EOPNOTSUPP, "Operation not supported") for the target’s mkdir(2) call (which
is not executed):

$./seccomp_unotify /xxx;
T: PID = 23178

T: about to mkdir("/xxx")
S: got notification (ID 0xe7dc095d1c524e80) for PID 23178
S: spoofing error response (Operation not supported)
S: sending response (flags = 0; val = 0; error = -95)

T: ERROR: mkdir(2): Operation not supported

T: terminating
S: target has terminated; bye

In the next example, the target process attempts to create a directory with the pathname
/tmp/nosuchdir/b. Upon receiving the notification, the supervisor attempts to create
that directory, but the mkdir(2) call fails because the directory /tmp/nosuchdir does not
exist. Consequently, the supervisor spoofs an error return that passes the error that it re-
ceived back to the target process’s mkdir(2) call.

$./seccomp_unotify /tmp/nosuchdir/b;
T: PID = 23199

T: about to mkdir("/tmp/nosuchdir/b")
S: got notification (ID 0x8744454293506046) for PID 23199
S: executing: mkdir("/tmp/nosuchdir/b", 0700)
S: failure! (errno = 2; No such file or directory)
S: sending response (flags = 0; val = 0; error = -2)

T: ERROR: mkdir(2): No such file or directory

T: terminating
S: target has terminated; bye

If the supervisor receives a notification and sees that the argument of the target’s
mkdir(2) is the string "/bye", then (as well as spoofing an EOPNOTSUPP error), the su-
pervisor terminates. If the target process subsequently executes another mkdir(2) that

Linux man-pages 6.16 2025-09-21 844

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

triggers its seccomp filter to return the SECCOMP_RET_USER_NOTIF action value,
then the kernel causes the target process’s system call to fail with the error ENOSYS
("Function not implemented"). This is demonstrated by the following example:

$./seccomp_unotify /bye /tmp/y;
T: PID = 23185

T: about to mkdir("/bye")
S: got notification (ID 0xa81236b1d2f7b0f4) for PID 23185
S: spoofing error response (Operation not supported)
S: sending response (flags = 0; val = 0; error = -95)
S: terminating **********

T: ERROR: mkdir(2): Operation not supported

T: about to mkdir("/tmp/y")
T: ERROR: mkdir(2): Function not implemented

T: terminating

Program source
#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <linux/audit.h>
#include <linux/filter.h>
#include <linux/seccomp.h>
#include <signal.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/prctl.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>

#define NITEMS(arr) (sizeof(arr) / sizeof((arr)[0]))

/* Send the file descriptor 'fd' over the connected UNIX domain socket
'sockfd'. Returns 0 on success, or -1 on error. */

Linux man-pages 6.16 2025-09-21 845

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

static int
sendfd(int sockfd, int fd)
{

int data;
struct iovec iov;
struct msghdr msgh;
struct cmsghdr *cmsgp;

/* Allocate a char array of suitable size to hold the ancillary data.
However, since this buffer is in reality a 'struct cmsghdr', use a
union to ensure that it is suitably aligned. */

union {
char buf[CMSG_SPACE(sizeof(int))];

/* Space large enough to hold an 'int' */
struct cmsghdr align;

} controlMsg;

/* The 'msg_name' field can be used to specify the address of the
destination socket when sending a datagram. However, we do not
need to use this field because 'sockfd' is a connected socket. */

msgh.msg_name = NULL;
msgh.msg_namelen = 0;

/* On Linux, we must transmit at least one byte of real data in
order to send ancillary data. We transmit an arbitrary integer
whose value is ignored by recvfd(). */

msgh.msg_iov = &iov;
msgh.msg_iovlen = 1;
iov.iov_base = &data;
iov.iov_len = sizeof(int);
data = 12345;

/* Set 'msghdr' fields that describe ancillary data */

msgh.msg_control = controlMsg.buf;
msgh.msg_controllen = sizeof(controlMsg.buf);

/* Set up ancillary data describing file descriptor to send */

cmsgp = CMSG_FIRSTHDR(&msgh);
cmsgp->cmsg_level = SOL_SOCKET;
cmsgp->cmsg_type = SCM_RIGHTS;
cmsgp->cmsg_len = CMSG_LEN(sizeof(int));
memcpy(CMSG_DATA(cmsgp), &fd, sizeof(int));

Linux man-pages 6.16 2025-09-21 846

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

/* Send real plus ancillary data */

if (sendmsg(sockfd, &msgh, 0) == -1)
return -1;

return 0;
}

/* Receive a file descriptor on a connected UNIX domain socket. Returns
the received file descriptor on success, or -1 on error. */

static int
recvfd(int sockfd)
{

int data, fd;
ssize_t nr;
struct iovec iov;
struct msghdr msgh;

/* Allocate a char buffer for the ancillary data. See the comments
in sendfd() */

union {
char buf[CMSG_SPACE(sizeof(int))];
struct cmsghdr align;

} controlMsg;
struct cmsghdr *cmsgp;

/* The 'msg_name' field can be used to obtain the address of the
sending socket. However, we do not need this information. */

msgh.msg_name = NULL;
msgh.msg_namelen = 0;

/* Specify buffer for receiving real data */

msgh.msg_iov = &iov;
msgh.msg_iovlen = 1;
iov.iov_base = &data; /* Real data is an 'int' */
iov.iov_len = sizeof(int);

/* Set 'msghdr' fields that describe ancillary data */

msgh.msg_control = controlMsg.buf;
msgh.msg_controllen = sizeof(controlMsg.buf);

/* Receive real plus ancillary data; real data is ignored */

Linux man-pages 6.16 2025-09-21 847

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

nr = recvmsg(sockfd, &msgh, 0);
if (nr == -1)

return -1;

cmsgp = CMSG_FIRSTHDR(&msgh);

/* Check the validity of the 'cmsghdr' */

if (cmsgp == NULL
|| cmsgp->cmsg_len != CMSG_LEN(sizeof(int))
|| cmsgp->cmsg_level != SOL_SOCKET
|| cmsgp->cmsg_type != SCM_RIGHTS)

{
errno = EINVAL;
return -1;

}

/* Return the received file descriptor to our caller */

memcpy(&fd, CMSG_DATA(cmsgp), sizeof(int));
return fd;

}

static void
sigchldHandler(int sig)
{

char msg[] = "\tS: target has terminated; bye\n";

write(STDOUT_FILENO, msg, sizeof(msg) - 1);
_exit(EXIT_SUCCESS);

}

static int
seccomp(unsigned int operation, unsigned int flags, void *args)
{

return syscall(SYS_seccomp, operation, flags, args);
}

/* The following is the x86-64-specific BPF boilerplate code for checking
that the BPF program is running on the right architecture + ABI. At
completion of these instructions, the accumulator contains the system
call number. */

/* For the x32 ABI, all system call numbers have bit 30 set */

#define X32_SYSCALL_BIT 0x40000000

Linux man-pages 6.16 2025-09-21 848

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

#define X86_64_CHECK_ARCH_AND_LOAD_SYSCALL_NR \
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, \

(offsetof(struct seccomp_data, arch))), \
BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, AUDIT_ARCH_X86_64, 0, 2), \
BPF_STMT(BPF_LD | BPF_W | BPF_ABS, \

(offsetof(struct seccomp_data, nr))), \
BPF_JUMP(BPF_JMP | BPF_JGE | BPF_K, X32_SYSCALL_BIT, 0, 1), \
BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_KILL_PROCESS)

/* installNotifyFilter() installs a seccomp filter that generates
user-space notifications (SECCOMP_RET_USER_NOTIF) when the process
calls mkdir(2); the filter allows all other system calls.

The function return value is a file descriptor from which the
user-space notifications can be fetched. */

static int
installNotifyFilter(void)
{

int notifyFd;

struct sock_filter filter[] = {
X86_64_CHECK_ARCH_AND_LOAD_SYSCALL_NR,

/* mkdir() triggers notification to user-space supervisor */

BPF_JUMP(BPF_JMP | BPF_JEQ | BPF_K, SYS_mkdir, 0, 1),
BPF_STMT(BPF_RET + BPF_K, SECCOMP_RET_USER_NOTIF),

/* Every other system call is allowed */

BPF_STMT(BPF_RET | BPF_K, SECCOMP_RET_ALLOW),
};

struct sock_fprog prog = {
.len = NITEMS(filter),
.filter = filter,

};

/* Install the filter with the SECCOMP_FILTER_FLAG_NEW_LISTENER flag;
as a result, seccomp() returns a notification file descriptor. */

notifyFd = seccomp(SECCOMP_SET_MODE_FILTER,
SECCOMP_FILTER_FLAG_NEW_LISTENER, &prog);

if (notifyFd == -1)
err(EXIT_FAILURE, "seccomp-install-notify-filter");

Linux man-pages 6.16 2025-09-21 849

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

return notifyFd;
}

/* Close a pair of sockets created by socketpair() */

static void
closeSocketPair(int sockPair[2])
{

if (close(sockPair[0]) == -1)
err(EXIT_FAILURE, "closeSocketPair-close-0");

if (close(sockPair[1]) == -1)
err(EXIT_FAILURE, "closeSocketPair-close-1");

}

/* Implementation of the target process. Create a child process that:

(1) installs a seccomp filter with the
SECCOMP_FILTER_FLAG_NEW_LISTENER flag;

(2) writes the seccomp notification file descriptor returned from
the previous step onto the UNIX domain socket, 'sockPair[0]';

(3) calls mkdir(2) for each element of 'argv'.

The function return value in the parent is the PID of the child
process; the child does not return from this function. */

static pid_t
targetProcess(int sockPair[2], char *argv[])
{

int notifyFd, s;
pid_t targetPid;

targetPid = fork();

if (targetPid == -1)
err(EXIT_FAILURE, "fork");

if (targetPid > 0) /* In parent, return PID of child */
return targetPid;

/* Child falls through to here */

printf("T: PID = %ld\n", (long) getpid());

/* Install seccomp filter(s) */

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0))

Linux man-pages 6.16 2025-09-21 850

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

err(EXIT_FAILURE, "prctl");

notifyFd = installNotifyFilter();

/* Pass the notification file descriptor to the tracing process over
a UNIX domain socket */

if (sendfd(sockPair[0], notifyFd) == -1)
err(EXIT_FAILURE, "sendfd");

/* Notification and socket FDs are no longer needed in target */

if (close(notifyFd) == -1)
err(EXIT_FAILURE, "close-target-notify-fd");

closeSocketPair(sockPair);

/* Perform a mkdir() call for each of the command-line arguments */

for (char **ap = argv; *ap != NULL; ap++) {
printf("\nT: about to mkdir(\"%s\")\n", *ap);

s = mkdir(*ap, 0700);
if (s == -1)

perror("T: ERROR: mkdir(2)");
else

printf("T: SUCCESS: mkdir(2) returned %d\n", s);
}

printf("\nT: terminating\n");
exit(EXIT_SUCCESS);

}

/* Check that the notification ID provided by a SECCOMP_IOCTL_NOTIF_RECV
operation is still valid. It will no longer be valid if the target
process has terminated or is no longer blocked in the system call that
generated the notification (because it was interrupted by a signal).

This operation can be used when doing such things as accessing
/proc/PID files in the target process in order to avoid TOCTOU race
conditions where the PID that is returned by SECCOMP_IOCTL_NOTIF_RECV
terminates and is reused by another process. */

static bool
cookieIsValid(int notifyFd, uint64_t id)
{

return ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_ID_VALID, &id) == 0;

Linux man-pages 6.16 2025-09-21 851

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

}

/* Access the memory of the target process in order to fetch the
pathname referred to by the system call argument 'argNum' in
'req->data.args[]'. The pathname is returned in 'path',
a buffer of 'size' bytes allocated by the caller.

Returns true if the pathname is successfully fetched, and false
otherwise. For possible causes of failure, see the comments below. */

static bool
getTargetPathname(struct seccomp_notif *req, int notifyFd,

int argNum, char *path, size_t size)
{

int procMemFd;
char procMemPath[PATH_MAX];
ssize_t nread;

snprintf(procMemPath, sizeof(procMemPath), "/proc/%d/mem", req->pid);

procMemFd = open(procMemPath, O_RDONLY | O_CLOEXEC);
if (procMemFd == -1)

return false;

/* Check that the process whose info we are accessing is still alive
and blocked in the system call that caused the notification.
If the SECCOMP_IOCTL_NOTIF_ID_VALID operation (performed in
cookieIsValid()) succeeded, we know that the /proc/PID/mem file
descriptor that we opened corresponded to the process for which we
received a notification. If that process subsequently terminates,
then read() on that file descriptor will return 0 (EOF). */

if (!cookieIsValid(notifyFd, req->id)) {
close(procMemFd);
return false;

}

/* Read bytes at the location containing the pathname argument */

nread = pread(procMemFd, path, size, req->data.args[argNum]);

close(procMemFd);

if (nread <= 0)
return false;

/* Once again check that the notification ID is still valid. The

Linux man-pages 6.16 2025-09-21 852

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

case we are particularly concerned about here is that just
before we fetched the pathname, the target's blocked system
call was interrupted by a signal handler, and after the handler
returned, the target carried on execution (past the interrupted
system call). In that case, we have no guarantees about what we
are reading, since the target's memory may have been arbitrarily
changed by subsequent operations. */

if (!cookieIsValid(notifyFd, req->id)) {
perror("\tS: notification ID check failed!!!");
return false;

}

/* Even if the target's system call was not interrupted by a signal,
we have no guarantees about what was in the memory of the target
process. (The memory may have been modified by another thread, or
even by an external attacking process.) We therefore treat the
buffer returned by pread() as untrusted input. The buffer should
contain a terminating null byte; if not, then we will trigger an
error for the target process. */

if (strnlen(path, nread) < nread)
return true;

return false;
}

/* Allocate buffers for the seccomp user-space notification request and
response structures. It is the caller's responsibility to free the
buffers returned via 'req' and 'resp'. */

static void
allocSeccompNotifBuffers(struct seccomp_notif **req,

struct seccomp_notif_resp **resp,
struct seccomp_notif_sizes *sizes)

{
size_t resp_size;

/* Discover the sizes of the structures that are used to receive
notifications and send notification responses, and allocate
buffers of those sizes. */

if (seccomp(SECCOMP_GET_NOTIF_SIZES, 0, sizes) == -1)
err(EXIT_FAILURE, "seccomp-SECCOMP_GET_NOTIF_SIZES");

*req = malloc(sizes->seccomp_notif);
if (*req == NULL)

Linux man-pages 6.16 2025-09-21 853

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

err(EXIT_FAILURE, "malloc-seccomp_notif");

/* When allocating the response buffer, we must allow for the fact
that the user-space binary may have been built with user-space
headers where 'struct seccomp_notif_resp' is bigger than the
response buffer expected by the (older) kernel. Therefore, we
allocate a buffer that is the maximum of the two sizes. This
ensures that if the supervisor places bytes into the response
structure that are past the response size that the kernel expects,
then the supervisor is not touching an invalid memory location. */

resp_size = sizes->seccomp_notif_resp;
if (sizeof(struct seccomp_notif_resp) > resp_size)

resp_size = sizeof(struct seccomp_notif_resp);

*resp = malloc(resp_size);
if (*resp == NULL)

err(EXIT_FAILURE, "malloc-seccomp_notif_resp");

}

/* Handle notifications that arrive via the SECCOMP_RET_USER_NOTIF file
descriptor, 'notifyFd'. */

static void
handleNotifications(int notifyFd)
{

bool pathOK;
char path[PATH_MAX];
struct seccomp_notif *req;
struct seccomp_notif_resp *resp;
struct seccomp_notif_sizes sizes;

allocSeccompNotifBuffers(&req, &resp, &sizes);

/* Loop handling notifications */

for (;;) {

/* Wait for next notification, returning info in '*req' */

memset(req, 0, sizes.seccomp_notif);
if (ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_RECV, req) == -1) {

if (errno == EINTR)
continue;

err(EXIT_FAILURE, "\tS: ioctl-SECCOMP_IOCTL_NOTIF_RECV");
}

Linux man-pages 6.16 2025-09-21 854

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

printf("\tS: got notification (ID %#llx) for PID %d\n",
req->id, req->pid);

/* The only system call that can generate a notification event
is mkdir(2). Nevertheless, we check that the notified system
call is indeed mkdir() as kind of future-proofing of this
code in case the seccomp filter is later modified to
generate notifications for other system calls. */

if (req->data.nr != SYS_mkdir) {
printf("\tS: notification contained unexpected "

"system call number; bye!!!\n");
exit(EXIT_FAILURE);

}

pathOK = getTargetPathname(req, notifyFd, 0, path, sizeof(path));

/* Prepopulate some fields of the response */

resp->id = req->id; /* Response includes notification ID */
resp->flags = 0;
resp->val = 0;

/* If getTargetPathname() failed, trigger an EINVAL error
response (sending this response may yield an error if the
failure occurred because the notification ID was no longer
valid); if the directory is in /tmp, then create it on behalf
of the supervisor; if the pathname starts with '.', tell the
kernel to let the target process execute the mkdir();
otherwise, give an error for a directory pathname in any other
location. */

if (!pathOK) {
resp->error = -EINVAL;
printf("\tS: spoofing error for invalid pathname (%s)\n",

strerror(-resp->error));
} else if (strncmp(path, "/tmp/", strlen("/tmp/")) == 0) {

printf("\tS: executing: mkdir(\"%s\", %#llo)\n",
path, req->data.args[1]);

if (mkdir(path, req->data.args[1]) == 0) {
resp->error = 0; /* "Success" */
resp->val = strlen(path); /* Used as return value of

mkdir() in target */
printf("\tS: success! spoofed return = %lld\n",

resp->val);

Linux man-pages 6.16 2025-09-21 855

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

} else {

/* If mkdir() failed in the supervisor, pass the error
back to the target */

resp->error = -errno;
printf("\tS: failure! (errno = %d; %s)\n", errno,

strerror(errno));
}

} else if (strncmp(path, "./", strlen("./")) == 0) {
resp->error = resp->val = 0;
resp->flags = SECCOMP_USER_NOTIF_FLAG_CONTINUE;
printf("\tS: target can execute system call\n");

} else {
resp->error = -EOPNOTSUPP;
printf("\tS: spoofing error response (%s)\n",

strerror(-resp->error));
}

/* Send a response to the notification */

printf("\tS: sending response "
"(flags = %#x; val = %lld; error = %d)\n",
resp->flags, resp->val, resp->error);

if (ioctl(notifyFd, SECCOMP_IOCTL_NOTIF_SEND, resp) == -1) {
if (errno == ENOENT)

printf("\tS: response failed with ENOENT; "
"perhaps target process's syscall was "
"interrupted by a signal?\n");

else
perror("ioctl-SECCOMP_IOCTL_NOTIF_SEND");

}

/* If the pathname is just "/bye", then the supervisor breaks out
of the loop and terminates. This allows us to see what happens
if the target process makes further calls to mkdir(2). */

if (strcmp(path, "/bye") == 0)
break;

}

free(req);
free(resp);
printf("\tS: terminating **********\n");
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-09-21 856

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

/* Implementation of the supervisor process:

(1) obtains the notification file descriptor from 'sockPair[1]'
(2) handles notifications that arrive on that file descriptor. */

static void
supervisor(int sockPair[2])
{

int notifyFd;

notifyFd = recvfd(sockPair[1]);

if (notifyFd == -1)
err(EXIT_FAILURE, "recvfd");

closeSocketPair(sockPair); /* We no longer need the socket pair */

handleNotifications(notifyFd);
}

int
main(int argc, char *argv[])
{

int sockPair[2];
struct sigaction sa;

setbuf(stdout, NULL);

if (argc < 2) {
fprintf(stderr, "At least one pathname argument is required\n");
exit(EXIT_FAILURE);

}

/* Create a UNIX domain socket that is used to pass the seccomp
notification file descriptor from the target process to the
supervisor process. */

if (socketpair(AF_UNIX, SOCK_STREAM, 0, sockPair) == -1)
err(EXIT_FAILURE, "socketpair");

/* Create a child process--the "target"--that installs seccomp
filtering. The target process writes the seccomp notification
file descriptor onto 'sockPair[0]' and then calls mkdir(2) for
each directory in the command-line arguments. */

(void) targetProcess(sockPair, &argv[optind]);

Linux man-pages 6.16 2025-09-21 857

seccomp_unotify(2) System Calls Manual seccomp_unotify(2)

/* Catch SIGCHLD when the target terminates, so that the
supervisor can also terminate. */

sa.sa_handler = sigchldHandler;
sa.sa_flags = 0;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == -1)

err(EXIT_FAILURE, "sigaction");

supervisor(sockPair);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), pidfd_getfd(2), pidfd_open(2), seccomp(2)

A further example program can be found in the kernel source file samples/sec-
comp/user-trap.c.

Linux man-pages 6.16 2025-09-21 858

select(2) System Calls Manual select(2)

NAME
select, pselect, FD_CLR, FD_ISSET, FD_SET, FD_ZERO, fd_set - synchronous I/O
multiplexing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/select.h>

typedef /* . . . */ fd_set;

int select(int nfds, fd_set *_Nullable restrict readfds,
fd_set *_Nullable restrict writefds,
fd_set *_Nullable restrict exceptfds,
struct timeval *_Nullable restrict timeout);

void FD_CLR(int fd , fd_set *set);
int FD_ISSET(int fd , const fd_set *set);
void FD_SET(int fd , fd_set *set);
void FD_ZERO(fd_set *set);

int pselect(int nfds, fd_set *_Nullable restrict readfds,
fd_set *_Nullable restrict writefds,
fd_set *_Nullable restrict exceptfds,
const struct timespec *_Nullable restrict timeout,
const sigset_t *_Nullable restrict sigmask);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pselect():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
WARNING: select() can monitor only file descriptors numbers that are less than
FD_SETSIZE (1024)—an unreasonably low limit for many modern applications—and
this limitation will not change. All modern applications should instead use poll(2) or
epoll(7), which do not suffer this limitation.

select() allows a program to monitor multiple file descriptors, waiting until one or more
of the file descriptors become "ready" for some class of I/O operation (e.g., input possi-
ble). A file descriptor is considered ready if it is possible to perform a corresponding
I/O operation (e.g., read(2), or a sufficiently small write(2)) without blocking.

fd_set
A structure type that can represent a set of file descriptors. According to POSIX, the
maximum number of file descriptors in an fd_set structure is the value of the macro
FD_SETSIZE.

File descriptor sets
The principal arguments of select() are three "sets" of file descriptors (declared with the
type fd_set), which allow the caller to wait for three classes of events on the specified
set of file descriptors. Each of the fd_set arguments may be specified as NULL if no
file descriptors are to be watched for the corresponding class of events.

Linux man-pages 6.16 2025-10-29 859

select(2) System Calls Manual select(2)

Note well: Upon return, each of the file descriptor sets is modified in place to indicate
which file descriptors are currently "ready". Thus, if using select() within a loop, the
sets must be reinitialized before each call.

The contents of a file descriptor set can be manipulated using the following macros:

FD_ZERO()
This macro clears (removes all file descriptors from) set. It should be employed
as the first step in initializing a file descriptor set.

FD_SET()
This macro adds the file descriptor fd to set. Adding a file descriptor that is al-
ready present in the set is a no-op, and does not produce an error.

FD_CLR()
This macro removes the file descriptor fd from set. Removing a file descriptor
that is not present in the set is a no-op, and does not produce an error.

FD_ISSET()
select() modifies the contents of the sets according to the rules described below.
After calling select(), the FD_ISSET() macro can be used to test if a file descrip-
tor is still present in a set. FD_ISSET() returns nonzero if the file descriptor fd
is present in set, and zero if it is not.

Arguments
The arguments of select() are as follows:

readfds
The file descriptors in this set are watched to see if they are ready for reading. A
file descriptor is ready for reading if a read operation will not block; in particu-
lar, a file descriptor is also ready on end-of-file.

After select() has returned, readfds will be cleared of all file descriptors except
for those that are ready for reading.

writefds
The file descriptors in this set are watched to see if they are ready for writing. A
file descriptor is ready for writing if a write operation will not block. However,
even if a file descriptor indicates as writable, a large write may still block.

After select() has returned, writefds will be cleared of all file descriptors except
for those that are ready for writing.

exceptfds
The file descriptors in this set are watched for "exceptional conditions". For ex-
amples of some exceptional conditions, see the discussion of POLLPRI in
poll(2).

After select() has returned, exceptfds will be cleared of all file descriptors except
for those for which an exceptional condition has occurred.

nfds This argument should be set to the highest-numbered file descriptor in any of the
three sets, plus 1. The indicated file descriptors in each set are checked, up to
this limit (but see BUGS).

Linux man-pages 6.16 2025-10-29 860

select(2) System Calls Manual select(2)

timeout
The timeout argument is a timeval structure (shown below) that specifies the in-
terval that select() should block waiting for a file descriptor to become ready.
The call will block until either:

• a file descriptor becomes ready;

• the call is interrupted by a signal handler; or

• the timeout expires.

Note that the timeout interval will be rounded up to the system clock granularity,
and kernel scheduling delays mean that the blocking interval may overrun by a
small amount.

If both fields of the timeval structure are zero, then select() returns immediately.
(This is useful for polling.)

If timeout is specified as NULL, select() blocks indefinitely waiting for a file de-
scriptor to become ready.

pselect()
The pselect() system call allows an application to safely wait until either a file descriptor
becomes ready or until a signal is caught.

The operation of select() and pselect() is identical, other than these three differences:

• select() uses a timeout that is a struct timeval (with seconds and microseconds),
while pselect() uses a struct timespec (with seconds and nanoseconds).

• select() may update the timeout argument to indicate how much time was left. pse-
lect() does not change this argument.

• select() has no sigmask argument, and behaves as pselect() called with NULL sig-
mask.

sigmask is a pointer to a signal mask (see sigprocmask(2)); if it is not NULL, then pse-
lect() first replaces the current signal mask by the one pointed to by sigmask, then does
the "select" function, and then restores the original signal mask. (If sigmask is NULL,
the signal mask is not modified during the pselect() call.)

Other than the difference in the precision of the timeout argument, the following pse-
lect() call:

ready = pselect(nfds, &readfds, &writefds, &exceptfds,
timeout, &sigmask);

is equivalent to atomically executing the following calls:

sigset_t origmask;

pthread_sigmask(SIG_SETMASK, &sigmask, &origmask);
ready = select(nfds, &readfds, &writefds, &exceptfds, timeout);
pthread_sigmask(SIG_SETMASK, &origmask, NULL);

The reason that pselect() is needed is that if one wants to wait for either a signal or for a
file descriptor to become ready, then an atomic test is needed to prevent race conditions.

Linux man-pages 6.16 2025-10-29 861

select(2) System Calls Manual select(2)

(Suppose the signal handler sets a global flag and returns. Then a test of this global flag
followed by a call of select() could hang indefinitely if the signal arrived just after the
test but just before the call. By contrast, pselect() allows one to first block signals, han-
dle the signals that have come in, then call pselect() with the desired sigmask, avoiding
the race.)

The timeout
The timeout argument for select() is a structure of the following type:

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

The corresponding argument for pselect() is a timespec(3) structure.

On Linux, select() modifies timeout to reflect the amount of time not slept; most other
implementations do not do this. (POSIX.1 permits either behavior.) This causes prob-
lems both when Linux code which reads timeout is ported to other operating systems,
and when code is ported to Linux that reuses a struct timeval for multiple select()s in a
loop without reinitializing it. Consider timeout to be undefined after select() returns.

RETURN VALUE
On success, select() and pselect() return the number of file descriptors contained in the
three returned descriptor sets (that is, the total number of bits that are set in readfds,
writefds, exceptfds). The return value may be zero if the timeout expired before any file
descriptors became ready.

On error, -1 is returned, and errno is set to indicate the error; the file descriptor sets are
unmodified, and timeout becomes undefined.

ERRORS
EBADF

An invalid file descriptor was given in one of the sets. (Perhaps a file descriptor
that was already closed, or one on which an error has occurred.) However, see
BUGS.

EINTR
A signal was caught; see signal(7).

EINVAL
nfds is negative or exceeds the RLIMIT_NOFILE resource limit (see getr-
limit(2)).

EINVAL
The value contained within timeout is invalid.

ENOMEM
Unable to allocate memory for internal tables.

VERSIONS
On some other UNIX systems, select() can fail with the error EAGAIN if the system
fails to allocate kernel-internal resources, rather than ENOMEM as Linux does. POSIX
specifies this error for poll(2), but not for select(). Portable programs may wish to check

Linux man-pages 6.16 2025-10-29 862

select(2) System Calls Manual select(2)

for EAGAIN and loop, just as with EINTR.

STANDARDS
POSIX.1-2024.

HISTORY
select()

POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

Generally portable to/from non-BSD systems supporting clones of the BSD
socket layer (including System V variants). However, note that the System V
variant typically sets the timeout variable before returning, but the BSD variant
does not.

pselect()
Linux 2.6.16. POSIX.1g, POSIX.1-2001.

Prior to this, it was emulated in glibc (but see BUGS).

fd_set
POSIX.1-2001.

NOTES
The following header also provides the fd_set type: <sys/time.h>.

An fd_set is a fixed size buffer. Executing FD_CLR() or FD_SET() with a value of fd
that is negative or is equal to or larger than FD_SETSIZE will result in undefined be-
havior. Moreover, POSIX requires fd to be a valid file descriptor.

The operation of select() and pselect() is not affected by the O_NONBLOCK flag.

The self-pipe trick
On systems that lack pselect(), reliable (and more portable) signal trapping can be
achieved using the self-pipe trick. In this technique, a signal handler writes a byte to a
pipe whose other end is monitored by select() in the main program. (To avoid possibly
blocking when writing to a pipe that may be full or reading from a pipe that may be
empty, nonblocking I/O is used when reading from and writing to the pipe.)

Emulating usleep(3)
Before the advent of usleep(3), some code employed a call to select() with all three sets
empty, nfds zero, and a non-NULL timeout as a fairly portable way to sleep with sub-
second precision.

Correspondence between select() and poll() notifications
Within the Linux kernel source, we find the following definitions which show the corre-
spondence between the readable, writable, and exceptional condition notifications of se-
lect() and the event notifications provided by poll(2) and epoll(7):

#define POLLIN_SET (EPOLLRDNORM | EPOLLRDBAND | EPOLLIN |
EPOLLHUP | EPOLLERR)

/* Ready for reading */
#define POLLOUT_SET (EPOLLWRBAND | EPOLLWRNORM | EPOLLOUT |

EPOLLERR)
/* Ready for writing */

#define POLLEX_SET (EPOLLPRI)

Linux man-pages 6.16 2025-10-29 863

select(2) System Calls Manual select(2)

/* Exceptional condition */

Multithreaded applications
If a file descriptor being monitored by select() is closed in another thread, the result is
unspecified. On some UNIX systems, select() unblocks and returns, with an indication
that the file descriptor is ready (a subsequent I/O operation will likely fail with an error,
unless another process reopens the file descriptor between the time select() returned and
the I/O operation is performed). On Linux (and some other systems), closing the file de-
scriptor in another thread has no effect on select(). In summary, any application that re-
lies on a particular behavior in this scenario must be considered buggy.

C library/kernel differences
The Linux kernel allows file descriptor sets of arbitrary size, determining the length of
the sets to be checked from the value of nfds. However, in the glibc implementation, the
fd_set type is fixed in size. See also BUGS.

The pselect() interface described in this page is implemented by glibc. The underlying
Linux system call is named pselect6(). This system call has somewhat different behav-
ior from the glibc wrapper function.

The Linux pselect6() system call modifies its timeout argument. However, the glibc
wrapper function hides this behavior by using a local variable for the timeout argument
that is passed to the system call. Thus, the glibc pselect() function does not modify its
timeout argument; this is the behavior required by POSIX.1-2001.

The final argument of the pselect6() system call is not a sigset_t * pointer, but is instead
a structure of the form:

struct {
const kernel_sigset_t *ss; /* Pointer to signal set */
size_t ss_len; /* Size (in bytes) of object

pointed to by 'ss' */
};

This allows the system call to obtain both a pointer to the signal set and its size, while
allowing for the fact that most architectures support a maximum of 6 arguments to a sys-
tem call. See sigprocmask(2) for a discussion of the difference between the kernel and
libc notion of the signal set.

Historical glibc details
glibc 2.0 provided an incorrect version of pselect() that did not take a sigmask argu-
ment.

From glibc 2.1 to glibc 2.2.1, one must define _GNU_SOURCE in order to obtain the
declaration of pselect() from <sys/select.h>.

BUGS
POSIX allows an implementation to define an upper limit, advertised via the constant
FD_SETSIZE, on the range of file descriptors that can be specified in a file descriptor
set. The Linux kernel imposes no fixed limit, but the glibc implementation makes
fd_set a fixed-size type, with FD_SETSIZE defined as 1024, and the FD_*() macros
operating according to that limit. To monitor file descriptors greater than 1023, use
poll(2) or epoll(7) instead.

Linux man-pages 6.16 2025-10-29 864

select(2) System Calls Manual select(2)

The implementation of the fd_set arguments as value-result arguments is a design error
that is avoided in poll(2) and epoll(7).

According to POSIX, select() should check all specified file descriptors in the three file
descriptor sets, up to the limit nfds-1. However, the current implementation ignores any
file descriptor in these sets that is greater than the maximum file descriptor number that
the process currently has open. According to POSIX, any such file descriptor that is
specified in one of the sets should result in the error EBADF.

Starting with glibc 2.1, glibc provided an emulation of pselect() that was implemented
using sigprocmask(2) and select(). This implementation remained vulnerable to the
very race condition that pselect() was designed to prevent. Modern versions of glibc use
the (race-free) pselect() system call on kernels where it is provided.

On Linux, select() may report a socket file descriptor as "ready for reading", while nev-
ertheless a subsequent read blocks. This could for example happen when data has ar-
rived but upon examination has the wrong checksum and is discarded. There may be
other circumstances in which a file descriptor is spuriously reported as ready. Thus it
may be safer to use O_NONBLOCK on sockets that should not block.

On Linux, select() also modifies timeout if the call is interrupted by a signal handler
(i.e., the EINTR error return). This is not permitted by POSIX.1. The Linux pselect()
system call has the same behavior, but the glibc wrapper hides this behavior by inter-
nally copying the timeout to a local variable and passing that variable to the system call.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>
#include <sys/select.h>
#include <sys/time.h>

int
main(void)
{

int retval;
fd_set rfds;
struct timeval tv;

/* Watch stdin (fd 0) to see when it has input. */

FD_ZERO(&rfds);
FD_SET(0, &rfds);

/* Wait up to five seconds. */

tv.tv_sec = 5;
tv.tv_usec = 0;

retval = select(1, &rfds, NULL, NULL, &tv);
/* Don't rely on the value of tv now! */

Linux man-pages 6.16 2025-10-29 865

select(2) System Calls Manual select(2)

if (retval == -1)
perror("select()");

else if (retval)
printf("Data is available now.\n");
/* FD_ISSET(0, &rfds) will be true. */

else
printf("No data within five seconds.\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
accept(2), connect(2), poll(2), read(2), recv(2), restart_syscall(2), send(2), sigproc-
mask(2), write(2), timespec(3), epoll(7), time(7)

For a tutorial with discussion and examples, see select_tut(2).

Linux man-pages 6.16 2025-10-29 866

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

NAME
select, pselect - synchronous I/O multiplexing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
See select(2)

DESCRIPTION
The select() and pselect() system calls are used to efficiently monitor multiple file de-
scriptors, to see if any of them is, or becomes, "ready"; that is, to see whether I/O be-
comes possible, or an "exceptional condition" has occurred on any of the file descrip-
tors.

This page provides background and tutorial information on the use of these system calls.
For details of the arguments and semantics of select() and pselect(), see select(2).

Combining signal and data events
pselect() is useful if you are waiting for a signal as well as for file descriptor(s) to be-
come ready for I/O. Programs that receive signals normally use the signal handler only
to raise a global flag. The global flag will indicate that the event must be processed in
the main loop of the program. A signal will cause the select() (or pselect()) call to re-
turn with errno set to EINTR. This behavior is essential so that signals can be
processed in the main loop of the program, otherwise select() would block indefinitely.

Now, somewhere in the main loop will be a conditional to check the global flag. So we
must ask: what if a signal arrives after the conditional, but before the select() call? The
answer is that select() would block indefinitely, even though an event is actually pend-
ing. This race condition is solved by the pselect() call. This call can be used to set the
signal mask to a set of signals that are to be received only within the pselect() call. For
instance, let us say that the event in question was the exit of a child process. Before the
start of the main loop, we would block SIGCHLD using sigprocmask(2). Our pselect()
call would enable SIGCHLD by using an empty signal mask. Our program would look
like:

static volatile sig_atomic_t got_SIGCHLD = 0;

static void
child_sig_handler(int sig)
{

got_SIGCHLD = 1;
}

int
main(int argc, char *argv[])
{

sigset_t sigmask, empty_mask;
struct sigaction sa;
fd_set readfds, writefds, exceptfds;
int r;

Linux man-pages 6.16 2025-09-21 867

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

sigemptyset(&sigmask);
sigaddset(&sigmask, SIGCHLD);
if (sigprocmask(SIG_BLOCK, &sigmask, NULL) == -1) {

perror("sigprocmask");
exit(EXIT_FAILURE);

}

sa.sa_flags = 0;
sa.sa_handler = child_sig_handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIGCHLD, &sa, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

sigemptyset(&empty_mask);

for (;;) { /* main loop */
/* Initialize readfds, writefds, and exceptfds

before the pselect() call. (Code omitted.) */

r = pselect(nfds, &readfds, &writefds, &exceptfds,
NULL, &empty_mask);

if (r == -1 && errno != EINTR) {
/* Handle error */

}

if (got_SIGCHLD) {
got_SIGCHLD = 0;

/* Handle signalled event here; e.g., wait() for all
terminated children. (Code omitted.) */

}

/* main body of program */
}

}

Practical
So what is the point of select()? Can’t I just read and write to my file descriptors when-
ever I want? The point of select() is that it watches multiple descriptors at the same time
and properly puts the process to sleep if there is no activity. UNIX programmers often
find themselves in a position where they have to handle I/O from more than one file de-
scriptor where the data flow may be intermittent. If you were to merely create a se-
quence of read(2) and write(2) calls, you would find that one of your calls may block
waiting for data from/to a file descriptor, while another file descriptor is unused though
ready for I/O. select() efficiently copes with this situation.

Linux man-pages 6.16 2025-09-21 868

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

Select law
Many people who try to use select() come across behavior that is difficult to understand
and produces nonportable or borderline results. For instance, the above program is care-
fully written not to block at any point, even though it does not set its file descriptors to
nonblocking mode. It is easy to introduce subtle errors that will remove the advantage
of using select(), so here is a list of essentials to watch for when using select().

1. You should always try to use select() without a timeout. Your program should have
nothing to do if there is no data available. Code that depends on timeouts is not
usually portable and is difficult to debug.

2. The value nfds must be properly calculated for efficiency as explained above.

3. No file descriptor must be added to any set if you do not intend to check its result
after the select() call, and respond appropriately. See next rule.

4. After select() returns, all file descriptors in all sets should be checked to see if they
are ready.

5. The functions read(2), recv(2), write(2), and send(2) do not necessarily read/write
the full amount of data that you have requested. If they do read/write the full
amount, it’s because you have a low traffic load and a fast stream. This is not al-
ways going to be the case. You should cope with the case of your functions manag-
ing to send or receive only a single byte.

6. Never read/write only in single bytes at a time unless you are really sure that you
have a small amount of data to process. It is extremely inefficient not to read/write
as much data as you can buffer each time. The buffers in the example below are
1024 bytes although they could easily be made larger.

7. Calls to read(2), recv(2), write(2), send(2), and select() can fail with the error
EINTR, and calls to read(2), recv(2), write(2), and send(2) can fail with errno set
to EAGAIN (EWOULDBLOCK). These results must be properly managed (not
done properly above). If your program is not going to receive any signals, then it is
unlikely you will get EINTR. If your program does not set nonblocking I/O, you
will not get EAGAIN.

8. Never call read(2), recv(2), write(2), or send(2) with a buffer length of zero.

9. If the functions read(2), recv(2), write(2), and send(2) fail with errors other than
those listed in 7., or one of the input functions returns 0, indicating end of file, then
you should not pass that file descriptor to select() again. In the example below, I
close the file descriptor immediately, and then set it to -1 to prevent it being in-
cluded in a set.

10.
The timeout value must be initialized with each new call to select(), since some op-
erating systems modify the structure. pselect() however does not modify its time-
out structure.

11.
Since select() modifies its file descriptor sets, if the call is being used in a loop,
then the sets must be reinitialized before each call.

Linux man-pages 6.16 2025-09-21 869

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

RETURN VALUE
See select(2).

NOTES
Generally speaking, all operating systems that support sockets also support select(). se-
lect() can be used to solve many problems in a portable and efficient way that naive pro-
grammers try to solve in a more complicated manner using threads, forking, IPCs, sig-
nals, memory sharing, and so on.

The poll(2) system call has the same functionality as select(), and is somewhat more ef-
ficient when monitoring sparse file descriptor sets. It is nowadays widely available, but
historically was less portable than select().

The Linux-specific epoll(7) API provides an interface that is more efficient than se-
lect(2) and poll(2) when monitoring large numbers of file descriptors.

EXAMPLES
Here is an example that better demonstrates the true utility of select(). The listing below
is a TCP forwarding program that forwards from one TCP port to another.

#include <arpa/inet.h>
#include <errno.h>
#include <netinet/in.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/select.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

static int forward_port;

#undef max
#define max(x, y) ((x) > (y) ? (x) : (y))

static int
listen_socket(int listen_port)
{

int lfd;
int yes;
struct sockaddr_in addr;

lfd = socket(AF_INET, SOCK_STREAM, 0);
if (lfd == -1) {

perror("socket");
return -1;

}

Linux man-pages 6.16 2025-09-21 870

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

yes = 1;
if (setsockopt(lfd, SOL_SOCKET, SO_REUSEADDR,

&yes, sizeof(yes)) == -1)
{

perror("setsockopt");
close(lfd);
return -1;

}

memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(listen_port);
addr.sin_family = AF_INET;
if (bind(lfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {

perror("bind");
close(lfd);
return -1;

}

printf("accepting connections on port %d\n", listen_port);
listen(lfd, 10);
return lfd;

}

static int
connect_socket(int connect_port, char *address)
{

int cfd;
struct sockaddr_in addr;

cfd = socket(AF_INET, SOCK_STREAM, 0);
if (cfd == -1) {

perror("socket");
return -1;

}

memset(&addr, 0, sizeof(addr));
addr.sin_port = htons(connect_port);
addr.sin_family = AF_INET;

if (!inet_aton(address, (struct in_addr *) &addr.sin_addr.s_addr)) {
fprintf(stderr, "inet_aton(): bad IP address format\n");
close(cfd);
return -1;

}

if (connect(cfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("connect()");

Linux man-pages 6.16 2025-09-21 871

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

shutdown(cfd, SHUT_RDWR);
close(cfd);
return -1;

}
return cfd;

}

#define SHUT_FD1 do { \
if (fd1 >= 0) { \

shutdown(fd1, SHUT_RDWR); \
close(fd1); \
fd1 = -1; \

} \
} while (0)

#define SHUT_FD2 do { \
if (fd2 >= 0) { \

shutdown(fd2, SHUT_RDWR); \
close(fd2); \
fd2 = -1; \

} \
} while (0)

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{

int h;
int ready, nfds;
int fd1 = -1, fd2 = -1;
int buf1_avail = 0, buf1_written = 0;
int buf2_avail = 0, buf2_written = 0;
char buf1[BUF_SIZE], buf2[BUF_SIZE];
fd_set readfds, writefds, exceptfds;
ssize_t nbytes;

if (argc != 4) {
fprintf(stderr, "Usage\n\tfwd <listen-port> "

"<forward-to-port> <forward-to-ip-address>\n");
exit(EXIT_FAILURE);

}

signal(SIGPIPE, SIG_IGN);

forward_port = atoi(argv[2]);

Linux man-pages 6.16 2025-09-21 872

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

h = listen_socket(atoi(argv[1]));
if (h == -1)

exit(EXIT_FAILURE);

for (;;) {
nfds = 0;

FD_ZERO(&readfds);
FD_ZERO(&writefds);
FD_ZERO(&exceptfds);
FD_SET(h, &readfds);
nfds = max(nfds, h);

if (fd1 > 0 && buf1_avail < BUF_SIZE)
FD_SET(fd1, &readfds);
/* Note: nfds is updated below, when fd1 is added to

exceptfds. */
if (fd2 > 0 && buf2_avail < BUF_SIZE)

FD_SET(fd2, &readfds);

if (fd1 > 0 && buf2_avail - buf2_written > 0)
FD_SET(fd1, &writefds);

if (fd2 > 0 && buf1_avail - buf1_written > 0)
FD_SET(fd2, &writefds);

if (fd1 > 0) {
FD_SET(fd1, &exceptfds);
nfds = max(nfds, fd1);

}
if (fd2 > 0) {

FD_SET(fd2, &exceptfds);
nfds = max(nfds, fd2);

}

ready = select(nfds + 1, &readfds, &writefds, &exceptfds, NULL);

if (ready == -1 && errno == EINTR)
continue;

if (ready == -1) {
perror("select()");
exit(EXIT_FAILURE);

}

if (FD_ISSET(h, &readfds)) {
socklen_t addrlen;
struct sockaddr_in client_addr;

Linux man-pages 6.16 2025-09-21 873

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

int fd;

addrlen = sizeof(client_addr);
memset(&client_addr, 0, addrlen);
fd = accept(h, (struct sockaddr *) &client_addr, &addrlen);
if (fd == -1) {

perror("accept()");
} else {

SHUT_FD1;
SHUT_FD2;
buf1_avail = buf1_written = 0;
buf2_avail = buf2_written = 0;
fd1 = fd;
fd2 = connect_socket(forward_port, argv[3]);
if (fd2 == -1)

SHUT_FD1;
else

printf("connect from %s\n",
inet_ntoa(client_addr.sin_addr));

/* Skip any events on the old, closed file
descriptors. */

continue;
}

}

/* NB: read OOB data before normal reads. */

if (fd1 > 0 && FD_ISSET(fd1, &exceptfds)) {
char c;

nbytes = recv(fd1, &c, 1, MSG_OOB);
if (nbytes < 1)

SHUT_FD1;
else

send(fd2, &c, 1, MSG_OOB);
}
if (fd2 > 0 && FD_ISSET(fd2, &exceptfds)) {

char c;

nbytes = recv(fd2, &c, 1, MSG_OOB);
if (nbytes < 1)

SHUT_FD2;
else

send(fd1, &c, 1, MSG_OOB);
}

Linux man-pages 6.16 2025-09-21 874

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

if (fd1 > 0 && FD_ISSET(fd1, &readfds)) {
nbytes = read(fd1, buf1 + buf1_avail,

BUF_SIZE - buf1_avail);
if (nbytes < 1)

SHUT_FD1;
else

buf1_avail += nbytes;
}
if (fd2 > 0 && FD_ISSET(fd2, &readfds)) {

nbytes = read(fd2, buf2 + buf2_avail,
BUF_SIZE - buf2_avail);

if (nbytes < 1)
SHUT_FD2;

else
buf2_avail += nbytes;

}
if (fd1 > 0 && FD_ISSET(fd1, &writefds) && buf2_avail > 0) {

nbytes = write(fd1, buf2 + buf2_written,
buf2_avail - buf2_written);

if (nbytes < 1)
SHUT_FD1;

else
buf2_written += nbytes;

}
if (fd2 > 0 && FD_ISSET(fd2, &writefds) && buf1_avail > 0) {

nbytes = write(fd2, buf1 + buf1_written,
buf1_avail - buf1_written);

if (nbytes < 1)
SHUT_FD2;

else
buf1_written += nbytes;

}

/* Check if write data has caught read data. */

if (buf1_written == buf1_avail)
buf1_written = buf1_avail = 0;

if (buf2_written == buf2_avail)
buf2_written = buf2_avail = 0;

/* One side has closed the connection, keep
writing to the other side until empty. */

if (fd1 < 0 && buf1_avail - buf1_written == 0)
SHUT_FD2;

if (fd2 < 0 && buf2_avail - buf2_written == 0)
SHUT_FD1;

Linux man-pages 6.16 2025-09-21 875

SELECT_TUT (2) System Calls Manual SELECT_TUT (2)

}
exit(EXIT_SUCCESS);

}

The above program properly forwards most kinds of TCP connections including OOB
signal data transmitted by telnet servers. It handles the tricky problem of having data
flow in both directions simultaneously. You might think it more efficient to use a fork(2)
call and devote a thread to each stream. This becomes more tricky than you might sus-
pect. Another idea is to set nonblocking I/O using fcntl(2). This also has its problems
because you end up using inefficient timeouts.

The program does not handle more than one simultaneous connection at a time, al-
though it could easily be extended to do this with a linked list of buffers—one for each
connection. At the moment, new connections cause the current connection to be
dropped.

SEE ALSO
accept(2), connect(2), poll(2), read(2), recv(2), select(2), send(2), sigprocmask(2),
write(2), epoll(7)

Linux man-pages 6.16 2025-09-21 876

semctl(2) System Calls Manual semctl(2)

NAME
semctl - System V semaphore control operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sem.h>

int semctl(int semid , int semnum, int op, ...);

DESCRIPTION
semctl() performs the control operation specified by op on the System V semaphore set
identified by semid , or on the semnum-th semaphore of that set. (The semaphores in a
set are numbered starting at 0.)

This function has three or four arguments, depending on op. When there are four, the
fourth has the type union semun. The calling program must define this union as fol-
lows:

union semun {
int val; /* Value for SETVAL */
struct semid_ds *buf; /* Buffer for IPC_STAT, IPC_SET */
unsigned short *array; /* Array for GETALL, SETALL */
struct seminfo *__buf; /* Buffer for IPC_INFO

(Linux-specific) */
};

The semid_ds data structure is defined in <sys/sem.h> as follows:

struct semid_ds {
struct ipc_perm sem_perm; /* Ownership and permissions */
time_t sem_otime; /* Last semop time */
time_t sem_ctime; /* Creation time/time of last

modification via semctl() */
unsigned long sem_nsems; /* # of semaphores in set */

};

The fields of the semid_ds structure are as follows:

sem_perm This is an ipc_perm structure (see below) that specifies the access permis-
sions on the semaphore set.

sem_otime Time of last semop(2) system call.

sem_ctime Time of creation of semaphore set or time of last semctl() IPCSET, SET-
VAL, or SETALL operation.

sem_nsems Number of semaphores in the set. Each semaphore of the set is referenced
by a nonnegative integer ranging from 0 to sem_nsems-1.

The ipc_perm structure is defined as follows (the highlighted fields are settable using
IPC_SET):

struct ipc_perm {
key_t __key; /* Key supplied to semget(2) */

Linux man-pages 6.16 2025-10-29 877

semctl(2) System Calls Manual semctl(2)

uid_t uid; /* Effective UID of owner */
gid_t gid; /* Effective GID of owner */
uid_t cuid; /* Effective UID of creator */
gid_t cgid; /* Effective GID of creator */
unsigned short mode; /* Permissions */
unsigned short __seq; /* Sequence number */

};

The least significant 9 bits of the mode field of the ipc_perm structure define the access
permissions for the shared memory segment. The permission bits are as follows:
0400 Read by user
0200 Write by user
0040 Read by group
0020 Write by group
0004 Read by others
0002 Write by others

In effect, "write" means "alter" for a semaphore set. Bits 0100, 0010, and 0001 (the exe-
cute bits) are unused by the system.

Valid values for op are:

IPC_STAT
Copy information from the kernel data structure associated with semid into the
semid_ds structure pointed to by arg.buf . The argument semnum is ignored.
The calling process must have read permission on the semaphore set.

IPC_SET
Write the values of some members of the semid_ds structure pointed to by
arg.buf to the kernel data structure associated with this semaphore set, updating
also its sem_ctime member.

The following members of the structure are updated: sem_perm.uid ,
sem_perm.gid , and (the least significant 9 bits of) sem_perm.mode.

The effective UID of the calling process must match the owner (sem_perm.uid)
or creator (sem_perm.cuid) of the semaphore set, or the caller must be privi-
leged. The argument semnum is ignored.

IPC_RMID
Immediately remove the semaphore set, awakening all processes blocked in se-
mop(2) calls on the set (with an error return and errno set to EIDRM). The ef-
fective user ID of the calling process must match the creator or owner of the
semaphore set, or the caller must be privileged. The argument semnum is ig-
nored.

IPC_INFO (Linux-specific)
Return information about system-wide semaphore limits and parameters in the
structure pointed to by arg.__buf . This structure is of type seminfo, defined in
<sys/sem.h> if the _GNU_SOURCE feature test macro is defined:

struct seminfo {
int semmap; /* Number of entries in semaphore

Linux man-pages 6.16 2025-10-29 878

semctl(2) System Calls Manual semctl(2)

map; unused within kernel */
int semmni; /* Maximum number of semaphore sets */
int semmns; /* Maximum number of semaphores in all

semaphore sets */
int semmnu; /* System-wide maximum number of undo

structures; unused within kernel */
int semmsl; /* Maximum number of semaphores in a

set */
int semopm; /* Maximum number of operations for

semop(2) */
int semume; /* Maximum number of undo entries per

process; unused within kernel */
int semusz; /* Size of struct sem_undo */
int semvmx; /* Maximum semaphore value */
int semaem; /* Max. value that can be recorded for

semaphore adjustment (SEM_UNDO) */
};

The semmsl, semmns, semopm, and semmni settings can be changed via
/proc/sys/kernel/sem; see proc(5) for details.

SEM_INFO (Linux-specific)
Return a seminfo structure containing the same information as for IPC_INFO,
except that the following fields are returned with information about system re-
sources consumed by semaphores: the semusz field returns the number of sema-
phore sets that currently exist on the system; and the semaem field returns the to-
tal number of semaphores in all semaphore sets on the system.

SEM_STAT (Linux-specific)
Return a semid_ds structure as for IPC_STAT. However, the semid argument is
not a semaphore identifier, but instead an index into the kernel’s internal array
that maintains information about all semaphore sets on the system.

SEM_STAT_ANY (Linux-specific, since Linux 4.17)
Return a semid_ds structure as for SEM_STAT. However, sem_perm.mode is
not checked for read access for semid meaning that any user can employ this op-
eration (just as any user may read /proc/sysvipc/sem to obtain the same informa-
tion).

GETALL
Return semval (i.e., the current value) for all semaphores of the set into arg.ar-
ray. The argument semnum is ignored. The calling process must have read per-
mission on the semaphore set.

GETNCNT
Return the semncnt value for the semnum-th semaphore of the set (i.e., the num-
ber of processes waiting for the semaphore’s value to increase). The calling
process must have read permission on the semaphore set.

Linux man-pages 6.16 2025-10-29 879

semctl(2) System Calls Manual semctl(2)

GETPID
Return the sempid value for the semnum-th semaphore of the set. This is the
PID of the process that last performed an operation on that semaphore (but see
VERSIONS). The calling process must have read permission on the semaphore
set.

GETVAL
Return semval (i.e., the semaphore value) for the semnum-th semaphore of the
set. The calling process must have read permission on the semaphore set.

GETZCNT
Return the semzcnt value for the semnum-th semaphore of the set (i.e., the num-
ber of processes waiting for the semaphore value to become 0). The calling
process must have read permission on the semaphore set.

SETALL
Set the semval values for all semaphores of the set using arg.array, updating
also the sem_ctime member of the semid_ds structure associated with the set.
Undo entries (see semop(2)) are cleared for altered semaphores in all processes.
If the changes to semaphore values would permit blocked semop(2) calls in other
processes to proceed, then those processes are woken up. The argument semnum
is ignored. The calling process must have alter (write) permission on the sema-
phore set.

SETVAL
Set the semaphore value (semval) to arg.val for the semnum-th semaphore of the
set, updating also the sem_ctime member of the semid_ds structure associated
with the set. Undo entries are cleared for altered semaphores in all processes. If
the changes to semaphore values would permit blocked semop(2) calls in other
processes to proceed, then those processes are woken up. The calling process
must have alter permission on the semaphore set.

RETURN VALUE
On success, semctl() returns a nonnegative value depending on op as follows:

GETNCNT
the value of semncnt.

GETPID
the value of sempid.

GETVAL
the value of semval.

GETZCNT
the value of semzcnt.

IPC_INFO
the index of the highest used entry in the kernel’s internal array recording infor-
mation about all semaphore sets. (This information can be used with repeated
SEM_STAT or SEM_STAT_ANY operations to obtain information about all
semaphore sets on the system.)

Linux man-pages 6.16 2025-10-29 880

semctl(2) System Calls Manual semctl(2)

SEM_INFO
as for IPC_INFO.

SEM_STAT
the identifier of the semaphore set whose index was given in semid .

SEM_STAT_ANY
as for SEM_STAT.

All other op values return 0 on success.

On failure, semctl() returns -1 and sets errno to indicate the error.

ERRORS
EACCES

The argument op has one of the values GETALL, GETPID, GETVAL, GET-
NCNT, GETZCNT, IPC_STAT, SEM_STAT, SEM_STAT_ANY, SETALL,
or SETVAL and the calling process does not have the required permissions on
the semaphore set and does not have the CAP_IPC_OWNER capability in the
user namespace that governs its IPC namespace.

EFAULT
The address pointed to by arg.buf or arg.array isn’t accessible.

EIDRM
The semaphore set was removed.

EINVAL
Invalid value for op or semid . Or: for a SEM_STAT operation, the index value
specified in semid referred to an array slot that is currently unused.

EPERM
The argument op has the value IPC_SET or IPC_RMID but the effective user
ID of the calling process is not the creator (as found in sem_perm.cuid) or the
owner (as found in sem_perm.uid) of the semaphore set, and the process does
not have the CAP_SYS_ADMIN capability.

ERANGE
The argument op has the value SETALL or SETVAL and the value to which
semval is to be set (for some semaphore of the set) is less than 0 or greater than
the implementation limit SEMVMX.

VERSIONS
POSIX.1 specifies the sem_nsems field of the semid_ds structure as having the type un-
signed short, and the field is so defined on most other systems. It was also so defined on
Linux 2.2 and earlier, but, since Linux 2.4, the field has the type unsigned long.

The sempid value
POSIX.1 defines sempid as the "process ID of [the] last operation" on a semaphore, and
explicitly notes that this value is set by a successful semop(2) call, with the implication
that no other interface affects the sempid value.

While some implementations conform to the behavior specified in POSIX.1, others do
not. (The fault here probably lies with POSIX.1 inasmuch as it likely failed to capture
the full range of existing implementation behaviors.) Various other implementations

Linux man-pages 6.16 2025-10-29 881

semctl(2) System Calls Manual semctl(2)

also update sempid for the other operations that update the value of a semaphore: the
SETVAL and SETALL operations, as well as the semaphore adjustments performed on
process termination as a consequence of the use of the SEM_UNDO flag (see
semop(2)).

Linux also updates sempid for SETVAL operations and semaphore adjustments. How-
ever, somewhat inconsistently, up to and including Linux 4.5, the kernel did not update
sempid for SETALL operations. This was rectified in Linux 4.6.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

Various fields in a struct semid_ds were typed as short under Linux 2.2 and have be-
come long under Linux 2.4. To take advantage of this, a recompilation under
glibc-2.1.91 or later should suffice. (The kernel distinguishes old and new calls by an
IPC_64 flag in op.)

In some earlier versions of glibc, the semun union was defined in <sys/sem.h>, but
POSIX.1 requires that the caller define this union. On versions of glibc where this union
is not defined, the macro _SEM_SEMUN_UNDEFINED is defined in <sys/sem.h>.

NOTES
The IPC_INFO, SEM_STAT, and SEM_INFO operations are used by the ipcs(1) pro-
gram to provide information on allocated resources. In the future these may modified or
moved to a /proc filesystem interface.

The following system limit on semaphore sets affects a semctl() call:

SEMVMX
Maximum value for semval: implementation dependent (32767).

For greater portability, it is best to always call semctl() with four arguments.

EXAMPLES
See shmop(2).

SEE ALSO
ipc(2), semget(2), semop(2), capabilities(7), sem_overview(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 882

semget(2) System Calls Manual semget(2)

NAME
semget - get a System V semaphore set identifier

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sem.h>

int semget(key_t key, int nsems, int semflg);

DESCRIPTION
The semget() system call returns the System V semaphore set identifier associated with
the argument key. It may be used either to obtain the identifier of a previously created
semaphore set (when semflg is zero and key does not have the value IPC_PRIVATE), or
to create a new set.

A new set of nsems semaphores is created if key has the value IPC_PRIVATE or if no
existing semaphore set is associated with key and IPC_CREAT is specified in semflg.

If semflg specifies both IPC_CREAT and IPC_EXCL and a semaphore set already ex-
ists for key, then semget() fails with errno set to EEXIST. (This is analogous to the ef-
fect of the combination O_CREAT | O_EXCL for open(2).)

Upon creation, the least significant 9 bits of the argument semflg define the permissions
(for owner, group, and others) for the semaphore set. These bits have the same format,
and the same meaning, as the mode argument of open(2) (though the execute permis-
sions are not meaningful for semaphores, and write permissions mean permission to al-
ter semaphore values).

When creating a new semaphore set, semget() initializes the set’s associated data struc-
ture, semid_ds (see semctl(2)), as follows:

• sem_perm.cuid and sem_perm.uid are set to the effective user ID of the calling
process.

• sem_perm.cgid and sem_perm.gid are set to the effective group ID of the calling
process.

• The least significant 9 bits of sem_perm.mode are set to the least significant 9 bits of
semflg.

• sem_nsems is set to the value of nsems.

• sem_otime is set to 0.

• sem_ctime is set to the current time.

The argument nsems can be 0 (a don’t care) when a semaphore set is not being created.
Otherwise, nsems must be greater than 0 and less than or equal to the maximum number
of semaphores per semaphore set (SEMMSL).

If the semaphore set already exists, the permissions are verified.

RETURN VALUE
On success, semget() returns the semaphore set identifier (a nonnegative integer). On
failure, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-10-29 883

semget(2) System Calls Manual semget(2)

ERRORS
EACCES

A semaphore set exists for key, but the calling process does not have permission
to access the set, and does not have the CAP_IPC_OWNER capability in the
user namespace that governs its IPC namespace.

EEXIST
IPC_CREAT and IPC_EXCL were specified in semflg, but a semaphore set al-
ready exists for key.

EINVAL
nsems is less than 0 or greater than the limit on the number of semaphores per
semaphore set (SEMMSL).

EINVAL
A semaphore set corresponding to key already exists, but nsems is larger than the
number of semaphores in that set.

ENOENT
No semaphore set exists for key and semflg did not specify IPC_CREAT.

ENOMEM
A semaphore set has to be created but the system does not have enough memory
for the new data structure.

ENOSPC
A semaphore set has to be created but the system limit for the maximum number
of semaphore sets (SEMMNI), or the system wide maximum number of sema-
phores (SEMMNS), would be exceeded.

STANDARDS
POSIX.1-2024.

HISTORY
SVr4, POSIX.1-2001.

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key,
the system call ignores all but the least significant 9 bits of semflg and creates a new
semaphore set (on success).

Semaphore initialization
The values of the semaphores in a newly created set are indeterminate. (POSIX.1-2001
and POSIX.1-2008 are explicit on this point, although POSIX.1-2008 notes that a future
version of the standard may require an implementation to initialize the semaphores to 0.)
Although Linux, like many other implementations, initializes the semaphore values to 0,
a portable application cannot rely on this: it should explicitly initialize the semaphores
to the desired values.

Initialization can be done using semctl(2) SETVAL or SETALL operation. Where mul-
tiple peers do not know who will be the first to initialize the set, checking for a nonzero
sem_otime in the associated data structure retrieved by a semctl(2) IPC_STAT operation
can be used to avoid races.

Linux man-pages 6.16 2025-10-29 884

semget(2) System Calls Manual semget(2)

Semaphore limits
The following limits on semaphore set resources affect the semget() call:

SEMMNI
System-wide limit on the number of semaphore sets. Before Linux 3.19, the de-
fault value for this limit was 128. Since Linux 3.19, the default value is 32,000.
On Linux, this limit can be read and modified via the fourth field of
/proc/sys/kernel/sem.

SEMMSL
Maximum number of semaphores per semaphore ID. Before Linux 3.19, the de-
fault value for this limit was 250. Since Linux 3.19, the default value is 32,000.
On Linux, this limit can be read and modified via the first field of /proc/sys/ker-
nel/sem.

SEMMNS
System-wide limit on the number of semaphores: policy dependent (on Linux,
this limit can be read and modified via the second field of /proc/sys/kernel/sem).
Note that the number of semaphores system-wide is also limited by the product
of SEMMSL and SEMMNI.

BUGS
The name choice IPC_PRIVATE was perhaps unfortunate, IPC_NEW would more
clearly show its function.

EXAMPLES
The program shown below uses semget() to create a new semaphore set or retrieve the
ID of an existing set. It generates the key for semget() using ftok(3). The first two com-
mand-line arguments are used as the pathname and proj_id arguments for ftok(3). The
third command-line argument is an integer that specifies the nsems argument for
semget(). Command-line options can be used to specify the IPC_CREAT (-c) and
IPC_EXCL (-x) flags for the call to semget(). The usage of this program is demon-
strated below.

We first create two files that will be used to generate keys using ftok(3), create two sem-
aphore sets using those files, and then list the sets using ipcs(1):

$ touch mykey mykey2;
$./t_semget -c mykey p 1;
ID = 9
$./t_semget -c mykey2 p 2;
ID = 10
$ ipcs -s;

------ Semaphore Arrays --------
key semid owner perms nsems
0x7004136d 9 mtk 600 1
0x70041368 10 mtk 600 2

Next, we demonstrate that when semctl(2) is given the same key (as generated by the
same arguments to ftok(3)), it returns the ID of the already existing semaphore set:

Linux man-pages 6.16 2025-10-29 885

semget(2) System Calls Manual semget(2)

$./t_semget -c mykey p 1;
ID = 9

Finally, we demonstrate the kind of collision that can occur when ftok(3) is given differ-
ent pathname arguments that have the same inode number:

$ ln mykey link;
$ ls -i1 link mykey;
2233197 link
2233197 mykey
$./t_semget link p 1; # Generates same key as 'mykey'
ID = 9

Program source

/* t_semget.c

Licensed under GNU General Public License v2 or later.
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <unistd.h>

static void
usage(const char *pname)
{

fprintf(stderr, "Usage: %s [-cx] pathname proj-id num-sems\n",
pname);

fprintf(stderr, " -c Use IPC_CREAT flag\n");
fprintf(stderr, " -x Use IPC_EXCL flag\n");
exit(EXIT_FAILURE);

}

int
main(int argc, char *argv[])
{

int semid, nsems, flags, opt;
key_t key;

flags = 0;
while ((opt = getopt(argc, argv, "cx")) != -1) {

switch (opt) {
case 'c': flags |= IPC_CREAT; break;
case 'x': flags |= IPC_EXCL; break;
default: usage(argv[0]);
}

}

Linux man-pages 6.16 2025-10-29 886

semget(2) System Calls Manual semget(2)

if (argc != optind + 3)
usage(argv[0]);

key = ftok(argv[optind], argv[optind + 1][0]);
if (key == -1) {

perror("ftok");
exit(EXIT_FAILURE);

}

nsems = atoi(argv[optind + 2]);

semid = semget(key, nsems, flags | 0600);
if (semid == -1) {

perror("semget");
exit(EXIT_FAILURE);

}

printf("ID = %d\n", semid);

exit(EXIT_SUCCESS);
}

SEE ALSO
semctl(2), semop(2), ftok(3), capabilities(7), sem_overview(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 887

semop(2) System Calls Manual semop(2)

NAME
semop, semtimedop - System V semaphore operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sem.h>

int semop(int semid , struct sembuf *sops, size_t nsops);
int semtimedop(int semid , struct sembuf *sops, size_t nsops,

const struct timespec *_Nullable timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

semtimedop():
_GNU_SOURCE

DESCRIPTION
Each semaphore in a System V semaphore set has the following associated values:

unsigned short semval; /* semaphore value */
unsigned short semzcnt; /* # waiting for zero */
unsigned short semncnt; /* # waiting for increase */
pid_t sempid; /* PID of process that last

modified the semaphore value */

semop() performs operations on selected semaphores in the set indicated by semid .
Each of the nsops elements in the array pointed to by sops is a structure that specifies an
operation to be performed on a single semaphore. The elements of this structure are of
type struct sembuf , containing the following members:

unsigned short sem_num; /* semaphore number */
short sem_op; /* semaphore operation */
short sem_flg; /* operation flags */

Flags recognized in sem_flg are IPC_NOWAIT and SEM_UNDO. If an operation
specifies SEM_UNDO, it will be automatically undone when the process terminates.

The set of operations contained in sops is performed in array order, and atomically, that
is, the operations are performed either as a complete unit, or not at all. The behavior of
the system call if not all operations can be performed immediately depends on the pres-
ence of the IPC_NOWAIT flag in the individual sem_flg fields, as noted below.

Each operation is performed on the sem_num-th semaphore of the semaphore set, where
the first semaphore of the set is numbered 0. There are three types of operation, distin-
guished by the value of sem_op.

If sem_op is a positive integer, the operation adds this value to the semaphore value
(semval). Furthermore, if SEM_UNDO is specified for this operation, the system sub-
tracts the value sem_op from the semaphore adjustment (semadj) value for this sema-
phore. This operation can always proceed—it never forces a thread to wait. The calling
process must have alter permission on the semaphore set.

If sem_op is zero, the process must have read permission on the semaphore set. This is

Linux man-pages 6.16 2025-10-29 888

semop(2) System Calls Manual semop(2)

a "wait-for-zero" operation: if semval is zero, the operation can immediately proceed.
Otherwise, if IPC_NOWAIT is specified in sem_flg, semop() fails with errno set to
EAGAIN (and none of the operations in sops is performed). Otherwise, semzcnt (the
count of threads waiting until this semaphore’s value becomes zero) is incremented by
one and the thread sleeps until one of the following occurs:

• semval becomes 0, at which time the value of semzcnt is decremented.

• The semaphore set is removed: semop() fails, with errno set to EIDRM.

• The calling thread catches a signal: the value of semzcnt is decremented and se-
mop() fails, with errno set to EINTR.

If sem_op is less than zero, the process must have alter permission on the semaphore set.
If semval is greater than or equal to the absolute value of sem_op, the operation can pro-
ceed immediately: the absolute value of sem_op is subtracted from semval, and, if
SEM_UNDO is specified for this operation, the system adds the absolute value of
sem_op to the semaphore adjustment (semadj) value for this semaphore. If the absolute
value of sem_op is greater than semval, and IPC_NOWAIT is specified in sem_flg, se-
mop() fails, with errno set to EAGAIN (and none of the operations in sops is per-
formed). Otherwise, semncnt (the counter of threads waiting for this semaphore’s value
to increase) is incremented by one and the thread sleeps until one of the following oc-
curs:

• semval becomes greater than or equal to the absolute value of sem_op: the operation
now proceeds, as described above.

• The semaphore set is removed from the system: semop() fails, with errno set to EI-
DRM.

• The calling thread catches a signal: the value of semncnt is decremented and se-
mop() fails, with errno set to EINTR.

On successful completion, the sempid value for each semaphore specified in the array
pointed to by sops is set to the caller’s process ID. In addition, the sem_otime is set to
the current time.

semtimedop()
semtimedop() behaves identically to semop() except that in those cases where the call-
ing thread would sleep, the duration of that sleep is limited by the amount of elapsed
time specified by the timespec structure whose address is passed in the timeout argu-
ment. (This sleep interval will be rounded up to the system clock granularity, and kernel
scheduling delays mean that the interval may overrun by a small amount.) If the speci-
fied time limit has been reached, semtimedop() fails with errno set to EAGAIN (and
none of the operations in sops is performed). If the timeout argument is NULL, then
semtimedop() behaves exactly like semop().

Note that if semtimedop() is interrupted by a signal, causing the call to fail with the er-
ror EINTR, the contents of timeout are left unchanged.

RETURN VALUE
On success, semop() and semtimedop() return 0. On failure, they return -1, and set er-
rno to indicate the error.

Linux man-pages 6.16 2025-10-29 889

semop(2) System Calls Manual semop(2)

ERRORS
E2BIG

The argument nsops is greater than SEMOPM, the maximum number of opera-
tions allowed per system call.

EACCES
The calling process does not have the permissions required to perform the speci-
fied semaphore operations, and does not have the CAP_IPC_OWNER capabil-
ity in the user namespace that governs its IPC namespace.

EAGAIN
An operation could not proceed immediately and either IPC_NOWAIT was
specified in sem_flg or the time limit specified in timeout expired.

EFAULT
An address specified in either the sops or the timeout argument isn’t accessible.

EFBIG
For some operation the value of sem_num is less than 0 or greater than or equal
to the number of semaphores in the set.

EIDRM
The semaphore set was removed.

EINTR
While blocked in this system call, the thread caught a signal; see signal(7).

EINVAL
The semaphore set doesn’t exist, or semid is less than zero, or nsops has a non-
positive value.

ENOMEM
The sem_flg of some operation specified SEM_UNDO and the system does not
have enough memory to allocate the undo structure.

ERANGE
For some operation sem_op+semval is greater than SEMVMX, the implementa-
tion dependent maximum value for semval.

STANDARDS
POSIX.1-2024.

VERSIONS
Linux 2.5.52 (backported into Linux 2.4.22), glibc 2.3.3. POSIX.1-2001, SVr4.

NOTES
The sem_undo structures of a process aren’t inherited by the child produced by fork(2),
but they are inherited across an execve(2) system call.

semop() is never automatically restarted after being interrupted by a signal handler, re-
gardless of the setting of the SA_RESTART flag when establishing a signal handler.

A semaphore adjustment (semadj) value is a per-process, per-semaphore integer that is
the negated sum of all operations performed on a semaphore specifying the
SEM_UNDO flag. Each process has a list of semadj values—one value for each

Linux man-pages 6.16 2025-10-29 890

semop(2) System Calls Manual semop(2)

semaphore on which it has operated using SEM_UNDO. When a process terminates,
each of its per-semaphore semadj values is added to the corresponding semaphore, thus
undoing the effect of that process’s operations on the semaphore (but see BUGS below).
When a semaphore’s value is directly set using the SETVAL or SETALL request to
semctl(2), the corresponding semadj values in all processes are cleared. The clone(2)
CLONE_SYSVSEM flag allows more than one process to share a semadj list; see
clone(2) for details.

The semval, sempid , semzcnt, and semnct values for a semaphore can all be retrieved
using appropriate semctl(2) calls.

Semaphore limits
The following limits on semaphore set resources affect the semop() call:

SEMOPM
Maximum number of operations allowed for one semop() call. Before Linux
3.19, the default value for this limit was 32. Since Linux 3.19, the default value
is 500. On Linux, this limit can be read and modified via the third field of
/proc/sys/kernel/sem. Note: this limit should not be raised above 1000, because
of the risk of that semop() fails due to kernel memory fragmentation when allo-
cating memory to copy the sops array.

SEMVMX
Maximum allowable value for semval: implementation dependent (32767).

The implementation has no intrinsic limits for the adjust on exit maximum value (SE-
MAEM), the system wide maximum number of undo structures (SEMMNU) and the
per-process maximum number of undo entries system parameters.

BUGS
When a process terminates, its set of associated semadj structures is used to undo the ef-
fect of all of the semaphore operations it performed with the SEM_UNDO flag. This
raises a difficulty: if one (or more) of these semaphore adjustments would result in an at-
tempt to decrease a semaphore’s value below zero, what should an implementation do?
One possible approach would be to block until all the semaphore adjustments could be
performed. This is however undesirable since it could force process termination to
block for arbitrarily long periods. Another possibility is that such semaphore adjust-
ments could be ignored altogether (somewhat analogously to failing when
IPC_NOWAIT is specified for a semaphore operation). Linux adopts a third approach:
decreasing the semaphore value as far as possible (i.e., to zero) and allowing process ter-
mination to proceed immediately.

In Linux 2.6.x, x <= 10, there is a bug that in some circumstances prevents a thread that
is waiting for a semaphore value to become zero from being woken up when the value
does actually become zero. This bug is fixed in Linux 2.6.11.

EXAMPLES
The following code segment uses semop() to atomically wait for the value of semaphore
0 to become zero, and then increment the semaphore value by one.

struct sembuf sops[2];
int semid;

Linux man-pages 6.16 2025-10-29 891

semop(2) System Calls Manual semop(2)

/* Code to set semid omitted */

sops[0].sem_num = 0; /* Operate on semaphore 0 */
sops[0].sem_op = 0; /* Wait for value to equal 0 */
sops[0].sem_flg = 0;

sops[1].sem_num = 0; /* Operate on semaphore 0 */
sops[1].sem_op = 1; /* Increment value by one */
sops[1].sem_flg = 0;

if (semop(semid, sops, 2) == -1) {
perror("semop");
exit(EXIT_FAILURE);

}

A further example of the use of semop() can be found in shmop(2).

SEE ALSO
clone(2), semctl(2), semget(2), sigaction(2), capabilities(7), sem_overview(7),
sysvipc(7), time(7)

Linux man-pages 6.16 2025-10-29 892

send(2) System Calls Manual send(2)

NAME
send, sendto, sendmsg - send a message on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

ssize_t send(size_t size;
int sockfd , const void buf [size], size_t size, int flags);

ssize_t sendto(size_t size;
int sockfd , const void buf [size], size_t size, int flags,
const struct sockaddr *dest_addr, socklen_t addrlen);

ssize_t sendmsg(int sockfd , const struct msghdr *msg, int flags);

DESCRIPTION
The system calls send(), sendto(), and sendmsg() are used to transmit a message to an-
other socket.

The send() call may be used only when the socket is in a connected state (so that the in-
tended recipient is known). The only difference between send() and write(2) is the pres-
ence of flags. With a zero flags argument, send() is equivalent to write(2). Also, the
following call

send(sockfd, buf, size, flags);

is equivalent to

sendto(sockfd, buf, size, flags, NULL, 0);

The argument sockfd is the file descriptor of the sending socket.

If sendto() is used on a connection-mode (SOCK_STREAM, SOCK_SEQPACKET)
socket, the arguments dest_addr and addrlen are ignored (and the error EISCONN may
be returned when they are not NULL and 0), and the error ENOTCONN is returned
when the socket was not actually connected. Otherwise, the address of the target is
given by dest_addr with addrlen specifying its size. For sendmsg(), the address of the
target is given by msg.msg_name, with msg.msg_namelen specifying its size.

For send() and sendto(), the message is found in buf and has size size. For sendmsg(),
the message is pointed to by the elements of the array msg.msg_iov. The sendmsg() call
also allows sending ancillary data (also known as control information).

If the message is too long to pass atomically through the underlying protocol, the error
EMSGSIZE is returned, and the message is not transmitted.

No indication of failure to deliver is implicit in a send(). Locally detected errors are in-
dicated by a return value of -1.

When the message does not fit into the send buffer of the socket, send() normally
blocks, unless the socket has been placed in nonblocking I/O mode. In nonblocking
mode it would fail with the error EAGAIN or EWOULDBLOCK in this case. The se-
lect(2) call may be used to determine when it is possible to send more data.

Linux man-pages 6.16 2025-10-29 893

send(2) System Calls Manual send(2)

The flags argument
The flags argument is the bitwise OR of zero or more of the following flags.

MSG_CONFIRM (since Linux 2.3.15)
Tell the link layer that forward progress happened: you got a successful reply
from the other side. If the link layer doesn’t get this it will regularly reprobe the
neighbor (e.g., via a unicast ARP). Valid only on SOCK_DGRAM and
SOCK_RAW sockets and currently implemented only for IPv4 and IPv6. See
arp(7) for details.

MSG_DONTROUTE
Don’t use a gateway to send out the packet, send to hosts only on directly con-
nected networks. This is usually used only by diagnostic or routing programs.
This is defined only for protocol families that route; packet sockets don’t.

MSG_DONTWAIT (since Linux 2.2)
Enables nonblocking operation; if the operation would block, EAGAIN or
EWOULDBLOCK is returned. This provides similar behavior to setting the
O_NONBLOCK flag (via the fcntl(2) F_SETFL operation), but differs in that
MSG_DONTWAIT is a per-call option, whereas O_NONBLOCK is a setting
on the open file description (see open(2)), which will affect all threads in the
calling process as well as other processes that hold file descriptors referring to
the same open file description.

MSG_EOR (since Linux 2.2)
Terminates a record (when this notion is supported, as for sockets of type
SOCK_SEQPACKET).

MSG_MORE (since Linux 2.4.4)
The caller has more data to send. This flag is used with TCP sockets to obtain
the same effect as the TCP_CORK socket option (see tcp(7)), with the differ-
ence that this flag can be set on a per-call basis.

Since Linux 2.6, this flag is also supported for UDP sockets, and informs the ker-
nel to package all of the data sent in calls with this flag set into a single datagram
which is transmitted only when a call is performed that does not specify this flag.
(See also the UDP_CORK socket option described in udp(7).)

MSG_NOSIGNAL (since Linux 2.2)
Don’t generate a SIGPIPE signal if the peer on a stream-oriented socket has
closed the connection. The EPIPE error is still returned. This provides similar
behavior to using sigaction(2) to ignore SIGPIPE, but, whereas MSG_NOSIG-
NAL is a per-call feature, ignoring SIGPIPE sets a process attribute that affects
all threads in the process.

MSG_OOB
Sends out-of-band data on sockets that support this notion (e.g., of type
SOCK_STREAM); the underlying protocol must also support out-of-band data.

MSG_FASTOPEN (since Linux 3.7)
Attempts TCP Fast Open (RFC7413) and sends data in the SYN like a combina-
tion of connect(2) and write(2), by performing an implicit connect(2) operation.

Linux man-pages 6.16 2025-10-29 894

send(2) System Calls Manual send(2)

It blocks until the data is buffered and the handshake has completed. For a non-
blocking socket, it returns the number of bytes buffered and sent in the SYN
packet. If the cookie is not available locally, it returns EINPROGRESS, and
sends a SYN with a Fast Open cookie request automatically. The caller needs to
write the data again when the socket is connected. On errors, it sets the same er-
rno as connect(2) if the handshake fails. This flag requires enabling TCP Fast
Open client support on sysctl net.ipv4.tcp_fastopen.

Refer to TCP_FASTOPEN_CONNECT socket option in tcp(7) for an alterna-
tive approach.

sendmsg()
The definition of the msghdr structure employed by sendmsg() is as follows:

struct msghdr {
void *msg_name; /* Optional address */
socklen_t msg_namelen; /* Size of address */
struct iovec *msg_iov; /* Scatter/gather array */
size_t msg_iovlen; /* # elements in msg_iov */
void *msg_control; /* Ancillary data, see below */
size_t msg_controllen; /* Ancillary data buffer size */
int msg_flags; /* Flags (unused) */

};

The msg_name field is used on an unconnected socket to specify the target address for a
datagram. It points to a buffer containing the address; the msg_namelen field should be
set to the size of the address. For a connected socket, these fields should be specified as
NULL and 0, respectively.

The msg_iov and msg_iovlen fields specify scatter-gather locations, as for writev(2).

You may send control information (ancillary data) using the msg_control and msg_con-
trollen members. The maximum control buffer size the kernel can process is limited per
socket by the value in /proc/sys/net/core/optmem_max; see socket(7). For further infor-
mation on the use of ancillary data in various socket domains, see unix(7) and ip(7).

The msg_flags field is ignored.

RETURN VALUE
On success, these calls return the number of bytes sent. On error, -1 is returned, and er-
rno is set to indicate the error.

ERRORS
These are some standard errors generated by the socket layer. Additional errors may be
generated and returned from the underlying protocol modules; see their respective man-
ual pages.

EACCES
(For UNIX domain sockets, which are identified by pathname) Write permission
is denied on the destination socket file, or search permission is denied for one of
the directories the path prefix. (See path_resolution(7).)

(For UDP sockets) An attempt was made to send to a network/broadcast address
as though it was a unicast address.

Linux man-pages 6.16 2025-10-29 895

send(2) System Calls Manual send(2)

EAGAIN or EWOULDBLOCK
The socket is marked nonblocking and the requested operation would block.
POSIX.1-2001 allows either error to be returned for this case, and does not re-
quire these constants to have the same value, so a portable application should
check for both possibilities.

EAGAIN
(Internet domain datagram sockets) The socket referred to by sockfd had not pre-
viously been bound to an address and, upon attempting to bind it to an
ephemeral port, it was determined that all port numbers in the ephemeral port
range are currently in use. See the discussion of /proc/sys/net/ipv4/ip_lo-
cal_port_range in ip(7).

EALREADY
Another Fast Open is in progress.

EBADF
sockfd is not a valid open file descriptor.

ECONNRESET
Connection reset by peer.

EDESTADDRREQ
The socket is not connection-mode, and no peer address is set.

EFAULT
An invalid user space address was specified for an argument.

EINTR
A signal occurred before any data was transmitted; see signal(7).

EINVAL
Invalid argument passed.

EISCONN
The connection-mode socket was connected already but a recipient was speci-
fied. (Now either this error is returned, or the recipient specification is ignored.)

EMSGSIZE
The socket type requires that message be sent atomically, and the size of the
message to be sent made this impossible.

ENOBUFS
The output queue for a network interface was full. This generally indicates that
the interface has stopped sending, but may be caused by transient congestion.
(Normally, this does not occur in Linux. Packets are just silently dropped when
a device queue overflows.)

ENOMEM
No memory available.

ENOTCONN
The socket is not connected, and no target has been given.

Linux man-pages 6.16 2025-10-29 896

send(2) System Calls Manual send(2)

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

EOPNOTSUPP
Some bit in the flags argument is inappropriate for the socket type.

EPIPE
The local end has been shut down on a connection oriented socket. In this case,
the process will also receive a SIGPIPE unless MSG_NOSIGNAL is set.

VERSIONS
According to POSIX.1-2001, the msg_controllen field of the msghdr structure should be
typed as socklen_t, and the msg_iovlen field should be typed as int, but glibc currently
types both as size_t.

STANDARDS
POSIX.1-2024.

MSG_CONFIRM is a Linux extension.

HISTORY
4.4BSD, SVr4, POSIX.1-2001. (first appeared in 4.2BSD).

POSIX.1-2001 describes only the MSG_OOB and MSG_EOR flags. POSIX.1-2008
adds a specification of MSG_NOSIGNAL.

NOTES
See sendmmsg(2) for information about a Linux-specific system call that can be used to
transmit multiple datagrams in a single call.

BUGS
Linux may return EPIPE instead of ENOTCONN.

EXAMPLES
An example of the use of sendto() is shown in getaddrinfo(3).

SEE ALSO
fcntl(2), getsockopt(2), recv(2), select(2), sendfile(2), sendmmsg(2), shutdown(2),
socket(2), write(2), cmsg(3), ip(7), ipv6(7), socket(7), tcp(7), udp(7), unix(7)

Linux man-pages 6.16 2025-10-29 897

sendfile(2) System Calls Manual sendfile(2)

NAME
sendfile - transfer data between file descriptors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sendfile.h>

ssize_t sendfile(int out_fd , int in_fd , off_t *_Nullable offset,
size_t count);

DESCRIPTION
sendfile() copies data between one file descriptor and another. Because this copying is
done within the kernel, sendfile() is more efficient than the combination of read(2) and
write(2), which would require transferring data to and from user space.

in_fd should be a file descriptor opened for reading and out_fd should be a descriptor
opened for writing.

If offset is not NULL, then it points to a variable holding the file offset from which
sendfile() will start reading data from in_fd . When sendfile() returns, this variable will
be set to the offset of the byte following the last byte that was read. If offset is not
NULL, then sendfile() does not modify the file offset of in_fd; otherwise the file offset
is adjusted to reflect the number of bytes read from in_fd .

If offset is NULL, then data will be read from in_fd starting at the file offset, and the file
offset will be updated by the call.

count is the number of bytes to copy between the file descriptors.

The in_fd argument must correspond to a file which supports mmap(2)-like operations
(i.e., it cannot be a socket). Except since Linux 5.12 and if out_fd is a pipe, in which
case sendfile() desugars to a splice(2) and its restrictions apply.

Before Linux 2.6.33, out_fd must refer to a socket. Since Linux 2.6.33 it can be any
file. If it’s seekable, then sendfile() changes the file offset appropriately.

RETURN VALUE
If the transfer was successful, the number of bytes written to out_fd is returned. Note
that a successful call to sendfile() may write fewer bytes than requested; the caller
should be prepared to retry the call if there were unsent bytes. See also NOTES.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

Nonblocking I/O has been selected using O_NONBLOCK and the write would
block.

EBADF
The input file was not opened for reading or the output file was not opened for
writing.

Linux man-pages 6.16 2025-09-21 898

sendfile(2) System Calls Manual sendfile(2)

EFAULT
Bad address.

EINVAL
Descriptor is not valid or locked, or an mmap(2)-like operation is not available
for in_fd , or count is negative.

EINVAL
out_fd has the O_APPEND flag set. This is not currently supported by send-
file().

EIO Unspecified error while reading from in_fd .

ENOMEM
Insufficient memory to read from in_fd .

EOVERFLOW
count is too large, the operation would result in exceeding the maximum size of
either the input file or the output file.

ESPIPE
offset is not NULL but the input file is not seekable.

VERSIONS
Other UNIX systems implement sendfile() with different semantics and prototypes. It
should not be used in portable programs.

STANDARDS
None.

HISTORY
Linux 2.2, glibc 2.1.

In Linux 2.4 and earlier, out_fd could also refer to a regular file; this possibility went
away in the Linux 2.6.x kernel series, but was restored in Linux 2.6.33.

The original Linux sendfile() system call was not designed to handle large file offsets.
Consequently, Linux 2.4 added sendfile64(), with a wider type for the offset argument.
The glibc sendfile() wrapper function transparently deals with the kernel differences.

NOTES
sendfile() will transfer at most 0x7ffff000 (2,147,479,552) bytes, returning the number
of bytes actually transferred. (This is true on both 32-bit and 64-bit systems.)

If you plan to use sendfile() for sending files to a TCP socket, but need to send some
header data in front of the file contents, you will find it useful to employ the
TCP_CORK option, described in tcp(7), to minimize the number of packets and to tune
performance.

Applications may wish to fall back to read(2) and write(2) in the case where sendfile()
fails with EINVAL or ENOSYS.

If out_fd refers to a socket or pipe with zero-copy support, callers must ensure the trans-
ferred portions of the file referred to by in_fd remain unmodified until the reader on the
other end of out_fd has consumed the transferred data.

The Linux-specific splice(2) call supports transferring data between arbitrary file

Linux man-pages 6.16 2025-09-21 899

sendfile(2) System Calls Manual sendfile(2)

descriptors provided one (or both) of them is a pipe.

SEE ALSO
copy_file_range(2), mmap(2), open(2), socket(2), splice(2)

Linux man-pages 6.16 2025-09-21 900

sendmmsg(2) System Calls Manual sendmmsg(2)

NAME
sendmmsg - send multiple messages on a socket

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/socket.h>

int sendmmsg(unsigned int n;
int sockfd , struct mmsghdr msgvec[n], unsigned int n,
int flags);

DESCRIPTION
The sendmmsg() system call is an extension of sendmsg(2) that allows the caller to
transmit multiple messages on a socket using a single system call. (This has perfor-
mance benefits for some applications.)

The sockfd argument is the file descriptor of the socket on which data is to be transmit-
ted.

The msgvec argument is a pointer to an array of mmsghdr structures. The size of this
array is specified in n.

The mmsghdr structure is defined in <sys/socket.h> as:

struct mmsghdr {
struct msghdr msg_hdr; /* Message header */
unsigned int msg_len; /* Number of bytes transmitted */

};

The msg_hdr field is a msghdr structure, as described in sendmsg(2). The msg_len field
is used to return the number of bytes sent from the message in msg_hdr (i.e., the same
as the return value from a single sendmsg(2) call).

The flags argument contains flags ORed together. The flags are the same as for
sendmsg(2).

A blocking sendmmsg() call blocks until n messages have been sent. A nonblocking
call sends as many messages as possible (up to the limit specified by n) and returns im-
mediately.

On return from sendmmsg(), the msg_len fields of successive elements of msgvec are
updated to contain the number of bytes transmitted from the corresponding msg_hdr.
The return value of the call indicates the number of elements of msgvec that have been
updated.

RETURN VALUE
On success, sendmmsg() returns the number of messages sent from msgvec; if this is
less than n, the caller can retry with a further sendmmsg() call to send the remaining
messages.

On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-09-21 901

sendmmsg(2) System Calls Manual sendmmsg(2)

ERRORS
Errors are as for sendmsg(2). An error is returned only if no datagrams could be sent.
See also BUGS.

STANDARDS
Linux.

HISTORY
Linux 3.0, glibc 2.14.

NOTES
The value specified in n is capped to UIO_MAXIOV (1024).

BUGS
If an error occurs after at least one message has been sent, the call succeeds, and returns
the number of messages sent. The error code is lost. The caller can retry the transmis-
sion, starting at the first failed message, but there is no guarantee that, if an error is re-
turned, it will be the same as the one that was lost on the previous call.

EXAMPLES
The example below uses sendmmsg() to send onetwo and three in two distinct UDP
datagrams using one system call. The contents of the first datagram originates from a
pair of buffers.

#define _GNU_SOURCE
#include <arpa/inet.h>
#include <netinet/in.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>

int
main(void)
{

int retval;
int sockfd;
struct iovec msg1[2], msg2;
struct mmsghdr msg[2];
struct sockaddr_in addr;

sockfd = socket(AF_INET, SOCK_DGRAM, 0);
if (sockfd == -1) {

perror("socket()");
exit(EXIT_FAILURE);

}

addr.sin_family = AF_INET;
addr.sin_addr.s_addr = htonl(INADDR_LOOPBACK);
addr.sin_port = htons(1234);

Linux man-pages 6.16 2025-09-21 902

sendmmsg(2) System Calls Manual sendmmsg(2)

if (connect(sockfd, (struct sockaddr *) &addr, sizeof(addr)) == -1) {
perror("connect()");
exit(EXIT_FAILURE);

}

memset(msg1, 0, sizeof(msg1));
msg1[0].iov_base = "one";
msg1[0].iov_len = 3;
msg1[1].iov_base = "two";
msg1[1].iov_len = 3;

memset(&msg2, 0, sizeof(msg2));
msg2.iov_base = "three";
msg2.iov_len = 5;

memset(msg, 0, sizeof(msg));
msg[0].msg_hdr.msg_iov = msg1;
msg[0].msg_hdr.msg_iovlen = 2;

msg[1].msg_hdr.msg_iov = &msg2;
msg[1].msg_hdr.msg_iovlen = 1;

retval = sendmmsg(sockfd, msg, 2, 0);
if (retval == -1)

perror("sendmmsg()");
else

printf("%d messages sent\n", retval);

exit(0);
}

SEE ALSO
recvmmsg(2), sendmsg(2), socket(2), socket(7)

Linux man-pages 6.16 2025-09-21 903

set_mempolicy(2) System Calls Manual set_mempolicy(2)

NAME
set_mempolicy - set default NUMA memory policy for a thread and its children

LIBRARY
NUMA (Non-Uniform Memory Access) policy library (libnuma, -lnuma)

SYNOPSIS
#include <numaif.h>

long set_mempolicy(int mode, const unsigned long *nodemask,
unsigned long maxnode);

DESCRIPTION
set_mempolicy() sets the NUMA memory policy of the calling thread, which consists
of a policy mode and zero or more nodes, to the values specified by the mode, node-
mask, and maxnode arguments.

A NUMA machine has different memory controllers with different distances to specific
CPUs. The memory policy defines from which node memory is allocated for the thread.

This system call defines the default policy for the thread. The thread policy governs al-
location of pages in the process’s address space outside of memory ranges controlled by
a more specific policy set by mbind(2). The thread default policy also controls alloca-
tion of any pages for memory-mapped files mapped using the mmap(2) call with the
MAP_PRIVATE flag and that are only read (loaded) from by the thread and of mem-
ory-mapped files mapped using the mmap(2) call with the MAP_SHARED flag, regard-
less of the access type. The policy is applied only when a new page is allocated for the
thread. For anonymous memory this is when the page is first touched by the thread.

The mode argument must specify one of MPOL_DEFAULT, MPOL_BIND,
MPOL_INTERLEAVE, MPOL_WEIGHTED_INTERLEAVE, MPOL_PRE-
FERRED, MPOL_PREFERRED_MANY, or MPOL_LOCAL (which are described
in detail below). All modes except MPOL_DEFAULT require the caller to specify the
node or nodes to which the mode applies, via the nodemask argument.

The mode argument may also include an optional mode flag. The supported mode flags
are:

MPOL_F_NUMA_BALANCING (since Linux 5.12)
When mode is MPOL_BIND, enable the kernel NUMA balancing for the task if
it is supported by the kernel. If the flag isn’t supported by the kernel, or is used
with mode other than MPOL_BIND, -1 is returned and errno is set to EIN-
VAL.

MPOL_F_RELATIVE_NODES (since Linux 2.6.26)
A nonempty nodemask specifies node IDs that are relative to the set of node IDs
allowed by the process’s current cpuset.

MPOL_F_STATIC_NODES (since Linux 2.6.26)
A nonempty nodemask specifies physical node IDs. Linux will not remap the
nodemask when the process moves to a different cpuset context, nor when the
set of nodes allowed by the process’s current cpuset context changes.

nodemask points to a bit mask of node IDs that contains up to maxnode bits. The bit

Linux man-pages 6.16 2025-09-21 904

set_mempolicy(2) System Calls Manual set_mempolicy(2)

mask size is rounded to the next multiple of sizeof(unsigned long), but the kernel will
use bits only up to maxnode. A NULL value of nodemask or a maxnode value of zero
specifies the empty set of nodes. If the value of maxnode is zero, the nodemask argu-
ment is ignored.

Where a nodemask is required, it must contain at least one node that is on-line, allowed
by the process’s current cpuset context, (unless the MPOL_F_STATIC_NODES mode
flag is specified), and contains memory. If the MPOL_F_STATIC_NODES is set in
mode and a required nodemask contains no nodes that are allowed by the process’s cur-
rent cpuset context, the memory policy reverts to local allocation. This effectively over-
rides the specified policy until the process’s cpuset context includes one or more of the
nodes specified by nodemask.

The mode argument must include one of the following values:

MPOL_DEFAULT
This mode specifies that any nondefault thread memory policy be removed, so
that the memory policy "falls back" to the system default policy. The system de-
fault policy is "local allocation"—that is, allocate memory on the node of the
CPU that triggered the allocation. nodemask must be specified as NULL. If the
"local node" contains no free memory, the system will attempt to allocate mem-
ory from a "near by" node.

MPOL_BIND
This mode defines a strict policy that restricts memory allocation to the nodes
specified in nodemask. If nodemask specifies more than one node, page alloca-
tions will come from the node with the lowest numeric node ID first, until that
node contains no free memory. Allocations will then come from the node with
the next highest node ID specified in nodemask and so forth, until none of the
specified nodes contain free memory. Pages will not be allocated from any node
not specified in the nodemask.

MPOL_INTERLEAVE
This mode interleaves page allocations across the nodes specified in nodemask
in numeric node ID order. This optimizes for bandwidth instead of latency by
spreading out pages and memory accesses to those pages across multiple nodes.
However, accesses to a single page will still be limited to the memory bandwidth
of a single node.

MPOL_WEIGHTED_INTERLEAVE (since Linux 6.9)
This mode interleaves page allocations across the nodes specified in nodemask
according to the weights in /sys/kernel/mm/mempolicy/weighted_interleave. For
example, if bits 0, 2, and 5 are set in nodemask, and the contents of /sys/ker-
nel/mm/mempolicy/weighted_interleave/node0, /sys/ . . . /node2, and
/sys/ . . . /node5 are 4, 7, and 9, respectively, then pages in this region will be allo-
cated on nodes 0, 2, and 5 in a 4:7:9 ratio.

MPOL_PREFERRED
This mode sets the preferred node for allocation. The kernel will try to allocate
pages from this node first and fall back to "near by" nodes if the preferred node
is low on free memory. If nodemask specifies more than one node ID, the first

Linux man-pages 6.16 2025-09-21 905

set_mempolicy(2) System Calls Manual set_mempolicy(2)

node in the mask will be selected as the preferred node. If the nodemask and
maxnode arguments specify the empty set, then the policy specifies "local alloca-
tion" (like the system default policy discussed above).

MPOL_PREFERRED_MANY (since Linux 5.15)
This mode specifies a preference for nodes from which the kernel will try to allo-
cate from. This differs from MPOL_PREFERRED in that it accepts a set of
nodes versus a single node. This policy is intended to benefit page allocations
where specific memory types (i.e., non-volatile, high-bandwidth, or accelerator
memory) are of greater importance than node location.

MPOL_LOCAL (since Linux 3.8)
This mode specifies "local allocation"; the memory is allocated on the node of
the CPU that triggered the allocation (the "local node"). The nodemask and
maxnode arguments must specify the empty set. If the "local node" is low on
free memory, the kernel will try to allocate memory from other nodes. The ker-
nel will allocate memory from the "local node" whenever memory for this node
is available. If the "local node" is not allowed by the process’s current cpuset
context, the kernel will try to allocate memory from other nodes. The kernel will
allocate memory from the "local node" whenever it becomes allowed by the
process’s current cpuset context.

The thread memory policy is preserved across an execve(2), and is inherited by child
threads created using fork(2) or clone(2).

RETURN VALUE
On success, set_mempolicy() returns 0; on error, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EFAULT

Part of all of the memory range specified by nodemask and maxnode points out-
side your accessible address space.

EINVAL
mode is invalid. Or, mode is MPOL_DEFAULT and nodemask is nonempty, or
mode is MPOL_BIND or MPOL_INTERLEAVE and nodemask is empty. Or,
maxnode specifies more than a page worth of bits. Or, nodemask specifies one
or more node IDs that are greater than the maximum supported node ID. Or,
none of the node IDs specified by nodemask are on-line and allowed by the
process’s current cpuset context, or none of the specified nodes contain memory.
Or, the mode argument specified both MPOL_F_STATIC_NODES and
MPOL_F_RELATIVE_NODES. Or, the MPOL_F_NUMA_BALANCING
isn’t supported by the kernel, or is used with mode other than MPOL_BIND.

ENOMEM
Insufficient kernel memory was available.

STANDARDS
Linux.

Linux man-pages 6.16 2025-09-21 906

set_mempolicy(2) System Calls Manual set_mempolicy(2)

HISTORY
Linux 2.6.7.

NOTES
Memory policy is not remembered if the page is swapped out. When such a page is
paged back in, it will use the policy of the thread or memory range that is in effect at the
time the page is allocated.

For information on library support, see numa(7).

SEE ALSO
get_mempolicy(2), getcpu(2), mbind(2), mmap(2), numa(3), cpuset(7), numa(7), nu-
mactl(8)

Linux man-pages 6.16 2025-09-21 907

set_thread_area(2) System Calls Manual set_thread_area(2)

NAME
get_thread_area, set_thread_area - manipulate thread-local storage information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

#if defined __i386__ || defined __x86_64__
include <asm/ldt.h> /* Definition of struct user_desc */

int syscall(SYS_get_thread_area, struct user_desc *u_info);
int syscall(SYS_set_thread_area, struct user_desc *u_info);

#elif defined __m68k__

int syscall(SYS_get_thread_area);
int syscall(SYS_set_thread_area, unsigned long tp);

#elif defined __mips__ || defined __csky__

int syscall(SYS_set_thread_area, unsigned long addr);

#endif

Note: glibc provides no wrappers for these system calls, necessitating the use of
syscall(2).

DESCRIPTION
These calls provide architecture-specific support for a thread-local storage implementa-
tion. At the moment, set_thread_area() is available on m68k, MIPS, C-SKY, and x86
(both 32-bit and 64-bit variants); get_thread_area() is available on m68k and x86.

On m68k, MIPS and C-SKY, set_thread_area() allows storing an arbitrary pointer (pro-
vided in the tp argument on m68k and in the addr argument on MIPS and C-SKY) in
the kernel data structure associated with the calling thread; this pointer can later be re-
trieved using get_thread_area() (see also NOTES for information regarding obtaining
the thread pointer on MIPS).

On x86, Linux dedicates three global descriptor table (GDT) entries for thread-local
storage. For more information about the GDT, see the Intel Software Developer’s Man-
ual or the AMD Architecture Programming Manual.

Both of these system calls take an argument that is a pointer to a structure of the follow-
ing type:

struct user_desc {
unsigned int entry_number;
unsigned int base_addr;
unsigned int limit;
unsigned int seg_32bit:1;
unsigned int contents:2;
unsigned int read_exec_only:1;
unsigned int limit_in_pages:1;

Linux man-pages 6.16 2025-05-17 908

set_thread_area(2) System Calls Manual set_thread_area(2)

unsigned int seg_not_present:1;
unsigned int useable:1;

#ifdef __x86_64__
unsigned int lm:1;

#endif
};

get_thread_area() reads the GDT entry indicated by u_info->entry_number and fills
in the rest of the fields in u_info.

set_thread_area() sets a TLS entry in the GDT.

The TLS array entry set by set_thread_area() corresponds to the value of u_info->en-
try_number passed in by the user. If this value is in bounds, set_thread_area() writes
the TLS descriptor pointed to by u_info into the thread’s TLS array.

When set_thread_area() is passed an entry_number of -1, it searches for a free TLS
entry. If set_thread_area() finds a free TLS entry, the value of u_info->entry_number
is set upon return to show which entry was changed.

A user_desc is considered "empty" if read_exec_only and seg_not_present are set to 1
and all of the other fields are 0. If an "empty" descriptor is passed to set_thread_area(),
the corresponding TLS entry will be cleared. See BUGS for additional details.

Since Linux 3.19, set_thread_area() cannot be used to write non-present segments,
16-bit segments, or code segments, although clearing a segment is still acceptable.

RETURN VALUE
On x86, these system calls return 0 on success, and -1 on failure, with errno set to indi-
cate the error.

On C-SKY, MIPS and m68k, set_thread_area() always returns 0. On m68k,
get_thread_area() returns the thread area pointer value (previously set via
set_thread_area())

ERRORS
EFAULT

u_info is an invalid pointer.

EINVAL
u_info->entry_number is out of bounds.

ENOSYS
get_thread_area() or set_thread_area() was invoked as a 64-bit system call.

ESRCH
(set_thread_area()) A free TLS entry could not be located.

STANDARDS
Linux.

HISTORY
set_thread_area()

Linux 2.5.29.

Linux man-pages 6.16 2025-05-17 909

set_thread_area(2) System Calls Manual set_thread_area(2)

get_thread_area()
Linux 2.5.32.

NOTES
These system calls are generally intended for use only by threading libraries.

arch_prctl(2) can interfere with set_thread_area() on x86. See arch_prctl(2) for more
details. This is not normally a problem, as arch_prctl(2) is normally used only by 64-bit
programs.

On MIPS, the current value of the thread area pointer can be obtained using the instruc-
tion:

rdhwr dest, $29

This instruction traps and is handled by kernel.

BUGS
On 64-bit kernels before Linux 3.19, one of the padding bits in user_desc, if set, would
prevent the descriptor from being considered empty (see modify_ldt(2)). As a result, the
only reliable way to clear a TLS entry is to use memset(3) to zero the entire user_desc
structure, including padding bits, and then to set the read_exec_only and
seg_not_present bits. On Linux 3.19, a user_desc consisting entirely of zeros except for
entry_number will also be interpreted as a request to clear a TLS entry, but this behaved
differently on older kernels.

Prior to Linux 3.19, the DS and ES segment registers must not reference TLS entries.

SEE ALSO
arch_prctl(2), modify_ldt(2), ptrace(2) (PTRACE_GET_THREAD_AREA and
PTRACE_SET_THREAD_AREA)

Linux man-pages 6.16 2025-05-17 910

set_tid_address(2) System Calls Manual set_tid_address(2)

NAME
set_tid_address - set pointer to thread ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

pid_t syscall(SYS_set_tid_address, int *tidptr);

Note: glibc provides no wrapper for set_tid_address(), necessitating the use of
syscall(2).

DESCRIPTION
For each thread, the kernel maintains two attributes (addresses) called set_child_tid and
clear_child_tid . These two attributes contain the value NULL by default.

set_child_tid
If a thread is started using clone(2) with the CLONE_CHILD_SETTID flag,
set_child_tid is set to the value passed in the ctid argument of that system call.

When set_child_tid is set, the very first thing the new thread does is to write its
thread ID at this address.

clear_child_tid
If a thread is started using clone(2) with the CLONE_CHILD_CLEARTID
flag, clear_child_tid is set to the value passed in the ctid argument of that system
call.

The system call set_tid_address() sets the clear_child_tid value for the calling thread to
tidptr.

When a thread whose clear_child_tid is not NULL terminates, then, if the thread is
sharing memory with other threads, then 0 is written at the address specified in
clear_child_tid and the kernel performs the following operation:

futex(clear_child_tid, FUTEX_WAKE, 1, NULL, NULL, 0);

The effect of this operation is to wake a single thread that is performing a futex wait on
the memory location. Errors from the futex wake operation are ignored.

RETURN VALUE
set_tid_address() always returns the caller’s thread ID.

ERRORS
set_tid_address() always succeeds.

STANDARDS
Linux.

HISTORY
Linux 2.5.48.

Details as given here are valid since Linux 2.5.49.

Linux man-pages 6.16 2025-05-17 911

set_tid_address(2) System Calls Manual set_tid_address(2)

SEE ALSO
clone(2), futex(2), gettid(2)

Linux man-pages 6.16 2025-05-17 912

seteuid(2) System Calls Manual seteuid(2)

NAME
seteuid, setegid - set effective user or group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int seteuid(uid_t euid);
int setegid(gid_t egid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

seteuid(), setegid():
_POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
seteuid() sets the effective user ID of the calling process. Unprivileged processes may
only set the effective user ID to the real user ID, the effective user ID or the saved set-
user-ID.

Precisely the same holds for setegid() with "group" instead of "user".

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Note: there are cases where seteuid() can fail even when the caller is UID 0; it is a grave
security error to omit checking for a failure return from seteuid().

ERRORS
EINVAL

The target user or group ID is not valid in this user namespace.

EPERM
In the case of seteuid(): the calling process is not privileged (does not have the
CAP_SETUID capability in its user namespace) and euid does not match the
current real user ID, current effective user ID, or current saved set-user-ID.

In the case of setegid(): the calling process is not privileged (does not have the
CAP_SETGID capability in its user namespace) and egid does not match the
current real group ID, current effective group ID, or current saved set-group-ID.

VERSIONS
Setting the effective user (group) ID to the saved set-user-ID (saved set-group-ID) is
possible since Linux 1.1.37 (1.1.38). On an arbitrary system one should check
_POSIX_SAVED_IDS.

Under glibc 2.0, seteuid(euid) is equivalent to setreuid(-1, euid) and hence may
change the saved set-user-ID. Under glibc 2.1 and later, it is equivalent to setresuid(-1,
euid , -1) and hence does not change the saved set-user-ID. Analogous remarks hold for
setegid(), with the difference that the change in implementation from setregid(-1, egid)
to setresgid(-1, egid , -1) occurred in glibc 2.2 or 2.3 (depending on the hardware

Linux man-pages 6.16 2025-10-29 913

seteuid(2) System Calls Manual seteuid(2)

architecture).

According to POSIX.1, seteuid() (setegid()) need not permit euid (egid) to be the same
value as the current effective user (group) ID, and some implementations do not permit
this.

C library/kernel differences
On Linux, seteuid() and setegid() are implemented as library functions that call, respec-
tively, setresuid(2) and setresgid(2).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.3BSD.

SEE ALSO
geteuid(2), setresuid(2), setreuid(2), setuid(2), capabilities(7), credentials(7),
user_namespaces(7)

Linux man-pages 6.16 2025-10-29 914

setfsgid(2) System Calls Manual setfsgid(2)

NAME
setfsgid - set group identity used for filesystem checks

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/fsuid.h>

[[deprecated]] int setfsgid(gid_t fsgid);

DESCRIPTION
On Linux, a process has both a filesystem group ID and an effective group ID. The
(Linux-specific) filesystem group ID is used for permissions checking when accessing
filesystem objects, while the effective group ID is used for some other kinds of permis-
sions checks (see credentials(7)).

Normally, the value of the process’s filesystem group ID is the same as the value of its
effective group ID. This is so, because whenever a process’s effective group ID is
changed, the kernel also changes the filesystem group ID to be the same as the new
value of the effective group ID. A process can cause the value of its filesystem group ID
to diverge from its effective group ID by using setfsgid() to change its filesystem group
ID to the value given in fsgid .

setfsgid() will succeed only if the caller is the superuser or if fsgid matches either the
caller’s real group ID, effective group ID, saved set-group-ID, or current the filesystem
user ID.

RETURN VALUE
On both success and failure, this call returns the previous filesystem group ID of the
caller.

STANDARDS
Linux.

HISTORY
Linux 1.2.

C library/kernel differences
In glibc 2.15 and earlier, when the wrapper for this system call determines that the argu-
ment can’t be passed to the kernel without integer truncation (because the kernel is old
and does not support 32-bit group IDs), it will return -1 and set errno to EINVAL with-
out attempting the system call.

NOTES
The filesystem group ID concept and the setfsgid() system call were invented for histori-
cal reasons that are no longer applicable on modern Linux kernels. See setfsuid(2) for a
discussion of why the use of both setfsuid(2) and setfsgid() is nowadays unneeded.

The original Linux setfsgid() system call supported only 16-bit group IDs. Subse-
quently, Linux 2.4 added setfsgid32() supporting 32-bit IDs. The glibc setfsgid() wrap-
per function transparently deals with the variation across kernel versions.

Linux man-pages 6.16 2025-05-17 915

setfsgid(2) System Calls Manual setfsgid(2)

BUGS
No error indications of any kind are returned to the caller, and the fact that both success-
ful and unsuccessful calls return the same value makes it impossible to directly deter-
mine whether the call succeeded or failed. Instead, the caller must resort to looking at
the return value from a further call such as setfsgid(-1) (which will always fail), in or-
der to determine if a preceding call to setfsgid() changed the filesystem group ID. At
the very least, EPERM should be returned when the call fails (because the caller lacks
the CAP_SETGID capability).

SEE ALSO
kill(2), setfsuid(2), capabilities(7), credentials(7)

Linux man-pages 6.16 2025-05-17 916

setfsuid(2) System Calls Manual setfsuid(2)

NAME
setfsuid - set user identity used for filesystem checks

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/fsuid.h>

[[deprecated]] int setfsuid(uid_t fsuid);

DESCRIPTION
On Linux, a process has both a filesystem user ID and an effective user ID. The (Linux-
specific) filesystem user ID is used for permissions checking when accessing filesystem
objects, while the effective user ID is used for various other kinds of permissions checks
(see credentials(7)).

Normally, the value of the process’s filesystem user ID is the same as the value of its ef-
fective user ID. This is so, because whenever a process’s effective user ID is changed,
the kernel also changes the filesystem user ID to be the same as the new value of the ef-
fective user ID. A process can cause the value of its filesystem user ID to diverge from
its effective user ID by using setfsuid() to change its filesystem user ID to the value
given in fsuid .

Explicit calls to setfsuid() and setfsgid(2) are (were) usually used only by programs
such as the Linux NFS server that need to change what user and group ID is used for file
access without a corresponding change in the real and effective user and group IDs. A
change in the normal user IDs for a program such as the NFS server is (was) a security
hole that can expose it to unwanted signals. (However, this issue is historical; see be-
low.)

setfsuid() will succeed only if the caller is the superuser or if fsuid matches either the
caller’s real user ID, effective user ID, saved set-user-ID, or current filesystem user ID.

RETURN VALUE
On both success and failure, this call returns the previous filesystem user ID of the
caller.

STANDARDS
Linux.

HISTORY
Linux 1.2.

At the time when this system call was introduced, one process could send a signal to an-
other process with the same effective user ID. This meant that if a privileged process
changed its effective user ID for the purpose of file permission checking, then it could
become vulnerable to receiving signals sent by another (unprivileged) process with the
same user ID. The filesystem user ID attribute was thus added to allow a process to
change its user ID for the purposes of file permission checking without at the same time
becoming vulnerable to receiving unwanted signals. Since Linux 2.0, signal permission
handling is different (see kill(2)), with the result that a process can change its effective
user ID without being vulnerable to receiving signals from unwanted processes. Thus,
setfsuid() is nowadays unneeded and should be avoided in new applications (likewise

Linux man-pages 6.16 2025-09-21 917

setfsuid(2) System Calls Manual setfsuid(2)

for setfsgid(2)).

The original Linux setfsuid() system call supported only 16-bit user IDs. Subsequently,
Linux 2.4 added setfsuid32() supporting 32-bit IDs. The glibc setfsuid() wrapper func-
tion transparently deals with the variation across kernel versions.

C library/kernel differences
In glibc 2.15 and earlier, when the wrapper for this system call determines that the argu-
ment can’t be passed to the kernel without integer truncation (because the kernel is old
and does not support 32-bit user IDs), it will return -1 and set errno to EINVAL with-
out attempting the system call.

BUGS
No error indications of any kind are returned to the caller, and the fact that both success-
ful and unsuccessful calls return the same value makes it impossible to directly deter-
mine whether the call succeeded or failed. Instead, the caller must resort to looking at
the return value from a further call such as setfsuid(-1) (which will always fail), in or-
der to determine if a preceding call to setfsuid() changed the filesystem user ID. At the
very least, EPERM should be returned when the call fails (because the caller lacks the
CAP_SETUID capability).

SEE ALSO
kill(2), setfsgid(2), capabilities(7), credentials(7)

Linux man-pages 6.16 2025-09-21 918

setgid(2) System Calls Manual setgid(2)

NAME
setgid - set group identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setgid(gid_t gid);

DESCRIPTION
setgid() sets the effective group ID of the calling process. If the calling process is privi-
leged (more precisely: has the CAP_SETGID capability in its user namespace), the real
GID and saved set-group-ID are also set.

Under Linux, setgid() is implemented like the POSIX version with the
_POSIX_SAVED_IDS feature. This allows a set-group-ID program that is not set-user-
ID-root to drop all of its group privileges, do some un-privileged work, and then reen-
gage the original effective group ID in a secure manner.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

The group ID specified in gid is not valid in this user namespace.

EPERM
The calling process is not privileged (does not have the CAP_SETGID capabil-
ity in its user namespace), and gid does not match the real group ID or saved set-
group-ID of the calling process.

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX
requires that all threads in a process share the same credentials. The NPTL threading
implementation handles the POSIX requirements by providing wrapper functions for the
various system calls that change process UIDs and GIDs. These wrapper functions (in-
cluding the one for setgid()) employ a signal-based technique to ensure that when one
thread changes credentials, all of the other threads in the process also change their cre-
dentials. For details, see nptl(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

The original Linux setgid() system call supported only 16-bit group IDs. Subsequently,
Linux 2.4 added setgid32() supporting 32-bit IDs. The glibc setgid() wrapper function
transparently deals with the variation across kernel versions.

Linux man-pages 6.16 2025-10-29 919

setgid(2) System Calls Manual setgid(2)

SEE ALSO
getgid(2), setegid(2), setregid(2), capabilities(7), credentials(7), user_namespaces(7)

Linux man-pages 6.16 2025-10-29 920

setns(2) System Calls Manual setns(2)

NAME
setns - reassociate thread with a namespace

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

int setns(int fd , int nstype);

DESCRIPTION
The setns() system call allows the calling thread to move into different namespaces.
The fd argument is one of the following:

• a file descriptor referring to one of the magic links in a /proc/ pid /ns/ directory (or a
bind mount to such a link);

• a PID file descriptor (see pidfd_open(2)).

The nstype argument is interpreted differently in each case.

fd refers to a /proc/pid/ns/ link
If fd refers to a /proc/ pid /ns/ link, then setns() reassociates the calling thread with the
namespace associated with that link, subject to any constraints imposed by the nstype ar-
gument. In this usage, each call to setns() changes just one of the caller’s namespace
memberships.

The nstype argument specifies which type of namespace the calling thread may be reas-
sociated with. This argument can have one of the following values:

0 Allow any type of namespace to be joined.

CLONE_NEWCGROUP (since Linux 4.6)
fd must refer to a cgroup namespace.

CLONE_NEWIPC (since Linux 3.0)
fd must refer to an IPC namespace.

CLONE_NEWNET (since Linux 3.0)
fd must refer to a network namespace.

CLONE_NEWNS (since Linux 3.8)
fd must refer to a mount namespace.

CLONE_NEWPID (since Linux 3.8)
fd must refer to a descendant PID namespace.

CLONE_NEWTIME (since Linux 5.8)
fd must refer to a time namespace.

CLONE_NEWUSER (since Linux 3.8)
fd must refer to a user namespace.

CLONE_NEWUTS (since Linux 3.0)
fd must refer to a UTS namespace.

Linux man-pages 6.16 2025-10-01 921

setns(2) System Calls Manual setns(2)

Specifying nstype as 0 suffices if the caller knows (or does not care) what type of name-
space is referred to by fd . Specifying a nonzero value for nstype is useful if the caller
does not know what type of namespace is referred to by fd and wants to ensure that the
namespace is of a particular type. (The caller might not know the type of the namespace
referred to by fd if the file descriptor was opened by another process and, for example,
passed to the caller via a UNIX domain socket.)

fd is a PID file descriptor
Since Linux 5.8, fd may refer to a PID file descriptor obtained from pidfd_open(2) or
clone(2). In this usage, setns() atomically moves the calling thread into one or more of
the same namespaces as the thread referred to by fd .

The nstype argument is a bit mask specified by ORing together one or more of the
CLONE_NEW* namespace constants listed above. The caller is moved into each of
the target thread’s namespaces that is specified in nstype; the caller’s memberships in the
remaining namespaces are left unchanged.

For example, the following code would move the caller into the same user, network, and
UTS namespaces as PID 1234, but would leave the caller’s other namespace member-
ships unchanged:

int fd = pidfd_open(1234, 0);
setns(fd, CLONE_NEWUSER | CLONE_NEWNET | CLONE_NEWUTS);

Details for specific namespace types
Note the following details and restrictions when reassociating with specific namespace
types:

User namespaces
A process reassociating itself with a user namespace must have the
CAP_SYS_ADMIN capability in the target user namespace. (This necessarily
implies that it is only possible to join a descendant user namespace.) Upon suc-
cessfully joining a user namespace, a process is granted all capabilities in that
namespace, regardless of its user and group IDs.

A multithreaded process may not change user namespace with setns().

It is not permitted to use setns() to reenter the caller’s current user namespace.
This prevents a caller that has dropped capabilities from regaining those capabili-
ties via a call to setns().

For security reasons, a process can’t join a new user namespace if it is sharing
filesystem-related attributes (the attributes whose sharing is controlled by the
clone(2) CLONE_FS flag) with another process.

For further details on user namespaces, see user_namespaces(7).

Mount namespaces
Changing the mount namespace requires that the caller possess both
CAP_SYS_CHROOT and CAP_SYS_ADMIN capabilities in its own user
namespace and CAP_SYS_ADMIN in the user namespace that owns the target
mount namespace.

Linux man-pages 6.16 2025-10-01 922

setns(2) System Calls Manual setns(2)

A process can’t join a new mount namespace if it is sharing filesystem-related at-
tributes (the attributes whose sharing is controlled by the clone(2) CLONE_FS
flag) with another process.

See user_namespaces(7) for details on the interaction of user namespaces and
mount namespaces.

PID namespaces
In order to reassociate itself with a new PID namespace, the caller must have the
CAP_SYS_ADMIN capability both in its own user namespace and in the user
namespace that owns the target PID namespace.

Reassociating the PID namespace has somewhat different from other namespace
types. Reassociating the calling thread with a PID namespace changes only the
PID namespace that subsequently created child processes of the caller will be
placed in; it does not change the PID namespace of the caller itself.

Reassociating with a PID namespace is allowed only if the target PID namespace
is a descendant (child, grandchild, etc.) of, or is the same as, the current PID
namespace of the caller.

For further details on PID namespaces, see pid_namespaces(7).

Cgroup namespaces
In order to reassociate itself with a new cgroup namespace, the caller must have
the CAP_SYS_ADMIN capability both in its own user namespace and in the
user namespace that owns the target cgroup namespace.

Using setns() to change the caller’s cgroup namespace does not change the
caller’s cgroup memberships.

Time namespaces
In order to reassociate itself with a new time namespace, the caller must have the
CAP_SYS_ADMIN capability both in its own user namespace and in the user
namespace that owns the target namespace.

A multithreaded process may not change time namespace with setns().

Network, IPC, and UTS namespaces
In order to reassociate itself with a new network, IPC, time, or UTS namespace,
the caller must have the CAP_SYS_ADMIN capability both in its own user
namespace and in the user namespace that owns the target namespace.

RETURN VALUE
On success, setns() returns 0. On failure, -1 is returned and errno is set to indicate the
error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
fd refers to a namespace whose type does not match that specified in nstype.

Linux man-pages 6.16 2025-10-01 923

setns(2) System Calls Manual setns(2)

EINVAL
There is a problem with reassociating the thread with the specified namespace.

EINVAL
The caller tried to join an ancestor (parent, grandparent, and so on) PID name-
space.

EINVAL
The caller attempted to join the user namespace in which it is already a member.

EINVAL
The caller shares filesystem (CLONE_FS) state (in particular, the root directory)
with other processes and tried to join a new user namespace.

EINVAL
The caller is multithreaded and tried to join a new user namespace.

EINVAL
fd is a PID file descriptor and nstype is invalid (e.g., it is 0).

ENOMEM
Cannot allocate sufficient memory to change the specified namespace.

EPERM
The calling thread did not have the required capability for this operation.

ESRCH
fd is a PID file descriptor but the process it refers to no longer exists (i.e., it has
terminated and been waited on).

STANDARDS
Linux.

VERSIONS
Linux 3.0, glibc 2.14.

NOTES
For further information on the /proc/ pid /ns/ magic links, see namespaces(7).

Not all of the attributes that can be shared when a new thread is created using clone(2)
can be changed using setns().

EXAMPLES
The program below takes two or more arguments. The first argument specifies the path-
name of a namespace file in an existing /proc/ pid /ns/ directory. The remaining argu-
ments specify a command and its arguments. The program opens the namespace file,
joins that namespace using setns(), and executes the specified command inside that
namespace.

The following shell session demonstrates the use of this program (compiled as a binary
named ns_exec) in conjunction with the CLONE_NEWUTS example program in the
clone(2) man page (complied as a binary named newuts).

We begin by executing the example program in clone(2) in the background. That pro-
gram creates a child in a separate UTS namespace. The child changes the hostname in
its namespace, and then both processes display the hostnames in their UTS namespaces,

Linux man-pages 6.16 2025-10-01 924

setns(2) System Calls Manual setns(2)

so that we can see that they are different.

$ su; # Need privilege for namespace operations
Password:
./newuts bizarro &
[1] 3549
clone() returned 3550
uts.nodename in child: bizarro
uts.nodename in parent: antero
uname -n; # Verify hostname in the shell
antero

We then run the program shown below, using it to execute a shell. Inside that shell, we
verify that the hostname is the one set by the child created by the first program:

./ns_exec /proc/3550/ns/uts /bin/bash;
uname -n; # Executed in shell started by ns_exec
bizarro

Program source
#define _GNU_SOURCE
#include <err.h>
#include <fcntl.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;

if (argc < 3) {
fprintf(stderr, "%s /proc/PID/ns/FILE cmd args...\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Get file descriptor for namespace; the file descriptor is opened
with O_CLOEXEC so as to ensure that it is not inherited by the
program that is later executed. */

fd = open(argv[1], O_RDONLY | O_CLOEXEC);
if (fd == -1)

err(EXIT_FAILURE, "open");

if (setns(fd, 0) == -1) /* Join that namespace */
err(EXIT_FAILURE, "setns");

Linux man-pages 6.16 2025-10-01 925

setns(2) System Calls Manual setns(2)

execvp(argv[2], &argv[2]); /* Execute a command in namespace */
err(EXIT_FAILURE, "execvp");

}

SEE ALSO
nsenter(1), clone(2), fork(2), unshare(2), vfork(2), namespaces(7), unix(7)

Linux man-pages 6.16 2025-10-01 926

setpgid(2) System Calls Manual setpgid(2)

NAME
setpgid, getpgid, setpgrp, getpgrp - set/get process group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setpgid(pid_t pid , pid_t pgid);
pid_t getpgid(pid_t pid);

pid_t getpgrp(void); /* POSIX.1 version */
[[deprecated]] pid_t getpgrp(pid_t pid); /* BSD version */

int setpgrp(void); /* System V version */
[[deprecated]] int setpgrp(pid_t pid , pid_t pgid); /* BSD version */

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpgid():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

setpgrp() (POSIX.1):
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

setpgrp() (BSD), getpgrp() (BSD):
[These are available only before glibc 2.19]
_BSD_SOURCE &&

! (_POSIX_SOURCE || _POSIX_C_SOURCE || _XOPEN_SOURCE
|| _GNU_SOURCE || _SVID_SOURCE)

DESCRIPTION
All of these interfaces are available on Linux, and are used for getting and setting the
process group ID (PGID) of a process. The preferred, POSIX.1-specified ways of doing
this are: getpgrp(void), for retrieving the calling process’s PGID; and setpgid(), for set-
ting a process’s PGID.

setpgid() sets the PGID of the process specified by pid to pgid . If pid is zero, then the
process ID of the calling process is used. If pgid is zero, then the PGID of the process
specified by pid is made the same as its process ID. If setpgid() is used to move a
process from one process group to another (as is done by some shells when creating
pipelines), both process groups must be part of the same session (see setsid(2) and cre-
dentials(7)). In this case, the pgid specifies an existing process group to be joined and
the session ID of that group must match the session ID of the joining process.

The POSIX.1 version of getpgrp(), which takes no arguments, returns the PGID of the
calling process.

getpgid() returns the PGID of the process specified by pid . If pid is zero, the process
ID of the calling process is used. (Retrieving the PGID of a process other than the caller
is rarely necessary, and the POSIX.1 getpgrp() is preferred for that task.)

Linux man-pages 6.16 2025-10-29 927

setpgid(2) System Calls Manual setpgid(2)

The System V-style setpgrp(), which takes no arguments, is equivalent to setpgid(0, 0).

The BSD-specific setpgrp() call, which takes arguments pid and pgid , is a wrapper
function that calls

setpgid(pid, pgid)

Since glibc 2.19, the BSD-specific setpgrp() function is no longer exposed by
<unistd.h>; calls should be replaced with the setpgid() call shown above.

The BSD-specific getpgrp() call, which takes a single pid argument, is a wrapper func-
tion that calls

getpgid(pid)

Since glibc 2.19, the BSD-specific getpgrp() function is no longer exposed by
<unistd.h>; calls should be replaced with calls to the POSIX.1 getpgrp() which takes
no arguments (if the intent is to obtain the caller’s PGID), or with the getpgid() call
shown above.

RETURN VALUE
On success, setpgid() and setpgrp() return zero. On error, -1 is returned, and errno is
set to indicate the error.

The POSIX.1 getpgrp() always returns the PGID of the caller.

getpgid(), and the BSD-specific getpgrp() return a process group on success. On error,
-1 is returned, and errno is set to indicate the error.

ERRORS
EACCES

An attempt was made to change the process group ID of one of the children of
the calling process and the child had already performed an execve(2) (setpgid(),
setpgrp())

EINVAL
pgid is less than 0 (setpgid(), setpgrp())

EPERM
An attempt was made to move a process into a process group in a different ses-
sion, or to change the process group ID of one of the children of the calling
process and the child was in a different session, or to change the process group
ID of a session leader (setpgid(), setpgrp())

EPERM
The target process group does not exist. (setpgid(), setpgrp())

ESRCH
For getpgid(): pid does not match any process. For setpgid(): pid is not the
calling process and not a child of the calling process.

STANDARDS
getpgid()
setpgid()

Linux man-pages 6.16 2025-10-29 928

setpgid(2) System Calls Manual setpgid(2)

getpgrp() (no args)
POSIX.1-2024.

setpgrp()
getpgrp() (1 arg)

None.

HISTORY
getpgid()
setpgid()
getpgrp() (no args)

POSIX.1-2001.

setpgrp() (no args)
POSIX.1-2001. Obsoleted in POSIX.1-2008. Removed in POSIX.1-2024.

setpgrp() (2 args)
getpgrp() (1 arg)

4.2BSD.

NOTES
A child created via fork(2) inherits its parent’s process group ID. The PGID is pre-
served across an execve(2).

Each process group is a member of a session and each process is a member of the ses-
sion of which its process group is a member. (See credentials(7).)

A session can have a controlling terminal. At any time, one (and only one) of the
process groups in the session can be the foreground process group for the terminal; the
remaining process groups are in the background. If a signal is generated from the termi-
nal (e.g., typing the interrupt key to generate SIGINT), that signal is sent to the fore-
ground process group. (See termios(3) for a description of the characters that generate
signals.) Only the foreground process group may read(2) from the terminal; if a back-
ground process group tries to read(2) from the terminal, then the group is sent a SIGT-
TIN signal, which suspends it. The tcgetpgrp(3) and tcsetpgrp(3) functions are used to
get/set the foreground process group of the controlling terminal.

The setpgid() and getpgrp() calls are used by programs such as bash(1) to create
process groups in order to implement shell job control.

If the termination of a process causes a process group to become orphaned, and if any
member of the newly orphaned process group is stopped, then a SIGHUP signal fol-
lowed by a SIGCONT signal will be sent to each process in the newly orphaned process
group. An orphaned process group is one in which the parent of every member of
process group is either itself also a member of the process group or is a member of a
process group in a different session (see also credentials(7)).

SEE ALSO
getuid(2), setsid(2), tcgetpgrp(3), tcsetpgrp(3), termios(3), credentials(7)

Linux man-pages 6.16 2025-10-29 929

setpgid(2) System Calls Manual setpgid(2)

Linux man-pages 6.16 2025-10-29 930

setresuid(2) System Calls Manual setresuid(2)

NAME
setresuid, setresgid - set real, effective, and saved user or group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

int setresuid(uid_t ruid , uid_t euid , uid_t suid);
int setresgid(gid_t rgid , gid_t egid , gid_t sgid);

DESCRIPTION
setresuid() sets the real user ID, the effective user ID, and the saved set-user-ID of the
calling process.

An unprivileged process may change its real UID, effective UID, and saved set-user-ID,
each to one of: the current real UID, the current effective UID, or the current saved set-
user-ID.

A privileged process (on Linux, one having the CAP_SETUID capability) may set its
real UID, effective UID, and saved set-user-ID to arbitrary values.

If one of the arguments equals -1, the corresponding value is not changed.

Regardless of what changes are made to the real UID, effective UID, and saved set-user-
ID, the filesystem UID is always set to the same value as the (possibly new) effective
UID.

Completely analogously, setresgid() sets the real GID, effective GID, and saved set-
group-ID of the calling process (and always modifies the filesystem GID to be the same
as the effective GID), with the same restrictions for unprivileged processes.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Note: there are cases where setresuid() can fail even when the caller is UID 0; it is a
grave security error to omit checking for a failure return from setresuid().

ERRORS
EAGAIN

The call would change the caller’s real UID (i.e., ruid does not match the caller’s
real UID), but there was a temporary failure allocating the necessary kernel data
structures.

EAGAIN
ruid does not match the caller’s real UID and this call would bring the number of
processes belonging to the real user ID ruid over the caller’s RLIMIT_NPROC
resource limit. Since Linux 3.1, this error case no longer occurs (but robust ap-
plications should check for this error); see the description of EAGAIN in ex-
ecve(2).

Linux man-pages 6.16 2025-10-29 931

setresuid(2) System Calls Manual setresuid(2)

EINVAL
One or more of the target user or group IDs is not valid in this user namespace.

EPERM
The calling process is not privileged (did not have the necessary capability in its
user namespace) and tried to change the IDs to values that are not permitted. For
setresuid(), the necessary capability is CAP_SETUID; for setresgid(), it is
CAP_SETGID.

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX
requires that all threads in a process share the same credentials. The NPTL threading
implementation handles the POSIX requirements by providing wrapper functions for the
various system calls that change process UIDs and GIDs. These wrapper functions (in-
cluding those for setresuid() and setresgid()) employ a signal-based technique to ensure
that when one thread changes credentials, all of the other threads in the process also
change their credentials. For details, see nptl(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2024. Linux 2.1.44, glibc 2.3.2. HP-UX, FreeBSD.

The original Linux setresuid() and setresgid() system calls supported only 16-bit user
and group IDs. Subsequently, Linux 2.4 added setresuid32() and setresgid32(), sup-
porting 32-bit IDs. The glibc setresuid() and setresgid() wrapper functions transpar-
ently deal with the variations across kernel versions.

SEE ALSO
getresuid(2), getuid(2), setfsgid(2), setfsuid(2), setreuid(2), setuid(2), capabilities(7),
credentials(7), user_namespaces(7)

Linux man-pages 6.16 2025-10-29 932

setreuid(2) System Calls Manual setreuid(2)

NAME
setreuid, setregid - set real and/or effective user or group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setreuid(uid_t ruid , uid_t euid);
int setregid(gid_t rgid , gid_t egid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setreuid(), setregid():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
setreuid() sets real and effective user IDs of the calling process.

Supplying a value of -1 for either the real or effective user ID forces the system to leave
that ID unchanged.

Unprivileged processes may only set the effective user ID to the real user ID, the effec-
tive user ID, or the saved set-user-ID.

Unprivileged users may only set the real user ID to the real user ID or the effective user
ID.

If the real user ID is set (i.e., ruid is not -1) or the effective user ID is set to a value not
equal to the previous real user ID, the saved set-user-ID will be set to the new effective
user ID.

Completely analogously, setregid() sets real and effective group ID’s of the calling
process, and all of the above holds with "group" instead of "user".

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Note: there are cases where setreuid() can fail even when the caller is UID 0; it is a
grave security error to omit checking for a failure return from setreuid().

ERRORS
EAGAIN

The call would change the caller’s real UID (i.e., ruid does not match the caller’s
real UID), but there was a temporary failure allocating the necessary kernel data
structures.

EAGAIN
ruid does not match the caller’s real UID and this call would bring the number of
processes belonging to the real user ID ruid over the caller’s RLIMIT_NPROC
resource limit. Since Linux 3.1, this error case no longer occurs (but robust ap-
plications should check for this error); see the description of EAGAIN in

Linux man-pages 6.16 2025-10-29 933

setreuid(2) System Calls Manual setreuid(2)

execve(2).

EINVAL
One or more of the target user or group IDs is not valid in this user namespace.

EPERM
The calling process is not privileged (on Linux, does not have the necessary ca-
pability in its user namespace: CAP_SETUID in the case of setreuid(), or
CAP_SETGID in the case of setregid()) and a change other than (i) swapping
the effective user (group) ID with the real user (group) ID, or (ii) setting one to
the value of the other or (iii) setting the effective user (group) ID to the value of
the saved set-user-ID (saved set-group-ID) was specified.

VERSIONS
POSIX.1 does not specify all of the UID changes that Linux permits for an unprivileged
process. For setreuid(), the effective user ID can be made the same as the real user ID
or the saved set-user-ID, and it is unspecified whether unprivileged processes may set
the real user ID to the real user ID, the effective user ID, or the saved set-user-ID. For
setregid(), the real group ID can be changed to the value of the saved set-group-ID, and
the effective group ID can be changed to the value of the real group ID or the saved set-
group-ID. The precise details of what ID changes are permitted vary across implemen-
tations.

POSIX.1 makes no specification about the effect of these calls on the saved set-user-ID
and saved set-group-ID.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.3BSD (first appeared in 4.2BSD).

Setting the effective user (group) ID to the saved set-user-ID (saved set-group-ID) is
possible since Linux 1.1.37 (1.1.38).

The original Linux setreuid() and setregid() system calls supported only 16-bit user and
group IDs. Subsequently, Linux 2.4 added setreuid32() and setregid32(), supporting
32-bit IDs. The glibc setreuid() and setregid() wrapper functions transparently deal
with the variations across kernel versions.

C library/kernel differences
At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX
requires that all threads in a process share the same credentials. The NPTL threading
implementation handles the POSIX requirements by providing wrapper functions for the
various system calls that change process UIDs and GIDs. These wrapper functions (in-
cluding those for setreuid() and setregid()) employ a signal-based technique to ensure
that when one thread changes credentials, all of the other threads in the process also
change their credentials. For details, see nptl(7).

SEE ALSO
getgid(2), getuid(2), seteuid(2), setgid(2), setresuid(2), setuid(2), capabilities(7), creden-
tials(7), user_namespaces(7)

Linux man-pages 6.16 2025-10-29 934

setreuid(2) System Calls Manual setreuid(2)

Linux man-pages 6.16 2025-10-29 935

setsid(2) System Calls Manual setsid(2)

NAME
setsid - creates a session and sets the process group ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t setsid(void);

DESCRIPTION
setsid() creates a new session if the calling process is not a process group leader. The
calling process is the leader of the new session (i.e., its session ID is made the same as
its process ID). The calling process also becomes the process group leader of a new
process group in the session (i.e., its process group ID is made the same as its process
ID).

The calling process will be the only process in the new process group and in the new
session.

Initially, the new session has no controlling terminal. For details of how a session ac-
quires a controlling terminal, see credentials(7).

RETURN VALUE
On success, the (new) session ID of the calling process is returned. On error, (pid_t) -1
is returned, and errno is set to indicate the error.

ERRORS
EPERM

The process group ID of any process equals the PID of the calling process.
Thus, in particular, setsid() fails if the calling process is already a process group
leader.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

NOTES
A child created via fork(2) inherits its parent’s session ID. The session ID is preserved
across an execve(2).

A process group leader is a process whose process group ID equals its PID. Disallow-
ing a process group leader from calling setsid() prevents the possibility that a process
group leader places itself in a new session while other processes in the process group re-
main in the original session; such a scenario would break the strict two-level hierarchy
of sessions and process groups. In order to be sure that setsid() will succeed, call
fork(2) and have the parent _exit(2), while the child (which by definition can’t be a
process group leader) calls setsid().

If a session has a controlling terminal, and the CLOCAL flag for that terminal is not set,
and a terminal hangup occurs, then the session leader is sent a SIGHUP signal.

Linux man-pages 6.16 2025-10-29 936

setsid(2) System Calls Manual setsid(2)

If a process that is a session leader terminates, then a SIGHUP signal is sent to each
process in the foreground process group of the controlling terminal.

SEE ALSO
setsid(1), getsid(2), setpgid(2), setpgrp(2), tcgetsid(3), credentials(7), sched(7)

Linux man-pages 6.16 2025-10-29 937

setuid(2) System Calls Manual setuid(2)

NAME
setuid - set user identity

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int setuid(uid_t uid);

DESCRIPTION
setuid() sets the effective user ID of the calling process. If the calling process is privi-
leged (more precisely: if the process has the CAP_SETUID capability in its user name-
space), the real UID and saved set-user-ID are also set.

Under Linux, setuid() is implemented like the POSIX version with the
_POSIX_SAVED_IDS feature. This allows a set-user-ID (other than root) program to
drop all of its user privileges, do some un-privileged work, and then reengage the origi-
nal effective user ID in a secure manner.

If the user is root or the program is set-user-ID-root, special care must be taken: setuid()
checks the effective user ID of the caller and if it is the superuser, all process-related
user ID’s are set to uid . After this has occurred, it is impossible for the program to re-
gain root privileges.

Thus, a set-user-ID-root program wishing to temporarily drop root privileges, assume
the identity of an unprivileged user, and then regain root privileges afterward cannot use
setuid(). You can accomplish this with seteuid(2).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Note: there are cases where setuid() can fail even when the caller is UID 0; it is a grave
security error to omit checking for a failure return from setuid().

ERRORS
EAGAIN

The call would change the caller’s real UID (i.e., uid does not match the caller’s
real UID), but there was a temporary failure allocating the necessary kernel data
structures.

EAGAIN
uid does not match the real user ID of the caller and this call would bring the
number of processes belonging to the real user ID uid over the caller’s
RLIMIT_NPROC resource limit. Since Linux 3.1, this error case no longer oc-
curs (but robust applications should check for this error); see the description of
EAGAIN in execve(2).

EINVAL
The user ID specified in uid is not valid in this user namespace.

Linux man-pages 6.16 2025-10-29 938

setuid(2) System Calls Manual setuid(2)

EPERM
The user is not privileged (Linux: does not have the CAP_SETUID capability in
its user namespace) and uid does not match the real UID or saved set-user-ID of
the calling process.

VERSIONS
C library/kernel differences

At the kernel level, user IDs and group IDs are a per-thread attribute. However, POSIX
requires that all threads in a process share the same credentials. The NPTL threading
implementation handles the POSIX requirements by providing wrapper functions for the
various system calls that change process UIDs and GIDs. These wrapper functions (in-
cluding the one for setuid()) employ a signal-based technique to ensure that when one
thread changes credentials, all of the other threads in the process also change their cre-
dentials. For details, see nptl(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

Not quite compatible with the 4.4BSD call, which sets all of the real, saved, and effec-
tive user IDs.

The original Linux setuid() system call supported only 16-bit user IDs. Subsequently,
Linux 2.4 added setuid32() supporting 32-bit IDs. The glibc setuid() wrapper function
transparently deals with the variation across kernel versions.

NOTES
Linux has the concept of the filesystem user ID, normally equal to the effective user ID.
The setuid() call also sets the filesystem user ID of the calling process. See setfsuid(2).

If uid is different from the old effective UID, the process will be forbidden from leaving
core dumps.

SEE ALSO
getuid(2), seteuid(2), setfsuid(2), setreuid(2), capabilities(7), credentials(7), user_name-
spaces(7)

Linux man-pages 6.16 2025-10-29 939

setup(2) System Calls Manual setup(2)

NAME
setup - setup devices and filesystems, mount root filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

[[deprecated]] int setup(void);

DESCRIPTION
setup() is called once from within linux/init/main.c. It calls initialization functions for
devices and filesystems configured into the kernel and then mounts the root filesystem.

No user process may call setup(). Any user process, even a process with superuser per-
mission, will receive EPERM.

RETURN VALUE
setup() always returns -1 for a user process.

ERRORS
EPERM

Always, for a user process.

STANDARDS
Linux.

VERSIONS
Removed in Linux 2.1.121.

The calling sequence varied: at some times setup() has had a single argument
void *BIOS and at other times a single argument int magic.

Linux man-pages 6.16 2025-05-17 940

setxattr(2) System Calls Manual setxattr(2)

NAME
setxattr, lsetxattr, fsetxattr - set an extended attribute value

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/xattr.h>

int setxattr(size_t size;
const char *path, const char *name,
const void value[size], size_t size, int flags);

int lsetxattr(size_t size;
const char *path, const char *name,
const void value[size], size_t size, int flags);

int fsetxattr(size_t size;
int fd , const char *name,
const void value[size], size_t size, int flags);

DESCRIPTION
Extended attributes are name:value pairs associated with inodes (files, directories, sym-
bolic links, etc.). They are extensions to the normal attributes which are associated with
all inodes in the system (i.e., the stat(2) data). A complete overview of extended attrib-
utes concepts can be found in xattr(7).

setxattr() sets the value of the extended attribute identified by name and associated with
the given path in the filesystem. The size argument specifies the size (in bytes) of
value; a zero-length value is permitted.

lsetxattr() is identical to setxattr(), except in the case of a symbolic link, where the ex-
tended attribute is set on the link itself, not the file that it refers to.

fsetxattr() is identical to setxattr(), only the extended attribute is set on the open file re-
ferred to by fd (as returned by open(2)) in place of path.

An extended attribute name is a null-terminated string. The name includes a namespace
prefix; there may be several, disjoint namespaces associated with an individual inode.
The value of an extended attribute is a chunk of arbitrary textual or binary data of speci-
fied length.

By default (i.e., flags is zero), the extended attribute will be created if it does not exist,
or the value will be replaced if the attribute already exists. To modify these semantics,
one of the following values can be specified in flags:

XATTR_CREATE
Perform a pure create, which fails if the named attribute exists already.

XATTR_REPLACE
Perform a pure replace operation, which fails if the named attribute does not al-
ready exist.

RETURN VALUE
On success, zero is returned. On failure, -1 is returned and errno is set to indicate the
error.

Linux man-pages 6.16 2025-09-21 941

setxattr(2) System Calls Manual setxattr(2)

ERRORS
EDQUOT

Disk quota limits meant that there is insufficient space remaining to store the ex-
tended attribute.

EEXIST
XATTR_CREATE was specified, and the attribute exists already.

ENODATA
XATTR_REPLACE was specified, and the attribute does not exist.

ENOSPC
There is insufficient space remaining to store the extended attribute.

ENOTSUP
The namespace prefix of name is not valid.

ENOTSUP
Extended attributes are not supported by the filesystem, or are disabled,

EPERM
The file is marked immutable or append-only. (See FS_IOC_SET-
FLAGS(2const).)

In addition, the errors documented in stat(2) can also occur.

ERANGE
The size of name or value exceeds a filesystem-specific limit.

STANDARDS
Linux.

HISTORY
Linux 2.4, glibc 2.3.

SEE ALSO
getfattr(1), setfattr(1), getxattr(2), listxattr(2), open(2), removexattr(2), stat(2), sym-
link(7), xattr(7)

Linux man-pages 6.16 2025-09-21 942

sgetmask(2) System Calls Manual sgetmask(2)

NAME
sgetmask, ssetmask - manipulation of signal mask (obsolete)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] long syscall(SYS_sgetmask, void);
[[deprecated]] long syscall(SYS_ssetmask, long newmask);

DESCRIPTION
These system calls are obsolete. Do not use them; use sigprocmask(2) instead.

sgetmask() returns the signal mask of the calling process.

ssetmask() sets the signal mask of the calling process to the value given in newmask.
The previous signal mask is returned.

The signal masks dealt with by these two system calls are plain bit masks (unlike the
sigset_t used by sigprocmask(2)); use sigmask(3) to create and inspect these masks.

RETURN VALUE
sgetmask() always successfully returns the signal mask. ssetmask() always succeeds,
and returns the previous signal mask.

ERRORS
These system calls always succeed.

STANDARDS
Linux.

HISTORY
Since Linux 3.16, support for these system calls is optional, depending on whether the
kernel was built with the CONFIG_SGETMASK_SYSCALL option.

NOTES
These system calls are unaware of signal numbers greater than 31 (i.e., real-time sig-
nals).

These system calls do not exist on x86-64.

It is not possible to block SIGSTOP or SIGKILL.

SEE ALSO
sigprocmask(2), signal(7)

Linux man-pages 6.16 2025-05-17 943

shmctl(2) System Calls Manual shmctl(2)

NAME
shmctl - System V shared memory control

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/shm.h>

int shmctl(int shmid , int op, struct shmid_ds *buf);

DESCRIPTION
shmctl() performs the control operation specified by op on the System V shared mem-
ory segment whose identifier is given in shmid .

The buf argument is a pointer to a shmid_ds structure, defined in <sys/shm.h> as fol-
lows:

struct shmid_ds {
struct ipc_perm shm_perm; /* Ownership and permissions */
size_t shm_segsz; /* Size of segment (bytes) */
time_t shm_atime; /* Last attach time */
time_t shm_dtime; /* Last detach time */
time_t shm_ctime; /* Creation time/time of last

modification via shmctl() */
pid_t shm_cpid; /* PID of creator */
pid_t shm_lpid; /* PID of last shmat(2)/shmdt(2) */
shmatt_t shm_nattch; /* # of current attaches */
...

};

The fields of the shmid_ds structure are as follows:

shm_perm This is an ipc_perm structure (see below) that specifies the access per-
missions on the shared memory segment.

shm_segsz Size in bytes of the shared memory segment.

shm_atime Time of the last shmat(2) system call that attached this segment.

shm_dtime Time of the last shmdt(2) system call that detached tgis segment.

shm_ctime Time of creation of segment or time of the last shmctl() IPC_SET opera-
tion.

shm_cpid ID of the process that created the shared memory segment.

shm_lpid ID of the last process that executed a shmat(2) or shmdt(2) system call on
this segment.

shm_nattch Number of processes that have this segment attached.

The ipc_perm structure is defined as follows (the highlighted fields are settable using
IPC_SET):

struct ipc_perm {
key_t __key; /* Key supplied to shmget(2) */

Linux man-pages 6.16 2025-10-29 944

shmctl(2) System Calls Manual shmctl(2)

uid_t uid; /* Effective UID of owner */
gid_t gid; /* Effective GID of owner */
uid_t cuid; /* Effective UID of creator */
gid_t cgid; /* Effective GID of creator */
unsigned short mode; /* Permissions + SHM_DEST and

SHM_LOCKED flags */
unsigned short __seq; /* Sequence number */

};

The least significant 9 bits of the mode field of the ipc_perm structure define the access
permissions for the shared memory segment. The permission bits are as follows:
0400 Read by user
0200 Write by user
0040 Read by group
0020 Write by group
0004 Read by others
0002 Write by others

Bits 0100, 0010, and 0001 (the execute bits) are unused by the system. (It is not neces-
sary to have execute permission on a segment in order to perform a shmat(2) call with
the SHM_EXEC flag.)

Valid values for op are:

IPC_STAT
Copy information from the kernel data structure associated with shmid into the
shmid_ds structure pointed to by buf . The caller must have read permission on
the shared memory segment.

IPC_SET
Write the values of some members of the shmid_ds structure pointed to by buf
to the kernel data structure associated with this shared memory segment, updat-
ing also its shm_ctime member.

The following fields are updated: shm_perm.uid , shm_perm.gid , and (the least
significant 9 bits of) shm_perm.mode.

The effective UID of the calling process must match the owner (shm_perm.uid)
or creator (shm_perm.cuid) of the shared memory segment, or the caller must be
privileged.

IPC_RMID
Mark the segment to be destroyed. The segment will actually be destroyed only
after the last process detaches it (i.e., when the shm_nattch member of the asso-
ciated structure shmid_ds is zero). The caller must be the owner or creator of the
segment, or be privileged. The buf argument is ignored.

If a segment has been marked for destruction, then the (nonstandard)
SHM_DEST flag of the shm_perm.mode field in the associated data structure re-
trieved by IPC_STAT will be set.

The caller must ensure that a segment is eventually destroyed; otherwise its
pages that were faulted in will remain in memory or swap.

Linux man-pages 6.16 2025-10-29 945

shmctl(2) System Calls Manual shmctl(2)

See also the description of /proc/sys/kernel/shm_rmid_forced in proc(5).

IPC_INFO (Linux-specific)
Return information about system-wide shared memory limits and parameters in
the structure pointed to by buf . This structure is of type shminfo (thus, a cast is
required), defined in <sys/shm.h> if the _GNU_SOURCE feature test macro is
defined:

struct shminfo {
unsigned long shmmax; /* Maximum segment size */
unsigned long shmmin; /* Minimum segment size;

always 1 */
unsigned long shmmni; /* Maximum number of segments */
unsigned long shmseg; /* Maximum number of segments

that a process can attach;
unused within kernel */

unsigned long shmall; /* Maximum number of pages of
shared memory, system-wide */

};

The shmmni, shmmax, and shmall settings can be changed via /proc files of the
same name; see proc(5) for details.

SHM_INFO (Linux-specific)
Return a shm_info structure whose fields contain information about system re-
sources consumed by shared memory. This structure is defined in <sys/shm.h>
if the _GNU_SOURCE feature test macro is defined:

struct shm_info {
int used_ids; /* # of currently existing

segments */
unsigned long shm_tot; /* Total number of shared

memory pages */
unsigned long shm_rss; /* # of resident shared

memory pages */
unsigned long shm_swp; /* # of swapped shared

memory pages */
unsigned long swap_attempts;

/* Unused since Linux 2.4 */
unsigned long swap_successes;

/* Unused since Linux 2.4 */
};

SHM_STAT (Linux-specific)
Return a shmid_ds structure as for IPC_STAT. However, the shmid argument is
not a segment identifier, but instead an index into the kernel’s internal array that
maintains information about all shared memory segments on the system.

SHM_STAT_ANY (Linux-specific, since Linux 4.17)
Return a shmid_ds structure as for SHM_STAT. However, shm_perm.mode is
not checked for read access for shmid , meaning that any user can employ this

Linux man-pages 6.16 2025-10-29 946

shmctl(2) System Calls Manual shmctl(2)

operation (just as any user may read /proc/sysvipc/shm to obtain the same infor-
mation).

The caller can prevent or allow swapping of a shared memory segment with the follow-
ing op values:

SHM_LOCK (Linux-specific)
Prevent swapping of the shared memory segment. The caller must fault in any
pages that are required to be present after locking is enabled. If a segment has
been locked, then the (nonstandard) SHM_LOCKED flag of the
shm_perm.mode field in the associated data structure retrieved by IPC_STAT
will be set.

SHM_UNLOCK (Linux-specific)
Unlock the segment, allowing it to be swapped out.

Before Linux 2.6.10, only a privileged process could employ SHM_LOCK and
SHM_UNLOCK. Since Linux 2.6.10, an unprivileged process can employ these opera-
tions if its effective UID matches the owner or creator UID of the segment, and (for
SHM_LOCK) the amount of memory to be locked falls within the RLIMIT_MEM-
LOCK resource limit (see setrlimit(2)).

RETURN VALUE
A successful IPC_INFO or SHM_INFO operation returns the index of the highest used
entry in the kernel’s internal array recording information about all shared memory seg-
ments. (This information can be used with repeated SHM_STAT or SHM_STAT_ANY
operations to obtain information about all shared memory segments on the system.) A
successful SHM_STAT operation returns the identifier of the shared memory segment
whose index was given in shmid . Other operations return 0 on success.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES

IPC_STAT or SHM_STAT is requested and shm_perm.mode does not allow
read access for shmid , and the calling process does not have the
CAP_IPC_OWNER capability in the user namespace that governs its IPC
namespace.

EFAULT
The argument op has value IPC_SET or IPC_STAT but the address pointed to
by buf isn’t accessible.

EIDRM
shmid points to a removed identifier.

EINVAL
shmid is not a valid identifier, or op is not a valid operation. Or: for a
SHM_STAT or SHM_STAT_ANY operation, the index value specified in
shmid referred to an array slot that is currently unused.

ENOMEM
(Since Linux 2.6.9), SHM_LOCK was specified and the size of the to-be-locked
segment would mean that the total bytes in locked shared memory segments

Linux man-pages 6.16 2025-10-29 947

shmctl(2) System Calls Manual shmctl(2)

would exceed the limit for the real user ID of the calling process. This limit is
defined by the RLIMIT_MEMLOCK soft resource limit (see setrlimit(2)).

EOVERFLOW
IPC_STAT is attempted, and the GID or UID value is too large to be stored in
the structure pointed to by buf .

EPERM
IPC_SET or IPC_RMID is attempted, and the effective user ID of the calling
process is not that of the creator (found in shm_perm.cuid), or the owner (found
in shm_perm.uid), and the process was not privileged (Linux: did not have the
CAP_SYS_ADMIN capability).

Or (before Linux 2.6.9), SHM_LOCK or SHM_UNLOCK was specified, but
the process was not privileged (Linux: did not have the CAP_IPC_LOCK capa-
bility). (Since Linux 2.6.9, this error can also occur if the RLIMIT_MEM-
LOCK is 0 and the caller is not privileged.)

VERSIONS
Linux permits a process to attach (shmat(2)) a shared memory segment that has already
been marked for deletion using shmctl(IPC_RMID). This feature is not available on
other UNIX implementations; portable applications should avoid relying on it.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

Various fields in a struct shmid_ds were typed as short under Linux 2.2 and have be-
come long under Linux 2.4. To take advantage of this, a recompilation under
glibc-2.1.91 or later should suffice. (The kernel distinguishes old and new calls by an
IPC_64 flag in op.)

NOTES
The IPC_INFO, SHM_STAT, and SHM_INFO operations are used by the ipcs(1) pro-
gram to provide information on allocated resources. In the future, these may modified
or moved to a /proc filesystem interface.

SEE ALSO
mlock(2), setrlimit(2), shmget(2), shmop(2), capabilities(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 948

shmget(2) System Calls Manual shmget(2)

NAME
shmget - allocates a System V shared memory segment

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

DESCRIPTION
shmget() returns the identifier of the System V shared memory segment associated with
the value of the argument key. It may be used either to obtain the identifier of a previ-
ously created shared memory segment (when shmflg is zero and key does not have the
value IPC_PRIVATE), or to create a new set.

A new shared memory segment, with size equal to the value of size rounded up to a
multiple of PAGE_SIZE, is created if key has the value IPC_PRIVATE or key isn’t
IPC_PRIVATE, no shared memory segment corresponding to key exists, and
IPC_CREAT is specified in shmflg.

If shmflg specifies both IPC_CREAT and IPC_EXCL and a shared memory segment
already exists for key, then shmget() fails with errno set to EEXIST. (This is analo-
gous to the effect of the combination O_CREAT | O_EXCL for open(2).)

The value shmflg is composed of:

IPC_CREAT
Create a new segment. If this flag is not used, then shmget() will find the seg-
ment associated with key and check to see if the user has permission to access
the segment.

IPC_EXCL
This flag is used with IPC_CREAT to ensure that this call creates the segment.
If the segment already exists, the call fails.

SHM_HUGETLB (since Linux 2.6)
Allocate the segment using "huge" pages. See the Linux kernel source file Doc-
umentation/admin-guide/mm/hugetlbpage.rst for further information.

SHM_HUGE_2MB
SHM_HUGE_1GB (since Linux 3.8)

Used in conjunction with SHM_HUGETLB to select alternative hugetlb page
sizes (respectively, 2 MB and 1 GB) on systems that support multiple hugetlb
page sizes.

More generally, the desired huge page size can be configured by encoding the
base-2 logarithm of the desired page size in the six bits at the offset
SHM_HUGE_SHIFT. Thus, the above two constants are defined as:

#define SHM_HUGE_2MB (21 << SHM_HUGE_SHIFT)
#define SHM_HUGE_1GB (30 << SHM_HUGE_SHIFT)

Linux man-pages 6.16 2025-10-29 949

shmget(2) System Calls Manual shmget(2)

For some additional details, see the discussion of the similarly named constants
in mmap(2).

SHM_NORESERVE (since Linux 2.6.15)
This flag serves the same purpose as the mmap(2) MAP_NORESERVE flag.
Do not reserve swap space for this segment. When swap space is reserved, one
has the guarantee that it is possible to modify the segment. When swap space is
not reserved one might get SIGSEGV upon a write if no physical memory is
available. See also the discussion of the file /proc/sys/vm/overcommit_memory
in proc_sys_vm(5).

In addition to the above flags, the least significant 9 bits of shmflg specify the permis-
sions granted to the owner, group, and others. These bits have the same format, and the
same meaning, as the mode argument of open(2). Presently, execute permissions are not
used by the system.

When a new shared memory segment is created, its contents are initialized to zero val-
ues, and its associated data structure, shmid_ds (see shmctl(2)), is initialized as follows:

• shm_perm.cuid and shm_perm.uid are set to the effective user ID of the calling
process.

• shm_perm.cgid and shm_perm.gid are set to the effective group ID of the calling
process.

• The least significant 9 bits of shm_perm.mode are set to the least significant 9 bit of
shmflg.

• shm_segsz is set to the value of size.

• shm_lpid , shm_nattch, shm_atime, and shm_dtime are set to 0.

• shm_ctime is set to the current time.

If the shared memory segment already exists, the permissions are verified, and a check is
made to see if it is marked for destruction.

RETURN VALUE
On success, a valid shared memory identifier is returned. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EACCES

The user does not have permission to access the shared memory segment, and
does not have the CAP_IPC_OWNER capability in the user namespace that
governs its IPC namespace.

EEXIST
IPC_CREAT and IPC_EXCL were specified in shmflg, but a shared memory
segment already exists for key.

EINVAL
A new segment was to be created and size is less than SHMMIN or greater than
SHMMAX.

Linux man-pages 6.16 2025-10-29 950

shmget(2) System Calls Manual shmget(2)

EINVAL
A segment for the given key exists, but size is greater than the size of that seg-
ment.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
No segment exists for the given key, and IPC_CREAT was not specified.

ENOMEM
No memory could be allocated for segment overhead.

ENOSPC
All possible shared memory IDs have been taken (SHMMNI), or allocating a
segment of the requested size would cause the system to exceed the system-wide
limit on shared memory (SHMALL).

EPERM
The SHM_HUGETLB flag was specified, but the caller was not privileged (did
not have the CAP_IPC_LOCK capability) and is not a member of the
hugetlb_shm_group group; see the description of
/proc/sys/vm/hugetlb_shm_group in proc_sys_vm(5).

STANDARDS
POSIX.1-2024.

SHM_HUGETLB and SHM_NORESERVE are Linux extensions.

HISTORY
POSIX.1-2001, SVr4.

NOTES
IPC_PRIVATE isn’t a flag field but a key_t type. If this special value is used for key,
the system call ignores all but the least significant 9 bits of shmflg and creates a new
shared memory segment.

Shared memory limits
The following limits on shared memory segment resources affect the shmget() call:

SHMALL
System-wide limit on the total amount of shared memory, measured in units of
the system page size.

On Linux, this limit can be read and modified via /proc/sys/kernel/shmall. Since
Linux 3.16, the default value for this limit is:

ULONG_MAX - 2^24

The effect of this value (which is suitable for both 32-bit and 64-bit systems) is
to impose no limitation on allocations. This value, rather than ULONG_MAX,
was chosen as the default to prevent some cases where historical applications
simply raised the existing limit without first checking its current value. Such ap-
plications would cause the value to overflow if the limit was set at
ULONG_MAX.

Linux man-pages 6.16 2025-10-29 951

shmget(2) System Calls Manual shmget(2)

From Linux 2.4 up to Linux 3.15, the default value for this limit was:

SHMMAX / PAGE_SIZE * (SHMMNI / 16)

If SHMMAX and SHMMNI were not modified, then multiplying the result of
this formula by the page size (to get a value in bytes) yielded a value of 8 GB as
the limit on the total memory used by all shared memory segments.

SHMMAX
Maximum size in bytes for a shared memory segment.

On Linux, this limit can be read and modified via /proc/sys/kernel/shmmax.
Since Linux 3.16, the default value for this limit is:

ULONG_MAX - 2^24

The effect of this value (which is suitable for both 32-bit and 64-bit systems) is
to impose no limitation on allocations. See the description of SHMALL for a
discussion of why this default value (rather than ULONG_MAX) is used.

From Linux 2.2 up to Linux 3.15, the default value of this limit was 0x2000000
(32 MiB).

Because it is not possible to map just part of a shared memory segment, the
amount of virtual memory places another limit on the maximum size of a usable
segment: for example, on i386 the largest segments that can be mapped have a
size of around 2.8 GB, and on x86-64 the limit is around 127 TB.

SHMMIN
Minimum size in bytes for a shared memory segment: implementation dependent
(currently 1 byte, though PAGE_SIZE is the effective minimum size).

SHMMNI
System-wide limit on the number of shared memory segments. In Linux 2.2, the
default value for this limit was 128; since Linux 2.4, the default value is 4096.

On Linux, this limit can be read and modified via /proc/sys/kernel/shmmni.

The implementation has no specific limits for the per-process maximum number of
shared memory segments (SHMSEG).

Linux notes
Until Linux 2.3.30, Linux would return EIDRM for a shmget() on a shared memory
segment scheduled for deletion.

BUGS
The name choice IPC_PRIVATE was perhaps unfortunate, IPC_NEW would more
clearly show its function.

EXAMPLES
See shmop(2).

SEE ALSO
memfd_create(2), shmat(2), shmctl(2), shmdt(2), ftok(3), capabilities(7),
shm_overview(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 952

SHMOP(2) System Calls Manual SHMOP(2)

NAME
shmat, shmdt - System V shared memory operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/shm.h>

void *shmat(int shmid , const void *_Nullable shmaddr, int shmflg);
int shmdt(const void *shmaddr);

DESCRIPTION
shmat()

shmat() attaches the System V shared memory segment identified by shmid to the ad-
dress space of the calling process. The attaching address is specified by shmaddr with
one of the following criteria:

• If shmaddr is NULL, the system chooses a suitable (unused) page-aligned address to
attach the segment.

• If shmaddr isn’t NULL and SHM_RND is specified in shmflg, the attach occurs at
the address equal to shmaddr rounded down to the nearest multiple of SHMLBA.

• Otherwise, shmaddr must be a page-aligned address at which the attach occurs.

In addition to SHM_RND, the following flags may be specified in the shmflg bit-mask
argument:

SHM_EXEC (Linux-specific; since Linux 2.6.9)
Allow the contents of the segment to be executed. The caller must have execute
permission on the segment.

SHM_RDONLY
Attach the segment for read-only access. The process must have read permission
for the segment. If this flag is not specified, the segment is attached for read and
write access, and the process must have read and write permission for the seg-
ment. There is no notion of a write-only shared memory segment.

SHM_REMAP (Linux-specific)
This flag specifies that the mapping of the segment should replace any existing
mapping in the range starting at shmaddr and continuing for the size of the seg-
ment. (Normally, an EINVAL error would result if a mapping already exists in
this address range.) In this case, shmaddr must not be NULL.

The brk(2) value of the calling process is not altered by the attach. The segment will au-
tomatically be detached at process exit. The same segment may be attached as a read
and as a read-write one, and more than once, in the process’s address space.

A successful shmat() call updates the members of the shmid_ds structure (see
shmctl(2)) associated with the shared memory segment as follows:

• shm_atime is set to the current time.

Linux man-pages 6.16 2025-10-29 953

SHMOP(2) System Calls Manual SHMOP(2)

• shm_lpid is set to the process-ID of the calling process.

• shm_nattch is incremented by one.

shmdt()
shmdt() detaches the shared memory segment located at the address specified by
shmaddr from the address space of the calling process. The to-be-detached segment
must be currently attached with shmaddr equal to the value returned by the attaching
shmat() call.

On a successful shmdt() call, the system updates the members of the shmid_ds structure
associated with the shared memory segment as follows:

• shm_dtime is set to the current time.

• shm_lpid is set to the process-ID of the calling process.

• shm_nattch is decremented by one. If it becomes 0 and the segment is marked for
deletion, the segment is deleted.

RETURN VALUE
On success, shmat() returns the address of the attached shared memory segment; on er-
ror, (void *) -1 is returned, and errno is set to indicate the error.

On success, shmdt() returns 0; on error -1 is returned, and errno is set to indicate the
error.

ERRORS
shmat() can fail with one of the following errors:

EACCES
The calling process does not have the required permissions for the requested at-
tach type, and does not have the CAP_IPC_OWNER capability in the user
namespace that governs its IPC namespace.

EIDRM
shmid points to a removed identifier.

EINVAL
Invalid shmid value, unaligned (i.e., not page-aligned and SHM_RND was not
specified) or invalid shmaddr value, or can’t attach segment at shmaddr, or
SHM_REMAP was specified and shmaddr was NULL.

ENOMEM
Could not allocate memory for the descriptor or for the page tables.

shmdt() can fail with one of the following errors:

EINVAL
There is no shared memory segment attached at shmaddr; or, shmaddr is not
aligned on a page boundary.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-10-29 954

SHMOP(2) System Calls Manual SHMOP(2)

HISTORY
POSIX.1-2001, SVr4.

In SVID 3 (or perhaps earlier), the type of the shmaddr argument was changed from
char * into const void *, and the returned type of shmat() from char * into void *.

POSIX.1-2024 changed the error code from (void *) -1 to SHM_FAILED.

NOTES
After a fork(2), the child inherits the attached shared memory segments.

After an execve(2), all attached shared memory segments are detached from the process.

Upon _exit(2), all attached shared memory segments are detached from the process.

Using shmat() with shmaddr equal to NULL is the preferred, portable way of attaching
a shared memory segment. Be aware that the shared memory segment attached in this
way may be attached at different addresses in different processes. Therefore, any point-
ers maintained within the shared memory must be made relative (typically to the starting
address of the segment), rather than absolute.

On Linux, it is possible to attach a shared memory segment even if it is already marked
to be deleted. However, POSIX.1 does not specify this behavior and many other imple-
mentations do not support it.

The following system parameter affects shmat():

SHMLBA
Segment low boundary address multiple. When explicitly specifying an attach
address in a call to shmat(), the caller should ensure that the address is a multi-
ple of this value. This is necessary on some architectures, in order either to en-
sure good CPU cache performance or to ensure that different attaches of the
same segment have consistent views within the CPU cache. SHMLBA is nor-
mally some multiple of the system page size. (On many Linux architectures,
SHMLBA is the same as the system page size.)

The implementation places no intrinsic per-process limit on the number of shared mem-
ory segments (SHMSEG).

EXAMPLES
The two programs shown below exchange a string using a shared memory segment.
Further details about the programs are given below. First, we show a shell session
demonstrating their use.

In one terminal window, we run the "reader" program, which creates a System V shared
memory segment and a System V semaphore set. The program prints out the IDs of the
created objects, and then waits for the semaphore to change value.

$./svshm_string_read;
shmid = 1114194
semid = 15

In another terminal window, we run the "writer" program. The "writer" program takes
three command-line arguments: the IDs of the shared memory segment and semaphore
set created by the "reader", and a string. It attaches the existing shared memory

Linux man-pages 6.16 2025-10-29 955

SHMOP(2) System Calls Manual SHMOP(2)

segment, copies the string to the shared memory, and modifies the semaphore value.

$./svshm_string_write 1114194 15 'Hello, world';

Returning to the terminal where the "reader" is running, we see that the program has
ceased waiting on the semaphore and has printed the string that was copied into the
shared memory segment by the writer:

Hello, world

Program source: svshm_string.h
The following header file is included by the "reader" and "writer" programs:

/* svshm_string.h

Licensed under GNU General Public License v2 or later.
*/
#ifndef SVSHM_STRING_H
#define SVSHM_STRING_H

#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/sem.h>

union semun { /* Used in calls to semctl() */
int val;
struct semid_ds *buf;
unsigned short *array;

#if defined(__linux__)
struct seminfo *__buf;

#endif
};

#define MEM_SIZE 4096

#endif // include guard

Program source: svshm_string_read.c
The "reader" program creates a shared memory segment and a semaphore set containing
one semaphore. It then attaches the shared memory object into its address space and ini-
tializes the semaphore value to 1. Finally, the program waits for the semaphore value to
become 0, and afterwards prints the string that has been copied into the shared memory
segment by the "writer".

/* svshm_string_read.c

Licensed under GNU General Public License v2 or later.
*/
#include <err.h>
#include <stdio.h>

Linux man-pages 6.16 2025-10-29 956

SHMOP(2) System Calls Manual SHMOP(2)

#include <stdlib.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/shm.h>

#include "svshm_string.h"

int
main(void)
{

int semid, shmid;
char *addr;
union semun arg, dummy;
struct sembuf sop;

/* Create shared memory and semaphore set containing one
semaphore. */

shmid = shmget(IPC_PRIVATE, MEM_SIZE, IPC_CREAT | 0600);
if (shmid == -1)

err(EXIT_FAILURE, "shmget");

semid = semget(IPC_PRIVATE, 1, IPC_CREAT | 0600);
if (semid == -1)

err(EXIT_FAILURE, "semget");

/* Attach shared memory into our address space. */

addr = shmat(shmid, NULL, SHM_RDONLY);
if (addr == (void *) -1)

err(EXIT_FAILURE, "shmat");

/* Initialize semaphore 0 in set with value 1. */

arg.val = 1;
if (semctl(semid, 0, SETVAL, arg) == -1)

err(EXIT_FAILURE, "semctl");

printf("shmid = %d\n", shmid);
printf("semid = %d\n", semid);

/* Wait for semaphore value to become 0. */

sop.sem_num = 0;
sop.sem_op = 0;
sop.sem_flg = 0;

Linux man-pages 6.16 2025-10-29 957

SHMOP(2) System Calls Manual SHMOP(2)

if (semop(semid, &sop, 1) == -1)
err(EXIT_FAILURE, "semop");

/* Print the string from shared memory. */

printf("%s\n", addr);

/* Remove shared memory and semaphore set. */

if (shmctl(shmid, IPC_RMID, NULL) == -1)
err(EXIT_FAILURE, "shmctl");

if (semctl(semid, 0, IPC_RMID, dummy) == -1)
err(EXIT_FAILURE, "semctl");

exit(EXIT_SUCCESS);
}

Program source: svshm_string_write.c
The writer program takes three command-line arguments: the IDs of the shared memory
segment and semaphore set that have already been created by the "reader", and a string.
It attaches the shared memory segment into its address space, and then decrements the
semaphore value to 0 in order to inform the "reader" that it can now examine the con-
tents of the shared memory.

/* svshm_string_write.c

Licensed under GNU General Public License v2 or later.
*/
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/sem.h>
#include <sys/shm.h>

#include "svshm_string.h"

int
main(int argc, char *argv[])
{

int semid, shmid;
char *addr;
size_t size;
struct sembuf sop;

if (argc != 4) {
fprintf(stderr, "Usage: %s shmid semid string\n", argv[0]);
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-10-29 958

SHMOP(2) System Calls Manual SHMOP(2)

}

size = strlen(argv[3]) + 1; /* +1 to include trailing '\0' */
if (size > MEM_SIZE) {

fprintf(stderr, "String is too big!\n");
exit(EXIT_FAILURE);

}

/* Get object IDs from command-line. */

shmid = atoi(argv[1]);
semid = atoi(argv[2]);

/* Attach shared memory into our address space and copy string
(including trailing null byte) into memory. */

addr = shmat(shmid, NULL, 0);
if (addr == (void *) -1)

err(EXIT_FAILURE, "shmat");

memcpy(addr, argv[3], size);

/* Decrement semaphore to 0. */

sop.sem_num = 0;
sop.sem_op = -1;
sop.sem_flg = 0;

if (semop(semid, &sop, 1) == -1)
err(EXIT_FAILURE, "semop");

exit(EXIT_SUCCESS);
}

SEE ALSO
brk(2), mmap(2), shmctl(2), shmget(2), capabilities(7), shm_overview(7), sysvipc(7)

Linux man-pages 6.16 2025-10-29 959

shutdown(2) System Calls Manual shutdown(2)

NAME
shutdown - shut down part of a full-duplex connection

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int shutdown(int sockfd , int how);

DESCRIPTION
The shutdown() call causes all or part of a full-duplex connection on the socket associ-
ated with sockfd to be shut down. If how is SHUT_RD, further receptions will be disal-
lowed. If how is SHUT_WR, further transmissions will be disallowed. If how is
SHUT_RDWR, further receptions and transmissions will be disallowed.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBADF

sockfd is not a valid file descriptor.

EINVAL
An invalid value was specified in how (but see BUGS).

ENOTCONN
The specified socket is not connected.

ENOTSOCK
The file descriptor sockfd does not refer to a socket.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.4BSD (first appeared in 4.2BSD).

NOTES
The constants SHUT_RD, SHUT_WR, SHUT_RDWR have the value 0, 1, 2, respec-
tively, and are defined in <sys/socket.h> since glibc-2.1.91.

BUGS
Checks for the validity of how are done in domain-specific code, and before Linux 3.7
not all domains performed these checks. Most notably, UNIX domain sockets simply
ignored invalid values. This problem was fixed for UNIX domain sockets in Linux 3.7.

SEE ALSO
close(2), connect(2), socket(2), socket(7)

Linux man-pages 6.16 2025-10-29 960

sigaction(2) System Calls Manual sigaction(2)

NAME
sigaction, rt_sigaction - examine and change a signal action

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigaction(int signum,
const struct sigaction *_Nullable restrict act,
struct sigaction *_Nullable restrict oldact);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigaction():
_POSIX_C_SOURCE

siginfo_t:
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
The sigaction() system call is used to change the action taken by a process on receipt of
a specific signal. (See signal(7) for an overview of signals.)

signum specifies the signal and can be any valid signal except SIGKILL and
SIGSTOP.

If act is non-NULL, the new action for signal signum is installed from act. If oldact is
non-NULL, the previous action is saved in oldact.

The sigaction structure is defined as something like:

struct sigaction {
void (*sa_handler)(int);
void (*sa_sigaction)(int, siginfo_t *, void *);
sigset_t sa_mask;
int sa_flags;
void (*sa_restorer)(void);

};

On some architectures a union is involved: do not assign to both sa_handler and
sa_sigaction.

The sa_restorer field is not intended for application use. (POSIX does not specify a
sa_restorer field.) Some further details of the purpose of this field can be found in si-
greturn(2).

sa_handler specifies the action to be associated with signum and can be one of the fol-
lowing:

• SIG_DFL for the default action.

• SIG_IGN to ignore this signal.

Linux man-pages 6.16 2025-10-29 961

sigaction(2) System Calls Manual sigaction(2)

• A pointer to a signal handling function. This function receives the signal number as
its only argument.

If SA_SIGINFO is specified in sa_flags, then sa_sigaction (instead of sa_handler)
specifies the signal-handling function for signum. This function receives three argu-
ments, as described below.

sa_mask specifies a mask of signals which should be blocked (i.e., added to the signal
mask of the thread in which the signal handler is invoked) during execution of the signal
handler. In addition, the signal which triggered the handler will be blocked, unless the
SA_NODEFER flag is used.

sa_flags specifies a set of flags which modify the behavior of the signal. It is formed by
the bitwise OR of zero or more of the following:

SA_NOCLDSTOP
If signum is SIGCHLD, do not receive notification when child processes stop
(i.e., when they receive one of SIGSTOP, SIGTSTP, SIGTTIN, or SIGTTOU)
or resume (i.e., they receive SIGCONT) (see wait(2)). This flag is meaningful
only when establishing a handler for SIGCHLD.

SA_NOCLDWAIT (since Linux 2.6)
If signum is SIGCHLD, do not transform children into zombies when they ter-
minate. See also waitpid(2). This flag is meaningful only when establishing a
handler for SIGCHLD, or when setting that signal’s disposition to SIG_DFL.

If the SA_NOCLDWAIT flag is set when establishing a handler for SIGCHLD,
POSIX.1 leaves it unspecified whether a SIGCHLD signal is generated when a
child process terminates. On Linux, a SIGCHLD signal is generated in this
case; on some other implementations, it is not.

SA_NODEFER
Do not add the signal to the thread’s signal mask while the handler is executing,
unless the signal is specified in act.sa_mask. Consequently, a further instance of
the signal may be delivered to the thread while it is executing the handler. This
flag is meaningful only when establishing a signal handler.

SA_NOMASK is an obsolete, nonstandard synonym for this flag.

SA_ONSTACK
Call the signal handler on an alternate signal stack provided by sigaltstack(2). If
an alternate stack is not available, the default stack will be used. This flag is
meaningful only when establishing a signal handler.

SA_RESETHAND
Restore the signal action to the default upon entry to the signal handler. This
flag is meaningful only when establishing a signal handler.

SA_ONESHOT is an obsolete, nonstandard synonym for this flag.

SA_RESTART
Provide behavior compatible with BSD signal semantics by making certain sys-
tem calls restartable across signals. This flag is meaningful only when establish-
ing a signal handler. See signal(7) for a discussion of system call restarting.

Linux man-pages 6.16 2025-10-29 962

sigaction(2) System Calls Manual sigaction(2)

SA_RESTORER
Not intended for application use. This flag is used by C libraries to indicate that
the sa_restorer field contains the address of a "signal trampoline". See sigre-
turn(2) for more details.

SA_SIGINFO (since Linux 2.2)
The signal handler takes three arguments, not one. In this case, sa_sigaction
should be set instead of sa_handler. This flag is meaningful only when estab-
lishing a signal handler.

SA_UNSUPPORTED (since Linux 5.11)
Used to dynamically probe for flag bit support.

If an attempt to register a handler succeeds with this flag set in act->sa_flags
alongside other flags that are potentially unsupported by the kernel, and an im-
mediately subsequent sigaction() call specifying the same signal number and
with a non-NULL oldact argument yields SA_UNSUPPORTED clear in
oldact->sa_flags, then oldact->sa_flags may be used as a bitmask describing
which of the potentially unsupported flags are, in fact, supported. See the sec-
tion "Dynamically probing for flag bit support" below for more details.

SA_EXPOSE_TAGBITS (since Linux 5.11)
Normally, when delivering a signal, an architecture-specific set of tag bits are
cleared from the si_addr field of siginfo_t. If this flag is set, an architecture-spe-
cific subset of the tag bits will be preserved in si_addr.

Programs that need to be compatible with Linux versions older than 5.11 must
use SA_UNSUPPORTED to probe for support.

The siginfo_t argument to a SA_SIGINFO handler
When the SA_SIGINFO flag is specified in act.sa_flags, the signal handler address is
passed via the act.sa_sigaction field. This handler takes three arguments, as follows:

void
handler(int sig, siginfo_t *info, void *ucontext)
{

...
}

These three arguments are as follows

sig The number of the signal that caused invocation of the handler.

info A pointer to a siginfo_t, which is a structure containing further information
about the signal, as described below.

ucontext
This is a pointer to a ucontext_t structure, cast to void *. The structure pointed
to by this field contains signal context information that was saved on the user-
space stack by the kernel; for details, see sigreturn(2). Further information about
the ucontext_t structure can be found in getcontext(3) and signal(7). Commonly,
the handler function doesn’t make any use of the third argument.

The siginfo_t data type is a structure with the following fields:

Linux man-pages 6.16 2025-10-29 963

sigaction(2) System Calls Manual sigaction(2)

siginfo_t {
int si_signo; /* Signal number */
int si_errno; /* An errno value */
int si_code; /* Signal code */
int si_trapno; /* Trap number that caused

hardware-generated signal
(unused on most architectures) */

pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
int si_status; /* Exit value or signal */
clock_t si_utime; /* User time consumed */
clock_t si_stime; /* System time consumed */
union sigval si_value; /* Signal value */
int si_int; /* POSIX.1b signal */
void *si_ptr; /* POSIX.1b signal */
int si_overrun; /* Timer overrun count;

POSIX.1b timers */
int si_timerid; /* Timer ID; POSIX.1b timers */
void *si_addr; /* Memory location which caused fault */
long si_band; /* Band event (was int in

glibc 2.3.2 and earlier) */
int si_fd; /* File descriptor */
short si_addr_lsb; /* Least significant bit of address

(since Linux 2.6.32) */
void *si_lower; /* Lower bound when address violation

occurred (since Linux 3.19) */
void *si_upper; /* Upper bound when address violation

occurred (since Linux 3.19) */
int si_pkey; /* Protection key on PTE that caused

fault (since Linux 4.6) */
void *si_call_addr; /* Address of system call instruction

(since Linux 3.5) */
int si_syscall; /* Number of attempted system call

(since Linux 3.5) */
unsigned int si_arch; /* Architecture of attempted system call

(since Linux 3.5) */
}

si_signo, si_errno and si_code are defined for all signals. (si_errno is generally unused
on Linux.) The rest of the struct may be a union, so that one should read only the fields
that are meaningful for the given signal:

• Signals sent with kill(2) and sigqueue(3) fill in si_pid and si_uid . In addition, sig-
nals sent with sigqueue(3) fill in si_int and si_ptr with the values specified by the
sender of the signal; see sigqueue(3) for more details.

• Signals sent by POSIX.1b timers (since Linux 2.6) fill in si_overrun and si_timerid .
The si_timerid field is an internal ID used by the kernel to identify the timer; it is not
the same as the timer ID returned by timer_create(2). The si_overrun field is the

Linux man-pages 6.16 2025-10-29 964

sigaction(2) System Calls Manual sigaction(2)

timer overrun count; this is the same information as is obtained by a call to
timer_getoverrun(2). These fields are nonstandard Linux extensions.

• Signals sent for message queue notification (see the description of SIGEV_SIG-
NAL in mq_notify(3)) fill in si_int/si_ptr, with the sigev_value supplied to mq_no-
tify(3); si_pid , with the process ID of the message sender; and si_uid , with the real
user ID of the message sender.

• SIGCHLD fills in si_pid , si_uid , si_status, si_utime, and si_stime, providing infor-
mation about the child. The si_pid field is the process ID of the child; si_uid is the
child’s real user ID. The si_status field contains the exit status of the child (if
si_code is CLD_EXITED), or the signal number that caused the process to change
state. The si_utime and si_stime contain the user and system CPU time used by the
child process; these fields do not include the times used by waited-for children (un-
like getrusage(2) and times(2)). Up to Linux 2.6, and since Linux 2.6.27, these
fields report CPU time in units of sysconf(_SC_CLK_TCK). In Linux 2.6 kernels
before Linux 2.6.27, a bug meant that these fields reported time in units of the (con-
figurable) system jiffy (see time(7)).

• SIGILL, SIGFPE, SIGSEGV, SIGBUS, and SIGTRAP fill in si_addr with the
address of the fault. On some architectures, these signals also fill in the si_trapno
field.

Some suberrors of SIGBUS, in particular BUS_MCEERR_AO and
BUS_MCEERR_AR, also fill in si_addr_lsb. This field indicates the least signifi-
cant bit of the reported address and therefore the extent of the corruption. For exam-
ple, if a full page was corrupted, si_addr_lsb contains log2(sysconf(_SC_PAGE-
SIZE)). When SIGTRAP is delivered in response to a ptrace(2) event
(PTRACE_EVENT_foo), si_addr is not populated, but si_pid and si_uid are popu-
lated with the respective process ID and user ID responsible for delivering the trap.
In the case of seccomp(2), the tracee will be shown as delivering the event.
BUS_MCEERR_* and si_addr_lsb are Linux-specific extensions.

The SEGV_BNDERR suberror of SIGSEGV populates si_lower and si_upper.

The SEGV_PKUERR suberror of SIGSEGV populates si_pkey.

• SIGIO/SIGPOLL (the two names are synonyms on Linux) fills in si_band and
si_fd . The si_band event is a bit mask containing the same values as are filled in the
revents field by poll(2). The si_fd field indicates the file descriptor for which the I/O
event occurred; for further details, see the description of F_SETSIG in fcntl(2).

• SIGSYS, generated (since Linux 3.5) when a seccomp filter returns SEC-
COMP_RET_TRAP, fills in si_call_addr, si_syscall, si_arch, si_errno, and other
fields as described in seccomp(2).

The si_code field
The si_code field inside the siginfo_t argument that is passed to a SA_SIGINFO signal
handler is a value (not a bit mask) indicating why this signal was sent. For a ptrace(2)
event, si_code will contain SIGTRAP and have the ptrace event in the high byte:

(SIGTRAP | PTRACE_EVENT_foo << 8).

For a non-ptrace(2) event, the values that can appear in si_code are described in the

Linux man-pages 6.16 2025-10-29 965

sigaction(2) System Calls Manual sigaction(2)

remainder of this section. Since glibc 2.20, the definitions of most of these symbols are
obtained from <signal.h> by defining feature test macros (before including any header
file) as follows:

• _XOPEN_SOURCE with the value 500 or greater;

• _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED; or

• _POSIX_C_SOURCE with the value 200809L or greater.

For the TRAP_* constants, the symbol definitions are provided only in the first two
cases. Before glibc 2.20, no feature test macros were required to obtain these symbols.

For a regular signal, the following list shows the values which can be placed in si_code
for any signal, along with the reason that the signal was generated.

SI_USER
kill(2).

SI_KERNEL
Sent by the kernel.

SI_QUEUE
sigqueue(3).

SI_TIMER
POSIX, or setitimer(2) or alarm(2) timer expired.

SI_MESGQ (since Linux 2.6.6)
POSIX message queue state changed; see mq_notify(3).

SI_ASYNCIO
AIO completed.

SI_SIGIO
Queued SIGIO (only up to Linux 2.2; from Linux 2.4 onward SIGIO/SIG-
POLL fills in si_code as described below).

SI_TKILL (since Linux 2.4.19)
tkill(2) or tgkill(2).

SI_ASYNCNL
Async name lookup completion.

The following values can be placed in si_code for a SIGILL signal:

ILL_ILLOPC
Illegal opcode.

ILL_ILLOPN
Illegal operand.

ILL_ILLADR
Illegal addressing mode.

ILL_ILLTRP
Illegal trap.

Linux man-pages 6.16 2025-10-29 966

sigaction(2) System Calls Manual sigaction(2)

ILL_PRVOPC
Privileged opcode.

ILL_PRVREG
Privileged register.

ILL_COPROC
Coprocessor error.

ILL_BADSTK
Internal stack error.

The following values can be placed in si_code for a SIGFPE signal:

FPE_INTDIV
Integer divide by zero.

FPE_INTOVF
Integer overflow.

FPE_FLTDIV
Floating-point divide by zero.

FPE_FLTOVF
Floating-point overflow.

FPE_FLTUND
Floating-point underflow.

FPE_FLTRES
Floating-point inexact result.

FPE_FLTINV
Floating-point invalid operation.

FPE_FLTSUB
Subscript out of range.

FPE_FLTUNK (since Linux 4.17)
Undiagnosed floating-point exception.

FPE_CONDTRAP (PARISC only)
Trap on condition.

The following values can be placed in si_code for a SIGSEGV signal:

SEGV_MAPERR
Address not mapped to object.

SEGV_ACCERR
Invalid permissions for mapped object.

SEGV_BNDERR (since Linux 3.19)
Failed address bound checks.

SEGV_PKUERR (since Linux 4.6)
Access was denied by memory protection keys. See pkeys(7). The protec-
tion key which applied to this access is available via si_pkey.

Linux man-pages 6.16 2025-10-29 967

sigaction(2) System Calls Manual sigaction(2)

SEGV_ACCADI (since Linux 4.17; SPARC only)
Application Data Integrity not enabled for mapped object.

SEGV_ADIDERR (since Linux 4.17; SPARC only)
Disrupting Memory Corruption Detection error.

SEGV_ADIPERR (since Linux 4.17; SPARC only)
Precise Memory Corruption Detection exception.

SEGV_MTEAERR (since Linux 5.10; ARM only)
Asynchronous Memory Tagging Extension error.

SEGV_MTESERR (since Linux 5.10; ARM only)
Synchronous Memory Tagging Extension exception.

SEGV_CPERR (since Linux 6.10)
Control protection fault.

The following values can be placed in si_code for a SIGBUS signal:

BUS_ADRALN
Invalid address alignment.

BUS_ADRERR
Nonexistent physical address.

BUS_OBJERR
Object-specific hardware error.

BUS_MCEERR_AR (since Linux 2.6.32)
Hardware memory error consumed on a machine check; action required.

BUS_MCEERR_AO (since Linux 2.6.32)
Hardware memory error detected in process but not consumed; action op-
tional.

The following values can be placed in si_code for a SIGTRAP signal:

TRAP_BRKPT
Process breakpoint.

TRAP_TRACE
Process trace trap.

TRAP_BRANCH (since Linux 2.4; IA64 only)
Process taken branch trap.

TRAP_HWBKPT (since Linux 2.4; IA64 only)
Hardware breakpoint/watchpoint.

TRAP_UNK (since Linux 4.18)
Undiagnosed trap.

TRAP_PERF (since Linux 5.13 and glibc 2.43)
Perf event with sigtrap=1.

The following values can be placed in si_code for a SIGCHLD signal:

Linux man-pages 6.16 2025-10-29 968

sigaction(2) System Calls Manual sigaction(2)

CLD_EXITED
Child has exited.

CLD_KILLED
Child was killed.

CLD_DUMPED
Child terminated abnormally.

CLD_TRAPPED
Traced child has trapped.

CLD_STOPPED
Child has stopped.

CLD_CONTINUED (since Linux 2.6.9)
Stopped child has continued.

The following values can be placed in si_code for a SIGIO/SIGPOLL signal:

POLL_IN
Data input available.

POLL_OUT
Output buffers available.

POLL_MSG
Input message available.

POLL_ERR
I/O error.

POLL_PRI
High priority input available.

POLL_HUP
Device disconnected.

The following values can be placed in si_code for a SIGSYS signal:

SYS_SECCOMP (since Linux 3.5 and glibc 2.43)
Triggered by a seccomp(2) filter rule.

SYS_USER_DISPATCH (since Linux 5.11 and glibc 2.43)
Syscall user dispatch triggered.

The following value can be placed in si_code for a SIGEMT signal:

EMT_TAGOVF (SPARC only)
Tag overflow.

Dynamically probing for flag bit support
The sigaction() call on Linux accepts unknown bits set in act->sa_flags without error.
The behavior of the kernel starting with Linux 5.11 is that a second sigaction() will
clear unknown bits from oldact->sa_flags. However, historically, a second sigaction()
call would typically leave those bits set in oldact->sa_flags.

This means that support for new flags cannot be detected simply by testing for a flag in

Linux man-pages 6.16 2025-10-29 969

sigaction(2) System Calls Manual sigaction(2)

sa_flags, and a program must test that SA_UNSUPPORTED has been cleared before
relying on the contents of sa_flags.

Since the behavior of the signal handler cannot be guaranteed unless the check passes, it
is wise to either block the affected signal while registering the handler and performing
the check in this case, or where this is not possible, for example if the signal is synchro-
nous, to issue the second sigaction() in the signal handler itself.

In kernels that do not support a specific flag, the kernel’s behavior is as if the flag was
not set, even if the flag was set in act->sa_flags.

The flags SA_NOCLDSTOP, SA_NOCLDWAIT, SA_SIGINFO, SA_ONSTACK,
SA_RESTART, SA_NODEFER, SA_RESETHAND, and, if defined by the architec-
ture, SA_RESTORER may not be reliably probed for using this mechanism, because
they were introduced before Linux 5.11. However, in general, programs may assume
that these flags are supported, since they have all been supported since Linux 2.6, which
was released in the year 2003.

See EXAMPLES below for a demonstration of the use of SA_UNSUPPORTED.

RETURN VALUE
sigaction() returns 0 on success; on error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EFAULT

act or oldact points to memory which is not a valid part of the process address
space.

EINVAL
An invalid signal was specified. This will also be generated if an attempt is
made to change the action for SIGKILL or SIGSTOP, which cannot be caught
or ignored.

VERSIONS
C library/kernel differences

The glibc wrapper function for sigaction() gives an error (EINVAL) on attempts to
change the disposition of the two real-time signals used internally by the NPTL thread-
ing implementation. See nptl(7) for details.

On architectures where the signal trampoline resides in the C library, the glibc wrapper
function for sigaction() places the address of the trampoline code in the act.sa_restorer
field and sets the SA_RESTORER flag in the act.sa_flags field. See sigreturn(2).

The original Linux system call was named sigaction(). However, with the addition of
real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by that sys-
tem call was no longer fit for purpose. Consequently, a new system call, rt_sigaction(),
was added to support an enlarged sigset_t type. The new system call takes a fourth ar-
gument, size_t sigsetsize, which specifies the size in bytes of the signal sets in
act.sa_mask and oldact.sa_mask. This argument is currently required to have the value
sizeof(sigset_t) (or the error EINVAL results). The glibc sigaction() wrapper function
hides these details from us, transparently calling rt_sigaction() when the kernel pro-
vides it.

Linux man-pages 6.16 2025-10-29 970

sigaction(2) System Calls Manual sigaction(2)

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4.

POSIX.1-1990 disallowed setting the action for SIGCHLD to SIG_IGN.
POSIX.1-2001 and later allow this possibility, so that ignoring SIGCHLD can be used
to prevent the creation of zombies (see wait(2)). Nevertheless, the historical BSD and
System V behaviors for ignoring SIGCHLD differ, so that the only completely portable
method of ensuring that terminated children do not become zombies is to catch the
SIGCHLD signal and perform a wait(2) or similar.

POSIX.1-1990 specified only SA_NOCLDSTOP. POSIX.1-2001 added SA_NOCLD-
WAIT, SA_NODEFER, SA_ONSTACK, SA_RESETHAND, SA_RESTART, and
SA_SIGINFO as XSI extensions. POSIX.1-2008 moved SA_NODEFER, SA_RE-
SETHAND, SA_RESTART, and SA_SIGINFO to the base specifications. Use of
these latter values in sa_flags may be less portable in applications intended for older
UNIX implementations.

The SA_RESETHAND flag is compatible with the SVr4 flag of the same name.

The SA_NODEFER flag is compatible with the SVr4 flag of the same name under ker-
nels 1.3.9 and later. On older kernels the Linux implementation allowed the receipt of
any signal, not just the one we are installing (effectively overriding any sa_mask set-
tings).

NOTES
A child created via fork(2) inherits a copy of its parent’s signal dispositions. During an
execve(2), the dispositions of handled signals are reset to the default; the dispositions of
ignored signals are left unchanged.

According to POSIX, the behavior of a process is undefined after it ignores a SIGFPE,
SIGILL, or SIGSEGV signal that was not generated by kill(2) or raise(3). Integer divi-
sion by zero has undefined result. On some architectures it will generate a SIGFPE sig-
nal. (Also dividing the most negative integer by -1 may generate SIGFPE.) Ignoring
this signal might lead to an endless loop.

sigaction() can be called with a NULL second argument to query the current signal han-
dler. It can also be used to check whether a given signal is valid for the current machine
by calling it with NULL second and third arguments.

It is not possible to block SIGKILL or SIGSTOP (by specifying them in sa_mask).
Attempts to do so are silently ignored.

See sigsetops(3) for details on manipulating signal sets.

See signal-safety(7) for a list of the async-signal-safe functions that can be safely called
inside from inside a signal handler.

POSIX only guarantees SI_TIMER for signals created by timer_create(2). Implemen-
tations are free to also provide it for other types of timers. The Linux behaviour
matches NetBSD.

Linux man-pages 6.16 2025-10-29 971

sigaction(2) System Calls Manual sigaction(2)

Undocumented
Before the introduction of SA_SIGINFO, it was also possible to get some additional in-
formation about the signal. This was done by providing an sa_handler signal handler
with a second argument of type struct sigcontext, which is the same structure as the one
that is passed in the uc_mcontext field of the ucontext structure that is passed (via a
pointer) in the third argument of the sa_sigaction handler. See the relevant Linux kernel
sources for details. This use is obsolete now.

BUGS
When delivering a signal resulting from a hardware exception with a SA_SIGINFO
handler, the kernel does not always provide meaningful values for all of the fields of the
siginfo_t that are relevant for that signal. For example, when the x86 int instruction is
called with a forbidden argument (any number other than 3 or 128), a SIGSEGV signal
is delivered, but the siginfo_t passed to the signal handler has all its fields besides
si_signo and si_code set to zero, even if other fields should be set (as an example,
si_addr should be non-zero for all SIGSEGV signals).

Up to and including Linux 2.6.13, specifying SA_NODEFER in sa_flags prevents not
only the delivered signal from being masked during execution of the handler, but also
the signals specified in sa_mask. This bug was fixed in Linux 2.6.14.

EXAMPLES
See mprotect(2).

Probing for flag support
The following example program exits with status EXIT_SUCCESS if SA_EX-
POSE_TAGBITS is determined to be supported, and EXIT_FAILURE otherwise.

#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
handler(int signo, siginfo_t *info, void *context)
{

struct sigaction oldact;

if (sigaction(SIGSEGV, NULL, &oldact) == -1
|| (oldact.sa_flags & SA_UNSUPPORTED)
|| !(oldact.sa_flags & SA_EXPOSE_TAGBITS))

{
_exit(EXIT_FAILURE);

}
_exit(EXIT_SUCCESS);

}

int
main(void)
{

Linux man-pages 6.16 2025-10-29 972

sigaction(2) System Calls Manual sigaction(2)

struct sigaction act = { 0 };

act.sa_flags = SA_SIGINFO | SA_UNSUPPORTED | SA_EXPOSE_TAGBITS;
act.sa_sigaction = &handler;
if (sigaction(SIGSEGV, &act, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

raise(SIGSEGV);
}

SEE ALSO
kill(1), kill(2), pause(2), pidfd_send_signal(2), restart_syscall(2), seccomp(2), sigalt-
stack(2), signal(2), signalfd(2), sigpending(2), sigprocmask(2), sigreturn(2), sigsus-
pend(2), wait(2), killpg(3), raise(3), siginterrupt(3), sigqueue(3), sigsetops(3), sigvec(3),
core(5), signal(7)

Linux man-pages 6.16 2025-10-29 973

sigaltstack(2) System Calls Manual sigaltstack(2)

NAME
sigaltstack - set and/or get signal stack context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigaltstack(const stack_t *_Nullable restrict ss,
stack_t *_Nullable restrict old_ss);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigaltstack():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
sigaltstack() allows a thread to define a new alternate signal stack and/or retrieve the
state of an existing alternate signal stack. An alternate signal stack is used during the
execution of a signal handler if the establishment of that handler (see sigaction(2)) re-
quested it.

The normal sequence of events for using an alternate signal stack is the following:

1.
Allocate an area of memory to be used for the alternate signal stack.

2.
Use sigaltstack() to inform the system of the existence and location of the alternate
signal stack.

3.
When establishing a signal handler using sigaction(2), inform the system that the
signal handler should be executed on the alternate signal stack by specifying the
SA_ONSTACK flag.

The ss argument is used to specify a new alternate signal stack, while the old_ss argu-
ment is used to retrieve information about the currently established signal stack. If we
are interested in performing just one of these tasks, then the other argument can be spec-
ified as NULL.

The stack_t type used to type the arguments of this function is defined as follows:

typedef struct {
void *ss_sp; /* Base address of stack */
int ss_flags; /* Flags */
size_t ss_size; /* Number of bytes in stack */

} stack_t;

To establish a new alternate signal stack, the fields of this structure are set as follows:

Linux man-pages 6.16 2025-10-29 974

sigaltstack(2) System Calls Manual sigaltstack(2)

ss.ss_flags
This field contains either 0, or the following flag:

SS_AUTODISARM (since Linux 4.7)
Clear the alternate signal stack settings on entry to the signal handler.
When the signal handler returns, the previous alternate signal stack set-
tings are restored.

This flag was added in order to make it safe to switch away from the sig-
nal handler with swapcontext(3). Without this flag, a subsequently han-
dled signal will corrupt the state of the switched-away signal handler. On
kernels where this flag is not supported, sigaltstack() fails with the error
EINVAL when this flag is supplied.

ss.ss_sp
This field specifies the starting address of the stack. When a signal handler is in-
voked on the alternate stack, the kernel automatically aligns the address given in
ss.ss_sp to a suitable address boundary for the underlying hardware architecture.

ss.ss_size
This field specifies the size of the stack. The constant SIGSTKSZ is defined to
be large enough to cover the usual size requirements for an alternate signal stack,
and the constant MINSIGSTKSZ defines the minimum size required to execute
a signal handler.

To disable an existing stack, specify ss.ss_flags as SS_DISABLE. In this case, the ker-
nel ignores any other flags in ss.ss_flags and the remaining fields in ss.

If old_ss is not NULL, then it is used to return information about the alternate signal
stack which was in effect prior to the call to sigaltstack(). The old_ss.ss_sp and
old_ss.ss_size fields return the starting address and size of that stack. The
old_ss.ss_flags may return either of the following values:

SS_ONSTACK
The thread is currently executing on the alternate signal stack. (Note that it is
not possible to change the alternate signal stack if the thread is currently execut-
ing on it.)

SS_DISABLE
The alternate signal stack is currently disabled.

Alternatively, this value is returned if the thread is currently executing on an al-
ternate signal stack that was established using the SS_AUTODISARM flag. In
this case, it is safe to switch away from the signal handler with swapcontext(3).
It is also possible to set up a different alternative signal stack using a further call
to sigaltstack().

SS_AUTODISARM
The alternate signal stack has been marked to be autodisarmed as described
above.

By specifying ss as NULL, and old_ss as a non-NULL value, one can obtain the current
settings for the alternate signal stack without changing them.

Linux man-pages 6.16 2025-10-29 975

sigaltstack(2) System Calls Manual sigaltstack(2)

RETURN VALUE
sigaltstack() returns 0 on success, or -1 on failure with errno set to indicate the error.

ERRORS
EFAULT

Either ss or old_ss is not NULL and points to an area outside of the process’s ad-
dress space.

EINVAL
ss is not NULL and the ss_flags field contains an invalid flag.

ENOMEM
The specified size of the new alternate signal stack ss.ss_size was less than MIN-
SIGSTKSZ.

EPERM
An attempt was made to change the alternate signal stack while it was active
(i.e., the thread was already executing on the current alternate signal stack).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigaltstack()

STANDARDS
POSIX.1-2024.

SS_AUTODISARM is a Linux extension.

HISTORY
POSIX.1-2001, SUSv2, SVr4.

NOTES
The most common usage of an alternate signal stack is to handle the SIGSEGV signal
that is generated if the space available for the standard stack is exhausted: in this case, a
signal handler for SIGSEGV cannot be invoked on the standard stack; if we wish to
handle it, we must use an alternate signal stack.

Establishing an alternate signal stack is useful if a thread expects that it may exhaust its
standard stack. This may occur, for example, because the stack grows so large that it en-
counters the upwardly growing heap, or it reaches a limit established by a call to
setrlimit(RLIMIT_STACK, &rlim). If the standard stack is exhausted, the kernel sends
the thread a SIGSEGV signal. In these circumstances the only way to catch this signal
is on an alternate signal stack.

On most hardware architectures supported by Linux, stacks grow downward. sigalt-
stack() automatically takes account of the direction of stack growth.

Functions called from a signal handler executing on an alternate signal stack will also
use the alternate signal stack. (This also applies to any handlers invoked for other sig-
nals while the thread is executing on the alternate signal stack.) Unlike the standard
stack, the system does not automatically extend the alternate signal stack. Exceeding
the allocated size of the alternate signal stack will lead to unpredictable results.

A successful call to execve(2) removes any existing alternate signal stack. A child

Linux man-pages 6.16 2025-10-29 976

sigaltstack(2) System Calls Manual sigaltstack(2)

process created via fork(2) inherits a copy of its parent’s alternate signal stack settings.
The same is also true for a child process created using clone(2), unless the clone flags
include CLONE_VM and do not include CLONE_VFORK, in which case any alter-
nate signal stack that was established in the parent is disabled in the child process.

sigaltstack() supersedes the older sigstack() call. For backward compatibility, glibc
also provides sigstack(). All new applications should be written using sigaltstack().

History
4.2BSD had a sigstack() system call. It used a slightly different struct, and had the ma-
jor disadvantage that the caller had to know the direction of stack growth.

BUGS
In Linux 2.2 and earlier, the only flag that could be specified in ss.sa_flags was SS_DIS-
ABLE. In the lead up to the release of the Linux 2.4 kernel, a change was made to al-
low sigaltstack() to allow ss.ss_flags==SS_ONSTACK with the same meaning as
ss.ss_flags==0 (i.e., the inclusion of SS_ONSTACK in ss.ss_flags is a no-op). On
other implementations, and according to POSIX.1, SS_ONSTACK appears only as a re-
ported flag in old_ss.ss_flags. On Linux, there is no need ever to specify SS_ON-
STACK in ss.ss_flags, and indeed doing so should be avoided on portability grounds:
various other systems give an error if SS_ONSTACK is specified in ss.ss_flags.

EXAMPLES
The following code segment demonstrates the use of sigaltstack() (and sigaction(2)) to
install an alternate signal stack that is employed by a handler for the SIGSEGV signal:

stack_t ss;

ss.ss_sp = malloc(SIGSTKSZ);
if (ss.ss_sp == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

ss.ss_size = SIGSTKSZ;
ss.ss_flags = 0;
if (sigaltstack(&ss, NULL) == -1) {

perror("sigaltstack");
exit(EXIT_FAILURE);

}

sa.sa_flags = SA_ONSTACK;
sa.sa_handler = handler(); /* Address of a signal handler */
sigemptyset(&sa.sa_mask);
if (sigaction(SIGSEGV, &sa, NULL) == -1) {

perror("sigaction");
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-10-29 977

sigaltstack(2) System Calls Manual sigaltstack(2)

SEE ALSO
execve(2), setrlimit(2), sigaction(2), siglongjmp(3), sigsetjmp(3), signal(7)

Linux man-pages 6.16 2025-10-29 978

signal(2) System Calls Manual signal(2)

NAME
signal - ANSI C signal handling

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

sighandler_t signal(int signum, sighandler_t handler);

DESCRIPTION
WARNING: the behavior of signal() varies across UNIX versions, and has also varied
historically across different versions of Linux. Avoid its use: use sigaction(2) instead.
See Portability below.

signal() sets the disposition of the signal signum to handler, which is either SIG_IGN,
SIG_DFL, or the address of a programmer-defined function (a "signal handler").

If the signal signum is delivered to the process, then one of the following happens:

* If the disposition is set to SIG_IGN, then the signal is ignored.

* If the disposition is set to SIG_DFL, then the default action associated with the sig-
nal (see signal(7)) occurs.

* If the disposition is set to a function, then first either the disposition is reset to
SIG_DFL, or the signal is blocked (see Portability below), and then handler is
called with argument signum. If invocation of the handler caused the signal to be
blocked, then the signal is unblocked upon return from the handler.

The signals SIGKILL and SIGSTOP cannot be caught or ignored.

RETURN VALUE
signal() returns the previous value of the signal handler. On failure, it returns
SIG_ERR, and errno is set to indicate the error.

ERRORS
EINVAL

signum is invalid.

VERSIONS
The use of sighandler_t is a GNU extension, exposed if _GNU_SOURCE is defined;
glibc also defines (the BSD-derived) sig_t if _BSD_SOURCE (glibc 2.19 and earlier)
or _DEFAULT_SOURCE (glibc 2.19 and later) is defined. The standard definition of
signal() is:

typeof(void (int)) *signal(int signum, typeof(void (int)) *handler);

Portability
The only portable use of signal() is to set a signal’s disposition to SIG_DFL or
SIG_IGN. The semantics when using signal() to establish a signal handler vary across
systems (and POSIX.1 explicitly permits this variation); do not use it for this purpose.

POSIX.1 solved the portability mess by specifying sigaction(2), which provides explicit

Linux man-pages 6.16 2025-10-29 979

signal(2) System Calls Manual signal(2)

control of the semantics when a signal handler is invoked; use that interface instead of
signal().

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

In the original UNIX systems, when a handler that was established using signal() was
invoked by the delivery of a signal, the disposition of the signal would be reset to
SIG_DFL, and the system did not block delivery of further instances of the signal. This
is equivalent to calling sigaction(2) with the following flags:

sa.sa_flags = SA_RESETHAND | SA_NODEFER;

System V also provides these semantics for signal(). This was bad because the signal
might be delivered again before the handler had a chance to reestablish itself. Further-
more, rapid deliveries of the same signal could result in recursive invocations of the han-
dler.

BSD improved on this situation, but unfortunately also changed the semantics of the ex-
isting signal() interface while doing so. On BSD, when a signal handler is invoked, the
signal disposition is not reset, and further instances of the signal are blocked from being
delivered while the handler is executing. Furthermore, certain blocking system calls are
automatically restarted if interrupted by a signal handler (see signal(7)). The BSD se-
mantics are equivalent to calling sigaction(2) with the following flags:

sa.sa_flags = SA_RESTART;

The situation on Linux is as follows:

• The kernel’s signal() system call provides System V semantics.

• By default, in glibc 2 and later, the signal() wrapper function does not invoke the
kernel system call. Instead, it calls sigaction(2) using flags that supply BSD seman-
tics. This default behavior is provided as long as a suitable feature test macro is de-
fined: _BSD_SOURCE on glibc 2.19 and earlier or _DEFAULT_SOURCE in glibc
2.19 and later. (By default, these macros are defined; see feature_test_macros(7) for
details.) If such a feature test macro is not defined, then signal() provides System V
semantics.

NOTES
The effects of signal() in a multithreaded process are unspecified.

According to POSIX, the behavior of a process is undefined after it ignores a SIGFPE,
SIGILL, or SIGSEGV signal that was not generated by kill(2) or raise(3). Integer divi-
sion by zero has undefined result. On some architectures it will generate a SIGFPE sig-
nal. (Also dividing the most negative integer by -1 may generate SIGFPE.) Ignoring
this signal might lead to an endless loop.

See sigaction(2) for details on what happens when the disposition SIGCHLD is set to
SIG_IGN.

See signal-safety(7) for a list of the async-signal-safe functions that can be safely called

Linux man-pages 6.16 2025-10-29 980

signal(2) System Calls Manual signal(2)

from inside a signal handler.

SEE ALSO
kill(1), alarm(2), kill(2), pause(2), sigaction(2), signalfd(2), sigpending(2), sigproc-
mask(2), sigsuspend(2), bsd_signal(3), killpg(3), raise(3), siginterrupt(3), sigqueue(3),
sigsetops(3), sigvec(3), sysv_signal(3), signal(7)

Linux man-pages 6.16 2025-10-29 981

signalfd(2) System Calls Manual signalfd(2)

NAME
signalfd - create a file descriptor for accepting signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/signalfd.h>

int signalfd(int fd , const sigset_t *mask, int flags);

DESCRIPTION
signalfd() creates a file descriptor that can be used to accept signals targeted at the
caller. This provides an alternative to the use of a signal handler or sigwaitinfo(2), and
has the advantage that the file descriptor may be monitored by select(2), poll(2), and
epoll(7).

The mask argument specifies the set of signals that the caller wishes to accept via the
file descriptor. This argument is a signal set whose contents can be initialized using the
macros described in sigsetops(3). Normally, the set of signals to be received via the file
descriptor should be blocked using sigprocmask(2), to prevent the signals being handled
according to their default dispositions. It is not possible to receive SIGKILL or
SIGSTOP signals via a signalfd file descriptor; these signals are silently ignored if
specified in mask.

If the fd argument is -1, then the call creates a new file descriptor and associates the
signal set specified in mask with that file descriptor. If fd is not -1, then it must specify
a valid existing signalfd file descriptor, and mask is used to replace the signal set associ-
ated with that file descriptor.

Starting with Linux 2.6.27, the following values may be bitwise ORed in flags to
change the behavior of signalfd():

SFD_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

SFD_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descrip-
tor. See the description of the O_CLOEXEC flag in open(2) for rea-
sons why this may be useful.

Up to Linux 2.6.26, the flags argument is unused, and must be specified as zero.

signalfd() returns a file descriptor that supports the following operations:

read(2)
If one or more of the signals specified in mask is pending for the process, then
the buffer supplied to read(2) is used to return one or more signalfd_siginfo
structures (see below) that describe the signals. The read(2) returns information
for as many signals as are pending and will fit in the supplied buffer. The buffer
must be at least sizeof(struct signalfd_siginfo) bytes. The return value of the
read(2) is the total number of bytes read.

Linux man-pages 6.16 2025-09-21 982

signalfd(2) System Calls Manual signalfd(2)

As a consequence of the read(2), the signals are consumed, so that they are no
longer pending for the process (i.e., will not be caught by signal handlers, and
cannot be accepted using sigwaitinfo(2)).

If none of the signals in mask is pending for the process, then the read(2) either
blocks until one of the signals in mask is generated for the process, or fails with
the error EAGAIN if the file descriptor has been made nonblocking.

poll(2)
select(2)
(and similar)

The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if one or more of the signals in mask is pending for the process.

The signalfd file descriptor also supports the other file-descriptor multiplexing
APIs: pselect(2), ppoll(2), and epoll(7).

close(2)
When the file descriptor is no longer required it should be closed. When all file
descriptors associated with the same signalfd object have been closed, the re-
sources for object are freed by the kernel.

The signalfd_siginfo structure
The format of the signalfd_siginfo structure(s) returned by read(2)s from a signalfd file
descriptor is as follows:

struct signalfd_siginfo {
uint32_t ssi_signo; /* Signal number */
int32_t ssi_errno; /* Error number (unused) */
int32_t ssi_code; /* Signal code */
uint32_t ssi_pid; /* PID of sender */
uint32_t ssi_uid; /* Real UID of sender */
int32_t ssi_fd; /* File descriptor (SIGIO) */
uint32_t ssi_tid; /* Kernel timer ID (POSIX timers)
uint32_t ssi_band; /* Band event (SIGIO) */
uint32_t ssi_overrun; /* POSIX timer overrun count */
uint32_t ssi_trapno; /* Trap number that caused signal */
int32_t ssi_status; /* Exit status or signal (SIGCHLD) */
int32_t ssi_int; /* Integer sent by sigqueue(3) */
uint64_t ssi_ptr; /* Pointer sent by sigqueue(3) */
uint64_t ssi_utime; /* User CPU time consumed (SIGCHLD) */
uint64_t ssi_stime; /* System CPU time consumed

(SIGCHLD) */
uint64_t ssi_addr; /* Address that generated signal

(for hardware-generated signals) */
uint16_t ssi_addr_lsb; /* Least significant bit of address

(SIGBUS; since Linux 2.6.37) */
uint8_t pad[X]; /* Pad size to 128 bytes (allow for

additional fields in the future) */
};

Linux man-pages 6.16 2025-09-21 983

signalfd(2) System Calls Manual signalfd(2)

Each of the fields in this structure is analogous to the similarly named field in the sig-
info_t structure. The siginfo_t structure is described in sigaction(2). Not all fields in
the returned signalfd_siginfo structure will be valid for a specific signal; the set of valid
fields can be determined from the value returned in the ssi_code field. This field is the
analog of the siginfo_t si_code field; see sigaction(2) for details.

fork(2) semantics
After a fork(2), the child inherits a copy of the signalfd file descriptor. A read(2) from
the file descriptor in the child will return information about signals queued to the child.

Semantics of file descriptor passing
As with other file descriptors, signalfd file descriptors can be passed to another process
via a UNIX domain socket (see unix(7)). In the receiving process, a read(2) from the re-
ceived file descriptor will return information about signals queued to that process.

execve(2) semantics
Just like any other file descriptor, a signalfd file descriptor remains open across an ex-
ecve(2), unless it has been marked for close-on-exec (see fcntl(2)). Any signals that
were available for reading before the execve(2) remain available to the newly loaded
program. (This is analogous to traditional signal semantics, where a blocked signal that
is pending remains pending across an execve(2).)

Thread semantics
The semantics of signalfd file descriptors in a multithreaded program mirror the stan-
dard semantics for signals. In other words, when a thread reads from a signalfd file de-
scriptor, it will read the signals that are directed to the thread itself and the signals that
are directed to the process (i.e., the entire thread group). (A thread will not be able to
read signals that are directed to other threads in the process.)

epoll(7) semantics
If a process adds (via epoll_ctl(2)) a signalfd file descriptor to an epoll(7) instance, then
epoll_wait(2) returns events only for signals sent to that process. In particular, if the
process then uses fork(2) to create a child process, then the child will be able to read(2)
signals that are sent to it using the signalfd file descriptor, but epoll_wait(2) will not in-
dicate that the signalfd file descriptor is ready. In this scenario, a possible workaround is
that after the fork(2), the child process can close the signalfd file descriptor that it inher-
ited from the parent process and then create another signalfd file descriptor and add it to
the epoll instance. Alternatively, the parent and the child could delay creating their (sep-
arate) signalfd file descriptors and adding them to the epoll instance until after the call to
fork(2).

RETURN VALUE
On success, signalfd() returns a signalfd file descriptor; this is either a new file descrip-
tor (if fd was -1), or fd if fd was a valid signalfd file descriptor. On error, -1 is re-
turned and errno is set to indicate the error.

ERRORS
EBADF

The fd file descriptor is not a valid file descriptor.

Linux man-pages 6.16 2025-09-21 984

signalfd(2) System Calls Manual signalfd(2)

EINVAL
fd is not a valid signalfd file descriptor.

EINVAL
flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient memory to create a new signalfd file descriptor.

VERSIONS
C library/kernel differences

The underlying Linux system call requires an additional argument, size_t sizemask,
which specifies the size of the mask argument. The glibc signalfd() wrapper function
does not include this argument, since it provides the required value for the underlying
system call.

There are two underlying Linux system calls: signalfd() and the more recent sig-
nalfd4(). The former system call does not implement a flags argument. The latter sys-
tem call implements the flags values described above. Starting with glibc 2.9, the sig-
nalfd() wrapper function will use signalfd4() where it is available.

STANDARDS
Linux.

HISTORY
signalfd()

Linux 2.6.22, glibc 2.8.

signalfd4()
Linux 2.6.27.

NOTES
A process can create multiple signalfd file descriptors. This makes it possible to accept
different signals on different file descriptors. (This may be useful if monitoring the file
descriptors using select(2), poll(2), or epoll(7): the arrival of different signals will make
different file descriptors ready.) If a signal appears in the mask of more than one of the
file descriptors, then occurrences of that signal can be read (once) from any one of the
file descriptors.

Attempts to include SIGKILL and SIGSTOP in mask are silently ignored.

The signal mask employed by a signalfd file descriptor can be viewed via the entry for
the corresponding file descriptor in the process’s /proc/ pid /fdinfo directory. See proc(5)
for further details.

Linux man-pages 6.16 2025-09-21 985

signalfd(2) System Calls Manual signalfd(2)

Limitations
The signalfd mechanism can’t be used to receive signals that are synchronously gener-
ated, such as the SIGSEGV signal that results from accessing an invalid memory ad-
dress or the SIGFPE signal that results from an arithmetic error. Such signals can be
caught only via signal handler.

As described above, in normal usage one blocks the signals that will be accepted via sig-
nalfd(). If spawning a child process to execute a helper program (that does not need the
signalfd file descriptor), then, after the call to fork(2), you will normally want to unblock
those signals before calling execve(2), so that the helper program can see any signals
that it expects to see. Be aware, however, that this won’t be possible in the case of a
helper program spawned behind the scenes by any library function that the program may
call. In such cases, one must fall back to using a traditional signal handler that writes to
a file descriptor monitored by select(2), poll(2), or epoll(7).

BUGS
Before Linux 2.6.25, the ssi_ptr and ssi_int fields are not filled in with the data accom-
panying a signal sent by sigqueue(3).

EXAMPLES
The program below accepts the signals SIGINT and SIGQUIT via a signalfd file de-
scriptor. The program terminates after accepting a SIGQUIT signal. The following
shell session demonstrates the use of the program:

$./signalfd_demo
^C # Control-C generates SIGINT
Got SIGINT
^C
Got SIGINT
^\ # Control-\ generates SIGQUIT
Got SIGQUIT
$

Program source

#include <err.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/signalfd.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)
{

int sfd;
ssize_t s;
sigset_t mask;
struct signalfd_siginfo fdsi;

Linux man-pages 6.16 2025-09-21 986

signalfd(2) System Calls Manual signalfd(2)

sigemptyset(&mask);
sigaddset(&mask, SIGINT);
sigaddset(&mask, SIGQUIT);

/* Block signals so that they aren't handled
according to their default dispositions. */

if (sigprocmask(SIG_BLOCK, &mask, NULL) == -1)
err(EXIT_FAILURE, "sigprocmask");

sfd = signalfd(-1, &mask, 0);
if (sfd == -1)

err(EXIT_FAILURE, "signalfd");

for (;;) {
s = read(sfd, &fdsi, sizeof(fdsi));
if (s != sizeof(fdsi))

err(EXIT_FAILURE, "read");

if (fdsi.ssi_signo == SIGINT) {
printf("Got SIGINT\n");

} else if (fdsi.ssi_signo == SIGQUIT) {
printf("Got SIGQUIT\n");
exit(EXIT_SUCCESS);

} else {
printf("Read unexpected signal\n");

}
}

}

SEE ALSO
eventfd(2), poll(2), read(2), select(2), sigaction(2), sigprocmask(2), sigwaitinfo(2),
timerfd_create(2), sigsetops(3), sigwait(3), epoll(7), signal(7)

Linux man-pages 6.16 2025-09-21 987

sigpending(2) System Calls Manual sigpending(2)

NAME
sigpending, rt_sigpending - examine pending signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigpending(sigset_t *set);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigpending():
_POSIX_C_SOURCE

DESCRIPTION
sigpending() returns the set of signals that are pending for delivery to the calling thread
(i.e., the signals which have been raised while blocked). The mask of pending signals is
returned in set.

RETURN VALUE
sigpending() returns 0 on success. On failure, -1 is returned and errno is set to indicate
the error.

ERRORS
EFAULT

set points to memory which is not a valid part of the process address space.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

C library/kernel differences
The original Linux system call was named sigpending(). However, with the addition of
real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t argument supported by that
system call was no longer fit for purpose. Consequently, a new system call, rt_sigpend-
ing(), was added to support an enlarged sigset_t type. The new system call takes a sec-
ond argument, size_t sigsetsize, which specifies the size in bytes of the signal set in set.
The glibc sigpending() wrapper function hides these details from us, transparently call-
ing rt_sigpending() when the kernel provides it.

NOTES
See sigsetops(3) for details on manipulating signal sets.

If a signal is both blocked and has a disposition of "ignored", it is not added to the mask
of pending signals when generated.

The set of signals that is pending for a thread is the union of the set of signals that is
pending for that thread and the set of signals that is pending for the process as a whole;
see signal(7).

A child created via fork(2) initially has an empty pending signal set; the pending signal
set is preserved across an execve(2).

Linux man-pages 6.16 2025-10-29 988

sigpending(2) System Calls Manual sigpending(2)

BUGS
Up to and including glibc 2.2.1, there is a bug in the wrapper function for sigpending()
which means that information about pending real-time signals is not correctly returned.

SEE ALSO
kill(2), sigaction(2), signal(2), sigprocmask(2), sigsuspend(2), sigsetops(3), signal(7)

Linux man-pages 6.16 2025-10-29 989

sigprocmask(2) System Calls Manual sigprocmask(2)

NAME
sigprocmask, rt_sigprocmask - examine and change blocked signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

/* Prototype for the glibc wrapper function */
int sigprocmask(int how, const sigset_t *_Nullable restrict set,

sigset_t *_Nullable restrict oldset);

#include <signal.h> /* Definition of SIG_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

/* Prototype for the underlying system call */
int syscall(SYS_rt_sigprocmask, int how,

const kernel_sigset_t *_Nullable set,
kernel_sigset_t *_Nullable oldset,
size_t sigsetsize);

/* Prototype for the legacy system call */
[[deprecated]] int syscall(SYS_sigprocmask, int how,

const old_kernel_sigset_t *_Nullable set,
old_kernel_sigset_t *_Nullable oldset);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigprocmask():
_POSIX_C_SOURCE

DESCRIPTION
sigprocmask() is used to fetch and/or change the signal mask of the calling thread. The
signal mask is the set of signals whose delivery is currently blocked for the caller (see
also signal(7) for more details).

The behavior of the call is dependent on the value of how, as follows.

SIG_BLOCK
The set of blocked signals is the union of the current set and the set argument.

SIG_UNBLOCK
The signals in set are removed from the current set of blocked signals. It is per-
missible to attempt to unblock a signal which is not blocked.

SIG_SETMASK
The set of blocked signals is set to the argument set.

If oldset is non-NULL, the previous value of the signal mask is stored in oldset.

If set is NULL, then the signal mask is unchanged (i.e., how is ignored), but the current
value of the signal mask is nevertheless returned in oldset (if it is not NULL).

A set of functions for modifying and inspecting variables of type sigset_t ("signal sets")
is described in sigsetops(3).

Linux man-pages 6.16 2025-10-29 990

sigprocmask(2) System Calls Manual sigprocmask(2)

The use of sigprocmask() is unspecified in a multithreaded process; see pthread_sig-
mask(3).

RETURN VALUE
sigprocmask() returns 0 on success. On failure, -1 is returned and errno is set to indi-
cate the error.

ERRORS
EFAULT

The set or oldset argument points outside the process’s allocated address space.

EINVAL
Either the value specified in how was invalid or the kernel does not support the
size passed in sigsetsize.

VERSIONS
C library/kernel differences

The kernel’s definition of sigset_t differs in size from that used by the C library. In this
manual page, the former is referred to as kernel_sigset_t (it is nevertheless named
sigset_t in the kernel sources).

The glibc wrapper function for sigprocmask() silently ignores attempts to block the two
real-time signals that are used internally by the NPTL threading implementation. See
nptl(7) for details.

The original Linux system call was named sigprocmask(). However, with the addition
of real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t (referred to as old_ker-
nel_sigset_t in this manual page) type supported by that system call was no longer fit for
purpose. Consequently, a new system call, rt_sigprocmask(), was added to support an
enlarged sigset_t type (referred to as kernel_sigset_t in this manual page). The new sys-
tem call takes a fourth argument, size_t sigsetsize, which specifies the size in bytes of
the signal sets in set and oldset. This argument is currently required to have a fixed ar-
chitecture specific value (equal to sizeof(kernel_sigset_t)).

The glibc sigprocmask() wrapper function hides these details from us, transparently
calling rt_sigprocmask() when the kernel provides it.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
It is not possible to block SIGKILL or SIGSTOP. Attempts to do so are silently ig-
nored.

Each of the threads in a process has its own signal mask.

A child created via fork(2) inherits a copy of its parent’s signal mask; the signal mask is
preserved across execve(2).

If SIGBUS, SIGFPE, SIGILL, or SIGSEGV are generated while they are blocked, the
result is undefined, unless the signal was generated by kill(2), sigqueue(3), or raise(3).

Linux man-pages 6.16 2025-10-29 991

sigprocmask(2) System Calls Manual sigprocmask(2)

See sigsetops(3) for details on manipulating signal sets.

Note that it is permissible (although not very useful) to specify both set and oldset as
NULL.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigpending(2), sigsuspend(2), pthread_sig-
mask(3), sigqueue(3), sigsetops(3), signal(7)

Linux man-pages 6.16 2025-10-29 992

sigreturn(2) System Calls Manual sigreturn(2)

NAME
sigreturn, rt_sigreturn - return from signal handler and cleanup stack frame

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
int sigreturn(...);

DESCRIPTION
If the Linux kernel determines that an unblocked signal is pending for a process, then, at
the next transition back to user mode in that process (e.g., upon return from a system
call or when the process is rescheduled onto the CPU), it creates a new frame on the
user-space stack where it saves various pieces of process context (processor status word,
registers, signal mask, and signal stack settings).

The kernel also arranges that, during the transition back to user mode, the signal handler
is called, and that, upon return from the handler, control passes to a piece of user-space
code commonly called the "signal trampoline". The signal trampoline code in turn calls
sigreturn().

This sigreturn() call undoes everything that was done—changing the process’s signal
mask, switching signal stacks (see sigaltstack(2))—in order to invoke the signal han-
dler. Using the information that was earlier saved on the user-space stack sigreturn()
restores the process’s signal mask, switches stacks, and restores the process’s context
(processor flags and registers, including the stack pointer and instruction pointer), so
that the process resumes execution at the point where it was interrupted by the signal.

RETURN VALUE
sigreturn() never returns.

VERSIONS
Many UNIX-type systems have a sigreturn() system call or near equivalent. However,
this call is not specified in POSIX, and details of its behavior vary across systems.

STANDARDS
None.

NOTES
sigreturn() exists only to allow the implementation of signal handlers. It should never
be called directly. (Indeed, a simple sigreturn() wrapper in the GNU C library simply
returns -1, with errno set to ENOSYS.) Details of the arguments (if any) passed to si-
greturn() vary depending on the architecture. (On some architectures, such as x86-64,
sigreturn() takes no arguments, since all of the information that it requires is available
in the stack frame that was previously created by the kernel on the user-space stack.)

Once upon a time, UNIX systems placed the signal trampoline code onto the user stack.
Nowadays, pages of the user stack are protected so as to disallow code execution. Thus,
on contemporary Linux systems, depending on the architecture, the signal trampoline
code lives either in the vdso(7) or in the C library. In the latter case, the C library’s
sigaction(2) wrapper function informs the kernel of the location of the trampoline code
by placing its address in the sa_restorer field of the sigaction structure, and sets the
SA_RESTORER flag in the sa_flags field.

Linux man-pages 6.16 2025-05-17 993

sigreturn(2) System Calls Manual sigreturn(2)

The saved process context information is placed in a ucontext_t structure (see
<sys/ucontext.h>). That structure is visible within the signal handler as the third argu-
ment of a handler established via sigaction(2) with the SA_SIGINFO flag.

On some other UNIX systems, the operation of the signal trampoline differs a little. In
particular, on some systems, upon transitioning back to user mode, the kernel passes
control to the trampoline (rather than the signal handler), and the trampoline code calls
the signal handler (and then calls sigreturn() once the handler returns).

C library/kernel differences
The original Linux system call was named sigreturn(). However, with the addition of
real-time signals in Linux 2.2, a new system call, rt_sigreturn() was added to support
an enlarged sigset_t type. The GNU C library hides these details from us, transparently
employing rt_sigreturn() when the kernel provides it.

SEE ALSO
kill(2), restart_syscall(2), sigaltstack(2), signal(2), getcontext(3), signal(7), vdso(7)

Linux man-pages 6.16 2025-05-17 994

sigsuspend(2) System Calls Manual sigsuspend(2)

NAME
sigsuspend, rt_sigsuspend - wait for a signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigsuspend(const sigset_t *mask);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigsuspend():
_POSIX_C_SOURCE

DESCRIPTION
sigsuspend() temporarily replaces the signal mask of the calling thread with the mask
given by mask and then suspends the thread until delivery of a signal whose action is to
invoke a signal handler or to terminate a process.

If the signal terminates the process, then sigsuspend() does not return. If the signal is
caught, then sigsuspend() returns after the signal handler returns, and the signal mask is
restored to the state before the call to sigsuspend().

It is not possible to block SIGKILL or SIGSTOP; specifying these signals in mask, has
no effect on the thread’s signal mask.

RETURN VALUE
sigsuspend() always returns -1, with errno set to indicate the error (normally, EINTR).

ERRORS
EFAULT

mask points to memory which is not a valid part of the process address space.

EINTR
The call was interrupted by a signal; signal(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

C library/kernel differences
The original Linux system call was named sigsuspend(). However, with the addition of
real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by that sys-
tem call was no longer fit for purpose. Consequently, a new system call, rt_sigsus-
pend(), was added to support an enlarged sigset_t type. The new system call takes a
second argument, size_t sigsetsize, which specifies the size in bytes of the signal set in
mask. This argument is currently required to have the value sizeof(sigset_t) (or the error
EINVAL results). The glibc sigsuspend() wrapper function hides these details from us,
transparently calling rt_sigsuspend() when the kernel provides it.

Linux man-pages 6.16 2025-10-29 995

sigsuspend(2) System Calls Manual sigsuspend(2)

NOTES
Normally, sigsuspend() is used in conjunction with sigprocmask(2) in order to prevent
delivery of a signal during the execution of a critical code section. The caller first
blocks the signals with sigprocmask(2). When the critical code has completed, the
caller then waits for the signals by calling sigsuspend() with the signal mask that was
returned by sigprocmask(2) (in the oldset argument).

See sigsetops(3) for details on manipulating signal sets.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigprocmask(2), sigwaitinfo(2), sigsetops(3),
sigwait(3), signal(7)

Linux man-pages 6.16 2025-10-29 996

sigwaitinfo(2) System Calls Manual sigwaitinfo(2)

NAME
sigwaitinfo, sigtimedwait, rt_sigtimedwait - synchronously wait for queued signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigwaitinfo(const sigset_t *restrict set,
siginfo_t *_Nullable restrict info);

int sigtimedwait(const sigset_t *restrict set,
siginfo_t *_Nullable restrict info,
const struct timespec *restrict timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigwaitinfo(), sigtimedwait():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
sigwaitinfo() suspends execution of the calling thread until one of the signals in set is
pending (If one of the signals in set is already pending for the calling thread, sigwait-
info() will return immediately.)

sigwaitinfo() removes the signal from the set of pending signals and returns the signal
number as its function result. If the info argument is not NULL, then the buffer that it
points to is used to return a structure of type siginfo_t (see sigaction(2)) containing in-
formation about the signal.

If multiple signals in set are pending for the caller, the signal that is retrieved by sig-
waitinfo() is determined according to the usual ordering rules; see signal(7) for further
details.

sigtimedwait() operates in exactly the same way as sigwaitinfo() except that it has an
additional argument, timeout, which specifies the interval for which the thread is sus-
pended waiting for a signal. (This interval will be rounded up to the system clock gran-
ularity, and kernel scheduling delays mean that the interval may overrun by a small
amount.) This argument is a timespec(3) structure.

If both fields of this structure are specified as 0, a poll is performed: sigtimedwait() re-
turns immediately, either with information about a signal that was pending for the caller,
or with an error if none of the signals in set was pending.

RETURN VALUE
On success, both sigwaitinfo() and sigtimedwait() return a signal number (i.e., a value
greater than zero). On failure both calls return -1, with errno set to indicate the error.

ERRORS
EAGAIN

No signal in set became pending within the timeout period specified to sig-
timedwait().

Linux man-pages 6.16 2025-10-29 997

sigwaitinfo(2) System Calls Manual sigwaitinfo(2)

EINTR
The wait was interrupted by a signal handler; see signal(7). (This handler was
for a signal other than one of those in set.)

EINVAL
timeout was invalid.

VERSIONS
C library/kernel differences

On Linux, sigwaitinfo() is a library function implemented on top of sigtimedwait().

The glibc wrapper functions for sigwaitinfo() and sigtimedwait() silently ignore at-
tempts to wait for the two real-time signals that are used internally by the NPTL thread-
ing implementation. See nptl(7) for details.

The original Linux system call was named sigtimedwait(). However, with the addition
of real-time signals in Linux 2.2, the fixed-size, 32-bit sigset_t type supported by that
system call was no longer fit for purpose. Consequently, a new system call, rt_sig-
timedwait(), was added to support an enlarged sigset_t type. The new system call takes
a fourth argument, size_t sigsetsize, which specifies the size in bytes of the signal set in
set. This argument is currently required to have the value sizeof(sigset_t) (or the error
EINVAL results). The glibc sigtimedwait() wrapper function hides these details from
us, transparently calling rt_sigtimedwait() when the kernel provides it.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
In normal usage, the calling program blocks the signals in set via a prior call to sigproc-
mask(2) (so that the default disposition for these signals does not occur if they become
pending between successive calls to sigwaitinfo() or sigtimedwait()) and does not estab-
lish handlers for these signals. In a multithreaded program, the signal should be blocked
in all threads, in order to prevent the signal being treated according to its default disposi-
tion in a thread other than the one calling sigwaitinfo() or sigtimedwait())

The set of signals that is pending for a given thread is the union of the set of signals that
is pending specifically for that thread and the set of signals that is pending for the
process as a whole (see signal(7)).

Attempts to wait for SIGKILL and SIGSTOP are silently ignored.

If multiple threads of a process are blocked waiting for the same signal(s) in sigwait-
info() or sigtimedwait(), then exactly one of the threads will actually receive the signal
if it becomes pending for the process as a whole; which of the threads receives the signal
is indeterminate.

sigwaitinfo() or sigtimedwait(), can’t be used to receive signals that are synchronously
generated, such as the SIGSEGV signal that results from accessing an invalid memory
address or the SIGFPE signal that results from an arithmetic error. Such signals can be
caught only via signal handler.

Linux man-pages 6.16 2025-10-29 998

sigwaitinfo(2) System Calls Manual sigwaitinfo(2)

POSIX leaves the meaning of a NULL value for the timeout argument of sigtimedwait()
unspecified, permitting the possibility that this has the same meaning as a call to sig-
waitinfo(), and indeed this is what is done on Linux.

SEE ALSO
kill(2), sigaction(2), signal(2), signalfd(2), sigpending(2), sigprocmask(2), sigqueue(3),
sigsetops(3), sigwait(3), timespec(3), signal(7), time(7)

Linux man-pages 6.16 2025-10-29 999

socket(2) System Calls Manual socket(2)

NAME
socket - create an endpoint for communication

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
socket() creates an endpoint for communication and returns a file descriptor that refers
to that endpoint. The file descriptor returned by a successful call will be the lowest-
numbered file descriptor not currently open for the process.

The domain argument specifies a communication domain; this selects the protocol fam-
ily which will be used for communication. These families are defined in
<sys/socket.h>. The formats currently understood by the Linux kernel include:
Name Purpose Man page
AF_UNIX Local communication unix(7)
AF_LOCAL Synonym for AF_UNIX

IPv4 Internet protocolsAF_INET ip(7)
AF_AX25 Amateur radio AX.25 protocol ax25(4)

IPX - Novell protocolsAF_IPX
AppleTalkAF_APPLETALK ddp(7)
ITU-T X.25 / ISO/IEC 8208 protocolAF_X25 x25(7)
IPv6 Internet protocolsAF_INET6 ipv6(7)

AF_DECnet DECet protocol sockets
AF_KEY Key management protocol, originally developed

for usage with IPsec
AF_NETLINK Kernel user interface device netlink(7)
AF_PACKET Low-level packet interface packet(7)
AF_RDS Reliable Datagram Sockets (RDS) protocol rds(7)

rds-rdma(7)
AF_PPPOX Generic PPP transport layer, for setting up L2

tunnels (L2TP and PPPoE)
AF_LLC Logical link control (IEEE 802.2 LLC) protocol
AF_IB InfiniBand native addressing
AF_MPLS Multiprotocol Label Switching
AF_CAN Controller Area Network automotive bus protocol
AF_TIPC TIPC, "cluster domain sockets" protocol
AF_BLUETOOTH Bluetooth low-level socket protocol
AF_ALG Interface to kernel crypto API
AF_VSOCK VSOCK (originally "VMWare VSockets") proto-

col for hypervisor-guest communication
vsock(7)

AF_KCM KCM (kernel connection multiplexer) interface
AF_XDP XDP (express data path) interface

Further details of the above address families, as well as information on several other ad-
dress families, can be found in address_families(7).

Linux man-pages 6.16 2025-10-29 1000

socket(2) System Calls Manual socket(2)

The socket has the indicated type, which specifies the communication semantics. Cur-
rently defined types are:

SOCK_STREAM
Provides sequenced, reliable, two-way, connection-based byte
streams. An out-of-band data transmission mechanism may be sup-
ported.

SOCK_DGRAM
Supports datagrams (connectionless, unreliable messages of a fixed
maximum length).

SOCK_SEQPACKET
Provides a sequenced, reliable, two-way connection-based data
transmission path for datagrams of fixed maximum length; a con-
sumer is required to read an entire packet with each input system
call.

SOCK_RAW Provides raw network protocol access.

SOCK_RDM Provides a reliable datagram layer that does not guarantee ordering.

SOCK_PACKET
Obsolete and should not be used in new programs; see packet(7).

Some socket types may not be implemented by all protocol families.

Since Linux 2.6.27, the type argument serves a second purpose: in addition to specifying
a socket type, it may include the bitwise OR of any of the following values, to modify
the behavior of socket():

SOCK_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

SOCK_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file de-
scriptor. See the description of the O_CLOEXEC flag in open(2)
for reasons why this may be useful.

The protocol specifies a particular protocol to be used with the socket. Normally only a
single protocol exists to support a particular socket type within a given protocol family,
in which case protocol can be specified as 0. However, it is possible that many proto-
cols may exist, in which case a particular protocol must be specified in this manner. The
protocol number to use is specific to the “communication domain” in which communi-
cation is to take place; see protocols(5). See getprotoent(3) on how to map protocol
name strings to protocol numbers.

Sockets of type SOCK_STREAM are full-duplex byte streams. They do not preserve
record boundaries. A stream socket must be in a connected state before any data may
be sent or received on it. A connection to another socket is created with a connect(2)
call. Once connected, data may be transferred using read(2) and write(2) calls or some
variant of the send(2) and recv(2) calls. When a session has been completed a close(2)

Linux man-pages 6.16 2025-10-29 1001

socket(2) System Calls Manual socket(2)

may be performed. Out-of-band data may also be transmitted as described in send(2)
and received as described in recv(2).

The communications protocols which implement a SOCK_STREAM ensure that data
is not lost or duplicated. If a piece of data for which the peer protocol has buffer space
cannot be successfully transmitted within a reasonable length of time, then the connec-
tion is considered to be dead. When SO_KEEPALIVE is enabled on the socket the
protocol checks in a protocol-specific manner if the other end is still alive. A SIGPIPE
signal is raised if a process sends or receives on a broken stream; this causes naive
processes, which do not handle the signal, to exit. SOCK_SEQPACKET sockets em-
ploy the same system calls as SOCK_STREAM sockets. The only difference is that
read(2) calls will return only the amount of data requested, and any data remaining in
the arriving packet will be discarded. Also all message boundaries in incoming data-
grams are preserved.

SOCK_DGRAM and SOCK_RAW sockets allow sending of datagrams to correspon-
dents named in sendto(2) calls. Datagrams are generally received with recvfrom(2),
which returns the next datagram along with the address of its sender.

SOCK_PACKET is an obsolete socket type to receive raw packets directly from the de-
vice driver. Use packet(7) instead.

An fcntl(2) F_SETOWN operation can be used to specify a process or process group to
receive a SIGURG signal when the out-of-band data arrives or SIGPIPE signal when a
SOCK_STREAM connection breaks unexpectedly. This operation may also be used to
set the process or process group that receives the I/O and asynchronous notification of
I/O events via SIGIO. Using F_SETOWN is equivalent to an ioctl(2) call with the
FIOSETOWN or SIOCSPGRP argument.

When the network signals an error condition to the protocol module (e.g., using an
ICMP message for IP) the pending error flag is set for the socket. The next operation on
this socket will return the error code of the pending error. For some protocols, it is pos-
sible to enable a per-socket error queue to retrieve detailed information about the error;
see IP_RECVERR in ip(7).

The operation of sockets is controlled by socket level options. These options are defined
in <sys/socket.h>. The functions setsockopt(2) and getsockopt(2) are used to set and get
options.

RETURN VALUE
On success, a file descriptor for the new socket is returned. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EACCES

Permission to create a socket of the specified type and/or protocol is denied.

EAFNOSUPPORT
The implementation does not support the specified address family.

EINVAL
Unknown protocol, or protocol family not available.

Linux man-pages 6.16 2025-10-29 1002

socket(2) System Calls Manual socket(2)

EINVAL
Invalid flags in type.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOBUFS or ENOMEM
Insufficient memory is available. The socket cannot be created until sufficient
resources are freed.

EPROTONOSUPPORT
The protocol type or the specified protocol is not supported within this domain.

Other errors may be generated by the underlying protocol modules.

VERSIONS
POSIX.1-2024 specifies SOCK_CLOFORK, but Linux doesn’t support it.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.2BSD.

It is generally portable to/from non-BSD systems supporting clones of the BSD socket
layer (including System V variants).

The manifest constants used under 4.x BSD for protocol families are PF_UNIX,
PF_INET, and so on, while AF_UNIX, AF_INET, and so on are used for address fam-
ilies. However, already the BSD man page promises: "The protocol family generally is
the same as the address family", and subsequent standards use AF_* everywhere.

SOCK_NONBLOCK
SOCK_CLOEXEC

POSIX.1-2024.

EXAMPLES
An example of the use of socket() is shown in getaddrinfo(3).

SEE ALSO
accept(2), bind(2), close(2), connect(2), fcntl(2), getpeername(2), getsockname(2), get-
sockopt(2), ioctl(2), listen(2), read(2), recv(2), select(2), send(2), shutdown(2), socket-
pair(2), write(2), getprotoent(3), address_families(7), ip(7), socket(7), tcp(7), udp(7),
unix(7)

“An Introductory 4.3BSD Interprocess Communication Tutorial” and “BSD Interprocess
Communication Tutorial”, reprinted in UNIX Programmer’s Supplementary Documents
Volume 1.

Linux man-pages 6.16 2025-10-29 1003

socketcall(2) System Calls Manual socketcall(2)

NAME
socketcall - socket system calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/net.h> /* Definition of SYS_* constants */
#include <sys/syscall.h> /* Definition of SYS_socketcall */
#include <unistd.h>

int syscall(SYS_socketcall, int call, unsigned long *args);

Note: glibc provides no wrapper for socketcall(), necessitating the use of syscall(2).

DESCRIPTION
socketcall() is a common kernel entry point for the socket system calls. call determines
which socket function to invoke. args points to a block containing the actual arguments,
which are passed through to the appropriate call.

User programs should call the appropriate functions by their usual names. Only stan-
dard library implementors and kernel hackers need to know about socketcall().

call Man page
SYS_SOCKET socket(2)
SYS_BIND bind(2)
SYS_CONNECT connect(2)
SYS_LISTEN listen(2)
SYS_ACCEPT accept(2)
SYS_GETSOCKNAME getsockname(2)
SYS_GETPEERNAME getpeername(2)
SYS_SOCKETPAIR socketpair(2)
SYS_SEND send(2)
SYS_RECV recv(2)
SYS_SENDTO sendto(2)
SYS_RECVFROM recvfrom(2)
SYS_SHUTDOWN shutdown(2)
SYS_SETSOCKOPT setsockopt(2)
SYS_GETSOCKOPT getsockopt(2)
SYS_SENDMSG sendmsg(2)
SYS_RECVMSG recvmsg(2)
SYS_ACCEPT4 accept4(2)
SYS_RECVMMSG recvmmsg(2)
SYS_SENDMMSG sendmmsg(2)

VERSIONS
On some architectures —for example, x86-64 and ARM— there is no socketcall() sys-
tem call; instead socket(2), accept(2), bind(2), and so on really are implemented as sepa-
rate system calls.

Linux man-pages 6.16 2025-09-21 1004

socketcall(2) System Calls Manual socketcall(2)

STANDARDS
Linux.

On x86-32, socketcall() was historically the only entry point for the sockets API. How-
ever, starting in Linux 4.3, direct system calls are provided on x86-32 for the sockets
API. This facilitates the creation of seccomp(2) filters that filter sockets system calls
(for new user-space binaries that are compiled to use the new entry points) and also pro-
vides a (very) small performance improvement.

SEE ALSO
accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2),
listen(2), recv(2), recvfrom(2), recvmsg(2), send(2), sendmsg(2), sendto(2), setsock-
opt(2), shutdown(2), socket(2), socketpair(2)

Linux man-pages 6.16 2025-09-21 1005

socketpair(2) System Calls Manual socketpair(2)

NAME
socketpair - create a pair of connected sockets

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int socketpair(int domain, int type, int protocol, int sv[2]);

DESCRIPTION
The socketpair() call creates an unnamed pair of connected sockets in the specified do-
main, of the specified type, and using the optionally specified protocol. For further de-
tails of these arguments, see socket(2).

The file descriptors used in referencing the new sockets are returned in sv[0] and sv[1].
The two sockets are indistinguishable.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, errno is set to indicate the error,
and sv is left unchanged

On Linux (and other systems), socketpair() does not modify sv on failure. A require-
ment standardizing this behavior was added in POSIX.1-2008 TC2.

ERRORS
EAFNOSUPPORT

The specified address family is not supported on this machine.

EFAULT
The address sv does not specify a valid part of the process address space.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

EOPNOTSUPP
The specified protocol does not support creation of socket pairs.

EPROTONOSUPPORT
The specified protocol is not supported on this machine.

VERSIONS
On Linux, the only supported domains for this call are AF_UNIX (or synonymously,
AF_LOCAL) and AF_TIPC (since Linux 4.12).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, 4.2BSD.

It is generally portable to/from non-BSD systems supporting clones of the BSD socket
layer (including System V variants).

Linux man-pages 6.16 2025-10-29 1006

socketpair(2) System Calls Manual socketpair(2)

SOCK_CLOEXEC
SOCK_NONBLOCK

POSIX.1-2024; Linux 2.6.27. (See socket(2).)

SEE ALSO
pipe(2), read(2), socket(2), write(2), socket(7), unix(7)

Linux man-pages 6.16 2025-10-29 1007

splice(2) System Calls Manual splice(2)

NAME
splice - splice data to/from a pipe

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

ssize_t splice(int fd_in, off_t *_Nullable off_in,
int fd_out, off_t *_Nullable off_out,
size_t size, unsigned int flags);

DESCRIPTION
splice() moves data between two file descriptors without copying between kernel ad-
dress space and user address space. It transfers up to size bytes of data from the file de-
scriptor fd_in to the file descriptor fd_out, where one of the file descriptors must refer
to a pipe.

The following semantics apply for fd_in and off_in:

• If fd_in refers to a pipe, then off_in must be NULL.

• If fd_in does not refer to a pipe and off_in is NULL, then bytes are read from fd_in
starting from the file offset, and the file offset is adjusted appropriately.

• If fd_in does not refer to a pipe and off_in is not NULL, then off_in must point to a
buffer which specifies the starting offset from which bytes will be read from fd_in;
in this case, the file offset of fd_in is not changed, and the offset pointed to by off_in
is adjusted appropriately instead.

Analogous statements apply for fd_out and off_out.

The flags argument is a bit mask that is composed by ORing together zero or more of
the following values:

SPLICE_F_MOVE
Attempt to move pages instead of copying. This is only a hint to the kernel:
pages may still be copied if the kernel cannot move the pages from the pipe, or if
the pipe buffers don’t refer to full pages. The initial implementation of this flag
was buggy: therefore starting in Linux 2.6.21 it is a no-op (but is still permitted
in a splice() call); in the future, a correct implementation may be restored.

SPLICE_F_NONBLOCK
Do not block on I/O. This makes the splice pipe operations nonblocking, but
splice() may nevertheless block because the file descriptors that are spliced
to/from may block (unless they have the O_NONBLOCK flag set).

SPLICE_F_MORE
More data will be coming in a subsequent splice. This is a helpful hint when the
fd_out refers to a socket (see also the description of MSG_MORE in send(2),
and the description of TCP_CORK in tcp(7)).

Linux man-pages 6.16 2025-09-20 1008

splice(2) System Calls Manual splice(2)

SPLICE_F_GIFT
Unused for splice(); see vmsplice(2).

RETURN VALUE
Upon successful completion, splice() returns the number of bytes spliced to or from the
pipe.

A return value of 0 means end of input. If fd_in refers to a pipe, then this means that
there was no data to transfer, and it would not make sense to block because there are no
writers connected to the write end of the pipe.

On error, splice() returns -1 and errno is set to indicate the error.

ERRORS
EAGAIN

SPLICE_F_NONBLOCK was specified in flags or one of the file descriptors
had been marked as nonblocking (O_NONBLOCK), and the operation would
block.

EBADF
One or both file descriptors are not valid, or do not have proper read-write mode.

EINVAL
The target filesystem doesn’t support splicing.

EINVAL
The target file is opened in append mode.

EINVAL
Neither of the file descriptors refers to a pipe.

EINVAL
An offset was given for nonseekable device (e.g., a pipe).

EINVAL
fd_in and fd_out refer to the same pipe.

ENOMEM
Out of memory.

ESPIPE
Either off_in or off_out was not NULL, but the corresponding file descriptor
refers to a pipe.

STANDARDS
Linux.

HISTORY
Linux 2.6.17, glibc 2.5.

In Linux 2.6.30 and earlier, exactly one of fd_in and fd_out was required to be a pipe.
Since Linux 2.6.31, both arguments may refer to pipes.

NOTES
The three system calls splice(), vmsplice(2), and tee(2), provide user-space programs
with full control over an arbitrary kernel buffer, implemented within the kernel using the
same type of buffer that is used for a pipe. In overview, these system calls perform the

Linux man-pages 6.16 2025-09-20 1009

splice(2) System Calls Manual splice(2)

following tasks:

splice()
moves data from the buffer to an arbitrary file descriptor, or vice versa, or from
one buffer to another.

tee(2)
"copies" the data from one buffer to another.

vmsplice(2)
"copies" data from user space into the buffer.

Though we talk of copying, actual copies are generally avoided. The kernel does this by
implementing a pipe buffer as a set of reference-counted pointers to pages of kernel
memory. The kernel creates "copies" of pages in a buffer by creating new pointers (for
the output buffer) referring to the pages, and increasing the reference counts for the
pages: only pointers are copied, not the pages of the buffer.

_FILE_OFFSET_BITS should be defined to be 64 in code that uses non-null off_in or
off_out or that takes the address of splice, if the code is intended to be portable to tradi-
tional 32-bit x86 and ARM platforms where off_t’s width defaults to 32 bits.

EXAMPLES
See tee(2) for another example.

#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <err.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(void)
{

int fd;
int pfd[2];
off_t off;
[[gnu::nonstring]]

const char s[12] = "Hello, world";

fd = open("out", O_WRONLY | O_CREAT | O_EXCL, 0666);
if (fd == -1)

err(EXIT_FAILURE, "open");

if (pipe(pfd) == -1)
err(EXIT_FAILURE, "pipe");

Linux man-pages 6.16 2025-09-20 1010

splice(2) System Calls Manual splice(2)

if (write(pfd[1], s, sizeof(s)) != sizeof(s))
err(EXIT_FAILURE, "write");

if (close(pfd[1]) == -1)
err(EXIT_FAILURE, "close");

off = 10;
if (splice(pfd[0], NULL, fd, &off, sizeof(s), 0) != sizeof(s))

err(EXIT_FAILURE, "splice");
if (close(pfd[0]) == -1)

err(EXIT_FAILURE, "close");

printf("New offset is %jd\n", (intmax_t) off);

if (close(fd) == -1)
err(EXIT_FAILURE, "close");

exit(EXIT_SUCCESS);
}

SEE ALSO
copy_file_range(2), sendfile(2), tee(2), vmsplice(2), pipe(7)

Linux man-pages 6.16 2025-09-20 1011

spu_create(2) System Calls Manual spu_create(2)

NAME
spu_create - create a new spu context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/spu.h> /* Definition of SPU_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_spu_create, const char *path, unsigned int flags,
mode_t mode, int neighbor_fd);

Note: glibc provides no wrapper for spu_create(), necessitating the use of syscall(2).

DESCRIPTION
The spu_create() system call is used on PowerPC machines that implement the Cell
Broadband Engine Architecture in order to access Synergistic Processor Units (SPUs).
It creates a new logical context for an SPU in path and returns a file descriptor associ-
ated with it. path must refer to a nonexistent directory in the mount point of the SPU
filesystem (spufs). If spu_create() is successful, a directory is created at path and it is
populated with the files described in spufs(7).

When a context is created, the returned file descriptor can only be passed to spu_run(2),
used as the dirfd argument to the *at family of system calls (e.g., openat(2)), or closed;
other operations are not defined. A logical SPU context is destroyed (along with all files
created within the context’s path directory) once the last reference to the context has
gone; this usually occurs when the file descriptor returned by spu_create() is closed.

The mode argument (minus any bits set in the process’s umask(2)) specifies the permis-
sions used for creating the new directory in spufs. See stat(2) for a full list of the possi-
ble mode values.

The neighbor_fd is used only when the SPU_CREATE_AFFINITY_SPU flag is speci-
fied; see below.

The flags argument can be zero or any bitwise OR-ed combination of the following con-
stants:

SPU_CREATE_EVENTS_ENABLED
Rather than using signals for reporting DMA errors, use the event argument to
spu_run(2).

SPU_CREATE_GANG
Create an SPU gang instead of a context. (A gang is a group of SPU contexts
that are functionally related to each other and which share common scheduling
parameters—priority and policy. In the future, gang scheduling may be imple-
mented causing the group to be switched in and out as a single unit.)

A new directory will be created at the location specified by the path argument.
This gang may be used to hold other SPU contexts, by providing a pathname that
is within the gang directory to further calls to spu_create().

Linux man-pages 6.16 2025-09-21 1012

spu_create(2) System Calls Manual spu_create(2)

SPU_CREATE_NOSCHED
Create a context that is not affected by the SPU scheduler. Once the context is
run, it will not be scheduled out until it is destroyed by the creating process.

Because the context cannot be removed from the SPU, some functionality is dis-
abled for SPU_CREATE_NOSCHED contexts. Only a subset of the files will
be available in this context directory in spufs. Additionally, SPU_CRE-
ATE_NOSCHED contexts cannot dump a core file when crashing.

Creating SPU_CREATE_NOSCHED contexts requires the CAP_SYS_NICE
capability.

SPU_CREATE_ISOLATE
Create an isolated SPU context. Isolated contexts are protected from some PPE
(PowerPC Processing Element) operations, such as access to the SPU local store
and the NPC register.

Creating SPU_CREATE_ISOLATE contexts also requires the SPU_CRE-
ATE_NOSCHED flag.

SPU_CREATE_AFFINITY_SPU (since Linux 2.6.23)
Create a context with affinity to another SPU context. This affinity information
is used within the SPU scheduling algorithm. Using this flag requires that a file
descriptor referring to the other SPU context be passed in the neighbor_fd argu-
ment.

SPU_CREATE_AFFINITY_MEM (since Linux 2.6.23)
Create a context with affinity to system memory. This affinity information is
used within the SPU scheduling algorithm.

RETURN VALUE
On success, spu_create() returns a new file descriptor. On failure, -1 is returned, and
errno is set to indicate the error.

ERRORS
EACCES

The current user does not have write access to the spufs(7) mount point.

EEXIST
An SPU context already exists at the given pathname.

EFAULT
path is not a valid string pointer in the calling process’s address space.

EINVAL
path is not a directory in the spufs(7) mount point, or invalid flags have been
provided.

ELOOP
Too many symbolic links were found while resolving path.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

Linux man-pages 6.16 2025-09-21 1013

spu_create(2) System Calls Manual spu_create(2)

ENAMETOOLONG
path is too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
An isolated context was requested, but the hardware does not support SPU isola-
tion.

ENOENT
Part of path could not be resolved.

ENOMEM
The kernel could not allocate all resources required.

ENOSPC
There are not enough SPU resources available to create a new context or the
user-specific limit for the number of SPU contexts has been reached.

ENOSYS
The functionality is not provided by the current system, because either the hard-
ware does not provide SPUs or the spufs module is not loaded.

ENOTDIR
A part of path is not a directory.

EPERM
The SPU_CREATE_NOSCHED flag has been given, but the user does not have
the CAP_SYS_NICE capability.

FILES
path must point to a location beneath the mount point of spufs. By convention, it gets
mounted in /spu.

STANDARDS
Linux on PowerPC.

HISTORY
Linux 2.6.16.

Prior to the addition of the SPU_CREATE_AFFINITY_SPU flag in Linux 2.6.23, the
spu_create() system call took only three arguments (i.e., there was no neighbor_fd ar-
gument).

NOTES
spu_create() is meant to be used from libraries that implement a more abstract interface
to SPUs, not to be used from regular applications. See 〈http://www.bsc.es/projects
/deepcomputing/linuxoncell/〉 for the recommended libraries.

EXAMPLES
See spu_run(2) for an example of the use of spu_create()

SEE ALSO
close(2), spu_run(2), capabilities(7), spufs(7)

Linux man-pages 6.16 2025-09-21 1014

spu_run(2) System Calls Manual spu_run(2)

NAME
spu_run - execute an SPU context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/spu.h> /* Definition of SPU_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_spu_run, int fd , uint32_t *npc, uint32_t *event);

Note: glibc provides no wrapper for spu_run(), necessitating the use of syscall(2).

DESCRIPTION
The spu_run() system call is used on PowerPC machines that implement the Cell
Broadband Engine Architecture in order to access Synergistic Processor Units (SPUs).
The fd argument is a file descriptor returned by spu_create(2) that refers to a specific
SPU context. When the context gets scheduled to a physical SPU, it starts execution at
the instruction pointer passed in npc.

Execution of SPU code happens synchronously, meaning that spu_run() blocks while
the SPU is still running. If there is a need to execute SPU code in parallel with other
code on either the main CPU or other SPUs, a new thread of execution must be created
first (e.g., using pthread_create(3)).

When spu_run() returns, the current value of the SPU program counter is written to
npc, so successive calls to spu_run() can use the same npc pointer.

The event argument provides a buffer for an extended status code. If the SPU context
was created with the SPU_CREATE_EVENTS_ENABLED flag, then this buffer is
populated by the Linux kernel before spu_run() returns.

The status code may be one (or more) of the following constants:

SPE_EVENT_DMA_ALIGNMENT
A DMA alignment error occurred.

SPE_EVENT_INVALID_DMA
An invalid MFC DMA command was attempted.

SPE_EVENT_SPE_DATA_STORAGE
A DMA storage error occurred.

SPE_EVENT_SPE_ERROR
An illegal instruction was executed.

NULL is a valid value for the event argument. In this case, the events will not be re-
ported to the calling process.

RETURN VALUE
On success, spu_run() returns the value of the spu_status register. On failure, it returns
-1 and sets errno is set to indicate the error.

The spu_status register value is a bit mask of status codes and optionally a 14-bit code
returned from the stop-and-signal instruction on the SPU. The bit masks for the status

Linux man-pages 6.16 2025-09-21 1015

spu_run(2) System Calls Manual spu_run(2)

codes are:

0x02 SPU was stopped by a stop-and-signal instruction.

0x04 SPU was stopped by a halt instruction.

0x08 SPU is waiting for a channel.

0x10 SPU is in single-step mode.

0x20 SPU has tried to execute an invalid instruction.

0x40 SPU has tried to access an invalid channel.

0x3fff0000
The bits masked with this value contain the code returned from a stop-and-sig-
nal instruction. These bits are valid only if the 0x02 bit is set.

If spu_run() has not returned an error, one or more bits among the lower eight ones are
always set.

ERRORS
EBADF

fd is not a valid file descriptor.

EFAULT
npc is not a valid pointer, or event is non-NULL and an invalid pointer.

EINTR
A signal occurred while spu_run() was in progress; see signal(7). The npc
value has been updated to the new program counter value if necessary.

EINVAL
fd is not a valid file descriptor returned from spu_create(2).

ENOMEM
There was not enough memory available to handle a page fault resulting from a
Memory Flow Controller (MFC) direct memory access.

ENOSYS
The functionality is not provided by the current system, because either the hard-
ware does not provide SPUs or the spufs module is not loaded.

STANDARDS
Linux on PowerPC.

HISTORY
Linux 2.6.16.

NOTES
spu_run() is meant to be used from libraries that implement a more abstract interface to
SPUs, not to be used from regular applications. See 〈http://www.bsc.es/projects
/deepcomputing/linuxoncell/〉 for the recommended libraries.

EXAMPLES
The following is an example of running a simple, one-instruction SPU program with the
spu_run() system call.

Linux man-pages 6.16 2025-09-21 1016

spu_run(2) System Calls Manual spu_run(2)

#include <err.h>
#include <fcntl.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main(void)
{

int context, fd, spu_status;
uint32_t instruction, npc;

context = syscall(SYS_spu_create, "/spu/example-context", 0, 0755);
if (context == -1)

err(EXIT_FAILURE, "spu_create");

/*
* Write a 'stop 0x1234' instruction to the SPU's
* local store memory.
*/

instruction = 0x00001234;

fd = open("/spu/example-context/mem", O_RDWR);
if (fd == -1)

err(EXIT_FAILURE, "open");
write(fd, &instruction, sizeof(instruction));

/*
* set npc to the starting instruction address of the
* SPU program. Since we wrote the instruction at the
* start of the mem file, the entry point will be 0x0.
*/

npc = 0;

spu_status = syscall(SYS_spu_run, context, &npc, NULL);
if (spu_status == -1)

err(EXIT_FAILURE, "open");

/*
* We should see a status code of 0x12340002:
* 0x00000002 (spu was stopped due to stop-and-signal)
* | 0x12340000 (the stop-and-signal code)
*/

printf("SPU Status: %#08x\n", spu_status);

exit(EXIT_SUCCESS);

Linux man-pages 6.16 2025-09-21 1017

spu_run(2) System Calls Manual spu_run(2)

}

SEE ALSO
close(2), spu_create(2), capabilities(7), spufs(7)

Linux man-pages 6.16 2025-09-21 1018

stat(2) System Calls Manual stat(2)

NAME
stat, fstat, lstat, fstatat - get file status

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

int stat(const char *restrict path,
struct stat *restrict statbuf);

int fstat(int fd , struct stat *statbuf);
int lstat(const char *restrict path,

struct stat *restrict statbuf);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int fstatat(int dirfd , const char *restrict path,
struct stat *restrict statbuf , int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lstat():
/* Since glibc 2.20 */ _DEFAULT_SOURCE

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200112L
|| /* glibc 2.19 and earlier */ _BSD_SOURCE

fstatat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
These functions return information about a file, in the buffer pointed to by statbuf . No
permissions are required on the file itself, but—in the case of stat(), fstatat(), and
lstat()—execute (search) permission is required on all of the directories in path that
lead to the file.

stat() and fstatat() retrieve information about the file pointed to by path; the differences
for fstatat() are described below.

lstat() is identical to stat(), except that if path is a symbolic link, then it returns infor-
mation about the link itself, not the file that the link refers to.

fstat() is identical to stat(), except that the file about which information is to be re-
trieved is specified by the file descriptor fd .

The stat structure
All of these system calls return a stat structure (see stat(3type)).

Note: for performance and simplicity reasons, different fields in the stat structure may
contain state information from different moments during the execution of the system

Linux man-pages 6.16 2025-10-29 1019

stat(2) System Calls Manual stat(2)

call. For example, if st_mode or st_uid is changed by another process by calling
chmod(2) or chown(2), stat() might return the old st_mode together with the new st_uid ,
or the old st_uid together with the new st_mode.

fstatat()
The fstatat() system call is a more general interface for accessing file information which
can still provide exactly the behavior of each of stat(), lstat(), and fstat().

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by stat() and lstat() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like stat() and lstat())

If path is absolute, then dirfd is ignored.

flags can either be 0, or include one or more of the following flags ORed:

AT_EMPTY_PATH (since Linux 2.6.39)
If path is an empty string (or NULL, since Linux 6.11) operate on the file re-
ferred to by dirfd (which may have been obtained using the open(2) O_PATH
flag). In this case, dirfd can refer to any type of file, not just a directory, and the
behavior of fstatat() is similar to that of fstat(). If dirfd is AT_FDCWD, the
call operates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_NO_AUTOMOUNT (since Linux 2.6.38)
Don’t automount the terminal ("basename") component of path. Since Linux
3.1 this flag is ignored. Since Linux 4.11 this flag is implied.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead return information about
the link itself, like lstat(). (By default, fstatat() dereferences symbolic links,
like stat().)

See openat(2) for an explanation of the need for fstatat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of path.
(See also path_resolution(7).)

EBADF
fd is not a valid open file descriptor.

EBADF
(fstatat()) path is relative but dirfd is neither AT_FDCWD nor a valid file de-
scriptor.

Linux man-pages 6.16 2025-10-29 1020

stat(2) System Calls Manual stat(2)

EFAULT
Bad address.

EINVAL
(fstatat()) Invalid flag specified in flags.

ELOOP
Too many symbolic links encountered while traversing the path.

ENAMETOOLONG
path is too long.

ENOENT
A component of path does not exist or is a dangling symbolic link.

ENOENT
path is an empty string and AT_EMPTY_PATH was not specified in flags.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path prefix of path is not a directory.

ENOTDIR
(fstatat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

EOVERFLOW
path or fd refers to a file whose size, inode number, or number of blocks cannot
be represented in, respectively, the types off_t, ino_t, or blkcnt_t. This error can
occur when, for example, an application compiled on a 32-bit platform without
-D_FILE_OFFSET_BITS=64 calls stat() on a file whose size exceeds
(1<<31)-1 bytes.

STANDARDS
POSIX.1-2024.

HISTORY
stat()
fstat()
lstat()

SVr4, 4.3BSD, POSIX.1-2001.

fstatat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

According to POSIX.1-2001, lstat() on a symbolic link need return valid information
only in the st_size field and the file type of the st_mode field of the stat structure.
POSIX.1-2008 tightens the specification, requiring lstat() to return valid information in
all fields except the mode bits in st_mode.

Use of the st_blocks and st_blksize fields may be less portable. (They were introduced
in BSD. The interpretation differs between systems, and possibly on a single system
when NFS mounts are involved.)

Linux man-pages 6.16 2025-10-29 1021

stat(2) System Calls Manual stat(2)

C library/kernel differences
Over time, increases in the size of the stat structure have led to three successive versions
of stat(): sys_stat() (slot __NR_oldstat), sys_newstat() (slot __NR_stat), and
sys_stat64() (slot __NR_stat64) on 32-bit platforms such as i386. The first two versions
were already present in Linux 1.0 (albeit with different names); the last was added in
Linux 2.4. Similar remarks apply for fstat() and lstat().

The kernel-internal versions of the stat structure dealt with by the different versions are,
respectively:

__old_kernel_stat
The original structure, with rather narrow fields, and no padding.

stat Larger st_ino field and padding added to various parts of the structure to allow
for future expansion.

stat64
Even larger st_ino field, larger st_uid and st_gid fields to accommodate the
Linux-2.4 expansion of UIDs and GIDs to 32 bits, and various other enlarged
fields and further padding in the structure. (Various padding bytes were eventu-
ally consumed in Linux 2.6, with the advent of 32-bit device IDs and nanosec-
ond components for the timestamp fields.)

The glibc stat() wrapper function hides these details from applications, invoking the
most recent version of the system call provided by the kernel, and repacking the re-
turned information if required for old binaries.

On modern 64-bit systems, life is simpler: there is a single stat() system call and the
kernel deals with a stat structure that contains fields of a sufficient size.

The underlying system call employed by the glibc fstatat() wrapper function is actually
called fstatat64() or, on some architectures, newfstatat().

EXAMPLES
The following program calls lstat() and displays selected fields in the returned stat
structure.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <time.h>

int
main(int argc, char *argv[])
{

struct stat sb;

if (argc != 2) {
fprintf(stderr, "Usage: %s <path>\n", argv[0]);
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-10-29 1022

stat(2) System Calls Manual stat(2)

}

if (lstat(argv[1], &sb) == -1) {
perror("lstat");
exit(EXIT_FAILURE);

}

printf("ID of containing device: [%x,%x]\n",
major(sb.st_dev),
minor(sb.st_dev));

printf("File type: ");

switch (sb.st_mode & S_IFMT) {
case S_IFBLK: printf("block device\n"); break;
case S_IFCHR: printf("character device\n"); break;
case S_IFDIR: printf("directory\n"); break;
case S_IFIFO: printf("FIFO/pipe\n"); break;
case S_IFLNK: printf("symlink\n"); break;
case S_IFREG: printf("regular file\n"); break;
case S_IFSOCK: printf("socket\n"); break;
default: printf("unknown?\n"); break;
}

printf("I-node number: %ju\n", (uintmax_t) sb.st_ino);

printf("Mode: %jo (octal)\n",
(uintmax_t) sb.st_mode);

printf("Link count: %ju\n", (uintmax_t) sb.st_nlink);
printf("Ownership: UID=%ju GID=%ju\n",

(uintmax_t) sb.st_uid, (uintmax_t) sb.st_gid);

printf("Preferred I/O block size: %jd bytes\n",
(intmax_t) sb.st_blksize);

printf("File size: %jd bytes\n",
(intmax_t) sb.st_size);

printf("Blocks allocated: %jd\n",
(intmax_t) sb.st_blocks);

printf("Last status change: %s", ctime(&sb.st_ctime));
printf("Last file access: %s", ctime(&sb.st_atime));
printf("Last file modification: %s", ctime(&sb.st_mtime));

exit(EXIT_SUCCESS);
}

Linux man-pages 6.16 2025-10-29 1023

stat(2) System Calls Manual stat(2)

SEE ALSO
ls(1), stat(1), access(2), chmod(2), chown(2), readlink(2), statx(2), utime(2), stat(3type),
capabilities(7), inode(7), symlink(7)

Linux man-pages 6.16 2025-10-29 1024

statfs(2) System Calls Manual statfs(2)

NAME
statfs, fstatfs - get filesystem statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/vfs.h> /* or <sys/statfs.h> */

int statfs(const char *path, struct statfs *buf);
int fstatfs(int fd , struct statfs *buf);

Unless you need the f_type field, you should use the standard statvfs(3) interface in-
stead.

DESCRIPTION
The statfs() system call returns information about a mounted filesystem. path is the
pathname of any file within the mounted filesystem. buf is a pointer to a statfs structure
defined approximately as follows:

struct statfs {
__fsword_t f_type; /* Type of filesystem (see below) */
__fsword_t f_bsize; /* Optimal transfer block size */
fsblkcnt_t f_blocks; /* Total data blocks in filesystem */
fsblkcnt_t f_bfree; /* Free blocks in filesystem */
fsblkcnt_t f_bavail; /* Free blocks available to

unprivileged user */
fsfilcnt_t f_files; /* Total inodes in filesystem */
fsfilcnt_t f_ffree; /* Free inodes in filesystem */
fsid_t f_fsid; /* Filesystem ID */
__fsword_t f_namelen; /* Maximum length of filenames */
__fsword_t f_frsize; /* Fragment size (since Linux 2.6) */
__fsword_t f_flags; /* Mount flags of filesystem

(since Linux 2.6.36) */
__fsword_t f_spare[xxx];

/* Padding bytes reserved for future use */
};

The following filesystem types may appear in f_type:

ADFS_SUPER_MAGIC 0xadf5
AFFS_SUPER_MAGIC 0xadff
AFS_SUPER_MAGIC 0x5346414f
ANON_INODE_FS_MAGIC 0x09041934 /* Anonymous inode FS (for

pseudofiles that have no name;
e.g., epoll, signalfd, bpf) */

AUTOFS_SUPER_MAGIC 0x0187
BDEVFS_MAGIC 0x62646576
BEFS_SUPER_MAGIC 0x42465331
BFS_MAGIC 0x1badface
BINFMTFS_MAGIC 0x42494e4d
BPF_FS_MAGIC 0xcafe4a11

Linux man-pages 6.16 2025-09-21 1025

statfs(2) System Calls Manual statfs(2)

BTRFS_SUPER_MAGIC 0x9123683e
BTRFS_TEST_MAGIC 0x73727279
CGROUP_SUPER_MAGIC 0x27e0eb /* Cgroup pseudo FS */
CGROUP2_SUPER_MAGIC 0x63677270 /* Cgroup v2 pseudo FS */
CIFS_MAGIC_NUMBER 0xff534d42
CODA_SUPER_MAGIC 0x73757245
COH_SUPER_MAGIC 0x012ff7b7
CRAMFS_MAGIC 0x28cd3d45
DEBUGFS_MAGIC 0x64626720
DEVFS_SUPER_MAGIC 0x1373 /* Linux 2.6.17 and earlier */
DEVPTS_SUPER_MAGIC 0x1cd1
ECRYPTFS_SUPER_MAGIC 0xf15f
EFIVARFS_MAGIC 0xde5e81e4
EFS_SUPER_MAGIC 0x00414a53
EXT_SUPER_MAGIC 0x137d /* Linux 2.0 and earlier */
EXT2_OLD_SUPER_MAGIC 0xef51
EXT2_SUPER_MAGIC 0xef53
EXT3_SUPER_MAGIC 0xef53
EXT4_SUPER_MAGIC 0xef53
F2FS_SUPER_MAGIC 0xf2f52010
FUSE_SUPER_MAGIC 0x65735546
FUTEXFS_SUPER_MAGIC 0xbad1dea /* Unused */
HFS_SUPER_MAGIC 0x4244
HOSTFS_SUPER_MAGIC 0x00c0ffee
HPFS_SUPER_MAGIC 0xf995e849
HUGETLBFS_MAGIC 0x958458f6
ISOFS_SUPER_MAGIC 0x9660
JFFS2_SUPER_MAGIC 0x72b6
JFS_SUPER_MAGIC 0x3153464a
MINIX_SUPER_MAGIC 0x137f /* original minix FS */
MINIX_SUPER_MAGIC2 0x138f /* 30 char minix FS */
MINIX2_SUPER_MAGIC 0x2468 /* minix V2 FS */
MINIX2_SUPER_MAGIC2 0x2478 /* minix V2 FS, 30 char names */
MINIX3_SUPER_MAGIC 0x4d5a /* minix V3 FS, 60 char names */
MQUEUE_MAGIC 0x19800202 /* POSIX message queue FS */
MSDOS_SUPER_MAGIC 0x4d44
MTD_INODE_FS_MAGIC 0x11307854
NCP_SUPER_MAGIC 0x564c
NFS_SUPER_MAGIC 0x6969
NILFS_SUPER_MAGIC 0x3434
NSFS_MAGIC 0x6e736673
NTFS_SB_MAGIC 0x5346544e
OCFS2_SUPER_MAGIC 0x7461636f
OPENPROM_SUPER_MAGIC 0x9fa1
OVERLAYFS_SUPER_MAGIC 0x794c7630
PIPEFS_MAGIC 0x50495045
PROC_SUPER_MAGIC 0x9fa0 /* /proc FS */

Linux man-pages 6.16 2025-09-21 1026

statfs(2) System Calls Manual statfs(2)

PSTOREFS_MAGIC 0x6165676c
QNX4_SUPER_MAGIC 0x002f
QNX6_SUPER_MAGIC 0x68191122
RAMFS_MAGIC 0x858458f6
REISERFS_SUPER_MAGIC 0x52654973
ROMFS_MAGIC 0x7275
SECURITYFS_MAGIC 0x73636673
SELINUX_MAGIC 0xf97cff8c
SMACK_MAGIC 0x43415d53
SMB_SUPER_MAGIC 0x517b
SMB2_MAGIC_NUMBER 0xfe534d42
SOCKFS_MAGIC 0x534f434b
SQUASHFS_MAGIC 0x73717368
SYSFS_MAGIC 0x62656572
SYSV2_SUPER_MAGIC 0x012ff7b6
SYSV4_SUPER_MAGIC 0x012ff7b5
TMPFS_MAGIC 0x01021994
TRACEFS_MAGIC 0x74726163
UDF_SUPER_MAGIC 0x15013346
UFS_MAGIC 0x00011954
USBDEVICE_SUPER_MAGIC 0x9fa2
V9FS_MAGIC 0x01021997
VXFS_SUPER_MAGIC 0xa501fcf5
XENFS_SUPER_MAGIC 0xabba1974
XENIX_SUPER_MAGIC 0x012ff7b4
XFS_SUPER_MAGIC 0x58465342
_XIAFS_SUPER_MAGIC 0x012fd16d /* Linux 2.0 and earlier */

Most of these MAGIC constants are defined in /usr/include/linux/magic.h, and some are
hardcoded in kernel sources.

The f_flags field is a bit mask indicating mount options for the filesystem. It contains
zero or more of the following bits:

ST_MANDLOCK
Mandatory locking is permitted on the filesystem (see fcntl(2)).

ST_NOATIME
Do not update access times; see mount(2).

ST_NODEV
Disallow access to device special files on this filesystem.

ST_NODIRATIME
Do not update directory access times; see mount(2).

ST_NOEXEC
Execution of programs is disallowed on this filesystem.

ST_NOSUID
The set-user-ID and set-group-ID bits are ignored by exec(3) for executable files
on this filesystem

Linux man-pages 6.16 2025-09-21 1027

statfs(2) System Calls Manual statfs(2)

ST_RDONLY
This filesystem is mounted read-only.

ST_RELATIME
Update atime relative to mtime/ctime; see mount(2).

ST_SYNCHRONOUS
Writes are synched to the filesystem immediately (see the description of
O_SYNC in open(2)).

ST_NOSYMFOLLOW (since Linux 5.10)
Symbolic links are not followed when resolving paths; see mount(2).

Nobody knows what f_fsid is supposed to contain (but see below).

Fields that are undefined for a particular filesystem are set to 0.

fstatfs() returns the same information about an open file referenced by descriptor fd .

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

(statfs()) Search permission is denied for a component of the path prefix of path.
(See also path_resolution(7).)

EBADF
(fstatfs()) fd is not a valid open file descriptor.

EFAULT
buf or path points to an invalid address.

EINTR
The call was interrupted by a signal; see signal(7).

EIO An I/O error occurred while reading from the filesystem.

ELOOP
(statfs()) Too many symbolic links were encountered in translating path.

ENAMETOOLONG
(statfs()) path is too long.

ENOENT
(statfs()) The file referred to by path does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOSYS
The filesystem does not support this call.

ENOTDIR
(statfs()) A component of the path prefix of path is not a directory.

Linux man-pages 6.16 2025-09-21 1028

statfs(2) System Calls Manual statfs(2)

EOVERFLOW
Some values were too large to be represented in the returned struct.

VERSIONS
The f_fsid field

Solaris, Irix, and POSIX have a system call statvfs(2) that returns a struct statvfs (de-
fined in <sys/statvfs.h>) containing an unsigned long f_fsid . Linux, SunOS, HP-UX,
4.4BSD have a system call statfs() that returns a struct statfs (defined in <sys/vfs.h>)
containing a fsid_t f_fsid , where fsid_t is defined as struct { int val[2]; }. The same
holds for FreeBSD, except that it uses the include file <sys/mount.h>.

The general idea is that f_fsid contains some random stuff such that the pair (f_fsid ,ino)
uniquely determines a file. Some operating systems use (a variation on) the device num-
ber, or the device number combined with the filesystem type. Several operating systems
restrict giving out the f_fsid field to the superuser only (and zero it for unprivileged
users), because this field is used in the filehandle of the filesystem when NFS-exported,
and giving it out is a security concern.

Under some operating systems, the fsid can be used as the second argument to the
sysfs(2) system call.

STANDARDS
Linux.

HISTORY
The Linux statfs() was inspired by the 4.4BSD one (but they do not use the same struc-
ture).

The original Linux statfs() and fstatfs() system calls were not designed with extremely
large file sizes in mind. Subsequently, Linux 2.6 added new statfs64() and fstatfs64()
system calls that employ a new structure, statfs64. The new structure contains the same
fields as the original statfs structure, but the sizes of various fields are increased, to ac-
commodate large file sizes. The glibc statfs() and fstatfs() wrapper functions transpar-
ently deal with the kernel differences.

LSB has deprecated the library calls statfs() and fstatfs() and tells us to use statvfs(3)
and fstatvfs(3) instead.

NOTES
The __fsword_t type used for various fields in the statfs structure definition is a glibc in-
ternal type, not intended for public use. This leaves the programmer in a bit of a conun-
drum when trying to copy or compare these fields to local variables in a program. Using
unsigned int for such variables suffices on most systems.

Some systems have only <sys/vfs.h>, other systems also have <sys/statfs.h>, where the
former includes the latter. So it seems including the former is the best choice.

BUGS
From Linux 2.6.38 up to and including Linux 3.1, fstatfs() failed with the error
ENOSYS for file descriptors created by pipe(2).

SEE ALSO
stat(2), statvfs(3), path_resolution(7)

Linux man-pages 6.16 2025-09-21 1029

statmount(2) System Calls Manual statmount(2)

NAME
statmount - get a mount status

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/mount.h> /* Definition of STATMOUNT_* constants */
#include <unistd.h>

int syscall(SYS_statmount, struct mnt_id_req *req,
struct statmount *smbuf , size_t bufsize,
unsigned long flags);

#include <linux/mount.h>

struct mnt_id_req {
__u32 size; /* sizeof(struct mnt_id_req) */
__u64 mnt_id; /* The mnt_id being queried */
__u64 param; /* An ORed combination of the STATMOUNT_ constants */

};

struct statmount {
__u32 size;
__u64 mask;
__u32 sb_dev_major;
__u32 sb_dev_minor;
__u64 sb_magic;
__u32 sb_flags;
__u32 fs_type;
__u64 mnt_id;
__u64 mnt_parent_id;
__u32 mnt_id_old;
__u32 mnt_parent_id_old;
__u64 mnt_attr;
__u64 mnt_propagation;
__u64 mnt_peer_group;
__u64 mnt_master;
__u64 propagate_from;
__u32 mnt_root;
__u32 mnt_point;
char str[];

};

Note: glibc provides no wrapper for statmount(), necessitating the use of syscall(2).

DESCRIPTION
To access a mount’s status, the caller must have CAP_SYS_ADMIN in the user name-
space.

This function returns information about a mount, storing it in the buffer pointed to by
smbuf . The returned buffer is a struct statmount which is of size bufsize with the fields

Linux man-pages 6.16 2025-05-17 1030

statmount(2) System Calls Manual statmount(2)

filled in as described below.

(Note that reserved space and padding is omitted.)

The mnt_id_req structure
req.size is used by the kernel to determine which struct mnt_id_req is being passed in; it
should always be set to sizeof(struct mnt_id_req).

req.mnt_id can be obtained from either statx(2) using STATX_MNT_ID_UNIQUE or
from listmount(2) and is used as the identifier to query the status of the desired mount
point.

req.param is used to tell the kernel which fields the caller is interested in. It is an ORed
combination of the following constants

STATMOUNT_SB_BASIC /* Want/got sb_* */
STATMOUNT_MNT_BASIC /* Want/got mnt_* */
STATMOUNT_PROPAGATE_FROM /* Want/got propagate_from */
STATMOUNT_MNT_ROOT /* Want/got mnt_root */
STATMOUNT_MNT_POINT /* Want/got mnt_point */
STATMOUNT_FS_TYPE /* Want/got fs_type */

In general, the kernel does not reject values in req.param other than the above. (For an
exception, see EINVAL in errors.) Instead, it simply informs the caller which values are
supported by this kernel and filesystem via the statmount.mask field. Therefore, do not
simply set req.param to UINT_MAX (all bits set), as one or more bits may, in the fu-
ture, be used to specify an extension to the buffer.

The returned information
The status information for the target mount is returned in the statmount structure
pointed to by smbuf .

The fields in the statmount structure are:

smbuf.size
The size of the returned smbuf structure, including any of the strings fields that
were filled.

smbuf.mask
The ORed combination of STATMOUNT_* flags indicating which fields were
filled in and thus valid. The kernel may return fields that weren’t requested, and
may fail to return fields that were requested, depending on what the backing file
system and kernel supports. In either case, req.param will not be equal to mask.

smbuf.sb_dev_major
smbuf.sb_dev_minor

The device that is mounted at this mount point.

smbuf.sb_magic
The file system specific super block magic.

smbuf.sb_flags
The flags that are set on the super block, an ORed combination of
SB_RDONLY, SB_SYNCHRONOUS, SB_DIRSYNC, SB_LAZYTIME.

Linux man-pages 6.16 2025-05-17 1031

statmount(2) System Calls Manual statmount(2)

smbuf.fs_type
The offset to the location in the smbuf.str buffer that contains the string represen-
tation of the mounted file system. It is a null-terminated string.

smbuf.mnt_id
The unique mount ID of the mount.

smbuf.mnt_parent_id
The unique mount ID of the parent mount point of this mount. If this is the root
mount point then smbuf.mnt_id == smbuf.parent_mount_id .

smbuf.mnt_id_old
This corresponds to the mount ID that is exported by /proc/ pid /mountinfo.

smbuf.mnt_parent_id_old
This corresponds to the parent mount ID that is exported by
/proc/ pid /mountinfo.

smbuf.mnt_attr
The MOUNT_ATTR_* flags set on this mount point.

smbuf.mnt_propagation
The mount propagation flags, which can be one of MS_SHARED, MS_SLAVE,
MS_PRIVATE, MS_UNBINDABLE.

smbuf.mnt_peer_group
The ID of the shared peer group.

smbuf.mnt_master
The mount point receives its propagation from this mount ID.

smbuf.propagate_from
The ID from the namespace we propagated from.

smbuf.mnt_root
The offset to the location in the smbuf.str buffer that contains the string represen-
tation of the mount relative to the root of the file system. It is a null-terminated
string.

smbuf.mnt_point
The offset to the location in the smbuf.str buffer that contains the string represen-
tation of the mount relative to the current root (ie if you are in a chroot). It is a
null-terminated string.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EPERM

Permission is denied for accessing this mount.

EFAULT
req or smbuf points to a location outside the process’s accessible address space.

Linux man-pages 6.16 2025-05-17 1032

statmount(2) System Calls Manual statmount(2)

EINVAL
Invalid flag specified in flags.

EINVAL
req is of insufficient size to be utilized.

E2BIG
req is too large.

EOVERFLOW
The size of smbuf is too small to contain either the smbuf.fs_type, sm-
buf.mnt_root, or smbuf.mnt_point. Allocate a larger buffer and retry the call.

ENOENT
The specified req.mnt_id doesn’t exist.

ENOMEM
Out of memory (i.e., kernel memory).

STANDARDS
Linux.

SEE ALSO
listmount(2), statx(2)

Linux man-pages 6.16 2025-05-17 1033

statx(2) System Calls Manual statx(2)

NAME
statx - get file status (extended)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int statx(int dirfd , const char *_Nullable restrict path,
int flags, unsigned int mask,
struct statx *restrict statxbuf);

DESCRIPTION
This function returns information about a file, storing it in the buffer pointed to by
statxbuf . The returned buffer is a structure of the following type:

struct statx {
__u32 stx_mask; /* Mask of bits indicating

filled fields */
__u32 stx_blksize; /* Block size for filesystem I/O */
__u64 stx_attributes; /* Extra file attribute indicators */
__u32 stx_nlink; /* Number of hard links */
__u32 stx_uid; /* User ID of owner */
__u32 stx_gid; /* Group ID of owner */
__u16 stx_mode; /* File type and mode */
__u64 stx_ino; /* Inode number */
__u64 stx_size; /* Total size in bytes */
__u64 stx_blocks; /* Number of 512B blocks allocated */
__u64 stx_attributes_mask;

/* Mask to show what's supported
in stx_attributes */

/* The following fields are file timestamps */
struct statx_timestamp stx_atime; /* Last access */
struct statx_timestamp stx_btime; /* Creation */
struct statx_timestamp stx_ctime; /* Last status change */
struct statx_timestamp stx_mtime; /* Last modification */

/* If this file represents a device, then the next two
fields contain the ID of the device */

__u32 stx_rdev_major; /* Major ID */
__u32 stx_rdev_minor; /* Minor ID */

/* The next two fields contain the ID of the device
containing the filesystem where the file resides */

__u32 stx_dev_major; /* Major ID */
__u32 stx_dev_minor; /* Minor ID */

Linux man-pages 6.16 2025-09-21 1034

statx(2) System Calls Manual statx(2)

__u64 stx_mnt_id; /* Mount ID */

/* Direct I/O alignment restrictions */
__u32 stx_dio_mem_align;
__u32 stx_dio_offset_align;

__u64 stx_subvol; /* Subvolume identifier */

/* Direct I/O atomic write limits */
__u32 stx_atomic_write_unit_min;
__u32 stx_atomic_write_unit_max;
__u32 stx_atomic_write_segments_max;

/* File offset alignment for direct I/O reads */
__u32 stx_dio_read_offset_align;

/* Direct I/O atomic write max opt limit */
__u32 stx_atomic_write_unit_max_opt;

};

The file timestamps are structures of the following type:

struct statx_timestamp {
__s64 tv_sec; /* Seconds since the Epoch (UNIX time) */
__u32 tv_nsec; /* Nanoseconds since tv_sec */

};

(Note that reserved space and padding is omitted.)

Invoking statx():
To access a file’s status, no permissions are required on the file itself, but in the case of
statx() with a pathname, execute (search) permission is required on all of the directories
in path that lead to the file.

statx() uses path, dirfd , and flags to identify the target file in one of the following
ways:

An absolute pathname
If path begins with a slash, then it is an absolute pathname that identifies the tar-
get file. In this case, dirfd is ignored.

A relative pathname
If path is a string that begins with a character other than a slash and dirfd is
AT_FDCWD, then path is a relative pathname that is interpreted relative to the
process’s current working directory.

A directory-relative pathname
If path is a string that begins with a character other than a slash and dirfd is a
file descriptor that refers to a directory, then path is a relative pathname that is
interpreted relative to the directory referred to by dirfd . (See openat(2) for an
explanation of why this is useful.)

Linux man-pages 6.16 2025-09-21 1035

statx(2) System Calls Manual statx(2)

By file descriptor
If path is an empty string (or NULL since Linux 6.11) and the
AT_EMPTY_PATH flag is specified in flags (see below), then the target file is
the one referred to by the file descriptor dirfd .

flags can be used to influence a pathname-based lookup. A value for flags is con-
structed by ORing together zero or more of the following constants:

AT_EMPTY_PATH
If path is an empty string (or NULL since Linux 6.11), operate on the file re-
ferred to by dirfd (which may have been obtained using the open(2) O_PATH
flag). In this case, dirfd can refer to any type of file, not just a directory.

If dirfd is AT_FDCWD, the call operates on the current working directory.

AT_NO_AUTOMOUNT
Don’t automount the terminal ("basename") component of path if it is a direc-
tory that is an automount point. This allows the caller to gather attributes of an
automount point (rather than the location it would mount). This flag has no ef-
fect if the mount point has already been mounted over.

The AT_NO_AUTOMOUNT flag can be used in tools that scan directories to
prevent mass-automounting of a directory of automount points.

All of stat(2), lstat(2), and fstatat(2) act as though AT_NO_AUTOMOUNT was
set.

AT_SYMLINK_NOFOLLOW
If path is a symbolic link, do not dereference it: instead return information about
the link itself, like lstat(2).

flags can also be used to control what sort of synchronization the kernel will do when
querying a file on a remote filesystem. This is done by ORing in one of the following
values:

AT_STATX_SYNC_AS_STAT
Do whatever stat(2) does. This is the default and is very much filesystem-spe-
cific.

AT_STATX_FORCE_SYNC
Force the attributes to be synchronized with the server. This may require that a
network filesystem perform a data writeback to get the timestamps correct.

AT_STATX_DONT_SYNC
Don’t synchronize anything, but rather just take whatever the system has cached
if possible. This may mean that the information returned is approximate, but, on
a network filesystem, it may not involve a round trip to the server - even if no
lease is held.

The mask argument to statx() is used to tell the kernel which fields the caller is inter-
ested in. mask is an ORed combination of the following constants:

STATX_TYPE Want stx_mode & S_IFMT
STATX_MODE Want stx_mode & ~S_IFMT

Linux man-pages 6.16 2025-09-21 1036

statx(2) System Calls Manual statx(2)

STATX_NLINK Want stx_nlink
STATX_UID Want stx_uid
STATX_GID Want stx_gid
STATX_ATIME Want stx_atime
STATX_MTIME Want stx_mtime
STATX_CTIME Want stx_ctime
STATX_INO Want stx_ino
STATX_SIZE Want stx_size
STATX_BLOCKS Want stx_blocks
STATX_BASIC_STATS [All of the above]
STATX_BTIME Want stx_btime
STATX_ALL The same as STATX_BASIC_STATS | STATX_BTIME.

It is deprecated and should not be used.
STATX_MNT_ID Want stx_mnt_id (since Linux 5.8)
STATX_DIOALIGN Want stx_dio_mem_align and stx_dio_offset_align.

(since Linux 6.1; support varies by filesystem)
STATX_MNT_ID_UNIQUE Want unique stx_mnt_id (since Linux 6.8)
STATX_SUBVOL Want stx_subvol

(since Linux 6.10; support varies by filesystem)
STATX_WRITE_ATOMIC Want stx_atomic_write_unit_min,

stx_atomic_write_unit_max,
stx_atomic_write_segments_max,
and stx_atomic_write_unit_max_opt.
(since Linux 6.11; support varies by filesystem)

STATX_DIO_READ_ALIGN Want stx_dio_read_offset_align.
(since Linux 6.14; support varies by filesystem)

Note that, in general, the kernel does not reject values in mask other than the above.
(For an exception, see EINVAL in errors.) Instead, it simply informs the caller which
values are supported by this kernel and filesystem via the statx.stx_mask field. There-
fore, do not simply set mask to UINT_MAX (all bits set), as one or more bits may, in
the future, be used to specify an extension to the buffer.

The returned information
The status information for the target file is returned in the statx structure pointed to by
statxbuf . Included in this is stx_mask which indicates what other information has been
returned. stx_mask has the same format as the mask argument and bits are set in it to
indicate which fields have been filled in.

It should be noted that the kernel may return fields that weren’t requested and may fail
to return fields that were requested, depending on what the backing filesystem supports.
(Fields that are given values despite being unrequested can just be ignored.) In either
case, stx_mask will not be equal mask.

If a filesystem does not support a field or if it has an unrepresentable value (for instance,
a file with an exotic type), then the mask bit corresponding to that field will be cleared in
stx_mask even if the user asked for it and a dummy value will be filled in for compati-
bility purposes if one is available (e.g., a dummy UID and GID may be specified to
mount under some circumstances).

Linux man-pages 6.16 2025-09-21 1037

statx(2) System Calls Manual statx(2)

A filesystem may also fill in fields that the caller didn’t ask for if it has values for them
available and the information is available at no extra cost. If this happens, the corre-
sponding bits will be set in stx_mask.

Note: for performance and simplicity reasons, different fields in the statx structure may
contain state information from different moments during the execution of the system
call. For example, if stx_mode or stx_uid is changed by another process by calling
chmod(2) or chown(2), stat() might return the old stx_mode together with the new
stx_uid , or the old stx_uid together with the new stx_mode.

Apart from stx_mask (which is described above), the fields in the statx structure are:

stx_blksize
The "preferred" block size for efficient filesystem I/O. (Writing to a file in
smaller chunks may cause an inefficient read-modify-rewrite.)

stx_attributes
Further status information about the file (see below for more information).

stx_nlink
The number of hard links on a file.

stx_uid
This field contains the user ID of the owner of the file.

stx_gid
This field contains the ID of the group owner of the file.

stx_mode
The file type and mode. See inode(7) for details.

stx_ino
The inode number of the file.

stx_size
The size of the file (if it is a regular file or a symbolic link) in bytes. The size of
a symbolic link is the length of the pathname it contains, without a terminating
null byte.

stx_blocks
The number of blocks allocated to the file on the medium, in 512-byte units.
(This may be smaller than stx_size/512 when the file has holes.)

stx_attributes_mask
A mask indicating which bits in stx_attributes are supported by the VFS and the
filesystem.

stx_atime
The file’s last access timestamp.

stx_btime
The file’s creation timestamp.

stx_ctime
The file’s last status change timestamp.

Linux man-pages 6.16 2025-09-21 1038

statx(2) System Calls Manual statx(2)

stx_mtime
The file’s last modification timestamp.

stx_dev_major
stx_dev_minor

The device on which this file (inode) resides.

stx_rdev_major
stx_rdev_minor

The device that this file (inode) represents if the file is of block or character de-
vice type.

stx_mnt_id
If using STATX_MNT_ID, this is the mount ID of the mount containing the file.
This is the same number reported by name_to_handle_at(2) and corresponds to
the number in the first field in one of the records in /proc/self/mountinfo.

If using STATX_MNT_ID_UNIQUE, this is the unique mount ID of the mount
containing the file. This is the number reported by listmount(2) and is the ID
used to query the mount with statmount(2). It is guaranteed to not be reused
while the system is running.

stx_dio_mem_align
The alignment (in bytes) required for user memory buffers for direct I/O (O_DI-
RECT) on this file, or 0 if direct I/O is not supported on this file.

STATX_DIOALIGN (stx_dio_mem_align and stx_dio_offset_align) is sup-
ported on block devices since Linux 6.1. The support on regular files varies by
filesystem; it is supported by ext4, f2fs, and xfs since Linux 6.1.

stx_dio_offset_align
The alignment (in bytes) required for file offsets and I/O segment lengths for di-
rect I/O (O_DIRECT) on this file, or 0 if direct I/O is not supported on this file.
This will only be nonzero if stx_dio_mem_align is nonzero, and vice versa.

stx_dio_read_offset_align
The alignment (in bytes) required for file offsets and I/O segment lengths for di-
rect I/O reads (O_DIRECT) on this file. If zero, the limit in stx_dio_off-
set_align applies for reads as well. If non-zero, this value must be smaller than
or equal to stx_dio_offset_align which must be provided by the file system if re-
quested by the application. The memory alignment in stx_dio_mem_align is not
affected by this value.

STATX_DIO_READ_ALIGN (stx_dio_offset_align) is supported by xfs on
regular files since Linux 6.14.

stx_subvol
Subvolume number of the current file.

Subvolumes are fancy directories, i.e., they form a tree structure that may be
walked recursively. Support varies by filesystem; it is supported by bcachefs and
btrfs since Linux 6.10.

Linux man-pages 6.16 2025-09-21 1039

statx(2) System Calls Manual statx(2)

stx_atomic_write_unit_min
stx_atomic_write_unit_max

The minimum and maximum sizes (in bytes) supported for direct I/O (O_DI-
RECT) on the file to be written with torn-write protection. These values are
each guaranteed to be a power-of-2.

STATX_WRITE_ATOMIC (stx_atomic_write_unit_min,
stx_atomic_write_unit_max, and stx_atomic_write_segments_max) is supported
on block devices since Linux 6.11. The support on regular files varies by filesys-
tem; it is supported by xfs and ext4 since Linux 6.13.

stx_atomic_write_unit_max_opt
The maximum size (in bytes) which is optimised for writes issued with torn-
write protection. If non-zero, this value will not exceed the value in
stx_atomic_write_unit_max and will not be less than the value in
stx_atomic_write_unit_min. A value of zero indicates that
stx_atomic_write_unit_max is the optimised limit. Slower writes may be experi-
enced when the size of the write exceeds stx_atomic_write_unit_max_opt (when
non-zero).

stx_atomic_write_segments_max
The maximum number of elements in an array of vectors for a write with torn-
write protection enabled. See RWF_ATOMIC flag for pwritev2(2).

For further information on the above fields, see inode(7).

File attributes
The stx_attributes field contains a set of ORed flags that indicate additional attributes of
the file. Note that any attribute that is not indicated as supported by stx_attributes_mask
has no usable value here. The bits in stx_attributes_mask correspond bit-by-bit to
stx_attributes.

The flags are as follows:

STATX_ATTR_COMPRESSED
The file is compressed by the filesystem and may take extra resources to access.

STATX_ATTR_IMMUTABLE
The file cannot be modified: it cannot be deleted or renamed, no hard links can
be created to this file and no data can be written to it. See chattr(1)

STATX_ATTR_APPEND
The file can only be opened in append mode for writing. Random access writing
is not permitted. See chattr(1)

STATX_ATTR_NODUMP
File is not a candidate for backup when a backup program such as dump(8) is
run. See chattr(1)

STATX_ATTR_ENCRYPTED
A key is required for the file to be encrypted by the filesystem.

Linux man-pages 6.16 2025-09-21 1040

statx(2) System Calls Manual statx(2)

STATX_ATTR_VERITY (since Linux 5.5)
The file has fs-verity enabled. It cannot be written to, and all reads from it will
be verified against a cryptographic hash that covers the entire file (e.g., via a
Merkle tree).

STATX_ATTR_WRITE_ATOMIC (since Linux 6.11)
The file supports torn-write protection.

STATX_ATTR_DAX (since Linux 5.8)
The file is in the DAX (cpu direct access) state. DAX state attempts to minimize
software cache effects for both I/O and memory mappings of this file. It requires
a file system which has been configured to support DAX.

DAX generally assumes all accesses are via CPU load / store instructions which
can minimize overhead for small accesses, but may adversely affect CPU utiliza-
tion for large transfers.

File I/O is done directly to/from user-space buffers and memory mapped I/O
may be performed with direct memory mappings that bypass the kernel page
cache.

While the DAX property tends to result in data being transferred synchronously,
it does not give the same guarantees as the O_SYNC flag (see open(2)), where
data and the necessary metadata are transferred together.

A DAX file may support being mapped with the MAP_SYNC flag, which en-
ables a program to use CPU cache flush instructions to persist CPU store opera-
tions without an explicit fsync(2). See mmap(2) for more information.

STATX_ATTR_MOUNT_ROOT (since Linux 5.8)
The file is the root of a mount.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of path.
(See also path_resolution(7).)

EBADF
path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EFAULT
path or statxbuf points to a location outside the process’s accessible address
space or is NULL (except since Linux 6.11 if AT_EMPTY_PATH is specified
in flags, path is allowed to be NULL).

EINVAL
Invalid flag specified in flags.

EINVAL
Reserved flag specified in mask. (Currently, there is one such flag, designated by
the constant STATX__RESERVED, with the value 0x80000000U.)

Linux man-pages 6.16 2025-09-21 1041

statx(2) System Calls Manual statx(2)

ELOOP
Too many symbolic links encountered while traversing the pathname.

ENAMETOOLONG
path is too long.

ENOENT
A component of path does not exist, or path is an empty string and
AT_EMPTY_PATH was not specified in flags.

ENOMEM
Out of memory (i.e., kernel memory).

ENOTDIR
A component of the path prefix of path is not a directory or path is relative and
dirfd is a file descriptor referring to a file other than a directory.

STANDARDS
Linux.

HISTORY
Linux 4.11, glibc 2.28.

SEE ALSO
ls(1), stat(1), access(2), chmod(2), chown(2), name_to_handle_at(2), readlink(2),
stat(2), utime(2), proc(5), capabilities(7), inode(7), symlink(7)

Linux man-pages 6.16 2025-09-21 1042

stime(2) System Calls Manual stime(2)

NAME
stime - set time

SYNOPSIS
#include <time.h>

[[deprecated]] int stime(const time_t *t);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

stime():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
NOTE: This function is deprecated; use clock_settime(2) instead.

stime() sets the system’s idea of the time and date. The time, pointed to by t, is mea-
sured in seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). stime() may be
executed only by the superuser.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

Error in getting information from user space.

EPERM
The calling process has insufficient privilege. Under Linux, the
CAP_SYS_TIME privilege is required.

STANDARDS
None.

HISTORY
SVr4.

Starting with glibc 2.31, this function is no longer available to newly linked applications
and is no longer declared in <time.h>.

SEE ALSO
date(1), settimeofday(2), capabilities(7)

Linux man-pages 6.16 2025-05-17 1043

subpage_prot(2) System Calls Manual subpage_prot(2)

NAME
subpage_prot - define a subpage protection for an address range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_subpage_prot, unsigned long addr, unsigned long size,
uint32_t *map);

Note: glibc provides no wrapper for subpage_prot(), necessitating the use of syscall(2).

DESCRIPTION
The PowerPC-specific subpage_prot() system call provides the facility to control the
access permissions on individual 4 kB subpages on systems configured with a page size
of 64 kB.

The protection map is applied to the memory pages in the region starting at addr and
continuing for size bytes. Both of these arguments must be aligned to a 64-kB bound-
ary.

The protection map is specified in the buffer pointed to by map. The map has 2 bits per
4 kB subpage; thus each 32-bit word specifies the protections of 16 4 kB subpages in-
side a 64 kB page (so, the number of 32-bit words pointed to by map should equate to
the number of 64-kB pages specified by size). Each 2-bit field in the protection map is
either 0 to allow any access, 1 to prevent writes, or 2 or 3 to prevent all accesses.

RETURN VALUE
On success, subpage_prot() returns 0. Otherwise, one of the error codes specified be-
low is returned.

ERRORS
EFAULT

The buffer referred to by map is not accessible.

EINVAL
The addr or size arguments are incorrect. Both of these arguments must be
aligned to a multiple of the system page size, and they must not refer to a region
outside of the address space of the process or to a region that consists of huge
pages.

ENOMEM
Out of memory.

STANDARDS
Linux.

HISTORY
Linux 2.6.25 (PowerPC).

The system call is provided only if the kernel is configured with CON-
FIG_PPC_64K_PAGES.

Linux man-pages 6.16 2025-05-17 1044

subpage_prot(2) System Calls Manual subpage_prot(2)

NOTES
Normal page protections (at the 64-kB page level) also apply; the subpage protection
mechanism is an additional constraint, so putting 0 in a 2-bit field won’t allow writes to
a page that is otherwise write-protected.

Rationale
This system call is provided to assist writing emulators that operate using 64-kB pages
on PowerPC systems. When emulating systems such as x86, which uses a smaller page
size, the emulator can no longer use the memory-management unit (MMU) and normal
system calls for controlling page protections. (The emulator could emulate the MMU
by checking and possibly remapping the address for each memory access in software,
but that is slow.) The idea is that the emulator supplies an array of protection masks to
apply to a specified range of virtual addresses. These masks are applied at the level
where hardware page-table entries (PTEs) are inserted into the hardware page table
based on the Linux PTEs, so the Linux PTEs are not affected. Implicit in this is that the
regions of the address space that are protected are switched to use 4-kB hardware pages
rather than 64-kB hardware pages (on machines with hardware 64-kB page support).

SEE ALSO
mprotect(2), syscall(2)

Documentation/admin-guide/mm/hugetlbpage.rst in the Linux kernel source tree

Linux man-pages 6.16 2025-05-17 1045

swapon(2) System Calls Manual swapon(2)

NAME
swapon, swapoff - start/stop swapping to file/device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/swap.h>

int swapon(const char *path, int swapflags);
int swapoff(const char *path);

DESCRIPTION
swapon() sets the swap area to the file or block device specified by path. swapoff()
stops swapping to the file or block device specified by path.

If the SWAP_FLAG_PREFER flag is specified in the swapon() swapflags argument,
the new swap area will have a higher priority than default. The priority is encoded
within swapflags as:

(prio << SWAP_FLAG_PRIO_SHIFT) & SWAP_FLAG_PRIO_MASK

If the SWAP_FLAG_DISCARD flag is specified in the swapon() swapflags argument,
freed swap pages will be discarded before they are reused, if the swap device supports
the discard or trim operation. (This may improve performance on some Solid State De-
vices, but often it does not.) See also NOTES.

These functions may be used only by a privileged process (one having the
CAP_SYS_ADMIN capability).

Priority
Each swap area has a priority, either high or low. The default priority is low. Within the
low-priority areas, newer areas are even lower priority than older areas.

All priorities set with swapflags are high-priority, higher than default. They may have
any nonnegative value chosen by the caller. Higher numbers mean higher priority.

Swap pages are allocated from areas in priority order, highest priority first. For areas
with different priorities, a higher-priority area is exhausted before using a lower-priority
area. If two or more areas have the same priority, and it is the highest priority available,
pages are allocated on a round-robin basis between them.

As of Linux 1.3.6, the kernel usually follows these rules, but there are exceptions.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EBUSY

(for swapon()) The specified path is already being used as a swap area.

EINVAL
The file path exists, but refers neither to a regular file nor to a block device;

Linux man-pages 6.16 2025-05-17 1046

swapon(2) System Calls Manual swapon(2)

EINVAL
(swapon()) The indicated path does not contain a valid swap signature or resides
on an in-memory filesystem such as tmpfs(5).

EINVAL (since Linux 3.4)
(swapon()) An invalid flag value was specified in swapflags.

EINVAL
(swapoff()) path is not currently a swap area.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The file path does not exist.

ENOMEM
The system has insufficient memory to start swapping.

EPERM
The caller does not have the CAP_SYS_ADMIN capability. Alternatively, the
maximum number of swap files are already in use; see NOTES below.

STANDARDS
Linux.

HISTORY
The swapflags argument was introduced in Linux 1.3.2.

NOTES
The partition or path must be prepared with mkswap(8)

There is an upper limit on the number of swap files that may be used, defined by the ker-
nel constant MAX_SWAPFILES. Before Linux 2.4.10, MAX_SWAPFILES has the
value 8; since Linux 2.4.10, it has the value 32. Since Linux 2.6.18, the limit is de-
creased by 2 (thus 30), since Linux 5.19, the limit is decreased by 3 (thus: 29) if the ker-
nel is built with the CONFIG_MIGRATION option (which reserves two swap table
entries for the page migration features of mbind(2) and migrate_pages(2)). Since Linux
2.6.32, the limit is further decreased by 1 if the kernel is built with the CON-
FIG_MEMORY_FAILURE option. Since Linux 5.14, the limit is further decreased
by 4 if the kernel is built with the CONFIG_DEVICE_PRIVATE option. Since Linux
5.19, the limit is further decreased by 1 if the kernel is built with the CON-
FIG_PTE_MARKER option.

Discard of swap pages was introduced in Linux 2.6.29, then made conditional on the
SWAP_FLAG_DISCARD flag in Linux 2.6.36, which still discards the entire swap
area when swapon() is called, even if that flag bit is not set.

SEE ALSO
mkswap(8), swapoff (8), swapon(8)

Linux man-pages 6.16 2025-05-17 1047

symlink(2) System Calls Manual symlink(2)

NAME
symlink, symlinkat - make a new name for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int symlink(const char *target, const char *linkpath);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int symlinkat(const char *target, int newdirfd , const char *linkpath);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

symlink():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

symlinkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
symlink() creates a symbolic link named linkpath which contains the string target.

Symbolic links are interpreted at run time as if the contents of the link had been substi-
tuted into the path being followed to find a file or directory.

Symbolic links may contain .. path components, which (if used at the start of the link)
refer to the parent directories of that in which the link resides.

A symbolic link (also known as a soft link) may point to an existing file or to a nonexis-
tent one; the latter case is known as a dangling link.

The permissions of a symbolic link are irrelevant; the ownership is ignored when fol-
lowing the link (except when the protected_symlinks feature is enabled, as explained in
proc(5)), but is checked when removal or renaming of the link is requested and the link
is in a directory with the sticky bit (S_ISVTX) set.

If linkpath exists, it will not be overwritten.

symlinkat()
The symlinkat() system call operates in exactly the same way as symlink(), except for
the differences described here.

If the pathname given in linkpath is relative, then it is interpreted relative to the direc-
tory referred to by the file descriptor newdirfd (rather than relative to the current work-
ing directory of the calling process, as is done by symlink() for a relative pathname).

If linkpath is relative and newdirfd is the special value AT_FDCWD, then linkpath is
interpreted relative to the current working directory of the calling process (like

Linux man-pages 6.16 2025-10-29 1048

symlink(2) System Calls Manual symlink(2)

symlink())
If linkpath is absolute, then newdirfd is ignored.

See openat(2) for an explanation of the need for symlinkat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Write access to the directory containing linkpath is denied, or one of the directo-
ries in the path prefix of linkpath did not allow search permission. (See also
path_resolution(7).)

EBADF
(symlinkat()) linkpath is relative but newdirfd is neither AT_FDCWD nor a
valid file descriptor.

EDQUOT
The user’s quota of resources on the filesystem has been exhausted. The re-
sources could be inodes or disk blocks, depending on the filesystem implementa-
tion.

EEXIST
linkpath already exists.

EFAULT
target or linkpath points outside your accessible address space.

EIO An I/O error occurred.

ELOOP
Too many symbolic links were encountered in resolving linkpath.

ENAMETOOLONG
target or linkpath was too long.

ENOENT
A directory component in linkpath does not exist or is a dangling symbolic link,
or target or linkpath is an empty string.

ENOENT
(symlinkat()) linkpath is a relative pathname and newdirfd refers to a directory
that has been deleted.

ENOMEM
Insufficient kernel memory was available.

ENOSPC
The device containing the file has no room for the new directory entry.

ENOTDIR
A component used as a directory in linkpath is not, in fact, a directory.

Linux man-pages 6.16 2025-10-29 1049

symlink(2) System Calls Manual symlink(2)

ENOTDIR
(symlinkat()) linkpath is relative and newdirfd is a file descriptor referring to a
file other than a directory.

EPERM
The filesystem containing linkpath does not support the creation of symbolic
links.

EROFS
linkpath is on a read-only filesystem.

STANDARDS
POSIX.1-2024.

HISTORY
symlink()

SVr4, 4.3BSD, POSIX.1-2001.

symlinkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

glibc notes
On older kernels where symlinkat() is unavailable, the glibc wrapper function falls back
to the use of symlink(). When linkpath is a relative pathname, glibc constructs a path-
name based on the symbolic link in /proc/self/fd that corresponds to the newdirfd argu-
ment.

NOTES
No checking of target is done.

Deleting the name referred to by a symbolic link will actually delete the file (unless it
also has other hard links). If this behavior is not desired, use link(2).

SEE ALSO
ln(1), namei(1), lchown(2), link(2), lstat(2), open(2), readlink(2), rename(2), unlink(2),
path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 1050

sync(2) System Calls Manual sync(2)

NAME
sync, syncfs - commit filesystem caches to disk

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

void sync(void);

int syncfs(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sync():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

syncfs():
_GNU_SOURCE

DESCRIPTION
sync() causes all pending modifications to filesystem metadata and cached file data to be
written to the underlying filesystems.

syncfs() is like sync(), but synchronizes just the filesystem containing file referred to by
the open file descriptor fd .

RETURN VALUE
syncfs() returns 0 on success; on error, it returns -1 and sets errno to indicate the error.

ERRORS
sync() is always successful.

syncfs() can fail for at least the following reasons:

EBADF
fd is not a valid file descriptor.

EIO An error occurred during synchronization. This error may relate to data written
to any file on the filesystem, or on metadata related to the filesystem itself.

ENOSPC
Disk space was exhausted while synchronizing.

ENOSPC
EDQUOT

Data was written to a file on NFS or another filesystem which does not allocate
space at the time of a write(2) system call, and some previous write failed due to
insufficient storage space.

VERSIONS
According to the standard specification (i.e., POSIX.1), sync() schedules the writes, but
may return before the actual writing is done. However Linux waits for I/O completions,
and thus sync() or syncfs() provide the same guarantees as fsync() called on every file in

Linux man-pages 6.16 2025-10-29 1051

sync(2) System Calls Manual sync(2)

the system or filesystem respectively.

STANDARDS
sync()

POSIX.1-2024.

syncfs()
Linux.

HISTORY
sync()

POSIX.1-2001, SVr4, 4.3BSD.

syncfs()
Linux 2.6.39, glibc 2.14.

Since glibc 2.2.2, the Linux prototype for sync() is as listed above, following the various
standards. In glibc 2.2.1 and earlier, it was "int sync(void)", and sync() always returned
0.

In mainline kernel versions prior to Linux 5.8, syncfs() will fail only when passed a bad
file descriptor (EBADF). Since Linux 5.8, syncfs() will also report an error if one or
more inodes failed to be written back since the last syncfs() call.

BUGS
Before Linux 1.3.20, Linux did not wait for I/O to complete before returning.

SEE ALSO
sync(1), fdatasync(2), fsync(2)

Linux man-pages 6.16 2025-10-29 1052

sync_file_range(2) System Calls Manual sync_file_range(2)

NAME
sync_file_range - sync a file segment with disk

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

int sync_file_range(int fd , off_t offset, off_t nbytes,
unsigned int flags);

DESCRIPTION
sync_file_range() permits fine control when synchronizing the open file referred to by
the file descriptor fd with disk.

offset is the starting byte of the file range to be synchronized. nbytes specifies the length
of the range to be synchronized, in bytes; if nbytes is zero, then all bytes from offset
through to the end of file are synchronized. Synchronization is in units of the system
page size: offset is rounded down to a page boundary; (offset+nbytes-1) is rounded up
to a page boundary.

The flags bit-mask argument can include any of the following values:

SYNC_FILE_RANGE_WAIT_BEFORE
Wait upon write-out of all pages in the specified range that have already been
submitted to the device driver for write-out before performing any write.

SYNC_FILE_RANGE_WRITE
Initiate write-out of all dirty pages in the specified range which are not presently
submitted write-out. Note that even this may block if you attempt to write more
than request queue size.

SYNC_FILE_RANGE_WAIT_AFTER
Wait upon write-out of all pages in the range after performing any write.

Specifying flags as 0 is permitted, as a no-op.

Warning
This system call is extremely dangerous and should not be used in portable programs.
None of these operations writes out the file’s metadata. Therefore, unless the applica-
tion is strictly performing overwrites of already-instantiated disk blocks, there are no
guarantees that the data will be available after a crash. There is no user interface to
know if a write is purely an overwrite. On filesystems using copy-on-write semantics
(e.g., btrfs) an overwrite of existing allocated blocks is impossible. When writing into
preallocated space, many filesystems also require calls into the block allocator, which
this system call does not sync out to disk. This system call does not flush disk write
caches and thus does not provide any data integrity on systems with volatile disk write
caches.

Linux man-pages 6.16 2025-09-21 1053

sync_file_range(2) System Calls Manual sync_file_range(2)

Some details
SYNC_FILE_RANGE_WAIT_BEFORE and SYNC_FILE_RANGE_WAIT_AF-
TER will detect any I/O errors or ENOSPC conditions and will return these to the
caller.

Useful combinations of the flags bits are:

SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE
Ensures that all pages in the specified range which were dirty when
sync_file_range() was called are placed under write-out. This is a start-write-
for-data-integrity operation.

SYNC_FILE_RANGE_WRITE
Start write-out of all dirty pages in the specified range which are not presently
under write-out. This is an asynchronous flush-to-disk operation. This is not
suitable for data integrity operations.

SYNC_FILE_RANGE_WAIT_BEFORE (or SYNC_FILE_RANGE_WAIT_AF-
TER)

Wait for completion of write-out of all pages in the specified range. This can be
used after an earlier SYNC_FILE_RANGE_WAIT_BEFORE |
SYNC_FILE_RANGE_WRITE operation to wait for completion of that opera-
tion, and obtain its result.

SYNC_FILE_RANGE_WAIT_BEFORE | SYNC_FILE_RANGE_WRITE |
SYNC_FILE_RANGE_WAIT_AFTER

This is a write-for-data-integrity operation that will ensure that all pages in the
specified range which were dirty when sync_file_range() was called are com-
mitted to disk.

RETURN VALUE
On success, sync_file_range() returns 0; on failure -1 is returned and errno is set to in-
dicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
flags specifies an invalid bit; or offset or nbytes is invalid.

EIO I/O error.

ENOMEM
Out of memory.

ENOSPC
Out of disk space.

ESPIPE
fd refers to something other than a regular file, a block device, or a directory.

VERSIONS

Linux man-pages 6.16 2025-09-21 1054

sync_file_range(2) System Calls Manual sync_file_range(2)

sync_file_range2()
Some architectures (e.g., PowerPC, ARM) need 64-bit arguments to be aligned in a suit-
able pair of registers. On such architectures, the call signature of sync_file_range()
shown in the SYNOPSIS would force a register to be wasted as padding between the fd
and offset arguments. (See syscall(2) for details.) Therefore, these architectures define
a different system call that orders the arguments suitably:

int sync_file_range2(int fd, unsigned int flags,
off_t offset, off_t nbytes);

The behavior of this system call is otherwise exactly the same as sync_file_range().

STANDARDS
Linux.

HISTORY
Linux 2.6.17.

sync_file_range2()
A system call with this signature first appeared on the ARM architecture in Linux
2.6.20, with the name arm_sync_file_range(). It was renamed in Linux 2.6.22, when
the analogous system call was added for PowerPC. On architectures where glibc sup-
port is provided, glibc transparently wraps sync_file_range2() under the name
sync_file_range().

NOTES
_FILE_OFFSET_BITS should be defined to be 64 in code that takes the address of
sync_file_range, if the code is intended to be portable to traditional 32-bit x86 and
ARM platforms where off_t’s width defaults to 32 bits.

SEE ALSO
fdatasync(2), fsync(2), msync(2), sync(2)

Linux man-pages 6.16 2025-09-21 1055

_syscall(2) System Calls Manual _syscall(2)

NAME
_syscall - invoking a system call without library support (OBSOLETE)

SYNOPSIS
#include <linux/unistd.h>

A _syscall macro

desired system call

DESCRIPTION
The important thing to know about a system call is its prototype. You need to know how
many arguments, their types, and the function return type. There are seven macros that
make the actual call into the system easier. They have the form:

_syscallX(type,name,type1,arg1,type2,arg2,...)

where

X is 0–6, which are the number of arguments taken by the system call

type is the return type of the system call

name is the name of the system call

typeN is the Nth argument’s type

argN is the name of the Nth argument

These macros create a function called name with the arguments you specify. Once you
include the _syscall() in your source file, you call the system call by name.

FILES
/usr/include/linux/unistd.h

STANDARDS
Linux.

HISTORY
Starting around Linux 2.6.18, the _syscall macros were removed from header files sup-
plied to user space. Use syscall(2) instead. (Some architectures, notably ia64, never
provided the _syscall macros; on those architectures, syscall(2) was always required.)

NOTES
The _syscall() macros do not produce a prototype. You may have to create one, espe-
cially for C++ users.

System calls are not required to return only positive or negative error codes. You need
to read the source to be sure how it will return errors. Usually, it is the negative of a
standard error code, for example, -EPERM . The _syscall() macros will return the result
r of the system call when r is nonnegative, but will return -1 and set the variable errno
to -r when r is negative. For the error codes, see errno(3).

When defining a system call, the argument types must be passed by-value or by-pointer
(for aggregates like structs).

Linux man-pages 6.16 2025-05-17 1056

_syscall(2) System Calls Manual _syscall(2)

EXAMPLES
#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <linux/unistd.h> /* for _syscallX macros/related stuff */
#include <linux/kernel.h> /* for struct sysinfo */

_syscall1(int, sysinfo, struct sysinfo *, info);

int
main(void)
{

struct sysinfo s_info;
int error;

error = sysinfo(&s_info);
printf("code error = %d\n", error);
printf("Uptime = %lds\nLoad: 1 min %lu / 5 min %lu / 15 min %lu\n"

"RAM: total %lu / free %lu / shared %lu\n"
"Memory in buffers = %lu\nSwap: total %lu / free %lu\n"
"Number of processes = %d\n",
s_info.uptime, s_info.loads[0],
s_info.loads[1], s_info.loads[2],
s_info.totalram, s_info.freeram,
s_info.sharedram, s_info.bufferram,
s_info.totalswap, s_info.freeswap,
s_info.procs);

exit(EXIT_SUCCESS);
}

Sample output
code error = 0
uptime = 502034s
Load: 1 min 13376 / 5 min 5504 / 15 min 1152
RAM: total 15343616 / free 827392 / shared 8237056
Memory in buffers = 5066752
Swap: total 27881472 / free 24698880
Number of processes = 40

SEE ALSO
intro(2), syscall(2), errno(3)

Linux man-pages 6.16 2025-05-17 1057

syscall(2) System Calls Manual syscall(2)

NAME
syscall - indirect system call

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(long number, ...);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

syscall():
Since glibc 2.19:

_DEFAULT_SOURCE
Before glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
syscall() is a small library function that invokes the system call whose assembly lan-
guage interface has the specified number with the specified arguments. Employing
syscall() is useful, for example, when invoking a system call that has no wrapper func-
tion in the C library.

syscall() saves CPU registers before making the system call, restores the registers upon
return from the system call, and stores any error returned by the system call in errno(3).

Symbolic constants for system call numbers can be found in the header file
<sys/syscall.h>.

RETURN VALUE
The return value is defined by the system call being invoked. In general, a 0 return value
indicates success. A -1 return value indicates an error, and an error number is stored in
errno.

ERRORS
ENOSYS

The requested system call number is not implemented.

Other errors are specific to the invoked system call.

NOTES
syscall() first appeared in 4BSD.

Architecture-specific requirements
Each architecture ABI has its own requirements on how system call arguments are
passed to the kernel. For system calls that have a glibc wrapper (e.g., most system
calls), glibc handles the details of copying arguments to the right registers in a manner
suitable for the architecture. However, when using syscall() to make a system call, the
caller might need to handle architecture-dependent details; this requirement is most
commonly encountered on certain 32-bit architectures.

For example, on the ARM architecture Embedded ABI (EABI), a 64-bit value (e.g., long

Linux man-pages 6.16 2025-05-22 1058

syscall(2) System Calls Manual syscall(2)

long) must be aligned to an even register pair. Thus, using syscall() instead of the wrap-
per provided by glibc, the readahead(2) system call would be invoked as follows on the
ARM architecture with the EABI in little endian mode:

syscall(SYS_readahead, fd, 0,
(unsigned int) (offset & 0xFFFFFFFF),
(unsigned int) (offset >> 32),
count);

Since the offset argument is 64 bits, and the first argument (fd) is passed in r0, the caller
must manually split and align the 64-bit value so that it is passed in the r2/r3 register
pair. That means inserting a dummy value into r1 (the second argument of 0). Care also
must be taken so that the split follows endian conventions (according to the C ABI for
the platform).

Similar issues can occur on MIPS with the O32 ABI, on PowerPC and parisc with the
32-bit ABI, and on Xtensa.

Note that while the parisc C ABI also uses aligned register pairs, it uses a shim layer to
hide the issue from user space.

The affected system calls are fadvise64_64(2), ftruncate64(2), posix_fadvise(2),
pread64(2), pwrite64(2), readahead(2), sync_file_range(2), and truncate64(2).

This does not affect syscalls that manually split and assemble 64-bit values such as
_llseek(2), preadv(2), preadv2(2), pwritev(2), and pwritev2(2). Welcome to the wonder-
ful world of historical baggage.

Architecture calling conventions
Every architecture has its own way of invoking and passing arguments to the kernel.
The details for various architectures are listed in the two tables below.

The first table lists the instruction used to transition to kernel mode (which might not be
the fastest or best way to transition to the kernel, so you might have to refer to vdso(7)),
the register used to indicate the system call number, the register(s) used to return the
system call result, and the register used to signal an error.
Arch/ABI Instruction System Ret Ret Error Notes

call # val val2

alpha callsys v0 v0 a4 a3 1, 6
arc trap0 r8 r0 - -
arm/OABI swi NR - r0 - - 2
arm/EABI swi 0x0 r7 r0 r1 -
arm64 svc #0 w8 x0 x1 -
blackfin excpt 0x0 P0 R0 - -
i386 int $0x80 eax eax edx -
ia64 break 0x100000 r15 r8 r9 r10 1, 6
loongarch syscall 0 a7 a0 - -
m68k trap #0 d0 d0 - -
microblaze brki r14,8 r12 r3 - -
mips syscall v0 v0 v1 a3 1, 6
nios2 trap r2 r2 - r7

Linux man-pages 6.16 2025-05-22 1059

syscall(2) System Calls Manual syscall(2)

parisc ble 0x100(%sr2, %r0) r20 r28 - -
powerpc sc r0 r3 - r0 1
powerpc64 sc r0 r3 - cr0.SO 1
riscv ecall a7 a0 a1 -
s390 svc 0 r1 r2 r3 - 3
s390x svc 0 r1 r2 r3 - 3
superh trapa #31 r3 r0 r1 - 4, 6
sparc/32 t 0x10 g1 o0 o1 psr/csr 1, 6
sparc/64 t 0x6d g1 o0 o1 psr/csr 1, 6
tile swint1 R10 R00 - R01 1
x86-64 syscall eax rax rdx - 5
x32 syscall eax rax rdx - 5
xtensa syscall a2 a2 - -

Notes:

• On a few architectures, a register is used as a boolean (0 indicating no error, and -1
indicating an error) to signal that the system call failed. The actual error value is
still contained in the return register. On sparc, the carry bit (csr) in the processor
status register (psr) is used instead of a full register. On powerpc64, the summary
overflow bit (SO) in field 0 of the condition register (cr0) is used.

• NR is the system call number.

• For s390 and s390x, NR (the system call number) may be passed directly with
svc NR if it is less than 256.

• On SuperH additional trap numbers are supported for historic reasons, but trapa#31
is the recommended "unified" ABI.

• The x32 ABI shares syscall table with x86-64 ABI, but there are some nuances:

• In order to indicate that a system call is called under the x32 ABI, an additional
bit, __X32_SYSCALL_BIT, is bitwise ORed with the system call number. The
ABI used by a process affects some process behaviors, including signal handling
or system call restarting.

• Since x32 has different sizes for long and pointer types, layouts of some (but not
all; struct timeval or struct rlimit are 64-bit, for example) structures are different.
In order to handle this, additional system calls are added to the system call table,
starting from number 512 (without the __X32_SYSCALL_BIT). For example,
__NR_readv is defined as 19 for the x86-64 ABI and as __X32_SYSCALL_BIT |
515 for the x32 ABI. Most of these additional system calls are actually identical
to the system calls used for providing i386 compat. There are some notable ex-
ceptions, however, such as preadv2(2), which uses struct iovec entities with
4-byte pointers and sizes ("compat_iovec" in kernel terms), but passes an 8-byte
pos argument in a single register and not two, as is done in every other ABI.

• Some architectures (namely, Alpha, IA-64, MIPS, SuperH, sparc/32, and sparc/64)
use an additional register ("Retval2" in the above table) to pass back a second return
value from the pipe(2) system call; Alpha uses this technique in the architecture-spe-
cific getxpid(2), getxuid(2), and getxgid(2) system calls as well. Other architectures

Linux man-pages 6.16 2025-05-22 1060

syscall(2) System Calls Manual syscall(2)

do not use the second return value register in the system call interface, even if it is
defined in the System V ABI.

The second table shows the registers used to pass the system call arguments.
Arch/ABI arg1 arg2 arg3 arg4 arg5 arg6 arg7 Notes

alpha a0 a1 a2 a3 a4 a5 -
arc r0 r1 r2 r3 r4 r5 -
arm/OABI r0 r1 r2 r3 r4 r5 r6
arm/EABI r0 r1 r2 r3 r4 r5 r6
arm64 x0 x1 x2 x3 x4 x5 -
blackfin R0 R1 R2 R3 R4 R5 -
i386 ebx ecx edx esi edi ebp -
ia64 out0 out1 out2 out3 out4 out5 -
loongarch a0 a1 a2 a3 a4 a5 a6
m68k d1 d2 d3 d4 d5 a0 -
microblaze r5 r6 r7 r8 r9 r10 -
mips/o32 a0 a1 a2 a3 - - - 1
mips/n32,64 a0 a1 a2 a3 a4 a5 -
nios2 r4 r5 r6 r7 r8 r9 -
parisc r26 r25 r24 r23 r22 r21 -
powerpc r3 r4 r5 r6 r7 r8 r9
powerpc64 r3 r4 r5 r6 r7 r8 -
riscv a0 a1 a2 a3 a4 a5 -
s390 r2 r3 r4 r5 r6 r7 -
s390x r2 r3 r4 r5 r6 r7 -
superh r4 r5 r6 r7 r0 r1 r2
sparc/32 o0 o1 o2 o3 o4 o5 -
sparc/64 o0 o1 o2 o3 o4 o5 -
tile R00 R01 R02 R03 R04 R05 -
x86-64 rdi rsi rdx r10 r8 r9 -
x32 rdi rsi rdx r10 r8 r9 -
xtensa a6 a3 a4 a5 a8 a9 -

Notes:

• The mips/o32 system call convention passes arguments 5 through 8 on the user
stack.

Note that these tables don’t cover the entire calling convention—some architectures may
indiscriminately clobber other registers not listed here.

EXAMPLES
#define _GNU_SOURCE
#include <signal.h>
#include <sys/syscall.h>
#include <sys/types.h>
#include <unistd.h>

Linux man-pages 6.16 2025-05-22 1061

syscall(2) System Calls Manual syscall(2)

int
main(void)
{

pid_t tid;

tid = syscall(SYS_gettid);
syscall(SYS_tgkill, getpid(), tid, SIGHUP);

}

SEE ALSO
_syscall(2), intro(2), syscalls(2), errno(3), vdso(7)

Linux man-pages 6.16 2025-05-22 1062

syscalls(2) System Calls Manual syscalls(2)

NAME
syscalls - Linux system calls

SYNOPSIS
Linux system calls.

DESCRIPTION
The system call is the fundamental interface between an application and the Linux ker-
nel.

System calls and library wrapper functions
System calls are generally not invoked directly, but rather via wrapper functions in glibc
(or perhaps some other library). For details of direct invocation of a system call, see in-
tro(2). Often, but not always, the name of the wrapper function is the same as the name
of the system call that it invokes. For example, glibc contains a function chdir() which
invokes the underlying "chdir" system call.

Often the glibc wrapper function is quite thin, doing little work other than copying argu-
ments to the right registers before invoking the system call, and then setting errno ap-
propriately after the system call has returned. (These are the same steps that are per-
formed by syscall(2), which can be used to invoke system calls for which no wrapper
function is provided.) Note: system calls indicate a failure by returning a negative error
number to the caller on architectures without a separate error register/flag, as noted in
syscall(2); when this happens, the wrapper function negates the returned error number
(to make it positive), copies it to errno, and returns -1 to the caller of the wrapper.

Sometimes, however, the wrapper function does some extra work before invoking the
system call. For example, nowadays there are (for reasons described below) two related
system calls, truncate(2) and truncate64(2), and the glibc truncate() wrapper function
checks which of those system calls are provided by the kernel and determines which
should be employed.

System call list
Below is a list of the Linux system calls. In the list, the Kernel column indicates the
kernel version for those system calls that were new in Linux 2.2, or have appeared since
that kernel version. Note the following points:

• Where no kernel version is indicated, the system call appeared in Linux 1.0 or ear-
lier.

• Where a system call is marked "1.2" this means the system call probably appeared in
a Linux 1.1.x kernel version, and first appeared in a stable kernel with 1.2. (Devel-
opment of the Linux 1.2 kernel was initiated from a branch of Linux 1.0.6 via the
Linux 1.1.x unstable kernel series.)

• Where a system call is marked "2.0" this means the system call probably appeared in
a Linux 1.3.x kernel version, and first appeared in a stable kernel with Linux 2.0.
(Development of the Linux 2.0 kernel was initiated from a branch of Linux 1.2.x,
somewhere around Linux 1.2.10, via the Linux 1.3.x unstable kernel series.)

• Where a system call is marked "2.2" this means the system call probably appeared in
a Linux 2.1.x kernel version, and first appeared in a stable kernel with Linux 2.2.0.
(Development of the Linux 2.2 kernel was initiated from a branch of Linux 2.0.21

Linux man-pages 6.16 2025-09-21 1063

syscalls(2) System Calls Manual syscalls(2)

via the Linux 2.1.x unstable kernel series.)

• Where a system call is marked "2.4" this means the system call probably appeared in
a Linux 2.3.x kernel version, and first appeared in a stable kernel with Linux 2.4.0.
(Development of the Linux 2.4 kernel was initiated from a branch of Linux 2.2.8 via
the Linux 2.3.x unstable kernel series.)

• Where a system call is marked "2.6" this means the system call probably appeared in
a Linux 2.5.x kernel version, and first appeared in a stable kernel with Linux 2.6.0.
(Development of Linux 2.6 was initiated from a branch of Linux 2.4.15 via the
Linux 2.5.x unstable kernel series.)

• Starting with Linux 2.6.0, the development model changed, and new system calls
may appear in each Linux 2.6.x release. In this case, the exact version number
where the system call appeared is shown. This convention continues with the Linux
3.x kernel series, which followed on from Linux 2.6.39; and the Linux 4.x kernel se-
ries, which followed on from Linux 3.19; and the Linux 5.x kernel series, which fol-
lowed on from Linux 4.20; and the Linux 6.x kernel series, which followed on from
Linux 5.19.

• In some cases, a system call was added to a stable kernel series after it branched
from the previous stable kernel series, and then backported into the earlier stable
kernel series. For example some system calls that appeared in Linux 2.6.x were also
backported into a Linux 2.4.x release after Linux 2.4.15. When this is so, the ver-
sion where the system call appeared in both of the major kernel series is listed.

The list of system calls that are available as at Linux 5.14 (or in a few cases only on
older kernels) is as follows:

System call Kernel Notes
_llseek(2) 1.2
_newselect(2) 2.0
_sysctl(2) 2.0 Removed in 5.5

2.0accept(2) See notes on socketcall(2)
accept4(2) 2.6.28
access(2) 1.0
acct(2) 1.0
add_key(2) 2.6.10
adjtimex(2) 1.0
alarm(2) 1.0
alloc_hugepages(2) 2.5.36 Removed in 2.5.44
arc_gettls(2) 3.9 ARC only
arc_settls(2) 3.9 ARC only
arc_usr_cmpxchg(2) 4.9 ARC only

2.6arch_prctl(2) x86_64, x86 since 4.12
atomic_barrier(2) 2.6.34 m68k only
atomic_cmpxchg_32(2) 2.6.34 m68k only

1.2bdflush(2) Deprecated (does nothing) since 2.6,
removed in 5.15

2.0bind(2) See notes on socketcall(2)

Linux man-pages 6.16 2025-09-21 1064

syscalls(2) System Calls Manual syscalls(2)

bpf(2) 3.18
brk(2) 1.0

2.2breakpoint(2) ARM OABI only, defined with
__ARM_NR prefix

cacheflush(2) 1.2 Not on x86
capget(2) 2.2
capset(2) 2.2
chdir(2) 1.0
chmod(2) 1.0

2.2chown(2) See chown(2) for version details
chown32(2) 2.4
chroot(2) 1.0
clock_adjtime(2) 2.6.39
clock_getres(2) 2.6
clock_gettime(2) 2.6
clock_nanosleep(2) 2.6
clock_settime(2) 2.6
clone2(2) 2.4 IA-64 only
clone(2) 1.0
clone3(2) 5.3
close(2) 1.0
close_range(2) 5.9

2.0connect(2) See notes on socketcall(2)
copy_file_range(2) 4.5
creat(2) 1.0
create_module(2) 1.0 Removed in 2.6
delete_module(2) 1.0
dup(2) 1.0
dup2(2) 1.0
dup3(2) 2.6.27
epoll_create(2) 2.6
epoll_create1(2) 2.6.27
epoll_ctl(2) 2.6
epoll_pwait(2) 2.6.19
epoll_pwait2(2) 5.11
epoll_wait(2) 2.6
eventfd(2) 2.6.22
eventfd2(2) 2.6.27

2.0execv(2) SPARC/SPARC64 only, for compati-
bility with SunOS

execve(2) 1.0
execveat(2) 3.19
exit(2) 1.0
exit_group(2) 2.6
faccessat(2) 2.6.16
faccessat2(2) 5.8

Linux man-pages 6.16 2025-09-21 1065

syscalls(2) System Calls Manual syscalls(2)

fadvise64(2) 2.6
fadvise64_64(2) 2.6
fallocate(2) 2.6.23
fanotify_init(2) 2.6.37
fanotify_mark(2) 2.6.37
fchdir(2) 1.0
fchmod(2) 1.0
fchmodat(2) 2.6.16
fchown(2) 1.0
fchown32(2) 2.4
fchownat(2) 2.6.16
fcntl(2) 1.0
fcntl64(2) 2.4
fdatasync(2) 2.0
fgetxattr(2) 2.6; 2.4.18
finit_module(2) 3.8
flistxattr(2) 2.6; 2.4.18
flock(2) 2.0
fork(2) 1.0
free_hugepages(2) 2.5.36 Removed in 2.5.44
fremovexattr(2) 2.6; 2.4.18
fsconfig(2) 5.2
fsetxattr(2) 2.6; 2.4.18
fsmount(2) 5.2
fsopen(2) 5.2
fspick(2) 5.2
fstat(2) 1.0
fstat64(2) 2.4
fstatat64(2) 2.6.16
fstatfs(2) 1.0
fstatfs64(2) 2.6
fsync(2) 1.0
ftruncate(2) 1.0
ftruncate64(2) 2.4
futex(2) 2.6
futimesat(2) 2.6.16
get_kernel_syms(2) 1.0 Removed in 2.6
get_mempolicy(2) 2.6.6
get_robust_list(2) 2.6.17
get_thread_area(2) 2.6

4.15get_tls(2) ARM OABI only, has __ARM_NR
prefix

getcpu(2) 2.6.19
getcwd(2) 2.2
getdents(2) 2.0
getdents64(2) 2.4

Linux man-pages 6.16 2025-09-21 1066

syscalls(2) System Calls Manual syscalls(2)

2.2getdomainname(2) SPARC, SPARC64; available as
osf_getdomainname(2) on Alpha
since Linux 2.0

2.0getdtablesize(2) SPARC (removed in 2.6.26), available
on Alpha as osf_getdtablesize(2)

getegid(2) 1.0
getegid32(2) 2.4
geteuid(2) 1.0
geteuid32(2) 2.4
getgid(2) 1.0
getgid32(2) 2.4
getgroups(2) 1.0
getgroups32(2) 2.4

2.0gethostname(2) Alpha, was available on SPARC up to
Linux 2.6.26

getitimer(2) 1.0
2.0getpeername(2) See notes on socketcall(2)
2.0getpagesize(2) Alpha, SPARC/SPARC64 only

getpgid(2) 1.0
getpgrp(2) 1.0
getpid(2) 1.0
getppid(2) 1.0
getpriority(2) 1.0
getrandom(2) 3.17
getresgid(2) 2.2
getresgid32(2) 2.4
getresuid(2) 2.2
getresuid32(2) 2.4
getrlimit(2) 1.0
getrusage(2) 1.0
getsid(2) 2.0

2.0getsockname(2) See notes on socketcall(2)
2.0getsockopt(2) See notes on socketcall(2)

gettid(2) 2.4.11
gettimeofday(2) 1.0
getuid(2) 1.0
getuid32(2) 2.4

2.4.8getunwind(2) IA-64 only; deprecated
getxattr(2) 2.6; 2.4.18

2.0getxgid(2) Alpha only; see NOTES
2.0getxpid(2) Alpha only; see NOTES
2.0getxuid(2) Alpha only; see NOTES

init_module(2) 1.0
inotify_add_watch(2) 2.6.13
inotify_init(2) 2.6.13
inotify_init1(2) 2.6.27

Linux man-pages 6.16 2025-09-21 1067

syscalls(2) System Calls Manual syscalls(2)

inotify_rm_watch(2) 2.6.13
io_cancel(2) 2.6
io_destroy(2) 2.6
io_getevents(2) 2.6
io_pgetevents(2) 4.18
io_setup(2) 2.6
io_submit(2) 2.6
io_uring_enter(2) 5.1
io_uring_register(2) 5.1
io_uring_setup(2) 5.1
ioctl(2) 1.0
ioperm(2) 1.0
iopl(2) 1.0
ioprio_get(2) 2.6.13
ioprio_set(2) 2.6.13
ipc(2) 1.0
kcmp(2) 3.5
kern_features(2) 3.7 SPARC64 only
kexec_file_load(2) 3.17
kexec_load(2) 2.6.13
keyctl(2) 2.6.10
kill(2) 1.0
landlock_add_rule(2) 5.13
landlock_create_ruleset(2) 5.13
landlock_restrict_self(2) 5.13

1.0lchown(2) See chown(2) for version details
lchown32(2) 2.4
lgetxattr(2) 2.6; 2.4.18
link(2) 1.0
linkat(2) 2.6.16

2.0listen(2) See notes on socketcall(2)
listxattr(2) 2.6; 2.4.18
llistxattr(2) 2.6; 2.4.18
lookup_dcookie(2) 2.6
lremovexattr(2) 2.6; 2.4.18
lseek(2) 1.0
lsetxattr(2) 2.6; 2.4.18
lstat(2) 1.0
lstat64(2) 2.4
madvise(2) 2.4
mbind(2) 2.6.6
memory_ordering(2) 2.2 SPARC64 only
membarrier(2) 3.17
memfd_create(2) 3.17
memfd_secret(2) 5.14
migrate_pages(2) 2.6.16

Linux man-pages 6.16 2025-09-21 1068

syscalls(2) System Calls Manual syscalls(2)

mincore(2) 2.4
mkdir(2) 1.0
mkdirat(2) 2.6.16
mknod(2) 1.0
mknodat(2) 2.6.16
mlock(2) 2.0
mlock2(2) 4.4
mlockall(2) 2.0
mmap(2) 1.0
mmap2(2) 2.4
modify_ldt(2) 1.0
mount(2) 1.0
move_mount(2) 5.2
move_pages(2) 2.6.18
mprotect(2) 1.0
mq_getsetattr(2) 2.6.6
mq_notify(2) 2.6.6
mq_open(2) 2.6.6
mq_timedreceive(2) 2.6.6
mq_timedsend(2) 2.6.6
mq_unlink(2) 2.6.6
mremap(2) 2.0

2.0msgctl(2) See notes on ipc(2)
2.0msgget(2) See notes on ipc(2)
2.0msgrcv(2) See notes on ipc(2)
2.0msgsnd(2) See notes on ipc(2)

msync(2) 2.0
munlock(2) 2.0
munlockall(2) 2.0
munmap(2) 1.0
name_to_handle_at(2) 2.6.39
nanosleep(2) 2.0

2.6.16newfstatat(2) See stat(2)
nfsservctl(2) 2.2 Removed in 3.1
nice(2) 1.0

2.0old_adjtimex(2) Alpha only; see NOTES
2.4old_getrlimit(2) Old variant of getrlimit(2) that used a

different value for RLIM_INFINITY
oldfstat(2) 1.0
oldlstat(2) 1.0
oldolduname(2) 1.0
oldstat(2) 1.0

2.4.116oldumount(2) Name of the old umount(2) syscall on
Alpha

olduname(2) 1.0
open(2) 1.0

Linux man-pages 6.16 2025-09-21 1069

syscalls(2) System Calls Manual syscalls(2)

open_by_handle_at(2) 2.6.39
open_tree(2) 5.2
openat(2) 2.6.16
openat2(2) 5.6

3.1or1k_atomic(2) OpenRISC 1000 only
pause(2) 1.0
pciconfig_iobase(2) 2.2.15; 2.4 Not on x86
pciconfig_read(2) 2.0.26; 2.2 Not on x86
pciconfig_write(2) 2.0.26; 2.2 Not on x86

2.6.31perf_event_open(2) Was perf_counter_open() in 2.6.31; re-
named in 2.6.32

personality(2) 1.2
2.2perfctr(2) SPARC only; removed in 2.6.34

perfmonctl(2) 2.4 IA-64 only; removed in 5.10
pidfd_getfd(2) 5.6
pidfd_send_signal(2) 5.1
pidfd_open(2) 5.3
pipe(2) 1.0
pipe2(2) 2.6.27
pivot_root(2) 2.4
pkey_alloc(2) 4.8
pkey_free(2) 4.8
pkey_mprotect(2) 4.8
poll(2) 2.0.36; 2.2
ppoll(2) 2.6.16
prctl(2) 2.2
pread64(2) Added as "pread" in 2.2; renamed

"pread64" in 2.6
preadv(2) 2.6.30
preadv2(2) 4.6
prlimit64(2) 2.6.36
process_madvise(2) 5.10
process_vm_readv(2) 3.2
process_vm_writev(2) 3.2
pselect6(2) 2.6.16
ptrace(2) 1.0
pwrite64(2) Added as "pwrite" in 2.2; renamed

"pwrite64" in 2.6
pwritev(2) 2.6.30
pwritev2(2) 4.6
query_module(2) 2.2 Removed in 2.6
quotactl(2) 1.0
quotactl_fd(2) 5.14
read(2) 1.0
readahead(2) 2.4.13
readdir(2) 1.0

Linux man-pages 6.16 2025-09-21 1070

syscalls(2) System Calls Manual syscalls(2)

readlink(2) 1.0
readlinkat(2) 2.6.16
readv(2) 2.0
reboot(2) 1.0

2.0recv(2) See notes on socketcall(2)
2.0recvfrom(2) See notes on socketcall(2)
2.0recvmsg(2) See notes on socketcall(2)

recvmmsg(2) 2.6.33
2.6remap_file_pages(2) Deprecated since 3.16

removexattr(2) 2.6; 2.4.18
rename(2) 1.0
renameat(2) 2.6.16
renameat2(2) 3.15
request_key(2) 2.6.10
restart_syscall(2) 2.6
riscv_flush_icache(2) 4.15 RISC-V only
rmdir(2) 1.0
rseq(2) 4.18
rt_sigaction(2) 2.2
rt_sigpending(2) 2.2
rt_sigprocmask(2) 2.2
rt_sigqueueinfo(2) 2.2
rt_sigreturn(2) 2.2
rt_sigsuspend(2) 2.2
rt_sigtimedwait(2) 2.2
rt_tgsigqueueinfo(2) 2.6.31

2.6.2rtas(2) PowerPC/PowerPC64 only
s390_runtime_instr(2) 3.7 s390 only
s390_pci_mmio_read(2) 3.19 s390 only
s390_pci_mmio_write(2) 3.19 s390 only
s390_sthyi(2) 4.15 s390 only
s390_guarded_storage(2) 4.12 s390 only

2.6sched_get_affinity(2) Name of sched_getaffinity(2) on
SPARC and SPARC64

sched_get_priority_max(2) 2.0
sched_get_priority_min(2) 2.0
sched_getaffinity(2) 2.6
sched_getattr(2) 3.14
sched_getparam(2) 2.0
sched_getscheduler(2) 2.0
sched_rr_get_interval(2) 2.0

2.6sched_set_affinity(2) Name of sched_setaffinity(2) on
SPARC and SPARC64

sched_setaffinity(2) 2.6
sched_setattr(2) 3.14
sched_setparam(2) 2.0

Linux man-pages 6.16 2025-09-21 1071

syscalls(2) System Calls Manual syscalls(2)

sched_setscheduler(2) 2.0
sched_yield(2) 2.0
seccomp(2) 3.17
select(2) 1.0

2.0semctl(2) See notes on ipc(2)
2.0semget(2) See notes on ipc(2)
2.0semop(2) See notes on ipc(2)

semtimedop(2) 2.6; 2.4.22
2.0send(2) See notes on socketcall(2)

sendfile(2) 2.2
sendfile64(2) 2.6; 2.4.19
sendmmsg(2) 3.0

2.0sendmsg(2) See notes on socketcall(2)
2.0sendto(2) See notes on socketcall(2)

set_mempolicy(2) 2.6.6
set_robust_list(2) 2.6.17
set_thread_area(2) 2.6
set_tid_address(2) 2.6

2.6.11set_tls(2) ARM OABI/EABI only (constant has
__ARM_NR prefix)

setdomainname(2) 1.0
setfsgid(2) 1.2
setfsgid32(2) 2.4
setfsuid(2) 1.2
setfsuid32(2) 2.4
setgid(2) 1.0
setgid32(2) 2.4
setgroups(2) 1.0
setgroups32(2) 2.4

2.0sethae(2) Alpha only; see NOTES
sethostname(2) 1.0
setitimer(2) 1.0
setns(2) 3.0
setpgid(2) 1.0

2.0setpgrp(2) Alternative name for setpgid(2) on Al-
pha

setpriority(2) 1.0
setregid(2) 1.0
setregid32(2) 2.4
setresgid(2) 2.2
setresgid32(2) 2.4
setresuid(2) 2.2
setresuid32(2) 2.4
setreuid(2) 1.0
setreuid32(2) 2.4
setrlimit(2) 1.0

Linux man-pages 6.16 2025-09-21 1072

syscalls(2) System Calls Manual syscalls(2)

setsid(2) 1.0
2.0setsockopt(2) See notes on socketcall(2)

settimeofday(2) 1.0
setuid(2) 1.0
setuid32(2) 2.4
setup(2) 1.0 Removed in 2.2
setxattr(2) 2.6; 2.4.18
sgetmask(2) 1.0

2.0shmat(2) See notes on ipc(2)
2.0shmctl(2) See notes on ipc(2)
2.0shmdt(2) See notes on ipc(2)
2.0shmget(2) See notes on ipc(2)
2.0shutdown(2) See notes on socketcall(2)

sigaction(2) 1.0
sigaltstack(2) 2.2
signal(2) 1.0
signalfd(2) 2.6.22
signalfd4(2) 2.6.27
sigpending(2) 1.0
sigprocmask(2) 1.0
sigreturn(2) 1.0
sigsuspend(2) 1.0

2.0socket(2) See notes on socketcall(2)
socketcall(2) 1.0

2.0socketpair(2) See notes on socketcall(2)
spill(2) 2.6.13 Xtensa only
splice(2) 2.6.17

2.6.16spu_create(2) PowerPC/PowerPC64 only
2.6.16spu_run(2) PowerPC/PowerPC64 only

ssetmask(2) 1.0
stat(2) 1.0
stat64(2) 2.4
statfs(2) 1.0
statfs64(2) 2.6
statx(2) 4.11
stime(2) 1.0

2.6.25subpage_prot(2) PowerPC/PowerPC64 only
2.6.3swapcontext(2) PowerPC/PowerPC64 only

switch_endian(2) 4.1 PowerPC64 only
swapoff(2) 1.0
swapon(2) 1.0
symlink(2) 1.0
symlinkat(2) 2.6.16
sync(2) 1.0
sync_file_range(2) 2.6.17
sync_file_range2(2) 2.6.22

Linux man-pages 6.16 2025-09-21 1073

syscalls(2) System Calls Manual syscalls(2)

syncfs(2) 2.6.39
sys_debug_setcontext(2) 2.6.11 PowerPC only

1.0syscall(2) Still available on ARM OABI and
MIPS O32 ABI

sysfs(2) 1.2
sysinfo(2) 1.0
syslog(2) 1.0
sysmips(2) 2.6.0 MIPS only
tee(2) 2.6.17
tgkill(2) 2.6
time(2) 1.0
timer_create(2) 2.6
timer_delete(2) 2.6
timer_getoverrun(2) 2.6
timer_gettime(2) 2.6
timer_settime(2) 2.6
timerfd_create(2) 2.6.25
timerfd_gettime(2) 2.6.25
timerfd_settime(2) 2.6.25
times(2) 1.0
tkill(2) 2.6; 2.4.22
truncate(2) 1.0
truncate64(2) 2.4
ugetrlimit(2) 2.4
umask(2) 1.0
umount(2) 1.0
umount2(2) 2.2
uname(2) 1.0
unlink(2) 1.0
unlinkat(2) 2.6.16
unshare(2) 2.6.16
uselib(2) 1.0
ustat(2) 1.0
userfaultfd(2) 4.3
usr26(2) 2.4.8.1 ARM OABI only
usr32(2) 2.4.8.1 ARM OABI only
utime(2) 1.0
utimensat(2) 2.6.22
utimes(2) 2.2
utrap_install(2) 2.2 SPARC64 only
vfork(2) 2.2
vhangup(2) 1.0

1.0vm86old(2) Was "vm86"; renamed in 2.0.28/2.2
vm86(2) 2.0.28; 2.2
vmsplice(2) 2.6.17
wait4(2) 1.0

Linux man-pages 6.16 2025-09-21 1074

syscalls(2) System Calls Manual syscalls(2)

waitid(2) 2.6.10
waitpid(2) 1.0
write(2) 1.0
writev(2) 2.0
xtensa(2) 2.6.13 Xtensa only

On many platforms, including x86-32, socket calls are all multiplexed (via glibc wrap-
per functions) through socketcall(2) and similarly System V IPC calls are multiplexed
through ipc(2).

Although slots are reserved for them in the system call table, the following system calls
are not implemented in the standard kernel: afs_syscall(2), break(2), ftime(2),
getpmsg(2), gtty(2), idle(2), lock(2), madvise1(2), mpx(2), phys(2), prof(2), profil(2),
putpmsg(2), security(2), stty(2), tuxcall(2), ulimit(2), and vserver(2) (see also unimple-
mented(2)). However, ftime(3), profil(3), and ulimit(3) exist as library routines. The slot
for phys(2) is in use since Linux 2.1.116 for umount(2); phys(2) will never be imple-
mented. The getpmsg(2) and putpmsg(2) calls are for kernels patched to support
STREAMS, and may never be in the standard kernel.

There was briefly set_zone_reclaim(2), added in Linux 2.6.13, and removed in Linux
2.6.16; this system call was never available to user space.

System calls on removed ports
Some system calls only ever existed on Linux architectures that have since been re-
moved from the kernel:

Blackfin (port removed in Linux 4.17)
• bfin_spinlock(2) (added in Linux 2.6.22)
• dma_memcpy(2) (added in Linux 2.6.22)
• sram_alloc(2) (added in Linux 2.6.22)
• sram_free(2) (added in Linux 2.6.22)

Metag (port removed in Linux 4.17)
• metag_get_tls(2) (add in Linux 3.9)
• metag_set_fpu_flags(2) (add in Linux 3.9)
• metag_set_tls(2) (add in Linux 3.9)
• metag_setglobalbit(2) (add in Linux 3.9)

Tile (port removed in Linux 4.17)
• cmpxchg_badaddr(2) (added in Linux 2.6.36)

NOTES
Roughly speaking, the code belonging to the system call with number __NR_xxx de-
fined in /usr/include/asm/unistd.h can be found in the Linux kernel source in the routine
sys_xxx(). There are many exceptions, however, mostly because older system calls were
superseded by newer ones, and this has been treated somewhat unsystematically. On
platforms with proprietary operating-system emulation, such as sparc, sparc64, and al-
pha, there are many additional system calls; mips64 also contains a full set of 32-bit sys-
tem calls.

Over time, changes to the interfaces of some system calls have been necessary. One rea-
son for such changes was the need to increase the size of structures or scalar values

Linux man-pages 6.16 2025-09-21 1075

syscalls(2) System Calls Manual syscalls(2)

passed to the system call. Because of these changes, certain architectures (notably,
longstanding 32-bit architectures such as i386) now have various groups of related sys-
tem calls (e.g., truncate(2) and truncate64(2)) which perform similar tasks, but which
vary in details such as the size of their arguments. (As noted earlier, applications are
generally unaware of this: the glibc wrapper functions do some work to ensure that the
right system call is invoked, and that ABI compatibility is preserved for old binaries.)
Examples of system calls that exist in multiple versions are the following:

• By now there are three different versions of stat(2): sys_stat() (slot __NR_oldstat),
sys_newstat() (slot __NR_stat), and sys_stat64() (slot __NR_stat64), with the last
being the most current. A similar story applies for lstat(2) and fstat(2).

• Similarly, the defines __NR_oldolduname, __NR_olduname, and __NR_uname refer
to the routines sys_olduname(), sys_uname(), and sys_newuname().

• In Linux 2.0, a new version of vm86(2) appeared, with the old and the new kernel
routines being named sys_vm86old() and sys_vm86().

• In Linux 2.4, a new version of getrlimit(2) appeared, with the old and the new kernel
routines being named sys_old_getrlimit() (slot __NR_getrlimit) and sys_getrlimit()
(slot __NR_ugetrlimit).

• Linux 2.4 increased the size of user and group IDs from 16 to 32 bits. To support
this change, a range of system calls were added (e.g., chown32(2), getuid32(2), get-
groups32(2), setresuid32(2)), superseding earlier calls of the same name without the
"32" suffix.

• Linux 2.4 added support for applications on 32-bit architectures to access large files
(i.e., files for which the sizes and file offsets can’t be represented in 32 bits.) To sup-
port this change, replacements were required for system calls that deal with file off-
sets and sizes. Thus the following system calls were added: fcntl64(2), get-
dents64(2), stat64(2), statfs64(2), truncate64(2), and their analogs that work with
file descriptors or symbolic links. These system calls supersede the older system
calls which, except in the case of the "stat" calls, have the same name without the
"64" suffix.

On newer platforms that only have 64-bit file access and 32-bit UIDs/GIDs (e.g., al-
pha, ia64, s390x, x86-64), there is just a single version of the UID/GID and file ac-
cess system calls. On platforms (typically, 32-bit platforms) where the *64 and *32
calls exist, the other versions are obsolete.

• The rt_sig* calls were added in Linux 2.2 to support the addition of real-time signals
(see signal(7)). These system calls supersede the older system calls of the same
name without the "rt_" prefix.

• The select(2) and mmap(2) system calls use five or more arguments, which caused
problems in the way argument passing on the i386 used to be set up. Thus, while
other architectures have sys_select() and sys_mmap() corresponding to __NR_select
and __NR_mmap, on i386 one finds old_select() and old_mmap() (routines that use
a pointer to an argument block) instead. These days passing five arguments is not a
problem any more, and there is a __NR__newselect that corresponds directly to
sys_select() and similarly __NR_mmap2. s390x is the only 64-bit architecture that

Linux man-pages 6.16 2025-09-21 1076

syscalls(2) System Calls Manual syscalls(2)

has old_mmap().

Architecture-specific details: Alpha
getxgid(2)

returns a pair of GID and effective GID via registers r0 and r20; it is provided
instead of getgid(2) and getegid(2).

getxpid(2)
returns a pair of PID and parent PID via registers r0 and r20; it is provided in-
stead of getpid(2) and getppid(2).

old_adjtimex(2)
is a variant of adjtimex(2) that uses struct timeval32, for compatibility with
OSF/1.

getxuid(2)
returns a pair of UID and effective UID via registers r0 and r20; it is provided
instead of getuid(2) and geteuid(2).

sethae(2)
is used for configuring the Host Address Extension register on low-cost Alphas
in order to access address space beyond first 27 bits.

SEE ALSO
intro(2), syscall(2), unimplemented(2), errno(3), libc(7), vdso(7), ausyscall(8)

Linux man-pages 6.16 2025-09-21 1077

sysctl(2) System Calls Manual sysctl(2)

NAME
sysctl - read/write system parameters

SYNOPSIS
#include <unistd.h>
#include <linux/sysctl.h>

[[deprecated]] int _sysctl(struct __sysctl_args *args);

DESCRIPTION
This system call no longer exists on current kernels! See NOTES.

The _sysctl() call reads and/or writes kernel parameters. For example, the hostname, or
the maximum number of open files. The argument has the form

struct __sysctl_args {
int *name; /* integer vector describing variable */
int nlen; /* number of elements of this vector */
void *oldval; /* 0 or address where to store old value */
size_t *oldlenp; /* available room for old value,

overwritten by actual size of old value */
void *newval; /* 0 or address of new value */
size_t newlen; /* size of new value */

};

This call does a search in a tree structure, possibly resembling a directory tree under
/proc/sys, and if the requested item is found calls some appropriate routine to read or
modify the value.

RETURN VALUE
Upon successful completion, _sysctl() returns 0. Otherwise, a value of -1 is returned
and errno is set to indicate the error.

ERRORS
EACCES
EPERM

No search permission for one of the encountered "directories", or no read per-
mission where oldval was nonzero, or no write permission where newval was
nonzero.

EFAULT
The invocation asked for the previous value by setting oldval non-NULL, but al-
lowed zero room in oldlenp.

ENOTDIR
name was not found.

STANDARDS
Linux.

HISTORY
Linux 1.3.57. Removed in Linux 5.5, glibc 2.32.

It originated in 4.4BSD. Only Linux has the /proc/sys mirror, and the object naming
schemes differ between Linux and 4.4BSD, but the declaration of the sysctl() function is

Linux man-pages 6.16 2025-09-20 1078

sysctl(2) System Calls Manual sysctl(2)

the same in both.

NOTES
Use of this system call was long discouraged: since Linux 2.6.24, uses of this system
call result in warnings in the kernel log, and in Linux 5.5, the system call was finally re-
moved. Use the /proc/sys interface instead.

Note that on older kernels where this system call still exists, it is available only if the
kernel was configured with the CONFIG_SYSCTL_SYSCALL option. Furthermore,
glibc does not provide a wrapper for this system call, necessitating the use of syscall(2).

BUGS
The object names vary between kernel versions, making this system call worthless for
applications.

Not all available objects are properly documented.

It is not yet possible to change operating system by writing to /proc/sys/kernel/ostype.

EXAMPLES
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/syscall.h>
#include <unistd.h>

#include <linux/sysctl.h>

#define NITEMS(arr) (sizeof(arr) / sizeof((arr)[0]))

int _sysctl(struct __sysctl_args *args);

#define OSNAMESZ 100

int
main(void)
{

int name[] = { CTL_KERN, KERN_OSTYPE };
char osname[OSNAMESZ];
size_t osnamelth;
struct __sysctl_args args;

memset(&args, 0, sizeof(args));
args.name = name;
args.nlen = NITEMS(name);
args.oldval = osname;
args.oldlenp = &osnamelth;

osnamelth = sizeof(osname);

Linux man-pages 6.16 2025-09-20 1079

sysctl(2) System Calls Manual sysctl(2)

if (syscall(SYS__sysctl, &args) == -1) {
perror("_sysctl");
exit(EXIT_FAILURE);

}
printf("This machine is running %*s\n", (int) osnamelth, osname);
exit(EXIT_SUCCESS);

}

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-20 1080

sysfs(2) System Calls Manual sysfs(2)

NAME
sysfs - get filesystem type information

SYNOPSIS
[[deprecated]] int sysfs(int option, const char * fsname);
[[deprecated]] int sysfs(int option, unsigned int fs_index, char *buf);
[[deprecated]] int sysfs(int option);

DESCRIPTION
Note: if you are looking for information about the sysfs filesystem that is normally
mounted at /sys, see sysfs(5).

The (obsolete) sysfs() system call returns information about the filesystem types cur-
rently present in the kernel. The specific form of the sysfs() call and the information re-
turned depends on the option in effect:

1 Translate the filesystem identifier string fsname into a filesystem type index.

2 Translate the filesystem type index fs_index into a null-terminated filesystem identi-
fier string. This string will be written to the buffer pointed to by buf . Make sure
that buf has enough space to accept the string.

3 Return the total number of filesystem types currently present in the kernel.

The numbering of the filesystem type indexes begins with zero.

RETURN VALUE
On success, sysfs() returns the filesystem index for option 1, zero for option 2, and the
number of currently configured filesystems for option 3. On error, -1 is returned, and
errno is set to indicate the error.

ERRORS
EFAULT

Either fsname or buf is outside your accessible address space.

EINVAL
fsname is not a valid filesystem type identifier; fs_index is out-of-bounds; op-
tion is invalid.

STANDARDS
None.

HISTORY
SVr4.

This System-V derived system call is obsolete; don’t use it. On systems with /proc, the
same information can be obtained via /proc; use that interface instead.

BUGS
There is no libc or glibc support. There is no way to guess how large buf should be.

SEE ALSO
proc(5), sysfs(5)

Linux man-pages 6.16 2025-09-21 1081

sysinfo(2) System Calls Manual sysinfo(2)

NAME
sysinfo - return system information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysinfo.h>

int sysinfo(struct sysinfo *info);

DESCRIPTION
sysinfo() returns certain statistics on memory and swap usage, as well as the load aver-
age.

Until Linux 2.3.16, sysinfo() returned information in the following structure:

struct sysinfo {
long uptime; /* Seconds since boot */
unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
unsigned long totalram; /* Total usable main memory size */
unsigned long freeram; /* Available memory size */
unsigned long sharedram; /* Amount of shared memory */
unsigned long bufferram; /* Memory used by buffers */
unsigned long totalswap; /* Total swap space size */
unsigned long freeswap; /* Swap space still available */
unsigned short procs; /* Number of current processes */
char _f[22]; /* Pads structure to 64 bytes */

};

In the above structure, the sizes of the memory and swap fields are given in bytes.

Since Linux 2.3.23 (i386) and Linux 2.3.48 (all architectures) the structure is:

struct sysinfo {
long uptime; /* Seconds since boot */
unsigned long loads[3]; /* 1, 5, and 15 minute load averages */
unsigned long totalram; /* Total usable main memory size */
unsigned long freeram; /* Available memory size */
unsigned long sharedram; /* Amount of shared memory */
unsigned long bufferram; /* Memory used by buffers */
unsigned long totalswap; /* Total swap space size */
unsigned long freeswap; /* Swap space still available */
unsigned short procs; /* Number of current processes */
unsigned long totalhigh; /* Total high memory size */
unsigned long freehigh; /* Available high memory size */
unsigned int mem_unit; /* Memory unit size in bytes */
char _f[20-2*sizeof(long)-sizeof(int)];

/* Padding to 64 bytes */
};

In the above structure, sizes of the memory and swap fields are given as multiples of
mem_unit bytes.

Linux man-pages 6.16 2025-05-17 1082

sysinfo(2) System Calls Manual sysinfo(2)

RETURN VALUE
On success, sysinfo() returns zero. On error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EFAULT

info is not a valid address.

STANDARDS
Linux.

HISTORY
Linux 0.98.pl6.

NOTES
All of the information provided by this system call is also available via /proc/meminfo
and /proc/loadavg.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 1083

syslog(2) System Calls Manual syslog(2)

NAME
syslog, klogctl - read and/or clear kernel message ring buffer; set console_loglevel

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

int syscall(SYS_syslog, int type, char *bufp, int size);

/* The glibc interface */
#include <sys/klog.h>

int klogctl(int type, char *bufp, int size);

DESCRIPTION
Note: Probably, you are looking for the C library function syslog(), which talks to sys-
logd(8); see syslog(3) for details.

This page describes the kernel syslog() system call, which is used to control the kernel
printk() buffer; the glibc wrapper function for the system call is called klogctl().

The kernel log buffer
The kernel has a cyclic buffer of size LOG_BUF_LEN in which messages given as ar-
guments to the kernel function printk() are stored (regardless of their log level). In
early kernels, LOG_BUF_LEN had the value 4096; from Linux 1.3.54, it was 8192;
from Linux 2.1.113, it was 16384; since Linux 2.4.23/2.6, the value is a kernel configu-
ration option (CONFIG_LOG_BUF_SHIFT, default value dependent on the architec-
ture). Since Linux 2.6.6, the size can be queried with command type 10 (see below).

Commands
The type argument determines the action taken by this function. The list below specifies
the values for type. The symbolic names are defined in the kernel source, but are not ex-
ported to user space; you will either need to use the numbers, or define the names your-
self.

SYSLOG_ACTION_CLOSE (0)
Close the log. Currently a NOP.

SYSLOG_ACTION_OPEN (1)
Open the log. Currently a NOP.

SYSLOG_ACTION_READ (2)
Read from the log. The call waits until the kernel log buffer is nonempty, and
then reads at most len bytes into the buffer pointed to by bufp. The call returns
the number of bytes read. Bytes read from the log disappear from the log buffer:
the information can be read only once. This is the function executed by the ker-
nel when a user program reads /proc/kmsg.

SYSLOG_ACTION_READ_ALL (3)
Read all messages remaining in the ring buffer, placing them in the buffer
pointed to by bufp. The call reads the last len bytes from the log buffer (nonde-
structively), but will not read more than was written into the buffer since the last

Linux man-pages 6.16 2025-09-21 1084

syslog(2) System Calls Manual syslog(2)

"clear ring buffer" command (see command 5 below)). The call returns the num-
ber of bytes read.

SYSLOG_ACTION_READ_CLEAR (4)
Read and clear all messages remaining in the ring buffer. The call does precisely
the same as for a type of 3, but also executes the "clear ring buffer" command.

SYSLOG_ACTION_CLEAR (5)
The call executes just the "clear ring buffer" command. The bufp and size argu-
ments are ignored.

This command does not really clear the ring buffer. Rather, it sets a kernel book-
keeping variable that determines the results returned by commands 3 (SYS-
LOG_ACTION_READ_ALL) and 4 (SYSLOG_ACTION_READ_CLEAR).
This command has no effect on commands 2 (SYSLOG_ACTION_READ) and
9 (SYSLOG_ACTION_SIZE_UNREAD).

SYSLOG_ACTION_CONSOLE_OFF (6)
The command saves the current value of console_loglevel and then sets con-
sole_loglevel to minimum_console_loglevel, so that no messages are printed to
the console. Before Linux 2.6.32, the command simply sets console_loglevel to
minimum_console_loglevel. See the discussion of /proc/sys/kernel/printk, be-
low.

The bufp and size arguments are ignored.

SYSLOG_ACTION_CONSOLE_ON (7)
If a previous SYSLOG_ACTION_CONSOLE_OFF command has been per-
formed, this command restores console_loglevel to the value that was saved by
that command. Before Linux 2.6.32, this command simply sets console_loglevel
to default_console_loglevel. See the discussion of /proc/sys/kernel/printk, be-
low.

The bufp and size arguments are ignored.

SYSLOG_ACTION_CONSOLE_LEVEL (8)
The call sets console_loglevel to the value given in size, which must be an inte-
ger between 1 and 8 (inclusive). The kernel silently enforces a minimum value
of minimum_console_loglevel for size. See the log level section for details. The
bufp argument is ignored.

SYSLOG_ACTION_SIZE_UNREAD (9) (since Linux 2.4.10)
The call returns the number of bytes currently available to be read from the ker-
nel log buffer via command 2 (SYSLOG_ACTION_READ). The bufp and size
arguments are ignored.

SYSLOG_ACTION_SIZE_BUFFER (10) (since Linux 2.6.6)
This command returns the total size of the kernel log buffer. The bufp and size
arguments are ignored.

All commands except 3 and 10 require privilege. In Linux kernels before Linux 2.6.37,
command types 3 and 10 are allowed to unprivileged processes; since Linux 2.6.37,
these commands are allowed to unprivileged processes only if /proc/sys/ker-
nel/dmesg_restrict has the value 0. Before Linux 2.6.37, "privileged" means that the

Linux man-pages 6.16 2025-09-21 1085

syslog(2) System Calls Manual syslog(2)

caller has the CAP_SYS_ADMIN capability. Since Linux 2.6.37, "privileged" means
that the caller has either the CAP_SYS_ADMIN capability (now deprecated for this
purpose) or the (new) CAP_SYSLOG capability.

/proc/sys/kernel/printk
/proc/sys/kernel/printk is a writable file containing four integer values that influence
kernel printk() behavior when printing or logging error messages. The four values are:

console_loglevel
Only messages with a log level lower than this value will be printed to the con-
sole. The default value for this field is DEFAULT_CONSOLE_LOGLEVEL
(7), but it is set to 4 if the kernel command line contains the word "quiet", 10 if
the kernel command line contains the word "debug", and to 15 in case of a kernel
fault (the 10 and 15 are just silly, and equivalent to 8). The value of con-
sole_loglevel can be set (to a value in the range 1–8) by a syslog() call with a
type of 8.

default_message_loglevel
This value will be used as the log level for printk() messages that do not have an
explicit level. Up to and including Linux 2.6.38, the hard-coded default value
for this field was 4 (KERN_WARNING); since Linux 2.6.39, the default value
is defined by the kernel configuration option CONFIG_DEFAULT_MES-
SAGE_LOGLEVEL, which defaults to 4.

minimum_console_loglevel
The value in this field is the minimum value to which console_loglevel can be
set.

default_console_loglevel
This is the default value for console_loglevel.

The log level
Every printk() message has its own log level. If the log level is not explicitly specified
as part of the message, it defaults to default_message_loglevel. The conventional mean-
ing of the log level is as follows:
Kernel constant Level value Meaning
KERN_EMERG 0 System is unusable
KERN_ALERT 1 Action must be taken

immediately
KERN_CRIT 2 Critical conditions
KERN_ERR 3 Error conditions
KERN_WARNING 4 Warning conditions
KERN_NOTICE 5 Normal but significant

condition
KERN_INFO 6 Informational
KERN_DEBUG 7 Debug-level messages

The kernel printk() routine will print a message on the console only if it has a log level
less than the value of console_loglevel.

Linux man-pages 6.16 2025-09-21 1086

syslog(2) System Calls Manual syslog(2)

RETURN VALUE
For type equal to 2, 3, or 4, a successful call to syslog() returns the number of bytes
read. For type 9, syslog() returns the number of bytes currently available to be read on
the kernel log buffer. For type 10, syslog() returns the total size of the kernel log buffer.
For other values of type, 0 is returned on success.

In case of error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

Bad arguments (e.g., bad type; or for type 2, 3, or 4, buf is NULL, or size is less
than zero; or for type 8, the level is outside the range 1 to 8).

ENOSYS
This syslog() system call is not available, because the kernel was compiled with
the CONFIG_PRINTK kernel-configuration option disabled.

EPERM
An attempt was made to change console_loglevel or clear the kernel message
ring buffer by a process without sufficient privilege (more precisely: without the
CAP_SYS_ADMIN or CAP_SYSLOG capability).

ERESTARTSYS
System call was interrupted by a signal; nothing was read. (This can be seen
only during a trace.)

STANDARDS
Linux.

HISTORY
From the very start, people noted that it is unfortunate that a system call and a library
routine of the same name are entirely different animals.

SEE ALSO
dmesg(1), syslog(3), capabilities(7)

Linux man-pages 6.16 2025-09-21 1087

tee(2) System Calls Manual tee(2)

NAME
tee - duplicating pipe content

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

ssize_t tee(int fd_in, int fd_out, size_t size, unsigned int flags);

DESCRIPTION
tee() duplicates up to size bytes of data from the pipe referred to by the file descriptor
fd_in to the pipe referred to by the file descriptor fd_out. It does not consume the data
that is duplicated from fd_in; therefore, that data can be copied by a subsequent
splice(2).

flags is a bit mask that is composed by ORing together zero or more of the following
values:

SPLICE_F_MOVE Currently has no effect for tee(); see splice(2).

SPLICE_F_NONBLOCK
Do not block on I/O; see splice(2) for further details.

SPLICE_F_MORE Currently has no effect for tee(), but may be implemented
in the future; see splice(2).

SPLICE_F_GIFT Unused for tee(); see vmsplice(2).

RETURN VALUE
Upon successful completion, tee() returns the number of bytes that were duplicated be-
tween the input and output. A return value of 0 means that there was no data to transfer,
and it would not make sense to block, because there are no writers connected to the
write end of the pipe referred to by fd_in.

On error, tee() returns -1 and errno is set to indicate the error.

ERRORS
EAGAIN

SPLICE_F_NONBLOCK was specified in flags or one of the file descriptors
had been marked as nonblocking (O_NONBLOCK), and the operation would
block.

EINVAL
fd_in or fd_out does not refer to a pipe; or fd_in and fd_out refer to the same
pipe.

ENOMEM
Out of memory.

STANDARDS
Linux.

Linux man-pages 6.16 2025-09-21 1088

tee(2) System Calls Manual tee(2)

HISTORY
Linux 2.6.17, glibc 2.5.

NOTES
Conceptually, tee() copies the data between the two pipes. In reality no real data copy-
ing takes place though: under the covers, tee() assigns data to the output by merely grab-
bing a reference to the input.

EXAMPLES
The example below implements a basic tee(1) program using the tee() system call. Here
is an example of its use:

$ date | ./a.out out.log | cat;
Tue Oct 28 10:06:00 CET 2014
$ cat out.log;
Tue Oct 28 10:06:00 CET 2014

Program source

#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;
ssize_t size, ssize;

if (argc != 2) {
fprintf(stderr, "Usage: %s <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_WRONLY | O_CREAT | O_TRUNC, 0644);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

for (;;) {
/*

* tee stdin to stdout.
*/

Linux man-pages 6.16 2025-09-21 1089

tee(2) System Calls Manual tee(2)

size = tee(STDIN_FILENO, STDOUT_FILENO,
INT_MAX, SPLICE_F_NONBLOCK);

if (size < 0) {
if (errno == EAGAIN)

continue;
perror("tee");
exit(EXIT_FAILURE);

}
if (size == 0)

break;

/*
* Consume stdin by splicing it to a file.
*/

while (size > 0) {
ssize = splice(STDIN_FILENO, NULL, fd, NULL,

size, SPLICE_F_MOVE);
if (ssize < 0) {

perror("splice");
exit(EXIT_FAILURE);

}
size -= ssize;

}
}

close(fd);
exit(EXIT_SUCCESS);

}

SEE ALSO
splice(2), vmsplice(2), pipe(7)

Linux man-pages 6.16 2025-09-21 1090

time(2) System Calls Manual time(2)

NAME
time - get time in seconds

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

time_t time(time_t *_Nullable tloc);

DESCRIPTION
time() returns the time as the number of seconds since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

If tloc is non-NULL, the return value is also stored in the memory pointed to by tloc.

RETURN VALUE
On success, the value of time in seconds since the Epoch is returned. On error,
((time_t) -1) is returned, and errno is set to indicate the error.

ERRORS
EOVERFLOW

The time cannot be represented as a time_t value. This can happen if an exe-
cutable with 32-bit time_t is run on a 64-bit kernel when the time is 2038-01-19
03:14:08 UTC or later. However, when the system time is out of time_t range in
other situations, the behavior is undefined.

EFAULT
tloc points outside your accessible address space (but see BUGS).

On systems where the C library time() wrapper function invokes an implementa-
tion provided by the vdso(7) (so that there is no trap into the kernel), an invalid
address may instead trigger a SIGSEGV signal.

VERSIONS
POSIX.1 defines seconds since the Epoch using a formula that approximates the number
of seconds between a specified time and the Epoch. This formula takes account of the
facts that all years that are evenly divisible by 4 are leap years, but years that are evenly
divisible by 100 are not leap years unless they are also evenly divisible by 400, in which
case they are leap years. This value is not the same as the actual number of seconds be-
tween the time and the Epoch, because of leap seconds and because system clocks are
not required to be synchronized to a standard reference. Linux systems normally follow
the POSIX requirement that this value ignore leap seconds, so that conforming systems
interpret it consistently; see POSIX.1-2018 Rationale A.4.16.

Applications intended to run after 2038 should use ABIs with time_t wider than 32 bits;
see time_t(3type).

C library/kernel differences
On some architectures, an implementation of time() is provided in the vdso(7).

STANDARDS
C11, POSIX.1-2024.

Linux man-pages 6.16 2025-10-29 1091

time(2) System Calls Manual time(2)

HISTORY
SVr4, 4.3BSD, C89, POSIX.1-2001, V7.

BUGS
Error returns from this system call are indistinguishable from successful reports that the
time is a few seconds before the Epoch, so the C library wrapper function never sets er-
rno as a result of this call.

The tloc argument is obsolescent and should always be NULL in new code. When tloc
is NULL, the call cannot fail.

SEE ALSO
date(1), gettimeofday(2), ctime(3), ftime(3), time(7), vdso(7)

Linux man-pages 6.16 2025-10-29 1092

timer_create(2) System Calls Manual timer_create(2)

NAME
timer_create - create a POSIX per-process timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <signal.h> /* Definition of SIGEV_* constants */
#include <time.h>

int timer_create(clockid_t clockid ,
struct sigevent *_Nullable restrict sevp,
timer_t *restrict timerid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_create():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_create() creates a new per-process interval timer. The ID of the new timer is re-
turned in the buffer pointed to by timerid , which must be a non-null pointer. This ID is
unique within the process, until the timer is deleted. The new timer is initially disarmed.

The clockid argument specifies the clock that the new timer uses to measure time. It can
be specified as one of the following values:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_MONOTONIC
A nonsettable monotonically increasing clock that measures time from some un-
specified point in the past that does not change after system startup.

CLOCK_PROCESS_CPUTIME_ID (since Linux 2.6.12)
A clock that measures (user and system) CPU time consumed by (all of the
threads in) the calling process.

CLOCK_THREAD_CPUTIME_ID (since Linux 2.6.12)
A clock that measures (user and system) CPU time consumed by the calling
thread.

CLOCK_BOOTTIME (Since Linux 2.6.39)
Like CLOCK_MONOTONIC, this is a monotonically increasing clock. How-
ever, whereas the CLOCK_MONOTONIC clock does not measure the time
while a system is suspended, the CLOCK_BOOTTIME clock does include the
time during which the system is suspended. This is useful for applications that
need to be suspend-aware. CLOCK_REALTIME is not suitable for such appli-
cations, since that clock is affected by discontinuous changes to the system
clock.

CLOCK_REALTIME_ALARM (since Linux 3.0)
This clock is like CLOCK_REALTIME, but will wake the system if it is sus-
pended. The caller must have the CAP_WAKE_ALARM capability in order to
set a timer against this clock.

Linux man-pages 6.16 2025-10-29 1093

timer_create(2) System Calls Manual timer_create(2)

CLOCK_BOOTTIME_ALARM (since Linux 3.0)
This clock is like CLOCK_BOOTTIME, but will wake the system if it is sus-
pended. The caller must have the CAP_WAKE_ALARM capability in order to
set a timer against this clock.

CLOCK_TAI (since Linux 3.10)
A system-wide clock derived from wall-clock time but counting leap seconds.

See clock_getres(2) for some further details on the above clocks.

As well as the above values, clockid can be specified as the clockid returned by a call to
clock_getcpuclockid(3) or pthread_getcpuclockid(3).

The sevp argument points to a sigevent structure that specifies how the caller should be
notified when the timer expires. For the definition and general details of this structure,
see sigevent(3type).

The sevp.sigev_notify field can have the following values:

SIGEV_NONE
Don’t asynchronously notify when the timer expires. Progress of the timer can
be monitored using timer_gettime(2).

SIGEV_SIGNAL
Upon timer expiration, generate the signal sigev_signo for the process. See
sigevent(3type) for general details. The si_code field of the siginfo_t structure
will be set to SI_TIMER. At any point in time, at most one signal is queued to
the process for a given timer; see timer_getoverrun(2) for more details.

SIGEV_THREAD
Upon timer expiration, invoke sigev_notify_function as if it were the start func-
tion of a new thread. See sigevent(3type) for details.

SIGEV_THREAD_ID (Linux-specific)
As for SIGEV_SIGNAL, but the signal is targeted at the thread whose ID is
given in sigev_notify_thread_id , which must be a thread in the same process as
the caller. The sigev_notify_thread_id field specifies a kernel thread ID, that is,
the value returned by clone(2) or gettid(2). This flag is intended only for use by
threading libraries.

Specifying sevp as NULL is equivalent to specifying a pointer to a sigevent structure in
which sigev_notify is SIGEV_SIGNAL, sigev_signo is SIGALRM, and
sigev_value.sival_int is the timer ID.

RETURN VALUE
On success, timer_create() returns 0, and the ID of the new timer is placed in *timerid .
On failure, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

Temporary error during kernel allocation of timer structures.

EINVAL
Clock ID, sigev_notify, sigev_signo, or sigev_notify_thread_id is invalid.

Linux man-pages 6.16 2025-10-29 1094

timer_create(2) System Calls Manual timer_create(2)

ENOMEM
Could not allocate memory.

ENOTSUP
The kernel does not support creating a timer against this clockid .

EPERM
clockid was CLOCK_REALTIME_ALARM or CLOCK_BOOT-
TIME_ALARM but the caller did not have the CAP_WAKE_ALARM capa-
bility.

VERSIONS
C library/kernel differences

Part of the implementation of the POSIX timers API is provided by glibc. In particular:

• Much of the functionality for SIGEV_THREAD is implemented within glibc,
rather than the kernel. (This is necessarily so, since the thread involved in handling
the notification is one that must be managed by the C library POSIX threads imple-
mentation.) Although the notification delivered to the process is via a thread, inter-
nally the NPTL implementation uses a sigev_notify value of SIGEV_THREAD_ID
along with a real-time signal that is reserved by the implementation (see nptl(7)).

• The implementation of the default case where evp is NULL is handled inside glibc,
which invokes the underlying system call with a suitably populated sigevent struc-
ture.

• The timer IDs presented at user level are maintained by glibc, which maps these IDs
to the timer IDs employed by the kernel.

STANDARDS
POSIX.1-2024.

HISTORY
Linux 2.6. POSIX.1-2001.

Prior to Linux 2.6, glibc provided an incomplete user-space implementation
(CLOCK_REALTIME timers only) using POSIX threads, and before glibc 2.17, the
implementation falls back to this technique on systems running kernels older than Linux
2.6.

NOTES
A program may create multiple interval timers using timer_create().

Timers are not inherited by the child of a fork(2), and are disarmed and deleted during
an execve(2).

The kernel preallocates a "queued real-time signal" for each timer created using
timer_create(). Consequently, the number of timers is limited by the RLIMIT_SIG-
PENDING resource limit (see setrlimit(2)).

The timers created by timer_create() are commonly known as "POSIX (interval)
timers". The POSIX timers API consists of the following interfaces:

Linux man-pages 6.16 2025-10-29 1095

timer_create(2) System Calls Manual timer_create(2)

timer_create()
Create a timer.

timer_settime(2)
Arm (start) or disarm (stop) a timer.

timer_gettime(2)
Fetch the time remaining until the next expiration of a timer, along with the in-
terval setting of the timer.

timer_getoverrun(2)
Return the overrun count for the last timer expiration.

timer_delete(2)
Disarm and delete a timer.

Since Linux 3.10, the /proc/ pid /timers file can be used to list the POSIX timers for the
process with PID pid . See proc(5) for further information.

Since Linux 4.10, support for POSIX timers is a configurable option that is enabled by
default. Kernel support can be disabled via the CONFIG_POSIX_TIMERS option.

EXAMPLES
The program below takes two arguments: a sleep period in seconds, and a timer fre-
quency in nanoseconds. The program establishes a handler for the signal it uses for the
timer, blocks that signal, creates and arms a timer that expires with the given frequency,
sleeps for the specified number of seconds, and then unblocks the timer signal. Assum-
ing that the timer expired at least once while the program slept, the signal handler will
be invoked, and the handler displays some information about the timer notification. The
program terminates after one invocation of the signal handler.

In the following example run, the program sleeps for 1 second, after creating a timer that
has a frequency of 100 nanoseconds. By the time the signal is unblocked and delivered,
there have been around ten million overruns.

$./a.out 1 100;
Establishing handler for signal 34
Blocking signal 34
timer ID is 0x804c008
Sleeping for 1 seconds
Unblocking signal 34
Caught signal 34

sival_ptr = 0xbfb174f4; *sival_ptr = 0x804c008
overrun count = 10004886

Program source

#include <err.h>
#include <signal.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

Linux man-pages 6.16 2025-10-29 1096

timer_create(2) System Calls Manual timer_create(2)

#include <unistd.h>

#define CLOCKID CLOCK_REALTIME
#define SIG SIGRTMIN

static void
print_siginfo(siginfo_t *si)
{

int or;
timer_t *tidp;

tidp = si->si_value.sival_ptr;

printf(" sival_ptr = %p; ", si->si_value.sival_ptr);
printf(" *sival_ptr = %#jx\n", (uintmax_t) *tidp);

or = timer_getoverrun(*tidp);
if (or == -1)

err(EXIT_FAILURE, "timer_getoverrun");

printf(" overrun count = %d\n", or);
}

static void
handler(int sig, siginfo_t *si, void *uc)
{

/* Note: calling printf() from a signal handler is not safe
(and should not be done in production programs), since
printf() is not async-signal-safe; see signal-safety(7).
Nevertheless, we use printf() here as a simple way of
showing that the handler was called. */

printf("Caught signal %d\n", sig);
print_siginfo(si);
signal(sig, SIG_IGN);

}

int
main(int argc, char *argv[])
{

timer_t timerid;
sigset_t mask;
long long freq_nanosecs;
struct sigevent sev;
struct sigaction sa;
struct itimerspec its;

Linux man-pages 6.16 2025-10-29 1097

timer_create(2) System Calls Manual timer_create(2)

if (argc != 3) {
fprintf(stderr, "Usage: %s <sleep-secs> <freq-nanosecs>\n",

argv[0]);
exit(EXIT_FAILURE);

}

/* Establish handler for timer signal. */

printf("Establishing handler for signal %d\n", SIG);
sa.sa_flags = SA_SIGINFO;
sa.sa_sigaction = handler;
sigemptyset(&sa.sa_mask);
if (sigaction(SIG, &sa, NULL) == -1)

err(EXIT_FAILURE, "sigaction");

/* Block timer signal temporarily. */

printf("Blocking signal %d\n", SIG);
sigemptyset(&mask);
sigaddset(&mask, SIG);
if (sigprocmask(SIG_SETMASK, &mask, NULL) == -1)

err(EXIT_FAILURE, "sigprocmask");

/* Create the timer. */

sev.sigev_notify = SIGEV_SIGNAL;
sev.sigev_signo = SIG;
sev.sigev_value.sival_ptr = &timerid;
if (timer_create(CLOCKID, &sev, &timerid) == -1)

err(EXIT_FAILURE, "timer_create");

printf("timer ID is %#jx\n", (uintmax_t) timerid);

/* Start the timer. */

freq_nanosecs = atoll(argv[2]);
its.it_value.tv_sec = freq_nanosecs / 1000000000;
its.it_value.tv_nsec = freq_nanosecs % 1000000000;
its.it_interval.tv_sec = its.it_value.tv_sec;
its.it_interval.tv_nsec = its.it_value.tv_nsec;

if (timer_settime(timerid, 0, &its, NULL) == -1)
err(EXIT_FAILURE, "timer_settime");

/* Sleep for a while; meanwhile, the timer may expire
multiple times. */

Linux man-pages 6.16 2025-10-29 1098

timer_create(2) System Calls Manual timer_create(2)

printf("Sleeping for %d seconds\n", atoi(argv[1]));
sleep(atoi(argv[1]));

/* Unlock the timer signal, so that timer notification
can be delivered. */

printf("Unblocking signal %d\n", SIG);
if (sigprocmask(SIG_UNBLOCK, &mask, NULL) == -1)

err(EXIT_FAILURE, "sigprocmask");

exit(EXIT_SUCCESS);
}

SEE ALSO
clock_gettime(2), setitimer(2), timer_delete(2), timer_getoverrun(2), timer_settime(2),
timerfd_create(2), clock_getcpuclockid(3), pthread_getcpuclockid(3), pthreads(7),
sigevent(3type), signal(7), time(7)

Linux man-pages 6.16 2025-10-29 1099

timer_delete(2) System Calls Manual timer_delete(2)

NAME
timer_delete - delete a POSIX per-process timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int timer_delete(timer_t timerid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_delete():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_delete() deletes the timer whose ID is given in timerid . If the timer was armed at
the time of this call, it is disarmed before being deleted. The treatment of any pending
signal generated by the deleted timer is unspecified.

RETURN VALUE
On success, timer_delete() returns 0. On failure, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
EINVAL

timerid is not a valid timer ID.

STANDARDS
POSIX.1-2024.

HISTORY
Linux 2.6. POSIX.1-2001.

SEE ALSO
clock_gettime(2), timer_create(2), timer_getoverrun(2), timer_settime(2), time(7)

Linux man-pages 6.16 2025-10-29 1100

timer_getoverrun(2) System Calls Manual timer_getoverrun(2)

NAME
timer_getoverrun - get overrun count for a POSIX per-process timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int timer_getoverrun(timer_t timerid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_getoverrun():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_getoverrun() returns the "overrun count" for the timer referred to by timerid . An
application can use the overrun count to accurately calculate the number of timer expira-
tions that would have occurred over a given time interval. Timer overruns can occur
both when receiving expiration notifications via signals (SIGEV_SIGNAL), and via
threads (SIGEV_THREAD).

When expiration notifications are delivered via a signal, overruns can occur as follows.
Regardless of whether or not a real-time signal is used for timer notifications, the system
queues at most one signal per timer. (This is the behavior specified by POSIX.1. The
alternative, queuing one signal for each timer expiration, could easily result in overflow-
ing the allowed limits for queued signals on the system.) Because of system scheduling
delays, or because the signal may be temporarily blocked, there can be a delay between
the time when the notification signal is generated and the time when it is delivered (e.g.,
caught by a signal handler) or accepted (e.g., using sigwaitinfo(2)). In this interval, fur-
ther timer expirations may occur. The timer overrun count is the number of additional
timer expirations that occurred between the time when the signal was generated and
when it was delivered or accepted.

Timer overruns can also occur when expiration notifications are delivered via invocation
of a thread, since there may be an arbitrary delay between an expiration of the timer and
the invocation of the notification thread, and in that delay interval, additional timer expi-
rations may occur.

RETURN VALUE
On success, timer_getoverrun() returns the overrun count of the specified timer; this
count may be 0 if no overruns have occurred. On failure, -1 is returned, and errno is set
to indicate the error.

ERRORS
EINVAL

timerid is not a valid timer ID.

VERSIONS
When timer notifications are delivered via signals (SIGEV_SIGNAL), on Linux it is
also possible to obtain the overrun count via the si_overrun field of the siginfo_t struc-
ture (see sigaction(2)). This allows an application to avoid the overhead of making a
system call to obtain the overrun count, but is a nonportable extension to POSIX.1.

Linux man-pages 6.16 2025-10-29 1101

timer_getoverrun(2) System Calls Manual timer_getoverrun(2)

POSIX.1 discusses timer overruns only in the context of timer notifications using sig-
nals.

STANDARDS
POSIX.1-2024.

HISTORY
Linux 2.6. POSIX.1-2001.

BUGS
POSIX.1 specifies that if the timer overrun count is equal to or greater than an imple-
mentation-defined maximum, DELAYTIMER_MAX, then timer_getoverrun() should
return DELAYTIMER_MAX. However, before Linux 4.19, if the timer overrun value
exceeds the maximum representable integer, the counter cycles, starting once more from
low values. Since Linux 4.19, timer_getoverrun() returns DELAYTIMER_MAX (de-
fined as INT_MAX in <limits.h>) in this case (and the overrun value is reset to 0).

EXAMPLES
See timer_create(2).

SEE ALSO
clock_gettime(2), sigaction(2), signalfd(2), sigwaitinfo(2), timer_create(2),
timer_delete(2), timer_settime(2), signal(7), time(7)

Linux man-pages 6.16 2025-10-29 1102

timer_settime(2) System Calls Manual timer_settime(2)

NAME
timer_settime, timer_gettime - arm/disarm and fetch state of POSIX per-process timer

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int timer_gettime(timer_t timerid , struct itimerspec *curr_value);
int timer_settime(timer_t timerid , int flags,

const struct itimerspec *restrict new_value,
struct itimerspec *_Nullable restrict old_value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timer_settime(), timer_gettime():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
timer_settime() arms or disarms the timer identified by timerid . The new_value argu-
ment is pointer to an itimerspec structure that specifies the new initial value and the new
interval for the timer. The itimerspec structure is described in itimerspec(3type).

Each of the substructures of the itimerspec structure is a timespec(3) structure that al-
lows a time value to be specified in seconds and nanoseconds. These time values are
measured according to the clock that was specified when the timer was created by
timer_create(2).

If new_value->it_value specifies a nonzero value (i.e., either subfield is nonzero), then
timer_settime() arms (starts) the timer, setting it to initially expire at the given time. (If
the timer was already armed, then the previous settings are overwritten.) If
new_value->it_value specifies a zero value (i.e., both subfields are zero), then the timer
is disarmed.

The new_value->it_interval field specifies the period of the timer, in seconds and
nanoseconds. If this field is nonzero, then each time that an armed timer expires, the
timer is reloaded from the value specified in new_value->it_interval. If
new_value->it_interval specifies a zero value, then the timer expires just once, at the
time specified by it_value.

By default, the initial expiration time specified in new_value->it_value is interpreted
relative to the current time on the timer’s clock at the time of the call. This can be modi-
fied by specifying TIMER_ABSTIME in flags, in which case new_value->it_value is
interpreted as an absolute value as measured on the timer’s clock; that is, the timer will
expire when the clock value reaches the value specified by new_value->it_value. If the
specified absolute time has already passed, then the timer expires immediately, and the
overrun count (see timer_getoverrun(2)) will be set correctly.

If the value of the CLOCK_REALTIME clock is adjusted while an absolute timer
based on that clock is armed, then the expiration of the timer will be appropriately ad-
justed. Adjustments to the CLOCK_REALTIME clock have no effect on relative
timers based on that clock.

Linux man-pages 6.16 2025-10-29 1103

timer_settime(2) System Calls Manual timer_settime(2)

If old_value is not NULL, then it points to a buffer that is used to return the previous in-
terval of the timer (in old_value->it_interval) and the amount of time until the timer
would previously have next expired (in old_value->it_value).

timer_gettime() returns the time until next expiration, and the interval, for the timer
specified by timerid , in the buffer pointed to by curr_value. The time remaining until
the next timer expiration is returned in curr_value->it_value; this is always a relative
value, regardless of whether the TIMER_ABSTIME flag was used when arming the
timer. If the value returned in curr_value->it_value is zero, then the timer is currently
disarmed. The timer interval is returned in curr_value->it_interval. If the value re-
turned in curr_value->it_interval is zero, then this is a "one-shot" timer.

RETURN VALUE
On success, timer_settime() and timer_gettime() return 0. On error, -1 is returned,
and errno is set to indicate the error.

ERRORS
These functions may fail with the following errors:

EFAULT
new_value, old_value, or curr_value is not a valid pointer.

EINVAL
timerid is invalid.

timer_settime() may fail with the following errors:

EINVAL
new_value.it_value is negative; or new_value.it_value.tv_nsec is negative or
greater than 999,999,999.

STANDARDS
POSIX.1-2024.

HISTORY
Linux 2.6. POSIX.1-2001.

EXAMPLES
See timer_create(2).

SEE ALSO
timer_create(2), timer_getoverrun(2), timespec(3), time(7)

Linux man-pages 6.16 2025-10-29 1104

timerfd_create(2) System Calls Manual timerfd_create(2)

NAME
timerfd_create, timerfd_settime, timerfd_gettime - timers that notify via file descriptors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timerfd.h>

int timerfd_create(int clockid , int flags);

int timerfd_settime(int fd , int flags,
const struct itimerspec *new_value,
struct itimerspec *_Nullable old_value);

int timerfd_gettime(int fd , struct itimerspec *curr_value);

DESCRIPTION
These system calls create and operate on a timer that delivers timer expiration notifica-
tions via a file descriptor. They provide an alternative to the use of setitimer(2) or
timer_create(2), with the advantage that the file descriptor may be monitored by se-
lect(2), poll(2), and epoll(7).

The use of these three system calls is analogous to the use of timer_create(2), timer_set-
time(2), and timer_gettime(2). (There is no analog of timer_getoverrun(2), since that
functionality is provided by read(2), as described below.)

timerfd_create()
timerfd_create() creates a new timer object, and returns a file descriptor that refers to
that timer. The clockid argument specifies the clock that is used to mark the progress of
the timer, and must be one of the following:

CLOCK_REALTIME
A settable system-wide real-time clock.

CLOCK_MONOTONIC
A nonsettable monotonically increasing clock that measures time from some un-
specified point in the past that does not change after system startup.

CLOCK_BOOTTIME (Since Linux 3.15)
Like CLOCK_MONOTONIC, this is a monotonically increasing clock. How-
ever, whereas the CLOCK_MONOTONIC clock does not measure the time
while a system is suspended, the CLOCK_BOOTTIME clock does include the
time during which the system is suspended. This is useful for applications that
need to be suspend-aware. CLOCK_REALTIME is not suitable for such appli-
cations, since that clock is affected by discontinuous changes to the system
clock.

CLOCK_REALTIME_ALARM (since Linux 3.11)
This clock is like CLOCK_REALTIME, but will wake the system if it is sus-
pended. The caller must have the CAP_WAKE_ALARM capability in order to
set a timer against this clock.

Linux man-pages 6.16 2025-09-21 1105

timerfd_create(2) System Calls Manual timerfd_create(2)

CLOCK_BOOTTIME_ALARM (since Linux 3.11)
This clock is like CLOCK_BOOTTIME, but will wake the system if it is sus-
pended. The caller must have the CAP_WAKE_ALARM capability in order to
set a timer against this clock.

See clock_getres(2) for some further details on the above clocks.

The current value of each of these clocks can be retrieved using clock_gettime(2).

Starting with Linux 2.6.27, the following values may be bitwise ORed in flags to
change the behavior of timerfd_create():

TFD_NONBLOCK
Set the O_NONBLOCK file status flag on the open file description
(see open(2)) referred to by the new file descriptor. Using this flag
saves extra calls to fcntl(2) to achieve the same result.

TFD_CLOEXEC
Set the close-on-exec (FD_CLOEXEC) flag on the new file descrip-
tor. See the description of the O_CLOEXEC flag in open(2) for rea-
sons why this may be useful.

In Linux versions up to and including 2.6.26, flags must be specified as zero.

timerfd_settime()
timerfd_settime() arms (starts) or disarms (stops) the timer referred to by the file de-
scriptor fd .

The new_value argument specifies the initial expiration and interval for the timer. The
itimerspec structure used for this argument is described in itimerspec(3type).

new_value.it_value specifies the initial expiration of the timer, in seconds and nanosec-
onds. Setting either field of new_value.it_value to a nonzero value arms the timer. Set-
ting both fields of new_value.it_value to zero disarms the timer.

Setting one or both fields of new_value.it_interval to nonzero values specifies the pe-
riod, in seconds and nanoseconds, for repeated timer expirations after the initial expira-
tion. If both fields of new_value.it_interval are zero, the timer expires just once, at the
time specified by new_value.it_value.

By default, the initial expiration time specified in new_value is interpreted relative to the
current time on the timer’s clock at the time of the call (i.e., new_value.it_value specifies
a time relative to the current value of the clock specified by clockid). An absolute time-
out can be selected via the flags argument.

The flags argument is a bit mask that can include the following values:

TFD_TIMER_ABSTIME
Interpret new_value.it_value as an absolute value on the timer’s clock. The
timer will expire when the value of the timer’s clock reaches the value specified
in new_value.it_value.

TFD_TIMER_CANCEL_ON_SET
If this flag is specified along with TFD_TIMER_ABSTIME and the clock for
this timer is CLOCK_REALTIME or CLOCK_REALTIME_ALARM, then

Linux man-pages 6.16 2025-09-21 1106

timerfd_create(2) System Calls Manual timerfd_create(2)

mark this timer as cancelable if the real-time clock undergoes a discontinuous
change (settimeofday(2), clock_settime(2), or similar). When such changes oc-
cur, a current or future read(2) from the file descriptor will fail with the error
ECANCELED.

If the old_value argument is not NULL, then the itimerspec structure that it points to is
used to return the setting of the timer that was current at the time of the call; see the de-
scription of timerfd_gettime() following.

timerfd_gettime()
timerfd_gettime() returns, in curr_value, an itimerspec structure that contains the cur-
rent setting of the timer referred to by the file descriptor fd .

The it_value field returns the amount of time until the timer will next expire. If both
fields of this structure are zero, then the timer is currently disarmed. This field always
contains a relative value, regardless of whether the TFD_TIMER_ABSTIME flag was
specified when setting the timer.

The it_interval field returns the interval of the timer. If both fields of this structure are
zero, then the timer is set to expire just once, at the time specified by
curr_value.it_value.

Operating on a timer file descriptor
The file descriptor returned by timerfd_create() supports the following additional oper-
ations:

read(2)
If the timer has already expired one or more times since its settings were last
modified using timerfd_settime(), or since the last successful read(2), then the
buffer given to read(2) returns an unsigned 8-byte integer (uint64_t) containing
the number of expirations that have occurred. (The returned value is in host byte
order—that is, the native byte order for integers on the host machine.)

If no timer expirations have occurred at the time of the read(2), then the call ei-
ther blocks until the next timer expiration, or fails with the error EAGAIN if the
file descriptor has been made nonblocking (via the use of the fcntl(2) F_SETFL
operation to set the O_NONBLOCK flag).

A read(2) fails with the error EINVAL if the size of the supplied buffer is less
than 8 bytes.

If the associated clock is either CLOCK_REALTIME or CLOCK_REAL-
TIME_ALARM, the timer is absolute (TFD_TIMER_ABSTIME), and the
flag TFD_TIMER_CANCEL_ON_SET was specified when calling
timerfd_settime(), then read(2) fails with the error ECANCELED if the real-
time clock undergoes a discontinuous change. (This allows the reading applica-
tion to discover such discontinuous changes to the clock.)

If the associated clock is either CLOCK_REALTIME or CLOCK_REAL-
TIME_ALARM, the timer is absolute (TFD_TIMER_ABSTIME), and the
flag TFD_TIMER_CANCEL_ON_SET was not specified when calling
timerfd_settime(), then a discontinuous negative change to the clock (e.g.,
clock_settime(2)) may cause read(2) to unblock, but return a value of 0 (i.e., no

Linux man-pages 6.16 2025-09-21 1107

timerfd_create(2) System Calls Manual timerfd_create(2)

bytes read), if the clock change occurs after the time expired, but before the
read(2) on the file descriptor.

poll(2)
select(2)
(and similar)

The file descriptor is readable (the select(2) readfds argument; the poll(2)
POLLIN flag) if one or more timer expirations have occurred.

The file descriptor also supports the other file-descriptor multiplexing APIs: pse-
lect(2), ppoll(2), and epoll(7).

ioctl(2)
The following timerfd-specific command is supported:

TFD_IOC_SET_TICKS (since Linux 3.17)
Adjust the number of timer expirations that have occurred. The argument
is a pointer to a nonzero 8-byte integer (uint64_t*) containing the new
number of expirations. Once the number is set, any waiter on the timer is
woken up. The only purpose of this command is to restore the expira-
tions for the purpose of checkpoint/restore. This operation is available
only if the kernel was configured with the CONFIG_CHECK-
POINT_RESTORE option.

close(2)
When the file descriptor is no longer required it should be closed. When all file
descriptors associated with the same timer object have been closed, the timer is
disarmed and its resources are freed by the kernel.

fork(2) semantics
After a fork(2), the child inherits a copy of the file descriptor created by timerfd_cre-
ate(). The file descriptor refers to the same underlying timer object as the corresponding
file descriptor in the parent, and read(2)s in the child will return information about expi-
rations of the timer.

execve(2) semantics
A file descriptor created by timerfd_create() is preserved across execve(2), and contin-
ues to generate timer expirations if the timer was armed.

RETURN VALUE
On success, timerfd_create() returns a new file descriptor. On error, -1 is returned and
errno is set to indicate the error.

timerfd_settime() and timerfd_gettime() return 0 on success; on error they return -1,
and set errno to indicate the error.

ERRORS
timerfd_create() can fail with the following errors:

EINVAL
The clockid is not valid.

Linux man-pages 6.16 2025-09-21 1108

timerfd_create(2) System Calls Manual timerfd_create(2)

EINVAL
flags is invalid; or, in Linux 2.6.26 or earlier, flags is nonzero.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENODEV
Could not mount (internal) anonymous inode device.

ENOMEM
There was insufficient kernel memory to create the timer.

EPERM
clockid was CLOCK_REALTIME_ALARM or CLOCK_BOOT-
TIME_ALARM but the caller did not have the CAP_WAKE_ALARM capa-
bility.

timerfd_settime() and timerfd_gettime() can fail with the following errors:

EBADF
fd is not a valid file descriptor.

EFAULT
new_value, old_value, or curr_value is not a valid pointer.

EINVAL
fd is not a valid timerfd file descriptor.

timerfd_settime() can also fail with the following errors:

ECANCELED
See NOTES.

EINVAL
new_value is not properly initialized (one of the tv_nsec falls outside the range
zero to 999,999,999).

EINVAL
flags is invalid.

STANDARDS
Linux.

HISTORY
Linux 2.6.25, glibc 2.8.

NOTES
Suppose the following scenario for CLOCK_REALTIME or CLOCK_REAL-
TIME_ALARM timer that was created with timerfd_create():

(1) The timer has been started (timerfd_settime()) with the TFD_TIMER_AB-
STIME and TFD_TIMER_CANCEL_ON_SET flags;

Linux man-pages 6.16 2025-09-21 1109

timerfd_create(2) System Calls Manual timerfd_create(2)

(2) A discontinuous change (e.g., settimeofday(2)) is subsequently made to the
CLOCK_REALTIME clock; and

(3) the caller once more calls timerfd_settime() to rearm the timer (without first do-
ing a read(2) on the file descriptor).

In this case the following occurs:

• The timerfd_settime() returns -1 with errno set to ECANCELED. (This enables
the caller to know that the previous timer was affected by a discontinuous change to
the clock.)

• The timer is successfully rearmed with the settings provided in the second
timerfd_settime() call. (This was probably an implementation accident, but won’t
be fixed now, in case there are applications that depend on this behaviour.)

BUGS
Currently, timerfd_create() supports fewer types of clock IDs than timer_create(2).

EXAMPLES
The following program creates a timer and then monitors its progress. The program ac-
cepts up to three command-line arguments. The first argument specifies the number of
seconds for the initial expiration of the timer. The second argument specifies the inter-
val for the timer, in seconds. The third argument specifies the number of times the pro-
gram should allow the timer to expire before terminating. The second and third com-
mand-line arguments are optional.

The following shell session demonstrates the use of the program:

$ a.out 3 1 100
0.000: timer started
3.000: read: 1; total=1
4.000: read: 1; total=2
^Z # type control-Z to suspend the program
[1]+ Stopped ./timerfd3_demo 3 1 100
$ fg # Resume execution after a few seconds
a.out 3 1 100
9.660: read: 5; total=7
10.000: read: 1; total=8
11.000: read: 1; total=9
^C # type control-C to suspend the program

Program source

#include <err.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/timerfd.h>
#include <sys/types.h>
#include <time.h>
#include <unistd.h>

Linux man-pages 6.16 2025-09-21 1110

timerfd_create(2) System Calls Manual timerfd_create(2)

static void
print_elapsed_time(void)
{

int secs, nsecs;
static int first_call = 1;
struct timespec curr;
static struct timespec start;

if (first_call) {
first_call = 0;
if (clock_gettime(CLOCK_MONOTONIC, &start) == -1)

err(EXIT_FAILURE, "clock_gettime");
}

if (clock_gettime(CLOCK_MONOTONIC, &curr) == -1)
err(EXIT_FAILURE, "clock_gettime");

secs = curr.tv_sec - start.tv_sec;
nsecs = curr.tv_nsec - start.tv_nsec;
if (nsecs < 0) {

secs--;
nsecs += 1000000000;

}
printf("%d.%03d:\t", secs, (nsecs + 500000) / 1000000);

}

int
main(int argc, char *argv[])
{

int fd;
ssize_t s;
uint64_t expir, tot_expir, max_expir;
struct timespec now;
struct itimerspec new_value;

if (argc != 2 && argc != 4) {
fprintf(stderr, "%s init-secs [interval-secs max-num-expir]\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (clock_gettime(CLOCK_REALTIME, &now) == -1)
err(EXIT_FAILURE, "clock_gettime");

/* Create a CLOCK_REALTIME absolute timer with initial
expiration and interval as specified in command line. */

Linux man-pages 6.16 2025-09-21 1111

timerfd_create(2) System Calls Manual timerfd_create(2)

new_value.it_value.tv_sec = now.tv_sec + atoi(argv[1]);
new_value.it_value.tv_nsec = now.tv_nsec;
if (argc == 2) {

new_value.it_interval.tv_sec = 0;
max_expir = 1;

} else {
new_value.it_interval.tv_sec = atoi(argv[2]);
max_expir = atoi(argv[3]);

}
new_value.it_interval.tv_nsec = 0;

fd = timerfd_create(CLOCK_REALTIME, 0);
if (fd == -1)

err(EXIT_FAILURE, "timerfd_create");

if (timerfd_settime(fd, TFD_TIMER_ABSTIME, &new_value, NULL) == -1)
err(EXIT_FAILURE, "timerfd_settime");

print_elapsed_time();
printf("timer started\n");

for (tot_expir = 0; tot_expir < max_expir;) {
s = read(fd, &expir, sizeof(uint64_t));
if (s != sizeof(uint64_t))

err(EXIT_FAILURE, "read");

tot_expir += expir;
print_elapsed_time();
printf("read: %" PRIu64 "; total=%" PRIu64 "\n",

expir, tot_expir);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
eventfd(2), poll(2), read(2), select(2), setitimer(2), signalfd(2), timer_create(2),
timer_gettime(2), timer_settime(2), timespec(3), epoll(7), time(7)

Linux man-pages 6.16 2025-09-21 1112

times(2) System Calls Manual times(2)

NAME
times - get process times

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/times.h>

clock_t times(struct tms *buf);

DESCRIPTION
times() stores the current process times in the struct tms that buf points to. The struct
tms is as defined in <sys/times.h>:

struct tms {
clock_t tms_utime; /* user time */
clock_t tms_stime; /* system time */
clock_t tms_cutime; /* user time of children */
clock_t tms_cstime; /* system time of children */

};

The tms_utime field contains the CPU time spent executing instructions of the calling
process. The tms_stime field contains the CPU time spent executing inside the kernel
while performing tasks on behalf of the calling process.

The tms_cutime field contains the sum of the tms_utime and tms_cutime values for all
waited-for terminated children. The tms_cstime field contains the sum of the tms_stime
and tms_cstime values for all waited-for terminated children.

Times for terminated children (and their descendants) are added in at the moment
wait(2) or waitpid(2) returns their process ID. In particular, times of grandchildren that
the children did not wait for are never seen.

All times reported are in clock ticks.

RETURN VALUE
times() returns the number of clock ticks that have elapsed since an arbitrary point in the
past. The return value may overflow the possible range of type clock_t. On error,
(clock_t) -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

tms points outside the process’s address space.

VERSIONS
On Linux, the buf argument can be specified as NULL, with the result that times() just
returns a function result. However, POSIX does not specify this behavior, and most
other UNIX implementations require a non-NULL value for buf .

STANDARDS
POSIX.1-2024.

Linux man-pages 6.16 2025-10-29 1113

times(2) System Calls Manual times(2)

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

In POSIX.1-1996 the symbol CLK_TCK (defined in <time.h>) is mentioned as obso-
lescent. It is obsolete now.

Before Linux 2.6.9, if the disposition of SIGCHLD is set to SIG_IGN, then the times
of terminated children are automatically included in the tms_cstime and tms_cutime
fields, although POSIX.1-2001 says that this should happen only if the calling process
wait(2)s on its children. This nonconformance is rectified in Linux 2.6.9 and later.

On Linux, the “arbitrary point in the past” from which the return value of times() is
measured has varied across kernel versions. On Linux 2.4 and earlier, this point is the
moment the system was booted. Since Linux 2.6, this point is (2^32/HZ) - 300 seconds
before system boot time. This variability across kernel versions (and across UNIX im-
plementations), combined with the fact that the returned value may overflow the range
of clock_t, means that a portable application would be wise to avoid using this value. To
measure changes in elapsed time, use clock_gettime(2) instead.

SVr1-3 returns long and the struct members are of type time_t although they store clock
ticks, not seconds since the Epoch. V7 used long for the struct members, because it had
no type time_t yet.

NOTES
The number of clock ticks per second can be obtained using:

sysconf(_SC_CLK_TCK);

Note that clock(3) also returns a value of type clock_t, but this value is measured in units
of CLOCKS_PER_SEC, not the clock ticks used by times().

BUGS
A limitation of the Linux system call conventions on some architectures (notably i386)
means that on Linux 2.6 there is a small time window (41 seconds) soon after boot when
times() can return -1, falsely indicating that an error occurred. The same problem can
occur when the return value wraps past the maximum value that can be stored in
clock_t.

SEE ALSO
time(1), getrusage(2), wait(2), clock(3), sysconf(3), time(7)

Linux man-pages 6.16 2025-10-29 1114

tkill(2) System Calls Manual tkill(2)

NAME
tkill, tgkill - send a signal to a thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h> /* Definition of SIG* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]] int syscall(SYS_tkill, pid_t tid , int sig);

#include <signal.h>

int tgkill(pid_t tgid , pid_t tid , int sig);

Note: glibc provides no wrapper for tkill(), necessitating the use of syscall(2).

DESCRIPTION
tgkill() sends the signal sig to the thread with the thread ID tid in the thread group tgid .
(By contrast, kill(2) can be used to send a signal only to a process (i.e., thread group) as
a whole, and the signal will be delivered to an arbitrary thread within that process.)

tkill() is an obsolete predecessor to tgkill(). It allows only the target thread ID to be
specified, which may result in the wrong thread being signaled if a thread terminates and
its thread ID is recycled. Avoid using this system call.

These are the raw system call interfaces, meant for internal thread library use.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EAGAIN

The RLIMIT_SIGPENDING resource limit was reached and sig is a real-time
signal.

EAGAIN
Insufficient kernel memory was available and sig is a real-time signal.

EINVAL
An invalid thread ID, thread group ID, or signal was specified.

EPERM
Permission denied. For the required permissions, see kill(2).

ESRCH
No process with the specified thread ID (and thread group ID) exists.

STANDARDS
Linux.

HISTORY

Linux man-pages 6.16 2025-09-21 1115

tkill(2) System Calls Manual tkill(2)

tkill()
Linux 2.4.19 / 2.5.4.

tgkill()
Linux 2.5.75, glibc 2.30.

NOTES
See the description of CLONE_THREAD in clone(2) for an explanation of thread
groups.

SEE ALSO
clone(2), gettid(2), kill(2), rt_sigqueueinfo(2)

Linux man-pages 6.16 2025-09-21 1116

truncate(2) System Calls Manual truncate(2)

NAME
truncate, ftruncate - truncate a file to a specified length

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int truncate(const char *path, off_t length);
int ftruncate(int fd , off_t length);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

truncate():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

ftruncate():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.3.5: */ _POSIX_C_SOURCE >= 200112L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
The truncate() and ftruncate() functions cause the regular file named by path or refer-
enced by fd to be truncated to a size of precisely length bytes.

If the file previously was larger than this size, the extra data is lost. If the file previously
was shorter, it is extended, and the extended part reads as null bytes ('\0').

The file offset is not changed.

If the size changed, then the st_ctime and st_mtime fields (respectively, time of last sta-
tus change and time of last modification; see inode(7)) for the file are updated, and the
set-user-ID and set-group-ID mode bits may be cleared.

With ftruncate(), the file must be open for writing; with truncate(), the file must be
writable.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
For truncate():

EACCES
Search permission is denied for a component of the path prefix, or the named file
is not writable by the user. (See also path_resolution(7).)

EFAULT
The argument path points outside the process’s allocated address space.

EFBIG
The argument length is larger than the maximum file size. (XSI)

Linux man-pages 6.16 2025-10-29 1117

truncate(2) System Calls Manual truncate(2)

EINTR
While blocked waiting to complete, the call was interrupted by a signal handler;
see fcntl(2) and signal(7).

EINVAL
The argument length is negative or larger than the maximum file size.

EIO An I/O error occurred updating the inode.

EISDIR
The named file is a directory.

ELOOP
Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG
A component of a pathname exceeded 255 characters, or an entire pathname ex-
ceeded 1023 characters.

ENOENT
The named file does not exist.

ENOTDIR
A component of the path prefix is not a directory.

EPERM
The underlying filesystem does not support extending a file beyond its current
size.

EPERM
The operation was prevented by a file seal; see fcntl(2).

EROFS
The named file resides on a read-only filesystem.

ETXTBSY
The file is an executable file that is being executed.

For ftruncate() the same errors apply, but instead of things that can be wrong with path,
we now have things that can be wrong with the file descriptor, fd:

EBADF
fd is not a valid file descriptor.

EBADF or EINVAL
fd is not open for writing.

EINVAL
fd does not reference a regular file or a POSIX shared memory object.

EINVAL or EBADF
The file descriptor fd is not open for writing. POSIX permits, and portable ap-
plications should handle, either error for this case. (Linux produces EINVAL.)

VERSIONS
The details in DESCRIPTION are for XSI-compliant systems. For non-XSI-compliant
systems, the POSIX standard allows two behaviors for ftruncate() when length exceeds

Linux man-pages 6.16 2025-10-29 1118

truncate(2) System Calls Manual truncate(2)

the file length (note that truncate() is not specified at all in such an environment): either
returning an error, or extending the file. Like most UNIX implementations, Linux fol-
lows the XSI requirement when dealing with native filesystems. However, some nonna-
tive filesystems do not permit truncate() and ftruncate() to be used to extend a file be-
yond its current length: a notable example on Linux is VFAT.

On some 32-bit architectures, the calling signature for these system calls differ, for the
reasons described in syscall(2).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.2BSD.

The original Linux truncate() and ftruncate() system calls were not designed to handle
large file offsets. Consequently, Linux 2.4 added truncate64() and ftruncate64() sys-
tem calls that handle large files. However, these details can be ignored by applications
using glibc, whose wrapper functions transparently employ the more recent system calls
where they are available.

NOTES
ftruncate() can also be used to set the size of a POSIX shared memory object; see
shm_open(3).

BUGS
A header file bug in glibc 2.12 meant that the minimum value of _POSIX_C_SOURCE
required to expose the declaration of ftruncate() was 200809L instead of 200112L.
This has been fixed in later glibc versions.

SEE ALSO
truncate(1), open(2), stat(2), path_resolution(7)

Linux man-pages 6.16 2025-10-29 1119

umask(2) System Calls Manual umask(2)

NAME
umask - set file mode creation mask

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>

mode_t umask(mode_t mask);

DESCRIPTION
umask() sets the calling process’s file mode creation mask (umask) to mask & 0777
(i.e., only the file permission bits of mask are used), and returns the previous value of
the mask.

The umask is used by open(2), mkdir(2), and other system calls that create files to mod-
ify the permissions placed on newly created files or directories. Specifically, permis-
sions in the umask are turned off from the mode argument to open(2) and mkdir(2).

Alternatively, if the parent directory has a default ACL (see acl(5)), the umask is ig-
nored, the default ACL is inherited, the permission bits are set based on the inherited
ACL, and permission bits absent in the mode argument are turned off. For example, the
following default ACL is equivalent to a umask of 022:

u::rwx,g::r-x,o::r-x

Combining the effect of this default ACL with a mode argument of 0666 (rw-rw-rw-),
the resulting file permissions would be 0644 (rw-r--r--).

The constants that should be used to specify mask are described in inode(7).

The typical default value for the process umask is S_IWGRP | S_IWOTH (octal 022).
In the usual case where the mode argument to open(2) is specified as:

S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP | S_IROTH | S_IWOTH

(octal 0666) when creating a new file, the permissions on the resulting file will be:

S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH

(because 0666 & ~022 = 0644; i.e., rw-r--r--).

RETURN VALUE
This system call always succeeds and the previous value of the mask is returned.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
A child process created via fork(2) inherits its parent’s umask. The umask is left un-
changed by execve(2).

It is impossible to use umask() to fetch a process’s umask without at the same time
changing it. A second call to umask() would then be needed to restore the umask. The

Linux man-pages 6.16 2025-09-21 1120

umask(2) System Calls Manual umask(2)

nonatomicity of these two steps provides the potential for races in multithreaded pro-
grams.

Since Linux 4.7, the umask of any process can be viewed via the Umask field of
/proc/ pid /status. Inspecting this field in /proc/self/status allows a process to retrieve its
umask without at the same time changing it.

The umask setting also affects the permissions assigned to POSIX IPC objects
(mq_open(3), sem_open(3), shm_open(3)), FIFOs (mkfifo(3)), and UNIX domain sock-
ets (unix(7)) created by the process. The umask does not affect the permissions as-
signed to System V IPC objects created by the process (using msgget(2), semget(2),
shmget(2)).

SEE ALSO
chmod(2), mkdir(2), open(2), stat(2), acl(5)

Linux man-pages 6.16 2025-09-21 1121

umount(2) System Calls Manual umount(2)

NAME
umount, umount2 - unmount filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mount.h>

int umount(const char *target);
int umount2(const char *target, int flags);

DESCRIPTION
umount() and umount2() remove the attachment of the (topmost) filesystem mounted
on target.

Appropriate privilege (Linux: the CAP_SYS_ADMIN capability) is required to un-
mount filesystems.

Linux 2.1.116 added the umount2() system call, which, like umount(), unmounts a tar-
get, but allows additional flags controlling the behavior of the operation:

MNT_FORCE (since Linux 2.1.116)
Ask the filesystem to abort pending requests before attempting the unmount.
This may allow the unmount to complete without waiting for an inaccessible
server, but could cause data loss. If, after aborting requests, some processes still
have active references to the filesystem, the unmount will still fail. As at Linux
4.12, MNT_FORCE is supported only on the following filesystems: 9p (since
Linux 2.6.16), ceph (since Linux 2.6.34), cifs (since Linux 2.6.12), fuse (since
Linux 2.6.16), lustre (since Linux 3.11), and NFS (since Linux 2.1.116).

MNT_DETACH (since Linux 2.4.11)
Perform a lazy unmount: make the mount unavailable for new accesses, immedi-
ately disconnect the filesystem and all filesystems mounted below it from each
other and from the mount table, and actually perform the unmount when the
mount ceases to be busy.

MNT_EXPIRE (since Linux 2.6.8)
Mark the mount as expired. If a mount is not currently in use, then an initial call
to umount2() with this flag fails with the error EAGAIN, but marks the mount
as expired. The mount remains expired as long as it isn’t accessed by any
process. A second umount2() call specifying MNT_EXPIRE unmounts an ex-
pired mount. This flag cannot be specified with either MNT_FORCE or
MNT_DETACH.

UMOUNT_NOFOLLOW (since Linux 2.6.34)
Don’t dereference target if it is a symbolic link. This flag allows security prob-
lems to be avoided in set-user-ID-root programs that allow unprivileged users to
unmount filesystems.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

Linux man-pages 6.16 2025-09-21 1122

umount(2) System Calls Manual umount(2)

ERRORS
The error values given below result from filesystem type independent errors. Each
filesystem type may have its own special errors and its own special behavior. See the
Linux kernel source code for details.

EAGAIN
A call to umount2() specifying MNT_EXPIRE successfully marked an unbusy
filesystem as expired.

EBUSY
target could not be unmounted because it is busy.

EFAULT
target points outside the user address space.

EINVAL
target is not a mount point.

EINVAL
target is locked; see mount_namespaces(7).

EINVAL
umount2() was called with MNT_EXPIRE and either MNT_DETACH or
MNT_FORCE.

EINVAL (since Linux 2.6.34)
umount2() was called with an invalid flag value in flags.

ENAMETOOLONG
A pathname was longer than MAXPATHLEN.

ENOENT
A pathname was empty or had a nonexistent component.

ENOMEM
The kernel could not allocate a free page to copy filenames or data into.

EPERM
The caller does not have the required privileges.

STANDARDS
Linux.

HISTORY
MNT_DETACH and MNT_EXPIRE are available since glibc 2.11.

The original umount() function was called as umount(device) and would return ENOT-
BLK when called with something other than a block device. In Linux 0.98p4, a call
umount(dir) was added, in order to support anonymous devices. In Linux 2.3.99-pre7,
the call umount(device) was removed, leaving only umount(dir) (since now devices can
be mounted in more than one place, so specifying the device does not suffice).

NOTES
umount() and shared mounts

Shared mounts cause any mount activity on a mount, including umount() operations, to
be forwarded to every shared mount in the peer group and every slave mount of that peer

Linux man-pages 6.16 2025-09-21 1123

umount(2) System Calls Manual umount(2)

group. This means that umount() of any peer in a set of shared mounts will cause all of
its peers to be unmounted and all of their slaves to be unmounted as well.

This propagation of unmount activity can be particularly surprising on systems where
every mount is shared by default. On such systems, recursively bind mounting the root
directory of the filesystem onto a subdirectory and then later unmounting that subdirec-
tory with MNT_DETACH will cause every mount in the mount namespace to be lazily
unmounted.

To ensure umount() does not propagate in this fashion, the mount may be remounted
using a mount(2) call with a mount_flags argument that includes both MS_REC and
MS_PRIVATE prior to umount() being called.

SEE ALSO
mount(2), mount_namespaces(7), path_resolution(7), mount(8), umount(8)

Linux man-pages 6.16 2025-09-21 1124

uname(2) System Calls Manual uname(2)

NAME
uname - get name and information about current kernel

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/utsname.h>

int uname(struct utsname *buf);

DESCRIPTION
uname() returns system information in the structure pointed to by buf . The utsname
struct is defined in <sys/utsname.h>:

struct utsname {
char sysname[]; /* Operating system name (e.g., "Linux") */
char nodename[]; /* Name within communications network

to which the node is attached, if any */
char release[]; /* Operating system release

(e.g., "2.6.28") */
char version[]; /* Operating system version */
char machine[]; /* Hardware type identifier */

#ifdef _GNU_SOURCE
char domainname[]; /* NIS or YP domain name */

#endif
};

The length of the arrays in a struct utsname is unspecified (see VERSIONS and HIS-
TORY); the fields are terminated by a null byte ('\0').

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

buf is not valid.

VERSIONS
The domainname member (the NIS or YP domain name) is a GNU extension.

The length of the fields in the struct varies. Some operating systems or libraries use a
hardcoded 9 or 33 or 65 or 257. Other systems use SYS_NMLN or _SYS_NMLN or
UTSLEN or _UTSNAME_LENGTH. Clearly, it is a bad idea to use any of these con-
stants; just use sizeof(...). SVr4 uses 257, "to support Internet hostnames" —this is the
largest value likely to be encountered in the wild—.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD.

Linux man-pages 6.16 2025-10-29 1125

uname(2) System Calls Manual uname(2)

C library/kernel differences
Over time, increases in the size of the utsname structure have led to three successive ver-
sions of uname(): sys_olduname() (slot __NR_oldolduname), sys_uname() (slot
__NR_olduname), and sys_newuname() (slot __NR_uname). The first one used length 9
for all fields; the second used 65; the third also uses 65 but adds the domainname field.
The glibc uname() wrapper function hides these details from applications, invoking the
most recent version of the system call provided by the kernel.

NOTES
The kernel has the name, release, version, and supported machine type built in. Con-
versely, the nodename field is configured by the administrator to match the network (this
is what the BSD historically calls the "hostname", and is set via sethostname(2)). Simi-
larly, the domainname field is set via setdomainname(2).

Part of the utsname information is also accessible via /proc/sys/kernel/ {ostype, host-
name, osrelease, version, domainname}.

SEE ALSO
uname(1), getdomainname(2), gethostname(2), uts_namespaces(7)

Linux man-pages 6.16 2025-10-29 1126

UNIMPLEMENTED(2) System Calls Manual UNIMPLEMENTED(2)

NAME
afs_syscall, break, fattach, fdetach, ftime, getmsg, getpmsg, gtty, isastream, lock, mad-
vise1, mpx, prof, profil, putmsg, putpmsg, security, stty, tuxcall, ulimit, vserver - unim-
plemented system calls

SYNOPSIS
Unimplemented system calls.

DESCRIPTION
These system calls are not implemented in the Linux kernel.

RETURN VALUE
These system calls always return -1 and set errno to ENOSYS.

NOTES
Note that ftime(3), profil(3), and ulimit(3) are implemented as library functions.

Some system calls, like alloc_hugepages(2), free_hugepages(2), ioperm(2), iopl(2), and
vm86(2) exist only on certain architectures.

Some system calls, like ipc(2), create_module(2), init_module(2), and delete_module(2)
exist only when the Linux kernel was built with support for them.

SEE ALSO
syscalls(2)

Linux man-pages 6.16 2025-05-17 1127

unlink(2) System Calls Manual unlink(2)

NAME
unlink, unlinkat - delete a name and possibly the file it refers to

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int unlink(const char *path);

#include <fcntl.h> /* Definition of AT_* constants */
#include <unistd.h>

int unlinkat(int dirfd , const char *path, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

unlinkat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
unlink() deletes a name from the filesystem. If that name was the last link to a file and
no processes have the file open, the file is deleted and the space it was using is made
available for reuse.

If the name was the last link to a file but any processes still have the file open, the file
will remain in existence until the last file descriptor referring to it is closed.

If the name referred to a symbolic link, the link is removed.

If the name referred to a socket, FIFO, or device, the name for it is removed but
processes which have the object open may continue to use it.

unlinkat()
The unlinkat() system call operates in exactly the same way as either unlink() or
rmdir(2) (depending on whether or not flags includes the AT_REMOVEDIR flag) ex-
cept for the differences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by unlink() and rmdir(2) for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like unlink() and
rmdir(2)).

If path is absolute, then dirfd is ignored.

flags is a bit mask that can either be specified as 0, or by ORing together flag values that
control the operation of unlinkat(). Currently, only one such flag is defined:

Linux man-pages 6.16 2025-10-29 1128

unlink(2) System Calls Manual unlink(2)

AT_REMOVEDIR
By default, unlinkat() performs the equivalent of unlink() on path. If the
AT_REMOVEDIR flag is specified, it performs the equivalent of rmdir(2) on
path.

See openat(2) for an explanation of the need for unlinkat().

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Write access to the directory containing path is not allowed for the process’s ef-
fective UID, or one of the directories in path did not allow search permission.
(See also path_resolution(7).)

EBUSY
path cannot be unlinked because it is being used by the system or another
process; for example, it is a mount point or the NFS client software created it to
represent an active but otherwise nameless inode ("NFS silly renamed").

EFAULT
path points outside your accessible address space.

EIO An I/O error occurred.

EISDIR
path refers to a directory. (This is the non-POSIX value returned since Linux
2.1.132.)

ELOOP
Too many symbolic links were encountered in translating path.

ENAMETOOLONG
path was too long.

ENOENT
A component in path does not exist or is a dangling symbolic link, or path is
empty.

ENOMEM
Insufficient kernel memory was available.

ENOTDIR
A component used as a directory in path is not, in fact, a directory.

EPERM
The system does not allow unlinking of directories, or unlinking of directories
requires privileges that the calling process doesn’t have. (This is the POSIX pre-
scribed error return; as noted above, Linux returns EISDIR for this case.)

EPERM (Linux only)
The filesystem does not allow unlinking of files.

Linux man-pages 6.16 2025-10-29 1129

unlink(2) System Calls Manual unlink(2)

EPERM or EACCES
The directory containing path has the sticky bit (S_ISVTX) set and the
process’s effective UID is neither the UID of the file to be deleted nor that of the
directory containing it, and the process is not privileged (Linux: does not have
the CAP_FOWNER capability).

EPERM
The file to be unlinked is marked immutable or append-only. (See
FS_IOC_SETFLAGS(2const).)

EROFS
path refers to a file on a read-only filesystem.

The same errors that occur for unlink() and rmdir(2) can also occur for unlinkat(). The
following additional errors can occur for unlinkat():

EBADF
path is relative but dirfd is neither AT_FDCWD nor a valid file descriptor.

EINVAL
An invalid flag value was specified in flags.

EISDIR
path refers to a directory, and AT_REMOVEDIR was not specified in flags.

ENOTDIR
path is relative and dirfd is a file descriptor referring to a file other than a direc-
tory.

STANDARDS
POSIX.1-2024.

HISTORY
unlink()

SVr4, 4.3BSD, POSIX.1-2001.

unlinkat()
POSIX.1-2008. Linux 2.6.16, glibc 2.4.

glibc
On older kernels where unlinkat() is unavailable, the glibc wrapper function falls back
to the use of unlink() or rmdir(2). When path is relative, glibc constructs a pathname
based on the symbolic link in /proc/self/fd that corresponds to the dirfd argument.

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of
files which are still being used.

SEE ALSO
rm(1), unlink(1), chmod(2), link(2), mknod(2), open(2), rename(2), rmdir(2), mkfifo(3),
remove(3), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 1130

unshare(2) System Calls Manual unshare(2)

NAME
unshare - disassociate parts of the process execution context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#include <sched.h>

int unshare(int flags);

DESCRIPTION
unshare() allows a process (or thread) to disassociate parts of its execution context that
are currently being shared with other processes (or threads). Part of the execution con-
text, such as the mount namespace, is shared implicitly when a new process is created
using fork(2) or vfork(2), while other parts, such as virtual memory, may be shared by
explicit request when creating a process or thread using clone(2).

The main use of unshare() is to allow a process to control its shared execution context
without creating a new process.

The flags argument is a bit mask that specifies which parts of the execution context
should be unshared. This argument is specified by ORing together zero or more of the
following constants:

CLONE_FILES
Reverse the effect of the clone(2) CLONE_FILES flag. Unshare the file de-
scriptor table, so that the calling process no longer shares its file descriptors with
any other process.

CLONE_FS
Reverse the effect of the clone(2) CLONE_FS flag. Unshare filesystem attrib-
utes, so that the calling process no longer shares its root directory (chroot(2)),
current directory (chdir(2)), or umask (umask(2)) attributes with any other
process.

CLONE_NEWCGROUP (since Linux 4.6)
This flag has the same effect as the clone(2) CLONE_NEWCGROUP flag.
Unshare the cgroup namespace. Use of CLONE_NEWCGROUP requires the
CAP_SYS_ADMIN capability.

CLONE_NEWIPC (since Linux 2.6.19)
This flag has the same effect as the clone(2) CLONE_NEWIPC flag. Unshare
the IPC namespace, so that the calling process has a private copy of the IPC
namespace which is not shared with any other process. Specifying this flag auto-
matically implies CLONE_SYSVSEM as well. Use of CLONE_NEWIPC re-
quires the CAP_SYS_ADMIN capability.

CLONE_NEWNET (since Linux 2.6.24)
This flag has the same effect as the clone(2) CLONE_NEWNET flag. Unshare
the network namespace, so that the calling process is moved into a new network
namespace which is not shared with any previously existing process. Use of
CLONE_NEWNET requires the CAP_SYS_ADMIN capability.

Linux man-pages 6.16 2025-10-01 1131

unshare(2) System Calls Manual unshare(2)

CLONE_NEWNS
This flag has the same effect as the clone(2) CLONE_NEWNS flag. Unshare
the mount namespace, so that the calling process has a private copy of its name-
space which is not shared with any other process. Specifying this flag automati-
cally implies CLONE_FS as well. Use of CLONE_NEWNS requires the
CAP_SYS_ADMIN capability. For further information, see mount_name-
spaces(7).

CLONE_NEWPID (since Linux 3.8)
This flag has the same effect as the clone(2) CLONE_NEWPID flag. Unshare
the PID namespace, so that the calling process has a new PID namespace for its
children which is not shared with any previously existing process. The calling
process is not moved into the new namespace. The first child created by the
calling process will have the process ID 1 and will assume the role of init(1) in
the new namespace. CLONE_NEWPID automatically implies
CLONE_THREAD as well. Use of CLONE_NEWPID requires the
CAP_SYS_ADMIN capability. For further information, see
pid_namespaces(7).

CLONE_NEWTIME (since Linux 5.6)
Unshare the time namespace, so that the calling process has a new time name-
space for its children which is not shared with any previously existing process.
The calling process is not moved into the new namespace. Use of
CLONE_NEWTIME requires the CAP_SYS_ADMIN capability. For further
information, see time_namespaces(7).

CLONE_NEWUSER (since Linux 3.8)
This flag has the same effect as the clone(2) CLONE_NEWUSER flag. Un-
share the user namespace, so that the calling process is moved into a new user
namespace which is not shared with any previously existing process. As with
the child process created by clone(2) with the CLONE_NEWUSER flag, the
caller obtains a full set of capabilities in the new namespace.

CLONE_NEWUSER requires that the calling process is not threaded; specify-
ing CLONE_NEWUSER automatically implies CLONE_THREAD. Since
Linux 3.9, CLONE_NEWUSER also automatically implies CLONE_FS.
CLONE_NEWUSER requires that the user ID and group ID of the calling
process are mapped to user IDs and group IDs in the user namespace of the call-
ing process at the time of the call.

For further information on user namespaces, see user_namespaces(7).

CLONE_NEWUTS (since Linux 2.6.19)
This flag has the same effect as the clone(2) CLONE_NEWUTS flag. Unshare
the UTS IPC namespace, so that the calling process has a private copy of the
UTS namespace which is not shared with any other process. Use of
CLONE_NEWUTS requires the CAP_SYS_ADMIN capability.

CLONE_SYSVSEM (since Linux 2.6.26)
This flag reverses the effect of the clone(2) CLONE_SYSVSEM flag. Unshare
System V semaphore adjustment (semadj) values, so that the calling process has

Linux man-pages 6.16 2025-10-01 1132

unshare(2) System Calls Manual unshare(2)

a new empty semadj list that is not shared with any other process. If this is the
last process that has a reference to the process’s current semadj list, then the ad-
justments in that list are applied to the corresponding semaphores, as described
in semop(2).

In addition, CLONE_THREAD, CLONE_SIGHAND, and CLONE_VM can be
specified in flags if the caller is single threaded (i.e., it is not sharing its address space
with another process or thread). In this case, these flags have no effect. (Note also that
specifying CLONE_THREAD automatically implies CLONE_VM, and specifying
CLONE_VM automatically implies CLONE_SIGHAND.) If the process is multi-
threaded, then the use of these flags results in an error.

If flags is specified as zero, then unshare() is a no-op; no changes are made to the call-
ing process’s execution context.

RETURN VALUE
On success, zero is returned. On failure, -1 is returned and errno is set to indicate the
error.

ERRORS
EINVAL

An invalid bit was specified in flags.

EINVAL
CLONE_THREAD, CLONE_SIGHAND, or CLONE_VM was specified in
flags, and the caller is multithreaded.

EINVAL
CLONE_NEWIPC was specified in flags, but the kernel was not configured
with the CONFIG_SYSVIPC and CONFIG_IPC_NS options.

EINVAL
CLONE_NEWNET was specified in flags, but the kernel was not configured
with the CONFIG_NET_NS option.

EINVAL
CLONE_NEWPID was specified in flags, but the kernel was not configured
with the CONFIG_PID_NS option.

EINVAL
CLONE_NEWUSER was specified in flags, but the kernel was not configured
with the CONFIG_USER_NS option.

EINVAL
CLONE_NEWUTS was specified in flags, but the kernel was not configured
with the CONFIG_UTS_NS option.

EINVAL
CLONE_NEWPID was specified in flags, but the process has previously called
unshare() with the CLONE_NEWPID flag.

ENOMEM
Cannot allocate sufficient memory to copy parts of caller’s context that need to
be unshared.

Linux man-pages 6.16 2025-10-01 1133

unshare(2) System Calls Manual unshare(2)

ENOSPC (since Linux 3.7)
CLONE_NEWPID was specified in flags, but the limit on the nesting depth of
PID namespaces would have been exceeded; see pid_namespaces(7).

ENOSPC (since Linux 4.9; beforehand EUSERS)
CLONE_NEWUSER was specified in flags, and the call would cause the limit
on the number of nested user namespaces to be exceeded. See user_name-
spaces(7).

From Linux 3.11 to Linux 4.8, the error diagnosed in this case was EUSERS.

ENOSPC (since Linux 4.9)
One of the values in flags specified the creation of a new user namespace, but
doing so would have caused the limit defined by the corresponding file in
/proc/sys/user to be exceeded. For further details, see namespaces(7).

EPERM
The calling process did not have the required privileges for this operation.

EPERM
CLONE_NEWUSER was specified in flags, but either the effective user ID or
the effective group ID of the caller does not have a mapping in the parent name-
space (see user_namespaces(7)).

EPERM (since Linux 3.9)
CLONE_NEWUSER was specified in flags and the caller is in a chroot envi-
ronment (i.e., the caller’s root directory does not match the root directory of the
mount namespace in which it resides).

EUSERS (from Linux 3.11 to Linux 4.8)
CLONE_NEWUSER was specified in flags, and the limit on the number of
nested user namespaces would be exceeded. See the discussion of the ENOSPC
error above.

STANDARDS
Linux.

HISTORY
Linux 2.6.16.

NOTES
Not all of the process attributes that can be shared when a new process is created using
clone(2) can be unshared using unshare(). In particular, as at kernel 3.8, unshare()
does not implement flags that reverse the effects of CLONE_SIGHAND,
CLONE_THREAD, or CLONE_VM. Such functionality may be added in the future,
if required.

Creating all kinds of namespace, except user namespaces, requires the CAP_SYS_AD-
MIN capability. However, since creating a user namespace automatically confers a full
set of capabilities, creating both a user namespace and any other type of namespace in
the same unshare() call does not require the CAP_SYS_ADMIN capability in the orig-
inal namespace.

Linux man-pages 6.16 2025-10-01 1134

unshare(2) System Calls Manual unshare(2)

EXAMPLES
The program below provides a simple implementation of the unshare(1) command,
which unshares one or more namespaces and executes the command supplied in its com-
mand-line arguments. Here’s an example of the use of this program, running a shell in a
new mount namespace, and verifying that the original shell and the new shell are in sep-
arate mount namespaces:

$ readlink /proc/$$/ns/mnt;
mnt:[4026531840]
$ sudo ./unshare -m /bin/bash;
readlink /proc/$$/ns/mnt;
mnt:[4026532325]

The differing output of the two readlink(1) commands shows that the two shells are in
different mount namespaces.

Program source

/* unshare.c

A simple implementation of the unshare(1) command: unshare
namespaces and execute a command.

*/
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
usage(char *pname)
{

fprintf(stderr, "Usage: %s [options] program [arg...]\n", pname);
fprintf(stderr, "Options can be:\n");
fprintf(stderr, " -C unshare cgroup namespace\n");
fprintf(stderr, " -i unshare IPC namespace\n");
fprintf(stderr, " -m unshare mount namespace\n");
fprintf(stderr, " -n unshare network namespace\n");
fprintf(stderr, " -p unshare PID namespace\n");
fprintf(stderr, " -t unshare time namespace\n");
fprintf(stderr, " -u unshare UTS namespace\n");
fprintf(stderr, " -U unshare user namespace\n");
exit(EXIT_FAILURE);

}

int
main(int argc, char *argv[])
{

Linux man-pages 6.16 2025-10-01 1135

unshare(2) System Calls Manual unshare(2)

int flags, opt;

flags = 0;

while ((opt = getopt(argc, argv, "CimnptuU")) != -1) {
switch (opt) {
case 'C': flags |= CLONE_NEWCGROUP; break;
case 'i': flags |= CLONE_NEWIPC; break;
case 'm': flags |= CLONE_NEWNS; break;
case 'n': flags |= CLONE_NEWNET; break;
case 'p': flags |= CLONE_NEWPID; break;
case 't': flags |= CLONE_NEWTIME; break;
case 'u': flags |= CLONE_NEWUTS; break;
case 'U': flags |= CLONE_NEWUSER; break;
default: usage(argv[0]);
}

}

if (optind >= argc)
usage(argv[0]);

if (unshare(flags) == -1)
err(EXIT_FAILURE, "unshare");

execvp(argv[optind], &argv[optind]);
err(EXIT_FAILURE, "execvp");

}

SEE ALSO
unshare(1), clone(2), fork(2), kcmp(2), setns(2), vfork(2), namespaces(7)

Documentation/userspace-api/unshare.rst in the Linux kernel source tree (or Docu-
mentation/unshare.txt before Linux 4.12)

Linux man-pages 6.16 2025-10-01 1136

uretprobe(2) System Calls Manual uretprobe(2)

NAME
uretprobe - execute pending return uprobes

SYNOPSIS
int uretprobe(void);

DESCRIPTION
uretprobe() is an alternative to breakpoint instructions for triggering return uprobe con-
sumers.

Calls to uretprobe() are only made from the user-space trampoline provided by the ker-
nel. Calls from any other place result in a SIGILL.

RETURN VALUE
The return value is architecture-specific.

ERRORS
SIGILL

uretprobe() was called by a user-space program.

VERSIONS
The behavior varies across systems.

STANDARDS
None.

HISTORY
Linux 6.11.

uretprobe() was initially introduced for the x86_64 architecture where it was shown to
be faster than breakpoint traps. It might be extended to other architectures.

CAVEATS
uretprobe() exists only to allow the invocation of return uprobe consumers. It should
never be called directly.

Linux man-pages 6.16 2025-05-17 1137

uselib(2) System Calls Manual uselib(2)

NAME
uselib - load shared library

SYNOPSIS
#include <unistd.h>

[[deprecated]] int uselib(const char *library);

DESCRIPTION
The system call uselib() serves to load a shared library to be used by the calling process.
It is given a pathname. The address where to load is found in the library itself. The li-
brary can have any recognized binary format.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
In addition to all of the error codes returned by open(2) and mmap(2), the following may
also be returned:

EACCES
The library specified by library does not have read or execute permission, or the
caller does not have search permission for one of the directories in the path pre-
fix. (See also path_resolution(7).)

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOEXEC
The file specified by library is not an executable of a known type; for example, it
does not have the correct magic numbers.

STANDARDS
Linux.

HISTORY
This obsolete system call is not supported by glibc. No declaration is provided in glibc
headers, but, through a quirk of history, glibc before glibc 2.23 did export an ABI for
this system call. Therefore, in order to employ this system call, it was sufficient to man-
ually declare the interface in your code; alternatively, you could invoke the system call
using syscall(2).

In ancient libc versions (before glibc 2.0), uselib() was used to load the shared libraries
with names found in an array of names in the binary.

Since Linux 3.15, this system call is available only when the kernel is configured with
the CONFIG_USELIB option.

SEE ALSO
ar(1), gcc(1), ld(1), ldd(1), mmap(2), open(2), dlopen(3), capabilities(7), ld.so(8)

Linux man-pages 6.16 2025-05-17 1138

userfaultfd(2) System Calls Manual userfaultfd(2)

NAME
userfaultfd - create a file descriptor for handling page faults in user space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of O_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <linux/userfaultfd.h> /* Definition of UFFD_* constants */
#include <unistd.h>

int syscall(SYS_userfaultfd, int flags);

Note: glibc provides no wrapper for userfaultfd(), necessitating the use of syscall(2).

DESCRIPTION
userfaultfd() creates a new userfaultfd object that can be used for delegation of page-
fault handling to a user-space application, and returns a file descriptor that refers to the
new object. The new userfaultfd object is configured using ioctl(2).

Once the userfaultfd object is configured, the application can use read(2) to receive user-
faultfd notifications. The reads from userfaultfd may be blocking or non-blocking, de-
pending on the value of flags used for the creation of the userfaultfd or subsequent calls
to fcntl(2).

The following values may be bitwise ORed in flags to change the behavior of user-
faultfd():

O_CLOEXEC
Enable the close-on-exec flag for the new userfaultfd file descriptor. See the de-
scription of the O_CLOEXEC flag in open(2).

O_NONBLOCK
Enables non-blocking operation for the userfaultfd object. See the description of
the O_NONBLOCK flag in open(2).

UFFD_USER_MODE_ONLY
This is an userfaultfd-specific flag that was introduced in Linux 5.11. When set,
the userfaultfd object will only be able to handle page faults originated from the
user space on the registered regions. When a kernel-originated fault was trig-
gered on the registered range with this userfaultfd, a SIGBUS signal will be de-
livered.

When the last file descriptor referring to a userfaultfd object is closed, all memory
ranges that were registered with the object are unregistered and unread events are
flushed.

Userfaultfd supports three modes of registration:

UFFDIO_REGISTER_MODE_MISSING (since Linux 4.10)
When registered with UFFDIO_REGISTER_MODE_MISSING mode, user-
space will receive a page-fault notification when a missing page is accessed. The
faulted thread will be stopped from execution until the page fault is resolved
from user-space by either an UFFDIO_COPY or an UFFDIO_ZEROPAGE

Linux man-pages 6.16 2025-09-21 1139

userfaultfd(2) System Calls Manual userfaultfd(2)

ioctl.

UFFDIO_REGISTER_MODE_MINOR (since Linux 5.13)
When registered with UFFDIO_REGISTER_MODE_MINOR mode, user-
space will receive a page-fault notification when a minor page fault occurs. That
is, when a backing page is in the page cache, but page table entries don’t yet ex-
ist. The faulted thread will be stopped from execution until the page fault is re-
solved from user-space by an UFFDIO_CONTINUE ioctl.

UFFDIO_REGISTER_MODE_WP (since Linux 5.7)
When registered with UFFDIO_REGISTER_MODE_WP mode, user-space
will receive a page-fault notification when a write-protected page is written. The
faulted thread will be stopped from execution until user-space write-unprotects
the page using an UFFDIO_WRITEPROTECT ioctl.

Multiple modes can be enabled at the same time for the same memory range.

Since Linux 4.14, a userfaultfd page-fault notification can selectively embed faulting
thread ID information into the notification. One needs to enable this feature explicitly
using the UFFD_FEATURE_THREAD_ID feature bit when initializing the userfaultfd
context. By default, thread ID reporting is disabled.

Usage
The userfaultfd mechanism is designed to allow a thread in a multithreaded program to
perform user-space paging for the other threads in the process. When a page fault oc-
curs for one of the regions registered to the userfaultfd object, the faulting thread is put
to sleep and an event is generated that can be read via the userfaultfd file descriptor. The
fault-handling thread reads events from this file descriptor and services them using the
operations described in ioctl_userfaultfd(2). When servicing the page fault events, the
fault-handling thread can trigger a wake-up for the sleeping thread.

It is possible for the faulting threads and the fault-handling threads to run in the context
of different processes. In this case, these threads may belong to different programs, and
the program that executes the faulting threads will not necessarily cooperate with the
program that handles the page faults. In such non-cooperative mode, the process that
monitors userfaultfd and handles page faults needs to be aware of the changes in the vir-
tual memory layout of the faulting process to avoid memory corruption.

Since Linux 4.11, userfaultfd can also notify the fault-handling threads about changes in
the virtual memory layout of the faulting process. In addition, if the faulting process in-
vokes fork(2), the userfaultfd objects associated with the parent may be duplicated into
the child process and the userfaultfd monitor will be notified (via the
UFFD_EVENT_FORK described below) about the file descriptor associated with the
userfault objects created for the child process, which allows the userfaultfd monitor to
perform user-space paging for the child process. Unlike page faults which have to be
synchronous and require an explicit or implicit wakeup, all other events are delivered
asynchronously and the non-cooperative process resumes execution as soon as the user-
faultfd manager executes read(2). The userfaultfd manager should carefully synchro-
nize calls to UFFDIO_COPY with the processing of events.

The current asynchronous model of the event delivery is optimal for single threaded
non-cooperative userfaultfd manager implementations.

Linux man-pages 6.16 2025-09-21 1140

userfaultfd(2) System Calls Manual userfaultfd(2)

Since Linux 5.7, userfaultfd is able to do synchronous page dirty tracking using the new
write-protect register mode. One should check against the feature bit UFFD_FEA-
TURE_PAGEFAULT_FLAG_WP before using this feature. Similar to the original
userfaultfd missing mode, the write-protect mode will generate a userfaultfd notification
when the protected page is written. The user needs to resolve the page fault by unpro-
tecting the faulted page and kicking the faulted thread to continue. For more informa-
tion, please refer to the "Userfaultfd write-protect mode" section.

Userfaultfd operation
After the userfaultfd object is created with userfaultfd(), the application must enable it
using the UFFDIO_API ioctl(2) operation. This operation allows a two-step handshake
between the kernel and user space to determine what API version and features the kernel
supports, and then to enable those features user space wants. This operation must be
performed before any of the other ioctl(2) operations described below (or those opera-
tions fail with the EINVAL error).

After a successful UFFDIO_API operation, the application then registers memory ad-
dress ranges using the UFFDIO_REGISTER ioctl(2) operation. After successful com-
pletion of a UFFDIO_REGISTER operation, a page fault occurring in the requested
memory range, and satisfying the mode defined at the registration time, will be for-
warded by the kernel to the user-space application. The application can then use various
(e.g., UFFDIO_COPY, UFFDIO_ZEROPAGE, or UFFDIO_CONTINUE) ioctl(2)
operations to resolve the page fault.

Since Linux 4.14, if the application sets the UFFD_FEATURE_SIGBUS feature bit us-
ing the UFFDIO_API ioctl(2), no page-fault notification will be forwarded to user
space. Instead a SIGBUS signal is delivered to the faulting process. With this feature,
userfaultfd can be used for robustness purposes to simply catch any access to areas
within the registered address range that do not have pages allocated, without having to
listen to userfaultfd events. No userfaultfd monitor will be required for dealing with
such memory accesses. For example, this feature can be useful for applications that
want to prevent the kernel from automatically allocating pages and filling holes in sparse
files when the hole is accessed through a memory mapping.

The UFFD_FEATURE_SIGBUS feature is implicitly inherited through fork(2) if used
in combination with UFFD_FEATURE_FORK.

Details of the various ioctl(2) operations can be found in ioctl_userfaultfd(2).

Since Linux 4.11, events other than page-fault may enabled during UFFDIO_API oper-
ation.

Up to Linux 4.11, userfaultfd can be used only with anonymous private memory map-
pings. Since Linux 4.11, userfaultfd can be also used with hugetlbfs and shared memory
mappings.

Userfaultfd write-protect mode (since Linux 5.7)
Since Linux 5.7, userfaultfd supports write-protect mode for anonymous memory. The
user needs to first check availability of this feature using UFFDIO_API ioctl against the
feature bit UFFD_FEATURE_PAGEFAULT_FLAG_WP before using this feature.

Since Linux 5.19, the write-protection mode was also supported on shmem and

Linux man-pages 6.16 2025-09-21 1141

userfaultfd(2) System Calls Manual userfaultfd(2)

hugetlbfs memory types. It can be detected with the feature bit UFFD_FEA-
TURE_WP_HUGETLBFS_SHMEM.

To register with userfaultfd write-protect mode, the user needs to initiate the UFF-
DIO_REGISTER ioctl with mode UFFDIO_REGISTER_MODE_WP set. Note that
it is legal to monitor the same memory range with multiple modes. For example, the
user can do UFFDIO_REGISTER with the mode set to UFFDIO_REGIS-
TER_MODE_MISSING | UFFDIO_REGISTER_MODE_WP. When there is only
UFFDIO_REGISTER_MODE_WP registered, user-space will not receive any notifi-
cation when a missing page is written. Instead, user-space will receive a write-protect
page-fault notification only when an existing but write-protected page got written.

After the UFFDIO_REGISTER ioctl completed with UFFDIO_REGIS-
TER_MODE_WP mode set, the user can write-protect any existing memory within the
range using the ioctl UFFDIO_WRITEPROTECT where uffdio_writeprotect.mode
should be set to UFFDIO_WRITEPROTECT_MODE_WP.

When a write-protect event happens, user-space will receive a page-fault notification
whose uffd_msg.pagefault.flags will be with UFFD_PAGEFAULT_FLAG_WP flag
set. Note: since only writes can trigger this kind of fault, write-protect notifications will
always have the UFFD_PAGEFAULT_FLAG_WRITE bit set along with the
UFFD_PAGEFAULT_FLAG_WP bit.

To resolve a write-protection page fault, the user should initiate another UFF-
DIO_WRITEPROTECT ioctl, whose uffd_msg.pagefault.flags should have the flag
UFFDIO_WRITEPROTECT_MODE_WP cleared upon the faulted page or range.

Userfaultfd minor fault mode (since Linux 5.13)
Since Linux 5.13, userfaultfd supports minor fault mode. In this mode, fault messages
are produced not for major faults (where the page was missing), but rather for minor
faults, where a page exists in the page cache, but the page table entries are not yet
present. The user needs to first check availability of this feature using the UFF-
DIO_API ioctl with the appropriate feature bits set before using this feature:
UFFD_FEATURE_MINOR_HUGETLBFS since Linux 5.13, or UFFD_FEA-
TURE_MINOR_SHMEM since Linux 5.14.

To register with userfaultfd minor fault mode, the user needs to initiate the UFF-
DIO_REGISTER ioctl with mode UFFD_REGISTER_MODE_MINOR set.

When a minor fault occurs, user-space will receive a page-fault notification whose
uffd_msg.pagefault.flags will have the UFFD_PAGEFAULT_FLAG_MINOR flag set.

To resolve a minor page fault, the handler should decide whether or not the existing
page contents need to be modified first. If so, this should be done in-place via a second,
non-userfaultfd-registered mapping to the same backing page (e.g., by mapping the
shmem or hugetlbfs file twice). Once the page is considered "up to date", the fault can
be resolved by initiating an UFFDIO_CONTINUE ioctl, which installs the page table
entries and (by default) wakes up the faulting thread(s).

Minor fault mode supports only hugetlbfs-backed (since Linux 5.13) and shmem-backed
(since Linux 5.14) memory.

Linux man-pages 6.16 2025-09-21 1142

userfaultfd(2) System Calls Manual userfaultfd(2)

Reading from the userfaultfd structure
Each read(2) from the userfaultfd file descriptor returns one or more uffd_msg struc-
tures, each of which describes a page-fault event or an event required for the non-coop-
erative userfaultfd usage:

struct uffd_msg {
__u8 event; /* Type of event */
...
union {

struct {
__u64 flags; /* Flags describing fault */
__u64 address; /* Faulting address */
union {

__u32 ptid; /* Thread ID of the fault */
} feat;

} pagefault;

struct { /* Since Linux 4.11 */
__u32 ufd; /* Userfault file descriptor

of the child process */
} fork;

struct { /* Since Linux 4.11 */
__u64 from; /* Old address of remapped area */
__u64 to; /* New address of remapped area */
__u64 len; /* Original mapping size */

} remap;

struct { /* Since Linux 4.11 */
__u64 start; /* Start address of removed area */
__u64 end; /* End address of removed area */

} remove;
...

} arg;

/* Padding fields omitted */
} __packed;

If multiple events are available and the supplied buffer is large enough, read(2) returns
as many events as will fit in the supplied buffer. If the buffer supplied to read(2) is
smaller than the size of the uffd_msg structure, the read(2) fails with the error EINVAL.

The fields set in the uffd_msg structure are as follows:

event The type of event. Depending of the event type, different fields of the arg union
represent details required for the event processing. The non-page-fault events
are generated only when appropriate feature is enabled during API handshake
with UFFDIO_API ioctl(2).

Linux man-pages 6.16 2025-09-21 1143

userfaultfd(2) System Calls Manual userfaultfd(2)

The following values can appear in the event field:

UFFD_EVENT_PAGEFAULT (since Linux 4.3)
A page-fault event. The page-fault details are available in the pagefault
field.

UFFD_EVENT_FORK (since Linux 4.11)
Generated when the faulting process invokes fork(2) (or clone(2) without
the CLONE_VM flag). The event details are available in the fork field.

UFFD_EVENT_REMAP (since Linux 4.11)
Generated when the faulting process invokes mremap(2). The event de-
tails are available in the remap field.

UFFD_EVENT_REMOVE (since Linux 4.11)
Generated when the faulting process invokes madvise(2) with
MADV_DONTNEED or MADV_REMOVE advice. The event details
are available in the remove field.

UFFD_EVENT_UNMAP (since Linux 4.11)
Generated when the faulting process unmaps a memory range, either ex-
plicitly using munmap(2) or implicitly during mmap(2) or mremap(2).
The event details are available in the remove field.

pagefault.address
The address that triggered the page fault.

pagefault.flags
A bit mask of flags that describe the event. For UFFD_EVENT_PAGEFAULT,
the following flag may appear:

UFFD_PAGEFAULT_FLAG_WP
If this flag is set, then the fault was a write-protect fault.

UFFD_PAGEFAULT_FLAG_MINOR
If this flag is set, then the fault was a minor fault.

UFFD_PAGEFAULT_FLAG_WRITE
If this flag is set, then the fault was a write fault.

If neither UFFD_PAGEFAULT_FLAG_WP nor UFFD_PAGE-
FAULT_FLAG_MINOR are set, then the fault was a missing fault.

pagefault.feat.pid
The thread ID that triggered the page fault.

fork.ufd
The file descriptor associated with the userfault object created for the child cre-
ated by fork(2).

remap.from
The original address of the memory range that was remapped using mremap(2).

remap.to
The new address of the memory range that was remapped using mremap(2).

Linux man-pages 6.16 2025-09-21 1144

userfaultfd(2) System Calls Manual userfaultfd(2)

remap.len
The original size of the memory range that was remapped using mremap(2).

remove.start
The start address of the memory range that was freed using madvise(2) or un-
mapped

remove.end
The end address of the memory range that was freed using madvise(2) or un-
mapped

A read(2) on a userfaultfd file descriptor can fail with the following errors:

EINVAL
The userfaultfd object has not yet been enabled using the UFFDIO_API ioctl(2)
operation

If the O_NONBLOCK flag is enabled in the associated open file description, the user-
faultfd file descriptor can be monitored with poll(2), select(2), and epoll(7). When
events are available, the file descriptor indicates as readable. If the O_NONBLOCK
flag is not enabled, then poll(2) (always) indicates the file as having a POLLERR con-
dition, and select(2) indicates the file descriptor as both readable and writable.

RETURN VALUE
On success, userfaultfd() returns a new file descriptor that refers to the userfaultfd ob-
ject. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

An unsupported value was specified in flags.

EMFILE
The per-process limit on the number of open file descriptors has been reached

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient kernel memory was available.

EPERM (since Linux 5.2)
The caller is not privileged (does not have the CAP_SYS_PTRACE capability
in the initial user namespace), and /proc/sys/vm/unprivileged_userfaultfd has the
value 0.

STANDARDS
Linux.

HISTORY
Linux 4.3.

Support for hugetlbfs and shared memory areas and non-page-fault events was added in
Linux 4.11

Linux man-pages 6.16 2025-09-21 1145

userfaultfd(2) System Calls Manual userfaultfd(2)

NOTES
The userfaultfd mechanism can be used as an alternative to traditional user-space paging
techniques based on the use of the SIGSEGV signal and mmap(2). It can also be used
to implement lazy restore for checkpoint/restore mechanisms, as well as post-copy mi-
gration to allow (nearly) uninterrupted execution when transferring virtual machines and
Linux containers from one host to another.

BUGS
If the UFFD_FEATURE_EVENT_FORK is enabled and a system call from the
fork(2) family is interrupted by a signal or failed, a stale userfaultfd descriptor might be
created. In this case, a spurious UFFD_EVENT_FORK will be delivered to the user-
faultfd monitor.

EXAMPLES
The program below demonstrates the use of the userfaultfd mechanism. The program
creates two threads, one of which acts as the page-fault handler for the process, for the
pages in a demand-page zero region created using mmap(2).

The program takes one command-line argument, which is the number of pages that will
be created in a mapping whose page faults will be handled via userfaultfd. After creat-
ing a userfaultfd object, the program then creates an anonymous private mapping of the
specified size and registers the address range of that mapping using the UFFDIO_REG-
ISTER ioctl(2) operation. The program then creates a second thread that will perform
the task of handling page faults.

The main thread then walks through the pages of the mapping fetching bytes from suc-
cessive pages. Because the pages have not yet been accessed, the first access of a byte
in each page will trigger a page-fault event on the userfaultfd file descriptor.

Each of the page-fault events is handled by the second thread, which sits in a loop pro-
cessing input from the userfaultfd file descriptor. In each loop iteration, the second
thread first calls poll(2) to check the state of the file descriptor, and then reads an event
from the file descriptor. All such events should be UFFD_EVENT_PAGEFAULT
events, which the thread handles by copying a page of data into the faulting region using
the UFFDIO_COPY ioctl(2) operation.

The following is an example of what we see when running the program:

$./userfaultfd_demo 3;
Address returned by mmap() = 0x7fd30106c000

fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106c00f

(uffdio_copy.copy returned 4096)
Read address 0x7fd30106c00f in main(): A
Read address 0x7fd30106c40f in main(): A
Read address 0x7fd30106c80f in main(): A
Read address 0x7fd30106cc0f in main(): A

fault_handler_thread():

Linux man-pages 6.16 2025-09-21 1146

userfaultfd(2) System Calls Manual userfaultfd(2)

poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106d00f

(uffdio_copy.copy returned 4096)
Read address 0x7fd30106d00f in main(): B
Read address 0x7fd30106d40f in main(): B
Read address 0x7fd30106d80f in main(): B
Read address 0x7fd30106dc0f in main(): B

fault_handler_thread():
poll() returns: nready = 1; POLLIN = 1; POLLERR = 0
UFFD_EVENT_PAGEFAULT event: flags = 0; address = 7fd30106e00f

(uffdio_copy.copy returned 4096)
Read address 0x7fd30106e00f in main(): C
Read address 0x7fd30106e40f in main(): C
Read address 0x7fd30106e80f in main(): C
Read address 0x7fd30106ec0f in main(): C

Program source

/* userfaultfd_demo.c

Licensed under the GNU General Public License version 2 or later.
*/
#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <fcntl.h>
#include <inttypes.h>
#include <linux/userfaultfd.h>
#include <poll.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/syscall.h>
#include <unistd.h>

static int page_size;

static void *
fault_handler_thread(void *arg)
{

int nready;
long uffd; /* userfaultfd file descriptor */
ssize_t nread;
struct pollfd pollfd;

Linux man-pages 6.16 2025-09-21 1147

userfaultfd(2) System Calls Manual userfaultfd(2)

struct uffdio_copy uffdio_copy;

static int fault_cnt = 0; /* Number of faults so far handled */
static char *page = NULL;
static struct uffd_msg msg; /* Data read from userfaultfd */

uffd = (long) arg;

/* Create a page that will be copied into the faulting region. */

if (page == NULL) {
page = mmap(NULL, page_size, PROT_READ | PROT_WRITE,

MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (page == MAP_FAILED)

err(EXIT_FAILURE, "mmap");
}

/* Loop, handling incoming events on the userfaultfd
file descriptor. */

for (;;) {

/* See what poll() tells us about the userfaultfd. */

pollfd.fd = uffd;
pollfd.events = POLLIN;
nready = poll(&pollfd, 1, -1);
if (nready == -1)

err(EXIT_FAILURE, "poll");

printf("\nfault_handler_thread():\n");
printf(" poll() returns: nready = %d; "

"POLLIN = %d; POLLERR = %d\n", nready,
(pollfd.revents & POLLIN) != 0,
(pollfd.revents & POLLERR) != 0);

/* Read an event from the userfaultfd. */

nread = read(uffd, &msg, sizeof(msg));
if (nread == 0) {

printf("EOF on userfaultfd!\n");
exit(EXIT_FAILURE);

}

if (nread == -1)
err(EXIT_FAILURE, "read");

Linux man-pages 6.16 2025-09-21 1148

userfaultfd(2) System Calls Manual userfaultfd(2)

/* We expect only one kind of event; verify that assumption. */

if (msg.event != UFFD_EVENT_PAGEFAULT) {
fprintf(stderr, "Unexpected event on userfaultfd\n");
exit(EXIT_FAILURE);

}

/* Display info about the page-fault event. */

printf(" UFFD_EVENT_PAGEFAULT event: ");
printf("flags = %"PRIx64"; ", msg.arg.pagefault.flags);
printf("address = %"PRIx64"\n", msg.arg.pagefault.address);

/* Copy the page pointed to by 'page' into the faulting
region. Vary the contents that are copied in, so that it
is more obvious that each fault is handled separately. */

memset(page, 'A' + fault_cnt % 20, page_size);
fault_cnt++;

uffdio_copy.src = (unsigned long) page;

/* We need to handle page faults in units of pages(!).
So, round faulting address down to page boundary. */

uffdio_copy.dst = (unsigned long) msg.arg.pagefault.address &
~(page_size - 1);

uffdio_copy.len = page_size;
uffdio_copy.mode = 0;
uffdio_copy.copy = 0;
if (ioctl(uffd, UFFDIO_COPY, &uffdio_copy) == -1)

err(EXIT_FAILURE, "ioctl-UFFDIO_COPY");

printf(" (uffdio_copy.copy returned %"PRId64")\n",
uffdio_copy.copy);

}
}

int
main(int argc, char *argv[])
{

int s;
char c;
char *addr; /* Start of region handled by userfaultfd */
long uffd; /* userfaultfd file descriptor */
size_t size, i; /* Size of region handled by userfaultfd */
pthread_t thr; /* ID of thread that handles page faults */

Linux man-pages 6.16 2025-09-21 1149

userfaultfd(2) System Calls Manual userfaultfd(2)

struct uffdio_api uffdio_api;
struct uffdio_register uffdio_register;

if (argc != 2) {
fprintf(stderr, "Usage: %s num-pages\n", argv[0]);
exit(EXIT_FAILURE);

}

page_size = sysconf(_SC_PAGE_SIZE);
size = strtoull(argv[1], NULL, 0) * page_size;

/* Create and enable userfaultfd object. */

uffd = syscall(SYS_userfaultfd, O_CLOEXEC | O_NONBLOCK);
if (uffd == -1)

err(EXIT_FAILURE, "userfaultfd");

/* NOTE: Two-step feature handshake is not needed here, since this
example doesn’t require any specific features.

Programs that *do* should call UFFDIO_API twice: once with
‘features = 0‘ to detect features supported by this kernel, and
again with the subset of features the program actually wants to
enable. */

uffdio_api.api = UFFD_API;
uffdio_api.features = 0;
if (ioctl(uffd, UFFDIO_API, &uffdio_api) == -1)

err(EXIT_FAILURE, "ioctl-UFFDIO_API");

/* Create a private anonymous mapping. The memory will be
demand-zero paged--that is, not yet allocated. When we
actually touch the memory, it will be allocated via
the userfaultfd. */

addr = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);

if (addr == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

printf("Address returned by mmap() = %p\n", addr);

/* Register the memory range of the mapping we just created for
handling by the userfaultfd object. In mode, we request to track
missing pages (i.e., pages that have not yet been faulted in). */

uffdio_register.range.start = (unsigned long) addr;
uffdio_register.range.len = size;

Linux man-pages 6.16 2025-09-21 1150

userfaultfd(2) System Calls Manual userfaultfd(2)

uffdio_register.mode = UFFDIO_REGISTER_MODE_MISSING;
if (ioctl(uffd, UFFDIO_REGISTER, &uffdio_register) == -1)

err(EXIT_FAILURE, "ioctl-UFFDIO_REGISTER");

/* Create a thread that will process the userfaultfd events. */

s = pthread_create(&thr, NULL, fault_handler_thread, (void *) uffd);
if (s != 0) {

errc(EXIT_FAILURE, s, "pthread_create");
}

/* Main thread now touches memory in the mapping, touching
locations 1024 bytes apart. This will trigger userfaultfd
events for all pages in the region. */

i = 0xf; /* Ensure that faulting address is not on a page
boundary, in order to test that we correctly
handle that case in fault_handling_thread(). */

while (i < size) {
c = addr[i];
printf("Read address %p in %s(): ", addr + i, __func__);
printf("%c\n", c);
i += 1024;
usleep(100000); /* Slow things down a little */

}

exit(EXIT_SUCCESS);
}

SEE ALSO
fcntl(2), ioctl(2), ioctl_userfaultfd(2), madvise(2), mmap(2)

Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source tree

Linux man-pages 6.16 2025-09-21 1151

ustat(2) System Calls Manual ustat(2)

NAME
ustat - get filesystem statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <unistd.h> /* libc[45] */
#include <ustat.h> /* glibc2 */

[[deprecated]] int ustat(dev_t dev, struct ustat *ubuf);

DESCRIPTION
ustat() returns information about a mounted filesystem. dev is a device number identi-
fying a device containing a mounted filesystem. ubuf is a pointer to a ustat structure
that contains the following members:

daddr_t f_tfree; /* Total free blocks */
ino_t f_tinode; /* Number of free inodes */
char f_fname[6]; /* Filsys name */
char f_fpack[6]; /* Filsys pack name */

The last two fields, f_fname and f_fpack, are not implemented and will always be filled
with null bytes ('\0').

RETURN VALUE
On success, zero is returned and the ustat structure pointed to by ubuf will be filled in.
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

ubuf points outside of your accessible address space.

EINVAL
dev does not refer to a device containing a mounted filesystem.

ENOSYS
The mounted filesystem referenced by dev does not support this operation, or
any version of Linux before Linux 1.3.16.

STANDARDS
None.

HISTORY
SVr4. Removed in glibc 2.28.

ustat() is deprecated and has been provided only for compatibility. All new programs
should use statfs(2) instead.

HP-UX notes
The HP-UX version of the ustat structure has an additional field, f_blksize, that is un-
known elsewhere. HP-UX warns: For some filesystems, the number of free inodes does
not change. Such filesystems will return -1 in the field f_tinode. For some filesystems,
inodes are dynamically allocated. Such filesystems will return the current number of

Linux man-pages 6.16 2025-05-17 1152

ustat(2) System Calls Manual ustat(2)

free inodes.

SEE ALSO
stat(2), statfs(2)

Linux man-pages 6.16 2025-05-17 1153

utime(2) System Calls Manual utime(2)

NAME
utime, utimes - change file last access and modification times

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <utime.h>

int utime(const char *path,
const struct utimbuf *_Nullable times);

#include <sys/time.h>

int utimes(const char *path,
const struct timeval times[_Nullable 2]);

DESCRIPTION
Note: modern applications may prefer to use the interfaces described in utimensat(2).

The utime() system call changes the access and modification times of the inode speci-
fied by path to the actime and modtime fields of times respectively. The status change
time (ctime) will be set to the current time, even if the other time stamps don’t actually
change.

If times is NULL, then the access and modification times of the file are set to the current
time.

Changing timestamps is permitted when: either the process has appropriate privileges, or
the effective user ID equals the user ID of the file, or times is NULL and the process has
write permission for the file.

The utimbuf structure is:

struct utimbuf {
time_t actime; /* access time */
time_t modtime; /* modification time */

};

The utime() system call allows specification of timestamps with a resolution of 1 sec-
ond.

The utimes() system call is similar, but the times argument refers to an array rather than
a structure. The elements of this array are timeval structures, which allow a precision of
1 microsecond for specifying timestamps. The timeval structure is:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

times[0] specifies the new access time, and times[1] specifies the new modification
time. If times is NULL, then analogously to utime(), the access and modification times
of the file are set to the current time.

Linux man-pages 6.16 2025-10-29 1154

utime(2) System Calls Manual utime(2)

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

Search permission is denied for one of the directories in the path prefix of path
(see also path_resolution(7)).

EACCES
times is NULL, the caller’s effective user ID does not match the owner of the
file, the caller does not have write access to the file, and the caller is not privi-
leged (Linux: does not have either the CAP_DAC_OVERRIDE or the
CAP_FOWNER capability).

EFAULT
path points to an invalid address.

ENOENT
path does not exist.

EPERM
times is not NULL, the caller’s effective UID does not match the owner of the
file, and the caller is not privileged (Linux: does not have the CAP_FOWNER
capability).

EROFS
path resides on a read-only filesystem.

STANDARDS
utime()

None.

utimes()
POSIX.1-2024.

HISTORY
utime()

SVr4, POSIX.1-2001. Obsoleted in POSIX.1-2008. Removed in
POSIX.1-2024.

utimes()
4.3BSD, POSIX.1-2001.

NOTES
Linux does not allow changing the timestamps on an immutable file, or setting the time-
stamps to something other than the current time on an append-only file.

SEE ALSO
chattr(1), touch(1), futimesat(2), stat(2), utimensat(2), futimens(3), futimes(3), inode(7)

Linux man-pages 6.16 2025-10-29 1155

utimensat(2) System Calls Manual utimensat(2)

NAME
utimensat, futimens - change file timestamps with nanosecond precision

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int utimensat(int dirfd , const char *path,
const struct timespec times[_Nullable 2], int flags);

int futimens(int fd , const struct timespec times[_Nullable 2]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

utimensat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

futimens():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
utimensat() and futimens() update the timestamps of a file with nanosecond precision.
This contrasts with the historical utime(2) and utimes(2), which permit only second and
microsecond precision, respectively, when setting file timestamps.

With utimensat() the file is specified via the pathname given in path. With futimens()
the file whose timestamps are to be updated is specified via an open file descriptor, fd .

For both calls, the new file timestamps are specified in the array times: times[0] speci-
fies the new "last access time" (atime); times[1] specifies the new "last modification
time" (mtime). Each of the elements of times specifies a time as the number of seconds
and nanoseconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). This informa-
tion is conveyed in a timespec(3) structure.

Updated file timestamps are set to the greatest value supported by the filesystem that is
not greater than the specified time.

If the tv_nsec field of one of the timespec structures has the special value
UTIME_NOW, then the corresponding file timestamp is set to the current time. If the
tv_nsec field of one of the timespec structures has the special value UTIME_OMIT,
then the corresponding file timestamp is left unchanged. In both of these cases, the
value of the corresponding tv_sec field is ignored.

If times is NULL, then both timestamps are set to the current time.

The status change time (ctime) will be set to the current time, even if the other time
stamps don’t actually change.

Linux man-pages 6.16 2025-10-29 1156

utimensat(2) System Calls Manual utimensat(2)

Permissions requirements
To set both file timestamps to the current time (i.e., times is NULL, or both tv_nsec
fields specify UTIME_NOW), either:

• the caller must have write access to the file;

• the caller’s effective user ID must match the owner of the file; or

• the caller must have appropriate privileges.

To make any change other than setting both timestamps to the current time (i.e., times is
not NULL, and neither tv_nsec field is UTIME_NOW and neither tv_nsec field is
UTIME_OMIT), either condition 2 or 3 above must apply.

If both tv_nsec fields are specified as UTIME_OMIT, then no file ownership or permis-
sion checks are performed, and the file timestamps are not modified, but other error con-
ditions may still be detected.

utimensat() specifics
If path is relative, then by default it is interpreted relative to the directory referred to by
the open file descriptor, dirfd (rather than relative to the current working directory of the
calling process, as is done by utimes(2) for a relative pathname). See openat(2) for an
explanation of why this can be useful.

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like utimes(2)).

If path is absolute, then dirfd is ignored.

The flags argument is a bit mask created by ORing together zero or more of the follow-
ing values defined in <fcntl.h>:

AT_EMPTY_PATH (since Linux 5.8)
If path is an empty string, operate on the file referred to by dirfd (which may
have been obtained using the open(2) O_PATH flag). In this case, dirfd can re-
fer to any type of file, not just a directory. If dirfd is AT_FDCWD, the call op-
erates on the current working directory. This flag is Linux-specific; define
_GNU_SOURCE to obtain its definition.

AT_SYMLINK_NOFOLLOW
If path specifies a symbolic link, then update the timestamps of the link, rather
than the file to which it refers.

RETURN VALUE
On success, utimensat() and futimens() return 0. On error, -1 is returned and errno is
set to indicate the error.

ERRORS
EACCES

times is NULL, or both tv_nsec values are UTIME_NOW, and the effective user
ID of the caller does not match the owner of the file, the caller does not have
write access to the file, and the caller is not privileged (Linux: does not have ei-
ther the CAP_FOWNER or the CAP_DAC_OVERRIDE capability).

Linux man-pages 6.16 2025-10-29 1157

utimensat(2) System Calls Manual utimensat(2)

EBADF
(futimens()) fd is not a valid file descriptor.

EBADF
(utimensat()) path is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

EFAULT
times pointed to an invalid address; or, dirfd was AT_FDCWD, and path is
NULL or an invalid address.

EINVAL
Invalid value in flags.

EINVAL
Invalid value in one of the tv_nsec fields (value outside range [0, 999,999,999],
and not UTIME_NOW or UTIME_OMIT); or an invalid value in one of the
tv_sec fields.

EINVAL
path is NULL, dirfd is not AT_FDCWD, and flags contains AT_SYM-
LINK_NOFOLLOW.

ELOOP
(utimensat()) Too many symbolic links were encountered in resolving path.

ENAMETOOLONG
(utimensat()) path is too long.

ENOENT
(utimensat()) A component of path does not refer to an existing directory or
file, or path is an empty string.

ENOTDIR
(utimensat()) path is relative, but dirfd is neither AT_FDCWD nor a file de-
scriptor referring to a directory; or, one of the prefix components of path is not a
directory.

EPERM
The caller attempted to change one or both timestamps to a value other than the
current time, or to change one of the timestamps to the current time while leav-
ing the other timestamp unchanged, (i.e., times is not NULL, neither tv_nsec
field is UTIME_NOW, and neither tv_nsec field is UTIME_OMIT) and either:

• the caller’s effective user ID does not match the owner of file, and the caller
is not privileged (Linux: does not have the CAP_FOWNER capability); or,

• the file is marked append-only or immutable (see chattr(1)).

EROFS
The file is on a read-only filesystem.

ESRCH
(utimensat()) Search permission is denied for one of the prefix components of
path.

Linux man-pages 6.16 2025-10-29 1158

utimensat(2) System Calls Manual utimensat(2)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeutimensat(), futimens()

VERSIONS
C library/kernel ABI differences

On Linux, futimens() is a library function implemented on top of the utimensat() sys-
tem call. To support this, the Linux utimensat() system call implements a nonstandard
feature: if path is NULL, then the call modifies the timestamps of the file referred to by
the file descriptor dirfd (which may refer to any type of file). Using this feature, the call
futimens(fd, times) is implemented as:

utimensat(fd, NULL, times, 0);

Note, however, that the glibc wrapper for utimensat() disallows passing NULL as the
value for path: the wrapper function returns the error EINVAL in this case.

STANDARDS
POSIX.1-2024.

HISTORY
utimensat()

Linux 2.6.22, glibc 2.6. POSIX.1-2008.

futimens()
glibc 2.6. POSIX.1-2008.

NOTES
utimensat() obsoletes futimesat(2).

On Linux, timestamps cannot be changed for a file marked immutable, and the only
change permitted for files marked append-only is to set the timestamps to the current
time. (This is consistent with the historical behavior of utime(2) and utimes(2) on
Linux.)

If both tv_nsec fields are specified as UTIME_OMIT, then the Linux implementation
of utimensat() succeeds even if the file referred to by dirfd and path does not exist.

BUGS
Several bugs afflict utimensat() and futimens() before Linux 2.6.26. These bugs are ei-
ther nonconformances with the POSIX.1 draft specification or inconsistencies with his-
torical Linux behavior.

• POSIX.1 specifies that if one of the tv_nsec fields has the value UTIME_NOW or
UTIME_OMIT, then the value of the corresponding tv_sec field should be ignored.
Instead, the value of the tv_sec field is required to be 0 (or the error EINVAL re-
sults).

• Various bugs mean that for the purposes of permission checking, the case where
both tv_nsec fields are set to UTIME_NOW isn’t always treated the same as speci-
fying times as NULL, and the case where one tv_nsec value is UTIME_NOW and
the other is UTIME_OMIT isn’t treated the same as specifying times as a pointer to
an array of structures containing arbitrary time values. As a result, in some cases: a)

Linux man-pages 6.16 2025-10-29 1159

utimensat(2) System Calls Manual utimensat(2)

file timestamps can be updated by a process that shouldn’t have permission to per-
form updates; b) file timestamps can’t be updated by a process that should have per-
mission to perform updates; and c) the wrong errno value is returned in case of an
error.

• POSIX.1 says that a process that has write access to the file can make a call with
times as NULL, or with times pointing to an array of structures in which both
tv_nsec fields are UTIME_NOW, in order to update both timestamps to the current
time. However, futimens() instead checks whether the access mode of the file de-
scriptor allows writing.

SEE ALSO
chattr(1), touch(1), futimesat(2), openat(2), stat(2), utimes(2), futimes(3), timespec(3),
inode(7), path_resolution(7), symlink(7)

Linux man-pages 6.16 2025-10-29 1160

vfork(2) System Calls Manual vfork(2)

NAME
vfork - create a child process and block parent

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t vfork(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vfork():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
Standard description

(From POSIX.1) The vfork() function has the same effect as fork(2), except that the be-
havior is undefined if the process created by vfork() either modifies any data other than
a variable of type pid_t used to store the return value from vfork(), or returns from the
function in which vfork() was called, or calls any other function before successfully
calling _exit(2) or one of the exec(3) family of functions.

Linux description
vfork(), just like fork(2), creates a child process of the calling process. For details and
return value and errors, see fork(2).

vfork() is a special case of clone(2). It is used to create new processes without copying
the page tables of the parent process. It may be useful in performance-sensitive applica-
tions where a child is created which then immediately issues an execve(2).

vfork() differs from fork(2) in that the calling thread is suspended until the child termi-
nates (either normally, by calling _exit(2), or abnormally, after delivery of a fatal signal),
or it makes a call to execve(2). Until that point, the child shares all memory with its par-
ent, including the stack. The child must not return from the current function or call
exit(3) (which would have the effect of calling exit handlers established by the parent
process and flushing the parent’s stdio(3) buffers), but may call _exit(2).

As with fork(2), the child process created by vfork() inherits copies of various of the
caller’s process attributes (e.g., file descriptors, signal dispositions, and current working
directory); the vfork() call differs only in the treatment of the virtual address space, as
described above.

Signals sent to the parent arrive after the child releases the parent’s memory (i.e., after
the child terminates or calls execve(2)).

Linux man-pages 6.16 2025-10-29 1161

vfork(2) System Calls Manual vfork(2)

Historic description
Under Linux, fork(2) is implemented using copy-on-write pages, so the only penalty in-
curred by fork(2) is the time and memory required to duplicate the parent’s page tables,
and to create a unique task structure for the child. However, in the bad old days a
fork(2) would require making a complete copy of the caller’s data space, often need-
lessly, since usually immediately afterward an exec(3) is done. Thus, for greater effi-
ciency, BSD introduced the vfork() system call, which did not fully copy the address
space of the parent process, but borrowed the parent’s memory and thread of control un-
til a call to execve(2) or an exit occurred. The parent process was suspended while the
child was using its resources. The use of vfork() was tricky: for example, not modifying
data in the parent process depended on knowing which variables were held in a register.

VERSIONS
The requirements put on vfork() by the standards are weaker than those put on fork(2),
so an implementation where the two are synonymous is compliant. In particular, the
programmer cannot rely on the parent remaining blocked until the child either termi-
nates or calls execve(2), and cannot rely on any specific behavior with respect to shared
memory.

Some consider the semantics of vfork() to be an architectural blemish, and the 4.2BSD
man page stated: “This system call will be eliminated when proper system sharing
mechanisms are implemented. Users should not depend on the memory sharing seman-
tics of vfork as it will, in that case, be made synonymous to fork.” However, even
though modern memory management hardware has decreased the performance differ-
ence between fork(2) and vfork(), there are various reasons why Linux and other sys-
tems have retained vfork():

• Some performance-critical applications require the small performance advantage
conferred by vfork().

• vfork() can be implemented on systems that lack a memory-management unit
(MMU), but fork(2) can’t be implemented on such systems. (POSIX.1-2008 re-
moved vfork() from the standard; the POSIX rationale for the posix_spawn(3) func-
tion notes that that function, which provides functionality equivalent to
fork(2)+exec(3), is designed to be implementable on systems that lack an MMU.)

• On systems where memory is constrained, vfork() avoids the need to temporarily
commit memory (see the description of /proc/sys/vm/overcommit_memory in
proc(5)) in order to execute a new program. (This can be especially beneficial where
a large parent process wishes to execute a small helper program in a child process.)
By contrast, using fork(2) in this scenario requires either committing an amount of
memory equal to the size of the parent process (if strict overcommitting is in force)
or overcommitting memory with the risk that a process is terminated by the out-of-
memory (OOM) killer.

Linux notes
Fork handlers established using pthread_atfork(3) are not called when a multithreaded
program employing the NPTL threading library calls vfork(). Fork handlers are called
in this case in a program using the LinuxThreads threading library. (See pthreads(7) for
a description of Linux threading libraries.)

Linux man-pages 6.16 2025-10-29 1162

vfork(2) System Calls Manual vfork(2)

A call to vfork() is equivalent to calling clone(2) with flags specified as:

CLONE_VM | CLONE_VFORK | SIGCHLD

STANDARDS
None.

HISTORY
4.3BSD; POSIX.1-2001 (but marked OBSOLETE). POSIX.1-2008 removes the specifi-
cation of vfork().

The vfork() system call appeared in 3.0BSD. In 4.4BSD it was made synonymous to
fork(2) but NetBSD introduced it again; see 〈http://www.netbsd.org/Documentation
/kernel/vfork.html〉. In Linux, it has been equivalent to fork(2) until Linux 2.2.0-pre6 or
so. Since Linux 2.2.0-pre9 (on i386, somewhat later on other architectures) it is an inde-
pendent system call. Support was added in glibc 2.0.112.

CAVEATS
The child process should take care not to modify the memory in unintended ways, since
such changes will be seen by the parent process once the child terminates or executes
another program. In this regard, signal handlers can be especially problematic: if a sig-
nal handler that is invoked in the child of vfork() changes memory, those changes may
result in an inconsistent process state from the perspective of the parent process (e.g.,
memory changes would be visible in the parent, but changes to the state of open file de-
scriptors would not be visible).

When vfork() is called in a multithreaded process, only the calling thread is suspended
until the child terminates or executes a new program. This means that the child is shar-
ing an address space with other running code. This can be dangerous if another thread
in the parent process changes credentials (using setuid(2) or similar), since there are now
two processes with different privilege levels running in the same address space. As an
example of the dangers, suppose that a multithreaded program running as root creates a
child using vfork(). After the vfork(), a thread in the parent process drops the process
to an unprivileged user in order to run some untrusted code (e.g., perhaps via plug-in
opened with dlopen(3)). In this case, attacks are possible where the parent process uses
mmap(2) to map in code that will be executed by the privileged child process.

BUGS
Details of the signal handling are obscure and differ between systems. The BSD man
page states: "To avoid a possible deadlock situation, processes that are children in the
middle of a vfork() are never sent SIGTTOU or SIGTTIN signals; rather, output or
ioctls are allowed and input attempts result in an end-of-file indication."

SEE ALSO
clone(2), execve(2), _exit(2), fork(2), _Fork(3), unshare(2), wait(2)

Linux man-pages 6.16 2025-10-29 1163

vhangup(2) System Calls Manual vhangup(2)

NAME
vhangup - virtually hangup the current terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int vhangup(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vhangup():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
vhangup() simulates a hangup on the current terminal. This call arranges for other
users to have a “clean” terminal at login time.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EPERM

The calling process has insufficient privilege to call vhangup(); the
CAP_SYS_TTY_CONFIG capability is required.

STANDARDS
Linux.

SEE ALSO
init(1), capabilities(7)

Linux man-pages 6.16 2025-05-17 1164

vm86(2) System Calls Manual vm86(2)

NAME
vm86old, vm86 - enter virtual 8086 mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/vm86.h>

int vm86old(struct vm86_struct *info);
int vm86(unsigned long fn, struct vm86plus_struct *v86);

DESCRIPTION
The system call vm86() was introduced in Linux 0.97p2. In Linux 2.1.15 and 2.0.28, it
was renamed to vm86old(), and a new vm86() was introduced. The definition of struct
vm86_struct was changed in 1.1.8 and 1.1.9.

These calls cause the process to enter VM86 mode (virtual-8086 in Intel literature), and
are used by dosemu.

VM86 mode is an emulation of real mode within a protected mode task.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EFAULT

This return value is specific to i386 and indicates a problem with getting user-
space data.

ENOSYS
This return value indicates the call is not implemented on the present architec-
ture.

EPERM
Saved kernel stack exists. (This is a kernel sanity check; the saved stack should
exist only within vm86 mode itself.)

STANDARDS
Linux on 32-bit Intel processors.

Linux man-pages 6.16 2025-09-21 1165

vmsplice(2) System Calls Manual vmsplice(2)

NAME
vmsplice - splice user pages to/from a pipe

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fcntl.h>

ssize_t vmsplice(int fd , const struct iovec *iov,
size_t nr_segs, unsigned int flags);

DESCRIPTION
If fd is opened for writing, the vmsplice() system call maps nr_segs ranges of user
memory described by iov into a pipe. If fd is opened for reading, the vmsplice() system
call fills nr_segs ranges of user memory described by iov from a pipe. The file descrip-
tor fd must refer to a pipe.

The pointer iov points to an array of iovec structures as described in iovec(3type).

The flags argument is a bit mask that is composed by ORing together zero or more of
the following values:

SPLICE_F_MOVE
Unused for vmsplice(); see splice(2).

SPLICE_F_NONBLOCK
Do not block on I/O; see splice(2) for further details.

SPLICE_F_MORE
Currently has no effect for vmsplice(), but may be implemented in the future;
see splice(2).

SPLICE_F_GIFT
The user pages are a gift to the kernel. The application may not modify this
memory ever, otherwise the page cache and on-disk data may differ. Gifting
pages to the kernel means that a subsequent splice(2) SPLICE_F_MOVE can
successfully move the pages; if this flag is not specified, then a subsequent
splice(2) SPLICE_F_MOVE must copy the pages. Data must also be properly
page aligned, both in memory and length.

RETURN VALUE
Upon successful completion, vmsplice() returns the number of bytes transferred to the
pipe. On error, vmsplice() returns -1 and errno is set to indicate the error.

ERRORS
EAGAIN

SPLICE_F_NONBLOCK was specified in flags, and the operation would
block.

EBADF
fd either not valid, or doesn’t refer to a pipe.

Linux man-pages 6.16 2025-09-21 1166

vmsplice(2) System Calls Manual vmsplice(2)

EINVAL
nr_segs is greater than IOV_MAX; or memory not aligned if SPLICE_F_GIFT
set.

ENOMEM
Out of memory.

STANDARDS
Linux.

HISTORY
Linux 2.6.17, glibc 2.5.

NOTES
vmsplice() follows the other vectorized read/write type functions when it comes to limi-
tations on the number of segments being passed in. This limit is IOV_MAX as defined
in <limits.h>. Currently, this limit is 1024.

vmsplice() really supports true splicing only from user memory to a pipe. In the oppo-
site direction, it actually just copies the data to user space. But this makes the interface
nice and symmetric and enables people to build on vmsplice() with room for future im-
provement in performance.

SEE ALSO
splice(2), tee(2), pipe(7)

Linux man-pages 6.16 2025-09-21 1167

wait(2) System Calls Manual wait(2)

NAME
wait, waitpid, waitid - wait for process to change state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/wait.h>

pid_t wait(int *_Nullable wstatus);
pid_t waitpid(pid_t pid , int *_Nullable wstatus, int options);

int waitid(idtype_t idtype, id_t id , siginfo_t *infop, int options);
/* This is the glibc and POSIX interface; see

VERSIONS for information on the raw system call. */

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

waitid():
Since glibc 2.26:

_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200809L
glibc 2.25 and earlier:

_XOPEN_SOURCE
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
All of these system calls are used to wait for state changes in a child of the calling
process, and obtain information about the child whose state has changed. A state
change is considered to be: the child terminated; the child was stopped by a signal; or
the child was resumed by a signal. In the case of a terminated child, performing a wait
allows the system to release the resources associated with the child; if a wait is not per-
formed, then the terminated child remains in a "zombie" state (see NOTES below).

If a child has already changed state, then these calls return immediately. Otherwise,
they block until either a child changes state or a signal handler interrupts the call (as-
suming that system calls are not automatically restarted using the SA_RESTART flag
of sigaction(2)). In the remainder of this page, a child whose state has changed and
which has not yet been waited upon by one of these system calls is termed waitable.

wait() and waitpid()
The wait() system call suspends execution of the calling thread until one of its children
terminates. The call wait(&wstatus) is equivalent to:

waitpid(-1, &wstatus, 0);

The waitpid() system call suspends execution of the calling thread until a child specified
by pid argument has changed state. By default, waitpid() waits only for terminated
children, but this behavior is modifiable via the options argument, as described below.

The value of pid can be:

< -1 meaning wait for any child process whose process group ID is equal to the ab-
solute value of pid .

Linux man-pages 6.16 2025-10-29 1168

wait(2) System Calls Manual wait(2)

-1 meaning wait for any child process.

0 meaning wait for any child process whose process group ID is equal to that of
the calling process at the time of the call to waitpid().

> 0 meaning wait for the child whose process ID is equal to the value of pid .

The value of options is an OR of zero or more of the following constants:

WNOHANG
return immediately if no child has exited.

WUNTRACED
also return if a child has stopped (but not traced via ptrace(2)). Status for traced
children which have stopped is provided even if this option is not specified.

WCONTINUED (since Linux 2.6.10)
also return if a stopped child has been resumed by delivery of SIGCONT.

(For Linux-only options, see below.)

If wstatus is not NULL, wait() and waitpid() store status information in the int to which
it points. This integer can be inspected with the following macros (which take the inte-
ger itself as an argument, not a pointer to it, as is done in wait() and waitpid()!):

WIFEXITED(wstatus)
returns true if the child terminated normally, that is, by calling exit(3) or _exit(2),
or by returning from main().

WEXITSTATUS(wstatus)
returns the exit status of the child. This consists of the least significant 8 bits of
the status argument that the child specified in a call to exit(3) or _exit(2) or as the
argument for a return statement in main(). This macro should be employed only
if WIFEXITED returned true.

WIFSIGNALED(wstatus)
returns true if the child process was terminated by a signal.

WTERMSIG(wstatus)
returns the number of the signal that caused the child process to terminate. This
macro should be employed only if WIFSIGNALED returned true.

WCOREDUMP(wstatus) // POSIX.1-2024
returns true if the child produced a core dump (see core(5)). This macro should
be employed only if WIFSIGNALED returned true.

WIFSTOPPED(wstatus) // POSIX.1-2024
returns true if the child process was stopped by delivery of a signal; this is possi-
ble only if the call was done using WUNTRACED or when the child is being
traced (see ptrace(2)).

WSTOPSIG(wstatus)
returns the number of the signal which caused the child to stop. This macro
should be employed only if WIFSTOPPED returned true.

Linux man-pages 6.16 2025-10-29 1169

wait(2) System Calls Manual wait(2)

WIFCONTINUED(wstatus)
(since Linux 2.6.10) returns true if the child process was resumed by delivery of
SIGCONT.

waitid()
The waitid() system call (available since Linux 2.6.9) provides more precise control
over which child state changes to wait for.

The idtype and id arguments select the child(ren) to wait for, as follows:

idtype == P_PID
Wait for the child whose process ID matches id .

idtype == P_PIDFD (since Linux 5.4)
Wait for the child referred to by the PID file descriptor specified in id . (See
pidfd_open(2) for further information on PID file descriptors.)

idtype == P_PGID
Wait for any child whose process group ID matches id . Since Linux 5.4, if id is
zero, then wait for any child that is in the same process group as the caller’s
process group at the time of the call.

idtype == P_ALL
Wait for any child; id is ignored.

The child state changes to wait for are specified by ORing one or more of the following
flags in options:

WEXITED
Wait for children that have terminated.

WSTOPPED
Wait for children that have been stopped by delivery of a signal.

WCONTINUED
Wait for (previously stopped) children that have been resumed by delivery of
SIGCONT.

The following flags may additionally be ORed in options:

WNOHANG
As for waitpid().

WNOWAIT
Leave the child in a waitable state; a later wait call can be used to again retrieve
the child status information.

Upon successful return, waitid() fills in the following fields of the siginfo_t structure
pointed to by infop:

si_pid
The process ID of the child.

si_uid
The real user ID of the child. (This field is not set on most other implementa-
tions.)

Linux man-pages 6.16 2025-10-29 1170

wait(2) System Calls Manual wait(2)

si_signo
Always set to SIGCHLD.

si_status
Either the exit status of the child, as given to _exit(2) (or exit(3)), or the signal
that caused the child to terminate, stop, or continue. The si_code field can be
used to determine how to interpret this field.

si_code
Set to one of: CLD_EXITED (child called _exit(2)); CLD_KILLED (child
killed by signal); CLD_DUMPED (child killed by signal, and dumped core);
CLD_STOPPED (child stopped by signal); CLD_TRAPPED (traced child has
trapped); or CLD_CONTINUED (child continued by SIGCONT).

If WNOHANG was specified in options and there were no children in a waitable state,
then waitid() returns 0 immediately and the state of the siginfo_t structure pointed to by
infop depends on the implementation. To (portably) distinguish this case from that
where a child was in a waitable state, zero out the si_pid field before the call and check
for a nonzero value in this field after the call returns.

POSIX.1-2008 Technical Corrigendum 1 (2013) adds the requirement that when WNO-
HANG is specified in options and there were no children in a waitable state, then
waitid() should zero out the si_pid and si_signo fields of the structure. On Linux and
other implementations that adhere to this requirement, it is not necessary to zero out the
si_pid field before calling waitid(). However, not all implementations follow the
POSIX.1 specification on this point.

RETURN VALUE
wait(): on success, returns the process ID of the terminated child; on failure, -1 is re-
turned.

waitpid(): on success, returns the process ID of the child whose state has changed; if
WNOHANG was specified and one or more child(ren) specified by pid exist, but have
not yet changed state, then 0 is returned. On failure, -1 is returned.

waitid(): returns 0 on success or if WNOHANG was specified and no child(ren) speci-
fied by id has yet changed state; on failure, -1 is returned.

On failure, each of these calls sets errno to indicate the error.

ERRORS
EAGAIN

The PID file descriptor specified in id is nonblocking and the process that it
refers to has not terminated.

ECHILD
(for wait()) The calling process does not have any unwaited-for children.

ECHILD
(for waitpid() or waitid()) The process specified by pid (waitpid()) or idtype
and id (waitid()) does not exist or is not a child of the calling process. (This can
happen for one’s own child if the action for SIGCHLD is set to SIG_IGN. See
also the Linux Notes section about threads.)

Linux man-pages 6.16 2025-10-29 1171

wait(2) System Calls Manual wait(2)

EINTR
WNOHANG was not set and an unblocked signal or a SIGCHLD was caught;
see signal(7).

EINVAL
The options argument was invalid.

ESRCH
(for wait() or waitpid()) pid is equal to INT_MIN.

VERSIONS
C library/kernel differences

wait() is actually a library function that (in glibc) is implemented as a call to wait4(2).

On some architectures, there is no waitpid() system call; instead, this interface is imple-
mented via a C library wrapper function that calls wait4(2).

The raw waitid() system call takes a fifth argument, of type struct rusage *. If this ar-
gument is non-NULL, then it is used to return resource usage information about the
child, in the same manner as wait4(2). See getrusage(2) for details.

STANDARDS
POSIX.1-2024.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

NOTES
A child that terminates, but has not been waited for becomes a "zombie". The kernel
maintains a minimal set of information about the zombie process (PID, termination sta-
tus, resource usage information) in order to allow the parent to later perform a wait to
obtain information about the child. As long as a zombie is not removed from the system
via a wait, it will consume a slot in the kernel process table, and if this table fills, it will
not be possible to create further processes. If a parent process terminates, then its "zom-
bie" children (if any) are adopted by init(1), (or by the nearest "subreaper" process as
defined through the use of the prctl(2) PR_SET_CHILD_SUBREAPER operation);
init(1) automatically performs a wait to remove the zombies.

POSIX.1-2001 specifies that if the disposition of SIGCHLD is set to SIG_IGN or the
SA_NOCLDWAIT flag is set for SIGCHLD (see sigaction(2)), then children that ter-
minate do not become zombies and a call to wait() or waitpid() will block until all chil-
dren have terminated, and then fail with errno set to ECHILD. (The original POSIX
standard left the behavior of setting SIGCHLD to SIG_IGN unspecified. Note that
even though the default disposition of SIGCHLD is "ignore", explicitly setting the dis-
position to SIG_IGN results in different treatment of zombie process children.)

Linux 2.6 conforms to the POSIX requirements. However, Linux 2.4 (and earlier) does
not: if a wait() or waitpid() call is made while SIGCHLD is being ignored, the call be-
haves just as though SIGCHLD were not being ignored, that is, the call blocks until the
next child terminates and then returns the process ID and status of that child.

Linux notes
In the Linux kernel, a kernel-scheduled thread is not a distinct construct from a process.
Instead, a thread is simply a process that is created using the Linux-unique clone(2)

Linux man-pages 6.16 2025-10-29 1172

wait(2) System Calls Manual wait(2)

system call; other routines such as the portable pthread_create(3) call are implemented
using clone(2). Before Linux 2.4, a thread was just a special case of a process, and as a
consequence one thread could not wait on the children of another thread, even when the
latter belongs to the same thread group. However, POSIX prescribes such functionality,
and since Linux 2.4 a thread can, and by default will, wait on children of other threads
in the same thread group.

The following Linux-specific options are for use with children created using clone(2);
they can also, since Linux 4.7, be used with waitid():

__WCLONE
Wait for "clone" children only. If omitted, then wait for "non-clone" children
only. (A "clone" child is one which delivers no signal, or a signal other than
SIGCHLD to its parent upon termination.) This option is ignored if __WALL
is also specified.

__WALL (since Linux 2.4)
Wait for all children, regardless of type ("clone" or "non-clone").

__WNOTHREAD (since Linux 2.4)
Do not wait for children of other threads in the same thread group. This was the
default before Linux 2.4.

Since Linux 4.7, the __WALL flag is automatically implied if the child is being ptraced.

BUGS
According to POSIX.1-2008, an application calling waitid() must ensure that infop
points to a siginfo_t structure (i.e., that it is a non-null pointer). On Linux, if infop is
NULL, waitid() succeeds, and returns the process ID of the waited-for child. Applica-
tions should avoid relying on this inconsistent, nonstandard, and unnecessary feature.

EXAMPLES
The following program demonstrates the use of fork(2) and waitpid(). The program
creates a child process. If no command-line argument is supplied to the program, then
the child suspends its execution using pause(2), to allow the user to send signals to the
child. Otherwise, if a command-line argument is supplied, then the child exits immedi-
ately, using the integer supplied on the command line as the exit status. The parent
process executes a loop that monitors the child using waitpid(), and uses the W*()
macros described above to analyze the wait status value.

The following shell session demonstrates the use of the program:

$./a.out &
Child PID is 32360
[1] 32359
$ kill -STOP 32360
stopped by signal 19
$ kill -CONT 32360
continued
$ kill -TERM 32360
killed by signal 15
[1]+ Done ./a.out

Linux man-pages 6.16 2025-10-29 1173

wait(2) System Calls Manual wait(2)

$

Program source

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int wstatus;
pid_t cpid, w;

cpid = fork();
if (cpid == -1) {

perror("fork");
exit(EXIT_FAILURE);

}

if (cpid == 0) { /* Code executed by child */
printf("Child PID is %jd\n", (intmax_t) getpid());
if (argc == 1)

pause(); /* Wait for signals */
_exit(atoi(argv[1]));

} else { /* Code executed by parent */
do {

w = waitpid(cpid, &wstatus, WUNTRACED | WCONTINUED);
if (w == -1) {

perror("waitpid");
exit(EXIT_FAILURE);

}

if (WIFEXITED(wstatus)) {
printf("exited, status=%d\n", WEXITSTATUS(wstatus));

} else if (WIFSIGNALED(wstatus)) {
printf("killed by signal %d\n", WTERMSIG(wstatus));

} else if (WIFSTOPPED(wstatus)) {
printf("stopped by signal %d\n", WSTOPSIG(wstatus));

} else if (WIFCONTINUED(wstatus)) {
printf("continued\n");

}
} while (!WIFEXITED(wstatus) && !WIFSIGNALED(wstatus));
exit(EXIT_SUCCESS);

Linux man-pages 6.16 2025-10-29 1174

wait(2) System Calls Manual wait(2)

}
}

SEE ALSO
_exit(2), clone(2), fork(2), kill(2), ptrace(2), sigaction(2), signal(2), wait4(2),
pthread_create(3), core(5), credentials(7), signal(7)

Linux man-pages 6.16 2025-10-29 1175

wait4(2) System Calls Manual wait4(2)

NAME
wait3, wait4 - wait for process to change state, BSD style

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/wait.h>

pid_t wait3(int *_Nullable wstatus, int options,
struct rusage *_Nullable rusage);

pid_t wait4(pid_t pid , int *_Nullable wstatus, int options,
struct rusage *_Nullable rusage);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wait3():
Since glibc 2.26:

_DEFAULT_SOURCE
|| (_XOPEN_SOURCE >= 500 &&

! (_POSIX_C_SOURCE >= 200112L
|| _XOPEN_SOURCE >= 600))

From glibc 2.19 to glibc 2.25:
_DEFAULT_SOURCE || _XOPEN_SOURCE >= 500

glibc 2.19 and earlier:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

wait4():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
These functions are nonstandard; in new programs, the use of waitpid(2) or waitid(2) is
preferable.

The wait3() and wait4() system calls are similar to waitpid(2), but additionally return
resource usage information about the child in the structure pointed to by rusage.

Other than the use of the rusage argument, the following wait3() call:

wait3(wstatus, options, rusage);

is equivalent to:

waitpid(-1, wstatus, options);

Similarly, the following wait4() call:

wait4(pid, wstatus, options, rusage);

is equivalent to:

waitpid(pid, wstatus, options);

In other words, wait3() waits of any child, while wait4() can be used to select a specific

Linux man-pages 6.16 2025-09-21 1176

wait4(2) System Calls Manual wait4(2)

child, or children, on which to wait. See wait(2) for further details.

If rusage is not NULL, the struct rusage to which it points will be filled with accounting
information about the child. See getrusage(2) for details.

RETURN VALUE
As for waitpid(2).

ERRORS
As for waitpid(2).

STANDARDS
None.

HISTORY
4.3BSD.

SUSv1 included a specification of wait3(); SUSv2 included wait3(), but marked it
LEGACY; SUSv3 removed it.

Including <sys/time.h> is not required these days, but increases portability. (Indeed,
<sys/resource.h> defines the rusage structure with fields of type struct timeval defined
in <sys/time.h>.)

C library/kernel differences
On Linux, wait3() is a library function implemented on top of the wait4() system call.

SEE ALSO
fork(2), getrusage(2), sigaction(2), signal(2), wait(2), signal(7)

Linux man-pages 6.16 2025-09-21 1177

write(2) System Calls Manual write(2)

NAME
write - write to a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

ssize_t write(size_t count;
int fd , const void buf [count], size_t count);

DESCRIPTION
write() writes up to count bytes from the buffer starting at buf to the file referred to by
the file descriptor fd .

The number of bytes written may be less than count if, for example, there is insufficient
space on the underlying physical medium, or the RLIMIT_FSIZE resource limit is en-
countered (see setrlimit(2)), or the call was interrupted by a signal handler after having
written less than count bytes. (See also pipe(7).)

For a seekable file (i.e., one to which lseek(2) may be applied, for example, a regular
file) writing takes place at the file offset, and the file offset is incremented by the number
of bytes actually written. If the file was open(2)ed with O_APPEND, the file offset is
first set to the end of the file before writing. The adjustment of the file offset and the
write operation are performed as an atomic step.

POSIX requires that a read(2) that can be proved to occur after a write() has returned
will return the new data. Note that not all filesystems are POSIX conforming.

According to POSIX.1, if count is greater than SSIZE_MAX, the result is implementa-
tion-defined; see NOTES for the upper limit on Linux.

RETURN VALUE
On success, the number of bytes written is returned. On error, -1 is returned, and errno
is set to indicate the error.

Note that a successful write() may transfer fewer than count bytes. Such partial writes
can occur for various reasons; for example, because there was insufficient space on the
disk device to write all of the requested bytes, or because a blocked write() to a socket,
pipe, or similar was interrupted by a signal handler after it had transferred some, but be-
fore it had transferred all of the requested bytes. In the event of a partial write, the caller
can make another write() call to transfer the remaining bytes. The subsequent call will
either transfer further bytes or may result in an error (e.g., if the disk is now full).

If count is zero and fd refers to a regular file, then write() may return a failure status if
one of the errors below is detected. If no errors are detected, or error detection is not
performed, 0 is returned without causing any other effect. If count is zero and fd refers
to a file other than a regular file, the results are not specified.

ERRORS
EAGAIN

The file descriptor fd refers to a file other than a socket and has been marked
nonblocking (O_NONBLOCK), and the write would block. See open(2) for

Linux man-pages 6.16 2025-10-29 1178

write(2) System Calls Manual write(2)

further details on the O_NONBLOCK flag.

EAGAIN or EWOULDBLOCK
The file descriptor fd refers to a socket and has been marked nonblocking
(O_NONBLOCK), and the write would block. POSIX.1-2001 allows either er-
ror to be returned for this case, and does not require these constants to have the
same value, so a portable application should check for both possibilities.

EBADF
fd is not a valid file descriptor or is not open for writing.

EDESTADDRREQ
fd refers to a datagram socket for which a peer address has not been set using
connect(2).

EDQUOT
The user’s quota of disk blocks on the filesystem containing the file referred to
by fd has been exhausted.

EFAULT
buf is outside your accessible address space.

EFBIG
An attempt was made to write a file that exceeds the implementation-defined
maximum file size or the process’s file size limit, or to write at a position past the
maximum allowed offset.

EINTR
The call was interrupted by a signal before any data was written; see signal(7).

EINVAL
fd is attached to an object which is unsuitable for writing; or the file was opened
with the O_DIRECT flag, and either the address specified in buf , the value
specified in count, or the file offset is not suitably aligned.

EIO A low-level I/O error occurred while modifying the inode. This error may relate
to the write-back of data written by an earlier write(), which may have been is-
sued to a different file descriptor on the same file. Since Linux 4.13, errors from
write-back come with a promise that they may be reported by subsequent.
write() requests, and will be reported by a subsequent fsync(2) (whether or not
they were also reported by write())An alternate cause of EIO on networked
filesystems is when an advisory lock had been taken out on the file descriptor
and this lock has been lost. See the Lost locks section of fcntl(2) for further de-
tails.

ENOSPC
The device containing the file referred to by fd has no room for the data.

EPERM
The operation was prevented by a file seal; see fcntl(2).

EPIPE
fd is connected to a pipe or socket whose reading end is closed. When this hap-
pens the writing process will also receive a SIGPIPE signal. (Thus, the write

Linux man-pages 6.16 2025-10-29 1179

write(2) System Calls Manual write(2)

return value is seen only if the program catches, blocks or ignores this signal.)

Other errors may occur, depending on the object connected to fd .

STANDARDS
POSIX.1-2024.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

Under SVr4 a write may be interrupted and return EINTR at any point, not just before
any data is written.

NOTES
A successful return from write() does not make any guarantee that data has been com-
mitted to disk. On some filesystems, including NFS, it does not even guarantee that
space has successfully been reserved for the data. In this case, some errors might be de-
layed until a future write(), fsync(2), or even close(2). The only way to be sure is to call
fsync(2) after you are done writing all your data.

If a write() is interrupted by a signal handler before any bytes are written, then the call
fails with the error EINTR; if it is interrupted after at least one byte has been written,
the call succeeds, and returns the number of bytes written.

On Linux, write() (and similar system calls) will transfer at most 0x7ffff000
(2,147,479,552) bytes, returning the number of bytes actually transferred. (This is true
on both 32-bit and 64-bit systems.)

An error return value while performing write() using direct I/O does not mean the entire
write has failed. Partial data may be written and the data at the file offset on which the
write() was attempted should be considered inconsistent.

BUGS
According to POSIX.1-2008/SUSv4 Section XSI 2.9.7 ("Thread Interactions with Regu-
lar File Operations"):

All of the following functions shall be atomic with respect to each other in the ef-
fects specified in POSIX.1-2008 when they operate on regular files or symbolic
links: ...

Among the APIs subsequently listed are write() and writev(2). And among the effects
that should be atomic across threads (and processes) are updates of the file offset. How-
ever, before Linux 3.14, this was not the case: if two processes that share an open file
description (see open(2)) perform a write() (or writev(2)) at the same time, then the I/O
operations were not atomic with respect to updating the file offset, with the result that
the blocks of data output by the two processes might (incorrectly) overlap. This prob-
lem was fixed in Linux 3.14.

SEE ALSO
close(2), fcntl(2), fsync(2), ioctl(2), lseek(2), open(2), pwrite(2), read(2), select(2),
writev(2), fwrite(3)

Linux man-pages 6.16 2025-10-29 1180

write(2) System Calls Manual write(2)

Linux man-pages 6.16 2025-10-29 1181

F_DUPFD(2const) F_DUPFD(2const)

NAME
F_DUPFD, F_DUPFD_CLOEXEC - duplicate a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , F_DUPFD, int arg);
int fcntl(int fd , F_DUPFD_CLOEXEC, int arg);

DESCRIPTION
F_DUPFD

Duplicate the file descriptor fd using the lowest-numbered available file descrip-
tor greater than or equal to arg. This is different from dup2(2), which uses ex-
actly the file descriptor specified.

On success, the new file descriptor is returned.

See dup(2) for further details.

F_DUPFD_CLOEXEC
As for F_DUPFD, but additionally set the close-on-exec flag for the duplicate
file descriptor. Specifying this flag permits a program to avoid an additional
F_SETFD(2const) operation to set the FD_CLOEXEC flag. For an explanation
of why this flag is useful, see the description of O_CLOEXEC in open(2).

RETURN VALUE
The new file descriptor.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

EINVAL
arg is negative or is greater than the maximum allowable value (see the discus-
sion of RLIMIT_NOFILE in getrlimit(2)).

EMFILE
The per-process limit on the number of open file descriptors has been reached.

VERSIONS
POSIX.1-2024 specifies F_DUPFD_CLOFORK, but Linux doesn’t support it.

STANDARDS
POSIX.1-2024.

HISTORY
F_DUPFD

SVr4, 4.3BSD, POSIX.1-2001.

F_DUPFD_CLOEXEC
Linux 2.6.24. POSIX.1-2008. (To get this definition, define
_POSIX_C_SOURCE with the value 200809L or greater, or
_XOPEN_SOURCE with the value 700 or greater.)

Linux man-pages 6.16 2025-10-29 1182

F_DUPFD(2const) F_DUPFD(2const)

CAVEATS
The errors returned by dup2(2) are different from those returned by F_DUPFD.

SEE ALSO
dup2(2), fcntl(2)

Linux man-pages 6.16 2025-10-29 1183

F_GET_RW_HINT (2const) F_GET_RW_HINT (2const)

NAME
F_GET_RW_HINT, F_SET_RW_HINT, F_GET_FILE_RW_HINT,
F_SET_FILE_RW_HINT - get/set file read/write hints

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , F_GET_RW_HINT, uint64_t *arg);
int fcntl(int fd , F_SET_RW_HINT, uint64_t *arg);
int fcntl(int fd , F_GET_FILE_RW_HINT, uint64_t *arg);
int fcntl(int fd , F_GET_FILE_RW_HINT, uint64_t *arg);

DESCRIPTION
Write lifetime hints can be used to inform the kernel about the relative expected lifetime
of writes on a given inode or via a particular open file description. (See open(2) for an
explanation of open file descriptions.) In this context, the term "write lifetime" means
the expected time the data will live on media, before being overwritten or erased.

An application may use the different hint values specified below to separate writes into
different write classes, so that multiple users or applications running on a single storage
back-end can aggregate their I/O patterns in a consistent manner. However, there are no
functional semantics implied by these flags, and different I/O classes can use the write
lifetime hints in arbitrary ways, so long as the hints are used consistently.

The following operations can be applied to the file descriptor, fd:

F_GET_RW_HINT
Returns the value of the read/write hint associated with the underlying inode re-
ferred to by fd .

F_SET_RW_HINT
Sets the read/write hint value associated with the underlying inode referred to by
fd . This hint persists until either it is explicitly modified or the underlying
filesystem is unmounted.

F_GET_FILE_RW_HINT
Returns the value of the read/write hint associated with the open file description
referred to by fd .

F_SET_FILE_RW_HINT
Sets the read/write hint value associated with the open file description referred to
by fd .

If an open file description has not been assigned a read/write hint, then it shall use the
value assigned to the inode, if any.

The following read/write hints are supported:

RWH_WRITE_LIFE_NOT_SET
No specific hint has been set. This is the default value.

Linux man-pages 6.16 2025-07-20 1184

F_GET_RW_HINT (2const) F_GET_RW_HINT (2const)

RWH_WRITE_LIFE_NONE
No specific write lifetime is associated with this file or inode.

RWH_WRITE_LIFE_SHORT
Data written to this inode or via this open file description is expected to have a
short lifetime.

RWH_WRITE_LIFE_MEDIUM
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_SHORT.

RWH_WRITE_LIFE_LONG
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_MEDIUM.

RWH_WRITE_LIFE_EXTREME
Data written to this inode or via this open file description is expected to have a
lifetime longer than data written with RWH_WRITE_LIFE_LONG.

All the write-specific hints are relative to each other, and no individual absolute meaning
should be attributed to them.

RETURN VALUE
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

STANDARDS
Linux.

HISTORY
Linux 4.13.

SEE ALSO
fcntl(2)

Linux man-pages 6.16 2025-07-20 1185

F_GET_SEALS(2const) F_GET_SEALS(2const)

NAME
F_GET_SEALS, F_ADD_SEALS - get/add file seals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , F_ADD_SEALS, int arg);
int fcntl(int fd , F_GET_SEALS);

DESCRIPTION
File seals limit the set of allowed operations on a given file. For each seal that is set on a
file, a specific set of operations will fail with EPERM on this file from now on. The file
is said to be sealed. The default set of seals depends on the type of the underlying file
and filesystem. For an overview of file sealing, a discussion of its purpose, and some
code examples, see memfd_create(2).

Currently, file seals can be applied only to a file descriptor returned by memfd_create(2)
(if the MFD_ALLOW_SEALING was employed). On other filesystems, all fcntl() op-
erations that operate on seals will return EINVAL.

Seals are a property of an inode. Thus, all open file descriptors referring to the same in-
ode share the same set of seals. Furthermore, seals can never be removed, only added.

F_ADD_SEALS
Add the seals given in the bit-mask argument arg to the set of seals of the inode
referred to by the file descriptor fd . Seals cannot be removed again. Once this
call succeeds, the seals are enforced by the kernel immediately. If the current set
of seals includes F_SEAL_SEAL (see below), then this call will be rejected
with EPERM. Adding a seal that is already set is a no-op, in case
F_SEAL_SEAL is not set already. In order to place a seal, the file descriptor fd
must be writable.

F_GET_SEALS
Return (as the function result) the current set of seals of the inode referred to by
fd . If no seals are set, 0 is returned. If the file does not support sealing, -1 is re-
turned and errno is set to EINVAL.

The following seals are available:

F_SEAL_SEAL
If this seal is set, any further call to fcntl() with F_ADD_SEALS fails with the
error EPERM. Therefore, this seal prevents any modifications to the set of seals
itself. If the initial set of seals of a file includes F_SEAL_SEAL, then this ef-
fectively causes the set of seals to be constant and locked.

F_SEAL_SHRINK
If this seal is set, the file in question cannot be reduced in size. This affects
open(2) with the O_TRUNC flag as well as truncate(2) and ftruncate(2). Those
calls fail with EPERM if you try to shrink the file in question. Increasing the
file size is still possible.

Linux man-pages 6.16 2025-07-20 1186

F_GET_SEALS(2const) F_GET_SEALS(2const)

F_SEAL_GROW
If this seal is set, the size of the file in question cannot be increased. This affects
write(2) beyond the end of the file, truncate(2), ftruncate(2), and fallocate(2).
These calls fail with EPERM if you use them to increase the file size. If you
keep the size or shrink it, those calls still work as expected.

F_SEAL_WRITE
If this seal is set, you cannot modify the contents of the file. Note that shrinking
or growing the size of the file is still possible and allowed. Thus, this seal is nor-
mally used in combination with one of the other seals. This seal affects write(2)
and fallocate(2) (only in combination with the FALLOC_FL_PUNCH_HOLE
flag). Those calls fail with EPERM if this seal is set. Furthermore, trying to
create new shared, writable memory-mappings via mmap(2) will also fail with
EPERM.

Using the F_ADD_SEALS operation to set the F_SEAL_WRITE seal fails
with EBUSY if any writable, shared mapping exists. Such mappings must be
unmapped before you can add this seal. Furthermore, if there are any asynchro-
nous I/O operations (io_submit(2)) pending on the file, all outstanding writes
will be discarded.

F_SEAL_FUTURE_WRITE (since Linux 5.1)
The effect of this seal is similar to F_SEAL_WRITE, but the contents of the file
can still be modified via shared writable mappings that were created prior to the
seal being set. Any attempt to create a new writable mapping on the file via
mmap(2) will fail with EPERM. Likewise, an attempt to write to the file via
write(2) will fail with EPERM.

Using this seal, one process can create a memory buffer that it can continue to
modify while sharing that buffer on a "read-only" basis with other processes.

RETURN VALUE
F_GET_SEALS

A bit mask identifying the seals that have been set for the inode referred to by
fd .

F_ADD_SEALS
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

EBUSY
op is F_ADD_SEALS, arg includes F_SEAL_WRITE, and there exists a
writable, shared mapping on the file referred to by fd .

EINVAL
op is F_ADD_SEALS and arg includes an unrecognized sealing bit.

EINVAL
The filesystem containing the inode referred to by fd does not support sealing.

Linux man-pages 6.16 2025-07-20 1187

F_GET_SEALS(2const) F_GET_SEALS(2const)

EPERM
op was F_ADD_SEALS, but fd was not open for writing or the current set of
seals on the file already includes F_SEAL_SEAL.

STANDARDS
Linux.

HISTORY
Linux 3.17.

SEE ALSO
fcntl(2)

Linux man-pages 6.16 2025-07-20 1188

F_GETFD(2const) F_GETFD(2const)

NAME
F_GETFD, F_SETFD - get/set file descriptor flags

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , F_GETFD);
int fcntl(int fd , F_SETFD, int arg);

DESCRIPTION
These operations manipulate the flags associated with a file descriptor. Currently, only
one such flag is defined: FD_CLOEXEC, the close-on-exec flag. If the
FD_CLOEXEC bit is set, the file descriptor will automatically be closed during a suc-
cessful execve(2). (If the execve(2) fails, the file descriptor is left open.) If the
FD_CLOEXEC bit is not set, the file descriptor will remain open across an execve(2).

F_GETFD
Return (as the function result) the file descriptor flags; arg is ignored.

F_SETFD
Set the file descriptor flags to the value specified by arg.

RETURN VALUE
F_GETFD

Value of file descriptor flags.

F_SETFD
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

STANDARDS
POSIX.1-2024.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

CAVEATS
In multithreaded programs, using fcntl(2) F_SETFD to set the close-on-exec flag at the
same time as another thread performs a fork(2) plus execve(2) is vulnerable to a race
condition that may unintentionally leak the file descriptor to the program executed in the
child process. See the discussion of the O_CLOEXEC flag in open(2) for details and a
remedy to the problem.

SEE ALSO
fcntl(2)

Linux man-pages 6.16 2025-10-29 1189

F_GETFL(2const) F_GETFL(2const)

NAME
F_GETFL, F_SETFL - get/set file status flags

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , F_GETFL);
int fcntl(int fd , F_SETFL, int arg);

DESCRIPTION
Each open file description has certain associated status flags, initialized by open(2) and
possibly modified by fcntl(2). Duplicated file descriptors (made with dup(2),
F_DUPFD(2const), fork(2), etc.) refer to the same open file description, and thus share
the same file status flags.

The file status flags and their semantics are described in open(2).

F_GETFL
Return (as the function result) the file access mode and the file status flags; arg is
ignored.

F_SETFL
Set the file status flags to the value specified by arg. File access mode
(O_RDONLY, O_WRONLY, O_RDWR) and file creation flags (i.e.,
O_CREAT, O_EXCL, O_NOCTTY, O_TRUNC) in arg are ignored. On
Linux, this operation can change only the O_APPEND, O_ASYNC, O_DI-
RECT, O_NOATIME, and O_NONBLOCK flags. It is not possible to change
the O_DSYNC and O_SYNC flags; see BUGS, below.

RETURN VALUE
F_GETFL

Value of file status flags.

F_SETFL
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

EPERM
Attempted to clear the O_APPEND flag on a file that has the append-only at-
tribute set.

STANDARDS
POSIX.1-2024.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001.

Linux man-pages 6.16 2025-10-29 1190

F_GETFL(2const) F_GETFL(2const)

BUGS
F_SETFL

It is not possible to use F_SETFL to change the state of the O_DSYNC and O_SYNC
flags. Attempts to change the state of these flags are silently ignored.

SEE ALSO
fcntl(2), open(2)

Linux man-pages 6.16 2025-10-29 1191

F_GETLEASE(2const) F_GETLEASE(2const)

NAME
F_GETLEASE, F_SETLEASE - leases

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#include <fcntl.h>

int fcntl(int fd , F_SETLEASE, int arg);
int fcntl(int fd , F_GETLEASE);

DESCRIPTION
Leases

F_SETLEASE and F_GETLEASE are used to establish a new lease, and retrieve the
current lease, on the open file description referred to by the file descriptor fd . A file
lease provides a mechanism whereby the process holding the lease (the "lease holder")
is notified (via delivery of a signal) when a process (the "lease breaker") tries to open(2)
or truncate(2) the file referred to by that file descriptor.

F_SETLEASE
Set or remove a file lease according to which of the following values is specified
in the integer arg:

F_RDLCK
Take out a read lease. This will cause the calling process to be notified
when the file is opened for writing or is truncated. A read lease can be
placed only on a file descriptor that is opened read-only.

F_WRLCK
Take out a write lease. This will cause the caller to be notified when the
file is opened for reading or writing or is truncated. A write lease may be
placed on a file only if there are no other open file descriptors for the file.

F_UNLCK
Remove our lease from the file.

Leases are associated with an open file description (see open(2)). This means that dupli-
cate file descriptors (created by, for example, fork(2) or dup(2)) refer to the same lease,
and this lease may be modified or released using any of these descriptors. Furthermore,
the lease is released by either an explicit F_UNLCK operation on any of these duplicate
file descriptors, or when all such file descriptors have been closed.

Leases may be taken out only on regular files. An unprivileged process may take out a
lease only on a file whose UID (owner) matches the filesystem UID of the process. A
process with the CAP_LEASE capability may take out leases on arbitrary files.

F_GETLEASE
Indicates what type of lease is associated with the file descriptor fd by returning
either F_RDLCK, F_WRLCK, or F_UNLCK, indicating, respectively, a read
lease , a write lease, or no lease. arg is ignored.

When a process (the "lease breaker") performs an open(2) or truncate(2) that conflicts

Linux man-pages 6.16 2025-07-20 1192

F_GETLEASE(2const) F_GETLEASE(2const)

with a lease established via F_SETLEASE, the system call is blocked by the kernel and
the kernel notifies the lease holder by sending it a signal (SIGIO by default). The lease
holder should respond to receipt of this signal by doing whatever cleanup is required in
preparation for the file to be accessed by another process (e.g., flushing cached buffers)
and then either remove or downgrade its lease. A lease is removed by performing an
F_SETLEASE operation specifying arg as F_UNLCK. If the lease holder currently
holds a write lease on the file, and the lease breaker is opening the file for reading, then
it is sufficient for the lease holder to downgrade the lease to a read lease. This is done
by performing an F_SETLEASE operation specifying arg as F_RDLCK.

If the lease holder fails to downgrade or remove the lease within the number of seconds
specified in /proc/sys/fs/lease-break-time, then the kernel forcibly removes or down-
grades the lease holder’s lease.

Once a lease break has been initiated, F_GETLEASE returns the target lease type (ei-
ther F_RDLCK or F_UNLCK, depending on what would be compatible with the lease
breaker) until the lease holder voluntarily downgrades or removes the lease or the kernel
forcibly does so after the lease break timer expires.

Once the lease has been voluntarily or forcibly removed or downgraded, and assuming
the lease breaker has not unblocked its system call, the kernel permits the lease breaker’s
system call to proceed.

If the lease breaker’s blocked open(2) or truncate(2) is interrupted by a signal handler,
then the system call fails with the error EINTR, but the other steps still occur as de-
scribed above. If the lease breaker is killed by a signal while blocked in open(2) or trun-
cate(2), then the other steps still occur as described above. If the lease breaker specifies
the O_NONBLOCK flag when calling open(2), then the call immediately fails with the
error EWOULDBLOCK, but the other steps still occur as described above.

The default signal used to notify the lease holder is SIGIO, but this can be changed us-
ing the F_SETSIG operation to fcntl(). If a F_SETSIG operation is performed (even
one specifying SIGIO), and the signal handler is established using SA_SIGINFO, then
the handler will receive a siginfo_t structure as its second argument, and the si_fd field
of this argument will hold the file descriptor of the leased file that has been accessed by
another process. (This is useful if the caller holds leases against multiple files.)

RETURN VALUE
F_GETLEASE

Type of lease held on file descriptor.

F_SETLEASE
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

STANDARDS
Linux.

Linux man-pages 6.16 2025-07-20 1193

F_GETLEASE(2const) F_GETLEASE(2const)

HISTORY
Linux 2.4.

SEE ALSO
fcntl(2)

Linux man-pages 6.16 2025-07-20 1194

F_GETPIPE_SZ (2const) F_GETPIPE_SZ (2const)

NAME
F_GETPIPE_SZ, F_SETPIPE_SZ - get/set the capacity of a pipe

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#include <fcntl.h>

int fcntl(int fd , F_SETPIPE_SZ, int arg);
int fcntl(int fd , F_GETPIPE_SZ);

DESCRIPTION
F_SETPIPE_SZ

Change the capacity of the pipe referred to by fd to be at least arg bytes. An un-
privileged process can adjust the pipe capacity to any value between the system
page size and the limit defined in /proc/sys/fs/pipe-max-size (see
proc_sys_fs(5)). Attempts to set the pipe capacity below the page size are
silently rounded up to the page size. Attempts by an unprivileged process to set
the pipe capacity above the limit in /proc/sys/fs/pipe-max-size yield the error
EPERM; a privileged process (CAP_SYS_RESOURCE) can override the limit.

When allocating the buffer for the pipe, the kernel may use a capacity larger than
arg, if that is convenient for the implementation. (In the current implementation,
the allocation is the next higher power-of-two page-size multiple of the requested
size.) The actual capacity (in bytes) that is set is returned as the function result.

Attempting to set the pipe capacity smaller than the amount of buffer space cur-
rently used to store data produces the error EBUSY.

Note that because of the way the pages of the pipe buffer are employed when
data is written to the pipe, the number of bytes that can be written may be less
than the nominal size, depending on the size of the writes.

F_GETPIPE_SZ
Return (as the function result) the capacity of the pipe referred to by fd .

RETURN VALUE
The pipe capacity.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

EBUSY
op is F_SETPIPE_SZ and the new pipe capacity specified in arg is smaller than
the amount of buffer space currently used to store data in the pipe.

EPERM
op is F_SETPIPE_SZ and the soft or hard user pipe limit has been reached; see
pipe(7).

Linux man-pages 6.16 2025-09-21 1195

F_GETPIPE_SZ (2const) F_GETPIPE_SZ (2const)

STANDARDS
Linux.

HISTORY
Linux 2.6.35.

SEE ALSO
fcntl(2)

Linux man-pages 6.16 2025-09-21 1196

F_GETSIG(2const) F_GETSIG(2const)

NAME
F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, F_SET-
SIG - managing signals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int fcntl(int fd , F_GETOWN);
int fcntl(int fd , F_SETOWN, int arg);

#define _GNU_SOURCE
#include <fcntl.h>

int fcntl(int fd , F_GETOWN_EX, struct f_owner_ex *arg);
int fcntl(int fd , F_SETOWN_EX, const struct f_owner_ex *arg);
int fcntl(int fd , F_GETSIG);
int fcntl(int fd , F_SETSIG, int arg);

DESCRIPTION
F_GETOWN, F_SETOWN, F_GETOWN_EX, F_SETOWN_EX, F_GETSIG, and
F_SETSIG are used to manage I/O availability signals:

F_GETOWN
Return (as the function result) the process ID or process group ID currently re-
ceiving SIGIO and SIGURG signals for events on file descriptor fd . Process
IDs are returned as positive values; process group IDs are returned as negative
values (but see BUGS below). arg is ignored.

F_SETOWN
Set the process ID or process group ID that will receive SIGIO and SIGURG
signals for events on the file descriptor fd . The target process or process group
ID is specified in arg. A process ID is specified as a positive value; a process
group ID is specified as a negative value. Most commonly, the calling process
specifies itself as the owner (that is, arg is specified as getpid(2)).

As well as setting the file descriptor owner, one must also enable generation of
signals on the file descriptor. This is done by using the F_SETFL(2const) opera-
tion to set the O_ASYNC file status flag on the file descriptor. Subsequently, a
SIGIO signal is sent whenever input or output becomes possible on the file de-
scriptor. The fcntl() F_SETSIG operation can be used to obtain delivery of a
signal other than SIGIO.

Sending a signal to the owner process (group) specified by F_SETOWN is sub-
ject to the same permissions checks as are described for kill(2), where the send-
ing process is the one that employs F_SETOWN (but see BUGS below). If this
permission check fails, then the signal is silently discarded. Note: The F_SE-
TOWN operation records the caller’s credentials at the time of the fcntl() call,
and it is these saved credentials that are used for the permission checks.

If the file descriptor fd refers to a socket, F_SETOWN also selects the recipient
of SIGURG signals that are delivered when out-of-band data arrives on that

Linux man-pages 6.16 2025-10-29 1197

F_GETSIG(2const) F_GETSIG(2const)

socket. (SIGURG is sent in any situation where select(2) would report the
socket as having an "exceptional condition".)

The following was true in Linux 2.6.x up to and including Linux 2.6.11:

If a nonzero value is given to F_SETSIG in a multithreaded process run-
ning with a threading library that supports thread groups (e.g., NPTL),
then a positive value given to F_SETOWN has a different meaning: in-
stead of being a process ID identifying a whole process, it is a thread ID
identifying a specific thread within a process. Consequently, it may be
necessary to pass F_SETOWN the result of gettid(2) instead of getpid(2)
to get sensible results when F_SETSIG is used. (In current Linux
threading implementations, a main thread’s thread ID is the same as its
process ID. This means that a single-threaded program can equally use
gettid(2) or getpid(2) in this scenario.) Note, however, that the state-
ments in this paragraph do not apply to the SIGURG signal generated for
out-of-band data on a socket: this signal is always sent to either a process
or a process group, depending on the value given to F_SETOWN.

The above behavior was accidentally dropped in Linux 2.6.12, and won’t be re-
stored. From Linux 2.6.32 onward, use F_SETOWN_EX to target SIGIO and
SIGURG signals at a particular thread.

F_GETOWN_EX
Return the current file descriptor owner settings as defined by a previous F_SE-
TOWN_EX operation. The information is returned in the structure pointed to
by arg, which has the following form:

struct f_owner_ex {
int type;
pid_t pid;

};

The type field will have one of the values F_OWNER_TID, F_OWNER_PID,
or F_OWNER_PGRP. The pid field is a positive integer representing a thread
ID, process ID, or process group ID. See F_SETOWN_EX for more details.

F_SETOWN_EX
This operation performs a similar task to F_SETOWN. It allows the caller to di-
rect I/O availability signals to a specific thread, process, or process group. The
caller specifies the target of signals via arg, which is a pointer to a f_owner_ex
structure. The type field has one of the following values, which define how pid
is interpreted:

F_OWNER_TID
Send the signal to the thread whose thread ID (the value returned by a
call to clone(2) or gettid(2)) is specified in pid .

F_OWNER_PID
Send the signal to the process whose ID is specified in pid .

Linux man-pages 6.16 2025-10-29 1198

F_GETSIG(2const) F_GETSIG(2const)

F_OWNER_PGRP
Send the signal to the process group whose ID is specified in pid . (Note
that, unlike with F_SETOWN, a process group ID is specified as a posi-
tive value here.)

F_GETSIG
Return (as the function result) the signal sent when input or output becomes pos-
sible. A value of zero means SIGIO is sent. Any other value (including SIGIO)
is the signal sent instead, and in this case additional info is available to the signal
handler if installed with SA_SIGINFO. arg is ignored.

F_SETSIG
Set the signal sent when input or output becomes possible to the value given in
arg. A value of zero means to send the default SIGIO signal. Any other value
(including SIGIO) is the signal to send instead, and in this case additional info is
available to the signal handler if installed with SA_SIGINFO.

By using F_SETSIG with a nonzero value, and setting SA_SIGINFO for the
signal handler (see sigaction(2)), extra information about I/O events is passed to
the handler in a siginfo_t structure. If the si_code field indicates the source is
SI_SIGIO, the si_fd field gives the file descriptor associated with the event.
Otherwise, there is no indication which file descriptors are pending, and you
should use the usual mechanisms (select(2), poll(2), read(2) with O_NON-
BLOCK set etc.) to determine which file descriptors are available for I/O.

Note that the file descriptor provided in si_fd is the one that was specified during
the F_SETSIG operation. This can lead to an unusual corner case. If the file
descriptor is duplicated (dup(2) or similar), and the original file descriptor is
closed, then I/O events will continue to be generated, but the si_fd field will con-
tain the number of the now closed file descriptor.

By selecting a real time signal (value >= SIGRTMIN), multiple I/O events may
be queued using the same signal numbers. (Queuing is dependent on available
memory.) Extra information is available if SA_SIGINFO is set for the signal
handler, as above.

Note that Linux imposes a limit on the number of real-time signals that may be
queued to a process (see getrlimit(2) and signal(7)) and if this limit is reached,
then the kernel reverts to delivering SIGIO, and this signal is delivered to the en-
tire process rather than to a specific thread.

Using these mechanisms, a program can implement fully asynchronous I/O without us-
ing select(2) or poll(2) most of the time.

The use of O_ASYNC is specific to BSD and Linux. The only use of F_GETOWN
and F_SETOWN specified in POSIX.1 is in conjunction with the use of the SIGURG
signal on sockets. (POSIX does not specify the SIGIO signal.) F_GETOWN_EX,
F_SETOWN_EX, F_GETSIG, and F_SETSIG are Linux-specific. POSIX has asyn-
chronous I/O and the aio_sigevent structure to achieve similar things; these are also
available in Linux as part of the GNU C Library (glibc).

Linux man-pages 6.16 2025-10-29 1199

F_GETSIG(2const) F_GETSIG(2const)

RETURN VALUE
See fcntl(2).

F_GETOWN
Value of file descriptor owner.

F_GETSIG
Value of signal sent when read or write becomes possible, or zero for traditional
SIGIO behavior.

F_SETOWN
F_GETOWN_EX
F_SETOWN_EX
F_SETSIG

Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

EINVAL
op is F_SETSIG and arg is not an allowable signal number.

STANDARDS
F_GETOWN
F_SETOWN
F_GETOWN_EX
F_SETOWN_EX

POSIX.1-2024.

F_GETSIG
F_SETSIG

Linux. (Define the _GNU_SOURCE macro to obtain these definitions.)

HISTORY
F_GETOWN
F_SETOWN

POSIX.1-2001. (To get their definitions, define either _XOPEN_SOURCE
with the value 500 or greater, or _POSIX_C_SOURCE with the value 200809L
or greater.)

F_GETOWN_EX
F_GETOWN_EX

POSIX.1-2024. Linux 2.6.32.

F_GETSIG
F_GETSIG

Linux.

BUGS
F_GETOWN

A limitation of the Linux system call conventions on some architectures (notably i386)
means that if a (negative) process group ID to be returned by F_GETOWN falls in the

Linux man-pages 6.16 2025-10-29 1200

F_GETSIG(2const) F_GETSIG(2const)

range -1 to -4095, then the return value is wrongly interpreted by glibc as an error in
the system call; that is, the return value of fcntl() will be -1, and errno will contain the
(positive) process group ID. The Linux-specific F_GETOWN_EX operation avoids
this problem. Since glibc 2.11, glibc makes the kernel F_GETOWN problem invisible
by implementing F_GETOWN using F_GETOWN_EX.

F_SETOWN
In Linux 2.4 and earlier, there is bug that can occur when an unprivileged process uses
F_SETOWN to specify the owner of a socket file descriptor as a process (group) other
than the caller. In this case, fcntl() can return -1 with errno set to EPERM, even when
the owner process (group) is one that the caller has permission to send signals to. De-
spite this error return, the file descriptor owner is set, and signals will be sent to the
owner.

SEE ALSO
fcntl(2)

Linux man-pages 6.16 2025-10-29 1201

F_NOTIFY (2const) F_NOTIFY (2const)

NAME
F_NOTIFY - file and directory change notification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE
#include <fcntl.h>

int fcntl(int fd , F_NOTIFY, int arg);

DESCRIPTION
Provide notification when the directory referred to by fd or any of the files that it con-
tains is changed. The events to be notified are specified in arg, which is a bit mask
specified by ORing together zero or more of the following bits:

DN_ACCESS
A file was accessed (read(2), pread(2), readv(2), and similar)

DN_MODIFY
A file was modified (write(2), pwrite(2), writev(2), truncate(2), ftruncate(2), and
similar).

DN_CREATE
A file was created (open(2), creat(2), mknod(2), mkdir(2), link(2), symlink(2), re-
name(2) into this directory).

DN_DELETE
A file was unlinked (unlink(2), rename(2) to another directory, rmdir(2)).

DN_RENAME
A file was renamed within this directory (rename(2)).

DN_ATTRIB
The attributes of a file were changed (chown(2), chmod(2), utime(2), utimen-
sat(2), and similar).

(In order to obtain these definitions, the _GNU_SOURCE feature test macro must be
defined before including any header files.)

Directory notifications are normally "one-shot", and the application must reregister to
receive further notifications. Alternatively, if DN_MULTISHOT is included in arg,
then notification will remain in effect until explicitly removed.

A series of F_NOTIFY requests is cumulative, with the events in arg being added to the
set already monitored. To disable notification of all events, make an F_NOTIFY call
specifying arg as 0.

Notification occurs via delivery of a signal. The default signal is SIGIO, but this can be
changed using the F_SETSIG operation to fcntl(). (Note that SIGIO is one of the non-
queuing standard signals; switching to the use of a real-time signal means that multiple
notifications can be queued to the process.) In the latter case, the signal handler receives
a siginfo_t structure as its second argument (if the handler was established using
SA_SIGINFO) and the si_fd field of this structure contains the file descriptor which

Linux man-pages 6.16 2025-07-20 1202

F_NOTIFY (2const) F_NOTIFY (2const)

generated the notification (useful when establishing notification on multiple directories).

Especially when using DN_MULTISHOT, a real time signal should be used for notifi-
cation, so that multiple notifications can be queued.

NOTE: New applications should use the inotify interface (available since Linux 2.6.13),
which provides a much superior interface for obtaining notifications of filesystem
events. See inotify(7).

RETURN VALUE
Zero.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
See fcntl(2).

ENOTDIR
fd does not refer to a directory.

STANDARDS
Linux.

HISTORY
Linux 2.4.

SEE ALSO
fcntl(2)

Linux man-pages 6.16 2025-07-20 1203

FAT_IOCTL_GET_VOLUME_ID(2const) FAT_IOCTL_GET_VOLUME_ID(2const)

NAME
FAT_IOCTL_GET_VOLUME_ID - read the volume ID in a FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/msdos_fs.h> /* Definition of FAT_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FAT_IOCTL_GET_VOLUME_ID, uint32_t *id);

DESCRIPTION
FAT filesystems are identified by a volume ID. The volume ID can be read with
FAT_IOCTL_GET_VOLUME_ID.

The fd argument can be a file descriptor for any file or directory of the filesystem. It is
sufficient to create the file descriptor by calling open(2) with the O_RDONLY flag.

The id argument is a pointer to the field that will be filled with the volume ID. Typically
the volume ID is displayed to the user as a group of two 16-bit fields:

printf("Volume ID %04x-%04x\n", id >> 16, id & 0xFFFF);

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 3.11.

EXAMPLES
The following program demonstrates the use of ioctl(2) to display the volume ID of a
FAT filesystem.

The following output was recorded when applying the program for directory /mnt/user:

$./display_fat_volume_id /mnt/user
Volume ID 6443-6241

Program source (display_fat_volume_id.c)

#include <fcntl.h>
#include <linux/msdos_fs.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

Linux man-pages 6.16 2025-05-17 1204

FAT_IOCTL_GET_VOLUME_ID(2const) FAT_IOCTL_GET_VOLUME_ID(2const)

int fd;
int ret;
uint32_t id;

if (argc != 2) {
printf("Usage: %s FILENAME\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/*
* Read volume ID.
*/

ret = ioctl(fd, FAT_IOCTL_GET_VOLUME_ID, &id);
if (ret == -1) {

perror("ioctl");
exit(EXIT_FAILURE);

}

/*
* Format the output as two groups of 16 bits each.
*/

printf("Volume ID %04x-%04x\n", id >> 16, id & 0xFFFF);

close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_fat(2)

Linux man-pages 6.16 2025-05-17 1205

FAT_IOCTL_SET_ATTRIBUTES(2const) FAT_IOCTL_SET_ATTRIBUTES(2const)

NAME
FAT_IOCTL_GET_ATTRIBUTES, FAT_IOCTL_SET_ATTRIBUTES - get and set file
attributes in a FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/msdos_fs.h> /* Definition of FAT_* and

ATTR_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FAT_IOCTL_GET_ATTRIBUTES, uint32_t *attr);
int ioctl(int fd , FAT_IOCTL_SET_ATTRIBUTES, uint32_t *attr);

DESCRIPTION
Files and directories in the FAT filesystem possess an attribute bit mask that can be read
with FAT_IOCTL_GET_ATTRIBUTES and written with FAT_IOCTL_SET_AT-
TRIBUTES.

The fd argument contains a file descriptor for a file or directory. It is sufficient to create
the file descriptor by calling open(2) with the O_RDONLY flag.

The attr argument contains a pointer to a bit mask. The bits of the bit mask are:

ATTR_RO
This bit specifies that the file or directory is read-only.

ATTR_HIDDEN
This bit specifies that the file or directory is hidden.

ATTR_SYS
This bit specifies that the file is a system file.

ATTR_VOLUME
This bit specifies that the file is a volume label. This attribute is read-only.

ATTR_DIR
This bit specifies that this is a directory. This attribute is read-only.

ATTR_ARCH
This bit indicates that this file or directory should be archived. It is set when a
file is created or modified. It is reset by an archiving system.

The zero value ATTR_NONE can be used to indicate that no attribute bit is set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.12.

Linux man-pages 6.16 2025-05-17 1206

FAT_IOCTL_SET_ATTRIBUTES(2const) FAT_IOCTL_SET_ATTRIBUTES(2const)

EXAMPLES
The following program demonstrates the usage of ioctl(2) to manipulate file attributes.
The program reads and displays the archive attribute of a file. After inverting the value
of the attribute, the program reads and displays the attribute again.

The following was recorded when applying the program for the file /mnt/user/foo:

./toggle_fat_archive_flag /mnt/user/foo
Archive flag is set
Toggling archive flag
Archive flag is not set

Program source (toggle_fat_archive_flag.c)

#include <fcntl.h>
#include <linux/msdos_fs.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

/*
* Read file attributes of a file on a FAT filesystem.
* Output the state of the archive flag.
*/

static uint32_t
readattr(int fd)
{

int ret;
uint32_t attr;

ret = ioctl(fd, FAT_IOCTL_GET_ATTRIBUTES, &attr);
if (ret == -1) {

perror("ioctl");
exit(EXIT_FAILURE);

}

if (attr & ATTR_ARCH)
printf("Archive flag is set\n");

else
printf("Archive flag is not set\n");

return attr;
}

int
main(int argc, char *argv[])
{

Linux man-pages 6.16 2025-05-17 1207

FAT_IOCTL_SET_ATTRIBUTES(2const) FAT_IOCTL_SET_ATTRIBUTES(2const)

int fd;
int ret;
uint32_t attr;

if (argc != 2) {
printf("Usage: %s FILENAME\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDONLY);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/*
* Read and display the FAT file attributes.
*/

attr = readattr(fd);

/*
* Invert archive attribute.
*/

printf("Toggling archive flag\n");
attr ^= ATTR_ARCH;

/*
* Write the changed FAT file attributes.
*/

ret = ioctl(fd, FAT_IOCTL_SET_ATTRIBUTES, &attr);
if (ret == -1) {

perror("ioctl");
exit(EXIT_FAILURE);

}

/*
* Read and display the FAT file attributes.
*/

readattr(fd);

close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_fat(2)

Linux man-pages 6.16 2025-05-17 1208

FICLONE(2const) FICLONE(2const)

NAME
FICLONE, FICLONERANGE - share some the data of one file with another file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of FICLONE* constants */
#include <sys/ioctl.h>

int ioctl(int dest_fd , FICLONERANGE, struct file_clone_range *arg);
int ioctl(int dest_fd , FICLONE, int src_fd);

DESCRIPTION
If a filesystem supports files sharing physical storage between multiple files ("reflink"),
this ioctl(2) operation can be used to make some of the data in the src_fd file appear in
the dest_fd file by sharing the underlying storage, which is faster than making a separate
physical copy of the data. Both files must reside within the same filesystem. If a file
write should occur to a shared region, the filesystem must ensure that the changes re-
main private to the file being written. This behavior is commonly referred to as "copy
on write".

This ioctl reflinks up to src_length bytes from file descriptor src_fd at offset src_offset
into the file dest_fd at offset dest_offset, provided that both are files. If src_length is
zero, the ioctl reflinks to the end of the source file. This information is conveyed in a
structure of the following form:

struct file_clone_range {
__s64 src_fd;
__u64 src_offset;
__u64 src_length;
__u64 dest_offset;

};

Clones are atomic with regards to concurrent writes, so no locks need to be taken to ob-
tain a consistent cloned copy.

The FICLONE ioctl clones entire files.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
Error codes can be one of, but are not limited to, the following:

EBADF
src_fd is not open for reading; dest_fd is not open for writing or is open for ap-
pend-only writes; or the filesystem which src_fd resides on does not support re-
flink.

EINVAL
The filesystem does not support reflinking the ranges of the given files. This er-
ror can also appear if either file descriptor represents a device, FIFO, or socket.
Disk filesystems generally require the offset and length arguments to be aligned

Linux man-pages 6.16 2025-05-17 1209

FICLONE(2const) FICLONE(2const)

to the fundamental block size. XFS and Btrfs do not support overlapping reflink
ranges in the same file.

EISDIR
One of the files is a directory and the filesystem does not support shared regions
in directories.

EOPNOTSUPP
This can appear if the filesystem does not support reflinking either file descriptor,
or if either file descriptor refers to special inodes.

EPERM
dest_fd is immutable.

ETXTBSY
One of the files is a swap file. Swap files cannot share storage.

EXDEV
dest_fd and src_fd are not on the same mounted filesystem.

STANDARDS
Linux.

HISTORY
Linux 4.5.

They were previously known as BTRFS_IOC_CLONE and
BTRFS_IOC_CLONE_RANGE, and were private to Btrfs.

CAVEATS
Because a copy-on-write operation requires the allocation of new storage, the fallo-
cate(2) operation may unshare shared blocks to guarantee that subsequent writes will
not fail because of lack of disk space.

SEE ALSO
ioctl(2)

Linux man-pages 6.16 2025-05-17 1210

FIDEDUPERANGE(2const) FIDEDUPERANGE(2const)

NAME
FIDEDUPERANGE - share some the data of one file with another file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of FIDEDUPERANGE and

FILE_DEDUPE_* constants*/
#include <sys/ioctl.h>

int ioctl(int src_fd , FIDEDUPERANGE, struct file_dedupe_range *arg);

DESCRIPTION
If a filesystem supports files sharing physical storage between multiple files, this ioctl(2)
operation can be used to make some of the data in the src_fd file appear in the dest_fd
file by sharing the underlying storage if the file data is identical ("deduplication"). Both
files must reside within the same filesystem. This reduces storage consumption by al-
lowing the filesystem to store one shared copy of the data. If a file write should occur to
a shared region, the filesystem must ensure that the changes remain private to the file be-
ing written. This behavior is commonly referred to as "copy on write".

This ioctl performs the "compare and share if identical" operation on up to src_length
bytes from file descriptor src_fd at offset src_offset. This information is conveyed in a
structure of the following form:

struct file_dedupe_range {
__u64 src_offset;
__u64 src_length;
__u16 dest_count;
__u16 reserved1;
__u32 reserved2;
struct file_dedupe_range_info info[0];

};

Deduplication is atomic with regards to concurrent writes, so no locks need to be taken
to obtain a consistent deduplicated copy.

The fields reserved1 and reserved2 must be zero.

Destinations for the deduplication operation are conveyed in the array at the end of the
structure. The number of destinations is given in dest_count, and the destination infor-
mation is conveyed in the following form:

struct file_dedupe_range_info {
__s64 dest_fd;
__u64 dest_offset;
__u64 bytes_deduped;
__s32 status;
__u32 reserved;

};

Each deduplication operation targets src_length bytes in file descriptor dest_fd at offset
dest_offset. The field reserved must be zero. During the call, src_fd must be open for

Linux man-pages 6.16 2025-09-21 1211

FIDEDUPERANGE(2const) FIDEDUPERANGE(2const)

reading and dest_fd must be open for writing. The combined size of the struct
file_dedupe_range and the struct file_dedupe_range_info array must not exceed the
system page size. The maximum size of src_length is filesystem dependent and is typi-
cally 16 MiB. This limit will be enforced silently by the filesystem. By convention, the
storage used by src_fd is mapped into dest_fd and the previous contents in dest_fd are
freed.

Upon successful completion of this ioctl, the number of bytes successfully deduplicated
is returned in bytes_deduped and a status code for the deduplication operation is re-
turned in status. If even a single byte in the range does not match, the deduplication op-
eration request will be ignored and status set to FILE_DEDUPE_RANGE_DIFFERS.
The status code is set to FILE_DEDUPE_RANGE_SAME for success, a negative er-
ror code in case of error, or FILE_DEDUPE_RANGE_DIFFERS if the data did not
match.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
Possible errors include (but are not limited to) the following:

EBADF
src_fd is not open for reading; dest_fd is not open for writing or is open for ap-
pend-only writes; or the filesystem which src_fd resides on does not support
deduplication.

EINVAL
The filesystem does not support deduplicating the ranges of the given files. This
error can also appear if either file descriptor represents a device, FIFO, or socket.
Disk filesystems generally require the offset and length arguments to be aligned
to the fundamental block size. Neither Btrfs nor XFS support overlapping dedu-
plication ranges in the same file.

EISDIR
One of the files is a directory and the filesystem does not support shared regions
in directories.

ENOMEM
The kernel was unable to allocate sufficient memory to perform the operation or
dest_count is so large that the input argument description spans more than a sin-
gle page of memory.

EOPNOTSUPP
This can appear if the filesystem does not support deduplicating either file de-
scriptor, or if either file descriptor refers to special inodes.

EPERM
dest_fd is immutable.

ETXTBSY
One of the files is a swap file. Swap files cannot share storage.

Linux man-pages 6.16 2025-09-21 1212

FIDEDUPERANGE(2const) FIDEDUPERANGE(2const)

EXDEV
dest_fd and src_fd are not on the same mounted filesystem.

VERSIONS
Some filesystems may limit the amount of data that can be deduplicated in a single call.

STANDARDS
Linux.

HISTORY
Linux 4.5.

It was previously known as BTRFS_IOC_FILE_EXTENT_SAME and was private to
Btrfs.

NOTES
Because a copy-on-write operation requires the allocation of new storage, the fallo-
cate(2) operation may unshare shared blocks to guarantee that subsequent writes will
not fail because of lack of disk space.

SEE ALSO
ioctl(2)

Linux man-pages 6.16 2025-09-21 1213

FIONREAD(2const) FIONREAD(2const)

NAME
FIONREAD, TIOCINQ, TIOCOUTQ, TCFLSH, TIOCSERGETLSR - buffer count
and flushing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of constants */
#include <sys/ioctl.h>

int ioctl(int fd , FIONREAD, int *argp);
int ioctl(int fd , TIOCINQ, int *argp);
int ioctl(int fd , TIOCOUTQ, int *argp);
int ioctl(int fd , TCFLSH, int arg);
int ioctl(int fd , TIOCSERGETLSR, int *argp);

DESCRIPTION
FIONREAD

Get the number of bytes in the input buffer.

TIOCINQ
Same as FIONREAD.

TIOCOUTQ
Get the number of bytes in the output buffer.

TCFLSH
Equivalent to tcflush(fd, arg).

See tcflush(3) for the argument values TCIFLUSH, TCOFLUSH,
TCIOFLUSH.

TIOCSERGETLSR
Get line status register. Status register has TIOCSER_TEMT bit set when out-
put buffer is empty and also hardware transmitter is physically empty.

Does not have to be supported by all serial tty drivers.

tcdrain(3) does not wait and returns immediately when TIOCSER_TEMT bit is
set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

SEE ALSO
ioctl(2), ioctl_tty(2), tcflush(3), termios(3)

Linux man-pages 6.16 2025-05-17 1214

FS_IOC_SETFLAGS(2const) FS_IOC_SETFLAGS(2const)

NAME
FS_IOC_GETFLAGS, FS_IOC_SETFLAGS - ioctl() operations for inode flags

SYNOPSIS
#include <linux/fs.h> /* Definition of FS_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FS_IOC_GETFLAGS, int *attr);
int ioctl(int fd , FS_IOC_SETFLAGS, const int *attr);

DESCRIPTION
Various Linux filesystems support the notion of inode flags—attributes that modify the
semantics of files and directories. These flags can be retrieved and modified using two
ioctl(2) operations:

int attr;
fd = open("pathname", ...);

ioctl(fd, FS_IOC_GETFLAGS, &attr); /* Place current flags
in 'attr' */

attr |= FS_NOATIME_FL; /* Tweak returned bit mask */
ioctl(fd, FS_IOC_SETFLAGS, &attr); /* Update flags for inode

referred to by 'fd' */

The lsattr(1) and chattr(1) shell commands provide interfaces to these two operations,
allowing a user to view and modify the inode flags associated with a file.

The following flags are supported (shown along with the corresponding letter used to in-
dicate the flag by lsattr(1) and chattr(1)):

FS_APPEND_FL 'a'
The file can be opened only with the O_APPEND flag. If applied to a directory,
forbids removing files from the directory (via unlink(), rename(), and the like).
(This restriction applies even to the superuser.) Only a privileged process
(CAP_LINUX_IMMUTABLE) can set or clear this attribute.

FS_COMPR_FL 'c'
Store the file in a compressed format on disk. This flag is not supported by most
of the mainstream filesystem implementations; one exception is btrfs(5)

FS_DIRSYNC_FL 'D' (since Linux 2.6.0)
Write directory changes synchronously to disk. This flag provides semantics
equivalent to the mount(2) MS_DIRSYNC option, but on a per-directory basis.
This flag can be applied only to directories.

FS_IMMUTABLE_FL 'i'
The file is immutable: no changes are permitted to the file contents or metadata
(permissions, timestamps, ownership, link count, and so on). (This restriction
applies even to the superuser.) Only a privileged process (CAP_LINUX_IM-
MUTABLE) can set or clear this attribute.

FS_JOURNAL_DATA_FL 'j'
Enable journaling of file data on ext3(5) and ext4(5) filesystems. On a filesystem
that is journaling in ordered or writeback mode, a privileged

Linux man-pages 6.16 2025-05-17 1215

FS_IOC_SETFLAGS(2const) FS_IOC_SETFLAGS(2const)

(CAP_SYS_RESOURCE) process can set this flag to enable journaling of data
updates on a per-file basis.

FS_NOATIME_FL 'A'
Don’t update the file last access time when the file is accessed. This can provide
I/O performance benefits for applications that do not care about the accuracy of
this timestamp. This flag provides functionality similar to the mount(2)
MS_NOATIME flag, but on a per-file basis.

FS_NOCOW_FL 'C' (since Linux 2.6.39)
The file will not be subject to copy-on-write updates. This flag has an effect only
on filesystems that support copy-on-write semantics, such as Btrfs. See chattr(1)
and btrfs(5)

FS_NODUMP_FL 'd'
Don’t include this file in backups made using dump(8)

FS_NOTAIL_FL 't'
This flag is supported only on Reiserfs. It disables the Reiserfs tail-packing fea-
ture, which tries to pack small files (and the final fragment of larger files) into
the same disk block as the file metadata.

FS_PROJINHERIT_FL 'P' (since Linux 4.5)
Inherit the quota project ID. Files and subdirectories will inherit the project ID
of the directory. This flag can be applied only to directories.

FS_SECRM_FL 's'
Mark the file for secure deletion. This feature is not implemented by any filesys-
tem, since the task of securely erasing a file from a recording medium is surpris-
ingly difficult.

FS_SYNC_FL 'S'
Make file updates synchronous. For files, this makes all writes synchronous (as
though all opens of the file were with the O_SYNC flag). For directories, this
has the same effect as the FS_DIRSYNC_FL flag.

FS_TOPDIR_FL 'T'
Mark a directory for special treatment under the Orlov block-allocation strategy.
See chattr(1) for details. This flag can be applied only to directories and has an
effect only for ext2, ext3, and ext4.

FS_UNRM_FL 'u'
Allow the file to be undeleted if it is deleted. This feature is not implemented by
any filesystem, since it is possible to implement file-recovery mechanisms out-
side the kernel.

In most cases, when any of the above flags is set on a directory, the flag is inherited by
files and subdirectories created inside that directory. Exceptions include
FS_TOPDIR_FL, which is not inheritable, and FS_DIRSYNC_FL, which is inherited
only by subdirectories.

STANDARDS
Linux.

Linux man-pages 6.16 2025-05-17 1216

FS_IOC_SETFLAGS(2const) FS_IOC_SETFLAGS(2const)

NOTES
In order to change the inode flags of a file using the FS_IOC_SETFLAGS operation,
the effective user ID of the caller must match the owner of the file, or the caller must
have the CAP_FOWNER capability.

SEE ALSO
ioctl(2), chattr(1), lsattr(1), mount(2), btrfs(5), ext4(5), xfs(5), xattr(7), mount(8)

Linux man-pages 6.16 2025-05-17 1217

FS_IOC_SETFSLABEL(2const) FS_IOC_SETFSLABEL(2const)

NAME
FS_IOC_GETFSLABEL, FS_IOC_SETFSLABEL - get or set a filesystem label

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of *FSLABEL* constants */
#include <sys/ioctl.h>

int ioctl(int fd , FS_IOC_GETFSLABEL, char label[FSLABEL_MAX]);
int ioctl(int fd , FS_IOC_SETFSLABEL, char label[FSLABEL_MAX]);

DESCRIPTION
If a filesystem supports online label manipulation, these ioctl(2) operations can be used
to get or set the filesystem label for the filesystem on which fd resides. The
FS_IOC_SETFSLABEL operation requires privilege (CAP_SYS_ADMIN).

RETURN VALUE
On success zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Possible errors include (but are not limited to) the following:

EFAULT
label references an inaccessible memory area.

EINVAL
The specified label exceeds the maximum label length for the filesystem.

ENOTTY
This can appear if the filesystem does not support online label manipulation.

EPERM
The calling process does not have sufficient permissions to set the label.

STANDARDS
Linux.

HISTORY
Linux 4.18.

They were previously known as BTRFS_IOC_GET_FSLABEL and
BTRFS_IOC_SET_FSLABEL and were private to Btrfs.

NOTES
The maximum string length for this interface is FSLABEL_MAX, including the termi-
nating null byte ('\0'). Filesystems have differing maximum label lengths, which may or
may not include the terminating null. The string provided to FS_IOC_SETFSLABEL
must always be null-terminated, and the string returned by FS_IOC_GETFSLABEL
will always be null-terminated.

SEE ALSO
ioctl(2), blkid(8)

Linux man-pages 6.16 2025-05-17 1218

FUTEX_CMP_REQUEUE(2const) FUTEX_CMP_REQUEUE(2const)

NAME
FUTEX_CMP_REQUEUE - compare a futex, wake some waiters, and requeue others

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_CMP_REQUEUE,
uint32_t val, uint32_t val2, uint32_t *uaddr2,
uint32_t val3);

DESCRIPTION
This operation first checks whether the location uaddr still contains the value val3. If
not, the operation fails with the error EAGAIN. Otherwise, the operation wakes up a
maximum of val waiters that are waiting on the futex at uaddr. If there are more than
val waiters, then the remaining waiters are removed from the wait queue of the source
futex at uaddr and added to the wait queue of the target futex at uaddr2. The val2 argu-
ment specifies an upper limit on the number of waiters that are requeued to the futex at
uaddr2.

The load from uaddr is an atomic memory access (i.e., using atomic machine instruc-
tions of the respective architecture). This load, the comparison with val3, and the re-
queueing of any waiters are performed atomically and totally ordered with respect to
other operations on the same futex word.

Typical values to specify for val are 0 or 1. (Specifying val as INT_MAX is not useful,
because it would make the FUTEX_CMP_REQUEUE operation equivalent to FU-
TEX_WAKE(2const).) The limit value specified via val2 is typically either 1 or
INT_MAX. (Specifying val2 as 0 is not useful, because it would make the FU-
TEX_CMP_REQUEUE operation equivalent to FUTEX_WAKE(2const).)

The FUTEX_CMP_REQUEUE operation was added as a replacement for the earlier
FUTEX_REQUEUE(2const). The difference is that the check of the value at uaddr can
be used to ensure that requeueing happens only under certain conditions, which allows
race conditions to be avoided in certain use cases.

Both FUTEX_REQUEUE(2const) and FUTEX_CMP_REQUEUE can be used to
avoid "thundering herd" wake-ups that could occur when using FUTEX_WAKE(2const)
in cases where all of the waiters that are woken need to acquire another futex. Consider
the following scenario, where multiple waiter threads are waiting on B, a wait queue im-
plemented using a futex:

lock(A)
while (!check_value(V)) {

unlock(A);
block_on(B);
lock(A);

};

Linux man-pages 6.16 2025-09-21 1219

FUTEX_CMP_REQUEUE(2const) FUTEX_CMP_REQUEUE(2const)

unlock(A);

If a waker thread used FUTEX_WAKE(2const), then all waiters waiting on B would be
woken up, and they would all try to acquire lock A. However, waking all of the threads
in this manner would be pointless because all except one of the threads would immedi-
ately block on lock A again. By contrast, a requeue operation wakes just one waiter and
moves the other waiters to lock A, and when the woken waiter unlocks A then the next
waiter can proceed.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_CMP_REQUEUE returns the total number of waiters that were
woken up or requeued to the futex for the futex word at uaddr2. If this value is greater
than val, then the difference is the number of waiters requeued to the futex for the futex
word at uaddr2.

ERRORS
See futex(2).

EAGAIN
The value pointed to by uaddr is not equal to the expected value val3.

EFAULT
uaddr2 did not point to a valid user-space address.

EINVAL
uaddr2 does not point to a valid object—that is, the address is not four-byte-
aligned.

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state—that is, it detected a waiter which waits in FU-
TEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) on uaddr.

STANDARDS
Linux.

HISTORY
Linux 2.6.7.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-09-21 1220

FUTEX_CMP_REQUEUE_PI (2const) FUTEX_CMP_REQUEUE_PI (2const)

NAME
FUTEX_CMP_REQUEUE_PI - compare a priority-inheritance futex, wake a waiter,
and requeue others

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_CMP_REQUEUE_PI, 1,
uint32_t val2, uint32_t *uaddr2,
uint32_t val3);

DESCRIPTION
This operation is a PI-aware variant of FUTEX_CMP_REQUEUE(2const). It requeues
waiters that are blocked via FUTEX_WAIT_REQUEUE_PI(2const) on uaddr from a
non-PI source futex (uaddr) to a PI target futex (uaddr2).

Unlike with FUTEX_CMP_REQUEUE(2const), this operation wakes up a maximum of
1 waiter that is waiting on the futex at uaddr (since the main point is to avoid a thunder-
ing herd). The remaining waiters are removed from the wait queue of the source futex at
uaddr and added to the wait queue of the target futex at uaddr2.

The val2 and val3 arguments serve the same purposes as for FUTEX_CMP_RE-
QUEUE(2const).

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_CMP_REQUEUE_PI Returns the total number of waiters that
were woken up or requeued to the futex for the futex word at uaddr2. If this value is
greater than 1, then difference is the number of waiters requeued to the futex for the fu-
tex word at uaddr2.

ERRORS
See futex(2).

EAGAIN
The value pointed to by uaddr is not equal to the expected value val3.

EAGAIN
The futex owner thread ID of uaddr2 is about to exit, but has not yet handled the
internal state cleanup. Try again.

EDEADLK
The futex word at uaddr is already locked by the caller.

EDEADLK
While requeueing a waiter to the PI futex for the futex word at uaddr2, the ker-
nel detected a deadlock.

Linux man-pages 6.16 2025-09-21 1221

FUTEX_CMP_REQUEUE_PI (2const) FUTEX_CMP_REQUEUE_PI (2const)

EFAULT
uaddr2 did not point to a valid user-space address.

EINVAL
uaddr2 does not point to a valid object—that is, the address is not four-byte-
aligned.

EINVAL
uaddr equals uaddr2 (i.e., an attempt was made to requeue to the same futex).

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr2 and
the kernel state; that is, the kernel detected a waiter which waits via FU-
TEX_WAIT(2const) or FUTEX_WAIT_BITSET(2const) on uaddr2.

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state; that is, the kernel detected a waiter which waits via FU-
TEX_WAIT(2const) or FUTEX_WAIT_BITSET(2const) on uaddr.

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state; that is, the kernel detected a waiter which waits on uaddr via
FUTEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) (instead of FU-
TEX_WAIT_REQUEUE_PI).

EINVAL
An attempt was made to requeue a waiter to a futex other than that specified by
the matching FUTEX_WAIT_REQUEUE_PI call for that waiter.

EINVAL
The fourth argument is not 1.

ENOMEM
The kernel could not allocate memory to hold state information.

ENOSYS
A run-time check determined that the operation is not available. The PI-futex
operations are not implemented on all architectures and are not supported on
some CPU variants.

EPERM
The caller is not allowed to attach itself to the futex at uaddr2. (This may be
caused by a state corruption in user space.)

ESRCH
The thread ID in the futex word at uaddr does not exist.

ESRCH
The thread ID in the futex word at uaddr2 does not exist.

STANDARDS
Linux.

Linux man-pages 6.16 2025-09-21 1222

FUTEX_CMP_REQUEUE_PI (2const) FUTEX_CMP_REQUEUE_PI (2const)

HISTORY
Linux 2.6.31.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-09-21 1223

FUTEX_FD(2const) FUTEX_FD(2const)

NAME
FUTEX_FD - create a file descriptor associated with a futex

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

[[deprecated]]
long syscall(SYS_futex, uint32_t *uaddr, FUTEX_FD, uint32_t val);

DESCRIPTION
This operation creates a file descriptor that is associated with the futex at uaddr. The
caller must close the returned file descriptor after use.

When another process or thread performs a FUTEX_WAKE(2const) on the futex word,
the file descriptor indicates as being readable with select(2), poll(2), and epoll(7)

The file descriptor can be used to obtain asynchronous notifications: if val is nonzero,
then, when another process or thread executes a FUTEX_WAKE(2const), the caller will
receive the signal number that was passed in val.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_FD Returns the new file descriptor associated with the futex.

ERRORS
See futex(2).

EINVAL
The signal number supplied in val is invalid.

ENFILE
The system-wide limit on the total number of open files has been reached.

STANDARDS
Linux.

HISTORY
From Linux 2.6.0 up to and including Linux 2.6.25.

Because it was inherently racy, FUTEX_FD has been removed from Linux 2.6.26 on-
ward.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-05-30 1224

FUTEX_LOCK_PI (2const) FUTEX_LOCK_PI (2const)

NAME
FUTEX_LOCK_PI - lock a priority-inheritance futex

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_LOCK_PI, 0,
const struct timespec *timeout);

DESCRIPTION
This operation is used after an attempt to acquire the lock via an atomic user-mode in-
struction failed because the futex word has a nonzero value—specifically, because it
contained the (PID-namespace-specific) TID of the lock owner.

The operation checks the value of the futex word at the address uaddr. If the value is 0,
then the kernel tries to atomically set the futex value to the caller’s TID. If the futex
word’s value is nonzero, the kernel atomically sets the FUTEX_WAITERS bit, which
signals the futex owner that it cannot unlock the futex in user space atomically by set-
ting the futex value to 0. After that, the kernel:

(1) Tries to find the thread which is associated with the owner TID.

(2) Creates or reuses kernel state on behalf of the owner. (If this is the first waiter,
there is no kernel state for this futex, so kernel state is created by locking the
RT-mutex and the futex owner is made the owner of the RT-mutex. If there are
existing waiters, then the existing state is reused.)

(3) Attaches the waiter to the futex (i.e., the waiter is enqueued on the RT-mutex
waiter list).

If more than one waiter exists, the enqueueing of the waiter is in descending priority or-
der. (For information on priority ordering, see the discussion of the SCHED_DEAD-
LINE, SCHED_FIFO, and SCHED_RR scheduling policies in sched(7).) The owner
inherits either the waiter’s CPU bandwidth (if the waiter is scheduled under the
SCHED_DEADLINE policy) or the waiter’s priority (if the waiter is scheduled under
the SCHED_RR or SCHED_FIFO policy). This inheritance follows the lock chain in
the case of nested locking and performs deadlock detection.

The timeout argument provides a timeout for the lock attempt. If timeout is not NULL,
the structure it points to specifies an absolute timeout. If timeout is NULL, the opera-
tion will block indefinitely.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_LOCK_PI returns 0 if the futex was successfully locked.

ERRORS
See futex(2).

Linux man-pages 6.16 2025-10-05 1225

FUTEX_LOCK_PI (2const) FUTEX_LOCK_PI (2const)

EAGAIN
The futex owner thread ID of uaddr is about to exit, but has not yet handled the
internal state cleanup. Try again.

EDEADLK
The futex word at uaddr is already locked by the caller.

EFAULT
timeout did not point to a valid user-space address.

EINVAL
The supplied timeout argument was invalid (tv_sec was less than zero, or
tv_nsec was not less than 1,000,000,000).

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state. This indicates either state corruption or that the kernel found a
waiter on uaddr which is waiting via FUTEX_WAIT(2const) or FU-
TEX_WAIT_BITSET(2const).

ENOMEM
The kernel could not allocate memory to hold state information.

ENOSYS
A run-time check determined that the operation is not available. The PI-futex
operations are not implemented on all architectures and are not supported on
some CPU variants.

EPERM
The caller is not allowed to attach itself to the futex at uaddr. (This may be
caused by a state corruption in user space.)

ESRCH
The thread ID in the futex word at uaddr does not exist.

ETIMEDOUT
The timeout expired before the operation completed.

STANDARDS
Linux.

HISTORY
Linux 2.6.18.

CAVEATS
Unlike other futex(2) operations, the timeout is measured against the CLOCK_REAL-
TIME clock.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-10-05 1226

FUTEX_LOCK_PI2(2const) FUTEX_LOCK_PI2(2const)

NAME
FUTEX_LOCK_PI2 - lock a priority-inheritance futex

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_LOCK_PI2, 0,
const struct timespec *timeout);

DESCRIPTION
This operation is the same as FUTEX_LOCK_PI(2const), except that the clock against
which timeout is measured is selectable.

By default, the (absolute) timeout specified in timeout is measured against the
CLOCK_MONOTONIC clock.

RETURN VALUE
See FUTEX_LOCK_PI(2const).

ERRORS
See FUTEX_LOCK_PI(2const).

STANDARDS
Linux.

HISTORY
Linux 5.14.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-05-30 1227

FUTEX_REQUEUE(2const) FUTEX_REQUEUE(2const)

NAME
FUTEX_REQUEUE - wake some waiters, and requeue others

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_REQUEUE,
uint32_t val, uint32_t val2, uint32_t *uaddr2);

DESCRIPTION
This operation performs the same task as FUTEX_CMP_REQUEUE(2const), except
that the futex word isn’t compared.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_REQUEUE returns the number of waiters that were woken up.

ERRORS
See futex(2).

EFAULT
uaddr2 did not point to a valid user-space address.

EINVAL
uaddr2 does not point to a valid object—that is, the address is not four-byte-
aligned.

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state—that is, it detected a waiter which waits in FU-
TEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) on uaddr.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-05-30 1228

FUTEX_TRYLOCK_PI (2const) FUTEX_TRYLOCK_PI (2const)

NAME
FUTEX_TRYLOCK_PI - try to lock a priority-inheritance futex

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_TRYLOCK_PI);

DESCRIPTION
This operation tries to acquire the lock at uaddr. It is invoked when a user-space atomic
acquire did not succeed because the futex word was not 0.

Because the kernel has access to more state information than user space, acquisition of
the lock might succeed if performed by the kernel in cases where the futex word (i.e.,
the state information accessible to use-space) contains stale state (FUTEX_WAITERS
and/or FUTEX_OWNER_DIED). This can happen when the owner of the futex died.
User space cannot handle this condition in a race-free manner, but the kernel can fix this
up and acquire the futex.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_TRYLOCK_PI Returns 0 if the futex was successfully locked.

ERRORS
See futex(2).

EAGAIN
The futex owner thread ID of uaddr is about to exit, but has not yet handled the
internal state cleanup. Try again.

EDEADLK
The futex word at uaddr is already locked by the caller.

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state. This indicates either state corruption or that the kernel found a
waiter on uaddr which is waiting via FUTEX_WAIT(2const) or FU-
TEX_WAIT_BITSET(2const).

ENOMEM
The kernel could not allocate memory to hold state information.

ENOSYS
A run-time check determined that the operation is not available. The PI-futex
operations are not implemented on all architectures and are not supported on
some CPU variants.

Linux man-pages 6.16 2025-09-21 1229

FUTEX_TRYLOCK_PI (2const) FUTEX_TRYLOCK_PI (2const)

EPERM
The caller is not allowed to attach itself to the futex at uaddr. (This may be
caused by a state corruption in user space.)

ESRCH
The thread ID in the futex word at uaddr does not exist.

STANDARDS
Linux.

HISTORY
Linux 2.6.18.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-09-21 1230

FUTEX_UNLOCK_PI (2const) FUTEX_UNLOCK_PI (2const)

NAME
FUTEX_UNLOCK_PI - unlock a priority-inheritance futex

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_UNLOCK_PI);

DESCRIPTION
This operation wakes the top priority waiter that is waiting in FU-
TEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) on the futex address provided
by the uaddr argument.

This is called when the user-space value at uaddr cannot be changed atomically from a
TID (of the owner) to 0.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_UNLOCK_PI returns 0 if the futex was successfully unlocked.

ERRORS
See futex(2).

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state. This indicates either state corruption or that the kernel found a
waiter on uaddr which is waiting via FUTEX_WAIT(2const) or FU-
TEX_WAIT_BITSET(2const).

ENOSYS
A run-time check determined that the operation is not available. The PI-futex
operations are not implemented on all architectures and are not supported on
some CPU variants.

EPERM
The caller does not own the lock represented by the futex word.

STANDARDS
Linux.

HISTORY
Linux 2.6.18.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-05-30 1231

FUTEX_WAIT (2const) FUTEX_WAIT (2const)

NAME
FUTEX_WAIT - sleep waiting for a FUTEX_WAKE operation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_WAIT, uint32_t val,
const struct timespec *_Nullable timeout);

DESCRIPTION
This operation tests that the value at the futex word pointed to by the address uaddr still
contains the expected value val, and if so, then sleeps waiting for a FU-
TEX_WAKE(2const) operation on the futex word.

The load of the value of the futex word is an atomic memory access (i.e., using atomic
machine instructions of the respective architecture). This load, the comparison with the
expected value, and starting to sleep are performed atomically and totally ordered with
respect to other futex operations on the same futex word.

If the thread starts to sleep, it is considered a waiter on this futex word. If the futex
value does not match val, then the call fails immediately with the error EAGAIN.

The purpose of the comparison with the expected value is to prevent lost wake-ups. If
another thread changed the value of the futex word after the calling thread decided to
block based on the prior value, and if the other thread executed a FU-
TEX_WAKE(2const) operation (or similar wake-up) after the value change and before
this FUTEX_WAIT operation, then the calling thread will observe the value change and
will not start to sleep.

If the timeout is not NULL, the structure it points to specifies a timeout for the wait.
(This interval will be rounded up to the system clock granularity, and is guaranteed not
to expire early.) If timeout is NULL, the call blocks indefinitely.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_WAIT returns 0 if the caller was woken up. Note that a wake-up
can also be caused by common futex usage patterns in unrelated code that happened to
have previously used the futex word’s memory location (e.g., typical futex-based imple-
mentations of Pthreads mutexes can cause this under some conditions). Therefore,
callers should always conservatively assume that a return value of 0 can mean a spurious
wake-up, and use the futex word’s value (i.e., the user-space synchronization scheme) to
decide whether to continue to block or not.

ERRORS
See futex(2).

Linux man-pages 6.16 2025-09-21 1232

FUTEX_WAIT (2const) FUTEX_WAIT (2const)

EAGAIN
The value pointed to by uaddr was not equal to the expected value val at the
time of the call.

Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both of
which appear in different parts of the kernel futex code) have the same value.

EFAULT
timeout did not point to a valid user-space address.

EINTR
The operation was interrupted by a signal (see signal(7)). Before Linux 2.6.22,
this error could also be returned for a spurious wakeup; since Linux 2.6.22, this
no longer happens.

EINVAL
The supplied timeout argument was invalid (tv_sec was less than zero, or
tv_nsec was not less than 1,000,000,000).

ETIMEDOUT
The timeout expired before the operation completed.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

CAVEATS
timeout is interpreted as a relative value. This differs from other futex operations,
where timeout is interpreted as an absolute value. To obtain the equivalent of FU-
TEX_WAIT with an absolute timeout, employ FUTEX_WAIT_BITSET(2const) with
val3 specified as FUTEX_BITSET_MATCH_ANY.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-09-21 1233

FUTEX_WAIT_BITSET (2const) FUTEX_WAIT_BITSET (2const)

NAME
FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET - selective futex waiting and wak-
ing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_WAIT_BITSET, uint32_t val,
const struct timespec *timeout, NULL,
uint32_t val3);

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_WAKE_BITSET, uint32_t val,
NULL, NULL,
uint32_t val3);

DESCRIPTION
FUTEX_WAIT_BITSET

This operation is like FUTEX_WAIT(2const) except that val3 is used to provide a
32-bit bit mask to the kernel. This bit mask, in which at least one bit must be set,
is stored in the kernel-internal state of the waiter. See the description of FU-
TEX_WAKE_BITSET for further details.

If timeout is not NULL, the structure it points to specifies an absolute timeout
for the wait operation. If timeout is NULL, the operation can block indefinitely.

FUTEX_WAKE_BITSET
This operation is the same as FUTEX_WAKE(2const) except that the val3 argu-
ment is used to provide a 32-bit bit mask to the kernel. This bit mask, in which
at least one bit must be set, is used to select which waiters should be woken up.
The selection is done by a bitwise AND of the "wake" bit mask (i.e., the value in
val3) and the bit mask which is stored in the kernel-internal state of the waiter
(the "wait" bit mask that is set using FUTEX_WAIT_BITSET). All of the
waiters for which the result of the AND is nonzero are woken up; the remaining
waiters are left sleeping.

The effect of FUTEX_WAIT_BITSET and FUTEX_WAKE_BITSET is to al-
low selective wake-ups among multiple waiters that are blocked on the same fu-
tex. However, note that, depending on the use case, employing this bit-mask
multiplexing feature on a futex can be less efficient than simply using multiple
futexes, because employing bit-mask multiplexing requires the kernel to check
all waiters on a futex, including those that are not interested in being woken up
(i.e., they do not have the relevant bit set in their "wait" bit mask).

The constant FUTEX_BITSET_MATCH_ANY, which corresponds to all 32
bits set in the bit mask, can be used as the val3 argument for FU-
TEX_WAIT_BITSET and FUTEX_WAKE_BITSET. Other than differences
in the handling of the timeout argument, the FUTEX_WAIT(2const) operation is

Linux man-pages 6.16 2025-09-21 1234

FUTEX_WAIT_BITSET (2const) FUTEX_WAIT_BITSET (2const)

equivalent to FUTEX_WAIT_BITSET with val3 specified as FUTEX_BIT-
SET_MATCH_ANY; that is, allow a wake-up by any waker. The FU-
TEX_WAKE(2const) operation is equivalent to FUTEX_WAKE_BITSET with
val3 specified as FUTEX_BITSET_MATCH_ANY; that is, wake up any
waiter(s).

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

The return value on success depends on the operation, as described in the following list:

FUTEX_WAIT_BITSET
Returns 0 if the caller was woken up. See FUTEX_WAIT(2const) for how to in-
terpret this correctly in practice.

FUTEX_WAKE_BITSET
Returns the number of waiters that were woken up.

ERRORS
See futex(2).

EAGAIN
(FUTEX_WAIT_BITSET) The value pointed to by uaddr was not equal to the
expected value val at the time of the call.

Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both of
which appear in different parts of the kernel futex code) have the same value.

EFAULT
timeout did not point to a valid user-space address.

EINTR
A FUTEX_WAIT_BITSET operation was interrupted by a signal (see
signal(7)). Before Linux 2.6.22, this error could also be returned for a spurious
wakeup; since Linux 2.6.22, this no longer happens.

EINVAL
The supplied timeout argument was invalid (tv_sec was less than zero, or
tv_nsec was not less than 1,000,000,000).

EINVAL
uaddr2 does not point to a valid object—that is, the address is not four-byte-
aligned.

EINVAL
The bit mask supplied in val3 is zero.

EINVAL
(FUTEX_WAKE_BITSET) The kernel detected an inconsistency between the
user-space state at uaddr and the kernel state—that is, it detected a waiter which
waits in FUTEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) on uaddr.

ETIMEDOUT
The timeout expired before the operation completed.

Linux man-pages 6.16 2025-09-21 1235

FUTEX_WAIT_BITSET (2const) FUTEX_WAIT_BITSET (2const)

STANDARDS
Linux.

HISTORY
Linux 2.6.25.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-09-21 1236

FUTEX_WAIT_REQUEUE_PI (2const) FUTEX_WAIT_REQUEUE_PI (2const)

NAME
FUTEX_WAIT_REQUEUE_PI - wait on a non-PI futex, and potentially be requeued
onto a PI futex

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_WAIT_REQUEUE_PI,
uint32_t val,
const struct timespec *timeout,
uint32_t *uaddr2);

DESCRIPTION
Wait on a non-PI futex at uaddr and potentially be requeued (via a FUTEX_CMP_RE-
QUEUE_PI(2const) operation in another task) onto a PI futex at uaddr2. The wait oper-
ation on uaddr is the same as for FUTEX_WAIT(2const).

The waiter can be removed from the wait on uaddr without requeueing on uaddr2 via a
FUTEX_WAKE(2const) operation in another task. In this case, the FU-
TEX_WAIT_REQUEUE_PI operation fails with the error EAGAIN.

If timeout is not NULL, the structure it points to specifies an absolute timeout for the
wait operation. If timeout is NULL, the operation can block indefinitely.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_WAIT_REQUEUE_PI returns 0 if the caller was successfully re-
queued to the futex for the futex word at uaddr2.

ERRORS
See futex(2).

EAGAIN
The value pointed to by uaddr was not equal to the expected value val at the
time of the call.

Note: on Linux, the symbolic names EAGAIN and EWOULDBLOCK (both of
which appear in different parts of the kernel futex code) have the same value.

EFAULT
uaddr2 or timeout did not point to a valid user-space address.

EINVAL
The supplied timeout argument was invalid (tv_sec was less than zero, or
tv_nsec was not less than 1,000,000,000).

EINVAL
uaddr2 does not point to a valid object—that is, the address is not four-byte-
aligned.

Linux man-pages 6.16 2025-05-30 1237

FUTEX_WAIT_REQUEUE_PI (2const) FUTEX_WAIT_REQUEUE_PI (2const)

ENOSYS
A run-time check determined that the operation is not available. The PI-futex
operations are not implemented on all architectures and are not supported on
some CPU variants.

ETIMEDOUT
The timeout expired before the operation completed.

STANDARDS
Linux.

HISTORY
Linux 2.6.31.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-05-30 1238

FUTEX_WAKE(2const) FUTEX_WAKE(2const)

NAME
FUTEX_WAKE - wake waiters that are inside FUTEX_WAIT

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_WAKE, uint32_t val);

DESCRIPTION
This operation wakes at most val of the waiters that are waiting (e.g., inside FU-
TEX_WAIT(2const)) on the futex word at the address uaddr.

Most commonly, val is specified as either 1 (wake up a single waiter) or INT_MAX
(wake up all waiters).

No guarantee is provided about which waiters are awoken (e.g., a waiter with a higher
scheduling priority is not guaranteed to be awoken in preference to a waiter with a lower
priority).

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_WAKE returns the number of waiters that were woken up.

ERRORS
See futex(2).

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state—that is, it detected a waiter which waits in FU-
TEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) on uaddr.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-05-30 1239

FUTEX_WAKE_OP(2const) FUTEX_WAKE_OP(2const)

NAME
FUTEX_WAKE_OP - fast user-space locking

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/futex.h> /* Definition of FUTEX_* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_futex, uint32_t *uaddr, FUTEX_WAKE_OP, uint32_t val,
uint32_t val2, uint32_t *uaddr2,
uint32_t val3);

DESCRIPTION
This operation was added to support some user-space use cases where more than one fu-
tex must be handled at the same time. The most notable example is the implementation
of pthread_cond_signal(3), which requires operations on two futexes, the one used to
implement the mutex and the one used in the implementation of the wait queue associ-
ated with the condition variable. FUTEX_WAKE_OP allows such cases to be imple-
mented without leading to high rates of contention and context switching.

The FUTEX_WAKE_OP operation is equivalent to executing the following code atom-
ically and totally ordered with respect to other futex operations on any of the two sup-
plied futex words:

uint32_t oldval = *(uint32_t *) uaddr2;
*(uint32_t *) uaddr2 = oldval op oparg;
futex(uaddr, FUTEX_WAKE, val, 0, 0, 0);
if (oldval cmp cmparg)

futex(uaddr2, FUTEX_WAKE, val2, 0, 0, 0);

In other words, FUTEX_WAKE_OP does the following:

• saves the original value of the futex word at uaddr2 and performs an operation to
modify the value of the futex at uaddr2; this is an atomic read-modify-write memory
access (i.e., using atomic machine instructions of the respective architecture)

• wakes up a maximum of val waiters on the futex for the futex word at uaddr; and

• dependent on the results of a test of the original value of the futex word at uaddr2,
wakes up a maximum of val2 waiters on the futex for the futex word at uaddr2.

The operation and comparison that are to be performed are encoded in the bits of the ar-
gument val3. Pictorially, the encoding is:

+---+---+-----------+-----------+
|op |cmp| oparg | cmparg |
+---+---+-----------+-----------+

4 4 12 12 <== # of bits

Expressed in code, the encoding is:

#define FUTEX_OP(op, oparg, cmp, cmparg) \

Linux man-pages 6.16 2025-09-21 1240

FUTEX_WAKE_OP(2const) FUTEX_WAKE_OP(2const)

(((op & 0xf) << 28) | \
((cmp & 0xf) << 24) | \
((oparg & 0xfff) << 12) | \
(cmparg & 0xfff))

In the above, op and cmp are each one of the codes listed below. The oparg and cmparg
components are literal numeric values, except as noted below.

The op component has one of the following values:

FUTEX_OP_SET 0 /* uaddr2 = oparg; */
FUTEX_OP_ADD 1 /* uaddr2 += oparg; */
FUTEX_OP_OR 2 /* uaddr2 |= oparg; */
FUTEX_OP_ANDN 3 /* uaddr2 &= ~oparg; */
FUTEX_OP_XOR 4 /* uaddr2 ^= oparg; */

In addition, bitwise ORing the following value into op causes (1 << oparg) to be used
as the operand:

FUTEX_OP_ARG_SHIFT 8 /* Use (1 << oparg) as operand */

The cmp field is one of the following:

FUTEX_OP_CMP_EQ 0 /* if (oldval == cmparg) wake */
FUTEX_OP_CMP_NE 1 /* if (oldval != cmparg) wake */
FUTEX_OP_CMP_LT 2 /* if (oldval < cmparg) wake */
FUTEX_OP_CMP_LE 3 /* if (oldval <= cmparg) wake */
FUTEX_OP_CMP_GT 4 /* if (oldval > cmparg) wake */
FUTEX_OP_CMP_GE 5 /* if (oldval >= cmparg) wake */

The return value of FUTEX_WAKE_OP is the sum of the number of waiters woken on
the futex uaddr plus the number of waiters woken on the futex uaddr2.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

On success, FUTEX_WAKE_OP Returns the total number of waiters that were woken
up. This is the sum of the woken waiters on the two futexes for the futex words at
uaddr and uaddr2.

ERRORS
See futex(2).

EFAULT
uaddr2 did not point to a valid user-space address.

EINVAL
uaddr2 does not point to a valid object—that is, the address is not four-byte-
aligned.

EINVAL
The kernel detected an inconsistency between the user-space state at uaddr and
the kernel state—that is, it detected a waiter which waits in FU-
TEX_LOCK_PI(2const) or FUTEX_LOCK_PI2(2const) on uaddr.

Linux man-pages 6.16 2025-09-21 1241

FUTEX_WAKE_OP(2const) FUTEX_WAKE_OP(2const)

STANDARDS
Linux.

HISTORY
Linux 2.6.14.

SEE ALSO
futex(2)

Linux man-pages 6.16 2025-09-21 1242

KEYCTL_ASSUME_AUTHORITY (2const) KEYCTL_ASSUME_AUTHORITY (2const)

NAME
KEYCTL_ASSUME_AUTHORITY - assume the authority to instantiate a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_ASSUME_AUTHORITY, key_serial_t key);

DESCRIPTION
Assume (or divest) the authority for the calling thread to instantiate a key.

The key argument specifies either a nonzero key ID to assume authority, or the value 0 to
divest authority.

If key is nonzero, then it specifies the ID of an uninstantiated key for which authority is
to be assumed. That key can then be instantiated using one of KEYCTL_INSTANTI-
ATE(2const), KEYCTL_INSTANTIATE_IOV(2const), KEYCTL_REJECT(2const), or
KEYCTL_NEGATE(2const). Once the key has been instantiated, the thread is automati-
cally divested of authority to instantiate the key.

Authority over a key can be assumed only if the calling thread has present in its keyrings
the authorization key that is associated with the specified key. (In other words, the
KEYCTL_ASSUME_AUTHORITY operation is available only from a request-
key(8)-style program; see request_key(2) for an explanation of how this operation is
used.) The caller must have search permission on the authorization key.

If the specified key has a matching authorization key, then the ID of that key is returned.
The authorization key can be read (KEYCTL_READ(2const)) to obtain the callout in-
formation passed to request_key(2).

If the ID given in key is 0, then the currently assumed authority is cleared (divested), and
the value 0 is returned.

The KEYCTL_ASSUME_AUTHORITY mechanism allows a program such as
request-key(8) to assume the necessary authority to instantiate a new uninstantiated key
that was created as a consequence of a call to request_key(2). For further information,
see request_key(2) and the kernel source file Documentation/security/keys-request-
key.txt.

RETURN VALUE
On success, either 0, if the ID given was 0, or the ID of the authorization key matching
the specified key, if a nonzero key ID was provided.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_assume_authority(3)

Linux man-pages 6.16 2025-09-21 1243

KEYCTL_ASSUME_AUTHORITY (2const) KEYCTL_ASSUME_AUTHORITY (2const)

STANDARDS
Linux.

HISTORY
Linux 2.6.16.

SEE ALSO
keyctl(2), keyctl_assume_authority(3)

Linux man-pages 6.16 2025-09-21 1244

KEYCTL_CHOWN (2const) KEYCTL_CHOWN (2const)

NAME
KEYCTL_CHOWN - change the ownership of a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_CHOWN, key_serial_t key,
uid_t uid , gid_t gid);

DESCRIPTION
Change the ownership (user and group ID) of a key.

key contains the key ID. uid contains the new user ID (or -1 in case the user ID
shouldn’t be changed). gid contains the new group ID (or -1 in case the group ID
shouldn’t be changed).

The key must grant the caller setattr permission.

For the UID to be changed, or for the GID to be changed to a group the caller is not a
member of, the caller must have the CAP_SYS_ADMIN capability (see
capabilities(7)).

If the UID is to be changed, the new user must have sufficient quota to accept the key.
The quota deduction will be removed from the old user to the new user should the UID
be changed.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_chown(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_chown(3)

Linux man-pages 6.16 2025-05-17 1245

KEYCTL_CLEAR(2const) KEYCTL_CLEAR(2const)

NAME
KEYCTL_CLEAR - clear a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_CLEAR, key_serial_t key);

DESCRIPTION
Clear the contents of (i.e., unlink all keys from) a keyring.

The ID of the key (which must be of keyring type) is provided in key.

The caller must have write permission on the keyring.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_clear(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_clear(3)

Linux man-pages 6.16 2025-05-17 1246

KEYCTL_DESCRIBE(2const) KEYCTL_DESCRIBE(2const)

NAME
KEYCTL_DESCRIBE - describe a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(size_t size;
SYS_keyctl, KEYCTL_DESCRIBE, key_serial_t key,
char desc[_Nullable size], size_t size);

DESCRIPTION
Obtain a string describing the attributes of a specified key.

The ID of the key to be described is specified in key. The descriptive string is returned
in the buffer pointed to by desc; size specifies the size of that buffer in bytes.

The key must grant the caller view permission.

The returned string is null-terminated and contains the following information about the
key:

type;uid;gid;perm;description

In the above, type and description are strings, uid and gid are decimal strings, and perm
is a hexadecimal permissions mask. The descriptive string is written with the following
format:

%s;%d;%d;%08x;%s

Note: the intention is that the descriptive string should be extensible in future ker-
nel versions. In particular, the description field will not contain semicolons; it should
be parsed by working backwards from the end of the string to find the last semicolon.
This allows future semicolon-delimited fields to be inserted in the descriptive string in
the future.

Writing to the buffer is attempted only when desc is non-NULL and the specified buffer
size is large enough to accept the descriptive string (including the terminating null byte).
In order to determine whether the buffer size was too small, check to see if the return
value of the operation is greater than size.

RETURN VALUE
On success, the size of the description (including the terminating null byte), irrespective
of the provided buffer size.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_describe(3)

STANDARDS
Linux.

Linux man-pages 6.16 2025-06-28 1247

KEYCTL_DESCRIBE(2const) KEYCTL_DESCRIBE(2const)

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_describe(3), keyctl_describe_alloc(3)

Linux man-pages 6.16 2025-06-28 1248

KEYCTL_DH_COMPUTE(2const) KEYCTL_DH_COMPUTE(2const)

NAME
KEYCTL_DH_COMPUTE - compute a Diffie-Hellman shared secret or public key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(size_t n;
SYS_keyctl, KEYCTL_DH_COMPUTE,
struct keyctl_dh_params *dh_params,
char buf [n], size_t n,
struct keyctl_kdf_params *_Nullable kdf_params);

DESCRIPTION
Compute a Diffie-Hellman shared secret or public key, optionally applying key deriva-
tion function (KDF) to the result.

The dh_params argument is a pointer to a set of parameters containing serial numbers
for three "user" keys used in the Diffie-Hellman calculation, packaged in a structure of
the following form:

struct keyctl_dh_params {
int32_t private; /* The local private key */
int32_t prime; /* The prime, known to both parties */
int32_t base; /* The base integer: either a shared

generator or the remote public key */
};

Each of the three keys specified in this structure must grant the caller read permission.
The payloads of these keys are used to calculate the Diffie-Hellman result as:

base ^ private mod prime

If the base is the shared generator, the result is the local public key. If the base is the re-
mote public key, the result is the shared secret.

The buf argument points to a buffer where the result of the calculation is placed. The
size of that buffer is specified in n.

The buffer must be large enough to accommodate the output data, otherwise an error is
returned. If n is specified zero, in which case the buffer is not used and the operation re-
turns the minimum required buffer size (i.e., the length of the prime).

Diffie-Hellman computations can be performed in user space, but require a multiple-pre-
cision integer (MPI) library. Moving the implementation into the kernel gives access to
the kernel MPI implementation, and allows access to secure or acceleration hardware.

Adding support for DH computation to the keyctl() system call was considered a good
fit due to the DH algorithm’s use for deriving shared keys; it also allows the type of the
key to determine which DH implementation (software or hardware) is appropriate.

Linux man-pages 6.16 2025-09-21 1249

KEYCTL_DH_COMPUTE(2const) KEYCTL_DH_COMPUTE(2const)

If the kdf_params argument is NULL, then the DH result itself is returned. Otherwise
(since Linux 4.12), it is a pointer to a structure which specifies parameters of the KDF
operation to be applied:

struct keyctl_kdf_params {
char *hashname; /* Hash algorithm name */
char *otherinfo; /* SP800-56A OtherInfo */
__u32 otherinfolen; /* Length of otherinfo data */
__u32 __spare[8]; /* Reserved */

};

The hashname field is a null-terminated string which specifies a hash name (available in
the kernel’s crypto API; the list of the hashes available is rather tricky to observe; please
refer to the "Kernel Crypto API Architecture" 〈https://www.kernel.org/doc/html/latest
/crypto/architecture.html〉 documentation for the information regarding how hash names
are constructed and your kernel’s source and configuration regarding what ciphers and
templates with type CRYPTO_ALG_TYPE_SHASH are available) to be applied to
DH result in KDF operation.

The otherinfo field is an OtherInfo data as described in SP800-56A section 5.8.1.2 and
is algorithm-specific. This data is concatenated with the result of DH operation and is
provided as an input to the KDF operation. Its size is provided in the otherinfolen field
and is limited by KEYCTL_KDF_MAX_OI_LEN constant that defined in secu-
rity/keys/internal.h to a value of 64.

The __spare field is currently unused. It was ignored until Linux 4.13 (but still should
be user-addressable since it is copied to the kernel), and should contain zeros since
Linux 4.13.

The KDF implementation complies with SP800-56A as well as with SP800-108 (the
counter KDF).

This operation is exposed by libkeyutils (from libkeyutils 1.5.10 onwards) via the func-
tions keyctl_dh_compute(3) and keyctl_dh_compute_alloc(3)

RETURN VALUE
On success, the number of bytes copied to the buffer, or, if n is 0, the required buffer
size.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

There was an error during crypto module initialization.

EFAULT
One of the following has failed:

• copying of the struct keyctl_dh_params, provided in the dh_params argu-
ment, from user space;

• copying of the struct keyctl_kdf_params, provided in the non-NULL
kdf_params argument, from user space (in case kernel supports performing
KDF operation on DH operation result);

Linux man-pages 6.16 2025-09-21 1250

KEYCTL_DH_COMPUTE(2const) KEYCTL_DH_COMPUTE(2const)

• copying of data pointed by the hashname field of the struct
keyctl_kdf_params from user space;

• copying of data pointed by the otherinfo field of the struct
keyctl_kdf_params from user space if the otherinfolen field was nonzero;

• copying of the result to user space.

EINVAL (before Linux 4.12)
Argument kdf_params was non-NULL.

EINVAL
The digest size of the hashing algorithm supplied is zero.

EINVAL
The buffer size provided is not enough to hold the result. Provide 0 as a buffer
size in order to obtain the minimum buffer size.

EINVAL
The hash name provided in the hashname field of the struct keyctl_kdf_params
pointed by kdf_params argument is too big (the limit is implementation-specific
and varies between kernel versions, but it is deemed big enough for all valid al-
gorithm names).

EINVAL
The __spare field of the struct keyctl_kdf_params provided in the kdf_params
argument contains nonzero values.

EMSGSIZE
The buffer length exceeds KEYCTL_KDF_MAX_OUTPUT_LEN (which is
1024 currently) or the otherinfolen field of the struct keyctl_kdf_parms passed in
kdf_params exceeds KEYCTL_KDF_MAX_OI_LEN (which is 64 currently).

ENOENT
The hashing algorithm specified in the hashname field of the struct
keyctl_kdf_params pointed by kdf_params argument hasn’t been found.

ETIMEDOUT
The initialization of crypto modules has timed out.

STANDARDS
Linux.

HISTORY
Linux 4.7.

SEE ALSO
keyctl(2), keyctl_dh_compute(3), keyctl_dh_compute_alloc(3), keyctl_dh_com-
pute_kdf (3)

Linux man-pages 6.16 2025-09-21 1251

KEYCTL_GET_KEYRING_ID(2const) KEYCTL_GET_KEYRING_ID(2const)

NAME
KEYCTL_GET_KEYRING_ID - map a special key ID to a real key ID for this process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_GET_KEYRING_ID, key_serial_t key,
int arg3);

DESCRIPTION
Map a special key ID to a real key ID for this process.

This operation looks up the special key whose ID is provided in key. If the special key
is found, the ID of the corresponding real key is returned as the function result. The fol-
lowing values may be specified in key:

KEY_SPEC_THREAD_KEYRING
This specifies the calling thread’s thread-specific keyring. See thread-keyring(7).

KEY_SPEC_PROCESS_KEYRING
This specifies the caller’s process-specific keyring. See process-keyring(7).

KEY_SPEC_SESSION_KEYRING
This specifies the caller’s session-specific keyring. See session-keyring(7).

KEY_SPEC_USER_KEYRING
This specifies the caller’s UID-specific keyring. See user-keyring(7).

KEY_SPEC_USER_SESSION_KEYRING
This specifies the caller’s UID-session keyring. See user-session-keyring(7).

KEY_SPEC_REQKEY_AUTH_KEY (since Linux 2.6.16)
This specifies the authorization key created by request_key(2) and passed to the
process it spawns to generate a key. This key is available only in a request-
key(8)-style program that was passed an authorization key by the kernel and
ceases to be available once the requested key has been instantiated; see re-
quest_key(2).

KEY_SPEC_REQUESTOR_KEYRING (since Linux 2.6.29)
This specifies the key ID for the request_key(2) destination keyring. This
keyring is available only in a request-key(8)-style program that was passed an
authorization key by the kernel and ceases to be available once the requested key
has been instantiated; see request_key(2).

The behavior if the key specified in key does not exist depends on the value of arg3. If
arg3 contains a nonzero value, then —if it is appropriate to do so (e.g., when looking up
the user, user-session, or session key)— a new key is created and its real key ID returned
as the function result. Otherwise, the operation fails with the error ENOKEY.

If a valid key ID is specified in key, and the key exists, then this operation simply returns

Linux man-pages 6.16 2025-09-21 1252

KEYCTL_GET_KEYRING_ID(2const) KEYCTL_GET_KEYRING_ID(2const)

the key ID. If the key does not exist, the call fails with error ENOKEY.

The caller must have search permission on a keyring in order for it to be found.

RETURN VALUE
On success, the ID of the requested keyring.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOKEY

The key specified in key did not exist, and arg3 was zero (meaning don’t create
the key if it didn’t exist).

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_get_keyring_ID(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_get_keyring_ID(3)

Linux man-pages 6.16 2025-09-21 1253

KEYCTL_GET_PERSISTENT (2const) KEYCTL_GET_PERSISTENT (2const)

NAME
KEYCTL_GET_PERSISTENT - get the persistent keyring for a user

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_GET_PERSISTENT, uid_t uid ,
key_serial_t keyring);

DESCRIPTION
Get the persistent keyring (persistent-keyring(7)) for a specified user and link it to a
specified keyring.

The user ID is specified in uid . If the value -1 is specified, the caller’s real user ID is
used. The ID of the destination keyring is specified in keyring.

The caller must have the CAP_SETUID capability in its user namespace in order to
fetch the persistent keyring for a user ID that does not match either the real or effective
user ID of the caller.

If the call is successful, a link to the persistent keyring is added to the keyring whose ID
was specified in keyring.

The caller must have write permission on the keyring.

The persistent keyring will be created by the kernel if it does not yet exist.

Each time the KEYCTL_GET_PERSISTENT operation is performed, the persistent
keyring will have its expiration timeout reset to the value in:

/proc/sys/kernel/keys/persistent_keyring_expiry

Should the timeout be reached, the persistent keyring will be removed and everything it
pins can then be garbage collected.

Persistent keyrings were added in Linux 3.13.

RETURN VALUE
On success, the ID of the persistent keyring.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

uid specified a UID other than the calling thread’s real or effective UID, and the
caller did not have the CAP_SETUID capability.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_get_persistent(3)

STANDARDS
Linux.

Linux man-pages 6.16 2025-05-17 1254

KEYCTL_GET_PERSISTENT (2const) KEYCTL_GET_PERSISTENT (2const)

HISTORY
Linux 3.13.

SEE ALSO
keyctl(2), keyctl_get_persistent(3)

Linux man-pages 6.16 2025-05-17 1255

KEYCTL_GET_SECURITY (2const) KEYCTL_GET_SECURITY (2const)

NAME
KEYCTL_GET_SECURITY - manipulate the kernel’s key management facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(size_t n;
SYS_keyctl, KEYCTL_GET_SECURITY, key_serial_t key,
char buf [_Nullable n], size_t n);

DESCRIPTION
KEYCTL_GET_SECURITY (since Linux 2.6.26)

Get the LSM (Linux Security Module) security label of the specified key.

The ID of the key whose security label is to be fetched is specified in key. The security
label (terminated by a null byte) will be placed in the buffer pointed to by buf argument;
the size of the buffer must be provided in n.

If buf is specified as NULL or the buffer size specified in n is too small, the full size of
the security label string (including the terminating null byte) is returned as the function
result, and nothing is copied to the buffer.

The caller must have view permission on the specified key.

The returned security label string will be rendered in a form appropriate to the LSM in
force. For example, with SELinux, it may look like:

unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

If no LSM is currently in force, then an empty string is placed in the buffer.

RETURN VALUE
On success, the size of the LSM security label string (including the terminating null
byte), irrespective of the provided buffer size.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_get_security(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.26.

SEE ALSO
keyctl(2), keyctl_get_security(3), keyctl_get_security_alloc(3)

Linux man-pages 6.16 2025-06-28 1256

KEYCTL_INSTANTIATE(2const) KEYCTL_INSTANTIATE(2const)

NAME
KEYCTL_INSTANTIATE, KEYCTL_INSTANTIATE_IOV, KEYCTL_NEGATE,
KEYCTL_REJECT - key instantiation functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(size_t n;
SYS_keyctl, KEYCTL_INSTANTIATE, key_serial_t key,
const void payload[n], size_t n,
key_serial_t keyring);

long syscall(size_t n;
SYS_keyctl, KEYCTL_INSTANTIATE_IOV, key_serial_t key,
const struct iovec payload[n], unsigned int n,
key_serial_t keyring);

long syscall(SYS_keyctl, KEYCTL_NEGATE, key_serial_t key,
unsigned int timeout, key_serial_t keyring);

long syscall(SYS_keyctl, KEYCTL_REJECT, key_serial_t key,
unsigned int timeout, int error, key_serial_t keyring);

DESCRIPTION
KEYCTL_INSTANTIATE

(Positively) instantiate an uninstantiated key with a specified payload.

The ID of the key to be instantiated is provided in key.

The key payload is specified in the buffer pointed to by payload; the size of that
buffer is specified in n.

The payload may be a null pointer and the buffer size may be 0 if this is sup-
ported by the key type (e.g., it is a keyring).

The operation may be fail if the payload data is in the wrong format or is other-
wise invalid.

If keyring is nonzero, then, subject to the same constraints and rules as
KEYCTL_LINK(2const), the instantiated key is linked into the keyring whose ID
specified in keyring.

The caller must have the appropriate authorization key, and once the uninstanti-
ated key has been instantiated, the authorization key is revoked. In other words,
this operation is available only from a request-key(8)-style program. See re-
quest_key(2) for an explanation of uninstantiated keys and key instantiation.

KEYCTL_INSTANTIATE_IOV
Instantiate an uninstantiated key with a payload specified via a vector of buffers.

This operation is the same as KEYCTL_INSTANTIATE, but the payload data
is specified as an array of iovec structures (see iovec(3type)).

Linux man-pages 6.16 2025-06-28 1257

KEYCTL_INSTANTIATE(2const) KEYCTL_INSTANTIATE(2const)

The pointer to the payload vector is specified in payload . The number of items
in the vector is specified in n.

The key and keyring are interpreted as for KEYCTL_INSTANTIATE.

KEYCTL_NEGATE
Negatively instantiate an uninstantiated key.

This operation is equivalent to the call:

keyctl(KEYCTL_REJECT, key, timeout, ENOKEY, keyring);

KEYCTL_REJECT
Mark a key as negatively instantiated and set an expiration timer on the key.
This operation provides a superset of the functionality of the earlier
KEYCTL_NEGATE operation.

The ID of the key that is to be negatively instantiated is specified in key. The
timeout argument specifies the lifetime of the key, in seconds. The error argu-
ment specifies the error to be returned when a search hits this key; typically, this
is one of EKEYREJECTED, EKEYREVOKED, or EKEYEXPIRED.

If keyring is nonzero, then, subject to the same constraints and rules as
KEYCTL_LINK(2const), the negatively instantiated key is linked into the keyring
whose ID is specified in keyring.

The caller must have the appropriate authorization key. In other words, this op-
eration is available only from a request-key(8)-style program. See re-
quest_key(2).

The caller must have the appropriate authorization key, and once the uninstanti-
ated key has been instantiated, the authorization key is revoked. In other words,
this operation is available only from a request-key(8)-style program. See re-
quest_key(2) for an explanation of uninstantiated keys and key instantiation.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
Wrappers are provided in the libkeyutils library: keyctl_instantiate(3), keyctl_instanti-
ate_iov(3), keyctl_negate(3), and keyctl_reject(3)

STANDARDS
Linux.

HISTORY
KEYCTL_INSTANTIATE
KEYCTL_NEGATE

Linux 2.6.10.

KEYCTL_INSTANTIATE_IOV
KEYCTL_REJECT

Linux 2.6.39.

Linux man-pages 6.16 2025-06-28 1258

KEYCTL_INSTANTIATE(2const) KEYCTL_INSTANTIATE(2const)

SEE ALSO
keyctl(2), keyctl_instantiate(3), keyctl_instantiate_iov(3), keyctl_negate(3), keyctl_re-
ject(3)

Linux man-pages 6.16 2025-06-28 1259

KEYCTL_INVALIDATE(2const) KEYCTL_INVALIDATE(2const)

NAME
KEYCTL_INVALIDATE - invalidate a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_INVALIDATE, key_serial_t key);

DESCRIPTION
Mark a key as invalid.

The ID of the key to be invalidated is specified in key.

To invalidate a key, the caller must have search permission on the key.

This operation marks the key as invalid and schedules immediate garbage collection.
The garbage collector removes the invalidated key from all keyrings and deletes the key
when its reference count reaches zero. After this operation, the key will be ignored by
all searches, even if it is not yet deleted.

Keys that are marked invalid become invisible to normal key operations immediately,
though they are still visible in /proc/keys (marked with an ’i’ flag) until they are actually
removed.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_invalidate(3)

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
keyctl(2), keyctl_invalidate(3)

Linux man-pages 6.16 2025-05-17 1260

KEYCTL_JOIN . . . SION_KEYRING(2const) KEYCTL_JOIN . . . SION_KEYRING(2const)

NAME
KEYCTL_JOIN_SESSION_KEYRING - replace the session keyring this process sub-
scribes to with a new one

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_JOIN_SESSION_KEYRING,
char *_Nullable desc);

DESCRIPTION
Replace the session keyring this process subscribes to with a new session keyring.

If desc is NULL, an anonymous keyring with the description "_ses" is created and the
process is subscribed to that keyring as its session keyring, displacing the previous ses-
sion keyring.

Otherwise, desc is treated as the description (name) of a keyring, and the behavior is as
follows:

• If a keyring with a matching description exists, the process will attempt to subscribe
to that keyring as its session keyring if possible; if that is not possible, an error is re-
turned. In order to subscribe to the keyring, the caller must have search permission
on the keyring.

• If a keyring with a matching description does not exist, then a new keyring with the
specified description is created, and the process is subscribed to that keyring as its
session keyring.

RETURN VALUE
On success, the ID of the joined session keyring.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_join_session_keyring(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_join_session_keyring(3)

Linux man-pages 6.16 2025-05-17 1261

KEYCTL_LINK (2const) KEYCTL_LINK (2const)

NAME
KEYCTL_LINK - link a key to a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_LINK, key_serial_t key,
key_serial_t keyring);

DESCRIPTION
Create a link from a keyring to a key.

The key to be linked is specified in key; the keyring is specified in keyring.

If a key with the same type and description is already linked in the keyring, then that key
is displaced from the keyring.

Before creating the link, the kernel checks the nesting of the keyrings and returns appro-
priate errors if the link would produce a cycle or if the nesting of keyrings would be too
deep (The limit on the nesting of keyrings is determined by the kernel constant
KEYRING_SEARCH_MAX_DEPTH, defined with the value 6, and is necessary to
prevent overflows on the kernel stack when recursively searching keyrings).

The caller must have link permission on the key being added and write permission on
the keyring.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EDEADLK

The requested link would result in a cycle.

ELOOP
The requested link would cause the maximum nesting depth for keyrings to be
exceeded.

ENFILE (before Linux 3.13)
The keyring is full. (Before Linux 3.13, the available space for storing keyring
links was limited to a single page of memory; since Linux 3.13, there is no fixed
limit.)

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_link(3)

STANDARDS
Linux.

Linux man-pages 6.16 2025-09-21 1262

KEYCTL_LINK (2const) KEYCTL_LINK (2const)

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_link(3), KEYCTL_UNLINK(2const)

Linux man-pages 6.16 2025-09-21 1263

KEYCTL_READ(2const) KEYCTL_READ(2const)

NAME
KEYCTL_READ - read a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(size_t size;
SYS_keyctl, KEYCTL_READ, key_serial_t key,
char buf [_Nullable size], size_t size);

DESCRIPTION
Read the payload data of a key.

The ID of the key whose payload is to be read is specified in key. This can be the ID of
an existing key, or any of the special key IDs listed for
KEYCTL_GET_KEYRING_ID(2const).

The payload is placed in the buffer pointed by buf ; the size of that buffer must be speci-
fied in size.

The returned data will be processed for presentation according to the key type. For ex-
ample, a keyring will return an array of key_serial_t entries representing the IDs of all
the keys that are linked to it. The user key type will return its data as is.

If buf is not NULL, as much of the payload data as will fit is copied into the buffer. On
a successful return, the return value is always the total size of the payload data. To de-
termine whether the buffer was of sufficient size, check to see that the return value is
less than or equal to the value supplied in size.

The key must either grant the caller read permission, or grant the caller search permis-
sion when searched for from the process keyrings (i.e., the key is possessed).

RETURN VALUE
On success, the amount of data that is available in the key, irrespective of the provided
buffer size.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EOPNOTSUPP

The key type does not support reading (e.g., the type is "login").

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_read(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

Linux man-pages 6.16 2025-06-28 1264

KEYCTL_READ(2const) KEYCTL_READ(2const)

SEE ALSO
keyctl(2), keyctl_read(3), keyctl_read_alloc(3)

Linux man-pages 6.16 2025-06-28 1265

KEYCTL_RESTRICT_KEYRING(2const) KEYCTL_RESTRICT_KEYRING(2const)

NAME
KEYCTL_RESTRICT_KEYRING - restrict keys that may be linked to a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_RESTRICT_KEYRING, key_serial_t keyring,
const char *_Nullable type, const char *restriction);

DESCRIPTION
Apply a key-linking restriction to the keyring with the ID provided in keyring. The
caller must have setattr permission on the key. If type is NULL, any attempt to add a
key to the keyring is blocked; otherwise it contains a pointer to a string with a key type
name and restriction contains a pointer to string that describes the type-specific restric-
tion. As of Linux 4.12, only the type "asymmetric" has restrictions defined:

builtin_trusted
Allows only keys that are signed by a key linked to the built-in keyring
(".builtin_trusted_keys").

builtin_and_secondary_trusted
Allows only keys that are signed by a key linked to the secondary keyring (".sec-
ondary_trusted_keys") or, by extension, a key in a built-in keyring, as the latter is
linked to the former.

key_or_keyring:key
key_or_keyring:key:chain

If key specifies the ID of a key of type "asymmetric", then only keys that are
signed by this key are allowed.

If key specifies the ID of a keyring, then only keys that are signed by a key linked
to this keyring are allowed.

If ":chain" is specified, keys that are signed by a keys linked to the destination
keyring (that is, the keyring with the ID specified in the keyring argument) are
also allowed.

Note that a restriction can be configured only once for the specified keyring; once a re-
striction is set, it can’t be overridden.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EDEADLK

The requested keyring restriction would result in a cycle.

Linux man-pages 6.16 2025-05-17 1266

KEYCTL_RESTRICT_KEYRING(2const) KEYCTL_RESTRICT_KEYRING(2const)

EEXIST
keyring already has a restriction set.

ENOENT
The type provided in type argument doesn’t support setting key linking restric-
tions.

EOPNOTSUPP
type was "asymmetric", and the key specified in the restriction specification pro-
vided in restriction has type other than "asymmetric" or "keyring".

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_restrict_keyring(3)

STANDARDS
Linux.

HISTORY
Linux 4.12.

SEE ALSO
keyctl(2), keyctl_restrict_keyring(3)

Linux man-pages 6.16 2025-05-17 1267

KEYCTL_REVOKE(2const) KEYCTL_REVOKE(2const)

NAME
KEYCTL_REVOKE - revoke a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_REVOKE, key_serial_t key);

DESCRIPTION
Revoke the key with the ID provided in key. The key is scheduled for garbage collec-
tion; it will no longer be findable, and will be unavailable for further operations. Further
attempts to use the key will fail with the error EKEYREVOKED.

The caller must have write or setattr permission on the key.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_revoke(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_revoke(3)

Linux man-pages 6.16 2025-09-21 1268

KEYCTL_SEARCH(2const) KEYCTL_SEARCH(2const)

NAME
KEYCTL_SEARCH - search a keyring for a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SEARCH, key_serial_t src,
char *type, char *desc,
unsigned long dst);

DESCRIPTION
Search for a key in a keyring tree, returning its ID and optionally linking it to a specified
keyring.

The tree to be searched is specified by passing the ID of the head keyring in src. The
search is performed breadth-first and recursively.

The type and desc arguments specify the key to be searched for: type contains the key
type (a null-terminated character string up to 32 bytes in size, including the terminating
null byte), and desc contains the description of the key (a null-terminated character
string up to 4096 bytes in size, including the terminating null byte).

The source keyring must grant search permission to the caller. When performing the re-
cursive search, only keyrings that grant the caller search permission will be searched.
Only keys with for which the caller has search permission can be found.

If the key is found, its ID is returned as the function result.

If the key is found and dst is nonzero, then, subject to the same constraints and rules as
KEYCTL_LINK(2const), the key is linked into the keyring whose ID is specified in dst.
If the destination keyring specified in dst already contains a link to a key that has the
same type and description, then that link will be displaced by a link to the key found by
this operation.

Instead of valid existing keyring IDs, the source (src) and destination (dst) keyrings can
be one of the special keyring IDs listed under KEYCTL_GET_KEYRING_ID(2const).

RETURN VALUE
On success, the ID of the key that was found.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

The size of the description in desc (including the terminating null byte) exceeded
4096 bytes.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_search(3)

Linux man-pages 6.16 2025-05-17 1269

KEYCTL_SEARCH(2const) KEYCTL_SEARCH(2const)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_search(3)

Linux man-pages 6.16 2025-05-17 1270

KEYCTL_SESSION_TO_PARENT (2const) KEYCTL_SESSION_TO_PARENT (2const)

NAME
KEYCTL_SESSION_TO_PARENT - set the parent process’s session keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SESSION_TO_PARENT);

DESCRIPTION
Replace the session keyring to which the parent of the calling process subscribes with
the session keyring of the calling process.

The keyring will be replaced in the parent process at the point where the parent next
transitions from kernel space to user space.

The keyring must exist and must grant the caller link permission. The parent process
must be single-threaded and have the same effective ownership as this process and must
not be set-user-ID or set-group-ID. The UID of the parent process’s existing session
keyring (f it has one), as well as the UID of the caller’s session keyring much match the
caller’s effective UID.

The fact that it is the parent process that is affected by this operation allows a program
such as the shell to start a child process that uses this operation to change the shell’s ses-
sion keyring. (This is what the keyctl(1) new_session command does.)

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

All of the UIDs (GIDs) of the parent process do not match the effective UID
(GID) of the calling process.

EPERM
The UID of the parent’s existing session keyring or the UID of the caller’s ses-
sion keyring did not match the effective UID of the caller.

EPERM
The parent process is not single-threaded.

EPERM
The parent process is init(1) or a kernel thread.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_session_to_parent(3)

STANDARDS
Linux.

Linux man-pages 6.16 2025-06-01 1271

KEYCTL_SESSION_TO_PARENT (2const) KEYCTL_SESSION_TO_PARENT (2const)

HISTORY
Linux 2.6.32.

SEE ALSO
keyctl(2), keyctl_session_to_parent(3)

Linux man-pages 6.16 2025-06-01 1272

KEYCTL_SET . . . KEY_KEYRING(2const) KEYCTL_SET . . . KEY_KEYRING(2const)

NAME
KEYCTL_SET_REQKEY_KEYRING - set the implicit destination keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SET_REQKEY_KEYRING, int op);

DESCRIPTION
Set the default keyring to which implicitly requested keys will be linked for this thread,
and return the previous setting. Implicit key requests are those made by internal kernel
components, such as can occur when, for example, opening files on an AFS or NFS
filesystem. Setting the default keyring also has an effect when requesting a key from
user space; see request_key(2) for details.

The op argument should contain one of the following values, to specify the new default
keyring:

KEY_REQKEY_DEFL_NO_CHANGE
Don’t change the default keyring. This can be used to discover the current de-
fault keyring (without changing it).

KEY_REQKEY_DEFL_DEFAULT
This selects the default behaviour, which is to use the thread-specific keyring if
there is one, otherwise the process-specific keyring if there is one, otherwise the
session keyring if there is one, otherwise the UID-specific session keyring, other-
wise the user-specific keyring.

KEY_REQKEY_DEFL_THREAD_KEYRING
Use the thread-specific keyring (thread-keyring(7)) as the new default keyring.

KEY_REQKEY_DEFL_PROCESS_KEYRING
Use the process-specific keyring (process-keyring(7)) as the new default
keyring.

KEY_REQKEY_DEFL_SESSION_KEYRING
Use the session-specific keyring (session-keyring(7)) as the new default
keyring.

KEY_REQKEY_DEFL_USER_KEYRING
Use the UID-specific keyring (user-keyring(7)) as the new default keyring.

KEY_REQKEY_DEFL_USER_SESSION_KEYRING
Use the UID-specific session keyring (user-session-keyring(7)) as the new de-
fault keyring.

KEY_REQKEY_DEFL_REQUESTOR_KEYRING (since Linux 2.6.29)
Use the requestor keyring.

All other values are invalid.

Linux man-pages 6.16 2025-09-21 1273

KEYCTL_SET . . . KEY_KEYRING(2const) KEYCTL_SET . . . KEY_KEYRING(2const)

The setting controlled by this operation is inherited by the child of fork(2) and preserved
across execve(2).

RETURN VALUE
On success, the ID of the previous default keyring to which implicitly requested keys
were linked (one of KEY_REQKEY_DEFL_USER_*).

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_set_reqkey_keyring(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.13.

SEE ALSO
keyctl(2), keyctl_set_reqkey_keyring(3)

Linux man-pages 6.16 2025-09-21 1274

KEYCTL_SET_TIMEOUT (2const) KEYCTL_SET_TIMEOUT (2const)

NAME
KEYCTL_SET_TIMEOUT - set the expiration timer on a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SET_TIMEOUT, key_serial_t key, time_t t);

DESCRIPTION
Set a timeout on a key.

The ID of the key is specified in key. The timeout value, in seconds from the current
time, is specified in t. The timeout is measured against the realtime clock.

Specifying the timeout value as 0 clears any existing timeout on the key.

The /proc/keys file displays the remaining time until each key will expire. (This is the
only method of discovering the timeout on a key.)

The caller must either have the setattr permission on the key or hold an instantiation au-
thorization token for the key (see request_key(2)).

The key and any links to the key will be automatically garbage collected after the time-
out expires. Subsequent attempts to access the key will then fail with the error EKEY-
EXPIRED.

This operation cannot be used to set timeouts on revoked, expired, or negatively instanti-
ated keys.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_set_timeout(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.16.

SEE ALSO
keyctl(2), keyctl_set_timeout(3)

Linux man-pages 6.16 2025-05-17 1275

KEYCTL_SETPERM(2const) KEYCTL_SETPERM(2const)

NAME
KEYCTL_SETPERM - change the permissions mask on a key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_SETPERM, key_serial_t key,
key_perm_t perms);

DESCRIPTION
Change the permissions of the key with the ID provided in the key argument to the per-
missions provided in the perms argument.

If the caller doesn’t have the CAP_SYS_ADMIN capability, it can change permissions
only for the keys it owns. (More precisely: the caller’s filesystem UID must match the
UID of the key.)

The key must grant setattr permission to the caller regardless of the caller’s capabilities.

The permissions in perms specify masks of available operations for each of the follow-
ing user categories:

possessor (since Linux 2.6.14)
This is the permission granted to a process that possesses the key (has it attached
searchably to one of the process’s keyrings); see keyrings(7).

user This is the permission granted to a process whose filesystem UID matches the
UID of the key.

group
This is the permission granted to a process whose filesystem GID or any of its
supplementary GIDs matches the GID of the key.

other
This is the permission granted to other processes that do not match the user and
group categories.

The user, group, and other categories are exclusive: if a process matches the user cate-
gory, it will not receive permissions granted in the group category; if a process matches
the user or group category, then it will not receive permissions granted in the other cate-
gory.

The possessor category grants permissions that are cumulative with the grants from the
user, group, or other category.

Each permission mask is eight bits in size, with only six bits currently used. The avail-
able permissions are:

view This permission allows reading attributes of a key.

This permission is required for the KEYCTL_DESCRIBE(2const) operation.

Linux man-pages 6.16 2025-09-21 1276

KEYCTL_SETPERM(2const) KEYCTL_SETPERM(2const)

The permission bits for each category are:

KEY_POS_VIEW
KEY_USR_VIEW
KEY_GRP_VIEW
KEY_OTH_VIEW

read This permission allows reading a key’s payload.

This permission is required for the KEYCTL_READ(2const) operation.

The permission bits for each category are

KEY_POS_READ
KEY_USR_READ
KEY_GRP_READ
KEY_OTH_READ

write This permission allows update or instantiation of a key’s payload. For a keyring,
it allows keys to be linked and unlinked from the keyring,

This permission is required for the KEYCTL_UPDATE(2const), KEYCTL_RE-
VOKE(2const), KEYCTL_CLEAR(2const), KEYCTL_LINK(2const), and
KEYCTL_UNLINK(2const) operations.

The permission bits for each category are:

KEY_POS_WRITE
KEY_USR_WRITE
KEY_GRP_WRITE
KEY_OTH_WRITE

search
This permission allows keyrings to be searched and keys to be found. Searches
can recurse only into nested keyrings that have search permission set.

This permission is required for the KEYCTL_GET_KEYRING_ID(2const),
KEYCTL_JOIN_SESSION_KEYRING(2const), KEYCTL_SEARCH(2const), and
KEYCTL_INVALIDATE (2const) operations.

The permission bits for each category are:

KEY_POS_SEARCH
KEY_USR_SEARCH
KEY_GRP_SEARCH
KEY_OTH_SEARCH

link This permission allows a key or keyring to be linked to.

This permission is required for the KEYCTL_LINK(2const) and KEYCTL_SES-
SION_TO_PARENT(2const) operations.

The permission bits for each category are:

KEY_POS_LINK

Linux man-pages 6.16 2025-09-21 1277

KEYCTL_SETPERM(2const) KEYCTL_SETPERM(2const)

KEY_USR_LINK
KEY_GRP_LINK
KEY_OTH_LINK

setattr (since Linux 2.6.15)
This permission allows a key’s UID, GID, and permissions mask to be changed.

This permission is required for the KEYCTL_REVOKE(2const),
KEYCTL_CHOWN(2const), and KEYCTL_SETPERM (2const) operations.

The permission bits for each category are:

KEY_POS_SETATTR
KEY_USR_SETATTR
KEY_GRP_SETATTR
KEY_OTH_SETATTR

As a convenience, the following macros are defined as masks for all of the permission
bits in each of the user categories:

KEY_POS_ALL
KEY_USR_ALL
KEY_GRP_ALL
KEY_OTH_ALL

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

operation was KEYCTL_SETPERM and an invalid permission bit was speci-
fied in perms.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_setperm(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_setperm(3)

Linux man-pages 6.16 2025-09-21 1278

KEYCTL_UNLINK (2const) KEYCTL_UNLINK (2const)

NAME
KEYCTL_UNLINK - unlink a key from a keyring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(SYS_keyctl, KEYCTL_UNLINK, key_serial_t key,
key_serial_t keyring);

DESCRIPTION
Unlink a key from a keyring.

The ID of the key to be unlinked is specified in key; the ID of the keyring from which it
is to be unlinked is specified in keyring.

If the key is not currently linked into the keyring, an error results.

The caller must have write permission on the keyring from which the key is being re-
moved.

If the last link to a key is removed, then that key will be scheduled for destruction.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOENT

The key to be unlinked isn’t linked to the keyring.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_unlink(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_unlink(3), KEYCTL_LINK(2const)

Linux man-pages 6.16 2025-05-17 1279

KEYCTL_UPDATE(2const) KEYCTL_UPDATE(2const)

NAME
KEYCTL_UPDATE - update a key’s data payload

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/keyctl.h> /* Definition of KEY* constants */
#include <sys/syscall.h> /* Definition of SYS_* constants */
#include <unistd.h>

long syscall(size_t size;
SYS_keyctl, KEYCTL_UPDATE, key_serial_t key,
void payload[size], size_t size);

DESCRIPTION
Update a key’s data payload.

key specifies the ID of the key to be updated. payload points to the new payload and
size contains the new payload size in bytes.

The caller must have write permission on the key specified and the key type must sup-
port updating.

A negatively instantiated key (see KEYCTL_REJECT(2const)) can be positively instanti-
ated with this operation.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
The key type does not support updating.

VERSIONS
A wrapper is provided in the libkeyutils library: keyctl_update(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.10.

SEE ALSO
keyctl(2), keyctl_update(3)

Linux man-pages 6.16 2025-06-28 1280

NS_GET_NSTYPE(2const) NS_GET_NSTYPE(2const)

NAME
NS_GET_NSTYPE - discovering the namespace type

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_GET_NSTYPE */
#include <sys/ioctl.h>

int ioctl(int fd , NS_GET_NSTYPE);

DESCRIPTION
The NS_GET_NSTYPE operation can be used to discover the type of namespace re-
ferred to by the file descriptor fd .

fd refers to a /proc/ pid /ns/* file.

RETURN VALUE
On success, the return value is one of the CLONE_NEW* values that can be specified
to clone(2) or unshare(2) in order to create a namespace.

On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 4.11.

SEE ALSO
ioctl(2), ioctl_nsfs(2)

Linux man-pages 6.16 2025-05-17 1281

NS_GET_OWNER_UID(2const) NS_GET_OWNER_UID(2const)

NAME
NS_GET_OWNER_UID - discovering the owner of a user namespace

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_GET_OWNER_UID */
#include <sys/ioctl.h>

int ioctl(int fd , NS_GET_OWNER_UID, uid_t *uid);

DESCRIPTION
The NS_GET_OWNER_UID operation can be used to discover the owner user ID of a
user namespace (i.e., the effective user ID of the process that created the user name-
space).

fd refers to a /proc/ pid /ns/user file.

The owner user ID is returned in the uid_t pointed to by the third argument.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

fd does not refer to a user namespace.

STANDARDS
Linux.

HISTORY
Linux 4.11.

SEE ALSO
ioctl(2), ioctl_nsfs(2)

Linux man-pages 6.16 2025-05-17 1282

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

NAME
NS_GET_USERNS, NS_GET_PARENT - discovering namespace relationships

SYNOPSIS
#include <linux/nsfs.h> /* Definition of NS_GET_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , unsigned long op);

DESCRIPTION
The following ioctl(2) operations are provided to allow discovery of namespace relation-
ships (see user_namespaces(7) and pid_namespaces(7)).

In each case, fd refers to a /proc/ pid /ns/* file. Both operations return a new file de-
scriptor on success.

NS_GET_USERNS
Returns a file descriptor that refers to the owning user namespace for the name-
space referred to by fd .

NS_GET_PARENT
Returns a file descriptor that refers to the parent namespace of the namespace re-
ferred to by fd . This operation is valid only for hierarchical namespaces (i.e.,
PID and user namespaces). For user namespaces, NS_GET_PARENT is syn-
onymous with NS_GET_USERNS.

The new file descriptor returned by these operations is opened with the O_RDONLY
and O_CLOEXEC (close-on-exec; see fcntl(2)) flags.

By applying fstat(2) to the returned file descriptor, one obtains a stat structure whose
st_dev (resident device) and st_ino (inode number) fields together identify the own-
ing/parent namespace. This inode number can be matched with the inode number of an-
other /proc/ pid /ns/ {pid ,user} file to determine whether that is the owning/parent
namespace.

RETURN VALUE
On success, a file descriptor is returned. Or error, -1 is returned, and errno is set to in-
dicate the error.

ERRORS
EPERM

The requested namespace is outside of the caller’s namespace scope. This error
can occur if, for example, the owning user namespace is an ancestor of the
caller’s current user namespace. It can also occur on attempts to obtain the par-
ent of the initial user or PID namespace.

ENOTTY
The operation is not supported by this kernel version.

Additionally, the NS_GET_PARENT operation can fail with the following error:

EINVAL
fd refers to a nonhierarchical namespace.

Linux man-pages 6.16 2025-09-21 1283

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

STANDARDS
Linux.

HISTORY
NS_GET_USERNS

Linux 4.9.

NS_GET_PARENT
Linux 4.9.

EXAMPLES
The example shown below uses the ioctl(2) operations described above to perform sim-
ple discovery of namespace relationships. The following shell sessions show various ex-
amples of the use of this program.

Trying to get the parent of the initial user namespace fails, since it has no parent:

$./ns_show /proc/self/ns/user p;
The parent namespace is outside your namespace scope

Create a process running sleep(1) that resides in new user and UTS namespaces, and
show that the new UTS namespace is associated with the new user namespace:

$ unshare -Uu sleep 1000 &
[1] 23235
$./ns_show /proc/23235/ns/uts u;
Device/Inode of owning user namespace is: [0,3] / 4026532448
$ readlink /proc/23235/ns/user;
user:[4026532448]

Then show that the parent of the new user namespace in the preceding example is the
initial user namespace:

$ readlink /proc/self/ns/user;
user:[4026531837]
$./ns_show /proc/23235/ns/user p;
Device/Inode of parent namespace is: [0,3] / 4026531837

Start a shell in a new user namespace, and show that from within this shell, the parent
user namespace can’t be discovered. Similarly, the UTS namespace (which is associated
with the initial user namespace) can’t be discovered.

$ PS1="sh2$ " unshare -U bash;
sh2$./ns_show /proc/self/ns/user p;
The parent namespace is outside your namespace scope
sh2$./ns_show /proc/self/ns/uts u;
The owning user namespace is outside your namespace scope

Program source

/* ns_show.c

Licensed under the GNU General Public License v2 or later.
*/

Linux man-pages 6.16 2025-09-21 1284

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

#include <errno.h>
#include <fcntl.h>
#include <linux/nsfs.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/sysmacros.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd, userns_fd, parent_fd;
struct stat sb;

if (argc < 2) {
fprintf(stderr, "Usage: %s /proc/[pid]/ns/[file] [p|u]\n",

argv[0]);
fprintf(stderr, "\nDisplay the result of one or both "

"of NS_GET_USERNS (u) or NS_GET_PARENT (p)\n"
"for the specified /proc/[pid]/ns/[file]. If neither "
"'p' nor 'u' is specified,\n"
"NS_GET_USERNS is the default.\n");

exit(EXIT_FAILURE);
}

/* Obtain a file descriptor for the 'ns' file specified
in argv[1]. */

fd = open(argv[1], O_RDONLY);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

/* Obtain a file descriptor for the owning user namespace and
then obtain and display the inode number of that namespace. */

if (argc < 3 || strchr(argv[2], 'u')) {
userns_fd = ioctl(fd, NS_GET_USERNS);

if (userns_fd == -1) {
if (errno == EPERM)

printf("The owning user namespace is outside "

Linux man-pages 6.16 2025-09-21 1285

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

"your namespace scope\n");
else

perror("ioctl-NS_GET_USERNS");
exit(EXIT_FAILURE);

}

if (fstat(userns_fd, &sb) == -1) {
perror("fstat-userns");
exit(EXIT_FAILURE);

}
printf("Device/Inode of owning user namespace is: "

"[%x,%x] / %ju\n",
major(sb.st_dev),
minor(sb.st_dev),
(uintmax_t) sb.st_ino);

close(userns_fd);
}

/* Obtain a file descriptor for the parent namespace and
then obtain and display the inode number of that namespace. */

if (argc > 2 && strchr(argv[2], 'p')) {
parent_fd = ioctl(fd, NS_GET_PARENT);

if (parent_fd == -1) {
if (errno == EINVAL)

printf("Can' get parent namespace of a "
"nonhierarchical namespace\n");

else if (errno == EPERM)
printf("The parent namespace is outside "

"your namespace scope\n");
else

perror("ioctl-NS_GET_PARENT");
exit(EXIT_FAILURE);

}

if (fstat(parent_fd, &sb) == -1) {
perror("fstat-parentns");
exit(EXIT_FAILURE);

}
printf("Device/Inode of parent namespace is: [%x,%x] / %ju\n",

major(sb.st_dev),
minor(sb.st_dev),
(uintmax_t) sb.st_ino);

close(parent_fd);

Linux man-pages 6.16 2025-09-21 1286

NS_GET_USERNS(2const) NS_GET_USERNS(2const)

}

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_nsfs(2)

Linux man-pages 6.16 2025-09-21 1287

PAGEMAP_SCAN (2const) PAGEMAP_SCAN (2const)

NAME
PAGEMAP_SCAN - get and/or clear page flags

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/fs.h> /* Definition of PAGE* and PM_* constants */
#include <sys/ioctl.h>

int ioctl(int pagemap_fd , PAGEMAP_SCAN, struct pm_scan_arg *arg);

#include <linux/fs.h>

struct pm_scan_arg {
__u64 size;
__u64 flags;
__u64 start;
__u64 end;
__u64 walk_end;
__u64 vec;
__u64 vec_len;
__u64 max_pages;
__u64 category_inverted;
__u64 category_mask;
__u64 category_anyof_mask;
__u64 return_mask;

};

struct page_region {
__u64 start;
__u64 end;
__u64 categories;

};

DESCRIPTION
This ioctl(2) is used to get and optionally clear some specific flags from page table en-
tries. The information is returned with PAGE_SIZE granularity.

To start tracking the written state (flag) of a page or range of memory, the UFFD_FEA-
TURE_WP_ASYNC must be enabled by UFFDIO_API ioctl(2) on userfaultfd and
memory range must be registered with UFFDIO_REGISTER ioctl(2) in UFF-
DIO_REGISTER_MODE_WP mode.

Supported page flags
The following page table entry flags are supported:

PAGE_IS_WPALLOWED
The page has asynchronous write-protection enabled.

PAGE_IS_WRITTEN
The page has been written to from the time it was write protected.

Linux man-pages 6.16 2025-05-17 1288

PAGEMAP_SCAN (2const) PAGEMAP_SCAN (2const)

PAGE_IS_FILE
The page is file backed.

PAGE_IS_PRESENT
The page is present in the memory.

PAGE_IS_SWAPPED
The page is swapped.

PAGE_IS_PFNZERO
The page has zero PFN.

PAGE_IS_HUGE
The page is THP or Hugetlb backed.

Supported operations
The get operation is always performed if the output buffer is specified. The other opera-
tions are as following:

PM_SCAN_WP_MATCHING
Write protect the matched pages.

PM_SCAN_CHECK_WPASYNC
Abort the scan when a page is found which doesn’t have the Userfaultfd Asyn-
chronous Write protection enabled.

The struct pm_scan_arg argument
size This field should be set to the size of the structure in bytes, as in

sizeof(struct pm_scan_arg).

flags The operations to be performed are specified in it.

start The starting address of the scan is specified in it.

end The ending address of the scan is specified in it.

walk_end
The kernel returns the scan’s ending address in it. The walk_end equal to end
means that scan has completed on the entire range.

vec The address of page_region array for output.

vec_len
The length of the page_region struct array.

max_pages
It is the optional limit for the number of output pages required.

category_inverted
PAGE_IS_* categories which values match if 0 instead of 1.

category_mask
Skip pages for which any PAGE_IS_* category doesn’t match.

category_anyof_mask
Skip pages for which no PAGE_IS_* category matches.

Linux man-pages 6.16 2025-05-17 1289

PAGEMAP_SCAN (2const) PAGEMAP_SCAN (2const)

return_mask
PAGE_IS_* categories that are to be reported in page_region.

RETURN VALUE
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
Error codes can be one of, but are not limited to, the following:

EINVAL
Invalid arguments i.e., invalid size of the argument, invalid flags, invalid cate-
gories, the start address isn’t aligned with PAGE_SIZE, or vec_len is specified
when vec is NULL.

EFAULT
Invalid arg pointer, invalid vec pointer, or invalid address range specified by
start and end .

ENOMEM
No memory is available.

EINTR
Fetal signal is pending.

STANDARDS
Linux.

HISTORY
Linux 6.7.

SEE ALSO
ioctl(2)

Linux man-pages 6.16 2025-05-17 1290

PR_CAP_AMBIENT (2const) PR_CAP_AMBIENT (2const)

NAME
PR_CAP_AMBIENT - read or change the ambient capability set of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, long op, ...);

DESCRIPTION
Reads or changes the ambient capability set of the calling thread, according to the value
of op, which must be one of the following:

PR_CAP_AMBIENT_RAISE
PR_CAP_AMBIENT_LOWER
PR_CAP_AMBIENT_IS_SET
PR_CAP_AMBIENT_CLEAR_ALL

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set to
indicate the error.

ERRORS
EINVAL

op is not a valid value.

VERSIONS
Higher-level interfaces layered on top of the above operations are provided in the lib-
cap(3) library in the form of cap_get_ambient(3), cap_set_ambient(3), and cap_re-
set_ambient(3)

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT_RAISE(2const), PR_CAP_AMBIENT_LOWER(2const),
PR_CAP_AMBIENT_IS_SET(2const), PR_CAP_AMBIENT_CLEAR_ALL(2const), lib-
cap(3), cap_get_ambient(3), cap_set_ambient(3), cap_reset_ambient(3)

Linux man-pages 6.16 2025-05-17 1291

PR_CAP_AMBIENT_CLEAR_ALL(2const) PR_CAP_AMBIENT_CLEAR_ALL(2const)

NAME
PR_CAP_AMBIENT_CLEAR_ALL - clear the ambient capability set of the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_CLEAR_ALL, 0L, 0L, 0L);

DESCRIPTION
All capabilities will be removed from the ambient capability set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.16 2025-05-17 1292

PR_CAP_AMBIENT_IS_SET (2const) PR_CAP_AMBIENT_IS_SET (2const)

NAME
PR_CAP_AMBIENT_IS_SET - read the ambient capability set of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_IS_SET, long cap, 0L, 0L);

DESCRIPTION
This call returns 1 if the capability in cap is in the ambient capability set and 0 if it is
not.

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EINVAL

cap does not specify a valid capability.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.16 2025-05-17 1293

PR_CAP_AMBIENT_LOWER(2const) PR_CAP_AMBIENT_LOWER(2const)

NAME
PR_CAP_AMBIENT_LOWER - lower the ambient capability set of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_LOWER, long cap, 0L, 0L);

DESCRIPTION
The capability specified in cap is removed from the ambient capability set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

cap does not specify a valid capability.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.16 2025-05-17 1294

PR_CAP_AMBIENT_RAISE(2const) PR_CAP_AMBIENT_RAISE(2const)

NAME
PR_CAP_AMBIENT_RAISE - add to the ambient capability set of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAP_AMBIENT, PR_CAP_AMBIENT_RAISE, long cap, 0L, 0L);

DESCRIPTION
The capability specified in cap is added to the ambient capability set. The specified ca-
pability must already be present in both the permitted and the inheritable sets of the
process. This operation is not permitted if the SECBIT_NO_CAP_AMBI-
ENT_RAISE securebit is set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

cap does not specify a valid capability.

EPERM
either the capability specified in cap is not present in the process’s permitted and
inheritable capability sets, or the PR_CAP_AMBIENT_LOWER securebit has
been set.

VERSIONS
See PR_CAP_AMBIENT(2const).

STANDARDS
Linux.

HISTORY
Linux 4.3.

SEE ALSO
prctl(2), PR_CAP_AMBIENT(2const), libcap(3)

Linux man-pages 6.16 2025-05-17 1295

PR_CAPBSET_DROP(2const) PR_CAPBSET_DROP(2const)

NAME
PR_CAPBSET_DROP - drop a capability from the calling thread’s capability bounding
set

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAPBSET_DROP, long cap);

DESCRIPTION
Drop the capability specified by cap from the calling thread’s capability bounding set.
Any children of the calling thread will inherit the newly reduced bounding set.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

File capabilities are not enabled in the kernel.

EINVAL
cap does not specify a valid capability.

EPERM
The caller does not have the CAP_SETPCAP capability.

VERSIONS
A higher-level interface layered on top of this operation is provided in the libcap(3) li-
brary in the form of cap_drop_bound(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.25.

SEE ALSO
prctl(2), PR_CAPBSET_READ(2const), libcap(3), cap_drop_bound(3)

Linux man-pages 6.16 2025-08-24 1296

PR_CAPBSET_READ(2const) PR_CAPBSET_READ(2const)

NAME
PR_CAPBSET_READ - read the calling thread’s capability bounding set

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_CAPBSET_READ, long cap);

DESCRIPTION
Return 1 if the capability specified in cap is in the calling thread’s capability bounding
set, or 0 if it is not.

The capability constants are defined in <linux/capability.h>.

The capability bounding set dictates whether the process can receive the capability
through a file’s permitted capability set on a subsequent call to execve(2).

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EINVAL

cap does not specify a valid capability.

VERSIONS
A higher-level interface layered on top of this operation is provided in the libcap(3) li-
brary in the form of cap_get_bound(3)

STANDARDS
Linux.

HISTORY
Linux 2.6.25.

SEE ALSO
prctl(2), PR_CAPBSET_DROP(2const), libcap(3), cap_get_bound(3)

Linux man-pages 6.16 2025-05-17 1297

PR_FUTEX_HASH(2const) PR_FUTEX_HASH(2const)

NAME
PR_FUTEX_HASH - configure the private futex hash

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_FUTEX_HASH, unsigned long op, ...);

DESCRIPTION
Configure the attributes for the underlying hash used by the futex(2) family of opera-
tions. The Linux kernel uses a hash to distribute the unrelated futex(2) requests to differ-
ent data structures in order to reduce the lock contention. Unrelated requests are re-
quests which are not related to one another because they use a different futex word. The
data structure holds the in-kernel representation of the operation and keeps track of the
current users which are enqueued and wait for a wake up. It also provides synchronisa-
tion of waiters against wakers. The size of the global hash is determined at boot time
and is based on the number of CPUs in the system. Due to hash collision, two unrelated
futex(2) requests can share the same hash bucket. This in turn can lead to delays of the
futex(2) operation due to lock contention while accessing the data structure. These de-
lays can be problematic on a real-time system since random processes can share in-ker-
nel locks and it is not deterministic which process will be involved.

Linux 6.17 implements a process-wide private hash which is used by all futex(2) opera-
tions that specify the FUTEX_PRIVATE_FLAG option as part of the operation. With-
out any configuration the kernel will allocate 16 hash slots once the first thread has been
created. If the process continues to create threads, the kernel will try to resize the pri-
vate hash based on the number of threads and available CPUs in the system. The kernel
will only increase the size and will make sure it does not exceed the size of the global
hash.

The user can configure the size of the private hash which will also disable the automatic
resize provided by the kernel.

The value in op is one of the options below.

PR_FUTEX_HASH_GET_SLOTS
PR_FUTEX_HASH_SET_SLOTS

RETURN VALUE
On success, these calls return a nonnegative value. On error, -1 is returned, and errno is
set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 6.17.

Linux man-pages 6.16 2025-08-19 1298

PR_FUTEX_HASH(2const) PR_FUTEX_HASH(2const)

SEE ALSO
prctl(2), futex(2), PR_FUTEX_HASH_GET_SLOTS(2const), PR_FU-
TEX_HASH_SET_SLOTS(2const)

Linux man-pages 6.16 2025-08-19 1299

PR_FUTEX_HASH_GET_SLOTS(2const) PR_FUTEX_HASH_GET_SLOTS(2const)

NAME
PR_FUTEX_HASH_GET_SLOTS - return the size of the private hash

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_FUTEX_HASH, PR_FUTEX_HASH_GET_SLOTS);

DESCRIPTION
Return the current size of the private hash.

RETURN VALUE
A value of 0 means that a private hash has not been allocated and the global hash is in
use.

A value >0 specifies the size of the private hash.

On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 6.17.

SEE ALSO
prctl(2), PR_FUTEX_HASH(2const)

Linux man-pages 6.16 2025-08-19 1300

PR_FUTEX_HASH_SET_SLOTS(2const) PR_FUTEX_HASH_SET_SLOTS(2const)

NAME
PR_FUTEX_HASH_SET_SLOTS - set the size of the private hash

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_FUTEX_HASH, PR_FUTEX_HASH_SET_SLOTS,
unsigned long size, unsigned long flags);

DESCRIPTION
Set the number of slots to use for the private hash.

size Specify the size of private hash to allocate.

0 Use the global hash. This is the behaviour used before Linux 6.17.

>0 Specify the number of slots to allocate. The value must be power of two,
and the lowest possible value is 2. The upper limit depends on the avail-
able memory in the system. Each slot requires 64 bytes of memory. Ker-
nels compiled with CONFIG_PROVE_LOCKING will consume more
than that.

flags
The argument must be 0.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

An argument is invalid.

ENOMEM
Failed to allocate memory.

EBUSY
The global hash is in use and can not be changed.

STANDARDS
Linux.

HISTORY
Linux 6.17.

SEE ALSO
prctl(2), PR_FUTEX_HASH(2const)

Linux man-pages 6.16 2025-10-15 1301

PR_GET_AUXV (2const) PR_GET_AUXV (2const)

NAME
PR_GET_AUXV - get the auxiliary vector

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(size_t size;
PR_GET_AUXV, void auxv[size], unsigned long size, 0L, 0L);

DESCRIPTION
Get the auxiliary vector (auxv) into the buffer pointed to by auxv, whose size is given by
size.

If the buffer is not long enough for the full auxiliary vector, the copy will be truncated.

RETURN VALUE
On success, this call returns the full size of the auxiliary vector. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
EFAULT

auxv is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 6.4.

SEE ALSO
prctl(2)

Linux man-pages 6.16 2025-06-28 1302

PR_GET_CHILD_SUBREAPER(2const) PR_GET_CHILD_SUBREAPER(2const)

NAME
PR_GET_CHILD_SUBREAPER - get the "child subreaper" attribute of the calling
process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_CHILD_SUBREAPER, int *isset);

DESCRIPTION
Return the "child subreaper" setting of the caller, in the location pointed to by isset.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

isset is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 3.4.

SEE ALSO
prctl(2), PR_SET_CHILD_SUBREAPER(2const)

Linux man-pages 6.16 2025-05-17 1303

PR_GET_DUMPABLE(2const) PR_GET_DUMPABLE(2const)

NAME
PR_GET_DUMPABLE - get the "dumpable" attribute of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_DUMPABLE);

DESCRIPTION
Return the current state of the calling process’s "dumpable" attribute. See
PR_SET_DUMPABLE(2const).

RETURN VALUE
On success, return the value described above. On error, -1 is returned, and errno is set
to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.3.20.

SEE ALSO
prctl(2), PR_SET_DUMPABLE(2const)

Linux man-pages 6.16 2025-05-17 1304

PR_GET_ENDIAN (2const) PR_GET_ENDIAN (2const)

NAME
PR_GET_ENDIAN - get the endianness of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_ENDIAN, int *endianness);

DESCRIPTION
Return the endianness of the calling process, in the location pointed to by endianness.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

endianness is an invalid address.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.6.18 (PowerPC).

SEE ALSO
prctl(2), PR_SET_ENDIAN(2const)

Linux man-pages 6.16 2025-09-06 1305

PR_GET_FP_MODE(2const) PR_GET_FP_MODE(2const)

NAME
PR_GET_FP_MODE - get the floating point mode of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_FP_MODE);

DESCRIPTION
Return a bit mask which represents the current floating-point mode (see
PR_SET_FP_MODE(2const) for details).

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

STANDARDS
Linux. MIPS only.

HISTORY
Linux 4.0 (MIPS).

SEE ALSO
prctl(2), PR_GET_FP_MODE(2const)

Linux man-pages 6.16 2025-05-17 1306

PR_GET_FPEMU(2const) PR_GET_FPEMU(2const)

NAME
PR_GET_FPEMU - get the floating-point emulation control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_FPEMU, int * fpemu);

DESCRIPTION
Return floating-point emulation control bits, in the location pointed to by fpemu.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

fpemu is an invalid address.

STANDARDS
Linux. ia64 only.

HISTORY
Linux 2.4.18, 2.5.9. (ia64)

SEE ALSO
prctl(2), PR_SET_FPEMU(2const)

Linux man-pages 6.16 2025-05-17 1307

PR_GET_FPEXC(2const) PR_GET_FPEXC(2const)

NAME
PR_GET_FPEXC - get the floating-point exception mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_FPEXC, unsigned int *mode);

DESCRIPTION
Return floating-point exception mode, in the location pointed to by mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

mode is an invalid address.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.4.21, 2.5.32. (PowerPC)

SEE ALSO
prctl(2), PR_SET_FPEXC(2const)

Linux man-pages 6.16 2025-05-17 1308

PR_GET_IO_FLUSHER(2const) PR_GET_IO_FLUSHER(2const)

NAME
PR_GET_IO_FLUSHER - get the IO_FLUSHER state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_IO_FLUSHER, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the IO_FLUSHER state of the caller. A value of 1 indicates that the caller is in
the IO_FLUSHER state; 0 indicates that the caller is not in the IO_FLUSHER state.

The calling process must have the CAP_SYS_RESOURCE capability.

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 5.6.

SEE ALSO
prctl(2), PR_SET_IO_FLUSHER(2const)

Linux man-pages 6.16 2025-05-17 1309

PR_GET_KEEPCAPS(2const) PR_GET_KEEPCAPS(2const)

NAME
PR_GET_KEEPCAPS - get the state of the "keep capabilities" flag

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_KEEPCAPS);

DESCRIPTION
Return the current state of the calling thread’s "keep capabilities" flag. See capabili-
ties(7) for a description of this flag.

RETURN VALUE
On success, this call returns the boolean value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.2.18.

SEE ALSO
signal(2), PR_SET_KEEPCAPS(2const)

Linux man-pages 6.16 2025-05-17 1310

PR_GET_MDWE(2const) PR_GET_MDWE(2const)

NAME
PR_GET_MDWE - get the Memory-Deny-Write-Execute protection mask for the call-
ing process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_MDWE, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the Memory-Deny-Write-Execute protection mask of the calling process. See
PR_SET_MDWE(2const) for information on the protection mask bits.

RETURN VALUE
On success, a nonnegative value is returned. On error, -1 is returned, and errno is set to
indicate the error.

STANDARDS
Linux.

HISTORY
Linux 6.3.

SEE ALSO
prctl(2), PR_SET_MDWE(2const)

Linux man-pages 6.16 2025-05-17 1311

PR_GET_NO_NEW_PRIVS(2const) PR_GET_NO_NEW_PRIVS(2const)

NAME
PR_GET_NO_NEW_PRIVS - get the calling thread’s no_new_privs attribute

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_NO_NEW_PRIVS, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the value of the no_new_privs attribute for the calling thread. A value of 0 indi-
cates the regular execve(2) behavior. A value of 1 indicates execve(2) will operate in the
privilege-restricting mode described in PR_SET_NO_NEW_PRIVS(2const).

RETURN VALUE
On success, PR_GET_NO_NEW_PRIVS returns the boolean value described above.
On error, -1 is returned, and errno is set to indicate the error.

FILES
/proc/ pid /status

Since Linux 4.10, the value of a thread’s no_new_privs attribute can be viewed
via the NoNewPrivs field in this file.

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_SET_NO_NEW_PRIVS(2const)

Linux man-pages 6.16 2025-05-17 1312

PR_GET_PDEATHSIG(2const) PR_GET_PDEATHSIG(2const)

NAME
PR_GET_PDEATHSIG - get the parent-death signal number of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_PDEATHSIG, int *sig);

DESCRIPTION
Return the parent-death signal number of the calling process, in the location pointed to
by sig.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

sig is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 2.3.15.

SEE ALSO
signal(2), PR_SET_PDEATHSIG(2const)

Linux man-pages 6.16 2025-05-17 1313

PR_GET_SECCOMP(2) System Calls Manual PR_GET_SECCOMP(2)

NAME
PR_GET_SECCOMP - get the secure computing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_SECCOMP);

DESCRIPTION
Return the secure computing mode of the calling thread.

If the caller is not in secure computing mode, this operation returns 0; if the caller is in
strict secure computing mode, then the prctl() call will cause a SIGKILL signal to be
sent to the process. If the caller is in filter mode, and this system call is allowed by the
seccomp filters, it returns 2; otherwise, the process is killed with a SIGKILL signal.

This operation is available only if the kernel is configured with CONFIG_SECCOMP
enabled.

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is re-
turned, and errno is set to indicate the error; or the process is killed.

ERRORS
EINVAL

The kernel was not configured with CONFIG_SECCOMP.

SIGKILL
The caller is in strict secure computing mode.

SIGKILL
The caller is in filter mode, and this system call is not allowed by the seccomp
filters.

FILES
/proc/ pid /status

Since Linux 3.8, the Seccomp field of this file provides a method of obtaining the
same information, without the risk that the process is killed; see proc_pid_sta-
tus(5).

STANDARDS
Linux.

HISTORY
Linux 2.6.23.

SEE ALSO
prctl(2), PR_SET_SECCOMP(2const), seccomp(2)

Linux man-pages 6.16 2025-09-21 1314

PR_GET_SECUREBITS(2const) PR_GET_SECUREBITS(2const)

NAME
PR_GET_SECUREBITS - get the "securebits" flags of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_SECUREBITS);

DESCRIPTION
Return the "securebits" flags of the calling thread. See capabilities(7).

RETURN VALUE
On success, PR_GET_SECUREBITS, returns the nonnegative value described above.
On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.26.

SEE ALSO
prctl(2), PR_SET_SECUREBITS(2const), capabilities(7)

Linux man-pages 6.16 2025-05-17 1315

PR_GET_SPECULATION_CTRL(2const) PR_GET_SPECULATION_CTRL(2const)

NAME
PR_GET_SPECULATION_CTRL - get the state of a speculation misfeature for the
calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_SPECULATION_CTRL, long misfeature, 0L, 0L, 0L);

DESCRIPTION
Return the state of the speculation misfeature specified in misfeature.

Currently, misfeature must be one of:

PR_SPEC_STORE_BYPASS
Get the state of the speculative store bypass misfeature.

PR_SPEC_INDIRECT_BRANCH (since Linux 4.20)
Get the state of the indirect branch speculation misfeature.

The return value uses bits 0-4 with the following meaning:

PR_SPEC_PRCTL
Mitigation can be controlled per thread by PR_SET_SPECULA-
TION_CTRL(2const).

PR_SPEC_ENABLE
The speculation feature is enabled, mitigation is disabled.

PR_SPEC_DISABLE
The speculation feature is disabled, mitigation is enabled.

PR_SPEC_FORCE_DISABLE
Same as PR_SPEC_DISABLE but cannot be undone.

PR_SPEC_DISABLE_NOEXEC (since Linux 5.1)
Same as PR_SPEC_DISABLE, but the state will be cleared on execve(2).

If all bits are 0, then the CPU is not affected by the speculation misfeature.

If PR_SPEC_PRCTL is set, then per-thread control of the mitigation is available. If
not set, PR_SET_SPECULATION_CTRL(2const) for the speculation misfeature will fail.

RETURN VALUE
On success, PR_GET_SPECULATION_CTRL returns the nonnegative value de-
scribed above. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENODEV

The kernel or CPU does not support the requested speculation misfeature.

STANDARDS
Linux.

Linux man-pages 6.16 2025-05-17 1316

PR_GET_SPECULATION_CTRL(2const) PR_GET_SPECULATION_CTRL(2const)

HISTORY
Linux 4.17.

SEE ALSO
prctl(2), PR_SET_SPECULATION_CTRL(2const)

Linux man-pages 6.16 2025-05-17 1317

PR_GET_TAGGED_ADDR_CTRL(2const) PR_GET_TAGGED_ADDR_CTRL(2const)

NAME
PR_GET_TAGGED_ADDR_CTRL - get the tagged address mode for the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TAGGED_ADDR_CTRL, 0L, 0L, 0L, 0L);

DESCRIPTION
Returns the current tagged address mode for the calling thread.

The call returns a nonnegative value describing the current tagged address mode, en-
coded in the same way as the mode argument of
PR_SET_TAGGED_ADDR_CTRL(2const).

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
This feature is disabled or unsupported by the kernel, or disabled via /proc/sys/abi/
tagged_addr_disabled .

FILES
/proc/sys/abi/tagged_addr_disabled

STANDARDS
Linux. arm64 only.

HISTORY
Linux 5.4 (arm64).

SEE ALSO
prctl(2), PR_SET_TAGGED_ADDR_CTRL(2const)

For more information, see the kernel source file Documentation/arm64/
tagged-address-abi.rst.

Linux man-pages 6.16 2025-05-17 1318

PR_GET_THP_DISABLE(2const) PR_GET_THP_DISABLE(2const)

NAME
PR_GET_THP_DISABLE - get the state of the "THP disable" flag for the calling
thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_THP_DISABLE, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the current setting of the "THP disable" flag for the calling thread: either 1, if the
flag is set, or 0, if it is not.

RETURN VALUE
On success, PR_GET_THP_DISABLE, returns the boolean value described above.
On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 3.15.

SEE ALSO
prctl(2), PR_SET_THP_DISABLE(2const)

Linux man-pages 6.16 2025-05-17 1319

PR_GET_TID_ADDRESS(2const) PR_GET_TID_ADDRESS(2const)

NAME
PR_GET_TID_ADDRESS - get the clear_child_tid address

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TID_ADDRESS, int **addrp);

DESCRIPTION
Return the clear_child_tid address set by set_tid_address(2) and the clone(2)
CLONE_CHILD_CLEARTID flag, in the location pointed to by addrp.

This feature is available only if the kernel is built with the CONFIG_CHECK-
POINT_RESTORE option enabled.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

addrp is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 3.5.

CAVEATS
Note that since the prctl() system call does not have a compat implementation for the
AMD64 x32 and MIPS n32 ABIs, and the kernel writes out a pointer using the kernel’s
pointer size, this operation expects a user-space buffer of 8 (not 4) bytes on these ABIs.

SEE ALSO
prctl(2)

Linux man-pages 6.16 2025-05-17 1320

PR_GET_TIMERSLACK (2const) PR_GET_TIMERSLACK (2const)

NAME
PR_GET_TIMERSLACK - get the "current" timer slack value for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TIMERSLACK);

DESCRIPTION
Return the "current" timer slack value of the calling thread.

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

FILES
/proc/pid /timerslack_ns

STANDARDS
Linux.

HISTORY
Linux 2.6.28.

SEE ALSO
signal(2), PR_SET_TIMERSLACK(2const), proc_pid_timerslack_ns(5)

Linux man-pages 6.16 2025-05-17 1321

PR_GET_TIMING(2const) PR_GET_TIMING(2const)

NAME
PR_GET_TIMING - get the process timing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TIMING);

DESCRIPTION
Return which process timing method is currently in use.

RETURN VALUE
On success, PR_GET_TIMING returns the nonnegative value described above. On er-
ror, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

SEE ALSO
prctl(2), PR_SET_TIMING(2const)

Linux man-pages 6.16 2025-08-02 1322

PR_GET_TSC(2const) PR_GET_TSC(2const)

NAME
PR_GET_TSC - get wether the timestamp counter can be read

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_TSC, int * flag);

DESCRIPTION
Return the state of the flag determining whether the timestamp counter can be read, in
the location pointed to by flag.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

flag is an invalid address.

STANDARDS
Linux. x86 only.

HISTORY
Linux 2.6.26 (x86).

SEE ALSO
prctl(2), PR_SET_TSC(2const)

Linux man-pages 6.16 2025-08-24 1323

PR_GET_UNALIGN (2const) PR_GET_UNALIGN (2const)

NAME
PR_GET_UNALIGN - get unaligned access control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_GET_UNALIGN, unsigned int *bits);

DESCRIPTION
Return unaligned access control bits, in the location pointed to by bits.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

bits is an invalid address.

STANDARDS
Linux.

HISTORY
See PR_SET_UNALIGN(2const).

SEE ALSO
prctl(2), PR_SET_UNALIGN(2const)

Linux man-pages 6.16 2025-05-17 1324

PR_MCE_KILL(2const) PR_MCE_KILL(2const)

NAME
PR_MCE_KILL - set the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL, long op, ...);

DESCRIPTION
Set the machine check memory corruption kill policy for the calling thread.

op is one of the following operations:

PR_MCE_KILL_CLEAR
PR_MCE_KILL_SET

The policy is inherited by children.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

op is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL_CLEAR(2const), PR_MCE_KILL_SET(2const),
PR_MCE_KILL_GET(2const)

Linux man-pages 6.16 2025-05-17 1325

PR_MCE_KILL_CLEAR(2const) PR_MCE_KILL_CLEAR(2const)

NAME
PR_MCE_KILL_CLEAR - clear the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL, PR_MCE_KILL_CLEAR, 0L, 0L, 0L);

DESCRIPTION
Clear the thread memory corruption kill policy and use the system-wide default.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

FILES
/proc/sys/vm/memory_failure_early_kill

This file defines the system-wide default.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL(2const), proc_sys_vm(5)

Linux man-pages 6.16 2025-05-17 1326

PR_MCE_KILL_GET (2const) PR_MCE_KILL_GET (2const)

NAME
PR_MCE_KILL_GET - get the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL_GET, 0L, 0L, 0L, 0L);

DESCRIPTION
Return the current per-process machine check kill policy; see
PR_MCE_KILL_SET(2const).

RETURN VALUE
On success, this call returns the nonnegative value described above. On error, -1 is re-
turned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL(2const), PR_MCE_KILL_SET(2const)

Linux man-pages 6.16 2025-05-17 1327

PR_MCE_KILL_SET (2const) PR_MCE_KILL_SET (2const)

NAME
PR_MCE_KILL_SET - set the machine check memory corruption kill policy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_MCE_KILL, PR_MCE_KILL_SET, long pol, 0L, 0L);

DESCRIPTION
Use a thread-specific memory corruption kill policy.

pol defines whether the policy is early kill (PR_MCE_KILL_EARLY), late kill
(PR_MCE_KILL_LATE), or the system-wide default (PR_MCE_KILL_DEFAULT).

Early kill means that the thread receives a SIGBUS signal as soon as hardware memory
corruption is detected inside its address space.

In late kill mode, the process is killed only when it accesses a corrupted page. See
sigaction(2) for more information on the SIGBUS signal.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

pol is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 2.6.32.

SEE ALSO
prctl(2), PR_MCE_KILL(2const)

Linux man-pages 6.16 2025-05-17 1328

PR_MPX_ENA . . . MANAGEMENT (2const) PR_MPX_ENA . . . MANAGEMENT (2const)

NAME
PR_MPX_ENABLE_MANAGEMENT, PR_MPX_DISABLE_MANAGEMENT - en-
able or disable kernel management of Memory Protection eXtensions (MPX)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

[[deprecated]] int prctl(PR_MPX_ENABLE_MANAGEMENT, 0L, 0L, 0L, 0L);
[[deprecated]] int prctl(PR_MPX_DISABLE_MANAGEMENT, 0L, 0L, 0L, 0L);

DESCRIPTION
Enable or disable kernel management of Memory Protection eXtensions (MPX) bounds
tables.

MPX is a hardware-assisted mechanism for performing bounds checking on pointers. It
consists of a set of registers storing bounds information and a set of special instruction
prefixes that tell the CPU on which instructions it should do bounds enforcement. There
is a limited number of these registers and when there are more pointers than registers,
their contents must be "spilled" into a set of tables. These tables are called "bounds ta-
bles" and the MPX prctl() operations control whether the kernel manages their alloca-
tion and freeing.

When management is enabled, the kernel will take over allocation and freeing of the
bounds tables. It does this by trapping the #BR exceptions that result at first use of
missing bounds tables and instead of delivering the exception to user space, it allocates
the table and populates the bounds directory with the location of the new table. For
freeing, the kernel checks to see if bounds tables are present for memory which is not al-
located, and frees them if so.

Before enabling MPX management using PR_MPX_ENABLE_MANAGEMENT, the
application must first have allocated a user-space buffer for the bounds directory and
placed the location of that directory in the bndcfgu register.

These calls fail if the CPU or kernel does not support MPX. Kernel support for MPX is
enabled via the CONFIG_X86_INTEL_MPX configuration option. You can check
whether the CPU supports MPX by looking for the mpx CPUID bit, like with the fol-
lowing command:

cat /proc/cpuinfo | grep ' mpx '

A thread may not switch in or out of long (64-bit) mode while MPX is enabled.

All threads in a process are affected by these calls.

The child of a fork(2) inherits the state of MPX management. During execve(2), MPX
management is reset to a state as if PR_MPX_DISABLE_MANAGEMENT had been
called.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

Linux man-pages 6.16 2025-06-02 1329

PR_MPX_ENA . . . MANAGEMENT (2const) PR_MPX_ENA . . . MANAGEMENT (2const)

ERRORS
ENXIO

The kernel or the CPU does not support MPX management. Check that the ker-
nel and processor have MPX support.

STANDARDS
None.

HISTORY
Linux 3.19. Removed in Linux 5.4. Only on x86.

Due to a lack of toolchain support, PR_MPX_ENABLE_MANAGEMENT and
PR_MPX_DISABLE_MANAGEMENT are not supported in Linux 5.4 and later.

SEE ALSO
prctl(2)

For further information on Intel MPX, see the kernel source file Documentation/x86/in-
tel_mpx.txt.

Linux man-pages 6.16 2025-06-02 1330

PR_PAC_RESET_KEYS(2const) PR_PAC_RESET_KEYS(2const)

NAME
PR_PAC_RESET_KEYS - reset the calling thread’s pointer authentication code keys

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_PAC_RESET_KEYS, unsigned long keys, 0L, 0L, 0L);

DESCRIPTION
Securely reset the thread’s pointer authentication keys to fresh random values generated
by the kernel.

The set of keys to be reset is specified by keys, which must be a logical OR of zero or
more of the following:

PR_PAC_APIAKEY
instruction authentication key A

PR_PAC_APIBKEY
instruction authentication key B

PR_PAC_APDAKEY
data authentication key A

PR_PAC_APDBKEY
data authentication key B

PR_PAC_APGAKEY
generic authentication “A” key.

(Yes folks, there really is no generic B key.)

As a special case, if keys is zero, then all the keys are reset. Since new keys could be
added in future, this is the recommended way to completely wipe the existing keys when
establishing a clean execution context.

There is no need to use PR_PAC_RESET_KEYS in preparation for calling execve(2),
since execve(2) resets all the pointer authentication keys.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

keys contains set bits that are invalid or unsupported on this platform.

STANDARDS
Linux. arm64 only.

HISTORY
Linux 5.0 (arm64).

Linux man-pages 6.16 2025-05-17 1331

PR_PAC_RESET_KEYS(2const) PR_PAC_RESET_KEYS(2const)

CAVEATS
Because the compiler or run-time environment may be using some or all of the keys, a
successful PR_PAC_RESET_KEYS may crash the calling process. The conditions for
using it safely are complex and system-dependent. Don’t use it unless you know what
you are doing.

SEE ALSO
prctl(2)

For more information, see the kernel source file Documentation/arm64/pointer-authen-
tication.rst (or Documentation/arm64/pointer-authentication.txt before Linux 5.3).

Linux man-pages 6.16 2025-05-17 1332

PR_RISCV_SE . . . HE_FLUSH_CTX(2const) PR_RISCV_SE . . . HE_FLUSH_CTX(2const)

NAME
PR_RISCV_SET_ICACHE_FLUSH_CTX - Enable/disable icache flushing instructions
in userspace.

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_RISCV_SET_ICACHE_FLUSH_CTX, unsigned long ctx,
unsigned long scope);

DESCRIPTION
The context and the scope can be provided using ctx and scope respectively.

When scope is set to PR_RISCV_SCOPE_PER_PROCESS all threads in the process
are permitted to emit icache flushing instructions. Whenever any thread in the process is
migrated, the corresponding hart’s icache will be guaranteed to be consistent with in-
struction storage. This does not enforce any guarantees outside of migration. If a thread
modifies an instruction that another thread may attempt to execute, the other thread must
still emit an icache flushing instruction before attempting to execute the potentially
modified instruction. This must be performed by the user-space program.

In per-thread context (eg., scope is set to PR_RISCV_SCOPE_PER_THREAD) only
the thread calling this function is permitted to emit icache flushing instructions. When
the thread is migrated, the corresponding hart’s icache will be guaranteed to be consis-
tent with instruction storage.

On kernels configured without SMP, this prctl
PR_RISCV_SET_ICACHE_FLUSH_CTX is a nop as migrations across harts will not
occur.

The following values for ctx can be specified:

PR_RISCV_CTX_SW_FENCEI_ON (since Linux 6.10)
Allow fence.i in user space.

PR_RISCV_CTX_SW_FENCEI_OFF (since Linux 6.10)
Disallow fence.i in user space. All threads in a process will be affected when
scope is set to PR_RISCV_SCOPE_PER_PROCESS. Therefore, caution
must be taken; use this flag only when you can guarantee that no thread in the
process will emit fence.i from this point onward.

The following values for scope can be specified:

PR_RISCV_SCOPE_PER_PROCESS (since Linux 6.10)
Ensure the icache of any thread in this process is coherent with instruction stor-
age upon migration.

PR_RISCV_SCOPE_PER_THREAD (since Linux 6.10)
Ensure the icache of the current thread is coherent with instruction storage upon
migration.

Linux man-pages 6.16 2025-09-21 1333

PR_RISCV_SE . . . HE_FLUSH_CTX(2const) PR_RISCV_SE . . . HE_FLUSH_CTX(2const)

EXAMPLES
The following files are meant to be compiled and linked with each other. The mod-
ify_instruction() function replaces an add with zero with an add with one, causing the
instruction sequence in get_value() to change from returning a zero to returning a one.

Program source: cmodx.c
#include <stdio.h>
#include <sys/prctl.h>

extern int get_value(void);
extern void modify_instruction(void);

int
main(void)
{

int value = get_value();

printf("Value before cmodx: %d\n", value);

// Call prctl before first fence.i is called
prctl(PR_RISCV_SET_ICACHE_FLUSH_CTX, PR_RISCV_CTX_SW_FENCEI_ON,

PR_RISCV_SCOPE_PER_PROCESS);

modify_instruction();

// Call prctl after final fence.i is called in process
prctl(PR_RISCV_SET_ICACHE_FLUSH_CTX, PR_RISCV_CTX_SW_FENCEI_OFF,

PR_RISCV_SCOPE_PER_PROCESS);

value = get_value();
printf("Value after cmodx: %d\n", value);
return 0;

}

Program source: cmodx.S
.option norvc

.text

.global modify_instruction
modify_instruction:
lw a0, new_insn
lui a5,%hi(old_insn)
sw a0,%lo(old_insn)(a5)
fence.i
ret

.section modifiable, "awx"

.global get_value

Linux man-pages 6.16 2025-09-21 1334

PR_RISCV_SE . . . HE_FLUSH_CTX(2const) PR_RISCV_SE . . . HE_FLUSH_CTX(2const)

get_value:
li a0, 0
old_insn:
addi a0, a0, 0
ret

.data
new_insn:
addi a0, a0, 1

Expected result
Value before cmodx: 0
Value after cmodx: 1

STANDARDS
Linux. RISC-V only.

HISTORY
Linux 6.10 (RISC-V).

SEE ALSO
prctl(2)

Linux man-pages 6.16 2025-09-21 1335

PR_SET_CHILD_SUBREAPER(2const) PR_SET_CHILD_SUBREAPER(2const)

NAME
PR_SET_CHILD_SUBREAPER - set/unset the "child subreaper" attribute of the call-
ing process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_CHILD_SUBREAPER, long set);

DESCRIPTION
If set is nonzero, set the "child subreaper" attribute of the calling process; if set is zero,
unset the attribute.

A subreaper fulfills the role of init(1) for its descendant processes. When a process be-
comes orphaned (i.e., its immediate parent terminates), then that process will be repar-
ented to the nearest still living ancestor subreaper. Subsequently, calls to getppid(2) in
the orphaned process will now return the PID of the subreaper process, and when the or-
phan terminates, it is the subreaper process that will receive a SIGCHLD signal and
will be able to wait(2) on the process to discover its termination status.

The setting of the "child subreaper" attribute is not inherited by children created by
fork(2) and clone(2). The setting is preserved across execve(2).

Establishing a subreaper process is useful in session management frameworks where a
hierarchical group of processes is managed by a subreaper process that needs to be in-
formed when one of the processes—for example, a double-forked daemon—terminates
(perhaps so that it can restart that process). Some init(1) frameworks (e.g., systemd(1))
employ a subreaper process for similar reasons.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 3.4.

SEE ALSO
prctl(2), PR_GET_CHILD_SUBREAPER(2const)

Linux man-pages 6.16 2025-05-17 1336

PR_SET_DUMPABLE(2const) PR_SET_DUMPABLE(2const)

NAME
PR_SET_DUMPABLE - set the "dumpable" attribute of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_DUMPABLE, long dumpable);

DESCRIPTION
Set the state of the "dumpable" attribute, which determines whether core dumps are pro-
duced for the calling process upon delivery of a signal whose default behavior is to pro-
duce a core dump.

dumpable must be either 0L (SUID_DUMP_DISABLE, process is not dumpable) or
1L (SUID_DUMP_USER, process is dumpable).

Normally, the "dumpable" attribute is set to 1. However, it is reset to the current value
contained in the file /proc/sys/fs/suid_dumpable (which by default has the value 0), in
the following circumstances:

• The process’s effective user or group ID is changed.

• The process’s filesystem user or group ID is changed (see credentials(7)).

• The process executes (execve(2)) a set-user-ID or set-group-ID program, resulting in
a change of either the effective user ID or the effective group ID.

• The process executes (execve(2)) a program that has file capabilities (see capabili-
ties(7)), but only if the permitted capabilities gained exceed those already permitted
for the process.

Processes that are not dumpable can not be attached via ptrace(2) PTRACE_ATTACH;
see ptrace(2) for further details.

If a process is not dumpable, the ownership of files in the process’s /proc/ pid directory
is affected as described in proc_pid(5).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

arg2 is neither SUID_DUMP_DISABLE nor SUID_DUMP_USER.

FILES
/proc/sys/fs/suid_dumpable

/proc/ pid /

STANDARDS
Linux.

Linux man-pages 6.16 2025-05-17 1337

PR_SET_DUMPABLE(2const) PR_SET_DUMPABLE(2const)

HISTORY
Linux 2.3.20.

Between Linux 2.6.13 and Linux 2.6.17, the value 2L was also permitted, which caused
any binary which normally would not be dumped to be dumped readable by root only;
for security reasons, this feature has been removed. (See also the description of
/proc/sys/fs/suid_dumpable in proc_sys_fs(5).)

SEE ALSO
prctl(2), PR_SET_DUMPABLE(2const)

Linux man-pages 6.16 2025-05-17 1338

PR_SET_ENDIAN (2const) PR_SET_ENDIAN (2const)

NAME
PR_SET_ENDIAN - set endianness of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_ENDIAN, long endianness);

DESCRIPTION
Set the endianness of the calling process to the value given in endianness, which should
be one of the following: PR_ENDIAN_BIG, PR_ENDIAN_LITTLE, or PR_EN-
DIAN_PPC_LITTLE (PowerPC pseudo little endian).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

endianness is not a valid value.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.6.18 (PowerPC).

SEE ALSO
prctl(2), PR_GET_ENDIAN(2const)

Linux man-pages 6.16 2025-09-06 1339

PR_SET_FP_MODE(2const) PR_SET_FP_MODE(2const)

NAME
PR_SET_FP_MODE - set the floating point mode of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_FP_MODE, unsigned long mode);

DESCRIPTION
On the MIPS architecture, user-space code can be built using an ABI which permits
linking with code that has more restrictive floating-point (FP) requirements. For exam-
ple, user-space code may be built to target the O32 FPXX ABI and linked with code
built for either one of the more restrictive FP32 or FP64 ABIs. When more restrictive
code is linked in, the overall requirement for the process is to use the more restrictive
floating-point mode.

Because the kernel has no means of knowing in advance which mode the process should
be executed in, and because these restrictions can change over the lifetime of the
process, the PR_SET_FP_MODE operation is provided to allow control of the floating-
point mode from user space.

The mode argument is a bit mask describing the floating-point mode used:

PR_FP_MODE_FR
When this bit is unset (so called FR=0 or FR0 mode), the 32 floating-point reg-
isters are 32 bits wide, and 64-bit registers are represented as a pair of registers
(even- and odd- numbered, with the even-numbered register containing the lower
32 bits, and the odd-numbered register containing the higher 32 bits).

When this bit is set (on supported hardware), the 32 floating-point registers are
64 bits wide (so called FR=1 or FR1 mode). Note that modern MIPS imple-
mentations (MIPS R6 and newer) support FR=1 mode only.

Applications that use the O32 FP32 ABI can operate only when this bit is unset
(FR=0; or they can be used with FRE enabled, see below). Applications that use
the O32 FP64 ABI (and the O32 FP64A ABI, which exists to provide the ability
to operate with existing FP32 code; see below) can operate only when this bit is
set (FR=1). Applications that use the O32 FPXX ABI can operate with either
FR=0 or FR=1.

PR_FP_MODE_FRE
Enable emulation of 32-bit floating-point mode. When this mode is enabled, it
emulates 32-bit floating-point operations by raising a reserved-instruction excep-
tion on every instruction that uses 32-bit formats and the kernel then handles the
instruction in software. (The problem lies in the discrepancy of handling odd-
numbered registers which are the high 32 bits of 64-bit registers with even num-
bers in FR=0 mode and the lower 32-bit parts of odd-numbered 64-bit registers
in FR=1 mode.) Enabling this bit is necessary when code with the O32 FP32
ABI should operate with code with compatible the O32 FPXX or O32 FP64A

Linux man-pages 6.16 2025-09-21 1340

PR_SET_FP_MODE(2const) PR_SET_FP_MODE(2const)

ABIs (which require FR=1 FPU mode) or when it is executed on newer hard-
ware (MIPS R6 onwards) which lacks FR=0 mode support when a binary with
the FP32 ABI is used.

Note that this mode makes sense only when the FPU is in 64-bit mode (FR=1).

Note that the use of emulation inherently has a significant performance hit and
should be avoided if possible.

In the N32/N64 ABI, 64-bit floating-point mode is always used, so FPU emulation is not
required and the FPU always operates in FR=1 mode.

This operation is mainly intended for use by the dynamic linker (ld.so(8)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EOPNOTSUPP

mode has an invalid or unsupported value.

STANDARDS
Linux. MIPS only.

HISTORY
Linux 4.0 (MIPS).

SEE ALSO
prctl(2), PR_GET_FP_MODE(2const)

Linux man-pages 6.16 2025-09-21 1341

PR_SET_FPEMU(2const) PR_SET_FPEMU(2const)

NAME
PR_SET_FPEMU - set floating-point emulation control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_FPEMU, long fpemu);

DESCRIPTION
Set floating-point emulation control bits to fpemu. Pass PR_FPEMU_NOPRINT to
silently emulate floating-point operation accesses, or PR_FPEMU_SIGFPE to not em-
ulate floating-point operations and send SIGFPE instead.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

fpemu is not a valid value.

STANDARDS
Linux. ia64 only.

HISTORY
Linux 2.4.18, 2.5.9. (ia64)

SEE ALSO
prctl(2), PR_GET_FPEMU(2const)

Linux man-pages 6.16 2025-05-17 1342

PR_SET_FPEXC(2const) PR_SET_FPEXC(2const)

NAME
PR_SET_FPEXC - set the floating-point exception mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_FPEXC, unsigned long mode);

DESCRIPTION
Set floating-point exception mode to mode. mode can be one of the following values.

PR_FP_EXC_SW_ENABLE
Use FPEXC for FP exception enables.

PR_FP_EXC_DIV
Use FPEXC for floating-point divide by zero.

PR_FP_EXC_OVF
Use FPEXC for floating-point overflow.

PR_FP_EXC_UND
Use FPEXC for floating-point underflow.

PR_FP_EXC_RES
Use FPEXC for floating-point inexact result.

PR_FP_EXC_INV
Use FPEXC for floating-point invalid operation.

PR_FP_EXC_DISABLED
Use FPEXC for FP exceptions disabled.

PR_FP_EXC_NONRECOV
Use FPEXC for async nonrecoverable exception mode.

PR_FP_EXC_ASYNC
Use FPEXC for async recoverable exception mode.

PR_FP_EXC_PRECISE
Use FPEXC for precise exception mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

mode is not a valid value.

STANDARDS
Linux. PowerPC only.

HISTORY
Linux 2.4.21, 2.5.32. (PowerPC)

Linux man-pages 6.16 2025-08-24 1343

PR_SET_FPEXC(2const) PR_SET_FPEXC(2const)

SEE ALSO
prctl(2), PR_GET_FPEXC(2const)

Linux man-pages 6.16 2025-08-24 1344

PR_SET_IO_FLUSHER(2const) PR_SET_IO_FLUSHER(2const)

NAME
PR_SET_IO_FLUSHER - change the IO_FLUSHER state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_IO_FLUSHER, long state, 0L, 0L, 0L);

DESCRIPTION
If a user process is involved in the block layer or filesystem I/O path, and can allocate
memory while processing I/O requests it must set state to 1. This will put the process in
the IO_FLUSHER state, which allows it special treatment to make progress when allo-
cating memory. If state is 0, the process will clear the IO_FLUSHER state, and the de-
fault behavior will be used.

The calling process must have the CAP_SYS_RESOURCE capability.

The IO_FLUSHER state is inherited by a child process created via fork(2) and is pre-
served across execve(2).

Examples of IO_FLUSHER applications are FUSE daemons, SCSI device emulation
daemons, and daemons that perform error handling like multipath path recovery applica-
tions.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

state is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 5.6.

SEE ALSO
prctl(2), PR_GET_IO_FLUSHER(2const)

Linux man-pages 6.16 2025-05-17 1345

PR_SET_KEEPCAPS(2const) PR_SET_KEEPCAPS(2const)

NAME
PR_SET_KEEPCAPS - set the state of the "keep capabilities" flag

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_KEEPCAPS, long state);

DESCRIPTION
Set the state of the calling thread’s "keep capabilities" flag. The effect of this flag is de-
scribed in capabilities(7). state must be either 0L (clear the flag) or 1L (set the flag).
The "keep capabilities" value will be reset to 0 on subsequent calls to execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

state is not a valid value.

EPERM
The caller’s SECBIT_KEEP_CAPS_LOCKED flag is set (see capabilities(7)).

STANDARDS
Linux.

HISTORY
Linux 2.2.18.

SEE ALSO
prctl(2), PR_GET_KEEPCAPS(2const)

Linux man-pages 6.16 2025-05-17 1346

PR_SET_MDWE(2const) PR_SET_MDWE(2const)

NAME
PR_SET_MDWE - set the Memory-Deny-Write-Execute protection mask for the call-
ing process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MDWE, unsigned long mask, 0L, 0L, 0L);

DESCRIPTION
Set the calling process’ Memory-Deny-Write-Execute protection mask. Once protection
bits are set, they can not be changed.

mask must be a bit mask of:

PR_MDWE_REFUSE_EXEC_GAIN
New memory mapping protections can’t be writable and executable. Non-exe-
cutable mappings can’t become executable.

PR_MDWE_NO_INHERIT (since Linux 6.6)
Do not propagate MDWE protection to child processes on fork(2). Setting this
bit requires setting PR_MDWE_REFUSE_EXEC_GAIN too.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

mask is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 6.3.

SEE ALSO
prctl(2), PR_GET_MDWE(2const)

Linux man-pages 6.16 2025-05-17 1347

PR_SET_MM(2const) PR_SET_MM(2const)

NAME
PR_SET_MM - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, long op, ...);

DESCRIPTION
Modify certain kernel memory map descriptor fields of the calling process. Usually
these fields are set by the kernel and dynamic loader (see ld.so(8) for more information)
and a regular application should not use this feature. However, there are cases, such as
self-modifying programs, where a program might find it useful to change its own mem-
ory map.

The calling process must have the CAP_SYS_RESOURCE capability. The value in op
is one of the options below.

PR_SET_MM_START_CODE
PR_SET_MM_END_CODE
PR_SET_MM_START_DATA
PR_SET_MM_END_DATA
PR_SET_MM_START_STACK
PR_SET_MM_START_BRK
PR_SET_MM_BRK
PR_SET_MM_ARG_START
PR_SET_MM_ARG_END
PR_SET_MM_ENV_START
PR_SET_MM_ENV_END
PR_SET_MM_AUXV
PR_SET_MM_EXE_FILE
PR_SET_MM_MAP
PR_SET_MM_MAP_SIZE

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

op is not a valid value.

EPERM
The caller does not have the CAP_SYS_RESOURCE capability.

STANDARDS
Linux.

HISTORY
Linux 3.3.

Linux man-pages 6.16 2025-05-17 1348

PR_SET_MM(2const) PR_SET_MM(2const)

Before Linux 3.10, this feature is available only if the kernel is built with the CON-
FIG_CHECKPOINT_RESTORE option enabled.

SEE ALSO
prctl(2), PR_SET_MM_START_CODE(2const), PR_SET_MM_END_CODE(2const),
PR_SET_MM_START_DATA(2const), PR_SET_MM_END_DATA(2const),
PR_SET_MM_START_STACK(2const), PR_SET_MM_START_BRK(2const),
PR_SET_MM_BRK(2const), PR_SET_MM_ARG_START(2const),
PR_SET_MM_ARG_END(2const), PR_SET_MM_ENV_START(2const),
PR_SET_MM_ENV_END(2const), PR_SET_MM_EXE_FILE(2const),
PR_SET_MM_MAP(2const), PR_SET_MM_MAP_SIZE(2const)

Linux man-pages 6.16 2025-05-17 1349

PR_SET_MM_ARG_START (2const) PR_SET_MM_ARG_START (2const)

NAME
PR_SET_MM_ARG_START, PR_SET_MM_ARG_END,
PR_SET_MM_ENV_START, PR_SET_MM_ENV_END - modify kernel memory map
descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_ARG_START, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_ARG_END, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_ENV_START, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_ENV_END, unsigned long addr, 0L, 0L);

DESCRIPTION
PR_SET_MM_ARG_START

Set the address above which the program command line is placed.

PR_SET_MM_ARG_END
Set the address below which the program command line is placed.

PR_SET_MM_ENV_START
Set the address above which the program environment is placed.

PR_SET_MM_ENV_END
Set the address below which the program environment is placed.

The address passed with these calls should belong to a process stack area. Thus, the
corresponding memory area must be readable, writable, and (depending on the kernel
configuration) have the MAP_GROWSDOWN attribute set (see mmap(2)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address space
for this architecture).

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.16 2025-05-17 1350

PR_SET_MM_AUXV (2const) PR_SET_MM_AUXV (2const)

NAME
PR_SET_MM_AUXV - set a new auxiliary vector

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_AUXV,
unsigned long addr, unsigned long size, 0L);

DESCRIPTION
Set a new auxiliary vector.

addr should provide the address of the vector. size is the size of the vector.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address space
for this architecture).

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.16 2025-06-02 1351

PR_SET_MM_BRK (2const) PR_SET_MM_BRK (2const)

NAME
PR_SET_MM_BRK - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_BRK, unsigned long addr, 0L, 0L);

DESCRIPTION
Set the current brk(2) value.

The requirements for the address are the same as for the PR_SET_MM_START_BRK
option.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address space
for this architecture).

EINVAL
addr is less than or equal to the end of the data segment or specifies a value that
would cause the RLIMIT_DATA resource limit to be exceeded.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2), PR_SET_MM(2const), PR_SET_MM_START_BRK(2const)

Linux man-pages 6.16 2025-05-17 1352

PR_SET_MM_EXE_FILE(2const) PR_SET_MM_EXE_FILE(2const)

NAME
PR_SET_MM_EXE_FILE - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_EXE_FILE, long fd , 0L, 0L);

DESCRIPTION
Supersede the /proc/ pid /exe symbolic link with a new one pointing to a new executable
file identified by the file descriptor provided in the fd argument. The file descriptor
should be obtained with a regular open(2) call.

To change the symbolic link, one needs to unmap all existing executable memory areas,
including those created by the kernel itself (for example the kernel usually creates at
least one executable memory area for the ELF .text section).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES

The file is not executable.

EBADF
The file descriptor passed in fd is not valid.

EBUSY
This the second attempt to change the /proc/ pid /exe symbolic link.

FILES
/proc/ pid /exe

STANDARDS
Linux.

HISTORY
Linux 3.5.

In Linux 4.9 and earlier, the PR_SET_MM_EXE_FILE operation can be performed
only once in a process’s lifetime; attempting to perform the operation a second time re-
sults in the error EPERM. This restriction was enforced for security reasons that were
subsequently deemed specious, and the restriction was removed in Linux 4.10 because
some user-space applications needed to perform this operation more than once.

SEE ALSO
prctl(2), PR_SET_MM(2const), proc_pid_exe(5)

Linux man-pages 6.16 2025-05-17 1353

PR_SET_MM_MAP(2const) PR_SET_MM_MAP(2const)

NAME
PR_SET_MM_MAP, PR_SET_MM_MAP_SIZE - modify kernel memory map de-
scriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_MAP,
struct prctl_mm_map *map, unsigned long size, 0L);

int prctl(PR_SET_MM, PR_SET_MM_MAP_SIZE, unsigned int *size, 0L, 0L);

DESCRIPTION
PR_SET_MM_MAP

Provides one-shot access to all the addresses modifyable with
PR_SET_MM(2const) by passing in a struct prctl_mm_map (as defined in
<linux/prctl.h>). The size argument should provide the size of the struct.

PR_SET_MM_MAP_SIZE
Returns (via the size argument) the size of the struct prctl_mm_map the kernel
expects. This allows user space to find a compatible struct.

These features are available only if the kernel is built with the CONFIG_CHECK-
POINT_RESTORE option enabled.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

The third argument is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 3.18.

SEE ALSO
prctl(2), PR_SET_MM(2const), PR_SET_MM_START_CODE(2const),
PR_SET_MM_END_CODE(2const), PR_SET_MM_START_DATA(2const),
PR_SET_MM_END_DATA(2const), PR_SET_MM_START_STACK(2const),
PR_SET_MM_START_BRK(2const), PR_SET_MM_BRK(2const),
PR_SET_MM_ARG_START(2const), PR_SET_MM_ARG_END(2const),
PR_SET_MM_ENV_START(2const), PR_SET_MM_ENV_END(2const),
PR_SET_MM_EXE_FILE(2const)

Linux man-pages 6.16 2025-05-17 1354

PR_SET_MM_START_BRK (2const) PR_SET_MM_START_BRK (2const)

NAME
PR_SET_MM_START_BRK - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_BRK, unsigned long addr, 0L, 0L);

DESCRIPTION
Set the address above which the program heap can be expanded with brk(2) call.

The address must be greater than the ending address of the current program data seg-
ment. In addition, the combined size of the resulting heap and the data segment can’t
exceed the RLIMIT_DATA resource limit (see setrlimit(2)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address space
for this architecture).

EINVAL
addr is less than or equal to the end of the data segment or specifies a value that
would cause the RLIMIT_DATA resource limit to be exceeded.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.16 2025-05-17 1355

PR_SET_MM_START_CODE(2const) PR_SET_MM_START_CODE(2const)

NAME
PR_SET_MM_START_CODE, PR_SET_MM_END_CODE - modify kernel memory
map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_CODE, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_END_CODE, unsigned long addr, 0L, 0L);

DESCRIPTION
PR_SET_MM_START_CODE

Set the address above which the program text can run. The corresponding mem-
ory area must be readable and executable, but not writable or shareable (see
mprotect(2) and mmap(2) for more information).

PR_SET_MM_END_CODE
Set the address below which the program text can run. The corresponding mem-
ory area must be readable and executable, but not writable or shareable.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address space
for this architecture).

EINVAL
The permissions of the corresponding memory area are not as required.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2)

Linux man-pages 6.16 2025-05-17 1356

PR_SET_MM_START_DATA(2const) PR_SET_MM_START_DATA(2const)

NAME
PR_SET_MM_START_DATA, PR_SET_MM_END_DATA - modify kernel memory
map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_DATA, unsigned long addr, 0L, 0L);
int prctl(PR_SET_MM, PR_SET_MM_END_DATA, unsigned long addr, 0L, 0L);

DESCRIPTION
PR_SET_MM_START_DATA

Set the address above which initialized and uninitialized (bss) data are placed.
The corresponding memory area must be readable and writable, but not exe-
cutable or shareable.

PR_SET_MM_END_DATA
Set the address below which initialized and uninitialized (bss) data are placed.
The corresponding memory area must be readable and writable, but not exe-
cutable or shareable.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address space
for this architecture).

EINVAL
The permissions of the corresponding memory area are not as required.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2)

Linux man-pages 6.16 2025-05-17 1357

PR_SET_MM_START_STACK (2const) PR_SET_MM_START_STACK (2const)

NAME
PR_SET_MM_START_STACK - modify kernel memory map descriptor fields

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_MM, PR_SET_MM_START_STACK, unsigned long addr, 0L, 0L);

DESCRIPTION
Set the start address of the stack. The corresponding memory area must be readable and
writable.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

addr is greater than TASK_SIZE (the limit on the size of the user address space
for this architecture).

EINVAL
The permissions of the corresponding memory area are not as required.

STANDARDS
Linux.

HISTORY
Linux 3.3.

SEE ALSO
prctl(2), PR_SET_MM(2const)

Linux man-pages 6.16 2025-05-17 1358

PR_SET_NAME(2const) PR_SET_NAME(2const)

NAME
PR_SET_NAME, PR_GET_NAME - operations on a process or thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_NAME, char name[16]);
int prctl(PR_GET_NAME, const char name[16]);

DESCRIPTION
PR_SET_NAME

Set the name of the calling thread, using the value in the location pointed to by
name.

The name can be up to 16 bytes long, including the terminating null byte. If the
length of the string, including the terminating null byte, exceeds 16 bytes, the
string is silently truncated.

PR_GET_NAME (since Linux 2.6.11)
Return the name of the calling thread, in the buffer pointed to by name. The re-
turned string will be null-terminated.

This is the same attribute that can be set via pthread_setname_np(3) and retrieved using
pthread_getname_np(3).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

name is an invalid address.

FILES
/proc/self/task/tid /comm

The attribute is likewise accessible via this file (see proc_pid_comm(5)), where
tid is the thread ID of the calling thread, as returned by gettid(2).

STANDARDS
Linux.

HISTORY
PR_SET_NAME

Linux 2.6.9.

PR_GET_NAME
Linux 2.6.11.

SEE ALSO
prctl(2), pthread_setname_np(3), pthread_getname_np(3), proc_pid_comm(5)

Linux man-pages 6.16 2025-05-17 1359

PR_SET_NO_NEW_PRIVS(2const) PR_SET_NO_NEW_PRIVS(2const)

NAME
PR_SET_NO_NEW_PRIVS - set the calling thread’s no_new_privs attribute

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_NO_NEW_PRIVS, 1L, 0L, 0L, 0L);

DESCRIPTION
Set the calling thread’s no_new_privs attribute. With no_new_privs set to 1, execve(2)
promises not to grant privileges to do anything that could not have been done without
the execve(2) call (for example, rendering the set-user-ID and set-group-ID mode bits,
and file capabilities non-functional).

Once set, the no_new_privs attribute cannot be unset. The setting of this attribute is in-
herited by children created by fork(2) and clone(2), and preserved across execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

The second argument is not equal to 1L.

FILES
/proc/ pid /status

Since Linux 4.10, the value of a thread’s no_new_privs attribute can be viewed
via the NoNewPrivs field in this file.

STANDARDS
Linux.

HISTORY
Linux 3.5.

SEE ALSO
prctl(2), PR_GET_NO_NEW_PRIVS(2const), seccomp(2)

For more information, see the kernel source file Documentation/userspace-api/
no_new_privs.rst (or Documentation/prctl/no_new_privs.txt before Linux 4.13).

Linux man-pages 6.16 2025-05-17 1360

PR_SET_PDEATHSIG(2const) PR_SET_PDEATHSIG(2const)

NAME
PR_SET_PDEATHSIG - set the parent-death signal of the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_PDEATHSIG, long sig);

DESCRIPTION
Set the parent-death signal of the calling process to sig (either a signal value in the range
[1, NSIG - 1], or 0 to clear). This is the signal that the calling process will get when its
parent dies.

The parent-death signal is sent upon subsequent termination of the parent thread and
also upon termination of each subreaper process (see PR_SET_CHILD_SUB-
REAPER(2const)) to which the caller is subsequently reparented. If the parent thread
and all ancestor subreapers have already terminated by the time of the
PR_SET_PDEATHSIG operation, then no parent-death signal is sent to the caller.

The parent-death signal is process-directed (see signal(7)) and, if the child installs a
handler using the sigaction(2) SA_SIGINFO flag, the si_pid field of the siginfo_t argu-
ment of the handler contains the PID of the terminating parent process.

The parent-death signal setting is cleared for the child of a fork(2). It is also (since
Linux 2.4.36 / 2.6.23) cleared when executing a set-user-ID or set-group-ID binary, or a
binary that has associated capabilities (see capabilities(7)); otherwise, this value is pre-
served across execve(2). The parent-death signal setting is also cleared upon changes to
any of the following thread credentials: effective user ID, effective group ID, filesystem
user ID, or filesystem group ID.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

sig is not a valid signal number.

STANDARDS
Linux.

HISTORY
Linux 2.1.57.

CAVEATS
The "parent" in this case is considered to be the thread that created this process. In
other words, the signal will be sent when that thread terminates (via, for example,
pthread_exit(3)), rather than after all of the threads in the parent process terminate.

SEE ALSO
prctl(2), PR_GET_PDEATHSIG(2const)

Linux man-pages 6.16 2025-05-17 1361

PR_SET_PTRACER(2const) PR_SET_PTRACER(2const)

NAME
PR_SET_PTRACER - allow processes to ptrace(2) the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_PTRACER, long pid);

DESCRIPTION
This is meaningful only when the Yama LSM is enabled and in mode 1 ("restricted
ptrace", visible via /proc/sys/kernel/yama/ptrace_scope).

When a "ptracer process ID" is passed in pid , the caller is declaring that the ptracer
process can ptrace(2) the calling process as if it were a direct process ancestor.

Each PR_SET_PTRACER operation replaces the previous "ptracer process ID".

Employing PR_SET_PTRACER with pid set to 0 clears the caller’s "ptracer process
ID". If pid is PR_SET_PTRACER_ANY, the ptrace restrictions introduced by Yama
are effectively disabled for the calling process.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

pid is not 0, PR_SET_PTRACER_ANY, nor the PID of an existing process.

STANDARDS
Linux.

HISTORY
Linux 3.4.

SEE ALSO
prctl(2),

For further information, see the kernel source file Documentation/admin-guide/LSM/
Yama.rst (or Documentation/security/Yama.txt before Linux 4.13).

Linux man-pages 6.16 2025-05-17 1362

PR_SET_SECCOMP(2const) PR_SET_SECCOMP(2const)

NAME
PR_SET_SECCOMP - set the secure computing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

[[deprecated]]
int prctl(PR_SET_SECCOMP, long mode, ...);

[[deprecated]]
int prctl(PR_SET_SECCOMP, SECCOMP_MODE_STRICT);
[[deprecated]]
int prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,

struct sock_fprog * filter);

DESCRIPTION
Set the secure computing (seccomp) mode for the calling thread, to limit the available
system calls. The more recent seccomp(2) system call provides a superset of the func-
tionality of PR_SET_SECCOMP, and is the preferred interface for new applications.

The seccomp mode is selected via mode. The seccomp constants are defined in
<linux/seccomp.h>. The following values can be specified:

SECCOMP_MODE_STRICT (since Linux 2.6.23)
See the description of SECCOMP_SET_MODE_STRICT in seccomp(2).

This operation is available only if the kernel is configured with CONFIG_SEC-
COMP enabled.

SECCOMP_MODE_FILTER (since Linux 3.5)
The allowed system calls are defined by a pointer to a Berkeley Packet Filter
passed in filter. It can be designed to filter arbitrary system calls and system call
arguments. See the description of SECCOMP_SET_MODE_FILTER in sec-
comp(2).

This operation is available only if the kernel is configured with CONFIG_SEC-
COMP_FILTER enabled.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EACCES

mode is SECCOMP_MODE_FILTER, but the process does not have the
CAP_SYS_ADMIN capability or has not set the no_new_privs attribute (see
PR_SET_NO_NEW_PRIVS(2const)).

EFAULT
mode is SECCOMP_MODE_FILTER, and filter is an invalid address.

Linux man-pages 6.16 2025-05-17 1363

PR_SET_SECCOMP(2const) PR_SET_SECCOMP(2const)

EINVAL
mode is not a valid value.

EINVAL
The kernel was not configured with CONFIG_SECCOMP.

EINVAL
mode is SECCOMP_MODE_FILTER, and the kernel was not configured with
CONFIG_SECCOMP_FILTER.

STANDARDS
Linux.

HISTORY
Linux 2.6.23.

SEE ALSO
prctl(2), PR_GET_SECCOMP(2const), seccomp(2)

Linux man-pages 6.16 2025-05-17 1364

PR_SET_SECUREBITS(2const) PR_SET_SECUREBITS(2const)

NAME
PR_SET_SECUREBITS - set the "securebits" flags of the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_SECUREBITS, unsigned long flags);

DESCRIPTION
Set the "securebits" flags of the calling thread to the value supplied in flags. See capa-
bilities(7).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

flags is not a valid value.

EPERM
The caller does not have the CAP_SETPCAP capability, or tried to unset a
"locked" flag, or tried to set a flag whose corresponding locked flag was set (see
capabilities(7)).

STANDARDS
Linux.

HISTORY
Linux 2.6.26.

SEE ALSO
prctl(2), PR_GET_SECUREBITS(2const), capabilities(7)

Linux man-pages 6.16 2025-08-24 1365

PR_SET_SPECULATION_CTRL(2const) PR_SET_SPECULATION_CTRL(2const)

NAME
PR_SET_SPECULATION_CTRL - set the state of a speculation misfeature for the call-
ing thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_SPECULATION_CTRL, long misfeature, long val, 0L, 0L);

DESCRIPTION
Sets the state of the speculation misfeature specified in misfeature. The speculation-
misfeature settings are per-thread attributes.

Currently, misfeature must be one of:

PR_SPEC_STORE_BYPASS
Set the state of the speculative store bypass misfeature.

PR_SPEC_INDIRECT_BRANCH (since Linux 4.20)
Set the state of the indirect branch speculation misfeature.

The val argument is used to hand in the control value, which is one of the following:

PR_SPEC_ENABLE
The speculation feature is enabled, mitigation is disabled.

PR_SPEC_DISABLE
The speculation feature is disabled, mitigation is enabled.

PR_SPEC_FORCE_DISABLE
Same as PR_SPEC_DISABLE, but cannot be undone.

PR_SPEC_DISABLE_NOEXEC (since Linux 5.1)
Same as PR_SPEC_DISABLE, but the state will be cleared on execve(2). Cur-
rently only supported for PR_SPEC_STORE_BYPASS.

The speculation feature can also be controlled by the spec_store_bypass_disable boot
parameter. This parameter may enforce a read-only policy which will result in the
prctl() call failing with the error ENXIO. For further details, see the kernel source file
Documentation/admin-guide/kernel-parameters.txt.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENODEV

The kernel or CPU does not support the requested speculation misfeature.

ENXIO
The control of the selected speculation misfeature is not possible. See
PR_GET_SPECULATION_CTRL for the bit fields to determine which option
is available.

Linux man-pages 6.16 2025-05-17 1366

PR_SET_SPECULATION_CTRL(2const) PR_SET_SPECULATION_CTRL(2const)

EPERM
The speculation was disabled with PR_SPEC_FORCE_DISABLE and caller
tried to enable it again.

ERANGE
misfeature is not a valid value.

STANDARDS
Linux.

HISTORY
Linux 4.17.

SEE ALSO
prctl(2), PR_GET_SPECULATION_CTRL(2const)

Linux man-pages 6.16 2025-05-17 1367

PR_SET_SYSC . . . ER_DISPATCH(2const) PR_SET_SYSC . . . ER_DISPATCH(2const)

NAME
PR_SET_SYSCALL_USER_DISPATCH - set the system-call user dispatch mechanism
for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_SYSCALL_USER_DISPATCH, long op, ...);

int prctl(PR_SET_SYSCALL_USER_DISPATCH, PR_SYS_DISPATCH_ON,
unsigned long off , unsigned long size, int8_t *switch);

int prctl(PR_SET_SYSCALL_USER_DISPATCH, PR_SYS_DISPATCH_OFF, 0L, 0L, 0L);

DESCRIPTION
Configure the Syscall User Dispatch mechanism for the calling thread. This mechanism
allows an application to selectively intercept system calls so that they can be handled
within the application itself. Interception takes the form of a thread-directed SIGSYS
signal that is delivered to the thread when it makes a system call. If intercepted, the sys-
tem call is not executed by the kernel.

PR_SYS_DISPATCH_ON
Enable this mechanism.

Once enabled, further system calls will be selectively intercepted, depending on
a control variable provided by user space. In this case, off and size respectively
identify the offset and size of a single contiguous memory region in the process
address space from where system calls are always allowed to be executed, re-
gardless of the control variable. (Typically, this area would include the area of
memory containing the C library.)

switch points to a variable that is a fast switch to allow/block system call execu-
tion without the overhead of doing another system call to re-configure Syscall
User Dispatch. This control variable can either be set to SYSCALL_DIS-
PATCH_FILTER_BLOCK to block system calls from executing or to
SYSCALL_DISPATCH_FILTER_ALLOW to temporarily allow them to be
executed. This value is checked by the kernel on every system call entry, and
any unexpected value will raise an uncatchable SIGSYS at that time, killing the
application.

When a system call is intercepted, the kernel sends a thread-directed SIGSYS
signal to the triggering thread. Various fields will be set in the siginfo_t structure
(see sigaction(2)) associated with the signal:

• si_signo will contain SIGSYS.

• si_call_addr will show the address of the system call instruction.

• si_syscall and si_arch will indicate which system call was attempted.

Linux man-pages 6.16 2025-05-17 1368

PR_SET_SYSC . . . ER_DISPATCH(2const) PR_SET_SYSC . . . ER_DISPATCH(2const)

• si_code will contain SYS_USER_DISPATCH.

• si_errno will be set to 0.

The program counter will be as though the system call happened (i.e., the pro-
gram counter will not point to the system call instruction).

When the signal handler returns to the kernel, the system call completes immedi-
ately and returns to the calling thread, without actually being executed. If neces-
sary (i.e., when emulating the system call on user space.), the signal handler
should set the system call return value to a sane value, by modifying the register
context stored in the ucontext argument of the signal handler. See sigaction(2),
sigreturn(2), and getcontext(3) for more information.

PR_SYS_DISPATCH_OFF
Syscall User Dispatch is disabled for that thread.

The setting is not preserved across fork(2), clone(2), or execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EFAULT

switch is an invalid address.

EINVAL
op is PR_SYS_DISPATCH_ON and the memory range specified is outside the
address space of the process.

EINVAL
op is invalid.

STANDARDS
Linux. x86 only.

HISTORY
Linux 5.11 (x86).

SEE ALSO
prctl(2)

For more information, see the kernel source file Documentation/admin-guide/
syscall-user-dispatch.rst

Linux man-pages 6.16 2025-05-17 1369

PR_SET_TAGGED_ADDR_CTRL(2const) PR_SET_TAGGED_ADDR_CTRL(2const)

NAME
PR_SET_TAGGED_ADDR_CTRL - control support for passing tagged user-space ad-
dresses to the kernel

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TAGGED_ADDR_CTRL, long mode, 0L, 0L, 0L);

DESCRIPTION
Controls support for passing tagged user-space addresses to the kernel (i.e., addresses
where bits 56—63 are not all zero).

The level of support is selected by support, which can be one of the following:

0L Addresses that are passed for the purpose of being dereferenced by the kernel
must be untagged.

PR_TAGGED_ADDR_ENABLE
Addresses that are passed for the purpose of being dereferenced by the kernel
may be tagged, with the exceptions summarized below.

On success, the mode specified in mode is set for the calling thread.

If prctl(PR_SET_TAGGED_ADDR_CTRL, 0L, 0L, 0L, 0L) fails with EINVAL, then all
addresses passed to the kernel must be untagged.

Irrespective of which mode is set, addresses passed to certain interfaces must always be
untagged:

• brk(2), mmap(2), shmat(2), shmdt(2), and the new_address argument of mremap(2).

(Prior to Linux 5.6 these accepted tagged addresses, but the behaviour may not be
what you expect. Don’t rely on it.)

• ‘polymorphic’ interfaces that accept pointers to arbitrary types cast to a void * or
other generic type, specifically prctl(), ioctl(2), and in general setsockopt(2) (only
certain specific setsockopt(2) options allow tagged addresses).

This list of exclusions may shrink when moving from one kernel version to a later kernel
version. While the kernel may make some guarantees for backwards compatibility rea-
sons, for the purposes of new software the effect of passing tagged addresses to these in-
terfaces is unspecified.

The mode set by this call is inherited across fork(2) and clone(2). The mode is reset by
execve(2) to 0 (i.e., tagged addresses not permitted in the user/kernel ABI).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS

Linux man-pages 6.16 2025-05-17 1370

PR_SET_TAGGED_ADDR_CTRL(2const) PR_SET_TAGGED_ADDR_CTRL(2const)

EINVAL
mode is invalid or unsupported.

EINVAL
This feature is disabled via /proc/sys/abi/tagged_addr_disabled .

FILES
/proc/sys/abi/tagged_addr_disabled

STANDARDS
Linux. arm64 only.

HISTORY
Linux 5.4 (arm64).

CAVEATS
This call is primarily intended for use by the run-time environment. A successful
PR_SET_TAGGED_ADDR_CTRL call elsewhere may crash the calling process. The
conditions for using it safely are complex and system-dependent. Don’t use it unless
you know what you are doing.

SEE ALSO
prctl(2), PR_SET_TAGGED_ADDR_CTRL(2const)

For more information, see the kernel source file Documentation/arm64/tagged-address-
abi.rst.

Linux man-pages 6.16 2025-05-17 1371

PR_SET_THP_DISABLE(2const) PR_SET_THP_DISABLE(2const)

NAME
PR_SET_THP_DISABLE - set the state of the "THP disable" flag for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_THP_DISABLE, long flag, 0L, 0L, 0L);

DESCRIPTION
Set the state of the "THP disable" flag for the calling thread. If flag has a nonzero
value, the flag is set, otherwise it is cleared.

Setting this flag provides a method for disabling transparent huge pages for jobs where
the code cannot be modified, and using a malloc(3) hook with madvise(2) is not an op-
tion (i.e., statically allocated data). The setting of the "THP disable" flag is inherited by
a child created via fork(2) and is preserved across execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 3.15.

SEE ALSO
prctl(2), PR_GET_THP_DISABLE(2const)

Linux man-pages 6.16 2025-09-06 1372

PR_SET_TIMERSLACK (2const) PR_SET_TIMERSLACK (2const)

NAME
PR_SET_TIMERSLACK - set the "current" timer slack value for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TIMERSLACK, unsigned long slack);

DESCRIPTION
Each thread has two associated timer slack values: a "default" value, and a "current"
value. This operation sets the "current" timer slack value for the calling thread. slack is
an unsigned long value in the range [1L, ULONG_MAX]. If the nanosecond value
supplied in slack is greater than zero, then the "current" value is set to this value. If
slack is 0L, the "current" timer slack is reset to the thread’s "default" timer slack value.

The "current" timer slack is used by the kernel to group timer expirations for the calling
thread that are close to one another; as a consequence, timer expirations for the thread
may be up to the specified number of nanoseconds late (but will never expire early).
Grouping timer expirations can help reduce system power consumption by minimizing
CPU wake-ups.

The timer expirations affected by timer slack are those set by select(2), pselect(2),
poll(2), ppoll(2), epoll_wait(2), epoll_pwait(2), clock_nanosleep(2), nanosleep(2), and
futex(2) (and thus the library functions implemented via futexes, including
pthread_cond_timedwait(3), pthread_mutex_timedlock(3), pthread_rwlock_timedrd-
lock(3), pthread_rwlock_timedwrlock(3), and sem_timedwait(3)).

Timer slack is not applied to threads that are scheduled under a real-time scheduling pol-
icy (see sched_setscheduler(2)).

When a new thread is created, the two timer slack values are made the same as the "cur-
rent" value of the creating thread. Thereafter, a thread can adjust its "current" timer
slack value via PR_SET_TIMERSLACK. The "default" value can’t be changed. The
timer slack values of init (PID 1), the ancestor of all processes, are 50,000 nanoseconds
(50 microseconds). The timer slack value is inherited by a child created via fork(2), and
is preserved across execve(2).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

FILES
/proc/pid /timerslack_ns

Since Linux 4.6, the "current" timer slack value of any process can be examined
and changed via this file.

STANDARDS
Linux.

Linux man-pages 6.16 2025-05-17 1373

PR_SET_TIMERSLACK (2const) PR_SET_TIMERSLACK (2const)

HISTORY
Linux 2.6.28.

SEE ALSO
prctl(2), PR_GET_TIMERSLACK(2const), proc_pid_timerslack_ns(5)

Linux man-pages 6.16 2025-05-17 1374

PR_SET_TIMING(2const) PR_SET_TIMING(2const)

NAME
PR_SET_TIMING - set the process timing mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TIMING, long mode);

DESCRIPTION
Set whether to use (normal, traditional) statistical process timing or accurate timestamp-
based process timing, by passing PR_TIMING_STATISTICAL or PR_TIM-
ING_TIMESTAMP to mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

mode is not PR_TIMING_STATISTICAL.

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

CAVEATS
PR_TIMING_TIMESTAMP is not currently implemented (attempting to set this mode
will yield the error EINVAL).

SEE ALSO
prctl(2), PR_GET_TIMING(2const)

Linux man-pages 6.16 2025-05-17 1375

PR_SET_TSC(2const) PR_SET_TSC(2const)

NAME
PR_SET_TSC - change whether the timestamp counter can be read by the process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_TSC, long flag);

DESCRIPTION
Set the state of the flag determining whether the timestamp counter can be read by the
process. Pass PR_TSC_ENABLE to flag to allow it to be read, or
PR_TSC_SIGSEGV to generate a SIGSEGV when the process tries to read the time-
stamp counter.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

flag is not a valid value.

STANDARDS
Linux. x86 only.

HISTORY
Linux 2.6.26 (x86).

SEE ALSO
prctl(2), PR_GET_TSC(2const)

Linux man-pages 6.16 2025-08-24 1376

PR_SET_UNALIGN (2const) PR_SET_UNALIGN (2const)

NAME
PR_SET_UNALIGN - set unaligned access control bits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_UNALIGN, unsigned long flag);

DESCRIPTION
Set unaligned access control bits to arg2.

Pass PR_UNALIGN_NOPRINT to silently fix up unaligned user accesses, or PR_UN-
ALIGN_SIGBUS to generate SIGBUS on unaligned user access.

Alpha also supports an additional flag with the value of 4 and no corresponding named
constant, which instructs kernel to not fix up unaligned accesses (it is analogous to pro-
viding the UAC_NOFIX flag in SSI_NVPAIRS operation of the setsysinfo() system
call on Tru64).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

flag is not a valid value.

STANDARDS
Linux.

HISTORY
Only on:

• ia64, since Linux 2.3.48
• parisc, since Linux 2.6.15
• PowerPC, since Linux 2.6.18
• Alpha, since Linux 2.6.22
• sh, since Linux 2.6.34
• tile, since Linux 3.12

SEE ALSO
prctl(2), PR_GET_UNALIGN(2const)

Linux man-pages 6.16 2025-05-17 1377

PR_SET_VMA(2const) PR_SET_VMA(2const)

NAME
PR_SET_VMA - set an attribute for virtual memory areas

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SET_VMA, long attr, unsigned long addr, unsigned long size,
const char *_Nullable val);

DESCRIPTION
Sets an attribute specified in attr for virtual memory areas starting from the address
specified in addr and spanning the size specified in size. val specifies the value of the
attribute to be set.

Note that assigning an attribute to a virtual memory area might prevent it from being
merged with adjacent virtual memory areas due to the difference in that attribute’s value.

Currently, attr must be one of:

PR_SET_VMA_ANON_NAME
Set a name for anonymous virtual memory areas. val should be a pointer to a
null-terminated string containing the name. The name length including null byte
cannot exceed 80 bytes. If val is NULL, the name of the appropriate anonymous
virtual memory areas will be reset. The name can contain only printable ascii
characters (isprint(3)), except '[', ']', '\', '$' , and '`'.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

attr is not a valid attribute.

EINVAL
addr is an invalid address.

STANDARDS
Linux.

HISTORY
Linux 5.17.

SEE ALSO
prctl(2)

Linux man-pages 6.16 2025-05-17 1378

PR_SVE_GET_VL(2const) PR_SVE_GET_VL(2const)

NAME
PR_SVE_GET_VL - get the thread’s SVE vector length

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SVE_GET_VL);

DESCRIPTION
Get the thread’s current SVE vector length configuration.

This operation returns a nonnegative value that describes the current configuration. The
bits corresponding to PR_SVE_VL_LEN_MASK contain the currently configured vec-
tor length in bytes. The bit corresponding to PR_SVE_VL_INHERIT indicates
whether the vector length will be inherited across execve(2).

RETURN VALUE
On success, PR_SVE_GET_VL, return the nonnegative values described above. On er-
ror, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

SVE is not available on this platform.

STANDARDS
Linux. arm64 only.

HISTORY
Linux 4.15 (arm64).

CAVEATS
There is no way to determine whether there is a pending vector length change that has
not yet taken effect.

SEE ALSO
prctl(2), PR_SVE_SET_VL(2const)

For more information, see the kernel source file Documentation/arm64/sve.rst (or Docu-
mentation/arm64/sve.txt before Linux 5.3).

Linux man-pages 6.16 2025-05-17 1379

PR_SVE_SET_VL(2const) PR_SVE_SET_VL(2const)

NAME
PR_SVE_SET_VL - set the thread’s SVE vector length

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_SVE_SET_VL, unsigned long val);

DESCRIPTION
Configure the thread’s SVE vector length, as specified by val.

The bits of val corresponding to PR_SVE_VL_LEN_MASK must be set to the desired
vector length in bytes. This is interpreted as an upper bound: the kernel will select the
greatest available vector length that does not exceed the value specified. In particular,
specifying SVE_VL_MAX (defined in <asm/sigcontext.h>) for the
PR_SVE_VL_LEN_MASK bits requests the maximum supported vector length.

In addition, the other bits of val must be set to one of the following combinations of
flags:

0L Perform the change immediately. At the next execve(2) in the thread, the vector
length will be reset to the value configured in /proc/sys/abi/sve_default_vec-
tor_length.

PR_SVE_VL_INHERIT
Perform the change immediately. Subsequent execve(2) calls will preserve the
new vector length.

PR_SVE_SET_VL_ONEXEC
Defer the change, so that it is performed at the next execve(2) in the thread. Fur-
ther execve(2) calls will reset the vector length to the value configured in /proc/
sys/abi/sve_default_vector_length.

PR_SVE_SET_VL_ONEXEC | PR_SVE_VL_INHERIT
Defer the change, so that it is performed at the next execve(2) in the thread. Fur-
ther execve(2) calls will preserve the new vector length.

In all cases, any previously pending deferred change is canceled.

On success, a nonnegative value is returned that describes the selected configuration. If
PR_SVE_SET_VL_ONEXEC was included in val, then the configuration described by
the return value will take effect at the next execve(2). Otherwise, the configuration is al-
ready in effect when the PR_SVE_SET_VL call returns. In either case, the value is en-
coded in the same way as the return value of PR_SVE_GET_VL. Note that there is no
explicit flag in the return value corresponding to PR_SVE_SET_VL_ONEXEC.

The configuration (including any pending deferred change) is inherited across fork(2)
and clone(2).

Linux man-pages 6.16 2025-05-17 1380

PR_SVE_SET_VL(2const) PR_SVE_SET_VL(2const)

RETURN VALUE
On success, PR_SVE_SET_VL returns the nonnegative value described above. On er-
ror, -1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

SVE is not available on this platform.

EINVAL
The value in the bits of val corresponding to PR_SVE_VL_LEN_MASK is
outside the range [SVE_VL_MIN, SVE_VL_MAX] or is not a multiple of 16.

EINVAL
The other bits of val are invalid or unsupported.

FILES
/proc/sys/abi/sve_default_vector_length

STANDARDS
Linux. arm64 only.

HISTORY
Linux 4.15 (arm64).

CAVEATS
Because the compiler or run-time environment may be using SVE, using this call with-
out the PR_SVE_SET_VL_ONEXEC flag may crash the calling process. The condi-
tions for using it safely are complex and system-dependent. Don’t use it unless you re-
ally know what you are doing.

SEE ALSO
prctl(2), PR_SVE_GET_VL(2const)

For more information, see the kernel source file Documentation/arm64/sve.rst (or Docu-
mentation/arm64/sve.txt before Linux 5.3).

Linux man-pages 6.16 2025-05-17 1381

PR_TASK_PER . . . ENTS_DISABLE(2const) PR_TASK_PER . . . ENTS_DISABLE(2const)

NAME
PR_TASK_PERF_EVENTS_DISABLE, PR_TASK_PERF_EVENTS_ENABLE - dis-
able or enable performance counters attached to the calling process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/prctl.h> /* Definition of PR_* constants */
#include <sys/prctl.h>

int prctl(PR_TASK_PERF_EVENTS_DISABLE);
int prctl(PR_TASK_PERF_EVENTS_ENABLE);

DESCRIPTION
PR_TASK_PERF_EVENTS_DISABLE

Disable all performance counters attached to the calling process, regardless of
whether the counters were created by this process or another process. Perfor-
mance counters created by the calling process for other processes are unaffected.

PR_TASK_PERF_EVENTS_ENABLE
The converse of PR_TASK_PERF_EVENTS_DISABLE; enable performance
counters attached to the calling process.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

STANDARDS
Linux.

HISTORY
Linux 2.6.31.

Originally called PR_TASK_PERF_COUNTERS_DISABLE and
PR_TASK_PERF_COUNTERS_ENABLE; renamed (retaining the same numerical
value) in Linux 2.6.32.

SEE ALSO
prctl(2)

For more information on performance counters, see the Linux kernel source file tools/
perf/design.txt.

Linux man-pages 6.16 2025-06-02 1382

TCSBRK (2const) TCSBRK (2const)

NAME
TCSBRK, TCSBRKP, TIOCSBRK, TIOCCBRK - sending a break

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of T*BRK* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TCSBRK, int arg);
int ioctl(int fd , TCSBRKP, int arg);
int ioctl(int fd , TIOCSBRK);
int ioctl(int fd , TIOCCBRK);

DESCRIPTION
TCSBRK

Equivalent to tcsendbreak(fd, arg).

If the terminal is using asynchronous serial data transmission, and arg is zero,
then send a break (a stream of zero bits) for between 0.25 and 0.5 seconds. If the
terminal is not using asynchronous serial data transmission, then either a break is
sent, or the function returns without doing anything. When arg is nonzero, no-
body knows what will happen.

(SVr4, UnixWare, Solaris, and Linux treat tcsendbreak(fd,arg) with nonzero arg
like tcdrain(fd). SunOS treats arg as a multiplier, and sends a stream of bits arg
times as long as done for zero arg. DG/UX and AIX treat arg (when nonzero)
as a time interval measured in milliseconds. HP-UX ignores arg.)

TCSBRKP
So-called "POSIX version" of TCSBRK. It treats nonzero arg as a time interval
measured in deciseconds, and does nothing when the driver does not support
breaks.

TIOCSBRK
Turn break on, that is, start sending zero bits.

TIOCCBRK
Turn break off, that is, stop sending zero bits.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1383

TCSETS(2const) TCSETS(2const)

NAME
TCGETS, TCSETS, TCSETSW, TCSETSF, TCGETS2, TCSETS2, TCSETSW2, TC-
SETSF2, TCGETA, TCSETA, TCSETAW, TCSETAF - get and set terminal attributes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TCGETS, struct termios *argp);
int ioctl(int fd , TCSETS, const struct termios *argp);
int ioctl(int fd , TCSETSW, const struct termios *argp);
int ioctl(int fd , TCSETSF, const struct termios *argp);

int ioctl(int fd , TCGETS2, struct termios2 *argp);
int ioctl(int fd , TCSETS2, const struct termios2 *argp);
int ioctl(int fd , TCSETSW2, const struct termios2 *argp);
int ioctl(int fd , TCSETSF2, const struct termios2 *argp);

int ioctl(int fd , TCGETA, struct termio *argp);
int ioctl(int fd , TCSETA, const struct termio *argp);
int ioctl(int fd , TCSETAW, const struct termio *argp);
int ioctl(int fd , TCSETAF, const struct termio *argp);

#include <asm/termbits.h>

struct termios;
struct termios2;
struct termio;

DESCRIPTION
TCGETS

Equivalent to tcgetattr(fd, argp).

Get the current serial port settings.

TCSETS
Equivalent to tcsetattr(fd, TCSANOW, argp).

Set the current serial port settings.

TCSETSW
Equivalent to tcsetattr(fd, TCSADRAIN, argp).

Allow the output buffer to drain, and set the current serial port settings.

TCSETSF
Equivalent to tcsetattr(fd, TCSAFLUSH, argp).

Allow the output buffer to drain, discard pending input, and set the current serial
port settings.

The following four ioctls are just like TCGETS, TCSETS, TCSETSW, TCSETSF,
except that they take a struct termios2 * instead of a struct termios *. If the structure
member c_cflag contains the flag BOTHER, then the baud rate is stored in the structure

Linux man-pages 6.16 2025-05-17 1384

TCSETS(2const) TCSETS(2const)

members c_ispeed and c_ospeed as integer values. These ioctls are not supported on all
architectures.

TCGETS2
TCSETS2
TCSETSW2
TCSETSF2

The following four ioctls are just like TCGETS, TCSETS, TCSETSW, TCSETSF,
except that they take a struct termio * instead of a struct termios *.

TCGETA
TCSETA
TCSETAW
TCSETAF

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EPERM

Insufficient permission.

HISTORY
TCGETS2
TCSETS2
TCSETSW2
TCSETSF2

Linux 2.6.20.

CAVEATS
struct termios from <asm/termbits.h> is different and incompatible with struct
termios from <termios.h>. These ioctl calls require struct termios from
<asm/termbits.h>.

EXAMPLES
Get or set arbitrary baudrate on the serial port.

/* SPDX-License-Identifier: GPL-2.0-or-later */

#include <asm/termbits.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{
#if !defined BOTHER

fprintf(stderr, "BOTHER is unsupported\n");

Linux man-pages 6.16 2025-05-17 1385

TCSETS(2const) TCSETS(2const)

/* Program may fallback to TCGETS/TCSETS with Bnnn constants */
exit(EXIT_FAILURE);

#else
/* Declare tio structure, its type depends on supported ioctl */

if defined TCGETS2
struct termios2 tio;

else
struct termios tio;

endif
int fd, rc;

if (argc != 2 && argc != 3 && argc != 4) {
fprintf(stderr, "Usage: %s device [output [input]]\n", argv[0]);
exit(EXIT_FAILURE);

}

fd = open(argv[1], O_RDWR | O_NONBLOCK | O_NOCTTY);
if (fd < 0) {

perror("open");
exit(EXIT_FAILURE);

}

/* Get the current serial port settings via supported ioctl */
if defined TCGETS2

rc = ioctl(fd, TCGETS2, &tio);
else

rc = ioctl(fd, TCGETS, &tio);
endif

if (rc) {
perror("TCGETS");
close(fd);
exit(EXIT_FAILURE);

}

/* Change baud rate when more arguments were provided */
if (argc == 3 || argc == 4) {

/* Clear the current output baud rate and fill a new value */
tio.c_cflag &= ~CBAUD;
tio.c_cflag |= BOTHER;
tio.c_ospeed = atoi(argv[2]);

/* Clear the current input baud rate and fill a new value */
tio.c_cflag &= ~(CBAUD << IBSHIFT);
tio.c_cflag |= BOTHER << IBSHIFT;
/* When 4th argument is not provided reuse output baud rate */
tio.c_ispeed = (argc == 4) ? atoi(argv[3]) : atoi(argv[2]);

Linux man-pages 6.16 2025-05-17 1386

TCSETS(2const) TCSETS(2const)

/* Set new serial port settings via supported ioctl */
if defined TCSETS2

rc = ioctl(fd, TCSETS2, &tio);
else

rc = ioctl(fd, TCSETS, &tio);
endif

if (rc) {
perror("TCSETS");
close(fd);
exit(EXIT_FAILURE);

}

/* And get new values which were really configured */
if defined TCGETS2

rc = ioctl(fd, TCGETS2, &tio);
else

rc = ioctl(fd, TCGETS, &tio);
endif

if (rc) {
perror("TCGETS");
close(fd);
exit(EXIT_FAILURE);

}
}

close(fd);

printf("output baud rate: %u\n", tio.c_ospeed);
printf("input baud rate: %u\n", tio.c_ispeed);

exit(EXIT_SUCCESS);
#endif
}

SEE ALSO
ioctl(2), ioctl_tty(2), termios(3)

Linux man-pages 6.16 2025-05-17 1387

TCXONC(2const) TCXONC(2const)

NAME
TCXONC - software flow control

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TCXONC */
#include <sys/ioctl.h>

int ioctl(int fd , TCXONC, int arg);

DESCRIPTION
Equivalent to tcflow(fd, arg).

See tcflow(3) for the argument values TCOOFF, TCOON, TCIOFF, TCION.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

SEE ALSO
ioctl(2), ioctl_tty(2), tcflow(3), termios(3)

Linux man-pages 6.16 2025-05-17 1388

TIOCCONS(2const) TIOCCONS(2const)

NAME
TIOCCONS - redirecting console output

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOCCONS */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCCONS);

DESCRIPTION
Redirect output that would have gone to /dev/console or /dev/tty0 to the given terminal.
If that was a pseudoterminal master, send it to the slave.

Only a process with the CAP_SYS_ADMIN capability may do this.

If output was redirected already, then EBUSY is returned, but redirection can be stopped
by using this ioctl with fd pointing at /dev/console or /dev/tty0.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EBUSY

Output was redirected already.

EPERM
Insufficient permission.

HISTORY
Before Linux 2.6.10, anybody can do this as long as the output was not redirected yet;
CAP_SYS_ADMIN was not necessary.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1389

TIOCEXCL(2const) TIOCEXCL(2const)

NAME
TIOCEXCL, TIOCGEXCL, TIOCNXCL - exclusive mode

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*XCL constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCEXCL);
int ioctl(int fd , TIOCGEXCL, int *argp);
int ioctl(int fd , TIOCNXCL);

DESCRIPTION
TIOCEXCL

Put the terminal into exclusive mode. No further open(2) operations on the ter-
minal are permitted. (They fail with EBUSY, except for a process with the
CAP_SYS_ADMIN capability.)

TIOCGEXCL
If the terminal is currently in exclusive mode, place a nonzero value in the loca-
tion pointed to by argp; otherwise, place zero in *argp.

TIOCNXCL
Disable exclusive mode.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

HISTORY
TIOCGEXCL

Linux 3.8.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1390

TIOCLINUX(2const) TIOCLINUX(2const)

NAME
TIOCLINUX - ioctls for console terminal and virtual consoles

SYNOPSIS
#include <linux/tiocl.h> /* Definition of TIOCL_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCLINUX, void *argp);

DESCRIPTION
The action of the following ioctls depends on the first byte in the struct pointed to by
argp, referred to here as the subcode. These are legal only for the superuser or the
owner of the current terminal.

subcode=0
Dump the screen. Disappeared in Linux 1.1.92. (With Linux 1.1.92 or later,
read from /dev/vcsN or /dev/vcsaN instead.)

subcode=1
Get task information. Disappeared in Linux 1.1.92.

subcode=TIOCL_SETSEL
Set selection. argp points to a

struct {
char subcode;
short xs, ys, xe, ye;
short sel_mode;

};

xs and ys are the starting column and row. xe and ye are the ending column and
row. (Upper left corner is row=column=1.) sel_mode may be one of the follow-
ing operations:

TIOCL_SELCHAR
Select character-by-character. The indicated screen characters are high-
lighted and saved in a kernel buffer.

Since Linux 6.7, using this selection mode requires the CAP_SYS_AD-
MIN capability.

TIOCL_SELWORD
Select word-by-word, expanding the selection outwards to align with
word boundaries. The indicated screen characters are highlighted and
saved in a kernel buffer.

Since Linux 6.7, using this selection mode requires the CAP_SYS_AD-
MIN capability.

TIOCL_SELLINE
Select line-by-line, expanding the selection outwards to select full lines.
The indicated screen characters are highlighted and saved in a kernel
buffer.

Linux man-pages 6.16 2025-06-11 1391

TIOCLINUX(2const) TIOCLINUX(2const)

Since Linux 6.7, using this selection mode requires the CAP_SYS_AD-
MIN capability.

TIOCL_SELPOINTER
Show the pointer at position (xs, ys) or (xe, ye), whichever is later in text
flow order.

TIOCL_SELCLEAR
Remove the current selection highlight, if any, from the console holding
the selection.

This does not affect the stored selected text.

TIOCL_SELMOUSEREPORT
Make the terminal report (xs, ys) as the current mouse location using the
xterm(1) mouse tracking protocol (see console_codes(4)). The lower 4
bits of sel_mode (TIOCL_SELBUTTONMASK) indicate the desired
button press and modifier key information for the mouse event.

If mouse reporting is not enabled for the terminal, this operation yields
an EINVAL error.

Since Linux 6.7, using this selection mode requires the CAP_SYS_AD-
MIN capability.

subcode=TIOCL_PASTESEL
Paste selection. The characters in the selection buffer are written to fd .

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capability.

subcode=TIOCL_UNBLANKSCREEN
Unblank the screen.

subcode=TIOCL_SELLOADLUT
Sets contents of a 256-bit look up table defining characters in a "word", for
word-by-word selection. (Since Linux 1.1.32.)

Since Linux 6.7, using this subcode requires the CAP_SYS_ADMIN capability.

subcode=TIOCL_GETSHIFTSTATE
argp points to a char which is set to the value of the kernel variable shift_state.
(Since Linux 1.1.32.)

subcode=TIOCL_GETMOUSEREPORTING
argp points to a char which is set to the value of the kernel variable
report_mouse. (Since Linux 1.1.33.)

subcode=8
Dump screen width and height, cursor position, and all the character-attribute
pairs. (Linux 1.1.67 through Linux 1.1.91 only. With Linux 1.1.92 or later, read
from /dev/vcsa* instead.)

subcode=9
Restore screen width and height, cursor position, and all the character-attribute
pairs. (Linux 1.1.67 through Linux 1.1.91 only. With Linux 1.1.92 or later,
write to /dev/vcsa* instead.)

Linux man-pages 6.16 2025-06-11 1392

TIOCLINUX(2const) TIOCLINUX(2const)

subcode=TIOCL_SETVESABLANK
Handles the Power Saving feature of the new generation of monitors. VESA
screen blanking mode is set to argp[1], which governs what screen blanking
does:

0 Screen blanking is disabled.

1 The current video adapter register settings are saved, then the controller
is programmed to turn off the vertical synchronization pulses. This puts
the monitor into "standby" mode. If your monitor has an Off_Mode
timer, then it will eventually power down by itself.

2 The current settings are saved, then both the vertical and horizontal syn-
chronization pulses are turned off. This puts the monitor into "off" mode.
If your monitor has no Off_Mode timer, or if you want your monitor to
power down immediately when the blank_timer times out, then you
choose this option. (Caution: Powering down frequently will damage the
monitor.) (Since Linux 1.1.76.)

subcode=TIOCL_SETKMSGREDIRECT
Change target of kernel messages ("console"): by default, and if this is set to 0,
messages are written to the currently active VT. The VT to write to is a single
byte following subcode. (Since Linux 2.5.36.)

subcode=TIOCL_GETFGCONSOLE
Returns the number of VT currently in foreground. (Since Linux 2.5.36.)

subcode=TIOCL_SCROLLCONSOLE
Scroll the foreground VT by the specified amount of lines down, or half the
screen if 0. lines is *(((int32_t *)&subcode) + 1). (Since Linux 2.5.67.)

subcode=TIOCL_BLANKSCREEN
Blank the foreground VT, ignoring "pokes" (typing): can only be unblanked ex-
plicitly (by switching VTs, to text mode, etc.). (Since Linux 2.5.71.)

subcode=TIOCL_BLANKEDSCREEN
Returns the number of VT currently blanked, 0 if none. (Since Linux 2.5.71.)

subcode=16
Never used.

subcode=TIOCL_GETKMSGREDIRECT
Returns target of kernel messages. (Since Linux 2.6.17.)

subcode=TIOCL_GETBRACKETEDPASTE
Returns 1 if the application advertised bracketed paste compatibility to the termi-
nal, 0 otherwise. (Since Linux 6.16.)

RETURN VALUE
On success, 0 is returned (except where indicated). On failure, -1 is returned, and errno
is set to indicate the error.

ERRORS

Linux man-pages 6.16 2025-06-11 1393

TIOCLINUX(2const) TIOCLINUX(2const)

EINVAL
argp is invalid.

EPERM
Insufficient permission.

STANDARDS
Linux.

SEE ALSO
ioctl(2), ioctl_console(2)

Linux man-pages 6.16 2025-06-11 1394

TIOCMSET (2const) TIOCMSET (2const)

NAME
TIOCMGET, TIOCMSET, TIOCMBIC, TIOCMBIS, TIOCMIWAIT, TIOCGICOUNT
- modem control

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCMGET, int *argp);
int ioctl(int fd , TIOCMSET, const int *argp);
int ioctl(int fd , TIOCMBIC, const int *argp);
int ioctl(int fd , TIOCMBIS, const int *argp);
int ioctl(int fd , TIOCMIWAIT, int arg);
int ioctl(int fd , TIOCGICOUNT, struct serial_icounter_struct *argp);

#include <linux/serial.h>

struct serial_icounter_struct;

DESCRIPTION
TIOCMGET

Get the status of modem bits.

TIOCMSET
Set the status of modem bits.

TIOCMBIC
Clear the indicated modem bits.

TIOCMBIS
Set the indicated modem bits.

The following bits are used by the above ioctls:

TIOCM_LE DSR (data set ready/line enable)
TIOCM_DTR DTR (data terminal ready)
TIOCM_RTS RTS (request to send)
TIOCM_ST Secondary TXD (transmit)
TIOCM_SR Secondary RXD (receive)
TIOCM_CTS CTS (clear to send)
TIOCM_CAR DCD (data carrier detect)
TIOCM_CD see TIOCM_CAR
TIOCM_RNG RNG (ring)
TIOCM_RI see TIOCM_RNG
TIOCM_DSR DSR (data set ready)

TIOCMIWAIT
Wait for any of the 4 modem bits (DCD, RI, DSR, CTS) to change. The bits of
interest are specified as a bit mask in arg, by ORing together any of the bit val-
ues, TIOCM_RNG, TIOCM_DSR, TIOCM_CD, and TIOCM_CTS. The
caller should use TIOCGICOUNT to see which bit has changed.

Linux man-pages 6.16 2025-05-17 1395

TIOCMSET (2const) TIOCMSET (2const)

TIOCGICOUNT
Get counts of input serial line interrupts (DCD, RI, DSR, CTS). The counts are
written to the serial_icounter_struct structure pointed to by argp.

Note: both 1->0 and 0->1 transitions are counted, except for RI, where only 0->1
transitions are counted.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

EXAMPLES
Check the condition of DTR on the serial port.

#include <asm/termbits.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(void)
{

int fd, serial;

fd = open("/dev/ttyS0", O_RDONLY);
ioctl(fd, TIOCMGET, &serial);
if (serial & TIOCM_DTR)

puts("TIOCM_DTR is set");
else

puts("TIOCM_DTR is not set");
close(fd);

}

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1396

TIOCPKT (2const) TIOCPKT (2const)

NAME
TIOCPKT, TIOCGPKT, TIOCSPTLCK, TIOCGPTLCK, TIOCGPTPEER - pseudoter-
minal ioctls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCPKT, const int *mode);
int ioctl(int fd , TIOCPKT, int *mode);

int ioctl(int fd , TIOCSPTLCK, const int *lock);
int ioctl(int fd , TIOCGPTLCK, int *lock);

int ioctl(int fd , TIOCGPTPEER, int flags);

DESCRIPTION
TIOCPKT

Enable (when *mode is nonzero) or disable packet mode. Can be applied to the
master side of a pseudoterminal only (and will return ENOTTY otherwise). In
packet mode, each subsequent read(2) will return a packet that either contains a
single nonzero control byte, or has a single byte containing zero ('\0') followed
by data written on the slave side of the pseudoterminal. If the first byte is not
TIOCPKT_DATA (0), it is an OR of one or more of the following bits:

TIOCPKT_FLUSHREAD The read queue for the termi-
nal is flushed.

TIOCPKT_FLUSHWRITE The write queue for the termi-
nal is flushed.

TIOCPKT_STOP Output to the terminal is
stopped.

TIOCPKT_START Output to the terminal is
restarted.

TIOCPKT_DOSTOP The start and stop characters
are ^S/^Q.

TIOCPKT_NOSTOP The start and stop characters
are not ^S/^Q.

While packet mode is in use, the presence of control status information to be
read from the master side may be detected by a select(2) for exceptional condi-
tions or a poll(2) for the POLLPRI event.

This mode is used by rlogin(1) and rlogind(8) to implement a remote-echoed,
locally ^S/^Q flow-controlled remote login.

TIOCGPKT
Return the current packet mode setting in the integer pointed to by mode.

TIOCSPTLCK
Set (if *lock is nonzero) or remove (if *lock is zero) the lock on the pseudotermi-
nal slave device. (See also unlockpt(3).)

Linux man-pages 6.16 2025-05-17 1397

TIOCPKT (2const) TIOCPKT (2const)

TIOCGPTLCK
Place the current lock state of the pseudoterminal slave device in the location
pointed to by lock.

TIOCGPTPEER
Given a file descriptor in fd that refers to a pseudoterminal master, open (with
the given open(2)-style flags) and return a new file descriptor that refers to the
peer pseudoterminal slave device. This operation can be performed regardless of
whether the pathname of the slave device is accessible through the calling
process’s mount namespace.

Security-conscious programs interacting with namespaces may wish to use this
operation rather than open(2) with the pathname returned by ptsname(3), and
similar library functions that have insecure APIs. (For example, confusion can
occur in some cases using ptsname(3) with a pathname where a devpts filesys-
tem has been mounted in a different mount namespace.)

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOTTY

HISTORY
TIOCGPKT

Linux 3.8.

TIOCGPTLCK
Linux 3.8.

TIOCGPTPEER
Linux 4.13.

The BSD ioctls TIOCSTOP, TIOCSTART, TIOCUCNTL, and TIOCREMOTE
have not been implemented under Linux.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1398

TIOCSCTTY (2const) TIOCSCTTY (2const)

NAME
TIOCSCTTY, TIOCNOTTY - controlling the terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*TTY constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCSCTTY, int arg);
int ioctl(int fd , TIOCNOTTY);

DESCRIPTION
TIOCSCTTY

Make the given terminal the controlling terminal of the calling process. The
calling process must be a session leader and not have a controlling terminal al-
ready. For this case, arg should be specified as zero.

If this terminal is already the controlling terminal of a different session group,
then the ioctl fails with EPERM, unless the caller has the CAP_SYS_ADMIN
capability and arg equals 1, in which case the terminal is stolen, and all
processes that had it as controlling terminal lose it.

TIOCNOTTY
If the given terminal was the controlling terminal of the calling process, give up
this controlling terminal. If the process was session leader, then send SIGHUP
and SIGCONT to the foreground process group and all processes in the current
session lose their controlling terminal.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

Insufficient permission.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1399

TIOCSETD(2const) TIOCSETD(2const)

NAME
TIOCGETD, TIOCSETD - get or set the line discipline of the terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*ETD constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGETD, int *argp);
int ioctl(int fd , TIOCSETD, const int *argp);

DESCRIPTION
TIOCGETD

Get the line discipline of the terminal.

TIOCSETD
Set the line discipline of the terminal.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1400

TIOCSLCKTRMIOS(2const) TIOCSLCKTRMIOS(2const)

NAME
TIOCGLCKTRMIOS, TIOCSLCKTRMIOS - locking the termios structre

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*CLKTRMIOS constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGLCKTRMIOS, struct termios *argp);
int ioctl(int fd , TIOCSLCKTRMIOS, const struct termios *argp);

#include <asm/termbits.h>

struct termios;

DESCRIPTION
The termios structure of a terminal can be locked. The lock is itself a termios structure,
with nonzero bits or fields indicating a locked value.

TIOCGLCKTRMIOS
Gets the locking status of the termios structure of the terminal.

TIOCSLCKTRMIOS
Sets the locking status of the termios structure of the terminal. Only a process
with the CAP_SYS_ADMIN capability can do this.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

Insufficient permission.

CAVEATS
Please note that struct termios from <asm/termbits.h> is different and incompatible
with struct termios from <termios.h>. These ioctl calls require struct termios from
<asm/termbits.h>.

SEE ALSO
ioctl(2), ioctl_tty(2), TCSETS(2const)

Linux man-pages 6.16 2025-05-17 1401

TIOCSPGRP(2const) TIOCSPGRP(2const)

NAME
TIOCGPGRP, TIOCSPGRP, TIOCGSID - process group and session ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC* constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGPGRP, pid_t *argp);
int ioctl(int fd , TIOCSPGRP, const pid_t *argp);
int ioctl(int fd , TIOCGSID, pid_t *argp);

DESCRIPTION
TIOCGPGRP

When successful, equivalent to *argp = tcgetpgrp(fd).

Get the process group ID of the foreground process group on this terminal.

TIOCSPGRP
Equivalent to tcsetpgrp(fd, *argp).

Set the foreground process group ID of this terminal.

TIOCGSID
When successful, equivalent to *argp = tcgetsid(fd).

Get the session ID of the given terminal. This fails with the error ENOTTY if
the terminal is not a master pseudoterminal and not our controlling terminal.
Strange.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOTTY

The terminal is not a master pseudoterminal and not our controlling terminal.

EPERM
Insufficient permission.

SEE ALSO
ioctl(2), ioctl_tty(2), tcgetpgrp(3), tcsetpgrp(3), tcgetsid(3)

Linux man-pages 6.16 2025-05-17 1402

TIOCSSOFTCAR(2const) TIOCSSOFTCAR(2const)

NAME
TIOCGSOFTCAR, TIOCSSOFTCAR - marking a line as local

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*SOFTCAR constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGSOFTCAR, int *argp);
int ioctl(int fd , TIOCSSOFTCAR, const int *argp);

DESCRIPTION
TIOCGSOFTCAR

("Get software carrier flag") Get the status of the CLOCAL flag in the c_cflag
field of the termios structure.

TIOCSSOFTCAR
("Set software carrier flag") Set the CLOCAL flag in the termios structure when
*argp is nonzero, and clear it otherwise.

If the CLOCAL flag for a line is off, the hardware carrier detect (DCD) signal is signifi-
cant, and an open(2) of the corresponding terminal will block until DCD is asserted, un-
less the O_NONBLOCK flag is given. If CLOCAL is set, the line behaves as if DCD
is always asserted. The software carrier flag is usually turned on for local devices, and
is off for lines with modems.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1403

TIOCSTI (2const) TIOCSTI (2const)

NAME
TIOCSTI - faking input

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOCSTI */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCSTI, const char *argp);

DESCRIPTION
Insert the given byte in the input queue.

Since Linux 6.2, this operation may require the CAP_SYS_ADMIN capability (if the
dev.tty.legacy_tiocsti sysctl variable is set to false).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EPERM

Insufficient permission.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1404

TIOCSWINSZ (2const) TIOCSWINSZ (2const)

NAME
TIOCGWINSZ, TIOCSWINSZ - get and set window size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/termbits.h> /* Definition of TIOC*WINSZ constants */
#include <sys/ioctl.h>

int ioctl(int fd , TIOCGWINSZ, struct winsize *argp);
int ioctl(int fd , TIOCSWINSZ, const struct winsize *argp);

#include <asm/termios.h>

struct winsize {
unsigned short ws_row;
unsigned short ws_col;
unsigned short ws_xpixel; /* unused */
unsigned short ws_ypixel; /* unused */

};

DESCRIPTION
Window sizes are kept in the kernel, but not used by the kernel (except in the case of vir-
tual consoles, where the kernel will update the window size when the size of the virtual
console changes, for example, by loading a new font).

TIOCGWINSZ
Get window size.

TIOCSWINSZ
Set window size.

When the window size changes, a SIGWINCH signal is sent to the foreground process
group.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

SEE ALSO
ioctl(2), ioctl_tty(2const)

Linux man-pages 6.16 2025-05-17 1405

TIOCTTYGSTRUCT (2const) TIOCTTYGSTRUCT (2const)

NAME
TIOCTTYGSTRUCT - kernel debugging

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ioctl.h>

int ioctl(int fd , TIOCTTYGSTRUCT, struct tty_struct *argp);

#include <linux/tty.h>

struct tty_struct;

DESCRIPTION
Get the tty_struct corresponding to fd .

RETURN VALUE
On success, 0 is returned. On error, -1 is returned, and errno is set to indicate the error.

HISTORY
This operation was removed in Linux 2.5.67.

SEE ALSO
ioctl(2), ioctl_tty(2)

Linux man-pages 6.16 2025-05-17 1406

UFFDIO_API (2const) UFFDIO_API (2const)

NAME
UFFDIO_API - enable operation of the userfaultfd and perform API handshake

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_API, struct uffdio_api *argp);

#include <linux/userfaultfd.h>

struct uffdio_api {
__u64 api; /* Requested API version (input) */
__u64 features; /* Requested features (input/output) */
__u64 ioctls; /* Available ioctl() operations (output) */

};

DESCRIPTION
Enable operation of the userfaultfd and perform API handshake.

The api field denotes the API version requested by the application. The kernel verifies
that it can support the requested API version, and sets the features and ioctls fields to bit
masks representing all the available features and the generic ioctl(2) operations avail-
able.

Before Linux 4.11, the features field must be initialized to zero before the call to UFF-
DIO_API, and zero (i.e., no feature bits) is placed in the features field by the kernel
upon return from ioctl(2).

Since Linux 4.11, userfaultfd supports features that need to be enabled explicitly. To en-
able any of the features, one needs to set the corresponding feature bits in features when
issuing the UFFDIO_API ioctl.

For historical reasons, a temporary userfaultfd is needed to probe what userfaultfd fea-
tures the kernel supports. The application needs to create a temporary userfaultfd, issue
an UFFDIO_API ioctl with features set to zero. After the UFFDIO_API ioctl returns
successfully, features should contain all the userfaultfd features that the kernel supports.
The temporary userfaultfd can be safely closed after the probe.

If the application sets unsupported feature bits, the kernel will zero out the returned uff-
dio_api structure and return EINVAL.

The following feature bits may be set:

UFFD_FEATURE_EVENT_FORK (since Linux 4.11)
When this feature is enabled, the userfaultfd objects associated with a parent
process are duplicated into the child process during fork(2) and a
UFFD_EVENT_FORK event is delivered to the userfaultfd monitor

UFFD_FEATURE_EVENT_REMAP (since Linux 4.11)
If this feature is enabled, when the faulting process invokes mremap(2), the user-
faultfd monitor will receive an event of type UFFD_EVENT_REMAP.

Linux man-pages 6.16 2025-05-18 1407

UFFDIO_API (2const) UFFDIO_API (2const)

UFFD_FEATURE_EVENT_REMOVE (since Linux 4.11)
If this feature is enabled, when the faulting process calls madvise(2) with the
MADV_DONTNEED or MADV_REMOVE advice value to free a virtual
memory area the userfaultfd monitor will receive an event of type
UFFD_EVENT_REMOVE.

UFFD_FEATURE_EVENT_UNMAP (since Linux 4.11)
If this feature is enabled, when the faulting process unmaps virtual memory ei-
ther explicitly with munmap(2), or implicitly during either mmap(2) or
mremap(2), the userfaultfd monitor will receive an event of type
UFFD_EVENT_UNMAP.

UFFD_FEATURE_MISSING_HUGETLBFS (since Linux 4.11)
If this feature bit is set, the kernel supports registering userfaultfd ranges on
hugetlbfs virtual memory areas

UFFD_FEATURE_MISSING_SHMEM (since Linux 4.11)
If this feature bit is set, the kernel supports registering userfaultfd ranges on
shared memory areas. This includes all kernel shared memory APIs: System V
shared memory, tmpfs(5), shared mappings of /dev/zero, mmap(2) with the
MAP_SHARED flag set, memfd_create(2), and so on.

UFFD_FEATURE_SIGBUS (since Linux 4.14)
If this feature bit is set, no page-fault events (UFFD_EVENT_PAGEFAULT)
will be delivered. Instead, a SIGBUS signal will be sent to the faulting process.
Applications using this feature will not require the use of a userfaultfd monitor
for processing memory accesses to the regions registered with userfaultfd.

UFFD_FEATURE_THREAD_ID (since Linux 4.14)
If this feature bit is set, uffd_msg.pagefault.feat.ptid will be set to the faulted
thread ID for each page-fault message.

UFFD_FEATURE_PAGEFAULT_FLAG_WP (since Linux 5.10)
If this feature bit is set, userfaultfd supports write-protect faults for anonymous
memory. (Note that shmem / hugetlbfs support is indicated by a separate fea-
ture.)

UFFD_FEATURE_MINOR_HUGETLBFS (since Linux 5.13)
If this feature bit is set, the kernel supports registering userfaultfd ranges in mi-
nor mode on hugetlbfs-backed memory areas.

UFFD_FEATURE_MINOR_SHMEM (since Linux 5.14)
If this feature bit is set, the kernel supports registering userfaultfd ranges in mi-
nor mode on shmem-backed memory areas.

UFFD_FEATURE_EXACT_ADDRESS (since Linux 5.18)
If this feature bit is set, uffd_msg.pagefault.address will be set to the exact page-
fault address that was reported by the hardware, and will not mask the offset
within the page. Note that old Linux versions might indicate the exact address as
well, even though the feature bit is not set.

Linux man-pages 6.16 2025-05-18 1408

UFFDIO_API (2const) UFFDIO_API (2const)

UFFD_FEATURE_WP_HUGETLBFS_SHMEM (since Linux 5.19)
If this feature bit is set, userfaultfd supports write-protect faults for hugetlbfs and
shmem / tmpfs memory.

UFFD_FEATURE_WP_UNPOPULATED (since Linux 6.4)
If this feature bit is set, the kernel will handle anonymous memory the same way
as file memory, by allowing the user to write-protect unpopulated page table en-
tries.

UFFD_FEATURE_POISON (since Linux 6.6)
If this feature bit is set, the kernel supports resolving faults with the UFF-
DIO_POISON ioctl.

UFFD_FEATURE_WP_ASYNC (since Linux 6.7)
If this feature bit is set, the write protection faults would be asynchronously re-
solved by the kernel.

UFFD_FEATURE_MOVE (since Linux 6.8)
If this feature bit is set, the kernel supports resolving faults with the UFF-
DIO_MOVE ioctl.

The returned argp->ioctls field can contain the following bits:

1 << _UFFDIO_API
The UFFDIO_API operation is supported.

1 << _UFFDIO_REGISTER
The UFFDIO_REGISTER operation is supported.

1 << _UFFDIO_UNREGISTER
The UFFDIO_UNREGISTER operation is supported.

RETURN VALUE
On success, 0 is returned.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EFAULT

argp refers to an address that is outside the calling process’s accessible address
space.

EINVAL
The API version requested in the api field is not supported by this kernel, or the
features field passed to the kernel includes feature bits that are not supported by
the current kernel version.

EINVAL
A previous UFFDIO_API call already enabled one or more features for this
userfaultfd. Calling UFFDIO_API twice, the first time with no features set, is
explicitly allowed as per the two-step feature detection handshake.

EPERM
The UFFD_FEATURE_EVENT_FORK feature was enabled, but the calling
process doesn’t have the CAP_SYS_PTRACE capability.

Linux man-pages 6.16 2025-05-18 1409

UFFDIO_API (2const) UFFDIO_API (2const)

STANDARDS
Linux.

HISTORY
Linux 4.3.

CAVEATS
If an error occurs, the kernel may zero the provided uffdio_api structure. The caller
should treat its contents as unspecified, and reinitialize it before re-attempting another
UFFDIO_API call.

BUGS
In order to detect available userfault features and enable some subset of those features
the userfaultfd file descriptor must be closed after the first UFFDIO_API operation that
queries features availability and reopened before the second UFFDIO_API operation
that actually enables the desired features.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), mmap(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-05-18 1410

UFFDIO_CONTINUE(2const) UFFDIO_CONTINUE(2const)

NAME
UFFDIO_CONTINUE - resolve a minor page fault

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_CONTINUE, struct uffdio_continue *argp);

#include <linux/userfaultfd.h>

struct uffdio_continue {
struct uffdio_range range;

/* Range to install PTEs for and continue */
__u64 mode; /* Flags controlling the behavior of continue */
__s64 mapped; /* Number of bytes mapped, or negated error */

};

DESCRIPTION
Resolve a minor page fault by installing page table entries for existing pages in the page
cache.

The following value may be bitwise ORed in mode to change the behavior of the UFF-
DIO_CONTINUE operation:

UFFDIO_CONTINUE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The mapped field is used by the kernel to return the number of bytes that were actually
mapped, or an error in the same manner as UFFDIO_COPY. If the value returned in
the mapped field doesn’t match the value that was specified in range.len, the operation
fails with the error EAGAIN. The mapped field is output-only; it is not read by the
UFFDIO_CONTINUE operation.

RETURN VALUE
This ioctl(2) operation returns 0 on success. In this case, the entire area was mapped.
On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes mapped (i.e., the value returned in the mapped field) does
not equal the value that was specified in the range.len field.

EEXIST
One or more pages were already mapped in the given range.

EFAULT
No existing page could be found in the page cache for the given range.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or
range.len was zero; or the range specified was invalid.

Linux man-pages 6.16 2025-09-21 1411

UFFDIO_CONTINUE(2const) UFFDIO_CONTINUE(2const)

EINVAL
An invalid bit was specified in the mode field.

ENOENT
The faulting process has changed its virtual memory layout simultaneously with
an outstanding UFFDIO_CONTINUE operation.

ENOMEM
Allocating memory needed to setup the page table mappings failed.

ESRCH
The faulting process has exited at the time of a UFFDIO_CONTINUE opera-
tion.

STANDARDS
Linux.

HISTORY
Linux 5.13.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-09-21 1412

UFFDIO_COPY (2const) UFFDIO_COPY (2const)

NAME
UFFDIO_COPY - atomically copy a continuous memory chunk into the userfault regis-
tered range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_COPY, struct uffdio_copy *argp);

#include <linux/userfaultfd.h>

struct uffdio_copy {
__u64 dst; /* Destination of copy */
__u64 src; /* Source of copy */
__u64 len; /* Number of bytes to copy */
__u64 mode; /* Flags controlling behavior of copy */
__s64 copy; /* Number of bytes copied, or negated error */

};

DESCRIPTION
Atomically copy a continuous memory chunk into the userfault registered range and op-
tionally wake up the blocked thread.

The following value may be bitwise ORed in mode to change the behavior of the UFF-
DIO_COPY operation:

UFFDIO_COPY_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution

UFFDIO_COPY_MODE_WP
Copy the page with read-only permission. This allows the user to trap the next
write to the page, which will block and generate another write-protect userfault
message. This is used only when both UFFDIO_REGISTER_MODE_MISS-
ING and UFFDIO_REGISTER_MODE_WP modes are enabled for the regis-
tered range.

The copy field is used by the kernel to return the number of bytes that was actually
copied, or an error (a negated errno-style value). The copy field is output-only; it is not
read by the UFFDIO_COPY operation.

RETURN VALUE
On success, 0 is returned. In this case, the entire area was copied.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes copied (i.e., the value returned in the copy field) does not
equal the value that was specified in the len field.

Linux man-pages 6.16 2025-05-17 1413

UFFDIO_COPY (2const) UFFDIO_COPY (2const)

EINVAL
Either dst or len was not a multiple of the system page size, or the range speci-
fied by src and len or dst and len was invalid.

EINVAL
An invalid bit was specified in the mode field.

ENOENT (since Linux 4.11)
The faulting process has changed its virtual memory layout simultaneously with
an outstanding UFFDIO_COPY operation.

ENOSPC (from Linux 4.11 until Linux 4.13)
The faulting process has exited at the time of a UFFDIO_COPY operation.

ESRCH (since Linux 4.13)
The faulting process has exited at the time of a UFFDIO_COPY operation.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-05-17 1414

UFFDIO_MOVE(2const) UFFDIO_MOVE(2const)

NAME
UFFDIO_MOVE - atomically move a continuous memory chunk into the userfault reg-
istered range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_MOVE, struct uffdio_move *argp);

#include <linux/userfaultfd.h>

struct uffdio_move {
__u64 dst; /* Destination of move */
__u64 src; /* Source of move */
__u64 len; /* Number of bytes to move */
__u64 mode; /* Flags controlling behavior of move */
__s64 move; /* Number of bytes moved, or negated error */

};

DESCRIPTION
Atomically move a continuous memory chunk into the userfault registered range and op-
tionally wake up the blocked thread.

The following value may be bitwise ORed in .mode to change the behavior of the UFF-
DIO_MOVE operation:

UFFDIO_MOVE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution

UFFDIO_MOVE_MODE_ALLOW_SRC_HOLES
Allow holes in the source virtual range that is being moved. When not specified,
the holes will result in ENOENT error. When specified, the holes will be ac-
counted as successfully moved memory. This is mostly useful to move hugepage
aligned virtual regions without knowing if there are transparent hugepages in the
regions or not, but preventing the risk of having to split the hugepage during the
operation.

The .move field is used by the kernel to return the number of bytes that was actually
moved, or an error (a negated errno-style value). The .move field is output-only; it is
not read by the UFFDIO_MOVE operation.

RETURN VALUE
On success, 0 is returned. In this case, the entire area was moved.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes moved (i.e., the value returned in the .move field) does not
equal the value that was specified in the .len field.

Linux man-pages 6.16 2025-05-17 1415

UFFDIO_MOVE(2const) UFFDIO_MOVE(2const)

EINVAL
Either .dst or .len was not a multiple of the system page size, or the range speci-
fied by .src and .len or .dst and .len was invalid.

EINVAL
An invalid bit was specified in the .mode field.

ENOENT
The source virtual memory range has unmapped holes and UFF-
DIO_MOVE_MODE_ALLOW_SRC_HOLES is not set.

EEXIST
The destination virtual memory range is fully or partially mapped.

EBUSY
The pages in the source virtual memory range are either pinned or not exclusive
to the process. Once KSM deduplicates pages or fork(2) COW-shares pages dur-
ing fork(2) with child processes, they are no longer exclusive. The kernel might
only perform lightweight checks for detecting whether the pages are exclusive.
To make the operation more likely to succeed, KSM should be disabled, fork(2)
should be avoided or MADV_DONTFORK should be configured for the source
virtual memory area before fork(2).

ENOMEM
Allocating memory needed for the operation failed.

ESRCH
The target process has exited at the time of a UFFDIO_MOVE operation.

STANDARDS
Linux.

HISTORY
Linux 6.8.

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-05-17 1416

UFFDIO_POISON (2const) UFFDIO_POISON (2const)

NAME
UFFDIO_POISON - mark an address range as "poisoned"

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_POISON, ...);

#include <linux/userfaultfd.h>

struct uffdio_poison {
struct uffdio_range range;

/* Range to install poison PTE markers in */
__u64 mode; /* Flags controlling the behavior of poison */
__s64 updated; /* Number of bytes poisoned, or negated error */

};

DESCRIPTION
Mark an address range as "poisoned". Future accesses to these addresses will raise a
SIGBUS signal. Unlike MADV_HWPOISON this works by installing page table en-
tries, rather than "really" poisoning the underlying physical pages. This means it only
affects this particular address space.

The following value may be bitwise ORed in mode to change the behavior of the UFF-
DIO_POISON operation:

UFFDIO_POISON_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The updated field is used by the kernel to return the number of bytes that were actually
poisoned, or an error in the same manner as UFFDIO_COPY. If the value returned in
the updated field doesn’t match the value that was specified in range.len, the operation
fails with the error EAGAIN. The updated field is output-only; it is not read by the
UFFDIO_POISON operation.

RETURN VALUE
On success, 0 is returned. In this case, the entire area was poisoned.

On error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes mapped (i.e., the value returned in the updated field) does
not equal the value that was specified in the range.len field.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or
range.len was zero; or the range specified was invalid.

Linux man-pages 6.16 2025-09-21 1417

UFFDIO_POISON (2const) UFFDIO_POISON (2const)

EINVAL
An invalid bit was specified in the mode field.

EEXIST
One or more pages were already mapped in the given range.

ENOENT
The faulting process has changed its virtual memory layout simultaneously with
an outstanding UFFDIO_POISON operation.

ENOMEM
Allocating memory for page table entries failed.

ESRCH
The faulting process has exited at the time of a UFFDIO_POISON operation.

STANDARDS
Linux.

HISTORY
Linux 6.6.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-09-21 1418

UFFDIO_REGISTER(2const) UFFDIO_REGISTER(2const)

NAME
UFFDIO_REGISTER - register a memory address range with the userfaultfd object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_REGISTER, struct uffdio_register *argp);

#include <linux/userfaultfd.h>

struct uffdio_range {
__u64 start; /* Start of range */
__u64 len; /* Size of range (bytes) */

};

struct uffdio_register {
struct uffdio_range range;
__u64 mode; /* Desired mode of operation (input) */
__u64 ioctls; /* Available ioctl()s (output) */

};

DESCRIPTION
Register a memory address range with the userfaultfd object. The pages in the range
must be “compatible”. Please refer to the list of register modes below for the compati-
ble memory backends for each mode.

The argp->range field defines a memory range starting at argp->range.start and contin-
uing for argp->range.len bytes that should be handled by the userfaultfd.

The argp->mode field defines the mode of operation desired for this memory region.
The following values may be bitwise ORed to set the userfaultfd mode for the specified
range:

UFFDIO_REGISTER_MODE_MISSING
Track page faults on missing pages. Since Linux 4.3, only private anonymous
ranges are compatible. Since Linux 4.11, hugetlbfs and shared memory ranges
are also compatible.

UFFDIO_REGISTER_MODE_WP
Track page faults on write-protected pages. Since Linux 5.7, only private anony-
mous ranges are compatible.

UFFDIO_REGISTER_MODE_MINOR
Track minor page faults. Since Linux 5.13, only hugetlbfs ranges are compati-
ble. Since Linux 5.14, compatibility with shmem ranges was added.

If the operation is successful, the kernel modifies the argp->ioctls bit-mask field to indi-
cate which ioctl(2) operations are available for the specified range. This returned bit
mask can contain the following bits:

Linux man-pages 6.16 2025-09-21 1419

UFFDIO_REGISTER(2const) UFFDIO_REGISTER(2const)

1 << _UFFDIO_COPY
The UFFDIO_COPY operation is supported.

1 << _UFFDIO_WAKE
The UFFDIO_WAKE operation is supported.

1 << _UFFDIO_WRITEPROTECT
The UFFDIO_WRITEPROTECT operation is supported.

1 << _UFFDIO_ZEROPAGE
The UFFDIO_ZEROPAGE operation is supported.

1 << _UFFDIO_CONTINUE
The UFFDIO_CONTINUE operation is supported.

1 << _UFFDIO_POISON
The UFFDIO_POISON operation is supported.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EBUSY

A mapping in the specified range is registered with another userfaultfd object.

EFAULT
argp refers to an address that is outside the calling process’s accessible address
space.

EINVAL
An invalid or unsupported bit was specified in the mode field; or the mode field
was zero.

EINVAL
There is no mapping in the specified address range.

EINVAL
range.start or range.len is not a multiple of the system page size; or, range.len is
zero; or these fields are otherwise invalid.

EINVAL
There as an incompatible mapping in the specified address range.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), UFFDIO_UNREGISTER(2const), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-09-21 1420

UFFDIO_UNREGISTER(2const) UFFDIO_UNREGISTER(2const)

NAME
UFFDIO_UNREGISTER - unregister a memory address range from userfaultfd

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_UNREGISTER, const struct uffdio_range *argp);

DESCRIPTION
Unregister a memory address range from userfaultfd. The pages in the range must be
“compatible” (see UFFDIO_REGISTER(2const)).

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EINVAL

Either argp->start or the argp->len fields was not a multiple of the system page
size; or the argp->len field was zero; or these fields were otherwise invalid.

EINVAL
There as an incompatible mapping in the specified address range.

EINVAL
There was no mapping in the specified address range.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), UFFDIO_REGISTER(2const), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-09-21 1421

UFFDIO_WAKE(2const) UFFDIO_WAKE(2const)

NAME
UFFDIO_WAKE - wake up a thread waiting for page-fault resolution

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_WAKE, const struct uffdio_range *argp);

DESCRIPTION
Wake up the thread waiting for page-fault resolution on a specified memory address
range.

The UFFDIO_WAKE operation is used in conjunction with UFFDIO_COPY and
UFFDIO_ZEROPAGE operations that have the UFFDIO_COPY_MODE_DONT-
WAKE or UFFDIO_ZEROPAGE_MODE_DONTWAKE bit set in the mode field.
The userfault monitor can perform several UFFDIO_COPY and UFFDIO_ZE-
ROPAGE operations in a batch and then explicitly wake up the faulting thread using
UFFDIO_WAKE.

RETURN VALUE
This ioctl(2) operation returns 0 on success. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
EINVAL

The start or the len field of the ufdio_range structure was not a multiple of the
system page size; or len was zero; or the specified range was otherwise invalid.

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), UFFDIO_REGISTER(2const), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-09-21 1422

UFFDIO_WRITEPROTECT (2const) UFFDIO_WRITEPROTECT (2const)

NAME
UFFDIO_WRITEPROTECT - write-protect or write-unprotect a userfaultfd-registered
memory range

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_WRITEPROTECT, ...);

#include <linux/userfaultfd.h>

struct uffdio_writeprotect {
struct uffdio_range range; /* Range to change write permission*/
__u64 mode; /* Mode to change write permission */

};

DESCRIPTION
Write-protect or write-unprotect a userfaultfd-registered memory range registered with
mode UFFDIO_REGISTER_MODE_WP.

There are two mode bits that are supported in this structure:

UFFDIO_WRITEPROTECT_MODE_WP
When this mode bit is set, the ioctl will be a write-protect operation upon the
memory range specified by range. Otherwise it will be a write-unprotect opera-
tion upon the specified range, which can be used to resolve a userfaultfd write-
protect page fault.

UFFDIO_WRITEPROTECT_MODE_DONTWAKE
When this mode bit is set, do not wake up any thread that waits for page-fault
resolution after the operation. This can be specified only if UFF-
DIO_WRITEPROTECT_MODE_WP is not specified.

RETURN VALUE
On success, 0 is returned. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EINVAL

The start or the len field of the ufdio_range structure was not a multiple of the
system page size; or len was zero; or the specified range was otherwise invalid.

EAGAIN
The process was interrupted; retry this call.

ENOENT
The range specified in range is not valid. For example, the virtual address does
not exist, or not registered with userfaultfd write-protect mode.

EFAULT
Encountered a generic fault during processing.

Linux man-pages 6.16 2025-09-21 1423

UFFDIO_WRITEPROTECT (2const) UFFDIO_WRITEPROTECT (2const)

STANDARDS
Linux.

HISTORY
Linux 5.7.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

Documentation/admin-guide/mm/userfaultfd.rst in the Linux kernel source tree

Linux man-pages 6.16 2025-09-21 1424

UFFDIO_ZEROPAGE(2const) UFFDIO_ZEROPAGE(2const)

NAME
UFFDIO_ZEROPAGE - zero out a memory range registered with userfaultfd

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/userfaultfd.h> /* Definition of UFFD* constants */
#include <sys/ioctl.h>

int ioctl(int fd , UFFDIO_ZEROPAGE, struct uffdio_zeropage *argp);

#include <linux/userfaultfd.h>

struct uffdio_zeropage {
struct uffdio_range range;
__u64 mode; /* Flags controlling behavior */
__s64 zeropage; /* Number of bytes zeroed */

};

DESCRIPTION
Zero out a memory range registered with userfaultfd.

The following value may be bitwise ORed in mode to change the behavior of the UFF-
DIO_ZEROPAGE operation:

UFFDIO_ZEROPAGE_MODE_DONTWAKE
Do not wake up the thread that waits for page-fault resolution.

The zeropage field is used by the kernel to return the number of bytes that was actually
zeroed, or an error in the same manner as UFFDIO_COPY. If the value returned in the
zeropage field doesn’t match the value that was specified in range.len, the operation
fails with the error EAGAIN. The zeropage field is output-only; it is not read by the
UFFDIO_ZEROPAGE operation.

RETURN VALUE
This ioctl(2) operation returns 0 on success. In this case, the entire area was zeroed. On
error, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The number of bytes zeroed (i.e., the value returned in the zeropage field) does
not equal the value that was specified in the range.len field.

EINVAL
Either range.start or range.len was not a multiple of the system page size; or
range.len was zero; or the range specified was invalid.

EINVAL
An invalid bit was specified in the mode field.

ESRCH (since Linux 4.13)
The faulting process has exited at the time of a UFFDIO_ZEROPAGE opera-
tion.

Linux man-pages 6.16 2025-09-21 1425

UFFDIO_ZEROPAGE(2const) UFFDIO_ZEROPAGE(2const)

STANDARDS
Linux.

HISTORY
Linux 4.3.

EXAMPLES
See userfaultfd(2).

SEE ALSO
ioctl(2), ioctl_userfaultfd(2), userfaultfd(2)

linux.git/Documentation/admin-guide/mm/userfaultfd.rst

Linux man-pages 6.16 2025-09-21 1426

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

NAME
VFAT_IOCTL_READDIR_BOTH, VFAT_IOCTL_READDIR_SHORT - read file-
names of a directory in a FAT filesystem

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <linux/msdos_fs.h> /* Definition of VFAT_* constants */
#include <sys/ioctl.h>

int ioctl(int fd , VFAT_IOCTL_READDIR_BOTH,
struct __fat_dirent entry[2]);

int ioctl(int fd , VFAT_IOCTL_READDIR_SHORT,
struct __fat_dirent entry[2]);

DESCRIPTION
A file or directory on a FAT filesystem always has a short filename consisting of up to 8
capital letters, optionally followed by a period and up to 3 capital letters for the file ex-
tension. If the actual filename does not fit into this scheme, it is stored as a long file-
name of up to 255 UTF-16 characters.

The short filenames in a directory can be read with VFAT_IOCTL_READ-
DIR_SHORT. VFAT_IOCTL_READDIR_BOTH reads both the short and the long
filenames.

The fd argument must be a file descriptor for a directory. It is sufficient to create the file
descriptor by calling open(2) with the O_RDONLY flag. The file descriptor can be
used only once to iterate over the directory entries by calling ioctl(2) repeatedly.

The entry argument is a two-element array of the following structures:

struct __fat_dirent {
long d_ino;
__kernel_off_t d_off;
uint32_t short d_reclen;
char d_name[256];

};

The first entry in the array is for the short filename. The second entry is for the long
filename.

The d_ino and d_off fields are filled only for long filenames. The d_ino field holds the
inode number of the directory. The d_off field holds the offset of the file entry in the di-
rectory. As these values are not available for short filenames, the user code should sim-
ply ignore them.

The field d_reclen contains the length of the filename in the field d_name. To keep
backward compatibility, a length of 0 for the short filename signals that the end of the
directory has been reached. However, the preferred method for detecting the end of the
directory is to test the ioctl(2) return value. If no long filename exists, field d_reclen is
set to 0 and d_name is a character string of length 0 for the long filename.

Linux man-pages 6.16 2025-09-21 1427

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

RETURN VALUE
A return value of 1 signals that a new directory entry has been read and a return value of
0 signals that the end of the directory has been reached.

On error, -1 is returned, and errno is set to indicate the error.

ERRORS
ENOENT

fd refers to a removed, but still open directory.

ENOTDIR
fd does not refer to a directory.

STANDARDS
Linux.

HISTORY
Linux 2.0.

EXAMPLES
The following program demonstrates the use of ioctl(2) to list a directory.

The following was recorded when applying the program to the directory /mnt/user:

$./fat_dir /mnt/user;
. -> ''
.. -> ''
ALONGF~1.TXT -> 'a long filename.txt'
UPPER.TXT -> ''
LOWER.TXT -> 'lower.txt'

Program source
#include <fcntl.h>
#include <linux/msdos_fs.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int fd;
int ret;
struct __fat_dirent entry[2];

if (argc != 2) {
printf("Usage: %s DIRECTORY\n", argv[0]);
exit(EXIT_FAILURE);

}

/*

Linux man-pages 6.16 2025-09-21 1428

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

* Open file descriptor for the directory.
*/

fd = open(argv[1], O_RDONLY | O_DIRECTORY);
if (fd == -1) {

perror("open");
exit(EXIT_FAILURE);

}

for (;;) {

/*
* Read next directory entry.
*/

ret = ioctl(fd, VFAT_IOCTL_READDIR_BOTH, entry);

/*
* If an error occurs, the return value is -1.
* If the end of the directory list has been reached,
* the return value is 0.
* For backward compatibility the end of the directory
* list is also signaled by d_reclen == 0.
*/

if (ret < 1)
break;

/*
* Write both the short name and the long name.
*/

printf("%s -> '%s'\n", entry[0].d_name, entry[1].d_name);
}

if (ret == -1) {
perror("VFAT_IOCTL_READDIR_BOTH");
exit(EXIT_FAILURE);

}

/*
* Close the file descriptor.
*/

close(fd);

exit(EXIT_SUCCESS);
}

SEE ALSO
ioctl(2), ioctl_fat(2)

Linux man-pages 6.16 2025-09-21 1429

VFAT_IOCTL_READDIR_BOTH(2const) VFAT_IOCTL_READDIR_BOTH(2const)

Linux man-pages 6.16 2025-09-21 1430

mount_attr(2type) mount_attr(2type)

NAME
mount_attr - what mount properties to set and clear

LIBRARY
Linux kernel headers

SYNOPSIS
#include <sys/mount.h>

struct mount_attr {
u64 attr_set; /* Mount properties to set */
u64 attr_clr; /* Mount properties to clear */
u64 propagation; /* Mount propagation type */
u64 userns_fd; /* User namespace file descriptor */
/* ... */

};

DESCRIPTION
Specifies which mount properties should be changed with mount_setattr(2).

The fields are as follows:

.attr_set
This field specifies which MOUNT_ATTR_* attribute flags to set.

.attr_clr
This field specifies which MOUNT_ATTR_* attribute flags to clear.

.propagation
This field specifies what mount propagation will be applied. The valid values of
this field are the same propagation types described in mount_namespaces(7).

.userns_fd
This field specifies a file descriptor that indicates which user namespace to use as
a reference for ID-mapped mounts with MOUNT_ATTR_IDMAP.

STANDARDS
Linux.

HISTORY
Linux 5.12. glibc 2.36.

Extra fields may be appended to the structure, with a zero value in a new field resulting
in the kernel behaving as though that extension field was not present. Therefore, a user
must zero-fill this structure on initialization.

SEE ALSO
mount_setattr(2)

Linux man-pages 6.16 2025-09-21 1431

open_how(2type) open_how(2type)

NAME
open_how - how to open a pathname

LIBRARY
Linux kernel headers

SYNOPSIS
#include <linux/openat2.h>

struct open_how {
u64 flags; /* O_* flags */
u64 mode; /* Mode for O_{CREAT,TMPFILE} */
u64 resolve; /* RESOLVE_* flags */
/* ... */

};

DESCRIPTION
Specifies how a pathname should be opened.

The fields are as follows:

flags This field specifies the file creation and file status flags to use when opening the
file.

mode
This field specifies the mode for the new file.

resolve
This is a bit mask of flags that modify the way in which all components of a
pathname will be resolved (see path_resolution(7) for background information).

STANDARDS
Linux.

HISTORY
Extra fields may be appended to the structure, with a zero value in a new field resulting
in the kernel behaving as though that extension field was not present. Therefore, a user
must zero-fill this structure on initialization.

SEE ALSO
openat2(2)

Linux man-pages 6.16 2025-09-21 1432

intro(3) Library Functions Manual intro(3)

NAME
intro - introduction to library functions

DESCRIPTION
Section 3 of the manual describes all library functions excluding the library functions
(system call wrappers) described in Section 2, which implement system calls.

Many of the functions described in the section are part of the Standard C Library (libc).
Some functions are part of other libraries (e.g., the math library, libm, or the real-time li-
brary, librt) in which case the manual page will indicate the linker option needed to link
against the required library (e.g., -lm and -lrt, respectively, for the aforementioned li-
braries).

In some cases, the programmer must define a feature test macro in order to obtain the
declaration of a function from the header file specified in the man page SYNOPSIS sec-
tion. (Where required, these feature test macros must be defined before including any
header files.) In such cases, the required macro is described in the man page. For fur-
ther information on feature test macros, see feature_test_macros(7).

Subsections
Section 3 of this manual is organized into subsections that reflect the complex structure
of the standard C library and its many implementations:

• 3const

• 3head

• 3type

This difficult history frequently makes it a poor example to follow in design, implemen-
tation, and presentation.

Ideally, a library for the C language is designed such that each header file presents the
interface to a coherent software module. It provides a small number of function declara-
tions and exposes only data types and constants that are required for use of those func-
tions. Together, these are termed an API or application program interface. Types and
constants to be shared among multiple APIs should be placed in header files that declare
no functions. This organization permits a C library module to be documented concisely
with one header file per manual page. Such an approach improves the readability and
accessibility of library documentation, and thereby the usability of the software.

STANDARDS
Certain terms and abbreviations are used to indicate UNIX variants and standards to
which calls in this section conform. See standards(7).

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

SEE ALSO
intro(2), errno(3), capabilities(7), credentials(7), environ(7), feature_test_macros(7),
libc(7), math_error(7), path_resolution(7), pthreads(7), signal(7), standards(7), sys-
tem_data_types(7)

Linux man-pages 6.16 2025-05-17 1433

intro(3attr) intro(3attr)

NAME
intro - C/C++ attributes

SYNOPSIS
[[attr]]
[[vendor::attr]]

DESCRIPTION
Attributes modify the properties of a source construct, such as a type, a variable, or a
function.

The standard syntax allows specifying a vendor for non-standard attributes.

VERSIONS
C and C++ dialects have provided various forms of attributes before standardization.

__attribute__((attr))
This is the GNU syntax for attributes. It is supported by both GCC and Clang.

__declspec(attr)
This is the MSVC syntax for attributes. It is supported by Clang.

STANDARDS
C23, C++23.

HISTORY
[[attr]]
[[vendor::attr]]

C23, C++11.

[[attr]]
[[gnu::attr]]

gcc 10, g++ 9, clang 9, clang++ 9.

__attribute__((attr))
gcc, g++, clang, clang++.

__declspec(attr)
clang, clang++.

Linux man-pages 6.16 2025-06-28 1434

a64l(3) Library Functions Manual a64l(3)

NAME
a64l, l64a - convert between long and base-64

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

long a64l(const char *str64);
char *l64a(long value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

a64l(), l64a():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
These functions provide a conversion between 32-bit long integers and little-endian
base-64 ASCII strings (of length zero to six). If the string used as argument for a64l()
has length greater than six, only the first six bytes are used. If the type long has more
than 32 bits, then l64a() uses only the low order 32 bits of value, and a64l() sign-ex-
tends its 32-bit result.

The 64 digits in the base-64 system are:

'.' represents a 0
'/' represents a 1
0-9 represent 2-11
A-Z represent 12-37
a-z represent 38-63

So 123 = 59*64^0 + 1*64^1 = "v/".

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:l64al64a()
Thread safety MT-Safea64l()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The value returned by l64a() may be a pointer to a static buffer, possibly overwritten by
later calls.

The behavior of l64a() is undefined when value is negative. If value is zero, it returns
an empty string.

These functions are broken before glibc 2.2.5 (puts most significant digit first).

Linux man-pages 6.16 2025-05-17 1435

a64l(3) Library Functions Manual a64l(3)

This is not the encoding used by uuencode(1)

SEE ALSO
uuencode(1), strtoul(3)

Linux man-pages 6.16 2025-05-17 1436

abort(3) Library Functions Manual abort(3)

NAME
abort - cause abnormal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[noreturn]] void abort(void);

DESCRIPTION
The abort() function first unblocks the SIGABRT signal, and then raises that signal for
the calling process (as though raise(3) was called). This results in the abnormal termi-
nation of the process unless the SIGABRT signal is caught and the signal handler does
not return (see longjmp(3)).

If the SIGABRT signal is ignored, or caught by a handler that returns, the abort() func-
tion will still terminate the process. It does this by restoring the default disposition for
SIGABRT and then raising the signal for a second time.

As with other cases of abnormal termination the functions registered with atexit(3) and
on_exit(3) are not called.

RETURN VALUE
The abort() function never returns.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeabort()

STANDARDS
C11, POSIX.1-2008.

HISTORY
SVr4, POSIX.1-2001, 4.3BSD, C89.

Up until glibc 2.26, if the abort() function caused process termination, all open streams
were closed and flushed (as with fclose(3)). However, in some cases this could result in
deadlocks and data corruption. Therefore, starting with glibc 2.27, abort() terminates
the process without flushing streams. POSIX.1 permits either possible behavior, saying
that abort() "may include an attempt to effect fclose() on all open streams".

SEE ALSO
gdb(1), sigaction(2), assert(3), exit(3), longjmp(3), raise(3)

Linux man-pages 6.16 2025-05-17 1437

abs(3) Library Functions Manual abs(3)

NAME
abs, labs, llabs, imaxabs, uabs, ulabs, ullabs, umaxabs - compute the absolute value of
an integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int abs(int j);
long labs(long j);
long long llabs(long long j);

unsigned int uabs(int j);
unsigned long ulabs(long j);
unsigned long long ullabs(long long j);

#include <inttypes.h>

intmax_t imaxabs(intmax_t j);
uintmax_t umaxabs(intmax_t j);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

llabs():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

uabs(), ulabs(), ullabs(), umaxabs():
_ISOC2Y_SOURCE

DESCRIPTION
These functions compute the absolute value of the argument j of the appropriate integer
type for the function.

RETURN VALUE
Returns the absolute value of the integer argument, of the appropriate integer type for
the function.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeabs(), labs(), llabs(), imaxabs(), uabs(), ulabs(),
ullabs(), umaxabs()

STANDARDS
abs()
labs()
llabs()
imaxabs()

C23, POSIX.1-2024

HISTORY

Linux man-pages 6.16 2025-10-28 1438

abs(3) Library Functions Manual abs(3)

abs() C89, POSIX.1-1996, SVr4, 4.3BSD.

labs()
C89, POSIX.1-2001.

llabs()
C99, POSIX.1-2001; glibc 2.0.

imaxabs()
C99, POSIX.1-2001; glibc 2.1.1.

uabs()
ulabs()
ullabs()

C2y; glibc 2.42.

umaxabs()
C2y; glibc 2.43.

BUGS
For abs(), labs(), llabs(), and imaxabs(), trying to take the absolute value of the most
negative integer is not defined.

SEE ALSO
cabs(3), ceil(3), fabs(3), floor(3), rint(3)

Linux man-pages 6.16 2025-10-28 1439

acos(3) Library Functions Manual acos(3)

NAME
acos, acosf, acosl - arc cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double acos(double x);
float acosf(float x);
long double acosl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acosf(), acosl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the arc cosine of x; that is the value whose cosine is x.

RETURN VALUE
On success, these functions return the arc cosine of x in radians; the return value is in
the range [0, pi].

If x is a NaN, a NaN is returned.

If x is +1, +0 is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is returned.

If x is outside the range [-1, 1], a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is outside the range [-1, 1]
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeacos(), acosf(), acosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to C89, SVr4, 4.3BSD.

Linux man-pages 6.16 2025-09-21 1440

acos(3) Library Functions Manual acos(3)

SEE ALSO
asin(3), atan(3), atan2(3), cacos(3), cos(3), sin(3), tan(3)

Linux man-pages 6.16 2025-09-21 1441

acosh(3) Library Functions Manual acosh(3)

NAME
acosh, acoshf, acoshl - inverse hyperbolic cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double acosh(double x);
float acoshf(float x);
long double acoshl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

acosh():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

acoshf(), acoshl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the inverse hyperbolic cosine of x; that is the value whose hy-
perbolic cosine is x.

RETURN VALUE
On success, these functions return the inverse hyperbolic cosine of x.

If x is a NaN, a NaN is returned.

If x is +1, +0 is returned.

If x is positive infinity, positive infinity is returned.

If x is less than 1, a domain error occurs, and the functions return a NaN.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is less than 1
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeacosh(), acoshf(), acoshl()

Linux man-pages 6.16 2025-05-17 1442

acosh(3) Library Functions Manual acosh(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
asinh(3), atanh(3), cacosh(3), cosh(3), sinh(3), tanh(3)

Linux man-pages 6.16 2025-05-17 1443

addseverity(3) Library Functions Manual addseverity(3)

NAME
addseverity - introduce new severity classes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fmtmsg.h>

int addseverity(int severity, const char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

addseverity():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
This function allows the introduction of new severity classes which can be addressed by
the severity argument of the fmtmsg(3) function. By default, that function knows only
how to print messages for severity 0-4 (with strings (none), HALT, ERROR, WARN-
ING, INFO). This call attaches the given string s to the given value severity. If s is
NULL, the severity class with the numeric value severity is removed. It is not possible
to overwrite or remove one of the default severity classes. The severity value must be
nonnegative.

RETURN VALUE
Upon success, the value MM_OK is returned. Upon error, the return value is
MM_NOTOK. Possible errors include: out of memory, attempt to remove a nonexis-
tent or default severity class.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaddseverity()

STANDARDS
GNU.

HISTORY
glibc 2.1. System V.

NOTES
New severity classes can also be added by setting the environment variable
SEV_LEVEL.

SEE ALSO
fmtmsg(3)

Linux man-pages 6.16 2025-05-17 1444

adjtime(3) Library Functions Manual adjtime(3)

NAME
adjtime - correct the time to synchronize the system clock

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

int adjtime(const struct timeval *delta, struct timeval *olddelta);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

adjtime():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The adjtime() function gradually adjusts the system clock (as returned by gettimeof-
day(2)). The amount of time by which the clock is to be adjusted is specified in the
structure pointed to by delta. This structure has the following form:

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

If the adjustment in delta is positive, then the system clock is speeded up by some small
percentage (i.e., by adding a small amount of time to the clock value in each second) un-
til the adjustment has been completed. If the adjustment in delta is negative, then the
clock is slowed down in a similar fashion.

If a clock adjustment from an earlier adjtime() call is already in progress at the time of a
later adjtime() call, and delta is not NULL for the later call, then the earlier adjustment
is stopped, but any already completed part of that adjustment is not undone.

If olddelta is not NULL, then the buffer that it points to is used to return the amount of
time remaining from any previous adjustment that has not yet been completed.

RETURN VALUE
On success, adjtime() returns 0. On failure, -1 is returned, and errno is set to indicate
the error.

ERRORS
EINVAL

The adjustment in delta is outside the permitted range.

EPERM
The caller does not have sufficient privilege to adjust the time. Under Linux, the
CAP_SYS_TIME capability is required.

Linux man-pages 6.16 2025-05-17 1445

adjtime(3) Library Functions Manual adjtime(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeadjtime()

STANDARDS
None.

HISTORY
4.3BSD, System V.

NOTES
The adjustment that adjtime() makes to the clock is carried out in such a manner that
the clock is always monotonically increasing. Using adjtime() to adjust the time pre-
vents the problems that could be caused for certain applications (e.g., make(1)) by
abrupt positive or negative jumps in the system time.

adjtime() is intended to be used to make small adjustments to the system time. Most
systems impose a limit on the adjustment that can be specified in delta. In the glibc im-
plementation, delta must be less than or equal to (INT_MAX / 1000000 - 2) and greater
than or equal to (INT_MIN / 1000000 + 2) (respectively 2145 and -2145 seconds on
i386).

BUGS
A longstanding bug meant that if delta was specified as NULL, no valid information
about the outstanding clock adjustment was returned in olddelta. (In this circumstance,
adjtime() should return the outstanding clock adjustment, without changing it.) This
bug is fixed on systems with glibc 2.8 or later and Linux kernel 2.6.26 or later.

SEE ALSO
adjtimex(2), gettimeofday(2), time(7)

Linux man-pages 6.16 2025-05-17 1446

aio_cancel(3) Library Functions Manual aio_cancel(3)

NAME
aio_cancel - cancel an outstanding asynchronous I/O request

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_cancel(int fd , struct aiocb *aiocbp);

DESCRIPTION
The aio_cancel() function attempts to cancel outstanding asynchronous I/O requests for
the file descriptor fd . If aiocbp is NULL, all such requests are canceled. Otherwise,
only the request described by the control block pointed to by aiocbp is canceled. (See
aio(7) for a description of the aiocb structure.)

Normal asynchronous notification occurs for canceled requests (see aio(7) and
sigevent(3type)). The request return status (aio_return(3)) is set to -1, and the request
error status (aio_error(3)) is set to ECANCELED. The control block of requests that
cannot be canceled is not changed.

If the request could not be canceled, then it will terminate in the usual way after per-
forming the I/O operation. (In this case, aio_error(3) will return the status EINPRO-
GRESSS.)

If aiocbp is not NULL, and fd differs from the file descriptor with which the asynchro-
nous operation was initiated, unspecified results occur.

Which operations are cancelable is implementation-defined.

RETURN VALUE
The aio_cancel() function returns one of the following values:

AIO_CANCELED
All requests were successfully canceled.

AIO_NOTCANCELED
At least one of the requests specified was not canceled because it was in
progress. In this case, one may check the status of individual requests using
aio_error(3).

AIO_ALLDONE
All requests had already been completed before the call.

-1 An error occurred. The error can be found by inspecting errno.

ERRORS
EBADF

fd is not a valid file descriptor.

ENOSYS
aio_cancel() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 1447

aio_cancel(3) Library Functions Manual aio_cancel(3)

Interface Attribute Value
Thread safety MT-Safeaio_cancel()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

EXAMPLES
See aio(7).

SEE ALSO
aio_error(3), aio_fsync(3), aio_read(3), aio_return(3), aio_suspend(3), aio_write(3),
lio_listio(3), aio(7)

Linux man-pages 6.16 2025-05-17 1448

aio_error(3) Library Functions Manual aio_error(3)

NAME
aio_error - get error status of asynchronous I/O operation

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_error(const struct aiocb *aiocbp);

DESCRIPTION
The aio_error() function returns the error status for the asynchronous I/O request with
control block pointed to by aiocbp. (See aio(7) for a description of the aiocb structure.)

RETURN VALUE
This function returns one of the following:

EINPROGRESS
if the request has not been completed yet.

ECANCELED
if the request was canceled.

0 if the request completed successfully.

> 0 A positive error number, if the asynchronous I/O operation failed. This is the
same value that would have been stored in the errno variable in the case of a
synchronous read(2), write(2), fsync(2), or fdatasync(2) call.

ERRORS
EINVAL

aiocbp does not point at a control block for an asynchronous I/O request of
which the return status (see aio_return(3)) has not been retrieved yet.

ENOSYS
aio_error() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_error()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

EXAMPLES
See aio(7).

SEE ALSO
aio_cancel(3), aio_fsync(3), aio_read(3), aio_return(3), aio_suspend(3), aio_write(3),
lio_listio(3), aio(7)

Linux man-pages 6.16 2025-05-17 1449

aio_fsync(3) Library Functions Manual aio_fsync(3)

NAME
aio_fsync - asynchronous file synchronization

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_fsync(int op, struct aiocb *aiocbp);

DESCRIPTION
The aio_fsync() function does a sync on all outstanding asynchronous I/O operations as-
sociated with aiocbp->aio_fildes. (See aio(7) for a description of the aiocb structure.)

More precisely, if op is O_SYNC, then all currently queued I/O operations shall be
completed as if by a call of fsync(2), and if op is O_DSYNC, this call is the asynchro-
nous analog of fdatasync(2).

Note that this is a request only; it does not wait for I/O completion.

Apart from aio_fildes, the only field in the structure pointed to by aiocbp that is used by
this call is the aio_sigevent field (a sigevent structure, described in sigevent(3type)),
which indicates the desired type of asynchronous notification at completion. All other
fields are ignored.

RETURN VALUE
On success (the sync request was successfully queued) this function returns 0. On error,
-1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

Out of resources.

EBADF
aio_fildes is not a valid file descriptor open for writing.

EINVAL
Synchronized I/O is not supported for this file, or op is not O_SYNC or
O_DSYNC.

ENOSYS
aio_fsync() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_fsync()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

Linux man-pages 6.16 2025-09-21 1450

aio_fsync(3) Library Functions Manual aio_fsync(3)

SEE ALSO
aio_cancel(3), aio_error(3), aio_read(3), aio_return(3), aio_suspend(3), aio_write(3),
lio_listio(3), aio(7), sigevent(3type)

Linux man-pages 6.16 2025-09-21 1451

aio_init(3) Library Functions Manual aio_init(3)

NAME
aio_init - asynchronous I/O initialization

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <aio.h>

void aio_init(const struct aioinit *init);

DESCRIPTION
The GNU-specific aio_init() function allows the caller to provide tuning hints to the
glibc POSIX AIO implementation. Use of this function is optional, but to be effective,
it must be called before employing any other functions in the POSIX AIO API.

The tuning information is provided in the buffer pointed to by the argument init. This
buffer is a structure of the following form:

struct aioinit {
int aio_threads; /* Maximum number of threads */
int aio_num; /* Number of expected simultaneous

requests */
int aio_locks; /* Not used */
int aio_usedba; /* Not used */
int aio_debug; /* Not used */
int aio_numusers; /* Not used */
int aio_idle_time; /* Number of seconds before idle thread

terminates (since glibc 2.2) */
int aio_reserved;

};

The following fields are used in the aioinit structure:

aio_threads
This field specifies the maximum number of worker threads that may be used by
the implementation. If the number of outstanding I/O operations exceeds this
limit, then excess operations will be queued until a worker thread becomes free.
If this field is specified with a value less than 1, the value 1 is used. The default
value is 20.

aio_num
This field should specify the maximum number of simultaneous I/O requests that
the caller expects to enqueue. If a value less than 32 is specified for this field, it
is rounded up to 32. The default value is 64.

aio_idle_time
This field specifies the amount of time in seconds that a worker thread should
wait for further requests before terminating, after having completed a previous
request. The default value is 1.

Linux man-pages 6.16 2025-09-21 1452

aio_init(3) Library Functions Manual aio_init(3)

STANDARDS
GNU.

HISTORY
glibc 2.1.

SEE ALSO
aio(7)

Linux man-pages 6.16 2025-09-21 1453

aio_read(3) Library Functions Manual aio_read(3)

NAME
aio_read - asynchronous read

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_read(struct aiocb *aiocbp);

DESCRIPTION
The aio_read() function queues the I/O request described by the buffer pointed to by
aiocbp. This function is the asynchronous analog of read(2). The arguments of the call

read(fd, buf, count)

correspond (in order) to the fields aio_fildes, aio_buf , and aio_nbytes of the structure
pointed to by aiocbp. (See aio(7) for a description of the aiocb structure.)

The data is read starting at the absolute position aiocbp->aio_offset, regardless of the
file offset. After the call, the value of the file offset is unspecified.

The "asynchronous" means that this call returns as soon as the request has been en-
queued; the read may or may not have completed when the call returns. One tests for
completion using aio_error(3). The return status of a completed I/O operation can be
obtained by aio_return(3). Asynchronous notification of I/O completion can be ob-
tained by setting aiocbp->aio_sigevent appropriately; see sigevent(3type) for details.

If _POSIX_PRIORITIZED_IO is defined, and this file supports it, then the asynchro-
nous operation is submitted at a priority equal to that of the calling process minus
aiocbp->aio_reqprio.

The field aiocbp->aio_lio_opcode is ignored.

No data is read from a regular file beyond its maximum offset.

RETURN VALUE
On success, 0 is returned. On error, the request is not enqueued, -1 is returned, and er-
rno is set to indicate the error. If an error is detected only later, it will be reported via
aio_return(3) (returns status -1) and aio_error(3) (error status—whatever one would
have gotten in errno, such as EBADF).

ERRORS
EAGAIN

Out of resources.

EBADF
aio_fildes is not a valid file descriptor open for reading.

EINVAL
One or more of aio_offset, aio_reqprio, or aio_nbytes are invalid.

ENOSYS
aio_read() is not implemented.

Linux man-pages 6.16 2025-09-21 1454

aio_read(3) Library Functions Manual aio_read(3)

EOVERFLOW
The file is a regular file, we start reading before end-of-file and want at least one
byte, but the starting position is past the maximum offset for this file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_read()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
It is a good idea to zero out the control block before use. The control block must not be
changed while the read operation is in progress. The buffer area being read into must
not be accessed during the operation or undefined results may occur. The memory areas
involved must remain valid.

Simultaneous I/O operations specifying the same aiocb structure produce undefined re-
sults.

EXAMPLES
See aio(7).

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_return(3), aio_suspend(3), aio_write(3),
lio_listio(3), aio(7)

Linux man-pages 6.16 2025-09-21 1455

aio_return(3) Library Functions Manual aio_return(3)

NAME
aio_return - get return status of asynchronous I/O operation

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

ssize_t aio_return(struct aiocb *aiocbp);

DESCRIPTION
The aio_return() function returns the final return status for the asynchronous I/O re-
quest with control block pointed to by aiocbp. (See aio(7) for a description of the aiocb
structure.)

This function should be called only once for any given request, after aio_error(3) re-
turns something other than EINPROGRESS.

RETURN VALUE
If the asynchronous I/O operation has completed, this function returns the value that
would have been returned in case of a synchronous read(2), write(2), fsync(2), or fdata-
sync(2), call. On error, -1 is returned, and errno is set to indicate the error.

If the asynchronous I/O operation has not yet completed, the return value and effect of
aio_return() are undefined.

ERRORS
EINVAL

aiocbp does not point at a control block for an asynchronous I/O request of
which the return status has not been retrieved yet.

ENOSYS
aio_return() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_return()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

EXAMPLES
See aio(7).

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_suspend(3), aio_write(3),
lio_listio(3), aio(7)

Linux man-pages 6.16 2025-05-17 1456

aio_suspend(3) Library Functions Manual aio_suspend(3)

NAME
aio_suspend - wait for asynchronous I/O operation or timeout

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_suspend(int n;
const struct aiocb *const aiocb_list[n], int n,
const struct timespec *restrict timeout);

DESCRIPTION
The aio_suspend() function suspends the calling thread until one of the following oc-
curs:

• One or more of the asynchronous I/O requests in the list aiocb_list has completed.

• A signal is delivered.

• timeout is not NULL and the specified time interval has passed. (For details of the
timespec structure, see nanosleep(2).)

The n argument specifies the number of items in aiocb_list. Each item in the list
pointed to by aiocb_list must be either NULL (and then is ignored), or a pointer to a
control block on which I/O was initiated using aio_read(3), aio_write(3), or
lio_listio(3). (See aio(7) for a description of the aiocb structure.)

If CLOCK_MONOTONIC is supported, this clock is used to measure the timeout in-
terval (see clock_gettime(2)).

RETURN VALUE
If this function returns after completion of one of the I/O requests specified in
aiocb_list, 0 is returned. Otherwise, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

The call timed out before any of the indicated operations had completed.

EINTR
The call was ended by signal (possibly the completion signal of one of the opera-
tions we were waiting for); see signal(7).

ENOSYS
aio_suspend() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_suspend()

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 1457

aio_suspend(3) Library Functions Manual aio_suspend(3)

HISTORY
glibc 2.1. POSIX.1-2001.

POSIX doesn’t specify the parameters to be restrict; that is specific to glibc.

NOTES
One can achieve polling by using a non-NULL timeout that specifies a zero time inter-
val.

If one or more of the asynchronous I/O operations specified in aiocb_list has already
completed at the time of the call to aio_suspend(), then the call returns immediately.

To determine which I/O operations have completed after a successful return from
aio_suspend(), use aio_error(3) to scan the list of aiocb structures pointed to by
aiocb_list.

BUGS
The glibc implementation of aio_suspend() is not async-signal-safe, in violation of the
requirements of POSIX.1.

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_return(3), aio_write(3),
lio_listio(3), aio(7), time(7)

Linux man-pages 6.16 2025-09-21 1458

aio_write(3) Library Functions Manual aio_write(3)

NAME
aio_write - asynchronous write

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int aio_write(struct aiocb *aiocbp);

DESCRIPTION
The aio_write() function queues the I/O request described by the buffer pointed to by
aiocbp. This function is the asynchronous analog of write(2). The arguments of the call

write(fd, buf, count)

correspond (in order) to the fields aio_fildes, aio_buf , and aio_nbytes of the structure
pointed to by aiocbp. (See aio(7) for a description of the aiocb structure.)

If O_APPEND is not set, the data is written starting at the absolute position
aiocbp->aio_offset, regardless of the file offset. If O_APPEND is set, data is written at
the end of the file in the same order as aio_write() calls are made. After the call, the
value of the file offset is unspecified.

The "asynchronous" means that this call returns as soon as the request has been en-
queued; the write may or may not have completed when the call returns. One tests for
completion using aio_error(3). The return status of a completed I/O operation can be
obtained aio_return(3). Asynchronous notification of I/O completion can be obtained
by setting aiocbp->aio_sigevent appropriately; see sigevent(3type) for details.

If _POSIX_PRIORITIZED_IO is defined, and this file supports it, then the asynchro-
nous operation is submitted at a priority equal to that of the calling process minus
aiocbp->aio_reqprio.

The field aiocbp->aio_lio_opcode is ignored.

No data is written to a regular file beyond its maximum offset.

RETURN VALUE
On success, 0 is returned. On error, the request is not enqueued, -1 is returned, and er-
rno is set to indicate the error. If an error is detected only later, it will be reported via
aio_return(3) (returns status -1) and aio_error(3) (error status—whatever one would
have gotten in errno, such as EBADF).

ERRORS
EAGAIN

Out of resources.

EBADF
aio_fildes is not a valid file descriptor open for writing.

EFBIG
The file is a regular file, we want to write at least one byte, but the starting posi-
tion is at or beyond the maximum offset for this file.

Linux man-pages 6.16 2025-09-21 1459

aio_write(3) Library Functions Manual aio_write(3)

EINVAL
One or more of aio_offset, aio_reqprio, aio_nbytes are invalid.

ENOSYS
aio_write() is not implemented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeaio_write()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
It is a good idea to zero out the control block before use. The control block must not be
changed while the write operation is in progress. The buffer area being written out must
not be accessed during the operation or undefined results may occur. The memory areas
involved must remain valid.

Simultaneous I/O operations specifying the same aiocb structure produce undefined re-
sults.

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_return(3), aio_suspend(3),
lio_listio(3), aio(7)

Linux man-pages 6.16 2025-09-21 1460

alloca(3) Library Functions Manual alloca(3)

NAME
alloca - allocate memory that is automatically freed

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <alloca.h>

void *alloca(size_t size);

DESCRIPTION
The alloca() function allocates size bytes of space in the stack frame of the caller. This
temporary space is automatically freed when the function that called alloca() returns to
its caller.

RETURN VALUE
The alloca() function returns a pointer to the beginning of the allocated space. If the al-
location causes stack overflow, program behavior is undefined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safealloca()

STANDARDS
None.

HISTORY
PWB, 32V.

NOTES
The alloca() function is machine- and compiler-dependent. Because it allocates from
the stack, it’s faster than malloc(3) and free(3). In certain cases, it can also simplify
memory deallocation in applications that use longjmp(3) or siglongjmp(3). Otherwise,
its use is discouraged.

Because the space allocated by alloca() is allocated within the stack frame, that space is
automatically freed if the function return is jumped over by a call to longjmp(3) or sig-
longjmp(3).

The space allocated by alloca() is not automatically deallocated if the pointer that refers
to it simply goes out of scope; it is automatically deallocated when the caller function
returns.

Do not attempt to free(3) space allocated by alloca()!

By necessity, alloca() is a compiler built-in, also known as __builtin_alloca(). By de-
fault, modern compilers automatically translate all uses of alloca() into the built-in, but
this is forbidden if standards conformance is requested (-ansi, -std=c*), in which case
<alloca.h> is required, lest a symbol dependency be emitted.

The fact that alloca() is a built-in means it is impossible to take its address or to change
its behavior by linking with a different library.

Variable length arrays (VLAs) are part of the C99 standard, optional since C11, and can

Linux man-pages 6.16 2025-10-29 1461

alloca(3) Library Functions Manual alloca(3)

be used for a similar purpose. However, they do not port to standard C++, and, being
variables, live in their block scope and don’t have an allocator-like interface, making
them unfit for implementing functionality like strdupa(3).

BUGS
alloca() does not query the system for available stack memory, and does not fall back to
using heap if stack storage is unavailable. It therefore cannot indicate an error if the al-
location fails. If the allocation fails, the program is likely to receive a SIGSEGV signal.

On many systems alloca() cannot be used inside the list of arguments of a function call,
because the stack space reserved by alloca() would appear on the stack in the middle of
the space for the function arguments.

SEE ALSO
brk(2), longjmp(3), malloc(3)

Linux man-pages 6.16 2025-10-29 1462

arc4random(3) Library Functions Manual arc4random(3)

NAME
arc4random, arc4random_uniform, arc4random_buf - cryptographically-secure pseudo-
random number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

uint32_t arc4random(void);
uint32_t arc4random_uniform(uint32_t upper_bound);
void arc4random_buf(size_t n;

void buf [n], size_t n);

DESCRIPTION
These functions give cryptographically-secure pseudorandom numbers.

arc4random() returns a uniformly-distributed value.

arc4random_uniform() returns a uniformly-distributed value less than upper_bound
(see BUGS).

arc4random_buf() fills the memory pointed to by buf , with n bytes of pseudorandom
data.

The rand(3) and drand48(3) families of functions should only be used where the quality
of the pseudorandom numbers is not a concern and there’s a need for repeatability of the
results. Unless you meet both of those conditions, use the arc4random() functions.

RETURN VALUE
arc4random() returns a pseudorandom number.

arc4random_uniform() returns a pseudorandom number less than upper_bound for
valid input, or 0 when upper_bound is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safearc4random(), arc4random_uniform(),
arc4random_buf()

STANDARDS
BSD.

HISTORY
OpenBSD 2.1, FreeBSD 3.0, NetBSD 1.6, DragonFly 1.0, libbsd, glibc 2.36.

BUGS
An upper_bound of 0 doesn’t make sense in a call to arc4random_uniform(). Such a
call will fail, and return 0. Be careful, since that value is not less than upper_bound . In
some cases, such as accessing an array, using that value could result in undefined behav-
ior.

Linux man-pages 6.16 2025-06-28 1463

arc4random(3) Library Functions Manual arc4random(3)

SEE ALSO
getrandom(3), rand(3), drand48(3), random(7)

Linux man-pages 6.16 2025-06-28 1464

argz_add(3) Library Functions Manual argz_add(3)

NAME
argz_add, argz_add_sep, argz_append, argz_count, argz_create, argz_create_sep,
argz_delete, argz_extract, argz_insert, argz_next, argz_replace, argz_stringify - func-
tions to handle an argz list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <argz.h>

error_t argz_add(char **restrict argz, size_t *restrict argz_len,
const char *restrict str);

error_t argz_add_sep(char **restrict argz, size_t *restrict argz_len,
const char *restrict str, int delim);

error_t argz_append(char **restrict argz, size_t *restrict argz_len,
const char *restrict buf , size_t buf_len);

size_t argz_count(const char *argz, size_t argz_len);

error_t argz_create(char *const argv[], char **restrict argz,
size_t *restrict argz_len);

error_t argz_create_sep(const char *restrict str, int sep,
char **restrict argz, size_t *restrict argz_len);

void argz_delete(char **restrict argz, size_t *restrict argz_len,
char *restrict entry);

void argz_extract(const char *restrict argz, size_t argz_len,
char **restrict argv);

error_t argz_insert(char **restrict argz, size_t *restrict argz_len,
char *restrict before, const char *restrict entry);

char *argz_next(const char *restrict argz, size_t argz_len,
const char *restrict entry);

error_t argz_replace(char **restrict argz, size_t *restrict argz_len,
const char *restrict str, const char *restrict with,
unsigned int *restrict replace_count);

void argz_stringify(char *argz, size_t len, int sep);

DESCRIPTION
These functions are glibc-specific.

An argz vector is a pointer to a character buffer together with a length. The intended in-
terpretation of the character buffer is an array of strings, where the strings are separated
by null bytes ('\0'). If the length is nonzero, the last byte of the buffer must be a null
byte.

These functions are for handling argz vectors. The pair (NULL,0) is an argz vector, and,
conversely, argz vectors of length 0 must have null pointer. Allocation of nonempty argz
vectors is done using malloc(3), so that free(3) can be used to dispose of them again.

Linux man-pages 6.16 2025-05-17 1465

argz_add(3) Library Functions Manual argz_add(3)

argz_add() adds the string str at the end of the array *argz, and updates *argz and
*argz_len.

argz_add_sep() is similar, but splits the string str into substrings separated by the de-
limiter delim. For example, one might use this on a UNIX search path with delimiter ':'.

argz_append() appends the argz vector (buf , buf_len) after (*argz, *argz_len) and up-
dates *argz and *argz_len. (Thus, *argz_len will be increased by buf_len.)

argz_count() counts the number of strings, that is, the number of null bytes ('\0'), in
(argz, argz_len).

argz_create() converts a UNIX-style argument vector argv, terminated by (char *) 0,
into an argz vector (*argz, *argz_len).

argz_create_sep() converts the null-terminated string str into an argz vector
(*argz, *argz_len) by breaking it up at every occurrence of the separator sep.

argz_delete() removes the substring pointed to by entry from the argz vector
(*argz, *argz_len) and updates *argz and *argz_len.

argz_extract() is the opposite of argz_create(). It takes the argz vector
(argz, argz_len) and fills the array starting at argv with pointers to the substrings, and a
final NULL, making a UNIX-style argv vector. The array argv must have room for
argz_count(argz, argz_len) + 1" pointers.

argz_insert() is the opposite of argz_delete(). It inserts the argument entry at position
before into the argz vector (*argz, *argz_len) and updates *argz and *argz_len. If be-
fore is NULL, then entry will inserted at the end.

argz_next() is a function to step through the argz vector. If entry is NULL, the first en-
try is returned. Otherwise, the entry following is returned. It returns NULL if there is
no following entry.

argz_replace() replaces each occurrence of str with with, reallocating argz as necessary.
If replace_count is non-NULL, *replace_count will be incremented by the number of
replacements.

argz_stringify() is the opposite of argz_create_sep(). It transforms the argz vector into
a normal string by replacing all null bytes ('\0') except the last by sep.

RETURN VALUE
All argz functions that do memory allocation have a return type of error_t (an integer
type), and return 0 for success, and ENOMEM if an allocation error occurs.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeargz_add(), argz_add_sep(), argz_append(),
argz_count(), argz_create(), argz_create_sep(),
argz_delete(), argz_extract(), argz_insert(),
argz_next(), argz_replace(), argz_stringify()

Linux man-pages 6.16 2025-05-17 1466

argz_add(3) Library Functions Manual argz_add(3)

STANDARDS
GNU.

BUGS
Argz vectors without a terminating null byte may lead to Segmentation Faults.

SEE ALSO
envz_add(3)

Linux man-pages 6.16 2025-05-17 1467

asin(3) Library Functions Manual asin(3)

NAME
asin, asinf, asinl - arc sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double asin(double x);
float asinf(float x);
long double asinl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

asinf(), asinl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the principal value of the arc sine of x; that is the value whose
sine is x.

RETURN VALUE
On success, these functions return the principal value of the arc sine of x in radians; the
return value is in the range [-pi/2, pi/2].

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is outside the range [-1, 1], a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is outside the range [-1, 1]
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeasin(), asinf(), asinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

Linux man-pages 6.16 2025-09-21 1468

asin(3) Library Functions Manual asin(3)

SEE ALSO
acos(3), atan(3), atan2(3), casin(3), cos(3), sin(3), tan(3)

Linux man-pages 6.16 2025-09-21 1469

asinh(3) Library Functions Manual asinh(3)

NAME
asinh, asinhf, asinhl - inverse hyperbolic sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double asinh(double x);
float asinhf(float x);
long double asinhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

asinh():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

asinhf(), asinhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the inverse hyperbolic sine of x; that is the value whose hyper-
bolic sine is x.

RETURN VALUE
On success, these functions return the inverse hyperbolic sine of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeasinh(), asinhf(), asinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

Linux man-pages 6.16 2025-05-17 1470

asinh(3) Library Functions Manual asinh(3)

SEE ALSO
acosh(3), atanh(3), casinh(3), cosh(3), sinh(3), tanh(3)

Linux man-pages 6.16 2025-05-17 1471

asprintf (3) Library Functions Manual asprintf (3)

NAME
asprintf, vasprintf - print to allocated string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>

int asprintf(char **restrict strp, const char *restrict fmt, ...);
int vasprintf(char **restrict strp, const char *restrict fmt,

va_list ap);

DESCRIPTION
The functions asprintf() and vasprintf() are analogs of sprintf(3) and vsprintf(3), except
that they allocate a string large enough to hold the output including the terminating null
byte ('\0'), and return a pointer to it via the first argument. This pointer should be passed
to free(3) to release the allocated storage when it is no longer needed.

RETURN VALUE
When successful, these functions return the number of bytes printed, just like sprintf(3).
On error, -1 is returned, errno is set to indicate the error, and the contents of strp are
undefined.

ERRORS
See sprintf(3) and malloc(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeasprintf(), vasprintf()

VERSIONS
The FreeBSD implementation sets strp to NULL on error.

STANDARDS
GNU, BSD.

SEE ALSO
free(3), malloc(3), printf(3)

Linux man-pages 6.16 2025-05-21 1472

assert(3) Library Functions Manual assert(3)

NAME
assert - abort the program if assertion is false

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <assert.h>

void assert(bool expression);

DESCRIPTION
This macro can help programmers find bugs in their programs, or handle exceptional
cases via a crash that will produce limited debugging output.

If expression is false (i.e., compares equal to zero), assert() prints an error message to
standard error and terminates the program by calling abort(3). The error message in-
cludes the name of the file and function containing the assert() call, the source code line
number of the call, and the text of the argument; something like:

prog: some_file.c:16: some_func: Assertion `val == 0' failed.

If the macro NDEBUG is defined at the moment <assert.h> was last included, the
macro assert() generates no code, and hence does nothing at all. It is not recommended
to define NDEBUG if using assert() to detect error conditions since the software may
behave non-deterministically.

RETURN VALUE
No value is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeassert()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, C99, POSIX.1-2001.

In C89, expression is required to be of type int and undefined behavior results if it is not,
but in C99 it may have any scalar type.

BUGS
assert() is implemented as a macro; if the expression tested has side-effects, program
behavior will be different depending on whether NDEBUG is defined. This may create
Heisenbugs which go away when debugging is turned on.

SEE ALSO
abort(3), assert_perror(3), exit(3)

Linux man-pages 6.16 2025-09-21 1473

assert_perror(3) Library Functions Manual assert_perror(3)

NAME
assert_perror - test errnum and abort

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <assert.h>

void assert_perror(int errnum);

DESCRIPTION
If the macro NDEBUG was defined at the moment <assert.h> was last included, the
macro assert_perror() generates no code, and hence does nothing at all. Otherwise, the
macro assert_perror() prints an error message to standard error and terminates the pro-
gram by calling abort(3) if errnum is nonzero. The message contains the filename,
function name and line number of the macro call, and the output of strerror(errnum).

RETURN VALUE
No value is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeassert_perror()

STANDARDS
GNU.

BUGS
The purpose of the assert macros is to help programmers find bugs in their programs,
things that cannot happen unless there was a coding mistake. However, with system or
library calls the situation is rather different, and error returns can happen, and will hap-
pen, and should be tested for. Not by an assert, where the test goes away when NDE-
BUG is defined, but by proper error handling code. Never use this macro.

SEE ALSO
abort(3), assert(3), exit(3), strerror(3)

Linux man-pages 6.16 2025-05-17 1474

atan(3) Library Functions Manual atan(3)

NAME
atan, atanf, atanl - arc tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double atan(double x);
float atanf(float x);
long double atanl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atanf(), atanl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the principal value of the arc tangent of x; that is the value
whose tangent is x.

RETURN VALUE
On success, these functions return the principal value of the arc tangent of x in radians;
the return value is in the range [-pi/2, pi/2].

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), +pi/2 (-pi/2) is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeatan(), atanf(), atanl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
acos(3), asin(3), atan2(3), carg(3), catan(3), cos(3), sin(3), tan(3)

Linux man-pages 6.16 2025-09-21 1475

atan2(3) Library Functions Manual atan2(3)

NAME
atan2, atan2f, atan2l - arc tangent function of two variables

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double atan2(double y, double x);
float atan2f(float y, float x);
long double atan2l(long double y, long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atan2f(), atan2l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the principal value of the arc tangent of y/x, using the signs of
the two arguments to determine the quadrant of the result.

RETURN VALUE
On success, these functions return the principal value of the arc tangent of y/x in radi-
ans; the return value is in the range [-pi, pi].

If y is +0 (-0) and x is less than 0, +pi (-pi) is returned.

If y is +0 (-0) and x is greater than 0, +0 (-0) is returned.

If y is less than 0 and x is +0 or -0, -pi/2 is returned.

If y is greater than 0 and x is +0 or -0, pi/2 is returned.

If either x or y is NaN, a NaN is returned.

If y is +0 (-0) and x is -0, +pi (-pi) is returned.

If y is +0 (-0) and x is +0, +0 (-0) is returned.

If y is a finite value greater (less) than 0, and x is negative infinity, +pi (-pi) is returned.

If y is a finite value greater (less) than 0, and x is positive infinity, +0 (-0) is returned.

If y is positive infinity (negative infinity), and x is finite, pi/2 (-pi/2) is returned.

If y is positive infinity (negative infinity) and x is negative infinity, +3*pi/4 (-3*pi/4) is
returned.

If y is positive infinity (negative infinity) and x is positive infinity, +pi/4 (-pi/4) is re-
turned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1476

atan2(3) Library Functions Manual atan2(3)

Interface Attribute Value
Thread safety MT-Safeatan2(), atan2f(), atan2l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
acos(3), asin(3), atan(3), carg(3), cos(3), sin(3), tan(3)

Linux man-pages 6.16 2025-09-21 1477

atanh(3) Library Functions Manual atanh(3)

NAME
atanh, atanhf, atanhl - inverse hyperbolic tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double atanh(double x);
float atanhf(float x);
long double atanhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atanh():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

atanhf(), atanhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions calculate the inverse hyperbolic tangent of x; that is the value whose
hyperbolic tangent is x.

RETURN VALUE
On success, these functions return the inverse hyperbolic tangent of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is +1 or -1, a pole error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the mathematically correct sign.

If the absolute value of x is greater than 1, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x less than -1 or greater than +1
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is +1 or -1
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

Linux man-pages 6.16 2025-05-17 1478

atanh(3) Library Functions Manual atanh(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeatanh(), atanhf(), atanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

BUGS
In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM instead of the
POSIX-mandated ERANGE. Since glibc 2.10, glibc does the right thing.

SEE ALSO
acosh(3), asinh(3), catanh(3), cosh(3), sinh(3), tanh(3)

Linux man-pages 6.16 2025-05-17 1479

atexit(3) Library Functions Manual atexit(3)

NAME
atexit - register a function to be called at normal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int atexit(typeof(void (void)) * function);

DESCRIPTION
The atexit() function registers the given function to be called at normal process termina-
tion, either via exit(3) or via return from the program’s main(). Functions so registered
are called in the reverse order of their registration; no arguments are passed.

The same function may be registered multiple times: it is called once for each registra-
tion.

POSIX.1 requires that an implementation allow at least ATEXIT_MAX (32) such func-
tions to be registered. The actual limit supported by an implementation can be obtained
using sysconf(3).

When a child process is created via fork(2), it inherits copies of its parent’s registrations.
Upon a successful call to one of the exec(3) functions, all registrations are removed.

RETURN VALUE
The atexit() function returns the value 0 if successful; otherwise, it returns a nonzero
value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeatexit()

VERSIONS
POSIX.1 says that the result of calling exit(3) more than once (i.e., calling exit(3) within
a function registered using atexit()) is undefined. On some systems (but not Linux), this
can result in an infinite recursion; portable programs should not invoke exit(3) inside a
function registered using atexit().

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

NOTES
Functions registered using atexit() (and on_exit(3)) are not called if a process terminates
abnormally because of the delivery of a signal.

If one of the registered functions calls _exit(2), then any remaining functions are not in-
voked, and the other process termination steps performed by exit(3) are not performed.

The atexit() and on_exit(3) functions register functions on the same list: at normal
process termination, the registered functions are invoked in reverse order of their

Linux man-pages 6.16 2025-09-21 1480

atexit(3) Library Functions Manual atexit(3)

registration by these two functions.

According to POSIX.1, the result is undefined if longjmp(3) is used to terminate execu-
tion of one of the functions registered using atexit().

Linux notes
Since glibc 2.2.3, atexit() (and on_exit(3)) can be used within a shared library to estab-
lish functions that are called when the shared library is unloaded.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
bye(void)
{

printf("That was all, folks\n");
}

int
main(void)
{

long a;
int i;

a = sysconf(_SC_ATEXIT_MAX);
printf("ATEXIT_MAX = %ld\n", a);

i = atexit(bye);
if (i != 0) {

fprintf(stderr, "cannot set exit function\n");
exit(EXIT_FAILURE);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
_exit(2), dlopen(3), exit(3), on_exit(3)

Linux man-pages 6.16 2025-09-21 1481

atof (3) Library Functions Manual atof (3)

NAME
atof - convert a string to a double

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

double atof(const char *nptr);

DESCRIPTION
The atof() function converts the initial portion of the string pointed to by nptr to double.
The behavior is the same as

strtod(nptr, NULL);

except that atof() does not detect errors.

RETURN VALUE
The converted value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeatof()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

SEE ALSO
atoi(3), atol(3), strfromd(3), strtod(3), strtol(3), strtoul(3)

Linux man-pages 6.16 2025-05-17 1482

atoi(3) Library Functions Manual atoi(3)

NAME
atoi, atol, atoll - convert a string to an integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int atoi(const char *nptr);
long atol(const char *nptr);
long long atoll(const char *nptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

atoll():
_ISOC99_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The atoi() function converts the initial portion of the string pointed to by nptr to int.
The behavior is the same as

strtol(nptr, NULL, 10);

except that atoi() does not detect errors.

The atol() and atoll() functions behave the same as atoi(), except that they convert the
initial portion of the string to their return type of long or long long.

RETURN VALUE
The converted value or 0 on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeatoi(), atol(), atoll()

VERSIONS
POSIX.1 leaves the return value of atoi() on error unspecified. On glibc, musl libc, and
uClibc, 0 is returned on error.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001, SVr4, 4.3BSD.

C89 and POSIX.1-1996 include the functions atoi() and atol() only.

BUGS
errno is not set on error so there is no way to distinguish between 0 as an error and as
the converted value. No checks for overflow or underflow are done. Only base-10 input
can be converted. It is recommended to instead use the strtol() and strtoul() family of
functions in new programs.

Linux man-pages 6.16 2025-05-17 1483

atoi(3) Library Functions Manual atoi(3)

SEE ALSO
atof(3), strtod(3), strtol(3), strtoul(3)

Linux man-pages 6.16 2025-05-17 1484

backtrace(3) Library Functions Manual backtrace(3)

NAME
backtrace, backtrace_symbols, backtrace_symbols_fd - support for application self-de-
bugging

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <execinfo.h>

int backtrace(int size;
void *buffer[size], int size);

char **backtrace_symbols(int size;
void *const buffer[size], int size);

void backtrace_symbols_fd(int size;
void *const buffer[size], int size, int fd);

DESCRIPTION
backtrace() returns a backtrace for the calling program, in the array pointed to by
buffer. A backtrace is the series of currently active function calls for the program. Each
item in the array pointed to by buffer is of type void *, and is the return address from the
corresponding stack frame. The size argument specifies the maximum number of ad-
dresses that can be stored in buffer. If the backtrace is larger than size, then the ad-
dresses corresponding to the size most recent function calls are returned; to obtain the
complete backtrace, make sure that buffer and size are large enough.

Given the set of addresses returned by backtrace() in buffer, backtrace_symbols()
translates the addresses into an array of strings that describe the addresses symbolically.
The size argument specifies the number of addresses in buffer. The symbolic represen-
tation of each address consists of the function name (if this can be determined), a hexa-
decimal offset into the function, and the actual return address (in hexadecimal). The ad-
dress of the array of string pointers is returned as the function result of backtrace_sym-
bols(). This array is malloc(3)ed by backtrace_symbols(), and must be freed by the
caller. (The strings pointed to by the array of pointers need not and should not be freed.)

backtrace_symbols_fd() takes the same buffer and size arguments as backtrace_sym-
bols(), but instead of returning an array of strings to the caller, it writes the strings, one
per line, to the file descriptor fd . backtrace_symbols_fd() does not call malloc(3), and
so can be employed in situations where the latter function might fail, but see NOTES.

RETURN VALUE
backtrace() returns the number of addresses returned in buffer, which is not greater
than size. If the return value is less than size, then the full backtrace was stored; if it is
equal to size, then it may have been truncated, in which case, the addresses of the oldest
stack frames are not returned.

On success, backtrace_symbols() returns a pointer to the array malloc(3)ed by the call;
on error, NULL is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1485

backtrace(3) Library Functions Manual backtrace(3)

Interface Attribute Value
Thread safety MT-Safebacktrace(), backtrace_symbols(),

backtrace_symbols_fd()

STANDARDS
GNU.

HISTORY
glibc 2.1.

NOTES
These functions make some assumptions about how a function’s return address is stored
on the stack. Note the following:

• Omission of the frame pointers (as implied by any of gcc(1)nonzero optimization
levels) may cause these assumptions to be violated.

• Inlined functions do not have stack frames.

• Tail-call optimization causes one stack frame to replace another.

• backtrace() and backtrace_symbols_fd() don’t call malloc() explicitly, but they are
part of libgcc, which gets loaded dynamically when first used. Dynamic loading
usually triggers a call to malloc(3). If you need certain calls to these two functions
to not allocate memory (in signal handlers, for example), you need to make sure
libgcc is loaded beforehand.

The symbol names may be unavailable without the use of special linker options. For
systems using the GNU linker, it is necessary to use the -rdynamic linker option. Note
that names of "static" functions are not exposed, and won’t be available in the backtrace.

EXAMPLES
The program below demonstrates the use of backtrace() and backtrace_symbols().
The following shell session shows what we might see when running the program:

$ cc -rdynamic prog.c -o prog
$./prog 3
backtrace() returned 8 addresses
./prog(myfunc3+0x5c) [0x80487f0]
./prog [0x8048871]
./prog(myfunc+0x21) [0x8048894]
./prog(myfunc+0x1a) [0x804888d]
./prog(myfunc+0x1a) [0x804888d]
./prog(main+0x65) [0x80488fb]
/lib/libc.so.6(__libc_start_main+0xdc) [0xb7e38f9c]
./prog [0x8048711]

Program source

#include <execinfo.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

Linux man-pages 6.16 2025-09-21 1486

backtrace(3) Library Functions Manual backtrace(3)

#define BT_BUF_SIZE 100

void
myfunc3(void)
{

int nptrs;
void *buffer[BT_BUF_SIZE];
char **strings;

nptrs = backtrace(buffer, BT_BUF_SIZE);
printf("backtrace() returned %d addresses\n", nptrs);

/* The call backtrace_symbols_fd(buffer, nptrs, STDOUT_FILENO)
would produce similar output to the following: */

strings = backtrace_symbols(buffer, nptrs);
if (strings == NULL) {

perror("backtrace_symbols");
exit(EXIT_FAILURE);

}

for (size_t j = 0; j < nptrs; j++)
printf("%s\n", strings[j]);

free(strings);
}

static void /* "static" means don't export the symbol. */
myfunc2(void)
{

myfunc3();
}

void
myfunc(int ncalls)
{

if (ncalls > 1)
myfunc(ncalls - 1);

else
myfunc2();

}

int
main(int argc, char *argv[])
{

if (argc != 2) {

Linux man-pages 6.16 2025-09-21 1487

backtrace(3) Library Functions Manual backtrace(3)

fprintf(stderr, "%s num-calls\n", argv[0]);
exit(EXIT_FAILURE);

}

myfunc(atoi(argv[1]));
exit(EXIT_SUCCESS);

}

SEE ALSO
addr2line(1), gcc(1), gdb(1), ld(1), dlopen(3), malloc(3)

Linux man-pages 6.16 2025-09-21 1488

basename(3) Library Functions Manual basename(3)

NAME
basename, dirname - parse pathname components

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <libgen.h>

char *dirname(char *path);
char *basename(char *path);

DESCRIPTION
Warning: there are two different functions basename(); see below.

The functions dirname() and basename() break a null-terminated pathname string into
directory and filename components. In the usual case, dirname() returns the string up
to, but not including, the final '/', and basename() returns the component following the
final '/'. Trailing '/' characters are not counted as part of the pathname.

If path does not contain a slash, dirname() returns the string "." while basename() re-
turns a copy of path. If path is the string "/", then both dirname() and basename() re-
turn the string "/". If path is a null pointer or points to an empty string, then both
dirname() and basename() return the string ".".

Concatenating the string returned by dirname(), a "/", and the string returned by base-
name() yields a complete pathname.

Both dirname() and basename() may modify the contents of path, so it may be desir-
able to pass a copy when calling one of these functions.

These functions may return pointers to statically allocated memory which may be over-
written by subsequent calls. Alternatively, they may return a pointer to some part of
path, so that the string referred to by path should not be modified or freed until the
pointer returned by the function is no longer required.

The following list of examples (taken from SUSv2) shows the strings returned by
dirname() and basename() for different paths:

path dirname basename
/usr/lib /usr lib
/usr/ / usr
usr . usr
/ / /
. . .
.. . ..

RETURN VALUE
Both dirname() and basename() return pointers to null-terminated strings. (Do not
pass these pointers to free(3).)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-10-05 1489

basename(3) Library Functions Manual basename(3)

Interface Attribute Value
Thread safety MT-Safebasename(), dirname()

VERSIONS
There are two different versions of basename() - the POSIX version described above,
and the GNU version, which one gets after

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

The GNU version never modifies its argument, and returns the empty string when path
has a trailing slash, and in particular also when it is "/". There is no GNU version of
dirname().

With glibc, one gets the POSIX version of basename() when <libgen.h> is included,
and the GNU version otherwise.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
In the glibc implementation, the POSIX versions of these functions modify the path ar-
gument, and segfault when called with a static string such as "/usr/".

Before glibc 2.2.1, the glibc version of dirname() did not correctly handle pathnames
with trailing '/' characters, and generated a segfault if given a NULL argument.

EXAMPLES
The following code snippet demonstrates the use of basename() and dirname():

char *dirc, *basec, *bname, *dname;
char *path = "/etc/passwd";

dirc = strdup(path);
basec = strdup(path);
dname = dirname(dirc);
bname = basename(basec);
printf("dirname=%s, basename=%s\n", dname, bname);

SEE ALSO
basename(1), dirname(1)

Linux man-pages 6.16 2025-10-05 1490

bcmp(3) Library Functions Manual bcmp(3)

NAME
bcmp - compare byte sequences

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

[[deprecated]] int bcmp(size_t n;
const void s1[n], const void s2[n], size_t n);

DESCRIPTION
bcmp() is identical to memcmp(3); use the latter instead.

STANDARDS
None.

HISTORY
4.3BSD. Marked as LEGACY in POSIX.1-2001; removed in POSIX.1-2008.

SEE ALSO
memcmp(3)

Linux man-pages 6.16 2025-09-07 1491

bcopy(3) Library Functions Manual bcopy(3)

NAME
bcopy - copy byte sequence

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

[[deprecated]] void bcopy(size_t n;
const void src[n], void dest[n], size_t n);

DESCRIPTION
The bcopy() function copies n bytes from src to dest. The result is correct, even when
both areas overlap.

RETURN VALUE
None.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebcopy()

STANDARDS
None.

HISTORY
4.3BSD.

Marked as LEGACY in POSIX.1-2001: use memcpy(3) or memmove(3) in new pro-
grams. Note that the first two arguments are interchanged for memcpy(3) and mem-
move(3). POSIX.1-2008 removes the specification of bcopy().

SEE ALSO
bstring(3), memccpy(3), memcpy(3), memmove(3), strcpy(3), strncpy(3)

Linux man-pages 6.16 2025-09-07 1492

bindresvport(3) Library Functions Manual bindresvport(3)

NAME
bindresvport - bind a socket to a privileged IP port

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <netinet/in.h>

int bindresvport(int sockfd , struct sockaddr_in *sin);

DESCRIPTION
bindresvport() is used to bind the socket referred to by the file descriptor sockfd to a
privileged anonymous IP port, that is, a port number arbitrarily selected from the range
512 to 1023.

If the bind(2) performed by bindresvport() is successful, and sin is not NULL, then
sin->sin_port returns the port number actually allocated.

sin can be NULL, in which case sin->sin_family is implicitly taken to be AF_INET.
However, in this case, bindresvport() has no way to return the port number actually al-
located. (This information can later be obtained using getsockname(2).)

RETURN VALUE
bindresvport() returns 0 on success; otherwise -1 is returned and errno is set to indi-
cate the error.

ERRORS
bindresvport() can fail for any of the same reasons as bind(2). In addition, the follow-
ing errors may occur:

EACCES
The calling process was not privileged (on Linux: the calling process did not
have the CAP_NET_BIND_SERVICE capability in the user namespace gov-
erning its network namespace).

EADDRINUSE
All privileged ports are in use.

EAFNOSUPPORT (EPFNOSUPPORT in glibc 2.7 and earlier)
sin is not NULL and sin->sin_family is not AF_INET.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetybindresvport() glibc >= 2.17: MT-Safe; glibc < 2.17: MT-
Unsafe

The bindresvport() function uses a static variable that was not protected by a lock be-
fore glibc 2.17, rendering the function MT-Unsafe.

VERSIONS
Present on the BSDs, Solaris, and many other systems.

Linux man-pages 6.16 2025-09-21 1493

bindresvport(3) Library Functions Manual bindresvport(3)

NOTES
Unlike some bindresvport() implementations, the glibc implementation ignores any
value that the caller supplies in sin->sin_port.

STANDARDS
BSD.

SEE ALSO
bind(2), getsockname(2)

Linux man-pages 6.16 2025-09-21 1494

bsd_signal(3) Library Functions Manual bsd_signal(3)

NAME
bsd_signal - signal handling with BSD semantics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

sighandler_t bsd_signal(int signum, sighandler_t handler);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

bsd_signal():
Since glibc 2.26:

_XOPEN_SOURCE >= 500
&& ! (_POSIX_C_SOURCE >= 200809L)

glibc 2.25 and earlier:
_XOPEN_SOURCE

DESCRIPTION
The bsd_signal() function takes the same arguments, and performs the same task, as
signal(2).

The difference between the two is that bsd_signal() is guaranteed to provide reliable
signal semantics, that is: a) the disposition of the signal is not reset to the default when
the handler is invoked; b) delivery of further instances of the signal is blocked while the
signal handler is executing; and c) if the handler interrupts a blocking system call, then
the system call is automatically restarted. A portable application cannot rely on sig-
nal(2) to provide these guarantees.

RETURN VALUE
The bsd_signal() function returns the previous value of the signal handler, or SIG_ERR
on error.

ERRORS
As for signal(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebsd_signal()

VERSIONS
Use of bsd_signal() should be avoided; use sigaction(2) instead.

On modern Linux systems, bsd_signal() and signal(2) are equivalent. But on older sys-
tems, signal(2) provided unreliable signal semantics; see signal(2) for details.

The use of sighandler_t is a GNU extension; this type is defined only if the
_GNU_SOURCE feature test macro is defined.

Linux man-pages 6.16 2025-09-21 1495

bsd_signal(3) Library Functions Manual bsd_signal(3)

STANDARDS
None.

HISTORY
4.2BSD, POSIX.1-2001. Removed in POSIX.1-2008, recommending the use of sigac-
tion(2) instead.

SEE ALSO
sigaction(2), signal(2), sysv_signal(3), signal(7)

Linux man-pages 6.16 2025-09-21 1496

bsearch(3) Library Functions Manual bsearch(3)

NAME
bsearch - binary search of a sorted array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void *bsearch(size_t n, size_t size;
const void key[size], const void base[size * n],
size_t n, size_t size,
typeof(int (const void [size], const void [size]))

*compar);

DESCRIPTION
The bsearch() function searches an array of n objects, the initial member of which is
pointed to by base, for a member that matches the object pointed to by key. The size of
each member of the array is specified by size.

The contents of the array should be in ascending sorted order according to the compari-
son function referenced by compar. The compar routine is expected to have two argu-
ments which point to the key object and to an array member, in that order, and should re-
turn an integer less than, equal to, or greater than zero if the key object is found, respec-
tively, to be less than, to match, or be greater than the array member.

RETURN VALUE
The bsearch() function returns a pointer to a matching member of the array, or NULL if
no match is found. If there are multiple elements that match the key, the element re-
turned is unspecified.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebsearch()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

EXAMPLES
The example below first sorts an array of structures using qsort(3), then retrieves desired
elements using bsearch().

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NITEMS(arr) (sizeof((arr)) / sizeof((arr)[0]))

struct mi {

Linux man-pages 6.16 2025-09-20 1497

bsearch(3) Library Functions Manual bsearch(3)

int nr;
const char *name;

};

static struct mi months[] = {
{ 1, "jan" }, { 2, "feb" }, { 3, "mar" }, { 4, "apr" },
{ 5, "may" }, { 6, "jun" }, { 7, "jul" }, { 8, "aug" },
{ 9, "sep" }, {10, "oct" }, {11, "nov" }, {12, "dec" }

};

static int
compmi(const void *m1, const void *m2)
{

const struct mi *mi1 = m1;
const struct mi *mi2 = m2;

return strcmp(mi1->name, mi2->name);
}

int
main(int argc, char *argv[])
{

qsort(months, NITEMS(months), sizeof(months[0]), compmi);
for (size_t i = 1; i < argc; i++) {

struct mi key;
struct mi *res;

key.name = argv[i];
res = bsearch(&key, months, NITEMS(months),

sizeof(months[0]), compmi);
if (res == NULL)

printf("'%s': unknown month\n", argv[i]);
else

printf("%s: month #%d\n", res->name, res->nr);
}
exit(EXIT_SUCCESS);

}

SEE ALSO
hsearch(3), lsearch(3), qsort(3), tsearch(3)

Linux man-pages 6.16 2025-09-20 1498

bstring(3) Library Functions Manual bstring(3)

NAME
bcmp, bcopy, bzero, memccpy, memchr, memcmp, memcpy, memfrob, memmem, mem-
move, memset - byte string operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int bcmp(size_t n;
const void s1[n], const void s2[n], size_t n);

void bcopy(size_t n;
const void src[n], void dest[n], size_t n);

void bzero(size_t n;
void s[n], size_t n);

void *memccpy(size_t n;
void dest[n], const void src[n], int c, size_t n);

void *memchr(size_t n;
const void s[n], int c, size_t n);

int memcmp(size_t n;
const void s1[n], const void s2[n], size_t n);

void *memcpy(size_t n;
void dest[n], const void src[n], size_t n);

void *memfrob(size_t n;
void s[n], size_t n);

void *memmem(size_t hsize, size_t nsize;
const void haystack[hsize], size_t hsize,
const void needle[nsize], size_t nsize);

void *memmove(size_t n;
void dest[n], const void src[n], size_t n);

void *memset(size_t n;
void s[n], int c, size_t n);

DESCRIPTION
The byte string functions perform operations on strings (byte arrays) that are not neces-
sarily null-terminated. See the individual man pages for descriptions of each function.

NOTES
The functions bcmp() and bcopy() are obsolete. Use memcmp() and memmove() in-
stead.

SEE ALSO
bcmp(3), bcopy(3), bzero(3), memccpy(3), memchr(3), memcmp(3), memcpy(3), mem-
frob(3), memmem(3), memmove(3), memset(3), string(3)

Linux man-pages 6.16 2025-06-28 1499

bswap(3) Library Functions Manual bswap(3)

NAME
bswap_16, bswap_32, bswap_64 - reverse order of bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <byteswap.h>

uint16_t bswap_16(uint16_t x);
uint32_t bswap_32(uint32_t x);
uint64_t bswap_64(uint64_t x);

DESCRIPTION
These functions return a value in which the order of the bytes in their 2-, 4-, or 8-byte
arguments is reversed.

RETURN VALUE
These functions return the value of their argument with the bytes reversed.

ERRORS
These functions always succeed.

STANDARDS
GNU.

EXAMPLES
The program below swaps the bytes of the 8-byte integer supplied as its command-line
argument. The following shell session demonstrates the use of the program:

$./a.out 0x0123456789abcdef;
0x123456789abcdef ==> 0xefcdab8967452301

Program source

#include <byteswap.h>
#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

uint64_t x;

if (argc != 2) {
fprintf(stderr, "Usage: %s <num>\n", argv[0]);
exit(EXIT_FAILURE);

}

x = strtoull(argv[1], NULL, 0);
printf("%#" PRIx64 " ==> %#" PRIx64 "\n", x, bswap_64(x));

Linux man-pages 6.16 2025-05-17 1500

bswap(3) Library Functions Manual bswap(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
byteorder(3), endian(3)

Linux man-pages 6.16 2025-05-17 1501

btowc(3) Library Functions Manual btowc(3)

NAME
btowc - convert single byte to wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t btowc(int c);

DESCRIPTION
The btowc() function converts c, interpreted as a multibyte sequence of length 1, start-
ing in the initial shift state, to a wide character and returns it. If c is EOF or not a valid
multibyte sequence of length 1, the btowc() function returns WEOF.

RETURN VALUE
The btowc() function returns the wide character converted from the single byte c. If c is
EOF or not a valid multibyte sequence of length 1, it returns WEOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebtowc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The behavior of btowc() depends on the LC_CTYPE category of the current locale.

This function should never be used. It does not work for encodings which have state,
and unnecessarily treats single bytes differently from multibyte sequences. Use either
mbtowc(3) or the thread-safe mbrtowc(3) instead.

SEE ALSO
mbrtowc(3), mbtowc(3), wctob(3)

Linux man-pages 6.16 2025-05-17 1502

btree(3) Library Functions Manual btree(3)

NAME
btree - btree database access method

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc 2.2,
glibc no longer provides these interfaces. Probably, you are looking for the APIs pro-
vided by the libdb library instead.

The routine dbopen(3) is the library interface to database files. One of the supported file
formats is btree files. The general description of the database access methods is in
dbopen(3), this manual page describes only the btree-specific information.

The btree data structure is a sorted, balanced tree structure storing associated key/data
pairs.

The btree access-method-specific data structure provided to dbopen(3) is defined in the
<db.h> include file as follows:

typedef struct {
unsigned long flags;
unsigned int cachesize;
int maxkeypage;
int minkeypage;
unsigned int psize;
int (*compare)(const DBT *key1, const DBT *key2);
size_t (*prefix)(const DBT *key1, const DBT *key2);
int lorder;

} BTREEINFO;

The elements of this structure are as follows:

flags The flag value is specified by ORing any of the following values:

R_DUP
Permit duplicate keys in the tree, that is, permit insertion if the key to be
inserted already exists in the tree. The default behavior, as described in
dbopen(3), is to overwrite a matching key when inserting a new key or to
fail if the R_NOOVERWRITE flag is specified. The R_DUP flag is
overridden by the R_NOOVERWRITE flag, and if the R_NOOVER-
WRITE flag is specified, attempts to insert duplicate keys into the tree
will fail.

If the database contains duplicate keys, the order of retrieval of key/data
pairs is undefined if the get routine is used, however, seq routine calls
with the R_CURSOR flag set will always return the logical "first" of any
group of duplicate keys.

Linux man-pages 6.16 2025-09-21 1503

btree(3) Library Functions Manual btree(3)

cachesize
A suggested maximum size (in bytes) of the memory cache. This value is only
advisory, and the access method will allocate more memory rather than fail.
Since every search examines the root page of the tree, caching the most recently
used pages substantially improves access time. In addition, physical writes are
delayed as long as possible, so a moderate cache can reduce the number of I/O
operations significantly. Obviously, using a cache increases (but only increases)
the likelihood of corruption or lost data if the system crashes while a tree is be-
ing modified. If cachesize is 0 (no size is specified), a default cache is used.

maxkeypage
The maximum number of keys which will be stored on any single page. Not cur-
rently implemented.

minkeypage
The minimum number of keys which will be stored on any single page. This
value is used to determine which keys will be stored on overflow pages, that is, if
a key or data item is longer than the pagesize divided by the minkeypage value, it
will be stored on overflow pages instead of in the page itself. If minkeypage is 0
(no minimum number of keys is specified), a value of 2 is used.

psize Page size is the size (in bytes) of the pages used for nodes in the tree. The mini-
mum page size is 512 bytes and the maximum page size is 64 KiB. If psize is 0
(no page size is specified), a page size is chosen based on the underlying filesys-
tem I/O block size.

compare
Compare is the key comparison function. It must return an integer less than,
equal to, or greater than zero if the first key argument is considered to be respec-
tively less than, equal to, or greater than the second key argument. The same
comparison function must be used on a given tree every time it is opened. If
compare is NULL (no comparison function is specified), the keys are compared
lexically, with shorter keys considered less than longer keys.

prefix
Prefix is the prefix comparison function. If specified, this routine must return the
number of bytes of the second key argument which are necessary to determine
that it is greater than the first key argument. If the keys are equal, the key length
should be returned. Note, the usefulness of this routine is very data-dependent,
but, in some data sets can produce significantly reduced tree sizes and search
times. If prefix is NULL (no prefix function is specified), and no comparison
function is specified, a default lexical comparison routine is used. If prefix is
NULL and a comparison routine is specified, no prefix comparison is done.

lorder
The byte order for integers in the stored database metadata. The number should
represent the order as an integer; for example, big endian order would be the
number 4,321. If lorder is 0 (no order is specified), the current host order is
used.

If the file already exists (and the O_TRUNC flag is not specified), the values specified

Linux man-pages 6.16 2025-09-21 1504

btree(3) Library Functions Manual btree(3)

for the arguments flags, lorder, and psize are ignored in favor of the values used when
the tree was created.

Forward sequential scans of a tree are from the least key to the greatest.

Space freed up by deleting key/data pairs from the tree is never reclaimed, although it is
normally made available for reuse. This means that the btree storage structure is grow-
only. The only solutions are to avoid excessive deletions, or to create a fresh tree peri-
odically from a scan of an existing one.

Searches, insertions, and deletions in a btree will all complete in O lg base N where base
is the average fill factor. Often, inserting ordered data into btrees results in a low fill fac-
tor. This implementation has been modified to make ordered insertion the best case, re-
sulting in a much better than normal page fill factor.

ERRORS
The btree access method routines may fail and set errno for any of the errors specified
for the library routine dbopen(3).

BUGS
Only big and little endian byte order is supported.

SEE ALSO
dbopen(3), hash(3), mpool(3), recno(3)

The Ubiquitous B-tree, Douglas Comer, ACM Comput. Surv. 11, 2 (June 1979),
121-138.

Prefix B-trees, Bayer and Unterauer, ACM Transactions on Database Systems, Vol. 2, 1
(March 1977), 11-26.

The Art of Computer Programming Vol. 3: Sorting and Searching, D.E. Knuth, 1968, pp
471-480.

Linux man-pages 6.16 2025-09-21 1505

BYTEORDER(3) Library Functions Manual BYTEORDER(3)

NAME
htonl, htons, ntohl, ntohs - convert values between host and network byte order

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <arpa/inet.h>

uint32_t htonl(uint32_t hostlong);
uint16_t htons(uint16_t hostshort);

uint32_t ntohl(uint32_t netlong);
uint16_t ntohs(uint16_t netshort);

DESCRIPTION
The htonl() function converts the unsigned integer hostlong from host byte order to net-
work byte order.

The htons() function converts the unsigned short integer hostshort from host byte order
to network byte order.

The ntohl() function converts the unsigned integer netlong from network byte order to
host byte order.

The ntohs() function converts the unsigned short integer netshort from network byte or-
der to host byte order.

On the i386 the host byte order is Least Significant Byte first, whereas the network byte
order, as used on the Internet, is Most Significant Byte first.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safehtonl(), htons(), ntohl(), ntohs()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
bswap(3), endian(3), gethostbyname(3), getservent(3)

Linux man-pages 6.16 2025-05-17 1506

bzero(3) Library Functions Manual bzero(3)

NAME
bzero, explicit_bzero - zero a byte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

void bzero(size_t n;
void s[n], size_t n);

#include <string.h>

void explicit_bzero(size_t n;
void s[n], size_t n);

DESCRIPTION
The bzero() function erases the data in the n bytes of the memory starting at the location
pointed to by s, by writing zeros (bytes containing '\0') to that area.

The explicit_bzero() function performs the same task as bzero(). It differs from
bzero() in that it guarantees that compiler optimizations will not remove the erase oper-
ation if the compiler deduces that the operation is "unnecessary".

RETURN VALUE
None.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safebzero(), explicit_bzero()

STANDARDS
None.

HISTORY
explicit_bzero()

glibc 2.25.

The explicit_bzero() function is a nonstandard extension that is also present on
some of the BSDs. Some other implementations have a similar function, such as
memset_explicit() or memset_s().

bzero()
4.3BSD.

Marked as LEGACY in POSIX.1-2001. Removed in POSIX.1-2008.

NOTES
The explicit_bzero() function addresses a problem that security-conscious applications
may run into when using bzero(): if the compiler can deduce that the location to be ze-
roed will never again be touched by a correct program, then it may remove the bzero()
call altogether. This is a problem if the intent of the bzero() call was to erase sensitive
data (e.g., passwords) to prevent the possibility that the data was leaked by an incorrect
or compromised program. Calls to explicit_bzero() are never optimized away by the

Linux man-pages 6.16 2025-06-28 1507

bzero(3) Library Functions Manual bzero(3)

compiler.

The explicit_bzero() function does not solve all problems associated with erasing sensi-
tive data:

• The explicit_bzero() function does not guarantee that sensitive data is completely
erased from memory. (The same is true of bzero().) For example, there may be
copies of the sensitive data in a register and in "scratch" stack areas. The ex-
plicit_bzero() function is not aware of these copies, and can’t erase them.

• In some circumstances, explicit_bzero() can decrease security. If the compiler de-
termined that the variable containing the sensitive data could be optimized to be
stored in a register (because it is small enough to fit in a register, and no operation
other than the explicit_bzero() call would need to take the address of the variable),
then the explicit_bzero() call will force the data to be copied from the register to a
location in RAM that is then immediately erased (while the copy in the register re-
mains unaffected). The problem here is that data in RAM is more likely to be ex-
posed by a bug than data in a register, and thus the explicit_bzero() call creates a
brief time window where the sensitive data is more vulnerable than it would other-
wise have been if no attempt had been made to erase the data.

Note that declaring the sensitive variable with the volatile qualifier does not eliminate
the above problems. Indeed, it will make them worse, since, for example, it may force a
variable that would otherwise have been optimized into a register to instead be main-
tained in (more vulnerable) RAM for its entire lifetime.

Notwithstanding the above details, for security-conscious applications, using ex-
plicit_bzero() is generally preferable to not using it. The developers of explicit_bzero()
anticipate that future compilers will recognize calls to explicit_bzero() and take steps to
ensure that all copies of the sensitive data are erased, including copies in registers or in
"scratch" stack areas.

SEE ALSO
bstring(3), memset(3), swab(3)

Linux man-pages 6.16 2025-06-28 1508

cabs(3) Library Functions Manual cabs(3)

NAME
cabs, cabsf, cabsl - absolute value of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double cabs(double complex z);
float cabsf(float complex z);
long double cabsl(long double complex z);

DESCRIPTION
These functions return the absolute value of the complex number z. The result is a real
number.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecabs(), cabsf(), cabsl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

NOTES
The function is actually an alias for hypot(a, b) (or, equivalently, sqrt(a*a + b*b)).

SEE ALSO
abs(3), cimag(3), hypot(3), complex(7)

Linux man-pages 6.16 2025-05-17 1509

cacos(3) Library Functions Manual cacos(3)

NAME
cacos, cacosf, cacosl - complex arc cosine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cacos(double complex z);
float complex cacosf(float complex z);
long double complex cacosl(long double complex z);

DESCRIPTION
These functions calculate the complex arc cosine of z. If y = cacos(z), then z = ccos(y).
The real part of y is chosen in the interval [0,pi].

One has:

cacos(z) = -i * clog(z + i * csqrt(1 - z * z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecacos(), cacosf(), cacosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;
double complex i = I;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

Linux man-pages 6.16 2025-05-17 1510

cacos(3) Library Functions Manual cacos(3)

c = cacos(z);

printf("cacos() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = -i * clog(z + i * csqrt(1 - z * z));

printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
ccos(3), clog(3), complex(7)

Linux man-pages 6.16 2025-05-17 1511

cacosh(3) Library Functions Manual cacosh(3)

NAME
cacosh, cacoshf, cacoshl - complex arc hyperbolic cosine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cacosh(double complex z);
float complex cacoshf(float complex z);
long double complex cacoshl(long double complex z);

DESCRIPTION
These functions calculate the complex arc hyperbolic cosine of z. If y = cacosh(z), then
z = ccosh(y). The imaginary part of y is chosen in the interval [-pi,pi]. The real part of
y is chosen nonnegative.

One has:

cacosh(z) = 2 * clog(csqrt((z + 1) / 2) + csqrt((z - 1) / 2))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecacosh(), cacoshf(), cacoshl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001. glibc 2.1.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

Linux man-pages 6.16 2025-05-17 1512

cacosh(3) Library Functions Manual cacosh(3)

c = cacosh(z);
printf("cacosh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = 2 * clog(csqrt((z + 1)/2) + csqrt((z - 1)/2));
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
acosh(3), cabs(3), ccosh(3), cimag(3), complex(7)

Linux man-pages 6.16 2025-05-17 1513

canonicalize_file_name(3) Library Functions Manual canonicalize_file_name(3)

NAME
canonicalize_file_name - return the canonicalized absolute pathname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdlib.h>

char *canonicalize_file_name(const char *path);

DESCRIPTION
The canonicalize_file_name() function returns a null-terminated string containing the
canonicalized absolute pathname corresponding to path. In the returned string, sym-
bolic links are resolved, as are . and .. pathname components. Consecutive slash (/)
characters are replaced by a single slash.

The returned string is dynamically allocated by canonicalize_file_name() and the caller
should deallocate it with free(3) when it is no longer required.

The call canonicalize_file_name(path) is equivalent to the call:

realpath(path, NULL);

RETURN VALUE
On success, canonicalize_file_name() returns a null-terminated string. On error (e.g., a
pathname component is unreadable or does not exist), canonicalize_file_name() returns
NULL and sets errno to indicate the error.

ERRORS
See realpath(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecanonicalize_file_name()

STANDARDS
GNU.

SEE ALSO
readlink(2), realpath(3)

Linux man-pages 6.16 2025-05-17 1514

carg(3) Library Functions Manual carg(3)

NAME
carg, cargf, cargl - calculate the complex argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double carg(double complex z);
float cargf(float complex z);
long double cargl(long double complex z);

DESCRIPTION
These functions calculate the complex argument (also called phase angle) of z, with a
branch cut along the negative real axis.

A complex number can be described by two real coordinates. One may use rectangular
coordinates and gets

z = x + I * y

where x = creal(z) and y = cimag(z).

Or one may use polar coordinates and gets

z = r * cexp(I * a)

where r = cabs(z) is the "radius", the "modulus", the absolute value of z, and
a = carg(z) is the "phase angle", the argument of z.

One has:

tan(carg(z)) = cimag(z) / creal(z)

RETURN VALUE
The return value is in the range of [-pi,pi].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecarg(), cargf(), cargl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), complex(7)

Linux man-pages 6.16 2025-05-17 1515

casin(3) Library Functions Manual casin(3)

NAME
casin, casinf, casinl - complex arc sine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex casin(double complex z);
float complex casinf(float complex z);
long double complex casinl(long double complex z);

DESCRIPTION
These functions calculate the complex arc sine of z. If y = casin(z), then z = csin(y).
The real part of y is chosen in the interval [-pi/2,pi/2].

One has:

casin(z) = -i clog(iz + csqrt(1 - z * z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecasin(), casinf(), casinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
clog(3), csin(3), complex(7)

Linux man-pages 6.16 2025-05-17 1516

casinh(3) Library Functions Manual casinh(3)

NAME
casinh, casinhf, casinhl - complex arc sine hyperbolic

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex casinh(double complex z);
float complex casinhf(float complex z);
long double complex casinhl(long double complex z);

DESCRIPTION
These functions calculate the complex arc hyperbolic sine of z. If y = casinh(z), then
z = csinh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:

casinh(z) = clog(z + csqrt(z * z + 1))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecasinh(), casinhf(), casinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
asinh(3), cabs(3), cimag(3), csinh(3), complex(7)

Linux man-pages 6.16 2025-05-17 1517

catan(3) Library Functions Manual catan(3)

NAME
catan, catanf, catanl - complex arc tangents

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex catan(double complex z);
float complex catanf(float complex z);
long double complex catanl(long double complex z);

DESCRIPTION
These functions calculate the complex arc tangent of z. If y = catan(z), then
z = ctan(y). The real part of y is chosen in the interval [-pi/2, pi/2].

One has:

catan(z) = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecatan(), catanf(), catanl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;
double complex i = I;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

Linux man-pages 6.16 2025-05-17 1518

catan(3) Library Functions Manual catan(3)

c = catan(z);
printf("catan() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = (clog(1 + i * z) - clog(1 - i * z)) / (2 * i);
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
ccos(3), clog(3), ctan(3), complex(7)

Linux man-pages 6.16 2025-05-17 1519

catanh(3) Library Functions Manual catanh(3)

NAME
catanh, catanhf, catanhl - complex arc tangents hyperbolic

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex catanh(double complex z);
float complex catanhf(float complex z);
long double complex catanhl(long double complex z);

DESCRIPTION
These functions calculate the complex arc hyperbolic tangent of z. If y = catanh(z),
then z = ctanh(y). The imaginary part of y is chosen in the interval [-pi/2,pi/2].

One has:

catanh(z) = 0.5 * (clog(1 + z) - clog(1 - z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecatanh(), catanhf(), catanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

EXAMPLES
/* Link with "-lm" */

#include <complex.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

double complex z, c, f;

if (argc != 3) {
fprintf(stderr, "Usage: %s <real> <imag>\n", argv[0]);
exit(EXIT_FAILURE);

}

z = atof(argv[1]) + atof(argv[2]) * I;

c = catanh(z);

Linux man-pages 6.16 2025-05-17 1520

catanh(3) Library Functions Manual catanh(3)

printf("catanh() = %6.3f %6.3f*i\n", creal(c), cimag(c));

f = 0.5 * (clog(1 + z) - clog(1 - z));
printf("formula = %6.3f %6.3f*i\n", creal(f), cimag(f));

exit(EXIT_SUCCESS);
}

SEE ALSO
atanh(3), cabs(3), cimag(3), ctanh(3), complex(7)

Linux man-pages 6.16 2025-05-17 1521

catgets(3) Library Functions Manual catgets(3)

NAME
catgets - get message from a message catalog

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <nl_types.h>

char *catgets(nl_catd catalog, int set_number, int message_number,
const char *message);

DESCRIPTION
catgets() reads the message message_number, in set set_number, from the message cat-
alog identified by catalog, where catalog is a catalog descriptor returned from an earlier
call to catopen(3). The fourth argument, message, points to a default message string
which will be returned by catgets() if the identified message catalog is not currently
available. The message-text is contained in an internal buffer area and should be copied
by the application if it is to be saved or modified. The return string is always terminated
with a null byte ('\0').

RETURN VALUE
On success, catgets() returns a pointer to an internal buffer area containing the null-ter-
minated message string. On failure, catgets() returns the value message.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecatgets()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

The catgets() function is available only in libc.so.4.4.4c and above.

The Jan 1987 X/Open Portability Guide specifies a more subtle error return: message is
returned if the message catalog specified by catalog is not available, while an empty
string is returned when the message catalog is available but does not contain the speci-
fied message. These two possible error returns seem to be discarded in SUSv2 in favor
of always returning message.

SEE ALSO
catopen(3), setlocale(3)

Linux man-pages 6.16 2025-05-17 1522

catopen(3) Library Functions Manual catopen(3)

NAME
catopen, catclose - open/close a message catalog

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <nl_types.h>

nl_catd catopen(const char *name, int flag);
int catclose(nl_catd catalog);

DESCRIPTION
The function catopen() opens a message catalog and returns a catalog descriptor. The
descriptor remains valid until catclose() or execve(2). If a file descriptor is used to im-
plement catalog descriptors, then the FD_CLOEXEC flag will be set.

The argument name specifies the name of the message catalog to be opened. If name
specifies an absolute path (i.e., contains a '/'), then name specifies a pathname for the
message catalog. Otherwise, the environment variable NLSPATH is used with name
substituted for %N (see locale(7)). It is unspecified whether NLSPATH will be used
when the process has root privileges. If NLSPATH does not exist in the environment,
or if a message catalog cannot be opened in any of the paths specified by it, then an im-
plementation defined path is used. This latter default path may depend on the
LC_MESSAGES locale setting when the flag argument is NL_CAT_LOCALE and on
the LANG environment variable when the flag argument is 0. Changing the LC_MES-
SAGES part of the locale may invalidate open catalog descriptors.

The flag argument to catopen() is used to indicate the source for the language to use. If
it is set to NL_CAT_LOCALE, then it will use the current locale setting for LC_MES-
SAGES. Otherwise, it will use the LANG environment variable.

The function catclose() closes the message catalog identified by catalog. It invalidates
any subsequent references to the message catalog defined by catalog.

RETURN VALUE
The function catopen() returns a message catalog descriptor of type nl_catd on success.
On failure, it returns (nl_catd) -1 and sets errno to indicate the error. The possible er-
ror values include all possible values for the open(2) call.

The function catclose() returns 0 on success, or -1 on failure.

ENVIRONMENT
LC_MESSAGES

May be the source of the LC_MESSAGES locale setting, and thus determine
the language to use if flag is set to NL_CAT_LOCALE.

LANG
The language to use if flag is 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1523

catopen(3) Library Functions Manual catopen(3)

Interface Attribute Value
Thread safety MT-Safe envcatopen()
Thread safety MT-Safecatclose()

VERSIONS
The above is the POSIX.1 description. The glibc value for NL_CAT_LOCALE is 1.
The default path varies, but usually looks at a number of places below /usr/share/locale.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
catgets(3), setlocale(3)

Linux man-pages 6.16 2025-09-21 1524

cbrt(3) Library Functions Manual cbrt(3)

NAME
cbrt, cbrtf, cbrtl - cube root function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double cbrt(double x);
float cbrtf(float x);
long double cbrtl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cbrt():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

cbrtf(), cbrtl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the (real) cube root of x. This function cannot fail; every repre-
sentable real value has a real cube root, and rounding it to a representable value never
causes overflow nor underflow.

RETURN VALUE
These functions return the cube root of x.

If x is +0, -0, positive infinity, negative infinity, or NaN, x is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecbrt(), cbrtf(), cbrtl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
GNU, C99, POSIX.1-2001.

SEE ALSO
pow(3), sqrt(3)

Linux man-pages 6.16 2025-09-21 1525

ccos(3) Library Functions Manual ccos(3)

NAME
ccos, ccosf, ccosl - complex cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ccos(double complex z);
float complex ccosf(float complex z);
long double complex ccosl(long double complex z);

DESCRIPTION
These functions calculate the complex cosine of z.

The complex cosine function is defined as:

ccos(z) = (exp(i * z) + exp(-i * z)) / 2

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeccos(), ccosf(), ccosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cacos(3), csin(3), ctan(3), complex(7)

Linux man-pages 6.16 2025-05-17 1526

ccosh(3) Library Functions Manual ccosh(3)

NAME
ccosh, ccoshf, ccoshl - complex hyperbolic cosine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ccosh(double complex z);
float complex ccoshf(float complex z);
long double complex ccoshl(long double complex z);

DESCRIPTION
These functions calculate the complex hyperbolic cosine of z.

The complex hyperbolic cosine function is defined as:

ccosh(z) = (exp(z)+exp(-z))/2

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cacosh(3), csinh(3), ctanh(3), complex(7)

Linux man-pages 6.16 2025-05-17 1527

ceil(3) Library Functions Manual ceil(3)

NAME
ceil, ceilf, ceill - ceiling function: smallest integral value not less than argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double ceil(double x);
float ceilf(float x);
long double ceill(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ceilf(), ceill():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the smallest integral value that is not less than x.

For example, ceil(0.5) is 1.0, and ceil(-0.5) is 0.0.

RETURN VALUE
These functions return the ceiling of x.

If x is integral, +0, -0, NaN, or infinite, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeceil(), ceilf(), ceill()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SUSv2 and POSIX.1-2001 contain text about overflow (which might set errno to
ERANGE, or raise an FE_OVERFLOW exception). In practice, the result cannot
overflow on any current machine, so this error-handling stuff was just nonsense. (More
precisely, overflow can happen only when the maximum value of the exponent is smaller
than the number of mantissa bits. For the IEEE-754 standard 32-bit and 64-bit floating-
point numbers the maximum value of the exponent is 127 (respectively, 1023), and the
number of mantissa bits including the implicit bit is 24 (respectively, 53).) This was re-
moved in POSIX.1-2008.

The integral value returned by these functions may be too large to store in an integer

Linux man-pages 6.16 2025-05-17 1528

ceil(3) Library Functions Manual ceil(3)

type (int, long, etc.). To avoid an overflow, which will produce undefined results, an ap-
plication should perform a range check on the returned value before assigning it to an
integer type.

SEE ALSO
floor(3), lrint(3), nearbyint(3), rint(3), round(3), trunc(3)

Linux man-pages 6.16 2025-05-17 1529

cexp(3) Library Functions Manual cexp(3)

NAME
cexp, cexpf, cexpl - complex exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cexp(double complex z);
float complex cexpf(float complex z);
long double complex cexpl(long double complex z);

DESCRIPTION
These functions calculate e (2.71828..., the base of natural logarithms) raised to the
power of z.

One has:

cexp(I * z) = ccos(z) + I * csin(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecexp(), cexpf(), cexpl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cexp2(3), clog(3), cpow(3), complex(7)

Linux man-pages 6.16 2025-05-17 1530

cexp2(3) Library Functions Manual cexp2(3)

NAME
cexp2, cexp2f, cexp2l - base-2 exponent of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cexp2(double complex z);
float complex cexp2f(float complex z);
long double complex cexp2l(long double complex z);

DESCRIPTION
The function returns 2 raised to the power of z.

STANDARDS
These function names are reserved for future use in C99.

As at glibc 2.31, these functions are not provided in glibc.

SEE ALSO
cabs(3), cexp(3), clog10(3), complex(7)

Linux man-pages 6.16 2025-05-17 1531

cfree(3) Library Functions Manual cfree(3)

NAME
cfree - free allocated memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

/* In SunOS 4 */
int cfree(void *ptr);

/* In glibc or FreeBSD libcompat */
void cfree(void *ptr);

/* In SCO OpenServer */
void cfree(unsigned int n, unsigned int size;

char ptr[size * n], unsigned int n, unsigned int size);

/* In Solaris watchmalloc.so.1 */
void cfree(size_t n, size_t size;

void ptr[size * n], size_t n, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cfree():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
This function should never be used. Use free(3) instead. Starting with glibc 2.26, it has
been removed from glibc.

1-arg cfree
In glibc, the function cfree() is a synonym for free(3), "added for compatibility with
SunOS".

Other systems have other functions with this name. The declaration is sometimes in
<stdlib.h> and sometimes in <malloc.h>.

3-arg cfree
Some SCO and Solaris versions have malloc libraries with a 3-argument cfree(), appar-
ently as an analog to calloc(3).

If you need it while porting something, add

#define cfree(p, n, s) free((p))

to your file.

A frequently asked question is "Can I use free(3) to free memory allocated with cal-
loc(3), or do I need cfree()?". Answer: use free(3).

An SCO manual writes: "The cfree routine is provided for compliance to the iBCSe2
standard and simply calls free. The n and size arguments to cfree are not used."

Linux man-pages 6.16 2025-09-07 1532

cfree(3) Library Functions Manual cfree(3)

RETURN VALUE
The SunOS version of cfree() (which is a synonym for free(3)) returns 1 on success and
0 on failure. In case of error, errno is set to EINVAL: the value of ptr was not a pointer
to a block previously allocated by one of the routines in the malloc(3) family.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe /* In glibc */cfree()

VERSIONS
The 3-argument version of cfree() as used by SCO conforms to the iBCSe2 standard: In-
tel386 Binary Compatibility Specification, Edition 2.

STANDARDS
None.

HISTORY
Removed in glibc 2.26.

SEE ALSO
malloc(3)

Linux man-pages 6.16 2025-09-07 1533

cimag(3) Library Functions Manual cimag(3)

NAME
cimag, cimagf, cimagl - get imaginary part of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double cimag(double complex z);
float cimagf(float complex z);
long double cimagl(long double complex z);

DESCRIPTION
These functions return the imaginary part of the complex number z.

One has:

z = creal(z) + I * cimag(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecimag(), cimagf(), cimagl()

VERSIONS
GCC also supports __imag__. That is a GNU extension.

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), creal(3), complex(7)

Linux man-pages 6.16 2025-05-17 1534

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

NAME
CIRCLEQ_EMPTY, CIRCLEQ_ENTRY, CIRCLEQ_FIRST, CIRCLEQ_FOREACH,
CIRCLEQ_FOREACH_REVERSE, CIRCLEQ_HEAD, CIRCLEQ_HEAD_INITIAL-
IZER, CIRCLEQ_INIT, CIRCLEQ_INSERT_AFTER, CIRCLEQ_INSERT_BEFORE,
CIRCLEQ_INSERT_HEAD, CIRCLEQ_INSERT_TAIL, CIRCLEQ_LAST, CIR-
CLEQ_LOOP_NEXT, CIRCLEQ_LOOP_PREV, CIRCLEQ_NEXT, CIRCLEQ_PREV,
CIRCLEQ_REMOVE - implementation of a doubly linked circular queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

CIRCLEQ_ENTRY(TYPE);

CIRCLEQ_HEAD(HEADNAME, TYPE);
CIRCLEQ_HEAD CIRCLEQ_HEAD_INITIALIZER(CIRCLEQ_HEAD head);
void CIRCLEQ_INIT(CIRCLEQ_HEAD *head);

int CIRCLEQ_EMPTY(CIRCLEQ_HEAD *head);

void CIRCLEQ_INSERT_HEAD(CIRCLEQ_HEAD *head ,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_TAIL(CIRCLEQ_HEAD *head ,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_BEFORE(CIRCLEQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

void CIRCLEQ_INSERT_AFTER(CIRCLEQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, CIRCLEQ_ENTRY NAME);

struct TYPE *CIRCLEQ_FIRST(CIRCLEQ_HEAD *head);
struct TYPE *CIRCLEQ_LAST(CIRCLEQ_HEAD *head);
struct TYPE *CIRCLEQ_PREV(struct TYPE *elm, CIRCLEQ_ENTRY NAME);
struct TYPE *CIRCLEQ_NEXT(struct TYPE *elm, CIRCLEQ_ENTRY NAME);
struct TYPE *CIRCLEQ_LOOP_PREV(CIRCLEQ_HEAD *head ,

struct TYPE *elm, CIRCLEQ_ENTRY NAME);
struct TYPE *CIRCLEQ_LOOP_NEXT(CIRCLEQ_HEAD *head ,

struct TYPE *elm, CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH(struct TYPE *var, CIRCLEQ_HEAD *head ,
CIRCLEQ_ENTRY NAME);

CIRCLEQ_FOREACH_REVERSE(struct TYPE *var, CIRCLEQ_HEAD *head ,
CIRCLEQ_ENTRY NAME);

void CIRCLEQ_REMOVE(CIRCLEQ_HEAD *head , struct TYPE *elm,
CIRCLEQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on doubly linked circular queues.

In the macro definitions, TYPE is the name of a user-defined structure, that must contain
a field of type CIRCLEQ_ENTRY , named NAME. The argument HEADNAME is the
name of a user-defined structure that must be declared using the macro

Linux man-pages 6.16 2025-05-17 1535

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

CIRCLEQ_HEAD().

Creation
A circular queue is headed by a structure defined by the CIRCLEQ_HEAD() macro.
This structure contains a pair of pointers, one to the first element in the queue and the
other to the last element in the queue. The elements are doubly linked so that an arbi-
trary element can be removed without traversing the queue. New elements can be added
to the queue after an existing element, before an existing element, at the head of the
queue, or at the end of the queue. A CIRCLEQ_HEAD structure is declared as follows:

CIRCLEQ_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type of
the elements to be linked into the queue. A pointer to the head of the queue can later be
declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

CIRCLEQ_ENTRY() declares a structure that connects the elements in the queue.

CIRCLEQ_HEAD_INITIALIZER() evaluates to an initializer for the queue head .

CIRCLEQ_INIT() initializes the queue referenced by head .

CIRCLEQ_EMPTY() evaluates to true if there are no items on the queue.

Insertion
CIRCLEQ_INSERT_HEAD() inserts the new element elm at the head of the queue.

CIRCLEQ_INSERT_TAIL() inserts the new element elm at the end of the queue.

CIRCLEQ_INSERT_BEFORE() inserts the new element elm before the element lis-
telm.

CIRCLEQ_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
CIRCLEQ_FIRST() returns the first item on the queue.

CIRCLEQ_LAST() returns the last item on the queue.

CIRCLEQ_PREV() returns the previous item on the queue, or &head if this item is the
first one.

CIRCLEQ_NEXT() returns the next item on the queue, or &head if this item is the last
one.

CIRCLEQ_LOOP_PREV() returns the previous item on the queue. If elm is the first
element on the queue, the last element is returned.

CIRCLEQ_LOOP_NEXT() returns the next item on the queue. If elm is the last ele-
ment on the queue, the first element is returned.

CIRCLEQ_FOREACH() traverses the queue referenced by head in the forward direc-
tion, assigning each element in turn to var. var is set to &head if the loop completes
normally, or if there were no elements.

CIRCLEQ_FOREACH_REVERSE() traverses the queue referenced by head in the

Linux man-pages 6.16 2025-05-17 1536

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

reverse direction, assigning each element in turn to var.

Removal
CIRCLEQ_REMOVE() removes the element elm from the queue.

RETURN VALUE
CIRCLEQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue con-
tains at least one entry.

CIRCLEQ_FIRST(), CIRCLEQ_LAST(), CIRCLEQ_LOOP_PREV(), and CIR-
CLEQ_LOOP_NEXT() return a pointer to the first, last, previous, or next TYPE struc-
ture, respectively.

CIRCLEQ_PREV(), and CIRCLEQ_NEXT() are similar to their CIR-
CLEQ_LOOP_*() counterparts, except that if the argument is the first or last element,
respectively, they return &head .

CIRCLEQ_HEAD_INITIALIZER() returns an initializer that can be assigned to the
queue head .

STANDARDS
BSD.

BUGS
CIRCLEQ_FOREACH() and CIRCLEQ_FOREACH_REVERSE() don’t allow var
to be removed or freed within the loop, as it would interfere with the traversal. CIR-
CLEQ_FOREACH_SAFE() and CIRCLEQ_FOREACH_REVERSE_SAFE(),
which are present on the BSDs but are not present in glibc, fix this limitation by allow-
ing var to safely be removed from the list and freed from within the loop without inter-
fering with the traversal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
CIRCLEQ_ENTRY(entry) entries; /* Queue */

};

CIRCLEQ_HEAD(circlehead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct circlehead head; /* Queue head */
int i;

CIRCLEQ_INIT(&head); /* Initialize the queue */

Linux man-pages 6.16 2025-05-17 1537

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
CIRCLEQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail */
CIRCLEQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
CIRCLEQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before */
CIRCLEQ_INSERT_BEFORE(&head, n2, n3, entries);

CIRCLEQ_REMOVE(&head, n2, entries); /* Deletion */
free(n2);

/* Forward traversal */
i = 0;
CIRCLEQ_FOREACH(np, &head, entries)

np->data = i++;
/* Reverse traversal */

CIRCLEQ_FOREACH_REVERSE(np, &head, entries)
printf("%i\n", np->data);

/* Queue deletion */
n1 = CIRCLEQ_FIRST(&head);
while (n1 != (void *)&head) {

n2 = CIRCLEQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
CIRCLEQ_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.16 2025-05-17 1538

CIRCLEQ(3) Library Functions Manual CIRCLEQ(3)

Linux man-pages 6.16 2025-05-17 1539

clearenv(3) Library Functions Manual clearenv(3)

NAME
clearenv - clear the environment

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int clearenv(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clearenv():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The clearenv() function clears the environment of all name-value pairs and sets the
value of the external variable environ to NULL. After this call, new variables can be
added to the environment using putenv(3) and setenv(3).

RETURN VALUE
The clearenv() function returns zero on success, and a nonzero value on failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:envclearenv()

STANDARDS
putenv()

POSIX.1-2008.

clearenv()
None.

HISTORY
putenv()

glibc 2.0. POSIX.1-2001.

clearenv()
glibc 2.0.

Various UNIX variants (DG/UX, HP-UX, QNX, ...). POSIX.9 (bindings for FOR-
TRAN77). POSIX.1-1996 did not accept clearenv() and putenv(3), but changed its
mind and scheduled these functions for some later issue of this standard (see §B.4.6.1).
However, POSIX.1-2001 adds only putenv(3), and rejected clearenv().

NOTES
On systems where clearenv() is unavailable, the assignment

environ = NULL;

will probably do.

The clearenv() function may be useful in security-conscious applications that want to

Linux man-pages 6.16 2025-05-17 1540

clearenv(3) Library Functions Manual clearenv(3)

precisely control the environment that is passed to programs executed using exec(3).
The application would do this by first clearing the environment and then adding select
environment variables.

Note that the main effect of clearenv() is to adjust the value of the pointer environ(7);
this function does not erase the contents of the buffers containing the environment defin-
itions.

The DG/UX and Tru64 man pages write: If environ has been modified by anything other
than the putenv(3), getenv(3), or clearenv() functions, then clearenv() will return an er-
ror and the process environment will remain unchanged.

SEE ALSO
getenv(3), putenv(3), setenv(3), unsetenv(3), environ(7)

Linux man-pages 6.16 2025-05-17 1541

clock(3) Library Functions Manual clock(3)

NAME
clock - determine processor time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

clock_t clock(void);

DESCRIPTION
The clock() function returns an approximation of processor time used by the program.

RETURN VALUE
The value returned is the CPU time used so far as a clock_t; to get the number of sec-
onds used, divide by CLOCKS_PER_SEC. If the processor time used is not available
or its value cannot be represented, the function returns the value (clock_t) -1.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclock()

VERSIONS
XSI requires that CLOCKS_PER_SEC equals 1000000 independent of the actual reso-
lution.

On several other implementations, the value returned by clock() also includes the times
of any children whose status has been collected via wait(2) (or another wait-type call).
Linux does not include the times of waited-for children in the value returned by clock().
The times(2) function, which explicitly returns (separate) information about the caller
and its children, may be preferable.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

In glibc 2.17 and earlier, clock() was implemented on top of times(2). For improved ac-
curacy, since glibc 2.18, it is implemented on top of clock_gettime(2) (using the
CLOCK_PROCESS_CPUTIME_ID clock).

NOTES
The C standard allows for arbitrary values at the start of the program; subtract the value
returned from a call to clock() at the start of the program to get maximum portability.

Note that the time can wrap around. On a 32-bit system where CLOCKS_PER_SEC
equals 1000000 this function will return the same value approximately every 72 min-
utes.

SEE ALSO
clock_gettime(2), getrusage(2), times(2)

Linux man-pages 6.16 2025-09-21 1542

clock_getcpuclockid(3) Library Functions Manual clock_getcpuclockid(3)

NAME
clock_getcpuclockid - obtain ID of a process CPU-time clock

LIBRARY
Standard C library (libc, -lc), since glibc 2.17

Before glibc 2.17, Real-time library (librt, -lrt)

SYNOPSIS
#include <time.h>

int clock_getcpuclockid(pid_t pid , clockid_t *clockid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

clock_getcpuclockid():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The clock_getcpuclockid() function obtains the ID of the CPU-time clock of the
process whose ID is pid , and returns it in the location pointed to by clockid . If pid is
zero, then the clock ID of the CPU-time clock of the calling process is returned.

RETURN VALUE
On success, clock_getcpuclockid() returns 0; on error, it returns one of the positive er-
ror numbers listed in ERRORS.

ERRORS
ENOSYS

The kernel does not support obtaining the per-process CPU-time clock of an-
other process, and pid does not specify the calling process.

EPERM
The caller does not have permission to access the CPU-time clock of the process
specified by pid . (Specified in POSIX.1-2001; does not occur on Linux unless
the kernel does not support obtaining the per-process CPU-time clock of another
process.)

ESRCH
There is no process with the ID pid .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclock_getcpuclockid()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
Calling clock_gettime(2) with the clock ID obtained by a call to clock_getcpuclockid()
with a pid of 0, is the same as using the clock ID
CLOCK_PROCESS_CPUTIME_ID.

Linux man-pages 6.16 2025-05-17 1543

clock_getcpuclockid(3) Library Functions Manual clock_getcpuclockid(3)

EXAMPLES
The example program below obtains the CPU-time clock ID of the process whose ID is
given on the command line, and then uses clock_gettime(2) to obtain the time on that
clock. An example run is the following:

$./a.out 1 # Show CPU clock of init process
CPU-time clock for PID 1 is 2.213466748 seconds

Program source

#define _XOPEN_SOURCE 600
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

clockid_t clockid;
struct timespec ts;

if (argc != 2) {
fprintf(stderr, "%s <process-ID>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (clock_getcpuclockid(atoi(argv[1]), &clockid) != 0) {
perror("clock_getcpuclockid");
exit(EXIT_FAILURE);

}

if (clock_gettime(clockid, &ts) == -1) {
perror("clock_gettime");
exit(EXIT_FAILURE);

}

printf("CPU-time clock for PID %s is %jd.%09ld seconds\n",
argv[1], (intmax_t) ts.tv_sec, ts.tv_nsec);

exit(EXIT_SUCCESS);
}

SEE ALSO
clock_getres(2), timer_create(2), pthread_getcpuclockid(3), time(7)

Linux man-pages 6.16 2025-05-17 1544

clog(3) Library Functions Manual clog(3)

NAME
clog, clogf, clogl - natural logarithm of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex clog(double complex z);
float complex clogf(float complex z);
long double complex clogl(long double complex z);

DESCRIPTION
These functions calculate the complex natural logarithm of z, with a branch cut along
the negative real axis.

The logarithm clog() is the inverse function of the exponential cexp(3). Thus, if
y = clog(z), then z = cexp(y). The imaginary part of y is chosen in the interval [-pi,pi].

One has:

clog(z) = log(cabs(z)) + I * carg(z)

Note that z close to zero will cause an overflow.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclog(), clogf(), clogl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cexp(3), clog10(3), clog2(3), complex(7)

Linux man-pages 6.16 2025-05-17 1545

clog2(3) Library Functions Manual clog2(3)

NAME
clog2, clog2f, clog2l - base-2 logarithm of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex clog2(double complex z);
float complex clog2f(float complex z);
long double complex clog2l(long double complex z);

DESCRIPTION
The call clog2(z) is equivalent to clog(z)/log(2).

The other functions perform the same task for float and long double.

Note that z close to zero will cause an overflow.

STANDARDS
None.

HISTORY
These function names are reserved for future use in C99.

Not yet in glibc, as at glibc 2.19.

SEE ALSO
cabs(3), cexp(3), clog(3), clog10(3), complex(7)

Linux man-pages 6.16 2025-05-17 1546

clog10(3) Library Functions Manual clog10(3)

NAME
clog10, clog10f, clog10l - base-10 logarithm of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <complex.h>

double complex clog10(double complex z);
float complex clog10f(float complex z);
long double complex clog10l(long double complex z);

DESCRIPTION
The call clog10(z) is equivalent to:

clog(z)/log(10)

or equally:

log10(cabs(c)) + I * carg(c) / log(10)

The other functions perform the same task for float and long double.

Note that z close to zero will cause an overflow.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclog10(), clog10f(), clog10l()

STANDARDS
GNU.

HISTORY
glibc 2.1.

The identifiers are reserved for future use in C99 and C11.

SEE ALSO
cabs(3), cexp(3), clog(3), clog2(3), complex(7)

Linux man-pages 6.16 2025-05-17 1547

closedir(3) Library Functions Manual closedir(3)

NAME
closedir - close a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

int closedir(DIR *dirp);

DESCRIPTION
The closedir() function closes the directory stream associated with dirp. A successful
call to closedir() also closes the underlying file descriptor associated with dirp. The di-
rectory stream descriptor dirp is not available after this call.

RETURN VALUE
The closedir() function returns 0 on success. On error, -1 is returned, and errno is set
to indicate the error.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclosedir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
close(2), opendir(3), readdir(3), rewinddir(3), scandir(3), seekdir(3), telldir(3)

Linux man-pages 6.16 2025-05-17 1548

CMSG(3) Library Functions Manual CMSG(3)

NAME
CMSG_ALIGN, CMSG_SPACE, CMSG_NXTHDR, CMSG_FIRSTHDR - access an-
cillary data

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

struct cmsghdr *CMSG_FIRSTHDR(struct msghdr *msgh);
struct cmsghdr *CMSG_NXTHDR(struct msghdr *msgh,

struct cmsghdr *cmsg);
size_t CMSG_ALIGN(size_t length);
size_t CMSG_SPACE(size_t length);
size_t CMSG_LEN(size_t length);
unsigned char *CMSG_DATA(struct cmsghdr *cmsg);

DESCRIPTION
These macros are used to create and access control messages (also called ancillary data)
that are not a part of the socket payload. This control information may include the inter-
face the packet was received on, various rarely used header fields, an extended error de-
scription, a set of file descriptors, or UNIX credentials. For instance, control messages
can be used to send additional header fields such as IP options. Ancillary data is sent by
calling sendmsg(2) and received by calling recvmsg(2). See their manual pages for
more information.

Ancillary data is a sequence of cmsghdr structures with appended data. See the specific
protocol man pages for the available control message types. The maximum ancillary
buffer size allowed per socket can be set using /proc/sys/net/core/optmem_max; see
socket(7).

The cmsghdr structure is defined as follows:

struct cmsghdr {
size_t cmsg_len; /* Data byte count, including header

(type is socklen_t in POSIX) */
int cmsg_level; /* Originating protocol */
int cmsg_type; /* Protocol-specific type */

/* followed by
unsigned char cmsg_data[]; */

};

The sequence of cmsghdr structures should never be accessed directly. Instead, use only
the following macros:

CMSG_FIRSTHDR()
returns a pointer to the first cmsghdr in the ancillary data buffer associated with
the passed msghdr. It returns NULL if there isn’t enough space for a cmsghdr in
the buffer.

Linux man-pages 6.16 2025-05-17 1549

CMSG(3) Library Functions Manual CMSG(3)

CMSG_NXTHDR()
returns the next valid cmsghdr after the passed cmsghdr. It returns NULL when
there isn’t enough space left in the buffer.

When initializing a buffer that will contain a series of cmsghdr structures (e.g.,
to be sent with sendmsg(2)), that buffer should first be zero-initialized to ensure
the correct operation of CMSG_NXTHDR().

CMSG_ALIGN(),
given a length, returns it including the required alignment. This is a constant ex-
pression.

CMSG_SPACE()
returns the number of bytes an ancillary element with payload of the passed data
length occupies. This is a constant expression.

CMSG_DATA()
returns a pointer to the data portion of a cmsghdr. The pointer returned cannot
be assumed to be suitably aligned for accessing arbitrary payload data types.
Applications should not cast it to a pointer type matching the payload, but should
instead use memcpy(3) to copy data to or from a suitably declared object.

CMSG_LEN()
returns the value to store in the cmsg_len member of the cmsghdr structure, tak-
ing into account any necessary alignment. It takes the data length as an argu-
ment. This is a constant expression.

To create ancillary data, first initialize the msg_controllen member of the msghdr with
the length of the control message buffer. Use CMSG_FIRSTHDR() on the msghdr to
get the first control message and CMSG_NXTHDR() to get all subsequent ones. In
each control message, initialize cmsg_len (with CMSG_LEN ()), the other cmsghdr
header fields, and the data portion using CMSG_DATA(). Finally, the msg_controllen
field of the msghdr should be set to the sum of the CMSG_SPACE() of the length of all
control messages in the buffer. For more information on the msghdr, see recvmsg(2).

VERSIONS
For portability, ancillary data should be accessed using only the macros described here.

In Linux, CMSG_LEN(), CMSG_DATA(), and CMSG_ALIGN() are constant expres-
sions (assuming their argument is constant), meaning that these values can be used to
declare the size of global variables. This may not be portable, however.

STANDARDS
CMSG_FIRSTHDR()
CMSG_NXTHDR()
CMSG_DATA()

POSIX.1-2008.

CMSG_SPACE()
CMSG_LEN()
CMSG_ALIGN()

Linux.

Linux man-pages 6.16 2025-05-17 1550

CMSG(3) Library Functions Manual CMSG(3)

HISTORY
This ancillary data model conforms to the POSIX.1g draft, 4.4BSD-Lite, the IPv6 ad-
vanced API described in RFC 2292 and SUSv2.

CMSG_SPACE() and CMSG_LEN() will be included in the next POSIX release (Issue
8).

EXAMPLES
This code looks for the IP_TTL option in a received ancillary buffer:

struct msghdr msgh;
struct cmsghdr *cmsg;
int received_ttl;

/* Receive auxiliary data in msgh */

for (cmsg = CMSG_FIRSTHDR(&msgh); cmsg != NULL;
cmsg = CMSG_NXTHDR(&msgh, cmsg)) {

if (cmsg->cmsg_level == IPPROTO_IP
&& cmsg->cmsg_type == IP_TTL) {

memcpy(&receive_ttl, CMSG_DATA(cmsg), sizeof(received_ttl));
break;

}
}

if (cmsg == NULL) {
/* Error: IP_TTL not enabled or small buffer or I/O error */

}

The code below passes an array of file descriptors over a UNIX domain socket using
SCM_RIGHTS:

struct msghdr msg = { 0 };
struct cmsghdr *cmsg;
int myfds[NUM_FD]; /* Contains the file descriptors to pass */
char iobuf[1];
struct iovec io = {

.iov_base = iobuf,

.iov_len = sizeof(iobuf)
};
union { /* Ancillary data buffer, wrapped in a union

in order to ensure it is suitably aligned */
char buf[CMSG_SPACE(sizeof(myfds))];
struct cmsghdr align;

} u;

msg.msg_iov = &io;
msg.msg_iovlen = 1;
msg.msg_control = u.buf;
msg.msg_controllen = sizeof(u.buf);

Linux man-pages 6.16 2025-05-17 1551

CMSG(3) Library Functions Manual CMSG(3)

cmsg = CMSG_FIRSTHDR(&msg);
cmsg->cmsg_level = SOL_SOCKET;
cmsg->cmsg_type = SCM_RIGHTS;
cmsg->cmsg_len = CMSG_LEN(sizeof(myfds));
memcpy(CMSG_DATA(cmsg), myfds, sizeof(myfds));

For a complete code example that shows passing of file descriptors over a UNIX domain
socket, see seccomp_unotify(2).

SEE ALSO
recvmsg(2), sendmsg(2)

RFC 2292

Linux man-pages 6.16 2025-05-17 1552

confstr(3) Library Functions Manual confstr(3)

NAME
confstr - get configuration dependent string variables

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

size_t confstr(size_t size;
int name, char buf [size], size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

confstr():
_POSIX_C_SOURCE >= 2 || _XOPEN_SOURCE

DESCRIPTION
confstr() gets the value of configuration-dependent string variables.

The name argument is the system variable to be queried. The following variables are
supported:

_CS_GNU_LIBC_VERSION (GNU C library only; since glibc 2.3.2)
A string which identifies the GNU C library version on this system (e.g., "glibc
2.3.4").

_CS_GNU_LIBPTHREAD_VERSION (GNU C library only; since glibc 2.3.2)
A string which identifies the POSIX implementation supplied by this C library
(e.g., "NPTL 2.3.4" or "linuxthreads-0.10").

_CS_PATH
A value for the PATH variable which indicates where all the POSIX.2 standard
utilities can be found.

If buf is not NULL and size is not zero, confstr() copies the value of the string to buf
truncated to size - 1 bytes if necessary, with a null byte ('\0') as terminator. This can be
detected by comparing the return value of confstr() against size.

If size is zero and buf is NULL, confstr() just returns the value as defined below.

RETURN VALUE
If name is a valid configuration variable, confstr() returns the number of bytes (includ-
ing the terminating null byte) that would be required to hold the entire value of that vari-
able. This value may be greater than size, which means that the value in buf is trun-
cated.

If name is a valid configuration variable, but that variable does not have a value, then
confstr() returns 0. If name does not correspond to a valid configuration variable, conf-
str() returns 0, and errno is set to EINVAL.

ERRORS
EINVAL

The value of name is invalid.

Linux man-pages 6.16 2025-06-28 1553

confstr(3) Library Functions Manual confstr(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeconfstr()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The following code fragment determines the path where to find the POSIX.2 system
utilities:

char *pathbuf;
size_t n;

n = confstr(_CS_PATH, NULL, (size_t) 0);
pathbuf = malloc(n);
if (pathbuf == NULL)

abort();
confstr(_CS_PATH, pathbuf, n);

SEE ALSO
getconf (1), sh(1), exec(3), fpathconf(3), pathconf(3), sysconf(3), system(3)

Linux man-pages 6.16 2025-06-28 1554

conj(3) Library Functions Manual conj(3)

NAME
conj, conjf, conjl - calculate the complex conjugate

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex conj(double complex z);
float complex conjf(float complex z);
long double complex conjl(long double complex z);

DESCRIPTION
These functions return the complex conjugate value of z. That is the value obtained by
changing the sign of the imaginary part.

One has:

cabs(z) = csqrt(z * conj(z))

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeconj(), conjf(), conjl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), csqrt(3), complex(7)

Linux man-pages 6.16 2025-05-17 1555

copysign(3) Library Functions Manual copysign(3)

NAME
copysign, copysignf, copysignl - copy sign of a number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double copysign(double x, double y);
float copysignf(float x, float y);
long double copysignl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

copysign(), copysignf(), copysignl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return a value whose absolute value matches that of x, but whose sign
bit matches that of y.

For example, copysign(42.0, -1.0) and copysign(-42.0, -1.0) both return -42.0.

RETURN VALUE
On success, these functions return a value whose magnitude is taken from x and whose
sign is taken from y.

If x is a NaN, a NaN with the sign bit of y is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecopysign(), copysignf(), copysignl()

VERSIONS
On architectures where the floating-point formats are not IEEE 754 compliant, these
functions may treat a negative zero as positive.

STANDARDS
C11, POSIX.1-2008.

This function is defined in IEC 559 (and the appendix with recommended functions in
IEEE 754/IEEE 854).

HISTORY
C99, POSIX.1-2001, 4.3BSD.

SEE ALSO
signbit(3)

Linux man-pages 6.16 2025-05-17 1556

copysign(3) Library Functions Manual copysign(3)

Linux man-pages 6.16 2025-05-17 1557

cos(3) Library Functions Manual cos(3)

NAME
cos, cosf, cosl - cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double cos(double x);
float cosf(float x);
long double cosl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cosf(), cosl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the cosine of x, where x is given in radians.

RETURN VALUE
On success, these functions return the cosine of x.

If x is a NaN, a NaN is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecos(), cosf(), cosl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a domain
error occurred.

Linux man-pages 6.16 2025-05-17 1558

cos(3) Library Functions Manual cos(3)

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), ccos(3), sin(3), sincos(3), tan(3)

Linux man-pages 6.16 2025-05-17 1559

cosh(3) Library Functions Manual cosh(3)

NAME
cosh, coshf, coshl - hyperbolic cosine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double cosh(double x);
float coshf(float x);
long double coshl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

coshf(), coshl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the hyperbolic cosine of x, which is defined mathematically as:

cosh(x) = (exp(x) + exp(-x)) / 2

RETURN VALUE
On success, these functions return the hyperbolic cosine of x.

If x is a NaN, a NaN is returned.

If x is +0 or -0, 1 is returned.

If x is positive infinity or negative infinity, positive infinity is returned.

If the result overflows, a range error occurs, and the functions return +HUGE_VAL,
+HUGE_VALF, or +HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecosh(), coshf(), coshl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

Linux man-pages 6.16 2025-05-17 1560

cosh(3) Library Functions Manual cosh(3)

The variant returning double also conforms to SVr4, 4.3BSD.

BUGS
In glibc 2.3.4 and earlier, an overflow floating-point (FE_OVERFLOW) exception is
not raised when an overflow occurs.

SEE ALSO
acosh(3), asinh(3), atanh(3), ccos(3), sinh(3), tanh(3)

Linux man-pages 6.16 2025-05-17 1561

countof (3) Library Functions Manual countof (3)

NAME
countof, _Countof - count the number of elements in an array

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdcountof.h>

size_t countof(array);

DESCRIPTION
This operator counts the number of elements in an array.

If the operand is not an array, it produces a compilation error.

There’s a keyword, _Countof(), that behaves identically, and can be used without in-
cluding <stdcountof.h>.

RETURN VALUE
The number of elements in the array.

STANDARDS
C2y.

HISTORY
gcc 16, clang 21.

SEE ALSO
operator(7)

Linux man-pages 6.16 2025-08-19 1562

cpow(3) Library Functions Manual cpow(3)

NAME
cpow, cpowf, cpowl - complex power function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cpow(double complex x, double complex z);
float complex cpowf(float complex x, float complex z);
long double complex cpowl(long double complex x,

long double complex z);

DESCRIPTION
These functions calculate x raised to the power z (with a branch cut for x along the neg-
ative real axis).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecpow(), cpowf(), cpowl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), pow(3), complex(7)

Linux man-pages 6.16 2025-05-17 1563

cproj(3) Library Functions Manual cproj(3)

NAME
cproj, cprojf, cprojl - project into Riemann Sphere

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex cproj(double complex z);
float complex cprojf(float complex z);
long double complex cprojl(long double complex z);

DESCRIPTION
These functions project a point in the plane onto the surface of a Riemann Sphere, the
one-point compactification of the complex plane. Each finite point z projects to z itself.
Every complex infinite value is projected to a single infinite value, namely to positive in-
finity on the real axis.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecproj(), cprojf(), cprojl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

In glibc 2.11 and earlier, the implementation does something different (a stereographic
projection onto a Riemann Sphere).

SEE ALSO
cabs(3), complex(7)

Linux man-pages 6.16 2025-05-17 1564

CPU_SET (3) Library Functions Manual CPU_SET (3)

NAME
CPU_SET, CPU_CLR, CPU_ISSET, CPU_ZERO, CPU_COUNT, CPU_AND,
CPU_OR, CPU_XOR, CPU_EQUAL, CPU_ALLOC, CPU_ALLOC_SIZE,
CPU_FREE, CPU_SET_S, CPU_CLR_S, CPU_ISSET_S, CPU_ZERO_S,
CPU_COUNT_S, CPU_AND_S, CPU_OR_S, CPU_XOR_S, CPU_EQUAL_S -
macros for manipulating CPU sets

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sched.h>

void CPU_ZERO(cpu_set_t *set);

void CPU_SET(int cpu, cpu_set_t *set);
void CPU_CLR(int cpu, cpu_set_t *set);
int CPU_ISSET(int cpu, cpu_set_t *set);

int CPU_COUNT(cpu_set_t *set);

void CPU_AND(cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_OR(cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_XOR(cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

int CPU_EQUAL(cpu_set_t *set1, cpu_set_t *set2);

cpu_set_t *CPU_ALLOC(int num_cpus);
void CPU_FREE(cpu_set_t *set);
size_t CPU_ALLOC_SIZE(int num_cpus);

void CPU_ZERO_S(size_t setsize, cpu_set_t *set);

void CPU_SET_S(int cpu, size_t setsize, cpu_set_t *set);
void CPU_CLR_S(int cpu, size_t setsize, cpu_set_t *set);
int CPU_ISSET_S(int cpu, size_t setsize, cpu_set_t *set);

int CPU_COUNT_S(size_t setsize, cpu_set_t *set);

void CPU_AND_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_OR_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

void CPU_XOR_S(size_t setsize, cpu_set_t *destset,
cpu_set_t *srcset1, cpu_set_t *srcset2);

int CPU_EQUAL_S(size_t setsize, cpu_set_t *set1, cpu_set_t *set2);

DESCRIPTION
The cpu_set_t data structure represents a set of CPUs. CPU sets are used by
sched_setaffinity(2) and similar interfaces.

Linux man-pages 6.16 2025-09-21 1565

CPU_SET (3) Library Functions Manual CPU_SET (3)

The cpu_set_t data type is implemented as a bit mask. However, the data structure
should be treated as opaque: all manipulation of CPU sets should be done via the
macros described in this page.

The following macros are provided to operate on the CPU set set:

CPU_ZERO()
Clears set, so that it contains no CPUs.

CPU_SET()
Add CPU cpu to set.

CPU_CLR()
Remove CPU cpu from set.

CPU_ISSET()
Test to see if CPU cpu is a member of set.

CPU_COUNT()
Return the number of CPUs in set.

Where a cpu argument is specified, it should not produce side effects, since the above
macros may evaluate the argument more than once.

The first CPU on the system corresponds to a cpu value of 0, the next CPU corresponds
to a cpu value of 1, and so on. No assumptions should be made about particular CPUs
being available, or the set of CPUs being contiguous, since CPUs can be taken offline
dynamically or be otherwise absent. The constant CPU_SETSIZE (currently 1024)
specifies a value one greater than the maximum CPU number that can be stored in
cpu_set_t.

The following macros perform logical operations on CPU sets:

CPU_AND()
Store the intersection of the sets srcset1 and srcset2 in destset (which may be
one of the source sets).

CPU_OR()
Store the union of the sets srcset1 and srcset2 in destset (which may be one of
the source sets).

CPU_XOR()
Store the XOR of the sets srcset1 and srcset2 in destset (which may be one of
the source sets). The XOR means the set of CPUs that are in either srcset1 or
srcset2, but not both.

CPU_EQUAL()
Test whether two CPU set contain exactly the same CPUs.

Dynamically sized CPU sets
Because some applications may require the ability to dynamically size CPU sets (e.g., to
allocate sets larger than that defined by the standard cpu_set_t data type), glibc nowa-
days provides a set of macros to support this.

The following macros are used to allocate and deallocate CPU sets:

Linux man-pages 6.16 2025-09-21 1566

CPU_SET (3) Library Functions Manual CPU_SET (3)

CPU_ALLOC()
Allocate a CPU set large enough to hold CPUs in the range 0 to num_cpus-1.

CPU_ALLOC_SIZE()
Return the size in bytes of the CPU set that would be needed to hold CPUs in the
range 0 to num_cpus-1. This macro provides the value that can be used for the
setsize argument in the CPU_*_S() macros described below.

CPU_FREE()
Free a CPU set previously allocated by CPU_ALLOC().

The macros whose names end with "_S" are the analogs of the similarly named macros
without the suffix. These macros perform the same tasks as their analogs, but operate on
the dynamically allocated CPU set(s) whose size is setsize bytes.

RETURN VALUE
CPU_ISSET() and CPU_ISSET_S() return nonzero if cpu is in set; otherwise, it re-
turns 0.

CPU_COUNT() and CPU_COUNT_S() return the number of CPUs in set.

CPU_EQUAL() and CPU_EQUAL_S() return nonzero if the two CPU sets are equal;
otherwise, they return 0.

CPU_ALLOC() returns a pointer on success, or NULL on failure. (Errors are as for
malloc(3).)

CPU_ALLOC_SIZE() returns the number of bytes required to store a CPU set of the
specified cardinality.

The other functions do not return a value.

STANDARDS
Linux.

HISTORY
The CPU_ZERO(), CPU_SET(), CPU_CLR(), and CPU_ISSET() macros were added
in glibc 2.3.3.

CPU_COUNT() first appeared in glibc 2.6.

CPU_AND(), CPU_OR(), CPU_XOR(), CPU_EQUAL(), CPU_ALLOC(),
CPU_ALLOC_SIZE(), CPU_FREE(), CPU_ZERO_S(), CPU_SET_S(),
CPU_CLR_S(), CPU_ISSET_S(), CPU_AND_S(), CPU_OR_S(), CPU_XOR_S(),
and CPU_EQUAL_S() first appeared in glibc 2.7.

NOTES
To duplicate a CPU set, use memcpy(3).

Since CPU sets are bit masks allocated in units of long words, the actual number of
CPUs in a dynamically allocated CPU set will be rounded up to the next multiple of
sizeof(unsigned long). An application should consider the contents of these extra bits to
be undefined.

Notwithstanding the similarity in the names, note that the constant CPU_SETSIZE in-
dicates the number of CPUs in the cpu_set_t data type (thus, it is effectively a count of
the bits in the bit mask), while the setsize argument of the CPU_*_S() macros is a size

Linux man-pages 6.16 2025-09-21 1567

CPU_SET (3) Library Functions Manual CPU_SET (3)

in bytes.

The data types for arguments and return values shown in the SYNOPSIS are hints what
about is expected in each case. However, since these interfaces are implemented as
macros, the compiler won’t necessarily catch all type errors if you violate the sugges-
tions.

BUGS
On 32-bit platforms with glibc 2.8 and earlier, CPU_ALLOC() allocates twice as much
space as is required, and CPU_ALLOC_SIZE() returns a value twice as large as it
should. This bug should not affect the semantics of a program, but does result in wasted
memory and less efficient operation of the macros that operate on dynamically allocated
CPU sets. These bugs are fixed in glibc 2.9.

EXAMPLES
The following program demonstrates the use of some of the macros used for dynami-
cally allocated CPU sets.

#define _GNU_SOURCE
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#include <assert.h>

int
main(int argc, char *argv[])
{

cpu_set_t *cpusetp;
size_t size, num_cpus;

if (argc < 2) {
fprintf(stderr, "Usage: %s <num-cpus>\n", argv[0]);
exit(EXIT_FAILURE);

}

num_cpus = atoi(argv[1]);

cpusetp = CPU_ALLOC(num_cpus);
if (cpusetp == NULL) {

perror("CPU_ALLOC");
exit(EXIT_FAILURE);

}

size = CPU_ALLOC_SIZE(num_cpus);

CPU_ZERO_S(size, cpusetp);
for (size_t cpu = 0; cpu < num_cpus; cpu += 2)

Linux man-pages 6.16 2025-09-21 1568

CPU_SET (3) Library Functions Manual CPU_SET (3)

CPU_SET_S(cpu, size, cpusetp);

printf("CPU_COUNT() of set: %d\n", CPU_COUNT_S(size, cpusetp));

CPU_FREE(cpusetp);
exit(EXIT_SUCCESS);

}

SEE ALSO
sched_setaffinity(2), pthread_attr_setaffinity_np(3), pthread_setaffinity_np(3), cpuset(7)

Linux man-pages 6.16 2025-09-21 1569

creal(3) Library Functions Manual creal(3)

NAME
creal, crealf, creall - get real part of a complex number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double creal(double complex z);
float crealf(float complex z);
long double creall(long double complex z);

DESCRIPTION
These functions return the real part of the complex number z.

One has:

z = creal(z) + I * cimag(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecreal(), crealf(), creall()

VERSIONS
GCC supports also __real__. That is a GNU extension.

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cimag(3), complex(7)

Linux man-pages 6.16 2025-05-17 1570

crypt(3) Library Functions Manual crypt(3)

NAME
crypt, crypt_r - password hashing

LIBRARY
Password hashing library (libcrypt, -lcrypt)

SYNOPSIS
#include <unistd.h>

char *crypt(const char *key, const char *salt);

#include <crypt.h>

char *crypt_r(const char *key, const char *salt,
struct crypt_data *restrict data);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

crypt():
Since glibc 2.28:

_DEFAULT_SOURCE
glibc 2.27 and earlier:

_XOPEN_SOURCE

crypt_r():
_GNU_SOURCE

DESCRIPTION
crypt() is the password hashing function. It is based on the Data Encryption Standard
algorithm with variations intended (among other things) to discourage use of hardware
implementations of a key search.

key is a user’s typed password.

salt is a two-character string chosen from the set [a-zA-Z0-9./]. This string is used to
perturb the algorithm in one of 4096 different ways.

By taking the lowest 7 bits of each of the first eight characters of the key, a 56-bit key is
obtained. This 56-bit key is used to encrypt repeatedly a constant string (usually a string
consisting of all zeros). The returned value points to the hashed password, a series of 13
printable ASCII characters (the first two characters represent the salt itself). The return
value points to static data whose content is overwritten by each call.

Warning: the key space consists of 256 equal 7.2e16 possible values. Exhaustive
searches of this key space are possible using massively parallel computers. Software,
such as crack(1), is available which will search the portion of this key space that is gen-
erally used by humans for passwords. Hence, password selection should, at minimum,
avoid common words and names. The use of a passwd(1) program that checks for
crackable passwords during the selection process is recommended.

The DES algorithm itself has a few quirks which make the use of the crypt() interface a
very poor choice for anything other than password authentication. If you are planning
on using the crypt() interface for a cryptography project, don’t do it: get a good book on
encryption and one of the widely available DES libraries.

crypt_r() is a reentrant version of crypt(). The structure pointed to by data is used to

Linux man-pages 6.16 2025-09-21 1571

crypt(3) Library Functions Manual crypt(3)

store result data and bookkeeping information. Other than allocating it, the only thing
that the caller should do with this structure is to set data->initialized to zero before the
first call to crypt_r().

RETURN VALUE
On success, a pointer to the hashed password is returned. On error, NULL is returned.

ERRORS
EINVAL

salt has the wrong format.

ENOSYS
The crypt() function was not implemented, probably because of U.S.A. export
restrictions.

EPERM
/proc/sys/crypto/fips_enabled has a nonzero value, and an attempt was made to
use a weak hashing type, such as DES.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:cryptcrypt()
Thread safety MT-Safecrypt_r()

STANDARDS
crypt()

POSIX.1-2008.

crypt_r()
GNU.

HISTORY
crypt()

POSIX.1-2001, SVr4, 4.3BSD.

Availability in glibc
The crypt(), encrypt(3), and setkey(3) functions are part of the POSIX.1-2008 XSI Op-
tions Group for Encryption and are optional. If the interfaces are not available, then the
symbolic constant _XOPEN_CRYPT is either not defined, or it is defined to -1 and
availability can be checked at run time with sysconf(3). This may be the case if the
downstream distribution has switched from glibc crypt to libxcrypt. When recompiling
applications in such distributions, the programmer must detect if _XOPEN_CRYPT is
not available and include <crypt.h> for the function prototypes; otherwise libxcrypt is
an ABI-compatible drop-in replacement.

NOTES
Features in glibc

The glibc version of this function supports additional hashing algorithms.

If salt is a character string starting with the characters "id" followed by a string op-
tionally terminated by "$", then the result has the form:

idsalt$hashed

Linux man-pages 6.16 2025-09-21 1572

crypt(3) Library Functions Manual crypt(3)

id identifies the hashing method used instead of DES and this then determines how the
rest of the password string is interpreted. The following values of id are supported:

ID Method
1 MD5
2a Blowfish (not in mainline glibc; added in some Linux distributions)
5 SHA-256 (since glibc 2.7)
6 SHA-512 (since glibc 2.7)

Thus, 5salt$hashed and 6salt$hashed contain the password hashed with, respec-
tively, functions based on SHA-256 and SHA-512.

"salt" stands for the up to 16 characters following "id" in the salt. The "hashed" part
of the password string is the actual computed password. The size of this string is fixed:

MD5 22 characters
SHA-256 43 characters
SHA-512 86 characters

The characters in "salt" and "hashed" are drawn from the set [a-zA-Z0-9./]. In the
MD5 and SHA implementations the entire key is significant (instead of only the first 8
bytes in DES).

Since glibc 2.7, the SHA-256 and SHA-512 implementations support a user-supplied
number of hashing rounds, defaulting to 5000. If the "id"charactersinthesaltare fol-
lowed by "rounds=xxx$", where xxx is an integer, then the result has the form

idrounds=yyy$salt$hashed

where yyy is the number of hashing rounds actually used. The number of rounds actu-
ally used is 1000 if xxx is less than 1000, 999999999 if xxx is greater than 999999999,
and is equal to xxx otherwise.

SEE ALSO
login(1), passwd(1), encrypt(3), getpass(3), passwd(5)

Linux man-pages 6.16 2025-09-21 1573

csin(3) Library Functions Manual csin(3)

NAME
csin, csinf, csinl - complex sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex csin(double complex z);
float complex csinf(float complex z);
long double complex csinl(long double complex z);

DESCRIPTION
These functions calculate the complex sine of z.

The complex sine function is defined as:

csin(z) = (exp(i * z) - exp(-i * z)) / (2 * i)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecsin(), csinf(), csinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), casin(3), ccos(3), ctan(3), complex(7)

Linux man-pages 6.16 2025-05-17 1574

csinh(3) Library Functions Manual csinh(3)

NAME
csinh, csinhf, csinhl - complex hyperbolic sine

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex csinh(double complex z);
float complex csinhf(float complex z);
long double complex csinhl(long double complex z);

DESCRIPTION
These functions calculate the complex hyperbolic sine of z.

The complex hyperbolic sine function is defined as:

csinh(z) = (exp(z)-exp(-z))/2

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecsinh(), csinhf(), csinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), casinh(3), ccosh(3), ctanh(3), complex(7)

Linux man-pages 6.16 2025-05-17 1575

csqrt(3) Library Functions Manual csqrt(3)

NAME
csqrt, csqrtf, csqrtl - complex square root

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex csqrt(double complex z);
float complex csqrtf(float complex z);
long double complex csqrtl(long double complex z);

DESCRIPTION
These functions calculate the complex square root of z, with a branch cut along the neg-
ative real axis. (That means that csqrt(-1+eps*I) will be close to I while
csqrt(-1-eps*I) will be close to -I, if eps is a small positive real number.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safecsqrt(), csqrtf(), csqrtl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), cexp(3), complex(7)

Linux man-pages 6.16 2025-05-17 1576

ctan(3) Library Functions Manual ctan(3)

NAME
ctan, ctanf, ctanl - complex tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ctan(double complex z);
float complex ctanf(float complex z);
long double complex ctanl(long double complex z);

DESCRIPTION
These functions calculate the complex tangent of z.

The complex tangent function is defined as:

ctan(z) = csin(z) / ccos(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safectan(), ctanf(), ctanl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), catan(3), ccos(3), csin(3), complex(7)

Linux man-pages 6.16 2025-05-17 1577

ctanh(3) Library Functions Manual ctanh(3)

NAME
ctanh, ctanhf, ctanhl - complex hyperbolic tangent

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

double complex ctanh(double complex z);
float complex ctanhf(float complex z);
long double complex ctanhl(long double complex z);

DESCRIPTION
These functions calculate the complex hyperbolic tangent of z.

The complex hyperbolic tangent function is defined mathematically as:

ctanh(z) = csinh(z) / ccosh(z)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safectanh(), ctanhf(), ctanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
cabs(3), catanh(3), ccosh(3), csinh(3), complex(7)

Linux man-pages 6.16 2025-05-17 1578

ctermid(3) Library Functions Manual ctermid(3)

NAME
ctermid - get controlling terminal name

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

char *ctermid(char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ctermid():
_POSIX_C_SOURCE

DESCRIPTION
ctermid() returns a string which is the pathname for the current controlling terminal for
this process. If s is NULL, a static buffer is used, otherwise s points to a buffer used to
hold the terminal pathname. The symbolic constant L_ctermid is the maximum num-
ber of characters in the returned pathname.

RETURN VALUE
The pointer to the pathname.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safectermid()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, Svr4.

BUGS
The returned pathname may not uniquely identify the controlling terminal; it may, for
example, be /dev/tty.

It is not assured that the program can open the terminal.

SEE ALSO
ttyname(3)

Linux man-pages 6.16 2025-09-21 1579

ctime(3) Library Functions Manual ctime(3)

NAME
asctime, ctime, gmtime, localtime, mktime, asctime_r, ctime_r, gmtime_r, localtime_r -
transform date and time to broken-down time or ASCII

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

char *asctime(const struct tm *tm);
char *asctime_r(const struct tm *restrict tm,

char buf [restrict 26]);

char *ctime(const time_t *timep);
char *ctime_r(const time_t *restrict timep,

char buf [restrict 26]);

struct tm *gmtime(const time_t *timep);
struct tm *gmtime_r(const time_t *restrict timep,

struct tm *restrict result);

struct tm *localtime(const time_t *timep);
struct tm *localtime_r(const time_t *restrict timep,

struct tm *restrict result);

time_t mktime(struct tm *tm);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

asctime_r(), ctime_r(), gmtime_r(), localtime_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The ctime(), gmtime(), and localtime() functions all take an argument of data type
time_t, which represents calendar time. When interpreted as an absolute time value, it
represents the number of seconds elapsed since the Epoch, 1970-01-01 00:00:00 +0000
(UTC).

The asctime() and mktime() functions both take an argument representing broken-down
time, which is a representation separated into year, month, day, and so on.

Broken-down time is stored in the structure tm, described in tm(3type).

The call ctime(t) is equivalent to asctime(localtime(t)). It converts the calendar time t
into a null-terminated string of the form

"Wed Jun 30 21:49:08 1993\n"

The abbreviations for the days of the week are "Sun", "Mon", "Tue", "Wed", "Thu",
"Fri", and "Sat". The abbreviations for the months are "Jan", "Feb", "Mar", "Apr",
"May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", and "Dec". The return value points to
a statically allocated string which might be overwritten by subsequent calls to any of the
date and time functions. The function also sets the external variables tzname, timezone,
and daylight as if it called tzset(3). The reentrant version ctime_r() does the same, but

Linux man-pages 6.16 2025-09-25 1580

ctime(3) Library Functions Manual ctime(3)

stores the string in a user-supplied buffer which should have room for at least 26 bytes.
It need not set tzname, timezone, and daylight.

The gmtime() function converts the calendar time timep to broken-down time represen-
tation, expressed in Coordinated Universal Time (UTC). It may return NULL when the
year does not fit into an integer. The return value points to a statically allocated struct
which might be overwritten by subsequent calls to any of the date and time functions.
The gmtime_r() function does the same, but stores the data in a user-supplied struct.

The localtime() function converts the calendar time timep to broken-down time repre-
sentation, expressed relative to the user’s specified timezone. The function also sets the
external variables tzname, timezone, and daylight as if it called tzset(3). The return
value points to a statically allocated struct which might be overwritten by subsequent
calls to any of the date and time functions. The localtime_r() function does the same,
but stores the data in a user-supplied struct. It need not set tzname, timezone, and day-
light.

The asctime() function converts the broken-down time value tm into a null-terminated
string with the same format as ctime(). The return value points to a statically allocated
string which might be overwritten by subsequent calls to any of the date and time func-
tions. The asctime_r() function does the same, but stores the string in a user-supplied
buffer which should have room for at least 26 bytes.

The mktime() function converts a broken-down time structure, expressed as local time,
to calendar time representation. The function ignores the values supplied by the caller
in the tm_wday and tm_yday fields. The value specified in the tm_isdst field informs
mktime() whether or not daylight saving time (DST) is in effect for the time supplied in
the tm structure: a positive value means DST is in effect; zero means that DST is not in
effect; and a negative value means that mktime() should (use timezone information and
system databases to) attempt to determine whether DST is in effect at the specified time.
See timegm(3) for a UTC equivalent of this function.

The mktime() function modifies the fields of the tm structure as follows: tm_wday and
tm_yday are set to values determined from the contents of the other fields; if structure
members are outside their valid interval, they will be normalized (so that, for example,
40 October is changed into 9 November); tm_isdst is set (regardless of its initial value)
to a positive value or to 0, respectively, to indicate whether DST is or is not in effect at
the specified time. The function also sets the external variables tzname, timezone, and
daylight as if it called tzset(3).

If the specified broken-down time cannot be represented as calendar time (seconds since
the Epoch), mktime() returns (time_t) -1 and does not alter the members of the broken-
down time structure.

RETURN VALUE
On success, gmtime() and localtime() return a pointer to a struct tm.

On success, gmtime_r() and localtime_r() return the address of the structure pointed to
by result.

On success, asctime() and ctime() return a pointer to a string.

On success, asctime_r() and ctime_r() return a pointer to the string pointed to by buf .

Linux man-pages 6.16 2025-09-25 1581

ctime(3) Library Functions Manual ctime(3)

On success, mktime() returns the calendar time (seconds since the Epoch), expressed as
a value of type time_t.

On error, mktime() returns the value (time_t) -1, and leaves the tm->tm_wday member
unmodified. The remaining functions return NULL on error. On error, errno is set to
indicate the error.

ERRORS
EOVERFLOW

The result cannot be represented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyasctime() MT-Unsafe race:asctime locale
Thread safetyasctime_r() MT-Safe locale
Thread safetyctime() MT-Unsafe race:tmbuf race:asctime env

locale
Thread safetyctime_r(),

gmtime_r(),
localtime_r(),
mktime()

MT-Safe env locale

Thread safetygmtime(), localtime() MT-Unsafe race:tmbuf env locale

VERSIONS
POSIX doesn’t specify the parameters of ctime_r() to be restrict; that is specific to
glibc.

In many implementations, including glibc, a 0 in tm_mday is interpreted as meaning the
last day of the preceding month.

According to POSIX.1, localtime() is required to behave as though tzset(3) was called,
while localtime_r() does not have this requirement. For portable code, tzset(3) should
be called before localtime_r().

STANDARDS
asctime()
ctime()
gmtime()
localtime()
mktime()

C23, POSIX.1-2024.

gmtime_r()
localtime_r()

POSIX.1-2024.

asctime_r()
ctime_r()

None.

Linux man-pages 6.16 2025-09-25 1582

ctime(3) Library Functions Manual ctime(3)

HISTORY
gmtime()
localtime()
mktime()

C89, POSIX.1-1988.

asctime()
ctime()

C89, POSIX.1-1988. Marked obsolescent in C23 and in POSIX.1-2008 (recom-
mending strftime(3)).

gmtime_r()
localtime_r()

POSIX.1-1996.

asctime_r()
ctime_r()

POSIX.1-1996. Marked obsolescent in POSIX.1-2008. Removed in
POSIX.1-2024 (recommending strftime(3)).

CAVEATS
Thread safety

The four functions asctime(), ctime(), gmtime(), and localtime() return a pointer to sta-
tic data and hence are not thread-safe. The thread-safe versions, asctime_r(), ctime_r(),
gmtime_r(), and localtime_r(), are specified by SUSv2.

POSIX.1 says: "The asctime(), ctime(), gmtime(), and localtime() functions shall re-
turn values in one of two static objects: a broken-down time structure and an array of
type char. Execution of any of the functions that return a pointer to one of these object
types may overwrite the information in any object of the same type pointed to by the
value returned from any previous call to any of them." This can occur in the glibc im-
plementation.

mktime()
(time_t) -1 can represent a valid time (one second before the Epoch). To determine
whether mktime() failed, one must use the tm->tm_wday field. See the example pro-
gram in EXAMPLES.

The handling of a non-negative tm_isdst in mktime() is poorly specified, and passing a
value that is incorrect for the time specified yields unspecified results. Since mktime()
is one of the few functions that knows when DST is in effect, providing a correct value
may be difficult. One workaround for this is to call mktime() twice, once with tm_isdst
set to zero, and once with tm_isdst set to a positive value, and discarding the results
from the call that changes it. If neither call changes tm_isdst then the time specified
probably happens during a fall-back period where DST begins or ends, and both results
are valid but represent two different times. If both calls change it, that could indicate a
fall-forward transition, or some other reason why the time specified does not exist.

The specification of time zones and daylight saving time are up to regional governments,
change often, and may include discontinuities beyond mktime’s ability to document a re-
sult. For example, a change in the timezone definition may cause a clock time to be re-
peated or skipped without a corresponding DST change.

Linux man-pages 6.16 2025-09-25 1583

ctime(3) Library Functions Manual ctime(3)

EXAMPLES
The program below defines a wrapper that allows detecting invalid and ambiguous
times, with EINVAL and ENOTUNIQ, respectively.

The following shell session shows sample runs of the program:

$ TZ=UTC ./a.out 1969 12 31 23 59 59 0;
-1
$
$ export TZ=Europe/Madrid;
$
$./a.out 2147483647 2147483647 00 00 00 00 -1;
a.out: mktime: Value too large for defined data type
$
$./a.out 2024 08 23 00 17 53 -1;
1724365073
$./a.out 2024 08 23 00 17 53 0;
a.out: my_mktime: Invalid argument
1724368673
$./a.out 2024 08 23 00 17 53 1;
1724365073
$
$./a.out 2024 02 23 00 17 53 -1;
1708643873
$./a.out 2024 02 23 00 17 53 0;
1708643873
$./a.out 2024 02 23 00 17 53 1;
a.out: my_mktime: Invalid argument
1708640273
$
$./a.out 2023 03 26 02 17 53 -1;
a.out: my_mktime: Invalid argument
1679793473
$
$./a.out 2023 10 29 02 17 53 -1;
a.out: my_mktime: Name not unique on network
1698542273
$./a.out 2023 10 29 02 17 53 0;
1698542273
$./a.out 2023 10 29 02 17 53 1;
1698538673
$
$./a.out 2023 02 29 12 00 00 -1;
a.out: my_mktime: Invalid argument
1677668400

Program source: mktime.c

#include <err.h>

Linux man-pages 6.16 2025-09-25 1584

ctime(3) Library Functions Manual ctime(3)

#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#define is_signed(T) ((T) -1 < 1)

static time_t my_mktime(struct tm *tp);

int
main(int argc, char *argv[])
{

char **p;
time_t t;
struct tm tm;

if (argc != 8) {
fprintf(stderr, "Usage: %s yyyy mm dd HH MM SS isdst\n", argv[0]);
exit(EXIT_FAILURE);

}

p = &argv[1];
tm.tm_year = atoi(*p++) - 1900;
tm.tm_mon = atoi(*p++) - 1;
tm.tm_mday = atoi(*p++);
tm.tm_hour = atoi(*p++);
tm.tm_min = atoi(*p++);
tm.tm_sec = atoi(*p++);
tm.tm_isdst = atoi(*p++);

errno = 0;
tm.tm_wday = -1;
t = my_mktime(&tm);
if (tm.tm_wday == -1)

err(EXIT_FAILURE, "mktime");
if (errno == EINVAL || errno == ENOTUNIQ)

warn("my_mktime");

if (is_signed(time_t))
printf("%jd\n", (intmax_t) t);

else
printf("%ju\n", (uintmax_t) t);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.16 2025-09-25 1585

ctime(3) Library Functions Manual ctime(3)

static time_t
my_mktime(struct tm *tp)
{

int e, isdst;
time_t t;
struct tm tm;
unsigned char wday[sizeof(tp->tm_wday)];

e = errno;

tm = *tp;
isdst = tp->tm_isdst;

memcpy(wday, &tp->tm_wday, sizeof(wday));
tp->tm_wday = -1;
t = mktime(tp);
if (tp->tm_wday == -1) {

memcpy(&tp->tm_wday, wday, sizeof(wday));
return -1;

}

if (isdst == -1)
tm.tm_isdst = tp->tm_isdst;

if (tm.tm_sec != tp->tm_sec
|| tm.tm_min != tp->tm_min
|| tm.tm_hour != tp->tm_hour
|| tm.tm_mday != tp->tm_mday
|| tm.tm_mon != tp->tm_mon
|| tm.tm_year != tp->tm_year
|| tm.tm_isdst != tp->tm_isdst)

{
errno = EINVAL;
return t;

}

if (isdst != -1)
goto out;

tm = *tp;
tm.tm_isdst = !tm.tm_isdst;

tm.tm_wday = -1;
mktime(&tm);
if (tm.tm_wday == -1)

goto out;

Linux man-pages 6.16 2025-09-25 1586

ctime(3) Library Functions Manual ctime(3)

if (tm.tm_isdst != tp->tm_isdst) {
errno = ENOTUNIQ;
return t;

}
out:

errno = e;
return t;

}

SEE ALSO
date(1), gettimeofday(2), time(2), utime(2), clock(3), difftime(3), strftime(3), strptime(3),
timegm(3), tzset(3), time(7)

Linux man-pages 6.16 2025-09-25 1587

daemon(3) Library Functions Manual daemon(3)

NAME
daemon - run in the background

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int daemon(int nochdir, int noclose);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

daemon():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The daemon() function is for programs wishing to detach themselves from the control-
ling terminal and run in the background as system daemons.

If nochdir is zero, daemon() changes the process’s current working directory to the root
directory ("/"); otherwise, the current working directory is left unchanged.

If noclose is zero, daemon() redirects standard input, standard output, and standard er-
ror to /dev/null; otherwise, no changes are made to these file descriptors.

RETURN VALUE
(This function forks, and if the fork(2) succeeds, the parent calls _exit(2), so that further
errors are seen by the child only.) On success daemon() returns zero. If an error oc-
curs, daemon() returns -1 and sets errno to any of the errors specified for the fork(2)
and setsid(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedaemon()

VERSIONS
A similar function appears on the BSDs.

The glibc implementation can also return -1 when /dev/null exists but is not a character
device with the expected major and minor numbers. In this case, errno need not be set.

STANDARDS
None.

HISTORY
4.4BSD.

Linux man-pages 6.16 2025-05-17 1588

daemon(3) Library Functions Manual daemon(3)

BUGS
The GNU C library implementation of this function was taken from BSD, and does not
employ the double-fork technique (i.e., fork(2), setsid(2), fork(2)) that is necessary to
ensure that the resulting daemon process is not a session leader. Instead, the resulting
daemon is a session leader. On systems that follow System V semantics (e.g., Linux),
this means that if the daemon opens a terminal that is not already a controlling terminal
for another session, then that terminal will inadvertently become the controlling terminal
for the daemon.

SEE ALSO
fork(2), setsid(2), daemon(7), logrotate(8)

Linux man-pages 6.16 2025-05-17 1589

dbopen(3) Library Functions Manual dbopen(3)

NAME
dbopen - database access methods

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <limits.h>
#include <db.h>
#include <fcntl.h>

DB *dbopen(const char *path, int flags, int mode, DBTYPE type,
const void *openinfo);

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc 2.2,
glibc no longer provides these interfaces. Probably, you are looking for the APIs pro-
vided by the libdb library instead.

dbopen() is the library interface to database files. The supported file formats are btree,
hashed, and UNIX file oriented. The btree format is a representation of a sorted, bal-
anced tree structure. The hashed format is an extensible, dynamic hashing scheme. The
flat-file format is a byte stream file with fixed or variable length records. The formats
and file-format-specific information are described in detail in their respective manual
pages btree(3), hash(3), and recno(3).

dbopen() opens path for reading and/or writing. Files never intended to be preserved
on disk may be created by setting the path argument to NULL.

The flags and mode arguments are as specified to the open(2) routine, however, only the
O_CREAT, O_EXCL, O_EXLOCK, O_NONBLOCK, O_RDONLY, O_RDWR,
O_SHLOCK, and O_TRUNC flags are meaningful. (Note, opening a database file
O_WRONLY is not possible.)

The type argument is of type DBTYPE (as defined in the <db.h> include file) and may
be set to DB_BTREE, DB_HASH, or DB_RECNO.

The openinfo argument is a pointer to an access-method-specific structure described in
the access method’s manual page. If openinfo is NULL, each access method will use
defaults appropriate for the system and the access method.

dbopen() returns a pointer to a DB structure on success and NULL on error. The DB
structure is defined in the <db.h> include file, and contains at least the following fields:

typedef struct {
DBTYPE type;
int (*close)(const DB *db);
int (*del)(const DB *db, const DBT *key, unsigned int flags);
int (*fd)(const DB *db);
int (*get)(const DB *db, DBT *key, DBT *data,

unsigned int flags);
int (*put)(const DB *db, DBT *key, const DBT *data,

unsigned int flags);

4.4 Berkeley Distribution 2025-05-17 1590

dbopen(3) Library Functions Manual dbopen(3)

int (*sync)(const DB *db, unsigned int flags);
int (*seq)(const DB *db, DBT *key, DBT *data,

unsigned int flags);
} DB;

These elements describe a database type and a set of functions performing various ac-
tions. These functions take a pointer to a structure as returned by dbopen(), and some-
times one or more pointers to key/data structures and a flag value.

type The type of the underlying access method (and file format).

close A pointer to a routine to flush any cached information to disk, free any allocated
resources, and close the underlying file(s). Since key/data pairs may be cached
in memory, failing to sync the file with a close or sync function may result in in-
consistent or lost information. close routines return -1 on error (setting errno)
and 0 on success.

del A pointer to a routine to remove key/data pairs from the database.

The argument flag may be set to the following value:

R_CURSOR
Delete the record referenced by the cursor. The cursor must have previ-
ously been initialized.

delete routines return -1 on error (setting errno), 0 on success, and 1 if the spec-
ified key was not in the file.

fd A pointer to a routine which returns a file descriptor representative of the under-
lying database. A file descriptor referencing the same file will be returned to all
processes which call dbopen() with the same path name. This file descriptor
may be safely used as an argument to the fcntl(2) and flock(2) locking functions.
The file descriptor is not necessarily associated with any of the underlying files
used by the access method. No file descriptor is available for in memory data-
bases. fd routines return -1 on error (setting errno), and the file descriptor on
success.

get A pointer to a routine which is the interface for keyed retrieval from the data-
base. The address and length of the data associated with the specified key are re-
turned in the structure referenced by data. get routines return -1 on error (set-
ting errno), 0 on success, and 1 if the key was not in the file.

put A pointer to a routine to store key/data pairs in the database.

The argument flag may be set to one of the following values:

R_CURSOR
Replace the key/data pair referenced by the cursor. The cursor must have
previously been initialized.

R_IAFTER
Append the data immediately after the data referenced by key, creating a
new key/data pair. The record number of the appended key/data pair is
returned in the key structure. (Applicable only to the DB_RECNO ac-
cess method.)

4.4 Berkeley Distribution 2025-05-17 1591

dbopen(3) Library Functions Manual dbopen(3)

R_IBEFORE
Insert the data immediately before the data referenced by key, creating a
new key/data pair. The record number of the inserted key/data pair is re-
turned in the key structure. (Applicable only to the DB_RECNO access
method.)

R_NOOVERWRITE
Enter the new key/data pair only if the key does not previously exist.

R_SETCURSOR
Store the key/data pair, setting or initializing the position of the cursor to
reference it. (Applicable only to the DB_BTREE and DB_RECNO ac-
cess methods.)

R_SETCURSOR is available only for the DB_BTREE and DB_RECNO ac-
cess methods because it implies that the keys have an inherent order which does
not change.

R_IAFTER and R_IBEFORE are available only for the DB_RECNO access
method because they each imply that the access method is able to create new
keys. This is true only if the keys are ordered and independent, record numbers
for example.

The default behavior of the put routines is to enter the new key/data pair, replac-
ing any previously existing key.

put routines return -1 on error (setting errno), 0 on success, and 1 if the
R_NOOVERWRITE flag was set and the key already exists in the file.

seq A pointer to a routine which is the interface for sequential retrieval from the
database. The address and length of the key are returned in the structure refer-
enced by key, and the address and length of the data are returned in the structure
referenced by data.

Sequential key/data pair retrieval may begin at any time, and the position of the
"cursor" is not affected by calls to the del, get, put, or sync routines. Modifica-
tions to the database during a sequential scan will be reflected in the scan, that is,
records inserted behind the cursor will not be returned while records inserted in
front of the cursor will be returned.

The flag value must be set to one of the following values:

R_CURSOR
The data associated with the specified key is returned. This differs from
the get routines in that it sets or initializes the cursor to the location of
the key as well. (Note, for the DB_BTREE access method, the returned
key is not necessarily an exact match for the specified key. The returned
key is the smallest key greater than or equal to the specified key, permit-
ting partial key matches and range searches.)

R_FIRST
The first key/data pair of the database is returned, and the cursor is set or
initialized to reference it.

4.4 Berkeley Distribution 2025-05-17 1592

dbopen(3) Library Functions Manual dbopen(3)

R_LAST
The last key/data pair of the database is returned, and the cursor is set or
initialized to reference it. (Applicable only to the DB_BTREE and
DB_RECNO access methods.)

R_NEXT
Retrieve the key/data pair immediately after the cursor. If the cursor is
not yet set, this is the same as the R_FIRST flag.

R_PREV
Retrieve the key/data pair immediately before the cursor. If the cursor is
not yet set, this is the same as the R_LAST flag. (Applicable only to the
DB_BTREE and DB_RECNO access methods.)

R_LAST and R_PREV are available only for the DB_BTREE and
DB_RECNO access methods because they each imply that the keys have an in-
herent order which does not change.

seq routines return -1 on error (setting errno), 0 on success and 1 if there are no
key/data pairs less than or greater than the specified or current key. If the
DB_RECNO access method is being used, and if the database file is a character
special file and no complete key/data pairs are currently available, the seq rou-
tines return 2.

sync A pointer to a routine to flush any cached information to disk. If the database is
in memory only, the sync routine has no effect and will always succeed.

The flag value may be set to the following value:

R_RECNOSYNC
If the DB_RECNO access method is being used, this flag causes the
sync routine to apply to the btree file which underlies the recno file, not
the recno file itself. (See the bfname field of the recno(3) manual page
for more information.)

sync routines return -1 on error (setting errno) and 0 on success.

Key/data pairs
Access to all file types is based on key/data pairs. Both keys and data are represented by
the following data structure:

typedef struct {
void *data;
size_t size;

} DBT;

The elements of the DBT structure are defined as follows:

data A pointer to a byte string.

size The length of the byte string.

Key and data byte strings may reference strings of essentially unlimited length although
any two of them must fit into available memory at the same time. It should be noted that
the access methods provide no guarantees about byte string alignment.

4.4 Berkeley Distribution 2025-05-17 1593

dbopen(3) Library Functions Manual dbopen(3)

ERRORS
The dbopen() routine may fail and set errno for any of the errors specified for the li-
brary routines open(2) and malloc(3) or the following:

EFTYPE
A file is incorrectly formatted.

EINVAL
A parameter has been specified (hash function, pad byte, etc.) that is incompati-
ble with the current file specification or which is not meaningful for the function
(for example, use of the cursor without prior initialization) or there is a mismatch
between the version number of file and the software.

The close routines may fail and set errno for any of the errors specified for the library
routines close(2), read(2), write(2), free(3), or fsync(2).

The del, get, put, and seq routines may fail and set errno for any of the errors specified
for the library routines read(2), write(2), free(3), or malloc(3).

The fd routines will fail and set errno to ENOENT for in memory databases.

The sync routines may fail and set errno for any of the errors specified for the library
routine fsync(2).

BUGS
The typedef DBT is a mnemonic for "data base thang", and was used because no one
could think of a reasonable name that wasn’t already used.

The file descriptor interface is a kludge and will be deleted in a future version of the in-
terface.

None of the access methods provide any form of concurrent access, locking, or transac-
tions.

SEE ALSO
btree(3), hash(3), mpool(3), recno(3)

LIBTP: Portable, Modular Transactions for UNIX , Margo Seltzer, Michael Olson,
USENIX proceedings, Winter 1992.

4.4 Berkeley Distribution 2025-05-17 1594

des_crypt(3) Library Functions Manual des_crypt(3)

NAME
des_crypt, ecb_crypt, cbc_crypt, des_setparity, DES_FAILED - fast DES encryption

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/des_crypt.h>

[[deprecated]] int ecb_crypt(unsigned int datalen;
char *key, char data[datalen],
unsigned int datalen, unsigned int mode);

[[deprecated]] int cbc_crypt(unsigned int datalen;
char *key, char data[datalen],
unsigned int datalen, unsigned int mode,
char *ivec);

[[deprecated]] void des_setparity(char *key);

[[deprecated]] int DES_FAILED(int status);

DESCRIPTION
ecb_crypt() and cbc_crypt() implement the NBS DES (Data Encryption Standard).
These routines are faster and more general purpose than crypt(3). They also are able to
utilize DES hardware if it is available. ecb_crypt() encrypts in ECB (Electronic Code
Book) mode, which encrypts blocks of data independently. cbc_crypt() encrypts in
CBC (Cipher Block Chaining) mode, which chains together successive blocks. CBC
mode protects against insertions, deletions, and substitutions of blocks. Also, regulari-
ties in the clear text will not appear in the cipher text.

Here is how to use these routines. The first argument, key, is the 8-byte encryption key
with parity. To set the key’s parity, which for DES is in the low bit of each byte, use
des_setparity(). The second argument, data, contains the data to be encrypted or de-
crypted. The third argument, datalen, is the length in bytes of data, which must be a
multiple of 8. The fourth argument, mode, is formed by ORing together some things.
For the encryption direction OR in either DES_ENCRYPT or DES_DECRYPT. For
software versus hardware encryption, OR in either DES_HW or DES_SW. If
DES_HW is specified, and there is no hardware, then the encryption is performed in
software and the routine returns DESERR_NOHWDEVICE. For cbc_crypt(), the ar-
gument ivec is the 8-byte initialization vector for the chaining. It is updated to the next
initialization vector upon return.

RETURN VALUE
DESERR_NONE

No error.

DESERR_NOHWDEVICE
Encryption succeeded, but done in software instead of the requested hardware.

DESERR_HWERROR
An error occurred in the hardware or driver.

Linux man-pages 6.16 2025-06-28 1595

des_crypt(3) Library Functions Manual des_crypt(3)

DESERR_BADPARAM
Bad argument to routine.

Given a result status stat, the macro DES_FAILED(stat) is false only for the first two
statuses.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeecb_crypt(), cbc_crypt(), des_setparity()

STANDARDS
None.

HISTORY
4.3BSD. glibc 2.1. Removed in glibc 2.28.

Because they employ the DES block cipher, which is no longer considered secure, these
functions were removed. Applications should switch to a modern cryptography library,
such as libgcrypt.

SEE ALSO
des(1), crypt(3), xcrypt(3)

Linux man-pages 6.16 2025-06-28 1596

difftime(3) Library Functions Manual difftime(3)

NAME
difftime - calculate time difference

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

double difftime(time_t time1, time_t time0);

DESCRIPTION
The difftime() function returns the number of seconds elapsed between time time1 and
time time0, represented as a double. Each time is a count of seconds.

difftime(b, a) acts like (b-a) except that the result does not overflow and is rounded to
double.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedifftime()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
date(1), gettimeofday(2), time(2), ctime(3), gmtime(3), localtime(3)

Linux man-pages 6.16 2025-05-17 1597

dirfd(3) Library Functions Manual dirfd(3)

NAME
dirfd - get directory stream file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

int dirfd(DIR *dirp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

dirfd():
/* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200809L

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The function dirfd() returns the file descriptor associated with the directory stream dirp.

This file descriptor is the one used internally by the directory stream. As a result, it is
useful only for functions which do not depend on or alter the file position, such as fs-
tat(2) and fchdir(2). It will be automatically closed when closedir(3) is called.

RETURN VALUE
On success, dirfd() returns a file descriptor (a nonnegative integer). On error, -1 is re-
turned, and errno is set to indicate the error.

ERRORS
POSIX.1-2008 specifies two errors, neither of which is returned by the current imple-
mentation.

EINVAL
dirp does not refer to a valid directory stream.

ENOTSUP
The implementation does not support the association of a file descriptor with a
directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedirfd()

STANDARDS
POSIX.1-2008.

HISTORY
4.3BSD-Reno (not in 4.2BSD).

SEE ALSO
open(2), openat(2), closedir(3), opendir(3), readdir(3), rewinddir(3), scandir(3),
seekdir(3), telldir(3)

Linux man-pages 6.16 2025-05-17 1598

div(3) Library Functions Manual div(3)

NAME
div, ldiv, lldiv, imaxdiv - compute quotient and remainder of an integer division

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

div_t div(int numerator, int denominator);
ldiv_t ldiv(long numerator, long denominator);
lldiv_t lldiv(long long numerator, long long denominator);

#include <inttypes.h>

imaxdiv_t imaxdiv(intmax_t numerator, intmax_t denominator);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lldiv():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The div() function computes the value numerator/denominator and returns the quotient
and remainder in a structure named div_t that contains two integer members (in unspeci-
fied order) named quot and rem. The quotient is rounded toward zero. The result satis-
fies quot*denominator+rem = numerator.

The ldiv(), lldiv(), and imaxdiv() functions do the same, dividing numbers of the indi-
cated type and returning the result in a structure of the indicated name, in all cases with
fields quot and rem of the same type as the function arguments.

RETURN VALUE
The div_t (etc.) structure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safediv(), ldiv(), lldiv(), imaxdiv()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

lldiv() and imaxdiv() were added in C99.

EXAMPLES
After

div_t q = div(-5, 3);

the values q.quot and q.rem are -1 and -2, respectively.

SEE ALSO
abs(3), remainder(3)

Linux man-pages 6.16 2025-09-06 1599

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

NAME
dl_iterate_phdr - walk through list of shared objects

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <link.h>

int dl_iterate_phdr(
typeof(int (struct dl_phdr_info *info, size_t size, void *data))

*callback,
void *data);

DESCRIPTION
The dl_iterate_phdr() function allows an application to inquire at run time to find out
which shared objects it has loaded, and the order in which they were loaded.

The dl_iterate_phdr() function walks through the list of an application’s shared objects
and calls the function callback once for each object, until either all shared objects have
been processed or callback returns a nonzero value.

Each call to callback receives three arguments: info, which is a pointer to a structure
containing information about the shared object; size, which is the size of the structure
pointed to by info; and data, which is a copy of whatever value was passed by the call-
ing program as the second argument (also named data) in the call to dl_iterate_phdr().

The info argument is a structure of the following type:

struct dl_phdr_info {
ElfW(Addr) dlpi_addr; /* Base address of object */
const char *dlpi_name; /* (Null-terminated) name of

object */
const ElfW(Phdr) *dlpi_phdr; /* Pointer to array of

ELF program headers
for this object */

ElfW(Half) dlpi_phnum; /* # of items in dlpi_phdr */

/* The following fields were added in glibc 2.4, after the first
version of this structure was available. Check the size
argument passed to the dl_iterate_phdr callback to determine
whether or not each later member is available. */

unsigned long long dlpi_adds;
/* Incremented when a new object may

have been added */
unsigned long long dlpi_subs;

/* Incremented when an object may
have been removed */

size_t dlpi_tls_modid;
/* If there is a PT_TLS segment, its module

Linux man-pages 6.16 2025-09-21 1600

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

ID as used in TLS relocations, else zero */
void *dlpi_tls_data;

/* The address of the calling thread's instance
of this module's PT_TLS segment, if it has
one and it has been allocated in the calling
thread, otherwise a null pointer */

};

(The ElfW () macro definition turns its argument into the name of an ELF data type suit-
able for the hardware architecture. For example, on a 32-bit platform, ElfW(Addr)
yields the data type name Elf32_Addr. Further information on these types can be found
in the <elf.h> and <link.h> header files.)

The dlpi_addr field indicates the base address of the shared object (i.e., the difference
between the virtual memory address of the shared object and the offset of that object in
the file from which it was loaded). The dlpi_name field is a null-terminated string giv-
ing the pathname from which the shared object was loaded.

To understand the meaning of the dlpi_phdr and dlpi_phnum fields, we need to be
aware that an ELF shared object consists of a number of segments, each of which has a
corresponding program header describing the segment. The dlpi_phdr field is a pointer
to an array of the program headers for this shared object. The dlpi_phnum field indi-
cates the size of this array.

These program headers are structures of the following form:

typedef struct {
Elf32_Word p_type; /* Segment type */
Elf32_Off p_offset; /* Segment file offset */
Elf32_Addr p_vaddr; /* Segment virtual address */
Elf32_Addr p_paddr; /* Segment physical address */
Elf32_Word p_filesz; /* Segment size in file */
Elf32_Word p_memsz; /* Segment size in memory */
Elf32_Word p_flags; /* Segment flags */
Elf32_Word p_align; /* Segment alignment */

} Elf32_Phdr;

Note that we can calculate the location of a particular program header, x, in virtual
memory using the formula:

addr == info->dlpi_addr + info->dlpi_phdr[x].p_vaddr;

Possible values for p_type include the following (see <elf.h> for further details):

#define PT_LOAD 1 /* Loadable program segment */
#define PT_DYNAMIC 2 /* Dynamic linking information */
#define PT_INTERP 3 /* Program interpreter */
#define PT_NOTE 4 /* Auxiliary information */
#define PT_SHLIB 5 /* Reserved */
#define PT_PHDR 6 /* Entry for header table itself */
#define PT_TLS 7 /* Thread-local storage segment */
#define PT_GNU_EH_FRAME 0x6474e550 /* GCC .eh_frame_hdr segment */

Linux man-pages 6.16 2025-09-21 1601

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

#define PT_GNU_STACK 0x6474e551 /* Indicates stack executability */
#define PT_GNU_RELRO 0x6474e552 /* Read-only after relocation */

RETURN VALUE
The dl_iterate_phdr() function returns whatever value was returned by the last call to
callback.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedl_iterate_phdr()

VERSIONS
Various other systems provide a version of this function, although details of the returned
dl_phdr_info structure differ. On the BSDs and Solaris, the structure includes the fields
dlpi_addr, dlpi_name, dlpi_phdr, and dlpi_phnum in addition to other implementation-
specific fields.

Future versions of the C library may add further fields to the dl_phdr_info structure; in
that event, the size argument provides a mechanism for the callback function to discover
whether it is running on a system with added fields.

STANDARDS
None.

HISTORY
glibc 2.2.4.

NOTES
The first object visited by callback is the main program. For the main program, the
dlpi_name field will be an empty string.

EXAMPLES
The following program displays a list of pathnames of the shared objects it has loaded.
For each shared object, the program lists some information (virtual address, size, flags,
and type) for each of the objects ELF segments.

The following shell session demonstrates the output produced by the program on an
x86-64 system. The first shared object for which output is displayed (where the name is
an empty string) is the main program.

$./a.out;
Name: "" (9 segments)

0: [0x400040; memsz: 1f8] flags: 0x5; PT_PHDR
1: [0x400238; memsz: 1c] flags: 0x4; PT_INTERP
2: [0x400000; memsz: ac4] flags: 0x5; PT_LOAD
3: [0x600e10; memsz: 240] flags: 0x6; PT_LOAD
4: [0x600e28; memsz: 1d0] flags: 0x6; PT_DYNAMIC
5: [0x400254; memsz: 44] flags: 0x4; PT_NOTE
6: [0x400970; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME
7: [(nil); memsz: 0] flags: 0x6; PT_GNU_STACK
8: [0x600e10; memsz: 1f0] flags: 0x4; PT_GNU_RELRO

Name: "linux-vdso.so.1" (4 segments)

Linux man-pages 6.16 2025-09-21 1602

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

0: [0x7ffc6edd1000; memsz: e89] flags: 0x5; PT_LOAD
1: [0x7ffc6edd1360; memsz: 110] flags: 0x4; PT_DYNAMIC
2: [0x7ffc6edd17b0; memsz: 3c] flags: 0x4; PT_NOTE
3: [0x7ffc6edd17ec; memsz: 3c] flags: 0x4; PT_GNU_EH_FRAME

Name: "/lib64/libc.so.6" (10 segments)
0: [0x7f55712ce040; memsz: 230] flags: 0x5; PT_PHDR
1: [0x7f557145b980; memsz: 1c] flags: 0x4; PT_INTERP
2: [0x7f55712ce000; memsz: 1b6a5c] flags: 0x5; PT_LOAD
3: [0x7f55716857a0; memsz: 9240] flags: 0x6; PT_LOAD
4: [0x7f5571688b80; memsz: 1f0] flags: 0x6; PT_DYNAMIC
5: [0x7f55712ce270; memsz: 44] flags: 0x4; PT_NOTE
6: [0x7f55716857a0; memsz: 78] flags: 0x4; PT_TLS
7: [0x7f557145b99c; memsz: 544c] flags: 0x4; PT_GNU_EH_FRAME
8: [0x7f55712ce000; memsz: 0] flags: 0x6; PT_GNU_STACK
9: [0x7f55716857a0; memsz: 3860] flags: 0x4; PT_GNU_RELRO

Name: "/lib64/ld-linux-x86-64.so.2" (7 segments)
0: [0x7f557168f000; memsz: 20828] flags: 0x5; PT_LOAD
1: [0x7f55718afba0; memsz: 15a8] flags: 0x6; PT_LOAD
2: [0x7f55718afe10; memsz: 190] flags: 0x6; PT_DYNAMIC
3: [0x7f557168f1c8; memsz: 24] flags: 0x4; PT_NOTE
4: [0x7f55716acec4; memsz: 604] flags: 0x4; PT_GNU_EH_FRAME
5: [0x7f557168f000; memsz: 0] flags: 0x6; PT_GNU_STACK
6: [0x7f55718afba0; memsz: 460] flags: 0x4; PT_GNU_RELRO

Program source

#define _GNU_SOURCE
#include <link.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

static int
callback(struct dl_phdr_info *info, size_t size, void *data)
{

char *type;
int p_type;

printf("Name: \"%s\" (%d segments)\n", info->dlpi_name,
info->dlpi_phnum);

for (size_t j = 0; j < info->dlpi_phnum; j++) {
p_type = info->dlpi_phdr[j].p_type;
type = (p_type == PT_LOAD) ? "PT_LOAD" :

(p_type == PT_DYNAMIC) ? "PT_DYNAMIC" :
(p_type == PT_INTERP) ? "PT_INTERP" :
(p_type == PT_NOTE) ? "PT_NOTE" :
(p_type == PT_INTERP) ? "PT_INTERP" :

Linux man-pages 6.16 2025-09-21 1603

dl_iterate_phdr(3) Library Functions Manual dl_iterate_phdr(3)

(p_type == PT_PHDR) ? "PT_PHDR" :
(p_type == PT_TLS) ? "PT_TLS" :
(p_type == PT_GNU_EH_FRAME) ? "PT_GNU_EH_FRAME" :
(p_type == PT_GNU_STACK) ? "PT_GNU_STACK" :
(p_type == PT_GNU_RELRO) ? "PT_GNU_RELRO" : NULL;

printf(" %2zu: [%14p; memsz:%7jx] flags: %#jx; ", j,
(void *) (info->dlpi_addr + info->dlpi_phdr[j].p_vaddr),
(uintmax_t) info->dlpi_phdr[j].p_memsz,
(uintmax_t) info->dlpi_phdr[j].p_flags);

if (type != NULL)
printf("%s\n", type);

else
printf("[other (%#x)]\n", p_type);

}

return 0;
}

int
main(void)
{

dl_iterate_phdr(callback, NULL);

exit(EXIT_SUCCESS);
}

SEE ALSO
ldd(1), objdump(1), readelf (1), dladdr(3), dlopen(3), elf(5), ld.so(8)

Executable and Linking Format Specification, available at various locations online.

Linux man-pages 6.16 2025-09-21 1604

dladdr(3) Library Functions Manual dladdr(3)

NAME
dladdr, dladdr1 - translate address to symbolic information

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#define _GNU_SOURCE
#include <dlfcn.h>

int dladdr(const void *addr, Dl_info *info);
int dladdr1(const void *addr, Dl_info *info, void **extra_info,

int flags);

DESCRIPTION
The function dladdr() determines whether the address specified in addr is located in
one of the shared objects loaded by the calling application. If it is, then dladdr() returns
information about the shared object and symbol that overlaps addr. This information is
returned in a Dl_info structure:

typedef struct {
const char *dli_fname; /* Pathname of shared object that

contains address */
void *dli_fbase; /* Base address at which shared

object is loaded */
const char *dli_sname; /* Name of symbol whose definition

overlaps addr */
void *dli_saddr; /* Exact address of symbol named

in dli_sname */
} Dl_info;

If no symbol matching addr could be found, then dli_sname and dli_saddr are set to
NULL.

The function dladdr1() is like dladdr(), but returns additional information via the argu-
ment extra_info. The information returned depends on the value specified in flags,
which can have one of the following values:

RTLD_DL_LINKMAP
Obtain a pointer to the link map for the matched file. The extra_info argument
points to a pointer to a link_map structure (i.e., struct link_map **), defined in
<link.h> as:

struct link_map {
ElfW(Addr) l_addr; /* Difference between the

address in the ELF file and
the address in memory */

char *l_name; /* Absolute pathname where
object was found */

ElfW(Dyn) *l_ld; /* Dynamic section of the
shared object */

struct link_map *l_next, *l_prev;

Linux man-pages 6.16 2025-05-17 1605

dladdr(3) Library Functions Manual dladdr(3)

/* Chain of loaded objects */

/* Plus additional fields private to the
implementation */

};

RTLD_DL_SYMENT
Obtain a pointer to the ELF symbol table entry of the matching symbol. The
extra_info argument is a pointer to a symbol pointer: const ElfW(Sym) **. The
ElfW () macro definition turns its argument into the name of an ELF data type
suitable for the hardware architecture. For example, on a 64-bit platform,
ElfW(Sym) yields the data type name Elf64_Sym, which is defined in <elf.h> as:

typedef struct {
Elf64_Word st_name; /* Symbol name */
unsigned char st_info; /* Symbol type and binding */
unsigned char st_other; /* Symbol visibility */
Elf64_Section st_shndx; /* Section index */
Elf64_Addr st_value; /* Symbol value */
Elf64_Xword st_size; /* Symbol size */

} Elf64_Sym;

The st_name field is an index into the string table.

The st_info field encodes the symbol’s type and binding. The type can be ex-
tracted using the macro ELF64_ST_TYPE(st_info) (or ELF32_ST_TYPE() on
32-bit platforms), which yields one of the following values:

Value Description
STT_NOTYPE Symbol type is unspecified
STT_OBJECT Symbol is a data object
STT_FUNC Symbol is a code object
STT_SECTION Symbol associated with a section
STT_FILE Symbol’s name is filename
STT_COMMON Symbol is a common data object
STT_TLS Symbol is thread-local data object
STT_GNU_IFUNC Symbol is indirect code object

The symbol binding can be extracted from the st_info field using the macro
ELF64_ST_BIND(st_info) (or ELF32_ST_BIND() on 32-bit platforms), which
yields one of the following values:

Value Description
STB_LOCAL Local symbol
STB_GLOBAL Global symbol
STB_WEAK Weak symbol
STB_GNU_UNIQUE Unique symbol

The st_other field contains the symbol’s visibility, which can be extracted using
the macro ELF64_ST_VISIBILITY(st_info) (or ELF32_ST_VISIBILITY()
on 32-bit platforms), which yields one of the following values:

Value Description

Linux man-pages 6.16 2025-05-17 1606

dladdr(3) Library Functions Manual dladdr(3)

STV_DEFAULT Default symbol visibility rules
STV_INTERNAL Processor-specific hidden class
STV_HIDDEN Symbol unavailable in other modules
STV_PROTECTED Not preemptible, not exported

RETURN VALUE
On success, these functions return a nonzero value. If the address specified in addr
could be matched to a shared object, but not to a symbol in the shared object, then the
info->dli_sname and info->dli_saddr fields are set to NULL.

If the address specified in addr could not be matched to a shared object, then these func-
tions return 0. In this case, an error message is not available via dlerror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedladdr(), dladdr1()

STANDARDS
GNU.

HISTORY
dladdr()

glibc 2.0.

dladdr1()
glibc 2.3.3.

Solaris.

BUGS
Sometimes, the function pointers you pass to dladdr() may surprise you. On some ar-
chitectures (notably i386 and x86-64), dli_fname and dli_fbase may end up pointing
back at the object from which you called dladdr(), even if the function used as an argu-
ment should come from a dynamically linked library.

The problem is that the function pointer will still be resolved at compile time, but
merely point to the plt (Procedure Linkage Table) section of the original object (which
dispatches the call after asking the dynamic linker to resolve the symbol). To work
around this, you can try to compile the code to be position-independent: then, the com-
piler cannot prepare the pointer at compile time any more and gcc(1) will generate code
that just loads the final symbol address from the got (Global Offset Table) at run time
before passing it to dladdr().

SEE ALSO
dl_iterate_phdr(3), dlinfo(3), dlopen(3), dlsym(3), ld.so(8)

Linux man-pages 6.16 2025-05-17 1607

dlerror(3) Library Functions Manual dlerror(3)

NAME
dlerror - obtain error diagnostic for functions in the dlopen API

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#include <dlfcn.h>

char *dlerror(void);

DESCRIPTION
The dlerror() function returns a human-readable, null-terminated string describing the
most recent error that occurred from a call to one of the functions in the dlopen API
since the last call to dlerror(). The returned string does not include a trailing newline.

dlerror() returns NULL if no errors have occurred since initialization or since it was last
called.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlerror()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

SunOS.

NOTES
The message returned by dlerror() may reside in a statically allocated buffer that is
overwritten by subsequent dlerror() calls.

EXAMPLES
See dlopen(3).

SEE ALSO
dladdr(3), dlinfo(3), dlopen(3), dlsym(3)

Linux man-pages 6.16 2025-05-17 1608

dlinfo(3) Library Functions Manual dlinfo(3)

NAME
dlinfo - obtain information about a dynamically loaded object

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#define _GNU_SOURCE
#include <link.h>
#include <dlfcn.h>

int dlinfo(void *restrict handle, int request, void *restrict info);

DESCRIPTION
The dlinfo() function obtains information about the dynamically loaded object referred
to by handle (typically obtained by an earlier call to dlopen(3) or dlmopen(3)). The
request argument specifies which information is to be returned. The info argument is a
pointer to a buffer used to store information returned by the call; the type of this argu-
ment depends on request.

The following values are supported for request (with the corresponding type for info
shown in parentheses):

RTLD_DI_LMID (Lmid_t *)
Obtain the ID of the link-map list (namespace) in which handle is loaded.

RTLD_DI_LINKMAP (struct link_map **)
Obtain a pointer to the link_map structure corresponding to handle. The info ar-
gument points to a pointer to a link_map structure, defined in <link.h> as:

struct link_map {
ElfW(Addr) l_addr; /* Difference between the

address in the ELF file and
the address in memory */

char *l_name; /* Absolute pathname where
object was found */

ElfW(Dyn) *l_ld; /* Dynamic section of the
shared object */

struct link_map *l_next, *l_prev;
/* Chain of loaded objects */

/* Plus additional fields private to the
implementation */

};

RTLD_DI_ORIGIN (char *)
Copy the pathname of the origin of the shared object corresponding to handle to
the location pointed to by info.

RTLD_DI_SERINFO (Dl_serinfo *)
Obtain the library search paths for the shared object referred to by handle. The
info argument is a pointer to a Dl_serinfo that contains the search paths. Be-
cause the number of search paths may vary, the size of the structure pointed to by

Linux man-pages 6.16 2025-09-21 1609

dlinfo(3) Library Functions Manual dlinfo(3)

info can vary. The RTLD_DI_SERINFOSIZE request described below allows
applications to size the buffer suitably. The caller must perform the following
steps:

(1) Use a RTLD_DI_SERINFOSIZE request to populate a Dl_serinfo struc-
ture with the size (dls_size) of the structure needed for the subsequent
RTLD_DI_SERINFO request.

(2) Allocate a Dl_serinfo buffer of the correct size (dls_size).

(3) Use a further RTLD_DI_SERINFOSIZE request to populate the dls_size
and dls_cnt fields of the buffer allocated in the previous step.

(4) Use a RTLD_DI_SERINFO to obtain the library search paths.

The Dl_serinfo structure is defined as follows:

typedef struct {
size_t dls_size; /* Size in bytes of

the whole buffer */
unsigned int dls_cnt; /* Number of elements

in 'dls_serpath' */
Dl_serpath dls_serpath[1]; /* Actually longer,

'dls_cnt' elements */
} Dl_serinfo;

Each of the dls_serpath elements in the above structure is a structure of the fol-
lowing form:

typedef struct {
char *dls_name; /* Name of library search

path directory */
unsigned int dls_flags; /* Indicates where this

directory came from */
} Dl_serpath;

The dls_flags field is currently unused, and always contains zero.

RTLD_DI_SERINFOSIZE (Dl_serinfo *)
Populate the dls_size and dls_cnt fields of the Dl_serinfo structure pointed to by
info with values suitable for allocating a buffer for use in a subsequent
RTLD_DI_SERINFO request.

RTLD_DI_TLS_MODID (size_t *, since glibc 2.4)
Obtain the module ID of this shared object’s TLS (thread-local storage) segment,
as used in TLS relocations. If this object does not define a TLS segment, zero is
placed in *info.

RTLD_DI_TLS_DATA (void **, since glibc 2.4)
Obtain a pointer to the calling thread’s TLS block corresponding to this shared
object’s TLS segment. If this object does not define a PT_TLS segment, or if the
calling thread has not allocated a block for it, NULL is placed in *info.

Linux man-pages 6.16 2025-09-21 1610

dlinfo(3) Library Functions Manual dlinfo(3)

RTLD_DI_PHDR (const ElfW(Phdr *), since glibc 2.34.1)
Obtain the address of this shared object’s program header and place it in *info.
This dlinfo call returns the number of program headers in the shared object.

RETURN VALUE
On success, dlinfo() returns 0 (if not specified explicitly), or a positive value corre-
sponding to the request. On error, it returns -1; the error can be diagnosed using dler-
ror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlinfo()

VERSIONS
The sets of requests supported by the various implementations overlaps only partially.

STANDARDS
GNU.

HISTORY
glibc 2.3.3. Solaris.

EXAMPLES
The program below opens a shared objects using dlopen(3) and then uses the
RTLD_DI_SERINFOSIZE and RTLD_DI_SERINFO requests to obtain the library
search path list for the library. Here is an example of what we might see when running
the program:

$./a.out /lib64/libm.so.6;
dls_serpath[0].dls_name = /lib64
dls_serpath[1].dls_name = /usr/lib64

Program source

#define _GNU_SOURCE
#include <dlfcn.h>
#include <link.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

void *handle;
Dl_serinfo serinfo;
Dl_serinfo *sip;

if (argc != 2) {
fprintf(stderr, "Usage: %s <libpath>\n", argv[0]);
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-09-21 1611

dlinfo(3) Library Functions Manual dlinfo(3)

/* Obtain a handle for shared object specified on command line. */

handle = dlopen(argv[1], RTLD_NOW);
if (handle == NULL) {

fprintf(stderr, "dlopen() failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

/* Discover the size of the buffer that we must pass to
RTLD_DI_SERINFO. */

if (dlinfo(handle, RTLD_DI_SERINFOSIZE, &serinfo) == -1) {
fprintf(stderr, "RTLD_DI_SERINFOSIZE failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

/* Allocate the buffer for use with RTLD_DI_SERINFO. */

sip = malloc(serinfo.dls_size);
if (sip == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/* Initialize the 'dls_size' and 'dls_cnt' fields in the newly
allocated buffer. */

if (dlinfo(handle, RTLD_DI_SERINFOSIZE, sip) == -1) {
fprintf(stderr, "RTLD_DI_SERINFOSIZE failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

/* Fetch and print library search list. */

if (dlinfo(handle, RTLD_DI_SERINFO, sip) == -1) {
fprintf(stderr, "RTLD_DI_SERINFO failed: %s\n", dlerror());
exit(EXIT_FAILURE);

}

for (size_t j = 0; j < serinfo.dls_cnt; j++)
printf("dls_serpath[%zu].dls_name = %s\n",

j, sip->dls_serpath[j].dls_name);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.16 2025-09-21 1612

dlinfo(3) Library Functions Manual dlinfo(3)

SEE ALSO
dl_iterate_phdr(3), dladdr(3), dlerror(3), dlopen(3), dlsym(3), ld.so(8)

Linux man-pages 6.16 2025-09-21 1613

dlopen(3) Library Functions Manual dlopen(3)

NAME
dlclose, dlopen, dlmopen - open and close a shared object

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#include <dlfcn.h>

void *dlopen(const char *path, int flags);
int dlclose(void *handle);

#define _GNU_SOURCE
#include <dlfcn.h>

void *dlmopen(Lmid_t lmid , const char *path, int flags);

DESCRIPTION
dlopen()

The function dlopen() loads the dynamic shared object (shared library) file named by
the null-terminated string path and returns an opaque "handle" for the loaded object.
This handle is employed with other functions in the dlopen API, such as dlsym(3),
dladdr(3), dlinfo(3), and dlclose().

If path is NULL, then the returned handle is for the main program. If path contains a
slash ("/"), then it is interpreted as a (relative or absolute) pathname. Otherwise, the dy-
namic linker searches for the object as follows (see ld.so(8) for further details):

• (ELF only) If the calling object (i.e., the shared library or executable from which
dlopen() is called) contains a DT_RPATH tag, and does not contain a DT_RUN-
PATH tag, then the directories listed in the DT_RPATH tag are searched.

• If, at the time that the program was started, the environment variable LD_LI-
BRARY_PATH was defined to contain a colon-separated list of directories, then
these are searched. (As a security measure, this variable is ignored for set-user-ID
and set-group-ID programs.)

• (ELF only) If the calling object contains a DT_RUNPATH tag, then the directories
listed in that tag are searched.

• The cache file /etc/ld.so.cache (maintained by ldconfig(8)) is checked to see whether
it contains an entry for path.

• The directories /lib and /usr/lib are searched (in that order).

If the object specified by path has dependencies on other shared objects, then these are
also automatically loaded by the dynamic linker using the same rules. (This process
may occur recursively, if those objects in turn have dependencies, and so on.)

One of the following two values must be included in flags:

RTLD_LAZY
Perform lazy binding. Resolve symbols only as the code that references them is
executed. If the symbol is never referenced, then it is never resolved. (Lazy
binding is performed only for function references; references to variables are al-
ways immediately bound when the shared object is loaded.) Since glibc 2.1.1,

Linux man-pages 6.16 2025-09-21 1614

dlopen(3) Library Functions Manual dlopen(3)

this flag is overridden by the effect of the LD_BIND_NOW environment vari-
able.

RTLD_NOW
If this value is specified, or the environment variable LD_BIND_NOW is set to
a nonempty string, all undefined symbols in the shared object are resolved before
dlopen() returns. If this cannot be done, an error is returned.

Zero or more of the following values may also be ORed in flags:

RTLD_GLOBAL
The symbols defined by this shared object will be made available for symbol res-
olution of subsequently loaded shared objects.

RTLD_LOCAL
This is the converse of RTLD_GLOBAL, and the default if neither flag is speci-
fied. Symbols defined in this shared object are not made available to resolve ref-
erences in subsequently loaded shared objects.

RTLD_NODELETE (since glibc 2.2)
Do not unload the shared object during dlclose(). Consequently, the object’s sta-
tic and global variables are not reinitialized if the object is reloaded with
dlopen() at a later time.

RTLD_NOLOAD (since glibc 2.2)
Don’t load the shared object. This can be used to test if the object is already res-
ident (dlopen() returns NULL if it is not, or the object’s handle if it is resident).
This flag can also be used to promote the flags on a shared object that is already
loaded. For example, a shared object that was previously loaded with
RTLD_LOCAL can be reopened with RTLD_NOLOAD | RTLD_GLOBAL.

RTLD_DEEPBIND (since glibc 2.3.4)
Place the lookup scope of the symbols in this shared object ahead of the global
scope. This means that a self-contained object will use its own symbols in pref-
erence to global symbols with the same name contained in objects that have al-
ready been loaded.

If path is NULL, then the returned handle is for the main program. When given to dl-
sym(3), this handle causes a search for a symbol in the main program, followed by all
shared objects loaded at program startup, and then all shared objects loaded by dlopen()
with the flag RTLD_GLOBAL.

Symbol references in the shared object are resolved using (in order): symbols in the link
map of objects loaded for the main program and its dependencies; symbols in shared ob-
jects (and their dependencies) that were previously opened with dlopen() using the
RTLD_GLOBAL flag; and definitions in the shared object itself (and any dependencies
that were loaded for that object).

Any global symbols in the executable that were placed into its dynamic symbol table by
ld(1) can also be used to resolve references in a dynamically loaded shared object.
Symbols may be placed in the dynamic symbol table either because the executable was
linked with the flag "-rdynamic" (or, synonymously, "--export-dynamic"), which
causes all of the executable’s global symbols to be placed in the dynamic symbol table,

Linux man-pages 6.16 2025-09-21 1615

dlopen(3) Library Functions Manual dlopen(3)

or because ld(1) noted a dependency on a symbol in another object during static linking.

If the same shared object is opened again with dlopen(), the same object handle is re-
turned. The dynamic linker maintains reference counts for object handles, so a dynami-
cally loaded shared object is not deallocated until dlclose() has been called on it as many
times as dlopen() has succeeded on it. Constructors (see below) are called only when
the object is actually loaded into memory (i.e., when the reference count increases to 1).

A subsequent dlopen() call that loads the same shared object with RTLD_NOW may
force symbol resolution for a shared object earlier loaded with RTLD_LAZY. Simi-
larly, an object that was previously opened with RTLD_LOCAL can be promoted to
RTLD_GLOBAL in a subsequent dlopen().

If dlopen() fails for any reason, it returns NULL.

dlmopen()
This function performs the same task as dlopen()—the path and flags arguments, as
well as the return value, are the same, except for the differences noted below.

The dlmopen() function differs from dlopen() primarily in that it accepts an additional
argument, lmid , that specifies the link-map list (also referred to as a namespace) in
which the shared object should be loaded. (By comparison, dlopen() adds the dynami-
cally loaded shared object to the same namespace as the shared object from which the
dlopen() call is made.) The Lmid_t type is an opaque handle that refers to a namespace.

The lmid argument is either the ID of an existing namespace (which can be obtained us-
ing the dlinfo(3) RTLD_DI_LMID request) or one of the following special values:

LM_ID_BASE
Load the shared object in the initial namespace (i.e., the application’s name-
space).

LM_ID_NEWLM
Create a new namespace and load the shared object in that namespace. The ob-
ject must have been correctly linked to reference all of the other shared objects
that it requires, since the new namespace is initially empty.

If path is NULL, then the only permitted value for lmid is LM_ID_BASE.

dlclose()
The function dlclose() decrements the reference count on the dynamically loaded shared
object referred to by handle.

If the object’s reference count drops to zero and no symbols in this object are required
by other objects, then the object is unloaded after first calling any destructors defined for
the object. (Symbols in this object might be required in another object because this ob-
ject was opened with the RTLD_GLOBAL flag and one of its symbols satisfied a relo-
cation in another object.)

All shared objects that were automatically loaded when dlopen() was invoked on the ob-
ject referred to by handle are recursively closed in the same manner.

A successful return from dlclose() does not guarantee that the symbols associated with
handle are removed from the caller’s address space. In addition to references resulting
from explicit dlopen() calls, a shared object may have been implicitly loaded (and

Linux man-pages 6.16 2025-09-21 1616

dlopen(3) Library Functions Manual dlopen(3)

reference counted) because of dependencies in other shared objects. Only when all ref-
erences have been released can the shared object be removed from the address space.

RETURN VALUE
On success, dlopen() and dlmopen() return a non-NULL handle for the loaded object.
On error (file could not be found, was not readable, had the wrong format, or caused er-
rors during loading), these functions return NULL.

On success, dlclose() returns 0; on error, it returns a nonzero value.

Errors from these functions can be diagnosed using dlerror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlopen(), dlmopen(), dlclose()

STANDARDS
dlopen()
dlclose()

POSIX.1-2008.

dlmopen()
RTLD_NOLOAD
RTLD_NODELETE

GNU.

RTLD_DEEPBIND
Solaris.

HISTORY
dlopen()
dlclose()

glibc 2.0. POSIX.1-2001.

dlmopen()
glibc 2.3.4.

NOTES
dlmopen() and namespaces

A link-map list defines an isolated namespace for the resolution of symbols by the dy-
namic linker. Within a namespace, dependent shared objects are implicitly loaded ac-
cording to the usual rules, and symbol references are likewise resolved according to the
usual rules, but such resolution is confined to the definitions provided by the objects that
have been (explicitly and implicitly) loaded into the namespace.

The dlmopen() function permits object-load isolation—the ability to load a shared ob-
ject in a new namespace without exposing the rest of the application to the symbols
made available by the new object. Note that the use of the RTLD_LOCAL flag is not
sufficient for this purpose, since it prevents a shared object’s symbols from being avail-
able to any other shared object. In some cases, we may want to make the symbols pro-
vided by a dynamically loaded shared object available to (a subset of) other shared ob-
jects without exposing those symbols to the entire application. This can be achieved by

Linux man-pages 6.16 2025-09-21 1617

dlopen(3) Library Functions Manual dlopen(3)

using a separate namespace and the RTLD_GLOBAL flag.

The dlmopen() function also can be used to provide better isolation than the
RTLD_LOCAL flag. In particular, shared objects loaded with RTLD_LOCAL may be
promoted to RTLD_GLOBAL if they are dependencies of another shared object loaded
with RTLD_GLOBAL. Thus, RTLD_LOCAL is insufficient to isolate a loaded
shared object except in the (uncommon) case where one has explicit control over all
shared object dependencies.

Possible uses of dlmopen() are plugins where the author of the plugin-loading frame-
work can’t trust the plugin authors and does not wish any undefined symbols from the
plugin framework to be resolved to plugin symbols. Another use is to load the same ob-
ject more than once. Without the use of dlmopen(), this would require the creation of
distinct copies of the shared object file. Using dlmopen(), this can be achieved by load-
ing the same shared object file into different namespaces.

The glibc implementation supports a maximum of 16 namespaces.

Initialization and finalization functions
Shared objects may export functions using the __attribute__((constructor)) and __at-
tribute__((destructor)) function attributes. Constructor functions are executed before
dlopen() returns, and destructor functions are executed before dlclose() returns. A
shared object may export multiple constructors and destructors, and priorities can be as-
sociated with each function to determine the order in which they are executed. See the
gcc info pages (under "Function attributes") for further information.

An older method of (partially) achieving the same result is via the use of two special
symbols recognized by the linker: _init and _fini. If a dynamically loaded shared object
exports a routine named _init(), then that code is executed after loading a shared object,
before dlopen() returns. If the shared object exports a routine named _fini(), then that
routine is called just before the object is unloaded. In this case, one must avoid linking
against the system startup files, which contain default versions of these files; this can be
done by using the gcc(1) -nostartfiles command-line option.

Use of _init and _fini is now deprecated in favor of the aforementioned constructors and
destructors, which among other advantages, permit multiple initialization and finaliza-
tion functions to be defined.

Since glibc 2.2.3, atexit(3) can be used to register an exit handler that is automatically
called when a shared object is unloaded.

History
These functions are part of the dlopen API, derived from SunOS.

BUGS
As at glibc 2.24, specifying the RTLD_GLOBAL flag when calling dlmopen() gener-
ates an error. Furthermore, specifying RTLD_GLOBAL when calling dlopen() results
in a program crash (SIGSEGV) if the call is made from any object loaded in a name-
space other than the initial namespace.

EXAMPLES
The program below loads the (glibc) math library, looks up the address of the cos(3)
function, and prints the cosine of 2.0. The following is an example of building and

Linux man-pages 6.16 2025-09-21 1618

dlopen(3) Library Functions Manual dlopen(3)

running the program:

$ cc dlopen_demo.c -ldl;
$./a.out;
-0.416147

Program source

#include <dlfcn.h>
#include <stdio.h>
#include <stdlib.h>

#include <gnu/lib-names.h> /* Defines LIBM_SO (which will be a
string such as "libm.so.6") */

int
main(void)
{

void *handle;
typeof(double (double)) *cosine;
char *error;

handle = dlopen(LIBM_SO, RTLD_LAZY);
if (!handle) {

fprintf(stderr, "%s\n", dlerror());
exit(EXIT_FAILURE);

}

dlerror(); /* Clear any existing error */

cosine = (typeof(double (double)) *) dlsym(handle, "cos");

/* According to the ISO C standard, casting between function
pointers and 'void *', as done above, produces undefined results.
POSIX.1-2001 and POSIX.1-2008 accepted this state of affairs and
proposed the following workaround:

*(void **) &cosine = dlsym(handle, "cos");

This (clumsy) cast conforms with the ISO C standard and will
avoid any compiler warnings.

The 2013 Technical Corrigendum 1 to POSIX.1-2008 improved matters
by requiring that conforming implementations support casting
'void *' to a function pointer. Nevertheless, some compilers
(e.g., gcc with the '-pedantic' option) may complain about the
cast used in this program. */

error = dlerror();

Linux man-pages 6.16 2025-09-21 1619

dlopen(3) Library Functions Manual dlopen(3)

if (error != NULL) {
fprintf(stderr, "%s\n", error);
exit(EXIT_FAILURE);

}

printf("%f\n", (*cosine)(2.0));
dlclose(handle);
exit(EXIT_SUCCESS);

}

SEE ALSO
ld(1), ldd(1), pldd(1), dl_iterate_phdr(3), dladdr(3), dlerror(3), dlinfo(3), dlsym(3), rtld-
audit(7), ld.so(8), ldconfig(8)

gcc info pages, ld info pages

Linux man-pages 6.16 2025-09-21 1620

dlsym(3) Library Functions Manual dlsym(3)

NAME
dlsym, dlvsym - obtain address of a symbol in a shared object or executable

LIBRARY
Dynamic linking library (libdl, -ldl)

SYNOPSIS
#include <dlfcn.h>

void *dlsym(void *restrict handle, const char *restrict symbol);

#define _GNU_SOURCE
#include <dlfcn.h>

void *dlvsym(void *restrict handle, const char *restrict symbol,
const char *restrict version);

DESCRIPTION
The function dlsym() takes a "handle" of a dynamic loaded shared object returned by
dlopen(3) along with a null-terminated symbol name, and returns the address where that
symbol is loaded into memory. If the symbol is not found, in the specified object or any
of the shared objects that were automatically loaded by dlopen(3) when that object was
loaded, dlsym() returns NULL. (The search performed by dlsym() is breadth first
through the dependency tree of these shared objects.)

In unusual cases (see NOTES) the value of the symbol could actually be NULL. There-
fore, a NULL return from dlsym() need not indicate an error. The correct way to distin-
guish an error from a symbol whose value is NULL is to call dlerror(3) to clear any old
error conditions, then call dlsym(), and then call dlerror(3) again, saving its return value
into a variable, and check whether this saved value is not NULL.

There are two special pseudo-handles that may be specified in handle:

RTLD_DEFAULT
Find the first occurrence of the desired symbol using the default shared object
search order. The search will include global symbols in the executable and its
dependencies, as well as symbols in shared objects that were dynamically loaded
with the RTLD_GLOBAL flag.

RTLD_NEXT
Find the next occurrence of the desired symbol in the search order after the cur-
rent object. This allows one to provide a wrapper around a function in another
shared object, so that, for example, the definition of a function in a preloaded
shared object (see LD_PRELOAD in ld.so(8)) can find and invoke the "real"
function provided in another shared object (or for that matter, the "next" defini-
tion of the function in cases where there are multiple layers of preloading).

The _GNU_SOURCE feature test macro must be defined in order to obtain the defini-
tions of RTLD_DEFAULT and RTLD_NEXT from <dlfcn.h>.

The function dlvsym() does the same as dlsym() but takes a version string as an addi-
tional argument.

Linux man-pages 6.16 2025-05-17 1621

dlsym(3) Library Functions Manual dlsym(3)

RETURN VALUE
On success, these functions return the address associated with symbol. On failure, they
return NULL; the error can be diagnosed using dlerror(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedlsym(), dlvsym()

STANDARDS
dlsym()

POSIX.1-2008.

dlvsym()
GNU.

HISTORY
dlsym()

glibc 2.0. POSIX.1-2001.

dlvsym()
glibc 2.1.

NOTES
There are several scenarios when the address of a global symbol is NULL. For example,
a symbol can be placed at zero address by the linker, via a linker script or with --def-
sym command-line option. Undefined weak symbols also have NULL value. Finally,
the symbol value may be the result of a GNU indirect function (IFUNC) resolver func-
tion that returns NULL as the resolved value. In the latter case, dlsym() also returns
NULL without error. However, in the former two cases, the behavior of GNU dynamic
linker is inconsistent: relocation processing succeeds and the symbol can be observed to
have NULL value, but dlsym() fails and dlerror() indicates a lookup error.

History
The dlsym() function is part of the dlopen API, derived from SunOS. That system does
not have dlvsym().

EXAMPLES
See dlopen(3).

SEE ALSO
dl_iterate_phdr(3), dladdr(3), dlerror(3), dlinfo(3), dlopen(3), ld.so(8)

Linux man-pages 6.16 2025-05-17 1622

drand48(3) Library Functions Manual drand48(3)

NAME
drand48, erand48, lrand48, nrand48, mrand48, jrand48, srand48, seed48, lcong48 - gen-
erate uniformly distributed pseudo-random numbers

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

double drand48(void);
double erand48(unsigned short xsubi[3]);

long lrand48(void);
long nrand48(unsigned short xsubi[3]);

long mrand48(void);
long jrand48(unsigned short xsubi[3]);

void srand48(long seedval);
unsigned short *seed48(unsigned short seed16v[3]);
void lcong48(unsigned short param[7]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
These functions generate pseudo-random numbers using the linear congruential algo-
rithm and 48-bit integer arithmetic.

The drand48() and erand48() functions return nonnegative double-precision floating-
point values uniformly distributed over the interval [0.0, 1.0).

The lrand48() and nrand48() functions return nonnegative long integers uniformly dis-
tributed over the interval [0, 2^31).

The mrand48() and jrand48() functions return signed long integers uniformly distrib-
uted over the interval [-2^31, 2^31).

The srand48(), seed48(), and lcong48() functions are initialization functions, one of
which should be called before using drand48(), lrand48(), or mrand48(). The func-
tions erand48(), nrand48(), and jrand48() do not require an initialization function to
be called first.

All the functions work by generating a sequence of 48-bit integers, Xi, according to the
linear congruential formula:

Xn+1 = (aXn + c) mod m, where n >= 0

The parameter m = 2^48, hence 48-bit integer arithmetic is performed. Unless
lcong48() is called, a and c are given by:

a = 0x5DEECE66D

Linux man-pages 6.16 2025-05-17 1623

drand48(3) Library Functions Manual drand48(3)

c = 0xB

The value returned by any of the functions drand48(), erand48(), lrand48(),
nrand48(), mrand48(), or jrand48() is computed by first generating the next 48-bit Xi
in the sequence. Then the appropriate number of bits, according to the type of data item
to be returned, is copied from the high-order bits of Xi and transformed into the returned
value.

The functions drand48(), lrand48(), and mrand48() store the last 48-bit Xi generated
in an internal buffer. The functions erand48(), nrand48(), and jrand48() require the
calling program to provide storage for the successive Xi values in the array argument
xsubi. The functions are initialized by placing the initial value of Xi into the array be-
fore calling the function for the first time.

The initializer function srand48() sets the high order 32-bits of Xi to the argument seed-
val. The low order 16-bits are set to the arbitrary value 0x330E.

The initializer function seed48() sets the value of Xi to the 48-bit value specified in the
array argument seed16v. The previous value of Xi is copied into an internal buffer and a
pointer to this buffer is returned by seed48().

The initialization function lcong48() allows the user to specify initial values for Xi, a,
and c. Array argument elements param[0-2] specify Xi, param[3-5] specify a, and
param[6] specifies c. After lcong48() has been called, a subsequent call to either
srand48() or seed48() will restore the standard values of a and c.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetydrand48(), erand48(), lrand48(), nrand48(),
mrand48(), jrand48(), srand48(), seed48(),
lcong48()

MT-Unsafe
race:drand48

The above functions record global state information for the random number generator,
so they are not thread-safe.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

SEE ALSO
rand(3), random(3)

Linux man-pages 6.16 2025-05-17 1624

drand48_r(3) Library Functions Manual drand48_r(3)

NAME
drand48_r, erand48_r, lrand48_r, nrand48_r, mrand48_r, jrand48_r, srand48_r, seed48_r,
lcong48_r - generate uniformly distributed pseudo-random numbers reentrantly

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int drand48_r(struct drand48_data *restrict buffer,
double *restrict result);

int erand48_r(unsigned short xsubi[3],
struct drand48_data *restrict buffer,
double *restrict result);

int lrand48_r(struct drand48_data *restrict buffer,
long *restrict result);

int nrand48_r(unsigned short xsubi[3],
struct drand48_data *restrict buffer,
long *restrict result);

int mrand48_r(struct drand48_data *restrict buffer,
long *restrict result);

int jrand48_r(unsigned short xsubi[3],
struct drand48_data *restrict buffer,
long *restrict result);

int srand48_r(long int seedval, struct drand48_data *buffer);
int seed48_r(unsigned short seed16v[3], struct drand48_data *buffer);
int lcong48_r(unsigned short param[7], struct drand48_data *buffer);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
These functions are the reentrant analogs of the functions described in drand48(3). In-
stead of modifying the global random generator state, they use the supplied data buffer.

Before the first use, this struct must be initialized, for example, by filling it with zeros,
or by calling one of the functions srand48_r(), seed48_r(), or lcong48_r().

RETURN VALUE
The return value is 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 1625

drand48_r(3) Library Functions Manual drand48_r(3)

Interface Attribute Value
Thread safety MT-Safe race:bufferdrand48_r(), erand48_r(), lrand48_r(),

nrand48_r(), mrand48_r(), jrand48_r(),
srand48_r(), seed48_r(), lcong48_r()

STANDARDS
GNU.

SEE ALSO
drand48(3), rand(3), random(3)

Linux man-pages 6.16 2025-05-17 1626

duplocale(3) Library Functions Manual duplocale(3)

NAME
duplocale - duplicate a locale object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

locale_t duplocale(locale_t locobj);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

duplocale():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The duplocale() function creates a duplicate of the locale object referred to by locobj.

If locobj is LC_GLOBAL_LOCALE, duplocale() creates a locale object containing a
copy of the global locale determined by setlocale(3).

RETURN VALUE
On success, duplocale() returns a handle for the new locale object. On error, it returns
(locale_t) 0, and sets errno to indicate the error.

ERRORS
ENOMEM

Insufficient memory to create the duplicate locale object.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.

NOTES
Duplicating a locale can serve the following purposes:

• To create a copy of a locale object in which one of more categories are to be modi-
fied (using newlocale(3)).

• To obtain a handle for the current locale which can used in other functions that em-
ploy a locale handle, such as toupper_l(3). This is done by applying duplocale() to
the value returned by the following call:

loc = uselocale((locale_t) 0);

This technique is necessary, because the above uselocale(3) call may return the value
LC_GLOBAL_LOCALE, which results in undefined behavior if passed to func-
tions such as toupper_l(3). Calling duplocale() can be used to ensure that the
LC_GLOBAL_LOCALE value is converted into a usable locale object. See EX-
AMPLES, below.

Linux man-pages 6.16 2025-09-21 1627

duplocale(3) Library Functions Manual duplocale(3)

Each locale object created by duplocale() should be deallocated using freelocale(3).

EXAMPLES
The program below uses uselocale(3) and duplocale() to obtain a handle for the current
locale which is then passed to toupper_l(3). The program takes one command-line argu-
ment, a string of characters that is converted to uppercase and displayed on standard out-
put. An example of its use is the following:

$./a.out abc;
ABC

Program source

#define _XOPEN_SOURCE 700
#include <ctype.h>
#include <err.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

locale_t loc, nloc;

if (argc != 2) {
fprintf(stderr, "Usage: %s string\n", argv[0]);
exit(EXIT_FAILURE);

}

/* This sequence is necessary, because uselocale() might return
the value LC_GLOBAL_LOCALE, which can't be passed as an
argument to toupper_l(). */

loc = uselocale((locale_t) 0);
if (loc == (locale_t) 0)

err(EXIT_FAILURE, "uselocale");

nloc = duplocale(loc);
if (nloc == (locale_t) 0)

err(EXIT_FAILURE, "duplocale");

for (char *p = argv[1]; *p; p++)
putchar(toupper_l(*p, nloc));

printf("\n");

freelocale(nloc);

Linux man-pages 6.16 2025-09-21 1628

duplocale(3) Library Functions Manual duplocale(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
freelocale(3), newlocale(3), setlocale(3), uselocale(3), locale(5), locale(7)

Linux man-pages 6.16 2025-09-21 1629

dysize(3) Library Functions Manual dysize(3)

NAME
dysize - get number of days for a given year

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

int dysize(int year);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

dysize():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The function returns 365 for a normal year and 366 for a leap year. The calculation for
leap year is based on:

(year) %4 == 0 && ((year) %100 != 0 || (year) %400 == 0)

The formula is defined in the macro __isleap(year) also found in <time.h>.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedysize()

STANDARDS
None.

HISTORY
SunOS 4.x.

This is a compatibility function only. Don’t use it in new programs.

SEE ALSO
strftime(3)

Linux man-pages 6.16 2025-05-17 1630

ecvt(3) Library Functions Manual ecvt(3)

NAME
ecvt, fcvt - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[deprecated]] char *ecvt(double number, int ndigits,
int *restrict decpt, int *restrict sign);

[[deprecated]] char *fcvt(double number, int ndigits,
int *restrict decpt, int *restrict sign);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ecvt(), fcvt():
Since glibc 2.17

(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200809L))
|| /* glibc >= 2.20 */ _DEFAULT_SOURCE
|| /* glibc <= 2.19 */ _SVID_SOURCE

glibc 2.12 to glibc 2.16:
(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200112L))

|| _SVID_SOURCE
Before glibc 2.12:

_SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The ecvt() function converts number to a null-terminated string of ndigits digits (where
ndigits is reduced to a system-specific limit determined by the precision of a double),
and returns a pointer to the string. The high-order digit is nonzero, unless number is
zero. The low order digit is rounded. The string itself does not contain a decimal point;
however, the position of the decimal point relative to the start of the string is stored in
*decpt. A negative value for *decpt means that the decimal point is to the left of the
start of the string. If the sign of number is negative, *sign is set to a nonzero value, oth-
erwise it is set to 0. If number is zero, it is unspecified whether *decpt is 0 or 1.

The fcvt() function is identical to ecvt(), except that ndigits specifies the number of dig-
its after the decimal point.

RETURN VALUE
Both the ecvt() and fcvt() functions return a pointer to a static string containing the
ASCII representation of number. The static string is overwritten by each call to ecvt()
or fcvt().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:ecvtecvt()
Thread safety MT-Unsafe race:fcvtfcvt()

Linux man-pages 6.16 2025-09-21 1631

ecvt(3) Library Functions Manual ecvt(3)

STANDARDS
None.

HISTORY
SVr2; marked as LEGACY in POSIX.1-2001. POSIX.1-2008 removes the specifica-
tions of ecvt() and fcvt(), recommending the use of sprintf(3) instead (though snprintf(3)
may be preferable).

NOTES
Not all locales use a point as the radix character ("decimal point").

SEE ALSO
ecvt_r(3), gcvt(3), qecvt(3), setlocale(3), sprintf(3)

Linux man-pages 6.16 2025-09-21 1632

ecvt_r(3) Library Functions Manual ecvt_r(3)

NAME
ecvt_r, fcvt_r, qecvt_r, qfcvt_r - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[deprecated]] int ecvt_r(double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

[[deprecated]] int fcvt_r(double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

[[deprecated]] int qecvt_r(long double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

[[deprecated]] int qfcvt_r(long double number, int ndigits,
int *restrict decpt, int *restrict sign,
char *restrict buf , size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ecvt_r(), fcvt_r(), qecvt_r(), qfcvt_r():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The functions ecvt_r(), fcvt_r(), qecvt_r(), and qfcvt_r() are identical to ecvt(3),
fcvt(3), qecvt(3), and qfcvt(3), respectively, except that they do not return their result in a
static buffer, but instead use the supplied buf of size size. See ecvt(3) and qecvt(3).

RETURN VALUE
These functions return 0 on success, and -1 otherwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeecvt_r(), fcvt_r(), qecvt_r(), qfcvt_r()

STANDARDS
GNU.

NOTES
These functions are obsolete. Instead, sprintf(3) is recommended.

SEE ALSO
ecvt(3), qecvt(3), sprintf(3)

Linux man-pages 6.16 2025-05-17 1633

encrypt(3) Library Functions Manual encrypt(3)

NAME
encrypt, setkey, encrypt_r, setkey_r - encrypt 64-bit messages

LIBRARY
Password hashing library (libcrypt, -lcrypt)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

[[deprecated]] void encrypt(char block[64], int edflag);

#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <stdlib.h>

[[deprecated]] void setkey(const char *key);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <crypt.h>

[[deprecated]] void setkey_r(const char *key, struct crypt_data *data);
[[deprecated]] void encrypt_r(char *block, int edflag,

struct crypt_data *data);

DESCRIPTION
These functions encrypt and decrypt 64-bit messages. The setkey() function sets the
key used by encrypt(). The key argument used here is an array of 64 bytes, each of
which has numerical value 1 or 0. The bytes key[n] where n=8*i-1 are ignored, so that
the effective key length is 56 bits.

The encrypt() function modifies the passed buffer, encoding if edflag is 0, and decoding
if 1 is being passed. Like the key argument, also block is a bit vector representation of
the actual value that is encoded. The result is returned in that same vector.

These two functions are not reentrant, that is, the key data is kept in static storage. The
functions setkey_r() and encrypt_r() are the reentrant versions. They use the following
structure to hold the key data:

struct crypt_data {
char keysched[16 * 8];
char sb0[32768];
char sb1[32768];
char sb2[32768];
char sb3[32768];
char crypt_3_buf[14];
char current_salt[2];
long current_saltbits;
int direction;
int initialized;

};

Before calling setkey_r() set data->initialized to zero.

Linux man-pages 6.16 2025-05-17 1634

encrypt(3) Library Functions Manual encrypt(3)

RETURN VALUE
These functions do not return any value.

ERRORS
Set errno to zero before calling the above functions. On success, errno is unchanged.

ENOSYS
The function is not provided. (For example because of former USA export re-
strictions.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:cryptencrypt(), setkey()
Thread safety MT-Safeencrypt_r(), setkey_r()

STANDARDS
encrypt()
setkey()

POSIX.1-2008.

encrypt_r()
setkey_r()

None.

HISTORY
Removed in glibc 2.28.

Because they employ the DES block cipher, which is no longer considered secure, these
functions were removed from glibc. Applications should switch to a modern cryptogra-
phy library, such as libgcrypt.

encrypt()
setkey()

POSIX.1-2001, SUS, SVr4.

Availability in glibc
See crypt(3).

Features in glibc
In glibc 2.2, these functions use the DES algorithm.

EXAMPLES
#define _XOPEN_SOURCE
#include <crypt.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(void)
{

char key[64];

Linux man-pages 6.16 2025-05-17 1635

encrypt(3) Library Functions Manual encrypt(3)

char orig[9] = "eggplant";
char buf[64];
char txt[9];

for (size_t i = 0; i < 64; i++) {
key[i] = rand() & 1;

}

for (size_t i = 0; i < 8; i++) {
for (size_t j = 0; j < 8; j++) {

buf[i * 8 + j] = orig[i] >> j & 1;
}
setkey(key);

}
printf("Before encrypting: %s\n", orig);

encrypt(buf, 0);
for (size_t i = 0; i < 8; i++) {

for (size_t j = 0, txt[i] = '\0'; j < 8; j++) {
txt[i] |= buf[i * 8 + j] << j;

}
txt[8] = '\0';

}
printf("After encrypting: %s\n", txt);

encrypt(buf, 1);
for (size_t i = 0; i < 8; i++) {

for (size_t j = 0, txt[i] = '\0'; j < 8; j++) {
txt[i] |= buf[i * 8 + j] << j;

}
txt[8] = '\0';

}
printf("After decrypting: %s\n", txt);
exit(EXIT_SUCCESS);

}

SEE ALSO
cbc_crypt(3), crypt(3), ecb_crypt(3)

Linux man-pages 6.16 2025-05-17 1636

end(3) Library Functions Manual end(3)

NAME
etext, edata, end - end of program segments

SYNOPSIS
extern etext;
extern edata;
extern end;

DESCRIPTION
The addresses of these symbols indicate the end of various program segments:

etext This is the first address past the end of the text segment (the program code).

edata
This is the first address past the end of the initialized data segment.

end This is the first address past the end of the uninitialized data segment (also
known as the BSS segment).

STANDARDS
None.

HISTORY
Although these symbols have long been provided on most UNIX systems, they are not
standardized; use with caution.

NOTES
The program must explicitly declare these symbols; they are not defined in any header
file.

On some systems the names of these symbols are preceded by underscores, thus: _etext,
_edata, and _end . These symbols are also defined for programs compiled on Linux.

At the start of program execution, the program break will be somewhere near &end
(perhaps at the start of the following page). However, the break will change as memory
is allocated via brk(2) or malloc(3). Use sbrk(2) with an argument of zero to find the
current value of the program break.

EXAMPLES
When run, the program below produces output such as the following:

$./a.out
First address past:

program text (etext) 0x8048568
initialized data (edata) 0x804a01c
uninitialized data (end) 0x804a024

Program source

#include <stdio.h>
#include <stdlib.h>

extern char etext, edata, end; /* The symbols must have some type,
or "gcc -Wall" complains */

Linux man-pages 6.16 2025-09-21 1637

end(3) Library Functions Manual end(3)

int
main(void)
{

printf("First address past:\n");
printf(" program text (etext) %10p\n", &etext);
printf(" initialized data (edata) %10p\n", &edata);
printf(" uninitialized data (end) %10p\n", &end);

exit(EXIT_SUCCESS);
}

SEE ALSO
objdump(1), readelf (1), sbrk(2), elf(5)

Linux man-pages 6.16 2025-09-21 1638

endian(3) Library Functions Manual endian(3)

NAME
htobe16, htole16, be16toh, le16toh, htobe32, htole32, be32toh, le32toh, htobe64,
htole64, be64toh, le64toh - convert values between host and big-/little-endian byte order

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <endian.h>

uint16_t htobe16(uint16_t host_16bits);
uint16_t htole16(uint16_t host_16bits);
uint16_t be16toh(uint16_t big_endian_16bits);
uint16_t le16toh(uint16_t little_endian_16bits);

uint32_t htobe32(uint32_t host_32bits);
uint32_t htole32(uint32_t host_32bits);
uint32_t be32toh(uint32_t big_endian_32bits);
uint32_t le32toh(uint32_t little_endian_32bits);

uint64_t htobe64(uint64_t host_64bits);
uint64_t htole64(uint64_t host_64bits);
uint64_t be64toh(uint64_t big_endian_64bits);
uint64_t le64toh(uint64_t little_endian_64bits);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

htobe16(), htole16(), be16toh(), le16toh(), htobe32(), htole32(), be32toh(), le32toh(),
htobe64(), htole64(), be64toh(), le64toh():

Since glibc 2.19:
_DEFAULT_SOURCE

In glibc up to and including 2.19:
_BSD_SOURCE

DESCRIPTION
These functions convert the byte encoding of integer values from the byte order that the
current CPU (the "host") uses, to and from little-endian and big-endian byte order.

The number, nn, in the name of each function indicates the size of integer handled by
the function, either 16, 32, or 64 bits.

The functions with names of the form "htobenn" convert from host byte order to big-en-
dian order.

The functions with names of the form "htolenn" convert from host byte order to little-
endian order.

The functions with names of the form "benntoh" convert from big-endian order to host
byte order.

The functions with names of the form "lenntoh" convert from little-endian order to host
byte order.

Linux man-pages 6.16 2025-05-17 1639

endian(3) Library Functions Manual endian(3)

VERSIONS
Similar functions are present on the BSDs, where the required header file is <sys/en-
dian.h> instead of <endian.h>. Unfortunately, NetBSD, FreeBSD, and glibc haven’t
followed the original OpenBSD naming convention for these functions, whereby the nn
component always appears at the end of the function name (thus, for example, in
NetBSD, FreeBSD, and glibc, the equivalent of OpenBSDs "betoh32" is "be32toh").

STANDARDS
None.

HISTORY
glibc 2.9.

These functions are similar to the older byteorder(3) family of functions. For example,
be32toh() is identical to ntohl().

The advantage of the byteorder(3) functions is that they are standard functions available
on all UNIX systems. On the other hand, the fact that they were designed for use in the
context of TCP/IP means that they lack the 64-bit and little-endian variants described in
this page.

EXAMPLES
The program below display the results of converting an integer from host byte order to
both little-endian and big-endian byte order. Since host byte order is either little-endian
or big-endian, only one of these conversions will have an effect. When we run this pro-
gram on a little-endian system such as x86-32, we see the following:

$./a.out;
x.u32 = 0x44332211
htole32(x.u32) = 0x44332211
htobe32(x.u32) = 0x11223344

Program source

#include <endian.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

union {
uint32_t u32;
uint8_t arr[4];

} x;

x.arr[0] = 0x11; /* Lowest-address byte */
x.arr[1] = 0x22;
x.arr[2] = 0x33;
x.arr[3] = 0x44; /* Highest-address byte */

Linux man-pages 6.16 2025-05-17 1640

endian(3) Library Functions Manual endian(3)

printf("x.u32 = %#x\n", x.u32);
printf("htole32(x.u32) = %#x\n", htole32(x.u32));
printf("htobe32(x.u32) = %#x\n", htobe32(x.u32));

exit(EXIT_SUCCESS);
}

SEE ALSO
bswap(3), byteorder(3)

Linux man-pages 6.16 2025-05-17 1641

envz_add(3) Library Functions Manual envz_add(3)

NAME
envz_add, envz_entry, envz_get, envz_merge, envz_remove, envz_strip - environment
string support

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <envz.h>

error_t envz_add(char **restrict envz, size_t *restrict envz_len,
const char *restrict name, const char *restrict value);

char *envz_entry(const char *restrict envz, size_t envz_len,
const char *restrict name);

char *envz_get(const char *restrict envz, size_t envz_len,
const char *restrict name);

error_t envz_merge(char **restrict envz, size_t *restrict envz_len,
const char *restrict envz2, size_t envz2_len,
int override);

void envz_remove(char **restrict envz, size_t *restrict envz_len,
const char *restrict name);

void envz_strip(char **restrict envz, size_t *restrict envz_len);

DESCRIPTION
These functions are glibc-specific.

An argz vector is a pointer to a character buffer together with a length, see argz_add(3).
An envz vector is a special argz vector, namely one where the strings have the form
"name=value". Everything after the first '=' is considered to be the value. If there is no
'=', the value is taken to be NULL. (While the value in case of a trailing '=' is the empty
string "".)

These functions are for handling envz vectors.

envz_add() adds the string "name=value" (in case value is non-NULL) or "name" (in
case value is NULL) to the envz vector (*envz, *envz_len) and updates *envz and
*envz_len. If an entry with the same name existed, it is removed.

envz_entry() looks for name in the envz vector (envz, envz_len) and returns the entry if
found, or NULL if not.

envz_get() looks for name in the envz vector (envz, envz_len) and returns the value if
found, or NULL if not. (Note that the value can also be NULL, namely when there is an
entry for name without '=' sign.)

envz_merge() adds each entry in envz2 to *envz, as if with envz_add(). If override is
true, then values in envz2 will supersede those with the same name in *envz, otherwise
not.

envz_remove() removes the entry for name from (*envz, *envz_len) if there was one.

envz_strip() removes all entries with value NULL.

Linux man-pages 6.16 2025-05-17 1642

envz_add(3) Library Functions Manual envz_add(3)

RETURN VALUE
All envz functions that do memory allocation have a return type of error_t (an integer
type), and return 0 for success, and ENOMEM if an allocation error occurs.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeenvz_add(), envz_entry(), envz_get(), envz_merge(),
envz_remove(), envz_strip()

STANDARDS
GNU.

EXAMPLES
#include <envz.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[], char *envp[])
{

char *str;
size_t e_len = 0;

for (size_t i = 0; envp[i] != NULL; i++)
e_len += strlen(envp[i]) + 1;

str = envz_entry(*envp, e_len, "HOME");
printf("%s\n", str);
str = envz_get(*envp, e_len, "HOME");
printf("%s\n", str);
exit(EXIT_SUCCESS);

}

SEE ALSO
argz_add(3)

Linux man-pages 6.16 2025-05-17 1643

erf (3) Library Functions Manual erf (3)

NAME
erf, erff, erfl - error function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double erf(double x);
float erff(float x);
long double erfl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

erf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

erff(), erfl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the error function of x, defined as

erf(x) = 2/sqrt(pi) * integral from 0 to x of exp(-t*t) dt

RETURN VALUE
On success, these functions return the value of the error function of x, a value in the
range [-1, 1].

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), +1 (-1) is returned.

If x is subnormal, a range error occurs, and the return value is 2*x/sqrt(pi).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result underflow (x is subnormal)
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeerf(), erff(), erfl()

Linux man-pages 6.16 2025-05-17 1644

erf (3) Library Functions Manual erf (3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cerf (3), erfc(3), exp(3)

Linux man-pages 6.16 2025-05-17 1645

erfc(3) Library Functions Manual erfc(3)

NAME
erfc, erfcf, erfcl - complementary error function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double erfc(double x);
float erfcf(float x);
long double erfcl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

erfc():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

erfcf(), erfcl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the complementary error function of x, that is, 1.0 - erf(x).

RETURN VALUE
On success, these functions return the complementary error function of x, a value in the
range [0,2].

If x is a NaN, a NaN is returned.

If x is +0 or -0, 1 is returned.

If x is positive infinity, +0 is returned.

If x is negative infinity, +2 is returned.

If the function result underflows and produces an unrepresentable value, the return value
is 0.0.

If the function result underflows but produces a representable (i.e., subnormal) value,
that value is returned, and a range error occurs.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result underflow (result is subnormal)
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno.

Linux man-pages 6.16 2025-05-17 1646

erfc(3) Library Functions Manual erfc(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeerfc(), erfcf(), erfcl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

NOTES
The erfc(), erfcf(), and erfcl() functions are provided to avoid the loss accuracy that
would occur for the calculation 1-erf(x) for large values of x (for which the value of
erf(x) approaches 1).

SEE ALSO
cerf (3), erf(3), exp(3)

Linux man-pages 6.16 2025-05-17 1647

err(3) Library Functions Manual err(3)

NAME
err, verr, errx, verrx, warn, vwarn, warnx, vwarnx - formatted error messages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <err.h>

[[noreturn]] void err(int eval, const char * fmt, ...);
[[noreturn]] void errx(int eval, const char * fmt, ...);

void warn(const char * fmt, ...);
void warnx(const char * fmt, ...);

#include <stdarg.h>

[[noreturn]] void verr(int eval, const char * fmt, va_list args);
[[noreturn]] void verrx(int eval, const char * fmt, va_list args);

void vwarn(const char * fmt, va_list args);
void vwarnx(const char * fmt, va_list args);

DESCRIPTION
The err() and warn() family of functions display a formatted error message on the stan-
dard error output. In all cases, the last component of the program name, a colon charac-
ter, and a space are output. If the fmt argument is not NULL, the printf(3)-like format-
ted error message is output. The output is terminated by a newline character.

The err(), verr(), warn(), and vwarn() functions append an error message obtained
from strerror(3) based on the global variable errno, preceded by another colon and
space unless the fmt argument is NULL.

The errx() and warnx() functions do not append an error message.

The err(), verr(), errx(), and verrx() functions do not return, but exit with the value of
the argument eval.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeerr(), errx(), warn(), warnx(), verr(), verrx(),
vwarn(), vwarnx()

STANDARDS
BSD.

HISTORY
err()
warn()

4.4BSD.

EXAMPLES
Display the current errno information string and exit:

p = malloc(size);

Linux man-pages 6.16 2025-05-17 1648

err(3) Library Functions Manual err(3)

if (p == NULL)
err(EXIT_FAILURE, NULL);

fd = open(file_name, O_RDONLY, 0);
if (fd == -1)

err(EXIT_FAILURE, "%s", file_name);

Display an error message and exit:

if (tm.tm_hour < START_TIME)
errx(EXIT_FAILURE, "too early, wait until %s",

start_time_string);

Warn of an error:

fd = open(raw_device, O_RDONLY, 0);
if (fd == -1)

warnx("%s: %s: trying the block device",
raw_device, strerror(errno));

fd = open(block_device, O_RDONLY, 0);
if (fd == -1)

err(EXIT_FAILURE, "%s", block_device);

SEE ALSO
error(3), exit(3), perror(3), printf(3), strerror(3)

Linux man-pages 6.16 2025-05-17 1649

errno(3) Library Functions Manual errno(3)

NAME
errno - number of last error

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <errno.h>

DESCRIPTION
The <errno.h> header file defines the integer variable errno, which is set by system
calls and some library functions in the event of an error to indicate what went wrong.

errno
The value in errno is significant only when the return value of the call indicated an error
(i.e., -1 from most system calls; -1 or NULL from most library functions); a function
that succeeds is allowed to change errno. The value of errno is never set to zero by any
system call or library function.

For some system calls and library functions (e.g., getpriority(2)), -1 is a valid return on
success. In such cases, a successful return can be distinguished from an error return by
setting errno to zero before the call, and then, if the call returns a status that indicates
that an error may have occurred, checking to see if errno has a nonzero value.

errno is defined by the ISO C standard to be a modifiable lvalue of type int, and must
not be explicitly declared; errno may be a macro. errno is thread-local; setting it in one
thread does not affect its value in any other thread.

Error numbers and names
Valid error numbers are all positive numbers. The <errno.h> header file defines sym-
bolic names for each of the possible error numbers that may appear in errno.

All the error names specified by POSIX.1 must have distinct values, with the exception
of EAGAIN and EWOULDBLOCK, which may be the same. On Linux, these two
have the same value on all architectures.

The error numbers that correspond to each symbolic name vary across UNIX systems,
and even across different architectures on Linux. Therefore, numeric values are not in-
cluded as part of the list of error names below. The perror(3) and strerror(3) functions
can be used to convert these names to corresponding textual error messages.

On any particular Linux system, one can obtain a list of all symbolic error names and
the corresponding error numbers using the errno(1) command (part of the moreutils
package):

$ errno -l;
EPERM 1 Operation not permitted
ENOENT 2 No such file or directory
ESRCH 3 No such process
EINTR 4 Interrupted system call
EIO 5 Input/output error
...

The errno(1) command can also be used to look up individual error numbers and names,

Linux man-pages 6.16 2025-09-21 1650

errno(3) Library Functions Manual errno(3)

and to search for errors using strings from the error description, as in the following ex-
amples:

$ errno 2;
ENOENT 2 No such file or directory
$ errno ESRCH;
ESRCH 3 No such process
$ errno -s permission;
EACCES 13 Permission denied

List of error names
In the list of the symbolic error names below, various names are marked as follows:

POSIX.1-2001
The name is defined by POSIX.1-2001, and is defined in later POSIX.1 versions,
unless otherwise indicated.

POSIX.1-2008
The name is defined in POSIX.1-2008, but was not present in earlier POSIX.1
standards.

C99 The name is defined by C99.

Below is a list of the symbolic error names that are defined on Linux:

E2BIG Argument list too long (POSIX.1-2001).

EACCES Permission denied (POSIX.1-2001).

EADDRINUSE Address already in use (POSIX.1-2001).

EADDRNOTAVAIL
Address not available (POSIX.1-2001).

EAFNOSUPPORT
Address family not supported (POSIX.1-2001).

EAGAIN Resource temporarily unavailable (may be the same value as
EWOULDBLOCK) (POSIX.1-2001).

EALREADY Connection already in progress (POSIX.1-2001).

EBADE Invalid exchange.

EBADF Bad file descriptor (POSIX.1-2001).

EBADFD File descriptor in bad state.

EBADMSG Bad message (POSIX.1-2001).

EBADR Invalid request descriptor.

EBADRQC Invalid request code.

EBADSLT Invalid slot.

EBUSY Device or resource busy (POSIX.1-2001).

Linux man-pages 6.16 2025-09-21 1651

errno(3) Library Functions Manual errno(3)

ECANCELED Operation canceled (POSIX.1-2001).

ECHILD No child processes (POSIX.1-2001).

ECHRNG Channel number out of range.

ECOMM Communication error on send.

ECONNABORTED
Connection aborted (POSIX.1-2001).

ECONNREFUSED
Connection refused (POSIX.1-2001).

ECONNRESET Connection reset (POSIX.1-2001).

EDEADLK Resource deadlock avoided (POSIX.1-2001).

EDEADLOCK On most architectures, a synonym for EDEADLK. On some archi-
tectures (e.g., Linux MIPS, PowerPC, SPARC), it is a separate error
code "File locking deadlock error".

EDESTADDRREQ
Destination address required (POSIX.1-2001).

EDOM Mathematics argument out of domain of function (POSIX.1, C99).

EDQUOT Disk quota exceeded (POSIX.1-2001).

EEXIST File exists (POSIX.1-2001).

EFAULT Bad address (POSIX.1-2001).

EFBIG File too large (POSIX.1-2001).

EHOSTDOWN Host is down.

EHOSTUNREACH
Host is unreachable (POSIX.1-2001).

EHWPOISON Memory page has hardware error.

EIDRM Identifier removed (POSIX.1-2001).

EILSEQ Invalid or incomplete multibyte or wide character (POSIX.1, C99).

The text shown here is the glibc error description; in POSIX.1, this
error is described as "Illegal byte sequence".

EINPROGRESS Operation in progress (POSIX.1-2001).

EINTR Interrupted function call (POSIX.1-2001); see signal(7).

EINVAL Invalid argument (POSIX.1-2001).

EIO Input/output error (POSIX.1-2001).

EISCONN Socket is connected (POSIX.1-2001).

EISDIR Is a directory (POSIX.1-2001).

Linux man-pages 6.16 2025-09-21 1652

errno(3) Library Functions Manual errno(3)

EISNAM Is a named type file.

EKEYEXPIRED
Key has expired.

EKEYREJECTED
Key was rejected by service.

EKEYREVOKED
Key has been revoked.

EL2HLT Level 2 halted.

EL2NSYNC Level 2 not synchronized.

EL3HLT Level 3 halted.

EL3RST Level 3 reset.

ELIBACC Cannot access a needed shared library.

ELIBBAD Accessing a corrupted shared library.

ELIBMAX Attempting to link in too many shared libraries.

ELIBSCN .lib section in a.out corrupted

ELIBEXEC Cannot exec a shared library directly.

ELNRNG Link number out of range.

ELOOP Too many levels of symbolic links (POSIX.1-2001).

EMEDIUMTYPE
Wrong medium type.

EMFILE Too many open files (POSIX.1-2001). Commonly caused by ex-
ceeding the RLIMIT_NOFILE resource limit described in getr-
limit(2). Can also be caused by exceeding the limit specified in
/proc/sys/fs/nr_open.

EMLINK Too many links (POSIX.1-2001).

EMSGSIZE Message too long (POSIX.1-2001).

EMULTIHOP Multihop attempted (POSIX.1-2001).

ENAMETOOLONG
Filename too long (POSIX.1-2001).

ENETDOWN Network is down (POSIX.1-2001).

ENETRESET Connection aborted by network (POSIX.1-2001).

ENETUNREACH
Network unreachable (POSIX.1-2001).

ENFILE Too many open files in system (POSIX.1-2001). On Linux, this is
probably a result of encountering the /proc/sys/fs/file-max limit (see
proc(5)).

Linux man-pages 6.16 2025-09-21 1653

errno(3) Library Functions Manual errno(3)

ENOANO No anode.

ENOBUFS No buffer space available (POSIX.1 (XSI STREAMS option)).

ENODATA The named attribute does not exist, or the process has no access to
this attribute; see xattr(7).

In POSIX.1-2001 (XSI STREAMS option), this error was described
as "No message is available on the STREAM head read queue".

ENODEV No such device (POSIX.1-2001).

ENOENT No such file or directory (POSIX.1-2001).

Typically, this error results when a specified pathname does not ex-
ist, or one of the components in the directory prefix of a pathname
does not exist, or the specified pathname is a dangling symbolic
link.

ENOEXEC Exec format error (POSIX.1-2001).

ENOKEY Required key not available.

ENOLCK No locks available (POSIX.1-2001).

ENOLINK Link has been severed (POSIX.1-2001).

ENOMEDIUM No medium found.

ENOMEM Not enough space/cannot allocate memory (POSIX.1-2001).

ENOMSG No message of the desired type (POSIX.1-2001).

ENONET Machine is not on the network.

ENOPKG Package not installed.

ENOPROTOOPT
Protocol not available (POSIX.1-2001).

ENOSPC No space left on device (POSIX.1-2001).

ENOSR No STREAM resources (POSIX.1 (XSI STREAMS option)).

ENOSTR Not a STREAM (POSIX.1 (XSI STREAMS option)).

ENOSYS Function not implemented (POSIX.1-2001).

ENOTBLK Block device required.

ENOTCONN The socket is not connected (POSIX.1-2001).

ENOTDIR Not a directory (POSIX.1-2001).

ENOTEMPTY Directory not empty (POSIX.1-2001).

ENOTRECOVERABLE
State not recoverable (POSIX.1-2008).

ENOTSOCK Not a socket (POSIX.1-2001).

Linux man-pages 6.16 2025-09-21 1654

errno(3) Library Functions Manual errno(3)

ENOTSUP Operation not supported (POSIX.1-2001).

ENOTTY Inappropriate I/O control operation (POSIX.1-2001).

ENOTUNIQ Name not unique on network.

ENXIO No such device or address (POSIX.1-2001).

EOPNOTSUPP Operation not supported on socket (POSIX.1-2001).

(ENOTSUP and EOPNOTSUPP have the same value on Linux,
but according to POSIX.1 these error values should be distinct.)

EOVERFLOW Value too large to be stored in data type (POSIX.1-2001).

EOWNERDEAD
Owner died (POSIX.1-2008).

EPERM Operation not permitted (POSIX.1-2001).

EPFNOSUPPORT
Protocol family not supported.

EPIPE Broken pipe (POSIX.1-2001).

EPROTO Protocol error (POSIX.1-2001).

EPROTONOSUPPORT
Protocol not supported (POSIX.1-2001).

EPROTOTYPE Protocol wrong type for socket (POSIX.1-2001).

ERANGE Result too large (POSIX.1, C99).

EREMCHG Remote address changed.

EREMOTE Object is remote.

EREMOTEIO Remote I/O error.

ERESTART Interrupted system call should be restarted.

ERFKILL Operation not possible due to RF-kill.

EROFS Read-only filesystem (POSIX.1-2001).

ESHUTDOWN Cannot send after transport endpoint shutdown.

ESPIPE Invalid seek (POSIX.1-2001).

ESOCKTNOSUPPORT
Socket type not supported.

ESRCH No such process (POSIX.1-2001).

ESTALE Stale file handle (POSIX.1-2001).

This error can occur for NFS and for other filesystems.

ESTRPIPE Streams pipe error.

ETIME Timer expired (POSIX.1 (XSI STREAMS option)).

Linux man-pages 6.16 2025-09-21 1655

errno(3) Library Functions Manual errno(3)

(POSIX.1 says "STREAM ioctl(2) timeout".)

ETIMEDOUT Connection timed out (POSIX.1-2001).

ETOOMANYREFS
Too many references: cannot splice.

ETXTBSY Text file busy (POSIX.1-2001).

EUCLEAN Structure needs cleaning.

EUNATCH Protocol driver not attached.

EUSERS Too many users.

EWOULDBLOCK
Operation would block (may be same value as EAGAIN)
(POSIX.1-2001).

EXDEV Invalid cross-device link (POSIX.1-2001).

EXFULL Exchange full.

NOTES
A common mistake is to do

if (somecall() == -1) {
printf("somecall() failed\n");
if (errno == ...) { ...; }

}

where errno no longer needs to have the value it had upon return from somecall() (i.e.,
it may have been changed by the printf(3)). If the value of errno should be preserved
across a library call, it must be saved:

if (somecall() == -1) {
int errsv = errno;
printf("somecall() failed\n");
if (errsv == ...) { ...; }

}

Note that the POSIX threads APIs do not set errno on error. Instead, on failure they re-
turn an error number as the function result. These error numbers have the same mean-
ings as the error numbers returned in errno by other APIs.

On some ancient systems, <errno.h> was not present or did not declare errno, so that it
was necessary to declare errno manually (i.e., extern int errno). Do not do this. It long
ago ceased to be necessary, and it will cause problems with modern versions of the C li-
brary.

SEE ALSO
errno(1), err(3), error(3), perror(3), strerror(3)

Linux man-pages 6.16 2025-09-21 1656

error(3) Library Functions Manual error(3)

NAME
error, error_at_line, error_message_count, error_one_per_line, error_print_progname -
glibc error reporting functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <error.h>

void error(int status, int errnum, const char * format, ...);
void error_at_line(int status, int errnum, const char * file,

unsigned int line, const char * format, ...);

extern unsigned int error_message_count;
extern int error_one_per_line;

extern typeof(void (void)) *error_print_progname;

DESCRIPTION
error() is a general error-reporting function. It flushes stdout, and then outputs to
stderr the program name, a colon and a space, the message specified by the
printf(3)-style format string format, and, if errnum is nonzero, a second colon and a
space followed by the string given by strerror(errnum). Any arguments required for
format should follow format in the argument list. The output is terminated by a new-
line character.

The program name printed by error() is the value of the global variable program_invo-
cation_name(3). program_invocation_name initially has the same value as main()’s
argv[0]. The value of this variable can be modified to change the output of error().

If status has a nonzero value, then error() calls exit(3) to terminate the program using
the given value as the exit status; otherwise it returns after printing the error message.

The error_at_line() function is exactly the same as error(), except for the addition of
the arguments file and line. The output produced is as for error(), except that after the
program name are written: a colon, the value of file, a colon, and the value of line. The
preprocessor values __LINE__ and __FILE__ may be useful when calling er-
ror_at_line(), but other values can also be used. For example, these arguments could
refer to a location in an input file.

If the global variable error_one_per_line is set nonzero, a sequence of error_at_line()
calls with the same value of file and line will result in only one message (the first) being
output.

The global variable error_message_count counts the number of messages that have been
output by error() and error_at_line().

If the global variable error_print_progname is assigned the address of a function (i.e., is
not NULL), then that function is called instead of prefixing the message with the pro-
gram name and colon. The function should print a suitable string to stderr.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1657

error(3) Library Functions Manual error(3)

Interface Attribute Value
Thread safety MT-Safe localeerror()
Thread safetyerror_at_line() MT-Unsafe race: error_at_line/

error_one_per_line locale

The internal error_one_per_line variable is accessed (without any form of synchroniza-
tion, but since it’s an int used once, it should be safe enough), and if error_one_per_line
is set nonzero, the internal static variables (not exposed to users) used to hold the last
printed filename and line number are accessed and modified without synchronization;
the update is not atomic and it occurs before disabling cancelation, so it can be inter-
rupted only after one of the two variables is modified. After that, error_at_line() is
very much like error().

STANDARDS
GNU.

SEE ALSO
err(3), errno(3), exit(3), perror(3), program_invocation_name(3), strerror(3)

Linux man-pages 6.16 2025-09-21 1658

ether_aton(3) Library Functions Manual ether_aton(3)

NAME
ether_aton, ether_ntoa, ether_ntohost, ether_hostton, ether_line, ether_ntoa_r,
ether_aton_r - Ethernet address manipulation routines

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netinet/ether.h>

char *ether_ntoa(const struct ether_addr *addr);
struct ether_addr *ether_aton(const char *asc);

int ether_ntohost(char *hostname, const struct ether_addr *addr);
int ether_hostton(const char *hostname, struct ether_addr *addr);

int ether_line(const char *line, struct ether_addr *addr,
char *hostname);

/* GNU extensions */
char *ether_ntoa_r(const struct ether_addr *addr, char *buf);

struct ether_addr *ether_aton_r(const char *asc,
struct ether_addr *addr);

DESCRIPTION
ether_aton() converts the 48-bit Ethernet host address asc from the standard hex-digits-
and-colons notation into binary data in network byte order and returns a pointer to it in a
statically allocated buffer, which subsequent calls will overwrite. ether_aton() returns
NULL if the address is invalid.

The ether_ntoa() function converts the Ethernet host address addr given in network
byte order to a string in standard hex-digits-and-colons notation, omitting leading zeros.
The string is returned in a statically allocated buffer, which subsequent calls will over-
write.

The ether_ntohost() function maps an Ethernet address to the corresponding hostname
in /etc/ethers and returns nonzero if it cannot be found.

The ether_hostton() function maps a hostname to the corresponding Ethernet address in
/etc/ethers and returns nonzero if it cannot be found.

The ether_line() function parses a line in /etc/ethers format (ethernet address followed
by whitespace followed by hostname; '#' introduces a comment) and returns an address
and hostname pair, or nonzero if it cannot be parsed. The buffer pointed to by hostname
must be sufficiently long —for example, have the same length as line—.

The functions ether_ntoa_r() and ether_aton_r() are reentrant thread-safe versions of
ether_ntoa() and ether_aton() respectively, and do not use static buffers.

The structure ether_addr is defined in <net/ethernet.h> as:

struct ether_addr {
uint8_t ether_addr_octet[6];

}

Linux man-pages 6.16 2025-09-21 1659

ether_aton(3) Library Functions Manual ether_aton(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafeether_aton(), ether_ntoa()
Thread safety MT-Safeether_ntohost(), ether_hostton(), ether_line(),

ether_ntoa_r(), ether_aton_r()

STANDARDS
None.

HISTORY
4.3BSD, SunOS.

BUGS
In glibc 2.2.5 and earlier, the implementation of ether_line() is broken.

SEE ALSO
ethers(5)

Linux man-pages 6.16 2025-09-21 1660

euidaccess(3) Library Functions Manual euidaccess(3)

NAME
euidaccess, eaccess - check effective user’s permissions for a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

int euidaccess(const char *path, int mode);
int eaccess(const char *path, int mode);

DESCRIPTION
Like access(2), euidaccess() checks permissions and existence of the file identified by
its argument path. However, whereas access(2) performs checks using the real user and
group identifiers of the process, euidaccess() uses the effective identifiers.

mode is a mask consisting of one or more of R_OK, W_OK, X_OK, and F_OK, with
the same meanings as for access(2).

eaccess() is a synonym for euidaccess(), provided for compatibility with some other
systems.

RETURN VALUE
On success (all requested permissions granted), zero is returned. On error (at least one
bit in mode asked for a permission that is denied, or some other error occurred), -1 is re-
turned, and errno is set to indicate the error.

ERRORS
As for access(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeeuidaccess(), eaccess()

VERSIONS
Some other systems have an eaccess() function.

STANDARDS
None.

HISTORY
eaccess()

glibc 2.4.

NOTES
Warning: Using this function to check a process’s permissions on a file before perform-
ing some operation based on that information leads to race conditions: the file permis-
sions may change between the two steps. Generally, it is safer just to attempt the de-
sired operation and handle any permission error that occurs.

This function always dereferences symbolic links. If you need to check the permissions
on a symbolic link, use faccessat(2) with the flags AT_EACCESS and

Linux man-pages 6.16 2025-05-17 1661

euidaccess(3) Library Functions Manual euidaccess(3)

AT_SYMLINK_NOFOLLOW.

SEE ALSO
access(2), chmod(2), chown(2), faccessat(2), open(2), setgid(2), setuid(2), stat(2), cre-
dentials(7), path_resolution(7)

Linux man-pages 6.16 2025-05-17 1662

exec(3) Library Functions Manual exec(3)

NAME
execl, execlp, execle, execv, execvp, execvpe - execute a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

extern char **environ;

int execl(const char *path, const char *arg, ...
/*, (char *) NULL */);

int execlp(const char * file, const char *arg, ...
/*, (char *) NULL */);

int execle(const char *path, const char *arg, ...
/*, (char *) NULL, char *const envp[] */);

int execv(const char *path, char *const argv[]);
int execvp(const char * file, char *const argv[]);
int execvpe(const char * file, char *const argv[], char *const envp[]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

execvpe():
_GNU_SOURCE

DESCRIPTION
The exec() family of functions replaces the current process image with a new process
image. The functions described in this manual page are layered on top of execve(2).
(See the manual page for execve(2) for further details about the replacement of the cur-
rent process image.)

The initial argument for these functions is the name of a file that is to be executed.

The functions can be grouped based on the letters following the "exec" prefix.

l - execl(), execlp(), execle()
The const char *arg and subsequent ellipses can be thought of as arg0, arg1, ..., argn.
Together they describe a list of one or more pointers to null-terminated strings that rep-
resent the argument list available to the executed program. The first argument, by con-
vention, should point to the filename associated with the file being executed. The list of
arguments must be terminated by a null pointer, and, since these are variadic functions,
this pointer must be cast (char *) NULL.

By contrast with the ’l’ functions, the ’v’ functions (below) specify the command-line
arguments of the executed program as a vector.

v - execv(), execvp(), execvpe()
The char *const argv[] argument is an array of pointers to null-terminated strings that
represent the argument list available to the new program. The first argument, by conven-
tion, should point to the filename associated with the file being executed. The array of
pointers must be terminated by a null pointer.

Linux man-pages 6.16 2025-05-17 1663

exec(3) Library Functions Manual exec(3)

e - execle(), execvpe()
The environment of the new process image is specified via the argument envp. The envp
argument is an array of pointers to null-terminated strings and must be terminated by a
null pointer.

All other exec() functions (which do not include ’e’ in the suffix) take the environment
for the new process image from the external variable environ in the calling process.

p - execlp(), execvp(), execvpe()
These functions duplicate the actions of the shell in searching for an executable file if
the specified filename does not contain a slash (/) character. The file is sought in the
colon-separated list of directory pathnames specified in the PATH environment variable.
If this variable isn’t defined, the path list defaults to a list that includes the directories re-
turned by confstr(_CS_PATH) (which typically returns the value "/bin:/usr/bin") and
possibly also the current working directory; see VERSIONS for further details.

execvpe() searches for the program using the value of PATH from the caller’s environ-
ment, not from the envp argument.

If the specified filename includes a slash character, then PATH is ignored, and the file at
the specified pathname is executed.

In addition, certain errors are treated specially.

If permission is denied for a file (the attempted execve(2) failed with the error EAC-
CES), these functions will continue searching the rest of the search path. If no other file
is found, however, they will return with errno set to EACCES.

If the header of a file isn’t recognized (the attempted execve(2) failed with the error
ENOEXEC), these functions will execute the shell (/bin/sh) with the path of the file as
its first argument. (If this attempt fails, no further searching is done.)

All other exec() functions (which do not include ’p’ in the suffix) take as their first argu-
ment a (relative or absolute) pathname that identifies the program to be executed.

RETURN VALUE
The exec() functions return only if an error has occurred. The return value is -1, and er-
rno is set to indicate the error.

ERRORS
All of these functions may fail and set errno for any of the errors specified for execve(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexecl(), execle(), execv()
Thread safety MT-Safe envexeclp(), execvp(), execvpe()

VERSIONS
The default search path (used when the environment does not contain the variable
PATH) shows some variation across systems. It generally includes /bin and /usr/bin (in
that order) and may also include the current working directory. On some other systems,
the current working is included after /bin and /usr/bin, as an anti-Trojan-horse measure.
The glibc implementation long followed the traditional default where the current

Linux man-pages 6.16 2025-05-17 1664

exec(3) Library Functions Manual exec(3)

working directory is included at the start of the search path. However, some code refac-
toring during the development of glibc 2.24 caused the current working directory to be
dropped altogether from the default search path. This accidental behavior change is
considered mildly beneficial, and won’t be reverted.

The behavior of execlp() and execvp() when errors occur while attempting to execute
the file is historic practice, but has not traditionally been documented and is not speci-
fied by the POSIX standard. BSD (and possibly other systems) do an automatic sleep
and retry if ETXTBSY is encountered. Linux treats it as a hard error and returns imme-
diately.

Traditionally, the functions execlp() and execvp() ignored all errors except for the ones
described above and ENOMEM and E2BIG, upon which they returned. They now re-
turn if any error other than the ones described above occurs.

STANDARDS
environ
execl()
execlp()
execle()
execv()
execvp()

POSIX.1-2008.

execvpe()
GNU.

HISTORY
environ
execl()
execlp()
execle()
execv()
execvp()

POSIX.1-2001.

execvpe()
glibc 2.11.

BUGS
Before glibc 2.24, execl() and execle() employed realloc(3) internally and were conse-
quently not async-signal-safe, in violation of the requirements of POSIX.1. This was
fixed in glibc 2.24.

Architecture-specific details
On sparc and sparc64, execv() is provided as a system call by the kernel (with the proto-
type shown above) for compatibility with SunOS. This function is not employed by the
execv() wrapper function on those architectures.

SEE ALSO
sh(1), execve(2), execveat(2), fork(2), ptrace(2), fexecve(3), system(3), environ(7)

Linux man-pages 6.16 2025-05-17 1665

exec(3) Library Functions Manual exec(3)

Linux man-pages 6.16 2025-05-17 1666

exit(3) Library Functions Manual exit(3)

NAME
exit - cause normal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[noreturn]] void exit(int status);

DESCRIPTION
The exit() function causes normal process termination and the least significant byte of
status (i.e., status & 0xFF) is returned to the parent (see wait(2)).

All functions registered with atexit(3) and on_exit(3) are called, in the reverse order of
their registration. (It is possible for one of these functions to use atexit(3) or on_exit(3)
to register an additional function to be executed during exit processing; the new registra-
tion is added to the front of the list of functions that remain to be called.) If one of these
functions does not return (e.g., it calls _exit(2), or kills itself with a signal), then none of
the remaining functions is called, and further exit processing (in particular, flushing of
stdio(3) streams) is abandoned. If a function has been registered multiple times using
atexit(3) or on_exit(3), then it is called as many times as it was registered.

All open stdio(3) streams are flushed and closed. Files created by tmpfile(3) are re-
moved.

The C standard specifies two constants, EXIT_SUCCESS and EXIT_FAILURE, that
may be passed to exit() to indicate successful or unsuccessful termination, respectively.

RETURN VALUE
The exit() function does not return.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:exitexit()

The exit() function uses a global variable that is not protected, so it is not thread-safe.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001, SVr4, 4.3BSD.

NOTES
The behavior is undefined if one of the functions registered using atexit(3) and
on_exit(3) calls either exit() or longjmp(3). Note that a call to execve(2) removes regis-
trations created using atexit(3) and on_exit(3).

The use of EXIT_SUCCESS and EXIT_FAILURE is slightly more portable (to non-
UNIX environments) than the use of 0 and some nonzero value like 1 or -1. In particu-
lar, VMS uses a different convention.

BSD has attempted to standardize exit codes (which some C libraries such as the GNU

Linux man-pages 6.16 2025-09-21 1667

exit(3) Library Functions Manual exit(3)

C library have also adopted); see the file <sysexits.h>.

After exit(), the exit status must be transmitted to the parent process. There are three
cases:

• If the parent has set SA_NOCLDWAIT, or has set the SIGCHLD handler to
SIG_IGN, the status is discarded and the child dies immediately.

• If the parent was waiting on the child, it is notified of the exit status and the child
dies immediately.

• Otherwise, the child becomes a "zombie" process: most of the process resources are
recycled, but a slot containing minimal information about the child process (termina-
tion status, resource usage statistics) is retained in process table. This allows the
parent to subsequently use waitpid(2) (or similar) to learn the termination status of
the child; at that point the zombie process slot is released.

If the implementation supports the SIGCHLD signal, this signal is sent to the parent. If
the parent has set SA_NOCLDWAIT, it is undefined whether a SIGCHLD signal is
sent.

Signals sent to other processes
If the exiting process is a session leader and its controlling terminal is the controlling
terminal of the session, then each process in the foreground process group of this con-
trolling terminal is sent a SIGHUP signal, and the terminal is disassociated from this
session, allowing it to be acquired by a new controlling process.

If the exit of the process causes a process group to become orphaned, and if any member
of the newly orphaned process group is stopped, then a SIGHUP signal followed by a
SIGCONT signal will be sent to each process in this process group. See setpgid(2) for
an explanation of orphaned process groups.

Except in the above cases, where the signalled processes may be children of the termi-
nating process, termination of a process does not in general cause a signal to be sent to
children of that process. However, a process can use the prctl(2) PR_SET_PDEATH-
SIG operation to arrange that it receives a signal if its parent terminates.

SEE ALSO
_exit(2), get_robust_list(2), setpgid(2), wait(2), atexit(3), on_exit(3), tmpfile(3)

Linux man-pages 6.16 2025-09-21 1668

exp(3) Library Functions Manual exp(3)

NAME
exp, expf, expl - base-e exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double exp(double x);
float expf(float x);
long double expl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

expf(), expl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the value of e (the base of natural logarithms) raised to the power
of x.

RETURN VALUE
On success, these functions return the exponential value of x.

If x is a NaN, a NaN is returned.

If x is positive infinity, positive infinity is returned.

If x is negative infinity, +0 is returned.

If the result underflows, a range error occurs, and zero is returned.

If the result overflows, a range error occurs, and the functions return +HUGE_VAL,
+HUGE_VALF, or +HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error, overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UNDER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexp(), expf(), expl()

Linux man-pages 6.16 2025-05-17 1669

exp(3) Library Functions Manual exp(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
cbrt(3), cexp(3), exp10(3), exp2(3), expm1(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 1670

exp2(3) Library Functions Manual exp2(3)

NAME
exp2, exp2f, exp2l - base-2 exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double exp2(double x);
float exp2f(float x);
long double exp2l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

exp2(), exp2f(), exp2l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the value of 2 raised to the power of x.

RETURN VALUE
On success, these functions return the base-2 exponential value of x.

For various special cases, including the handling of infinity and NaN, as well as over-
flows and underflows, see exp(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see exp(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexp2(), exp2f(), exp2l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cbrt(3), cexp2(3), exp(3), exp10(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 1671

exp10(3) Library Functions Manual exp10(3)

NAME
exp10, exp10f, exp10l - base-10 exponential function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

double exp10(double x);
float exp10f(float x);
long double exp10l(long double x);

DESCRIPTION
These functions return the value of 10 raised to the power of x.

RETURN VALUE
On success, these functions return the base-10 exponential value of x.

For various special cases, including the handling of infinity and NaN, as well as over-
flows and underflows, see exp(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see exp(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexp10(), exp10f(), exp10l()

STANDARDS
GNU.

HISTORY
glibc 2.1.

BUGS
Before glibc 2.19, the glibc implementation of these functions did not set errno to
ERANGE when an underflow error occurred.

SEE ALSO
cbrt(3), exp(3), exp2(3), log10(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 1672

expm1(3) Library Functions Manual expm1(3)

NAME
expm1, expm1f, expm1l - exponential minus 1

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double expm1(double x);
float expm1f(float x);
long double expm1l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

expm1():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

expm1f(), expm1l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return a value equivalent to

exp(x) - 1

The result is computed in a way that is accurate even if the value of x is near zero—a
case where exp(x) - 1 would be inaccurate due to subtraction of two numbers that are
nearly equal.

RETURN VALUE
On success, these functions return exp(x) - 1.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity, positive infinity is returned.

If x is negative infinity, -1 is returned.

If the result overflows, a range error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error, overflow
errno is set to ERANGE (but see BUGS). An overflow floating-point exception
(FE_OVERFLOW) is raised.

Linux man-pages 6.16 2025-05-17 1673

expm1(3) Library Functions Manual expm1(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeexpm1(), expm1f(), expm1l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001. BSD.

BUGS
Before glibc 2.17, on certain architectures (e.g., x86, but not x86_64) expm1() raised a
bogus underflow floating-point exception for some large negative x values (where the
function result approaches -1).

Before approximately glibc 2.11, expm1() raised a bogus invalid floating-point excep-
tion in addition to the expected overflow exception, and returned a NaN instead of posi-
tive infinity, for some large positive x values.

Before glibc 2.11, the glibc implementation did not set errno to ERANGE when a
range error occurred.

SEE ALSO
exp(3), log(3), log1p(3)

Linux man-pages 6.16 2025-05-17 1674

fabs(3) Library Functions Manual fabs(3)

NAME
fabs, fabsf, fabsl - absolute value of floating-point number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fabs(double x);
float fabsf(float x);
long double fabsl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fabsf(), fabsl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the absolute value of the floating-point number x.

RETURN VALUE
These functions return the absolute value of x.

If x is a NaN, a NaN is returned.

If x is -0, +0 is returned.

If x is negative infinity or positive infinity, positive infinity is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefabs(), fabsf(), fabsl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
abs(3), cabs(3), ceil(3), floor(3), labs(3), rint(3)

Linux man-pages 6.16 2025-05-17 1675

fclose(3) Library Functions Manual fclose(3)

NAME
fclose - close a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fclose(FILE *stream);

DESCRIPTION
The fclose() function flushes the stream pointed to by stream (writing any buffered out-
put data using fflush(3)) and closes the underlying file descriptor.

RETURN VALUE
Upon successful completion, 0 is returned. Otherwise, EOF is returned and errno is set
to indicate the error. In either case, any further access (including another call to
fclose()) to the stream results in undefined behavior.

ERRORS
EBADF

The file descriptor underlying stream is not valid.

The fclose() function may also fail and set errno for any of the errors specified for the
routines close(2), write(2), or fflush(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefclose()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
Note that fclose() flushes only the user-space buffers provided by the C library. To en-
sure that the data is physically stored on disk the kernel buffers must be flushed too, for
example, with sync(2) or fsync(2).

SEE ALSO
close(2), fcloseall(3), fflush(3), fileno(3), fopen(3), setbuf(3)

Linux man-pages 6.16 2025-09-21 1676

fcloseall(3) Library Functions Manual fcloseall(3)

NAME
fcloseall - close all open streams

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdio.h>

int fcloseall(void);

DESCRIPTION
The fcloseall() function closes all of the calling process’s open streams. Buffered output
for each stream is written before it is closed (as for fflush(3)); buffered input is dis-
carded.

The standard streams, stdin, stdout, and stderr are also closed.

RETURN VALUE
This function returns 0 if all files were successfully closed; on error, EOF is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:streamsfcloseall()

The fcloseall() function does not lock the streams, so it is not thread-safe.

STANDARDS
GNU.

SEE ALSO
close(2), fclose(3), fflush(3), fopen(3), setbuf(3)

Linux man-pages 6.16 2025-05-17 1677

fdim(3) Library Functions Manual fdim(3)

NAME
fdim, fdimf, fdiml - positive difference

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fdim(double x, double y);
float fdimf(float x, float y);
long double fdiml(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fdimf(), fdiml():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the positive difference, max(x-y,0), between their arguments.

RETURN VALUE
On success, these functions return the positive difference.

If x or y is a NaN, a NaN is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefdim(), fdimf(), fdiml()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

BUGS
Before glibc 2.24 on certain architectures (e.g., x86, but not x86_64) these functions did
not set errno.

SEE ALSO
fmax(3)

Linux man-pages 6.16 2025-05-17 1678

fdim(3) Library Functions Manual fdim(3)

Linux man-pages 6.16 2025-05-17 1679

fenv(3) Library Functions Manual fenv(3)

NAME
feclearexcept, fegetexceptflag, feraiseexcept, fesetexceptflag, fetestexcept, fegetenv,
fegetround, feholdexcept, fesetround, fesetenv, feupdateenv, feenableexcept, fedisable-
except, fegetexcept - floating-point rounding and exception handling

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <fenv.h>

int feclearexcept(int excepts);
int fegetexceptflag(fexcept_t * flagp, int excepts);
int feraiseexcept(int excepts);
int fesetexceptflag(const fexcept_t * flagp, int excepts);
int fetestexcept(int excepts);

int fegetround(void);
int fesetround(int rounding_mode);

int fegetenv(fenv_t *envp);
int feholdexcept(fenv_t *envp);
int fesetenv(const fenv_t *envp);
int feupdateenv(const fenv_t *envp);

DESCRIPTION
These eleven functions were defined in C99, and describe the handling of floating-point
rounding and exceptions (overflow, zero-divide, etc.).

Exceptions
The divide-by-zero exception occurs when an operation on finite numbers produces in-
finity as exact answer.

The overflow exception occurs when a result has to be represented as a floating-point
number, but has (much) larger absolute value than the largest (finite) floating-point num-
ber that is representable.

The underflow exception occurs when a result has to be represented as a floating-point
number, but has smaller absolute value than the smallest positive normalized floating-
point number (and would lose much accuracy when represented as a denormalized num-
ber).

The inexact exception occurs when the rounded result of an operation is not equal to the
infinite precision result. It may occur whenever overflow or underflow occurs.

The invalid exception occurs when there is no well-defined result for an operation, as
for 0/0 or infinity - infinity or sqrt(-1).

Exception handling
Exceptions are represented in two ways: as a single bit (exception present/absent), and
these bits correspond in some implementation-defined way with bit positions in an inte-
ger, and also as an opaque structure that may contain more information about the excep-
tion (perhaps the code address where it occurred).

Each of the macros FE_DIVBYZERO, FE_INEXACT, FE_INVALID,

Linux man-pages 6.16 2025-05-17 1680

fenv(3) Library Functions Manual fenv(3)

FE_OVERFLOW, FE_UNDERFLOW is defined when the implementation supports
handling of the corresponding exception, and if so then defines the corresponding bit(s),
so that one can call exception handling functions, for example, using the integer argu-
ment FE_OVERFLOW|FE_UNDERFLOW. Other exceptions may be supported.
The macro FE_ALL_EXCEPT is the bitwise OR of all bits corresponding to supported
exceptions.

The feclearexcept() function clears the supported exceptions represented by the bits in
its argument.

The fegetexceptflag() function stores a representation of the state of the exception flags
represented by the argument excepts in the opaque object *flagp.

The feraiseexcept() function raises the supported exceptions represented by the bits in
excepts.

The fesetexceptflag() function sets the complete status for the exceptions represented by
excepts to the value *flagp. This value must have been obtained by an earlier call of
fegetexceptflag() with a last argument that contained all bits in excepts.

The fetestexcept() function returns a word in which the bits are set that were set in the
argument excepts and for which the corresponding exception is currently set.

Rounding mode
The rounding mode determines how the result of floating-point operations is treated
when the result cannot be exactly represented in the significand. Various rounding
modes may be provided: round to nearest (the default), round up (toward positive infin-
ity), round down (toward negative infinity), and round toward zero.

Each of the macros FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, and
FE_TOWARDZERO is defined when the implementation supports getting and setting
the corresponding rounding direction.

The fegetround() function returns the macro corresponding to the current rounding
mode.

The fesetround() function sets the rounding mode as specified by its argument and re-
turns zero when it was successful.

C99 and POSIX.1-2008 specify an identifier, FLT_ROUNDS, defined in <float.h>,
which indicates the implementation-defined rounding behavior for floating-point addi-
tion. This identifier has one of the following values:

-1 The rounding mode is not determinable.

0 Rounding is toward 0.

1 Rounding is toward nearest number.

2 Rounding is toward positive infinity.

3 Rounding is toward negative infinity.

Other values represent machine-dependent, nonstandard rounding modes.

The value of FLT_ROUNDS should reflect the current rounding mode as set by fes-
etround() (but see BUGS).

Linux man-pages 6.16 2025-05-17 1681

fenv(3) Library Functions Manual fenv(3)

Floating-point environment
The entire floating-point environment, including control modes and status flags, can be
handled as one opaque object, of type fenv_t. The default environment is denoted by
FE_DFL_ENV (of type const fenv_t *). This is the environment setup at program start
and it is defined by ISO C to have round to nearest, all exceptions cleared and a nonstop
(continue on exceptions) mode.

The fegetenv() function saves the current floating-point environment in the object *envp.

The feholdexcept() function does the same, then clears all exception flags, and sets a
nonstop (continue on exceptions) mode, if available. It returns zero when successful.

The fesetenv() function restores the floating-point environment from the object *envp.
This object must be known to be valid, for example, the result of a call to fegetenv() or
feholdexcept() or equal to FE_DFL_ENV. This call does not raise exceptions.

The feupdateenv() function installs the floating-point environment represented by the
object *envp, except that currently raised exceptions are not cleared. After calling this
function, the raised exceptions will be a bitwise OR of those previously set with those in
*envp. As before, the object *envp must be known to be valid.

RETURN VALUE
These functions return zero on success and nonzero if an error occurred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyfeclearexcept(), fegetexceptflag(), feraiseexcept(),
fesetexceptflag(), fetestexcept(), fegetround(),
fesetround(), fegetenv(), feholdexcept(), fesetenv(),
feupdateenv(), feenableexcept(), fedisableexcept(),
fegetexcept()

MT-Safe

STANDARDS
C11, POSIX.1-2008, IEC 60559 (IEC 559:1989), ANSI/IEEE 854.

HISTORY
C99, POSIX.1-2001. glibc 2.1.

NOTES
glibc notes

If possible, the GNU C Library defines a macro FE_NOMASK_ENV which represents
an environment where every exception raised causes a trap to occur. You can test for
this macro using #ifdef. It is defined only if _GNU_SOURCE is defined. The C99
standard does not define a way to set individual bits in the floating-point mask, for ex-
ample, to trap on specific flags. Since glibc 2.2, glibc supports the functions feenable-
except() and fedisableexcept() to set individual floating-point traps, and fegetexcept()
to query the state.

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <fenv.h>

int feenableexcept(int excepts);

Linux man-pages 6.16 2025-05-17 1682

fenv(3) Library Functions Manual fenv(3)

int fedisableexcept(int excepts);
int fegetexcept(void);

The feenableexcept() and fedisableexcept() functions enable (disable) traps for each of
the exceptions represented by excepts and return the previous set of enabled exceptions
when successful, and -1 otherwise. The fegetexcept() function returns the set of all
currently enabled exceptions.

BUGS
C99 specifies that the value of FLT_ROUNDS should reflect changes to the current
rounding mode, as set by fesetround(). Currently, this does not occur: FLT_ROUNDS
always has the value 1.

SEE ALSO
math_error(7)

Linux man-pages 6.16 2025-05-17 1683

ferror(3) Library Functions Manual ferror(3)

NAME
clearerr, feof, ferror - check and reset stream status

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

void clearerr(FILE *stream);
int feof(FILE *stream);
int ferror(FILE *stream);

DESCRIPTION
The function clearerr() clears the end-of-file and error indicators for the stream pointed
to by stream.

The function feof() tests the end-of-file indicator for the stream pointed to by stream, re-
turning nonzero if it is set. The end-of-file indicator can be cleared only by the function
clearerr().

The function ferror() tests the error indicator for the stream pointed to by stream, re-
turning nonzero if it is set. The error indicator can be reset only by the clearerr() func-
tion.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
The feof() function returns nonzero if the end-of-file indicator is set for stream; other-
wise, it returns zero.

The ferror() function returns nonzero if the error indicator is set for stream; otherwise,
it returns zero.

ERRORS
These functions should not fail and do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeclearerr(), feof(), ferror()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

NOTES
POSIX.1-2008 specifies that these functions shall not change the value of errno if
stream is valid.

CAVEATS
Normally, programs should read the return value of an input function, such as fgetc(3),
before using functions of the feof(3) family. Only when the function returned the sen-
tinel value EOF it makes sense to distinguish between the end of a file or an error with

Linux man-pages 6.16 2025-05-17 1684

ferror(3) Library Functions Manual ferror(3)

feof(3) or ferror(3).

SEE ALSO
open(2), fdopen(3), fileno(3), stdio(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 1685

fexecve(3) Library Functions Manual fexecve(3)

NAME
fexecve - execute program specified via file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int fexecve(int fd , char *const argv[], char *const envp[]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fexecve():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
fexecve() performs the same task as execve(2), with the difference that the file to be exe-
cuted is specified via a file descriptor, fd , rather than via a pathname. The file descrip-
tor fd must be opened read-only (O_RDONLY) or with the O_PATH flag and the
caller must have permission to execute the file that it refers to.

RETURN VALUE
A successful call to fexecve() never returns. On error, the function does return, with a
result value of -1, and errno is set to indicate the error.

ERRORS
Errors are as for execve(2), with the following additions:

EINVAL
fd is not a valid file descriptor, or argv is NULL, or envp is NULL.

ENOENT
The close-on-exec flag is set on fd , and fd refers to a script. See BUGS.

ENOSYS
The kernel does not provide the execveat(2) system call, and the /proc filesystem
could not be accessed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefexecve()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.2.

On Linux with glibc versions 2.26 and earlier, fexecve() is implemented using the
proc(5) filesystem, so /proc needs to be mounted and available at the time of the call.
Since glibc 2.27, if the underlying kernel supports the execveat(2) system call, then

Linux man-pages 6.16 2025-05-17 1686

fexecve(3) Library Functions Manual fexecve(3)

fexecve() is implemented using that system call, with the benefit that /proc does not
need to be mounted.

NOTES
The idea behind fexecve() is to allow the caller to verify (checksum) the contents of an
executable before executing it. Simply opening the file, checksumming the contents,
and then doing an execve(2) would not suffice, since, between the two steps, the file-
name, or a directory prefix of the pathname, could have been exchanged (by, for exam-
ple, modifying the target of a symbolic link). fexecve() does not mitigate the problem
that the contents of a file could be changed between the checksumming and the call to
fexecve(); for that, the solution is to ensure that the permissions on the file prevent it
from being modified by malicious users.

The natural idiom when using fexecve() is to set the close-on-exec flag on fd , so that the
file descriptor does not leak through to the program that is executed. This approach is
natural for two reasons. First, it prevents file descriptors being consumed unnecessarily.
(The executed program normally has no need of a file descriptor that refers to the pro-
gram itself.) Second, if fexecve() is used recursively, employing the close-on-exec flag
prevents the file descriptor exhaustion that would result from the fact that each step in
the recursion would cause one more file descriptor to be passed to the new program.
(But see BUGS.)

BUGS
If fd refers to a script (i.e., it is an executable text file that names a script interpreter
with a first line that begins with the characters #!) and the close-on-exec flag has been
set for fd , then fexecve() fails with the error ENOENT. This error occurs because, by
the time the script interpreter is executed, fd has already been closed because of the
close-on-exec flag. Thus, the close-on-exec flag can’t be set on fd if it refers to a script,
leading to the problems described in NOTES.

SEE ALSO
execve(2), execveat(2)

Linux man-pages 6.16 2025-05-17 1687

fflush(3) Library Functions Manual fflush(3)

NAME
fflush - flush a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fflush(FILE *_Nullable stream);

DESCRIPTION
For output streams, fflush() forces a write of all user-space buffered data for the given
output or update stream via the stream’s underlying write function.

For input streams associated with seekable files (e.g., disk files, but not pipes or termi-
nals), fflush() discards any buffered data that has been fetched from the underlying file,
but has not been consumed by the application.

The open status of the stream is unaffected.

If the stream argument is NULL, fflush() flushes all open output streams.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
Upon successful completion 0 is returned. Otherwise, EOF is returned and errno is set
to indicate the error.

ERRORS
EBADF

stream is not an open stream, or is not open for writing.

The function fflush() may also fail and set errno for any of the errors specified for
write(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefflush()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001, POSIX.1-2008.

POSIX.1-2001 did not specify the behavior for flushing of input streams, but the behav-
ior is specified in POSIX.1-2008.

NOTES
Note that fflush() flushes only the user-space buffers provided by the C library. To en-
sure that the data is physically stored on disk the kernel buffers must be flushed too, for
example, with sync(2) or fsync(2).

Linux man-pages 6.16 2025-05-17 1688

fflush(3) Library Functions Manual fflush(3)

SEE ALSO
fsync(2), sync(2), write(2), fclose(3), fileno(3), fopen(3), fpurge(3), setbuf(3), un-
locked_stdio(3)

Linux man-pages 6.16 2025-05-17 1689

ffs(3) Library Functions Manual ffs(3)

NAME
ffs, ffsl, ffsll - find first bit set in a word

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

int ffs(int i);
int ffsl(long i);
int ffsll(long long i);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ffs():
Since glibc 2.12:

_XOPEN_SOURCE >= 700
|| ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

Before glibc 2.12:
none

ffsl(), ffsll():
Since glibc 2.27:

_DEFAULT_SOURCE
Before glibc 2.27:

_GNU_SOURCE

DESCRIPTION
The ffs() function returns the position of the first (least significant) bit set in the word i.
The least significant bit is position 1 and the most significant position is, for example, 32
or 64. The functions ffsll() and ffsl() do the same but take arguments of possibly differ-
ent size.

RETURN VALUE
These functions return the position of the first bit set, or 0 if no bits are set in i.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeffs(), ffsl(), ffsll()

STANDARDS
ffs() POSIX.1-2001, POSIX.1-2008, 4.3BSD.

ffsl()
ffsll()

GNU.

SEE ALSO
memchr(3)

Linux man-pages 6.16 2025-05-17 1690

ffs(3) Library Functions Manual ffs(3)

Linux man-pages 6.16 2025-05-17 1691

fgetc(3) Library Functions Manual fgetc(3)

NAME
fgetc, fgets, getchar, ungetc - input of characters and strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fgetc(FILE *stream);
int getchar(void);

char *fgets(int size;
char s[restrict size], int size, FILE *restrict stream);

int ungetc(int c, FILE *stream);

DESCRIPTION
fgetc() reads the next character from stream and returns it as an unsigned char cast to an
int, or EOF on end of file or error.

getchar() is equivalent to fgetc(stdin).

fgets() reads in at most one less than size characters from stream and stores them into
the buffer pointed to by s. Reading stops after an EOF or a newline. If a newline is
read, it is stored into the buffer. A terminating null byte ('\0') is stored after the last char-
acter in the buffer.

ungetc() pushes c back to stream, cast to unsigned char, where it is available for subse-
quent read operations. Pushed-back characters will be returned in reverse order; only
one pushback is guaranteed.

Calls to the functions described here can be mixed with each other and with calls to
other input functions from the stdio library for the same input stream.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
fgetc() and getchar() return the character read as an unsigned char cast to an int or
EOF on end of file or error.

fgets() returns s on success, and NULL on error or when end of file occurs while no
characters have been read.

ungetc() returns c on success, or EOF on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefgetc(), fgets(), getchar(), ungetc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

Linux man-pages 6.16 2025-10-10 1692

fgetc(3) Library Functions Manual fgetc(3)

NOTES
It is not advisable to mix calls to input functions from the stdio library with low-level
calls to read(2) for the file descriptor associated with the input stream; the results will be
undefined and very probably not what you want.

SEE ALSO
read(2), write(2), ferror(3), fgetwc(3), fgetws(3), fopen(3), fread(3), fseek(3), getline(3),
gets(3), getwchar(3), puts(3), scanf(3), ungetwc(3), unlocked_stdio(3), fea-
ture_test_macros(7)

Linux man-pages 6.16 2025-10-10 1693

fgetgrent(3) Library Functions Manual fgetgrent(3)

NAME
fgetgrent - get group file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <sys/types.h>
#include <grp.h>

struct group *fgetgrent(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fgetgrent():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The fgetgrent() function returns a pointer to a structure containing the group informa-
tion from the file referred to by stream. The first time it is called it returns the first en-
try; thereafter, it returns successive entries. The file referred to by stream must have the
same format as /etc/group (see group(5)).

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

RETURN VALUE
The fgetgrent() function returns a pointer to a group structure, or NULL if there are no
more entries or an error occurs. In the event of an error, errno is set to indicate the error.

ERRORS
ENOMEM

Insufficient memory to allocate group structure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:fgetgrentfgetgrent()

STANDARDS
None.

Linux man-pages 6.16 2025-09-21 1694

fgetgrent(3) Library Functions Manual fgetgrent(3)

HISTORY
SVr4.

SEE ALSO
endgrent(3), fgetgrent_r(3), fopen(3), getgrent(3), getgrgid(3), getgrnam(3), putgrent(3),
setgrent(3), group(5)

Linux man-pages 6.16 2025-09-21 1695

fgetpwent(3) Library Functions Manual fgetpwent(3)

NAME
fgetpwent - get password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>

struct passwd *fgetpwent(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fgetpwent():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The fgetpwent() function returns a pointer to a structure containing the broken out fields
of a line in the file stream. The first time it is called it returns the first entry; thereafter,
it returns successive entries. The file referred to by stream must have the same format
as /etc/passwd (see passwd(5)).

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* real name */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

RETURN VALUE
The fgetpwent() function returns a pointer to a passwd structure, or NULL if there are
no more entries or an error occurs. In the event of an error, errno is set to indicate the
error.

ERRORS
ENOMEM

Insufficient memory to allocate passwd structure.

FILES
/etc/passwd

password database file

Linux man-pages 6.16 2025-05-17 1696

fgetpwent(3) Library Functions Manual fgetpwent(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:fgetpwentfgetpwent()

STANDARDS
None.

HISTORY
SVr4.

SEE ALSO
endpwent(3), fgetpwent_r(3), fopen(3), getpw(3), getpwent(3), getpwnam(3), getp-
wuid(3), putpwent(3), setpwent(3), passwd(5)

Linux man-pages 6.16 2025-05-17 1697

fgetwc(3) Library Functions Manual fgetwc(3)

NAME
fgetwc, getwc - read a wide character from a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fgetwc(FILE *stream);
wint_t getwc(FILE *stream);

DESCRIPTION
The fgetwc() function is the wide-character equivalent of the fgetc(3) function. It reads
a wide character from stream and returns it. If the end of stream is reached, or if fer-
ror(stream) becomes true, it returns WEOF. If a wide-character conversion error oc-
curs, it sets errno to EILSEQ and returns WEOF.

The getwc() function or macro functions identically to fgetwc(). It may be implemented
as a macro, and may evaluate its argument more than once. There is no reason ever to
use it.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
On success, fgetwc() returns the next wide-character from the stream. Otherwise,
WEOF is returned, and errno is set to indicate the error.

ERRORS
Apart from the usual ones, there is

EILSEQ
The data obtained from the input stream does not form a valid character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefgetwc(), getwc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of fgetwc() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fgetwc() will actually read a multibyte sequence from the stream and then
convert it to a wide character.

SEE ALSO
fgetws(3), fputwc(3), ungetwc(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 1698

fgetws(3) Library Functions Manual fgetws(3)

NAME
fgetws - read a wide-character string from a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *fgetws(int n;
wchar_t ws[restrict n], int n, FILE *restrict stream);

DESCRIPTION
The fgetws() function is the wide-character equivalent of the fgets(3) function. It reads
a string of at most n-1 wide characters into the wide-character array pointed to by ws,
and adds a terminating null wide character (L'\0'). It stops reading wide characters after
it has encountered and stored a newline wide character. It also stops when end of stream
is reached.

The programmer must ensure that there is room for at least n wide characters at ws.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The fgetws() function, if successful, returns ws. If end of stream was already reached or
if an error occurred, it returns NULL.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefgetws()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of fgetws() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fgetws() will actually read a multibyte string from the stream and then con-
vert it to a wide-character string.

This function is unreliable, because it does not permit to deal properly with null wide
characters that may be present in the input.

SEE ALSO
fgetwc(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-06-28 1699

fileno(3) Library Functions Manual fileno(3)

NAME
fileno - obtain file descriptor of a stdio stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fileno(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fileno():
_POSIX_C_SOURCE

DESCRIPTION
The function fileno() examines the argument stream and returns the integer file descrip-
tor used to implement this stream. The file descriptor is still owned by stream and will
be closed when fclose(3) is called. Duplicate the file descriptor with dup(2) before pass-
ing it to code that might close it.

For the nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
On success, fileno() returns the file descriptor associated with stream. On failure, -1 is
returned and errno is set to indicate the error.

ERRORS
EBADF

stream is not associated with a file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefileno()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
open(2), fdopen(3), stdio(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 1700

finite(3) Library Functions Manual finite(3)

NAME
finite, finitef, finitel, isinf, isinff, isinfl, isnan, isnanf, isnanl - BSD floating-point classi-
fication functions

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int finite(double x);
int finitef(float x);
int finitel(long double x);

int isinf(double x);
int isinff(float x);
int isinfl(long double x);

int isnan(double x);
int isnanf(float x);
int isnanl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

finite(), finitef(), finitel():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isinf():
_XOPEN_SOURCE >= 600 || _ISOC99_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isinff(), isinfl():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isnan():
_XOPEN_SOURCE || _ISOC99_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isnanf(), isnanl():
_XOPEN_SOURCE >= 600

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The finite(), finitef(), and finitel() functions return a nonzero value if x is neither infinite
nor a "not-a-number" (NaN) value, and 0 otherwise.

The isnan(), isnanf(), and isnanl() functions return a nonzero value if x is a NaN value,
and 0 otherwise.

The isinf(), isinff(), and isinfl () functions return 1 if x is positive infinity, -1 if x is

Linux man-pages 6.16 2025-05-17 1701

finite(3) Library Functions Manual finite(3)

negative infinity, and 0 otherwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefinite(), finitef(), finitel(), isinf(), isinff(), isinfl(),
isnan(), isnanf(), isnanl()

NOTES
Note that these functions are obsolete. C99 defines macros isfinite(), isinf(), and is-
nan() (for all types) replacing them. Further note that the C99 isinf() has weaker guar-
antees on the return value. See fpclassify(3).

SEE ALSO
fpclassify(3)

Linux man-pages 6.16 2025-05-17 1702

flockfile(3) Library Functions Manual flockfile(3)

NAME
flockfile, ftrylockfile, funlockfile - lock FILE for stdio

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

void flockfile(FILE * filehandle);
int ftrylockfile(FILE * filehandle);
void funlockfile(FILE * filehandle);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
/* Since glibc 2.24: */ _POSIX_C_SOURCE >= 199309L

|| /* glibc <= 2.23: */ _POSIX_C_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The stdio functions are thread-safe. This is achieved by assigning to each FILE object a
lockcount and (if the lockcount is nonzero) an owning thread. For each library call,
these functions wait until the FILE object is no longer locked by a different thread, then
lock it, do the requested I/O, and unlock the object again.

(Note: this locking has nothing to do with the file locking done by functions like flock(2)
and lockf(3).)

All this is invisible to the C-programmer, but there may be two reasons to wish for more
detailed control. On the one hand, maybe a series of I/O actions by one thread belongs
together, and should not be interrupted by the I/O of some other thread. On the other
hand, maybe the locking overhead should be avoided for greater efficiency.

To this end, a thread can explicitly lock the FILE object, then do its series of I/O ac-
tions, then unlock. This prevents other threads from coming in between. If the reason
for doing this was to achieve greater efficiency, one does the I/O with the nonlocking
versions of the stdio functions: with getc_unlocked(3) and putc_unlocked(3) instead of
getc(3) and putc(3).

The flockfile() function waits for *filehandle to be no longer locked by a different
thread, then makes the current thread owner of *filehandle, and increments the lock-
count.

The funlockfile() function decrements the lock count.

The ftrylockfile() function is a nonblocking version of flockfile(). It does nothing in
case some other thread owns *filehandle, and it obtains ownership and increments the
lockcount otherwise.

RETURN VALUE
The ftrylockfile() function returns zero for success (the lock was obtained), and nonzero
for failure.

Linux man-pages 6.16 2025-05-17 1703

flockfile(3) Library Functions Manual flockfile(3)

ERRORS
None.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeflockfile(), ftrylockfile(), funlockfile()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

These functions are available when _POSIX_THREAD_SAFE_FUNCTIONS is de-
fined.

SEE ALSO
unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 1704

floor(3) Library Functions Manual floor(3)

NAME
floor, floorf, floorl - largest integral value not greater than argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double floor(double x);
float floorf(float x);
long double floorl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

floorf(), floorl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the largest integral value that is not greater than x.

For example, floor(0.5) is 0.0, and floor(-0.5) is -1.0.

RETURN VALUE
These functions return the floor of x.

If x is integral, +0, -0, NaN, or an infinity, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefloor(), floorf(), floorl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SUSv2 and POSIX.1-2001 contain text about overflow (which might set errno to
ERANGE, or raise an FE_OVERFLOW exception). In practice, the result cannot
overflow on any current machine, so this error-handling stuff was just nonsense. (More
precisely, overflow can happen only when the maximum value of the exponent is smaller
than the number of mantissa bits. For the IEEE-754 standard 32-bit and 64-bit floating-
point numbers the maximum value of the exponent is 127 (respectively, 1023), and the
number of mantissa bits including the implicit bit is 24 (respectively, 53).) This was re-
moved in POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 1705

floor(3) Library Functions Manual floor(3)

SEE ALSO
ceil(3), lrint(3), nearbyint(3), rint(3), round(3), trunc(3)

Linux man-pages 6.16 2025-05-17 1706

fma(3) Library Functions Manual fma(3)

NAME
fma, fmaf, fmal - floating-point multiply and add

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fma(double x, double y, double z);
float fmaf(float x, float y, float z);
long double fmal(long double x, long double y, long double z);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fma(), fmaf(), fmal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions compute x * y + z. The result is rounded as one ternary operation ac-
cording to the current rounding mode (see fenv(3)).

RETURN VALUE
These functions return the value of x * y + z, rounded as one ternary operation.

If x or y is a NaN, a NaN is returned.

If x times y is an exact infinity, and z is an infinity with the opposite sign, a domain er-
ror occurs, and a NaN is returned.

If one of x or y is an infinity, the other is 0, and z is not a NaN, a domain error occurs,
and a NaN is returned.

If one of x or y is an infinity, and the other is 0, and z is a NaN, a domain error occurs,
and a NaN is returned.

If x times y is not an infinity times zero (or vice versa), and z is a NaN, a NaN is re-
turned.

If the result overflows, a range error occurs, and an infinity with the correct sign is re-
turned.

If the result underflows, a range error occurs, and a signed 0 is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x * y + z or x * y is invalid.
An invalid floating-point exception (FE_INVALID) is raised.

Range error: result overflow
An overflow floating-point exception (FE_OVERFLOW) is raised.

Linux man-pages 6.16 2025-09-06 1707

fma(3) Library Functions Manual fma(3)

Range error: result underflow
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefma(), fmaf(), fmal()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
remainder(3), remquo(3)

Linux man-pages 6.16 2025-09-06 1708

fmax(3) Library Functions Manual fmax(3)

NAME
fmax, fmaxf, fmaxl - determine maximum of two floating-point numbers

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fmax(double x, double y);
float fmaxf(float x, float y);
long double fmaxl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmax(), fmaxf(), fmaxl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the larger value of x and y.

RETURN VALUE
These functions return the maximum of x and y.

If one argument is a NaN, the other argument is returned.

If both arguments are NaN, a NaN is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmax(), fmaxf(), fmaxl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
fdim(3), fmin(3)

Linux man-pages 6.16 2025-05-17 1709

fmemopen(3) Library Functions Manual fmemopen(3)

NAME
fmemopen - open memory as stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *fmemopen(size_t size;
void buf [size], size_t size, const char *mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmemopen():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The fmemopen() function opens a stream that permits the access specified by mode.
The stream allows I/O to be performed on the string or memory buffer pointed to by
buf .

The mode argument specifies the semantics of I/O on the stream, and is one of the fol-
lowing:

r The stream is opened for reading.

w The stream is opened for writing.

a Append; open the stream for writing, with the initial buffer position set to the
first null byte.

r+ Open the stream for reading and writing.

w+ Open the stream for reading and writing. The buffer contents are truncated (i.e.,
'\0' is placed in the first byte of the buffer).

a+ Append; open the stream for reading and writing, with the initial buffer position
set to the first null byte.

The stream maintains the notion of a current position, the location where the next I/O
operation will be performed. The current position is implicitly updated by I/O opera-
tions. It can be explicitly updated using fseek(3), and determined using ftell(3). In all
modes other than append, the initial position is set to the start of the buffer. In append
mode, if no null byte is found within the buffer, then the initial position is size+1.

If buf is specified as NULL, then fmemopen() allocates a buffer of size bytes. This is
useful for an application that wants to write data to a temporary buffer and then read it
back again. The initial position is set to the start of the buffer. The buffer is automati-
cally freed when the stream is closed. Note that the caller has no way to obtain a pointer
to the temporary buffer allocated by this call (but see open_memstream(3)).

If buf is not NULL, then it should point to a buffer of at least size bytes allocated by the
caller.

Linux man-pages 6.16 2025-09-21 1710

fmemopen(3) Library Functions Manual fmemopen(3)

When a stream that has been opened for writing is flushed (fflush(3)) or closed
(fclose(3)), a null byte is written at the end of the buffer if there is space. The caller
should ensure that an extra byte is available in the buffer (and that size counts that byte)
to allow for this.

In a stream opened for reading, null bytes ('\0') in the buffer do not cause read operations
to return an end-of-file indication. A read from the buffer will indicate end-of-file only
when the current buffer position advances size bytes past the start of the buffer.

Write operations take place either at the current position (for modes other than append),
or at the current size of the stream (for append modes).

Attempts to write more than size bytes to the buffer result in an error. By default, such
errors will be visible (by the absence of data) only when the stdio buffer is flushed. Dis-
abling buffering with the following call may be useful to detect errors at the time of an
output operation:

setbuf(stream, NULL);

RETURN VALUE
Upon successful completion, fmemopen() returns a FILE pointer. Otherwise, NULL is
returned and errno is set to indicate the error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmemopen(),

STANDARDS
POSIX.1-2008.

HISTORY
glibc 1.0.x. POSIX.1-2008.

POSIX.1-2008 specifies that 'b' in mode shall be ignored. However, Technical Corrigen-
dum 1 adjusts the standard to allow implementation-specific treatment for this case, thus
permitting the glibc treatment of 'b'.

With glibc 2.22, binary mode (see below) was removed, many longstanding bugs in the
implementation of fmemopen() were fixed, and a new versioned symbol was created for
this interface.

Binary mode
From glibc 2.9 to glibc 2.21, the glibc implementation of fmemopen() supported a "bi-
nary" mode, enabled by specifying the letter 'b' as the second character in mode. In this
mode, writes don’t implicitly add a terminating null byte, and fseek(3) SEEK_END is
relative to the end of the buffer (i.e., the value specified by the size argument), rather
than the current string length.

An API bug afflicted the implementation of binary mode: to specify binary mode, the 'b'
must be the second character in mode. Thus, for example, "wb+" has the desired effect,
but "w+b" does not. This is inconsistent with the treatment of mode by fopen(3).

Binary mode was removed in glibc 2.22; a 'b' specified in mode has no effect.

Linux man-pages 6.16 2025-09-21 1711

fmemopen(3) Library Functions Manual fmemopen(3)

NOTES
There is no file descriptor associated with the file stream returned by this function (i.e.,
fileno(3) will return an error if called on the returned stream).

BUGS
Before glibc 2.22, if size is specified as zero, fmemopen() fails with the error EINVAL.
It would be more consistent if this case successfully created a stream that then returned
end-of-file on the first attempt at reading; since glibc 2.22, the glibc implementation pro-
vides that behavior.

Before glibc 2.22, specifying append mode ("a" or "a+") for fmemopen() sets the initial
buffer position to the first null byte, but (if the current position is reset to a location other
than the end of the stream) does not force subsequent writes to append at the end of the
stream. This bug is fixed in glibc 2.22.

Before glibc 2.22, if the mode argument to fmemopen() specifies append ("a" or "a+"),
and the size argument does not cover a null byte in buf , then, according to
POSIX.1-2008, the initial buffer position should be set to the next byte after the end of
the buffer. However, in this case the glibc fmemopen() sets the buffer position to -1.
This bug is fixed in glibc 2.22.

Before glibc 2.22, when a call to fseek(3) with a whence value of SEEK_END was per-
formed on a stream created by fmemopen(), the offset was subtracted from the end-of-
stream position, instead of being added. This bug is fixed in glibc 2.22.

The glibc 2.9 addition of "binary" mode for fmemopen() silently changed the ABI: pre-
viously, fmemopen() ignored 'b' in mode.

EXAMPLES
The program below uses fmemopen() to open an input buffer, and open_memstream(3)
to open a dynamically sized output buffer. The program scans its input string (taken
from the program’s first command-line argument) reading integers, and writes the
squares of these integers to the output buffer. An example of the output produced by
this program is the following:

$./a.out '1 23 43'
size=11; ptr=1 529 1849

Program source

#define _GNU_SOURCE
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

FILE *out, *in;
int v, s;
size_t size;

Linux man-pages 6.16 2025-09-21 1712

fmemopen(3) Library Functions Manual fmemopen(3)

char *ptr;

if (argc != 2) {
fprintf(stderr, "Usage: %s '<num>...'\n", argv[0]);
exit(EXIT_FAILURE);

}

in = fmemopen(argv[1], strlen(argv[1]), "r");
if (in == NULL)

err(EXIT_FAILURE, "fmemopen");

out = open_memstream(&ptr, &size);
if (out == NULL)

err(EXIT_FAILURE, "open_memstream");

for (;;) {
s = fscanf(in, "%d", &v);
if (s <= 0)

break;

s = fprintf(out, "%d ", v * v);
if (s == -1)

err(EXIT_FAILURE, "fprintf");
}

fclose(in);
fclose(out);

printf("size=%zu; ptr=%s\n", size, ptr);

free(ptr);
exit(EXIT_SUCCESS);

}

SEE ALSO
fopen(3), fopencookie(3), open_memstream(3)

Linux man-pages 6.16 2025-09-21 1713

fmin(3) Library Functions Manual fmin(3)

NAME
fmin, fminf, fminl - determine minimum of two floating-point numbers

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fmin(double x, double y);
float fminf(float x, float y);
long double fminl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmin(), fminf(), fminl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the lesser value of x and y.

RETURN VALUE
These functions return the minimum of x and y.

If one argument is a NaN, the other argument is returned.

If both arguments are NaN, a NaN is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmin(), fminf(), fminl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
fdim(3), fmax(3)

Linux man-pages 6.16 2025-05-17 1714

fmod(3) Library Functions Manual fmod(3)

NAME
fmod, fmodf, fmodl - floating-point remainder function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double fmod(double x, double y);
float fmodf(float x, float y);
long double fmodl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fmodf(), fmodl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions compute the floating-point remainder of dividing x by y. The return
value is x - n * y, where n is the quotient of x / y, rounded toward zero to an integer.

To obtain the modulus, more specifically, the Least Positive Residue, you will need to
adjust the result from fmod() like so:

z = fmod(x, y);
if (z < 0)

z += fabs(y);

An alternate way to express this is with fmod(fmod(x, y) + y, y), but the second fmod()
usually costs way more than the one branch.

RETURN VALUE
On success, these functions return the value x - n*y, for some integer n, such that the re-
turned value has the same sign as x and a magnitude less than the magnitude of y.

If x or y is a NaN, a NaN is returned.

If x is an infinity, a domain error occurs, and a NaN is returned.

If y is zero, a domain error occurs, and a NaN is returned.

If x is +0 (-0), and y is not zero, +0 (-0) is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

Linux man-pages 6.16 2025-09-25 1715

fmod(3) Library Functions Manual fmod(3)

Domain error: y is zero
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefmod(), fmodf(), fmodl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a domain
error occurred for an infinite x.

EXAMPLES
The call fmod(372, 360) returns 12.

The call fmod(-372, 360) returns -12.

The call fmod(-372, -360) also returns -12.

SEE ALSO
remainder(3)

Linux man-pages 6.16 2025-09-25 1716

fmtmsg(3) Library Functions Manual fmtmsg(3)

NAME
fmtmsg - print formatted error messages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fmtmsg.h>

int fmtmsg(long classification, const char *label,
int severity, const char *text,
const char *action, const char *tag);

DESCRIPTION
This function displays a message described by its arguments on the device(s) specified
in the classification argument. For messages written to stderr, the format depends on
the MSGVERB environment variable.

The label argument identifies the source of the message. The string must consist of two
colon separated parts where the first part has not more than 10 and the second part not
more than 14 characters.

The text argument describes the condition of the error.

The action argument describes possible steps to recover from the error. If it is printed, it
is prefixed by "TO FIX: ".

The tag argument is a reference to the online documentation where more information
can be found. It should contain the label value and a unique identification number.

Dummy arguments
Each of the arguments can have a dummy value. The dummy classification value
MM_NULLMC (0L) does not specify any output, so nothing is printed. The dummy
severity value NO_SEV (0) says that no severity is supplied. The values MM_NUL-
LLBL, MM_NULLTXT, MM_NULLACT, MM_NULLTAG are synonyms for
((char *) 0), the empty string, and MM_NULLSEV is a synonym for NO_SEV.

The classification argument
The classification argument is the sum of values describing 4 types of information.

The first value defines the output channel.

MM_PRINT
Output to stderr.

MM_CONSOLE
Output to the system console.

MM_PRINT | MM_CONSOLE
Output to both.

The second value is the source of the error:

MM_HARD
A hardware error occurred.

Linux man-pages 6.16 2025-05-17 1717

fmtmsg(3) Library Functions Manual fmtmsg(3)

MM_FIRM A firmware error occurred.

MM_SOFT A software error occurred.

The third value encodes the detector of the problem:

MM_APPL It is detected by an application.

MM_UTIL It is detected by a utility.

MM_OPSYS
It is detected by the operating system.

The fourth value shows the severity of the incident:

MM_RECOVER
It is a recoverable error.

MM_NRECOV
It is a nonrecoverable error.

The severity argument
The severity argument can take one of the following values:

MM_NOSEV
No severity is printed.

MM_HALT This value is printed as HALT.

MM_ERROR
This value is printed as ERROR.

MM_WARNING
This value is printed as WARNING.

MM_INFO This value is printed as INFO.

The numeric values are between 0 and 4. Using addseverity(3) or the environment vari-
able SEV_LEVEL you can add more levels and strings to print.

RETURN VALUE
The function can return 4 values:

MM_OK Everything went smooth.

MM_NOTOK
Complete failure.

MM_NOMSG
Error writing to stderr.

MM_NOCON
Error writing to the console.

ENVIRONMENT
The environment variable MSGVERB ("message verbosity") can be used to suppress
parts of the output to stderr. (It does not influence output to the console.) When this
variable is defined, is non-NULL, and is a colon-separated list of valid keywords, then
only the parts of the message corresponding to these keywords is printed. Valid key-
words are "label", "severity", "text", "action", and "tag".

Linux man-pages 6.16 2025-05-17 1718

fmtmsg(3) Library Functions Manual fmtmsg(3)

The environment variable SEV_LEVEL can be used to introduce new severity levels.
By default, only the five severity levels described above are available. Any other nu-
meric value would make fmtmsg() print nothing. If the user puts SEV_LEVEL with a
format like

SEV_LEVEL=[description[:description[:...]]]

in the environment of the process before the first call to fmtmsg(), where each descrip-
tion is of the form

severity-keyword,level,printstring

then fmtmsg() will also accept the indicated values for the level (in addition to the stan-
dard levels 0–4), and use the indicated printstring when such a level occurs.

The severity-keyword part is not used by fmtmsg() but it has to be present. The level
part is a string representation of a number. The numeric value must be a number greater
than 4. This value must be used in the severity argument of fmtmsg() to select this
class. It is not possible to overwrite any of the predefined classes. The printstring is the
string printed when a message of this class is processed by fmtmsg().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyfmtmsg() glibc >= 2.16: MT-Safe; glibc < 2.16: MT-Unsafe

Before glibc 2.16, the fmtmsg() function uses a static variable that is not protected, so it
is not thread-safe.

Since glibc 2.16, the fmtmsg() function uses a lock to protect the static variable, so it is
thread-safe.

STANDARDS
fmtmsg()
MSGVERB

POSIX.1-2008.

HISTORY
fmtmsg()

System V. POSIX.1-2001 and POSIX.1-2008. glibc 2.1.

MSGVERB
System V. POSIX.1-2001 and POSIX.1-2008.

SEV_LEVEL
System V.

System V and UnixWare man pages tell us that these functions have been replaced by
"pfmt() and addsev()" or by "pfmt(), vpfmt(), lfmt(), and vlfmt()", and will be removed
later.

EXAMPLES
#include <fmtmsg.h>
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.16 2025-05-17 1719

fmtmsg(3) Library Functions Manual fmtmsg(3)

int
main(void)
{

long class = MM_PRINT | MM_SOFT | MM_OPSYS | MM_RECOVER;
int err;

err = fmtmsg(class, "util-linux:mount", MM_ERROR,
"unknown mount option", "See mount(8).",
"util-linux:mount:017");

switch (err) {
case MM_OK:

break;
case MM_NOTOK:

printf("Nothing printed\n");
break;

case MM_NOMSG:
printf("Nothing printed to stderr\n");
break;

case MM_NOCON:
printf("No console output\n");
break;

default:
printf("Unknown error from fmtmsg()\n");

}
exit(EXIT_SUCCESS);

}

The output should be:

util-linux:mount: ERROR: unknown mount option
TO FIX: See mount(8). util-linux:mount:017

and after

MSGVERB=text:action; export MSGVERB

the output becomes:

unknown mount option
TO FIX: See mount(8).

SEE ALSO
addseverity(3), perror(3)

Linux man-pages 6.16 2025-05-17 1720

fnmatch(3) Library Functions Manual fnmatch(3)

NAME
fnmatch - match filename or pathname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fnmatch.h>

int fnmatch(const char *pattern, const char *string, int flags);

DESCRIPTION
The fnmatch() function checks whether the string argument matches the pattern argu-
ment, which is a shell wildcard pattern (see glob(7)).

The flags argument modifies the behavior; it is the bitwise OR of zero or more of the
following flags:

FNM_NOESCAPE
If this flag is set, treat backslash as an ordinary character, instead of an escape
character.

FNM_PATHNAME
If this flag is set, match a slash in string only with a slash in pattern and not by
an asterisk (*) or a question mark (?) metacharacter, nor by a bracket expression
([]) containing a slash.

FNM_PERIOD
If this flag is set, a leading period in string has to be matched exactly by a period
in pattern. A period is considered to be leading if it is the first character in
string, or if both FNM_PATHNAME is set and the period immediately follows
a slash.

FNM_FILE_NAME
This is a GNU synonym for FNM_PATHNAME.

FNM_LEADING_DIR
If this flag (a GNU extension) is set, the pattern is considered to be matched if it
matches an initial segment of string which is followed by a slash. This flag is
mainly for the internal use of glibc and is implemented only in certain cases.

FNM_CASEFOLD
FNM_IGNORECASE (same as FNM_CASEFOLD)

If this flag is set, the pattern is matched case-insensitively.

FNM_EXTMATCH
If this flag (a GNU extension) is set, extended patterns are supported, as intro-
duced by ’ksh’ and now supported by other shells. The extended format is as
follows, with pattern-list being a ’|’ separated list of patterns.

’?(pattern-list)’
The pattern matches if zero or one occurrences of any of the patterns in the pat-
tern-list match the input string.

Linux man-pages 6.16 2025-09-21 1721

fnmatch(3) Library Functions Manual fnmatch(3)

’*(pattern-list)’
The pattern matches if zero or more occurrences of any of the patterns in the
pattern-list match the input string.

’+(pattern-list)’
The pattern matches if one or more occurrences of any of the patterns in the pat-
tern-list match the input string.

’@(pattern-list)’
The pattern matches if exactly one occurrence of any of the patterns in the pat-
tern-list match the input string.

’!(pattern-list)’
The pattern matches if the input string cannot be matched with any of the pat-
terns in the pattern-list.

RETURN VALUE
Zero if string matches pattern, FNM_NOMATCH if there is no match or another
nonzero value if there is an error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localefnmatch()

STANDARDS
fnmatch()

POSIX.1-2008.

FNM_CASEFOLD
FNM_IGNORECASE

POSIX.1-2024.

FNM_FILE_NAME
FNM_LEADING_DIR

GNU.

HISTORY
fnmatch()

POSIX.1-2001, POSIX.2.

FNM_CASEFOLD
has been available on many systems even before POSIX.1-2024.

SEE ALSO
sh(1), glob(3), scandir(3), wordexp(3), glob(7)

Linux man-pages 6.16 2025-09-21 1722

fopen(3) Library Functions Manual fopen(3)

NAME
fopen, fdopen, freopen - stream open functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *fopen(const char *restrict path, const char *restrict mode);
FILE *fdopen(int fd , const char *mode);
FILE *freopen(const char *restrict path, const char *restrict mode,

FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fdopen():
_POSIX_C_SOURCE

DESCRIPTION
The fopen() function opens the file whose name is the string pointed to by path and as-
sociates a stream with it.

The argument mode points to a string beginning with one of the following sequences
(possibly followed by additional characters, as described below):

r Open text file for reading. The stream is positioned at the beginning of the file.

r+ Open for reading and writing. The stream is positioned at the beginning of the
file.

w Truncate file to zero length or create text file for writing. The stream is posi-
tioned at the beginning of the file.

w+ Open for reading and writing. The file is created if it does not exist, otherwise it
is truncated. The stream is positioned at the beginning of the file.

a Open for appending (writing at end of file). The file is created if it does not ex-
ist. The stream is positioned at the end of the file.

a+ Open for reading and appending (writing at end of file). The file is created if it
does not exist. Output is always appended to the end of the file. POSIX is silent
on what the initial read position is when using this mode. For glibc, the initial
file position for reading is at the beginning of the file, but for Android/BSD/Ma-
cOS, the initial file position for reading is at the end of the file.

The mode string can also include the letter 'b' either as a last character or as a character
between the characters in any of the two-character strings described above. This is
strictly for compatibility with ISO C and has no effect; the 'b' is ignored on all POSIX
conforming systems, including Linux. (Other systems may treat text files and binary
files differently, and adding the 'b' may be a good idea if you do I/O to a binary file and
expect that your program may be ported to non-UNIX environments.)

See NOTES below for details of glibc extensions for mode.

Any created file will have the mode S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP |
S_IROTH | S_IWOTH (0666), as modified by the process’s umask value (see

Linux man-pages 6.16 2025-09-21 1723

fopen(3) Library Functions Manual fopen(3)

umask(2)).

Reads and writes may be intermixed on read/write streams in any order. Note that ANSI
C requires that a file positioning function intervene between output and input, unless an
input operation encounters end-of-file. (If this condition is not met, then a read is al-
lowed to return the result of writes other than the most recent.) Therefore it is good
practice (and indeed sometimes necessary under Linux) to put an fseek(3) or fsetpos(3)
operation between write and read operations on such a stream. This operation may be
an apparent no-op (as in fseek(..., 0L, SEEK_CUR) called for its synchronizing side ef-
fect).

Opening a file in append mode (a as the first character of mode) causes all subsequent
write operations to this stream to occur at end-of-file, as if preceded by the call:

fseek(stream, 0, SEEK_END);

The file descriptor associated with the stream is opened as if by a call to open(2) with
the following flags:

fopen() mode open() flags
r O_RDONLY
w O_WRONLY | O_CREAT | O_TRUNC
a O_WRONLY | O_CREAT | O_APPEND

r+ O_RDWR
w+ O_RDWR | O_CREAT | O_TRUNC
a+ O_RDWR | O_CREAT | O_APPEND

fdopen()
The fdopen() function associates a stream with the existing file descriptor, fd . The
mode of the stream (one of the values "r", "r+", "w", "w+", "a", "a+") must be compati-
ble with the mode of the file descriptor. The file position indicator of the new stream is
set to that belonging to fd , and the error and end-of-file indicators are cleared. Modes
"w" or "w+" do not cause truncation of the file. The file descriptor is not dup’ed, and
will be closed when the stream created by fdopen() is closed. The result of applying
fdopen() to a shared memory object is undefined.

freopen()
The freopen() function opens the file whose name is the string pointed to by path and
associates the stream pointed to by stream with it. The original stream (if it exists) is
closed. The mode argument is used just as in the fopen() function.

If path is a null pointer, freopen() changes the mode of the stream to that specified in
mode; that is, freopen() reopens the pathname that is associated with the stream. The
specification for this behavior was added in the C99 standard, which says:

In this case, the file descriptor associated with the stream need not be closed if
the call to freopen() succeeds. It is implementation-defined which changes of
mode are permitted (if any), and under what circumstances.

The primary use of the freopen() function is to change the file associated with a stan-
dard text stream (stderr, stdin, or stdout).

Linux man-pages 6.16 2025-09-21 1724

fopen(3) Library Functions Manual fopen(3)

RETURN VALUE
Upon successful completion fopen(), fdopen(), and freopen() return a FILE pointer.
Otherwise, NULL is returned and errno is set to indicate the error.

ERRORS
EINVAL

The mode provided to fopen(), fdopen(), or freopen() was invalid.

The fopen(), fdopen(), and freopen() functions may also fail and set errno for any of
the errors specified for the routine malloc(3).

The fopen() function may also fail and set errno for any of the errors specified for the
routine open(2).

The fdopen() function may also fail and set errno for any of the errors specified for the
routine fcntl(2).

The freopen() function may also fail and set errno for any of the errors specified for the
routines open(2), fclose(3), and fflush(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefopen(), fdopen(), freopen()

STANDARDS
fopen()
freopen()

C11, POSIX.1-2008.

fdopen()
POSIX.1-2008.

HISTORY
fopen()
freopen()

POSIX.1-2001, C89.

fdopen()
POSIX.1-2001.

NOTES
glibc notes

The GNU C library allows the following extensions for the string specified in mode:

c (since glibc 2.3.3)
Do not make the open operation, or subsequent read and write operations, thread
cancelation points. This flag is ignored for fdopen().

e (since glibc 2.7)
Open the file with the O_CLOEXEC flag. See open(2) for more information.
This flag is ignored for fdopen().

Linux man-pages 6.16 2025-09-21 1725

fopen(3) Library Functions Manual fopen(3)

m (since glibc 2.3)
Attempt to access the file using mmap(2), rather than I/O system calls (read(2),
write(2)). Currently, use of mmap(2) is attempted only for a file opened for read-
ing.

x Open the file exclusively (like the O_EXCL flag of open(2)). If the file already
exists, fopen() fails, and sets errno to EEXIST. This flag is ignored for
fdopen().

In addition to the above characters, fopen() and freopen() support the following syntax
in mode:

,ccs=string

The given string is taken as the name of a coded character set and the stream is marked
as wide-oriented. Thereafter, internal conversion functions convert I/O to and from the
character set string. If the ,ccs=string syntax is not specified, then the wide-orientation
of the stream is determined by the first file operation. If that operation is a wide-charac-
ter operation, the stream is marked wide-oriented, and functions to convert to the coded
character set are loaded.

BUGS
When parsing for individual flag characters in mode (i.e., the characters preceding the
"ccs" specification), the glibc implementation of fopen() and freopen() limits the num-
ber of characters examined in mode to 7 (or, before glibc 2.14, to 6, which was not
enough to include possible specifications such as "rb+cmxe"). The current implementa-
tion of fdopen() parses at most 5 characters in mode.

SEE ALSO
open(2), fclose(3), fileno(3), fmemopen(3), fopencookie(3), open_memstream(3)

Linux man-pages 6.16 2025-09-21 1726

fopencookie(3) Library Functions Manual fopencookie(3)

NAME
fopencookie - open a custom stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#define _FILE_OFFSET_BITS 64
#include <stdio.h>

FILE *fopencookie(void *restrict cookie, const char *restrict mode,
cookie_io_functions_t io_funcs);

DESCRIPTION
The fopencookie() function allows the programmer to create a custom implementation
for a standard I/O stream. This implementation can store the stream’s data at a location
of its own choosing; for example, fopencookie() is used to implement fmemopen(3),
which provides a stream interface to data that is stored in a buffer in memory.

In order to create a custom stream the programmer must:

• Implement four "hook" functions that are used internally by the standard I/O library
when performing I/O on the stream.

• Define a "cookie" data type, a structure that provides bookkeeping information (e.g.,
where to store data) used by the aforementioned hook functions. The standard I/O
package knows nothing about the contents of this cookie (thus it is typed as void *
when passed to fopencookie()), but automatically supplies the cookie as the first ar-
gument when calling the hook functions.

• Call fopencookie() to open a new stream and associate the cookie and hook func-
tions with that stream.

The fopencookie() function serves a purpose similar to fopen(3): it opens a new stream
and returns a pointer to a FILE object that is used to operate on that stream.

The cookie argument is a pointer to the caller’s cookie structure that is to be associated
with the new stream. This pointer is supplied as the first argument when the standard
I/O library invokes any of the hook functions described below.

The mode argument serves the same purpose as for fopen(3). The following modes are
supported: r, w, a, r+, w+, and a+. See fopen(3) for details.

The io_funcs argument is a structure that contains four fields pointing to the pro-
grammer-defined hook functions that are used to implement this stream. The structure
is defined as follows

typedef struct {
cookie_read_function_t *read;
cookie_write_function_t *write;
cookie_seek_function_t *seek;
cookie_close_function_t *close;

} cookie_io_functions_t;

Linux man-pages 6.16 2025-09-21 1727

fopencookie(3) Library Functions Manual fopencookie(3)

The four fields are as follows:

cookie_read_function_t *read
This function implements read operations for the stream. When called, it re-
ceives three arguments:

ssize_t read(void *cookie, char *buf, size_t size);

The buf and size arguments are, respectively, a buffer into which input data can
be placed and the size of that buffer. As its function result, the read function
should return the number of bytes copied into buf , 0 on end of file, or -1 on er-
ror. The read function should update the stream offset appropriately.

If *read is a null pointer, then reads from the custom stream always return end of
file.

cookie_write_function_t *write
This function implements write operations for the stream. When called, it re-
ceives three arguments:

ssize_t write(void *cookie, const char *buf, size_t size);

The buf and size arguments are, respectively, a buffer of data to be output to the
stream and the size of that buffer. As its function result, the write function
should return the number of bytes copied from buf , or 0 on error. (The function
must not return a negative value.) The write function should update the stream
offset appropriately.

If *write is a null pointer, then output to the stream is discarded.

cookie_seek_function_t *seek
This function implements seek operations on the stream. When called, it re-
ceives three arguments:

int seek(void *cookie, off_t *offset, int whence);

The *offset argument specifies the new file offset depending on which of the fol-
lowing three values is supplied in whence:

SEEK_SET
The stream offset should be set *offset bytes from the start of the stream.

SEEK_CUR
*offset should be added to the current stream offset.

SEEK_END
The stream offset should be set to the size of the stream plus *offset.

Before returning, the seek function should update *offset to indicate the new
stream offset.

As its function result, the seek function should return 0 on success, and -1 on er-
ror.

If *seek is a null pointer, then it is not possible to perform seek operations on the
stream.

Linux man-pages 6.16 2025-09-21 1728

fopencookie(3) Library Functions Manual fopencookie(3)

cookie_close_function_t *close
This function closes the stream. The hook function can do things such as freeing
buffers allocated for the stream. When called, it receives one argument:

int close(void *cookie);

The cookie argument is the cookie that the programmer supplied when calling
fopencookie().

As its function result, the close function should return 0 on success, and EOF on
error.

If *close is NULL, then no special action is performed when the stream is
closed.

RETURN VALUE
On success fopencookie() returns a pointer to the new stream. On error, NULL is re-
turned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefopencookie()

STANDARDS
GNU.

EXAMPLES
The program below implements a custom stream whose functionality is similar (but not
identical) to that available via fmemopen(3). It implements a stream whose data is
stored in a memory buffer. The program writes its command-line arguments to the
stream, and then seeks through the stream reading two out of every five characters and
writing them to standard output. The following shell session demonstrates the use of the
program:

$./a.out 'hello world'
/he/
/ w/
/d/
Reached end of file

Note that a more general version of the program below could be improved to more ro-
bustly handle various error situations (e.g., opening a stream with a cookie that already
has an open stream; closing a stream that has already been closed).

Program source

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

Linux man-pages 6.16 2025-09-21 1729

fopencookie(3) Library Functions Manual fopencookie(3)

#define INIT_BUF_SIZE 4

struct memfile_cookie {
char *buf; /* Dynamically sized buffer for data */
size_t allocated; /* Size of buf */
size_t endpos; /* Number of characters in buf */
off_t offset; /* Current file offset in buf */

};

static ssize_t
memfile_write(void *c, const char *buf, size_t size)
{

char *new_buff;
struct memfile_cookie *cookie = c;

/* Buffer too small? Keep doubling size until big enough. */

while (size + cookie->offset > cookie->allocated) {
new_buff = realloc(cookie->buf, cookie->allocated * 2);
if (new_buff == NULL)

return -1;
cookie->allocated *= 2;
cookie->buf = new_buff;

}

memcpy(cookie->buf + cookie->offset, buf, size);

cookie->offset += size;
if (cookie->offset > cookie->endpos)

cookie->endpos = cookie->offset;

return size;
}

static ssize_t
memfile_read(void *c, char *buf, size_t size)
{

ssize_t xbytes;
struct memfile_cookie *cookie = c;

/* Fetch minimum of bytes requested and bytes available. */

xbytes = size;
if (cookie->offset + size > cookie->endpos)

xbytes = cookie->endpos - cookie->offset;
if (xbytes < 0) /* offset may be past endpos */

Linux man-pages 6.16 2025-09-21 1730

fopencookie(3) Library Functions Manual fopencookie(3)

xbytes = 0;

memcpy(buf, cookie->buf + cookie->offset, xbytes);

cookie->offset += xbytes;
return xbytes;

}

static int
memfile_seek(void *c, off_t *offset, int whence)
{

off_t new_offset;
struct memfile_cookie *cookie = c;

if (whence == SEEK_SET)
new_offset = *offset;

else if (whence == SEEK_END)
new_offset = cookie->endpos + *offset;

else if (whence == SEEK_CUR)
new_offset = cookie->offset + *offset;

else
return -1;

if (new_offset < 0)
return -1;

cookie->offset = new_offset;
*offset = new_offset;
return 0;

}

static int
memfile_close(void *c)
{

struct memfile_cookie *cookie = c;

free(cookie->buf);
cookie->allocated = 0;
cookie->buf = NULL;

return 0;
}

int
main(int argc, char *argv[])
{

cookie_io_functions_t memfile_func = {

Linux man-pages 6.16 2025-09-21 1731

fopencookie(3) Library Functions Manual fopencookie(3)

.read = memfile_read,

.write = memfile_write,

.seek = memfile_seek,

.close = memfile_close
};
FILE *stream;
struct memfile_cookie mycookie;
size_t nread;
char buf[1000];

/* Set up the cookie before calling fopencookie(). */

mycookie.buf = malloc(INIT_BUF_SIZE);
if (mycookie.buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

mycookie.allocated = INIT_BUF_SIZE;
mycookie.offset = 0;
mycookie.endpos = 0;

stream = fopencookie(&mycookie, "w+", memfile_func);
if (stream == NULL) {

perror("fopencookie");
exit(EXIT_FAILURE);

}

/* Write command-line arguments to our file. */

for (size_t j = 1; j < argc; j++)
if (fputs(argv[j], stream) == EOF) {

perror("fputs");
exit(EXIT_FAILURE);

}

/* Read two bytes out of every five, until EOF. */

for (long p = 0; ; p += 5) {
if (fseek(stream, p, SEEK_SET) == -1) {

perror("fseek");
exit(EXIT_FAILURE);

}
nread = fread(buf, 1, 2, stream);
if (nread == 0) {

if (ferror(stream) != 0) {
fprintf(stderr, "fread failed\n");

Linux man-pages 6.16 2025-09-21 1732

fopencookie(3) Library Functions Manual fopencookie(3)

exit(EXIT_FAILURE);
}
printf("Reached end of file\n");
break;

}

printf("/%.*s/\n", (int) nread, buf);
}

free(mycookie.buf);

exit(EXIT_SUCCESS);
}

NOTES
_FILE_OFFSET_BITS should be defined to be 64 in code that uses non-null seek or
that takes the address of fopencookie, if the code is intended to be portable to traditional
32-bit x86 and ARM platforms where off_t’s width defaults to 32 bits.

SEE ALSO
fclose(3), fmemopen(3), fopen(3), fseek(3)

Linux man-pages 6.16 2025-09-21 1733

_Fork(3) Library Functions Manual _Fork(3)

NAME
_Fork - create a child process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t _Fork(void);

DESCRIPTION
This function is equivalent to fork(2), except that fork handlers registered with
pthread_atfork(3) are not called.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2024.

SEE ALSO
fork(2), vfork(2)

Linux man-pages 6.16 2025-10-29 1734

fpathconf (3) Library Functions Manual fpathconf (3)

NAME
fpathconf, pathconf - get configuration values for files

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

long fpathconf(int fd , int name);
long pathconf(const char *path, int name);

DESCRIPTION
fpathconf() gets a value for the configuration option name for the open file descriptor
fd .

pathconf() gets a value for configuration option name for the filename path.

The corresponding macros defined in <unistd.h> are minimum values; if an application
wants to take advantage of values which may change, a call to fpathconf() or path-
conf() can be made, which may yield more liberal results.

Setting name equal to one of the following constants returns the following configuration
options:

_PC_LINK_MAX
The maximum number of links to the file. If fd or path refer to a directory, then
the value applies to the whole directory. The corresponding macro is
_POSIX_LINK_MAX.

_PC_MAX_CANON
The maximum length of a formatted input line, where fd or path must refer to a
terminal. The corresponding macro is _POSIX_MAX_CANON.

_PC_MAX_INPUT
The maximum length of an input line, where fd or path must refer to a terminal.
The corresponding macro is _POSIX_MAX_INPUT.

_PC_NAME_MAX
The maximum length of a filename in the directory path or fd that the process is
allowed to create. The corresponding macro is _POSIX_NAME_MAX.

_PC_PATH_MAX
The maximum length of a relative pathname when path or fd is the current
working directory. The corresponding macro is _POSIX_PATH_MAX.

_PC_PIPE_BUF
The maximum number of bytes that can be written atomically to a pipe of FIFO.
For fpathconf(), fd should refer to a pipe or FIFO. For fpathconf(), path
should refer to a FIFO or a directory; in the latter case, the returned value corre-
sponds to FIFOs created in that directory. The corresponding macro is
_POSIX_PIPE_BUF.

Linux man-pages 6.16 2025-09-21 1735

fpathconf (3) Library Functions Manual fpathconf (3)

_PC_CHOWN_RESTRICTED
This returns a positive value if the use of chown(2) and fchown(2) for changing a
file’s user ID is restricted to a process with appropriate privileges, and changing
a file’s group ID to a value other than the process’s effective group ID or one of
its supplementary group IDs is restricted to a process with appropriate privileges.
According to POSIX.1, this variable shall always be defined with a value other
than -1. The corresponding macro is _POSIX_CHOWN_RESTRICTED.

If fd or path refers to a directory, then the return value applies to all files in that
directory.

_PC_NO_TRUNC
This returns nonzero if accessing filenames longer than _POSIX_NAME_MAX
generates an error. The corresponding macro is _POSIX_NO_TRUNC.

_PC_VDISABLE
This returns nonzero if special character processing can be disabled, where fd or
path must refer to a terminal.

RETURN VALUE
The return value of these functions is one of the following:

• On error, -1 is returned and errno is set to indicate the error (for example, EINVAL,
indicating that name is invalid).

• If name corresponds to a maximum or minimum limit, and that limit is indetermi-
nate, -1 is returned and errno is not changed. (To distinguish an indeterminate limit
from an error, set errno to zero before the call, and then check whether errno is
nonzero when -1 is returned.)

• If name corresponds to an option, a positive value is returned if the option is sup-
ported, and -1 is returned if the option is not supported.

• Otherwise, the current value of the option or limit is returned. This value will not be
more restrictive than the corresponding value that was described to the application in
<unistd.h> or <limits.h> when the application was compiled.

ERRORS
EACCES

(pathconf()) Search permission is denied for one of the directories in the path
prefix of path.

EBADF
(fpathconf()) fd is not a valid file descriptor.

EINVAL
name is invalid.

EINVAL
The implementation does not support an association of name with the specified
file.

ELOOP
(pathconf()) Too many symbolic links were encountered while resolving path.

Linux man-pages 6.16 2025-09-21 1736

fpathconf (3) Library Functions Manual fpathconf (3)

ENAMETOOLONG
(pathconf()) path is too long.

ENOENT
(pathconf()) A component of path does not exist, or path is an empty string.

ENOTDIR
(pathconf()) A component used as a directory in path is not in fact a directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefpathconf(), pathconf()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Files with name lengths longer than the value returned for name equal to
_PC_NAME_MAX may exist in the given directory.

Some returned values may be huge; they are not suitable for allocating memory.

SEE ALSO
getconf (1), open(2), statfs(2), confstr(3), sysconf(3)

Linux man-pages 6.16 2025-09-21 1737

fpclassify(3) Library Functions Manual fpclassify(3)

NAME
fpclassify, isfinite, isnormal, isnan, isinf - floating-point classification macros

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int fpclassify(x);
int isfinite(x);
int isnormal(x);
int isnan(x);
int isinf(x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fpclassify(), isfinite(), isnormal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

isnan():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

isinf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Floating point numbers can have special values, such as infinite or NaN. With the
macro fpclassify(x) you can find out what type x is. The macro takes any floating-point
expression as argument. The result is one of the following values:

FP_NAN x is "Not a Number".

FP_INFINITE
x is either positive infinity or negative infinity.

FP_ZERO x is zero.

FP_SUBNORMAL
x is too small to be represented in normalized format.

FP_NORMAL
if nothing of the above is correct then it must be a normal floating-
point number.

The other macros provide a short answer to some standard questions.

isfinite(x) returns a nonzero value if
(fpclassify(x) != FP_NAN && fpclassify(x) != FP_INFINITE)

Linux man-pages 6.16 2025-05-17 1738

fpclassify(3) Library Functions Manual fpclassify(3)

isnormal(x) returns a nonzero value if (fpclassify(x) == FP_NORMAL)

isnan(x) returns a nonzero value if (fpclassify(x) == FP_NAN)

isinf(x) returns 1 if x is positive infinity, and -1 if x is negative infinity.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefpclassify(), isfinite(), isnormal(), isnan(), isinf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

In glibc 2.01 and earlier, isinf() returns a nonzero value (actually: 1) if x is positive in-
finity or negative infinity. (This is all that C99 requires.)

NOTES
For isinf(), the standards merely say that the return value is nonzero if and only if the ar-
gument has an infinite value.

SEE ALSO
finite(3), INFINITY(3), isgreater(3), signbit(3)

Linux man-pages 6.16 2025-05-17 1739

fpurge(3) Library Functions Manual fpurge(3)

NAME
fpurge, __fpurge - purge a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* unsupported */
#include <stdio.h>

int fpurge(FILE *stream);

/* supported */
#include <stdio.h>
#include <stdio_ext.h>

void __fpurge(FILE *stream);

DESCRIPTION
The function fpurge() clears the buffers of the given stream. For output streams this
discards any unwritten output. For input streams this discards any input read from the
underlying object but not yet obtained via getc(3); this includes any text pushed back via
ungetc(3). See also fflush(3).

The function __fpurge() does precisely the same, but without returning a value.

RETURN VALUE
Upon successful completion fpurge() returns 0. On error, it returns -1 and sets errno to
indicate the error.

ERRORS
EBADF

stream is not an open stream.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:stream__fpurge()

STANDARDS
None.

HISTORY
fpurge()

4.4BSD. Not available under Linux.

__fpurge()
Solaris, glibc 2.1.95.

NOTES
Usually it is a mistake to want to discard input buffers.

SEE ALSO
fflush(3), setbuf(3), stdio_ext(3)

Linux man-pages 6.16 2025-05-17 1740

fpurge(3) Library Functions Manual fpurge(3)

Linux man-pages 6.16 2025-05-17 1741

fputwc(3) Library Functions Manual fputwc(3)

NAME
fputwc, putwc - write a wide character to a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

wint_t fputwc(wchar_t wc, FILE *stream);
wint_t putwc(wchar_t wc, FILE *stream);

DESCRIPTION
The fputwc() function is the wide-character equivalent of the fputc(3) function. It
writes the wide character wc to stream. If ferror(stream) becomes true, it returns
WEOF. If a wide-character conversion error occurs, it sets errno to EILSEQ and re-
turns WEOF. Otherwise, it returns wc.

The putwc() function or macro functions identically to fputwc(). It may be imple-
mented as a macro, and may evaluate its argument more than once. There is no reason
ever to use it.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
On success, fputwc() function returns wc. Otherwise, WEOF is returned, and errno is
set to indicate the error.

ERRORS
Apart from the usual ones, there is

EILSEQ
Conversion of wc to the stream’s encoding fails.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefputwc(), putwc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The behavior of fputwc() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fputwc() will actually write the multibyte sequence corresponding to the
wide character wc.

SEE ALSO
fgetwc(3), fputws(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 1742

fputws(3) Library Functions Manual fputws(3)

NAME
fputws - write a wide-character string to a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int fputws(const wchar_t *restrict ws, FILE *restrict stream);

DESCRIPTION
The fputws() function is the wide-character equivalent of the fputs(3) function. It writes
the wide-character string starting at ws, up to but not including the terminating null wide
character (L'\0'), to stream.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The fputws() function returns a nonnegative integer if the operation was successful, or
-1 to indicate an error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefputws()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of fputws() depends on the LC_CTYPE category of the current locale.

In the absence of additional information passed to the fopen(3) call, it is reasonable to
expect that fputws() will actually write the multibyte string corresponding to the wide-
character string ws.

SEE ALSO
fputwc(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 1743

fread(3) Library Functions Manual fread(3)

NAME
fread, fwrite - binary stream input/output

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

size_t fread(size_t size, size_t n;
void ptr[restrict size * n],
size_t size, size_t n,
FILE *restrict stream);

size_t fwrite(size_t size, size_t n;
const void ptr[restrict size * n],
size_t size, size_t n,
FILE *restrict stream);

DESCRIPTION
The function fread() reads n items of data, each size bytes long, from the stream pointed
to by stream, storing them at the location given by ptr.

The function fwrite() writes n items of data, each size bytes long, to the stream pointed
to by stream, obtaining them from the location given by ptr.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
On success, fread() and fwrite() return the number of items read or written. This num-
ber equals the number of bytes transferred only when size is 1. If an error occurs, or the
end of the file is reached, the return value is a short item count (or zero).

The file position indicator for the stream is advanced by the number of bytes success-
fully read or written.

fread() does not distinguish between end-of-file and error, and callers must use feof(3)
and ferror(3) to determine which occurred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefread(), fwrite()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

EXAMPLES
The program below demonstrates the use of fread() by parsing /bin/sh ELF executable
in binary mode and printing its magic and class:

$./a.out;
ELF magic: 0x7f454c46

Linux man-pages 6.16 2025-09-20 1744

fread(3) Library Functions Manual fread(3)

Class: 0x02

Program source

#include <stdio.h>
#include <stdlib.h>

#define NITEMS(arr) (sizeof(arr) / sizeof((arr)[0]))

int
main(void)
{

FILE *fp;
size_t ret;
unsigned char buffer[4];

fp = fopen("/bin/sh", "rb");
if (!fp) {

perror("fopen");
return EXIT_FAILURE;

}

ret = fread(buffer, sizeof(*buffer), NITEMS(buffer), fp);
if (ret != NITEMS(buffer)) {

fprintf(stderr, "fread() failed: %zu\n", ret);
exit(EXIT_FAILURE);

}

printf("ELF magic: %#04x%02x%02x%02x\n", buffer[0], buffer[1],
buffer[2], buffer[3]);

ret = fread(buffer, 1, 1, fp);
if (ret != 1) {

fprintf(stderr, "fread() failed: %zu\n", ret);
exit(EXIT_FAILURE);

}

printf("Class: %#04x\n", buffer[0]);

fclose(fp);

exit(EXIT_SUCCESS);
}

SEE ALSO
read(2), write(2), feof(3), ferror(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-09-20 1745

fread(3) Library Functions Manual fread(3)

Linux man-pages 6.16 2025-09-20 1746

frexp(3) Library Functions Manual frexp(3)

NAME
frexp, frexpf, frexpl - convert floating-point number to fractional and integral compo-
nents

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double frexp(double x, int *e);
float frexpf(float x, int *e);
long double frexpl(long double x, int *e);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

frexpf(), frexpl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions are used to split the number x into a normalized fraction and an expo-
nent which is stored in e.

RETURN VALUE
These functions return the normalized fraction. If the argument x is not zero, the nor-
malized fraction is x times a power of two, and its absolute value is always in the range
1/2 (inclusive) to 1 (exclusive), that is, [0.5,1).

If x is zero, then the normalized fraction is zero and zero is stored in e.

If x is a NaN, a NaN is returned, and the value of *e is unspecified.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is returned,
and the value of *e is unspecified.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefrexp(), frexpf(), frexpl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

EXAMPLES
The program below produces results such as the following:

$./a.out 2560

Linux man-pages 6.16 2025-07-19 1747

frexp(3) Library Functions Manual frexp(3)

frexp(2560, &e) = 0.625: 0.625 * 2^12 = 2560
$./a.out -4
frexp(-4, &e) = -0.5: -0.5 * 2^3 = -4

Program source

#include <float.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

double x, r;
int e;

x = strtod(argv[1], NULL);
r = frexp(x, &e);

printf("frexp(%g, &e) = %g: %g * %d^%d = %g\n", x, r, r, 2, e, x);
exit(EXIT_SUCCESS);

}

SEE ALSO
ldexp(3), modf(3)

Linux man-pages 6.16 2025-07-19 1748

fseek(3) Library Functions Manual fseek(3)

NAME
fgetpos, fseek, fsetpos, ftell, rewind - reposition a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fseek(FILE *stream, long offset, int whence);
long ftell(FILE *stream);

void rewind(FILE *stream);

int fgetpos(FILE *restrict stream, fpos_t *restrict pos);
int fsetpos(FILE *stream, const fpos_t *pos);

DESCRIPTION
The fseek() function sets the file position indicator for the stream pointed to by stream.
The new position, measured in bytes, is obtained by adding offset bytes to the position
specified by whence. If whence is set to SEEK_SET, SEEK_CUR, or SEEK_END,
the offset is relative to the start of the file, the current position indicator, or end-of-file,
respectively. A successful call to the fseek() function clears the end-of-file indicator for
the stream and undoes any effects of the ungetc(3) function on the same stream.

The ftell() function obtains the current value of the file position indicator for the stream
pointed to by stream.

The rewind() function sets the file position indicator for the stream pointed to by stream
to the beginning of the file. It is equivalent to:

(void) fseek(stream, 0L, SEEK_SET)

except that the error indicator for the stream is also cleared (see clearerr(3)).

The fgetpos() and fsetpos() functions are alternate interfaces equivalent to ftell() and
fseek() (with whence set to SEEK_SET), setting and storing the current value of the file
offset into or from the object referenced by pos. On some non-UNIX systems, an
fpos_t object may be a complex object and these routines may be the only way to
portably reposition a text stream.

If the stream refers to a regular file and the resulting stream offset is beyond the size of
the file, subsequent writes will extend the file with a hole, up to the offset, before com-
mitting any data. See lseek(2) for details on file seeking semantics.

RETURN VALUE
The rewind() function returns no value. Upon successful completion, fgetpos(),
fseek(), fsetpos() return 0, and ftell() returns the current offset. Otherwise, -1 is re-
turned and errno is set to indicate the error.

ERRORS
EINVAL

The whence argument to fseek() was not SEEK_SET, SEEK_END, or
SEEK_CUR. Or: the resulting file offset would be negative.

Linux man-pages 6.16 2025-05-17 1749

fseek(3) Library Functions Manual fseek(3)

ESPIPE
The file descriptor underlying stream is not seekable (e.g., it refers to a pipe,
FIFO, or socket).

The functions fgetpos(), fseek(), fsetpos(), and ftell() may also fail and set errno for
any of the errors specified for the routines fflush(3), fstat(2), lseek(2), and malloc(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefseek(), ftell(), rewind(), fgetpos(), fsetpos()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

SEE ALSO
lseek(2), fseeko(3)

Linux man-pages 6.16 2025-05-17 1750

fseeko(3) Library Functions Manual fseeko(3)

NAME
fseeko, ftello - seek to or report file position

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fseeko(FILE *stream, off_t offset, int whence);
off_t ftello(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fseeko(), ftello():
_FILE_OFFSET_BITS == 64 || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The fseeko() and ftello() functions are identical to fseek(3) and ftell(3) (see fseek(3)), re-
spectively, except that the offset argument of fseeko() and the return value of ftello() is
of type off_t instead of long.

On some architectures, both off_t and long are 32-bit types, but defining _FILE_OFF-
SET_BITS with the value 64 (before including any header files) will turn off_t into a
64-bit type.

RETURN VALUE
On successful completion, fseeko() returns 0, while ftello() returns the current offset.
Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
See the ERRORS in fseek(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefseeko(), ftello()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001, SUSv2.

NOTES
The declarations of these functions can also be obtained by defining the obsolete
_LARGEFILE_SOURCE feature test macro.

SEE ALSO
fseek(3)

Linux man-pages 6.16 2025-05-17 1751

ftime(3) Library Functions Manual ftime(3)

NAME
ftime - return date and time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timeb.h>

[[deprecated]] int ftime(struct timeb *tp);

DESCRIPTION
NOTE: This function is no longer provided by the GNU C library. Use clock_get-
time(2) instead.

This function returns the current time as seconds and milliseconds since the Epoch,
1970-01-01 00:00:00 +0000 (UTC). The time is returned in tp, which is declared as fol-
lows:

struct timeb {
time_t time;
unsigned short millitm;
short timezone;
short dstflag;

};

Here time is the number of seconds since the Epoch, and millitm is the number of mil-
liseconds since time seconds since the Epoch. The timezone field is the local timezone
measured in minutes of time west of Greenwich (with a negative value indicating min-
utes east of Greenwich). The dstflag field is a flag that, if nonzero, indicates that Day-
light Saving time applies locally during the appropriate part of the year.

POSIX.1-2001 says that the contents of the timezone and dstflag fields are unspecified;
avoid relying on them.

RETURN VALUE
This function always returns 0. (POSIX.1-2001 specifies, and some systems document,
a -1 error return.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeftime()

STANDARDS
None.

HISTORY
4.2BSD. Marked as LEGACY in POSIX.1-2001; removed in POSIX.1-2008. Removed
in glibc 2.33.

This function is obsolete. Don’t use it. If the time in seconds suffices, time(2) can be
used; gettimeofday(2) gives microseconds; clock_gettime(2) gives nanoseconds but is
not as widely available.

Linux man-pages 6.16 2025-10-29 1752

ftime(3) Library Functions Manual ftime(3)

BUGS
Early glibc2 is buggy and returns 0 in the millitm field; glibc 2.1.1 is correct again.

SEE ALSO
gettimeofday(2), time(2)

Linux man-pages 6.16 2025-10-29 1753

ftok(3) Library Functions Manual ftok(3)

NAME
ftok - convert a pathname and a project identifier to a System V IPC key

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ipc.h>

key_t ftok(const char *path, int proj_id);

DESCRIPTION
The ftok() function uses the identity of the file named by the given path (which must re-
fer to an existing, accessible file) and the least significant 8 bits of proj_id (which must
be nonzero) to generate a key_t type System V IPC key, suitable for use with msgget(2),
semget(2), or shmget(2).

The resulting value is the same for all pathnames that name the same file, when the same
value of proj_id is used. The value returned should be different when the (simultane-
ously existing) files or the project IDs differ.

RETURN VALUE
On success, the generated key_t value is returned. On failure -1 is returned, with errno
indicating the error as for the stat(2) system call.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeftok()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
On some ancient systems, the prototype was:

key_t ftok(char *path, char proj_id);

Today, proj_id is an int, but still only 8 bits are used. Typical usage has an ASCII char-
acter proj_id , that is why the behavior is said to be undefined when proj_id is zero.

Of course, no guarantee can be given that the resulting key_t is unique. Typically, a
best-effort attempt combines the given proj_id byte, the lower 16 bits of the inode num-
ber, and the lower 8 bits of the device number into a 32-bit result. Collisions may easily
happen, for example between files on /dev/hda1 and files on /dev/sda1.

EXAMPLES
See semget(2).

SEE ALSO
msgget(2), semget(2), shmget(2), stat(2), sysvipc(7)

Linux man-pages 6.16 2025-05-17 1754

fts(3) Library Functions Manual fts(3)

NAME
fts, fts_open, fts_read, fts_children, fts_set, fts_close - traverse a file hierarchy

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>
#include <fts.h>

FTS *fts_open(char *const *path_argv, int options,
typeof(int (const FTSENT **, const FTSENT **))

*_Nullable compar);

FTSENT *fts_read(FTS * ftsp);

FTSENT *fts_children(FTS * ftsp, int instr);

int fts_set(FTS * ftsp, FTSENT * f , int instr);

int fts_close(FTS * ftsp);

DESCRIPTION
The fts functions are provided for traversing file hierarchies. A simple overview is that
the fts_open() function returns a "handle" (of type FTS *) that refers to a file hierarchy
"stream". This handle is then supplied to the other fts functions. The function
fts_read() returns a pointer to a structure describing one of the files in the file hierarchy.
The function fts_children() returns a pointer to a linked list of structures, each of which
describes one of the files contained in a directory in the hierarchy.

In general, directories are visited two distinguishable times; in preorder (before any of
their descendants are visited) and in postorder (after all of their descendants have been
visited). Files are visited once. It is possible to walk the hierarchy "logically" (visiting
the files that symbolic links point to) or physically (visiting the symbolic links them-
selves), order the walk of the hierarchy or prune and/or revisit portions of the hierarchy.

Two structures (and associated types) are defined in the include file <fts.h>. The first
type is FTS, the structure that represents the file hierarchy itself. The second type is FT-
SENT , the structure that represents a file in the file hierarchy. Normally, an FTSENT
structure is returned for every file in the file hierarchy. In this manual page, "file" and
"FTSENT structure" are generally interchangeable.

The FTSENT structure contains fields describing a file. The structure contains at least
the following fields (there are additional fields that should be considered private to the
implementation):

typedef struct _ftsent {
unsigned short fts_info; /* flags for FTSENT structure */
char *fts_accpath; /* access path */
char *fts_path; /* root path */
short fts_pathlen; /* strlen(fts_path) +

strlen(fts_name) */
char *fts_name; /* filename */

Linux man-pages 6.16 2025-09-21 1755

fts(3) Library Functions Manual fts(3)

short fts_namelen; /* strlen(fts_name) */
short fts_level; /* depth (-1 to N) */
int fts_errno; /* file errno */
long fts_number; /* local numeric value */
void *fts_pointer; /* local address value */
struct _ftsent *fts_parent; /* parent directory */
struct _ftsent *fts_link; /* next file structure */
struct _ftsent *fts_cycle; /* cycle structure */
struct stat *fts_statp; /* [l]stat(2) information */

} FTSENT;

These fields are defined as follows:

fts_info
One of the following values describing the returned FTSENT structure and the
file it represents. With the exception of directories without errors (FTS_D), all
of these entries are terminal, that is, they will not be revisited, nor will any of
their descendants be visited.

FTS_D
A directory being visited in preorder.

FTS_DC
A directory that causes a cycle in the tree. (The fts_cycle field of the FT-
SENT structure will be filled in as well.)

FTS_DEFAULT
Any FTSENT structure that represents a file type not explicitly described
by one of the other fts_info values.

FTS_DNR
A directory which cannot be read. This is an error return, and the fts_er-
rno field will be set to indicate what caused the error.

FTS_DOT
A file named "." or ".." which was not specified as a filename to
fts_open() (see FTS_SEEDOT).

FTS_DP
A directory being visited in postorder. The contents of the FTSENT
structure will be unchanged from when it was returned in preorder, that
is, with the fts_info field set to FTS_D.

FTS_ERR
This is an error return, and the fts_errno field will be set to indicate what
caused the error.

FTS_F
A regular file.

FTS_NS
A file for which no [l]stat(2) information was available. The contents of
the fts_statp field are undefined. This is an error return, and the fts_er-
rno field will be set to indicate what caused the error.

Linux man-pages 6.16 2025-09-21 1756

fts(3) Library Functions Manual fts(3)

FTS_NSOK
A file for which no [l]stat(2) information was requested. The contents of
the fts_statp field are undefined.

FTS_SL
A symbolic link.

FTS_SLNONE
A symbolic link with a nonexistent target. The contents of the fts_statp
field reference the file characteristic information for the symbolic link it-
self.

fts_accpath
A path for accessing the file from the current directory.

fts_path
The path for the file relative to the root of the traversal. This path contains the
path specified to fts_open() as a prefix.

fts_pathlen
The sum of the lengths of the strings referenced by fts_path and fts_name.

fts_name
The name of the file.

fts_namelen
The length of the string referenced by fts_name.

fts_level
The depth of the traversal, numbered from -1 to N, where this file was found.
The FTSENT structure representing the parent of the starting point (or root) of
the traversal is numbered -1, and the FTSENT structure for the root itself is
numbered 0.

fts_errno
If fts_children() or fts_read() returns an FTSENT structure whose fts_info field
is set to FTS_DNR, FTS_ERR, or FTS_NS, the fts_errno field contains the er-
ror number (i.e., the errno value) specifying the error. Otherwise, the contents of
the fts_errno field are undefined.

fts_number
This field is provided for the use of the application program and is not modified
by the fts functions. It is initialized to 0.

fts_pointer
This field is provided for the use of the application program and is not modified
by the fts functions. It is initialized to NULL.

fts_parent
A pointer to the FTSENT structure referencing the file in the hierarchy immedi-
ately above the current file, that is, the directory of which this file is a member.
A parent structure for the initial entry point is provided as well, however, only
the fts_level, fts_number, and fts_pointer fields are guaranteed to be initialized.

Linux man-pages 6.16 2025-09-21 1757

fts(3) Library Functions Manual fts(3)

fts_link
Upon return from the fts_children() function, the fts_link field points to the next
structure in the NULL-terminated linked list of directory members. Otherwise,
the contents of the fts_link field are undefined.

fts_cycle
If a directory causes a cycle in the hierarchy (see FTS_DC), either because of a
hard link between two directories, or a symbolic link pointing to a directory, the
fts_cycle field of the structure will point to the FTSENT structure in the hierar-
chy that references the same file as the current FTSENT structure. Otherwise,
the contents of the fts_cycle field are undefined.

fts_statp
A pointer to [l]stat(2) information for the file.

A single buffer is used for all of the paths of all of the files in the file hierarchy. There-
fore, the fts_path and fts_accpath fields are guaranteed to be null-terminated only for
the file most recently returned by fts_read(). To use these fields to reference any files
represented by other FTSENT structures will require that the path buffer be modified us-
ing the information contained in that FTSENT structure’s fts_pathlen field. Any such
modifications should be undone before further calls to fts_read() are attempted. The
fts_name field is always null-terminated.

fts_open()
The fts_open() function takes a pointer to an array of character pointers naming one or
more paths which make up a logical file hierarchy to be traversed. The array must be
terminated by a null pointer.

There are a number of options, at least one of which (either FTS_LOGICAL or
FTS_PHYSICAL) must be specified. The options are selected by ORing the following
values:

FTS_LOGICAL
This option causes the fts routines to return FTSENT structures for the targets of
symbolic links instead of the symbolic links themselves. If this option is set, the
only symbolic links for which FTSENT structures are returned to the application
are those referencing nonexistent files: the fts_statp field is obtained via stat(2)
with a fallback to lstat(2).

FTS_PHYSICAL
This option causes the fts routines to return FTSENT structures for symbolic
links themselves instead of the target files they point to. If this option is set, FT-
SENT structures for all symbolic links in the hierarchy are returned to the appli-
cation: the fts_statp field is obtained via lstat(2).

FTS_COMFOLLOW
This option causes any symbolic link specified as a root path to be followed im-
mediately, as if via FTS_LOGICAL, regardless of the primary mode.

FTS_NOCHDIR
As a performance optimization, the fts functions change directories as they walk
the file hierarchy. This has the side-effect that an application cannot rely on

Linux man-pages 6.16 2025-09-21 1758

fts(3) Library Functions Manual fts(3)

being in any particular directory during the traversal. This option turns off this
optimization, and the fts functions will not change the current directory. Note
that applications should not themselves change their current directory and try to
access files unless FTS_NOCHDIR is specified and absolute pathnames were
provided as arguments to fts_open().

FTS_NOSTAT
By default, returned FTSENT structures reference file characteristic information
(the fts_statp field) for each file visited. This option relaxes that requirement as
a performance optimization, allowing the fts functions to set the fts_info field to
FTS_NSOK and leave the contents of the fts_statp field undefined.

FTS_SEEDOT
By default, unless they are specified as path arguments to fts_open(), any files
named "." or ".." encountered in the file hierarchy are ignored. This option
causes the fts routines to return FTSENT structures for them.

FTS_XDEV
This option prevents fts from descending into directories that have a different de-
vice number than the file from which the descent began.

The argument compar() specifies a user-defined function which may be used to order
the traversal of the hierarchy. It takes two pointers to pointers to FTSENT structures as
arguments and should return a negative value, zero, or a positive value to indicate if the
file referenced by its first argument comes before, in any order with respect to, or after,
the file referenced by its second argument. The fts_accpath, fts_path, and fts_pathlen
fields of the FTSENT structures may never be used in this comparison. If the fts_info
field is set to FTS_NS or FTS_NSOK, the fts_statp field may not either. If the com-
par() argument is NULL, the directory traversal order is in the order listed in path_argv
for the root paths, and in the order listed in the directory for everything else.

fts_read()
The fts_read() function returns a pointer to an FTSENT structure describing a file in the
hierarchy. Directories (that are readable and do not cause cycles) are visited at least
twice, once in preorder and once in postorder. All other files are visited at least once.
(Hard links between directories that do not cause cycles or symbolic links to symbolic
links may cause files to be visited more than once, or directories more than twice.)

If all the members of the hierarchy have been returned, fts_read() returns NULL and
sets errno to 0. If an error unrelated to a file in the hierarchy occurs, fts_read() returns
NULL and sets errno to indicate the error. If an error related to a returned file occurs, a
pointer to an FTSENT structure is returned, and errno may or may not have been set
(see fts_info).

The FTSENT structures returned by fts_read() may be overwritten after a call to
fts_close() on the same file hierarchy stream, or, after a call to fts_read() on the same
file hierarchy stream unless they represent a file of type directory, in which case they
will not be overwritten until after a call to fts_read() after the FTSENT structure has
been returned by the function fts_read() in postorder.

Linux man-pages 6.16 2025-09-21 1759

fts(3) Library Functions Manual fts(3)

fts_children()
The fts_children() function returns a pointer to an FTSENT structure describing the
first entry in a NULL-terminated linked list of the files in the directory represented by
the FTSENT structure most recently returned by fts_read(). The list is linked through
the fts_link field of the FTSENT structure, and is ordered by the user-specified compari-
son function, if any. Repeated calls to fts_children() will re-create this linked list.

As a special case, if fts_read() has not yet been called for a hierarchy, fts_children()
will return a pointer to the files in the logical directory specified to fts_open(), that is,
the arguments specified to fts_open(). Otherwise, if the FTSENT structure most re-
cently returned by fts_read() is not a directory being visited in preorder, or the directory
does not contain any files, fts_children() returns NULL and sets errno to zero. If an er-
ror occurs, fts_children() returns NULL and sets errno to indicate the error.

The FTSENT structures returned by fts_children() may be overwritten after a call to
fts_children(), fts_close(), or fts_read() on the same file hierarchy stream.

The instr argument is either zero or the following value:

FTS_NAMEONLY
Only the names of the files are needed. The contents of all the fields in the re-
turned linked list of structures are undefined with the exception of the fts_name
and fts_namelen fields.

fts_set()
The function fts_set() allows the user application to determine further processing for the
file f of the stream ftsp. The fts_set() function returns 0 on success, and -1 if an error
occurs.

The instr argument is either 0 (meaning "do nothing") or one of the following values:

FTS_AGAIN
Revisit the file; any file type may be revisited. The next call to fts_read() will
return the referenced file. The fts_stat and fts_info fields of the structure will be
reinitialized at that time, but no other fields will have been changed. This option
is meaningful only for the most recently returned file from fts_read(). Normal
use is for postorder directory visits, where it causes the directory to be revisited
(in both preorder and postorder) as well as all of its descendants.

FTS_FOLLOW
The referenced file must be a symbolic link. If the referenced file is the one most
recently returned by fts_read(), the next call to fts_read() returns the file with
the fts_info and fts_statp fields reinitialized to reflect the target of the symbolic
link instead of the symbolic link itself. If the file is one of those most recently
returned by fts_children(), the fts_info and fts_statp fields of the structure,
when returned by fts_read(), will reflect the target of the symbolic link instead
of the symbolic link itself. In either case, if the target of the symbolic link does
not exist, the fields of the returned structure will be unchanged and the fts_info
field will be set to FTS_SLNONE.

If the target of the link is a directory, the preorder return, followed by the return
of all of its descendants, followed by a postorder return, is done.

Linux man-pages 6.16 2025-09-21 1760

fts(3) Library Functions Manual fts(3)

FTS_SKIP
No descendants of this file are visited. The file may be one of those most re-
cently returned by either fts_children() or fts_read().

fts_close()
The fts_close() function closes the file hierarchy stream referred to by ftsp and restores
the current directory to the directory from which fts_open() was called to open ftsp.
The fts_close() function returns 0 on success, and -1 if an error occurs.

ERRORS
The function fts_open() may fail and set errno for any of the errors specified for
open(2) and malloc(3).

In addition, fts_open() may fail and set errno as follows:

ENOENT
Any element of path_argv was an empty string.

The function fts_close() may fail and set errno for any of the errors specified for
chdir(2) and close(2).

The functions fts_read() and fts_children() may fail and set errno for any of the errors
specified for chdir(2), malloc(3), opendir(3), readdir(3), and [l]stat(2).

In addition, fts_children(), fts_open(), and fts_set() may fail and set errno as follows:

EINVAL
options or instr was invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefts_open(), fts_set(), fts_close()
Thread safety MT-Unsafefts_read(), fts_children()

STANDARDS
None.

HISTORY
glibc 2. 4.4BSD.

BUGS
Before glibc 2.23, all of the APIs described in this man page are not safe when compil-
ing a program using the LFS APIs (e.g., when compiling with -D_FILE_OFF-
SET_BITS=64).

SEE ALSO
find(1), chdir(2), lstat(2), stat(2), ftw(3), qsort(3)

Linux man-pages 6.16 2025-09-21 1761

ftw(3) Library Functions Manual ftw(3)

NAME
ftw, nftw - file tree walk

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ftw.h>

int nftw(const char *dirpath,
typeof(int (const char * fpath, const struct stat *sb,

int typeflag, struct FTW * ftwbuf))
* fn,

int nopenfd , int flags);

[[deprecated]]
int ftw(const char *dirpath,

typeof(int (const char * fpath, const struct stat *sb,
int typeflag))

* fn,
int nopenfd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nftw():
_XOPEN_SOURCE >= 500

DESCRIPTION
nftw() walks through the directory tree that is located under the directory dirpath, and
calls fn() once for each entry in the tree. By default, directories are handled before the
files and subdirectories they contain (preorder traversal).

To avoid using up all of the calling process’s file descriptors, nopenfd specifies the max-
imum number of directories that nftw() will hold open simultaneously. When the search
depth exceeds this, nftw() will become slower because directories have to be closed and
reopened. nftw() uses at most one file descriptor for each level in the directory tree.

For each entry found in the tree, nftw() calls fn() with four arguments: fpath, sb, type-
flag, and ftwbuf . fpath is the pathname of the entry, and is expressed either as a path-
name relative to the calling process’s current working directory at the time of the call to
nftw(), if dirpath was expressed as a relative pathname, or as an absolute pathname, if
dirpath was expressed as an absolute pathname. sb is a pointer to the stat structure re-
turned by a call to stat(2) for fpath.

The typeflag argument passed to fn() is an integer that has one of the following values:

FTW_F
fpath is a regular file.

FTW_D
fpath is a directory.

FTW_DNR
fpath is a directory which can’t be read.

Linux man-pages 6.16 2025-09-21 1762

ftw(3) Library Functions Manual ftw(3)

FTW_DP
fpath is a directory, and FTW_DEPTH was specified in flags. (If
FTW_DEPTH was not specified in flags, then directories will always be visited
with typeflag set to FTW_D.) All of the files and subdirectories within fpath
have been processed.

FTW_NS
The stat(2) call failed on fpath, which is not a symbolic link. The probable
cause for this is that the caller had read permission on the parent directory, so
that the filename fpath could be seen, but did not have execute permission, so
that the file could not be reached for stat(2). The contents of the buffer pointed
to by sb are undefined.

FTW_SL
fpath is a symbolic link, and FTW_PHYS was set in flags.

FTW_SLN
fpath is a symbolic link pointing to a nonexistent file. (This occurs only if
FTW_PHYS is not set.) In this case the sb argument passed to fn() contains in-
formation returned by performing lstat(2) on the "dangling" symbolic link. (But
see BUGS.)

The fourth argument (ftwbuf) that nftw() supplies when calling fn() is a pointer to a
structure of type FTW :

struct FTW {
int base;
int level;

};

base is the offset of the filename (i.e., basename component) in the pathname given in
fpath. level is the depth of fpath in the directory tree, relative to the root of the tree
(dirpath, which has depth 0).

To stop the tree walk, fn() returns a nonzero value; this value will become the return
value of nftw(). As long as fn() returns 0, nftw() will continue either until it has tra-
versed the entire tree, in which case it will return zero, or until it encounters an error
(such as a malloc(3) failure), in which case it will return -1.

Because nftw() uses dynamic data structures, the only safe way to exit out of a tree walk
is to return a nonzero value from fn(). To allow a signal to terminate the walk without
causing a memory leak, have the handler set a global flag that is checked by fn(). Don’t
use longjmp(3) unless the program is going to terminate.

The flags argument of nftw() is formed by ORing zero or more of the following flags:

FTW_ACTIONRETVAL (since glibc 2.3.3)
If this glibc-specific flag is set, then nftw() handles the return value from fn()
differently. fn() should return one of the following values:

FTW_CONTINUE
Instructs nftw() to continue normally.

Linux man-pages 6.16 2025-09-21 1763

ftw(3) Library Functions Manual ftw(3)

FTW_SKIP_SIBLINGS
If fn() returns this value, then siblings of the current entry will be
skipped, and processing continues in the parent.

FTW_SKIP_SUBTREE
If fn() is called with an entry that is a directory (typeflag is FTW_D),
this return value will prevent objects within that directory from being
passed as arguments to fn(). nftw() continues processing with the next
sibling of the directory.

FTW_STOP
Causes nftw() to return immediately with the return value FTW_STOP.

Other return values could be associated with new actions in the future; fn()
should not return values other than those listed above.

The feature test macro _GNU_SOURCE must be defined (before including any
header files) in order to obtain the definition of FTW_ACTIONRETVAL from
<ftw.h>.

FTW_CHDIR
If set, do a chdir(2) to each directory before handling its contents. This is useful
if the program needs to perform some action in the directory in which fpath re-
sides. (Specifying this flag has no effect on the pathname that is passed in the
fpath argument of fn.)

FTW_DEPTH
If set, do a post-order traversal, that is, call fn() for the directory itself after han-
dling the contents of the directory and its subdirectories. (By default, each direc-
tory is handled before its contents.)

FTW_MOUNT
If set, stay within the same filesystem (i.e., do not cross mount points).

FTW_PHYS
If set, do not follow symbolic links. (This is what you want.) If not set, sym-
bolic links are followed, but no file is reported twice.

If FTW_PHYS is not set, but FTW_DEPTH is set, then the function fn() is
never called for a directory that would be a descendant of itself.

ftw()
ftw() is an older function that offers a subset of the functionality of nftw(). The notable
differences are as follows:

• ftw() has no flags argument. It behaves the same as when nftw() is called with
flags specified as zero.

• The callback function, fn(), is not supplied with a fourth argument.

• The range of values that is passed via the typeflag argument supplied to fn() is
smaller: just FTW_F, FTW_D, FTW_DNR, FTW_NS, and (possibly) FTW_SL.

Linux man-pages 6.16 2025-09-21 1764

ftw(3) Library Functions Manual ftw(3)

RETURN VALUE
These functions return 0 on success, and -1 if an error occurs.

If fn() returns nonzero, then the tree walk is terminated and the value returned by fn() is
returned as the result of ftw() or nftw().

If nftw() is called with the FTW_ACTIONRETVAL flag, then the only nonzero value
that should be used by fn() to terminate the tree walk is FTW_STOP, and that value is
returned as the result of nftw().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe cwdnftw()
Thread safety MT-Safeftw()

VERSIONS
In some implementations (e.g., glibc), ftw() will never use FTW_SL; on other systems
FTW_SL occurs only for symbolic links that do not point to an existing file; and again
on other systems ftw() will use FTW_SL for each symbolic link. If fpath is a symbolic
link and stat(2) failed, POSIX.1-2008 states that it is undefined whether FTW_NS or
FTW_SL is passed in typeflag. For predictable results, use nftw().

STANDARDS
POSIX.1-2008.

HISTORY
ftw() POSIX.1-2001, SVr4, SUSv1. POSIX.1-2008 marks it as obsolete.

nftw()
glibc 2.1. POSIX.1-2001, SUSv1.

FTW_SL
POSIX.1-2001, SUSv1.

NOTES
POSIX.1-2008 notes that the results are unspecified if fn does not preserve the current
working directory.

BUGS
According to POSIX.1-2008, when the typeflag argument passed to fn() contains
FTW_SLN, the buffer pointed to by sb should contain information about the dangling
symbolic link (obtained by calling lstat(2) on the link). Early glibc versions correctly
followed the POSIX specification on this point. However, as a result of a regression in-
troduced in glibc 2.4, the contents of the buffer pointed to by sb were undefined when
FTW_SLN is passed in typeflag. (More precisely, the contents of the buffer were left
unchanged in this case.) This regression was eventually fixed in glibc 2.30, so that the
glibc implementation (once more) follows the POSIX specification.

EXAMPLES
The following program traverses the directory tree under the path named in its first com-
mand-line argument, or under the current directory if no argument is supplied. It dis-
plays various information about each file. The second command-line argument can be

Linux man-pages 6.16 2025-09-21 1765

ftw(3) Library Functions Manual ftw(3)

used to specify characters that control the value assigned to the flags argument when
calling nftw().

Program source

#define _XOPEN_SOURCE 500
#include <ftw.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int
display_info(const char *fpath, const struct stat *sb,

int tflag, struct FTW *ftwbuf)
{

printf("%-3s %2d ",
(tflag == FTW_D) ? "d" : (tflag == FTW_DNR) ? "dnr" :
(tflag == FTW_DP) ? "dp" : (tflag == FTW_F) ? "f" :
(tflag == FTW_NS) ? "ns" : (tflag == FTW_SL) ? "sl" :
(tflag == FTW_SLN) ? "sln" : "???",
ftwbuf->level);

if (tflag == FTW_NS)
printf("-------");

else
printf("%7jd", (intmax_t) sb->st_size);

printf(" %-40s %d %s\n",
fpath, ftwbuf->base, fpath + ftwbuf->base);

return 0; /* To tell nftw() to continue */
}

int
main(int argc, char *argv[])
{

int flags = 0;

if (argc > 2 && strchr(argv[2], 'd') != NULL)
flags |= FTW_DEPTH;

if (argc > 2 && strchr(argv[2], 'p') != NULL)
flags |= FTW_PHYS;

if (nftw((argc < 2) ? "." : argv[1], display_info, 20, flags)
== -1)

{
perror("nftw");

Linux man-pages 6.16 2025-09-21 1766

ftw(3) Library Functions Manual ftw(3)

exit(EXIT_FAILURE);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
stat(2), fts(3), readdir(3)

Linux man-pages 6.16 2025-09-21 1767

futimes(3) Library Functions Manual futimes(3)

NAME
futimes, lutimes - change file timestamps

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

int futimes(int fd , const struct timeval tv[2]);
int lutimes(const char *path, const struct timeval tv[2]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

futimes(), lutimes():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
futimes() changes the access and modification times of a file in the same way as
utimes(2), with the difference that the file whose timestamps are to be changed is speci-
fied via a file descriptor, fd , rather than via a pathname.

lutimes() changes the access and modification times of a file in the same way as
utimes(2), with the difference that if path refers to a symbolic link, then the link is not
dereferenced: instead, the timestamps of the symbolic link are changed.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
Errors are as for utimes(2), with the following additions for futimes():

EBADF
fd is not a valid file descriptor.

ENOSYS
The /proc filesystem could not be accessed.

The following additional error may occur for lutimes():

ENOSYS
The kernel does not support this call; Linux 2.6.22 or later is required.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefutimes(), lutimes()

STANDARDS
Linux, BSD.

Linux man-pages 6.16 2025-09-21 1768

futimes(3) Library Functions Manual futimes(3)

HISTORY
futimes()

glibc 2.3.

lutimes()
glibc 2.6.

NOTES
lutimes() is implemented using the utimensat(2) system call.

SEE ALSO
utime(2), utimensat(2), symlink(7)

Linux man-pages 6.16 2025-09-21 1769

fwide(3) Library Functions Manual fwide(3)

NAME
fwide - set and determine the orientation of a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int fwide(FILE *stream, int mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fwide():
_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE

|| _POSIX_C_SOURCE >= 200112L

DESCRIPTION
When mode is zero, the fwide() function determines the current orientation of stream. It
returns a positive value if stream is wide-character oriented, that is, if wide-character
I/O is permitted but char I/O is disallowed. It returns a negative value if stream is byte
oriented—that is, if char I/O is permitted but wide-character I/O is disallowed. It returns
zero if stream has no orientation yet; in this case the next I/O operation might change
the orientation (to byte oriented if it is a char I/O operation, or to wide-character ori-
ented if it is a wide-character I/O operation).

Once a stream has an orientation, it cannot be changed and persists until the stream is
closed.

When mode is nonzero, the fwide() function first attempts to set stream’s orientation (to
wide-character oriented if mode is greater than 0, or to byte oriented if mode is less than
0). It then returns a value denoting the current orientation, as above.

RETURN VALUE
The fwide() function returns the stream’s orientation, after possibly changing it. A posi-
tive return value means wide-character oriented. A negative return value means byte
oriented. A return value of zero means undecided.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
Wide-character output to a byte oriented stream can be performed through the fprintf(3)
function with the %lc and %ls directives.

Char oriented output to a wide-character oriented stream can be performed through the
fwprintf(3) function with the %c and %s directives.

SEE ALSO
fprintf(3), fwprintf(3)

Linux man-pages 6.16 2025-05-17 1770

fwide(3) Library Functions Manual fwide(3)

Linux man-pages 6.16 2025-05-17 1771

gamma(3) Library Functions Manual gamma(3)

NAME
gamma, gammaf, gammal - (logarithm of the) gamma function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

[[deprecated]] double gamma(double x);
[[deprecated]] float gammaf(float x);
[[deprecated]] long double gammal(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gamma():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

gammaf(), gammal():
_XOPEN_SOURCE >= 600 || (_XOPEN_SOURCE && _ISOC99_SOURCE)

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions are deprecated: instead, use either the tgamma(3) or the lgamma(3)
functions, as appropriate.

For the definition of the Gamma function, see tgamma(3).

*BSD version
The libm in 4.4BSD and some versions of FreeBSD had a gamma() function that com-
putes the Gamma function, as one would expect.

glibc version
glibc has a gamma() function that is equivalent to lgamma(3) and computes the natural
logarithm of the Gamma function.

RETURN VALUE
See lgamma(3).

ERRORS
See lgamma(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:signgamgamma(), gammaf(), gammal()

STANDARDS
None.

HISTORY
SVID 2.

Linux man-pages 6.16 2025-05-17 1772

gamma(3) Library Functions Manual gamma(3)

Because of historical variations in behavior across systems, this function is not specified
in any recent standard.

4.2BSD had a gamma() that computed ln(|Gamma(|x|)|), leaving the sign of Gamma(|x|)
in the external integer signgam. In 4.3BSD the name was changed to lgamma(3), and
the man page promises

"At some time in the future the name gamma will be rehabilitated and used for the
Gamma function"

This did indeed happen in 4.4BSD, where gamma() computes the Gamma function
(with no effect on signgam). However, this came too late, and we now have tgamma(3),
the "true gamma" function.

SEE ALSO
lgamma(3), signgam(3), tgamma(3)

Linux man-pages 6.16 2025-05-17 1773

gcvt(3) Library Functions Manual gcvt(3)

NAME
gcvt - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *gcvt(double number, int ndigit, char *buf);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gcvt():
Since glibc 2.17

(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200809L))
|| /* glibc >= 2.20 */ _DEFAULT_SOURCE
|| /* glibc <= 2.19 */ _SVID_SOURCE

glibc 2.12 to glibc 2.16:
(_XOPEN_SOURCE >= 500 && ! (_POSIX_C_SOURCE >= 200112L))

|| _SVID_SOURCE
Before glibc 2.12:

_SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The gcvt() function converts number to a minimal length null-terminated ASCII string
and stores the result in buf . It produces ndigit significant digits in either printf(3) F for-
mat or E format.

RETURN VALUE
The gcvt() function returns buf .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegcvt()

STANDARDS
None.

HISTORY
Marked as LEGACY in POSIX.1-2001. POSIX.1-2008 removed it, recommending the
use of sprintf(3) instead (though snprintf(3) may be preferable).

SEE ALSO
ecvt(3), fcvt(3), sprintf(3)

Linux man-pages 6.16 2025-05-17 1774

_Generic(3) Library Functions Manual _Generic(3)

NAME
_Generic - type-generic selection

SYNOPSIS
_Generic(expression, type1: e1, ... /*, default: e */);

DESCRIPTION
_Generic() evaluates the path of code under the type selector that is compatible with the
type of the controlling expression, or default: if no type is compatible.

expression is not evaluated.

This is especially useful for writing type-generic macros, that will behave differently de-
pending on the type of the argument.

STANDARDS
C11.

HISTORY
C11.

EXAMPLES
The following program demonstrates how to write a replacement for the standard imax-
abs(3) function, which being a function can’t really provide what it promises: seam-
lessly upgrading to the widest available type.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>

#define my_imaxabs _Generic(INTMAX_C(0), \
long: labs, \
long long: llabs \

/* long long long: lllabs */ \
)

int
main(void)
{

off_t a;

a = -42;
printf("imaxabs(%jd) == %jd\n", (intmax_t) a, my_imaxabs(a));
printf("&imaxabs == %p\n", &my_imaxabs);
printf("&labs == %p\n", &labs);
printf("&llabs == %p\n", &llabs);

exit(EXIT_SUCCESS);
}

Linux man-pages 6.16 2025-05-17 1775

_Generic(3) Library Functions Manual _Generic(3)

Linux man-pages 6.16 2025-05-17 1776

get_nprocs(3) Library Functions Manual get_nprocs(3)

NAME
get_nprocs, get_nprocs_conf - get number of processors

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysinfo.h>

int get_nprocs(void);
int get_nprocs_conf(void);

DESCRIPTION
The function get_nprocs_conf() returns the number of processors configured by the op-
erating system.

The function get_nprocs() returns the number of processors currently available in the
system. This may be less than the number returned by get_nprocs_conf() because
processors may be offline (e.g., on hotpluggable systems).

RETURN VALUE
As given in DESCRIPTION.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeget_nprocs(), get_nprocs_conf()

STANDARDS
GNU.

NOTES
The current implementation of these functions is rather expensive, since they open and
parse files in the /sys filesystem each time they are called.

The following sysconf(3) calls make use of the functions documented on this page to re-
turn the same information.

np = sysconf(_SC_NPROCESSORS_CONF); /* processors configured */
np = sysconf(_SC_NPROCESSORS_ONLN); /* processors available */

EXAMPLES
The following example shows how get_nprocs() and get_nprocs_conf() can be used.

#include <stdio.h>
#include <stdlib.h>
#include <sys/sysinfo.h>

int
main(void)
{

printf("This system has %d processors configured and "
"%d processors available.\n",
get_nprocs_conf(), get_nprocs());

exit(EXIT_SUCCESS);

Linux man-pages 6.16 2025-05-17 1777

get_nprocs(3) Library Functions Manual get_nprocs(3)

}

SEE ALSO
nproc(1)

Linux man-pages 6.16 2025-05-17 1778

get_phys_pages(3) Library Functions Manual get_phys_pages(3)

NAME
get_phys_pages, get_avphys_pages - get total and available physical page counts

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysinfo.h>

long get_phys_pages(void);
long get_avphys_pages(void);

DESCRIPTION
The function get_phys_pages() returns the total number of physical pages of memory
available on the system.

The function get_avphys_pages() returns the number of currently available physical
pages of memory on the system.

RETURN VALUE
On success, these functions return a nonnegative value as given in DESCRIPTION. On
failure, they return -1 and set errno to indicate the error.

ERRORS
ENOSYS

The system could not provide the required information (possibly because the
/proc filesystem was not mounted).

STANDARDS
GNU.

HISTORY
Before glibc 2.23, these functions obtained the required information by scanning the
MemTotal and MemFree fields of /proc/meminfo. Since glibc 2.23, these functions ob-
tain the required information by calling sysinfo(2).

NOTES
The following sysconf(3) calls provide a portable means of obtaining the same informa-
tion as the functions described on this page.

total_pages = sysconf(_SC_PHYS_PAGES); /* total pages */
avl_pages = sysconf(_SC_AVPHYS_PAGES); /* available pages */

EXAMPLES
The following example shows how get_phys_pages() and get_avphys_pages() can be
used.

#include <stdio.h>
#include <stdlib.h>
#include <sys/sysinfo.h>

int
main(void)
{

printf("This system has %ld pages of physical memory and "

Linux man-pages 6.16 2025-05-17 1779

get_phys_pages(3) Library Functions Manual get_phys_pages(3)

"%ld pages of physical memory available.\n",
get_phys_pages(), get_avphys_pages());

exit(EXIT_SUCCESS);
}

SEE ALSO
sysconf(3)

Linux man-pages 6.16 2025-05-17 1780

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

NAME
getaddrinfo, freeaddrinfo, gai_strerror - network address and service translation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

int getaddrinfo(const char *restrict node,
const char *restrict service,
const struct addrinfo *restrict hints,
struct addrinfo **restrict res);

void freeaddrinfo(struct addrinfo *res);

const char *gai_strerror(int errcode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getaddrinfo(), freeaddrinfo(), gai_strerror():
Since glibc 2.22:

_POSIX_C_SOURCE >= 200112L
glibc 2.21 and earlier:

_POSIX_C_SOURCE

DESCRIPTION
Given node and service, which identify an Internet host and a service, getaddrinfo() re-
turns one or more addrinfo structures, each of which contains an Internet address that
can be specified in a call to bind(2) or connect(2). The getaddrinfo() function combines
the functionality provided by the gethostbyname(3) and getservbyname(3) functions into
a single interface, but unlike the latter functions, getaddrinfo() is reentrant and allows
programs to eliminate IPv4-versus-IPv6 dependencies.

The addrinfo structure used by getaddrinfo() contains the following fields:

struct addrinfo {
int ai_flags;
int ai_family;
int ai_socktype;
int ai_protocol;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;
char *ai_canonname;
struct addrinfo *ai_next;

};

The hints argument points to an addrinfo structure that specifies criteria for selecting the
socket address structures returned in the list pointed to by res. If hints is not NULL it
points to an addrinfo structure whose ai_family, ai_socktype, and ai_protocol specify
criteria that limit the set of socket addresses returned by getaddrinfo(), as follows:

Linux man-pages 6.16 2025-09-21 1781

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

ai_family
This field specifies the desired address family for the returned addresses. Valid
values for this field include AF_INET and AF_INET6. The value AF_UN-
SPEC indicates that getaddrinfo() should return socket addresses for any ad-
dress family (either IPv4 or IPv6, for example) that can be used with node and
service.

ai_socktype
This field specifies the preferred socket type, for example SOCK_STREAM or
SOCK_DGRAM. Specifying 0 in this field indicates that socket addresses of
any type can be returned by getaddrinfo().

ai_protocol
This field specifies the protocol for the returned socket addresses. Specifying 0
in this field indicates that socket addresses with any protocol can be returned by
getaddrinfo().

ai_flags
This field specifies additional options, described below. Multiple flags are speci-
fied by bitwise OR-ing them together.

All the other fields in the structure pointed to by hints must contain either 0 or a null
pointer, as appropriate.

Specifying hints as NULL is equivalent to setting ai_socktype and ai_protocol to 0;
ai_family to AF_UNSPEC; and ai_flags to (AI_V4MAPPED | AI_ADDRCONFIG).
(POSIX specifies different defaults for ai_flags; see NOTES.) node specifies either a
numerical network address (for IPv4, numbers-and-dots notation as supported by
inet_aton(3); for IPv6, hexadecimal string format as supported by inet_pton(3)), or a
network hostname, whose network addresses are looked up and resolved. If
hints.ai_flags contains the AI_NUMERICHOST flag, then node must be a numerical
network address. The AI_NUMERICHOST flag suppresses any potentially lengthy
network host address lookups.

If the AI_PASSIVE flag is specified in hints.ai_flags, and node is NULL, then the re-
turned socket addresses will be suitable for bind(2)ing a socket that will accept(2) con-
nections. The returned socket address will contain the "wildcard address" (IN-
ADDR_ANY for IPv4 addresses, IN6ADDR_ANY_INIT for IPv6 address). The wild-
card address is used by applications (typically servers) that intend to accept connections
on any of the host’s network addresses. If node is not NULL, then the AI_PASSIVE
flag is ignored.

If the AI_PASSIVE flag is not set in hints.ai_flags, then the returned socket addresses
will be suitable for use with connect(2), sendto(2), or sendmsg(2). If node is NULL,
then the network address will be set to the loopback interface address (IN-
ADDR_LOOPBACK for IPv4 addresses, IN6ADDR_LOOPBACK_INIT for IPv6
address); this is used by applications that intend to communicate with peers running on
the same host.

service sets the port in each returned address structure. If this argument is a service
name (see services(5)), it is translated to the corresponding port number. This argument
can also be specified as a decimal number, which is simply converted to binary. If

Linux man-pages 6.16 2025-09-21 1782

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

service is NULL, then the port number of the returned socket addresses will be left
uninitialized. If AI_NUMERICSERV is specified in hints.ai_flags and service is not
NULL, then service must point to a string containing a numeric port number. This flag
is used to inhibit the invocation of a name resolution service in cases where it is known
not to be required.

Either node or service, but not both, may be NULL.

The getaddrinfo() function allocates and initializes a linked list of addrinfo structures,
one for each network address that matches node and service, subject to any restrictions
imposed by hints, and returns a pointer to the start of the list in res. The items in the
linked list are linked by the ai_next field.

There are several reasons why the linked list may have more than one addrinfo struc-
ture, including: the network host is multihomed, accessible over multiple protocols (e.g.,
both AF_INET and AF_INET6); or the same service is available from multiple socket
types (one SOCK_STREAM address and another SOCK_DGRAM address, for exam-
ple). Normally, the application should try using the addresses in the order in which they
are returned. The sorting function used within getaddrinfo() is defined in RFC 3484;
the order can be tweaked for a particular system by editing /etc/gai.conf (available since
glibc 2.5).

If hints.ai_flags includes the AI_CANONNAME flag, then the ai_canonname field of
the first of the addrinfo structures in the returned list is set to point to the official name
of the host.

The remaining fields of each returned addrinfo structure are initialized as follows:

• The ai_family, ai_socktype, and ai_protocol fields return the socket creation para-
meters (i.e., these fields have the same meaning as the corresponding arguments of
socket(2)). For example, ai_family might return AF_INET or AF_INET6; ai_sock-
type might return SOCK_DGRAM or SOCK_STREAM; and ai_protocol returns
the protocol for the socket.

• A pointer to the socket address is placed in the ai_addr field, and the size of the
socket address, in bytes, is placed in the ai_addrlen field.

If hints.ai_flags includes the AI_ADDRCONFIG flag, then IPv4 addresses are returned
in the list pointed to by res only if the local system has at least one IPv4 address config-
ured, and IPv6 addresses are returned only if the local system has at least one IPv6 ad-
dress configured. The loopback address is not considered for this case as valid as a con-
figured address. This flag is useful on, for example, IPv4-only systems, to ensure that
getaddrinfo() does not return IPv6 socket addresses that would always fail in con-
nect(2) or bind(2).

If hints.ai_flags specifies the AI_V4MAPPED flag, and hints.ai_family was specified as
AF_INET6, and no matching IPv6 addresses could be found, then return IPv4-mapped
IPv6 addresses in the list pointed to by res. If both AI_V4MAPPED and AI_ALL are
specified in hints.ai_flags, then return both IPv6 and IPv4-mapped IPv6 addresses in the
list pointed to by res. AI_ALL is ignored if AI_V4MAPPED is not also specified.

The freeaddrinfo() function frees the memory that was allocated for the dynamically al-
located linked list res.

Linux man-pages 6.16 2025-09-21 1783

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

Extensions to getaddrinfo() for Internationalized Domain Names
Starting with glibc 2.3.4, getaddrinfo() has been extended to selectively allow the in-
coming and outgoing hostnames to be transparently converted to and from the Interna-
tionalized Domain Name (IDN) format (see RFC 3490, Internationalizing Domain
Names in Applications (IDNA)). Four new flags are defined:

AI_IDN
If this flag is specified, then the node name given in node is converted to IDN
format if necessary. The source encoding is that of the current locale.

If the input name contains non-ASCII characters, then the IDN encoding is used.
Those parts of the node name (delimited by dots) that contain non-ASCII charac-
ters are encoded using ASCII Compatible Encoding (ACE) before being passed
to the name resolution functions.

AI_CANONIDN
After a successful name lookup, and if the AI_CANONNAME flag was speci-
fied, getaddrinfo() will return the canonical name of the node corresponding to
the addrinfo structure value passed back. The return value is an exact copy of
the value returned by the name resolution function.

If the name is encoded using ACE, then it will contain the xn-- prefix for one
or more components of the name. To convert these components into a readable
form the AI_CANONIDN flag can be passed in addition to AI_CANON-
NAME. The resulting string is encoded using the current locale’s encoding.

AI_IDN_ALLOW_UNASSIGNED
AI_IDN_USE_STD3_ASCII_RULES

Setting these flags will enable the IDNA_ALLOW_UNASSIGNED (allow unas-
signed Unicode code points) and IDNA_USE_STD3_ASCII_RULES (check
output to make sure it is a STD3 conforming hostname) flags respectively to be
used in the IDNA handling.

RETURN VALUE
getaddrinfo() returns 0 if it succeeds, or one of the following nonzero error codes:

EAI_ADDRFAMILY
The specified network host does not have any network addresses in the requested
address family.

EAI_AGAIN
The name server returned a temporary failure indication. Try again later.

EAI_BADFLAGS
hints.ai_flags contains invalid flags; or, hints.ai_flags included AI_CANON-
NAME and node was NULL.

EAI_FAIL
The name server returned a permanent failure indication.

EAI_FAMILY
The requested address family is not supported.

Linux man-pages 6.16 2025-09-21 1784

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

EAI_MEMORY
Out of memory.

EAI_NODATA
The specified network host exists, but does not have any network addresses de-
fined.

EAI_NONAME
The node or service is not known; or both node and service are NULL; or
AI_NUMERICSERV was specified in hints.ai_flags and service was not a nu-
meric port-number string.

EAI_SERVICE
The requested service is not available for the requested socket type. It may be
available through another socket type. For example, this error could occur if ser-
vice was "shell" (a service available only on stream sockets), and either
hints.ai_protocol was IPPROTO_UDP, or hints.ai_socktype was
SOCK_DGRAM; or the error could occur if service was not NULL, and
hints.ai_socktype was SOCK_RAW (a socket type that does not support the
concept of services).

EAI_SOCKTYPE
The requested socket type is not supported. This could occur, for example, if
hints.ai_socktype and hints.ai_protocol are inconsistent (e.g., SOCK_DGRAM
and IPPROTO_TCP, respectively).

EAI_SYSTEM
Other system error; errno is set to indicate the error.

The gai_strerror() function translates these error codes to a human readable string, suit-
able for error reporting.

FILES
/etc/gai.conf

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localegetaddrinfo()
Thread safety MT-Safefreeaddrinfo(), gai_strerror()

VERSIONS
According to POSIX.1, specifying hints as NULL should cause ai_flags to be assumed
as 0. The GNU C library instead assumes a value of (AI_V4MAPPED | AI_ADDR-
CONFIG) for this case, since this value is considered an improvement on the specifica-
tion.

STANDARDS
POSIX.1-2008.

getaddrinfo()
RFC 2553.

Linux man-pages 6.16 2025-09-21 1785

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

HISTORY
POSIX.1-2001.

AI_ADDRCONFIG
AI_ALL
AI_V4MAPPED

glibc 2.3.3.

AI_NUMERICSERV
glibc 2.3.4.

NOTES
getaddrinfo() supports the address%scope-id notation for specifying the IPv6 scope-
ID.

EXAMPLES
The following programs demonstrate the use of getaddrinfo(), gai_strerror(), freead-
drinfo(), and getnameinfo(3). The programs are an echo server and client for UDP data-
grams.

Server program

#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

#define BUF_SIZE 500

int
main(int argc, char *argv[])
{

int sfd, s;
char buf[BUF_SIZE];
ssize_t nread;
socklen_t peer_addrlen;
struct addrinfo hints;
struct addrinfo *result, *rp;
struct sockaddr_storage peer_addr;

if (argc != 2) {
fprintf(stderr, "Usage: %s port\n", argv[0]);
exit(EXIT_FAILURE);

}

memset(&hints, 0, sizeof(hints));
hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */

Linux man-pages 6.16 2025-09-21 1786

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = AI_PASSIVE; /* For wildcard IP address */
hints.ai_protocol = 0; /* Any protocol */
hints.ai_canonname = NULL;
hints.ai_addr = NULL;
hints.ai_next = NULL;

s = getaddrinfo(NULL, argv[1], &hints, &result);
if (s != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

/* getaddrinfo() returns a list of address structures.
Try each address until we successfully bind(2).
If socket(2) (or bind(2)) fails, we (close the socket
and) try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol);
if (sfd == -1)

continue;

if (bind(sfd, rp->ai_addr, rp->ai_addrlen) == 0)
break; /* Success */

close(sfd);
}

freeaddrinfo(result); /* No longer needed */

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not bind\n");
exit(EXIT_FAILURE);

}

/* Read datagrams and echo them back to sender. */

for (;;) {
char host[NI_MAXHOST], service[NI_MAXSERV];

peer_addrlen = sizeof(peer_addr);
nread = recvfrom(sfd, buf, BUF_SIZE, 0,

(struct sockaddr *) &peer_addr, &peer_addrlen);
if (nread == -1)

continue; /* Ignore failed request */

Linux man-pages 6.16 2025-09-21 1787

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

s = getnameinfo((struct sockaddr *) &peer_addr,
peer_addrlen, host, NI_MAXHOST,
service, NI_MAXSERV, NI_NUMERICSERV);

if (s == 0)
printf("Received %zd bytes from %s:%s\n",

nread, host, service);
else

fprintf(stderr, "getnameinfo: %s\n", gai_strerror(s));

if (sendto(sfd, buf, nread, 0, (struct sockaddr *) &peer_addr,
peer_addrlen) != nread)

{
fprintf(stderr, "Error sending response\n");

}
}

}

Client program

#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <unistd.h>

#define BUF_SIZE 500

int
main(int argc, char *argv[])
{

int sfd, s;
char buf[BUF_SIZE];
size_t size;
ssize_t nread;
struct addrinfo hints;
struct addrinfo *result, *rp;

if (argc < 3) {
fprintf(stderr, "Usage: %s host port msg...\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Obtain address(es) matching host/port. */

memset(&hints, 0, sizeof(hints));

Linux man-pages 6.16 2025-09-21 1788

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

hints.ai_family = AF_UNSPEC; /* Allow IPv4 or IPv6 */
hints.ai_socktype = SOCK_DGRAM; /* Datagram socket */
hints.ai_flags = 0;
hints.ai_protocol = 0; /* Any protocol */

s = getaddrinfo(argv[1], argv[2], &hints, &result);
if (s != 0) {

fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

/* getaddrinfo() returns a list of address structures.
Try each address until we successfully connect(2).
If socket(2) (or connect(2)) fails, we (close the socket
and) try the next address. */

for (rp = result; rp != NULL; rp = rp->ai_next) {
sfd = socket(rp->ai_family, rp->ai_socktype,

rp->ai_protocol);
if (sfd == -1)

continue;

if (connect(sfd, rp->ai_addr, rp->ai_addrlen) != -1)
break; /* Success */

close(sfd);
}

freeaddrinfo(result); /* No longer needed */

if (rp == NULL) { /* No address succeeded */
fprintf(stderr, "Could not connect\n");
exit(EXIT_FAILURE);

}

/* Send remaining command-line arguments as separate
datagrams, and read responses from server. */

for (size_t j = 3; j < argc; j++) {
size = strlen(argv[j]) + 1;

/* +1 for terminating null byte */

if (size > BUF_SIZE) {
fprintf(stderr,

"Ignoring long message in argument %zu\n", j);
continue;

}

Linux man-pages 6.16 2025-09-21 1789

getaddrinfo(3) Library Functions Manual getaddrinfo(3)

if (write(sfd, argv[j], size) != size) {
fprintf(stderr, "partial/failed write\n");
exit(EXIT_FAILURE);

}

nread = read(sfd, buf, BUF_SIZE);
if (nread == -1) {

perror("read");
exit(EXIT_FAILURE);

}

printf("Received %zd bytes: %s\n", nread, buf);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
getaddrinfo_a(3), gethostbyname(3), getnameinfo(3), inet(3), gai.conf(5), hostname(7),
ip(7)

Linux man-pages 6.16 2025-09-21 1790

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

NAME
getaddrinfo_a, gai_suspend, gai_error, gai_cancel - asynchronous network address and
service translation

LIBRARY
Asynchronous name lookup library (libanl, -lanl)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <netdb.h>

int getaddrinfo_a(int mode, struct gaicb *list[restrict n],
int n, struct sigevent *restrict sevp);

int gai_suspend(const struct gaicb *const list[n], int n,
const struct timespec *timeout);

int gai_error(struct gaicb *req);
int gai_cancel(struct gaicb *req);

DESCRIPTION
The getaddrinfo_a() function performs the same task as getaddrinfo(3), but allows mul-
tiple name look-ups to be performed asynchronously, with optional notification on com-
pletion of look-up operations.

The mode argument has one of the following values:

GAI_WAIT
Perform the look-ups synchronously. The call blocks until the look-ups have
completed.

GAI_NOWAIT
Perform the look-ups asynchronously. The call returns immediately, and the re-
quests are resolved in the background. See the discussion of the sevp argument
below.

The array list specifies the look-up requests to process. The n argument specifies the
number of elements in list. The requested look-up operations are started in parallel.
NULL elements in list are ignored. Each request is described by a gaicb structure, de-
fined as follows:

struct gaicb {
const char *ar_name;
const char *ar_service;
const struct addrinfo *ar_request;
struct addrinfo *ar_result;

};

The elements of this structure correspond to the arguments of getaddrinfo(3). Thus,
ar_name corresponds to the node argument and ar_service to the service argument,
identifying an Internet host and a service. The ar_request element corresponds to the
hints argument, specifying the criteria for selecting the returned socket address struc-
tures. Finally, ar_result corresponds to the res argument; you do not need to initialize
this element, it will be automatically set when the request is resolved. The addrinfo
structure referenced by the last two elements is described in getaddrinfo(3).

Linux man-pages 6.16 2025-09-21 1791

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

When mode is specified as GAI_NOWAIT, notifications about resolved requests can be
obtained by employing the sigevent structure pointed to by the sevp argument. For the
definition and general details of this structure, see sigevent(3type). The
sevp->sigev_notify field can have the following values:

SIGEV_NONE
Don’t provide any notification.

SIGEV_SIGNAL
When a look-up completes, generate the signal sigev_signo for the process. See
sigevent(3type) for general details. The si_code field of the siginfo_t structure
will be set to SI_ASYNCNL.

SIGEV_THREAD
When a look-up completes, invoke sigev_notify_function as if it were the start
function of a new thread. See sigevent(3type) for details.

For SIGEV_SIGNAL and SIGEV_THREAD, it may be useful to point
sevp->sigev_value.sival_ptr to list.

The gai_suspend() function suspends execution of the calling thread, waiting for the
completion of one or more requests in the array list. The n argument specifies the size
of the array list. The call blocks until one of the following occurs:

• One or more of the operations in list completes.

• The call is interrupted by a signal that is caught.

• The time interval specified in timeout elapses. This argument specifies a timeout in
seconds plus nanoseconds (see nanosleep(2) for details of the timespec structure). If
timeout is NULL, then the call blocks indefinitely (until one of the events above oc-
curs).

No explicit indication of which request was completed is given; you must determine
which request(s) have completed by iterating with gai_error() over the list of requests.

The gai_error() function returns the status of the request req: either EAI_IN-
PROGRESS if the request was not completed yet, 0 if it was handled successfully, or an
error code if the request could not be resolved.

The gai_cancel() function cancels the request req. If the request has been canceled suc-
cessfully, the error status of the request will be set to EAI_CANCELED and normal
asynchronous notification will be performed. The request cannot be canceled if it is cur-
rently being processed; in that case, it will be handled as if gai_cancel() has never been
called. If req is NULL, an attempt is made to cancel all outstanding requests that the
process has made.

RETURN VALUE
The getaddrinfo_a() function returns 0 if all of the requests have been enqueued suc-
cessfully, or one of the following nonzero error codes:

EAI_AGAIN
The resources necessary to enqueue the look-up requests were not available.
The application may check the error status of each request to determine which
ones failed.

Linux man-pages 6.16 2025-09-21 1792

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

EAI_MEMORY
Out of memory.

EAI_SYSTEM
mode is invalid.

The gai_suspend() function returns 0 if at least one of the listed requests has been com-
pleted. Otherwise, it returns one of the following nonzero error codes:

EAI_AGAIN
The given timeout expired before any of the requests could be completed.

EAI_ALLDONE
There were no actual requests given to the function.

EAI_INTR
A signal has interrupted the function. Note that this interruption might have
been caused by signal notification of some completed look-up request.

The gai_error() function can return EAI_INPROGRESS for an unfinished look-up re-
quest, 0 for a successfully completed look-up (as described above), one of the error
codes that could be returned by getaddrinfo(3), or the error code EAI_CANCELED if
the request has been canceled explicitly before it could be finished.

The gai_cancel() function can return one of these values:

EAI_CANCELED
The request has been canceled successfully.

EAI_NOTCANCELED
The request has not been canceled.

EAI_ALLDONE
The request has already completed.

The gai_strerror(3) function translates these error codes to a human readable string,
suitable for error reporting.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetaddrinfo_a(), gai_suspend(), gai_error(),
gai_cancel()

STANDARDS
GNU.

HISTORY
glibc 2.2.3.

The interface of getaddrinfo_a() was modeled after the lio_listio(3) interface.

EXAMPLES
Two examples are provided: a simple example that resolves several requests in parallel
synchronously, and a complex example showing some of the asynchronous capabilities.

Linux man-pages 6.16 2025-09-21 1793

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

Synchronous example
The program below simply resolves several hostnames in parallel, giving a speed-up
compared to resolving the hostnames sequentially using getaddrinfo(3). The program
might be used like this:

$./a.out mirrors.kernel.org enoent.linuxfoundation.org gnu.org;
mirrors.kernel.org: 139.178.88.99
enoent.linuxfoundation.org: Name or service not known
gnu.org: 209.51.188.116

Here is the program source code

#define _GNU_SOURCE
#include <err.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MALLOC(n, type) ((type *) reallocarray(NULL, n, sizeof(type)))

int
main(int argc, char *argv[])
{

int ret;
struct gaicb *reqs[argc - 1];
char host[NI_MAXHOST];
struct addrinfo *res;

if (argc < 2) {
fprintf(stderr, "Usage: %s HOST...\n", argv[0]);
exit(EXIT_FAILURE);

}

for (size_t i = 0; i < argc - 1; i++) {
reqs[i] = MALLOC(1, struct gaicb);
if (reqs[i] == NULL)

err(EXIT_FAILURE, "malloc");

memset(reqs[i], 0, sizeof(*reqs[0]));
reqs[i]->ar_name = argv[i + 1];

}

ret = getaddrinfo_a(GAI_WAIT, reqs, argc - 1, NULL);
if (ret != 0) {

fprintf(stderr, "getaddrinfo_a() failed: %s\n",
gai_strerror(ret));

exit(EXIT_FAILURE);
}

Linux man-pages 6.16 2025-09-21 1794

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

for (size_t i = 0; i < argc - 1; i++) {
printf("%s: ", reqs[i]->ar_name);
ret = gai_error(reqs[i]);
if (ret == 0) {

res = reqs[i]->ar_result;

ret = getnameinfo(res->ai_addr, res->ai_addrlen,
host, sizeof(host),
NULL, 0, NI_NUMERICHOST);

if (ret != 0) {
fprintf(stderr, "getnameinfo() failed: %s\n",

gai_strerror(ret));
exit(EXIT_FAILURE);

}
puts(host);

} else {
puts(gai_strerror(ret));

}
}
exit(EXIT_SUCCESS);

}

Asynchronous example
This example shows a simple interactive getaddrinfo_a() front-end. The notification fa-
cility is not demonstrated.

An example session might look like this:

$./a.out;
> a mirrors.kernel.org enoent.linuxfoundation.org gnu.org
> c 2
[2] gnu.org: Request not canceled
> w 0 1
[00] mirrors.kernel.org: Finished
> l
[00] mirrors.kernel.org: 139.178.88.99
[01] enoent.linuxfoundation.org: Processing request in progress
[02] gnu.org: 209.51.188.116
> l
[00] mirrors.kernel.org: 139.178.88.99
[01] enoent.linuxfoundation.org: Name or service not known
[02] gnu.org: 209.51.188.116

The program source is as follows:

#define _GNU_SOURCE
#include <assert.h>
#include <err.h>

Linux man-pages 6.16 2025-09-21 1795

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define CALLOC(n, type) ((type *) calloc(n, sizeof(type)))

#define REALLOCF(ptr, n, type) \
({ \

static_assert(__builtin_types_compatible_p(typeof(ptr), type *)); \
\

(type *) reallocarrayf(ptr, n, sizeof(type)); \
})

static struct gaicb **reqs = NULL;
static size_t nreqs = 0;

static inline void *
reallocarrayf(void *p, size_t n, size_t size)
{

void *q;

q = reallocarray(p, n, size);
if (q == NULL && n != 0 && size != 0)

free(p);
return q;

}

static char *
getcmd(void)
{

static char buf[256];

fputs("> ", stdout);
fflush(stdout);
if (fgets(buf, sizeof(buf), stdin) == NULL)

return NULL;

if (buf[strlen(buf) - 1] == '\n')
buf[strlen(buf) - 1] = 0;

return buf;
}

/* Add requests for specified hostnames. */
static void
add_requests(void)

Linux man-pages 6.16 2025-09-21 1796

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

{
size_t nreqs_base = nreqs;
char *host;
int ret;

while ((host = strtok(NULL, " "))) {
nreqs++;
reqs = REALLOCF(reqs, nreqs, struct gaicb *);
if (reqs == NULL)

err(EXIT_FAILURE, "reallocf");

reqs[nreqs - 1] = CALLOC(1, struct gaicb);
if (reqs[nreqs - 1] == NULL)

err(EXIT_FAILURE, "calloc");

reqs[nreqs - 1]->ar_name = strdup(host);
}

/* Queue nreqs_base..nreqs requests. */

ret = getaddrinfo_a(GAI_NOWAIT, &reqs[nreqs_base],
nreqs - nreqs_base, NULL);

if (ret) {
fprintf(stderr, "getaddrinfo_a() failed: %s\n",

gai_strerror(ret));
exit(EXIT_FAILURE);

}
}

/* Wait until at least one of specified requests completes. */
static void
wait_requests(void)
{

char *id;
int ret;
size_t n;
struct gaicb const **wait_reqs;

wait_reqs = CALLOC(nreqs, const struct gaicb *);
if (wait_reqs == NULL)

err(EXIT_FAILURE, "calloc");

/* NULL elements are ignored by gai_suspend(). */

while ((id = strtok(NULL, " ")) != NULL) {
n = atoi(id);

Linux man-pages 6.16 2025-09-21 1797

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

if (n >= nreqs) {
printf("Bad request number: %s\n", id);
return;

}

wait_reqs[n] = reqs[n];
}

ret = gai_suspend(wait_reqs, nreqs, NULL);
if (ret) {

printf("gai_suspend(): %s\n", gai_strerror(ret));
return;

}

for (size_t i = 0; i < nreqs; i++) {
if (wait_reqs[i] == NULL)

continue;

ret = gai_error(reqs[i]);
if (ret == EAI_INPROGRESS)

continue;

printf("[%02zu] %s: %s\n", i, reqs[i]->ar_name,
ret == 0 ? "Finished" : gai_strerror(ret));

}
}

/* Cancel specified requests. */
static void
cancel_requests(void)
{

char *id;
int ret;
size_t n;

while ((id = strtok(NULL, " ")) != NULL) {
n = atoi(id);

if (n >= nreqs) {
printf("Bad request number: %s\n", id);
return;

}

ret = gai_cancel(reqs[n]);
printf("[%s] %s: %s\n", id, reqs[atoi(id)]->ar_name,

gai_strerror(ret));
}

Linux man-pages 6.16 2025-09-21 1798

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

}

/* List all requests. */
static void
list_requests(void)
{

int ret;
char host[NI_MAXHOST];
struct addrinfo *res;

for (size_t i = 0; i < nreqs; i++) {
printf("[%02zu] %s: ", i, reqs[i]->ar_name);
ret = gai_error(reqs[i]);

if (!ret) {
res = reqs[i]->ar_result;

ret = getnameinfo(res->ai_addr, res->ai_addrlen,
host, sizeof(host),
NULL, 0, NI_NUMERICHOST);

if (ret) {
fprintf(stderr, "getnameinfo() failed: %s\n",

gai_strerror(ret));
exit(EXIT_FAILURE);

}
puts(host);

} else {
puts(gai_strerror(ret));

}
}

}

int
main(void)
{

char *cmdline;
char *cmd;

while ((cmdline = getcmd()) != NULL) {
cmd = strtok(cmdline, " ");

if (cmd == NULL) {
list_requests();

} else {
switch (cmd[0]) {
case 'a':

add_requests();

Linux man-pages 6.16 2025-09-21 1799

getaddrinfo_a(3) Library Functions Manual getaddrinfo_a(3)

break;
case 'w':

wait_requests();
break;

case 'c':
cancel_requests();
break;

case 'l':
list_requests();
break;

default:
fprintf(stderr, "Bad command: %c\n", cmd[0]);
break;

}
}

}
exit(EXIT_SUCCESS);

}

SEE ALSO
getaddrinfo(3), inet(3), lio_listio(3), hostname(7), ip(7), sigevent(3type)

Linux man-pages 6.16 2025-09-21 1800

getauxval(3) Library Functions Manual getauxval(3)

NAME
getauxval - retrieve a value from the auxiliary vector

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/auxv.h>

unsigned long getauxval(unsigned long type);

DESCRIPTION
The getauxval() function retrieves values from the auxiliary vector, a mechanism that
the kernel’s ELF binary loader uses to pass certain information to user space when a
program is executed.

Each entry in the auxiliary vector consists of a pair of values: a type that identifies what
this entry represents, and a value for that type. Given the argument type, getauxval() re-
turns the corresponding value.

The value returned for each type is given in the following list. Not all type values are
present on all architectures.

AT_BASE
The base address of the program interpreter (usually, the dynamic linker).

AT_BASE_PLATFORM
A pointer to a string (PowerPC and MIPS only). On PowerPC, this identifies the
real platform; may differ from AT_PLATFORM. On MIPS, this identifies the
ISA level (since Linux 5.7).

AT_CLKTCK
The frequency with which times(2) counts. This value can also be obtained via
sysconf(_SC_CLK_TCK).

AT_DCACHEBSIZE
The data cache block size.

AT_EGID
The effective group ID of the thread.

AT_ENTRY
The entry address of the executable.

AT_EUID
The effective user ID of the thread.

AT_EXECFD
File descriptor of program.

AT_EXECFN
A pointer to a string containing the pathname used to execute the program.

AT_FLAGS
Flags (unused).

Linux man-pages 6.16 2025-09-21 1801

getauxval(3) Library Functions Manual getauxval(3)

AT_FPUCW
Used FPU control word (SuperH architecture only). This gives some informa-
tion about the FPU initialization performed by the kernel.

AT_GID
The real group ID of the thread.

AT_HWCAP
An architecture and ABI dependent bit-mask whose settings indicate detailed
processor capabilities. The contents of the bit mask are hardware dependent (for
example, see the kernel source file arch/x86/include/asm/cpufeature.h for details
relating to the Intel x86 architecture; the value returned is the first 32-bit word of
the array described there). A human-readable version of the same information is
available via /proc/cpuinfo.

AT_HWCAP2 (since glibc 2.18)
Further machine-dependent hints about processor capabilities.

AT_ICACHEBSIZE
The instruction cache block size.

AT_L1D_CACHEGEOMETRY
Geometry of the L1 data cache, encoded with the cache line size in bytes in the
bottom 16 bits and the cache associativity in the next 16 bits. The associativity
is such that if N is the 16-bit value, the cache is N-way set associative.

AT_L1D_CACHESIZE
The L1 data cache size.

AT_L1I_CACHEGEOMETRY
Geometry of the L1 instruction cache, encoded as for AT_L1D_CACHEGE-
OMETRY.

AT_L1I_CACHESIZE
The L1 instruction cache size.

AT_L2_CACHEGEOMETRY
Geometry of the L2 cache, encoded as for AT_L1D_CACHEGEOMETRY.

AT_L2_CACHESIZE
The L2 cache size.

AT_L3_CACHEGEOMETRY
Geometry of the L3 cache, encoded as for AT_L1D_CACHEGEOMETRY.

AT_L3_CACHESIZE
The L3 cache size.

AT_PAGESZ
The system page size (the same value returned by sysconf(_SC_PAGESIZE)).

AT_PHDR
The address of the program headers of the executable.

Linux man-pages 6.16 2025-09-21 1802

getauxval(3) Library Functions Manual getauxval(3)

AT_PHENT
The size of program header entry.

AT_PHNUM
The number of program headers.

AT_PLATFORM
A pointer to a string that identifies the hardware platform that the program is
running on. The dynamic linker uses this in the interpretation of rpath values.

AT_RANDOM
The address of sixteen bytes containing a random value.

AT_SECURE
Has a nonzero value if this executable should be treated securely. Most com-
monly, a nonzero value indicates that the process is executing a set-user-ID or
set-group-ID binary (so that its real and effective UIDs or GIDs differ from one
another), or that it gained capabilities by executing a binary file that has capabili-
ties (see capabilities(7)). Alternatively, a nonzero value may be triggered by a
Linux Security Module. When this value is nonzero, the dynamic linker disables
the use of certain environment variables (see ld-linux.so(8)) and glibc changes
other aspects of its behavior. (See also secure_getenv(3).)

AT_SYSINFO
The entry point to the system call function in the vDSO. Not present/needed on
all architectures (e.g., absent on x86-64).

AT_SYSINFO_EHDR
The address of a page containing the virtual Dynamic Shared Object (vDSO)
that the kernel creates in order to provide fast implementations of certain system
calls.

AT_UCACHEBSIZE
The unified cache block size.

AT_UID
The real user ID of the thread.

RETURN VALUE
On success, getauxval() returns the value corresponding to type. If type is not found, 0
is returned.

ERRORS
ENOENT (since glibc 2.19)

No entry corresponding to type could be found in the auxiliary vector.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetauxval()

STANDARDS
GNU.

Linux man-pages 6.16 2025-09-21 1803

getauxval(3) Library Functions Manual getauxval(3)

HISTORY
glibc 2.16.

NOTES
The primary consumer of the information in the auxiliary vector is the dynamic linker,
ld-linux.so(8). The auxiliary vector is a convenient and efficient shortcut that allows the
kernel to communicate a certain set of standard information that the dynamic linker usu-
ally or always needs. In some cases, the same information could be obtained by system
calls, but using the auxiliary vector is cheaper.

The auxiliary vector resides just above the argument list and environment in the process
address space. The auxiliary vector supplied to a program can be viewed by setting the
LD_SHOW_AUXV environment variable when running a program:

$ LD_SHOW_AUXV=1 sleep 1

The auxiliary vector of any process can (subject to file permissions) be obtained via
/proc/ pid /auxv; see proc(5) for more information.

BUGS
Before the addition of the ENOENT error in glibc 2.19, there was no way to unambigu-
ously distinguish the case where type could not be found from the case where the value
corresponding to type was zero.

SEE ALSO
execve(2), secure_getenv(3), vdso(7), ld-linux.so(8)

Linux man-pages 6.16 2025-09-21 1804

getc(3) Library Functions Manual getc(3)

NAME
getc - get character from stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int getc(FILE *stream);

DESCRIPTION
getc() is equivalent to fgetc(3), except for the BUGS (see below).

Use fgetc(3) instead.

STANDARDS
C23, POSIX.1-2024.

HISTORY
POSIX.1-2001, C89.

BUGS
Multiple evaluation

It may be implemented as a macro, and it may evaluate stream more than once.

Name
The name is inconsistent. It is often confused with getchar(3), as normally <stdio.h>
functions without the "f" prefix in their name are variants that use stdin.

SEE ALSO
fgetc(3)

Linux man-pages 6.16 2025-10-10 1805

getcontext(3) Library Functions Manual getcontext(3)

NAME
getcontext, setcontext - get or set the user context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ucontext.h>

int getcontext(ucontext_t *ucp);
int setcontext(const ucontext_t *ucp);

DESCRIPTION
In a System V-like environment, one has the two types mcontext_t and ucontext_t de-
fined in <ucontext.h> and the four functions getcontext(), setcontext(), makecontext(3),
and swapcontext(3) that allow user-level context switching between multiple threads of
control within a process.

The mcontext_t type is machine-dependent and opaque. The ucontext_t type is a struc-
ture that has at least the following fields:

typedef struct ucontext_t {
struct ucontext_t *uc_link;
sigset_t uc_sigmask;
stack_t uc_stack;
mcontext_t uc_mcontext;
...

} ucontext_t;

with sigset_t and stack_t defined in <signal.h>. Here uc_link points to the context that
will be resumed when the current context terminates (in case the current context was
created using makecontext(3)), uc_sigmask is the set of signals blocked in this context
(see sigprocmask(2)), uc_stack is the stack used by this context (see sigaltstack(2)), and
uc_mcontext is the machine-specific representation of the saved context, that includes
the calling thread’s machine registers.

The function getcontext() initializes the structure pointed to by ucp to the currently ac-
tive context.

The function setcontext() restores the user context pointed to by ucp. A successful call
does not return. The context should have been obtained by a call of getcontext(), or
makecontext(3), or received as the third argument to a signal handler (see the discussion
of the SA_SIGINFO flag in sigaction(2)).

If the context was obtained by a call of getcontext(), program execution continues as if
this call just returned.

If the context was obtained by a call of makecontext(3), program execution continues by
a call to the function func specified as the second argument of that call to makecon-
text(3). When the function func returns, we continue with the uc_link member of the
structure ucp specified as the first argument of that call to makecontext(3). When this
member is NULL, the thread exits.

If the context was obtained by a call to a signal handler, then old standard text says that

Linux man-pages 6.16 2025-05-17 1806

getcontext(3) Library Functions Manual getcontext(3)

"program execution continues with the program instruction following the instruction in-
terrupted by the signal". However, this sentence was removed in SUSv2, and the present
verdict is "the result is unspecified".

RETURN VALUE
When successful, getcontext() returns 0 and setcontext() does not return. On error,
both return -1 and set errno to indicate the error.

ERRORS
None defined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:ucpgetcontext(), setcontext()

STANDARDS
None.

HISTORY
SUSv2, POSIX.1-2001.

POSIX.1-2008 removes these functions, citing portability issues, and recommending
that applications be rewritten to use POSIX threads instead.

NOTES
The earliest incarnation of this mechanism was the setjmp(3)/longjmp(3) mechanism.
Since that does not define the handling of the signal context, the next stage was the
sigsetjmp(3)/siglongjmp(3) pair. The present mechanism gives much more control. On
the other hand, there is no easy way to detect whether a return from getcontext() is from
the first call, or via a setcontext() call. The user has to invent their own bookkeeping
device, and a register variable won’t do since registers are restored.

When a signal occurs, the current user context is saved and a new context is created by
the kernel for the signal handler. Do not leave the handler using longjmp(3): it is unde-
fined what would happen with contexts. Use siglongjmp(3) or setcontext() instead.

SEE ALSO
sigaction(2), sigaltstack(2), sigprocmask(2), longjmp(3), makecontext(3), sigsetjmp(3),
signal(7)

Linux man-pages 6.16 2025-05-17 1807

getcwd(3) Library Functions Manual getcwd(3)

NAME
getcwd, getwd, get_current_dir_name - get current working directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *getcwd(size_t size;
char buf [size], size_t size);

char *get_current_dir_name(void);

[[deprecated]] char *getwd(char buf [PATH_MAX]);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

get_current_dir_name():
_GNU_SOURCE

getwd():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
These functions return a null-terminated string containing an absolute pathname that is
the current working directory of the calling process. The pathname is returned as the
function result and via the argument buf , if present.

The getcwd() function copies an absolute pathname of the current working directory to
the array pointed to by buf , which is of length size.

If the length of the absolute pathname of the current working directory, including the
terminating null byte, exceeds size bytes, NULL is returned, and errno is set to
ERANGE; an application should check for this error, and allocate a larger buffer if nec-
essary.

As an extension to the POSIX.1-2001 standard, glibc’s getcwd() allocates the buffer dy-
namically using malloc(3) if buf is NULL. In this case, the allocated buffer has the
length size unless size is zero, when buf is allocated as big as necessary. The caller
should free(3) the returned buffer.

get_current_dir_name() will malloc(3) an array big enough to hold the absolute path-
name of the current working directory. If the environment variable PWD is set, and its
value is correct, then that value will be returned. The caller should free(3) the returned
buffer.

getwd() does not malloc(3) any memory. The buf argument should be a pointer to an
array at least PATH_MAX bytes long. If the length of the absolute pathname of the
current working directory, including the terminating null byte, exceeds PATH_MAX
bytes, NULL is returned, and errno is set to ENAMETOOLONG. (Note that on some

Linux man-pages 6.16 2025-06-28 1808

getcwd(3) Library Functions Manual getcwd(3)

systems, PATH_MAX may not be a compile-time constant; furthermore, its value may
depend on the filesystem, see pathconf(3).) For portability and security reasons, use of
getwd() is deprecated.

RETURN VALUE
On success, these functions return a pointer to a string containing the pathname of the
current working directory. In the case of getcwd() and getwd() this is the same value as
buf .

On failure, these functions return NULL, and errno is set to indicate the error. The con-
tents of the array pointed to by buf are undefined on error.

ERRORS
EACCES

Permission to read or search a component of the filename was denied.

EFAULT
buf points to a bad address.

EINVAL
The size argument is zero and buf is not a null pointer.

EINVAL
getwd(): buf is NULL.

ENAMETOOLONG
getwd(): The size of the null-terminated absolute pathname string exceeds
PATH_MAX bytes.

ENOENT
The current working directory has been unlinked.

ENOMEM
Out of memory.

ERANGE
The size argument is less than the length of the absolute pathname of the work-
ing directory, including the terminating null byte. You need to allocate a bigger
array and try again.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetcwd(), getwd()
Thread safety MT-Safe envget_current_dir_name()

VERSIONS
POSIX.1-2001 leaves the behavior of getcwd() unspecified if buf is NULL.

POSIX.1-2001 does not define any errors for getwd().

VERSIONS
C library/kernel differences

On Linux, the kernel provides a getcwd() system call, which the functions described in
this page will use if possible. The system call takes the same arguments as the library

Linux man-pages 6.16 2025-06-28 1809

getcwd(3) Library Functions Manual getcwd(3)

function of the same name, but is limited to returning at most PATH_MAX bytes. (Be-
fore Linux 3.12, the limit on the size of the returned pathname was the system page size.
On many architectures, PATH_MAX and the system page size are both 4096 bytes, but
a few architectures have a larger page size.) If the length of the pathname of the current
working directory exceeds this limit, then the system call fails with the error ENAME-
TOOLONG. In this case, the library functions fall back to a (slower) alternative imple-
mentation that returns the full pathname.

Following a change in Linux 2.6.36, the pathname returned by the getcwd() system call
will be prefixed with the string "(unreachable)" if the current directory is not below the
root directory of the current process (e.g., because the process set a new filesystem root
using chroot(2) without changing its current directory into the new root). Such behavior
can also be caused by an unprivileged user by changing the current directory into an-
other mount namespace. When dealing with pathnames from untrusted sources, callers
of the functions described in this page (before glibc 2.27) or the raw getcwd() system
call should consider checking whether the returned pathname starts with ’/’ or ’(’ to
avoid misinterpreting an unreachable path as a relative pathname.

STANDARDS
getcwd()

POSIX.1-2008.

get_current_dir_name()
GNU.

getwd()
None.

HISTORY
getcwd()

POSIX.1-2001.

getwd()
POSIX.1-2001, but marked LEGACY. Removed in POSIX.1-2008. Use
getcwd() instead.

Under Linux, these functions make use of the getcwd() system call (available since
Linux 2.1.92). On older systems they would query /proc/self/cwd . If both system call
and proc filesystem are missing, a generic implementation is called. Only in that case
can these calls fail under Linux with EACCES.

NOTES
These functions are often used to save the location of the current working directory for
the purpose of returning to it later. Opening the current directory (".") and calling
fchdir(2) to return is usually a faster and more reliable alternative when sufficiently
many file descriptors are available, especially on platforms other than Linux.

BUGS
Since the Linux 2.6.36 change that added "(unreachable)" in the circumstances de-
scribed above, the glibc implementation of getcwd() has failed to conform to POSIX
and returned a relative pathname when the API contract requires an absolute pathname.
With glibc 2.27 onwards this is corrected; calling getcwd() from such a pathname will

Linux man-pages 6.16 2025-06-28 1810

getcwd(3) Library Functions Manual getcwd(3)

now result in failure with ENOENT.

SEE ALSO
pwd(1), chdir(2), fchdir(2), open(2), unlink(2), free(3), malloc(3)

Linux man-pages 6.16 2025-06-28 1811

getdate(3) Library Functions Manual getdate(3)

NAME
getdate, getdate_r - convert a date-plus-time string to broken-down time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

struct tm *getdate(const char *string);

extern int getdate_err;

int getdate_r(const char *restrict string, struct tm *restrict res);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdate():
_XOPEN_SOURCE >= 500

getdate_r():
_GNU_SOURCE

DESCRIPTION
The function getdate() converts a string representation of a date and time, contained in
the buffer pointed to by string, into a broken-down time. The broken-down time is
stored in a tm structure, and a pointer to this structure is returned as the function result.
This tm structure is allocated in static storage, and consequently it will be overwritten by
further calls to getdate().

In contrast to strptime(3), (which has a format argument), getdate() uses the formats
found in the file whose full pathname is given in the environment variable DATEMSK.
The first line in the file that matches the given input string is used for the conversion.

The matching is done case insensitively. Superfluous whitespace, either in the pattern or
in the string to be converted, is ignored.

The conversion specifications that a pattern can contain are those given for strptime(3).
One more conversion specification is specified in POSIX.1-2001:

%Z Timezone name. This is not implemented in glibc.

When %Z is given, the structure containing the broken-down time is initialized with
values corresponding to the current time in the given timezone. Otherwise, the structure
is initialized to the broken-down time corresponding to the current local time (as by a
call to localtime(3)).

When only the day of the week is given, the day is taken to be the first such day on or
after today.

When only the month is given (and no year), the month is taken to be the first such
month equal to or after the current month. If no day is given, it is the first day of the
month.

When no hour, minute, and second are given, the current hour, minute, and second are
taken.

If no date is given, but we know the hour, then that hour is taken to be the first such hour

Linux man-pages 6.16 2025-05-17 1812

getdate(3) Library Functions Manual getdate(3)

equal to or after the current hour.

getdate_r() is a GNU extension that provides a reentrant version of getdate(). Rather
than using a global variable to report errors and a static buffer to return the broken down
time, it returns errors via the function result value, and returns the resulting broken-
down time in the caller-allocated buffer pointed to by the argument res.

RETURN VALUE
When successful, getdate() returns a pointer to a struct tm. Otherwise, it returns NULL
and sets the global variable getdate_err to one of the error numbers shown below.
Changes to errno are unspecified.

On success getdate_r() returns 0; on error it returns one of the error numbers shown be-
low.

ERRORS
The following errors are returned via getdate_err (for getdate()) or as the function result
(for getdate_r()):

1 The DATEMSK environment variable is not defined, or its value is an empty
string.

2 The template file specified by DATEMSK cannot be opened for reading.

3 Failed to get file status information.

4 The template file is not a regular file.

5 An error was encountered while reading the template file.

6 Memory allocation failed (not enough memory available).

7 There is no line in the file that matches the input.

8 Invalid input specification.

ENVIRONMENT
DATEMSK

File containing format patterns.

TZ
LC_TIME

Variables used by strptime(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetdate() MT-Unsafe race:getdate env locale
Thread safetygetdate_r() MT-Safe env locale

VERSIONS
The POSIX.1 specification for strptime(3) contains conversion specifications using the
%E or %O modifier, while such specifications are not given for getdate(). In glibc,
getdate() is implemented using strptime(3), so that precisely the same conversions are
supported by both.

Linux man-pages 6.16 2025-05-17 1813

getdate(3) Library Functions Manual getdate(3)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The program below calls getdate() for each of its command-line arguments, and for
each call displays the values in the fields of the returned tm structure. The following
shell session demonstrates the operation of the program:

$ TFILE=$PWD/tfile
$ echo '%A' > $TFILE # Full name of the day of the week
$ echo '%T' >> $TFILE # Time (HH:MM:SS)
$ echo '%F' >> $TFILE # ISO date (YYYY-MM-DD)
$ date
$ export DATEMSK=$TFILE
$./a.out Tuesday '2009-12-28' '12:22:33'
Sun Sep 7 06:03:36 CEST 2008
Call 1 ("Tuesday") succeeded:

tm_sec = 36
tm_min = 3
tm_hour = 6
tm_mday = 9
tm_mon = 8
tm_year = 108
tm_wday = 2
tm_yday = 252
tm_isdst = 1

Call 2 ("2009-12-28") succeeded:
tm_sec = 36
tm_min = 3
tm_hour = 6
tm_mday = 28
tm_mon = 11
tm_year = 109
tm_wday = 1
tm_yday = 361
tm_isdst = 0

Call 3 ("12:22:33") succeeded:
tm_sec = 33
tm_min = 22
tm_hour = 12
tm_mday = 7
tm_mon = 8
tm_year = 108
tm_wday = 0
tm_yday = 250
tm_isdst = 1

Linux man-pages 6.16 2025-05-17 1814

getdate(3) Library Functions Manual getdate(3)

Program source

#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int
main(int argc, char *argv[])
{

struct tm *tmp;

for (size_t j = 1; j < argc; j++) {
tmp = getdate(argv[j]);

if (tmp == NULL) {
printf("Call %zu failed; getdate_err = %d\n",

j, getdate_err);
continue;

}

printf("Call %zu (\"%s\") succeeded:\n", j, argv[j]);
printf(" tm_sec = %d\n", tmp->tm_sec);
printf(" tm_min = %d\n", tmp->tm_min);
printf(" tm_hour = %d\n", tmp->tm_hour);
printf(" tm_mday = %d\n", tmp->tm_mday);
printf(" tm_mon = %d\n", tmp->tm_mon);
printf(" tm_year = %d\n", tmp->tm_year);
printf(" tm_wday = %d\n", tmp->tm_wday);
printf(" tm_yday = %d\n", tmp->tm_yday);
printf(" tm_isdst = %d\n", tmp->tm_isdst);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
time(2), localtime(3), setlocale(3), strftime(3), strptime(3)

Linux man-pages 6.16 2025-05-17 1815

getdirentries(3) Library Functions Manual getdirentries(3)

NAME
getdirentries - get directory entries in a filesystem-independent format

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

ssize_t getdirentries(size_t size;
int fd , char buf [restrict size], size_t size,
off_t *restrict basep);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdirentries():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Read directory entries from the directory specified by fd into buf . At most size bytes
are read. Reading starts at offset *basep, and *basep is updated with the new position
after reading.

RETURN VALUE
getdirentries() returns the number of bytes read or zero when at the end of the directory.
If an error occurs, -1 is returned, and errno is set to indicate the error.

ERRORS
See the Linux library source code for details.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetdirentries()

STANDARDS
BSD.

NOTES
Use opendir(3) and readdir(3) instead.

SEE ALSO
lseek(2), open(2)

Linux man-pages 6.16 2025-09-07 1816

getdtablesize(3) Library Functions Manual getdtablesize(3)

NAME
getdtablesize - get file descriptor table size

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getdtablesize(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getdtablesize():
Since glibc 2.20:

_DEFAULT_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
glibc 2.12 to glibc 2.19:

_BSD_SOURCE || ! (_POSIX_C_SOURCE >= 200112L)
Before glibc 2.12:

_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
getdtablesize() returns the maximum number of files a process can have open, one more
than the largest possible value for a file descriptor.

RETURN VALUE
The current limit on the number of open files per process.

ERRORS
On Linux, getdtablesize() can return any of the errors described for getrlimit(2); see
VERSIONS below.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetdtablesize()

VERSIONS
The glibc version of getdtablesize() calls getrlimit(2) and returns the current
RLIMIT_NOFILE limit, or OPEN_MAX when that fails.

Portable applications should employ sysconf(_SC_OPEN_MAX) instead of this call.

STANDARDS
None.

HISTORY
SVr4, 4.4BSD (first appeared in 4.2BSD).

SEE ALSO
close(2), dup(2), getrlimit(2), open(2)

Linux man-pages 6.16 2025-05-17 1817

getentropy(3) Library Functions Manual getentropy(3)

NAME
getentropy - fill a buffer with random bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getentropy(size_t length;
void buffer[length], size_t length);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getentropy():
_DEFAULT_SOURCE

DESCRIPTION
The getentropy() function writes length bytes of high-quality random data to the buffer
starting at the location pointed to by buffer. The maximum permitted value for the
length argument is 256.

A successful call to getentropy() always provides the requested number of bytes of en-
tropy.

RETURN VALUE
On success, this function returns zero. On error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EFAULT

Part or all of the buffer specified by buffer and length is not in valid addressable
memory.

EIO length is greater than 256.

EIO An unspecified error occurred while trying to overwrite buffer with random data.

ENOSYS
This kernel version does not implement the getrandom(2) system call required to
implement this function.

STANDARDS
None.

HISTORY
glibc 2.25. OpenBSD.

NOTES
The getentropy() function is implemented using getrandom(2).

Whereas the glibc wrapper makes getrandom(2) a cancelation point, getentropy() is not
a cancelation point.

getentropy() is also declared in <sys/random.h>. (No feature test macro need be de-
fined to obtain the declaration from that header file.)

A call to getentropy() may block if the system has just booted and the kernel has not yet

Linux man-pages 6.16 2025-06-28 1818

getentropy(3) Library Functions Manual getentropy(3)

collected enough randomness to initialize the entropy pool. In this case, getentropy()
will keep blocking even if a signal is handled, and will return only once the entropy pool
has been initialized.

SEE ALSO
getrandom(2), urandom(4), random(7)

Linux man-pages 6.16 2025-06-28 1819

getenv(3) Library Functions Manual getenv(3)

NAME
getenv, secure_getenv - get an environment variable

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *getenv(const char *name);
char *secure_getenv(const char *name);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

secure_getenv():
_GNU_SOURCE

DESCRIPTION
The getenv() function searches the environment list to find the environment variable
name, and returns a pointer to the corresponding value string.

The secure_getenv() function is just like getenv() except that it returns NULL in cases
where "secure execution" is required. Secure execution is required if one of the follow-
ing conditions was true when the program run by the calling process was loaded:

• the process’s effective user ID did not match its real user ID or the process’s effec-
tive group ID did not match its real group ID (typically this is the result of executing
a set-user-ID or set-group-ID program);

• the effective capability bit was set on the executable file; or

• the process has a nonempty permitted capability set.

Secure execution may also be required if triggered by some Linux security modules.

The secure_getenv() function is intended for use in general-purpose libraries to avoid
vulnerabilities that could occur if set-user-ID or set-group-ID programs accidentally
trusted the environment.

RETURN VALUE
The getenv() function returns a pointer to the value in the environment, or NULL if
there is no match.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe envgetenv(), secure_getenv()

STANDARDS
getenv()

C11, POSIX.1-2008.

secure_getenv()
POSIX.1-2024.

Linux man-pages 6.16 2025-10-29 1820

getenv(3) Library Functions Manual getenv(3)

HISTORY
getenv()

POSIX.1-2001, C89, C99, SVr4, 4.3BSD.

secure_getenv()
POSIX.1-2024, glibc 2.17.

NOTES
The strings in the environment list are of the form name=value.

As typically implemented, getenv() returns a pointer to a string within the environment
list. The caller must take care not to modify this string, since that would change the en-
vironment of the process.

The implementation of getenv() is not required to be reentrant. The string pointed to by
the return value of getenv() may be statically allocated, and can be modified by a subse-
quent call to getenv(), putenv(3), setenv(3), or unsetenv(3).

The "secure execution" mode of secure_getenv() is controlled by the AT_SECURE flag
contained in the auxiliary vector passed from the kernel to user space.

SEE ALSO
clearenv(3), getauxval(3), putenv(3), setenv(3), unsetenv(3), capabilities(7), environ(7)

Linux man-pages 6.16 2025-10-29 1821

getfsent(3) Library Functions Manual getfsent(3)

NAME
getfsent, getfsspec, getfsfile, setfsent, endfsent - handle fstab entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fstab.h>

int setfsent(void);
struct fstab *getfsent(void);
void endfsent(void);

struct fstab *getfsfile(const char *mount_point);
struct fstab *getfsspec(const char *special_file);

DESCRIPTION
These functions read from the file /etc/fstab. The struct fstab is defined by:

struct fstab {
char *fs_spec; /* block device name */
char *fs_file; /* mount point */
char *fs_vfstype; /* filesystem type */
char *fs_mntops; /* mount options */
const char *fs_type; /* rw/rq/ro/sw/xx option */
int fs_freq; /* dump frequency, in days */
int fs_passno; /* pass number on parallel dump */

};

Here the field fs_type contains (on a *BSD system) one of the five strings "rw", "rq",
"ro", "sw", "xx" (read-write, read-write with quota, read-only, swap, ignore).

The function setfsent() opens the file when required and positions it at the first line.

The function getfsent() parses the next line from the file. (After opening it when re-
quired.)

The function endfsent() closes the file when required.

The function getfsspec() searches the file from the start and returns the first entry found
for which the fs_spec field matches the special_file argument.

The function getfsfile() searches the file from the start and returns the first entry found
for which the fs_file field matches the mount_point argument.

RETURN VALUE
Upon success, the functions getfsent(), getfsfile(), and getfsspec() return a pointer to a
struct fstab, while setfsent() returns 1. Upon failure or end-of-file, these functions re-
turn NULL and 0, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1822

getfsent(3) Library Functions Manual getfsent(3)

Interface Attribute Value
Thread safetyendfsent(), setfsent() MT-Unsafe race:fsent
Thread safetygetfsent(), getfsspec(),

getfsfile()
MT-Unsafe race:fsent locale

VERSIONS
Several operating systems have these functions, for example, *BSD, SunOS, Digital
UNIX, AIX (which also has a getfstype())HP-UX has functions of the same names, that
however use a struct checklist instead of a struct fstab, and calls these functions obso-
lete, superseded by getmntent(3).

STANDARDS
None.

HISTORY
The getfsent() function appeared in 4.0BSD; the other four functions appeared in
4.3BSD.

NOTES
These functions are not thread-safe.

Since Linux allows mounting a block special device in several places, and since several
devices can have the same mount point, where the last device with a given mount point
is the interesting one, while getfsfile() and getfsspec() only return the first occurrence,
these two functions are not suitable for use under Linux.

SEE ALSO
getmntent(3), fstab(5)

Linux man-pages 6.16 2025-09-21 1823

getgrent(3) Library Functions Manual getgrent(3)

NAME
getgrent, setgrent, endgrent - get group file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <grp.h>

struct group *getgrent(void);

void setgrent(void);
void endgrent(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setgrent():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

getgrent(), endgrent():
Since glibc 2.22:

_XOPEN_SOURCE >= 500 || _DEFAULT_SOURCE
glibc 2.21 and earlier

_XOPEN_SOURCE >= 500
|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getgrent() function returns a pointer to a structure containing the broken-out fields
of a record in the group database (e.g., the local group file /etc/group, NIS, and LDAP).
The first time getgrent() is called, it returns the first entry; thereafter, it returns succes-
sive entries.

The setgrent() function rewinds to the beginning of the group database, to allow re-
peated scans.

The endgrent() function is used to close the group database after all processing has
been performed.

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

For more information about the fields of this structure, see group(5).

Linux man-pages 6.16 2025-09-21 1824

getgrent(3) Library Functions Manual getgrent(3)

RETURN VALUE
The getgrent() function returns a pointer to a group structure, or NULL if there are no
more entries or an error occurs.

Upon error, errno may be set. If one wants to check errno after the call, it should be set
to zero before the call.

The return value may point to a static area, and may be overwritten by subsequent calls
to getgrent(), getgrgid(3), or getgrnam(3). (Do not pass the returned pointer to free(3).)

ERRORS
EAGAIN

The service was temporarily unavailable; try again later. For NSS backends in
glibc this indicates a temporary error talking to the backend. The error may cor-
rect itself; retrying later is suggested.

EINTR
A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
A necessary input file cannot be found. For NSS backends in glibc this indicates
the backend is not correctly configured.

ENOMEM
Insufficient memory to allocate group structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/group

local group database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetgrent() MT-Unsafe race:grent race:grentbuf
locale

Thread safetysetgrent(), endgrent() MT-Unsafe race:grent locale

In the above table, grent in race:grent signifies that if any of the functions setgrent(),
getgrent(), or endgrent() are used in parallel in different threads of a program, then data
races could occur.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 1825

getgrent(3) Library Functions Manual getgrent(3)

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
fgetgrent(3), getgrent_r(3), getgrgid(3), getgrnam(3), getgrouplist(3), putgrent(3),
group(5)

Linux man-pages 6.16 2025-09-21 1826

getgrent_r(3) Library Functions Manual getgrent_r(3)

NAME
getgrent_r, fgetgrent_r - get group file entry reentrantly

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <grp.h>

int getgrent_r(size_t size;
struct group *restrict gbuf ,
char buf [restrict size], size_t size,
struct group **restrict gbufp);

int fgetgrent_r(size_t size;
FILE *restrict stream, struct group *restrict gbuf ,
char buf [restrict size], size_t size,
struct group **restrict gbufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getgrent_r():
_GNU_SOURCE

fgetgrent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The functions getgrent_r() and fgetgrent_r() are the reentrant versions of getgrent(3)
and fgetgrent(3). The former reads the next group entry from the stream initialized by
setgrent(3). The latter reads the next group entry from stream.

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

For more information about the fields of this structure, see group(5).

The nonreentrant functions return a pointer to static storage, where this static storage
contains further pointers to group name, password, and members. The reentrant func-
tions described here return all of that in caller-provided buffers. First of all there is the
buffer gbuf that can hold a struct group. And next the buffer buf of size size that can
hold additional strings. The result of these functions, the struct group read from the
stream, is stored in the provided buffer *gbuf , and a pointer to this struct group is re-
turned in *gbufp.

Linux man-pages 6.16 2025-06-28 1827

getgrent_r(3) Library Functions Manual getgrent_r(3)

RETURN VALUE
On success, these functions return 0 and *gbufp is a pointer to the struct group. On er-
ror, these functions return an error value and *gbufp is NULL.

ERRORS
ENOENT

No more entries.

ERANGE
Insufficient buffer space supplied. Try again with larger buffer.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetgrent_r() MT-Unsafe race:grent locale
Thread safetyfgetgrent_r() MT-Safe

In the above table, grent in race:grent signifies that if any of the functions setgrent(3),
getgrent(3), endgrent(3), or getgrent_r() are used in parallel in different threads of a
program, then data races could occur.

VERSIONS
Other systems use the prototype

struct group *getgrent_r(struct group *grp, char buf[.size],
int size);

or, better,

int getgrent_r(struct group *grp, char buf[.size], int size,
FILE **gr_fp);

STANDARDS
GNU.

HISTORY
These functions are done in a style resembling the POSIX version of functions like getp-
wnam_r(3).

NOTES
The function getgrent_r() is not really reentrant since it shares the reading position in
the stream with all other threads.

EXAMPLES
#define _GNU_SOURCE
#include <grp.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#define BUFLEN 4096

int
main(void)
{

Linux man-pages 6.16 2025-06-28 1828

getgrent_r(3) Library Functions Manual getgrent_r(3)

struct group grp;
struct group *grpp;
char buf[BUFLEN];
int i;

setgrent();
while (1) {

i = getgrent_r(&grp, buf, sizeof(buf), &grpp);
if (i)

break;
printf("%s (%jd):", grpp->gr_name, (intmax_t) grpp->gr_gid);
for (size_t j = 0; ; j++) {

if (grpp->gr_mem[j] == NULL)
break;

printf(" %s", grpp->gr_mem[j]);
}
printf("\n");

}
endgrent();
exit(EXIT_SUCCESS);

}

SEE ALSO
fgetgrent(3), getgrent(3), getgrgid(3), getgrnam(3), putgrent(3), group(5)

Linux man-pages 6.16 2025-06-28 1829

getgrnam(3) Library Functions Manual getgrnam(3)

NAME
getgrnam, getgrnam_r, getgrgid, getgrgid_r - get group file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <grp.h>

struct group *getgrnam(const char *name);
struct group *getgrgid(gid_t gid);

int getgrnam_r(size_t size;
const char *restrict name, struct group *restrict grp,
char buf [restrict size], size_t size,
struct group **restrict result);

int getgrgid_r(size_t size;
gid_t gid , struct group *restrict grp,
char buf [restrict size], size_t size,
struct group **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getgrnam_r(), getgrgid_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getgrnam() function returns a pointer to a structure containing the broken-out fields
of the record in the group database (e.g., the local group file /etc/group, NIS, and
LDAP) that matches the group name name.

The getgrgid() function returns a pointer to a structure containing the broken-out fields
of the record in the group database that matches the group ID gid .

The group structure is defined in <grp.h> as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* NULL-terminated array of pointers

to names of group members */
};

For more information about the fields of this structure, see group(5).

The getgrnam_r() and getgrgid_r() functions obtain the same information as getgr-
nam() and getgrgid(), but store the retrieved group structure in the space pointed to by
grp. The string fields pointed to by the members of the group structure are stored in the
buffer buf of size size. A pointer to the result (in case of success) or NULL (in case no
entry was found or an error occurred) is stored in *result.

The call

Linux man-pages 6.16 2025-09-21 1830

getgrnam(3) Library Functions Manual getgrnam(3)

sysconf(_SC_GETGR_R_SIZE_MAX)

returns either -1, without changing errno, or an initial suggested size for buf . (If this
size is too small, the call fails with ERANGE, in which case the caller can retry with a
larger buffer.)

RETURN VALUE
The getgrnam() and getgrgid() functions return a pointer to a group structure, or NULL
if the matching entry is not found or an error occurs. If an error occurs, errno is set to
indicate the error. If one wants to check errno after the call, it should be set to zero be-
fore the call.

The return value may point to a static area, and may be overwritten by subsequent calls
to getgrent(3), getgrgid(), or getgrnam(). (Do not pass the returned pointer to free(3).)

On success, getgrnam_r() and getgrgid_r() return zero, and set *result to grp. If no
matching group record was found, these functions return 0 and store NULL in *result.
In case of error, an error number is returned, and NULL is stored in *result.

ERRORS
0 or ENOENT or ESRCH or EBADF or EPERM or ...

The given name or gid was not found.

EINTR
A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient memory to allocate group structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/group

local group database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetgrnam() MT-Unsafe race:grnam locale
Thread safetygetgrgid() MT-Unsafe race:grgid locale
Thread safety MT-Safe localegetgrnam_r(),

getgrgid_r()

VERSIONS
The formulation given above under "RETURN VALUE" is from POSIX.1. It does not
call "not found" an error, hence does not specify what value errno might have in this

Linux man-pages 6.16 2025-09-21 1831

getgrnam(3) Library Functions Manual getgrnam(3)

situation. But that makes it impossible to recognize errors. One might argue that ac-
cording to POSIX errno should be left unchanged if an entry is not found. Experiments
on various UNIX-like systems show that lots of different values occur in this situation:
0, ENOENT, EBADF, ESRCH, EWOULDBLOCK, EPERM, and probably others.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
endgrent(3), fgetgrent(3), getgrent(3), getpwnam(3), setgrent(3), group(5)

Linux man-pages 6.16 2025-09-21 1832

getgrouplist(3) Library Functions Manual getgrouplist(3)

NAME
getgrouplist - get list of groups to which a user belongs

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <grp.h>

int getgrouplist(const char *user, gid_t group,
gid_t *groups, int *ngroups);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getgrouplist():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The getgrouplist() function scans the group database (see group(5)) to obtain the list of
groups that user belongs to. Up to *ngroups of these groups are returned in the array
groups.

If it was not among the groups defined for user in the group database, then group is in-
cluded in the list of groups returned by getgrouplist(); typically this argument is speci-
fied as the group ID from the password record for user.

The ngroups argument is a value-result argument: on return it always contains the num-
ber of groups found for user, including group; this value may be greater than the num-
ber of groups stored in groups.

RETURN VALUE
If the number of groups of which user is a member is less than or equal to *ngroups,
then the value *ngroups is returned.

If the user is a member of more than *ngroups groups, then getgrouplist() returns -1.
In this case, the value returned in *ngroups can be used to resize the buffer passed to a
further call to getgrouplist().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetgrouplist()

STANDARDS
None.

HISTORY
glibc 2.2.4.

BUGS
Before glibc 2.3.3, the implementation of this function contains a buffer-overrun bug: it
returns the complete list of groups for user in the array groups, even when the number

Linux man-pages 6.16 2025-09-21 1833

getgrouplist(3) Library Functions Manual getgrouplist(3)

of groups exceeds *ngroups.

EXAMPLES
The program below displays the group list for the user named in its first command-line
argument. The second command-line argument specifies the ngroups value to be sup-
plied to getgrouplist(). The following shell session shows examples of the use of this
program:

$./a.out cecilia 0
getgrouplist() returned -1
ngroups = 3
$./a.out cecilia 3
ngroups = 3
16 (dialout)
33 (video)
100 (users)

Program source

#include <errno.h>
#include <grp.h>
#include <pwd.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int ngroups;
gid_t *groups;
struct group *gr;
struct passwd *pw;

if (argc != 3) {
fprintf(stderr, "Usage: %s <user> <ngroups>\n", argv[0]);
exit(EXIT_FAILURE);

}

ngroups = atoi(argv[2]);

groups = malloc(sizeof(*groups) * ngroups);
if (groups == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

/* Fetch passwd structure (contains first group ID for user). */

errno = 0;

Linux man-pages 6.16 2025-09-21 1834

getgrouplist(3) Library Functions Manual getgrouplist(3)

pw = getpwnam(argv[1]);
if (pw == NULL) {

if (errno)
perror("getpwnam");

else
fprintf(stderr, "no such user\n");

exit(EXIT_FAILURE);
}

/* Retrieve group list. */

if (getgrouplist(argv[1], pw->pw_gid, groups, &ngroups) == -1) {
fprintf(stderr, "getgrouplist() returned -1\n");
fprintf(stderr, "ngroups = %d\n", ngroups);
exit(EXIT_FAILURE);

}

/* Display list of retrieved groups, along with group names. */

fprintf(stderr, "ngroups = %d\n", ngroups);
for (int j = 0; j < ngroups; j++) {

printf("%d", groups[j]);
gr = getgrgid(groups[j]);
if (gr != NULL)

printf(" (%s)", gr->gr_name);
printf("\n");

}

exit(EXIT_SUCCESS);
}

SEE ALSO
getgroups(2), setgroups(2), getgrent(3), group_member(3), group(5), passwd(5)

Linux man-pages 6.16 2025-09-21 1835

gethostbyname(3) Library Functions Manual gethostbyname(3)

NAME
gethostbyname, gethostbyaddr, sethostent, gethostent, endhostent, h_errno, herror, hstr-
error, gethostbyaddr_r, gethostbyname2, gethostbyname2_r, gethostbyname_r, gethos-
tent_r - get network host entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

void sethostent(int stayopen);
void endhostent(void);

[[deprecated]] extern int h_errno;

[[deprecated]] struct hostent *gethostbyname(const char *name);
[[deprecated]] struct hostent *gethostbyaddr(socklen_t size;

const void addr[size],
socklen_t size, int type);

[[deprecated]] void herror(const char *s);
[[deprecated]] const char *hstrerror(int err);

/* System V/POSIX extension */
struct hostent *gethostent(void);

/* GNU extensions */
[[deprecated]]
struct hostent *gethostbyname2(const char *name, int af);

int gethostent_r(size_t bufsize;
struct hostent *restrict ret,
char buf [restrict bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

[[deprecated]]
int gethostbyaddr_r(socklen_t size, size_t bufsize;

const void addr[restrict size], socklen_t size,
int type,
struct hostent *restrict ret,
char buf [restrict bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

[[deprecated]]
int gethostbyname_r(size_t bufsize;

const char *restrict name,
struct hostent *restrict ret,
char buf [restrict bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

[[deprecated]]

Linux man-pages 6.16 2025-09-21 1836

gethostbyname(3) Library Functions Manual gethostbyname(3)

int gethostbyname2_r(size_t bufsize;
const char *restrict name, int af,
struct hostent *restrict ret,
char buf [restrict bufsize], size_t bufsize,
struct hostent **restrict result,
int *restrict h_errnop);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostbyname2(), gethostent_r(), gethostbyaddr_r(), gethostbyname_r(), gethost-
byname2_r():

Since glibc 2.19:
_DEFAULT_SOURCE

glibc up to and including 2.19:
_BSD_SOURCE || _SVID_SOURCE

herror(), hstrerror():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.8 to glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE
Before glibc 2.8:

none

h_errno:
Since glibc 2.19

_DEFAULT_SOURCE || _POSIX_C_SOURCE < 200809L
glibc 2.12 to glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE || _POSIX_C_SOURCE < 200809L
Before glibc 2.12:

none

DESCRIPTION
The gethostbyname*(), gethostbyaddr*(), herror(), and hstrerror() functions are ob-
solete. Applications should use getaddrinfo(3), getnameinfo(3), and gai_strerror(3) in-
stead.

The sethostent() function specifies, if stayopen is true (1), that a connected TCP socket
should be used for the name server queries and that the connection should remain open
during successive queries. Otherwise, name server queries will use UDP datagrams.

The endhostent() function ends the use of a TCP connection for name server queries.

The gethostbyname() function returns a structure of type hostent for the given host
name. Here name is either a hostname or an IPv4 address in standard dot notation (as
for inet_addr(3)). If name is an IPv4 address, no lookup is performed and gethostby-
name() simply copies name into the h_name field and its struct in_addr equivalent into
the h_addr_list[0] field of the returned hostent structure. If name doesn’t end in a dot
and the environment variable HOSTALIASES is set, the alias file pointed to by
HOSTALIASES will first be searched for name (see hostname(7) for the file format).
The current domain and its parents are searched unless name ends in a dot.

Linux man-pages 6.16 2025-09-21 1837

gethostbyname(3) Library Functions Manual gethostbyname(3)

The gethostbyaddr() function returns a structure of type hostent for the given host ad-
dress addr of size size and address type type. Valid address types are AF_INET and
AF_INET6 (defined in <sys/socket.h>). The host address argument is a pointer to a
struct of a type depending on the address type, for example a struct in_addr * (probably
obtained via a call to inet_addr(3)) for address type AF_INET.

The (obsolete) herror() function prints the error message associated with the current
value of h_errno on stderr.

The (obsolete) hstrerror() function takes an error number (typically h_errno) and re-
turns the corresponding message string.

The domain name queries carried out by gethostbyname() and gethostbyaddr() rely on
the Name Service Switch (nsswitch.conf(5)) configured sources or a local name server
(named(8)). The default action is to query the Name Service Switch (nsswitch.conf(5))
configured sources, failing that, a local name server (named(8)).

Historical
The nsswitch.conf(5) file is the modern way of controlling the order of host lookups.

In glibc 2.4 and earlier, the order keyword was used to control the order of host lookups
as defined in /etc/host.conf (host.conf(5)).

The hostent structure is defined in <netdb.h> as follows:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h_length; /* size of address */
char **h_addr_list; /* list of addresses */

}
#define h_addr h_addr_list[0] /* for backward compatibility */

The members of the hostent structure are:

h_name
The official name of the host.

h_aliases
An array of alternative names for the host, terminated by a null pointer.

h_addrtype
The type of address; always AF_INET or AF_INET6 at present.

h_length
The size of the address in bytes.

h_addr_list
An array of pointers to network addresses for the host (in network byte order),
terminated by a null pointer.

h_addr
The first address in h_addr_list for backward compatibility.

Linux man-pages 6.16 2025-09-21 1838

gethostbyname(3) Library Functions Manual gethostbyname(3)

RETURN VALUE
The gethostbyname() and gethostbyaddr() functions return the hostent structure or a
null pointer if an error occurs. On error, the h_errno variable holds an error number.
When non-NULL, the return value may point at static data, see the notes below.

ERRORS
The variable h_errno can have the following values:

HOST_NOT_FOUND
The specified host is unknown.

NO_DATA
The requested name is valid but does not have an IP address. Another type of re-
quest to the name server for this domain may return an answer. The constant
NO_ADDRESS is a synonym for NO_DATA.

NO_RECOVERY
A nonrecoverable name server error occurred.

TRY_AGAIN
A temporary error occurred on an authoritative name server. Try again later.

FILES
/etc/host.conf

resolver configuration file

/etc/hosts
host database file

/etc/nsswitch.conf
name service switch configuration

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygethostbyname() MT-Unsafe race:hostbyname env locale
Thread safetygethostbyaddr() MT-Unsafe race:hostbyaddr env locale
Thread safetysethostent(),

endhostent(),
gethostent_r()

MT-Unsafe race:hostent env locale

Thread safety MT-Safeherror(), hstrerror()
Thread safetygethostent() MT-Unsafe race:hostent race:hostentbuf

env locale
Thread safetygethostbyname2() MT-Unsafe race:hostbyname2 env locale
Thread safety MT-Safe env localegethostbyaddr_r(),

gethostbyname_r(),
gethostbyname2_r()

In the above table, hostent in race:hostent signifies that if any of the functions sethos-
tent(), gethostent(), gethostent_r(), or endhostent() are used in parallel in different
threads of a program, then data races could occur.

Linux man-pages 6.16 2025-09-21 1839

gethostbyname(3) Library Functions Manual gethostbyname(3)

STANDARDS
sethostent()
endhostent()
gethostent()

POSIX.1-2008.

gethostent_r()
GNU.

Others:
None.

HISTORY
sethostent()
endhostent()
gethostent()

POSIX.1-2001.

gethostbyname()
gethostbyaddr()
h_errno

Marked obsolescent in POSIX.1-2001. Removed in POSIX.1-2008, recom-
mending the use of getaddrinfo(3) and getnameinfo(3) instead.

NOTES
The functions gethostbyname() and gethostbyaddr() may return pointers to static data,
which may be overwritten by later calls. Copying the struct hostent does not suffice,
since it contains pointers; a deep copy is required.

In the original BSD implementation the size argument of gethostbyname() was an int.
The SUSv2 standard is buggy and declares the size argument of gethostbyaddr() to be
of type size_t. (That is wrong, because it has to be int, and size_t is not. POSIX.1-2001
makes it socklen_t, which is OK.) See also accept(2).

The BSD prototype for gethostbyaddr() uses const char * for the first argument.

System V/POSIX extension
POSIX requires the gethostent() call, which should return the next entry in the host data
base. When using DNS/BIND this does not make much sense, but it may be reasonable
if the host data base is a file that can be read line by line. On many systems, a routine of
this name reads from the file /etc/hosts. It may be available only when the library was
built without DNS support. The glibc version will ignore ipv6 entries. This function is
not reentrant, and glibc adds a reentrant version gethostent_r().

GNU extensions
glibc2 also has a gethostbyname2() that works like gethostbyname(), but permits to
specify the address family to which the address must belong.

glibc2 also has reentrant versions gethostent_r(), gethostbyaddr_r(), gethostby-
name_r(), and gethostbyname2_r(). The caller supplies a hostent structure ret which
will be filled in on success, and a temporary work buffer buf of size bufsize. After the
call, result will point to the result on success. In case of an error or if no entry is found
result will be NULL. The functions return 0 on success and a nonzero error number on

Linux man-pages 6.16 2025-09-21 1840

gethostbyname(3) Library Functions Manual gethostbyname(3)

failure. In addition to the errors returned by the nonreentrant versions of these func-
tions, if buf is too small, the functions will return ERANGE, and the call should be re-
tried with a larger buffer. The global variable h_errno is not modified, but the address
of a variable in which to store error numbers is passed in h_errnop.

BUGS
gethostbyname() does not recognize components of a dotted IPv4 address string that
are expressed in hexadecimal.

SEE ALSO
getaddrinfo(3), getnameinfo(3), inet(3), inet_ntop(3), inet_pton(3), resolver(3), hosts(5),
nsswitch.conf(5), hostname(7), named(8)

Linux man-pages 6.16 2025-09-21 1841

gethostid(3) Library Functions Manual gethostid(3)

NAME
gethostid, sethostid - get or set the unique identifier of the current host

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

long gethostid(void);
int sethostid(long hostid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gethostid():
Since glibc 2.20:

_DEFAULT_SOURCE || _XOPEN_SOURCE >= 500
Up to and including glibc 2.19:

_BSD_SOURCE || _XOPEN_SOURCE >= 500

sethostid():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
gethostid() and sethostid() respectively get or set a unique 32-bit identifier for the cur-
rent machine. The 32-bit identifier was intended to be unique among all UNIX systems
in existence. This normally resembles the Internet address for the local machine, as re-
turned by gethostbyname(3), and thus usually never needs to be set.

The sethostid() call is restricted to the superuser.

RETURN VALUE
gethostid() returns the 32-bit identifier for the current host as set by sethostid().

On success, sethostid() returns 0; on error, -1 is returned, and errno is set to indicate
the error.

ERRORS
sethostid() can fail with the following errors:

EACCES
The caller did not have permission to write to the file used to store the host ID.

EPERM
The calling process’s effective user or group ID is not the same as its corre-
sponding real ID.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1842

gethostid(3) Library Functions Manual gethostid(3)

Interface Attribute Value
Thread safetygethostid() MT-Safe hostid env locale
Thread safetysethostid() MT-Unsafe const:hostid

VERSIONS
In the glibc implementation, the hostid is stored in the file /etc/hostid . (Before glibc
2.2, the file /var/adm/hostid was used.)

In the glibc implementation, if gethostid() cannot open the file containing the host ID,
then it obtains the hostname using gethostname(2), passes that hostname to gethostby-
name_r(3) in order to obtain the host’s IPv4 address, and returns a value obtained by bit-
twiddling the IPv4 address. (This value may not be unique.)

STANDARDS
gethostid()

POSIX.1-2008.

sethostid()
None.

HISTORY
4.2BSD; dropped in 4.4BSD. SVr4 and POSIX.1-2001 include gethostid() but not
sethostid().

BUGS
It is impossible to ensure that the identifier is globally unique.

SEE ALSO
hostid(1), gethostbyname(3)

Linux man-pages 6.16 2025-09-21 1843

getifaddrs(3) Library Functions Manual getifaddrs(3)

NAME
getifaddrs, freeifaddrs - get interface addresses

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <ifaddrs.h>

int getifaddrs(struct ifaddrs **ifap);
void freeifaddrs(struct ifaddrs *ifa);

DESCRIPTION
The getifaddrs() function creates a linked list of structures describing the network inter-
faces of the local system, and stores the address of the first item of the list in *ifap. The
list consists of ifaddrs structures, defined as follows:

struct ifaddrs {
struct ifaddrs *ifa_next; /* Next item in list */
char *ifa_name; /* Name of interface */
unsigned int ifa_flags; /* Flags from SIOCGIFFLAGS */
struct sockaddr *ifa_addr; /* Address of interface */
struct sockaddr *ifa_netmask; /* Netmask of interface */
union {

struct sockaddr *ifu_broadaddr;
/* Broadcast address of interface */

struct sockaddr *ifu_dstaddr;
/* Point-to-point destination address */

} ifa_ifu;
#define ifa_broadaddr ifa_ifu.ifu_broadaddr
#define ifa_dstaddr ifa_ifu.ifu_dstaddr

void *ifa_data; /* Address-specific data */
};

The ifa_next field contains a pointer to the next structure on the list, or NULL if this is
the last item of the list.

The ifa_name points to the null-terminated interface name.

The ifa_flags field contains the interface flags, as returned by the SIOCGIFFLAGS
ioctl(2) operation (see netdevice(7) for a list of these flags).

The ifa_addr field points to a structure containing the interface address. (The sa_family
subfield should be consulted to determine the format of the address structure.) This field
may contain a null pointer.

The ifa_netmask field points to a structure containing the netmask associated with
ifa_addr, if applicable for the address family. This field may contain a null pointer.

Depending on whether the bit IFF_BROADCAST or IFF_POINTOPOINT is set in
ifa_flags (only one can be set at a time), either ifa_broadaddr will contain the broadcast
address associated with ifa_addr (if applicable for the address family) or ifa_dstaddr
will contain the destination address of the point-to-point interface.

Linux man-pages 6.16 2025-09-21 1844

getifaddrs(3) Library Functions Manual getifaddrs(3)

The ifa_data field points to a buffer containing address-family-specific data; this field
may be NULL if there is no such data for this interface.

The data returned by getifaddrs() is dynamically allocated and should be freed using
freeifaddrs() when no longer needed.

RETURN VALUE
On success, getifaddrs() returns zero; on error, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
getifaddrs() may fail and set errno for any of the errors specified for socket(2), bind(2),
getsockname(2), recvmsg(2), sendto(2), malloc(3), or realloc(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetifaddrs(), freeifaddrs()

STANDARDS
None.

HISTORY
This function first appeared in BSDi and is present on the BSD systems, but with
slightly different semantics documented—returning one entry per interface, not per ad-
dress. This means ifa_addr and other fields can actually be NULL if the interface has
no address, and no link-level address is returned if the interface has an IP address as-
signed. Also, the way of choosing either ifa_broadaddr or ifa_dstaddr differs on vari-
ous systems.

getifaddrs() first appeared in glibc 2.3, but before glibc 2.3.3, the implementation sup-
ported only IPv4 addresses; IPv6 support was added in glibc 2.3.3. Support of address
families other than IPv4 is available only on kernels that support netlink.

NOTES
The addresses returned on Linux will usually be the IPv4 and IPv6 addresses assigned to
the interface, but also one AF_PACKET address per interface containing lower-level
details about the interface and its physical layer. In this case, the ifa_data field may
contain a pointer to a struct rtnl_link_stats, defined in <linux/if_link.h> (in Linux 2.4
and earlier, struct net_device_stats, defined in <linux/netdevice.h>), which contains var-
ious interface attributes and statistics.

EXAMPLES
The program below demonstrates the use of getifaddrs(), freeifaddrs(), and getname-
info(3). Here is what we see when running this program on one system:

$./a.out;
lo AF_PACKET (17)

tx_packets = 524; rx_packets = 524
tx_bytes = 38788; rx_bytes = 38788

wlp3s0 AF_PACKET (17)
tx_packets = 108391; rx_packets = 130245
tx_bytes = 30420659; rx_bytes = 94230014

Linux man-pages 6.16 2025-09-21 1845

getifaddrs(3) Library Functions Manual getifaddrs(3)

em1 AF_PACKET (17)
tx_packets = 0; rx_packets = 0
tx_bytes = 0; rx_bytes = 0

lo AF_INET (2)
address: <127.0.0.1>

wlp3s0 AF_INET (2)
address: <192.168.235.137>

lo AF_INET6 (10)
address: <::1>

wlp3s0 AF_INET6 (10)
address: <fe80::7ee9:d3ff:fef5:1a91%wlp3s0>

Program source

#define _GNU_SOURCE /* To get defns of NI_MAXSERV and NI_MAXHOST */
#include <arpa/inet.h>
#include <sys/socket.h>
#include <netdb.h>
#include <ifaddrs.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <linux/if_link.h>

int main(int argc, char *argv[])
{

struct ifaddrs *ifaddr;
int family, s;
char host[NI_MAXHOST];

if (getifaddrs(&ifaddr) == -1) {
perror("getifaddrs");
exit(EXIT_FAILURE);

}

/* Walk through linked list, maintaining head pointer so we
can free list later. */

for (struct ifaddrs *ifa = ifaddr; ifa != NULL;
ifa = ifa->ifa_next) {

if (ifa->ifa_addr == NULL)
continue;

family = ifa->ifa_addr->sa_family;

/* Display interface name and family (including symbolic
form of the latter for the common families). */

Linux man-pages 6.16 2025-09-21 1846

getifaddrs(3) Library Functions Manual getifaddrs(3)

printf("%-8s %s (%d)\n",
ifa->ifa_name,
(family == AF_PACKET) ? "AF_PACKET" :
(family == AF_INET) ? "AF_INET" :
(family == AF_INET6) ? "AF_INET6" : "???",
family);

/* For an AF_INET* interface address, display the address. */

if (family == AF_INET || family == AF_INET6) {
s = getnameinfo(ifa->ifa_addr,

(family == AF_INET) ? sizeof(struct sockaddr_in) :
sizeof(struct sockaddr_in6),

host, NI_MAXHOST,
NULL, 0, NI_NUMERICHOST);

if (s != 0) {
printf("getnameinfo() failed: %s\n", gai_strerror(s));
exit(EXIT_FAILURE);

}

printf("\t\taddress: <%s>\n", host);

} else if (family == AF_PACKET && ifa->ifa_data != NULL) {
struct rtnl_link_stats *stats = ifa->ifa_data;

printf("\t\ttx_packets = %10u; rx_packets = %10u\n"
"\t\ttx_bytes = %10u; rx_bytes = %10u\n",
stats->tx_packets, stats->rx_packets,
stats->tx_bytes, stats->rx_bytes);

}
}

freeifaddrs(ifaddr);
exit(EXIT_SUCCESS);

}

SEE ALSO
bind(2), getsockname(2), socket(2), packet(7), ifconfig(8)

Linux man-pages 6.16 2025-09-21 1847

getipnodebyname(3) Library Functions Manual getipnodebyname(3)

NAME
getipnodebyname, getipnodebyaddr, freehostent - get network hostnames and addresses

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/socket.h>
#include <netdb.h>

[[deprecated]] struct hostent *getipnodebyname(const char *name, int af ,
int flags, int *error_num);

[[deprecated]] struct hostent *getipnodebyaddr(size_t size;
const void addr[size],
size_t size, int af ,
int *error_num);

[[deprecated]] void freehostent(struct hostent *ip);

DESCRIPTION
These functions are deprecated (and unavailable in glibc). Use getaddrinfo(3) and get-
nameinfo(3) instead.

The getipnodebyname() and getipnodebyaddr() functions return the names and ad-
dresses of a network host. These functions return a pointer to the following structure:

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

};

These functions replace the gethostbyname(3) and gethostbyaddr(3) functions, which
could access only the IPv4 network address family. The getipnodebyname() and
getipnodebyaddr() functions can access multiple network address families.

Unlike the gethostby functions, these functions return pointers to dynamically allocated
memory. The freehostent() function is used to release the dynamically allocated mem-
ory after the caller no longer needs the hostent structure.

getipnodebyname() arguments
The getipnodebyname() function looks up network addresses for the host specified by
the name argument. The af argument specifies one of the following values:

AF_INET
The name argument points to a dotted-quad IPv4 address or a name of an IPv4
network host.

AF_INET6
The name argument points to a hexadecimal IPv6 address or a name of an IPv6
network host.

Linux man-pages 6.16 2025-09-21 1848

getipnodebyname(3) Library Functions Manual getipnodebyname(3)

The flags argument specifies additional options. More than one option can be specified
by bitwise OR-ing them together. flags should be set to 0 if no options are desired.

AI_V4MAPPED
This flag is used with AF_INET6 to request a query for IPv4 addresses instead
of IPv6 addresses; the IPv4 addresses will be mapped to IPv6 addresses.

AI_ALL
This flag is used with AI_V4MAPPED to request a query for both IPv4 and
IPv6 addresses. Any IPv4 address found will be mapped to an IPv6 address.

AI_ADDRCONFIG
This flag is used with AF_INET6 to further request that queries for IPv6 ad-
dresses should not be made unless the system has at least one IPv6 address as-
signed to a network interface, and that queries for IPv4 addresses should not be
made unless the system has at least one IPv4 address assigned to a network inter-
face. This flag may be used by itself or with the AI_V4MAPPED flag.

AI_DEFAULT
This flag is equivalent to (AI_ADDRCONFIG | AI_V4MAPPED).

getipnodebyaddr() arguments
The getipnodebyaddr() function looks up the name of the host whose network address
is specified by the addr argument. The af argument specifies one of the following val-
ues:

AF_INET
The addr argument points to a struct in_addr and size must be set to
sizeof(struct in_addr).

AF_INET6
The addr argument points to a struct in6_addr and size must be set to
sizeof(struct in6_addr).

RETURN VALUE
NULL is returned if an error occurred, and error_num will contain an error code from
the following list:

HOST_NOT_FOUND
The hostname or network address was not found.

NO_ADDRESS
The domain name server recognized the network address or name, but no answer
was returned. This can happen if the network host has only IPv4 addresses and a
request has been made for IPv6 information only, or vice versa.

NO_RECOVERY
The domain name server returned a permanent failure response.

TRY_AGAIN
The domain name server returned a temporary failure response. You might have
better luck next time.

A successful query returns a pointer to a hostent structure that contains the following
fields:

Linux man-pages 6.16 2025-09-21 1849

getipnodebyname(3) Library Functions Manual getipnodebyname(3)

h_name
This is the official name of this network host.

h_aliases
This is an array of pointers to unofficial aliases for the same host. The array is
terminated by a null pointer.

h_addrtype
This is a copy of the af argument to getipnodebyname() or getipnodebyaddr().
h_addrtype will always be AF_INET if the af argument was AF_INET. h_ad-
drtype will always be AF_INET6 if the af argument was AF_INET6.

h_length
This field will be set to sizeof(struct in_addr) if h_addrtype is AF_INET, and to
sizeof(struct in6_addr) if h_addrtype is AF_INET6.

h_addr_list
This is an array of one or more pointers to network address structures for the net-
work host. The array is terminated by a null pointer.

STANDARDS
None.

HISTORY
RFC 2553.

Present in glibc 2.1.91-95, but removed again. Several UNIX-like systems support
them, but all call them deprecated.

SEE ALSO
getaddrinfo(3), getnameinfo(3), inet_ntop(3), inet_pton(3)

Linux man-pages 6.16 2025-09-21 1850

getline(3) Library Functions Manual getline(3)

NAME
getline, getdelim - delimited string input

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

ssize_t getline(char **restrict lineptr, size_t *restrict n,
FILE *restrict stream);

ssize_t getdelim(char **restrict lineptr, size_t *restrict n,
int delim, FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getline(), getdelim():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
getline() reads an entire line from stream, storing the address of the buffer containing
the text into *lineptr. The buffer is null-terminated and includes the newline character,
if one was found.

If *lineptr is set to NULL before the call, then getline() will allocate a buffer for storing
the line. This buffer should be freed by the user program even if getline() failed.

Alternatively, before calling getline(), *lineptr can contain a pointer to a malloc(3)-allo-
cated buffer *n bytes in size. If the buffer is not large enough to hold the line, getline()
resizes it with realloc(3), updating *lineptr and *n as necessary.

In either case, on a successful call, *lineptr and *n will be updated to reflect the buffer
address and allocated size respectively.

getdelim() works like getline(), except that a line delimiter other than newline can be
specified as the delimiter argument. As with getline(), a delimiter character is not
added if one was not present in the input before end of file was reached.

RETURN VALUE
On success, getline() and getdelim() return the number of characters read, including the
delimiter character, but not including the terminating null byte ('\0'). This value can be
used to handle embedded null bytes in the line read.

At end of file, both functions return -1 with the file stream end-of-file indicator set. On
error, both functions return -1 with the file stream error indicator set, and errno is set to
indicate the error.

If *lineptr was set to NULL before the call, then the buffer should be freed by the user
program even on failure.

Linux man-pages 6.16 2025-05-17 1851

getline(3) Library Functions Manual getline(3)

ERRORS
EINVAL

Bad arguments (n or lineptr is NULL, or stream is not valid).

ENOMEM
Allocation or reallocation of the line buffer failed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetline(), getdelim()

STANDARDS
POSIX.1-2008.

HISTORY
GNU, POSIX.1-2008.

EXAMPLES
#define _GNU_SOURCE
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

FILE *stream;
char *line = NULL;
size_t size = 0;
ssize_t nread;

if (argc != 2) {
fprintf(stderr, "Usage: %s <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

stream = fopen(argv[1], "r");
if (stream == NULL) {

perror("fopen");
exit(EXIT_FAILURE);

}

while ((nread = getline(&line, &size, stream)) != -1) {
printf("Retrieved line of length %zd:\n", nread);
fwrite(line, nread, 1, stdout);

}

free(line);
fclose(stream);
exit(EXIT_SUCCESS);

Linux man-pages 6.16 2025-05-17 1852

getline(3) Library Functions Manual getline(3)

}

SEE ALSO
read(2), fgets(3), fopen(3), fread(3), scanf(3)

Linux man-pages 6.16 2025-05-17 1853

getloadavg(3) Library Functions Manual getloadavg(3)

NAME
getloadavg - get system load averages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int getloadavg(double loadavg[], int n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getloadavg():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_BSD_SOURCE

DESCRIPTION
The getloadavg() function returns the number of processes in the system run queue av-
eraged over various periods of time. Up to n samples are retrieved and assigned to suc-
cessive elements of loadavg[]. The system imposes a maximum of 3 samples, repre-
senting averages over the last 1, 5, and 15 minutes, respectively.

RETURN VALUE
If the load average was unobtainable, -1 is returned; otherwise, the number of samples
actually retrieved is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetloadavg()

STANDARDS
BSD.

HISTORY
4.3BSD-Reno, Solaris. glibc 2.2.

SEE ALSO
uptime(1), proc(5)

Linux man-pages 6.16 2025-09-21 1854

getlogin(3) Library Functions Manual getlogin(3)

NAME
getlogin, getlogin_r, cuserid - get username

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *getlogin(void);
int getlogin_r(size_t bufsize;

char buf [bufsize], size_t bufsize);

#include <stdio.h>

char *cuserid(char *string);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getlogin_r():
_POSIX_C_SOURCE >= 199506L

cuserid():
Since glibc 2.24:

(_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| _GNU_SOURCE

Up to and including glibc 2.23:
_XOPEN_SOURCE

DESCRIPTION
getlogin() returns a pointer to a string containing the name of the user logged in on the
controlling terminal of the process, or a null pointer if this information cannot be deter-
mined. The string is statically allocated and might be overwritten on subsequent calls to
this function or to cuserid().

getlogin_r() returns this same username in the array buf of size bufsize.

cuserid() returns a pointer to a string containing a username associated with the effec-
tive user ID of the process. If string is not a null pointer, it should be an array that can
hold at least L_cuserid characters; the string is returned in this array. Otherwise, a
pointer to a string in a static area is returned. This string is statically allocated and
might be overwritten on subsequent calls to this function or to getlogin().

The macro L_cuserid is an integer constant that indicates how long an array you might
need to store a username. L_cuserid is declared in <stdio.h>.

These functions let your program identify positively the user who is running (cuserid())
or the user who logged in this session (getlogin()). (These can differ when set-user-ID
programs are involved.)

For most purposes, it is more useful to use the environment variable LOGNAME to find
out who the user is. This is more flexible precisely because the user can set LOG-
NAME arbitrarily.

Linux man-pages 6.16 2025-09-21 1855

getlogin(3) Library Functions Manual getlogin(3)

RETURN VALUE
getlogin() returns a pointer to the username when successful, and NULL on failure, with
errno set to indicate the error. getlogin_r() returns 0 when successful, and nonzero on
failure.

ERRORS
POSIX specifies:

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENXIO
The calling process has no controlling terminal.

ERANGE
(getlogin_r) The length of the username, including the terminating null byte
('\0'), is larger than bufsize.

Linux/glibc also has:

ENOENT
There was no corresponding entry in the utmp-file.

ENOMEM
Insufficient memory to allocate passwd structure.

ENOTTY
Standard input didn’t refer to a terminal. (See BUGS.)

FILES
/etc/passwd

password database file

/var/run/utmp
(traditionally /etc/utmp; some libc versions used /var/adm/utmp)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetlogin() MT-Unsafe race:getlogin race:utent sig:ALRM
timer locale

Thread safetygetlogin_r() MT-Unsafe race:utent sig:ALRM timer locale
Thread safetycuserid() MT-Unsafe race:cuserid/!string locale

In the above table, utent in race:utent signifies that if any of the functions setutent(3),
getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. getlogin() and getlogin_r() call those functions, so we use
race:utent to remind users.

VERSIONS
OpenBSD has getlogin() and setlogin(), and a username associated with a session, even
if it has no controlling terminal.

Linux man-pages 6.16 2025-09-21 1856

getlogin(3) Library Functions Manual getlogin(3)

STANDARDS
getlogin()
getlogin_r()

POSIX.1-2008.

cuserid()
None.

STANDARDS
getlogin()
getlogin_r():

POSIX.1-2001. OpenBSD.

cuserid()
System V, POSIX.1-1988. Removed in POSIX.1-1990. SUSv2. Removed in
POSIX.1-2001.

System V has a cuserid() function which uses the real user ID rather than the ef-
fective user ID.

BUGS
Unfortunately, it is often rather easy to fool getlogin(). Sometimes it does not work at
all, because some program messed up the utmp file. Often, it gives only the first 8 char-
acters of the login name. The user currently logged in on the controlling terminal of our
program need not be the user who started it. Avoid getlogin() for security-related pur-
poses.

Note that glibc does not follow the POSIX specification and uses stdin instead of
/dev/tty. A bug. (Other recent systems, like SunOS 5.8 and HP-UX 11.11 and FreeBSD
4.8 all return the login name also when stdin is redirected.)

Nobody knows precisely what cuserid() does; avoid it in portable programs. Or avoid it
altogether: use getpwuid(geteuid()) instead, if that is what you meant. Do not use
cuserid().

SEE ALSO
logname(1), geteuid(2), getuid(2), utmp(5)

Linux man-pages 6.16 2025-09-21 1857

getmntent(3) Library Functions Manual getmntent(3)

NAME
getmntent, setmntent, addmntent, endmntent, hasmntopt, getmntent_r - get filesystem
descriptor file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <mntent.h>

FILE *setmntent(const char *path, const char *type);

struct mntent *getmntent(FILE *stream);

int addmntent(FILE *restrict stream,
const struct mntent *restrict mnt);

int endmntent(FILE *streamp);

char *hasmntopt(const struct mntent *mnt, const char *opt);

/* GNU extension */
#include <mntent.h>

struct mntent *getmntent_r(int size;
FILE *restrict streamp,
struct mntent *restrict mntbuf ,
char buf [restrict size], int size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getmntent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These routines are used to access the filesystem description file /etc/fstab and the
mounted filesystem description file /etc/mtab.

The setmntent() function opens the filesystem description file path and returns a file
pointer which can be used by getmntent(). The argument type is the type of access re-
quired and can take the same values as the mode argument of fopen(3). The returned
stream should be closed using endmntent() rather than fclose(3).

The getmntent() function reads the next line of the filesystem description file from
stream and returns a pointer to a structure containing the broken out fields from a line in
the file. The pointer points to a static area of memory which is overwritten by subse-
quent calls to getmntent().

The addmntent() function adds the mntent structure mnt to the end of the open stream.

The endmntent() function closes the stream associated with the filesystem description
file.

Linux man-pages 6.16 2025-06-28 1858

getmntent(3) Library Functions Manual getmntent(3)

The hasmntopt() function scans the mnt_opts field (see below) of the mntent structure
mnt for a substring that matches opt. See <mntent.h> and mount(8) for valid mount op-
tions.

The reentrant getmntent_r() function is similar to getmntent(), but stores the mntent
structure in the provided *mntbuf , and stores the strings pointed to by the entries in that
structure in the provided array buf of size size.

The mntent structure is defined in <mntent.h> as follows:

struct mntent {
char *mnt_fsname; /* name of mounted filesystem */
char *mnt_dir; /* filesystem path prefix */
char *mnt_type; /* mount type (see mntent.h) */
char *mnt_opts; /* mount options (see mntent.h) */
int mnt_freq; /* dump frequency in days */
int mnt_passno; /* pass number on parallel fsck */

};

Since fields in the mtab and fstab files are separated by whitespace, octal escapes are
used to represent the characters space (\040), tab (\011), newline (\012), and backslash
(\\) in those files when they occur in one of the four strings in a mntent structure. The
routines addmntent() and getmntent() will convert from string representation to es-
caped representation and back. When converting from escaped representation, the se-
quence \134 is also converted to a backslash.

RETURN VALUE
The getmntent() and getmntent_r() functions return a pointer to the mntent structure or
NULL on failure.

The addmntent() function returns 0 on success and 1 on failure.

The endmntent() function always returns 1.

The hasmntopt() function returns the address of the substring if a match is found and
NULL otherwise.

FILES
/etc/fstab

filesystem description file

/etc/mtab
mounted filesystem description file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-06-28 1859

getmntent(3) Library Functions Manual getmntent(3)

Interface Attribute Value
Thread safety MT-Safesetmntent(),

endmntent(),
hasmntopt()

Thread safetygetmntent() MT-Unsafe race:mntentbuf locale
Thread safetyaddmntent() MT-Safe race:stream locale
Thread safety MT-Safe localegetmntent_r()

STANDARDS
None.

HISTORY
The nonreentrant functions are from SunOS 4.1.3. A routine getmntent_r() was intro-
duced in HP-UX 10, but it returns an int. The prototype shown above is glibc-only.

System V also has a getmntent() function but the calling sequence differs, and the re-
turned structure is different. Under System V /etc/mnttab is used. 4.4BSD and Digital
UNIX have a routine getmntinfo(), a wrapper around the system call getfsstat().

SEE ALSO
fopen(3), fstab(5), mount(8)

Linux man-pages 6.16 2025-06-28 1860

getnameinfo(3) Library Functions Manual getnameinfo(3)

NAME
getnameinfo - address-to-name translation in protocol-independent manner

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>
#include <netdb.h>

int getnameinfo(socklen_t hostlen, socklen_t servlen;
const struct sockaddr *restrict addr, socklen_t addrlen,
char host[_Nullable restrict hostlen],
socklen_t hostlen,
char serv[_Nullable restrict servlen],
socklen_t servlen,
int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getnameinfo():
Since glibc 2.22:

_POSIX_C_SOURCE >= 200112L
glibc 2.21 and earlier:

_POSIX_C_SOURCE

DESCRIPTION
The getnameinfo() function is the inverse of getaddrinfo(3): it converts a socket address
to a corresponding host and service, in a protocol-independent manner. It combines the
functionality of gethostbyaddr(3) and getservbyport(3), but unlike those functions, get-
nameinfo() is reentrant and allows programs to eliminate IPv4-versus-IPv6 dependen-
cies.

The addr argument is a pointer to a generic socket address structure (of type sock-
addr_in or sockaddr_in6) of size addrlen that holds the input IP address and port num-
ber. The arguments host and serv are pointers to caller-allocated buffers (of size hostlen
and servlen respectively) into which getnameinfo() places null-terminated strings con-
taining the host and service names respectively.

The caller can specify that no hostname (or no service name) is required by providing a
NULL host (or serv) argument or a zero hostlen (or servlen) argument. However, at
least one of hostname or service name must be requested.

The flags argument modifies the behavior of getnameinfo() as follows:

NI_NAMEREQD
If set, then an error is returned if the hostname cannot be determined.

NI_DGRAM
If set, then the service is datagram (UDP) based rather than stream (TCP) based.
This is required for the few ports (512–514) that have different services for UDP
and TCP.

Linux man-pages 6.16 2025-06-28 1861

getnameinfo(3) Library Functions Manual getnameinfo(3)

NI_NOFQDN
If set, return only the hostname part of the fully qualified domain name for local
hosts.

NI_NUMERICHOST
If set, then the numeric form of the hostname is returned. (When not set, this
will still happen in case the node’s name cannot be determined.)

NI_NUMERICSERV
If set, then the numeric form of the service address is returned. (When not set,
this will still happen in case the service’s name cannot be determined.)

Extensions to getnameinfo() for Internationalized Domain Names
Starting with glibc 2.3.4, getnameinfo() has been extended to selectively allow host-
names to be transparently converted to and from the Internationalized Domain Name
(IDN) format (see RFC 3490, Internationalizing Domain Names in Applications
(IDNA)). Three new flags are defined:

NI_IDN
If this flag is used, then the name found in the lookup process is converted from
IDN format to the locale’s encoding if necessary. ASCII-only names are not af-
fected by the conversion, which makes this flag usable in existing programs and
environments.

NI_IDN_ALLOW_UNASSIGNED
NI_IDN_USE_STD3_ASCII_RULES

Setting these flags will enable the IDNA_ALLOW_UNASSIGNED (allow unas-
signed Unicode code points) and IDNA_USE_STD3_ASCII_RULES (check
output to make sure it is a STD3 conforming hostname) flags respectively to be
used in the IDNA handling.

RETURN VALUE
On success, 0 is returned, and node and service names, if requested, are filled with null-
terminated strings, possibly truncated to fit the specified buffer lengths. On error, one of
the following nonzero error codes is returned:

EAI_AGAIN
The name could not be resolved at this time. Try again later.

EAI_BADFLAGS
The flags argument has an invalid value.

EAI_FAIL
A nonrecoverable error occurred.

EAI_FAMILY
The address family was not recognized, or the address length was invalid for the
specified family.

EAI_MEMORY
Out of memory.

Linux man-pages 6.16 2025-06-28 1862

getnameinfo(3) Library Functions Manual getnameinfo(3)

EAI_NONAME
The name does not resolve for the supplied arguments. NI_NAMEREQD is set
and the host’s name cannot be located, or neither hostname nor service name
were requested.

EAI_OVERFLOW
The buffer pointed to by host or serv was too small.

EAI_SYSTEM
A system error occurred. The error code can be found in errno.

The gai_strerror(3) function translates these error codes to a human readable string,
suitable for error reporting.

FILES
/etc/hosts
/etc/nsswitch.conf
/etc/resolv.conf

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localegetnameinfo()

STANDARDS
POSIX.1-2008. RFC 2553.

HISTORY
glibc 2.1. POSIX.1-2001.

Before glibc 2.2, the hostlen and servlen arguments were typed as size_t.

NOTES
In order to assist the programmer in choosing reasonable sizes for the supplied buffers,
<netdb.h> defines the constants

#define NI_MAXHOST 1025
#define NI_MAXSERV 32

Since glibc 2.8, these definitions are exposed only if suitable feature test macros are de-
fined, namely: _GNU_SOURCE, _DEFAULT_SOURCE (since glibc 2.19), or (in
glibc versions up to and including 2.19) _BSD_SOURCE or _SVID_SOURCE.

The former is the constant MAXDNAME in recent versions of BIND’s
<arpa/nameser.h> header file. The latter is a guess based on the services listed in the
current Assigned Numbers RFC.

EXAMPLES
The following code tries to get the numeric hostname and service name, for a given
socket address. Note that there is no hardcoded reference to a particular address family.

struct sockaddr *addr; /* input */
socklen_t addrlen; /* input */
char hbuf[NI_MAXHOST], sbuf[NI_MAXSERV];

Linux man-pages 6.16 2025-06-28 1863

getnameinfo(3) Library Functions Manual getnameinfo(3)

if (getnameinfo(addr, addrlen, hbuf, sizeof(hbuf), sbuf,
sizeof(sbuf), NI_NUMERICHOST | NI_NUMERICSERV) == 0)

printf("host=%s, serv=%s\n", hbuf, sbuf);

The following version checks if the socket address has a reverse address mapping.

struct sockaddr *addr; /* input */
socklen_t addrlen; /* input */
char hbuf[NI_MAXHOST];

if (getnameinfo(addr, addrlen, hbuf, sizeof(hbuf),
NULL, 0, NI_NAMEREQD))

printf("could not resolve hostname");
else

printf("host=%s\n", hbuf);

An example program using getnameinfo() can be found in getaddrinfo(3).

SEE ALSO
accept(2), getpeername(2), getsockname(2), recvfrom(2), socket(2), getaddrinfo(3),
gethostbyaddr(3), getservbyname(3), getservbyport(3), inet_ntop(3), hosts(5), ser-
vices(5), hostname(7), named(8)

R. Gilligan, S. Thomson, J. Bound and W. Stevens, Basic Socket Interface Extensions
for IPv6, RFC 2553, March 1999.

Tatsuya Jinmei and Atsushi Onoe, An Extension of Format for IPv6 Scoped Addresses,
internet draft, work in progress 〈ftp://ftp.ietf.org/internet-drafts
/draft-ietf-ipngwg-scopedaddr-format-02.txt〉.

Craig Metz, Protocol Independence Using the Sockets API , Proceedings of the freenix
track: 2000 USENIX annual technical conference, June 2000 〈http://www.usenix.org
/publications/library/proceedings/usenix2000/freenix/metzprotocol.html〉.

Linux man-pages 6.16 2025-06-28 1864

getnetent(3) Library Functions Manual getnetent(3)

NAME
getnetent, getnetbyname, getnetbyaddr, setnetent, endnetent - get network entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct netent *getnetent(void);

struct netent *getnetbyname(const char *name);
struct netent *getnetbyaddr(uint32_t net, int type);

void setnetent(int stayopen);
void endnetent(void);

DESCRIPTION
The getnetent() function reads the next entry from the networks database and returns a
netent structure containing the broken-out fields from the entry. A connection is opened
to the database if necessary.

The getnetbyname() function returns a netent structure for the entry from the database
that matches the network name.

The getnetbyaddr() function returns a netent structure for the entry from the database
that matches the network number net of type type. The net argument must be in host
byte order.

The setnetent() function opens a connection to the database, and sets the next entry to
the first entry. If stayopen is nonzero, then the connection to the database will not be
closed between calls to one of the getnet*() functions.

The endnetent() function closes the connection to the database.

The netent structure is defined in <netdb.h> as follows:

struct netent {
char *n_name; /* official network name */
char **n_aliases; /* alias list */
int n_addrtype; /* net address type */
uint32_t n_net; /* network number */

}

The members of the netent structure are:

n_name
The official name of the network.

n_aliases
A NULL-terminated list of alternative names for the network.

n_addrtype
The type of the network number; always AF_INET.

Linux man-pages 6.16 2025-09-21 1865

getnetent(3) Library Functions Manual getnetent(3)

n_net
The network number in host byte order.

RETURN VALUE
The getnetent(), getnetbyname(), and getnetbyaddr() functions return a pointer to a
statically allocated netent structure, or a null pointer if an error occurs or the end of the
file is reached.

FILES
/etc/networks

networks database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetnetent() MT-Unsafe race:netent race:netentbuf env
locale

Thread safetygetnetbyname() MT-Unsafe race:netbyname env locale
Thread safetygetnetbyaddr() MT-Unsafe race:netbyaddr locale
Thread safetysetnetent(),

endnetent()
MT-Unsafe race:netent env locale

In the above table, netent in race:netent signifies that if any of the functions setnetent(),
getnetent(), or endnetent() are used in parallel in different threads of a program, then
data races could occur.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

Before glibc 2.2, the net argument of getnetbyaddr() was of type long.

SEE ALSO
getnetent_r(3), getprotoent(3), getservent(3)
RFC 1101

Linux man-pages 6.16 2025-09-21 1866

getnetent_r(3) Library Functions Manual getnetent_r(3)

NAME
getnetent_r, getnetbyname_r, getnetbyaddr_r - get network entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getnetent_r(size_t size;
struct netent *restrict result_buf ,
char buf [restrict size], size_t size,
struct netent **restrict result,
int *restrict h_errnop);

int getnetbyname_r(size_t size;
const char *restrict name,
struct netent *restrict result_buf ,
char buf [restrict size], size_t size,
struct netent **restrict result,
int *restrict h_errnop);

int getnetbyaddr_r(size_t size;
uint32_t net, int type,
struct netent *restrict result_buf ,
char buf [restrict size], size_t size,
struct netent **restrict result,
int *restrict h_errnop);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getnetent_r(), getnetbyname_r(), getnetbyaddr_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getnetent_r(), getnetbyname_r(), and getnetbyaddr_r() functions are the reen-
trant equivalents of, respectively, getnetent(3), getnetbyname(3), and getnetbynum-
ber(3)They differ in the way that the netent structure is returned, and in the function
calling signature and return value. This manual page describes just the differences from
the nonreentrant functions.

Instead of returning a pointer to a statically allocated netent structure as the function re-
sult, these functions copy the structure into the location pointed to by result_buf .

The buf array is used to store the string fields pointed to by the returned netent struc-
ture. (The nonreentrant functions allocate these strings in static storage.) The size of
this array is specified in size. If buf is too small, the call fails with the error ERANGE,
and the caller must try again with a larger buffer. (A buffer of size 1024 bytes should be
sufficient for most applications.)

If the function call successfully obtains a network record, then *result is set pointing to

Linux man-pages 6.16 2025-06-28 1867

getnetent_r(3) Library Functions Manual getnetent_r(3)

result_buf ; otherwise, *result is set to NULL.

The buffer pointed to by h_errnop is used to return the value that would be stored in the
global variable h_errno by the nonreentrant versions of these functions.

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in ERRORS.

On error, record not found (getnetbyname_r(), getnetbyaddr_r()), or end of input (get-
netent_r()) result is set to NULL.

ERRORS
ENOENT

(getnetent_r()) No more records in database.

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetnetent_r(), getnetbyname_r(),
getnetbyaddr_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with differ-
ent calling signatures.

STANDARDS
GNU.

SEE ALSO
getnetent(3), networks(5)

Linux man-pages 6.16 2025-06-28 1868

getopt(3) Library Functions Manual getopt(3)

NAME
getopt, getopt_long, getopt_long_only, optarg, optind, opterr, optopt - Parse command-
line options

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int getopt(int argc, char *argv[],
const char *optstring);

extern char *optarg;
extern int optind , opterr, optopt;

#include <getopt.h>

int getopt_long(int argc, char *argv[],
const char *optstring,
const struct option *longopts, int *longindex);

int getopt_long_only(int argc, char *argv[],
const char *optstring,
const struct option *longopts, int *longindex);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getopt():
_POSIX_C_SOURCE >= 2 || _XOPEN_SOURCE

getopt_long(), getopt_long_only():
_GNU_SOURCE

DESCRIPTION
The getopt() function parses the command-line arguments. Its arguments argc and argv
are the argument count and array as passed to the main() function on program invoca-
tion. An element of argv that starts with '-' (and is not exactly "-" or "--") is an option
element. The characters of this element (aside from the initial '-') are option characters.
If getopt() is called repeatedly, it returns successively each of the option characters from
each of the option elements.

The variable optind is the index of the next element to be processed in argv. The sys-
tem initializes this value to 1. The caller can reset it to 1 to restart scanning of the same
argv, or when scanning a new argument vector.

If getopt() finds another option character, it returns that character, updating the external
variable optind and a static variable nextchar so that the next call to getopt() can resume
the scan with the following option character or argv-element.

If there are no more option characters, getopt() returns -1. Then optind is the index in
argv of the first argv-element that is not an option.

optstring is a string containing the legitimate option characters. A legitimate option
character is any visible one byte ascii(7) character (for which isgraph(3) would return
nonzero) that is not '-', ':', or ';'. If such a character is followed by a colon, the option

Linux man-pages 6.16 2025-09-21 1869

getopt(3) Library Functions Manual getopt(3)

requires an argument, so getopt() places a pointer to the following text in the same argv-
element, or the text of the following argv-element, in optarg. Two colons mean an op-
tion takes an optional arg; if there is text in the current argv-element (i.e., in the same
word as the option name itself, for example, "-oarg"), then it is returned in optarg, oth-
erwise optarg is set to zero. This is a GNU extension. If optstring contains W followed
by a semicolon, then -W foo is treated as the long option --foo. (The -W option is re-
served by POSIX.2 for implementation extensions.) This behavior is a GNU extension,
not available with libraries before glibc 2.

By default, getopt() permutes the contents of argv as it scans, so that eventually all the
nonoptions are at the end. Two other scanning modes are also implemented. If the first
character of optstring is '+' or the environment variable POSIXLY_CORRECT is set,
then option processing stops as soon as a nonoption argument is encountered. If '+' is
not the first character of optstring, it is treated as a normal option. If POSIXLY_COR-
RECT behaviour is required in this case optstring will contain two '+' symbols. If the
first character of optstring is '-', then each nonoption argv-element is handled as if it
were the argument of an option with character code 1. (This is used by programs that
were written to expect options and other argv-elements in any order and that care about
the ordering of the two.) The special argument "--" forces an end of option-scanning
regardless of the scanning mode.

While processing the option list, getopt() can detect two kinds of errors: (1) an option
character that was not specified in optstring and (2) a missing option argument (i.e., an
option at the end of the command line without an expected argument). Such errors are
handled and reported as follows:

• By default, getopt() prints an error message on standard error, places the erroneous
option character in optopt, and returns '?' as the function result.

• If the caller has set the global variable opterr to zero, then getopt() does not print an
error message. The caller can determine that there was an error by testing whether
the function return value is '?'. (By default, opterr has a nonzero value.)

• If the first character (following any optional '+' or '-' described above) of optstring is
a colon (':'), then getopt() likewise does not print an error message. In addition, it
returns ':' instead of '?' to indicate a missing option argument. This allows the caller
to distinguish the two different types of errors.

getopt_long() and getopt_long_only()
The getopt_long() function works like getopt() except that it also accepts long options,
started with two dashes. (If the program accepts only long options, then optstring
should be specified as an empty string (""), not NULL.) Long option names may be ab-
breviated if the abbreviation is unique or is an exact match for some defined option. A
long option may take a parameter, of the form --arg=param or --arg param.

longopts is a pointer to the first element of an array of struct option declared in
<getopt.h> as

struct option {
const char *name;
int has_arg;
int *flag;

Linux man-pages 6.16 2025-09-21 1870

getopt(3) Library Functions Manual getopt(3)

int val;
};

The meanings of the different fields are:

name
is the name of the long option.

has_arg
is: no_argument (or 0) if the option does not take an argument; required_argu-
ment (or 1) if the option requires an argument; or optional_argument (or 2) if
the option takes an optional argument.

flag specifies how results are returned for a long option. If flag is NULL, then
getopt_long() returns val. (For example, the calling program may set val to the
equivalent short option character.) Otherwise, getopt_long() returns 0, and flag
points to a variable which is set to val if the option is found, but left unchanged
if the option is not found.

val is the value to return, or to load into the variable pointed to by flag.

The last element of the array has to be filled with zeros.

If longindex is not NULL, it points to a variable which is set to the index of the long op-
tion relative to longopts.

getopt_long_only() is like getopt_long(), but '-' as well as "--" can indicate a long op-
tion. If an option that starts with '-' (not "--") doesn’t match a long option, but does
match a short option, it is parsed as a short option instead.

RETURN VALUE
If an option was successfully found, then getopt() returns the option character. If all
command-line options have been parsed, then getopt() returns -1. If getopt() encoun-
ters an option character that was not in optstring, then '?' is returned. If getopt() en-
counters an option with a missing argument, then the return value depends on the first
character in optstring: if it is ':', then ':' is returned; otherwise '?' is returned.

getopt_long() and getopt_long_only() also return the option character when a short op-
tion is recognized. For a long option, they return val if flag is NULL, and 0 otherwise.
Error and -1 returns are the same as for getopt(), plus '?' for an ambiguous match or an
extraneous parameter.

ENVIRONMENT
POSIXLY_CORRECT

If this is set, then option processing stops as soon as a nonoption argument is en-
countered.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetopt(),
getopt_long(),
getopt_long_only()

MT-Unsafe race:getopt env

Linux man-pages 6.16 2025-09-21 1871

getopt(3) Library Functions Manual getopt(3)

VERSIONS
POSIX specifies that the argv array argument should be const, but these functions per-
mute its elements unless the environment variable POSIXLY_CORRECT is set. const
is used in the actual prototype to be compatible with other systems; however, this page
doesn’t show the qualifier, to avoid confusing readers.

STANDARDS
getopt()

POSIX.1-2008.

getopt_long()
getopt_long_only()

GNU.

The use of '+' and '-' in optstring is a GNU extension.

HISTORY
getopt()

POSIX.1-2001, and POSIX.2.

On some older implementations, getopt() was declared in <stdio.h>. SUSv1 permitted
the declaration to appear in either <unistd.h> or <stdio.h>. POSIX.1-1996 marked the
use of <stdio.h> for this purpose as LEGACY. POSIX.1-2001 does not require the dec-
laration to appear in <stdio.h>.

Very old versions of glibc were affected by a _PID_GNU_nonoption_argv_flags_ en-
vironment variable 〈https://sourceware.org/git/
?p=glibc.git;a=commitdiff;h=bf079e19f50d64aa5e05〉.

NOTES
A program that scans multiple argument vectors, or rescans the same vector more than
once, and wants to make use of GNU extensions such as '+' and '-' at the start of opt-
string, or changes the value of POSIXLY_CORRECT between scans, must reinitialize
getopt() by resetting optind to 0, rather than the traditional value of 1. (Resetting to 0
forces the invocation of an internal initialization routine that rechecks POSIXLY_COR-
RECT and checks for GNU extensions in optstring.)

Command-line arguments are parsed in strict order meaning that an option requiring an
argument will consume the next argument, regardless of whether that argument is the
correctly specified option argument or simply the next option (in the scenario the user
mis-specifies the command line). For example, if optstring is specified as "1n:" and the
user specifies the command line arguments incorrectly as prog -n -1, the -n option will
be given the optarg value "-1", and the -1 option will be considered to have not been
specified.

EXAMPLES
getopt()

The following trivial example program uses getopt() to handle two program options: -n,
with no associated value; and -t val, which expects an associated value.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

Linux man-pages 6.16 2025-09-21 1872

getopt(3) Library Functions Manual getopt(3)

int
main(int argc, char *argv[])
{

int flags, opt;
int nsecs, tfnd;

nsecs = 0;
tfnd = 0;
flags = 0;
while ((opt = getopt(argc, argv, "nt:")) != -1) {

switch (opt) {
case 'n':

flags = 1;
break;

case 't':
nsecs = atoi(optarg);
tfnd = 1;
break;

default: /* '?' */
fprintf(stderr, "Usage: %s [-t nsecs] [-n] name\n",

argv[0]);
exit(EXIT_FAILURE);

}
}

printf("flags=%d; tfnd=%d; nsecs=%d; optind=%d\n",
flags, tfnd, nsecs, optind);

if (optind >= argc) {
fprintf(stderr, "Expected argument after options\n");
exit(EXIT_FAILURE);

}

printf("name argument = %s\n", argv[optind]);

/* Other code omitted */

exit(EXIT_SUCCESS);
}

getopt_long()
The following example program illustrates the use of getopt_long() with most of its fea-
tures.

#include <getopt.h>
#include <stdio.h> /* for printf */
#include <stdlib.h> /* for exit */

Linux man-pages 6.16 2025-09-21 1873

getopt(3) Library Functions Manual getopt(3)

int
main(int argc, char *argv[])
{

int c;
int digit_optind = 0;

while (1) {
int this_option_optind = optind ? optind : 1;
int option_index = 0;
static struct option long_options[] = {

{"add", required_argument, 0, 0 },
{"append", no_argument, 0, 0 },
{"delete", required_argument, 0, 0 },
{"verbose", no_argument, 0, 0 },
{"create", required_argument, 0, 'c'},
{"file", required_argument, 0, 0 },
{0, 0, 0, 0 }

};

c = getopt_long(argc, argv, "abc:d:012",
long_options, &option_index);

if (c == -1)
break;

switch (c) {
case 0:

printf("option %s", long_options[option_index].name);
if (optarg)

printf(" with arg %s", optarg);
printf("\n");
break;

case '0':
case '1':
case '2':

if (digit_optind != 0 && digit_optind != this_option_optind)
printf("digits occur in two different argv-elements.\n");

digit_optind = this_option_optind;
printf("option %c\n", c);
break;

case 'a':
printf("option a\n");
break;

case 'b':

Linux man-pages 6.16 2025-09-21 1874

getopt(3) Library Functions Manual getopt(3)

printf("option b\n");
break;

case 'c':
printf("option c with value '%s'\n", optarg);
break;

case 'd':
printf("option d with value '%s'\n", optarg);
break;

case '?':
break;

default:
printf("?? getopt returned character code 0%o ??\n", c);

}
}

if (optind < argc) {
printf("non-option ARGV-elements: ");
while (optind < argc)

printf("%s ", argv[optind++]);
printf("\n");

}

exit(EXIT_SUCCESS);
}

SEE ALSO
getopt(1), getsubopt(3)

Linux man-pages 6.16 2025-09-21 1875

getpass(3) Library Functions Manual getpass(3)

NAME
getpass - get a password

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

[[deprecated]] char *getpass(const char *prompt);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpass():
Since glibc 2.2.2:

_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.2.2:
none

DESCRIPTION
This function is obsolete. Do not use it. See NOTES. If you want to read input without
terminal echoing enabled, see the description of the ECHO flag in termios(3).

The getpass() function opens /dev/tty (the controlling terminal of the process), outputs
the string prompt, turns off echoing, reads one line (the "password"), restores the termi-
nal state and closes /dev/tty again.

RETURN VALUE
The function getpass() returns a pointer to a static buffer containing (the first
PASS_MAX bytes of) the password without the trailing newline, terminated by a null
byte ('\0'). This buffer may be overwritten by a following call. On error, the terminal
state is restored, errno is set to indicate the error, and NULL is returned.

ERRORS
ENXIO

The process does not have a controlling terminal.

FILES
/dev/tty

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe termgetpass()

STANDARDS
None.

HISTORY
Version 7 AT&T UNIX. Present in SUSv2, but marked LEGACY. Removed in
POSIX.1-2001.

Linux man-pages 6.16 2025-05-17 1876

getpass(3) Library Functions Manual getpass(3)

NOTES
You should use instead readpassphrase(3bsd), provided by libbsd .

In the GNU C library implementation, if /dev/tty cannot be opened, the prompt is writ-
ten to stderr and the password is read from stdin. There is no limit on the length of the
password. Line editing is not disabled.

According to SUSv2, the value of PASS_MAX must be defined in <limits.h> in case it
is smaller than 8, and can in any case be obtained using sysconf(_SC_PASS_MAX).
However, POSIX.2 withdraws the constants PASS_MAX and _SC_PASS_MAX, and
the function getpass(). The glibc version accepts _SC_PASS_MAX and returns BUF-
SIZ (e.g., 8192).

BUGS
The calling process should zero the password as soon as possible to avoid leaving the
cleartext password visible in the process’s address space.

SEE ALSO
crypt(3)

Linux man-pages 6.16 2025-05-17 1877

getprotoent(3) Library Functions Manual getprotoent(3)

NAME
getprotoent, getprotobyname, getprotobynumber, setprotoent, endprotoent - get protocol
entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct protoent *getprotoent(void);

struct protoent *getprotobyname(const char *name);
struct protoent *getprotobynumber(int proto);

void setprotoent(int stayopen);
void endprotoent(void);

DESCRIPTION
The getprotoent() function reads the next entry from the protocols database (see proto-
cols(5)) and returns a protoent structure containing the broken-out fields from the entry.
A connection is opened to the database if necessary.

The getprotobyname() function returns a protoent structure for the entry from the data-
base that matches the protocol name name. A connection is opened to the database if
necessary.

The getprotobynumber() function returns a protoent structure for the entry from the
database that matches the protocol number number. A connection is opened to the data-
base if necessary.

The setprotoent() function opens a connection to the database, and sets the next entry to
the first entry. If stayopen is nonzero, then the connection to the database will not be
closed between calls to one of the getproto*() functions.

The endprotoent() function closes the connection to the database.

The protoent structure is defined in <netdb.h> as follows:

struct protoent {
char *p_name; /* official protocol name */
char **p_aliases; /* alias list */
int p_proto; /* protocol number */

}

The members of the protoent structure are:

p_name
The official name of the protocol.

p_aliases
A NULL-terminated list of alternative names for the protocol.

p_proto
The protocol number.

Linux man-pages 6.16 2025-05-17 1878

getprotoent(3) Library Functions Manual getprotoent(3)

RETURN VALUE
The getprotoent(), getprotobyname(), and getprotobynumber() functions return a
pointer to a statically allocated protoent structure, or a null pointer if an error occurs or
the end of the file is reached.

FILES
/etc/protocols

protocol database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetprotoent() MT-Unsafe race:protoent race:protoentbuf
locale

Thread safetygetprotobyname() MT-Unsafe race:protobyname locale
Thread safetygetprotobynumber() MT-Unsafe race:protobynumber locale
Thread safetysetprotoent(),

endprotoent()
MT-Unsafe race:protoent locale

In the above table, protoent in race:protoent signifies that if any of the functions set-
protoent(), getprotoent(), or endprotoent() are used in parallel in different threads of a
program, then data races could occur.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

SEE ALSO
getnetent(3), getprotoent_r(3), getservent(3), protocols(5)

Linux man-pages 6.16 2025-05-17 1879

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

NAME
getprotoent_r, getprotobyname_r, getprotobynumber_r - get protocol entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getprotoent_r(size_t size;
struct protoent *restrict result_buf ,
char buf [restrict size], size_t size,
struct protoent **restrict result);

int getprotobyname_r(size_t size;
const char *restrict name,
struct protoent *restrict result_buf ,
char buf [restrict size], size_t size,
struct protoent **restrict result);

int getprotobynumber_r(size_t size;
int proto,
struct protoent *restrict result_buf ,
char buf [restrict size], size_t size,
struct protoent **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getprotoent_r(), getprotobyname_r(), getprotobynumber_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getprotoent_r(), getprotobyname_r(), and getprotobynumber_r() functions are
the reentrant equivalents of, respectively, getprotoent(3), getprotobyname(3), and getpro-
tobynumber(3). They differ in the way that the protoent structure is returned, and in the
function calling signature and return value. This manual page describes just the differ-
ences from the nonreentrant functions.

Instead of returning a pointer to a statically allocated protoent structure as the function
result, these functions copy the structure into the location pointed to by result_buf .

The buf array is used to store the string fields pointed to by the returned protoent struc-
ture. (The nonreentrant functions allocate these strings in static storage.) The size of
this array is specified in size. If buf is too small, the call fails with the error ERANGE,
and the caller must try again with a larger buffer. (A buffer of size 1024 bytes should be
sufficient for most applications.)

If the function call successfully obtains a protocol record, then *result is set pointing to
result_buf ; otherwise, *result is set to NULL.

Linux man-pages 6.16 2025-09-21 1880

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in ERRORS.

On error, record not found (getprotobyname_r(), getprotobynumber_r()), or end of in-
put (getprotoent_r()) result is set to NULL.

ERRORS
ENOENT

(getprotoent_r()) No more records in database.

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetprotoent_r(), getprotobyname_r(),
getprotobynumber_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with differ-
ent calling signatures.

STANDARDS
GNU.

EXAMPLES
The program below uses getprotobyname_r() to retrieve the protocol record for the
protocol named in its first command-line argument. If a second (integer) command-line
argument is supplied, it is used as the initial value for size; if getprotobyname_r() fails
with the error ERANGE, the program retries with larger buffer sizes. The following
shell session shows a couple of sample runs:

$./a.out tcp 1
ERANGE! Retrying with larger buffer
getprotobyname_r() returned: 0 (success) (size=78)
p_name=tcp; p_proto=6; aliases=TCP
$./a.out xxx 1
ERANGE! Retrying with larger buffer
getprotobyname_r() returned: 0 (success) (size=100)
Call failed/record not found

Program source

#define _GNU_SOURCE
#include <ctype.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Linux man-pages 6.16 2025-09-21 1881

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

#define MAX_BUF 10000

int
main(int argc, char *argv[])
{

int size, erange_cnt, s;
struct protoent result_buf;
struct protoent *result;
char buf[MAX_BUF];

if (argc < 2) {
printf("Usage: %s proto-name [size]\n", argv[0]);
exit(EXIT_FAILURE);

}

size = 1024;
if (argc > 2)

size = atoi(argv[2]);

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}

erange_cnt = 0;
do {

s = getprotobyname_r(argv[1], &result_buf,
buf, size, &result);

if (s == ERANGE) {
if (erange_cnt == 0)

printf("ERANGE! Retrying with larger buffer\n");
erange_cnt++;

/* Increment a byte at a time so we can see exactly
what size buffer was required. */

size++;

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}
}

} while (s == ERANGE);

printf("getprotobyname_r() returned: %s (size=%d)\n",

Linux man-pages 6.16 2025-09-21 1882

getprotoent_r(3) Library Functions Manual getprotoent_r(3)

(s == 0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" :
strerror(s), size);

if (s != 0 || result == NULL) {
printf("Call failed/record not found\n");
exit(EXIT_FAILURE);

}

printf("p_name=%s; p_proto=%d; aliases=",
result_buf.p_name, result_buf.p_proto);

for (char **p = result_buf.p_aliases; *p != NULL; p++)
printf("%s ", *p);

printf("\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
getprotoent(3), protocols(5)

Linux man-pages 6.16 2025-09-21 1883

getpt(3) Library Functions Manual getpt(3)

NAME
getpt - open a new pseudoterminal master

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <stdlib.h>

int getpt(void);

DESCRIPTION
getpt() opens a new pseudoterminal device and returns a file descriptor that refers to that
device. It is equivalent to opening the pseudoterminal multiplexor device

open("/dev/ptmx", O_RDWR);

on Linux systems, though the pseudoterminal multiplexor device is located elsewhere on
some systems that use the GNU C library.

RETURN VALUE
getpt() returns an open file descriptor upon successful completion. Otherwise, it returns
-1 and sets errno to indicate the error.

ERRORS
getpt() can fail with various errors described in open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetpt()

VERSIONS
Use posix_openpt(3) instead.

STANDARDS
GNU.

HISTORY
glibc 2.1.

SEE ALSO
grantpt(3), posix_openpt(3), ptsname(3), unlockpt(3), ptmx(4), pty(7)

Linux man-pages 6.16 2025-05-17 1884

getpw(3) Library Functions Manual getpw(3)

NAME
getpw - reconstruct password line entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <sys/types.h>
#include <pwd.h>

[[deprecated]] int getpw(uid_t uid , char *buf);

DESCRIPTION
The getpw() function reconstructs the password line entry for the given user ID uid in
the buffer buf . The returned buffer contains a line of format

name:passwd:uid:gid:gecos:dir:shell

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

For more information about the fields of this structure, see passwd(5).

RETURN VALUE
The getpw() function returns 0 on success; on error, it returns -1, and errno is set to in-
dicate the error.

If uid is not found in the password database, getpw() returns -1, sets errno to 0, and
leaves buf unchanged.

ERRORS
0 or ENOENT

No user corresponding to uid .

EINVAL
buf is NULL.

ENOMEM
Insufficient memory to allocate passwd structure.

FILES
/etc/passwd

password database file

Linux man-pages 6.16 2025-09-21 1885

getpw(3) Library Functions Manual getpw(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetpw()

STANDARDS
None.

HISTORY
SVr2.

BUGS
The getpw() function is dangerous as it may overflow the provided buffer buf . It is ob-
soleted by getpwuid(3).

SEE ALSO
endpwent(3), fgetpwent(3), getpwent(3), getpwnam(3), getpwuid(3), putpwent(3), setp-
went(3), passwd(5)

Linux man-pages 6.16 2025-09-21 1886

getpwent(3) Library Functions Manual getpwent(3)

NAME
getpwent, setpwent, endpwent - get password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwent(void);
void setpwent(void);
void endpwent(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpwent(), setpwent(), endpwent():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getpwent() function returns a pointer to a structure containing the broken-out fields
of a record from the password database (e.g., the local password file /etc/passwd , NIS,
and LDAP). The first time getpwent() is called, it returns the first entry; thereafter, it re-
turns successive entries.

The setpwent() function rewinds to the beginning of the password database.

The endpwent() function is used to close the password database after all processing has
been performed.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

For more information about the fields of this structure, see passwd(5).

RETURN VALUE
The getpwent() function returns a pointer to a passwd structure, or NULL if there are
no more entries or an error occurred. If an error occurs, errno is set to indicate the error.
If one wants to check errno after the call, it should be set to zero before the call.

The return value may point to a static area, and may be overwritten by subsequent calls
to getpwent(), getpwnam(3), or getpwuid(3). (Do not pass the returned pointer to
free(3).)

Linux man-pages 6.16 2025-09-21 1887

getpwent(3) Library Functions Manual getpwent(3)

ERRORS
EINTR

A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient memory to allocate passwd structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/passwd

local password database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetpwent() MT-Unsafe race:pwent race:pwentbuf locale
Thread safetysetpwent(),

endpwent()
MT-Unsafe race:pwent locale

In the above table, pwent in race:pwent signifies that if any of the functions setpwent(),
getpwent(), or endpwent() are used in parallel in different threads of a program, then
data races could occur.

VERSIONS
The pw_gecos field is not specified in POSIX, but is present on most implementations.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
fgetpwent(3), getpw(3), getpwent_r(3), getpwnam(3), getpwuid(3), putpwent(3),
passwd(5)

Linux man-pages 6.16 2025-09-21 1888

getpwent_r(3) Library Functions Manual getpwent_r(3)

NAME
getpwent_r, fgetpwent_r - get passwd file entry reentrantly

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <pwd.h>

int getpwent_r(size_t size;
struct passwd *restrict pwbuf ,
char buf [restrict size], size_t size,
struct passwd **restrict pwbufp);

int fgetpwent_r(size_t size;
FILE *restrict stream, struct passwd *restrict pwbuf ,
char buf [restrict size], size_t size,
struct passwd **restrict pwbufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpwent_r(),
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

fgetpwent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The functions getpwent_r() and fgetpwent_r() are the reentrant versions of getpwent(3)
and fgetpwent(3). The former reads the next passwd entry from the stream initialized by
setpwent(3). The latter reads the next passwd entry from stream.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

For more information about the fields of this structure, see passwd(5).

The nonreentrant functions return a pointer to static storage, where this static storage
contains further pointers to user name, password, gecos field, home directory and shell.
The reentrant functions described here return all of that in caller-provided buffers. First

Linux man-pages 6.16 2025-06-28 1889

getpwent_r(3) Library Functions Manual getpwent_r(3)

of all there is the buffer pwbuf that can hold a struct passwd . And next the buffer buf
of size size that can hold additional strings. The result of these functions, the
struct passwd read from the stream, is stored in the provided buffer *pwbuf , and a
pointer to this struct passwd is returned in *pwbufp.

RETURN VALUE
On success, these functions return 0 and *pwbufp is a pointer to the struct passwd . On
error, these functions return an error value and *pwbufp is NULL.

ERRORS
ENOENT

No more entries.

ERANGE
Insufficient buffer space supplied. Try again with larger buffer.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetpwent_r() MT-Unsafe race:pwent locale
Thread safety MT-Safefgetpwent_r()

In the above table, pwent in race:pwent signifies that if any of the functions setpwent(),
getpwent(), endpwent(), or getpwent_r() are used in parallel in different threads of a
program, then data races could occur.

VERSIONS
Other systems use the prototype

struct passwd *
getpwent_r(struct passwd *pwd, char buf[.size], int size);

or, better,

int
getpwent_r(struct passwd *pwd, char buf[.size], int size,

FILE **pw_fp);

STANDARDS
None.

HISTORY
These functions are done in a style resembling the POSIX version of functions like getp-
wnam_r(3).

NOTES
The function getpwent_r() is not really reentrant since it shares the reading position in
the stream with all other threads.

EXAMPLES
#define _GNU_SOURCE
#include <pwd.h>
#include <stdint.h>
#include <stdio.h>

Linux man-pages 6.16 2025-06-28 1890

getpwent_r(3) Library Functions Manual getpwent_r(3)

#include <stdlib.h>

#define BUFLEN 4096

int
main(void)
{

struct passwd pw;
struct passwd *pwp;
char buf[BUFLEN];
int i;

setpwent();
while (1) {

i = getpwent_r(&pw, buf, sizeof(buf), &pwp);
if (i)

break;
printf("%s (%jd)\tHOME %s\tSHELL %s\n", pwp->pw_name,

(intmax_t) pwp->pw_uid, pwp->pw_dir, pwp->pw_shell);
}
endpwent();
exit(EXIT_SUCCESS);

}

SEE ALSO
fgetpwent(3), getpw(3), getpwent(3), getpwnam(3), getpwuid(3), putpwent(3), passwd(5)

Linux man-pages 6.16 2025-06-28 1891

getpwnam(3) Library Functions Manual getpwnam(3)

NAME
getpwnam, getpwnam_r, getpwuid, getpwuid_r - get password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <pwd.h>

struct passwd *getpwnam(const char *name);
struct passwd *getpwuid(uid_t uid);

int getpwnam_r(size_t size;
const char *restrict name,
struct passwd *restrict pwd ,
char buf [restrict size], size_t size,
struct passwd **restrict result);

int getpwuid_r(size_t size;
uid_t uid ,
struct passwd *restrict pwd ,
char buf [restrict size], size_t size,
struct passwd **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getpwnam_r(), getpwuid_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getpwnam() function returns a pointer to a structure containing the broken-out
fields of the record in the password database (e.g., the local password file /etc/passwd ,
NIS, and LDAP) that matches the username name.

The getpwuid() function returns a pointer to a structure containing the broken-out fields
of the record in the password database that matches the user ID uid .

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* user information */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

See passwd(5) for more information about these fields.

The getpwnam_r() and getpwuid_r() functions obtain the same information as getpw-
nam() and getpwuid(), but store the retrieved passwd structure in the space pointed to

Linux man-pages 6.16 2025-09-21 1892

getpwnam(3) Library Functions Manual getpwnam(3)

by pwd . The string fields pointed to by the members of the passwd structure are stored
in the buffer buf of size size. A pointer to the result (in case of success) or NULL (in
case no entry was found or an error occurred) is stored in *result.

The call

sysconf(_SC_GETPW_R_SIZE_MAX)

returns either -1, without changing errno, or an initial suggested size for buf . (If this
size is too small, the call fails with ERANGE, in which case the caller can retry with a
larger buffer.)

RETURN VALUE
The getpwnam() and getpwuid() functions return a pointer to a passwd structure, or
NULL if the matching entry is not found or an error occurs. If an error occurs, errno is
set to indicate the error. If one wants to check errno after the call, it should be set to
zero before the call.

The return value may point to a static area, and may be overwritten by subsequent calls
to getpwent(3), getpwnam(), or getpwuid(). (Do not pass the returned pointer to
free(3).)

On success, getpwnam_r() and getpwuid_r() return zero, and set *result to pwd . If no
matching password record was found, these functions return 0 and store NULL in *re-
sult. In case of error, an error number is returned, and NULL is stored in *result.

ERRORS
0 or ENOENT or ESRCH or EBADF or EPERM or ...

The given name or uid was not found.

EINTR
A signal was caught; see signal(7).

EIO I/O error.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOMEM
Insufficient memory to allocate passwd structure.

ERANGE
Insufficient buffer space supplied.

FILES
/etc/passwd

local password database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1893

getpwnam(3) Library Functions Manual getpwnam(3)

Interface Attribute Value
Thread safetygetpwnam() MT-Unsafe race:pwnam locale
Thread safetygetpwuid() MT-Unsafe race:pwuid locale
Thread safetygetpwnam_r(),

getpwuid_r()
MT-Safe locale

VERSIONS
The pw_gecos field is not specified in POSIX, but is present on most implementations.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
The formulation given above under "RETURN VALUE" is from POSIX.1-2001. It does
not call "not found" an error, and hence does not specify what value errno might have in
this situation. But that makes it impossible to recognize errors. One might argue that
according to POSIX errno should be left unchanged if an entry is not found. Experi-
ments on various UNIX-like systems show that lots of different values occur in this situ-
ation: 0, ENOENT, EBADF, ESRCH, EWOULDBLOCK, EPERM, and probably oth-
ers.

The pw_dir field contains the name of the initial working directory of the user. Login
programs use the value of this field to initialize the HOME environment variable for the
login shell. An application that wants to determine its user’s home directory should in-
spect the value of HOME (rather than the value getpwuid(getuid())->pw_dir) since this
allows the user to modify their notion of "the home directory" during a login session. To
determine the (initial) home directory of another user, it is necessary to use getpw-
nam("username")->pw_dir or similar.

EXAMPLES
The program below demonstrates the use of getpwnam_r() to find the full username
and user ID for the username supplied as a command-line argument.

#include <errno.h>
#include <pwd.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

struct passwd pwd;
struct passwd *result;
char *buf;
long bufsize;
int s;

Linux man-pages 6.16 2025-09-21 1894

getpwnam(3) Library Functions Manual getpwnam(3)

if (argc != 2) {
fprintf(stderr, "Usage: %s username\n", argv[0]);
exit(EXIT_FAILURE);

}

bufsize = sysconf(_SC_GETPW_R_SIZE_MAX);
if (bufsize == -1) /* Value was indeterminate */

bufsize = 16384; /* Should be more than enough */

buf = malloc(bufsize);
if (buf == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}

s = getpwnam_r(argv[1], &pwd, buf, bufsize, &result);
if (result == NULL) {

if (s == 0)
printf("Not found\n");

else {
errno = s;
perror("getpwnam_r");

}
exit(EXIT_FAILURE);

}

printf("Name: %s; UID: %jd\n", pwd.pw_gecos,
(intmax_t) pwd.pw_uid);

exit(EXIT_SUCCESS);
}

SEE ALSO
endpwent(3), fgetpwent(3), getgrnam(3), getpw(3), getpwent(3), getspnam(3), putp-
went(3), setpwent(3), passwd(5)

Linux man-pages 6.16 2025-09-21 1895

getrpcent(3) Library Functions Manual getrpcent(3)

NAME
getrpcent, getrpcbyname, getrpcbynumber, setrpcent, endrpcent - get RPC entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct rpcent *getrpcent(void);

struct rpcent *getrpcbyname(const char *name);
struct rpcent *getrpcbynumber(int number);

void setrpcent(int stayopen);
void endrpcent(void);

DESCRIPTION
The getrpcent(), getrpcbyname(), and getrpcbynumber() functions each return a
pointer to an object with the following structure containing the broken-out fields of an
entry in the RPC program number data base.

struct rpcent {
char *r_name; /* name of server for this RPC program */
char **r_aliases; /* alias list */
long r_number; /* RPC program number */

};

The members of this structure are:

r_name
The name of the server for this RPC program.

r_aliases
A NULL-terminated list of alternate names for the RPC program.

r_number
The RPC program number for this service.

The getrpcent() function reads the next entry from the database. A connection is
opened to the database if necessary.

The setrpcent() function opens a connection to the database, and sets the next entry to
the first entry. If stayopen is nonzero, then the connection to the database will not be
closed between calls to one of the getrpc*() functions.

The endrpcent() function closes the connection to the database.

The getrpcbyname() and getrpcbynumber() functions sequentially search from the be-
ginning of the file until a matching RPC program name or program number is found, or
until end-of-file is encountered.

RETURN VALUE
On success, getrpcent(), getrpcbyname(), and getrpcbynumber() return a pointer to a
statically allocated rpcent structure. NULL is returned on EOF or error.

Linux man-pages 6.16 2025-05-17 1896

getrpcent(3) Library Functions Manual getrpcent(3)

FILES
/etc/rpc

RPC program number database.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafegetrpcent(), getrpcbyname(),
getrpcbynumber()

Thread safety MT-Safe localesetrpcent(), endrpcent()

STANDARDS
BSD.

HISTORY
BSD, Solaris.

BUGS
All information is contained in a static area so it must be copied if it is to be saved.

SEE ALSO
getrpcent_r(3), rpc(5), rpcinfo(8), ypserv(8)

Linux man-pages 6.16 2025-05-17 1897

getrpcent_r(3) Library Functions Manual getrpcent_r(3)

NAME
getrpcent_r, getrpcbyname_r, getrpcbynumber_r - get RPC entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getrpcent_r(size_t size;
struct rpcent *result_buf , char buf [size],
size_t size, struct rpcent **result);

int getrpcbyname_r(size_t size;
const char *name,
struct rpcent *result_buf , char buf [size],
size_t size, struct rpcent **result);

int getrpcbynumber_r(size_t size;
int number,
struct rpcent *result_buf , char buf [size],
size_t size, struct rpcent **result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getrpcent_r(), getrpcbyname_r(), getrpcbynumber_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getrpcent_r(), getrpcbyname_r(), and getrpcbynumber_r() functions are the
reentrant equivalents of, respectively, getrpcent(3), getrpcbyname(3), and getrpcbynum-
ber(3). They differ in the way that the rpcent structure is returned, and in the function
calling signature and return value. This manual page describes just the differences from
the nonreentrant functions.

Instead of returning a pointer to a statically allocated rpcent structure as the function re-
sult, these functions copy the structure into the location pointed to by result_buf .

The buf array is used to store the string fields pointed to by the returned rpcent struc-
ture. (The nonreentrant functions allocate these strings in static storage.) The size of
this array is specified in size. If buf is too small, the call fails with the error ERANGE,
and the caller must try again with a larger buffer. (A buffer of size 1024 bytes should be
sufficient for most applications.)

If the function call successfully obtains an RPC record, then *result is set pointing to
result_buf ; otherwise, *result is set to NULL.

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in ERRORS.

On error, record not found (getrpcbyname_r(), getrpcbynumber_r()), or end of input
(getrpcent_r()) *result is set to NULL.

Linux man-pages 6.16 2025-06-28 1898

getrpcent_r(3) Library Functions Manual getrpcent_r(3)

ERRORS
ENOENT

(getrpcent_r()) No more records in database.

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetrpcent_r(), getrpcbyname_r(),
getrpcbynumber_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with differ-
ent calling signatures.

STANDARDS
GNU.

SEE ALSO
getrpcent(3), rpc(5)

Linux man-pages 6.16 2025-06-28 1899

getrpcport(3) Library Functions Manual getrpcport(3)

NAME
getrpcport - get RPC port number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/rpc.h>

int getrpcport(const char *host, unsigned long prognum,
unsigned long versnum, unsigned int proto);

DESCRIPTION
getrpcport() returns the port number for version versnum of the RPC program prognum
running on host and using protocol proto. It returns 0 if it cannot contact the portmap-
per, or if prognum is not registered. If prognum is registered but not with version ver-
snum, it will still return a port number (for some version of the program) indicating that
the program is indeed registered. The version mismatch will be detected upon the first
call to the service.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localegetrpcport()

STANDARDS
BSD.

HISTORY
BSD, Solaris.

Linux man-pages 6.16 2025-05-17 1900

gets(3) Library Functions Manual gets(3)

NAME
gets - get a string from standard input (DEPRECATED)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

[[deprecated]] char *gets(char *s);

DESCRIPTION
Never use this function.

gets() reads a line from stdin into the buffer pointed to by s until either a terminating
newline or EOF, which it replaces with a null byte ('\0'). No check for buffer overrun is
performed (see BUGS below).

RETURN VALUE
gets() returns s on success, and NULL on error or when end of file occurs while no
characters have been read. However, given the lack of buffer overrun checking, there
can be no guarantees that the function will even return.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegets()

STANDARDS
POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

LSB deprecates gets(). POSIX.1-2008 marks gets() obsolescent. ISO C11 removes the
specification of gets() from the C language, and since glibc 2.16, glibc header files don’t
expose the function declaration if the _ISOC11_SOURCE feature test macro is defined.

BUGS
Never use gets(). Because it is impossible to tell without knowing the data in advance
how many characters gets() will read, and because gets() will continue to store charac-
ters past the end of the buffer, it is extremely dangerous to use. It has been used to break
computer security. Use fgets() instead.

For more information, see CWE-242 (aka "Use of Inherently Dangerous Function") at
http://cwe.mitre.org/data/definitions/242.html

SEE ALSO
read(2), write(2), ferror(3), fgetc(3), fgets(3), fgetwc(3), fgetws(3), fopen(3), fread(3),
fseek(3), getline(3), getwchar(3), puts(3), scanf(3), ungetwc(3), unlocked_stdio(3), fea-
ture_test_macros(7)

Linux man-pages 6.16 2025-05-17 1901

getservent(3) Library Functions Manual getservent(3)

NAME
getservent, getservbyname, getservbyport, setservent, endservent - get service entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

struct servent *getservent(void);

struct servent *getservbyname(const char *name, const char *proto);
struct servent *getservbyport(int port, const char *proto);

void setservent(int stayopen);
void endservent(void);

DESCRIPTION
The getservent() function reads the next entry from the services database (see ser-
vices(5)) and returns a servent structure containing the broken-out fields from the entry.
A connection is opened to the database if necessary.

The getservbyname() function returns a servent structure for the entry from the data-
base that matches the service name using protocol proto. If proto is NULL, any proto-
col will be matched. A connection is opened to the database if necessary.

The getservbyport() function returns a servent structure for the entry from the database
that matches the port port (given in network byte order) using protocol proto. If proto
is NULL, any protocol will be matched. A connection is opened to the database if nec-
essary.

The setservent() function opens a connection to the database, and sets the next entry to
the first entry. If stayopen is nonzero, then the connection to the database will not be
closed between calls to one of the getserv*() functions.

The endservent() function closes the connection to the database.

The servent structure is defined in <netdb.h> as follows:

struct servent {
char *s_name; /* official service name */
char **s_aliases; /* alias list */
int s_port; /* port number */
char *s_proto; /* protocol to use */

}

The members of the servent structure are:

s_name
The official name of the service.

s_aliases
A NULL-terminated list of alternative names for the service.

s_port
The port number for the service given in network byte order.

Linux man-pages 6.16 2025-05-17 1902

getservent(3) Library Functions Manual getservent(3)

s_proto
The name of the protocol to use with this service.

RETURN VALUE
The getservent(), getservbyname(), and getservbyport() functions return a pointer to a
statically allocated servent structure, or NULL if an error occurs or the end of the file is
reached.

FILES
/etc/services

services database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetservent() MT-Unsafe race:servent race:serventbuf locale
Thread safetygetservbyname() MT-Unsafe race:servbyname locale
Thread safetygetservbyport() MT-Unsafe race:servbyport locale
Thread safetysetservent(),

endservent()
MT-Unsafe race:servent locale

In the above table, servent in race:servent signifies that if any of the functions setser-
vent(), getservent(), or endservent() are used in parallel in different threads of a pro-
gram, then data races could occur.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

SEE ALSO
getnetent(3), getprotoent(3), getservent_r(3), services(5)

Linux man-pages 6.16 2025-05-17 1903

getservent_r(3) Library Functions Manual getservent_r(3)

NAME
getservent_r, getservbyname_r, getservbyport_r - get service entry (reentrant)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int getservent_r(size_t size;
struct servent *restrict result_buf ,
char buf [restrict size], size_t size,
struct servent **restrict result);

int getservbyname_r(size_t size;
const char *restrict name,
const char *restrict proto,
struct servent *restrict result_buf ,
char buf [restrict size], size_t size,
struct servent **restrict result);

int getservbyport_r(size_t size;
int port,
const char *restrict proto,
struct servent *restrict result_buf ,
char buf [restrict size], size_t size,
struct servent **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getservent_r(), getservbyname_r(), getservbyport_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The getservent_r(), getservbyname_r(), and getservbyport_r() functions are the reen-
trant equivalents of, respectively, getservent(3), getservbyname(3), and getservbyport(3).
They differ in the way that the servent structure is returned, and in the function calling
signature and return value. This manual page describes just the differences from the
nonreentrant functions.

Instead of returning a pointer to a statically allocated servent structure as the function
result, these functions copy the structure into the location pointed to by result_buf .

The buf array is used to store the string fields pointed to by the returned servent struc-
ture. (The nonreentrant functions allocate these strings in static storage.) The size of
this array is specified in size. If buf is too small, the call fails with the error ERANGE,
and the caller must try again with a larger buffer. (A buffer of size 1024 bytes should be
sufficient for most applications.)

If the function call successfully obtains a service record, then *result is set pointing to
result_buf ; otherwise, *result is set to NULL.

Linux man-pages 6.16 2025-09-21 1904

getservent_r(3) Library Functions Manual getservent_r(3)

RETURN VALUE
On success, these functions return 0. On error, they return one of the positive error
numbers listed in errors.

On error, record not found (getservbyname_r(), getservbyport_r()), or end of input
(getservent_r()) result is set to NULL.

ERRORS
ENOENT

(getservent_r()) No more records in database.

ERANGE
buf is too small. Try again with a larger buffer (and increased size).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegetservent_r(), getservbyname_r(),
getservbyport_r()

VERSIONS
Functions with similar names exist on some other systems, though typically with differ-
ent calling signatures.

STANDARDS
GNU.

EXAMPLES
The program below uses getservbyport_r() to retrieve the service record for the port
and protocol named in its first command-line argument. If a third (integer) command-
line argument is supplied, it is used as the initial value for size; if getservbyport_r()
fails with the error ERANGE, the program retries with larger buffer sizes. The follow-
ing shell session shows a couple of sample runs:

$./a.out 7 tcp 1
ERANGE! Retrying with larger buffer
getservbyport_r() returned: 0 (success) (size=87)
s_name=echo; s_proto=tcp; s_port=7; aliases=
$./a.out 77777 tcp
getservbyport_r() returned: 0 (success) (size=1024)
Call failed/record not found

Program source

#define _GNU_SOURCE
#include <ctype.h>
#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Linux man-pages 6.16 2025-09-21 1905

getservent_r(3) Library Functions Manual getservent_r(3)

#define MAX_BUF 10000

int
main(int argc, char *argv[])
{

int size, erange_cnt, port, s;
struct servent result_buf;
struct servent *result;
char buf[MAX_BUF];
char *protop;

if (argc < 3) {
printf("Usage: %s port-num proto-name [size]\n", argv[0]);
exit(EXIT_FAILURE);

}

port = htons(atoi(argv[1]));
protop = (strcmp(argv[2], "null") == 0 ||

strcmp(argv[2], "NULL") == 0) ? NULL : argv[2];

size = 1024;
if (argc > 3)

size = atoi(argv[3]);

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}

erange_cnt = 0;
do {

s = getservbyport_r(port, protop, &result_buf,
buf, size, &result);

if (s == ERANGE) {
if (erange_cnt == 0)

printf("ERANGE! Retrying with larger buffer\n");
erange_cnt++;

/* Increment a byte at a time so we can see exactly
what size buffer was required. */

size++;

if (size > MAX_BUF) {
printf("Exceeded buffer limit (%d)\n", MAX_BUF);
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-09-21 1906

getservent_r(3) Library Functions Manual getservent_r(3)

}
} while (s == ERANGE);

printf("getservbyport_r() returned: %s (size=%d)\n",
(s == 0) ? "0 (success)" : (s == ENOENT) ? "ENOENT" :
strerror(s), size);

if (s != 0 || result == NULL) {
printf("Call failed/record not found\n");
exit(EXIT_FAILURE);

}

printf("s_name=%s; s_proto=%s; s_port=%d; aliases=",
result_buf.s_name, result_buf.s_proto,
ntohs(result_buf.s_port));

for (char **p = result_buf.s_aliases; *p != NULL; p++)
printf("%s ", *p);

printf("\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
getservent(3), services(5)

Linux man-pages 6.16 2025-09-21 1907

getspnam(3) Library Functions Manual getspnam(3)

NAME
getspnam, getspnam_r, getspent, getspent_r, setspent, endspent, fgetspent, fgetspent_r,
sgetspent, sgetspent_r, putspent, lckpwdf, ulckpwdf - get shadow password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
/* General shadow password file API */
#include <shadow.h>

struct spwd *getspnam(const char *name);
struct spwd *getspent(void);

void setspent(void);
void endspent(void);

struct spwd *fgetspent(FILE *stream);
struct spwd *sgetspent(const char *s);

int putspent(const struct spwd *p, FILE *stream);

int lckpwdf(void);
int ulckpwdf(void);

/* GNU extension */
#include <shadow.h>

int getspent_r(size_t size;
struct spwd *spbuf ,
char buf [size], size_t size,
struct spwd **spbufp);

int getspnam_r(size_t size;
const char *name, struct spwd *spbuf ,
char buf [size], size_t size,
struct spwd **spbufp);

int fgetspent_r(size_t size;
FILE *stream, struct spwd *spbuf ,
char buf [size], size_t size,
struct spwd **spbufp);

int sgetspent_r(size_t size;
const char *s, struct spwd *spbuf ,
char buf [size], size_t size,
struct spwd **spbufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getspent_r(), getspnam_r(), fgetspent_r(), sgetspent_r():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

Linux man-pages 6.16 2025-09-07 1908

getspnam(3) Library Functions Manual getspnam(3)

DESCRIPTION
Long ago it was considered safe to have encrypted passwords openly visible in the pass-
word file. When computers got faster and people got more security-conscious, this was
no longer acceptable. Julianne Frances Haugh implemented the shadow password suite
that keeps the encrypted passwords in the shadow password database (e.g., the local
shadow password file /etc/shadow, NIS, and LDAP), readable only by root.

The functions described below resemble those for the traditional password database
(e.g., see getpwnam(3) and getpwent(3)).

The getspnam() function returns a pointer to a structure containing the broken-out fields
of the record in the shadow password database that matches the username name.

The getspent() function returns a pointer to the next entry in the shadow password data-
base. The position in the input stream is initialized by setspent(). When done reading,
the program may call endspent() so that resources can be deallocated.

The fgetspent() function is similar to getspent() but uses the supplied stream instead of
the one implicitly opened by setspent().

The sgetspent() function parses the supplied string s into a struct spwd .

The putspent() function writes the contents of the supplied struct spwd *p as a text line
in the shadow password file format to stream. String entries with value NULL and nu-
merical entries with value -1 are written as an empty string.

The lckpwdf() function is intended to protect against multiple simultaneous accesses of
the shadow password database. It tries to acquire a lock, and returns 0 on success, or -1
on failure (lock not obtained within 15 seconds). The ulckpwdf() function releases the
lock again. Note that there is no protection against direct access of the shadow pass-
word file. Only programs that use lckpwdf() will notice the lock.

These were the functions that formed the original shadow API. They are widely avail-
able.

Reentrant versions
Analogous to the reentrant functions for the password database, glibc also has reentrant
functions for the shadow password database. The getspnam_r() function is like getsp-
nam() but stores the retrieved shadow password structure in the space pointed to by sp-
buf . This shadow password structure contains pointers to strings, and these strings are
stored in the buffer buf of size size. A pointer to the result (in case of success) or NULL
(in case no entry was found or an error occurred) is stored in *spbufp.

The functions getspent_r(), fgetspent_r(), and sgetspent_r() are similarly analogous to
their nonreentrant counterparts.

Some non-glibc systems also have functions with these names, often with different pro-
totypes.

Structure
The shadow password structure is defined in <shadow.h> as follows:

struct spwd {
char *sp_namp; /* Login name */
char *sp_pwdp; /* Encrypted password */

Linux man-pages 6.16 2025-09-07 1909

getspnam(3) Library Functions Manual getspnam(3)

long sp_lstchg; /* Date of last change
(measured in days since
1970-01-01 00:00:00 +0000 (UTC)) */

long sp_min; /* Min # of days between changes */
long sp_max; /* Max # of days between changes */
long sp_warn; /* # of days before password expires

to warn user to change it */
long sp_inact; /* # of days after password expires

until account is disabled */
long sp_expire; /* Date when account expires

(measured in days since
1970-01-01 00:00:00 +0000 (UTC)) */

unsigned long sp_flag; /* Reserved */
};

RETURN VALUE
The functions that return a pointer return NULL if no more entries are available or if an
error occurs during processing. The functions which have int as the return value return
0 for success and -1 for failure, with errno set to indicate the error.

For the nonreentrant functions, the return value may point to static area, and may be
overwritten by subsequent calls to these functions.

The reentrant functions return zero on success. In case of error, an error number is re-
turned.

ERRORS
EACCES

The caller does not have permission to access the shadow password file.

ERANGE
Supplied buffer is too small.

FILES
/etc/shadow

local shadow password database file

/etc/.pwd.lock
lock file

The include file <paths.h> defines the constant _PATH_SHADOW to the pathname of
the shadow password file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-07 1910

getspnam(3) Library Functions Manual getspnam(3)

Interface Attribute Value
Thread safetygetspnam() MT-Unsafe race:getspnam locale
Thread safetygetspent() MT-Unsafe race:getspent race:spentbuf

locale
Thread safetysetspent(), endspent(),

getspent_r()
MT-Unsafe race:getspent locale

Thread safetyfgetspent() MT-Unsafe race:fgetspent
Thread safetysgetspent() MT-Unsafe race:sgetspent
Thread safetyputspent(),

getspnam_r(),
sgetspent_r()

MT-Safe locale

Thread safetylckpwdf(),
ulckpwdf(),
fgetspent_r()

MT-Safe

In the above table, getspent in race:getspent signifies that if any of the functions set-
spent(), getspent(), getspent_r(), or endspent() are used in parallel in different threads
of a program, then data races could occur.

VERSIONS
Many other systems provide a similar API.

STANDARDS
None.

SEE ALSO
getgrnam(3), getpwnam(3), getpwnam_r(3), shadow(5)

Linux man-pages 6.16 2025-09-07 1911

getsubopt(3) Library Functions Manual getsubopt(3)

NAME
getsubopt - parse suboption arguments from a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int getsubopt(char **restrict optionp, char *const *restrict tokens,
char **restrict valuep);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getsubopt():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
getsubopt() parses the list of comma-separated suboptions provided in optionp. (Such a
suboption list is typically produced when getopt(3) is used to parse a command line; see
for example the -o option of mount(8)Each suboption may include an associated value,
which is separated from the suboption name by an equal sign. The following is an ex-
ample of the kind of string that might be passed in optionp:

ro,name=xyz

The tokens argument is a pointer to a NULL-terminated array of pointers to the tokens
that getsubopt() will look for in optionp. The tokens should be distinct, null-terminated
strings containing at least one character, with no embedded equal signs or commas.

Each call to getsubopt() returns information about the next unprocessed suboption in
optionp. The first equal sign in a suboption (if any) is interpreted as a separator between
the name and the value of that suboption. The value extends to the next comma, or (for
the last suboption) to the end of the string. If the name of the suboption matches a
known name from tokens, and a value string was found, getsubopt() sets *valuep to the
address of that string. The first comma in optionp is overwritten with a null byte, so
*valuep is precisely the "value string" for that suboption.

If the suboption is recognized, but no value string was found, *valuep is set to NULL.

When getsubopt() returns, optionp points to the next suboption, or to the null byte ('\0')
at the end of the string if the last suboption was just processed.

RETURN VALUE
If the first suboption in optionp is recognized, getsubopt() returns the index of the
matching suboption element in tokens. Otherwise, -1 is returned and *valuep is the en-
tire name[=value] string.

Since *optionp is changed, the first suboption before the call to getsubopt() is not (nec-
essarily) the same as the first suboption after getsubopt().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 1912

getsubopt(3) Library Functions Manual getsubopt(3)

Interface Attribute Value
Thread safety MT-Safegetsubopt()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Since getsubopt() overwrites any commas it finds in the string *optionp, that string must
be writable; it cannot be a string constant.

EXAMPLES
The following program expects suboptions following a "-o" option.

#define _XOPEN_SOURCE 500
#include <stdio.h>
#include <stdlib.h>

#include <assert.h>

int
main(int argc, char *argv[])
{

enum {
RO_OPT = 0,
RW_OPT,
NAME_OPT

};
char *const token[] = {

[RO_OPT] = "ro",
[RW_OPT] = "rw",
[NAME_OPT] = "name",
NULL

};
char *subopts;
char *value;
int opt;

int readonly = 0;
int readwrite = 0;
char *name = NULL;
int errfnd = 0;

while ((opt = getopt(argc, argv, "o:")) != -1) {
switch (opt) {
case 'o':

subopts = optarg;
while (*subopts != '\0' && !errfnd) {

Linux man-pages 6.16 2025-09-21 1913

getsubopt(3) Library Functions Manual getsubopt(3)

switch (getsubopt(&subopts, token, &value)) {
case RO_OPT:

readonly = 1;
break;

case RW_OPT:
readwrite = 1;
break;

case NAME_OPT:
if (value == NULL) {

fprintf(stderr,
"Missing value for suboption '%s'\n",
token[NAME_OPT]);

errfnd = 1;
continue;

}

name = value;
break;

default:
fprintf(stderr,

"No match found for token: /%s/\n", value);
errfnd = 1;
break;

}
}
if (readwrite && readonly) {

fprintf(stderr,
"Only one of '%s' and '%s' can be specified\n",
token[RO_OPT], token[RW_OPT]);

errfnd = 1;
}
break;

default:
errfnd = 1;

}
}

if (errfnd || argc == 1) {
fprintf(stderr, "\nUsage: %s -o <suboptstring>\n", argv[0]);
fprintf(stderr,

"suboptions are 'ro', 'rw', and 'name=<value>'\n");
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-09-21 1914

getsubopt(3) Library Functions Manual getsubopt(3)

}

/* Remainder of program... */

exit(EXIT_SUCCESS);
}

SEE ALSO
getopt(3)

Linux man-pages 6.16 2025-09-21 1915

getttyent(3) Library Functions Manual getttyent(3)

NAME
getttyent, getttynam, setttyent, endttyent - get ttys file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ttyent.h>

struct ttyent *getttyent(void);
struct ttyent *getttynam(const char *name);

int setttyent(void);
int endttyent(void);

DESCRIPTION
These functions provide an interface to the file _PATH_TTYS (e.g., /etc/ttys).

The function setttyent() opens the file or rewinds it if already open.

The function endttyent() closes the file.

The function getttynam() searches for a given terminal name in the file. It returns a
pointer to a ttyent structure (description below).

The function getttyent() opens the file _PATH_TTYS (if necessary) and returns the
first entry. If the file is already open, the next entry. The ttyent structure has the form:

struct ttyent {
char *ty_name; /* terminal device name */
char *ty_getty; /* command to execute, usually getty */
char *ty_type; /* terminal type for termcap */
int ty_status; /* status flags */
char *ty_window; /* command to start up window manager */
char *ty_comment; /* comment field */

};

ty_status can be:

#define TTY_ON 0x01 /* enable logins (start ty_getty program) */
#define TTY_SECURE 0x02 /* allow UID 0 to login */

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:ttyentgetttyent(), setttyent(), endttyent(),
getttynam()

STANDARDS
BSD.

NOTES
Under Linux, the file /etc/ttys, and the functions described above, are not used.

Linux man-pages 6.16 2025-05-17 1916

getttyent(3) Library Functions Manual getttyent(3)

SEE ALSO
ttyname(3), ttyslot(3)

Linux man-pages 6.16 2025-05-17 1917

getusershell(3) Library Functions Manual getusershell(3)

NAME
getusershell, setusershell, endusershell - get permitted user shells

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *getusershell(void);
void setusershell(void);
void endusershell(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getusershell(), setusershell(), endusershell():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The getusershell() function returns the next line from the file /etc/shells, opening the
file if necessary. The line should contain the pathname of a valid user shell. If
/etc/shells does not exist or is unreadable, getusershell() behaves as if /bin/sh and
/bin/csh were listed in the file.

The setusershell() function rewinds /etc/shells.

The endusershell() function closes /etc/shells.

RETURN VALUE
The getusershell() function returns NULL on end-of-file.

FILES
/etc/shells

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafegetusershell(), setusershell(), endusershell()

STANDARDS
None.

HISTORY
4.3BSD.

SEE ALSO
shells(5)

Linux man-pages 6.16 2025-05-17 1918

getutent(3) Library Functions Manual getutent(3)

NAME
getutent, getutid, getutline, pututline, setutent, endutent, utmpname - access utmp file
entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <utmp.h>

struct utmp *getutent(void);
struct utmp *getutid(const struct utmp *ut);
struct utmp *getutline(const struct utmp *ut);

struct utmp *pututline(const struct utmp *ut);

void setutent(void);
void endutent(void);

int utmpname(const char *path);

DESCRIPTION
New applications should use the POSIX.1-specified "utmpx" versions of these func-
tions; see STANDARDS.

utmpname() sets the pathname of the utmp-format file for the other utmp functions to
access. If utmpname() is not used to set the pathname before the other functions are
used, they assume _PATH_UTMP, as defined in <paths.h>.

setutent() rewinds the file pointer to the beginning of the utmp file. It is generally a
good idea to call it before any of the other functions.

endutent() closes the utmp file. It should be called when the user code is done access-
ing the file with the other functions.

getutent() reads a line from the current file position in the utmp file. It returns a pointer
to a structure containing the fields of the line. The definition of this structure is shown
in utmp(5).

getutid() searches forward from the current file position in the utmp file based upon ut.
If ut->ut_type is one of RUN_LVL, BOOT_TIME, NEW_TIME, or OLD_TIME,
getutid() will find the first entry whose ut_type field matches ut->ut_type. If
ut->ut_type is one of INIT_PROCESS, LOGIN_PROCESS, USER_PROCESS, or
DEAD_PROCESS, getutid() will find the first entry whose ut_id field matches
ut->ut_id .

getutline() searches forward from the current file position in the utmp file. It scans en-
tries whose ut_type is USER_PROCESS or LOGIN_PROCESS and returns the first
one whose ut_line field matches ut->ut_line.

pututline() writes the utmp structure ut into the utmp file. It uses getutid() to search for
the proper place in the file to insert the new entry. If it cannot find an appropriate slot
for ut, pututline() will append the new entry to the end of the file.

Linux man-pages 6.16 2025-09-21 1919

getutent(3) Library Functions Manual getutent(3)

RETURN VALUE
getutent(), getutid(), and getutline() return a pointer to a struct utmp on success, and
NULL on failure (which includes the "record not found" case). This struct utmp is allo-
cated in static storage, and may be overwritten by subsequent calls.

On success pututline() returns ut; on failure, it returns NULL.

utmpname() returns 0 if the new name was successfully stored, or -1 on failure.

On failure, these functions errno set to indicate the error.

ERRORS
ENOMEM

Out of memory.

ESRCH
Record not found.

setutent(), pututline(), and the getut*() functions can also fail for the reasons described
in open(2).

FILES
/var/run/utmp

database of currently logged-in users

/var/log/wtmp
database of past user logins

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetutent() MT-Unsafe init race:utent race:utentbuf
sig:ALRM timer

Thread safetygetutid(), getutline() MT-Unsafe init race:utent sig:ALRM
timer

Thread safetypututline() MT-Unsafe race:utent sig:ALRM timer
Thread safety MT-Unsafe race:utentsetutent(), endutent(),

utmpname()

In the above table, utent in race:utent signifies that if any of the functions setutent(),
getutent(), getutid(), getutline(), pututline(), utmpname(), or endutent() are used in
parallel in different threads of a program, then data races could occur.

STANDARDS
None.

HISTORY
XPG2, SVr4.

In XPG2 and SVID 2 the function pututline() is documented to return void, and that is
what it does on many systems (AIX, HP-UX). HP-UX introduces a new function
_pututline() with the prototype given above for pututline().

All these functions are obsolete now on non-Linux systems. POSIX.1-2001 and
POSIX.1-2008, following SUSv1, does not have any of these functions, but instead uses

Linux man-pages 6.16 2025-09-21 1920

getutent(3) Library Functions Manual getutent(3)

#include <utmpx.h>

struct utmpx *getutxent(void);
struct utmpx *getutxid(const struct utmpx *);
struct utmpx *getutxline(const struct utmpx *);
struct utmpx *pututxline(const struct utmpx *);
void setutxent(void);
void endutxent(void);

These functions are provided by glibc, and perform the same task as their equivalents
without the "x", but use struct utmpx, defined on Linux to be the same as struct utmp.
For completeness, glibc also provides utmpxname(), although this function is not speci-
fied by POSIX.1.

On some other systems, the utmpx structure is a superset of the utmp structure, with ad-
ditional fields, and larger versions of the existing fields, and parallel files are maintained,
often /var/*/utmpx and /var/*/wtmpx.

Linux glibc on the other hand does not use a parallel utmpx file since its utmp structure
is already large enough. The "x" functions listed above are just aliases for their counter-
parts without the "x" (e.g., getutxent() is an alias for getutent())

NOTES
glibc notes

The above functions are not thread-safe. glibc adds reentrant versions

#include <utmp.h>

int getutent_r(struct utmp *ubuf , struct utmp **ubufp);
int getutid_r(struct utmp *ut,

struct utmp *ubuf , struct utmp **ubufp);
int getutline_r(struct utmp *ut,

struct utmp *ubuf , struct utmp **ubufp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getutent_r(), getutid_r(), getutline_r():
_GNU_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

These functions are GNU extensions, analogs of the functions of the same name without
the _r suffix. The ubuf argument gives these functions a place to store their result. On
success, they return 0, and a pointer to the result is written in *ubufp. On error, these
functions return -1. There are no utmpx equivalents of the above functions. (POSIX.1
does not specify such functions.)

EXAMPLES
The following example adds and removes a utmp record, assuming it is run from within
a pseudo terminal. For usage in a real application, you should check the return values of
getpwuid(3) and ttyname(3).

#include <err.h>
#include <pwd.h>

Linux man-pages 6.16 2025-09-21 1921

getutent(3) Library Functions Manual getutent(3)

#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <unistd.h>
#include <utmp.h>

int
main(void)
{

struct utmp entry;

if (system("echo before adding entry:;who") == -1)
err(EXIT_FAILURE, "system");

entry.ut_type = USER_PROCESS;
entry.ut_pid = getpid();
strcpy(entry.ut_line, ttyname(STDIN_FILENO) + strlen("/dev/"));
/* only correct for ptys named /dev/tty[pqr][0-9a-z] */
strcpy(entry.ut_id, ttyname(STDIN_FILENO) + strlen("/dev/tty"));
entry.ut_time = time(NULL);
strcpy(entry.ut_user, getpwuid(getuid())->pw_name);
memset(entry.ut_host, 0, UT_HOSTSIZE);
entry.ut_addr = 0;
setutent();
if (pututline(&entry) == NULL)

err(EXIT_FAILURE, "pututline");

if (system("echo after adding entry:;who") == -1)
err(EXIT_FAILURE, "system");

entry.ut_type = DEAD_PROCESS;
memset(entry.ut_line, 0, UT_LINESIZE);
entry.ut_time = 0;
memset(entry.ut_user, 0, UT_NAMESIZE);
setutent();
if (pututline(&entry) == NULL)

err(EXIT_FAILURE, "pututline");

if (system("echo after removing entry:;who") == -1)
err(EXIT_FAILURE, "system");

endutent();
exit(EXIT_SUCCESS);

}

SEE ALSO
getutmp(3), utmp(5)

Linux man-pages 6.16 2025-09-21 1922

getutent(3) Library Functions Manual getutent(3)

Linux man-pages 6.16 2025-09-21 1923

getutmp(3) Library Functions Manual getutmp(3)

NAME
getutmp, getutmpx - copy utmp structure to utmpx, and vice versa

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <utmpx.h>

void getutmp(const struct utmpx *ux, struct utmp *u);
void getutmpx(const struct utmp *u, struct utmpx *ux);

DESCRIPTION
The getutmp() function copies the fields of the utmpx structure pointed to by ux to the
corresponding fields of the utmp structure pointed to by u. The getutmpx() function
performs the converse operation.

RETURN VALUE
These functions do not return a value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetutmp(), getutmpx()

STANDARDS
None.

HISTORY
glibc 2.1.1. Solaris, NetBSD.

NOTES
These functions exist primarily for compatibility with other systems where the utmp and
utmpx structures contain different fields, or the size of corresponding fields differs. On
Linux, the two structures contain the same fields, and the fields have the same sizes.

SEE ALSO
utmpdump(1), getutent(3), utmp(5)

Linux man-pages 6.16 2025-05-17 1924

getw(3) Library Functions Manual getw(3)

NAME
getw, putw - input and output of words (ints)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int getw(FILE *stream);
int putw(int w, FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

getw(), putw():
Since glibc 2.3.3:

_XOPEN_SOURCE && ! (_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

Before glibc 2.3.3:
_SVID_SOURCE || _BSD_SOURCE || _XOPEN_SOURCE

DESCRIPTION
getw() reads a word (that is, an int) from stream. It’s provided for compatibility with
SVr4. We recommend you use fread(3) instead.

putw() writes the word w (that is, an int) to stream. It is provided for compatibility
with SVr4, but we recommend you use fwrite(3) instead.

RETURN VALUE
Normally, getw() returns the word read, and putw() returns 0. On error, they return
EOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetw(), putw()

STANDARDS
None.

HISTORY
SVr4, SUSv2.

BUGS
The value returned on error is also a legitimate data value. ferror(3) can be used to dis-
tinguish between the two cases.

SEE ALSO
ferror(3), fread(3), fwrite(3), getc(3), putc(3)

Linux man-pages 6.16 2025-05-17 1925

getwchar(3) Library Functions Manual getwchar(3)

NAME
getwchar - read a wide character from standard input

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t getwchar(void);

DESCRIPTION
The getwchar() function is the wide-character equivalent of the getchar(3) function. It
reads a wide character from stdin and returns it. If the end of stream is reached, or if
ferror(stdin) becomes true, it returns WEOF. If a wide-character conversion error oc-
curs, it sets errno to EILSEQ and returns WEOF.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The getwchar() function returns the next wide-character from standard input, or
WEOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegetwchar()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The behavior of getwchar() depends on the LC_CTYPE category of the current locale.

It is reasonable to expect that getwchar() will actually read a multibyte sequence from
standard input and then convert it to a wide character.

SEE ALSO
fgetwc(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 1926

glob(3) Library Functions Manual glob(3)

NAME
glob, globfree - find pathnames matching a pattern, free memory from glob()

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <glob.h>

int glob(const char *restrict pattern, int flags,
typeof(int (const char *epath, int eerrno)) *errfunc,
glob_t *restrict pglob);

void globfree(glob_t *pglob);

DESCRIPTION
The glob() function searches for all the pathnames matching pattern according to the
rules used by the shell (see glob(7)). No tilde expansion or parameter substitution is
done; if you want these, use wordexp(3).

The globfree() function frees the dynamically allocated storage from an earlier call to
glob().

The results of a glob() call are stored in the structure pointed to by pglob. This struc-
ture is of type glob_t (declared in <glob.h>) and includes the following elements de-
fined by POSIX.2 (more may be present as an extension):

typedef struct {
size_t gl_pathc; /* Count of paths matched so far */
char **gl_pathv; /* List of matched pathnames. */
size_t gl_offs; /* Slots to reserve in gl_pathv. */

} glob_t;

Results are stored in dynamically allocated storage.

The argument flags is made up of the bitwise OR of zero or more the following sym-
bolic constants, which modify the behavior of glob():

GLOB_ERR
Return upon a read error (because a directory does not have read permission, for
example). By default, glob() attempts carry on despite errors, reading all of the
directories that it can.

GLOB_MARK
Append a slash to each path which corresponds to a directory.

GLOB_NOSORT
Don’t sort the returned pathnames. The only reason to do this is to save process-
ing time. By default, the returned pathnames are sorted.

GLOB_DOOFFS
Reserve pglob->gl_offs slots at the beginning of the list of strings in
pglob->pathv. The reserved slots contain null pointers.

Linux man-pages 6.16 2025-09-21 1927

glob(3) Library Functions Manual glob(3)

GLOB_NOCHECK
If no pattern matches, return the original pattern. By default, glob() returns
GLOB_NOMATCH if there are no matches.

GLOB_APPEND
Append the results of this call to the vector of results returned by a previous call
to glob(). Do not set this flag on the first invocation of glob().

GLOB_NOESCAPE
Don’t allow backslash ('\') to be used as an escape character. Normally, a back-
slash can be used to quote the following character, providing a mechanism to
turn off the special meaning metacharacters.

flags may also include any of the following, which are GNU extensions and not defined
by POSIX.2:

GLOB_PERIOD
Allow a leading period to be matched by metacharacters. By default, metachar-
acters can’t match a leading period.

GLOB_ALTDIRFUNC
Use alternative functions pglob->gl_closedir, pglob->gl_readdir,
pglob->gl_opendir, pglob->gl_lstat, and pglob->gl_stat for filesystem access
instead of the normal library functions.

GLOB_BRACE
Expand csh(1) style brace expressions of the form {a,b}. Brace expressions can
be nested. Thus, for example, specifying the pattern "{foo/{,cat,dog},bar}"
would return the same results as four separate glob() calls using the strings:
"foo/", "foo/cat", "foo/dog", and "bar".

GLOB_NOMAGIC
If the pattern contains no metacharacters, then it should be returned as the sole
matching word, even if there is no file with that name.

GLOB_TILDE
Carry out tilde expansion. If a tilde ('~') is the only character in the pattern, or an
initial tilde is followed immediately by a slash ('/'), then the home directory of
the caller is substituted for the tilde. If an initial tilde is followed by a username
(e.g., "~andrea/bin"), then the tilde and username are substituted by the home di-
rectory of that user. If the username is invalid, or the home directory cannot be
determined, then no substitution is performed.

GLOB_TILDE_CHECK
This provides behavior similar to that of GLOB_TILDE. The difference is that
if the username is invalid, or the home directory cannot be determined, then in-
stead of using the pattern itself as the name, glob() returns GLOB_NOMATCH
to indicate an error.

GLOB_ONLYDIR
This is a hint to glob() that the caller is interested only in directories that match
the pattern. If the implementation can easily determine file-type information,
then nondirectory files are not returned to the caller. However, the caller must

Linux man-pages 6.16 2025-09-21 1928

glob(3) Library Functions Manual glob(3)

still check that returned files are directories. (The purpose of this flag is merely
to optimize performance when the caller is interested only in directories.)

If errfunc is not NULL, it will be called in case of an error with the arguments epath, a
pointer to the path which failed, and eerrno, the value of errno as returned from one of
the calls to opendir(3), readdir(3), or stat(2). If errfunc returns nonzero, or if
GLOB_ERR is set, glob() will terminate after the call to errfunc.

Upon successful return, pglob->gl_pathc contains the number of matched pathnames
and pglob->gl_pathv contains a pointer to the list of pointers to matched pathnames.
The list of pointers is terminated by a null pointer.

It is possible to call glob() several times. In that case, the GLOB_APPEND flag has to
be set in flags on the second and later invocations.

As a GNU extension, pglob->gl_flags is set to the flags specified, ored with
GLOB_MAGCHAR if any metacharacters were found.

RETURN VALUE
On successful completion, glob() returns zero. Other possible returns are:

GLOB_NOSPACE
for running out of memory,

GLOB_ABORTED
for a read error, and

GLOB_NOMATCH
for no found matches.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyglob() MT-Unsafe race:utent env sig:ALRM timer locale
Thread safety MT-Safeglobfree()

In the above table, utent in race:utent signifies that if any of the functions setutent(3),
getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. glob() calls those functions, so we use race:utent to remind
users.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, POSIX.2.

NOTES
The structure elements gl_pathc and gl_offs are declared as size_t in glibc 2.1, as they
should be according to POSIX.2, but are declared as int in glibc 2.0.

BUGS
The glob() function may fail due to failure of underlying function calls, such as mal-
loc(3) or opendir(3). These will store their error code in errno.

Linux man-pages 6.16 2025-09-21 1929

glob(3) Library Functions Manual glob(3)

EXAMPLES
One example of use is the following code, which simulates typing

ls -l *.c ../*.c

in the shell:

glob_t globbuf;

globbuf.gl_offs = 2;
glob("*.c", GLOB_DOOFFS, NULL, &globbuf);
glob("../*.c", GLOB_DOOFFS | GLOB_APPEND, NULL, &globbuf);
globbuf.gl_pathv[0] = "ls";
globbuf.gl_pathv[1] = "-l";
execvp("ls", &globbuf.gl_pathv[0]);

SEE ALSO
ls(1), sh(1), stat(2), exec(3), fnmatch(3), malloc(3), opendir(3), readdir(3), wordexp(3),
glob(7)

Linux man-pages 6.16 2025-09-21 1930

gnu_get_libc_version(3) Library Functions Manual gnu_get_libc_version(3)

NAME
gnu_get_libc_version, gnu_get_libc_release - get glibc version and release

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <gnu/libc-version.h>

const char *gnu_get_libc_version(void);
const char *gnu_get_libc_release(void);

DESCRIPTION
The function gnu_get_libc_version() returns a string that identifies the glibc version
available on the system.

The function gnu_get_libc_release() returns a string indicating the release status of the
glibc version available on the system. This will be a string such as stable.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegnu_get_libc_version(), gnu_get_libc_release()

STANDARDS
GNU.

HISTORY
glibc 2.1.

EXAMPLES
When run, the program below will produce output such as the following:

$./a.out
GNU libc version: 2.8
GNU libc release: stable

Program source

#include <stdio.h>
#include <stdlib.h>

#include <gnu/libc-version.h>

int
main(void)
{

printf("GNU libc version: %s\n", gnu_get_libc_version());
printf("GNU libc release: %s\n", gnu_get_libc_release());
exit(EXIT_SUCCESS);

}

Linux man-pages 6.16 2025-09-06 1931

gnu_get_libc_version(3) Library Functions Manual gnu_get_libc_version(3)

SEE ALSO
confstr(3)

Linux man-pages 6.16 2025-09-06 1932

grantpt(3) Library Functions Manual grantpt(3)

NAME
grantpt - grant access to the slave pseudoterminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE
#include <stdlib.h>

int grantpt(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

grantpt():
Since glibc 2.24:

_XOPEN_SOURCE >= 500
glibc 2.23 and earlier:

_XOPEN_SOURCE

DESCRIPTION
The grantpt() function changes the mode and owner of the slave pseudoterminal device
corresponding to the master pseudoterminal referred to by the file descriptor fd . The
user ID of the slave is set to the real UID of the calling process. The group ID is set to
an unspecified value (e.g., tty). The mode of the slave is set to 0620 (crw--w----).

The behavior of grantpt() is unspecified if a signal handler is installed to catch
SIGCHLD signals.

RETURN VALUE
When successful, grantpt() returns 0. Otherwise, it returns -1 and sets errno to indi-
cate the error.

ERRORS
EACCES

The corresponding slave pseudoterminal could not be accessed.

EBADF
The fd argument is not a valid open file descriptor.

EINVAL
The fd argument is valid but not associated with a master pseudoterminal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localegrantpt()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

This is part of the UNIX 98 pseudoterminal support, see pts(4).

Linux man-pages 6.16 2025-09-21 1933

grantpt(3) Library Functions Manual grantpt(3)

Historical systems implemented this function via a set-user-ID helper binary called
"pt_chown". glibc on Linux before glibc 2.33 could do so as well, in order to support
configurations with only BSD pseudoterminals; this support has been removed. On
modern systems this is either a no-op —with permissions configured on pty allocation,
as is the case on Linux— or an ioctl(2).

SEE ALSO
open(2), posix_openpt(3), ptsname(3), unlockpt(3), pts(4), pty(7)

Linux man-pages 6.16 2025-09-21 1934

group_member(3) Library Functions Manual group_member(3)

NAME
group_member - test whether a process is in a group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int group_member(gid_t gid);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

group_member():
_GNU_SOURCE

DESCRIPTION
The group_member() function tests whether any of the caller’s supplementary group
IDs (as returned by getgroups(2)) matches gid .

RETURN VALUE
The group_member() function returns nonzero if any of the caller’s supplementary
group IDs matches gid , and zero otherwise.

STANDARDS
GNU.

SEE ALSO
getgid(2), getgroups(2), getgrouplist(3), group(5)

Linux man-pages 6.16 2025-05-17 1935

gsignal(3) Library Functions Manual gsignal(3)

NAME
gsignal, ssignal - software signal facility

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

[[deprecated]] int gsignal(int signum);

[[deprecated]] sighandler_t ssignal(int signum, sighandler_t action);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

gsignal(), ssignal():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
Don’t use these functions under Linux. Due to a historical mistake, under Linux these
functions are aliases for raise(3) and signal(2), respectively.

Elsewhere, on System V-like systems, these functions implement software signaling, en-
tirely independent of the classical signal(2) and kill(2) functions. The function ssignal()
defines the action to take when the software signal with number signum is raised using
the function gsignal(), and returns the previous such action or SIG_DFL. The function
gsignal() does the following: if no action (or the action SIG_DFL) was specified for
signum, then it does nothing and returns 0. If the action SIG_IGN was specified for
signum, then it does nothing and returns 1. Otherwise, it resets the action to SIG_DFL
and calls the action function with argument signum, and returns the value returned by
that function. The range of possible values signum varies (often 1–15 or 1–17).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safegsignal()
Thread safety MT-Safe sigintrssignal()

STANDARDS
None.

HISTORY
AIX, DG/UX, HP-UX, SCO, Solaris, Tru64. They are called obsolete under most of
these systems, and are broken under glibc. Some systems also have gsignal_r() and
ssignal_r().

SEE ALSO
kill(2), signal(2), raise(3)

Linux man-pages 6.16 2025-05-17 1936

hash(3) Library Functions Manual hash(3)

NAME
hash - hash database access method

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc 2.2,
glibc no longer provides these interfaces. Probably, you are looking for the APIs pro-
vided by the libdb library instead.

The routine dbopen(3) is the library interface to database files. One of the supported file
formats is hash files. The general description of the database access methods is in
dbopen(3), this manual page describes only the hash-specific information.

The hash data structure is an extensible, dynamic hashing scheme.

The access-method-specific data structure provided to dbopen(3) is defined in the
<db.h> include file as follows:

typedef struct {
unsigned int bsize;
unsigned int ffactor;
unsigned int nelem;
unsigned int cachesize;
uint32_t (*hash)(const void *, size_t);
int lorder;

} HASHINFO;

The elements of this structure are as follows:

bsize defines the hash table bucket size, and is, by default, 256 bytes. It may be
preferable to increase the page size for disk-resident tables and tables with
large data items.

ffactor indicates a desired density within the hash table. It is an approximation of
the number of keys allowed to accumulate in any one bucket, determining
when the hash table grows or shrinks. The default value is 8.

nelem is an estimate of the final size of the hash table. If not set or set too low,
hash tables will expand gracefully as keys are entered, although a slight per-
formance degradation may be noticed. The default value is 1.

cachesize is the suggested maximum size, in bytes, of the memory cache. This value
is only advisory, and the access method will allocate more memory rather
than fail.

hash is a user-defined hash function. Since no hash function performs equally
well on all possible data, the user may find that the built-in hash function
does poorly on a particular data set. A user-specified hash functions must
take two arguments (a pointer to a byte string and a length) and return a

4.4 Berkeley Distribution 2025-09-21 1937

hash(3) Library Functions Manual hash(3)

32-bit quantity to be used as the hash value.

lorder is the byte order for integers in the stored database metadata. The number
should represent the order as an integer; for example, big endian order
would be the number 4,321. If lorder is 0 (no order is specified), the cur-
rent host order is used. If the file already exists, the specified value is ig-
nored and the value specified when the tree was created is used.

If the file already exists (and the O_TRUNC flag is not specified), the values specified
for bsize, ffactor, lorder, and nelem are ignored and the values specified when the tree
was created are used.

If a hash function is specified, hash_open attempts to determine if the hash function
specified is the same as the one with which the database was created, and fails if it is
not.

Backward-compatible interfaces to the routines described in dbm(3), and ndbm(3) are
provided, however these interfaces are not compatible with previous file formats.

ERRORS
The hash access method routines may fail and set errno for any of the errors specified
for the library routine dbopen(3).

BUGS
Only big and little endian byte order are supported.

SEE ALSO
btree(3), dbopen(3), mpool(3), recno(3)

Dynamic Hash Tables, Per-Ake Larson, Communications of the ACM, April 1988.

A New Hash Package for UNIX , Margo Seltzer, USENIX Proceedings, Winter 1991.

4.4 Berkeley Distribution 2025-09-21 1938

hsearch(3) Library Functions Manual hsearch(3)

NAME
hcreate, hdestroy, hsearch, hcreate_r, hdestroy_r, hsearch_r - hash table management

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

int hcreate(size_t nel);
void hdestroy(void);

ENTRY *hsearch(ENTRY item, ACTION action);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <search.h>

int hcreate_r(size_t nel, struct hsearch_data *htab);
void hdestroy_r(struct hsearch_data *htab);

int hsearch_r(ENTRY item, ACTION action, ENTRY **retval,
struct hsearch_data *htab);

DESCRIPTION
The three functions hcreate(), hsearch(), and hdestroy() allow the caller to create and
manage a hash search table containing entries consisting of a key (a string) and associ-
ated data. Using these functions, only one hash table can be used at a time.

The three functions hcreate_r(), hsearch_r(), hdestroy_r() are reentrant versions that
allow a program to use more than one hash search table at the same time. The last argu-
ment, htab, points to a structure that describes the table on which the function is to oper-
ate. The programmer should treat this structure as opaque (i.e., do not attempt to di-
rectly access or modify the fields in this structure).

First a hash table must be created using hcreate(). The argument nel specifies the maxi-
mum number of entries in the table. (This maximum cannot be changed later, so choose
it wisely.) The implementation may adjust this value upward to improve the perfor-
mance of the resulting hash table.

The hcreate_r() function performs the same task as hcreate(), but for the table de-
scribed by the structure *htab. The structure pointed to by htab must be zeroed before
the first call to hcreate_r().

The function hdestroy() frees the memory occupied by the hash table that was created
by hcreate(). After calling hdestroy(), a new hash table can be created using hcreate().
The hdestroy_r() function performs the analogous task for a hash table described by
*htab, which was previously created using hcreate_r().

The hsearch() function searches the hash table for an item with the same key as item
(where "the same" is determined using strcmp(3)), and if successful returns a pointer to
it.

The argument item is of type ENTRY , which is defined in <search.h> as follows:

typedef struct entry {
char *key;

Linux man-pages 6.16 2025-05-17 1939

hsearch(3) Library Functions Manual hsearch(3)

void *data;
} ENTRY;

The field key points to a null-terminated string which is the search key. The field data
points to data that is associated with that key.

The argument action determines what hsearch() does after an unsuccessful search. This
argument must either have the value ENTER, meaning insert a copy of item (and return
a pointer to the new hash table entry as the function result), or the value FIND, meaning
that NULL should be returned. (If action is FIND, then data is ignored.)

The hsearch_r() function is like hsearch() but operates on the hash table described by
*htab. The hsearch_r() function differs from hsearch() in that a pointer to the found
item is returned in *retval, rather than as the function result.

RETURN VALUE
hcreate() and hcreate_r() return nonzero on success. They return 0 on error, with errno
set to indicate the error.

On success, hsearch() returns a pointer to an entry in the hash table. hsearch() returns
NULL on error, that is, if action is ENTER and the hash table is full, or action is FIND
and item cannot be found in the hash table. hsearch_r() returns nonzero on success,
and 0 on error. In the event of an error, these two functions set errno to indicate the er-
ror.

ERRORS
hcreate_r() and hdestroy_r() can fail for the following reasons:

EINVAL
htab is NULL.

hsearch() and hsearch_r() can fail for the following reasons:

ENOMEM
action was ENTER, key was not found in the table, and there was no room in
the table to add a new entry.

ESRCH
action was FIND, and key was not found in the table.

POSIX.1 specifies only the ENOMEM error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:hsearchhcreate(), hsearch(), hdestroy()
Thread safety MT-Safe race:htabhcreate_r(), hsearch_r(), hdestroy_r()

STANDARDS
hcreate()
hsearch()
hdestroy()

POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 1940

hsearch(3) Library Functions Manual hsearch(3)

hcreate_r()
hsearch_r()
hdestroy_r()

GNU.

HISTORY
hcreate()
hsearch()
hdestroy()

SVr4, POSIX.1-2001.

hcreate_r()
hsearch_r()
hdestroy_r()

GNU.

NOTES
Hash table implementations are usually more efficient when the table contains enough
free space to minimize collisions. Typically, this means that nel should be at least 25%
larger than the maximum number of elements that the caller expects to store in the table.

The hdestroy() and hdestroy_r() functions do not free the buffers pointed to by the key
and data elements of the hash table entries. (It can’t do this because it doesn’t know
whether these buffers were allocated dynamically.) If these buffers need to be freed
(perhaps because the program is repeatedly creating and destroying hash tables, rather
than creating a single table whose lifetime matches that of the program), then the pro-
gram must maintain bookkeeping data structures that allow it to free them.

BUGS
SVr4 and POSIX.1-2001 specify that action is significant only for unsuccessful
searches, so that an ENTER should not do anything for a successful search. In libc and
glibc (before glibc 2.3), the implementation violates the specification, updating the data
for the given key in this case.

Individual hash table entries can be added, but not deleted.

EXAMPLES
The following program inserts 24 items into a hash table, then prints some of them.

#include <search.h>
#include <stdio.h>
#include <stdlib.h>

static char *data[] = { "alpha", "bravo", "charlie", "delta",
"echo", "foxtrot", "golf", "hotel", "india", "juliet",
"kilo", "lima", "mike", "november", "oscar", "papa",
"quebec", "romeo", "sierra", "tango", "uniform",
"victor", "whisky", "x-ray", "yankee", "zulu"

};

int
main(void)

Linux man-pages 6.16 2025-05-17 1941

hsearch(3) Library Functions Manual hsearch(3)

{
ENTRY e;
ENTRY *ep;

hcreate(30);

for (size_t i = 0; i < 24; i++) {
e.key = data[i];
/* data is just an integer, instead of a

pointer to something */
e.data = (void *) i;
ep = hsearch(e, ENTER);
/* there should be no failures */
if (ep == NULL) {

fprintf(stderr, "entry failed\n");
exit(EXIT_FAILURE);

}
}

for (size_t i = 22; i < 26; i++) {
/* print two entries from the table, and

show that two are not in the table */
e.key = data[i];
ep = hsearch(e, FIND);
printf("%9.9s -> %9.9s:%d\n", e.key,

ep ? ep->key : "NULL", ep ? (int) ep->data : 0);
}
hdestroy();
exit(EXIT_SUCCESS);

}

SEE ALSO
bsearch(3), lsearch(3), malloc(3), tsearch(3)

Linux man-pages 6.16 2025-05-17 1942

hypot(3) Library Functions Manual hypot(3)

NAME
hypot, hypotf, hypotl - Euclidean distance function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double hypot(double x, double y);
float hypotf(float x, float y);
long double hypotl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

hypot():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

hypotf(), hypotl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return sqrt(x*x+y*y). This is the length of the hypotenuse of a right-
angled triangle with sides of length x and y, or the distance of the point (x,y) from the
origin.

The calculation is performed without undue overflow or underflow during the intermedi-
ate steps of the calculation.

RETURN VALUE
On success, these functions return the length of the hypotenuse of a right-angled triangle
with sides of length x and y.

If x or y is an infinity, positive infinity is returned.

If x or y is a NaN, and the other argument is not an infinity, a NaN is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively.

If both arguments are subnormal, and the result is subnormal, a range error occurs, and
the correct result is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Linux man-pages 6.16 2025-05-17 1943

hypot(3) Library Functions Manual hypot(3)

Range error: result underflow
An underflow floating-point exception (FE_UNDERFLOW) is raised.

These functions do not set errno for this case.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safehypot(), hypotf(), hypotl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cabs(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 1944

iconv(3) Library Functions Manual iconv(3)

NAME
iconv - perform character set conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <iconv.h>

size_t iconv(iconv_t cd ,
char **restrict inbuf , size_t *restrict inbytesleft,
char **restrict outbuf , size_t *restrict outbytesleft);

DESCRIPTION
The iconv() function converts a sequence of characters in one character encoding to a
sequence of characters in another character encoding. The cd argument is a conversion
descriptor, previously created by a call to iconv_open(3); the conversion descriptor de-
fines the character encodings that iconv() uses for the conversion. The inbuf argument
is the address of a variable that points to the first character of the input sequence; in-
bytesleft indicates the number of bytes in that buffer. The outbuf argument is the ad-
dress of a variable that points to the first byte available in the output buffer; outbytesleft
indicates the number of bytes available in the output buffer.

The main case is when inbuf is not NULL and *inbuf is not NULL. In this case, the
iconv() function converts the multibyte sequence starting at *inbuf to a multibyte se-
quence starting at *outbuf . At most *inbytesleft bytes, starting at *inbuf , will be read.
At most *outbytesleft bytes, starting at *outbuf , will be written.

The iconv() function converts one multibyte character at a time, and for each character
conversion it increments *inbuf and decrements *inbytesleft by the number of converted
input bytes, it increments *outbuf and decrements *outbytesleft by the number of con-
verted output bytes, and it updates the conversion state contained in cd . If the character
encoding of the input is stateful, the iconv() function can also convert a sequence of in-
put bytes to an update to the conversion state without producing any output bytes; such
input is called a shift sequence. The conversion can stop for five reasons:

• An invalid multibyte sequence is encountered in the input. In this case, it sets errno
to EILSEQ and returns (size_t) -1. *inbuf is left pointing to the beginning of the in-
valid multibyte sequence.

• A multibyte sequence is encountered that is valid but that cannot be translated to the
character encoding of the output. This condition depends on the implementation and
on the conversion descriptor. In the GNU C library and GNU libiconv, if cd was
created without the suffix //TRANSLIT or //IGNORE, the conversion is strict:
lossy conversions produce this condition. If the suffix //TRANSLIT was specified,
transliteration can avoid this condition in some cases. In the musl C library, this
condition cannot occur because a conversion to '*' is used as a fallback. In the
FreeBSD, NetBSD, and Solaris implementations of iconv(), this condition cannot
occur either, because a conversion to '?' is used as a fallback. When this condition is
met, iconv() sets errno to EILSEQ and returns (size_t) -1. *inbuf is left pointing to
the beginning of the unconvertible multibyte sequence.

Linux man-pages 6.16 2025-09-21 1945

iconv(3) Library Functions Manual iconv(3)

• The input byte sequence has been entirely converted, that is, *inbytesleft has gone
down to 0. In this case, iconv() returns the number of nonreversible conversions per-
formed during this call.

• An incomplete multibyte sequence is encountered in the input, and the input byte se-
quence terminates after it. In this case, it sets errno to EINVAL and returns
(size_t) -1. *inbuf is left pointing to the beginning of the incomplete multibyte se-
quence.

• The output buffer has no more room for the next converted character. In this case, it
sets errno to E2BIG and returns (size_t) -1.

A different case is when inbuf is NULL or *inbuf is NULL, but outbuf is not NULL
and *outbuf is not NULL. In this case, the iconv() function attempts to set cd’s conver-
sion state to the initial state and store a corresponding shift sequence at *outbuf . At
most *outbytesleft bytes, starting at *outbuf , will be written. If the output buffer has no
more room for this reset sequence, it sets errno to E2BIG and returns (size_t) -1. Other-
wise, it increments *outbuf and decrements *outbytesleft by the number of bytes writ-
ten.

A third case is when inbuf is NULL or *inbuf is NULL, and outbuf is NULL or *out-
buf is NULL. In this case, the iconv() function sets cd’s conversion state to the initial
state.

RETURN VALUE
The iconv() function returns the number of characters converted in a nonreversible way
during this call; reversible conversions are not counted. In case of error, iconv() returns
(size_t) -1 and sets errno to indicate the error.

ERRORS
The following errors can occur, among others:

E2BIG
There is not sufficient room at *outbuf .

EILSEQ
An invalid multibyte sequence has been encountered in the input.

EINVAL
An incomplete multibyte sequence has been encountered in the input.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:cdiconv()

The iconv() function is MT-Safe, as long as callers arrange for mutual exclusion on the
cd argument.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

Linux man-pages 6.16 2025-09-21 1946

iconv(3) Library Functions Manual iconv(3)

NOTES
In each series of calls to iconv(), the last should be one with inbuf or *inbuf equal to
NULL, in order to flush out any partially converted input.

Although inbuf and outbuf are typed as char **, this does not mean that the objects
they point can be interpreted as C strings or as arrays of characters: the interpretation of
character byte sequences is handled internally by the conversion functions. In some en-
codings, a zero byte may be a valid part of a multibyte character.

The caller of iconv() must ensure that the pointers passed to the function are suitable for
accessing characters in the appropriate character set. This includes ensuring correct
alignment on platforms that have tight restrictions on alignment.

SEE ALSO
iconv_close(3), iconv_open(3), iconvconfig(8)

Linux man-pages 6.16 2025-09-21 1947

iconv_close(3) Library Functions Manual iconv_close(3)

NAME
iconv_close - deallocate descriptor for character set conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <iconv.h>

int iconv_close(iconv_t cd);

DESCRIPTION
The iconv_close() function deallocates a conversion descriptor cd previously allocated
using iconv_open(3).

RETURN VALUE
On success, iconv_close() returns 0; otherwise, it returns -1 and sets errno to indicate
the error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeiconv_close()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

SEE ALSO
iconv(3), iconv_open(3)

Linux man-pages 6.16 2025-09-21 1948

iconv_open(3) Library Functions Manual iconv_open(3)

NAME
iconv_open - allocate descriptor for character set conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <iconv.h>

iconv_t iconv_open(const char *tocode, const char * fromcode);

DESCRIPTION
The iconv_open() function allocates a conversion descriptor suitable for converting byte
sequences from character encoding fromcode to character encoding tocode.

The values permitted for fromcode and tocode and the supported combinations are sys-
tem-dependent. For the GNU C library, the permitted values are listed by the iconv
--list command, and all combinations of the listed values are supported. Furthermore
the GNU C library and the GNU libiconv library support the following two suffixes:

//TRANSLIT
When the string "//TRANSLIT" is appended to tocode, transliteration is acti-
vated. This means that when a character cannot be represented in the target char-
acter set, it can be approximated through one or several similarly looking charac-
ters.

//IGNORE
When the string "//IGNORE" is appended to tocode, characters that cannot be
represented in the target character set will be silently discarded.

The resulting conversion descriptor can be used with iconv(3) any number of times. It
remains valid until deallocated using iconv_close(3).

A conversion descriptor contains a conversion state. After creation using iconv_open(),
the state is in the initial state. Using iconv(3) modifies the descriptor’s conversion state.
To bring the state back to the initial state, use iconv(3) with NULL as inbuf argument.

RETURN VALUE
On success, iconv_open() returns a freshly allocated conversion descriptor. On failure,
it returns (iconv_t) -1 and sets errno to indicate the error.

ERRORS
The following error can occur, among others:

EINVAL
The conversion from fromcode to tocode is not supported by the implementa-
tion.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiconv_open()

Linux man-pages 6.16 2025-05-17 1949

iconv_open(3) Library Functions Manual iconv_open(3)

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001, SUSv2.

SEE ALSO
iconv(1), iconv(3), iconv_close(3)

Linux man-pages 6.16 2025-05-17 1950

if_nameindex(3) Library Functions Manual if_nameindex(3)

NAME
if_nameindex, if_freenameindex - get network interface names and indexes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <net/if.h>

struct if_nameindex *if_nameindex(void);
void if_freenameindex(struct if_nameindex *ptr);

DESCRIPTION
The if_nameindex() function returns an array of if_nameindex structures, each contain-
ing information about one of the network interfaces on the local system. The if_namein-
dex structure contains at least the following entries:

unsigned int if_index; /* Index of interface (1, 2, ...) */
char *if_name; /* Null-terminated name ("eth0", etc.) */

The if_index field contains the interface index. The if_name field points to the null-ter-
minated interface name. The end of the array is indicated by entry with if_index set to
zero and if_name set to NULL.

The data structure returned by if_nameindex() is dynamically allocated and should be
freed using if_freenameindex() when no longer needed.

RETURN VALUE
On success, if_nameindex() returns pointer to the array; on error, NULL is returned,
and errno is set to indicate the error.

ERRORS
if_nameindex() may fail and set errno if:

ENOBUFS
Insufficient resources available.

if_nameindex() may also fail for any of the errors specified for socket(2), bind(2),
ioctl(2), getsockname(2), recvmsg(2), sendto(2), or malloc(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeif_nameindex(), if_freenameindex()

STANDARDS
POSIX.1-2008, RFC 3493.

HISTORY
glibc 2.1. POSIX.1-2001. BSDi.

Before glibc 2.3.4, the implementation supported only interfaces with IPv4 addresses.
Support of interfaces that don’t have IPv4 addresses is available only on kernels that
support netlink.

Linux man-pages 6.16 2025-09-21 1951

if_nameindex(3) Library Functions Manual if_nameindex(3)

EXAMPLES
The program below demonstrates the use of the functions described on this page. An
example of the output this program might produce is the following:

$./a.out;
1: lo
2: wlan0
3: em1

Program source
#include <net/if.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(void)
{

struct if_nameindex *if_ni, *i;

if_ni = if_nameindex();
if (if_ni == NULL) {

perror("if_nameindex");
exit(EXIT_FAILURE);

}

for (i = if_ni; !(i->if_index == 0 && i->if_name == NULL); i++)
printf("%u: %s\n", i->if_index, i->if_name);

if_freenameindex(if_ni);

exit(EXIT_SUCCESS);
}

SEE ALSO
getsockopt(2), setsockopt(2), getifaddrs(3), if_indextoname(3), if_nametoindex(3), ifcon-
fig(8)

Linux man-pages 6.16 2025-09-21 1952

if_nametoindex(3) Library Functions Manual if_nametoindex(3)

NAME
if_nametoindex, if_indextoname - mappings between network interface names and in-
dexes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <net/if.h>

unsigned int if_nametoindex(const char *ifname);
char *if_indextoname(unsigned int ifindex, char *ifname);

DESCRIPTION
The if_nametoindex() function returns the index of the network interface corresponding
to the name ifname.

The if_indextoname() function returns the name of the network interface corresponding
to the interface index ifindex. The name is placed in the buffer pointed to by ifname.
The buffer must allow for the storage of at least IF_NAMESIZE bytes.

RETURN VALUE
On success, if_nametoindex() returns the index number of the network interface; on er-
ror, 0 is returned and errno is set to indicate the error.

On success, if_indextoname() returns ifname; on error, NULL is returned and errno is
set to indicate the error.

ERRORS
if_nametoindex() may fail and set errno if:

ENODEV
No interface found with given name.

if_indextoname() may fail and set errno if:

ENXIO
No interface found for the index.

if_nametoindex() and if_indextoname() may also fail for any of the errors specified for
socket(2) or ioctl(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeif_nametoindex(), if_indextoname()

STANDARDS
POSIX.1-2008, RFC 3493.

HISTORY
POSIX.1-2001. BSDi.

SEE ALSO
getifaddrs(3), if_nameindex(3), ifconfig(8)

Linux man-pages 6.16 2025-05-17 1953

ilogb(3) Library Functions Manual ilogb(3)

NAME
ilogb, ilogbf, ilogbl - get integer exponent of a floating-point value

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int ilogb(double x);
int ilogbf(float x);
int ilogbl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ilogb():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

ilogbf(), ilogbl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the exponent part of their argument as a signed integer. When no
error occurs, these functions are equivalent to the corresponding logb(3) functions, cast
to int.

RETURN VALUE
On success, these functions return the exponent of x, as a signed integer.

If x is zero, then a domain error occurs, and the functions return FP_ILOGB0.

If x is a NaN, then a domain error occurs, and the functions return FP_ILOGBNAN.

If x is negative infinity or positive infinity, then a domain error occurs, and the functions
return INT_MAX.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is 0 or a NaN
An invalid floating-point exception (FE_INVALID) is raised, and errno is set to
EDOM (but see BUGS).

Domain error: x is an infinity
An invalid floating-point exception (FE_INVALID) is raised, and errno is set to
EDOM (but see BUGS).

Linux man-pages 6.16 2025-05-17 1954

ilogb(3) Library Functions Manual ilogb(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeilogb(), ilogbf(), ilogbl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

BUGS
Before glibc 2.16, the following bugs existed in the glibc implementation of these func-
tions:

• The domain error case where x is 0 or a NaN did not cause errno to be set or (on
some architectures) raise a floating-point exception.

• The domain error case where x is an infinity did not cause errno to be set or raise a
floating-point exception.

SEE ALSO
log(3), logb(3), significand(3)

Linux man-pages 6.16 2025-05-17 1955

index(3) Library Functions Manual index(3)

NAME
index, rindex - locate character in string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

[[deprecated]] char *index(const char *s, int c);
[[deprecated]] char *rindex(const char *s, int c);

DESCRIPTION
index() is identical to strchr(3).

rindex() is identical to strrchr(3).

Use strchr(3) and strrchr(3) instead of these functions.

STANDARDS
None.

HISTORY
4.3BSD; marked as LEGACY in POSIX.1-2001. Removed in POSIX.1-2008, recom-
mending strchr(3) and strrchr(3) instead.

SEE ALSO
strchr(3), strrchr(3)

Linux man-pages 6.16 2025-09-21 1956

inet(3) Library Functions Manual inet(3)

NAME
inet_aton, inet_addr, inet_network, inet_ntoa, inet_makeaddr, inet_lnaof, inet_netof -
Internet address manipulation routines

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>

int inet_aton(const char *cp, struct in_addr *inp);

in_addr_t inet_addr(const char *cp);
in_addr_t inet_network(const char *cp);

[[deprecated]] char *inet_ntoa(struct in_addr in);

[[deprecated]] struct in_addr inet_makeaddr(in_addr_t net,
in_addr_t host);

[[deprecated]] in_addr_t inet_lnaof(struct in_addr in);
[[deprecated]] in_addr_t inet_netof(struct in_addr in);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

inet_aton(), inet_ntoa():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_BSD_SOURCE || _BSD_SOURCE

DESCRIPTION
inet_aton() converts the Internet host address cp from the IPv4 numbers-and-dots nota-
tion into binary form (in network byte order) and stores it in the structure that inp points
to. inet_aton() returns nonzero if the address is valid, zero if not. The address supplied
in cp can have one of the following forms:

a.b.c.d Each of the four numeric parts specifies a byte of the address; the bytes are
assigned in left-to-right order to produce the binary address.

a.b.c Parts a and b specify the first two bytes of the binary address. Part c is in-
terpreted as a 16-bit value that defines the rightmost two bytes of the binary
address. This notation is suitable for specifying (outmoded) Class B net-
work addresses.

a.b Part a specifies the first byte of the binary address. Part b is interpreted as a
24-bit value that defines the rightmost three bytes of the binary address.
This notation is suitable for specifying (outmoded) Class A network ad-
dresses.

a The value a is interpreted as a 32-bit value that is stored directly into the bi-
nary address without any byte rearrangement.

In all of the above forms, components of the dotted address can be specified in decimal,

Linux man-pages 6.16 2025-05-17 1957

inet(3) Library Functions Manual inet(3)

octal (with a leading 0), or hexadecimal, with a leading 0X). Addresses in any of these
forms are collectively termed IPV4 numbers-and-dots notation. The form that uses ex-
actly four decimal numbers is referred to as IPv4 dotted-decimal notation (or some-
times: IPv4 dotted-quad notation).

inet_aton() returns 1 if the supplied string was successfully interpreted, or 0 if the string
is invalid (errno is not set on error).

The inet_addr() function converts the Internet host address cp from IPv4 numbers-and-
dots notation into binary data in network byte order. If the input is invalid, IN-
ADDR_NONE (usually -1) is returned. Use of this function is problematic because -1
is a valid address (255.255.255.255). Avoid its use in favor of inet_aton(), inet_pton(3),
or getaddrinfo(3), which provide a cleaner way to indicate error return.

The inet_network() function converts cp, a string in IPv4 numbers-and-dots notation,
into a number in host byte order suitable for use as an Internet network address. On suc-
cess, the converted address is returned. If the input is invalid, -1 is returned.

The inet_ntoa() function converts the Internet host address in, given in network byte or-
der, to a string in IPv4 dotted-decimal notation. The string is returned in a statically al-
located buffer, which subsequent calls will overwrite.

The inet_lnaof() function returns the local network address part of the Internet address
in. The returned value is in host byte order.

The inet_netof() function returns the network number part of the Internet address in.
The returned value is in host byte order.

The inet_makeaddr() function is the converse of inet_netof() and inet_lnaof(). It re-
turns an Internet host address in network byte order, created by combining the network
number.I net with the local address host, both in host byte order.

The structure in_addr as used in inet_ntoa(), inet_makeaddr(), inet_lnaof(), and
inet_netof() is defined in <netinet/in.h> as:

typedef uint32_t in_addr_t;

struct in_addr {
in_addr_t s_addr;

};

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinet_aton(), inet_addr(), inet_network(),
inet_ntoa()

Thread safety MT-Safeinet_makeaddr(), inet_lnaof(), inet_netof()

STANDARDS
inet_addr()
inet_ntoa()

POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 1958

inet(3) Library Functions Manual inet(3)

inet_aton()
None.

STANDARDS
inet_addr()
inet_ntoa()

POSIX.1-2001, 4.3BSD.

inet_lnaof(), inet_netof(), and inet_makeaddr() are legacy functions that assume they
are dealing with classful network addresses. Classful networking divides IPv4 network
addresses into host and network components at byte boundaries, as follows:

Class A This address type is indicated by the value 0 in the most significant bit of
the (network byte ordered) address. The network address is contained in
the most significant byte, and the host address occupies the remaining three
bytes.

Class B This address type is indicated by the binary value 10 in the most significant
two bits of the address. The network address is contained in the two most
significant bytes, and the host address occupies the remaining two bytes.

Class C This address type is indicated by the binary value 110 in the most signifi-
cant three bits of the address. The network address is contained in the three
most significant bytes, and the host address occupies the remaining byte.

Classful network addresses are now obsolete, having been superseded by Classless
Inter-Domain Routing (CIDR), which divides addresses into network and host compo-
nents at arbitrary bit (rather than byte) boundaries.

NOTES
On x86 architectures, the host byte order is Least Significant Byte first (little endian),
whereas the network byte order, as used on the Internet, is Most Significant Byte first
(big endian).

EXAMPLES
An example of the use of inet_aton() and inet_ntoa() is shown below. Here are some
example runs:

$./a.out 226.000.000.037 # Last byte is in octal
226.0.0.31
$./a.out 0x7f.1 # First byte is in hex
127.0.0.1

Program source

#define _DEFAULT_SOURCE
#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

Linux man-pages 6.16 2025-05-17 1959

inet(3) Library Functions Manual inet(3)

struct in_addr addr;

if (argc != 2) {
fprintf(stderr, "%s <dotted-address>\n", argv[0]);
exit(EXIT_FAILURE);

}

if (inet_aton(argv[1], &addr) == 0) {
fprintf(stderr, "Invalid address\n");
exit(EXIT_FAILURE);

}

printf("%s\n", inet_ntoa(addr));
exit(EXIT_SUCCESS);

}

SEE ALSO
byteorder(3), getaddrinfo(3), gethostbyname(3), getnameinfo(3), getnetent(3),
inet_net_pton(3), inet_ntop(3), inet_pton(3), hosts(5), networks(5)

Linux man-pages 6.16 2025-05-17 1960

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

NAME
inet_net_pton, inet_net_ntop - Internet network number conversion

LIBRARY
Resolver library (libresolv, -lresolv)

SYNOPSIS
#include <arpa/inet.h>

int inet_net_pton(size_t nsize;
int af , const char *pres,
void netp[nsize], size_t nsize);

char *inet_net_ntop(int bits, size_t psize;
int af ,
const void netp[(bits - CHAR_BIT + 1) / CHAR_BIT],
int bits,
char pres[psize], size_t psize);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

inet_net_pton(), inet_net_ntop():
Since glibc 2.20:

_DEFAULT_SOURCE
Before glibc 2.20:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions convert network numbers between presentation (i.e., printable) format
and network (i.e., binary) format.

For both functions, af specifies the address family for the conversion; the only sup-
ported value is AF_INET.

inet_net_pton()
The inet_net_pton() function converts pres, a null-terminated string containing an In-
ternet network number in presentation format to network format. The result of the con-
version, which is in network byte order, is placed in the buffer pointed to by netp. (The
netp argument typically points to an in_addr structure.) The nsize argument specifies
the number of bytes available in netp.

On success, inet_net_pton() returns the number of bits in the network number field of
the result placed in netp. For a discussion of the input presentation format and the re-
turn value, see NOTES.

Note: the buffer pointed to by netp should be zeroed out before calling inet_net_pton(),
since the call writes only as many bytes as are required for the network number (or as
are explicitly specified by pres), which may be less than the number of bytes in a com-
plete network address.

inet_net_ntop()
The inet_net_ntop() function converts the network number in the buffer pointed to by
netp to presentation format; *netp is interpreted as a value in network byte order. The
bits argument specifies the number of bits in the network number in *netp.

Linux man-pages 6.16 2025-10-05 1961

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

The null-terminated presentation-format string is placed in the buffer pointed to by pres.
The psize argument specifies the number of bytes available in pres. The presentation
string is in CIDR format: a dotted-decimal number representing the network address,
followed by a slash, and the size of the network number in bits.

RETURN VALUE
On success, inet_net_pton() returns the number of bits in the network number. On er-
ror, it returns -1, and errno is set to indicate the error.

On success, inet_net_ntop() returns pres. On error, it returns NULL, and errno is set
to indicate the error.

ERRORS
EAFNOSUPPORT

af specified a value other than AF_INET.

EMSGSIZE
The size of the output buffer was insufficient.

ENOENT
(inet_net_pton()) pres was not in correct presentation format.

STANDARDS
None.

NOTES
Input presentation format for inet_net_pton()

The network number may be specified either as a hexadecimal value or in dotted-deci-
mal notation.

Hexadecimal values are indicated by an initial "0x" or "0X". The hexadecimal digits
populate the nibbles (half octets) of the network number from left to right in network
byte order.

In dotted-decimal notation, up to four octets are specified, as decimal numbers separated
by dots. Thus, any of the following forms are accepted:

a.b.c.d
a.b.c
a.b
a

Each part is a number in the range 0 to 255 that populates one byte of the resulting net-
work number, going from left to right, in network-byte (big endian) order. Where a part
is omitted, the resulting byte in the network number is zero.

For either hexadecimal or dotted-decimal format, the network number can optionally be
followed by a slash and a number in the range 0 to 32, which specifies the size of the
network number in bits.

Return value of inet_net_pton()
The return value of inet_net_pton() is the number of bits in the network number field.
If the input presentation string terminates with a slash and an explicit size value, then
that size becomes the return value of inet_net_pton(). Otherwise, the return value, bits,
is inferred as follows:

Linux man-pages 6.16 2025-10-05 1962

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

• If the most significant byte of the network number is greater than or equal to 240,
then bits is 32.

• Otherwise, if the most significant byte of the network number is greater than or
equal to 224, then bits is 4.

• Otherwise, if the most significant byte of the network number is greater than or
equal to 192, then bits is 24.

• Otherwise, if the most significant byte of the network number is greater than or
equal to 128, then bits is 16.

• Otherwise, bits is 8.

If the resulting bits value from the above steps is greater than or equal to 8, but the num-
ber of octets specified in the network number exceed bits/8, then bits is set to 8 times
the number of octets actually specified.

EXAMPLES
The program below demonstrates the use of inet_net_pton() and inet_net_ntop(). It
uses inet_net_pton() to convert the presentation format network address provided in its
first command-line argument to binary form, displays the return value from
inet_net_pton(). It then uses inet_net_ntop() to convert the binary form back to pre-
sentation format, and displays the resulting string.

In order to demonstrate that inet_net_pton() may not write to all bytes of its netp argu-
ment, the program allows an optional second command-line argument, a number used to
initialize the buffer before inet_net_pton() is called. As its final line of output, the pro-
gram displays all of the bytes of the buffer returned by inet_net_pton() allowing the
user to see which bytes have not been touched by inet_net_pton().

An example run, showing that inet_net_pton() infers the number of bits in the network
number:

$./a.out 193.168;
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.0/24
Raw address: c1a80000

Demonstrate that inet_net_pton() does not zero out unused bytes in its result buffer:

$./a.out 193.168 0xffffffff;
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.0/24
Raw address: c1a800ff

Demonstrate that inet_net_pton() will widen the inferred size of the network number, if
the supplied number of bytes in the presentation string exceeds the inferred value:

$./a.out 193.168.1.128;
inet_net_pton() returned: 32
inet_net_ntop() yielded: 193.168.1.128/32
Raw address: c1a80180

Explicitly specifying the size of the network number overrides any inference about its

Linux man-pages 6.16 2025-10-05 1963

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

size (but any extra bytes that are explicitly specified will still be used by
inet_net_pton(): to populate the result buffer):

$./a.out 193.168.1.128/24;
inet_net_pton() returned: 24
inet_net_ntop() yielded: 193.168.1/24
Raw address: c1a80180

Program source
/* Link with "-lresolv" */

#include <arpa/inet.h>
#include <err.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

char buf[100];
struct in_addr addr;
int bits;

if (argc < 2) {
fprintf(stderr,

"Usage: %s presentation-form [addr-init-value]\n",
argv[0]);

exit(EXIT_FAILURE);
}

/* If argv[2] is supplied (a numeric value), use it to initialize
the output buffer given to inet_net_pton(), so that we can see
that inet_net_pton() initializes only those bytes needed for
the network number. If argv[2] is not supplied, then initialize
the buffer to zero (as is recommended practice). */

addr.s_addr = (argc > 2) ? strtod(argv[2], NULL) : 0;

/* Convert presentation network number in argv[1] to binary. */

bits = inet_net_pton(AF_INET, argv[1], &addr, sizeof(addr));
if (bits == -1)

err(EXIT_FAILURE, "inet_net_ntop");

printf("inet_net_pton() returned: %d\n", bits);

/* Convert binary format back to presentation, using 'bits'
returned by inet_net_pton(). */

Linux man-pages 6.16 2025-10-05 1964

inet_net_pton(3) Library Functions Manual inet_net_pton(3)

if (inet_net_ntop(AF_INET, &addr, bits, buf, sizeof(buf)) == NULL)
err(EXIT_FAILURE, "inet_net_ntop");

printf("inet_net_ntop() yielded: %s\n", buf);

/* Display 'addr' in raw form (in network byte order), so we can
see bytes not displayed by inet_net_ntop(); some of those bytes
may not have been touched by inet_net_ntop(), and so will still
have any initial value that was specified in argv[2]. */

printf("Raw address: %x\n", htonl(addr.s_addr));

exit(EXIT_SUCCESS);
}

SEE ALSO
inet(3), networks(5)

Linux man-pages 6.16 2025-10-05 1965

inet_ntop(3) Library Functions Manual inet_ntop(3)

NAME
inet_ntop - convert IPv4 and IPv6 addresses from binary to text form

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <arpa/inet.h>

const char *inet_ntop(socklen_t size;
int af , const void *restrict src,
char dst[restrict size], socklen_t size);

DESCRIPTION
This function converts the network address structure src in the af address family into a
character string. The resulting string is copied to the buffer pointed to by dst, which
must be a non-null pointer. The caller specifies the number of bytes available in this
buffer in the argument size.

inet_ntop() extends the inet_ntoa(3) function to support multiple address families,
inet_ntoa(3) is now considered to be deprecated in favor of inet_ntop(). The following
address families are currently supported:

AF_INET
src points to a struct in_addr (in network byte order) which is converted to an
IPv4 network address in the dotted-decimal format, "ddd.ddd.ddd.ddd". The
buffer dst must be at least INET_ADDRSTRLEN bytes long.

AF_INET6
src points to a struct in6_addr (in network byte order) which is converted to a
representation of this address in the most appropriate IPv6 network address for-
mat for this address. The buffer dst must be at least INET6_ADDRSTRLEN
bytes long.

RETURN VALUE
On success, inet_ntop() returns a non-null pointer to dst. NULL is returned if there was
an error, with errno set to indicate the error.

ERRORS
EAFNOSUPPORT

af was not a valid address family.

ENOSPC
The converted address string would exceed the size given by size.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinet_ntop()

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-06-28 1966

inet_ntop(3) Library Functions Manual inet_ntop(3)

HISTORY
POSIX.1-2001.

Note that RFC 2553 defines a prototype where the last argument size is of type size_t.
Many systems follow RFC 2553. glibc 2.0 and 2.1 have size_t, but 2.2 and later have
socklen_t.

BUGS
AF_INET6 converts IPv4-mapped IPv6 addresses into an IPv6 format.

EXAMPLES
See inet_pton(3).

SEE ALSO
getnameinfo(3), inet(3), inet_pton(3)

Linux man-pages 6.16 2025-06-28 1967

inet_pton(3) Library Functions Manual inet_pton(3)

NAME
inet_pton - convert IPv4 and IPv6 addresses from text to binary form

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <arpa/inet.h>

int inet_pton(int af , const char *restrict src, void *restrict dst);

DESCRIPTION
This function converts the character string src into a network address structure in the af
address family, then copies the network address structure to dst. The af argument must
be either AF_INET or AF_INET6. dst is written in network byte order.

The following address families are currently supported:

AF_INET
src points to a character string containing an IPv4 network address in dotted-dec-
imal format, "ddd.ddd.ddd.ddd", where ddd is a decimal number of up to three
digits in the range 0 to 255. The address is converted to a struct in_addr and
copied to dst, which must be sizeof(struct in_addr) (4) bytes (32 bits) long.

AF_INET6
src points to a character string containing an IPv6 network address. The address
is converted to a struct in6_addr and copied to dst, which must be sizeof(struct
in6_addr) (16) bytes (128 bits) long. The allowed formats for IPv6 addresses
follow these rules:

• The preferred format is x:x:x:x:x:x:x:x. This form consists of eight hexadec-
imal numbers, each of which expresses a 16-bit value (i.e., each x can be up
to 4 hex digits).

• A series of contiguous zero values in the preferred format can be abbreviated
to ::. Only one instance of :: can occur in an address. For example, the
loopback address 0:0:0:0:0:0:0:1 can be abbreviated as ::1. The wildcard
address, consisting of all zeros, can be written as ::.

• An alternate format is useful for expressing IPv4-mapped IPv6 addresses.
This form is written as x:x:x:x:x:x:d.d.d.d , where the six leading xs are
hexadecimal values that define the six most-significant 16-bit pieces of the
address (i.e., 96 bits), and the ds express a value in dotted-decimal notation
that defines the least significant 32 bits of the address. An example of such
an address is ::FFFF:204.152.189.116.

See RFC 2373 for further details on the representation of IPv6 addresses.

RETURN VALUE
inet_pton() returns 1 on success (network address was successfully converted). 0 is re-
turned if src does not contain a character string representing a valid network address in
the specified address family. If af does not contain a valid address family, -1 is re-
turned and errno is set to EAFNOSUPPORT.

Linux man-pages 6.16 2025-05-17 1968

inet_pton(3) Library Functions Manual inet_pton(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinet_pton()

VERSIONS
Unlike inet_aton(3) and inet_addr(3), inet_pton() supports IPv6 addresses. On the
other hand, inet_pton() accepts only IPv4 addresses in dotted-decimal notation, whereas
inet_aton(3) and inet_addr(3) allow the more general numbers-and-dots notation (hexa-
decimal and octal number formats, and formats that don’t require all four bytes to be ex-
plicitly written). For an interface that handles both IPv6 addresses, and IPv4 addresses
in numbers-and-dots notation, see getaddrinfo(3).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
AF_INET6 does not recognize IPv4 addresses. An explicit IPv4-mapped IPv6 address
must be supplied in src instead.

EXAMPLES
The program below demonstrates the use of inet_pton() and inet_ntop(3). Here are
some example runs:

$./a.out i6 0:0:0:0:0:0:0:0
::
$./a.out i6 1:0:0:0:0:0:0:8
1::8
$./a.out i6 0:0:0:0:0:FFFF:204.152.189.116
::ffff:204.152.189.116

Program source

#include <arpa/inet.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

unsigned char buf[sizeof(struct in6_addr)];
int domain, s;
char str[INET6_ADDRSTRLEN];

if (argc != 3) {
fprintf(stderr, "Usage: %s {i4|i6|<num>} string\n", argv[0]);
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-05-17 1969

inet_pton(3) Library Functions Manual inet_pton(3)

}

domain = (strcmp(argv[1], "i4") == 0) ? AF_INET :
(strcmp(argv[1], "i6") == 0) ? AF_INET6 : atoi(argv[1]);

s = inet_pton(domain, argv[2], buf);
if (s <= 0) {

if (s == 0)
fprintf(stderr, "Not in presentation format");

else
perror("inet_pton");

exit(EXIT_FAILURE);
}

if (inet_ntop(domain, buf, str, INET6_ADDRSTRLEN) == NULL) {
perror("inet_ntop");
exit(EXIT_FAILURE);

}

printf("%s\n", str);

exit(EXIT_SUCCESS);
}

SEE ALSO
getaddrinfo(3), inet(3), inet_ntop(3)

Linux man-pages 6.16 2025-05-17 1970

INFINITY (3) Library Functions Manual INFINITY (3)

NAME
INFINITY, NAN, HUGE_VAL, HUGE_VALF, HUGE_VALL - floating-point constants

LIBRARY
Math library (libm)

SYNOPSIS
#define _ISOC99_SOURCE /* See feature_test_macros(7) */
#include <math.h>

INFINITY

NAN

HUGE_VAL
HUGE_VALF
HUGE_VALL

DESCRIPTION
The macro INFINITY expands to a float constant representing positive infinity.

The macro NAN expands to a float constant representing a quiet NaN (when sup-
ported). A quiet NaN is a NaN ("not-a-number") that does not raise exceptions when it
is used in arithmetic. The opposite is a signaling NaN. See IEC 60559:1989.

The macros HUGE_VAL, HUGE_VALF, HUGE_VALL expand to constants of types
double, float, and long double, respectively, that represent a large positive value, possi-
bly positive infinity.

STANDARDS
C11.

HISTORY
C99.

On a glibc system, the macro HUGE_VAL is always available. Availability of the NAN
macro can be tested using #ifdef NAN, and similarly for INFINITY, HUGE_VALF,
HUGE_VALL. They will be defined by <math.h> if _ISOC99_SOURCE or
_GNU_SOURCE is defined, or __STDC_VERSION__ is defined and has a value not
less than 199901L.

SEE ALSO
fpclassify(3), math_error(7)

Linux man-pages 6.16 2025-05-17 1971

initgroups(3) Library Functions Manual initgroups(3)

NAME
initgroups - initialize the supplementary group access list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <grp.h>

int initgroups(const char *user, gid_t group);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

initgroups():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The initgroups() function initializes the group access list by reading the group database
/etc/group and using all groups of which user is a member. The additional group group
is also added to the list.

The user argument must be non-NULL.

RETURN VALUE
The initgroups() function returns 0 on success. On error, -1 is returned, and errno is
set to indicate the error.

ERRORS
ENOMEM

Insufficient memory to allocate group information structure.

EPERM
The calling process has insufficient privilege. See the underlying system call set-
groups(2).

FILES
/etc/group

group database file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeinitgroups()

STANDARDS
None.

HISTORY
SVr4, 4.3BSD.

Linux man-pages 6.16 2025-05-17 1972

initgroups(3) Library Functions Manual initgroups(3)

SEE ALSO
getgroups(2), setgroups(2), credentials(7)

Linux man-pages 6.16 2025-05-17 1973

insque(3) Library Functions Manual insque(3)

NAME
insque, remque - insert/remove an item from a queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

void insque(void *elem, void *prev);
void remque(void *elem);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

insque(), remque():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
The insque() and remque() functions manipulate doubly linked lists. Each element in
the list is a structure of which the first two elements are a forward and a backward
pointer. The linked list may be linear (i.e., NULL forward pointer at the end of the list
and NULL backward pointer at the start of the list) or circular.

The insque() function inserts the element pointed to by elem immediately after the ele-
ment pointed to by prev.

If the list is linear, then the call insque(elem, NULL) can be used to insert the initial list
element, and the call sets the forward and backward pointers of elem to NULL.

If the list is circular, the caller should ensure that the forward and backward pointers of
the first element are initialized to point to that element, and the prev argument of the in-
sque() call should also point to the element.

The remque() function removes the element pointed to by elem from the doubly linked
list.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeinsque(), remque()

VERSIONS
On ancient systems, the arguments of these functions were of type struct qelem *, de-
fined as:

struct qelem {
struct qelem *q_forw;
struct qelem *q_back;
char q_data[1];

};

This is still what you will get if _GNU_SOURCE is defined before including
<search.h>.

Linux man-pages 6.16 2025-09-21 1974

insque(3) Library Functions Manual insque(3)

The location of the prototypes for these functions differs among several versions of
UNIX. The above is the POSIX version. Some systems place them in <string.h>.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
In glibc 2.4 and earlier, it was not possible to specify prev as NULL. Consequently, to
build a linear list, the caller had to build a list using an initial call that contained the first
two elements of the list, with the forward and backward pointers in each element suit-
ably initialized.

EXAMPLES
The program below demonstrates the use of insque(). Here is an example run of the
program:

$./a.out -c a b c
Traversing completed list:

a
b
c

That was a circular list

Program source

#include <search.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

struct element {
struct element *forward;
struct element *backward;
char *name;

};

static struct element *
new_element(void)
{

struct element *e;

e = malloc(sizeof(*e));
if (e == NULL) {

fprintf(stderr, "malloc() failed\n");
exit(EXIT_FAILURE);

}

return e;

Linux man-pages 6.16 2025-09-21 1975

insque(3) Library Functions Manual insque(3)

}

int
main(int argc, char *argv[])
{

struct element *first, *elem, *prev;
int circular, opt, errfnd;

/* The "-c" command-line option can be used to specify that the
list is circular. */

errfnd = 0;
circular = 0;
while ((opt = getopt(argc, argv, "c")) != -1) {

switch (opt) {
case 'c':

circular = 1;
break;

default:
errfnd = 1;
break;

}
}

if (errfnd || optind >= argc) {
fprintf(stderr, "Usage: %s [-c] string...\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Create first element and place it in the linked list. */

elem = new_element();
first = elem;

elem->name = argv[optind];

if (circular) {
elem->forward = elem;
elem->backward = elem;
insque(elem, elem);

} else {
insque(elem, NULL);

}

/* Add remaining command-line arguments as list elements. */

while (++optind < argc) {

Linux man-pages 6.16 2025-09-21 1976

insque(3) Library Functions Manual insque(3)

prev = elem;

elem = new_element();
elem->name = argv[optind];
insque(elem, prev);

}

/* Traverse the list from the start, printing element names. */

printf("Traversing completed list:\n");
elem = first;
do {

printf(" %s\n", elem->name);
elem = elem->forward;

} while (elem != NULL && elem != first);

if (elem == first)
printf("That was a circular list\n");

exit(EXIT_SUCCESS);
}

SEE ALSO
queue(7)

Linux man-pages 6.16 2025-09-21 1977

isalpha(3) Library Functions Manual isalpha(3)

NAME
isalnum, isalpha, isascii, isblank, iscntrl, isdigit, isgraph, islower, isprint, ispunct, is-
space, isupper, isxdigit, isalnum_l, isalpha_l, isascii_l, isblank_l, iscntrl_l, isdigit_l, is-
graph_l, islower_l, isprint_l, ispunct_l, isspace_l, isupper_l, isxdigit_l - character classi-
fication functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ctype.h>

int isalnum(int c);
int isalpha(int c);
int iscntrl(int c);
int isdigit(int c);
int isgraph(int c);
int islower(int c);
int isprint(int c);
int ispunct(int c);
int isspace(int c);
int isupper(int c);
int isxdigit(int c);

int isascii(int c);
int isblank(int c);

int isalnum_l(int c, locale_t locale);
int isalpha_l(int c, locale_t locale);
int isblank_l(int c, locale_t locale);
int iscntrl_l(int c, locale_t locale);
int isdigit_l(int c, locale_t locale);
int isgraph_l(int c, locale_t locale);
int islower_l(int c, locale_t locale);
int isprint_l(int c, locale_t locale);
int ispunct_l(int c, locale_t locale);
int isspace_l(int c, locale_t locale);
int isupper_l(int c, locale_t locale);
int isxdigit_l(int c, locale_t locale);

int isascii_l(int c, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

isascii():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

isblank():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

isalnum_l(), isalpha_l(), isblank_l(), iscntrl_l(), isdigit_l(), isgraph_l(), islower_l(),

Linux man-pages 6.16 2025-09-21 1978

isalpha(3) Library Functions Manual isalpha(3)

isprint_l(), ispunct_l(), isspace_l(), isupper_l(), isxdigit_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

isascii_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700 && (_SVID_SOURCE || _BSD_SOURCE)
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
These functions check whether c, which must have the value of an unsigned char or
EOF, falls into a certain character class according to the specified locale. The functions
without the "_l" suffix perform the check based on the current locale.

The functions with the "_l" suffix perform the check based on the locale specified by the
locale object locale. The behavior of these functions is undefined if locale is the special
locale object LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid locale ob-
ject handle.

The list below explains the operation of the functions without the "_l" suffix; the func-
tions with the "_l" suffix differ only in using the locale object locale instead of the cur-
rent locale.

isalnum()
checks for an alphanumeric character; it is equivalent to (isalpha(c) || isdigit(c)).

isalpha()
checks for an alphabetic character; in the standard "C" locale, it is equivalent to
(isupper(c) || islower(c)). In some locales, there may be additional characters for
which isalpha() is true—letters which are neither uppercase nor lowercase.

isascii()
checks whether c is a 7-bit unsigned char value that fits into the ASCII character
set.

isblank()
checks for a blank character; that is, a space or a tab.

iscntrl()
checks for a control character.

isdigit()
checks for a digit (0 through 9).

isgraph()
checks for any printable character except space.

islower()
checks for a lowercase character.

Linux man-pages 6.16 2025-09-21 1979

isalpha(3) Library Functions Manual isalpha(3)

isprint()
checks for any printable character including space.

ispunct()
checks for any printable character which is not a space or an alphanumeric char-
acter.

isspace()
checks for white-space characters. In the "C" and "POSIX" locales, these are:
space, form-feed ('\f'), newline ('\n'), carriage return ('\r'), horizontal tab ('\t'),
and vertical tab ('\v').

isupper()
checks for an uppercase letter.

isxdigit()
checks for hexadecimal digits, that is, one of
0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F.

RETURN VALUE
The values returned are nonzero if the character c falls into the tested class, and zero if
not.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeisalnum(), isalpha(), isascii(), isblank(), iscntrl(),
isdigit(), isgraph(), islower(), isprint(), ispunct(),
isspace(), isupper(), isxdigit()

STANDARDS
isalnum()
isalpha()
iscntrl()
isdigit()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
isxdigit()
isblank()

C11, POSIX.1-2008.

isascii()
isalnum_l()
isalpha_l()
isblank_l()
iscntrl_l()

Linux man-pages 6.16 2025-09-21 1980

isalpha(3) Library Functions Manual isalpha(3)

isdigit_l()
isgraph_l()
islower_l()
isprint_l()
ispunct_l()
isspace_l()
isupper_l()
isxdigit_l()

POSIX.1-2008.

isascii_l()
GNU.

HISTORY
isalnum()
isalpha()
iscntrl()
isdigit()
isgraph()
islower()
isprint()
ispunct()
isspace()
isupper()
isxdigit()

C89, POSIX.1-2001.

isblank()
C99, POSIX.1-2001.

isascii()
POSIX.1-2001 (XSI).

POSIX.1-2008 marks it as obsolete, noting that it cannot be used portably in a
localized application.

isalnum_l()
isalpha_l()
isblank_l()
iscntrl_l()
isdigit_l()
isgraph_l()
islower_l()
isprint_l()
ispunct_l()
isspace_l()
isupper_l()
isxdigit_l()

glibc 2.3. POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 1981

isalpha(3) Library Functions Manual isalpha(3)

isascii_l()
glibc 2.3.

CAVEATS
The standards require that the argument c for these functions is either EOF or a value
that is representable in the type unsigned char; otherwise, the behavior is undefined. If
the argument c is of type char, it must be cast to unsigned char, as in the following ex-
ample:

char c;
...
res = toupper((unsigned char) c);

This is necessary because char may be the equivalent of signed char, in which case a
byte where the top bit is set would be sign extended when converting to int, yielding a
value that is outside the range of unsigned char.

The details of what characters belong to which class depend on the locale. For example,
isupper() will not recognize an A-umlaut (Ä) as an uppercase letter in the default C lo-
cale.

SEE ALSO
iswalnum(3), iswalpha(3), iswblank(3), iswcntrl(3), iswdigit(3), iswgraph(3),
iswlower(3), iswprint(3), iswpunct(3), iswspace(3), iswupper(3), iswxdigit(3), newlo-
cale(3), setlocale(3), toascii(3), tolower(3), toupper(3), uselocale(3), ascii(7), locale(7)

Linux man-pages 6.16 2025-09-21 1982

isatty(3) Library Functions Manual isatty(3)

NAME
isatty - test whether a file descriptor refers to a terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int isatty(int fd);

DESCRIPTION
The isatty() function tests whether fd is an open file descriptor referring to a terminal.

RETURN VALUE
isatty() returns 1 if fd is an open file descriptor referring to a terminal; otherwise 0 is re-
turned, and errno is set to indicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

ENOTTY
fd refers to a file other than a terminal. On some older kernels, some types of
files resulted in the error EINVAL in this case (which is a violation of POSIX,
which specifies the error ENOTTY).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeisatty()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
fstat(2), ttyname(3)

Linux man-pages 6.16 2025-05-17 1983

isfdtype(3) Library Functions Manual isfdtype(3)

NAME
isfdtype - test file type of a file descriptor

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/stat.h>
#include <sys/socket.h>

int isfdtype(int fd , int fdtype);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

isfdtype():
Since glibc 2.20:

_DEFAULT_SOURCE
Before glibc 2.20:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The isfdtype() function tests whether the file descriptor fd refers to a file of type fdtype.
The fdtype argument specifies one of the S_IF* constants defined in <sys/stat.h> and
documented in stat(2) (e.g., S_IFREG).

RETURN VALUE
The isfdtype() function returns 1 if the file descriptor fd is of type fdtype and 0 if it is
not. On failure, -1 is returned and errno is set to indicate the error.

ERRORS
The isfdtype() function can fail with any of the same errors as fstat(2).

VERSIONS
Portable applications should use fstat(2) instead.

STANDARDS
None.

HISTORY
It appeared in the draft POSIX.1g standard. It is present on OpenBSD and Tru64 UNIX
(where the required header file in both cases is just <sys/stat.h>, as shown in the
POSIX.1g draft).

SEE ALSO
fstat(2)

Linux man-pages 6.16 2025-05-17 1984

isgreater(3) Library Functions Manual isgreater(3)

NAME
isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered - floating-point re-
lational tests without exception for NaN

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int isgreater(x, y);
int isgreaterequal(x, y);
int isless(x, y);
int islessequal(x, y);
int islessgreater(x, y);
int isunordered(x, y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions described here:
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The normal relational operations (like <, "less than") fail if one of the operands is NaN.
This will cause an exception. To avoid this, C99 defines the macros listed below.

These macros are guaranteed to evaluate their arguments only once. The arguments
must be of real floating-point type (note: do not pass integer values as arguments to
these macros, since the arguments will not be promoted to real-floating types).

isgreater()
determines (x) > (y) without an exception if x or y is NaN.

isgreaterequal()
determines (x) >= (y) without an exception if x or y is NaN.

isless()
determines (x) < (y) without an exception if x or y is NaN.

islessequal()
determines (x) <= (y) without an exception if x or y is NaN.

islessgreater()
determines (x) < (y) || (x) > (y) without an exception if x or y is NaN. This
macro is not equivalent to x != y because that expression is true if x or y is NaN.

isunordered()
determines whether its arguments are unordered, that is, whether at least one of
the arguments is a NaN.

RETURN VALUE
The macros other than isunordered() return the result of the relational comparison;
these macros return 0 if either argument is a NaN.

isunordered() returns 1 if x or y is NaN and 0 otherwise.

Linux man-pages 6.16 2025-05-17 1985

isgreater(3) Library Functions Manual isgreater(3)

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeisgreater(), isgreaterequal(), isless(), islessequal(),
islessgreater(), isunordered()

VERSIONS
Not all hardware supports these functions, and where hardware support isn’t provided,
they will be emulated by macros. This will result in a performance penalty. Don’t use
these functions if NaN is of no concern for you.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
fpclassify(3), isnan(3)

Linux man-pages 6.16 2025-05-17 1986

iswalnum(3) Library Functions Manual iswalnum(3)

NAME
iswalnum - test for alphanumeric wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswalnum(wint_t wc);

DESCRIPTION
The iswalnum() function is the wide-character equivalent of the isalnum(3) function. It
tests whether wc is a wide character belonging to the wide-character class "alnum".

The wide-character class "alnum" is a subclass of the wide-character class "graph", and
therefore also a subclass of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "alnum" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "alnum"
is disjoint from the wide-character class "space" and its subclass "blank".

The wide-character class "alnum" is disjoint from the wide-character class "punct".

The wide-character class "alnum" is the union of the wide-character classes "alpha" and
"digit". As such, it also contains the wide-character class "xdigit".

The wide-character class "alnum" always contains at least the letters 'A' to 'Z', 'a' to 'z',
and the digits '0' to '9'.

RETURN VALUE
The iswalnum() function returns nonzero if wc is a wide character belonging to the
wide-character class "alnum". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswalnum()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswalnum() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isalnum(3), iswctype(3)

Linux man-pages 6.16 2025-05-17 1987

iswalpha(3) Library Functions Manual iswalpha(3)

NAME
iswalpha - test for alphabetic wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswalpha(wint_t wc);

DESCRIPTION
The iswalpha() function is the wide-character equivalent of the isalpha(3) function. It
tests whether wc is a wide character belonging to the wide-character class "alpha".

The wide-character class "alpha" is a subclass of the wide-character class "alnum", and
therefore also a subclass of the wide-character class "graph" and of the wide-character
class "print".

Being a subclass of the wide-character class "print", the wide-character class "alpha" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "alpha" is
disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "alpha" is
disjoint from the wide-character class "punct".

The wide-character class "alpha" is disjoint from the wide-character class "digit".

The wide-character class "alpha" contains the wide-character classes "upper" and
"lower".

The wide-character class "alpha" always contains at least the letters 'A' to 'Z' and 'a' to
'z'.

RETURN VALUE
The iswalpha() function returns nonzero if wc is a wide character belonging to the
wide-character class "alpha". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswalpha()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswalpha() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isalpha(3), iswctype(3)

Linux man-pages 6.16 2025-05-17 1988

iswblank(3) Library Functions Manual iswblank(3)

NAME
iswblank - test for whitespace wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswblank(wint_t wc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

iswblank():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The iswblank() function is the wide-character equivalent of the isblank(3) function. It
tests whether wc is a wide character belonging to the wide-character class "blank".

The wide-character class "blank" is a subclass of the wide-character class "space".

Being a subclass of the wide-character class "space", the wide-character class "blank" is
disjoint from the wide-character class "graph" and therefore also disjoint from its sub-
classes "alnum", "alpha", "upper", "lower", "digit", "xdigit", "punct".

The wide-character class "blank" always contains at least the space character and the
control character '\t'.

RETURN VALUE
The iswblank() function returns nonzero if wc is a wide character belonging to the
wide-character class "blank". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswblank()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The behavior of iswblank() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isblank(3), iswctype(3)

Linux man-pages 6.16 2025-05-17 1989

iswcntrl(3) Library Functions Manual iswcntrl(3)

NAME
iswcntrl - test for control wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswcntrl(wint_t wc);

DESCRIPTION
The iswcntrl() function is the wide-character equivalent of the iscntrl(3) function. It
tests whether wc is a wide character belonging to the wide-character class "cntrl".

The wide-character class "cntrl" is disjoint from the wide-character class "print" and
therefore also disjoint from its subclasses "graph", "alpha", "upper", "lower", "digit",
"xdigit", "punct".

For an unsigned char c, iscntrl(c) implies iswcntrl(btowc(c)), but not vice versa.

RETURN VALUE
The iswcntrl() function returns nonzero if wc is a wide character belonging to the wide-
character class "cntrl". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswcntrl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswcntrl() depends on the LC_CTYPE category of the current locale.

SEE ALSO
iscntrl(3), iswctype(3)

Linux man-pages 6.16 2025-05-17 1990

iswctype(3) Library Functions Manual iswctype(3)

NAME
iswctype - wide-character classification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswctype(wint_t wc, wctype_t desc);

DESCRIPTION
If wc is a wide character having the character property designated by desc (or in other
words: belongs to the character class designated by desc), then the iswctype() function
returns nonzero. Otherwise, it returns zero. If wc is WEOF, zero is returned.

desc must be a character property descriptor returned by the wctype(3) function.

RETURN VALUE
The iswctype() function returns nonzero if the wc has the designated property. Other-
wise, it returns 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeiswctype()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswctype() depends on the LC_CTYPE category of the current locale.

SEE ALSO
iswalnum(3), iswalpha(3), iswblank(3), iswcntrl(3), iswdigit(3), iswgraph(3),
iswlower(3), iswprint(3), iswpunct(3), iswspace(3), iswupper(3), iswxdigit(3), wctype(3)

Linux man-pages 6.16 2025-05-17 1991

iswdigit(3) Library Functions Manual iswdigit(3)

NAME
iswdigit - test for decimal digit wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswdigit(wint_t wc);

DESCRIPTION
The iswdigit() function is the wide-character equivalent of the isdigit(3) function. It
tests whether wc is a wide character belonging to the wide-character class "digit".

The wide-character class "digit" is a subclass of the wide-character class "xdigit", and
therefore also a subclass of the wide-character class "alnum", of the wide-character class
"graph" and of the wide-character class "print".

Being a subclass of the wide character class "print", the wide-character class "digit" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "digit" is
disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "digit" is
disjoint from the wide-character class "punct".

The wide-character class "digit" is disjoint from the wide-character class "alpha" and
therefore also disjoint from its subclasses "lower", "upper".

The wide-character class "digit" always contains exactly the digits '0' to '9'.

RETURN VALUE
The iswdigit() function returns nonzero if wc is a wide character belonging to the wide-
character class "digit". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswdigit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswdigit() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isdigit(3), iswctype(3)

Linux man-pages 6.16 2025-05-17 1992

iswgraph(3) Library Functions Manual iswgraph(3)

NAME
iswgraph - test for graphic wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswgraph(wint_t wc);

DESCRIPTION
The iswgraph() function is the wide-character equivalent of the isgraph(3) function. It
tests whether wc is a wide character belonging to the wide-character class "graph".

The wide-character class "graph" is a subclass of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "graph" is
disjoint from the wide-character class "cntrl".

The wide-character class "graph" is disjoint from the wide-character class "space" and
therefore also disjoint from its subclass "blank".

The wide-character class "graph" contains all the wide characters from the wide-charac-
ter class "print" except the space character. It therefore contains the wide-character
classes "alnum" and "punct".

RETURN VALUE
The iswgraph() function returns nonzero if wc is a wide character belonging to the
wide-character class "graph". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswgraph()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswgraph() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isgraph(3), iswctype(3)

Linux man-pages 6.16 2025-09-21 1993

iswlower(3) Library Functions Manual iswlower(3)

NAME
iswlower - test for lowercase wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswlower(wint_t wc);

DESCRIPTION
The iswlower() function is the wide-character equivalent of the islower(3) function. It
tests whether wc is a wide character belonging to the wide-character class "lower".

The wide-character class "lower" is a subclass of the wide-character class "alpha", and
therefore also a subclass of the wide-character class "alnum", of the wide-character class
"graph" and of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "lower" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "lower" is
disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "lower" is
disjoint from the wide-character class "punct".

Being a subclass of the wide-character class "alpha", the wide-character class "lower" is
disjoint from the wide-character class "digit".

The wide-character class "lower" contains at least those characters wc which are equal
to towlower(wc) and different from towupper(wc).

The wide-character class "lower" always contains at least the letters 'a' to 'z'.

RETURN VALUE
The iswlower() function returns nonzero if wc is a wide character belonging to the
wide-character class "lower". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswlower()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswlower() depends on the LC_CTYPE category of the current locale.

This function is not very appropriate for dealing with Unicode characters, because Uni-
code knows about three cases: upper, lower, and title case.

Linux man-pages 6.16 2025-05-17 1994

iswlower(3) Library Functions Manual iswlower(3)

SEE ALSO
islower(3), iswctype(3), towlower(3)

Linux man-pages 6.16 2025-05-17 1995

iswprint(3) Library Functions Manual iswprint(3)

NAME
iswprint - test for printing wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswprint(wint_t wc);

DESCRIPTION
The iswprint() function is the wide-character equivalent of the isprint(3) function. It
tests whether wc is a wide character belonging to the wide-character class "print".

The wide-character class "print" is disjoint from the wide-character class "cntrl".

The wide-character class "print" contains the wide-character class "graph".

RETURN VALUE
The iswprint() function returns nonzero if wc is a wide character belonging to the wide-
character class "print". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswprint()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswprint() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isprint(3), iswctype(3)

Linux man-pages 6.16 2025-05-17 1996

iswpunct(3) Library Functions Manual iswpunct(3)

NAME
iswpunct - test for punctuation or symbolic wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswpunct(wint_t wc);

DESCRIPTION
The iswpunct() function is the wide-character equivalent of the ispunct(3) function. It
tests whether wc is a wide character belonging to the wide-character class "punct".

The wide-character class "punct" is a subclass of the wide-character class "graph", and
therefore also a subclass of the wide-character class "print".

The wide-character class "punct" is disjoint from the wide-character class "alnum" and
therefore also disjoint from its subclasses "alpha", "upper", "lower", "digit", "xdigit".

Being a subclass of the wide-character class "print", the wide-character class "punct" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "punct" is
disjoint from the wide-character class "space" and its subclass "blank".

RETURN VALUE
The iswpunct() function returns nonzero if wc is a wide-character belonging to the
wide-character class "punct". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswpunct()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswpunct() depends on the LC_CTYPE category of the current locale.

This function’s name is a misnomer when dealing with Unicode characters, because the
wide-character class "punct" contains both punctuation characters and symbol (math,
currency, etc.) characters.

SEE ALSO
ispunct(3), iswctype(3)

Linux man-pages 6.16 2025-05-17 1997

iswspace(3) Library Functions Manual iswspace(3)

NAME
iswspace - test for whitespace wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswspace(wint_t wc);

DESCRIPTION
The iswspace() function is the wide-character equivalent of the isspace(3) function. It
tests whether wc is a wide character belonging to the wide-character class "space".

The wide-character class "space" is disjoint from the wide-character class "graph" and
therefore also disjoint from its subclasses "alnum", "alpha", "upper", "lower", "digit",
"xdigit", "punct".

The wide-character class "space" contains the wide-character class "blank".

The wide-character class "space" always contains at least the space character and the
control characters '\f', '\n', '\r', '\t', and '\v'.

RETURN VALUE
The iswspace() function returns nonzero if wc is a wide character belonging to the
wide-character class "space". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswspace()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswspace() depends on the LC_CTYPE category of the current locale.

SEE ALSO
isspace(3), iswctype(3)

Linux man-pages 6.16 2025-09-21 1998

iswupper(3) Library Functions Manual iswupper(3)

NAME
iswupper - test for uppercase wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswupper(wint_t wc);

DESCRIPTION
The iswupper() function is the wide-character equivalent of the isupper(3) function. It
tests whether wc is a wide character belonging to the wide-character class "upper".

The wide-character class "upper" is a subclass of the wide-character class "alpha", and
therefore also a subclass of the wide-character class "alnum", of the wide-character class
"graph" and of the wide-character class "print".

Being a subclass of the wide-character class "print", the wide-character class "upper" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "upper" is
disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "upper"
is disjoint from the wide-character class "punct".

Being a subclass of the wide-character class "alpha", the wide-character class "upper" is
disjoint from the wide-character class "digit".

The wide-character class "upper" contains at least those characters wc which are equal
to towupper(wc) and different from towlower(wc).

The wide-character class "upper" always contains at least the letters 'A' to 'Z'.

RETURN VALUE
The iswupper() function returns nonzero if wc is a wide character belonging to the
wide-character class "upper". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswupper()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswupper() depends on the LC_CTYPE category of the current locale.

This function is not very appropriate for dealing with Unicode characters, because Uni-
code knows about three cases: upper, lower, and title case.

Linux man-pages 6.16 2025-05-17 1999

iswupper(3) Library Functions Manual iswupper(3)

SEE ALSO
isupper(3), iswctype(3), towupper(3)

Linux man-pages 6.16 2025-05-17 2000

iswxdigit(3) Library Functions Manual iswxdigit(3)

NAME
iswxdigit - test for hexadecimal digit wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

int iswxdigit(wint_t wc);

DESCRIPTION
The iswxdigit() function is the wide-character equivalent of the isxdigit(3) function. It
tests whether wc is a wide character belonging to the wide-character class "xdigit".

The wide-character class "xdigit" is a subclass of the wide-character class "alnum", and
therefore also a subclass of the wide-character class "graph" and of the wide-character
class "print".

Being a subclass of the wide-character class "print", the wide-character class "xdigit" is
disjoint from the wide-character class "cntrl".

Being a subclass of the wide-character class "graph", the wide-character class "xdigit" is
disjoint from the wide-character class "space" and its subclass "blank".

Being a subclass of the wide-character class "alnum", the wide-character class "xdigit"
is disjoint from the wide-character class "punct".

The wide-character class "xdigit" always contains at least the letters 'A' to 'F', 'a' to 'f'
and the digits '0' to '9'.

RETURN VALUE
The iswxdigit() function returns nonzero if wc is a wide character belonging to the
wide-character class "xdigit". Otherwise, it returns zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeiswxdigit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of iswxdigit() depends on the LC_CTYPE category of the current locale.

SEE ALSO
iswctype(3), isxdigit(3)

Linux man-pages 6.16 2025-05-17 2001

j0(3) Library Functions Manual j0(3)

NAME
j0, j0f, j0l, j1, j1f, j1l, jn, jnf, jnl - Bessel functions of the first kind

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double j0(double x);
double j1(double x);
double jn(int n, double x);

float j0f(float x);
float j1f(float x);
float jnf(int n, float x);

long double j0l(long double x);
long double j1l(long double x);
long double jnl(int n, long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

j0(), j1(), jn():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

j0f(), j0l(), j1f(), j1l(), jnf(), jnl():
_XOPEN_SOURCE >= 600

|| (_ISOC99_SOURCE && _XOPEN_SOURCE)
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The j0() and j1() functions return Bessel functions of x of the first kind of orders 0 and
1, respectively. The jn() function returns the Bessel function of x of the first kind of or-
der n.

The j0f(), j1f(), and jnf(), functions are versions that take and return float values. The
j0l(), j1l(), and jnl() functions are versions that take and return long double values.

RETURN VALUE
On success, these functions return the appropriate Bessel value of the first kind for x.

If x is a NaN, a NaN is returned.

If x is too large in magnitude, or the result underflows, a range error occurs, and the re-
turn value is 0.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Linux man-pages 6.16 2025-05-17 2002

j0(3) Library Functions Manual j0(3)

Range error: result underflow, or x is too large in magnitude
errno is set to ERANGE.

These functions do not raise exceptions for fetestexcept(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safej0(), j0f(), j0l()
Thread safety MT-Safej1(), j1f(), j1l()
Thread safety MT-Safejn(), jnf(), jnl()

STANDARDS
j0()
j1()
jn() POSIX.1-2008.

Others:
BSD.

HISTORY
j0()
j1()
jn() SVr4, 4.3BSD, POSIX.1-2001, POSIX.1-2008.

Others:
BSD.

BUGS
There are errors of up to 2e-16 in the values returned by j0(), j1(), and jn() for values of
x between -8 and 8.

SEE ALSO
y0(3)

Linux man-pages 6.16 2025-05-17 2003

key_setsecret(3) Library Functions Manual key_setsecret(3)

NAME
key_decryptsession, key_encryptsession, key_setsecret, key_gendes, key_se-
cretkey_is_set - interfaces to rpc keyserver daemon

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/rpc.h>

int key_decryptsession(char *remotename, des_block *deskey);
int key_encryptsession(char *remotename, des_block *deskey);

int key_gendes(des_block *deskey);

int key_setsecret(char *key);
int key_secretkey_is_set(void);

DESCRIPTION
The functions here are used within the RPC’s secure authentication mechanism
(AUTH_DES). There should be no need for user programs to use this functions.

The function key_decryptsession() uses the (remote) server netname and takes the DES
key for decrypting. It uses the public key of the server and the secret key associated
with the effective UID of the calling process.

The function key_encryptsession() is the inverse of key_decryptsession(). It encrypts
the DES keys with the public key of the server and the secret key associated with the ef-
fective UID of the calling process.

The function key_gendes() is used to ask the keyserver for a secure conversation key.

The function key_setsecret() is used to set the key for the effective UID of the calling
process.

The function key_secretkey_is_set() can be used to determine whether a key has been
set for the effective UID of the calling process.

RETURN VALUE
These functions return 1 on success and 0 on failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safekey_decryptsession(), key_encryptsession(),
key_gendes(), key_setsecret(), key_secretkey_is_set()

NOTES
Note that we talk about two types of encryption here. One is asymmetric using a public
and secret key. The other is symmetric, the 64-bit DES.

These routines were part of the Linux/Doors-project, abandoned by now.

SEE ALSO
crypt(3)

Linux man-pages 6.16 2025-05-17 2004

killpg(3) Library Functions Manual killpg(3)

NAME
killpg - send signal to a process group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int killpg(int pgrp, int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

killpg():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
killpg() sends the signal sig to the process group pgrp. See signal(7) for a list of sig-
nals.

If pgrp is 0, killpg() sends the signal to the calling process’s process group. (POSIX
says: if pgrp is less than or equal to 1, the behavior is undefined.)

For the permissions required to send a signal to another process, see kill(2).

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EINVAL

sig is not a valid signal number.

EPERM
The process does not have permission to send the signal to any of the target
processes. For the required permissions, see kill(2).

ESRCH
No process can be found in the process group specified by pgrp.

ESRCH
The process group was given as 0 but the sending process does not have a
process group.

VERSIONS
There are various differences between the permission checking in BSD-type systems
and System V-type systems. See the POSIX rationale for kill(3p)A difference not men-
tioned by POSIX concerns the return value EPERM: BSD documents that no signal is
sent and EPERM returned when the permission check failed for at least one target
process, while POSIX documents EPERM only when the permission check failed for
all target processes.

Linux man-pages 6.16 2025-05-17 2005

killpg(3) Library Functions Manual killpg(3)

C library/kernel differences
On Linux, killpg() is implemented as a library function that makes the call
kill(-pgrp, sig).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.4BSD (first appeared in 4BSD).

SEE ALSO
getpgrp(2), kill(2), signal(2), capabilities(7), credentials(7)

Linux man-pages 6.16 2025-05-17 2006

ldexp(3) Library Functions Manual ldexp(3)

NAME
ldexp, ldexpf, ldexpl - multiply floating-point number by integral power of 2

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double ldexp(double x, int e);
float ldexpf(float x, int e);
long double ldexpl(long double x, int e);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ldexpf(), ldexpl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the result of multiplying the floating-point number x by 2 raised
to the power e.

RETURN VALUE
On success, these functions return x * (2^e).

If e is zero, then x is returned.

If x is a NaN, a NaN is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is returned.

If the result underflows, a range error occurs, and zero is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with a sign the same as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error, overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UNDER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeldexp(), ldexpf(), ldexpl()

Linux man-pages 6.16 2025-07-19 2007

ldexp(3) Library Functions Manual ldexp(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
frexp(3), modf(3), scalbln(3)

Linux man-pages 6.16 2025-07-19 2008

lgamma(3) Library Functions Manual lgamma(3)

NAME
lgamma, lgammaf, lgammal, lgamma_r, lgammaf_r, lgammal_r, signgam - log gamma
function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double lgamma(double x);
float lgammaf(float x);
long double lgammal(long double x);

double lgamma_r(double x, int *signp);
float lgammaf_r(float x, int *signp);
long double lgammal_r(long double x, int *signp);

extern int signgam;

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lgamma():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

lgammaf(), lgammal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

lgamma_r(), lgammaf_r(), lgammal_r():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

signgam:
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
For the definition of the Gamma function, see tgamma(3).

The lgamma(), lgammaf(), and lgammal() functions return the natural logarithm of the
absolute value of the Gamma function. The sign of the Gamma function is returned in
the external integer signgam declared in <math.h>. It is 1 when the Gamma function is
positive or zero, -1 when it is negative.

Since using a constant location signgam is not thread-safe, the functions lgamma_r(),
lgammaf_r(), and lgammal_r() have been introduced; they return the sign via the argu-
ment signp.

Linux man-pages 6.16 2025-09-21 2009

lgamma(3) Library Functions Manual lgamma(3)

RETURN VALUE
On success, these functions return the natural logarithm of Gamma(x).

If x is a NaN, a NaN is returned.

If x is 1 or 2, +0 is returned.

If x is positive infinity or negative infinity, positive infinity is returned.

If x is a nonpositive integer, a pole error occurs, and the functions return +HUGE_VAL,
+HUGE_VALF, or +HUGE_VALL, respectively.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the correct mathematical sign.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Pole error: x is a nonpositive integer
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

STANDARDS
lgamma()
lgammaf()
lgammal()

C11, POSIX.1-2008.

signgam
POSIX.1-2008.

lgamma_r()
lgammaf_r()
lgammal_r()

None.

HISTORY
lgamma()
lgammaf()
lgammal()

C99, POSIX.1-2001.

signgam
POSIX.1-2001.

lgamma_r()
lgammaf_r()

Linux man-pages 6.16 2025-09-21 2010

lgamma(3) Library Functions Manual lgamma(3)

lgammal_r()
None.

BUGS
In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM; instead of the
POSIX-mandated ERANGE. Since glibc 2.10, glibc does the right thing.

SEE ALSO
tgamma(3)

Linux man-pages 6.16 2025-09-21 2011

lio_listio(3) Library Functions Manual lio_listio(3)

NAME
lio_listio - initiate a list of I/O requests

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <aio.h>

int lio_listio(int n;
int mode,
struct aiocb *restrict const aiocb_list[restrict n],
int n, struct sigevent *restrict sevp);

DESCRIPTION
The lio_listio() function initiates the list of I/O operations described by the array
aiocb_list.

The mode operation has one of the following values:

LIO_WAIT
The call blocks until all operations are complete. The sevp argument is ignored.

LIO_NOWAIT
The I/O operations are queued for processing and the call returns immediately.
When all of the I/O operations complete, asynchronous notification occurs, as
specified by the sevp argument; see sigevent(3type) for details. If sevp is NULL,
no asynchronous notification occurs.

The aiocb_list argument is an array of pointers to aiocb structures that describe I/O op-
erations. These operations are executed in an unspecified order. The n argument speci-
fies the size of the array aiocb_list. Null pointers in aiocb_list are ignored.

In each control block in aiocb_list, the aio_lio_opcode field specifies the I/O operation
to be initiated, as follows:

LIO_READ
Initiate a read operation. The operation is queued as for a call to aio_read(3)
specifying this control block.

LIO_WRITE
Initiate a write operation. The operation is queued as for a call to aio_write(3)
specifying this control block.

LIO_NOP
Ignore this control block.

The remaining fields in each control block have the same meanings as for aio_read(3)
and aio_write(3). The aio_sigevent fields of each control block can be used to specify
notifications for the individual I/O operations (see sigevent(7)).

RETURN VALUE
If mode is LIO_NOWAIT, lio_listio() returns 0 if all I/O operations are successfully
queued. Otherwise, -1 is returned, and errno is set to indicate the error.

If mode is LIO_WAIT, lio_listio() returns 0 when all of the I/O operations have

Linux man-pages 6.16 2025-09-21 2012

lio_listio(3) Library Functions Manual lio_listio(3)

completed successfully. Otherwise, -1 is returned, and errno is set to indicate the error.

The return status from lio_listio() provides information only about the call itself, not
about the individual I/O operations. One or more of the I/O operations may fail, but this
does not prevent other operations completing. The status of individual I/O operations in
aiocb_list can be determined using aio_error(3). When an operation has completed, its
return status can be obtained using aio_return(3). Individual I/O operations can fail for
the reasons described in aio_read(3) and aio_write(3).

ERRORS
The lio_listio() function may fail for the following reasons:

EAGAIN
Out of resources.

EAGAIN
The number of I/O operations specified by n would cause the limit AIO_MAX
to be exceeded.

EINTR
mode was LIO_WAIT and a signal was caught before all I/O operations com-
pleted; see signal(7). (This may even be one of the signals used for asynchro-
nous I/O completion notification.)

EINVAL
mode is invalid, or n exceeds the limit AIO_LISTIO_MAX.

EIO One of more of the operations specified by aiocb_list failed. The application
can check the status of each operation using aio_return(3).

If lio_listio() fails with the error EAGAIN, EINTR, or EIO, then some of the opera-
tions in aiocb_list may have been initiated. If lio_listio() fails for any other reason, then
none of the I/O operations has been initiated.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelio_listio()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
It is a good idea to zero out the control blocks before use. The control blocks must not
be changed while the I/O operations are in progress. The buffer areas being read into or
written from must not be accessed during the operations or undefined results may occur.
The memory areas involved must remain valid.

Simultaneous I/O operations specifying the same aiocb structure produce undefined re-
sults.

Linux man-pages 6.16 2025-09-21 2013

lio_listio(3) Library Functions Manual lio_listio(3)

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_return(3), aio_suspend(3), aio_write(3),
aio(7)

Linux man-pages 6.16 2025-09-21 2014

LIST (3) Library Functions Manual LIST (3)

NAME
LIST_EMPTY, LIST_ENTRY, LIST_FIRST, LIST_FOREACH, LIST_HEAD,
LIST_HEAD_INITIALIZER, LIST_INIT, LIST_INSERT_AFTER, LIST_IN-
SERT_BEFORE, LIST_INSERT_HEAD, LIST_NEXT, LIST_REMOVE - implemen-
tation of a doubly linked list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

LIST_ENTRY(TYPE);

LIST_HEAD(HEADNAME, TYPE);
LIST_HEAD LIST_HEAD_INITIALIZER(LIST_HEAD head);
void LIST_INIT(LIST_HEAD *head);

int LIST_EMPTY(LIST_HEAD *head);

void LIST_INSERT_HEAD(LIST_HEAD *head ,
struct TYPE *elm, LIST_ENTRY NAME);

void LIST_INSERT_BEFORE(struct TYPE *listelm,
struct TYPE *elm, LIST_ENTRY NAME);

void LIST_INSERT_AFTER(struct TYPE *listelm,
struct TYPE *elm, LIST_ENTRY NAME);

struct TYPE *LIST_FIRST(LIST_HEAD *head);
struct TYPE *LIST_NEXT(struct TYPE *elm, LIST_ENTRY NAME);

LIST_FOREACH(struct TYPE *var, LIST_HEAD *head , LIST_ENTRY NAME);

void LIST_REMOVE(struct TYPE *elm, LIST_ENTRY NAME);

DESCRIPTION
These macros define and operate on doubly linked lists.

In the macro definitions, TYPE is the name of a user-defined structure, that must contain
a field of type LIST_ENTRY , named NAME. The argument HEADNAME is the name of
a user-defined structure that must be declared using the macro LIST_HEAD().

Creation
A list is headed by a structure defined by the LIST_HEAD() macro. This structure con-
tains a single pointer to the first element on the list. The elements are doubly linked so
that an arbitrary element can be removed without traversing the list. New elements can
be added to the list after an existing element, before an existing element, or at the head
of the list. A LIST_HEAD structure is declared as follows:

LIST_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type of
the elements to be linked into the list. A pointer to the head of the list can later be de-
clared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

Linux man-pages 6.16 2025-05-17 2015

LIST (3) Library Functions Manual LIST (3)

LIST_ENTRY() declares a structure that connects the elements in the list.

LIST_HEAD_INITIALIZER() evaluates to an initializer for the list head .

LIST_INIT() initializes the list referenced by head .

LIST_EMPTY() evaluates to true if there are no elements in the list.

Insertion
LIST_INSERT_HEAD() inserts the new element elm at the head of the list.

LIST_INSERT_BEFORE() inserts the new element elm before the element listelm.

LIST_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
LIST_FIRST() returns the first element in the list, or NULL if the list is empty.

LIST_NEXT() returns the next element in the list, or NULL if this is the last.

LIST_FOREACH() traverses the list referenced by head in the forward direction, as-
signing each element in turn to var.

Removal
LIST_REMOVE() removes the element elm from the list.

RETURN VALUE
LIST_EMPTY() returns nonzero if the list is empty, and zero if the list contains at least
one entry.

LIST_FIRST(), and LIST_NEXT() return a pointer to the first or next TYPE structure,
respectively.

LIST_HEAD_INITIALIZER() returns an initializer that can be assigned to the list
head .

STANDARDS
BSD.

HISTORY
4.4BSD.

BUGS
LIST_FOREACH() doesn’t allow var to be removed or freed within the loop, as it
would interfere with the traversal. LIST_FOREACH_SAFE(), which is present on the
BSDs but is not present in glibc, fixes this limitation by allowing var to safely be re-
moved from the list and freed from within the loop without interfering with the traversal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
LIST_ENTRY(entry) entries; /* List */

Linux man-pages 6.16 2025-05-17 2016

LIST (3) Library Functions Manual LIST (3)

};

LIST_HEAD(listhead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct listhead head; /* List head */
int i;

LIST_INIT(&head); /* Initialize the list */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
LIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
LIST_INSERT_AFTER(n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before */
LIST_INSERT_BEFORE(n2, n3, entries);

i = 0; /* Forward traversal */
LIST_FOREACH(np, &head, entries)

np->data = i++;

LIST_REMOVE(n2, entries); /* Deletion */
free(n2);

/* Forward traversal */
LIST_FOREACH(np, &head, entries)

printf("%i\n", np->data);
/* List deletion */

n1 = LIST_FIRST(&head);
while (n1 != NULL) {

n2 = LIST_NEXT(n1, entries);
free(n1);
n1 = n2;

}
LIST_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.16 2025-05-17 2017

LIST (3) Library Functions Manual LIST (3)

Linux man-pages 6.16 2025-05-17 2018

localeconv(3) Library Functions Manual localeconv(3)

NAME
localeconv - get numeric formatting information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

struct lconv *localeconv(void);

DESCRIPTION
The localeconv() function returns a pointer to a struct lconv for the current locale. This
structure is shown in locale(7), and contains all values associated with the locale cate-
gories LC_NUMERIC and LC_MONETARY. Programs may also use the functions
printf(3) and strfmon(3), which behave according to the actual locale in use.

RETURN VALUE
The localeconv() function returns a pointer to a filled in struct lconv. This structure
may be (in glibc, is) statically allocated, and may be overwritten by subsequent calls.
According to POSIX, the caller should not modify the contents of this structure. The lo-
caleconv() function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetylocaleconv() MT-Unsafe race:localeconv locale

STANDARDS
C11.

HISTORY
C89.

BUGS
The printf(3) family of functions may or may not honor the current locale.

SEE ALSO
locale(1), localedef(1), isalpha(3), nl_langinfo(3), setlocale(3), strcoll(3), strftime(3),
locale(7)

Linux man-pages 6.16 2025-05-17 2019

lockf (3) Library Functions Manual lockf (3)

NAME
lockf - apply, test or remove a POSIX lock on an open file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int lockf(int fd , int op, off_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

lockf():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Apply, test, or remove a POSIX lock on a section of an open file. The file is specified by
fd , a file descriptor open for writing, the action by op, and the section consists of byte
positions pos..pos+size-1 if size is positive, and pos-size..pos-1 if size is negative,
where pos is the current file position, and if size is zero, the section extends from the
current file position to infinity, encompassing the present and future end-of-file posi-
tions. In all cases, the section may extend past current end-of-file.

On Linux, lockf() is just an interface on top of fcntl(2) locking. Many other systems im-
plement lockf() in this way, but note that POSIX.1 leaves the relationship between
lockf() and fcntl(2) locks unspecified. A portable application should probably avoid
mixing calls to these interfaces.

Valid operations are given below:

F_LOCK
Set an exclusive lock on the specified section of the file. If (part of) this section
is already locked, the call blocks until the previous lock is released. If this sec-
tion overlaps an earlier locked section, both are merged. File locks are released
as soon as the process holding the locks closes some file descriptor for the file.
A child process does not inherit these locks.

F_TLOCK
Same as F_LOCK but the call never blocks and returns an error instead if the
file is already locked.

F_ULOCK
Unlock the indicated section of the file. This may cause a locked section to be
split into two locked sections.

F_TEST
Test the lock: return 0 if the specified section is unlocked or locked by this
process; return -1, set errno to EAGAIN (EACCES on some other systems), if
another process holds a lock.

Linux man-pages 6.16 2025-09-21 2020

lockf (3) Library Functions Manual lockf (3)

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES or EAGAIN

The file is locked and F_TLOCK or F_TEST was specified, or the operation is
prohibited because the file has been memory-mapped by another process.

EBADF
fd is not an open file descriptor; or op is F_LOCK or F_TLOCK and fd is not
a writable file descriptor.

EDEADLK
op was F_LOCK and this lock operation would cause a deadlock.

EINTR
While waiting to acquire a lock, the call was interrupted by delivery of a signal
caught by a handler; see signal(7).

EINVAL
An invalid operation was specified in op.

ENOLCK
Too many segment locks open, lock table is full.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelockf()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4.

SEE ALSO
fcntl(2), flock(2)

locks.txt and mandatory-locking.txt in the Linux kernel source directory Documenta-
tion/filesystems (on older kernels, these files are directly under the Documentation direc-
tory, and mandatory-locking.txt is called mandatory.txt)

Linux man-pages 6.16 2025-09-21 2021

log(3) Library Functions Manual log(3)

NAME
log, logf, logl - natural logarithmic function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log(double x);
float logf(float x);
long double logl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

logf(), logl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the natural logarithm of x.

RETURN VALUE
On success, these functions return the natural logarithm of x.

If x is a NaN, a NaN is returned.

If x is 1, the result is +0.

If x is positive infinity, positive infinity is returned.

If x is zero, then a pole error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

If x is negative (including negative infinity), then a domain error occurs, and a NaN (not
a number) is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is negative
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is zero
errno is set to ERANGE. A divide-by-zero floating-point exception (FE_DI-
VBYZERO) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog(), logf(), logl()

Linux man-pages 6.16 2025-05-17 2022

log(3) Library Functions Manual log(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
In glibc 2.5 and earlier, taking the log() of a NaN produces a bogus invalid floating-point
(FE_INVALID) exception.

SEE ALSO
cbrt(3), clog(3), log10(3), log1p(3), log2(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 2023

log2(3) Library Functions Manual log2(3)

NAME
log2, log2f, log2l - base-2 logarithmic function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log2(double x);
float log2f(float x);
long double log2l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

log2(), log2f(), log2l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return the base-2 logarithm of x.

RETURN VALUE
On success, these functions return the base-2 logarithm of x.

For special cases, including where x is 0, 1, negative, infinity, or NaN, see log(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see log(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog2(), log2f(), log2l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD.

SEE ALSO
cbrt(3), clog2(3), log(3), log10(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 2024

log10(3) Library Functions Manual log10(3)

NAME
log10, log10f, log10l - base-10 logarithmic function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log10(double x);
float log10f(float x);
long double log10l(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

log10f(), log10l():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the base-10 logarithm of x.

RETURN VALUE
On success, these functions return the base-10 logarithm of x.

For special cases, including where x is 0, 1, negative, infinity, or NaN, see log(3).

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

For a discussion of the errors that can occur for these functions, see log(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog10(), log10f(), log10l()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
cbrt(3), clog10(3), exp10(3), log(3), log2(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 2025

log1p(3) Library Functions Manual log1p(3)

NAME
log1p, log1pf, log1pl - logarithm of 1 plus argument

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double log1p(double x);
float log1pf(float x);
long double log1pl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

log1p():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

log1pf(), log1pl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return a value equivalent to

log(1 + x)

The result is computed in a way that is accurate even if the value of x is near zero.

RETURN VALUE
On success, these functions return the natural logarithm of (1 + x).

If x is a NaN, a NaN is returned.

If x is positive infinity, positive infinity is returned.

If x is -1, a pole error occurs, and the functions return -HUGE_VAL, -HUGE_VALF,
or -HUGE_VALL, respectively.

If x is less than -1 (including negative infinity), a domain error occurs, and a NaN (not a
number) is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is less than -1.
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

Linux man-pages 6.16 2025-05-17 2026

log1p(3) Library Functions Manual log1p(3)

Pole error: x is -1.
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelog1p(), log1pf(), log1pl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

BUGS
Before glibc 2.22, the glibc implementation did not set errno to EDOM when a domain
error occurred.

Before glibc 2.22, the glibc implementation did not set errno to ERANGE when a
range error occurred.

SEE ALSO
exp(3), expm1(3), log(3)

Linux man-pages 6.16 2025-05-17 2027

logb(3) Library Functions Manual logb(3)

NAME
logb, logbf, logbl - get exponent of a floating-point value

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double logb(double x);
float logbf(float x);
long double logbl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

logb():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

logbf(), logbl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions extract the exponent from the internal floating-point representation of x
and return it as a floating-point value. The integer constant FLT_RADIX, defined in
<float.h>, indicates the radix used for the system’s floating-point representation. If
FLT_RADIX is 2, logb(x) is similar to floor(log2(fabs(x))), except that the latter may
give an incorrect integer due to intermediate rounding.

If x is subnormal, logb() returns the exponent x would have if it were normalized.

RETURN VALUE
On success, these functions return the exponent of x.

If x is a NaN, a NaN is returned.

If x is zero, then a pole error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively.

If x is negative infinity or positive infinity, then positive infinity is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Pole error: x is 0
A divide-by-zero floating-point exception (FE_DIVBYZERO) is raised.

These functions do not set errno.

Linux man-pages 6.16 2025-05-17 2028

logb(3) Library Functions Manual logb(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelogb(), logbf(), logbl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

logb()
4.3BSD (see IEEE.3 in the 4.3BSD manual).

SEE ALSO
ilogb(3), log(3)

Linux man-pages 6.16 2025-05-17 2029

login(3) Library Functions Manual login(3)

NAME
login, logout - write utmp and wtmp entries

LIBRARY
System utilities library (libutil, -lutil)

SYNOPSIS
#include <utmp.h>

void login(const struct utmp *ut);
int logout(const char *ut_line);

DESCRIPTION
The utmp file records who is currently using the system. The wtmp file records all lo-
gins and logouts. See utmp(5).

The function login() takes the supplied struct utmp, ut, and writes it to both the utmp
and the wtmp file.

The function logout() clears the entry in the utmp file again.

GNU details
More precisely, login() takes the argument ut struct, fills the field ut->ut_type (if there
is such a field) with the value USER_PROCESS, and fills the field ut->ut_pid (if there
is such a field) with the process ID of the calling process. Then it tries to fill the field
ut->ut_line. It takes the first of stdin, stdout, stderr that is a terminal, and stores the
corresponding pathname minus a possible leading /dev/ into this field, and then writes
the struct to the utmp file. On the other hand, if no terminal name was found, this field
is filled with "???" and the struct is not written to the utmp file. After this, the struct is
written to the wtmp file.

The logout() function searches the utmp file for an entry matching the ut_line argument.
If a record is found, it is updated by zeroing out the ut_name and ut_host fields, updat-
ing the ut_tv timestamp field and setting ut_type (if there is such a field) to
DEAD_PROCESS.

RETURN VALUE
The logout() function returns 1 if the entry was successfully written to the database, or 0
if an error occurred.

FILES
/var/run/utmp

user accounting database, configured through _PATH_UTMP in <paths.h>

/var/log/wtmp
user accounting log file, configured through _PATH_WTMP in <paths.h>

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetylogin(), logout() MT-Unsafe race:utent sig:ALRM timer

In the above table, utent in race:utent signifies that if any of the functions setutent(3),
getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. login() and logout() calls those functions, so we use race:utent

Linux man-pages 6.16 2025-09-06 2030

login(3) Library Functions Manual login(3)

to remind users.

VERSIONS
The member ut_user of struct utmp is called ut_name in BSD. Therefore, ut_name is
defined as an alias for ut_user in <utmp.h>.

STANDARDS
BSD.

SEE ALSO
getutent(3), utmp(5)

Linux man-pages 6.16 2025-09-06 2031

lrint(3) Library Functions Manual lrint(3)

NAME
lrint, lrintf, lrintl, llrint, llrintf, llrintl - round to nearest integer

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

long lrint(double x);
long lrintf(float x);
long lrintl(long double x);

long long llrint(double x);
long long llrintf(float x);
long long llrintl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round their argument to the nearest integer value, using the current
rounding direction (see fesetround(3)).

Note that unlike the rint(3) family of functions, the return type of these functions differs
from that of their arguments.

RETURN VALUE
These functions return the rounded integer value.

If x is a NaN or an infinity, or the rounded value is too large to be stored in a long (long
long in the case of the ll* functions), then a domain error occurs, and the return value is
unspecified.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is a NaN or infinite, or the rounded value is too large
An invalid floating-point exception (FE_INVALID) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelrint(), lrintf(), lrintl(), llrint(), llrintf(), llrintl()

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2032

lrint(3) Library Functions Manual lrint(3)

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
ceil(3), floor(3), lround(3), nearbyint(3), rint(3), round(3)

Linux man-pages 6.16 2025-05-17 2033

lround(3) Library Functions Manual lround(3)

NAME
lround, lroundf, lroundl, llround, llroundf, llroundl - round to nearest integer

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

long lround(double x);
long lroundf(float x);
long lroundl(long double x);

long long llround(double x);
long long llroundf(float x);
long long llroundl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round their argument to the nearest integer value, rounding halfway
cases away from zero, regardless of the current rounding direction (see fenv(3)).

Note that unlike the round(3) and ceil(3), functions, the return type of these functions
differs from that of their arguments.

RETURN VALUE
These functions return the rounded integer value.

If x is a NaN or an infinity, or the rounded value is too large to be stored in a long (long
long in the case of the ll* functions), then a domain error occurs, and the return value is
unspecified.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is a NaN or infinite, or the rounded value is too large
An invalid floating-point exception (FE_INVALID) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelround(), lroundf(), lroundl(), llround(), llroundf(),
llroundl()

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2034

lround(3) Library Functions Manual lround(3)

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
ceil(3), floor(3), lrint(3), nearbyint(3), rint(3), round(3)

Linux man-pages 6.16 2025-05-17 2035

lsearch(3) Library Functions Manual lsearch(3)

NAME
lfind, lsearch - linear search of an array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

void *lfind(size_t *n, size_t size;
const void key[size],
const void base[*n * size],
size_t *n, size_t size,
typeof(int (const void [size], const void [size]))

*compar);
void *lsearch(size_t *n, size_t size;

const void key[size],
void base[*n * size],
size_t *n, size_t size,
typeof(int (const void [size], const void [size]))

*compar);

DESCRIPTION
lfind() and lsearch() perform a linear search for key in the array base which has *n ele-
ments of size bytes each. The comparison function referenced by compar is expected to
have two arguments which point to the key object and to an array member, in that order,
and which returns zero if the key object matches the array member, and nonzero other-
wise.

If lsearch() does not find a matching element, then the key object is inserted at the end
of the table, and *n is incremented. In particular, one should know that a matching ele-
ment exists, or that more room is available.

RETURN VALUE
lfind() returns a pointer to a matching member of the array, or NULL if no match is
found. lsearch() returns a pointer to a matching member of the array, or to the newly
added member if no match is found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelfind(), lsearch()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD. libc-4.6.27.

BUGS
The naming is unfortunate.

Linux man-pages 6.16 2025-09-07 2036

lsearch(3) Library Functions Manual lsearch(3)

SEE ALSO
bsearch(3), hsearch(3), tsearch(3)

Linux man-pages 6.16 2025-09-07 2037

lseek64(3) Library Functions Manual lseek64(3)

NAME
lseek64 - reposition 64-bit read/write file offset

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _LARGEFILE64_SOURCE /* See feature_test_macros(7) */
#include <sys/types.h>
#include <unistd.h>

off64_t lseek64(int fd , off64_t offset, int whence);

DESCRIPTION
The lseek() family of functions reposition the offset of the open file associated with the
file descriptor fd to offset bytes relative to the start, current position, or end of the file,
when whence has the value SEEK_SET, SEEK_CUR, or SEEK_END, respectively.

For more details, return value, and errors, see lseek(2).

Four interfaces are available: lseek(), lseek64(), llseek(), and _llseek().

lseek()
Prototype:

off_t lseek(int fd, off_t offset, int whence);

The C library’s lseek() wrapper function uses the type off_t. This is a 32-bit signed type
on 32-bit architectures, unless one compiles with

#define _FILE_OFFSET_BITS 64

in which case it is a 64-bit signed type.

lseek64()
Prototype:

off64_t lseek64(int fd, off64_t offset, int whence);

The lseek64() library function uses a 64-bit type even when off_t is a 32-bit type. Its
prototype (and the type off64_t) is available only when one compiles with

#define _LARGEFILE64_SOURCE

The function lseek64() is available since glibc 2.1.

llseek()
Prototype:

loff_t llseek(int fd, loff_t offset, int whence);

The type loff_t is a 64-bit signed type. The llseek() library function is available in glibc
and works without special defines. However, the glibc headers do not provide a proto-
type. Users should add the above prototype, or something equivalent, to their own
source. When users complained about data loss caused by a miscompilation of
e2fsck(8), glibc 2.1.3 added the link-time warning

"the `llseek´ function may be dangerous; use `lseek64´ instead."

This makes this function unusable if one desires a warning-free compilation.

Linux man-pages 6.16 2025-09-21 2038

lseek64(3) Library Functions Manual lseek64(3)

Since glibc 2.28, this function symbol is no longer available to newly linked applica-
tions.

_llseek()
On 32-bit architectures, this is the system call that is used (by the C library wrapper
functions) to implement all of the above functions. The prototype is:

int _llseek(int fd, off_t offset_hi, off_t offset_lo,
loff_t *result, int whence);

For more details, see llseek(2).

64-bit systems don’t need an _llseek() system call. Instead, they have an lseek(2) sys-
tem call that supports 64-bit file offsets.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safelseek64()

NOTES
lseek64() is one of the functions that was specified in the Large File Summit (LFS)
specification that was completed in 1996. The purpose of the specification was to pro-
vide transitional support that allowed applications on 32-bit systems to access files
whose size exceeds that which can be represented with a 32-bit off_t type. As noted
above, this symbol is exposed by header files if the _LARGEFILE64_SOURCE fea-
ture test macro is defined. ALternatively, on a 32-bit system, the symbol lseek is aliased
to lseek64 if the macro _FILE_OFFSET_BITS is defined with the value 64.

SEE ALSO
llseek(2), lseek(2)

Linux man-pages 6.16 2025-09-21 2039

makecontext(3) Library Functions Manual makecontext(3)

NAME
makecontext, swapcontext - manipulate user context

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ucontext.h>

void makecontext(ucontext_t *ucp, typeof(void (int arg0, ...)) * func,
int argc, ...);

int swapcontext(ucontext_t *restrict oucp,
const ucontext_t *restrict ucp);

DESCRIPTION
In a System V-like environment, one has the type ucontext_t (defined in <ucontext.h>
and described in getcontext(3)) and the four functions getcontext(3), setcontext(3),
makecontext(), and swapcontext() that allow user-level context switching between
multiple threads of control within a process.

The makecontext() function modifies the context pointed to by ucp (which was ob-
tained from a call to getcontext(3)). Before invoking makecontext(), the caller must al-
locate a new stack for this context and assign its address to ucp->uc_stack, and define a
successor context and assign its address to ucp->uc_link.

When this context is later activated (using setcontext(3) or swapcontext()) the function
func is called, and passed the series of integer (int) arguments that follow argc; the
caller must specify the number of these arguments in argc. When this function returns,
the successor context is activated. If the successor context pointer is NULL, the thread
exits.

The swapcontext() function saves the current context in the structure pointed to by
oucp, and then activates the context pointed to by ucp.

RETURN VALUE
When successful, swapcontext() does not return. (But we may return later, in case oucp
is activated, in which case it looks like swapcontext() returns 0.) On error, swapcon-
text() returns -1 and sets errno to indicate the error.

ERRORS
ENOMEM

Insufficient stack space left.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymakecontext() MT-Safe race:ucp
Thread safetyswapcontext() MT-Safe race:oucp race:ucp

STANDARDS
None.

Linux man-pages 6.16 2025-08-20 2040

makecontext(3) Library Functions Manual makecontext(3)

HISTORY
glibc 2.1. SUSv2, POSIX.1-2001. Removed in POSIX.1-2008, citing portability issues,
and recommending that applications be rewritten to use POSIX threads instead.

NOTES
The interpretation of ucp->uc_stack is just as in sigaltstack(2), namely, this struct con-
tains the start and length of a memory area to be used as the stack, regardless of the di-
rection of growth of the stack. Thus, it is not necessary for the user program to worry
about this direction.

On architectures where int and pointer types are the same size (e.g., x86-32, where both
types are 32 bits), you may be able to get away with passing pointers as arguments to
makecontext() following argc. However, doing this is not guaranteed to be portable, is
undefined according to the standards, and won’t work on architectures where pointers
are larger than ints. Nevertheless, starting with glibc 2.8, glibc makes some changes to
makecontext(), to permit this on some 64-bit architectures (e.g., x86-64).

EXAMPLES
The example program below demonstrates the use of getcontext(3), makecontext(), and
swapcontext(). Running the program produces the following output:

$./a.out
main: swapcontext(&uctx_main, &uctx_func2)
func2: started
func2: swapcontext(&uctx_func2, &uctx_func1)
func1: started
func1: swapcontext(&uctx_func1, &uctx_func2)
func2: returning
func1: returning
main: exiting

Program source

#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <ucontext.h>

static ucontext_t uctx_main, uctx_func1, uctx_func2;

static void
func1(void)
{

printf("%s: started\n", __func__);
printf("%s: swapcontext(&uctx_func1, &uctx_func2)\n", __func__);
if (swapcontext(&uctx_func1, &uctx_func2) == -1)

err(EXIT_FAILURE, "swapcontext");
printf("%s: returning\n", __func__);

}

Linux man-pages 6.16 2025-08-20 2041

makecontext(3) Library Functions Manual makecontext(3)

static void
func2(void)
{

printf("%s: started\n", __func__);
printf("%s: swapcontext(&uctx_func2, &uctx_func1)\n", __func__);
if (swapcontext(&uctx_func2, &uctx_func1) == -1)

err(EXIT_FAILURE, "swapcontext");
printf("%s: returning\n", __func__);

}

int
main(int argc, char *argv[])
{

char func1_stack[16384];
char func2_stack[16384];

if (getcontext(&uctx_func1) == -1)
err(EXIT_FAILURE, "getcontext");

uctx_func1.uc_stack.ss_sp = func1_stack;
uctx_func1.uc_stack.ss_size = sizeof(func1_stack);
uctx_func1.uc_link = &uctx_main;
makecontext(&uctx_func1, func1, 0);

if (getcontext(&uctx_func2) == -1)
err(EXIT_FAILURE, "getcontext");

uctx_func2.uc_stack.ss_sp = func2_stack;
uctx_func2.uc_stack.ss_size = sizeof(func2_stack);
/* Successor context is f1(), unless argc > 1 */
uctx_func2.uc_link = (argc > 1) ? NULL : &uctx_func1;
makecontext(&uctx_func2, func2, 0);

printf("%s: swapcontext(&uctx_main, &uctx_func2)\n", __func__);
if (swapcontext(&uctx_main, &uctx_func2) == -1)

err(EXIT_FAILURE, "swapcontext");

printf("%s: exiting\n", __func__);
exit(EXIT_SUCCESS);

}

SEE ALSO
sigaction(2), sigaltstack(2), sigprocmask(2), getcontext(3), sigsetjmp(3)

Linux man-pages 6.16 2025-08-20 2042

makedev(3) Library Functions Manual makedev(3)

NAME
makedev, major, minor - manage a device number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/sysmacros.h>

dev_t makedev(unsigned int maj, unsigned int min);

unsigned int major(dev_t dev);
unsigned int minor(dev_t dev);

DESCRIPTION
A device ID consists of two parts: a major ID, identifying the class of the device, and a
minor ID, identifying a specific instance of a device in that class. A device ID is repre-
sented using the type dev_t.

Given major and minor device IDs, makedev() combines these to produce a device ID,
returned as the function result. This device ID can be given to mknod(2), for example.

The major() and minor() functions perform the converse task: given a device ID, they
return, respectively, the major and minor components. These macros can be useful to,
for example, decompose the device IDs in the structure returned by stat(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemakedev(), major(), minor()

VERSIONS
The BSDs expose the definitions for these macros via <sys/types.h>.

STANDARDS
None.

HISTORY
BSD, HP-UX, Solaris, AIX, Irix.

These interfaces are defined as macros. Since glibc 2.3.3, they have been aliases for
three GNU-specific functions: gnu_dev_makedev(), gnu_dev_major(), and
gnu_dev_minor(). The latter names are exported, but the traditional names are more
portable.

Depending on the version, glibc also exposes definitions for these macros from
<sys/types.h> if suitable feature test macros are defined. However, this behavior was
deprecated in glibc 2.25, and since glibc 2.28, <sys/types.h> no longer provides these
definitions.

SEE ALSO
mknod(2), stat(2)

Linux man-pages 6.16 2025-05-17 2043

mallinfo(3) Library Functions Manual mallinfo(3)

NAME
mallinfo, mallinfo2 - obtain memory allocation information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

struct mallinfo mallinfo(void);
struct mallinfo2 mallinfo2(void);

DESCRIPTION
These functions return a copy of a structure containing information about memory allo-
cations performed by malloc(3) and related functions. The structure returned by each
function contains the same fields. However, the older function, mallinfo(), is deprecated
since the type used for the fields is too small (see BUGS).

Note that not all allocations are visible to these functions; see BUGS and consider using
malloc_info(3) instead.

The mallinfo2 structure returned by mallinfo2() is defined as follows:

struct mallinfo2 {
size_t arena; /* Non-mmapped space allocated (bytes) */
size_t ordblks; /* Number of free chunks */
size_t smblks; /* Number of free fastbin blocks */
size_t hblks; /* Number of mmapped regions */
size_t hblkhd; /* Space allocated in mmapped regions

(bytes) */
size_t usmblks; /* See below */
size_t fsmblks; /* Space in freed fastbin blocks (bytes) */
size_t uordblks; /* Total allocated space (bytes) */
size_t fordblks; /* Total free space (bytes) */
size_t keepcost; /* Top-most, releasable space (bytes) */

};

The mallinfo structure returned by the deprecated mallinfo() function is exactly the
same, except that the fields are typed as int.

The structure fields contain the following information:

arena The total amount of memory allocated by means other than mmap(2) (i.e.,
memory allocated on the heap). This figure includes both in-use blocks and
blocks on the free list.

ordblks The number of ordinary (i.e., non-fastbin) free blocks.

smblks The number of fastbin free blocks (see mallopt(3)).

hblks The number of blocks currently allocated using mmap(2). (See the discus-
sion of M_MMAP_THRESHOLD in mallopt(3).)

Linux man-pages 6.16 2025-09-21 2044

mallinfo(3) Library Functions Manual mallinfo(3)

hblkhd The number of bytes in blocks currently allocated using mmap(2).

usmblks This field is unused, and is always 0. Historically, it was the "highwater
mark" for allocated space—that is, the maximum amount of space that was
ever allocated (in bytes); this field was maintained only in nonthreading en-
vironments.

fsmblks The total number of bytes in fastbin free blocks.

uordblks The total number of bytes used by in-use allocations.

fordblks The total number of bytes in free blocks.

keepcost The total amount of releasable free space at the top of the heap. This is the
maximum number of bytes that could ideally (i.e., ignoring page alignment
restrictions, and so on) be released by malloc_trim(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymallinfo(), mallinfo2() MT-Unsafe init const:mallopt

mallinfo()/ mallinfo2() would access some global internal objects. If modify them with
non-atomically, may get inconsistent results. The identifier mallopt in const:mallopt
mean that mallopt() would modify the global internal objects with atomics, that make
sure mallinfo()/ mallinfo2() is safe enough, others modify with non-atomically maybe
not.

STANDARDS
None.

HISTORY
mallinfo()

glibc 2.0. SVID.

mallinfo2()
glibc 2.33.

BUGS
Information is returned for only the main memory allocation area. Allocations in
other arenas are excluded. See malloc_stats(3) and malloc_info(3) for alternatives that
include information about other arenas.

The fields of the mallinfo structure that is returned by the older mallinfo() function are
typed as int. However, because some internal bookkeeping values may be of type long,
the reported values may wrap around zero and thus be inaccurate.

EXAMPLES
The program below employs mallinfo2() to retrieve memory allocation statistics before
and after allocating and freeing some blocks of memory. The statistics are displayed on
standard output.

The first two command-line arguments specify the number and size of blocks to be allo-
cated with malloc(3).

The remaining three arguments specify which of the allocated blocks should be freed

Linux man-pages 6.16 2025-09-21 2045

mallinfo(3) Library Functions Manual mallinfo(3)

with free(3). These three arguments are optional, and specify (in order): the step size to
be used in the loop that frees blocks (the default is 1, meaning free all blocks in the
range); the ordinal position of the first block to be freed (default 0, meaning the first al-
located block); and a number one greater than the ordinal position of the last block to be
freed (default is one greater than the maximum block number). If these three arguments
are omitted, then the defaults cause all allocated blocks to be freed.

In the following example run of the program, 1000 allocations of 100 bytes are per-
formed, and then every second allocated block is freed:

$./a.out 1000 100 2;
============== Before allocating blocks ==============
Total non-mmapped bytes (arena): 0
of free chunks (ordblks): 1
of free fastbin blocks (smblks): 0
of mapped regions (hblks): 0
Bytes in mapped regions (hblkhd): 0
Max. total allocated space (usmblks): 0
Free bytes held in fastbins (fsmblks): 0
Total allocated space (uordblks): 0
Total free space (fordblks): 0
Topmost releasable block (keepcost): 0

============== After allocating blocks ==============
Total non-mmapped bytes (arena): 135168
of free chunks (ordblks): 1
of free fastbin blocks (smblks): 0
of mapped regions (hblks): 0
Bytes in mapped regions (hblkhd): 0
Max. total allocated space (usmblks): 0
Free bytes held in fastbins (fsmblks): 0
Total allocated space (uordblks): 104000
Total free space (fordblks): 31168
Topmost releasable block (keepcost): 31168

============== After freeing blocks ==============
Total non-mmapped bytes (arena): 135168
of free chunks (ordblks): 501
of free fastbin blocks (smblks): 0
of mapped regions (hblks): 0
Bytes in mapped regions (hblkhd): 0
Max. total allocated space (usmblks): 0
Free bytes held in fastbins (fsmblks): 0
Total allocated space (uordblks): 52000
Total free space (fordblks): 83168
Topmost releasable block (keepcost): 31168

Linux man-pages 6.16 2025-09-21 2046

mallinfo(3) Library Functions Manual mallinfo(3)

Program source

#include <malloc.h>
#include <stdlib.h>
#include <string.h>

static void
display_mallinfo2(void)
{

struct mallinfo2 mi;

mi = mallinfo2();

printf("Total non-mmapped bytes (arena): %zu\n", mi.arena);
printf("# of free chunks (ordblks): %zu\n", mi.ordblks);
printf("# of free fastbin blocks (smblks): %zu\n", mi.smblks);
printf("# of mapped regions (hblks): %zu\n", mi.hblks);
printf("Bytes in mapped regions (hblkhd): %zu\n", mi.hblkhd);
printf("Max. total allocated space (usmblks): %zu\n", mi.usmblks);
printf("Free bytes held in fastbins (fsmblks): %zu\n", mi.fsmblks);
printf("Total allocated space (uordblks): %zu\n", mi.uordblks);
printf("Total free space (fordblks): %zu\n", mi.fordblks);
printf("Topmost releasable block (keepcost): %zu\n", mi.keepcost);

}

int
main(int argc, char *argv[])
{
#define MAX_ALLOCS 500000

char *alloc[MAX_ALLOCS];
size_t blockSize, numBlocks, freeBegin, freeEnd, freeStep;

if (argc < 3 || strcmp(argv[1], "--help") == 0) {
fprintf(stderr, "%s num-blocks block-size [free-step "

"[start-free [end-free]]]\n", argv[0]);
exit(EXIT_FAILURE);

}

numBlocks = atoi(argv[1]);
blockSize = atoi(argv[2]);
freeStep = (argc > 3) ? atoi(argv[3]) : 1;
freeBegin = (argc > 4) ? atoi(argv[4]) : 0;
freeEnd = (argc > 5) ? atoi(argv[5]) : numBlocks;

printf("============== Before allocating blocks ==============\n");
display_mallinfo2();

Linux man-pages 6.16 2025-09-21 2047

mallinfo(3) Library Functions Manual mallinfo(3)

for (size_t j = 0; j < numBlocks; j++) {
if (numBlocks >= MAX_ALLOCS) {

fprintf(stderr, "Too many allocations\n");
exit(EXIT_FAILURE);

}

alloc[j] = malloc(blockSize);
if (alloc[j] == NULL) {

perror("malloc");
exit(EXIT_FAILURE);

}
}

printf("\n============== After allocating blocks ==============\n");
display_mallinfo2();

for (size_t j = freeBegin; j < freeEnd; j += freeStep)
free(alloc[j]);

printf("\n============== After freeing blocks ==============\n");
display_mallinfo2();

exit(EXIT_SUCCESS);
}

SEE ALSO
mmap(2), malloc(3), malloc_info(3), malloc_stats(3), malloc_trim(3), mallopt(3)

Linux man-pages 6.16 2025-09-21 2048

malloc(3) Library Functions Manual malloc(3)

NAME
malloc, free, calloc, realloc, reallocarray - allocate and free dynamic memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void *malloc(size_t size);
void free(void *_Nullable p);
void *calloc(size_t n, size_t size);
void *realloc(void *_Nullable p, size_t size);
void *reallocarray(void *_Nullable p, size_t n, size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

reallocarray():
Since glibc 2.29:

_DEFAULT_SOURCE
glibc 2.28 and earlier:

_GNU_SOURCE

DESCRIPTION
malloc()

The malloc() function allocates size bytes and returns a pointer to the allocated memory.
The memory is not initialized . If size is 0, then malloc() returns a unique pointer value
that can later be successfully passed to free(). (See "Nonportable behavior" for portabil-
ity issues.)

free()
The free() function frees the memory space pointed to by p, which must have been re-
turned by a previous call to malloc() or related functions. Otherwise, or if p has already
been freed, undefined behavior occurs. If p is NULL, no operation is performed.

calloc()
The calloc() function allocates memory for an array of n elements of size bytes each and
returns a pointer to the allocated memory. The memory is set to zero. If n or size is 0,
then calloc() returns a unique pointer value that can later be successfully passed to
free().

If the multiplication of n and size would result in integer overflow, then calloc() returns
an error. By contrast, an integer overflow would not be detected in the following call to
malloc(), with the result that an incorrectly sized block of memory would be allocated:

malloc(n * size);

realloc()
The realloc() function changes the size of the memory block pointed to by p to size
bytes. The contents of the memory will be unchanged in the range from the start of the
region up to the minimum of the old and new sizes. If the new size is larger than the old
size, the added memory will not be initialized.

If p is NULL, then the call is equivalent to malloc(size), for all values of size.

Linux man-pages 6.16 2025-09-21 2049

malloc(3) Library Functions Manual malloc(3)

If size is equal to zero, and p is not NULL, then the call is equivalent to free(p) (but see
"Nonportable behavior" for portability issues).

Unless p is NULL, it must have been returned by an earlier call to malloc or related
functions. If the area pointed to was moved, a free(p) is done.

reallocarray()
The reallocarray() function changes the size of (and possibly moves) the memory block
pointed to by p to be large enough for an array of n elements, each of which is size
bytes. It is equivalent to the call

realloc(p, n * size);

However, unlike that realloc() call, reallocarray() fails safely in the case where the
multiplication would overflow. If such an overflow occurs, reallocarray() returns an er-
ror.

RETURN VALUE
The malloc(), calloc(), realloc(), and reallocarray() functions return a pointer to the al-
located memory, which is suitably aligned for any type that fits into the requested size or
less. On error, these functions return NULL and set errno. Attempting to allocate more
than PTRDIFF_MAX bytes is considered an error, as an object that large could cause
later pointer subtraction to overflow.

The free() function returns no value, and preserves errno.

The realloc() and reallocarray() functions return NULL if p is not NULL and the re-
quested size is zero; this is not considered an error. (See "Nonportable behavior" for
portability issues.) Otherwise, the returned pointer may be the same as p if the alloca-
tion was not moved (e.g., there was room to expand the allocation in-place), or different
from p if the allocation was moved to a new address. If these functions fail, the original
block is left untouched; it is not freed or moved.

ERRORS
calloc(), malloc(), realloc(), and reallocarray() can fail with the following error:

ENOMEM
Out of memory. Possibly, the application hit the RLIMIT_AS or
RLIMIT_DATA limit described in getrlimit(2). Another reason could be that
the number of mappings created by the caller process exceeded the limit speci-
fied by /proc/sys/vm/max_map_count.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc(), free(), calloc(), realloc()

STANDARDS
malloc()
free()
calloc()

Linux man-pages 6.16 2025-09-21 2050

malloc(3) Library Functions Manual malloc(3)

realloc()
C23, POSIX.1-2024.

reallocarray()
POSIX.1-2024.

realloc(p, 0)
The behavior of realloc(p, 0) in glibc doesn’t conform to any of C99, C11,
POSIX.1-2001, POSIX.1-2004, POSIX.1-2008, POSIX.1-2013, POSIX.1-2017, or
POSIX.1-2024. The C17 specification was changed to make it conforming, but that
specification made it impossible to write code that reliably determines if the input
pointer is freed after realloc(p, 0), and C23 changed it again to make this undefined be-
havior, acknowledging that the C17 specification was broad enough, so that undefined
behavior wasn’t worse than that.

reallocarray() suffers the same issues in glibc.

musl libc and the BSDs conform to all versions of ISO C and POSIX.1.

gnulib provides the realloc-posix module, which provides wrappers realloc() and real-
locarray() that conform to all versions of ISO C and POSIX.1.

There’s a proposal to standardize the BSD behavior: 〈https://www.open-std.org/jtc1/
sc22/wg14/www/docs/n3621.txt〉.

HISTORY
malloc()
free()
calloc()
realloc()

POSIX.1-2001, C89.

reallocarray()
glibc 2.26. OpenBSD 5.6, FreeBSD 11.0.

malloc() and related functions rejected sizes greater than PTRDIFF_MAX starting in
glibc 2.30.

free() preserved errno starting in glibc 2.33.

realloc(p, 0)
C89 was ambiguous in its specification of realloc(p, 0). C99 partially fixed this.

The original implementation in glibc would have been conforming to C99. However,
and ironically, trying to comply with C99 before the standard was released, glibc
changed its behavior in glibc 2.1.1 into something that ended up not conforming to the
final C99 specification (but this is debated, as the wording of the standard seems self-
contradicting).

NOTES
By default, Linux follows an optimistic memory allocation strategy. This means that
when malloc() returns non-NULL there is no guarantee that the memory really is avail-
able. In case it turns out that the system is out of memory, one or more processes will be
killed by the OOM killer. For more information, see the description of
/proc/sys/vm/overcommit_memory and /proc/sys/vm/oom_adj in proc(5), and the Linux

Linux man-pages 6.16 2025-09-21 2051

malloc(3) Library Functions Manual malloc(3)

kernel source file Documentation/vm/overcommit-accounting.rst.

Normally, malloc() allocates memory from the heap, and adjusts the size of the heap as
required, using sbrk(2). When allocating blocks of memory larger than
MMAP_THRESHOLD bytes, the glibc malloc() implementation allocates the memory
as a private anonymous mapping using mmap(2). MMAP_THRESHOLD is 128 kB by
default, but is adjustable using mallopt(3). Prior to Linux 4.7 allocations performed us-
ing mmap(2) were unaffected by the RLIMIT_DATA resource limit; since Linux 4.7,
this limit is also enforced for allocations performed using mmap(2).

To avoid corruption in multithreaded applications, mutexes are used internally to protect
the memory-management data structures employed by these functions. In a multi-
threaded application in which threads simultaneously allocate and free memory, there
could be contention for these mutexes. To scalably handle memory allocation in multi-
threaded applications, glibc creates additional memory allocation arenas if mutex con-
tention is detected. Each arena is a large region of memory that is internally allocated
by the system (using brk(2) or mmap(2)), and managed with its own mutexes.

If your program uses a private memory allocator, it should do so by replacing malloc(),
free(), calloc(), and realloc(). The replacement functions must implement the docu-
mented glibc behaviors, including errno handling, size-zero allocations, and overflow
checking; otherwise, other library routines may crash or operate incorrectly. For exam-
ple, if the replacement free() does not preserve errno, then seemingly unrelated library
routines may fail without having a valid reason in errno. Private memory allocators
may also need to replace other glibc functions; see "Replacing malloc" in the glibc man-
ual for details.

Crashes in memory allocators are almost always related to heap corruption, such as
overflowing an allocated chunk or freeing the same pointer twice.

The malloc() implementation is tunable via environment variables; see mallopt(3) for
details.

Nonportable behavior
The behavior of these functions when the requested size is zero is glibc specific; other
implementations may return NULL without setting errno, and portable POSIX pro-
grams should tolerate such behavior. See realloc(3p)

POSIX requires memory allocators to set errno upon failure. However, the C standard
does not require this, and applications portable to non-POSIX platforms should not as-
sume this.

Portable programs should not use private memory allocators, as POSIX and the C stan-
dard do not allow replacement of malloc(), free(), calloc(), and realloc().

BUGS
Programmers would naturally expect by induction that realloc(p, size) is consistent with
free(p) and malloc(size), as that is the behavior in the general case. This is not explic-
itly required by POSIX.1-2024 or C11, but all conforming implementations are consis-
tent with that.

The glibc implementation of realloc() is not consistent with that, and as a consequence,
it is dangerous to call realloc(p, 0) in glibc.

Linux man-pages 6.16 2025-09-21 2052

malloc(3) Library Functions Manual malloc(3)

A trivial workaround for glibc is calling it as realloc(p, size?size:1).

The workaround for reallocarray() in glibc —which shares the same bug— would be
reallocarray(p, n?n:1, size?size:1).

EXAMPLES
#include <err.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define MALLOCARRAY(n, type) ((type *) my_mallocarray(n, sizeof(type)))
#define MALLOC(type) MALLOCARRAY(1, type)

static inline void *my_mallocarray(size_t n, size_t size);

int
main(void)
{

char *p;

p = MALLOCARRAY(32, char);
if (p == NULL)

err(EXIT_FAILURE, "malloc");

strlcpy(p, "foo", 32);
puts(p);

}

static inline void *
my_mallocarray(size_t n, size_t size)
{

return reallocarray(NULL, n, size);
}

SEE ALSO
valgrind(1), brk(2), mmap(2), alloca(3), malloc_get_state(3), malloc_info(3),
malloc_trim(3), malloc_usable_size(3), mallopt(3), mcheck(3), mtrace(3),
posix_memalign(3)

For details of the GNU C library implementation, see
〈https://sourceware.org/glibc/wiki/MallocInternals〉.

Linux man-pages 6.16 2025-09-21 2053

malloc_get_state(3) Library Functions Manual malloc_get_state(3)

NAME
malloc_get_state, malloc_set_state - record and restore state of malloc implementation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

void *malloc_get_state(void);
int malloc_set_state(void *state);

DESCRIPTION
Note: these functions are removed in glibc 2.25.

The malloc_get_state() function records the current state of all malloc(3) internal book-
keeping variables (but not the actual contents of the heap or the state of malloc_hook(3)
functions pointers). The state is recorded in a system-dependent opaque data structure
dynamically allocated via malloc(3), and a pointer to that data structure is returned as
the function result. (It is the caller’s responsibility to free(3) this memory.)

The malloc_set_state() function restores the state of all malloc(3) internal bookkeeping
variables to the values recorded in the opaque data structure pointed to by state.

RETURN VALUE
On success, malloc_get_state() returns a pointer to a newly allocated opaque data struc-
ture. On error (for example, memory could not be allocated for the data structure), mal-
loc_get_state() returns NULL.

On success, malloc_set_state() returns 0. If the implementation detects that state does
not point to a correctly formed data structure, malloc_set_state() returns -1. If the im-
plementation detects that the version of the data structure referred to by state is a more
recent version than this implementation knows about, malloc_set_state() returns -2.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_get_state(), malloc_set_state()

STANDARDS
GNU.

NOTES
These functions are useful when using this malloc(3) implementation as part of a shared
library, and the heap contents are saved/restored via some other method. This technique
is used by GNU Emacs to implement its "dumping" function.

Hook function pointers are never saved or restored by these functions, with two excep-
tions: if malloc checking (see mallopt(3)) was in use when malloc_get_state() was
called, then malloc_set_state() resets malloc checking hooks if possible; if malloc
checking was not in use in the recorded state, but the caller has requested malloc check-
ing, then the hooks are reset to 0.

Linux man-pages 6.16 2025-09-21 2054

malloc_get_state(3) Library Functions Manual malloc_get_state(3)

SEE ALSO
malloc(3), mallopt(3)

Linux man-pages 6.16 2025-09-21 2055

__malloc_hook(3) Library Functions Manual __malloc_hook(3)

NAME
__malloc_hook, __malloc_initialize_hook, __memalign_hook, __free_hook, __real-
loc_hook, __after_morecore_hook - malloc debugging variables (DEPRECATED)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

typeof(void *(size_t size, const void *caller))
*volatile __malloc_hook;

typeof(void *(void *p, size_t size, const void *caller))
*volatile __realloc_hook;

typeof(void *(size_t align, size_t size, const void *caller))
*volatile __memalign_hook;

typeof(void *(void *p, const void *caller))
*volatile __free_hook;

typeof(void (void)) *__malloc_initialize_hook;
typeof(void (void)) *volatile __after_mrecore_hook;

DESCRIPTION
The GNU C library lets you modify the behavior of malloc(3), realloc(3), and free(3) by
specifying appropriate hook functions. You can use these hooks to help you debug pro-
grams that use dynamic memory allocation, for example.

The variable __malloc_initialize_hook points at a function that is called once when the
malloc implementation is initialized. This is a weak variable, so it can be overridden in
the application with a definition like the following:

typeof(void (void)) *__malloc_initialize_hook = my_init_hook;

Now the function my_init_hook() can do the initialization of all hooks.

The four functions pointed to by __malloc_hook, __realloc_hook, __memalign_hook,
__free_hook have a prototype like the functions malloc(3), realloc(3), memalign(3),
free(3), respectively, except that they have a final argument caller that gives the address
of the caller of malloc(3), etc.

The variable __after_morecore_hook points at a function that is called each time after
sbrk(2) was asked for more memory.

STANDARDS
GNU.

NOTES
The use of these hook functions is not safe in multithreaded programs, and they are now
deprecated. From glibc 2.24 onwards, the __malloc_initialize_hook variable has been
removed from the API, and from glibc 2.34 onwards, all the hook variables have been
removed from the API. Programmers should instead preempt calls to the relevant func-
tions by defining and exporting malloc(), free(), realloc(), and calloc().

Linux man-pages 6.16 2025-05-17 2056

__malloc_hook(3) Library Functions Manual __malloc_hook(3)

EXAMPLES
Here is a short example of how to use these variables.

#include <stdio.h>
#include <malloc.h>

/* Prototypes for our hooks */
static void my_init_hook(void);
static void *my_malloc_hook(size_t, const void *);

/* Variables to save original hooks */
static typeof(void *(size_t, const void *)) *old_malloc_hook;

/* Override initializing hook from the C library */
typeof(void (void)) *__malloc_initialize_hook = my_init_hook;

static void
my_init_hook(void)
{

old_malloc_hook = __malloc_hook;
__malloc_hook = my_malloc_hook;

}

static void *
my_malloc_hook(size_t size, const void *caller)
{

void *result;

/* Restore all old hooks */
__malloc_hook = old_malloc_hook;

/* Call recursively */
result = malloc(size);

/* Save underlying hooks */
old_malloc_hook = __malloc_hook;

/* printf() might call malloc(), so protect it too */
printf("malloc(%zu) called from %p returns %p\n",

size, caller, result);

/* Restore our own hooks */
__malloc_hook = my_malloc_hook;

return result;
}

Linux man-pages 6.16 2025-05-17 2057

__malloc_hook(3) Library Functions Manual __malloc_hook(3)

SEE ALSO
mallinfo(3), malloc(3), mcheck(3), mtrace(3)

Linux man-pages 6.16 2025-05-17 2058

malloc_info(3) Library Functions Manual malloc_info(3)

NAME
malloc_info - export malloc state to a stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

int malloc_info(int options, FILE *stream);

DESCRIPTION
The malloc_info() function exports an XML string that describes the current state of the
memory-allocation implementation in the caller. The string is printed on the file stream
stream. The exported string includes information about all arenas (see malloc(3)).

As currently implemented, options must be zero.

RETURN VALUE
On success, malloc_info() returns 0. On failure, it returns -1, and errno is set to indi-
cate the error.

ERRORS
EINVAL

options was nonzero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_info()

STANDARDS
GNU.

HISTORY
glibc 2.10.

NOTES
The memory-allocation information is provided as an XML string (rather than a C struc-
ture) because the information may change over time (according to changes in the under-
lying implementation). The output XML string includes a version field.

The open_memstream(3) function can be used to send the output of malloc_info() di-
rectly into a buffer in memory, rather than to a file.

The malloc_info() function is designed to address deficiencies in malloc_stats(3) and
mallinfo(3).

EXAMPLES
The program below takes up to four command-line arguments, of which the first three
are mandatory. The first argument specifies the number of threads that the program
should create. All of the threads, including the main thread, allocate the number of
blocks of memory specified by the second argument. The third argument controls the
size of the blocks to be allocated. The main thread creates blocks of this size, the sec-
ond thread created by the program allocates blocks of twice this size, the third thread

Linux man-pages 6.16 2025-09-21 2059

malloc_info(3) Library Functions Manual malloc_info(3)

allocates blocks of three times this size, and so on.

The program calls malloc_info() twice to display the memory-allocation state. The first
call takes place before any threads are created or memory allocated. The second call is
performed after all threads have allocated memory.

In the following example, the command-line arguments specify the creation of one addi-
tional thread, and both the main thread and the additional thread allocate 10000 blocks
of memory. After the blocks of memory have been allocated, malloc_info() shows the
state of two allocation arenas.

$ getconf GNU_LIBC_VERSION
glibc 2.13
$./a.out 1 10000 100
============ Before allocating blocks ============
<malloc version="1">
<heap nr="0">
<sizes>
</sizes>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="135168"/>
<system type="max" size="135168"/>
<aspace type="total" size="135168"/>
<aspace type="mprotect" size="135168"/>
</heap>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="135168"/>
<system type="max" size="135168"/>
<aspace type="total" size="135168"/>
<aspace type="mprotect" size="135168"/>
</malloc>

============ After allocating blocks ============
<malloc version="1">
<heap nr="0">
<sizes>
</sizes>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="1081344"/>
<system type="max" size="1081344"/>
<aspace type="total" size="1081344"/>
<aspace type="mprotect" size="1081344"/>
</heap>
<heap nr="1">
<sizes>
</sizes>

Linux man-pages 6.16 2025-09-21 2060

malloc_info(3) Library Functions Manual malloc_info(3)

<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="1032192"/>
<system type="max" size="1032192"/>
<aspace type="total" size="1032192"/>
<aspace type="mprotect" size="1032192"/>
</heap>
<total type="fast" count="0" size="0"/>
<total type="rest" count="0" size="0"/>
<system type="current" size="2113536"/>
<system type="max" size="2113536"/>
<aspace type="total" size="2113536"/>
<aspace type="mprotect" size="2113536"/>
</malloc>

Program source
#include <err.h>
#include <errno.h>
#include <malloc.h>
#include <pthread.h>
#include <stdlib.h>
#include <unistd.h>

static size_t blockSize;
static size_t numThreads;
static unsigned int numBlocks;

static void *
thread_func(void *arg)
{

int tn = (int) arg;

/* The multiplier '(2 + tn)' ensures that each thread (including
the main thread) allocates a different amount of memory. */

for (unsigned int j = 0; j < numBlocks; j++)
if (malloc(blockSize * (2 + tn)) == NULL)

err(EXIT_FAILURE, "malloc-thread");

sleep(100); /* Sleep until main thread terminates. */
return NULL;

}

int
main(int argc, char *argv[])
{

int sleepTime;
pthread_t *thr;

Linux man-pages 6.16 2025-09-21 2061

malloc_info(3) Library Functions Manual malloc_info(3)

if (argc < 4) {
fprintf(stderr,

"%s num-threads num-blocks block-size [sleep-time]\n",
argv[0]);

exit(EXIT_FAILURE);
}

numThreads = atoi(argv[1]);
numBlocks = atoi(argv[2]);
blockSize = atoi(argv[3]);
sleepTime = (argc > 4) ? atoi(argv[4]) : 0;

thr = calloc(numThreads, sizeof(*thr));
if (thr == NULL)

err(EXIT_FAILURE, "calloc");

printf("============ Before allocating blocks ============\n");
malloc_info(0, stdout);

/* Create threads that allocate different amounts of memory. */

for (size_t tn = 0; tn < numThreads; tn++) {
errno = pthread_create(&thr[tn], NULL, thread_func,

(void *) tn);
if (errno != 0)

err(EXIT_FAILURE, "pthread_create");

/* If we add a sleep interval after the start-up of each
thread, the threads likely won't contend for malloc
mutexes, and therefore additional arenas won't be
allocated (see malloc(3)). */

if (sleepTime > 0)
sleep(sleepTime);

}

/* The main thread also allocates some memory. */

for (unsigned int j = 0; j < numBlocks; j++)
if (malloc(blockSize) == NULL)

err(EXIT_FAILURE, "malloc");

sleep(2); /* Give all threads a chance to
complete allocations. */

printf("\n============ After allocating blocks ============\n");

Linux man-pages 6.16 2025-09-21 2062

malloc_info(3) Library Functions Manual malloc_info(3)

malloc_info(0, stdout);

exit(EXIT_SUCCESS);
}

SEE ALSO
mallinfo(3), malloc(3), malloc_stats(3), mallopt(3), open_memstream(3)

Linux man-pages 6.16 2025-09-21 2063

malloc_stats(3) Library Functions Manual malloc_stats(3)

NAME
malloc_stats - print memory allocation statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

void malloc_stats(void);

DESCRIPTION
The malloc_stats() function prints (on standard error) statistics about memory allocated
by malloc(3) and related functions. For each arena (allocation area), this function prints
the total amount of memory allocated and the total number of bytes consumed by in-use
allocations. (These two values correspond to the arena and uordblks fields retrieved by
mallinfo(3).) In addition, the function prints the sum of these two statistics for all are-
nas, and the maximum number of blocks and bytes that were ever simultaneously allo-
cated using mmap(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_stats()

STANDARDS
GNU.

HISTORY
glibc 2.0.

NOTES
More detailed information about memory allocations in the main arena can be obtained
using mallinfo(3).

SEE ALSO
mmap(2), mallinfo(3), malloc(3), malloc_info(3), mallopt(3)

Linux man-pages 6.16 2025-05-17 2064

malloc_trim(3) Library Functions Manual malloc_trim(3)

NAME
malloc_trim - release free memory from the heap

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

int malloc_trim(size_t pad);

DESCRIPTION
The malloc_trim() function attempts to release free memory from the heap (by calling
sbrk(2) or madvise(2) with suitable arguments).

The pad argument specifies the amount of free space to leave untrimmed at the top of
the heap. If this argument is 0, only the minimum amount of memory is maintained at
the top of the heap (i.e., one page or less). A nonzero argument can be used to maintain
some trailing space at the top of the heap in order to allow future allocations to be made
without having to extend the heap with sbrk(2).

RETURN VALUE
The malloc_trim() function returns 1 if memory was actually released back to the sys-
tem, or 0 if it was not possible to release any memory.

ERRORS
No errors are defined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_trim()

STANDARDS
GNU.

VERSIONS
glibc 2.0.

NOTES
Only the main heap (using sbrk(2)) honors the pad argument; thread heaps do not.

Since glibc 2.8 this function frees memory in all arenas and in all chunks with whole
free pages.

Before glibc 2.8 this function only freed memory at the top of the heap in the main
arena.

SEE ALSO
sbrk(2), malloc(3), mallopt(3)

Linux man-pages 6.16 2025-09-21 2065

malloc_usable_size(3) Library Functions Manual malloc_usable_size(3)

NAME
malloc_usable_size - obtain size of block of memory allocated from heap

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

size_t malloc_usable_size(void *_Nullable ptr);

DESCRIPTION
This function can be used for diagnostics or statistics about allocations from malloc(3)
or a related function.

RETURN VALUE
malloc_usable_size() returns a value no less than the size of the block of allocated
memory pointed to by ptr. If ptr is NULL, 0 is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemalloc_usable_size()

STANDARDS
GNU.

CAVEATS
The value returned by malloc_usable_size() may be greater than the requested size of
the allocation because of various internal implementation details, none of which the pro-
grammer should rely on. This function is intended to only be used for diagnostics and
statistics; writing to the excess memory without first calling realloc(3) to resize the allo-
cation is not supported. The returned value is only valid at the time of the call.

SEE ALSO
malloc(3)

Linux man-pages 6.16 2025-05-17 2066

mallopt(3) Library Functions Manual mallopt(3)

NAME
mallopt - set memory allocation parameters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <malloc.h>

int mallopt(int param, int value);

DESCRIPTION
The mallopt() function adjusts parameters that control the behavior of the memory-allo-
cation functions (see malloc(3)). The param argument specifies the parameter to be
modified, and value specifies the new value for that parameter.

The following values can be specified for param:

M_ARENA_MAX
If this parameter has a nonzero value, it defines a hard limit on the maximum
number of arenas that can be created. An arena represents a pool of memory that
can be used by malloc(3) (and similar) calls to service allocation requests. Are-
nas are thread safe and therefore may have multiple concurrent memory requests.
The trade-off is between the number of threads and the number of arenas. The
more arenas you have, the lower the per-thread contention, but the higher the
memory usage.

The default value of this parameter is 0, meaning that the limit on the number of
arenas is determined according to the setting of M_ARENA_TEST.

This parameter has been available since glibc 2.10 via --enable-experimental-
malloc, and since glibc 2.15 by default. In some versions of the allocator there
was no limit on the number of created arenas (e.g., CentOS 5, RHEL 5).

When employing newer glibc versions, applications may in some cases exhibit
high contention when accessing arenas. In these cases, it may be beneficial to
increase M_ARENA_MAX to match the number of threads. This is similar in
behavior to strategies taken by tcmalloc and jemalloc (e.g., per-thread allocation
pools).

M_ARENA_TEST
This parameter specifies a value, in number of arenas created, at which point the
system configuration will be examined to determine a hard limit on the number
of created arenas. (See M_ARENA_MAX for the definition of an arena.)

The computation of the arena hard limit is implementation-defined and is usually
calculated as a multiple of the number of available CPUs. Once the hard limit is
computed, the result is final and constrains the total number of arenas.

The default value for the M_ARENA_TEST parameter is 2 on systems where
sizeof(long) is 4; otherwise the default value is 8.

This parameter has been available since glibc 2.10 via --enable-experimental-
malloc, and since glibc 2.15 by default.

Linux man-pages 6.16 2025-09-21 2067

mallopt(3) Library Functions Manual mallopt(3)

The value of M_ARENA_TEST is not used when M_ARENA_MAX has a
nonzero value.

M_CHECK_ACTION
Setting this parameter controls how glibc responds when various kinds of pro-
gramming errors are detected (e.g., freeing the same pointer twice). The 3 least
significant bits (2, 1, and 0) of the value assigned to this parameter determine the
glibc behavior, as follows:

Bit 0 If this bit is set, then print a one-line message on stderr that provides de-
tails about the error. The message starts with the string "*** glibc de-
tected ***", followed by the program name, the name of the memory-al-
location function in which the error was detected, a brief description of
the error, and the memory address where the error was detected.

Bit 1 If this bit is set, then, after printing any error message specified by bit 0,
the program is terminated by calling abort(3). Since glibc 2.4, if bit 0 is
also set, then, between printing the error message and aborting, the pro-
gram also prints a stack trace in the manner of backtrace(3), and prints
the process’s memory mapping in the style of /proc/ pid /maps (see
proc(5)).

Bit 2 (since glibc 2.4)
This bit has an effect only if bit 0 is also set. If this bit is set, then the
one-line message describing the error is simplified to contain just the
name of the function where the error was detected and the brief descrip-
tion of the error.

The remaining bits in value are ignored.

Combining the above details, the following numeric values are meaningful for
M_CHECK_ACTION:

0 Ignore error conditions; continue execution (with undefined re-
sults).

1 Print a detailed error message and continue execution.

2 Abort the program.

3 Print detailed error message, stack trace, and memory mappings,
and abort the program.

5 Print a simple error message and continue execution.

7 Print simple error message, stack trace, and memory mappings,
and abort the program.

Since glibc 2.3.4, the default value for the M_CHECK_ACTION parameter is
3. In glibc 2.3.3 and earlier, the default value is 1.

Using a nonzero M_CHECK_ACTION value can be useful because otherwise
a crash may happen much later, and the true cause of the problem is then very
hard to track down.

Linux man-pages 6.16 2025-09-21 2068

mallopt(3) Library Functions Manual mallopt(3)

M_MMAP_MAX
This parameter specifies the maximum number of allocation requests that may
be simultaneously serviced using mmap(2). This parameter exists because some
systems have a limited number of internal tables for use by mmap(2), and using
more than a few of them may degrade performance.

The default value is 65,536, a value which has no special significance and which
serves only as a safeguard. Setting this parameter to 0 disables the use of
mmap(2) for servicing large allocation requests.

M_MMAP_THRESHOLD
For allocations greater than or equal to the limit specified (in bytes) by
M_MMAP_THRESHOLD that can’t be satisfied from the free list, the mem-
ory-allocation functions employ mmap(2) instead of increasing the program
break using sbrk(2).

Allocating memory using mmap(2) has the significant advantage that the allo-
cated memory blocks can always be independently released back to the system.
(By contrast, the heap can be trimmed only if memory is freed at the top end.)
On the other hand, there are some disadvantages to the use of mmap(2): deallo-
cated space is not placed on the free list for reuse by later allocations; memory
may be wasted because mmap(2) allocations must be page-aligned; and the ker-
nel must perform the expensive task of zeroing out memory allocated via
mmap(2). Balancing these factors leads to a default setting of 128*1024 for the
M_MMAP_THRESHOLD parameter.

The lower limit for this parameter is 0. The upper limit is DE-
FAULT_MMAP_THRESHOLD_MAX: 512*1024 on 32-bit systems or
4*1024*1024*sizeof(long) on 64-bit systems.

Note: Nowadays, glibc uses a dynamic mmap threshold by default. The initial
value of the threshold is 128*1024, but when blocks larger than the current
threshold and less than or equal to DEFAULT_MMAP_THRESHOLD_MAX
are freed, the threshold is adjusted upward to the size of the freed block. When
dynamic mmap thresholding is in effect, the threshold for trimming the heap is
also dynamically adjusted to be twice the dynamic mmap threshold. Dynamic
adjustment of the mmap threshold is disabled if any of the
M_TRIM_THRESHOLD, M_TOP_PAD, M_MMAP_THRESHOLD, or
M_MMAP_MAX parameters is set.

M_MXFAST (since glibc 2.3)
Set the upper limit for memory allocation requests that are satisfied using "fast-
bins". (The measurement unit for this parameter is bytes.) Fastbins are storage
areas that hold deallocated blocks of memory of the same size without merging
adjacent free blocks. Subsequent reallocation of blocks of the same size can be
handled very quickly by allocating from the fastbin, although memory fragmen-
tation and the overall memory footprint of the program can increase.

The default value for this parameter is 64*sizeof(size_t)/4 (i.e., 64 on 32-bit ar-
chitectures). The range for this parameter is 0 to 80*sizeof(size_t)/4. Setting
M_MXFAST to 0 disables the use of fastbins.

Linux man-pages 6.16 2025-09-21 2069

mallopt(3) Library Functions Manual mallopt(3)

M_PERTURB (since glibc 2.4)
If this parameter is set to a nonzero value, then bytes of allocated memory (other
than allocations via calloc(3)) are initialized to the complement of the value in
the least significant byte of value, and when allocated memory is released using
free(3), the freed bytes are set to the least significant byte of value. This can be
useful for detecting errors where programs incorrectly rely on allocated memory
being initialized to zero, or reuse values in memory that has already been freed.

The default value for this parameter is 0.

M_TOP_PAD
This parameter defines the amount of padding to employ when calling sbrk(2) to
modify the program break. (The measurement unit for this parameter is bytes.)
This parameter has an effect in the following circumstances:

• When the program break is increased, then M_TOP_PAD bytes are added to
the sbrk(2) request.

• When the heap is trimmed as a consequence of calling free(3) (see the dis-
cussion of M_TRIM_THRESHOLD) this much free space is preserved at
the top of the heap.

In either case, the amount of padding is always rounded to a system page bound-
ary.

Modifying M_TOP_PAD is a trade-off between increasing the number of sys-
tem calls (when the parameter is set low) and wasting unused memory at the top
of the heap (when the parameter is set high).

The default value for this parameter is 128*1024.

M_TRIM_THRESHOLD
When the amount of contiguous free memory at the top of the heap grows suffi-
ciently large, free(3) employs sbrk(2) to release this memory back to the system.
(This can be useful in programs that continue to execute for a long period after
freeing a significant amount of memory.) The M_TRIM_THRESHOLD para-
meter specifies the minimum size (in bytes) that this block of memory must
reach before sbrk(2) is used to trim the heap.

The default value for this parameter is 128*1024. Setting M_TRIM_THRESH-
OLD to -1 disables trimming completely.

Modifying M_TRIM_THRESHOLD is a trade-off between increasing the
number of system calls (when the parameter is set low) and wasting unused
memory at the top of the heap (when the parameter is set high).

Environment variables
A number of environment variables can be defined to modify some of the same parame-
ters as are controlled by mallopt(). Using these variables has the advantage that the
source code of the program need not be changed. To be effective, these variables must
be defined before the first call to a memory-allocation function. (If the same parameters
are adjusted via mallopt(), then the mallopt() settings take precedence.) For security
reasons, these variables are ignored in set-user-ID and set-group-ID programs.

Linux man-pages 6.16 2025-09-21 2070

mallopt(3) Library Functions Manual mallopt(3)

The environment variables are as follows (note the trailing underscore at the end of the
name of some variables):

MALLOC_ARENA_MAX
Controls the same parameter as mallopt() M_ARENA_MAX.

MALLOC_ARENA_TEST
Controls the same parameter as mallopt() M_ARENA_TEST.

MALLOC_CHECK_
This environment variable controls the same parameter as mallopt()
M_CHECK_ACTION. If this variable is set to a nonzero value, then a special
implementation of the memory-allocation functions is used. (This is accom-
plished using the malloc_hook(3) feature.) This implementation performs addi-
tional error checking, but is slower than the standard set of memory-allocation
functions. (This implementation does not detect all possible errors; memory
leaks can still occur.)

The value assigned to this environment variable should be a single digit, whose
meaning is as described for M_CHECK_ACTION. Any characters beyond the
initial digit are ignored.

For security reasons, the effect of MALLOC_CHECK_ is disabled by default
for set-user-ID and set-group-ID programs. However, if the file /etc/suid-debug
exists (the content of the file is irrelevant), then MALLOC_CHECK_ also has
an effect for set-user-ID and set-group-ID programs.

MALLOC_MMAP_MAX_
Controls the same parameter as mallopt() M_MMAP_MAX.

MALLOC_MMAP_THRESHOLD_
Controls the same parameter as mallopt() M_MMAP_THRESHOLD.

MALLOC_PERTURB_
Controls the same parameter as mallopt() M_PERTURB.

MALLOC_TRIM_THRESHOLD_
Controls the same parameter as mallopt() M_TRIM_THRESHOLD.

MALLOC_TOP_PAD_
Controls the same parameter as mallopt() M_TOP_PAD.

RETURN VALUE
On success, mallopt() returns 1. On error, it returns 0.

ERRORS
On error, errno is not set.

VERSIONS
A similar function exists on many System V derivatives, but the range of values for
param varies across systems. The SVID defined options M_MXFAST, M_NLBLKS,
M_GRAIN, and M_KEEP, but only the first of these is implemented in glibc.

Linux man-pages 6.16 2025-09-21 2071

mallopt(3) Library Functions Manual mallopt(3)

STANDARDS
None.

HISTORY
glibc 2.0.

BUGS
Specifying an invalid value for param does not generate an error.

A calculation error within the glibc implementation means that a call of the form:

mallopt(M_MXFAST, n)

does not result in fastbins being employed for all allocations of size up to n. To ensure
desired results, n should be rounded up to the next multiple greater than or equal to
(2k+1)*sizeof(size_t), where k is an integer.

If mallopt() is used to set M_PERTURB, then, as expected, the bytes of allocated
memory are initialized to the complement of the byte in value, and when that memory is
freed, the bytes of the region are initialized to the byte specified in value. However,
there is an off-by-sizeof(size_t) error in the implementation: instead of initializing pre-
cisely the block of memory being freed by the call free(p), the block starting at
p+sizeof(size_t) is initialized.

EXAMPLES
The program below demonstrates the use of M_CHECK_ACTION. If the program is
supplied with an (integer) command-line argument, then that argument is used to set the
M_CHECK_ACTION parameter. The program then allocates a block of memory, and
frees it twice (an error).

The following shell session shows what happens when we run this program under glibc,
with the default value for M_CHECK_ACTION:

$./a.out;
main(): returned from first free() call
*** glibc detected *** ./a.out: double free or corruption (top): 0x09d30008 ***
======= Backtrace: =========
/lib/libc.so.6(+0x6c501)[0x523501]
/lib/libc.so.6(+0x6dd70)[0x524d70]
/lib/libc.so.6(cfree+0x6d)[0x527e5d]
./a.out[0x80485db]
/lib/libc.so.6(__libc_start_main+0xe7)[0x4cdce7]
./a.out[0x8048471]
======= Memory map: ========
001e4000-001fe000 r-xp 00000000 08:06 1083555 /lib/libgcc_s.so.1
001fe000-001ff000 r--p 00019000 08:06 1083555 /lib/libgcc_s.so.1
[some lines omitted]
b7814000-b7817000 rw-p 00000000 00:00 0
bff53000-bff74000 rw-p 00000000 00:00 0 [stack]
Aborted (core dumped)

The following runs show the results when employing other values for M_CHECK_AC-
TION:

Linux man-pages 6.16 2025-09-21 2072

mallopt(3) Library Functions Manual mallopt(3)

$./a.out 1; # Diagnose error and continue
main(): returned from first free() call
*** glibc detected *** ./a.out: double free or corruption (top): 0x09cbe008 ***
main(): returned from second free() call
$./a.out 2; # Abort without error message
main(): returned from first free() call
Aborted (core dumped)
$./a.out 0; # Ignore error and continue
main(): returned from first free() call
main(): returned from second free() call

The next run shows how to set the same parameter using the MALLOC_CHECK_ en-
vironment variable:

$ MALLOC_CHECK_=1 ./a.out;
main(): returned from first free() call
*** glibc detected *** ./a.out: free(): invalid pointer: 0x092c2008 ***
main(): returned from second free() call

Program source

#include <malloc.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

char *p;

if (argc > 1) {
if (mallopt(M_CHECK_ACTION, atoi(argv[1])) != 1) {

fprintf(stderr, "mallopt() failed");
exit(EXIT_FAILURE);

}
}

p = malloc(1000);
if (p == NULL) {

fprintf(stderr, "malloc() failed");
exit(EXIT_FAILURE);

}

free(p);
printf("%s(): returned from first free() call\n", __func__);

free(p);
printf("%s(): returned from second free() call\n", __func__);

Linux man-pages 6.16 2025-09-21 2073

mallopt(3) Library Functions Manual mallopt(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
mmap(2), sbrk(2), mallinfo(3), malloc(3), malloc_hook(3), malloc_info(3),
malloc_stats(3), malloc_trim(3), mcheck(3), mtrace(3), posix_memalign(3)

Linux man-pages 6.16 2025-09-21 2074

matherr(3) Library Functions Manual matherr(3)

NAME
matherr - SVID math library exception handling

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

[[deprecated]] int matherr(struct exception *exc);

[[deprecated]] extern _LIB_VERSION_TYPE _LIB_VERSION;

DESCRIPTION
Note: the mechanism described in this page is no longer supported by glibc. Before
glibc 2.27, it had been marked as obsolete. Since glibc 2.27, the mechanism has been
removed altogether. New applications should use the techniques described in math_er-
ror(7) and fenv(3). This page documents the matherr() mechanism as an aid for main-
taining and porting older applications.

The System V Interface Definition (SVID) specifies that various math functions should
invoke a function called matherr() if a math exception is detected. This function is
called before the math function returns; after matherr() returns, the system then returns
to the math function, which in turn returns to the caller.

To employ matherr(), the programmer must define the _SVID_SOURCE feature test
macro (before including any header files), and assign the value _SVID_ to the external
variable _LIB_VERSION.

The system provides a default version of matherr(). This version does nothing, and re-
turns zero (see below for the significance of this). The default matherr() can be over-
ridden by a programmer-defined version, which will be invoked when an exception oc-
curs. The function is invoked with one argument, a pointer to an exception structure, de-
fined as follows:

struct exception {
int type; /* Exception type */
char *name; /* Name of function causing exception */
double arg1; /* 1st argument to function */
double arg2; /* 2nd argument to function */
double retval; /* Function return value */

}

The type field has one of the following values:

DOMAIN A domain error occurred (the function argument was outside the range
for which the function is defined). The return value depends on the func-
tion; errno is set to EDOM.

SING A pole error occurred (the function result is an infinity). The return value
in most cases is HUGE (the largest single precision floating-point num-
ber), appropriately signed. In most cases, errno is set to EDOM.

Linux man-pages 6.16 2025-05-17 2075

matherr(3) Library Functions Manual matherr(3)

OVERFLOW
An overflow occurred. In most cases, the value HUGE is returned, and
errno is set to ERANGE.

UNDERFLOW
An underflow occurred. 0.0 is returned, and errno is set to ERANGE.

TLOSS Total loss of significance. 0.0 is returned, and errno is set to ERANGE.

PLOSS Partial loss of significance. This value is unused on glibc (and many
other systems).

The arg1 and arg2 fields are the arguments supplied to the function (arg2 is undefined
for functions that take only one argument).

The retval field specifies the return value that the math function will return to its caller.
The programmer-defined matherr() can modify this field to change the return value of
the math function.

If the matherr() function returns zero, then the system sets errno as described above,
and may print an error message on standard error (see below).

If the matherr() function returns a nonzero value, then the system does not set errno,
and doesn’t print an error message.

Math functions that employ matherr()
The table below lists the functions and circumstances in which matherr() is called. The
"Type" column indicates the value assigned to exc->type when calling matherr(). The
"Result" column is the default return value assigned to exc->retval.

The "Msg?" and "errno" columns describe the default behavior if matherr() returns
zero. If the "Msg?" columns contains "y", then the system prints an error message on
standard error.

The table uses the following notations and abbreviations:

x first argument to function
y second argument to function
fin finite value for argument
neg negative value for argument
int integral value for argument
o/f result overflowed
u/f result underflowed
|x| absolute value of x
X_TLOSS is a constant defined in <math.h>

Function Type Result Msg? errno
acos(|x|>1) DOMAIN HUGE y EDOM
asin(|x|>1) DOMAIN HUGE y EDOM
atan2(0,0) DOMAIN HUGE y EDOM
acosh(x<1) DOMAIN NAN y EDOM
atanh(|x|>1) DOMAIN NAN y EDOM
atanh(|x|==1) SING (x>0.0)? y EDOM

HUGE_VAL :

Linux man-pages 6.16 2025-05-17 2076

matherr(3) Library Functions Manual matherr(3)

-HUGE_VAL
cosh(fin) o/f OVERFLOW HUGE n ERANGE
sinh(fin) o/f OVERFLOW (x>0.0) ? n ERANGE

HUGE : -HUGE
sqrt(x<0) DOMAIN 0.0 y EDOM
hypot(fin,fin) o/f OVERFLOW HUGE n ERANGE
exp(fin) o/f OVERFLOW HUGE n ERANGE
exp(fin) u/f UNDERFLOW 0.0 n ERANGE
exp2(fin) o/f OVERFLOW HUGE n ERANGE
exp2(fin) u/f UNDERFLOW 0.0 n ERANGE
exp10(fin) o/f OVERFLOW HUGE n ERANGE
exp10(fin) u/f UNDERFLOW 0.0 n ERANGE
j0(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
j1(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
jn(|x|>X_TLOSS) TLOSS 0.0 y ERANGE
y0(x>X_TLOSS) TLOSS 0.0 y ERANGE
y1(x>X_TLOSS) TLOSS 0.0 y ERANGE
yn(x>X_TLOSS) TLOSS 0.0 y ERANGE
y0(0) DOMAIN -HUGE y EDOM
y0(x<0) DOMAIN -HUGE y EDOM
y1(0) DOMAIN -HUGE y EDOM
y1(x<0) DOMAIN -HUGE y EDOM
yn(n,0) DOMAIN -HUGE y EDOM
yn(x<0) DOMAIN -HUGE y EDOM
lgamma(fin) o/f OVERFLOW HUGE n ERANGE
lgamma(-int) or SING HUGE y EDOM
lgamma(0)

tgamma(fin) o/f OVERFLOW HUGE_VAL n ERANGE
tgamma(-int) SING NAN y EDOM
tgamma(0) SING copysign(y ERANGE

HUGE_VAL,x)
log(0) SING -HUGE y EDOM
log(x<0) DOMAIN -HUGE y EDOM
log2(0) SING -HUGE n EDOM
log2(x<0) DOMAIN -HUGE n EDOM
log10(0) SING -HUGE y EDOM
log10(x<0) DOMAIN -HUGE y EDOM
pow(0.0,0.0) DOMAIN 0.0 y EDOM
pow(x,y) o/f OVERFLOW HUGE n ERANGE
pow(x,y) u/f UNDERFLOW 0.0 n ERANGE
pow(NaN,0.0) DOMAIN x n EDOM
0**neg DOMAIN 0.0 y EDOM
neg**non-int DOMAIN 0.0 y EDOM
scalb() o/f OVERFLOW (x>0.0) ? n ERANGE

HUGE_VAL :
-HUGE_VAL

Linux man-pages 6.16 2025-05-17 2077

matherr(3) Library Functions Manual matherr(3)

scalb() u/f UNDERFLOW copysign(n ERANGE
0.0,x)

fmod(x,0) DOMAIN x y EDOM
remainder(x,0) DOMAIN NAN y EDOM

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safematherr()

EXAMPLES
The example program demonstrates the use of matherr() when calling log(3). The pro-
gram takes up to three command-line arguments. The first argument is the floating-point
number to be given to log(3). If the optional second argument is provided, then
_LIB_VERSION is set to _SVID_ so that matherr() is called, and the integer supplied
in the command-line argument is used as the return value from matherr(). If the op-
tional third command-line argument is supplied, then it specifies an alternative return
value that matherr() should assign as the return value of the math function.

The following example run, where log(3) is given an argument of 0.0, does not use
matherr():

$./a.out 0.0
errno: Numerical result out of range
x=-inf

In the following run, matherr() is called, and returns 0:

$./a.out 0.0 0
matherr SING exception in log() function

args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000

log: SING error
errno: Numerical argument out of domain
x=-340282346638528859811704183484516925440.000000

The message "log: SING error" was printed by the C library.

In the following run, matherr() is called, and returns a nonzero value:

$./a.out 0.0 1
matherr SING exception in log() function

args: 0.000000, 0.000000
retval: -340282346638528859811704183484516925440.000000

x=-340282346638528859811704183484516925440.000000

In this case, the C library did not print a message, and errno was not set.

In the following run, matherr() is called, changes the return value of the math function,
and returns a nonzero value:

$./a.out 0.0 1 12345.0
matherr SING exception in log() function

args: 0.000000, 0.000000

Linux man-pages 6.16 2025-05-17 2078

matherr(3) Library Functions Manual matherr(3)

retval: -340282346638528859811704183484516925440.000000
x=12345.000000

Program source

#define _SVID_SOURCE
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>

static int matherr_ret = 0; /* Value that matherr()
should return */

static int change_retval = 0; /* Should matherr() change
function's return value? */

static double new_retval; /* New function return value */

int
matherr(struct exception *exc)
{

fprintf(stderr, "matherr %s exception in %s() function\n",
(exc->type == DOMAIN) ? "DOMAIN" :
(exc->type == OVERFLOW) ? "OVERFLOW" :
(exc->type == UNDERFLOW) ? "UNDERFLOW" :
(exc->type == SING) ? "SING" :
(exc->type == TLOSS) ? "TLOSS" :
(exc->type == PLOSS) ? "PLOSS" : "???",
exc->name);

fprintf(stderr, " args: %f, %f\n",
exc->arg1, exc->arg2);

fprintf(stderr, " retval: %f\n", exc->retval);

if (change_retval)
exc->retval = new_retval;

return matherr_ret;
}

int
main(int argc, char *argv[])
{

double x;

if (argc < 2) {
fprintf(stderr, "Usage: %s <argval>"

" [<matherr-ret> [<new-func-retval>]]\n", argv[0]);
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-05-17 2079

matherr(3) Library Functions Manual matherr(3)

if (argc > 2) {
_LIB_VERSION = _SVID_;
matherr_ret = atoi(argv[2]);

}

if (argc > 3) {
change_retval = 1;
new_retval = atof(argv[3]);

}

x = log(atof(argv[1]));
if (errno != 0)

perror("errno");

printf("x=%f\n", x);
exit(EXIT_SUCCESS);

}

SEE ALSO
fenv(3), math_error(7), standards(7)

Linux man-pages 6.16 2025-05-17 2080

MAX(3) Library Functions Manual MAX(3)

NAME
MAX, MIN - maximum or minimum of two values

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/param.h>

MAX(a, b);
MIN(a, b);

DESCRIPTION
These macros return the maximum or minimum of a and b.

RETURN VALUE
These macros return the value of one of their arguments, possibly converted to a differ-
ent type (see BUGS).

ERRORS
These macros may raise the "invalid" floating-point exception when any of the argu-
ments is NaN.

STANDARDS
GNU, BSD.

NOTES
If either of the arguments is of a floating-point type, you might prefer to use fmax(3) or
fmin(3), which can handle NaN.

The arguments may be evaluated more than once, or not at all.

Some UNIX systems might provide these macros in a different header, or not at all.

BUGS
Due to the usual arithmetic conversions, the result of these macros may be very different
from either of the arguments. To avoid this, ensure that both arguments have the same
type.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>
#include <sys/param.h>

int
main(int argc, char *argv[])
{

int a, b, x;

if (argc != 3) {
fprintf(stderr, "Usage: %s <num> <num>\n", argv[0]);
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-05-17 2081

MAX(3) Library Functions Manual MAX(3)

a = atoi(argv[1]);
b = atoi(argv[2]);
x = MAX(a, b);
printf("MAX(%d, %d) is %d\n", a, b, x);

exit(EXIT_SUCCESS);
}

SEE ALSO
fmax(3), fmin(3)

Linux man-pages 6.16 2025-05-17 2082

MB_CUR_MAX(3) Library Functions Manual MB_CUR_MAX(3)

NAME
MB_CUR_MAX - maximum length of a multibyte character in the current locale

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdlib.h>

DESCRIPTION
The MB_CUR_MAX macro defines an integer expression giving the maximum number
of bytes needed to represent a single wide character in the current locale. This value is
locale dependent and therefore not a compile-time constant.

RETURN VALUE
An integer in the range [1, MB_LEN_MAX]. The value 1 denotes traditional 8-bit en-
coded characters.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
MB_LEN_MAX(3), mblen(3), mbstowcs(3), mbtowc(3), wcstombs(3), wctomb(3)

Linux man-pages 6.16 2025-10-29 2083

MB_LEN_MAX(3) Library Functions Manual MB_LEN_MAX(3)

NAME
MB_LEN_MAX - maximum multibyte length of a character across all locales

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <limits.h>

DESCRIPTION
The MB_LEN_MAX macro is the maximum number of bytes needed to represent a sin-
gle wide character, in any of the supported locales.

RETURN VALUE
A constant integer greater than zero.

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

NOTES
The entities MB_LEN_MAX and sizeof(wchar_t) are totally unrelated. In glibc,
MB_LEN_MAX is typically 16 (6 in glibc versions earlier than 2.2), while
sizeof(wchar_t) is 4.

SEE ALSO
MB_CUR_MAX(3)

Linux man-pages 6.16 2025-05-17 2084

mblen(3) Library Functions Manual mblen(3)

NAME
mblen - determine number of bytes in next multibyte character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int mblen(size_t n;
const char s[n], size_t n);

DESCRIPTION
If s is not NULL, the mblen() function inspects at most n bytes of the multibyte string
starting at s and extracts the next complete multibyte character. It uses a static anony-
mous shift state known only to the mblen() function. If the multibyte character is not
the null wide character, it returns the number of bytes that were consumed from s. If the
multibyte character is the null wide character, it returns 0.

If the n bytes starting at s do not contain a complete multibyte character, mblen() re-
turns -1. This can happen even if n is greater than or equal to MB_CUR_MAX , if the
multibyte string contains redundant shift sequences.

If the multibyte string starting at s contains an invalid multibyte sequence before the
next complete character, mblen() also returns -1.

If s is NULL, the mblen() function resets the shift state, known to only this function, to
the initial state, and returns nonzero if the encoding has nontrivial shift state, or zero if
the encoding is stateless.

RETURN VALUE
The mblen() function returns the number of bytes parsed from the multibyte sequence
starting at s, if a non-null wide character was recognized. It returns 0, if a null wide
character was recognized. It returns -1, if an invalid multibyte sequence was encoun-
tered or if it couldn’t parse a complete multibyte character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe racemblen()

VERSIONS
The function mbrlen(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mblen() depends on the LC_CTYPE category of the current locale.

Linux man-pages 6.16 2025-06-28 2085

mblen(3) Library Functions Manual mblen(3)

SEE ALSO
mbrlen(3)

Linux man-pages 6.16 2025-06-28 2086

mbrlen(3) Library Functions Manual mbrlen(3)

NAME
mbrlen - determine number of bytes in next multibyte character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbrlen(size_t n;
const char s[restrict n], size_t n,
mbstate_t *restrict ps);

DESCRIPTION
The mbrlen() function inspects at most n bytes of the multibyte string starting at s and
extracts the next complete multibyte character. It updates the shift state *ps. If the
multibyte character is not the null wide character, it returns the number of bytes that
were consumed from s. If the multibyte character is the null wide character, it resets the
shift state *ps to the initial state and returns 0.

If the n bytes starting at s do not contain a complete multibyte character, mbrlen() re-
turns (size_t) -2. This can happen even if n >= MB_CUR_MAX , if the multibyte string
contains redundant shift sequences.

If the multibyte string starting at s contains an invalid multibyte sequence before the
next complete character, mbrlen() returns (size_t) -1 and sets errno to EILSEQ. In
this case, the effects on *ps are undefined.

If ps is NULL, a static anonymous state known only to the mbrlen() function is used in-
stead.

RETURN VALUE
The mbrlen() function returns the number of bytes parsed from the multibyte sequence
starting at s, if a non-null wide character was recognized. It returns 0, if a null wide
character was recognized. It returns (size_t) -1 and sets errno to EILSEQ, if an invalid
multibyte sequence was encountered. It returns (size_t) -2 if it couldn’t parse a com-
plete multibyte character, meaning that n should be increased.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:mbrlen/!psmbrlen()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbrlen() depends on the LC_CTYPE category of the current locale.

SEE ALSO
mbrtowc(3)

Linux man-pages 6.16 2025-06-28 2087

mbrtowc(3) Library Functions Manual mbrtowc(3)

NAME
mbrtowc - convert a multibyte sequence to a wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbrtowc(size_t n;
wchar_t *restrict pwc, const char s[restrict n],
size_t n, mbstate_t *restrict ps);

DESCRIPTION
The main case for this function is when s is not NULL and pwc is not NULL. In this
case, the mbrtowc() function inspects at most n bytes of the multibyte string starting at
s, extracts the next complete multibyte character, converts it to a wide character and
stores it at *pwc. It updates the shift state *ps. If the converted wide character is not
L'\0' (the null wide character), it returns the number of bytes that were consumed from s.
If the converted wide character is L'\0', it resets the shift state *ps to the initial state and
returns 0.

If the n bytes starting at s do not contain a complete multibyte character, mbrtowc() re-
turns (size_t) -2. This can happen even if n >= MB_CUR_MAX , if the multibyte string
contains redundant shift sequences.

If the multibyte string starting at s contains an invalid multibyte sequence before the
next complete character, mbrtowc() returns (size_t) -1 and sets errno to EILSEQ. In
this case, the effects on *ps are undefined.

A different case is when s is not NULL but pwc is NULL. In this case, the mbrtowc()
function behaves as above, except that it does not store the converted wide character in
memory.

A third case is when s is NULL. In this case, pwc and n are ignored. If the conversion
state represented by *ps denotes an incomplete multibyte character conversion, the mbr-
towc() function returns (size_t) -1, sets errno to EILSEQ, and leaves *ps in an unde-
fined state. Otherwise, the mbrtowc() function puts *ps in the initial state and returns 0.

In all of the above cases, if ps is NULL, a static anonymous state known only to the
mbrtowc() function is used instead. Otherwise, *ps must be a valid mbstate_t object.
An mbstate_t object a can be initialized to the initial state by zeroing it, for example us-
ing

memset(&a, 0, sizeof(a));

RETURN VALUE
The mbrtowc() function returns the number of bytes parsed from the multibyte se-
quence starting at s, if a non-L'\0' wide character was recognized. It returns 0, if a L'\0'
wide character was recognized. It returns (size_t) -1 and sets errno to EILSEQ, if an
invalid multibyte sequence was encountered. It returns (size_t) -2 if the consumed n
bytes form a valid partial character sequence; more subsequent data needs to be fed in.

Linux man-pages 6.16 2025-06-28 2088

mbrtowc(3) Library Functions Manual mbrtowc(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:mbrtowc/!psmbrtowc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbrtowc() depends on the LC_CTYPE category of the current locale.

SEE ALSO
mbsinit(3), mbsrtowcs(3)

Linux man-pages 6.16 2025-06-28 2089

mbsinit(3) Library Functions Manual mbsinit(3)

NAME
mbsinit - test for initial shift state

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int mbsinit(const mbstate_t *ps);

DESCRIPTION
The function mbsinit() tests whether *ps corresponds to an initial state.

RETURN VALUE
mbsinit() returns nonzero if *ps is an initial state, or if ps is NULL. Otherwise, it re-
turns 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safembsinit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbsinit() depends on the LC_CTYPE category of the current locale.

SEE ALSO
mbstate_t(3type), mbrlen(3), mbrtowc(3), mbsrtowcs(3), wcrtomb(3), wcsrtombs(3)

Linux man-pages 6.16 2025-05-17 2090

mbsnrtowcs(3) Library Functions Manual mbsnrtowcs(3)

NAME
mbsnrtowcs - convert a multibyte string to a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbsnrtowcs(size_t size;
wchar_t dest[restrict size], const char **restrict src,
size_t nms, size_t size, mbstate_t *restrict ps);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mbsnrtowcs():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The mbsnrtowcs() function is like the mbsrtowcs(3) function, except that the number of
bytes to be converted, starting at *src, is limited to at most nms bytes.

If dest is not NULL, the mbsnrtowcs() function converts at most nms bytes from the
multibyte string *src to a wide-character string starting at dest. At most size wide char-
acters are written to dest. The shift state *ps is updated. The conversion is effectively
performed by repeatedly calling mbrtowc(dest, *src, n, ps) where n is some positive
number, as long as this call succeeds, and then incrementing dest by one and *src by the
number of bytes consumed. The conversion can stop for three reasons:

• An invalid multibyte sequence has been encountered. In this case, *src is left point-
ing to the invalid multibyte sequence, (size_t) -1 is returned, and errno is set to
EILSEQ.

• The nms limit forces a stop, or size non-L'\0' wide characters have been stored at
dest. In this case, *src is left pointing to the next multibyte sequence to be con-
verted, and the number of wide characters written to dest is returned.

• The multibyte string has been completely converted, including the terminating null
wide character ('\0') (which has the side effect of bringing back *ps to the initial
state). In this case, *src is set to NULL, and the number of wide characters written
to dest, excluding the terminating null wide character, is returned.

According to POSIX.1, if the input buffer ends with an incomplete character, it is un-
specified whether conversion stops at the end of the previous character (if any), or at the
end of the input buffer. The glibc implementation adopts the former behavior.

If dest is NULL, size is ignored, and the conversion proceeds as above, except that the
converted wide characters are not written out to memory, and that no destination size
limit exists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
mbsnrtowcs() function is used instead.

Linux man-pages 6.16 2025-06-28 2091

mbsnrtowcs(3) Library Functions Manual mbsnrtowcs(3)

The programmer must ensure that there is room for at least size wide characters at dest.

RETURN VALUE
The mbsnrtowcs() function returns the number of wide characters that make up the con-
verted part of the wide-character string, not including the terminating null wide charac-
ter. If an invalid multibyte sequence was encountered, (size_t) -1 is returned, and errno
set to EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymbsnrtowcs() MT-Unsafe race:mbsnrtowcs/!ps

STANDARDS
POSIX.1-2008.

NOTES
The behavior of mbsnrtowcs() depends on the LC_CTYPE category of the current lo-
cale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbrtowc(3), mbsinit(3), mbsrtowcs(3)

Linux man-pages 6.16 2025-06-28 2092

mbsrtowcs(3) Library Functions Manual mbsrtowcs(3)

NAME
mbsrtowcs - convert a multibyte string to a wide-character string (restartable)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t mbsrtowcs(size_t dsize;
wchar_t dest[restrict dsize],
const char **restrict src,
size_t dsize, mbstate_t *restrict ps);

DESCRIPTION
If dest is not NULL, convert the multibyte string *src to a wide-character string starting
at dest. At most dsize wide characters are written to dest. The shift state *ps is up-
dated. The conversion is effectively performed by repeatedly calling mbrtowc(dest,
*src, n, ps) where n is some positive number, as long as this call succeeds, and then in-
crementing dest by one and *src by the number of bytes consumed. The conversion can
stop for three reasons:

• An invalid multibyte sequence has been encountered. In this case, *src is left point-
ing to the invalid multibyte sequence, (size_t) -1 is returned, and errno is set to
EILSEQ.

• dsize non-L'\0' wide characters have been stored at dest. In this case, *src is left
pointing to the next multibyte sequence to be converted, and the number of wide
characters written to dest is returned.

• The multibyte string has been completely converted, including the terminating null
wide character ('\0'), which has the side effect of bringing back *ps to the initial
state. In this case, *src is set to NULL, and the number of wide characters written to
dest, excluding the terminating null wide character, is returned.

If dest is NULL, dsize is ignored, and the conversion proceeds as above, except that the
converted wide characters are not written out to memory, and that no length limit exists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
mbsrtowcs() function is used instead.

In order to avoid the case 2 above, the programmer should make sure dsize is greater
than or equal to mbsrtowcs(NULL,src,0,ps)+1.

The programmer must ensure that there is room for at least dsize wide characters at
dest.

This function is a restartable version of mbstowcs(3).

RETURN VALUE
The number of wide characters that make up the converted part of the wide-character
string, not including the terminating null wide character. If an invalid multibyte se-
quence was encountered, (size_t) -1 is returned, and errno set to EILSEQ.

Linux man-pages 6.16 2025-06-28 2093

mbsrtowcs(3) Library Functions Manual mbsrtowcs(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymbsrtowcs() MT-Unsafe race:mbsrtowcs/!ps

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbsrtowcs() depends on the LC_CTYPE category of the current lo-
cale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbrtowc(3), mbsinit(3), mbsnrtowcs(3), mbstowcs(3)

Linux man-pages 6.16 2025-06-28 2094

mbstowcs(3) Library Functions Manual mbstowcs(3)

NAME
mbstowcs - convert a multibyte string to a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

size_t mbstowcs(size_t dsize;
wchar_t dest[restrict dsize], const char *restrict src,
size_t dsize);

DESCRIPTION
If dest is not NULL, convert the multibyte string src to a wide-character string starting
at dest. At most dsize wide characters are written to dest. The sequence of characters
in the string src shall begin in the initial shift state. The conversion can stop for three
reasons:

• An invalid multibyte sequence has been encountered. In this case, (size_t) -1 is re-
turned.

• dsize non-L'\0' wide characters have been stored at dest. In this case, the number of
wide characters written to dest is returned, but the shift state at this point is lost.

• The multibyte string has been completely converted, including the terminating null
character ('\0'). In this case, the number of wide characters written to dest, exclud-
ing the terminating null wide character, is returned.

If dest is NULL, dsize is ignored, and the conversion proceeds as above, except that the
converted wide characters are not written out to memory, and that no length limit exists.

In order to avoid the case 2 above, the programmer should make sure dsize is greater
than or equal to mbstowcs(NULL,src,0)+1.

The programmer must ensure that there is room for at least dsize wide characters at
dest.

RETURN VALUE
The number of wide characters that make up the converted part of the wide-character
string, not including the terminating null wide character. If an invalid multibyte se-
quence was encountered, (size_t) -1 is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safembstowcs()

VERSIONS
The function mbsrtowcs(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2095

mbstowcs(3) Library Functions Manual mbstowcs(3)

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of mbstowcs() depends on the LC_CTYPE category of the current locale.

EXAMPLES
The program below illustrates the use of mbstowcs(), as well as some of the wide char-
acter classification functions. An example run is the following:

$./t_mbstowcs de_DE.UTF-8 Grüße!
Length of source string (excluding terminator):

8 bytes
6 multibyte characters

Wide character string is: Grüße! (6 characters)
G alpha upper
r alpha lower
ü alpha lower
ß alpha lower
e alpha lower
! !alpha

Program source

#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <wchar.h>
#include <wctype.h>

int
main(int argc, char *argv[])
{

size_t mbslen; /* Number of multibyte characters in source */
wchar_t *wcs; /* Pointer to converted wide character string */

if (argc < 3) {
fprintf(stderr, "Usage: %s <locale> <string>\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Apply the specified locale. */

if (setlocale(LC_ALL, argv[1]) == NULL) {
perror("setlocale");
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-09-21 2096

mbstowcs(3) Library Functions Manual mbstowcs(3)

/* Calculate the length required to hold argv[2] converted to
a wide character string. */

mbslen = mbstowcs(NULL, argv[2], 0);
if (mbslen == (size_t) -1) {

perror("mbstowcs");
exit(EXIT_FAILURE);

}

/* Describe the source string to the user. */

printf("Length of source string (excluding terminator):\n");
printf(" %zu bytes\n", strlen(argv[2]));
printf(" %zu multibyte characters\n\n", mbslen);

/* Allocate wide character string of the desired size. Add 1
to allow for terminating null wide character (L'\0'). */

wcs = calloc(mbslen + 1, sizeof(*wcs));
if (wcs == NULL) {

perror("calloc");
exit(EXIT_FAILURE);

}

/* Convert the multibyte character string in argv[2] to a
wide character string. */

if (mbstowcs(wcs, argv[2], mbslen + 1) == (size_t) -1) {
perror("mbstowcs");
exit(EXIT_FAILURE);

}

printf("Wide character string is: %ls (%zu characters)\n",
wcs, mbslen);

/* Now do some inspection of the classes of the characters in
the wide character string. */

for (wchar_t *wp = wcs; *wp != 0; wp++) {
printf(" %lc ", (wint_t) *wp);

if (!iswalpha(*wp))
printf("!");

printf("alpha ");

if (iswalpha(*wp)) {

Linux man-pages 6.16 2025-09-21 2097

mbstowcs(3) Library Functions Manual mbstowcs(3)

if (iswupper(*wp))
printf("upper ");

if (iswlower(*wp))
printf("lower ");

}

putchar('\n');
}

exit(EXIT_SUCCESS);
}

SEE ALSO
mblen(3), mbsrtowcs(3), mbtowc(3), wcstombs(3), wctomb(3)

Linux man-pages 6.16 2025-09-21 2098

mbtowc(3) Library Functions Manual mbtowc(3)

NAME
mbtowc - convert a multibyte sequence to a wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int mbtowc(size_t size;
wchar_t *restrict pwc, const char s[restrict size],
size_t size);

DESCRIPTION
The main case for this function is when s is not NULL and pwc is not NULL. In this
case, the mbtowc() function inspects at most size bytes of the multibyte string starting at
s, extracts the next complete multibyte character, converts it to a wide character and
stores it at *pwc. It updates an internal shift state known only to the mbtowc() function.
If s does not point to a null byte ('\0'), it returns the number of bytes that were consumed
from s, otherwise it returns 0.

If the size bytes starting at s do not contain a complete multibyte character, or if they
contain an invalid multibyte sequence, mbtowc() returns -1. This can happen even if
size >= MB_CUR_MAX , if the multibyte string contains redundant shift sequences.

A different case is when s is not NULL but pwc is NULL. In this case, the mbtowc()
function behaves as above, except that it does not store the converted wide character in
memory.

A third case is when s is NULL. In this case, pwc and size are ignored. The mbtowc()
function resets the shift state, only known to this function, to the initial state, and returns
nonzero if the encoding has nontrivial shift state, or zero if the encoding is stateless.

RETURN VALUE
If s is not NULL, the mbtowc() function returns the number of consumed bytes starting
at s, or 0 if s points to a null byte, or -1 upon failure.

If s is NULL, the mbtowc() function returns nonzero if the encoding has nontrivial shift
state, or zero if the encoding is stateless.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe racembtowc()

VERSIONS
This function is not multithread safe. The function mbrtowc(3) provides a better inter-
face to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

Linux man-pages 6.16 2025-09-07 2099

mbtowc(3) Library Functions Manual mbtowc(3)

NOTES
The behavior of mbtowc() depends on the LC_CTYPE category of the current locale.

SEE ALSO
MB_CUR_MAX(3), mblen(3), mbrtowc(3), mbstowcs(3), wcstombs(3), wctomb(3)

Linux man-pages 6.16 2025-09-07 2100

mcheck(3) Library Functions Manual mcheck(3)

NAME
mcheck, mcheck_check_all, mcheck_pedantic, mprobe - heap consistency checking

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <mcheck.h>

int mcheck(typeof(void (enum mcheck_status mstatus)) * f);
int mcheck_pedantic(

typeof(void (enum mcheck_status mstatus)) * f);
void mcheck_check_all(void);

enum mcheck_status mprobe(void *ptr);

DESCRIPTION
The mcheck() function installs a set of debugging hooks for the malloc(3) family of
memory-allocation functions. These hooks cause certain consistency checks to be per-
formed on the state of the heap. The checks can detect application errors such as freeing
a block of memory more than once or corrupting the bookkeeping data structures that
immediately precede a block of allocated memory.

To be effective, the mcheck() function must be called before the first call to malloc(3) or
a related function. In cases where this is difficult to ensure, linking the program with
-lmcheck inserts an implicit call to mcheck() (with a NULL argument) before the first
call to a memory-allocation function.

The mcheck_pedantic() function is similar to mcheck(), but performs checks on all al-
located blocks whenever one of the memory-allocation functions is called. This can be
very slow!

The mcheck_check_all() function causes an immediate check on all allocated blocks.
This call is effective only if mcheck() is called beforehand.

If the system detects an inconsistency in the heap, the caller-supplied function pointed to
by f is invoked with a single argument, mstatus, that indicates what type of inconsis-
tency was detected. If f is NULL, a default function prints an error message on stderr
and calls abort(3).

The mprobe() function performs a consistency check on the block of allocated memory
pointed to by ptr. The mcheck() function should be called beforehand (otherwise
mprobe() returns MCHECK_DISABLED).

The following list describes the values returned by mprobe() or passed as the mstatus
argument when f is invoked:

MCHECK_DISABLED (mprobe() only)
mcheck() was not called before the first memory allocation function was called.
Consistency checking is not possible.

MCHECK_OK (mprobe() only)
No inconsistency detected.

Linux man-pages 6.16 2025-06-05 2101

mcheck(3) Library Functions Manual mcheck(3)

MCHECK_HEAD
Memory preceding an allocated block was clobbered.

MCHECK_TAIL
Memory following an allocated block was clobbered.

MCHECK_FREE
A block of memory was freed twice.

RETURN VALUE
mcheck() and mcheck_pedantic() return 0 on success, or -1 on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetymcheck(), mcheck_pedantic(),
mcheck_check_all(), mprobe()

MT-Unsafe
race:mcheck
const:malloc_hooks

STANDARDS
GNU.

HISTORY
mcheck_pedantic()
mcheck_check_all()

glibc 2.2.

mcheck()
mprobe()

glibc 2.0.

NOTES
Linking a program with -lmcheck and using the MALLOC_CHECK_ environment
variable (described in mallopt(3)) cause the same kinds of errors to be detected. But, us-
ing MALLOC_CHECK_ does not require the application to be relinked.

EXAMPLES
The program below calls mcheck() with a NULL argument and then frees the same
block of memory twice. The following shell session demonstrates what happens when
running the program:

$./a.out
About to free

About to free a second time
block freed twice
Aborted (core dumped)

Program source

#include <mcheck.h>
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.16 2025-06-05 2102

mcheck(3) Library Functions Manual mcheck(3)

int
main(void)
{

char *p;

if (mcheck(NULL) != 0) {
fprintf(stderr, "mcheck() failed\n");

exit(EXIT_FAILURE);
}

p = malloc(1000);

fprintf(stderr, "About to free\n");
free(p);
fprintf(stderr, "\nAbout to free a second time\n");
free(p);

exit(EXIT_SUCCESS);
}

SEE ALSO
malloc(3), mallopt(3), mtrace(3)

Linux man-pages 6.16 2025-06-05 2103

memccpy(3) Library Functions Manual memccpy(3)

NAME
memccpy - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memccpy(size_t n;
void dest[restrict n], const void src[restrict n],
int c, size_t n);

DESCRIPTION
The memccpy() function copies no more than n bytes from memory area src to memory
area dest, stopping when the character c is found (c is copied).

If the memory areas overlap, the results are undefined.

RETURN VALUE
The memccpy() function returns a pointer to the next character in dest after c, or NULL
if c was not found in the first n characters of src.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememccpy()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
bcopy(3), bstring(3), memcpy(3), memmove(3), strcpy(3), strncpy(3)

Linux man-pages 6.16 2025-06-28 2104

memchr(3) Library Functions Manual memchr(3)

NAME
memchr, memrchr, rawmemchr - scan memory for a character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memchr(size_t n;
const void s[n], int c, size_t n);

void *memrchr(size_t n;
const void s[n], int c, size_t n);

[[deprecated]] void *rawmemchr(const void *s, int c);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

memrchr(), rawmemchr():
_GNU_SOURCE

DESCRIPTION
The memchr() function scans the initial n bytes of the memory area pointed to by s for
the first instance of c. Both c and the bytes of the memory area pointed to by s are inter-
preted as unsigned char.

The memrchr() function is like the memchr() function, except that it searches back-
ward from the end of the n bytes pointed to by s instead of forward from the beginning.

The rawmemchr() function is similar to memchr(), but it assumes (i.e., the program-
mer knows for certain) that an instance of c lies somewhere in the memory area starting
at the location pointed to by s. If an instance of c is not found, the behavior is unde-
fined. Use either strlen(3) or memchr(3) instead.

RETURN VALUE
The memchr() and memrchr() functions return a pointer to the matching byte or NULL
if the character does not occur in the given memory area.

The rawmemchr() function returns a pointer to the matching byte.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememchr(), memrchr(), rawmemchr()

STANDARDS
memchr()

C11, POSIX.1-2008.

memrchr()
rawmemchr()

GNU.

HISTORY

Linux man-pages 6.16 2025-06-28 2105

memchr(3) Library Functions Manual memchr(3)

memchr()
POSIX.1-2001, C89, SVr4, 4.3BSD.

memrchr()
glibc 2.2.

rawmemchr()
glibc 2.1.

SEE ALSO
bstring(3), ffs(3), memmem(3), strchr(3), strpbrk(3), strrchr(3), strsep(3), strspn(3),
strstr(3), wmemchr(3)

Linux man-pages 6.16 2025-06-28 2106

memcmp(3) Library Functions Manual memcmp(3)

NAME
memcmp - compare memory areas

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int memcmp(size_t n;
const void s1[n], const void s2[n], size_t n);

DESCRIPTION
The memcmp() function compares the first n bytes (each interpreted as unsigned char)
of the memory areas s1 and s2.

RETURN VALUE
The memcmp() function returns an integer less than, equal to, or greater than zero if the
first n bytes of s1 is found, respectively, to be less than, to match, or be greater than the
first n bytes of s2.

For a nonzero return value, the sign is determined by the sign of the difference between
the first pair of bytes (interpreted as unsigned char) that differ in s1 and s2.

If n is zero, the return value is zero.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememcmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
Do not use memcmp() to compare confidential data, such as cryptographic secrets, be-
cause the CPU time required for the comparison depends on the contents of the ad-
dresses compared, this function is subject to timing-based side-channel attacks. In such
cases, a function that performs comparisons in deterministic time, depending only on n
(the quantity of bytes compared) is required. Some operating systems provide such a
function (e.g., NetBSD’s consttime_memequal()), but no such function is specified in
POSIX. On Linux, you may need to implement such a function yourself.

SEE ALSO
bstring(3), strcasecmp(3), strcmp(3), strcoll(3), strncasecmp(3), strncmp(3), wmem-
cmp(3)

Linux man-pages 6.16 2025-06-28 2107

memcpy(3) Library Functions Manual memcpy(3)

NAME
memcpy - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memcpy(size_t n;
void dest[restrict n], const void src[restrict n],
size_t n);

DESCRIPTION
The memcpy() function copies n bytes from memory area src to memory area dest.
The memory areas must not overlap. Use memmove(3) if the memory areas do overlap.

RETURN VALUE
The memcpy() function returns a pointer to dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememcpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
Failure to observe the requirement that the memory areas do not overlap has been the
source of significant bugs. (POSIX and the C standards are explicit that employing
memcpy() with overlapping areas produces undefined behavior.) Most notably, in glibc
2.13 a performance optimization of memcpy() on some platforms (including x86-64) in-
cluded changing the order in which bytes were copied from src to dest.

This change revealed breakages in a number of applications that performed copying
with overlapping areas. Under the previous implementation, the order in which the
bytes were copied had fortuitously hidden the bug, which was revealed when the copy-
ing order was reversed. In glibc 2.14, a versioned symbol was added so that old binaries
(i.e., those linked against glibc versions earlier than 2.14) employed a memcpy() imple-
mentation that safely handles the overlapping buffers case (by providing an "older"
memcpy() implementation that was aliased to memmove(3)).

SEE ALSO
bcopy(3), bstring(3), memccpy(3), memmove(3), mempcpy(3), strcpy(3), strncpy(3),
wmemcpy(3)

Linux man-pages 6.16 2025-06-28 2108

memeq(3) Library Functions Manual memeq(3)

NAME
memeq - memory equal

LIBRARY
gnulib - The GNU Portability Library

SYNOPSIS
#include <string.h>

bool memeq(const void *m1, const void *m2, size_t n);

DESCRIPTION
memeq() determines whether the first n bytes of the memory areas pointed to by m1 and
m2 are equal.

RETURN VALUE
memeq() returns true if and only if the first n bytes of the memory areas pointed to by
m1 and m2 are equal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememeq()

STANDARDS
GNU.

HISTORY
gnulib 202601.

SEE ALSO
streq(3), memcmp(3), string(3)

Linux man-pages 6.16 2025-09-20 2109

memfrob(3) Library Functions Manual memfrob(3)

NAME
memfrob - frobnicate (obfuscate) a memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

void *memfrob(size_t n;
void s[n], size_t n);

DESCRIPTION
The memfrob() function obfuscates the first n bytes of the memory area s by exclusive-
ORing each character with the number 42. The effect can be reversed by using mem-
frob() on the obfuscated memory area.

Note that this function is not a proper encryption routine as the XOR constant is fixed,
and is suitable only for hiding strings.

RETURN VALUE
The memfrob() function returns a pointer to the obfuscated memory area.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememfrob()

STANDARDS
GNU.

SEE ALSO
bstring(3), strfry(3)

Linux man-pages 6.16 2025-06-28 2110

memmem(3) Library Functions Manual memmem(3)

NAME
memmem - locate a substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

void *memmem(size_t hsize, size_t nsize;
const void haystack[hsize], size_t hsize,
const void needle[nsize], size_t nsize);

DESCRIPTION
The memmem() function finds the start of the first occurrence of the substring needle of
size nsize in the memory area haystack of size hsize.

RETURN VALUE
The memmem() function returns a pointer to the beginning of the substring, or NULL if
the substring is not found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememmem()

STANDARDS
None.

HISTORY
musl libc 0.9.7; FreeBSD 6.0, OpenBSD 5.4, NetBSD, Illumos.

BUGS
In glibc 2.0, if needle is empty, memmem() returns a pointer to the last byte of
haystack. This is fixed in glibc 2.1.

SEE ALSO
bstring(3), strstr(3)

Linux man-pages 6.16 2025-06-28 2111

memmove(3) Library Functions Manual memmove(3)

NAME
memmove - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memmove(size_t n;
void dest[n], const void src[n], size_t n);

DESCRIPTION
The memmove() function copies n bytes from memory area src to memory area dest.
The memory areas may overlap: copying takes place as though the bytes in src are first
copied into a temporary array that does not overlap src or dest, and the bytes are then
copied from the temporary array to dest.

RETURN VALUE
The memmove() function returns a pointer to dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememmove()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
bcopy(3), bstring(3), memccpy(3), memcpy(3), strcpy(3), strncpy(3), wmemmove(3)

Linux man-pages 6.16 2025-06-28 2112

mempcpy(3) Library Functions Manual mempcpy(3)

NAME
mempcpy, wmempcpy - copy memory area

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

void *mempcpy(size_t n;
void dest[restrict n], const void src[restrict n],
size_t n);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <wchar.h>

wchar_t *wmempcpy(size_t n;
wchar_t dest[restrict n], const wchar_t src[restrict n],
size_t n);

DESCRIPTION
The mempcpy() function is nearly identical to the memcpy(3) function. It copies n
bytes from the object beginning at src into the object pointed to by dest. But instead of
returning the value of dest it returns a pointer to the byte following the last written byte.

This function is useful in situations where a number of objects shall be copied to con-
secutive memory positions.

The wmempcpy() function is identical but takes wchar_t type arguments and copies n
wide characters.

RETURN VALUE
dest + n.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemempcpy(), wmempcpy()

STANDARDS
GNU.

HISTORY
glibc 2.1.

EXAMPLES
void *
combine(void *o1, size_t s1, void *o2, size_t s2)
{

void *result = malloc(s1 + s2);
if (result != NULL)

mempcpy(mempcpy(result, o1, s1), o2, s2);
return result;

}

Linux man-pages 6.16 2025-06-28 2113

mempcpy(3) Library Functions Manual mempcpy(3)

SEE ALSO
memccpy(3), memcpy(3), memmove(3), wmemcpy(3)

Linux man-pages 6.16 2025-06-28 2114

memset(3) Library Functions Manual memset(3)

NAME
memset - fill memory with a constant byte

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

void *memset(size_t n;
void s[n], int c, size_t n);

DESCRIPTION
The memset() function fills the first n bytes of the memory area pointed to by s with the
constant byte c.

RETURN VALUE
The memset() function returns a pointer to the memory area s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safememset()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
bstring(3), bzero(3), swab(3), wmemset(3)

Linux man-pages 6.16 2025-06-28 2115

mkdtemp(3) Library Functions Manual mkdtemp(3)

NAME
mkdtemp - create a unique temporary directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *mkdtemp(char *template);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkdtemp():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc 2.19 and earlier: */ _BSD_SOURCE
|| /* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200809L

DESCRIPTION
The mkdtemp() function generates a uniquely named temporary directory from tem-
plate. The last six characters of template must be XXXXXX and these are replaced
with a string that makes the directory name unique. The directory is then created with
permissions 0700. Since it will be modified, template must not be a string constant, but
should be declared as a character array.

RETURN VALUE
The mkdtemp() function returns a pointer to the modified template string on success,
and NULL on failure, in which case errno is set to indicate the error.

ERRORS
EINVAL

The last six characters of template were not XXXXXX. Now template is un-
changed.

Also see mkdir(2) for other possible values for errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemkdtemp()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.91. NetBSD 1.4. POSIX.1-2008.

SEE ALSO
mktemp(1), mkdir(2), mkstemp(3), mktemp(3), tempnam(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.16 2025-05-17 2116

mkfifo(3) Library Functions Manual mkfifo(3)

NAME
mkfifo, mkfifoat - make a FIFO special file (a named pipe)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <sys/stat.h>

int mkfifo(const char *path, mode_t mode);

#include <fcntl.h> /* Definition of AT_* constants */
#include <sys/stat.h>

int mkfifoat(int dirfd , const char *path, mode_t mode);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkfifoat():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_ATFILE_SOURCE

DESCRIPTION
mkfifo() makes a FIFO special file with name path. mode specifies the FIFO’s permis-
sions. It is modified by the process’s umask in the usual way: the permissions of the
created file are (mode & ~umask).

A FIFO special file is similar to a pipe, except that it is created in a different way. In-
stead of being an anonymous communications channel, a FIFO special file is entered
into the filesystem by calling mkfifo().

Once you have created a FIFO special file in this way, any process can open it for read-
ing or writing, in the same way as an ordinary file. However, it has to be open at both
ends simultaneously before you can proceed to do any input or output operations on it.
Opening a FIFO for reading normally blocks until some other process opens the same
FIFO for writing, and vice versa. See fifo(7) for nonblocking handling of FIFO special
files.

mkfifoat()
The mkfifoat() function operates in exactly the same way as mkfifo(), except for the dif-
ferences described here.

If path is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,
as is done by mkfifo() for a relative pathname).

If path is relative and dirfd is the special value AT_FDCWD, then path is interpreted
relative to the current working directory of the calling process (like mkfifo())

If path is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for mkfifoat().

Linux man-pages 6.16 2025-05-17 2117

mkfifo(3) Library Functions Manual mkfifo(3)

RETURN VALUE
On success mkfifo() and mkfifoat() return 0. On error, -1 is returned and errno is set to
indicate the error.

ERRORS
EACCES

One of the directories in path did not allow search (execute) permission.

EBADF
(mkfifoat()) path is relative but dirfd is neither AT_FDCWD nor a valid file de-
scriptor.

EDQUOT
The user’s quota of disk blocks or inodes on the filesystem has been exhausted.

EEXIST
path already exists. This includes the case where path is a symbolic link, dan-
gling or not.

ENAMETOOLONG
Either the total size of path is greater than PATH_MAX, or an individual file-
name component has a length greater than NAME_MAX. In the GNU system,
there is no imposed limit on overall filename length, but some filesystems may
place limits on the length of a component.

ENOENT
A directory component in path does not exist or is a dangling symbolic link.

ENOSPC
The directory or filesystem has no room for the new file.

ENOTDIR
A component used as a directory in path is not, in fact, a directory.

ENOTDIR
(mkfifoat()) path is relative and dirfd is a file descriptor referring to a file other
than a directory.

EROFS
path refers to a read-only filesystem.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemkfifo(), mkfifoat()

VERSIONS
It is implemented using mknodat(2).

STANDARDS
POSIX.1-2008.

HISTORY

Linux man-pages 6.16 2025-05-17 2118

mkfifo(3) Library Functions Manual mkfifo(3)

mkfifo()
POSIX.1-2001.

mkfifoat()
glibc 2.4. POSIX.1-2008.

SEE ALSO
mkfifo(1), close(2), open(2), read(2), stat(2), umask(2), write(2), fifo(7)

Linux man-pages 6.16 2025-05-17 2119

mkstemp(3) Library Functions Manual mkstemp(3)

NAME
mkstemp, mkostemp, mkstemps, mkostemps - create a unique temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int mkstemp(char *template);
int mkostemp(char *template, int flags);
int mkstemps(char *template, int suffixlen);
int mkostemps(char *template, int suffixlen, int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mkstemp():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

mkostemp():
_GNU_SOURCE

mkstemps():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

mkostemps():
_GNU_SOURCE

DESCRIPTION
The mkstemp() function generates a unique temporary filename from template, creates
and opens the file, and returns an open file descriptor for the file.

The last six characters of template must be "XXXXXX" and these are replaced with a
string that makes the filename unique. Since it will be modified, template must not be a
string constant, but should be declared as a character array.

The file is created with permissions 0600, that is, read plus write for owner only. The
returned file descriptor provides both read and write access to the file. The file is opened
with the open(2) O_EXCL flag, guaranteeing that the caller is the process that creates
the file.

The mkostemp() function is like mkstemp(), with the difference that the following
bits—with the same meaning as for open(2)—may be specified in flags: O_APPEND,
O_CLOEXEC, and O_SYNC. Note that when creating the file, mkostemp() includes
the values O_RDWR, O_CREAT, and O_EXCL in the flags argument given to
open(2); including these values in the flags argument given to mkostemp() is unneces-
sary, and produces errors on some systems.

The mkstemps() function is like mkstemp(), except that the string in template contains
a suffix of suffixlen characters. Thus, template is of the form prefixXXXXXXsuffix, and
the string XXXXXX is modified as for mkstemp().

Linux man-pages 6.16 2025-05-17 2120

mkstemp(3) Library Functions Manual mkstemp(3)

The mkostemps() function is to mkstemps() as mkostemp() is to mkstemp().

RETURN VALUE
On success, these functions return the file descriptor of the temporary file. On error, -1
is returned, and errno is set to indicate the error.

ERRORS
EEXIST

Could not create a unique temporary filename. Now the contents of template are
undefined.

EINVAL
For mkstemp() and mkostemp(): The last six characters of template were not
XXXXXX; now template is unchanged.

For mkstemps() and mkostemps(): template is less than (6 + suffixlen) charac-
ters long, or the last 6 characters before the suffix in template were not
XXXXXX.

These functions may also fail with any of the errors described for open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemkstemp(), mkostemp(), mkstemps(), mkostemps()

STANDARDS
mkstemp()

POSIX.1-2001.

mkstemps()
BSD.

mkostemp()
mkostemps()

GNU.

HISTORY
mkstemp()

4.3BSD, POSIX.1-2001.

mkstemps()
glibc 2.11. BSD, Mac OS X, Solaris, Tru64.

mkostemp()
glibc 2.7.

mkostemps()
glibc 2.11.

In glibc versions 2.06 and earlier, the file is created with permissions 0666, that is, read
and write for all users. This old behavior may be a security risk, especially since other
UNIX flavors use 0600, and somebody might overlook this detail when porting pro-
grams. POSIX.1-2008 adds a requirement that the file be created with mode 0600.

More generally, the POSIX specification of mkstemp() does not say anything about file

Linux man-pages 6.16 2025-05-17 2121

mkstemp(3) Library Functions Manual mkstemp(3)

modes, so the application should make sure its file mode creation mask (see umask(2)) is
set appropriately before calling mkstemp() (and mkostemp())

SEE ALSO
mkdtemp(3), mktemp(3), tempnam(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.16 2025-05-17 2122

mktemp(3) Library Functions Manual mktemp(3)

NAME
mktemp - make a unique temporary filename

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *mktemp(char *template);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mktemp():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _SVID_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
Never use this function; see BUGS.

The mktemp() function generates a unique temporary filename from template. The last
six characters of template must be XXXXXX and these are replaced with a string that
makes the filename unique. Since it will be modified, template must not be a string con-
stant, but should be declared as a character array.

RETURN VALUE
The mktemp() function always returns template. If a unique name was created, the last
six bytes of template will have been modified in such a way that the resulting name is
unique (i.e., does not exist already) If a unique name could not be created, template is
made an empty string, and errno is set to indicate the error.

ERRORS
EINVAL

The last six characters of template were not XXXXXX.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemktemp()

STANDARDS
None.

HISTORY
4.3BSD, POSIX.1-2001. Removed in POSIX.1-2008.

BUGS
Never use mktemp(). Some implementations follow 4.3BSD and replace XXXXXX by
the current process ID and a single letter, so that at most 26 different names can be re-
turned. Since on the one hand the names are easy to guess, and on the other hand there
is a race between testing whether the name exists and opening the file, every use of

Linux man-pages 6.16 2025-05-17 2123

mktemp(3) Library Functions Manual mktemp(3)

mktemp() is a security risk. The race is avoided by mkstemp(3) and mkdtemp(3).

SEE ALSO
mktemp(1), mkdtemp(3), mkstemp(3), tempnam(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.16 2025-05-17 2124

modf (3) Library Functions Manual modf (3)

NAME
modf, modff, modfl - extract signed integral and fractional values from floating-point
number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double modf(double x, double *iptr);
float modff(float x, float *iptr);
long double modfl(long double x, long double *iptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

modff(), modfl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions break the argument x into an integral part and a fractional part, each of
which has the same sign as x. The integral part is stored in the location pointed to by
iptr.

RETURN VALUE
These functions return the fractional part of x.

If x is a NaN, a NaN is returned, and *iptr is set to a NaN.

If x is positive infinity (negative infinity), +0 (-0) is returned, and *iptr is set to positive
infinity (negative infinity).

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemodf(), modff(), modfl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
frexp(3), ldexp(3)

Linux man-pages 6.16 2025-05-17 2125

mpool(3) Library Functions Manual mpool(3)

NAME
mpool - shared memory buffer pool

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <db.h>
#include <mpool.h>

MPOOL *mpool_open(DBT *key, int fd , pgno_t pagesize, pgno_t maxcache);

void mpool_filter(MPOOL *mp,
typeof(void (void *, pgno_t, void *)) *pgin,
typeof(void (void *, pgno_t, void *)) *pgout,
void *pgcookie);

void *mpool_new(MPOOL *mp, pgno_t *pgnoaddr);
void *mpool_get(MPOOL *mp, pgno_t pgno, unsigned int flags);
int mpool_put(MPOOL *mp, void *pgaddr, unsigned int flags);

int mpool_sync(MPOOL *mp);
int mpool_close(MPOOL *mp);

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc 2.2,
glibc no longer provides these interfaces. Probably, you are looking for the APIs pro-
vided by the libdb library instead.

Mpool is the library interface intended to provide page oriented buffer management of
files. The buffers may be shared between processes.

The function mpool_open() initializes a memory pool. The key argument is the byte
string used to negotiate between multiple processes wishing to share buffers. If the file
buffers are mapped in shared memory, all processes using the same key will share the
buffers. If key is NULL, the buffers are mapped into private memory. The fd argument
is a file descriptor for the underlying file, which must be seekable. If key is non-NULL
and matches a file already being mapped, the fd argument is ignored.

The pagesize argument is the size, in bytes, of the pages into which the file is broken up.
The maxcache argument is the maximum number of pages from the underlying file to
cache at any one time. This value is not relative to the number of processes which share
a file’s buffers, but will be the largest value specified by any of the processes sharing the
file.

The mpool_filter() function is intended to make transparent input and output processing
of the pages possible. If the pgin function is specified, it is called each time a buffer is
read into the memory pool from the backing file. If the pgout function is specified, it is
called each time a buffer is written into the backing file. Both functions are called with
the pgcookie pointer, the page number and a pointer to the page to being read or written.

The function mpool_new() takes an MPOOL pointer and an address as arguments. If a
new page can be allocated, a pointer to the page is returned and the page number is
stored into the pgnoaddr address. Otherwise, NULL is returned and errno is set.

4.4 Berkeley Distribution 2025-05-17 2126

mpool(3) Library Functions Manual mpool(3)

The function mpool_get() takes an MPOOL pointer and a page number as arguments.
If the page exists, a pointer to the page is returned. Otherwise, NULL is returned and
errno is set. The flags argument is not currently used.

The function mpool_put() unpins the page referenced by pgaddr. pgaddr must be an
address previously returned by mpool_get() or mpool_new(). The flag value is speci-
fied by ORing any of the following values:

MPOOL_DIRTY
The page has been modified and needs to be written to the backing file.

mpool_put() returns 0 on success and -1 if an error occurs.

The function mpool_sync() writes all modified pages associated with the MPOOL
pointer to the backing file. mpool_sync() returns 0 on success and -1 if an error occurs.

The mpool_close() function free’s up any allocated memory associated with the mem-
ory pool cookie. Modified pages are not written to the backing file. mpool_close() re-
turns 0 on success and -1 if an error occurs.

ERRORS
The mpool_open() function may fail and set errno for any of the errors specified for the
library routine malloc(3).

The mpool_get() function may fail and set errno for the following:

EINVAL The requested record doesn’t exist.

The mpool_new() and mpool_get() functions may fail and set errno for any of the er-
rors specified for the library routines read(2), write(2), and malloc(3).

The mpool_sync() function may fail and set errno for any of the errors specified for the
library routine write(2).

The mpool_close() function may fail and set errno for any of the errors specified for the
library routine free(3).

STANDARDS
BSD.

SEE ALSO
btree(3), dbopen(3), hash(3), recno(3)

4.4 Berkeley Distribution 2025-05-17 2127

mq_close(3) Library Functions Manual mq_close(3)

NAME
mq_close - close a message queue descriptor

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_close(mqd_t mqdes);

DESCRIPTION
mq_close() closes the message queue descriptor mqdes.

If the calling process has attached a notification request (see mq_notify(3)) to this mes-
sage queue via mqdes, then this request is removed, and another process can now attach
a notification request.

RETURN VALUE
On success mq_close() returns 0; on error, -1 is returned, with errno set to indicate the
error.

ERRORS
EBADF

The message queue descriptor specified in mqdes is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_close()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
All open message queues are automatically closed on process termination, or upon ex-
ecve(2).

SEE ALSO
mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7)

Linux man-pages 6.16 2025-09-21 2128

mq_getattr(3) Library Functions Manual mq_getattr(3)

NAME
mq_getattr, mq_setattr - get/set message queue attributes

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_getattr(mqd_t mqdes, struct mq_attr *attr);
int mq_setattr(mqd_t mqdes, const struct mq_attr *restrict newattr,

struct mq_attr *restrict oldattr);

DESCRIPTION
mq_getattr() and mq_setattr() respectively retrieve and modify attributes of the mes-
sage queue referred to by the message queue descriptor mqdes.

mq_getattr() returns an mq_attr structure in the buffer pointed by attr. This structure
is defined as:

struct mq_attr {
long mq_flags; /* Flags: 0 or O_NONBLOCK */
long mq_maxmsg; /* Max. # of messages on queue */
long mq_msgsize; /* Max. message size (bytes) */
long mq_curmsgs; /* # of messages currently in queue */

};

The mq_flags field contains flags associated with the open message queue description.
This field is initialized when the queue is created by mq_open(3). The only flag that can
appear in this field is O_NONBLOCK.

The mq_maxmsg and mq_msgsize fields are set when the message queue is created by
mq_open(3). The mq_maxmsg field is an upper limit on the number of messages that
may be placed on the queue using mq_send(3). The mq_msgsize field is an upper limit
on the size of messages that may be placed on the queue. Both of these fields must have
a value greater than zero. Two /proc files that place ceilings on the values for these
fields are described in mq_overview(7).

The mq_curmsgs field returns the number of messages currently held in the queue.

mq_setattr() sets message queue attributes using information supplied in the mq_attr
structure pointed to by newattr. The only attribute that can be modified is the setting of
the O_NONBLOCK flag in mq_flags. The other fields in newattr are ignored. If the
oldattr field is not NULL, then the buffer that it points to is used to return an mq_attr
structure that contains the same information that is returned by mq_getattr().

RETURN VALUE
On success mq_getattr() and mq_setattr() return 0; on error, -1 is returned, with errno
set to indicate the error.

ERRORS
EBADF

The message queue descriptor specified in mqdes is invalid.

Linux man-pages 6.16 2025-09-21 2129

mq_getattr(3) Library Functions Manual mq_getattr(3)

EINVAL
newattr->mq_flags contained set bits other than O_NONBLOCK.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_getattr(), mq_setattr()

VERSIONS
On Linux, mq_getattr() and mq_setattr() are library functions layered on top of the
mq_getsetattr(2) system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The program below can be used to show the default mq_maxmsg and mq_msgsize val-
ues that are assigned to a message queue that is created with a call to mq_open(3) in
which the attr argument is NULL. Here is an example run of the program:

$./a.out /testq;
Maximum # of messages on queue: 10
Maximum message size: 8192

Since Linux 3.5, the following /proc files (described in mq_overview(7)) can be used to
control the defaults:

$ uname -sr;
Linux 3.8.0
$ cat /proc/sys/fs/mqueue/msg_default;
10
$ cat /proc/sys/fs/mqueue/msgsize_default;
8192

Program source

#include <err.h>
#include <fcntl.h>
#include <mqueue.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

mqd_t mqd;
struct mq_attr attr;

Linux man-pages 6.16 2025-09-21 2130

mq_getattr(3) Library Functions Manual mq_getattr(3)

if (argc != 2) {
fprintf(stderr, "Usage: %s mq-name\n", argv[0]);
exit(EXIT_FAILURE);

}

mqd = mq_open(argv[1], O_CREAT | O_EXCL, 0600, NULL);
if (mqd == (mqd_t) -1)

err(EXIT_FAILURE, "mq_open");

if (mq_getattr(mqd, &attr) == -1)
err(EXIT_FAILURE, "mq_getattr");

printf("Maximum # of messages on queue: %ld\n", attr.mq_maxmsg);
printf("Maximum message size: %ld\n", attr.mq_msgsize);

if (mq_unlink(argv[1]) == -1)
err(EXIT_FAILURE, "mq_unlink");

exit(EXIT_SUCCESS);
}

SEE ALSO
mq_close(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7)

Linux man-pages 6.16 2025-09-21 2131

mq_notify(3) Library Functions Manual mq_notify(3)

NAME
mq_notify - register for notification when a message is available

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>
#include <signal.h> /* Definition of SIGEV_* constants */

int mq_notify(mqd_t mqdes, const struct sigevent *sevp);

DESCRIPTION
mq_notify() allows the calling process to register or unregister for delivery of an asyn-
chronous notification when a new message arrives on the empty message queue referred
to by the message queue descriptor mqdes.

The sevp argument is a pointer to a sigevent structure. For the definition and general de-
tails of this structure, see sigevent(3type).

If sevp is a non-null pointer, then mq_notify() registers the calling process to receive
message notification. The sigev_notify field of the sigevent structure to which sevp
points specifies how notification is to be performed. This field has one of the following
values:

SIGEV_NONE
A "null" notification: the calling process is registered as the target for notifica-
tion, but when a message arrives, no notification is sent.

SIGEV_SIGNAL
Notify the process by sending the signal specified in sigev_signo. See
sigevent(3type) for general details. The si_code field of the siginfo_t structure
will be set to SI_MESGQ. In addition, si_pid will be set to the PID of the
process that sent the message, and si_uid will be set to the real user ID of the
sending process.

SIGEV_THREAD
Upon message delivery, invoke sigev_notify_function as if it were the start func-
tion of a new thread. See sigevent(3type) for details.

Only one process can be registered to receive notification from a message queue.

If sevp is NULL, and the calling process is currently registered to receive notifications
for this message queue, then the registration is removed; another process can then regis-
ter to receive a message notification for this queue.

Message notification occurs only when a new message arrives and the queue was previ-
ously empty. If the queue was not empty at the time mq_notify() was called, then a no-
tification will occur only after the queue is emptied and a new message arrives.

If another process or thread is waiting to read a message from an empty queue using
mq_receive(3), then any message notification registration is ignored: the message is de-
livered to the process or thread calling mq_receive(3), and the message notification reg-
istration remains in effect.

Linux man-pages 6.16 2025-09-21 2132

mq_notify(3) Library Functions Manual mq_notify(3)

Notification occurs once: after a notification is delivered, the notification registration is
removed, and another process can register for message notification. If the notified
process wishes to receive the next notification, it can use mq_notify() to request a fur-
ther notification. This should be done before emptying all unread messages from the
queue. (Placing the queue in nonblocking mode is useful for emptying the queue of
messages without blocking once it is empty.)

RETURN VALUE
On success mq_notify() returns 0; on error, -1 is returned, with errno set to indicate the
error.

ERRORS
EBADF

The message queue descriptor specified in mqdes is invalid.

EBUSY
Another process has already registered to receive notification for this message
queue.

EINVAL
sevp->sigev_notify is not one of the permitted values; or sevp->sigev_notify is
SIGEV_SIGNAL and sevp->sigev_signo is not a valid signal number.

ENOMEM
Insufficient memory.

POSIX.1-2008 says that an implementation may generate an EINVAL error if sevp is
NULL, and the caller is not currently registered to receive notifications for the queue
mqdes.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_notify()

VERSIONS
C library/kernel differences

In the glibc implementation, the mq_notify() library function is implemented on top of
the system call of the same name. When sevp is NULL, or specifies a notification
mechanism other than SIGEV_THREAD, the library function directly invokes the sys-
tem call. For SIGEV_THREAD, much of the implementation resides within the li-
brary, rather than the kernel. (This is necessarily so, since the thread involved in han-
dling the notification is one that must be managed by the C library POSIX threads im-
plementation.) The implementation involves the use of a raw netlink(7) socket and cre-
ates a new thread for each notification that is delivered to the process.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Linux man-pages 6.16 2025-09-21 2133

mq_notify(3) Library Functions Manual mq_notify(3)

EXAMPLES
The following program registers a notification request for the message queue named in
its command-line argument. Notification is performed by creating a thread. The thread
executes a function which reads one message from the queue and then terminates the
process.

Program source
#include <err.h>
#include <mqueue.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void /* Thread start function */
tfunc(union sigval sv)
{

struct mq_attr attr;
ssize_t nr;
void *buf;
mqd_t mqdes = *((mqd_t *) sv.sival_ptr);

/* Determine max. msg size; allocate buffer to receive msg */

if (mq_getattr(mqdes, &attr) == -1)
err(EXIT_FAILURE, "mq_getattr");

buf = malloc(attr.mq_msgsize);
if (buf == NULL)

err(EXIT_FAILURE, "malloc");

nr = mq_receive(mqdes, buf, attr.mq_msgsize, NULL);
if (nr == -1)

err(EXIT_FAILURE, "mq_receive");

printf("Read %zd bytes from MQ\n", nr);
free(buf);
exit(EXIT_SUCCESS); /* Terminate the process */

}

int
main(int argc, char *argv[])
{

mqd_t mqdes;
struct sigevent sev;

if (argc != 2) {
fprintf(stderr, "Usage: %s <mq-name>\n", argv[0]);

Linux man-pages 6.16 2025-09-21 2134

mq_notify(3) Library Functions Manual mq_notify(3)

exit(EXIT_FAILURE);
}

mqdes = mq_open(argv[1], O_RDONLY);
if (mqdes == (mqd_t) -1)

err(EXIT_FAILURE, "mq_open");

sev.sigev_notify = SIGEV_THREAD;
sev.sigev_notify_function = tfunc;
sev.sigev_notify_attributes = NULL;
sev.sigev_value.sival_ptr = &mqdes; /* Arg. to thread func. */
if (mq_notify(mqdes, &sev) == -1)

err(EXIT_FAILURE, "mq_notify");

pause(); /* Process will be terminated by thread function */
}

SEE ALSO
mq_close(3), mq_getattr(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7), sigevent(3type)

Linux man-pages 6.16 2025-09-21 2135

mq_open(3) Library Functions Manual mq_open(3)

NAME
mq_open - open a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <fcntl.h> /* For O_* constants */
#include <sys/stat.h> /* For mode constants */
#include <mqueue.h>

mqd_t mq_open(const char *name, int oflag);
mqd_t mq_open(const char *name, int oflag, mode_t mode,

struct mq_attr *attr);

DESCRIPTION
mq_open() creates a new POSIX message queue or opens an existing queue. The queue
is identified by name. For details of the construction of name, see mq_overview(7).

The oflag argument specifies flags that control the operation of the call. (Definitions of
the flags values can be obtained by including <fcntl.h>.) Exactly one of the following
must be specified in oflag:

O_RDONLY
Open the queue to receive messages only.

O_WRONLY
Open the queue to send messages only.

O_RDWR
Open the queue to both send and receive messages.

Zero or more of the following flags can additionally be ORed in oflag:

O_CLOEXEC (since Linux 2.6.26)
Set the close-on-exec flag for the message queue descriptor. See open(2) for a
discussion of why this flag is useful.

O_CREAT
Create the message queue if it does not exist. The owner (user ID) of the mes-
sage queue is set to the effective user ID of the calling process. The group own-
ership (group ID) is set to the effective group ID of the calling process.

O_EXCL
If O_CREAT was specified in oflag, and a queue with the given name already
exists, then fail with the error EEXIST.

O_NONBLOCK
Open the queue in nonblocking mode. In circumstances where mq_receive(3)
and mq_send(3) would normally block, these functions instead fail with the error
EAGAIN.

If O_CREAT is specified in oflag, then two additional arguments must be supplied.
The mode argument specifies the permissions to be placed on the new queue, as for
open(2). (Symbolic definitions for the permissions bits can be obtained by including

Linux man-pages 6.16 2025-09-21 2136

mq_open(3) Library Functions Manual mq_open(3)

<sys/stat.h>.) The permissions settings are masked against the process umask.

The fields of the struct mq_attr pointed to attr specify the maximum number of mes-
sages and the maximum size of messages that the queue will allow. This structure is de-
fined as follows:

struct mq_attr {
long mq_flags; /* Flags (ignored for mq_open()) */
long mq_maxmsg; /* Max. # of messages on queue */
long mq_msgsize; /* Max. message size (bytes) */
long mq_curmsgs; /* # of messages currently in queue

(ignored for mq_open()) */
};

Only the mq_maxmsg and mq_msgsize fields are employed when calling mq_open();
the values in the remaining fields are ignored.

If attr is NULL, then the queue is created with implementation-defined default attrib-
utes. Since Linux 3.5, two /proc files can be used to control these defaults; see
mq_overview(7) for details.

RETURN VALUE
On success, mq_open() returns a message queue descriptor for use by other message
queue functions. On error, mq_open() returns (mqd_t) -1, with errno set to indicate the
error.

ERRORS
EACCES

The queue exists, but the caller does not have permission to open it in the speci-
fied mode.

EACCES
name contained more than one slash.

EEXIST
Both O_CREAT and O_EXCL were specified in oflag, but a queue with this
name already exists.

EINVAL
name doesn’t follow the format in mq_overview(7).

EINVAL
O_CREAT was specified in oflag, and attr was not NULL, but
attr->mq_maxmsg or attr->mq_msqsize was invalid. Both of these fields must
be greater than zero. In a process that is unprivileged (does not have the
CAP_SYS_RESOURCE capability), attr->mq_maxmsg must be less than or
equal to the msg_max limit, and attr->mq_msgsize must be less than or equal to
the msgsize_max limit. In addition, even in a privileged process,
attr->mq_maxmsg cannot exceed the HARD_MAX limit. (See
mq_overview(7) for details of these limits.)

EMFILE
The per-process limit on the number of open file and message queue descriptors
has been reached (see the description of RLIMIT_NOFILE in getrlimit(2)).

Linux man-pages 6.16 2025-09-21 2137

mq_open(3) Library Functions Manual mq_open(3)

ENAMETOOLONG
name was too long.

ENFILE
The system-wide limit on the total number of open files and message queues has
been reached.

ENOENT
The O_CREAT flag was not specified in oflag, and no queue with this name ex-
ists.

ENOENT
name was just "/" followed by no other characters.

ENOMEM
Insufficient memory.

ENOSPC
Insufficient space for the creation of a new message queue. This probably oc-
curred because the queues_max limit was encountered; see mq_overview(7).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_open()

VERSIONS
C library/kernel differences

The mq_open() library function is implemented on top of a system call of the same
name. The library function performs the check that the name starts with a slash (/), giv-
ing the EINVAL error if it does not. The kernel system call expects name to contain no
preceding slash, so the C library function passes name without the preceding slash (i.e.,
name+1) to the system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
Before Linux 2.6.14, the process umask was not applied to the permissions specified in
mode.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_receive(3), mq_send(3), mq_unlink(3),
mq_overview(7)

Linux man-pages 6.16 2025-09-21 2138

mq_receive(3) Library Functions Manual mq_receive(3)

NAME
mq_receive, mq_timedreceive - receive a message from a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

ssize_t mq_receive(size_t msg_len;
mqd_t mqdes, char msg_ptr[msg_len],
size_t msg_len, unsigned int *msg_prio);

#include <time.h>
#include <mqueue.h>

ssize_t mq_timedreceive(size_t msg_len;
mqd_t mqdes, char *restrict msg_ptr[msg_len],
size_t msg_len, unsigned int *restrict msg_prio,
const struct timespec *restrict abs_timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mq_timedreceive():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
mq_receive() removes the oldest message with the highest priority from the message
queue referred to by the message queue descriptor mqdes, and places it in the buffer
pointed to by msg_ptr. The msg_len argument specifies the size of the buffer pointed to
by msg_ptr; this must be greater than or equal to the mq_msgsize attribute of the queue
(see mq_getattr(3)). If msg_prio is not NULL, then the buffer to which it points is used
to return the priority associated with the received message.

If the queue is empty, then, by default, mq_receive() blocks until a message becomes
available, or the call is interrupted by a signal handler. If the O_NONBLOCK flag is
enabled for the message queue description, then the call instead fails immediately with
the error EAGAIN.

mq_timedreceive() behaves just like mq_receive(), except that if the queue is empty
and the O_NONBLOCK flag is not enabled for the message queue description, then
abs_timeout points to a structure which specifies how long the call will block. This
value is an absolute timeout in seconds and nanoseconds since the Epoch, 1970-01-01
00:00:00 +0000 (UTC), specified in a timespec(3) structure.

If no message is available, and the timeout has already expired by the time of the call,
mq_timedreceive() returns immediately.

RETURN VALUE
On success, mq_receive() and mq_timedreceive() return the number of bytes in the re-
ceived message; on error, -1 is returned, with errno set to indicate the error.

ERRORS

Linux man-pages 6.16 2025-09-21 2139

mq_receive(3) Library Functions Manual mq_receive(3)

EAGAIN
The queue was empty, and the O_NONBLOCK flag was set for the message
queue description referred to by mqdes.

EBADF
The descriptor specified in mqdes was invalid or not opened for reading.

EINTR
The call was interrupted by a signal handler; see signal(7).

EINVAL
The call would have blocked, and abs_timeout was invalid, either because tv_sec
was less than zero, or because tv_nsec was less than zero or greater than 1000
million.

EMSGSIZE
msg_len was less than the mq_msgsize attribute of the message queue.

ETIMEDOUT
The call timed out before a message could be transferred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_receive(), mq_timedreceive()

VERSIONS
On Linux, mq_timedreceive() is a system call, and mq_receive() is a library function
layered on top of that system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_open(3), mq_send(3), mq_unlink(3),
timespec(3), mq_overview(7), time(7)

Linux man-pages 6.16 2025-09-21 2140

mq_send(3) Library Functions Manual mq_send(3)

NAME
mq_send, mq_timedsend - send a message to a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_send(size_t msg_len;
mqd_t mqdes, const char msg_ptr[msg_len],
size_t msg_len, unsigned int msg_prio);

#include <time.h>
#include <mqueue.h>

int mq_timedsend(size_t msg_len;
mqd_t mqdes, const char msg_ptr[msg_len],
size_t msg_len, unsigned int msg_prio,
const struct timespec *abs_timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

mq_timedsend():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
mq_send() adds the message pointed to by msg_ptr to the message queue referred to by
the message queue descriptor mqdes. The msg_len argument specifies the length of the
message pointed to by msg_ptr; this length must be less than or equal to the queue’s
mq_msgsize attribute. Zero-length messages are allowed.

The msg_prio argument is a nonnegative integer that specifies the priority of this mes-
sage. Messages are placed on the queue in decreasing order of priority, with newer mes-
sages of the same priority being placed after older messages with the same priority. See
mq_overview(7) for details on the range for the message priority.

If the message queue is already full (i.e., the number of messages on the queue equals
the queue’s mq_maxmsg attribute), then, by default, mq_send() blocks until sufficient
space becomes available to allow the message to be queued, or until the call is inter-
rupted by a signal handler. If the O_NONBLOCK flag is enabled for the message
queue description, then the call instead fails immediately with the error EAGAIN.

mq_timedsend() behaves just like mq_send(), except that if the queue is full and the
O_NONBLOCK flag is not enabled for the message queue description, then abs_time-
out points to a structure which specifies how long the call will block. This value is an
absolute timeout in seconds and nanoseconds since the Epoch, 1970-01-01 00:00:00
+0000 (UTC), specified in a timespec(3) structure.

If the message queue is full, and the timeout has already expired by the time of the call,
mq_timedsend() returns immediately.

RETURN VALUE
On success, mq_send() and mq_timedsend() return zero; on error, -1 is returned, with
errno set to indicate the error.

Linux man-pages 6.16 2025-09-21 2141

mq_send(3) Library Functions Manual mq_send(3)

ERRORS
EAGAIN

The queue was full, and the O_NONBLOCK flag was set for the message queue
description referred to by mqdes.

EBADF
The descriptor specified in mqdes was invalid or not opened for writing.

EINTR
The call was interrupted by a signal handler; see signal(7).

EINVAL
The call would have blocked, and abs_timeout was invalid, either because tv_sec
was less than zero, or because tv_nsec was less than zero or greater than 1000
million.

EMSGSIZE
msg_len was greater than the mq_msgsize attribute of the message queue.

ETIMEDOUT
The call timed out before a message could be transferred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_send(), mq_timedsend()

VERSIONS
On Linux, mq_timedsend() is a system call, and mq_send() is a library function lay-
ered on top of that system call.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_unlink(3),
timespec(3), mq_overview(7), time(7)

Linux man-pages 6.16 2025-09-21 2142

mq_unlink(3) Library Functions Manual mq_unlink(3)

NAME
mq_unlink - remove a message queue

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <mqueue.h>

int mq_unlink(const char *name);

DESCRIPTION
mq_unlink() removes the specified message queue name. The message queue name is
removed immediately. The queue itself is destroyed once any other processes that have
the queue open close their descriptors referring to the queue.

RETURN VALUE
On success mq_unlink() returns 0; on error, -1 is returned, with errno set to indicate
the error.

ERRORS
EACCES

The caller does not have permission to unlink this message queue.

ENAMETOOLONG
name was too long.

ENOENT
There is no message queue with the given name.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safemq_unlink()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
mq_close(3), mq_getattr(3), mq_notify(3), mq_open(3), mq_receive(3), mq_send(3),
mq_overview(7)

Linux man-pages 6.16 2025-09-21 2143

mtrace(3) Library Functions Manual mtrace(3)

NAME
mtrace, muntrace - malloc tracing

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <mcheck.h>

void mtrace(void);
void muntrace(void);

DESCRIPTION
The mtrace() function installs hook functions for the memory-allocation functions
(malloc(3), realloc(3) memalign(3), free(3)). These hook functions record tracing infor-
mation about memory allocation and deallocation. The tracing information can be used
to discover memory leaks and attempts to free nonallocated memory in a program.

The muntrace() function disables the hook functions installed by mtrace(), so that trac-
ing information is no longer recorded for the memory-allocation functions. If no hook
functions were successfully installed by mtrace(), muntrace() does nothing.

When mtrace() is called, it checks the value of the environment variable MAL-
LOC_TRACE, which should contain the pathname of a file in which the tracing infor-
mation is to be recorded. If the pathname is successfully opened, it is truncated to zero
length.

If MALLOC_TRACE is not set, or the pathname it specifies is invalid or not writable,
then no hook functions are installed, and mtrace() has no effect. In set-user-ID and set-
group-ID programs, MALLOC_TRACE is ignored, and mtrace() has no effect.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafemtrace(), muntrace()

STANDARDS
GNU.

NOTES
In normal usage, mtrace() is called once at the start of execution of a program, and
muntrace() is never called.

The tracing output produced after a call to mtrace() is textual, but not designed to be
human readable. The GNU C library provides a Perl script, mtrace(1), that interprets
the trace log and produces human-readable output. For best results, the traced program
should be compiled with debugging enabled, so that line-number information is
recorded in the executable.

The tracing performed by mtrace() incurs a performance penalty (if MAL-
LOC_TRACE points to a valid, writable pathname).

BUGS
The line-number information produced by mtrace(1) is not always precise: the line num-
ber references may refer to the previous or following (nonblank) line of the source code.

Linux man-pages 6.16 2025-05-17 2144

mtrace(3) Library Functions Manual mtrace(3)

EXAMPLES
The shell session below demonstrates the use of the mtrace() function and the mtrace(1)
command in a program that has memory leaks at two different locations. The demon-
stration uses the following program:

$ cat t_mtrace.c
#include <mcheck.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

mtrace();

for (unsigned int j = 0; j < 2; j++)
malloc(100); /* Never freed--a memory leak */

calloc(16, 16); /* Never freed--a memory leak */
exit(EXIT_SUCCESS);

}

When we run the program as follows, we see that mtrace() diagnosed memory leaks at
two different locations in the program:

$ cc -g t_mtrace.c -o t_mtrace
$ export MALLOC_TRACE=/tmp/t
$./t_mtrace
$ mtrace ./t_mtrace $MALLOC_TRACE
Memory not freed:

Address Size Caller
0x084c9378 0x64 at /home/cecilia/t_mtrace.c:12
0x084c93e0 0x64 at /home/cecilia/t_mtrace.c:12
0x084c9448 0x100 at /home/cecilia/t_mtrace.c:16

The first two messages about unfreed memory correspond to the two malloc(3) calls in-
side the for loop. The final message corresponds to the call to calloc(3) (which in turn
calls malloc(3)).

SEE ALSO
mtrace(1), malloc(3), malloc_hook(3), mcheck(3)

Linux man-pages 6.16 2025-05-17 2145

nan(3) Library Functions Manual nan(3)

NAME
nan, nanf, nanl - return ’Not a Number’

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double nan(const char *tagp);
float nanf(const char *tagp);
long double nanl(const char *tagp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nan(), nanf(), nanl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions return a representation (determined by tagp) of a quiet NaN. If the im-
plementation does not support quiet NaNs, these functions return zero.

The call nan("char-sequence") is equivalent to:

strtod("NAN(char-sequence)", NULL);

Similarly, calls to nanf() and nanl() are equivalent to analogous calls to strtof(3) and str-
told(3).

The argument tagp is used in an unspecified manner. On IEEE 754 systems, there are
many representations of NaN, and tagp selects one. On other systems it may do noth-
ing.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localenan(), nanf(), nanl()

STANDARDS
C11, POSIX.1-2008.

See also IEC 559 and the appendix with recommended functions in IEEE 754/IEEE
854.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
isnan(3), strtod(3), math_error(7)

Linux man-pages 6.16 2025-05-17 2146

netlink(3) Library Functions Manual netlink(3)

NAME
netlink - Netlink macros

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/types.h>
#include <linux/netlink.h>

int NLMSG_ALIGN(size_t size);
int NLMSG_LENGTH(size_t size);
int NLMSG_SPACE(size_t size);
void *NLMSG_DATA(struct nlmsghdr *nlh);
struct nlmsghdr *NLMSG_NEXT(struct nlmsghdr *nlh, int size);
int NLMSG_OK(struct nlmsghdr *nlh, int size);
int NLMSG_PAYLOAD(struct nlmsghdr *nlh, int size);

DESCRIPTION
<linux/netlink.h> defines several standard macros to access or create a netlink datagram.
They are similar in spirit to the macros defined in cmsg(3) for auxiliary data. The buffer
passed to and from a netlink socket should be accessed using only these macros.

NLMSG_ALIGN()
Round the size of a netlink message up to align it properly.

NLMSG_LENGTH()
Given the payload size, size, this macro returns the aligned size to store in the
nlmsg_len field of the nlmsghdr.

NLMSG_SPACE()
Return the number of bytes that a netlink message with payload of size would
occupy.

NLMSG_DATA()
Return a pointer to the payload associated with the passed nlmsghdr.

NLMSG_NEXT()
Get the next nlmsghdr in a multipart message. The caller must check if the cur-
rent nlmsghdr didn’t have the NLMSG_DONE set—this function doesn’t return
NULL on end. The size argument is an lvalue containing the remaining size of
the message buffer. This macro decrements it by the size of the message header.

NLMSG_OK()
Return true if the netlink message is not truncated and is in a form suitable for
parsing.

NLMSG_PAYLOAD()
Return the size of the payload associated with the nlmsghdr.

VERSIONS
It is often better to use netlink via libnetlink than via the low-level kernel interface.

Linux man-pages 6.16 2025-05-17 2147

netlink(3) Library Functions Manual netlink(3)

STANDARDS
Linux.

SEE ALSO
libnetlink(3), netlink(7)

Linux man-pages 6.16 2025-05-17 2148

newlocale(3) Library Functions Manual newlocale(3)

NAME
newlocale, freelocale - create, modify, and free a locale object

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

locale_t newlocale(int category_mask, const char *locale,
locale_t base);

void freelocale(locale_t locobj);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

newlocale(), freelocale():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The newlocale() function creates a new locale object, or modifies an existing object, re-
turning a reference to the new or modified object as the function result. Whether the call
creates a new object or modifies an existing object is determined by the value of base:

• If base is (locale_t) 0, a new object is created.

• If base refers to valid existing locale object (i.e., an object returned by a previous
call to newlocale() or duplocale(3)), then that object is modified by the call. If the
call is successful, the contents of base are unspecified (in particular, the object re-
ferred to by base may be freed, and a new object created). Therefore, the caller
should ensure that it stops using base before the call to newlocale(), and should sub-
sequently refer to the modified object via the reference returned as the function re-
sult. If the call fails, the contents of base remain valid and unchanged.

If base is the special locale object LC_GLOBAL_LOCALE (see duplocale(3)), or is
not (locale_t) 0 and is not a valid locale object handle, the behavior is undefined.

The category_mask argument is a bit mask that specifies the locale categories that are to
be set in a newly created locale object or modified in an existing object. The mask is
constructed by a bitwise OR of the constants LC_ADDRESS_MASK,
LC_CTYPE_MASK, LC_COLLATE_MASK, LC_IDENTIFICATION_MASK,
LC_MEASUREMENT_MASK, LC_MESSAGES_MASK, LC_MONE-
TARY_MASK, LC_NUMERIC_MASK, LC_NAME_MASK, LC_PAPER_MASK,
LC_TELEPHONE_MASK, and LC_TIME_MASK. Alternatively, the mask can be
specified as LC_ALL_MASK, which is equivalent to ORing all of the preceding con-
stants.

For each category specified in category_mask, the locale data from locale will be used
in the object returned by newlocale(). If a new locale object is being created, data for
all categories not specified in category_mask is taken from the default ("POSIX") locale.

The following preset values of locale are defined for all categories that can be specified

Linux man-pages 6.16 2025-09-21 2149

newlocale(3) Library Functions Manual newlocale(3)

in category_mask:

"POSIX"
A minimal locale environment for C language programs.

"C" Equivalent to "POSIX".

"" An implementation-defined native environment corresponding to the values of
the LC_* and LANG environment variables (see locale(7)).

freelocale()
The freelocale() function deallocates the resources associated with locobj, a locale ob-
ject previously returned by a call to newlocale() or duplocale(3). If locobj is
LC_GLOBAL_LOCALE or is not valid locale object handle, the results are undefined.

Once a locale object has been freed, the program should make no further use of it.

RETURN VALUE
On success, newlocale() returns a handle that can be used in calls to duplocale(3), free-
locale(), and other functions that take a locale_t argument. On error, newlocale() re-
turns (locale_t) 0, and sets errno to indicate the error.

ERRORS
EINVAL

One or more bits in category_mask do not correspond to a valid locale category.

EINVAL
locale is NULL.

ENOENT
locale is not a string pointer referring to a valid locale.

ENOMEM
Insufficient memory to create a locale object.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.

NOTES
Each locale object created by newlocale() should be deallocated using freelocale().

EXAMPLES
The program below takes up to two command-line arguments, which each identify lo-
cales. The first argument is required, and is used to set the LC_NUMERIC category in
a locale object created using newlocale(). The second command-line argument is op-
tional; if it is present, it is used to set the LC_TIME category of the locale object.

Having created and initialized the locale object, the program then applies it using uselo-
cale(3), and then tests the effect of the locale changes by:

(1) Displaying a floating-point number with a fractional part. This output will be af-
fected by the LC_NUMERIC setting. In many European-language locales, the
fractional part of the number is separated from the integer part using a comma,
rather than a period.

Linux man-pages 6.16 2025-09-21 2150

newlocale(3) Library Functions Manual newlocale(3)

(2) Displaying the date. The format and language of the output will be affected by
the LC_TIME setting.

The following shell sessions show some example runs of this program.

Set the LC_NUMERIC category to fr_FR (French):

$./a.out fr_FR;
123456,789
Fri Mar 7 00:25:08 2014

Set the LC_NUMERIC category to fr_FR (French), and the LC_TIME category to
it_IT (Italian):

$./a.out fr_FR it_IT;
123456,789
ven 07 mar 2014 00:26:01 CET

Specify the LC_TIME setting as an empty string, which causes the value to be taken
from environment variable settings (which, here, specify mi_NZ , New Zealand Māori):

$ LC_ALL=mi_NZ ./a.out fr_FR ""
123456,789
Te Paraire, te 07 o Poutū-te-rangi, 2014 00:38:44 CET

Program source
#define _XOPEN_SOURCE 700
#include <err.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int
main(int argc, char *argv[])
{

char buf[100];
time_t t;
size_t s;
struct tm *tm;
locale_t loc, nloc;

if (argc < 2) {
fprintf(stderr, "Usage: %s locale1 [locale2]\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Create a new locale object, taking the LC_NUMERIC settings
from the locale specified in argv[1]. */

loc = newlocale(LC_NUMERIC_MASK, argv[1], (locale_t) 0);
if (loc == (locale_t) 0)

Linux man-pages 6.16 2025-09-21 2151

newlocale(3) Library Functions Manual newlocale(3)

err(EXIT_FAILURE, "newlocale");

/* If a second command-line argument was specified, modify the
locale object to take the LC_TIME settings from the locale
specified in argv[2]. We assign the result of this newlocale()
call to 'nloc' rather than 'loc', since in some cases, we might
want to preserve 'loc' if this call fails. */

if (argc > 2) {
nloc = newlocale(LC_TIME_MASK, argv[2], loc);
if (nloc == (locale_t) 0)

err(EXIT_FAILURE, "newlocale");
loc = nloc;

}

/* Apply the newly created locale to this thread. */

uselocale(loc);

/* Test effect of LC_NUMERIC. */

printf("%8.3f\n", 123456.789);

/* Test effect of LC_TIME. */

t = time(NULL);
tm = localtime(&t);
if (tm == NULL)

err(EXIT_FAILURE, "time");

s = strftime(buf, sizeof(buf), "%c", tm);
if (s == 0)

err(EXIT_FAILURE, "strftime");

printf("%s\n", buf);

/* Free the locale object. */

uselocale(LC_GLOBAL_LOCALE); /* So 'loc' is no longer in use */
freelocale(loc);

exit(EXIT_SUCCESS);
}

SEE ALSO
locale(1), duplocale(3), setlocale(3), uselocale(3), locale(5), locale(7)

Linux man-pages 6.16 2025-09-21 2152

nextafter(3) Library Functions Manual nextafter(3)

NAME
nextafter, nextafterf, nextafterl, nexttoward, nexttowardf, nexttowardl - floating-point
number manipulation

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double nextafter(double x, double y);
float nextafterf(float x, float y);
long double nextafterl(long double x, long double y);

double nexttoward(double x, long double y);
float nexttowardf(float x, long double y);
long double nexttowardl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nextafter():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

nextafterf(), nextafterl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

nexttoward(), nexttowardf(), nexttowardl():
_XOPEN_SOURCE >= 600 || _ISOC99_SOURCE

|| _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The nextafter(), nextafterf(), and nextafterl() functions return the next representable
floating-point value following x in the direction of y. If y is less than x, these functions
will return the largest representable number less than x.

If x equals y, the functions return y.

The nexttoward(), nexttowardf(), and nexttowardl() functions do the same as the cor-
responding nextafter() functions, except that they have a long double second argument.

RETURN VALUE
On success, these functions return the next representable floating-point value after x in
the direction of y.

If x equals y, then y (cast to the same type as x) is returned.

If x or y is a NaN, a NaN is returned.

If x is finite, and the result would overflow, a range error occurs, and the functions return
HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively, with the correct mathe-
matical sign.

Linux man-pages 6.16 2025-05-17 2153

nextafter(3) Library Functions Manual nextafter(3)

If x is not equal to y, and the correct function result would be subnormal, zero, or under-
flow, a range error occurs, and either the correct value (if it can be represented), or 0.0,
is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error: result is subnormal or underflows
errno is set to ERANGE. An underflow floating-point exception (FE_UNDER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safenextafter(), nextafterf(), nextafterl(), nexttoward(),
nexttowardf(), nexttowardl()

STANDARDS
C11, POSIX.1-2008.

This function is defined in IEC 559 (and the appendix with recommended functions in
IEEE 754/IEEE 854).

HISTORY
C99, POSIX.1-2001.

BUGS
In glibc 2.5 and earlier, these functions do not raise an underflow floating-point
(FE_UNDERFLOW) exception when an underflow occurs.

Before glibc 2.23 these functions did not set errno.

SEE ALSO
nearbyint(3)

Linux man-pages 6.16 2025-05-17 2154

nextup(3) Library Functions Manual nextup(3)

NAME
nextup, nextupf, nextupl, nextdown, nextdownf, nextdownl - return next floating-point
number toward positive/negative infinity

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

double nextup(double x);
float nextupf(float x);
long double nextupl(long double x);

double nextdown(double x);
float nextdownf(float x);
long double nextdownl(long double x);

DESCRIPTION
The nextup(), nextupf(), and nextupl() functions return the next representable floating-
point number greater than x.

If x is the smallest representable negative number in the corresponding type, these func-
tions return -0. If x is +0 or -0, the returned value is the smallest representable positive
number of the corresponding type.

If x is positive infinity, the returned value is positive infinity. If x is negative infinity, the
returned value is the largest representable finite negative number of the corresponding
type.

If x is NaN, the returned value is NaN.

The value returned by nextdown(x) is -nextup(-x), and similarly for the other types.

RETURN VALUE
See DESCRIPTION.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safenextup(), nextupf(), nextupl(), nextdown(),
nextdownf(), nextdownl()

STANDARDS
These functions are described in IEEE Std 754-2008 - Standard for Floating-Point
Arithmetic and ISO/IEC TS 18661.

HISTORY
glibc 2.24.

SEE ALSO
nearbyint(3), nextafter(3)

Linux man-pages 6.16 2025-05-17 2155

nextup(3) Library Functions Manual nextup(3)

Linux man-pages 6.16 2025-05-17 2156

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

NAME
nl_langinfo, nl_langinfo_l - query language and locale information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <langinfo.h>

char *nl_langinfo(nl_item item);
char *nl_langinfo_l(nl_item item, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nl_langinfo_l():
Since glibc 2.24:

_POSIX_C_SOURCE >= 200809L
glibc 2.23 and earlier:

_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The nl_langinfo() and nl_langinfo_l() functions provide access to locale information in
a more flexible way than localeconv(3). nl_langinfo() returns a string which is the value
corresponding to item in the program’s current global locale. nl_langinfo_l() returns a
string which is the value corresponding to item for the locale identified by the locale ob-
ject locale, which was previously created by newlocale(3). Individual and additional el-
ements of the locale categories can be queried.

Examples for the locale elements that can be specified in item using the constants de-
fined in <langinfo.h> are:

CODESET (LC_CTYPE)
Return a string with the name of the character encoding used in the selected lo-
cale, such as "UTF-8", "ISO-8859-1", or "ANSI_X3.4-1968" (better known as
US-ASCII). This is the same string that you get with "locale charmap". For a
list of character encoding names, try "locale -m" (see locale(1)).

D_T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent
time and date in a locale-specific way (%c conversion specification).

D_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent a
date in a locale-specific way (%x conversion specification).

T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent a
time in a locale-specific way (%X conversion specification).

AM_STR (LC_TIME)
Return a string that represents affix for ante meridiem (before noon, "AM") time.
(Used in %p strftime(3) conversion specification.)

Linux man-pages 6.16 2025-09-21 2157

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

PM_STR (LC_TIME)
Return a string that represents affix for post meridiem (before midnight, "PM")
time. (Used in %p strftime(3) conversion specification.)

T_FMT_AMPM (LC_TIME)
Return a string that can be used as a format string for strftime(3) to represent a
time in a.m. or p.m. notation in a locale-specific way (%r conversion specifica-
tion).

ERA (LC_TIME)
Return era description, which contains information about how years are counted
and displayed for each era in a locale. Each era description segment shall have
the format:

direction:offset:start_date:end_date:era_name:era_format

according to the definitions below:

direction Either a "+" or a "-" character. The "+" means that years increase
from the start_date towards the end_date, "-" means the opposite.

offset The epoch year of the start_date.

start_date A date in the form yyyy/mm/dd , where yyyy, mm, and dd are the
year, month, and day numbers respectively of the start of the era.

end_date The ending date of the era, in the same format as the start_date,
or one of the two special values "-*" (minus infinity) or "+*" (plus
infinity).

era_name The name of the era, corresponding to the %EC strftime(3) con-
version specification.

era_format The format of the year in the era, corresponding to the %EY strf-
time(3) conversion specification.

Era description segments are separated by semicolons. Most locales do not de-
fine this value. Examples of locales that do define this value are the Japanese
and Thai locales.

ERA_D_T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) for alternative
representation of time and date in a locale-specific way (%Ec conversion specifi-
cation).

ERA_D_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) for alternative
representation of a date in a locale-specific way (%Ex conversion specification).

ERA_T_FMT (LC_TIME)
Return a string that can be used as a format string for strftime(3) for alternative
representation of a time in a locale-specific way (%EX conversion specifica-
tion).

Linux man-pages 6.16 2025-09-21 2158

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

DAY_{1–7} (LC_TIME)
Return name of the n-th day of the week. [Warning: this follows the US conven-
tion DAY_1 = Sunday, not the international convention (ISO 8601) that Monday
is the first day of the week.] (Used in %A strftime(3) conversion specification.)

ABDAY_{1–7} (LC_TIME)
Return abbreviated name of the n-th day of the week. (Used in %a strftime(3)
conversion specification.)

MON_{1–12} (LC_TIME)
Return name of the n-th month. (Used in %B strftime(3) conversion specifica-
tion.)

ABMON_{1–12} (LC_TIME)
Return abbreviated name of the n-th month. (Used in %b strftime(3) conversion
specification.)

RADIXCHAR (LC_NUMERIC)
Return radix character (decimal dot, decimal comma, etc.).

THOUSEP (LC_NUMERIC)
Return separator character for thousands (groups of three digits).

YESEXPR (LC_MESSAGES)
Return a regular expression that can be used with the regex(3) function to recog-
nize a positive response to a yes/no question.

NOEXPR (LC_MESSAGES)
Return a regular expression that can be used with the regex(3) function to recog-
nize a negative response to a yes/no question.

CRNCYSTR (LC_MONETARY)
Return the currency symbol, preceded by "-" if the symbol should appear before
the value, "+" if the symbol should appear after the value, or "." if the symbol
should replace the radix character.

The above list covers just some examples of items that can be requested. For a more de-
tailed list, consult The GNU C Library Reference Manual.

RETURN VALUE
On success, these functions return a pointer to a string which is the value corresponding
to item in the specified locale.

If no locale has been selected by setlocale(3) for the appropriate category, nl_langinfo()
return a pointer to the corresponding string in the "C" locale. The same is true of
nl_langinfo_l() if locale specifies a locale where langinfo data is not defined.

If item is not valid, a pointer to an empty string is returned.

The pointer returned by these functions may point to static data that may be overwritten,
or the pointer itself may be invalidated, by a subsequent call to nl_langinfo(), nl_lang-
info_l(), or setlocale(3). The same statements apply to nl_langinfo_l() if the locale ob-
ject referred to by locale is freed or modified by freelocale(3) or newlocale(3).

POSIX specifies that the application may not modify the string returned by these

Linux man-pages 6.16 2025-09-21 2159

nl_langinfo(3) Library Functions Manual nl_langinfo(3)

functions.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localenl_langinfo()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SUSv2.

NOTES
The behavior of nl_langinfo_l() is undefined if locale is the special locale object
LC_GLOBAL_LOCALE or is not a valid locale object handle.

EXAMPLES
The following program sets the character type and the numeric locale according to the
environment and queries the terminal character set and the radix character.

#include <langinfo.h>
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

setlocale(LC_CTYPE, "");
setlocale(LC_NUMERIC, "");

printf("%s\n", nl_langinfo(CODESET));
printf("%s\n", nl_langinfo(RADIXCHAR));

exit(EXIT_SUCCESS);
}

SEE ALSO
locale(1), localeconv(3), setlocale(3), charsets(7), locale(7)

The GNU C Library Reference Manual

Linux man-pages 6.16 2025-09-21 2160

ntp_gettime(3) Library Functions Manual ntp_gettime(3)

NAME
ntp_gettime, ntp_gettimex - get time parameters (NTP daemon interface)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/timex.h>

int ntp_gettime(struct ntptimeval *ntv);
int ntp_gettimex(struct ntptimeval *ntv);

DESCRIPTION
Both of these APIs return information to the caller via the ntv argument, a structure of
the following type:

struct ntptimeval {
struct timeval time; /* Current time */
long maxerror; /* Maximum error */
long esterror; /* Estimated error */
long tai; /* TAI offset */

/* Further padding bytes allowing for future expansion */
};

The fields of this structure are as follows:

time The current time, expressed as a timeval structure:

struct timeval {
time_t tv_sec; /* Seconds since the Epoch */
suseconds_t tv_usec; /* Microseconds */

};

maxerror
Maximum error, in microseconds. This value can be initialized by ntp_adj-
time(3), and is increased periodically (on Linux: each second), but is clamped to
an upper limit (the kernel constant NTP_PHASE_MAX, with a value of
16,000).

esterror
Estimated error, in microseconds. This value can be set via ntp_adjtime(3) to
contain an estimate of the difference between the system clock and the true time.
This value is not used inside the kernel.

tai TAI (Atomic International Time) offset.

ntp_gettime() returns an ntptimeval structure in which the time, maxerror, and esterror
fields are filled in.

ntp_gettimex() performs the same task as ntp_gettime(), but also returns information
in the tai field.

Linux man-pages 6.16 2025-05-17 2161

ntp_gettime(3) Library Functions Manual ntp_gettime(3)

RETURN VALUE
The return values for ntp_gettime() and ntp_gettimex() are as for adjtimex(2). Given a
correct pointer argument, these functions always succeed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safentp_gettime(), ntp_gettimex()

STANDARDS
ntp_gettime()

NTP Kernel Application Program Interface.

ntp_gettimex()
GNU.

HISTORY
ntp_gettime()

glibc 2.1.

ntp_gettimex()
glibc 2.12.

SEE ALSO
adjtimex(2), ntp_adjtime(3), time(7)

NTP "Kernel Application Program Interface" 〈http://www.slac.stanford.edu/comp/unix/
package/rtems/src/ssrlApps/ntpNanoclock/api.htm〉

Linux man-pages 6.16 2025-05-17 2162

offsetof (3) Library Functions Manual offsetof (3)

NAME
offsetof - offset of a structure member

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stddef.h>

size_t offsetof(type, member);

DESCRIPTION
The macro offsetof() returns the offset of the field member from the start of the structure
type.

This macro is useful because the sizes of the fields that compose a structure can vary
across implementations, and compilers may insert different numbers of padding bytes
between fields. Consequently, an element’s offset is not necessarily given by the sum of
the sizes of the previous elements.

A compiler error will result if member is not aligned to a byte boundary (i.e., it is a bit
field).

RETURN VALUE
offsetof() returns the offset of the given member within the given type, in units of bytes.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

EXAMPLES
On a Linux/i386 system, when compiled using the default gcc(1) options, the program
below produces the following output:

$./a.out
offsets: i=0; c=4; d=8 a=16
sizeof(struct s)=16

Program source

#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct s {
int i;
char c;
double d;
char a[];

Linux man-pages 6.16 2025-05-17 2163

offsetof (3) Library Functions Manual offsetof (3)

};

/* Output is compiler dependent */

printf("offsets: i=%zu; c=%zu; d=%zu a=%zu\n",
offsetof(struct s, i), offsetof(struct s, c),
offsetof(struct s, d), offsetof(struct s, a));

printf("sizeof(struct s)=%zu\n", sizeof(struct s));

exit(EXIT_SUCCESS);
}

Linux man-pages 6.16 2025-05-17 2164

on_exit(3) Library Functions Manual on_exit(3)

NAME
on_exit - register a function to be called at normal process termination

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int on_exit(typeof(void (int, void *)) * function, void *arg);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

on_exit():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The on_exit() function registers the given function to be called at normal process termi-
nation, whether via exit(3) or via return from the program’s main(). The function is
passed the status argument given to the last call to exit(3) and the arg argument from
on_exit().

The same function may be registered multiple times: it is called once for each registra-
tion.

When a child process is created via fork(2), it inherits copies of its parent’s registrations.
Upon a successful call to one of the exec(3) functions, all registrations are removed.

RETURN VALUE
The on_exit() function returns the value 0 if successful; otherwise, it returns a nonzero
value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeon_exit()

STANDARDS
None.

HISTORY
SunOS 4, glibc. Removed in Solaris (SunOS 5). Use the standard atexit(3) instead.

CAVEATS
By the time function is executed, stack (auto) variables may already have gone out of
scope. Therefore, arg should not be a pointer to a stack variable; it may however be a
pointer to a heap variable or a global variable.

SEE ALSO
_exit(2), atexit(3), exit(3)

Linux man-pages 6.16 2025-09-21 2165

open_memstream(3) Library Functions Manual open_memstream(3)

NAME
open_memstream, open_wmemstream - open a dynamic memory buffer stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *open_memstream(char **ptr, size_t *sizeloc);

#include <wchar.h>

FILE *open_wmemstream(wchar_t **ptr, size_t *sizeloc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

open_memstream(), open_wmemstream():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The open_memstream() function opens a stream for writing to a memory buffer. The
function dynamically allocates the buffer, and the buffer automatically grows as needed.
Initially, the buffer has a size of zero. After closing the stream, the caller should free(3)
this buffer.

The locations pointed to by ptr and sizeloc are used to report, respectively, the current
location and the size of the buffer. The locations referred to by these pointers are up-
dated each time the stream is flushed (fflush(3)) and when the stream is closed
(fclose(3)). These values remain valid only as long as the caller performs no further out-
put on the stream. If further output is performed, then the stream must again be flushed
before trying to access these values.

A null byte is maintained at the end of the buffer. This byte is not included in the size
value stored at sizeloc.

The stream maintains the notion of a current position, which is initially zero (the start of
the buffer). Each write operation implicitly adjusts the buffer position. The stream’s
buffer position can be explicitly changed with fseek(3) or fseeko(3). Moving the buffer
position past the end of the data already written fills the intervening space with null
characters.

The open_wmemstream() is similar to open_memstream(), but operates on wide char-
acters instead of bytes.

RETURN VALUE
Upon successful completion, open_memstream() and open_wmemstream() return a
FILE pointer. Otherwise, NULL is returned and errno is set to indicate the error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 2166

open_memstream(3) Library Functions Manual open_memstream(3)

Interface Attribute Value
Thread safety MT-Safeopen_memstream(), open_wmemstream()

STANDARDS
POSIX.1-2008.

HISTORY
open_memstream()

glibc 1.0.x.

open_wmemstream()
glibc 2.4.

NOTES
There is no file descriptor associated with the file stream returned by these functions
(i.e., fileno(3) will return an error if called on the returned stream).

BUGS
Before glibc 2.7, seeking past the end of a stream created by open_memstream() does
not enlarge the buffer; instead the fseek(3) call fails, returning -1.

EXAMPLES
See fmemopen(3).

SEE ALSO
fmemopen(3), fopen(3), setbuf(3)

Linux man-pages 6.16 2025-09-21 2167

opendir(3) Library Functions Manual opendir(3)

NAME
opendir, fdopendir - open a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

DIR *opendir(const char *name);
DIR *fdopendir(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

fdopendir():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The opendir() function opens a directory stream corresponding to the directory name,
and returns a pointer to the directory stream. The stream is positioned at the first entry
in the directory.

The fdopendir() function is like opendir(), but returns a directory stream for the direc-
tory referred to by the open file descriptor fd . After a successful call to fdopendir(), fd
is used internally by the implementation, and should not otherwise be used by the appli-
cation.

RETURN VALUE
The opendir() and fdopendir() functions return a pointer to the directory stream. On
error, NULL is returned, and errno is set to indicate the error.

ERRORS
EACCES

Permission denied.

EBADF
fd is not a valid file descriptor opened for reading.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
name was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
Directory does not exist, or name is an empty string.

Linux man-pages 6.16 2025-10-29 2168

opendir(3) Library Functions Manual opendir(3)

ENOMEM
Insufficient memory to complete the operation.

ENOTDIR
name is not a directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeopendir(), fdopendir()

STANDARDS
POSIX.1-2008.

STANDARDS
opendir()

SVr4, 4.3BSD, POSIX.1-2001.

fdopendir()
POSIX.1-2008. glibc 2.4.

NOTES
Filename entries can be read from a directory stream using readdir(3).

The underlying file descriptor of the directory stream can be obtained using dirfd(3).

The opendir() function sets the close-on-exec flag for the file descriptor underlying the
DIR *. The fdopendir() function leaves the setting of the close-on-exec flag unchanged
for the file descriptor, fd . POSIX.1-200x leaves it unspecified whether a successful call
to fdopendir() will set the close-on-exec flag for the file descriptor, fd .

SEE ALSO
open(2), closedir(3), dirfd(3), readdir(3), rewinddir(3), scandir(3), seekdir(3), telldir(3)

Linux man-pages 6.16 2025-10-29 2169

openpty(3) Library Functions Manual openpty(3)

NAME
openpty, login_tty, forkpty - terminal utility functions

LIBRARY
System utilities library (libutil, -lutil)

SYNOPSIS
#include <pty.h>

int openpty(int *amaster, int *aslave, char *name,
const struct termios *termp,
const struct winsize *winp);

pid_t forkpty(int *amaster, char *name,
const struct termios *termp,
const struct winsize *winp);

#include <utmp.h>

int login_tty(int fd);

DESCRIPTION
The openpty() function finds an available pseudoterminal and returns file descriptors for
the master and slave in amaster and aslave. If name is not NULL, the filename of the
slave is returned in name. If termp is not NULL, the terminal parameters of the slave
will be set to the values in termp. If winp is not NULL, the window size of the slave
will be set to the values in winp.

The login_tty() function prepares for a login on the terminal referred to by the file de-
scriptor fd (which may be a real terminal device, or the slave of a pseudoterminal as re-
turned by openpty()) by creating a new session, making fd the controlling terminal for
the calling process, setting fd to be the standard input, output, and error streams of the
current process, and closing fd .

The forkpty() function combines openpty(), fork(2), and login_tty() to create a new
process operating in a pseudoterminal. A file descriptor referring to master side of the
pseudoterminal is returned in amaster. If name is not NULL, the buffer it points to is
used to return the filename of the slave. The termp and winp arguments, if not NULL,
will determine the terminal attributes and window size of the slave side of the pseudoter-
minal.

RETURN VALUE
If a call to openpty(), login_tty(), or forkpty() is not successful, -1 is returned and er-
rno is set to indicate the error. Otherwise, openpty(), login_tty(), and the child process
of forkpty() return 0, and the parent process of forkpty() returns the process ID of the
child process.

ERRORS
openpty() fails if:

ENOENT
There are no available terminals.

login_tty() fails if ioctl(2) fails to set fd to the controlling terminal of the calling
process.

Linux man-pages 6.16 2025-05-17 2170

openpty(3) Library Functions Manual openpty(3)

forkpty() fails if either openpty() or fork(2) fails.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeforkpty(), openpty()
Thread safety MT-Unsafe race:ttynamelogin_tty()

STANDARDS
BSD.

HISTORY
The const modifiers were added to the structure pointer arguments of openpty() and
forkpty() in glibc 2.8.

Before glibc 2.0.92, openpty() returns file descriptors for a BSD pseudoterminal pair;
since glibc 2.0.92, it first attempts to open a UNIX 98 pseudoterminal pair, and falls
back to opening a BSD pseudoterminal pair if that fails.

BUGS
Nobody knows how much space should be reserved for name. So, calling openpty() or
forkpty() with non-NULL name may not be secure.

SEE ALSO
fork(2), ttyname(3), pty(7)

Linux man-pages 6.16 2025-05-17 2171

perror(3) Library Functions Manual perror(3)

NAME
perror - print a system error message

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

void perror(const char *s);

#include <errno.h>

int errno; /* Not really declared this way; see errno(3) */

[[deprecated]] const char *const sys_errlist[];
[[deprecated]] int sys_nerr;

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sys_errlist, sys_nerr:
From glibc 2.19 to glibc 2.31:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The perror() function produces a message on standard error describing the last error en-
countered during a call to a system or library function.

First (if s is not NULL and *s is not a null byte ('\0')), the argument string s is printed,
followed by a colon and a blank. Then an error message corresponding to the current
value of errno and a new-line.

To be of most use, the argument string should include the name of the function that in-
curred the error.

The global error list sys_errlist[], which can be indexed by errno, can be used to obtain
the error message without the newline. The largest message number provided in the ta-
ble is sys_nerr-1. Be careful when directly accessing this list, because new error values
may not have been added to sys_errlist[]. The use of sys_errlist[] is nowadays depre-
cated; use strerror(3) instead.

When a system call fails, it usually returns -1 and sets the variable errno to a value de-
scribing what went wrong. (These values can be found in <errno.h>.) Many library
functions do likewise. The function perror() serves to translate this error code into hu-
man-readable form. Note that errno is undefined after a successful system call or li-
brary function call: this call may well change this variable, even though it succeeds, for
example because it internally used some other library function that failed. Thus, if a
failing call is not immediately followed by a call to perror(), the value of errno should
be saved.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 2172

perror(3) Library Functions Manual perror(3)

Interface Attribute Value
Thread safety MT-Safe race:stderrperror()

STANDARDS
errno
perror()

C11, POSIX.1-2008.

sys_nerr
sys_errlist

BSD.

HISTORY
errno
perror()

POSIX.1-2001, C89, 4.3BSD.

sys_nerr
sys_errlist

Removed in glibc 2.32.

SEE ALSO
err(3), errno(3), error(3), strerror(3)

Linux man-pages 6.16 2025-09-21 2173

popen(3) Library Functions Manual popen(3)

NAME
popen, pclose - pipe stream to or from a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *popen(const char *command , const char *type);
int pclose(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

popen(), pclose():
_POSIX_C_SOURCE >= 2

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The popen() function opens a process by creating a pipe, forking, and invoking the
shell. Since a pipe is by definition unidirectional, the type argument may specify only
reading or writing, not both; the resulting stream is correspondingly read-only or write-
only.

The command argument is a pointer to a null-terminated string containing a shell com-
mand line. This command is passed to /bin/sh using the -c flag; interpretation, if any, is
performed by the shell.

The type argument is a pointer to a null-terminated string which must contain either the
letter 'r' for reading or the letter 'w' for writing. Since glibc 2.9, this argument can addi-
tionally include the letter 'e', which causes the close-on-exec flag (FD_CLOEXEC) to
be set on the underlying file descriptor; see the description of the O_CLOEXEC flag in
open(2) for reasons why this may be useful.

The return value from popen() is a normal standard I/O stream in all respects save that it
must be closed with pclose() rather than fclose(3). Writing to such a stream writes to
the standard input of the command; the command’s standard output is the same as that
of the process that called popen(), unless this is altered by the command itself. Con-
versely, reading from the stream reads the command’s standard output, and the com-
mand’s standard input is the same as that of the process that called popen().

Note that output popen() streams are block buffered by default.

The pclose() function waits for the associated process to terminate and returns the exit
status of the command as returned by wait4(2).

RETURN VALUE
popen(): on success, returns a pointer to an open stream that can be used to read or write
to the pipe; if the fork(2) or pipe(2) calls fail, or if the function cannot allocate memory,
NULL is returned.

pclose(): on success, returns the exit status of the command; if wait4(2) returns an error,
or some other error is detected, -1 is returned.

On failure, both functions set errno to indicate the error.

Linux man-pages 6.16 2025-09-21 2174

popen(3) Library Functions Manual popen(3)

ERRORS
The popen() function does not set errno if memory allocation fails. If the underlying
fork(2) or pipe(2) fails, errno is set to indicate the error. If the type argument is invalid,
and this condition is detected, errno is set to EINVAL.

If pclose() cannot obtain the child status, errno is set to ECHILD.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepopen(), pclose()

VERSIONS
The 'e' value for type is a Linux extension.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

CAVEATS
Carefully read Caveats in system(3).

BUGS
Since the standard input of a command opened for reading shares its seek offset with the
process that called popen(), if the original process has done a buffered read, the com-
mand’s input position may not be as expected. Similarly, the output from a command
opened for writing may become intermingled with that of the original process. The lat-
ter can be avoided by calling fflush(3) before popen().

Failure to execute the shell is indistinguishable from the shell’s failure to execute the
command, or an immediate exit of the command. The only hint is an exit status of 127.

SEE ALSO
sh(1), fork(2), pipe(2), wait4(2), fclose(3), fflush(3), fopen(3), stdio(3), system(3)

Linux man-pages 6.16 2025-09-21 2175

posix_fallocate(3) Library Functions Manual posix_fallocate(3)

NAME
posix_fallocate - allocate file space

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <fcntl.h>

int posix_fallocate(int fd , off_t offset, off_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_fallocate():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The function posix_fallocate() ensures that disk space is allocated for the file referred to
by the file descriptor fd for the bytes in the range starting at offset and continuing for
size bytes. After a successful call to posix_fallocate(), subsequent writes to bytes in the
specified range are guaranteed not to fail because of lack of disk space.

If the size of the file is less than offset+size, then the file is increased to this size; other-
wise the file size is left unchanged.

RETURN VALUE
posix_fallocate() returns zero on success, or an error number on failure. Note that er-
rno is not set.

ERRORS
EBADF

fd is not a valid file descriptor, or is not opened for writing.

EFBIG
offset+size exceeds the maximum file size.

EINTR
A signal was caught during execution.

EINVAL
offset was less than 0, or size was less than or equal to 0, or the underlying
filesystem does not support the operation.

ENODEV
fd does not refer to a regular file.

ENOSPC
There is not enough space left on the device containing the file referred to by fd .

EOPNOTSUPP
The filesystem containing the file referred to by fd does not support this opera-
tion. This error code can be returned by C libraries that don’t perform the emu-
lation shown in CAVEATS, such as musl libc.

ESPIPE
fd refers to a pipe.

Linux man-pages 6.16 2025-05-17 2176

posix_fallocate(3) Library Functions Manual posix_fallocate(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetyposix_fallocate() MT-Safe (but see CAVEATS)

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.94. POSIX.1-2001

POSIX.1-2008 says that an implementation shall give the EINVAL error if size was 0,
or offset was less than 0. POSIX.1-2001 says that an implementation shall give the
EINVAL error if size is less than 0, or offset was less than 0, and may give the error if
size equals zero.

CAVEATS
In the glibc implementation, posix_fallocate() is implemented using the fallocate(2)
system call, which is MT-safe. If the underlying filesystem does not support
fallocate(2), then the operation is emulated with the following caveats:

• The emulation is inefficient.

• There is a race condition where concurrent writes from another thread or process
could be overwritten with null bytes.

• There is a race condition where concurrent file size increases by another thread or
process could result in a file whose size is smaller than expected.

• If fd has been opened with the O_APPEND or O_WRONLY flags, the function
fails with the error EBADF.

In general, the emulation is not MT-safe. On Linux, applications may use fallocate(2) if
they cannot tolerate the emulation caveats. In general, this is only recommended if the
application plans to terminate the operation if EOPNOTSUPP is returned, otherwise the
application itself will need to implement a fallback with all the same problems as the
emulation provided by glibc.

SEE ALSO
fallocate(1), fallocate(2), lseek(2), posix_fadvise(2)

Linux man-pages 6.16 2025-05-17 2177

posix_madvise(3) Library Functions Manual posix_madvise(3)

NAME
posix_madvise - give advice about patterns of memory usage

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/mman.h>

int posix_madvise(size_t size;
void addr[size], size_t size, int advice);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_madvise():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The posix_madvise() function allows an application to advise the system about its ex-
pected patterns of usage of memory in the address range starting at addr and continuing
for size bytes. The system is free to use this advice in order to improve the performance
of memory accesses (or to ignore the advice altogether), but calling posix_madvise()
shall not affect the semantics of access to memory in the specified range.

The advice argument is one of the following:

POSIX_MADV_NORMAL
The application has no special advice regarding its memory usage patterns for
the specified address range. This is the default behavior.

POSIX_MADV_SEQUENTIAL
The application expects to access the specified address range sequentially, run-
ning from lower addresses to higher addresses. Hence, pages in this region can
be aggressively read ahead, and may be freed soon after they are accessed.

POSIX_MADV_RANDOM
The application expects to access the specified address range randomly. Thus,
read ahead may be less useful than normally.

POSIX_MADV_WILLNEED
The application expects to access the specified address range in the near future.
Thus, read ahead may be beneficial.

POSIX_MADV_DONTNEED
The application expects that it will not access the specified address range in the
near future.

RETURN VALUE
On success, posix_madvise() returns 0. On failure, it returns a positive error number.

ERRORS
EINVAL

addr is not a multiple of the system page size or size is negative.

Linux man-pages 6.16 2025-06-28 2178

posix_madvise(3) Library Functions Manual posix_madvise(3)

EINVAL
advice is invalid.

ENOMEM
Addresses in the specified range are partially or completely outside the caller’s
address space.

VERSIONS
POSIX.1 permits an implementation to generate an error if size is 0. On Linux, specify-
ing size as 0 is permitted (as a successful no-op).

In glibc, this function is implemented using madvise(2). However, since glibc 2.6,
POSIX_MADV_DONTNEED is treated as a no-op, because the corresponding mad-
vise(2) value, MADV_DONTNEED, has destructive semantics.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

SEE ALSO
madvise(2), posix_fadvise(2)

Linux man-pages 6.16 2025-06-28 2179

posix_memalign(3) Library Functions Manual posix_memalign(3)

NAME
posix_memalign, aligned_alloc, memalign, valloc, pvalloc - allocate aligned memory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int posix_memalign(void **memptr, size_t alignment, size_t size);
void *aligned_alloc(size_t alignment, size_t size);
[[deprecated]] void *valloc(size_t size);

#include <malloc.h>

[[deprecated]] void *memalign(size_t alignment, size_t size);
[[deprecated]] void *pvalloc(size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_memalign():
_POSIX_C_SOURCE >= 200112L

aligned_alloc():
_ISOC11_SOURCE

valloc():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && !(_POSIX_C_SOURCE >= 200112L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
posix_memalign() allocates size bytes and places the address of the allocated memory
in *memptr. The address of the allocated memory will be a multiple of alignment,
which must be a power of two and a multiple of sizeof(void *). This address can later be
successfully passed to free(3). If size is 0, then the value placed in *memptr is either
NULL or a unique pointer value.

The obsolete function memalign() allocates size bytes and returns a pointer to the allo-
cated memory. The memory address will be a multiple of alignment, which must be a
power of two.

aligned_alloc() is the same as memalign(), except for the added restriction that align-
ment must be a power of two.

The obsolete function valloc() allocates size bytes and returns a pointer to the allocated
memory. The memory address will be a multiple of the page size. It is equivalent to
memalign(sysconf(_SC_PAGESIZE),size).

The obsolete function pvalloc() is similar to valloc(), but rounds the size of the alloca-
tion up to the next multiple of the system page size.

For all of these functions, the memory is not zeroed.

Linux man-pages 6.16 2025-05-17 2180

posix_memalign(3) Library Functions Manual posix_memalign(3)

RETURN VALUE
aligned_alloc(), memalign(), valloc(), and pvalloc() return a pointer to the allocated
memory on success. On error, NULL is returned, and errno is set to indicate the error.

posix_memalign() returns zero on success, or one of the error values listed in the next
section on failure. The value of errno is not set. On Linux (and other systems),
posix_memalign() does not modify memptr on failure. A requirement standardizing
this behavior was added in POSIX.1-2008 TC2.

ERRORS
EINVAL

The alignment argument was not a power of two, or was not a multiple of
sizeof(void *).

ENOMEM
Out of memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safealigned_alloc(), memalign(), posix_memalign()
Thread safety MT-Unsafe initvalloc(), pvalloc()

STANDARDS
aligned_alloc()

C11.

posix_memalign()
POSIX.1-2008.

memalign()
valloc()

None.

pvalloc()
GNU.

HISTORY
aligned_alloc()

glibc 2.16. C11.

posix_memalign()
glibc 2.1.91. POSIX.1d, POSIX.1-2001.

memalign()
glibc 2.0. SunOS 4.1.3.

valloc()
glibc 2.0. 3.0BSD. Documented as obsolete in 4.3BSD, and as legacy in
SUSv2.

pvalloc()
glibc 2.0.

Linux man-pages 6.16 2025-05-17 2181

posix_memalign(3) Library Functions Manual posix_memalign(3)

Headers
Everybody agrees that posix_memalign() is declared in <stdlib.h>.

On some systems memalign() is declared in <stdlib.h> instead of <malloc.h>.

According to SUSv2, valloc() is declared in <stdlib.h>. glibc declares it in <malloc.h>,
and also in <stdlib.h> if suitable feature test macros are defined (see above).

NOTES
On many systems there are alignment restrictions, for example, on buffers used for di-
rect block device I/O. POSIX specifies the pathconf(path,_PC_REC_XFER_ALIGN)
call that tells what alignment is needed. Now one can use posix_memalign() to satisfy
this requirement.

posix_memalign() verifies that alignment matches the requirements detailed above.
memalign() may not check that the alignment argument is correct.

POSIX requires that memory obtained from posix_memalign() can be freed using
free(3). Some systems provide no way to reclaim memory allocated with memalign()
or valloc() (because one can pass to free(3) only a pointer obtained from malloc(3),
while, for example, memalign() would call malloc(3) and then align the obtained
value). The glibc implementation allows memory obtained from any of these functions
to be reclaimed with free(3).

The glibc malloc(3) always returns 8-byte aligned memory addresses, so these functions
are needed only if you require larger alignment values.

SEE ALSO
brk(2), getpagesize(2), free(3), malloc(3)

Linux man-pages 6.16 2025-05-17 2182

posix_openpt(3) Library Functions Manual posix_openpt(3)

NAME
posix_openpt - open a pseudoterminal device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>
#include <fcntl.h>

int posix_openpt(int flags);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

posix_openpt():
_XOPEN_SOURCE >= 600

DESCRIPTION
The posix_openpt() function opens an unused pseudoterminal master device, returning
a file descriptor that can be used to refer to that device.

The flags argument is a bit mask that ORs together zero or more of the following flags:

O_RDWR
Open the device for both reading and writing. It is usual to specify this flag.

O_NOCTTY
Do not make this device the controlling terminal for the process.

RETURN VALUE
On success, posix_openpt() returns a file descriptor (a nonnegative integer) which is the
lowest numbered unused file descriptor. On failure, -1 is returned, and errno is set to
indicate the error.

ERRORS
See open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeposix_openpt()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2.1. POSIX.1-2001.

It is part of the UNIX 98 pseudoterminal support (see pts(4)).

NOTES
Some older UNIX implementations that support System V (aka UNIX 98) pseudotermi-
nals don’t have this function, but it can be easily implemented by opening the pseudoter-
minal multiplexor device:

int
posix_openpt(int flags)

Linux man-pages 6.16 2025-05-17 2183

posix_openpt(3) Library Functions Manual posix_openpt(3)

{
return open("/dev/ptmx", flags);

}

Calling posix_openpt() creates a pathname for the corresponding pseudoterminal slave
device. The pathname of the slave device can be obtained using ptsname(3). The slave
device pathname exists only as long as the master device is open.

SEE ALSO
open(2), getpt(3), grantpt(3), ptsname(3), unlockpt(3), pts(4), pty(7)

Linux man-pages 6.16 2025-05-17 2184

posix_spawn(3) Library Functions Manual posix_spawn(3)

NAME
posix_spawn, posix_spawnp - spawn a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <spawn.h>

int posix_spawn(pid_t *restrict pid , const char *restrict path,
const posix_spawn_file_actions_t *restrict file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict],
char *const envp[restrict]);

int posix_spawnp(pid_t *restrict pid , const char *restrict file,
const posix_spawn_file_actions_t *restrict file_actions,
const posix_spawnattr_t *restrict attrp,
char *const argv[restrict],
char *const envp[restrict]);

DESCRIPTION
The posix_spawn() and posix_spawnp() functions are used to create a new child
process that executes a specified file. These functions were specified by POSIX to pro-
vide a standardized method of creating new processes on machines that lack the capabil-
ity to support the fork(2) system call. These machines are generally small, embedded
systems lacking MMU support.

The posix_spawn() and posix_spawnp() functions provide the functionality of a com-
bined fork(2) and exec(3), with some optional housekeeping steps in the child process
before the exec(3). These functions are not meant to replace the fork(2) and execve(2)
system calls. In fact, they provide only a subset of the functionality that can be achieved
by using the system calls.

The only difference between posix_spawn() and posix_spawnp() is the manner in
which they specify the file to be executed by the child process. With posix_spawn(),
the executable file is specified as a pathname (which can be absolute or relative). With
posix_spawnp(), the executable file is specified as a simple filename; the system
searches for this file in the list of directories specified by PATH (in the same way as for
execvp(3)). For the remainder of this page, the discussion is phrased in terms of
posix_spawn(), with the understanding that posix_spawnp() differs only on the point
just described.

The remaining arguments to these two functions are as follows:

pid points to a buffer that is used to return the process ID of the new child process.

file_actions
points to a spawn file actions object that specifies file-related actions to be per-
formed in the child between the fork(2) and exec(3) steps. This object is initial-
ized and populated before the posix_spawn() call using posix_spawn_file_ac-
tions_init(3) and the posix_spawn_file_actions_*() functions.

Linux man-pages 6.16 2025-09-21 2185

posix_spawn(3) Library Functions Manual posix_spawn(3)

attrp points to an attributes objects that specifies various attributes of the created child
process. This object is initialized and populated before the posix_spawn() call
using posix_spawnattr_init(3) and the posix_spawnattr_*() functions.

argv
envp specify the argument list and environment for the program that is executed in the

child process, as for execve(2).

Below, the functions are described in terms of a three-step process: the fork() step, the
pre-exec() step (executed in the child), and the exec() step (executed in the child).

fork() step
Since glibc 2.24, the posix_spawn() function commences by calling clone(2) with
CLONE_VM and CLONE_VFORK flags. Older implementations use fork(2), or pos-
sibly vfork(2) (see below).

The PID of the new child process is placed in *pid . The posix_spawn() function then
returns control to the parent process.

Subsequently, the parent can use one of the system calls described in wait(2) to check
the status of the child process. If the child fails in any of the housekeeping steps de-
scribed below, or fails to execute the desired file, it exits with a status of 127.

Before glibc 2.24, the child process is created using vfork(2) instead of fork(2) when ei-
ther of the following is true:

• the spawn-flags element of the attributes object pointed to by attrp contains the
GNU-specific flag POSIX_SPAWN_USEVFORK; or

• file_actions is NULL and the spawn-flags element of the attributes object pointed to
by attrp does not contain POSIX_SPAWN_SETSIGMASK,
POSIX_SPAWN_SETSIGDEF, POSIX_SPAWN_SETSCHEDPARAM,
POSIX_SPAWN_SETSCHEDULER, POSIX_SPAWN_SETPGROUP, or
POSIX_SPAWN_RESETIDS.

In other words, vfork(2) is used if the caller requests it, or if there is no cleanup expected
in the child before it exec(3)s the requested file.

pre-exec() step: housekeeping
In between the fork() and the exec() steps, a child process may need to perform a set of
housekeeping actions. The posix_spawn() and posix_spawnp() functions support a
small, well-defined set of system tasks that the child process can accomplish before it
executes the executable file. These operations are controlled by the attributes object
pointed to by attrp and the file actions object pointed to by file_actions. In the child,
processing is done in the following sequence:

(1) Process attribute actions: signal mask, signal default handlers, scheduling algo-
rithm and parameters, process group, and effective user and group IDs are
changed as specified by the attributes object pointed to by attrp.

(2) File actions, as specified in the file_actions argument, are performed in the order
that they were specified using calls to the posix_spawn_file_actions_add*()
functions.

Linux man-pages 6.16 2025-09-21 2186

posix_spawn(3) Library Functions Manual posix_spawn(3)

(3) File descriptors with the FD_CLOEXEC flag set are closed.

All process attributes in the child, other than those affected by attributes specified in the
object pointed to by attrp and the file actions in the object pointed to by file_actions,
will be affected as though the child was created with fork(2) and it executed the program
with execve(2).

The process attributes actions are defined by the attributes object pointed to by attrp.
The spawn-flags attribute (set using posix_spawnattr_setflags(3)) controls the general
actions that occur, and other attributes in the object specify values to be used during
those actions.

The effects of the flags that may be specified in spawn-flags are as follows:

POSIX_SPAWN_SETSIGMASK
Set the signal mask to the signal set specified in the spawn-sigmask attribute of
the object pointed to by attrp. If the POSIX_SPAWN_SETSIGMASK flag is
not set, then the child inherits the parent’s signal mask.

POSIX_SPAWN_SETSIGDEF
Reset the disposition of all signals in the set specified in the spawn-sigdefault at-
tribute of the object pointed to by attrp to the default. For the treatment of the
dispositions of signals not specified in the spawn-sigdefault attribute, or the
treatment when POSIX_SPAWN_SETSIGDEF is not specified, see execve(2).

POSIX_SPAWN_SETSCHEDPARAM
If this flag is set, and the POSIX_SPAWN_SETSCHEDULER flag is not set,
then set the scheduling parameters to the parameters specified in the spawn-
schedparam attribute of the object pointed to by attrp.

POSIX_SPAWN_SETSCHEDULER
Set the scheduling policy algorithm and parameters of the child, as follows:

• The scheduling policy is set to the value specified in the spawn-schedpolicy
attribute of the object pointed to by attrp.

• The scheduling parameters are set to the value specified in the spawn-sched-
param attribute of the object pointed to by attrp (but see BUGS).

If the POSIX_SPAWN_SETSCHEDPARAM and
POSIX_SPAWN_SETSCHEDPOLICY flags are not specified, the child inher-
its the corresponding scheduling attributes from the parent.

POSIX_SPAWN_RESETIDS
If this flag is set, reset the effective UID and GID to the real UID and GID of the
parent process. If this flag is not set, then the child retains the effective UID and
GID of the parent. In either case, if the set-user-ID and set-group-ID permission
bits are enabled on the executable file, their effect will override the setting of the
effective UID and GID (se execve(2)).

POSIX_SPAWN_SETPGROUP
Set the process group to the value specified in the spawn-pgroup attribute of the
object pointed to by attrp. If the spawn-pgroup attribute has the value 0, the
child’s process group ID is made the same as its process ID. If the

Linux man-pages 6.16 2025-09-21 2187

posix_spawn(3) Library Functions Manual posix_spawn(3)

POSIX_SPAWN_SETPGROUP flag is not set, the child inherits the parent’s
process group ID.

POSIX_SPAWN_USEVFORK
Since glibc 2.24, this flag has no effect. On older implementations, setting this
flag forces the fork() step to use vfork(2) instead of fork(2). The
_GNU_SOURCE feature test macro must be defined to obtain the definition of
this constant.

POSIX_SPAWN_SETSID (since glibc 2.26)
If this flag is set, the child process shall create a new session and become the ses-
sion leader. The child process shall also become the process group leader of the
new process group in the session (see setsid(2)). The _GNU_SOURCE feature
test macro must be defined to obtain the definition of this constant.

If attrp is NULL, then the default behaviors described above for each flag apply.

The file_actions argument specifies a sequence of file operations that are performed in
the child process after the general processing described above, and before it performs
the exec(3). If file_actions is NULL, then no special action is taken, and standard
exec(3) semantics apply—file descriptors open before the exec remain open in the new
process, except those for which the FD_CLOEXEC flag has been set. File locks re-
main in place.

If file_actions is not NULL, then it contains an ordered set of requests to open(2),
close(2), and dup2(2) files. These requests are added to the file_actions by
posix_spawn_file_actions_addopen(3), posix_spawn_file_actions_addclose(3), and
posix_spawn_file_actions_adddup2(3)The requested operations are performed in the or-
der they were added to file_actions.

If any of the housekeeping actions fails (due to bogus values being passed or other rea-
sons why signal handling, process scheduling, process group ID functions, and file de-
scriptor operations might fail), the child process exits with exit value 127.

exec() step
Once the child has successfully forked and performed all requested pre-exec steps, the
child runs the requested executable.

The child process takes its environment from the envp argument, which is interpreted as
if it had been passed to execve(2). The arguments to the created process come from the
argv argument, which is processed as for execve(2).

RETURN VALUE
Upon successful completion, posix_spawn() and posix_spawnp() place the PID of the
child process in pid , and return 0. If there is an error during the fork() step, then no
child is created, the contents of *pid are unspecified, and these functions return an error
number as described below.

Even when these functions return a success status, the child process may still fail for a
plethora of reasons related to its pre-exec() initialization. In addition, the exec(3) may
fail. In all of these cases, the child process will exit with the exit value of 127.

Linux man-pages 6.16 2025-09-21 2188

posix_spawn(3) Library Functions Manual posix_spawn(3)

ERRORS
The posix_spawn() and posix_spawnp() functions fail only in the case where the un-
derlying fork(2), vfork(2), or clone(2) call fails; in these cases, these functions return an
error number, which will be one of the errors described for fork(2), vfork(2), or clone(2).

In addition, these functions fail if:

ENOSYS
Function not supported on this system.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
The housekeeping activities in the child are controlled by the objects pointed to by attrp
(for non-file actions) and file_actions In POSIX parlance, the posix_spawnattr_t and
posix_spawn_file_actions_t data types are referred to as objects, and their elements are
not specified by name. Portable programs should initialize these objects using only the
POSIX-specified functions. (In other words, although these objects may be imple-
mented as structures containing fields, portable programs must avoid dependence on
such implementation details.)

According to POSIX, it is unspecified whether fork handlers established with
pthread_atfork(3) are called when posix_spawn() is invoked. Since glibc 2.24, the fork
handlers are not executed in any case. On older implementations, fork handlers are
called only if the child is created using fork(2).

There is no "posix_fspawn" function (i.e., a function that is to posix_spawn() as fex-
ecve(3) is to execve(2)). However, this functionality can be obtained by specifying the
path argument as one of the files in the caller’s /proc/self/fd directory.

BUGS
POSIX.1 says that when POSIX_SPAWN_SETSCHEDULER is specified in spawn-
flags, then the POSIX_SPAWN_SETSCHEDPARAM (if present) is ignored. How-
ever, before glibc 2.14, calls to posix_spawn() failed with an error if
POSIX_SPAWN_SETSCHEDULER was specified without also specifying
POSIX_SPAWN_SETSCHEDPARAM.

EXAMPLES
The program below demonstrates the use of various functions in the POSIX spawn API.
The program accepts command-line attributes that can be used to create file actions and
attributes objects. The remaining command-line arguments are used as the executable
name and command-line arguments of the program that is executed in the child.

In the first run, the date(1) command is executed in the child, and the posix_spawn()
call employs no file actions or attributes objects.

$./a.out date;
PID of child: 7634
Tue Feb 1 19:47:50 CEST 2011
Child status: exited, status=0

Linux man-pages 6.16 2025-09-21 2189

posix_spawn(3) Library Functions Manual posix_spawn(3)

In the next run, the -c command-line option is used to create a file actions object that
closes standard output in the child. Consequently, date(1) fails when trying to perform
output and exits with a status of 1.

$./a.out -c date;
PID of child: 7636
date: write error: Bad file descriptor
Child status: exited, status=1

In the next run, the -s command-line option is used to create an attributes object that
specifies that all (blockable) signals in the child should be blocked. Consequently, try-
ing to kill child with the default signal sent by kill(1) (i.e., SIGTERM) fails, because
that signal is blocked. Therefore, to kill the child, SIGKILL is necessary (SIGKILL
can’t be blocked).

$./a.out -s sleep 60 &
[1] 7637
$ PID of child: 7638

$ kill 7638;
$ kill -KILL 7638;
$ Child status: killed by signal 9
[1]+ Done ./a.out -s sleep 60

When we try to execute a nonexistent command in the child, the exec(3) fails and the
child exits with a status of 127.

$./a.out xxxxx;
PID of child: 10190
Child status: exited, status=127

Program source

#include <err.h>
#include <errno.h>
#include <spawn.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <wait.h>

char **environ;

int
main(int argc, char *argv[])
{

pid_t child_pid;
int s, opt, status;
sigset_t mask;

Linux man-pages 6.16 2025-09-21 2190

posix_spawn(3) Library Functions Manual posix_spawn(3)

posix_spawnattr_t attr;
posix_spawnattr_t *attrp;
posix_spawn_file_actions_t file_actions;
posix_spawn_file_actions_t *file_actionsp;

/* Parse command-line options, which can be used to specify an
attributes object and file actions object for the child. */

attrp = NULL;
file_actionsp = NULL;

while ((opt = getopt(argc, argv, "sc")) != -1) {
switch (opt) {
case 'c': /* -c: close standard output in child */

/* Create a file actions object and add a "close"
action to it. */

s = posix_spawn_file_actions_init(&file_actions);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_spawn_file_actions_init");

s = posix_spawn_file_actions_addclose(&file_actions,
STDOUT_FILENO);

if (s != 0)
errc(EXIT_FAILURE, s, "posix_spawn_file_actions_addclose");

file_actionsp = &file_actions;
break;

case 's': /* -s: block all signals in child */

/* Create an attributes object and add a "set signal mask"
action to it. */

s = posix_spawnattr_init(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_spawnattr_init");
s = posix_spawnattr_setflags(&attr, POSIX_SPAWN_SETSIGMASK);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_spawnattr_setflags");

sigfillset(&mask);
s = posix_spawnattr_setsigmask(&attr, &mask);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_spawnattr_setsigmask");

Linux man-pages 6.16 2025-09-21 2191

posix_spawn(3) Library Functions Manual posix_spawn(3)

attrp = &attr;
break;

}
}

if (argv[optind] == NULL) {
fprintf(stderr, "Usage: %s [-cs] executable [args]\n", argv[0]);
exit(EXIT_FAILURE);

}

/* Spawn the child. The name of the program to execute and the
command-line arguments are taken from the command-line arguments
of this program. The environment of the program execed in the
child is made the same as the parent's environment. */

s = posix_spawnp(&child_pid, argv[optind], file_actionsp, attrp,
&argv[optind], environ);

if (s != 0)
errc(EXIT_FAILURE, s, "posix_spawn");

/* Destroy any objects that we created earlier. */

if (attrp != NULL) {
s = posix_spawnattr_destroy(attrp);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_spawnattr_destroy");
}

if (file_actionsp != NULL) {
s = posix_spawn_file_actions_destroy(file_actionsp);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_spawn_file_actions_destroy");
}

printf("PID of child: %jd\n", (intmax_t) child_pid);

/* Monitor status of the child until it terminates. */

do {
s = waitpid(child_pid, &status, WUNTRACED | WCONTINUED);
if (s == -1)

err(EXIT_FAILURE, "waitpid");

printf("Child status: ");
if (WIFEXITED(status)) {

printf("exited, status=%d\n", WEXITSTATUS(status));
} else if (WIFSIGNALED(status)) {

Linux man-pages 6.16 2025-09-21 2192

posix_spawn(3) Library Functions Manual posix_spawn(3)

printf("killed by signal %d\n", WTERMSIG(status));
} else if (WIFSTOPPED(status)) {

printf("stopped by signal %d\n", WSTOPSIG(status));
} else if (WIFCONTINUED(status)) {

printf("continued\n");
}

} while (!WIFEXITED(status) && !WIFSIGNALED(status));

exit(EXIT_SUCCESS);
}

SEE ALSO
close(2), dup2(2), execl(2), execlp(2), fork(2), open(2), sched_setparam(2),
sched_setscheduler(2), setpgid(2), setuid(2), sigaction(2), sigprocmask(2),
posix_spawn_file_actions_addclose(3), posix_spawn_file_actions_adddup2(3),
posix_spawn_file_actions_addopen(3), posix_spawn_file_actions_destroy(3),
posix_spawn_file_actions_init(3), posix_spawnattr_destroy(3),
posix_spawnattr_getflags(3), posix_spawnattr_getpgroup(3),
posix_spawnattr_getschedparam(3), posix_spawnattr_getschedpolicy(3),
posix_spawnattr_getsigdefault(3), posix_spawnattr_getsigmask(3),
posix_spawnattr_init(3), posix_spawnattr_setflags(3), posix_spawnattr_setpgroup(3),
posix_spawnattr_setschedparam(3), posix_spawnattr_setschedpolicy(3),
posix_spawnattr_setsigdefault(3), posix_spawnattr_setsigmask(3), pthread_atfork(3),
<spawn.h>, Base Definitions volume of POSIX.1-2001,
http://www.opengroup.org/unix/online.html

Linux man-pages 6.16 2025-09-21 2193

pow(3) Library Functions Manual pow(3)

NAME
pow, powf, powl - power functions

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double pow(double x, double y);
float powf(float x, float y);
long double powl(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

powf(), powl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the value of x raised to the power of y.

RETURN VALUE
On success, these functions return the value of x to the power of y.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the mathematically correct sign.

If result underflows, and is not representable, a range error occurs, and 0.0 with the ap-
propriate sign is returned.

If x is +0 or -0, and y is an odd integer less than 0, a pole error occurs and
HUGE_VAL, HUGE_VALF, or HUGE_VALL, is returned, with the same sign as x.

If x is +0 or -0, and y is less than 0 and not an odd integer, a pole error occurs and
+HUGE_VAL, +HUGE_VALF, or +HUGE_VALL, is returned.

If x is +0 (-0), and y is an odd integer greater than 0, the result is +0 (-0).

If x is 0, and y greater than 0 and not an odd integer, the result is +0.

If x is -1, and y is positive infinity or negative infinity, the result is 1.0.

If x is +1, the result is 1.0 (even if y is a NaN).

If y is 0, the result is 1.0 (even if x is a NaN).

If x is a finite value less than 0, and y is a finite noninteger, a domain error occurs, and a
NaN is returned.

If the absolute value of x is less than 1, and y is negative infinity, the result is positive
infinity.

If the absolute value of x is greater than 1, and y is negative infinity, the result is +0.

If the absolute value of x is less than 1, and y is positive infinity, the result is +0.

If the absolute value of x is greater than 1, and y is positive infinity, the result is positive
infinity.

Linux man-pages 6.16 2025-05-17 2194

pow(3) Library Functions Manual pow(3)

If x is negative infinity, and y is an odd integer less than 0, the result is -0.

If x is negative infinity, and y less than 0 and not an odd integer, the result is +0.

If x is negative infinity, and y is an odd integer greater than 0, the result is negative in-
finity.

If x is negative infinity, and y greater than 0 and not an odd integer, the result is positive
infinity.

If x is positive infinity, and y less than 0, the result is +0.

If x is positive infinity, and y greater than 0, the result is positive infinity.

Except as specified above, if x or y is a NaN, the result is a NaN.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is negative, and y is a finite noninteger
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is zero, and y is negative
errno is set to ERANGE (but see BUGS). A divide-by-zero floating-point ex-
ception (FE_DIVBYZERO) is raised.

Range error: the result overflows
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error: the result underflows
errno is set to ERANGE. An underflow floating-point exception (FE_UNDER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepow(), powf(), powl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Historical bugs (now fixed)

Before glibc 2.28, on some architectures (e.g., x86-64) pow() may be more than 10,000
times slower for some inputs than for other nearby inputs. This affects only pow(), and
not powf() nor powl(). This problem was fixed in glibc 2.28.

A number of bugs in the glibc implementation of pow() were fixed in glibc 2.16.

Linux man-pages 6.16 2025-05-17 2195

pow(3) Library Functions Manual pow(3)

In glibc 2.9 and earlier, when a pole error occurs, errno is set to EDOM instead of the
POSIX-mandated ERANGE. Since glibc 2.10, glibc does the right thing.

In glibc 2.3.2 and earlier, when an overflow or underflow error occurs, glibc’s pow()
generates a bogus invalid floating-point exception (FE_INVALID) in addition to the
overflow or underflow exception.

SEE ALSO
cbrt(3), cpow(3), sqrt(3)

Linux man-pages 6.16 2025-05-17 2196

pow10(3) Library Functions Manual pow10(3)

NAME
pow10, pow10f, pow10l - base-10 power functions

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

double pow10(double x);
float pow10f(float x);
long double pow10l(long double x);

DESCRIPTION
These functions return the value of 10 raised to the power x.

Note well: These functions perform exactly the same task as the functions described in
exp10(3), with the difference that the latter functions are now standardized in
TS 18661-4:2015. Those latter functions should be used in preference to the functions
described in this page.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepow10(), pow10f(), pow10l()

STANDARDS
GNU.

VERSIONS
glibc 2.1. Removed in glibc 2.27.

SEE ALSO
exp10(3), pow(3)

Linux man-pages 6.16 2025-05-17 2197

powerof2(3) Library Functions Manual powerof2(3)

NAME
powerof2 - test if a value is a power of 2

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/param.h>

int powerof2(x);

DESCRIPTION
This macro returns true if x is a power of 2, and false otherwise.

0 is considered a power of 2. This can make sense considering wrapping of unsigned in-
tegers, and has interesting properties.

RETURN VALUE
True or false, if x is a power of 2 or not, respectively.

STANDARDS
BSD.

CAVEATS
The arguments may be evaluated more than once.

Because this macro is implemented using bitwise operations, some negative values can
invoke undefined behavior. For example, the following invokes undefined behavior:
powerof2(INT_MIN); . Call it only with unsigned types to be safe.

SEE ALSO
stdc_bit_ceil(3), stdc_bit_floor(3)

Linux man-pages 6.16 2025-05-17 2198

__ppc_get_timebase(3) Library Functions Manual __ppc_get_timebase(3)

NAME
__ppc_get_timebase, __ppc_get_timebase_freq - get the current value of the Time Base
Register on Power architecture and its frequency.

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/platform/ppc.h>

uint64_t __ppc_get_timebase(void);
uint64_t __ppc_get_timebase_freq(void);

DESCRIPTION
__ppc_get_timebase() reads the current value of the Time Base Register and returns its
value, while __ppc_get_timebase_freq() returns the frequency in which the Time Base
Register is updated.

The Time Base Register is a 64-bit register provided by Power Architecture processors.
It stores a monotonically incremented value that is updated at a system-dependent fre-
quency that may be different from the processor frequency.

RETURN VALUE
__ppc_get_timebase() returns a 64-bit unsigned integer that represents the current value
of the Time Base Register.

__ppc_get_timebase_freq() returns a 64-bit unsigned integer that represents the fre-
quency at which the Time Base Register is updated.

STANDARDS
GNU.

HISTORY
__ppc_get_timebase()

glibc 2.16.

__ppc_get_timebase_freq()
glibc 2.17.

EXAMPLES
The following program will calculate the time, in microseconds, spent between two calls
to __ppc_get_timebase().

Program source

#include <inttypes.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/platform/ppc.h>

/* Maximum value of the Time Base Register: 2^60 - 1.
Source: POWER ISA. */

#define MAX_TB 0xFFFFFFFFFFFFFFF

Linux man-pages 6.16 2025-05-17 2199

__ppc_get_timebase(3) Library Functions Manual __ppc_get_timebase(3)

int
main(void)
{

uint64_t tb1, tb2, diff;
uint64_t freq;

freq = __ppc_get_timebase_freq();
printf("Time Base frequency = %"PRIu64" Hz\n", freq);

tb1 = __ppc_get_timebase();

// Do some stuff...

tb2 = __ppc_get_timebase();

if (tb2 > tb1) {
diff = tb2 - tb1;

} else {
/* Treat Time Base Register overflow. */
diff = (MAX_TB - tb2) + tb1;

}

printf("Elapsed time = %1.2f usecs\n",
(double) diff * 1000000 / freq);

exit(EXIT_SUCCESS);
}

SEE ALSO
time(2), usleep(3)

Linux man-pages 6.16 2025-05-17 2200

__ppc_set_ppr_med(3) Library Functions Manual __ppc_set_ppr_med(3)

Programmer’s Manual"

NAME
__ppc_set_ppr_med, __ppc_set_ppr_very_low, __ppc_set_ppr_low,
__ppc_set_ppr_med_low, __ppc_set_ppr_med_high - Set the Program Priority Register

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/platform/ppc.h>

void __ppc_set_ppr_med(void);
void __ppc_set_ppr_very_low(void);
void __ppc_set_ppr_low(void);
void __ppc_set_ppr_med_low(void);
void __ppc_set_ppr_med_high(void);

DESCRIPTION
These functions provide access to the Program Priority Register (PPR) on the Power ar-
chitecture.

The PPR is a 64-bit register that controls the program’s priority. By adjusting the PPR
value the programmer may improve system throughput by causing system resources to
be used more efficiently, especially in contention situations. The available unprivileged
states are covered by the following functions:

__ppc_set_ppr_med()
sets the Program Priority Register value to medium (default).

__ppc_set_ppr_very_low()
sets the Program Priority Register value to very low.

__ppc_set_ppr_low()
sets the Program Priority Register value to low.

__ppc_set_ppr_med_low()
sets the Program Priority Register value to medium low.

The privileged state medium high may also be set during certain time intervals by prob-
lem-state (unprivileged) programs, with the following function:

__ppc_set_ppr_med_high()
sets the Program Priority to medium high.

If the program priority is medium high when the time interval expires or if an attempt is
made to set the priority to medium high when it is not allowed, the priority is set to
medium.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 2201

__ppc_set_ppr_med(3) Library Functions Manual __ppc_set_ppr_med(3)

Interface Attribute Value
Thread safety MT-Safe__ppc_set_ppr_med(), __ppc_set_ppr_very_low(),

__ppc_set_ppr_low(), __ppc_set_ppr_med_low(),
__ppc_set_ppr_med_high()

STANDARDS
GNU.

HISTORY
__ppc_set_ppr_med()
__ppc_set_ppr_low()
__ppc_set_ppr_med_low()

glibc 2.18.

__ppc_set_ppr_very_low()
__ppc_set_ppr_med_high()

glibc 2.23.

NOTES
The functions __ppc_set_ppr_very_low() and __ppc_set_ppr_med_high() will be de-
fined by <sys/platform/ppc.h> if _ARCH_PWR8 is defined. Availability of these func-
tions can be tested using #ifdef _ARCH_PWR8.

SEE ALSO
__ppc_yield(3)

Power ISA, Book II - Section 3.1 (Program Priority Registers)

Linux man-pages 6.16 2025-05-17 2202

__ppc_yield(3) Library Functions Manual __ppc_yield(3)

NAME
__ppc_yield, __ppc_mdoio, __ppc_mdoom - Hint the processor to release shared re-
sources

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/platform/ppc.h>

void __ppc_yield(void);
void __ppc_mdoio(void);
void __ppc_mdoom(void);

DESCRIPTION
These functions provide hints about the usage of resources that are shared with other
processors on the Power architecture. They can be used, for example, if a program wait-
ing on a lock intends to divert the shared resources to be used by other processors.

__ppc_yield() provides a hint that performance will probably be improved if shared re-
sources dedicated to the executing processor are released for use by other processors.

__ppc_mdoio() provides a hint that performance will probably be improved if shared
resources dedicated to the executing processor are released until all outstanding storage
accesses to caching-inhibited storage have been completed.

__ppc_mdoom() provides a hint that performance will probably be improved if shared
resources dedicated to the executing processor are released until all outstanding storage
accesses to cacheable storage for which the data is not in the cache have been com-
pleted.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe__ppc_yield(), __ppc_mdoio(), __ppc_mdoom()

STANDARDS
GNU.

HISTORY
glibc 2.18.

SEE ALSO
__ppc_set_ppr_med(3)

Power ISA, Book II - Section 3.2 ("or" architecture)

Linux man-pages 6.16 2025-05-17 2203

printf (3) Library Functions Manual printf (3)

NAME
printf, fprintf, dprintf, sprintf, snprintf, vprintf, vfprintf, vdprintf, vsprintf, vsnprintf -
formatted output conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int printf(const char *restrict format, ...);
int fprintf(FILE *restrict stream,

const char *restrict format, ...);
int dprintf(int fd ,

const char *restrict format, ...);
int sprintf(char *restrict str,

const char *restrict format, ...);
int snprintf(size_t size;

char str[restrict size], size_t size,
const char *restrict format, ...);

int vprintf(const char *restrict format, va_list ap);
int vfprintf(FILE *restrict stream,

const char *restrict format, va_list ap);
int vdprintf(int fd ,

const char *restrict format, va_list ap);
int vsprintf(char *restrict str,

const char *restrict format, va_list ap);
int vsnprintf(size_t size;

char str[restrict size], size_t size,
const char *restrict format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

snprintf(), vsnprintf():
_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE

dprintf(), vdprintf():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The functions in the printf() family produce output according to a format as described
below. The functions printf() and vprintf() write output to stdout, the standard output
stream; fprintf() and vfprintf() write output to the given output stream; sprintf(),
snprintf(), vsprintf(), and vsnprintf() write to the character string str.

The function dprintf() is the same as fprintf() except that it outputs to a file descriptor,
fd , instead of to a stdio(3) stream.

Linux man-pages 6.16 2025-09-21 2204

printf (3) Library Functions Manual printf (3)

The functions snprintf() and vsnprintf() write at most size bytes (including the termi-
nating null byte ('\0')) to str.

The functions vprintf(), vfprintf(), vdprintf(), vsprintf(), vsnprintf() are equivalent to
the functions printf(), fprintf(), dprintf(), sprintf(), snprintf(), respectively, except
that they are called with a va_list instead of a variable number of arguments. These
functions do not call the va_end macro. Because they invoke the va_arg macro, the
value of ap is undefined after the call. See stdarg(3).

All of these functions write the output under the control of a format string that specifies
how subsequent arguments (or arguments accessed via the variable-length argument fa-
cilities of stdarg(3)) are converted for output.

C99 and POSIX.1-2001 specify that the results are undefined if a call to sprintf(),
snprintf(), vsprintf(), or vsnprintf() would cause copying to take place between objects
that overlap (e.g., if the target string array and one of the supplied input arguments refer
to the same buffer). See CAVEATS.

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if
any. The format string is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the character %, and ends with a conversion specifier. In
between there may be (in this order) zero or more flags, an optional minimum field
width, an optional precision and an optional length modifier.

The overall syntax of a conversion specification is:

%[argument$][flags][width][.precision][length modifier]conversion

The arguments must correspond properly (after type promotion) with the conversion
specifier. By default, the arguments are used in the order given, where each '*' (see
Field width and Precision below) and each conversion specifier asks for the next argu-
ment (and it is an error if insufficiently many arguments are given). One can also spec-
ify explicitly which argument is taken, at each place where an argument is required, by
writing "%m$" instead of '%' and "*m$" instead of '*', where the decimal integer m de-
notes the position in the argument list of the desired argument, indexed starting from 1.
Thus,

printf("%*d", width, num);

and

printf("%2$*1$d", width, num);

are equivalent. The second style allows repeated references to the same argument. The
C99 standard does not include the style using '$', which comes from the Single UNIX
Specification. If the style using '$' is used, it must be used throughout for all conver-
sions taking an argument and all width and precision arguments, but it may be mixed
with "%%" formats, which do not consume an argument. There may be no gaps in the
numbers of arguments specified using '$'; for example, if arguments 1 and 3 are speci-
fied, argument 2 must also be specified somewhere in the format string.

Linux man-pages 6.16 2025-09-21 2205

printf (3) Library Functions Manual printf (3)

For some numeric conversions a radix character ("decimal point") or thousands’ group-
ing character is used. The actual character used depends on the LC_NUMERIC part of
the locale. (See setlocale(3).) The POSIX locale uses '.' as radix character, and does not
have a grouping character. Thus,

printf("%'.2f", 1234567.89);

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and
in "1.234.567,89" in the da_DK locale.

Flag characters
The character % is followed by zero or more of the following flags:

The value should be converted to an "alternate form". For o conversions, the first
character of the output string is made zero (by prefixing a 0 if it was not zero al-
ready). For x and X conversions, a nonzero result has the string "0x" (or "0X"
for X conversions) prepended to it. For a, A, e, E, f, F, g, and G conversions, the
result will always contain a decimal point, even if no digits follow it (normally, a
decimal point appears in the results of those conversions only if a digit follows).
For g and G conversions, trailing zeros are not removed from the result as they
would otherwise be. For m, if errno contains a valid error code, the output of
strerrorname_np(errno) is printed; otherwise, the value stored in errno is printed
as a decimal number. For other conversions, the result is undefined.

0 The value should be zero padded. For d, i, o, u, x, X, a, A, e, E, f, F, g, and G
conversions, the converted value is padded on the left with zeros rather than
blanks. If the 0 and - flags both appear, the 0 flag is ignored. If a precision is
given with an integer conversion (d, i, o, u, x, and X), the 0 flag is ignored. For
other conversions, the behavior is undefined.

- The converted value is to be left adjusted on the field boundary. (The default is
right justification.) The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a 0 if both are given.

' ' (a space) A blank should be left before a positive number (or empty string) pro-
duced by a signed conversion.

+ A sign (+ or -) should always be placed before a number produced by a signed
conversion. By default, a sign is used only for negative numbers. A + overrides
a space if both are used.

The five flag characters above are defined in the C99 standard. POSIX specifies one fur-
ther flag character.

' For decimal conversion (i, d, u, f, F, g, G) the output is to be grouped with thou-
sands’ grouping characters as a non-monetary quantity. Misleadingly, this isn’t
necessarily every thousand: for example Karbi ("mjw_IN"), groups its digits into
3 once, then 2 repeatedly. Compare locale(7) grouping and thousands_sep, con-
trast with mon_grouping/mon_thousands_sep and strfmon(3). This is a no-op in
the default "C" locale.

glibc 2.2 adds one further flag character.

Linux man-pages 6.16 2025-09-21 2206

printf (3) Library Functions Manual printf (3)

I For decimal integer conversion (i, d, u) the output uses the locale’s alternative
output digits, if any. For example, since glibc 2.2.3 this will give Arabic-Indic
digits in the Persian ("fa_IR") locale.

Field width
An optional decimal digit string (with nonzero first digit) specifying a minimum field
width. If the converted value has fewer characters than the field width, it will be padded
with spaces on the left (or right, if the left-adjustment flag has been given). Instead of a
decimal digit string one may write "*" or "*m$" (for some decimal integer m) to specify
that the field width is given in the next argument, or in the m-th argument, respectively,
which must be of type int. A negative field width is taken as a '-' flag followed by a
positive field width. In no case does a nonexistent or small field width cause truncation
of a field; if the result of a conversion is wider than the field width, the field is expanded
to contain the conversion result.

Precision
An optional precision, in the form of a period ('.') followed by an optional decimal digit
string. Instead of a decimal digit string one may write "*" or "*m$" (for some decimal
integer m) to specify that the precision is given in the next argument, or in the m-th ar-
gument, respectively, which must be of type int. If the precision is given as just '.', the
precision is taken to be zero. A negative precision is taken as if the precision were omit-
ted. This gives the minimum number of digits to appear for d, i, o, u, x, and X conver-
sions, the number of digits to appear after the radix character for a, A, e, E, f, and F con-
versions, the maximum number of significant digits for g and G conversions, or the
maximum number of characters to be printed from a string for s and S conversions.

Length modifier
Here, "integer conversion" stands for d, i, o, u, x, or X conversion.

hh A following integer conversion corresponds to a signed char or unsigned char
argument, or a following n conversion corresponds to a pointer to a signed char
argument.

h A following integer conversion corresponds to a short or unsigned short argu-
ment, or a following n conversion corresponds to a pointer to a short argument.

l (ell) A following integer conversion corresponds to a long or unsigned long ar-
gument, or a following n conversion corresponds to a pointer to a long argument,
or a following c conversion corresponds to a wint_t argument, or a following s
conversion corresponds to a pointer to wchar_t argument. On a following a, A,
e, E, f, F, g, or G conversion, this length modifier is ignored (C99; not in
SUSv2).

ll (ell-ell). A following integer conversion corresponds to a long long or unsigned
long long argument, or a following n conversion corresponds to a pointer to a
long long argument.

q A synonym for ll. This is a nonstandard extension, derived from BSD; avoid its
use in new code.

Linux man-pages 6.16 2025-09-21 2207

printf (3) Library Functions Manual printf (3)

L A following a, A, e, E, f, F, g, or G conversion corresponds to a long double ar-
gument. (C99 allows %LF, but SUSv2 does not.)

j A following integer conversion corresponds to an intmax_t or uintmax_t argu-
ment, or a following n conversion corresponds to a pointer to an intmax_t argu-
ment.

z A following integer conversion corresponds to a size_t or ssize_t argument, or a
following n conversion corresponds to a pointer to a size_t argument.

Z A nonstandard synonym for z that predates the appearance of z. Do not use in
new code.

t A following integer conversion corresponds to a ptrdiff_t argument, or a follow-
ing n conversion corresponds to a pointer to a ptrdiff_t argument.

SUSv3 specifies all of the above, except for those modifiers explicitly noted as being
nonstandard extensions. SUSv2 specified only the length modifiers h (in hd, hi, ho, hx,
hX, hn) and l (in ld, li, lo, lx, lX, ln, lc, ls) and L (in Le, LE, Lf, Lg, LG).

As a nonstandard extension, the GNU implementations treats ll and L as synonyms, so
that one can, for example, write llg (as a synonym for the standards-compliant Lg) and
Ld (as a synonym for the standards compliant lld). Such usage is nonportable.

Conversion specifiers
A character that specifies the type of conversion to be applied. The conversion specifiers
and their meanings are:

d, i The int argument is converted to signed decimal notation. The precision, if any,
gives the minimum number of digits that must appear; if the converted value re-
quires fewer digits, it is padded on the left with zeros. The default precision is 1.
When 0 is printed with an explicit precision 0, the output is empty.

o, u, x, X
The unsigned int argument is converted to unsigned octal (o), unsigned decimal
(u), or unsigned hexadecimal (x and X) notation. The letters abcdef are used for
x conversions; the letters ABCDEF are used for X conversions. The precision,
if any, gives the minimum number of digits that must appear; if the converted
value requires fewer digits, it is padded on the left with zeros. The default preci-
sion is 1. When 0 is printed with an explicit precision 0, the output is empty.

e, E The double argument is rounded and converted in the style [-]d.ddde± dd where
there is one digit (which is nonzero if the argument is nonzero) before the deci-
mal-point character and the number of digits after it is equal to the precision; if
the precision is missing, it is taken as 6; if the precision is zero, no decimal-point
character appears. An E conversion uses the letter E (rather than e) to introduce
the exponent. The exponent always contains at least two digits; if the value is
zero, the exponent is 00.

f, F The double argument is rounded and converted to decimal notation in the style
[-]ddd.ddd, where the number of digits after the decimal-point character is equal
to the precision specification. If the precision is missing, it is taken as 6; if the
precision is explicitly zero, no decimal-point character appears. If a decimal
point appears, at least one digit appears before it.

Linux man-pages 6.16 2025-09-21 2208

printf (3) Library Functions Manual printf (3)

(SUSv2 does not know about F and says that character string representations for
infinity and NaN may be made available. SUSv3 adds a specification for F. The
C99 standard specifies "[-]inf" or "[-]infinity" for infinity, and a string starting
with "nan" for NaN, in the case of f conversion, and "[-]INF" or "[-]INFINITY"
or "NAN" in the case of F conversion.)

g, G The double argument is converted in style f or e (or F or E for G conversions).
The precision specifies the number of significant digits. If the precision is miss-
ing, 6 digits are given; if the precision is zero, it is treated as 1. Style e is used if
the exponent from its conversion is less than -4 or greater than or equal to the
precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

a, A (C99; not in SUSv2, but added in SUSv3) For a conversion, the double argument
is converted to hexadecimal notation (using the letters abcdef) in the style
[-]0xh.hhhhp± d; for A conversion the prefix 0X, the letters ABCDEF, and the
exponent separator P is used. There is one hexadecimal digit before the radix
point, and the number of digits after it is equal to the precision. The default pre-
cision suffices for an exact representation of the value if an exact representation
in base 2 exists and otherwise is sufficiently large to distinguish values of type
double. The digit before the radix point is unspecified for nonnormalized num-
bers, and nonzero but otherwise unspecified for normalized numbers. The expo-
nent, d , is the appropriate exponent of 2 expressed as a decimal integer; it always
contains at least one digit; if the value is zero, the exponent is 0.

c If no l modifier is present, the int argument is converted to an unsigned char, and
the resulting character is written. If an l modifier is present, the wint_t (wide
character) argument is converted to a multibyte sequence by a call to the wcr-
tomb(3) function, with a conversion state starting in the initial state, and the re-
sulting multibyte string is written.

s If no l modifier is present: the const char * argument is expected to be a pointer
to an array of character type (pointer to a string). Characters from the array are
written up to (but not including) a terminating null byte ('\0'); if a precision is
specified, no more than the number specified are written. If a precision is given,
no null byte need be present; if the precision is not specified, or is greater than
the size of the array, the array must contain a terminating null byte.

If an l modifier is present: the const wchar_t * argument is expected to be a
pointer to an array of wide characters. Wide characters from the array are con-
verted to multibyte characters (each by a call to the wcrtomb(3) function, with a
conversion state starting in the initial state before the first wide character), up to
and including a terminating null wide character. The resulting multibyte charac-
ters are written up to (but not including) the terminating null byte. If a precision
is specified, no more bytes than the number specified are written, but no partial
multibyte characters are written. Note that the precision determines the number
of bytes written, not the number of wide characters or screen positions. The ar-
ray must contain a terminating null wide character, unless a precision is given
and it is so small that the number of bytes written exceeds it before the end of the
array is reached.

Linux man-pages 6.16 2025-09-21 2209

printf (3) Library Functions Manual printf (3)

C (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for lc. Don’t
use.

S (Not in C99 or C11, but in SUSv2, SUSv3, and SUSv4.) Synonym for ls. Don’t
use.

p The void * pointer argument is printed in hexadecimal (as if by %#x or %#lx).

n The number of characters written so far is stored into the integer pointed to by
the corresponding argument. That argument shall be an int *, or variant whose
size matches the (optionally) supplied integer length modifier. No argument is
converted. (This specifier is not supported by the bionic C library.) The behav-
ior is undefined if the conversion specification includes any flags, a field width,
or a precision.

m (glibc extension; supported by uClibc and musl, and on Android from API level
29.) Print output of strerror(errno) (or strerrorname_np(errno) in the alternate
form). No argument is required.

% A '%' is written. No argument is converted. The complete conversion specifica-
tion is '%%'.

RETURN VALUE
Upon successful return, these functions return the number of bytes printed (excluding
the null byte used to end output to strings).

The functions snprintf() and vsnprintf() do not write more than size bytes (including
the terminating null byte ('\0')). If the output was truncated due to this limit, then the re-
turn value is the number of characters (excluding the terminating null byte) which would
have been written to the final string if enough space had been available. Thus, a return
value of size or more means that the output was truncated. (See also below under
CAVEATS.)

On error, a negative value is returned, and errno is set to indicate the error.

ERRORS
See write(2) and putwc(3). In addition, the following error may occur:

EOVERFLOW
The value to be returned is greater than INT_MAX.

The dprintf() function may fail additionally if:

EBADF
The fd argument is not a valid file descriptor.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeprintf(), fprintf(), sprintf(), snprintf(),
vprintf(), vfprintf(), vsprintf(), vsnprintf()

STANDARDS

Linux man-pages 6.16 2025-09-21 2210

printf (3) Library Functions Manual printf (3)

fprintf()
printf()
sprintf()
vprintf()
vfprintf()
vsprintf()
snprintf()
vsnprintf()

C11, POSIX.1-2008.

dprintf()
vdprintf()

GNU, POSIX.1-2008.

HISTORY
fprintf()
printf()
sprintf()
vprintf()
vfprintf()
vsprintf()

C89, POSIX.1-2001.

snprintf()
vsnprintf()

SUSv2, C99, POSIX.1-2001.

Concerning the return value of snprintf(), SUSv2 and C99 contradict each other:
when snprintf() is called with size=0 then SUSv2 stipulates an unspecified re-
turn value less than 1, while C99 allows str to be NULL in this case, and gives
the return value (as always) as the number of characters that would have been
written in case the output string has been large enough. POSIX.1-2001 and later
align their specification of snprintf() with C99.

dprintf()
vdprintf()

GNU, POSIX.1-2008.

Issue 4 of the X/Open Portability Guide (SUSv1, 1994) adds '.

glibc 2.1 adds length modifiers hh, j, t, and z and conversion characters a and A.

glibc 2.2 adds the conversion character F with C99 semantics, and the flag character I.

glibc 2.35 gives a meaning to the alternate form (#) of the m conversion specifier, that is
%#m.

CAVEATS
Some programs imprudently rely on code such as the following

sprintf(buf, "%s some further text", buf);

to append text to buf . However, the standards explicitly note that the results are unde-
fined if source and destination buffers overlap when calling sprintf(), snprintf(),

Linux man-pages 6.16 2025-09-21 2211

printf (3) Library Functions Manual printf (3)

vsprintf(), and vsnprintf(). Depending on the version of gcc(1) used, and the compiler
options employed, calls such as the above will not produce the expected results.

The glibc implementation of the functions snprintf() and vsnprintf() conforms to the
C99 standard, that is, behaves as described above, since glibc 2.1. Until glibc 2.0.6, they
would return -1 when the output was truncated.

BUGS
Because sprintf() and vsprintf() assume an arbitrarily long string, callers must be care-
ful not to overflow the actual space; this is often impossible to assure. Note that the
length of the strings produced is locale-dependent and difficult to predict. Use
snprintf() and vsnprintf() instead (or asprintf(3) and vasprintf(3)).

Code such as printf(foo); often indicates a bug, since foo may contain a % character.
If foo comes from untrusted user input, it may contain %n, causing the printf() call to
write to memory and creating a security hole.

EXAMPLES
To print Pi to five decimal places:

#include <math.h>
#include <stdio.h>
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

To print a date and time in the form "Sunday, July 3, 10:02", where weekday and month
are pointers to strings:

#include <stdio.h>
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

Many countries use the day-month-year order. Hence, an internationalized version must
be able to print the arguments in an order specified by the format:

#include <stdio.h>
fprintf(stdout, format,

weekday, month, day, hour, min);

where format depends on locale, and may permute the arguments. With the value:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

one might obtain "Sonntag, 3. Juli, 10:02".

To allocate a sufficiently large string and print into it (code correct for both glibc 2.0 and
glibc 2.1):

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

char *
make_message(const char *fmt, ...)
{

int n = 0;

Linux man-pages 6.16 2025-09-21 2212

printf (3) Library Functions Manual printf (3)

size_t size = 0;
char *p = NULL;
va_list ap;

/* Determine required size. */

va_start(ap, fmt);
n = vsnprintf(p, size, fmt, ap);
va_end(ap);

if (n < 0)
return NULL;

size = (size_t) n + 1; /* One extra byte for '\0' */
p = malloc(size);
if (p == NULL)

return NULL;

va_start(ap, fmt);
n = vsnprintf(p, size, fmt, ap);
va_end(ap);

if (n < 0) {
free(p);
return NULL;

}

return p;
}

If truncation occurs in glibc versions prior to glibc 2.0.6, this is treated as an error in-
stead of being handled gracefully.

SEE ALSO
printf (1), asprintf(3), puts(3), scanf(3), setlocale(3), strfromd(3), wcrtomb(3),
wprintf(3), locale(5)

Linux man-pages 6.16 2025-09-21 2213

profil(3) Library Functions Manual profil(3)

NAME
profil - execution time profile

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int profil(unsigned short *buf , size_t bufsiz,
size_t offset, unsigned int scale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

profil():
Since glibc 2.21:

_DEFAULT_SOURCE
In glibc 2.19 and 2.20:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
Up to and including glibc 2.19:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
This routine provides a means to find out in what areas your program spends most of its
time. The argument buf points to bufsiz bytes of core. Every virtual 10 milliseconds,
the user’s program counter (PC) is examined: offset is subtracted and the result is multi-
plied by scale and divided by 65536. If the resulting value is less than bufsiz, then the
corresponding entry in buf is incremented. If buf is NULL, profiling is disabled.

RETURN VALUE
Zero is always returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafeprofil()

STANDARDS
None.

HISTORY
Similar to a call in SVr4.

BUGS
profil() cannot be used on a program that also uses ITIMER_PROF interval timers (see
setitimer(2)).

True kernel profiling provides more accurate results.

SEE ALSO
gprof (1), sprof(1), setitimer(2), sigaction(2), signal(2)

Linux man-pages 6.16 2025-05-17 2214

program_invocation_name(3) Library Functions Manual program_invocation_name(3)

NAME
program_invocation_name, program_invocation_short_name - obtain name used to in-
voke calling program

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <errno.h>

extern char *program_invocation_name;
extern char *program_invocation_short_name;

DESCRIPTION
program_invocation_name contains the name that was used to invoke the calling pro-
gram. This is the same as the value of argv[0] in main(), with the difference that the
scope of program_invocation_name is global.

program_invocation_short_name contains the basename component of name that was
used to invoke the calling program. That is, it is the same value as program_invoca-
tion_name, with all text up to and including the final slash (/), if any, removed.

These variables are automatically initialized by the glibc run-time startup code.

VERSIONS
The Linux-specific /proc/ pid /cmdline file provides access to similar information.

STANDARDS
GNU.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 2215

psignal(3) Library Functions Manual psignal(3)

NAME
psignal, psiginfo - print signal description

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

void psignal(int sig, const char *s);
void psiginfo(const siginfo_t *pinfo, const char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

psignal():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

psiginfo():
_POSIX_C_SOURCE >= 200809L

DESCRIPTION
The psignal() function displays a message on stderr consisting of the string s, a colon, a
space, a string describing the signal number sig, and a trailing newline. If the string s is
NULL or empty, the colon and space are omitted. If sig is invalid, the message dis-
played will indicate an unknown signal.

The psiginfo() function is like psignal(), except that it displays information about the
signal described by pinfo, which should point to a valid siginfo_t structure. As well as
the signal description, psiginfo() displays information about the origin of the signal, and
other information relevant to the signal (e.g., the relevant memory address for hardware-
generated signals, the child process ID for SIGCHLD, and the user ID and process ID
of the sender, for signals set using kill(2) or sigqueue(3)).

RETURN VALUE
The psignal() and psiginfo() functions return no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localepsignal(), psiginfo()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.10. POSIX.1-2008, 4.3BSD.

BUGS
Up to glibc 2.12, psiginfo() had the following bugs:

Linux man-pages 6.16 2025-05-17 2216

psignal(3) Library Functions Manual psignal(3)

• In some circumstances, a trailing newline is not printed.

• Additional details are not displayed for real-time signals.

SEE ALSO
sigaction(2), perror(3), strsignal(3), signal(7)

Linux man-pages 6.16 2025-05-17 2217

pthread_atfork(3) Library Functions Manual pthread_atfork(3)

NAME
pthread_atfork - register fork handlers

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_atfork(typeof(void (void)) *prepare,
typeof(void (void)) *parent,
typeof(void (void)) *child);

DESCRIPTION
The pthread_atfork() function registers fork handlers that are to be executed when
fork(2) is called by any thread in a process. The handlers are executed in the context of
the thread that calls fork(2).

Three kinds of handler can be registered:

• prepare specifies a handler that is executed in the parent process before fork(2) pro-
cessing starts.

• parent specifies a handler that is executed in the parent process after fork(2) pro-
cessing completes.

• child specifies a handler that is executed in the child process after fork(2) processing
completes.

Any of the three arguments may be NULL if no handler is needed in the corresponding
phase of fork(2) processing.

RETURN VALUE
On success, pthread_atfork() returns zero. On error, it returns an error number.
pthread_atfork() may be called multiple times by a process to register additional han-
dlers. The handlers for each phase are called in a specified order: the prepare handlers
are called in reverse order of registration; the parent and child handlers are called in the
order of registration.

ERRORS
ENOMEM

Could not allocate memory to record the fork handler list entry.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
When fork(2) is called in a multithreaded process, only the calling thread is duplicated
in the child process. The original intention of pthread_atfork() was to allow the child
process to be returned to a consistent state. For example, at the time of the call to
fork(2), other threads may have locked mutexes that are visible in the user-space mem-
ory duplicated in the child. Such mutexes would never be unlocked, since the threads

Linux man-pages 6.16 2025-09-21 2218

pthread_atfork(3) Library Functions Manual pthread_atfork(3)

that placed the locks are not duplicated in the child. The intent of pthread_atfork() was
to provide a mechanism whereby the application (or a library) could ensure that mutexes
and other process and thread state would be restored to a consistent state. In practice,
this task is generally too difficult to be practicable.

After a fork(2) in a multithreaded process returns in the child, the child should call only
async-signal-safe functions (see signal-safety(7)) until such time as it calls execve(2) to
execute a new program.

POSIX.1 specifies that pthread_atfork() shall not fail with the error EINTR.

SEE ALSO
fork(2), atexit(3), pthreads(7)

Linux man-pages 6.16 2025-09-21 2219

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

NAME
pthread_attr_init, pthread_attr_destroy - initialize and destroy thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_init(pthread_attr_t *attr);
int pthread_attr_destroy(pthread_attr_t *attr);

DESCRIPTION
The pthread_attr_init() function initializes the thread attributes object pointed to by
attr with default attribute values. After this call, individual attributes of the object can
be set using various related functions (listed under SEE ALSO), and then the object can
be used in one or more pthread_create(3) calls that create threads.

Calling pthread_attr_init() on a thread attributes object that has already been initial-
ized results in undefined behavior.

When a thread attributes object is no longer required, it should be destroyed using the
pthread_attr_destroy() function. Destroying a thread attributes object has no effect on
threads that were created using that object.

Once a thread attributes object has been destroyed, it can be reinitialized using
pthread_attr_init(). Any other use of a destroyed thread attributes object has undefined
results.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
POSIX.1 documents an ENOMEM error for pthread_attr_init(); on Linux these func-
tions always succeed (but portable and future-proof applications should nevertheless
handle a possible error return).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_init(), pthread_attr_destroy()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The pthread_attr_t type should be treated as opaque: any access to the object other than
via pthreads functions is nonportable and produces undefined results.

EXAMPLES
The program below optionally makes use of pthread_attr_init() and various related
functions to initialize a thread attributes object that is used to create a single thread.

Linux man-pages 6.16 2025-09-21 2220

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

Once created, the thread uses the pthread_getattr_np(3) function (a nonstandard GNU
extension) to retrieve the thread’s attributes, and then displays those attributes.

If the program is run with no command-line argument, then it passes NULL as the attr
argument of pthread_create(3), so that the thread is created with default attributes. Run-
ning the program on Linux/x86-32 with the NPTL threading implementation, we see the
following:

$ ulimit -s # No stack limit ==> default stack size is 2 MB
unlimited
$./a.out
Thread attributes:

Detach state = PTHREAD_CREATE_JOINABLE
Scope = PTHREAD_SCOPE_SYSTEM
Inherit scheduler = PTHREAD_INHERIT_SCHED
Scheduling policy = SCHED_OTHER
Scheduling priority = 0
Guard size = 4096 bytes
Stack address = 0x40196000
Stack size = 0x201000 bytes

When we supply a stack size as a command-line argument, the program initializes a
thread attributes object, sets various attributes in that object, and passes a pointer to the
object in the call to pthread_create(3). Running the program on Linux/x86-32 with the
NPTL threading implementation, we see the following:

$./a.out 0x3000000
posix_memalign() allocated at 0x40197000
Thread attributes:

Detach state = PTHREAD_CREATE_DETACHED
Scope = PTHREAD_SCOPE_SYSTEM
Inherit scheduler = PTHREAD_EXPLICIT_SCHED
Scheduling policy = SCHED_OTHER
Scheduling priority = 0
Guard size = 0 bytes
Stack address = 0x40197000
Stack size = 0x3000000 bytes

Program source

#define _GNU_SOURCE /* To get pthread_getattr_np() declaration */
#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
display_pthread_attr(pthread_attr_t *attr, char *prefix)

Linux man-pages 6.16 2025-09-21 2221

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

{
int s, i;
size_t v;
void *stkaddr;
struct sched_param sp;

s = pthread_attr_getdetachstate(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getdetachstate");
printf("%sDetach state = %s\n", prefix,

(i == PTHREAD_CREATE_DETACHED) ? "PTHREAD_CREATE_DETACHED" :
(i == PTHREAD_CREATE_JOINABLE) ? "PTHREAD_CREATE_JOINABLE" :
"???");

s = pthread_attr_getscope(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getscope");
printf("%sScope = %s\n", prefix,

(i == PTHREAD_SCOPE_SYSTEM) ? "PTHREAD_SCOPE_SYSTEM" :
(i == PTHREAD_SCOPE_PROCESS) ? "PTHREAD_SCOPE_PROCESS" :
"???");

s = pthread_attr_getinheritsched(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getinheritsched");
printf("%sInherit scheduler = %s\n", prefix,

(i == PTHREAD_INHERIT_SCHED) ? "PTHREAD_INHERIT_SCHED" :
(i == PTHREAD_EXPLICIT_SCHED) ? "PTHREAD_EXPLICIT_SCHED" :
"???");

s = pthread_attr_getschedpolicy(attr, &i);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedpolicy");
printf("%sScheduling policy = %s\n", prefix,

(i == SCHED_OTHER) ? "SCHED_OTHER" :
(i == SCHED_FIFO) ? "SCHED_FIFO" :
(i == SCHED_RR) ? "SCHED_RR" :
"???");

s = pthread_attr_getschedparam(attr, &sp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedparam");
printf("%sScheduling priority = %d\n", prefix, sp.sched_priority);

s = pthread_attr_getguardsize(attr, &v);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getguardsize");

Linux man-pages 6.16 2025-09-21 2222

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

printf("%sGuard size = %zu bytes\n", prefix, v);

s = pthread_attr_getstack(attr, &stkaddr, &v);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getstack");
printf("%sStack address = %p\n", prefix, stkaddr);
printf("%sStack size = %#zx bytes\n", prefix, v);

}

static void *
thread_start(void *arg)
{

int s;
pthread_attr_t gattr;

/* pthread_getattr_np() is a non-standard GNU extension that
retrieves the attributes of the thread specified in its
first argument. */

s = pthread_getattr_np(pthread_self(), &gattr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getattr_np");

printf("Thread attributes:\n");
display_pthread_attr(&gattr, "\t");

exit(EXIT_SUCCESS); /* Terminate all threads */
}

int
main(int argc, char *argv[])
{

pthread_t thr;
pthread_attr_t attr;
pthread_attr_t *attrp; /* NULL or &attr */
int s;

attrp = NULL;

/* If a command-line argument was supplied, use it to set the
stack-size attribute and set a few other thread attributes,
and set attrp pointing to thread attributes object. */

if (argc > 1) {
size_t stack_size;
void *sp;

Linux man-pages 6.16 2025-09-21 2223

pthread_attr_init(3) Library Functions Manual pthread_attr_init(3)

attrp = &attr;

s = pthread_attr_init(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_init");

s = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setdetachstate");

s = pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setinheritsched");

stack_size = strtoul(argv[1], NULL, 0);

s = posix_memalign(&sp, sysconf(_SC_PAGESIZE), stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "posix_memalign");

printf("posix_memalign() allocated at %p\n", sp);

s = pthread_attr_setstack(&attr, sp, stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstack");
}

s = pthread_create(&thr, attrp, &thread_start, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

if (attrp != NULL) {
s = pthread_attr_destroy(attrp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");
}

pause(); /* Terminates when other thread calls exit() */
}

SEE ALSO
pthread_attr_setaffinity_np(3), pthread_attr_setdetachstate(3),
pthread_attr_setguardsize(3), pthread_attr_setinheritsched(3),
pthread_attr_setschedparam(3), pthread_attr_setschedpolicy(3),
pthread_attr_setscope(3), pthread_attr_setsigmask_np(3), pthread_attr_setstack(3),
pthread_attr_setstackaddr(3), pthread_attr_setstacksize(3), pthread_create(3),
pthread_getattr_np(3), pthread_setattr_default_np(3), pthreads(7)

Linux man-pages 6.16 2025-09-21 2224

pthread_attr_setaffinity_np(3) Library Functions Manual pthread_attr_setaffinity_np(3)

NAME
pthread_attr_setaffinity_np, pthread_attr_getaffinity_np - set/get CPU affinity attribute
in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_attr_setaffinity_np(pthread_attr_t *attr,
size_t cpusetsize, const cpu_set_t *cpuset);

int pthread_attr_getaffinity_np(const pthread_attr_t *attr,
size_t cpusetsize, cpu_set_t *cpuset);

DESCRIPTION
The pthread_attr_setaffinity_np() function sets the CPU affinity mask attribute of the
thread attributes object referred to by attr to the value specified in cpuset. This attribute
determines the CPU affinity mask of a thread created using the thread attributes object
attr.

The pthread_attr_getaffinity_np() function returns the CPU affinity mask attribute of
the thread attributes object referred to by attr in the buffer pointed to by cpuset.

The argument cpusetsize is the length (in bytes) of the buffer pointed to by cpuset. Typ-
ically, this argument would be specified as sizeof(cpu_set_t).

For more details on CPU affinity masks, see sched_setaffinity(2). For a description of a
set of macros that can be used to manipulate and inspect CPU sets, see CPU_SET(3).

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
EINVAL

(pthread_attr_setaffinity_np()) cpuset specified a CPU that was outside the set
supported by the kernel. (The kernel configuration option CONFIG_NR_CPUS
defines the range of the set supported by the kernel data type used to represent
CPU sets.)

EINVAL
(pthread_attr_getaffinity_np()) A CPU in the affinity mask of the thread attrib-
utes object referred to by attr lies outside the range specified by cpusetsize (i.e.,
cpuset/cpusetsize is too small).

ENOMEM
(pthread_attr_setaffinity_np()) Could not allocate memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 2225

pthread_attr_setaffinity_np(3) Library Functions Manual pthread_attr_setaffinity_np(3)

Interface Attribute Value
Thread safety MT-Safepthread_attr_setaffinity_np(),

pthread_attr_getaffinity_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.3.4.

NOTES
In glibc 2.3.3 only, versions of these functions were provided that did not have a cpuset-
size argument. Instead the CPU set size given to the underlying system calls was always
sizeof(cpu_set_t).

SEE ALSO
sched_setaffinity(2), pthread_attr_init(3), pthread_setaffinity_np(3), cpuset(7),
pthreads(7)

Linux man-pages 6.16 2025-05-17 2226

pthread_attr_setdetachstate(3) Library Functions Manual pthread_attr_setdetachstate(3)

NAME
pthread_attr_setdetachstate, pthread_attr_getdetachstate - set/get detach state attribute
in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setdetachstate(pthread_attr_t *attr, int detachstate);
int pthread_attr_getdetachstate(const pthread_attr_t *attr,

int *detachstate);

DESCRIPTION
The pthread_attr_setdetachstate() function sets the detach state attribute of the thread
attributes object referred to by attr to the value specified in detachstate. The detach
state attribute determines whether a thread created using the thread attributes object attr
will be created in a joinable or a detached state.

The following values may be specified in detachstate:

PTHREAD_CREATE_DETACHED
Threads that are created using attr will be created in a detached state.

PTHREAD_CREATE_JOINABLE
Threads that are created using attr will be created in a joinable state.

The default setting of the detach state attribute in a newly initialized thread attributes ob-
ject is PTHREAD_CREATE_JOINABLE.

The pthread_attr_getdetachstate() returns the detach state attribute of the thread at-
tributes object attr in the buffer pointed to by detachstate.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setdetachstate() can fail with the following error:

EINVAL
An invalid value was specified in detachstate.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setdetachstate(),
pthread_attr_getdetachstate()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Linux man-pages 6.16 2025-05-17 2227

pthread_attr_setdetachstate(3) Library Functions Manual pthread_attr_setdetachstate(3)

NOTES
See pthread_create(3) for more details on detached and joinable threads.

A thread that is created in a joinable state should eventually either be joined using
pthread_join(3) or detached using pthread_detach(3); see pthread_create(3).

It is an error to specify the thread ID of a thread that was created in a detached state in a
later call to pthread_detach(3) or pthread_join(3).

EXAMPLES
See pthread_attr_init(3).

SEE ALSO
pthread_attr_init(3), pthread_create(3), pthread_detach(3), pthread_join(3),
pthreads(7)

Linux man-pages 6.16 2025-05-17 2228

pthread_attr_setguardsize(3) Library Functions Manual pthread_attr_setguardsize(3)

NAME
pthread_attr_setguardsize, pthread_attr_getguardsize - set/get guard size attribute in
thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setguardsize(pthread_attr_t *attr, size_t guardsize);
int pthread_attr_getguardsize(const pthread_attr_t *restrict attr,

size_t *restrict guardsize);

DESCRIPTION
The pthread_attr_setguardsize() function sets the guard size attribute of the thread at-
tributes object referred to by attr to the value specified in guardsize.

If guardsize is greater than 0, then for each new thread created using attr the system al-
locates an additional region of at least guardsize bytes at the end of the thread’s stack to
act as the guard area for the stack (but see BUGS).

If guardsize is 0, then new threads created with attr will not have a guard area.

The default guard size is the same as the system page size.

If the stack address attribute has been set in attr (using pthread_attr_setstack(3) or
pthread_attr_setstackaddr(3)), meaning that the caller is allocating the thread’s stack,
then the guard size attribute is ignored (i.e., no guard area is created by the system): it is
the application’s responsibility to handle stack overflow (perhaps by using mprotect(2)
to manually define a guard area at the end of the stack that it has allocated).

The pthread_attr_getguardsize() function returns the guard size attribute of the thread
attributes object referred to by attr in the buffer pointed to by guardsize.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
POSIX.1 documents an EINVAL error if attr or guardsize is invalid. On Linux these
functions always succeed (but portable and future-proof applications should nevertheless
handle a possible error return).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setguardsize(),
pthread_attr_getguardsize()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

Linux man-pages 6.16 2025-05-17 2229

pthread_attr_setguardsize(3) Library Functions Manual pthread_attr_setguardsize(3)

NOTES
A guard area consists of virtual memory pages that are protected to prevent read and
write access. If a thread overflows its stack into the guard area, then, on most hard ar-
chitectures, it receives a SIGSEGV signal, thus notifying it of the overflow. Guard ar-
eas start on page boundaries, and the guard size is internally rounded up to the system
page size when creating a thread. (Nevertheless, pthread_attr_getguardsize() returns
the guard size that was set by pthread_attr_setguardsize().)

Setting a guard size of 0 may be useful to save memory in an application that creates
many threads and knows that stack overflow can never occur.

Choosing a guard size larger than the default size may be necessary for detecting stack
overflows if a thread allocates large data structures on the stack.

BUGS
As at glibc 2.8, the NPTL threading implementation includes the guard area within the
stack size allocation, rather than allocating extra space at the end of the stack, as
POSIX.1 requires. (This can result in an EINVAL error from pthread_create(3) if the
guard size value is too large, leaving no space for the actual stack.)

The obsolete LinuxThreads implementation did the right thing, allocating extra space at
the end of the stack for the guard area.

EXAMPLES
See pthread_getattr_np(3).

SEE ALSO
mmap(2), mprotect(2), pthread_attr_init(3), pthread_attr_setstack(3), pthread_attr_set-
stacksize(3), pthread_create(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2230

pthread_attr_setinheritsched(3) Library Functions Manual pthread_attr_setinheritsched(3)

NAME
pthread_attr_setinheritsched, pthread_attr_getinheritsched - set/get inherit-scheduler at-
tribute in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setinheritsched(pthread_attr_t *attr,
int inheritsched);

int pthread_attr_getinheritsched(const pthread_attr_t *restrict attr,
int *restrict inheritsched);

DESCRIPTION
The pthread_attr_setinheritsched() function sets the inherit-scheduler attribute of the
thread attributes object referred to by attr to the value specified in inheritsched . The in-
herit-scheduler attribute determines whether a thread created using the thread attributes
object attr will inherit its scheduling attributes from the calling thread or whether it will
take them from attr.

The following scheduling attributes are affected by the inherit-scheduler attribute:
scheduling policy (pthread_attr_setschedpolicy(3)), scheduling priority
(pthread_attr_setschedparam(3)), and contention scope (pthread_attr_setscope(3)).

The following values may be specified in inheritsched:

PTHREAD_INHERIT_SCHED
Threads that are created using attr inherit scheduling attributes from the creating
thread; the scheduling attributes in attr are ignored.

PTHREAD_EXPLICIT_SCHED
Threads that are created using attr take their scheduling attributes from the val-
ues specified by the attributes object.

The default setting of the inherit-scheduler attribute in a newly initialized thread attrib-
utes object is PTHREAD_INHERIT_SCHED.

The pthread_attr_getinheritsched() returns the inherit-scheduler attribute of the thread
attributes object attr in the buffer pointed to by inheritsched .

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setinheritsched() can fail with the following error:

EINVAL
Invalid value in inheritsched .

POSIX.1 also documents an optional ENOTSUP error ("attempt was made to set the at-
tribute to an unsupported value") for pthread_attr_setinheritsched().

Linux man-pages 6.16 2025-05-17 2231

pthread_attr_setinheritsched(3) Library Functions Manual pthread_attr_setinheritsched(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setinheritsched(),
pthread_attr_getinheritsched()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

BUGS
As at glibc 2.8, if a thread attributes object is initialized using pthread_attr_init(3), then
the scheduling policy of the attributes object is set to SCHED_OTHER and the sched-
uling priority is set to 0. However, if the inherit-scheduler attribute is then set to
PTHREAD_EXPLICIT_SCHED, then a thread created using the attribute object
wrongly inherits its scheduling attributes from the creating thread. This bug does not
occur if either the scheduling policy or scheduling priority attribute is explicitly set in
the thread attributes object before calling pthread_create(3).

EXAMPLES
See pthread_setschedparam(3).

SEE ALSO
pthread_attr_init(3), pthread_attr_setschedparam(3), pthread_attr_setschedpolicy(3),
pthread_attr_setscope(3), pthread_create(3), pthread_setschedparam(3),
pthread_setschedprio(3), pthreads(7), sched(7)

Linux man-pages 6.16 2025-05-17 2232

pthread_attr_setschedparam(3) Library Functions Manual pthread_attr_setschedparam(3)

NAME
pthread_attr_setschedparam, pthread_attr_getschedparam - set/get scheduling parame-
ter attributes in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedparam(pthread_attr_t *restrict attr,
const struct sched_param *restrict param);

int pthread_attr_getschedparam(const pthread_attr_t *restrict attr,
struct sched_param *restrict param);

DESCRIPTION
The pthread_attr_setschedparam() function sets the scheduling parameter attributes of
the thread attributes object referred to by attr to the values specified in the buffer
pointed to by param. These attributes determine the scheduling parameters of a thread
created using the thread attributes object attr.

The pthread_attr_getschedparam() returns the scheduling parameter attributes of the
thread attributes object attr in the buffer pointed to by param.

Scheduling parameters are maintained in the following structure:

struct sched_param {
int sched_priority; /* Scheduling priority */

};

As can be seen, only one scheduling parameter is supported. For details of the permitted
ranges for scheduling priorities in each scheduling policy, see sched(7).

In order for the parameter setting made by pthread_attr_setschedparam() to have ef-
fect when calling pthread_create(3), the caller must use pthread_attr_setinheritsched(3)
to set the inherit-scheduler attribute of the attributes object attr to PTHREAD_EX-
PLICIT_SCHED.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setschedparam() can fail with the following error:

EINVAL
The priority specified in param does not make sense for the current scheduling
policy of attr.

POSIX.1 also documents an ENOTSUP error for pthread_attr_setschedparam().
This value is never returned on Linux (but portable and future-proof applications should
nevertheless handle this error return value).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 2233

pthread_attr_setschedparam(3) Library Functions Manual pthread_attr_setschedparam(3)

Interface Attribute Value
Thread safety MT-Safepthread_attr_setschedparam(),

pthread_attr_getschedparam()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.0.

NOTES
See pthread_attr_setschedpolicy(3) for a list of the thread scheduling policies supported
on Linux.

EXAMPLES
See pthread_setschedparam(3).

SEE ALSO
sched_get_priority_min(2), pthread_attr_init(3), pthread_attr_setinheritsched(3),
pthread_attr_setschedpolicy(3), pthread_create(3), pthread_setschedparam(3),
pthread_setschedprio(3), pthreads(7), sched(7)

Linux man-pages 6.16 2025-05-17 2234

pthread_attr_setschedpolicy(3) Library Functions Manual pthread_attr_setschedpolicy(3)

NAME
pthread_attr_setschedpolicy, pthread_attr_getschedpolicy - set/get scheduling policy at-
tribute in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setschedpolicy(pthread_attr_t *attr, int policy);
int pthread_attr_getschedpolicy(const pthread_attr_t *restrict attr,

int *restrict policy);

DESCRIPTION
The pthread_attr_setschedpolicy() function sets the scheduling policy attribute of the
thread attributes object referred to by attr to the value specified in policy. This attribute
determines the scheduling policy of a thread created using the thread attributes object
attr.

The supported values for policy are SCHED_FIFO, SCHED_RR, and
SCHED_OTHER, with the semantics described in sched(7).

The pthread_attr_getschedpolicy() returns the scheduling policy attribute of the thread
attributes object attr in the buffer pointed to by policy.

In order for the policy setting made by pthread_attr_setschedpolicy() to have effect
when calling pthread_create(3), the caller must use pthread_attr_setinheritsched(3) to
set the inherit-scheduler attribute of the attributes object attr to PTHREAD_EX-
PLICIT_SCHED.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setschedpolicy() can fail with the following error:

EINVAL
Invalid value in policy.

POSIX.1 also documents an optional ENOTSUP error ("attempt was made to set the at-
tribute to an unsupported value") for pthread_attr_setschedpolicy().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setschedpolicy(),
pthread_attr_getschedpolicy()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

Linux man-pages 6.16 2025-05-17 2235

pthread_attr_setschedpolicy(3) Library Functions Manual pthread_attr_setschedpolicy(3)

EXAMPLES
See pthread_setschedparam(3).

SEE ALSO
pthread_attr_init(3), pthread_attr_setinheritsched(3), pthread_attr_setschedparam(3),
pthread_create(3), pthread_setschedparam(3), pthread_setschedprio(3), pthreads(7),
sched(7)

Linux man-pages 6.16 2025-05-17 2236

pthread_attr_setscope(3) Library Functions Manual pthread_attr_setscope(3)

NAME
pthread_attr_setscope, pthread_attr_getscope - set/get contention scope attribute in
thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setscope(pthread_attr_t *attr, int scope);
int pthread_attr_getscope(const pthread_attr_t *restrict attr,

int *restrict scope);

DESCRIPTION
The pthread_attr_setscope() function sets the contention scope attribute of the thread
attributes object referred to by attr to the value specified in scope. The contention scope
attribute defines the set of threads against which a thread competes for resources such as
the CPU. POSIX.1 specifies two possible values for scope:

PTHREAD_SCOPE_SYSTEM
The thread competes for resources with all other threads in all processes on the
system that are in the same scheduling allocation domain (a group of one or
more processors). PTHREAD_SCOPE_SYSTEM threads are scheduled rela-
tive to one another according to their scheduling policy and priority.

PTHREAD_SCOPE_PROCESS
The thread competes for resources with all other threads in the same process that
were also created with the PTHREAD_SCOPE_PROCESS contention scope.
PTHREAD_SCOPE_PROCESS threads are scheduled relative to other threads
in the process according to their scheduling policy and priority. POSIX.1 leaves
it unspecified how these threads contend with other threads in other process on
the system or with other threads in the same process that were created with the
PTHREAD_SCOPE_SYSTEM contention scope.

POSIX.1 requires that an implementation support at least one of these contention
scopes. Linux supports PTHREAD_SCOPE_SYSTEM, but not
PTHREAD_SCOPE_PROCESS.

On systems that support multiple contention scopes, then, in order for the parameter set-
ting made by pthread_attr_setscope() to have effect when calling pthread_create(3),
the caller must use pthread_attr_setinheritsched(3) to set the inherit-scheduler attribute
of the attributes object attr to PTHREAD_EXPLICIT_SCHED.

The pthread_attr_getscope() function returns the contention scope attribute of the
thread attributes object referred to by attr in the buffer pointed to by scope.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setscope() can fail with the following errors:

Linux man-pages 6.16 2025-05-17 2237

pthread_attr_setscope(3) Library Functions Manual pthread_attr_setscope(3)

EINVAL
An invalid value was specified in scope.

ENOTSUP
scope specified the value PTHREAD_SCOPE_PROCESS, which is not sup-
ported on Linux.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setscope(), pthread_attr_getscope()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The PTHREAD_SCOPE_SYSTEM contention scope typically indicates that a user-
space thread is bound directly to a single kernel-scheduling entity. This is the case on
Linux for the obsolete LinuxThreads implementation and the modern NPTL implemen-
tation, which are both 1:1 threading implementations.

POSIX.1 specifies that the default contention scope is implementation-defined.

SEE ALSO
pthread_attr_init(3), pthread_attr_setaffinity_np(3), pthread_attr_setinheritsched(3),
pthread_attr_setschedparam(3), pthread_attr_setschedpolicy(3), pthread_create(3),
pthreads(7)

Linux man-pages 6.16 2025-05-17 2238

pthread_attr_setsigmask_np(3) Library Functions Manual pthread_attr_setsigmask_np(3)

NAME
pthread_attr_setsigmask_np, pthread_attr_getsigmask_np - set/get signal mask attribute
in thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_attr_setsigmask_np(pthread_attr_t *attr,
const sigset_t *sigmask);

int pthread_attr_getsigmask_np(const pthread_attr_t *attr,
sigset_t *sigmask);

DESCRIPTION
The pthread_attr_setsigmask_np() function sets the signal mask attribute of the thread
attributes object referred to by attr to the value specified in *sigmask. If sigmask is
specified as NULL, then any existing signal mask attribute in attr is unset.

The pthread_attr_getsigmask_np() function returns the signal mask attribute of the
thread attributes object referred to by attr in the buffer pointed to by sigmask. If the
signal mask attribute is currently unset, then this function returns the special value
PTHREAD_ATTR_NO_SIGMASK_NP as its result.

RETURN VALUE
The pthread_attr_setsigmask_np() function returns 0 on success, or a nonzero error
number on failure.

the pthread_attr_getsigmask_np() function returns either 0 or
PTHREAD_ATTR_NO_SIGMASK_NP. When 0 is returned, the signal mask at-
tribute is returned via sigmask. A return value of PTHREAD_ATTR_NO_SIG-
MASK_NP indicates that the signal mask attribute is not set in attr.

On error, these functions return a positive error number.

ERRORS
ENOMEM

(pthread_attr_setsigmask_np()) Could not allocate memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setsigmask_np(),
pthread_attr_getsigmask_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.32.

Linux man-pages 6.16 2025-05-17 2239

pthread_attr_setsigmask_np(3) Library Functions Manual pthread_attr_setsigmask_np(3)

NOTES
The signal mask attribute determines the signal mask that will be assigned to a thread
created using the thread attributes object attr. If this attribute is not set, then a thread
created using attr will inherit a copy of the creating thread’s signal mask.

For more details on signal masks, see sigprocmask(2). For a description of a set of
macros that can be used to manipulate and inspect signal sets, see sigsetops(3).

In the absence of pthread_attr_setsigmask_np() it is possible to create a thread with a
desired signal mask as follows:

• The creating thread uses pthread_sigmask(3) to save its current signal mask and set
its mask to block all signals.

• The new thread is then created using pthread_create(); the new thread will inherit
the creating thread’s signal mask.

• The new thread sets its signal mask to the desired value using pthread_sigmask(3).

• The creating thread restores its signal mask to the original value.

Following the above steps, there is no possibility for the new thread to receive a signal
before it has adjusted its signal mask to the desired value.

SEE ALSO
sigprocmask(2), pthread_attr_init(3), pthread_sigmask(3), pthreads(7), signal(7)

Linux man-pages 6.16 2025-05-17 2240

pthread_attr_setstack(3) Library Functions Manual pthread_attr_setstack(3)

NAME
pthread_attr_setstack, pthread_attr_getstack - set/get stack attributes in thread attributes
object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstack(size_t stacksize;
pthread_attr_t *attr,
void stackaddr[stacksize],
size_t stacksize);

int pthread_attr_getstack(const pthread_attr_t *restrict attr,
void **restrict stackaddr,
size_t *restrict stacksize);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_attr_getstack(), pthread_attr_setstack():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The pthread_attr_setstack() function sets the stack address and stack size attributes of
the thread attributes object referred to by attr to the values specified in stackaddr and
stacksize, respectively. These attributes specify the location and size of the stack that
should be used by a thread that is created using the thread attributes object attr.

stackaddr should point to the lowest addressable byte of a buffer of stacksize bytes that
was allocated by the caller. The pages of the allocated buffer should be both readable
and writable.

The pthread_attr_getstack() function returns the stack address and stack size attributes
of the thread attributes object referred to by attr in the buffers pointed to by stackaddr
and stacksize, respectively.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setstack() can fail with the following error:

EINVAL
stacksize is less than PTHREAD_STACK_MIN (16384) bytes. On some sys-
tems, this error may also occur if stackaddr or stackaddr + stacksize is not suit-
ably aligned.

POSIX.1 also documents an EACCES error if the stack area described by stackaddr
and stacksize is not both readable and writable by the caller.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-06-28 2241

pthread_attr_setstack(3) Library Functions Manual pthread_attr_setstack(3)

Interface Attribute Value
Thread safety MT-Safepthread_attr_setstack(), pthread_attr_getstack()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
These functions are provided for applications that must ensure that a thread’s stack is
placed in a particular location. For most applications, this is not necessary, and the use
of these functions should be avoided. (Use pthread_attr_setstacksize(3) if an applica-
tion simply requires a stack size other than the default.)

When an application employs pthread_attr_setstack(), it takes over the responsibility
of allocating the stack. Any guard size value that was set using pthread_attr_setguard-
size(3) is ignored. If deemed necessary, it is the application’s responsibility to allocate a
guard area (one or more pages protected against reading and writing) to handle the pos-
sibility of stack overflow.

The address specified in stackaddr should be suitably aligned: for full portability, align
it on a page boundary (sysconf(_SC_PAGESIZE)). posix_memalign(3) may be useful
for allocation. Probably, stacksize should also be a multiple of the system page size.

If attr is used to create multiple threads, then the caller must change the stack address
attribute between calls to pthread_create(3); otherwise, the threads will attempt to use
the same memory area for their stacks, and chaos will ensue.

EXAMPLES
See pthread_attr_init(3).

SEE ALSO
mmap(2), mprotect(2), posix_memalign(3), pthread_attr_init(3),
pthread_attr_setguardsize(3), pthread_attr_setstackaddr(3),
pthread_attr_setstacksize(3), pthread_create(3), pthreads(7)

Linux man-pages 6.16 2025-06-28 2242

pthread_attr_setstackaddr(3) Library Functions Manual pthread_attr_setstackaddr(3)

NAME
pthread_attr_setstackaddr, pthread_attr_getstackaddr - set/get stack address attribute in
thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

[[deprecated]]
int pthread_attr_setstackaddr(pthread_attr_t *attr, void *stackaddr);
[[deprecated]]
int pthread_attr_getstackaddr(const pthread_attr_t *restrict attr,

void **restrict stackaddr);

DESCRIPTION
These functions are obsolete: do not use them. Use pthread_attr_setstack(3) and
pthread_attr_getstack(3) instead.

The pthread_attr_setstackaddr() function sets the stack address attribute of the thread
attributes object referred to by attr to the value specified in stackaddr. This attribute
specifies the location of the stack that should be used by a thread that is created using
the thread attributes object attr.

stackaddr should point to a buffer of at least PTHREAD_STACK_MIN bytes that was
allocated by the caller. The pages of the allocated buffer should be both readable and
writable.

The pthread_attr_getstackaddr() function returns the stack address attribute of the
thread attributes object referred to by attr in the buffer pointed to by stackaddr.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
No errors are defined (but applications should nevertheless handle a possible error re-
turn).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setstackaddr(),
pthread_attr_getstackaddr()

STANDARDS
None.

HISTORY
glibc 2.1. Marked obsolete in POSIX.1-2001. Removed in POSIX.1-2008.

NOTES
Do not use these functions! They cannot be portably used, since they provide no way of
specifying the direction of growth or the range of the stack. For example, on architec-
tures with a stack that grows downward, stackaddr specifies the next address past the

Linux man-pages 6.16 2025-05-17 2243

pthread_attr_setstackaddr(3) Library Functions Manual pthread_attr_setstackaddr(3)

highest address of the allocated stack area. However, on architectures with a stack that
grows upward, stackaddr specifies the lowest address in the allocated stack area. By
contrast, the stackaddr used by pthread_attr_setstack(3) and pthread_attr_getstack(3),
is always a pointer to the lowest address in the allocated stack area (and the stacksize ar-
gument specifies the range of the stack).

SEE ALSO
pthread_attr_init(3), pthread_attr_setstack(3), pthread_attr_setstacksize(3),
pthread_create(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2244

pthread_attr_setstacksize(3) Library Functions Manual pthread_attr_setstacksize(3)

NAME
pthread_attr_setstacksize, pthread_attr_getstacksize - set/get stack size attribute in
thread attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_attr_setstacksize(pthread_attr_t *attr, size_t stacksize);
int pthread_attr_getstacksize(const pthread_attr_t *restrict attr,

size_t *restrict stacksize);

DESCRIPTION
The pthread_attr_setstacksize() function sets the stack size attribute of the thread at-
tributes object referred to by attr to the value specified in stacksize.

The stack size attribute determines the minimum size (in bytes) that will be allocated for
threads created using the thread attributes object attr.

The pthread_attr_getstacksize() function returns the stack size attribute of the thread
attributes object referred to by attr in the buffer pointed to by stacksize.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
pthread_attr_setstacksize() can fail with the following error:

EINVAL
The stack size is less than PTHREAD_STACK_MIN (16384) bytes.

On some systems, pthread_attr_setstacksize() can fail with the error EINVAL if stack-
size is not a multiple of the system page size.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_attr_setstacksize(),
pthread_attr_getstacksize()

VERSIONS
These functions are provided since glibc 2.1.

STANDARDS
POSIX.1-2001, POSIX.1-2008.

NOTES
For details on the default stack size of new threads, see pthread_create(3).

A thread’s stack size is fixed at the time of thread creation. Only the main thread can
dynamically grow its stack.

The pthread_attr_setstack(3) function allows an application to set both the size and lo-
cation of a caller-allocated stack that is to be used by a thread.

Linux man-pages 6.16 2025-05-17 2245

pthread_attr_setstacksize(3) Library Functions Manual pthread_attr_setstacksize(3)

BUGS
As at glibc 2.8, if the specified stacksize is not a multiple of STACK_ALIGN (16 bytes
on most architectures), it may be rounded downward , in violation of POSIX.1, which
says that the allocated stack will be at least stacksize bytes.

EXAMPLES
See pthread_create(3).

SEE ALSO
getrlimit(2), pthread_attr_init(3), pthread_attr_setguardsize(3), pthread_attr_set-
stack(3), pthread_create(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2246

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

NAME
pthread_cancel - send a cancelation request to a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_cancel(pthread_t thread);

DESCRIPTION
The pthread_cancel() function sends a cancelation request to the thread thread .
Whether and when the target thread reacts to the cancelation request depends on two at-
tributes that are under the control of that thread: its cancelability state and type.

A thread’s cancelability state, determined by pthread_setcancelstate(3), can be enabled
(the default for new threads) or disabled . If a thread has disabled cancelation, then a
cancelation request remains queued until the thread enables cancelation. If a thread has
enabled cancelation, then its cancelability type determines when cancelation occurs.

A thread’s cancelation type, determined by pthread_setcanceltype(3), may be either
asynchronous or deferred (the default for new threads). Asynchronous cancelability
means that the thread can be canceled at any time (usually immediately, but the system
does not guarantee this). Deferred cancelability means that cancelation will be delayed
until the thread next calls a function that is a cancelation point. A list of functions that
are or may be cancelation points is provided in pthreads(7).

When a cancelation request is acted on, the following steps occur for thread (in this or-
der):

(1) Cancelation clean-up handlers are popped (in the reverse of the order in which
they were pushed) and called. (See pthread_cleanup_push(3).)

(2) Thread-specific data destructors are called, in an unspecified order. (See
pthread_key_create(3).)

(3) The thread is terminated. (See pthread_exit(3).)

The above steps happen asynchronously with respect to the pthread_cancel() call; the
return status of pthread_cancel() merely informs the caller whether the cancelation re-
quest was successfully queued.

After a canceled thread has terminated, a join with that thread using pthread_join(3) ob-
tains PTHREAD_CANCELED as the thread’s exit status. (Joining with a thread is the
only way to know that cancelation has completed.)

RETURN VALUE
On success, pthread_cancel() returns 0; on error, it returns a nonzero error number.

ERRORS
ESRCH

No thread with the ID thread could be found.

Linux man-pages 6.16 2025-09-21 2247

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_cancel()

VERSIONS
On Linux, cancelation is implemented using signals. Under the NPTL threading imple-
mentation, the first real-time signal (i.e., signal 32) is used for this purpose. On Linux-
Threads, the second real-time signal is used, if real-time signals are available, otherwise
SIGUSR2 is used.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0 POSIX.1-2001.

EXAMPLES
The program below creates a thread and then cancels it. The main thread joins with the
canceled thread to check that its exit status was PTHREAD_CANCELED. The fol-
lowing shell session shows what happens when we run the program:

$./a.out
thread_func(): started; cancelation disabled
main(): sending cancelation request
thread_func(): about to enable cancelation
main(): thread was canceled

Program source

#include <err.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void *
thread_func(void *ignored_argument)
{

int s;

/* Disable cancelation for a while, so that we don't
immediately react to a cancelation request. */

s = pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_setcancelstate");

printf("%s(): started; cancelation disabled\n", __func__);
sleep(5);

Linux man-pages 6.16 2025-09-21 2248

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

printf("%s(): about to enable cancelation\n", __func__);

s = pthread_setcancelstate(PTHREAD_CANCEL_ENABLE, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_setcancelstate");

/* sleep() is a cancelation point. */

sleep(1000); /* Should get canceled while we sleep */

/* Should never get here. */

printf("%s(): not canceled!\n", __func__);
return NULL;

}

int
main(void)
{

pthread_t thr;
void *res;
int s;

/* Start a thread and then send it a cancelation request. */

s = pthread_create(&thr, NULL, &thread_func, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

sleep(2); /* Give thread a chance to get started */

printf("%s(): sending cancelation request\n", __func__);
s = pthread_cancel(thr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_cancel");

/* Join with thread to see what its exit status was. */

s = pthread_join(thr, &res);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_join");

if (res == PTHREAD_CANCELED)
printf("%s(): thread was canceled\n", __func__);

else
printf("%s(): thread wasn't canceled (shouldn't happen!)\n",

__func__);

Linux man-pages 6.16 2025-09-21 2249

pthread_cancel(3) Library Functions Manual pthread_cancel(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
pthread_cleanup_push(3), pthread_create(3), pthread_exit(3), pthread_join(3),
pthread_key_create(3), pthread_setcancelstate(3), pthread_setcanceltype(3),
pthread_testcancel(3), pthreads(7)

Linux man-pages 6.16 2025-09-21 2250

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

NAME
pthread_cleanup_push, pthread_cleanup_pop - push and pop thread cancelation clean-
up handlers

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_push(typeof(void (void *)) *routine, void *arg);
void pthread_cleanup_pop(int execute);

DESCRIPTION
These functions manipulate the calling thread’s stack of thread-cancelation clean-up
handlers. A clean-up handler is a function that is automatically executed when a thread
is canceled (or in various other circumstances described below); it might, for example,
unlock a mutex so that it becomes available to other threads in the process.

The pthread_cleanup_push() function pushes routine onto the top of the stack of
clean-up handlers. When routine is later invoked, it will be given arg as its argument.

The pthread_cleanup_pop() function removes the routine at the top of the stack of
clean-up handlers, and optionally executes it if execute is nonzero.

A cancelation clean-up handler is popped from the stack and executed in the following
circumstances:

• When a thread is canceled, all of the stacked clean-up handlers are popped and exe-
cuted in the reverse of the order in which they were pushed onto the stack.

• When a thread terminates by calling pthread_exit(3), all clean-up handlers are exe-
cuted as described in the preceding point. (Clean-up handlers are not called if the
thread terminates by performing a return from the thread start function.)

• When a thread calls pthread_cleanup_pop() with a nonzero execute argument, the
top-most clean-up handler is popped and executed.

POSIX.1 permits pthread_cleanup_push() and pthread_cleanup_pop() to be imple-
mented as macros that expand to text containing '{' and '}', respectively. For this reason,
the caller must ensure that calls to these functions are paired within the same function,
and at the same lexical nesting level. (In other words, a clean-up handler is established
only during the execution of a specified section of code.)

Calling longjmp(3) (siglongjmp(3)) produces undefined results if any call has been
made to pthread_cleanup_push() or pthread_cleanup_pop() without the matching
call of the pair since the jump buffer was filled by setjmp(3) (sigsetjmp(3)). Likewise,
calling longjmp(3) (siglongjmp(3)) from inside a clean-up handler produces undefined
results unless the jump buffer was also filled by setjmp(3) (sigsetjmp(3)) inside the han-
dler.

RETURN VALUE
These functions do not return a value.

Linux man-pages 6.16 2025-08-20 2251

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

ERRORS
There are no errors.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_cleanup_push(), pthread_cleanup_pop()

VERSIONS
On glibc, the pthread_cleanup_push() and pthread_cleanup_pop() functions are im-
plemented as macros that expand to text containing '{' and '}', respectively. This means
that variables declared within the scope of paired calls to these functions will be visible
within only that scope.

POSIX.1 says that the effect of using return, break, continue, or goto to prematurely
leave a block bracketed pthread_cleanup_push() and pthread_cleanup_pop() is unde-
fined. Portable applications should avoid doing this.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.0.

EXAMPLES
The program below provides a simple example of the use of the functions described in
this page. The program creates a thread that executes a loop bracketed by
pthread_cleanup_push() and pthread_cleanup_pop(). This loop increments a global
variable, cnt, once each second. Depending on what command-line arguments are sup-
plied, the main thread sends the other thread a cancelation request, or sets a global vari-
able that causes the other thread to exit its loop and terminate normally (by doing a
return).

In the following shell session, the main thread sends a cancelation request to the other
thread:

$./a.out;
New thread started
cnt = 0
cnt = 1
Canceling thread
Called clean-up handler
Thread was canceled; cnt = 0

From the above, we see that the thread was canceled, and that the cancelation clean-up
handler was called and it reset the value of the global variable cnt to 0.

In the next run, the main program sets a global variable that causes other thread to termi-
nate normally:

$./a.out x;
New thread started
cnt = 0

Linux man-pages 6.16 2025-08-20 2252

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

cnt = 1
Thread terminated normally; cnt = 2

From the above, we see that the clean-up handler was not executed (because
cleanup_pop_arg was 0), and therefore the value of cnt was not reset.

In the next run, the main program sets a global variable that causes the other thread to
terminate normally, and supplies a nonzero value for cleanup_pop_arg:

$./a.out x 1;
New thread started
cnt = 0
cnt = 1
Called clean-up handler
Thread terminated normally; cnt = 0

In the above, we see that although the thread was not canceled, the clean-up handler was
executed, because the argument given to pthread_cleanup_pop() was nonzero.

Program source

#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

static int done = 0;
static int cleanup_pop_arg = 0;
static int cnt = 0;

static void
cleanup_handler(void *arg)
{

printf("Called clean-up handler\n");
cnt = 0;

}

static void *
thread_start(void *arg)
{

time_t curr;

printf("New thread started\n");

pthread_cleanup_push(cleanup_handler, NULL);

curr = time(NULL);

Linux man-pages 6.16 2025-08-20 2253

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

while (!done) {
pthread_testcancel(); /* A cancelation point */
if (curr < time(NULL)) {

curr = time(NULL);
printf("cnt = %d\n", cnt); /* A cancelation point */
cnt++;

}
}

pthread_cleanup_pop(cleanup_pop_arg);
return NULL;

}

int
main(int argc, char *argv[])
{

pthread_t thr;
int s;
void *res;

s = pthread_create(&thr, NULL, thread_start, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

sleep(2); /* Allow new thread to run a while */

if (argc > 1) {
if (argc > 2)

cleanup_pop_arg = atoi(argv[2]);
done = 1;

} else {
printf("Canceling thread\n");
s = pthread_cancel(thr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_cancel");
}

s = pthread_join(thr, &res);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_join");

if (res == PTHREAD_CANCELED)
printf("Thread was canceled; cnt = %d\n", cnt);

else
printf("Thread terminated normally; cnt = %d\n", cnt);

Linux man-pages 6.16 2025-08-20 2254

pthread_cleanup_push(3) Library Functions Manual pthread_cleanup_push(3)

exit(EXIT_SUCCESS);
}

SEE ALSO
pthread_cancel(3), pthread_cleanup_push_defer_np(3), pthread_setcancelstate(3),
pthread_testcancel(3), pthreads(7)

Linux man-pages 6.16 2025-08-20 2255

pthread_cle . . . ush_defer_np(3) Library Functions Manual pthread_cle . . . ush_defer_np(3)

NAME
pthread_cleanup_push_defer_np, pthread_cleanup_pop_restore_np - push and pop
thread cancelation clean-up handlers while saving cancelability type

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_cleanup_push_defer_np(typeof(void (void *)) *routine,
void *arg);

void pthread_cleanup_pop_restore_np(int execute);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_cleanup_push_defer_np(), pthread_cleanup_pop_defer_np():
_GNU_SOURCE

DESCRIPTION
These functions are the same as pthread_cleanup_push(3) and pthread_cleanup_pop(3),
except for the differences noted on this page.

Like pthread_cleanup_push(3), pthread_cleanup_push_defer_np() pushes routine
onto the thread’s stack of cancelation clean-up handlers. In addition, it also saves the
thread’s current cancelability type, and sets the cancelability type to "deferred" (see
pthread_setcanceltype(3)); this ensures that cancelation clean-up will occur even if the
thread’s cancelability type was "asynchronous" before the call.

Like pthread_cleanup_pop(3), pthread_cleanup_pop_restore_np() pops the top-most
clean-up handler from the thread’s stack of cancelation clean-up handlers. In addition, it
restores the thread’s cancelability type to its value at the time of the matching
pthread_cleanup_push_defer_np().

The caller must ensure that calls to these functions are paired within the same function,
and at the same lexical nesting level. Other restrictions apply, as described in
pthread_cleanup_push(3).

This sequence of calls:

pthread_cleanup_push_defer_np(routine, arg);
pthread_cleanup_pop_restore_np(execute);

is equivalent to (but shorter and more efficient than):

int oldtype;

pthread_cleanup_push(routine, arg);
pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED, &oldtype);
...
pthread_setcanceltype(oldtype, NULL);
pthread_cleanup_pop(execute);

Linux man-pages 6.16 2025-05-17 2256

pthread_cle . . . ush_defer_np(3) Library Functions Manual pthread_cle . . . ush_defer_np(3)

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.0

SEE ALSO
pthread_cancel(3), pthread_cleanup_push(3), pthread_setcancelstate(3), pthread_test-
cancel(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2257

pthread_cond_init(3) Library Functions Manual pthread_cond_init(3)

NAME
pthread_cond_init, pthread_cond_signal, pthread_cond_broadcast, pthread_cond_wait,
pthread_cond_timedwait, pthread_cond_destroy - operations on conditions

SYNOPSIS
#include <pthread.h>

pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

int pthread_cond_init(pthread_cond_t *cond ,
pthread_condattr_t *cond_attr);

int pthread_cond_signal(pthread_cond_t *cond);
int pthread_cond_broadcast(pthread_cond_t *cond);
int pthread_cond_wait(pthread_cond_t *cond , pthread_mutex_t *mutex);
int pthread_cond_timedwait(pthread_cond_t *cond , pthread_mutex_t *mutex,

const struct timespec *abstime);
int pthread_cond_destroy(pthread_cond_t *cond);

DESCRIPTION
A condition (short for "condition variable") is a synchronization device that allows
threads to suspend execution and relinquish the processors until some predicate on
shared data is satisfied. The basic operations on conditions are: signal the condition
(when the predicate becomes true), and wait for the condition, suspending the thread ex-
ecution until another thread signals the condition.

A condition variable must always be associated with a mutex, to avoid the race condi-
tion where a thread prepares to wait on a condition variable and another thread signals
the condition just before the first thread actually waits on it.

pthread_cond_init() initializes the condition variable cond , using the condition attrib-
utes specified in cond_attr, or default attributes if cond_attr is NULL. The Linux-
Threads implementation supports no attributes for conditions, hence the cond_attr para-
meter is actually ignored.

Variables of type pthread_cond_t can also be initialized statically, using the constant
PTHREAD_COND_INITIALIZER.

pthread_cond_signal() restarts one of the threads that are waiting on the condition vari-
able cond . If no threads are waiting on cond , nothing happens. If several threads are
waiting on cond , exactly one is restarted, but it is not specified which.

pthread_cond_broadcast() restarts all the threads that are waiting on the condition
variable cond . Nothing happens if no threads are waiting on cond .

pthread_cond_wait() atomically unlocks the mutex (as per pthread_unlock_mutex())
and waits for the condition variable cond to be signaled. The thread execution is sus-
pended and does not consume any CPU time until the condition variable is signaled.
The mutex must be locked by the calling thread on entrance to pthread_cond_wait().
Before returning to the calling thread, pthread_cond_wait() re-acquires mutex (as per
pthread_mutex_lock())

Unlocking the mutex and suspending on the condition variable is done atomically.
Thus, if all threads always acquire the mutex before signaling the condition, this guaran-
tees that the condition cannot be signaled (and thus ignored) between the time a thread

Linux man-pages 6.16 2025-10-16 2258

pthread_cond_init(3) Library Functions Manual pthread_cond_init(3)

locks the mutex and the time it waits on the condition variable. See CAVEATS below.

pthread_cond_timedwait() atomically unlocks mutex and waits on cond , as
pthread_cond_wait() does, but it also bounds the duration of the wait. If cond has not
been signaled within the amount of time specified by abstime, the mutex mutex is re-ac-
quired and pthread_cond_timedwait() returns the error ETIMEDOUT. The abstime
parameter specifies an absolute time, with the same origin as time(2) and gettimeof-
day(2): an abstime of 0 corresponds to 00:00:00 GMT, January 1, 1970.

pthread_cond_destroy() destroys a condition variable, freeing the resources it might
hold. No threads must be waiting on the condition variable on entrance to
pthread_cond_destroy(). In the LinuxThreads implementation, no resources are asso-
ciated with condition variables, thus pthread_cond_destroy() actually does nothing ex-
cept checking that the condition has no waiting threads.

CANCELLATION
pthread_cond_wait() and pthread_cond_timedwait() are cancelation points. If a
thread is cancelled while suspended in one of these functions, the thread immediately re-
sumes execution, then locks again the mutex argument to pthread_cond_wait() and
pthread_cond_timedwait(), and finally executes the cancelation. Consequently,
cleanup handlers are assured that mutex is locked when they are called.

ASYNC-SIGNAL SAFETY
The condition functions are not async-signal safe, and should not be called from a signal
handler. In particular, calling pthread_cond_signal() or pthread_cond_broadcast()
from a signal handler may deadlock the calling thread.

RETURN VALUE
All condition variable functions return 0 on success and a non-zero error code on error.

ERRORS
pthread_cond_init(), pthread_cond_signal(), pthread_cond_broadcast(), and
pthread_cond_wait() never return an error code.

The pthread_cond_timedwait() function returns the following error codes on error:

ETIMEDOUT
The condition variable was not signaled until the timeout specified by ab-
stime .

The pthread_cond_destroy() function returns the following error code on error:

EBUSY
Some threads are currently waiting on cond .

SEE ALSO
pthread_condattr_init(3), pthread_mutex_lock(3), pthread_mutex_unlock(3), gettimeof-
day(2), nanosleep(2).

CAVEATS
The implementation of the provided functions until glibc 2.25 used an internal data lock.
This lock did not support priority-inheritance and was subject to unbounded priority in-
version, visible on a real-time system.

After the rewrite of the implementation in glibc 2.25 the usage of internal lock changed.

Linux man-pages 6.16 2025-10-16 2259

pthread_cond_init(3) Library Functions Manual pthread_cond_init(3)

The internal lock is always acquired by the signaling functions pthread_cond_signal()
and pthread_cond_broadcast(). The waiting function acquires the lock if the waiting
process was interrupted. The interruption can be caused for instance by a specified
timeout, and denoted by the error value ETIMEDOUTA, or by a received signal, which
is denoted by the error value EINTR.

EXAMPLE
Consider two shared variables x and y , protected by the mutex mut, and a condition
variable cond that is to be signaled whenever x becomes greater than y.

int x,y;
pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;

Waiting until x is greater than y is performed as follows:

pthread_mutex_lock(&mut);
while (x <= y) {

pthread_cond_wait(&cond, &mut);
}
/* operate on x and y */
pthread_mutex_unlock(&mut);

Modifications on x and y that may cause x to become greater than y should signal the
condition if needed:

pthread_mutex_lock(&mut);
/* modify x and y */
if (x > y) pthread_cond_broadcast(&cond);
pthread_mutex_unlock(&mut);

If it can be proved that at most one waiting thread needs to be waken up (for instance, if
there are only two threads communicating through x and y), pthread_cond_signal()
can be used as a slightly more efficient alternative to pthread_cond_broadcast(). In
doubt, use pthread_cond_broadcast().

To wait for x to become greater than y with a timeout of 5 seconds, do:

struct timeval now;
struct timespec timeout;
int retcode;

pthread_mutex_lock(&mut);
gettimeofday(&now);
timeout.tv_sec = now.tv_sec + 5;
timeout.tv_nsec = now.tv_usec * 1000;
retcode = 0;
while (x <= y && retcode != ETIMEDOUT) {

retcode = pthread_cond_timedwait(&cond, &mut, &timeout);
}
if (retcode == ETIMEDOUT) {

/* timeout occurred */

Linux man-pages 6.16 2025-10-16 2260

pthread_cond_init(3) Library Functions Manual pthread_cond_init(3)

} else {
/* operate on x and y */

}
pthread_mutex_unlock(&mut);

Linux man-pages 6.16 2025-10-16 2261

pthread_condattr_init(3) Library Functions Manual pthread_condattr_init(3)

NAME
pthread_condattr_init, pthread_condattr_destroy - condition creation attributes

SYNOPSIS
#include <pthread.h>

int pthread_condattr_init(pthread_condattr_t *attr); int pthread_condattr_de-
stroy(pthread_condattr_t *attr);

DESCRIPTION
Condition attributes can be specified at condition creation time, by passing a condition
attribute object as second argument to pthread_cond_init(3). Passing NULL is equiva-
lent to passing a condition attribute object with all attributes set to their default values.

The LinuxThreads implementation supports no attributes for conditions. The functions
on condition attributes are included only for compliance with the POSIX standard.

pthread_condattr_init() initializes the condition attribute object attr and fills it with
default values for the attributes. pthread_condattr_destroy() destroys a condition at-
tribute object, which must not be reused until it is reinitialized. Both functions do noth-
ing in the LinuxThreads implementation.

RETURN VALUE
pthread_condattr_init() and pthread_condattr_destroy() always return 0.

SEE ALSO
pthread_cond_init(3).

Linux man-pages 6.16 2025-05-17 2262

pthread_create(3) Library Functions Manual pthread_create(3)

NAME
pthread_create - create a new thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_create(pthread_t *restrict thread ,
const pthread_attr_t *restrict attr,
typeof(void *(void *)) *start_routine,
void *restrict arg);

DESCRIPTION
The pthread_create() function starts a new thread in the calling process. The new
thread starts execution by invoking start_routine(); arg is passed as the sole argument of
start_routine().

The new thread terminates in one of the following ways:

• It calls pthread_exit(3), specifying an exit status value that is available to another
thread in the same process that calls pthread_join(3).

• It returns from start_routine(). This is equivalent to calling pthread_exit(3) with the
value supplied in the return statement.

• It is canceled (see pthread_cancel(3)).

• Any of the threads in the process calls exit(3), or the main thread performs a return
from main(). This causes the termination of all threads in the process.

The attr argument points to a pthread_attr_t structure whose contents are used at thread
creation time to determine attributes for the new thread; this structure is initialized using
pthread_attr_init(3) and related functions. If attr is NULL, then the thread is created
with default attributes.

Before returning, a successful call to pthread_create() stores the ID of the new thread
in the buffer pointed to by thread; this identifier is used to refer to the thread in subse-
quent calls to other pthreads functions.

The new thread inherits a copy of the creating thread’s signal mask (pthread_sig-
mask(3)). The set of pending signals for the new thread is empty (sigpending(2)). The
new thread does not inherit the creating thread’s alternate signal stack (sigaltstack(2)).

The new thread inherits the calling thread’s floating-point environment (fenv(3)).

The initial value of the new thread’s CPU-time clock is 0 (see
pthread_getcpuclockid(3)).

Linux-specific details
The new thread inherits copies of the calling thread’s capability sets (see capabilities(7))
and CPU affinity mask (see sched_setaffinity(2)).

RETURN VALUE
On success, pthread_create() returns 0; on error, it returns an error number, and the
contents of *thread are undefined.

Linux man-pages 6.16 2025-09-21 2263

pthread_create(3) Library Functions Manual pthread_create(3)

ERRORS
EAGAIN

Insufficient resources to create another thread.

EAGAIN
A system-imposed limit on the number of threads was encountered. There are a
number of limits that may trigger this error: the RLIMIT_NPROC soft resource
limit (set via setrlimit(2)), which limits the number of processes and threads for a
real user ID, was reached; the kernel’s system-wide limit on the number of
processes and threads, /proc/sys/kernel/threads-max, was reached (see proc(5));
or the maximum number of PIDs, /proc/sys/kernel/pid_max, was reached (see
proc(5)).

EINVAL
Invalid settings in attr.

EPERM
No permission to set the scheduling policy and parameters specified in attr.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_create()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
See pthread_self(3) for further information on the thread ID returned in *thread by
pthread_create(). Unless real-time scheduling policies are being employed, after a call
to pthread_create(), it is indeterminate which thread—the caller or the new thread—
will next execute.

A thread may either be joinable or detached . If a thread is joinable, then another thread
can call pthread_join(3) to wait for the thread to terminate and fetch its exit status. Only
when a terminated joinable thread has been joined are the last of its resources released
back to the system. When a detached thread terminates, its resources are automatically
released back to the system: it is not possible to join with the thread in order to obtain its
exit status. Making a thread detached is useful for some types of daemon threads whose
exit status the application does not need to care about. By default, a new thread is cre-
ated in a joinable state, unless attr was set to create the thread in a detached state (using
pthread_attr_setdetachstate(3)).

Under the NPTL threading implementation, if the RLIMIT_STACK soft resource limit
at the time the program started has any value other than "unlimited", then it determines
the default stack size of new threads. Using pthread_attr_setstacksize(3), the stack size
attribute can be explicitly set in the attr argument used to create a thread, in order to ob-
tain a stack size other than the default. If the RLIMIT_STACK resource limit is set to
"unlimited", a per-architecture value is used for the stack size: 2 MB on most

Linux man-pages 6.16 2025-09-21 2264

pthread_create(3) Library Functions Manual pthread_create(3)

architectures; 4 MB on POWER and Sparc-64.

BUGS
In the obsolete LinuxThreads implementation, each of the threads in a process has a dif-
ferent process ID. This is in violation of the POSIX threads specification, and is the
source of many other nonconformances to the standard; see pthreads(7).

EXAMPLES
The program below demonstrates the use of pthread_create(), as well as a number of
other functions in the pthreads API.

In the following run, on a system providing the NPTL threading implementation, the
stack size defaults to the value given by the "stack size" resource limit:

$ ulimit -s
8192 # The stack size limit is 8 MB (0x800000 bytes)
$./a.out hola salut servus
Thread 1: top of stack near 0xb7dd03b8; argv_string=hola
Thread 2: top of stack near 0xb75cf3b8; argv_string=salut
Thread 3: top of stack near 0xb6dce3b8; argv_string=servus
Joined with thread 1; returned value was HOLA
Joined with thread 2; returned value was SALUT
Joined with thread 3; returned value was SERVUS

In the next run, the program explicitly sets a stack size of 1 MB (using pthread_attr_set-
stacksize(3)) for the created threads:

$./a.out -s 0x100000 hola salut servus
Thread 1: top of stack near 0xb7d723b8; argv_string=hola
Thread 2: top of stack near 0xb7c713b8; argv_string=salut
Thread 3: top of stack near 0xb7b703b8; argv_string=servus
Joined with thread 1; returned value was HOLA
Joined with thread 2; returned value was SALUT
Joined with thread 3; returned value was SERVUS

Program source

#include <ctype.h>
#include <err.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <unistd.h>

struct thread_info { /* Used as argument to thread_start() */
pthread_t thread_id; /* ID returned by pthread_create() */
int thread_num; /* Application-defined thread # */
char *argv_string; /* From command-line argument */

};

Linux man-pages 6.16 2025-09-21 2265

pthread_create(3) Library Functions Manual pthread_create(3)

/* Thread start function: display address near top of our stack,
and return upper-cased copy of argv_string. */

static void *
thread_start(void *arg)
{

struct thread_info *tinfo = arg;
char *uargv;

printf("Thread %d: top of stack near %p; argv_string=%s\n",
tinfo->thread_num, (void *) &tinfo, tinfo->argv_string);

uargv = strdup(tinfo->argv_string);
if (uargv == NULL)

err(EXIT_FAILURE, "strdup");

for (char *p = uargv; *p != '\0'; p++)
*p = toupper(*p);

return uargv;
}

int
main(int argc, char *argv[])
{

int s, opt;
void *res;
size_t num_threads;
ssize_t stack_size;
pthread_attr_t attr;
struct thread_info *tinfo;

/* The "-s" option specifies a stack size for our threads. */

stack_size = -1;
while ((opt = getopt(argc, argv, "s:")) != -1) {

switch (opt) {
case 's':

stack_size = strtoul(optarg, NULL, 0);
break;

default:
fprintf(stderr, "Usage: %s [-s stack-size] arg...\n",

argv[0]);
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-09-21 2266

pthread_create(3) Library Functions Manual pthread_create(3)

}

num_threads = argc - optind;

/* Initialize thread creation attributes. */

s = pthread_attr_init(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_init");

if (stack_size > 0) {
s = pthread_attr_setstacksize(&attr, stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstacksize");
}

/* Allocate memory for pthread_create() arguments. */

tinfo = calloc(num_threads, sizeof(*tinfo));
if (tinfo == NULL)

err(EXIT_FAILURE, "calloc");

/* Create one thread for each command-line argument. */

for (size_t tnum = 0; tnum < num_threads; tnum++) {
tinfo[tnum].thread_num = tnum + 1;
tinfo[tnum].argv_string = argv[optind + tnum];

/* The pthread_create() call stores the thread ID into
corresponding element of tinfo[]. */

s = pthread_create(&tinfo[tnum].thread_id, &attr,
&thread_start, &tinfo[tnum]);

if (s != 0)
errc(EXIT_FAILURE, s, "pthread_create");

}

/* Destroy the thread attributes object, since it is no
longer needed. */

s = pthread_attr_destroy(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");

/* Now join with each thread, and display its returned value. */

for (size_t tnum = 0; tnum < num_threads; tnum++) {

Linux man-pages 6.16 2025-09-21 2267

pthread_create(3) Library Functions Manual pthread_create(3)

s = pthread_join(tinfo[tnum].thread_id, &res);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_join");

printf("Joined with thread %d; returned value was %s\n",
tinfo[tnum].thread_num, (char *) res);

free(res); /* Free memory allocated by thread */
}

free(tinfo);
exit(EXIT_SUCCESS);

}

SEE ALSO
getrlimit(2), pthread_attr_init(3), pthread_cancel(3), pthread_detach(3),
pthread_equal(3), pthread_exit(3), pthread_getattr_np(3), pthread_join(3),
pthread_self(3), pthread_setattr_default_np(3), pthreads(7)

Linux man-pages 6.16 2025-09-21 2268

pthread_detach(3) Library Functions Manual pthread_detach(3)

NAME
pthread_detach - detach a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_detach(pthread_t thread);

DESCRIPTION
The pthread_detach() function marks the thread identified by thread as detached.
When a detached thread terminates, its resources are automatically released back to the
system without the need for another thread to join with the terminated thread.

Attempting to detach an already detached thread results in unspecified behavior.

RETURN VALUE
On success, pthread_detach() returns 0; on error, it returns an error number.

ERRORS
EINVAL

thread is not a joinable thread.

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_detach()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Once a thread has been detached, it can’t be joined with pthread_join(3) or be made
joinable again.

A new thread can be created in a detached state using pthread_attr_setdetachstate(3) to
set the detached attribute of the attr argument of pthread_create(3).

The detached attribute merely determines the behavior of the system when the thread
terminates; it does not prevent the thread from being terminated if the process terminates
using exit(3) (or equivalently, if the main thread returns).

Either pthread_join(3) or pthread_detach() should be called for each thread that an ap-
plication creates, so that system resources for the thread can be released. (But note that
the resources of any threads for which one of these actions has not been done will be
freed when the process terminates.)

Linux man-pages 6.16 2025-05-17 2269

pthread_detach(3) Library Functions Manual pthread_detach(3)

EXAMPLES
The following statement detaches the calling thread:

pthread_detach(pthread_self());

SEE ALSO
pthread_attr_setdetachstate(3), pthread_cancel(3), pthread_create(3), pthread_exit(3),
pthread_join(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2270

pthread_equal(3) Library Functions Manual pthread_equal(3)

NAME
pthread_equal - compare thread IDs

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_equal(pthread_t t1, pthread_t t2);

DESCRIPTION
The pthread_equal() function compares two thread identifiers.

RETURN VALUE
If the two thread IDs are equal, pthread_equal() returns a nonzero value; otherwise, it
returns 0.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_equal()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The pthread_equal() function is necessary because thread IDs should be considered
opaque: there is no portable way for applications to directly compare two pthread_t val-
ues.

SEE ALSO
pthread_create(3), pthread_self(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2271

pthread_exit(3) Library Functions Manual pthread_exit(3)

NAME
pthread_exit - terminate calling thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

[[noreturn]] void pthread_exit(void *retval);

DESCRIPTION
The pthread_exit() function terminates the calling thread and returns a value via retval
that (if the thread is joinable) is available to another thread in the same process that calls
pthread_join(3).

Any clean-up handlers established by pthread_cleanup_push(3) that have not yet been
popped, are popped (in the reverse of the order in which they were pushed) and exe-
cuted. If the thread has any thread-specific data, then, after the clean-up handlers have
been executed, the corresponding destructor functions are called, in an unspecified order.

When a thread terminates, process-shared resources (e.g., mutexes, condition variables,
semaphores, and file descriptors) are not released, and functions registered using
atexit(3) are not called.

After the last thread in a process terminates, the process terminates as by calling exit(3)
with an exit status of zero; thus, process-shared resources are released and functions reg-
istered using atexit(3) are called.

RETURN VALUE
This function does not return to the caller.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_exit()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Performing a return from the start function of any thread other than the main thread re-
sults in an implicit call to pthread_exit(), using the function’s return value as the
thread’s exit status.

To allow other threads to continue execution, the main thread should terminate by call-
ing pthread_exit() rather than exit(3).

The value pointed to by retval should not be located on the calling thread’s stack, since
the contents of that stack are undefined after the thread terminates.

Linux man-pages 6.16 2025-05-17 2272

pthread_exit(3) Library Functions Manual pthread_exit(3)

BUGS
Currently, there are limitations in the kernel implementation logic for wait(2)ing on a
stopped thread group with a dead thread group leader. This can manifest in problems
such as a locked terminal if a stop signal is sent to a foreground process whose thread
group leader has already called pthread_exit().

SEE ALSO
pthread_create(3), pthread_join(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2273

pthread_getattr_default_np(3) Library Functions Manual pthread_getattr_default_np(3)

NAME
pthread_getattr_default_np, pthread_setattr_default_np, - get or set default thread-cre-
ation attributes

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_getattr_default_np(pthread_attr_t *attr);
int pthread_setattr_default_np(const pthread_attr_t *attr);

DESCRIPTION
The pthread_setattr_default_np() function sets the default attributes used for creation
of a new thread—that is, the attributes that are used when pthread_create(3) is called
with a second argument that is NULL. The default attributes are set using the attributes
supplied in *attr, a previously initialized thread attributes object. Note the following de-
tails about the supplied attributes object:

• The attribute settings in the object must be valid.

• The stack address attribute must not be set in the object.

• Setting the stack size attribute to zero means leave the default stack size unchanged.

The pthread_getattr_default_np() function initializes the thread attributes object re-
ferred to by attr so that it contains the default attributes used for thread creation.

ERRORS
EINVAL

(pthread_setattr_default_np()) One of the attribute settings in attr is invalid, or
the stack address attribute is set in attr.

ENOMEM
(pthread_setattr_default_np()) Insufficient memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_getattr_default_np(),
pthread_setattr_default_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in their names.

HISTORY
glibc 2.18.

EXAMPLES
The program below uses pthread_getattr_default_np() to fetch the default thread-cre-
ation attributes and then displays various settings from the returned thread attributes ob-
ject. When running the program, we see the following output:

$./a.out;

Linux man-pages 6.16 2025-05-17 2274

pthread_getattr_default_np(3) Library Functions Manual pthread_getattr_default_np(3)

Stack size: 8388608
Guard size: 4096
Scheduling policy: SCHED_OTHER
Scheduling priority: 0
Detach state: JOINABLE
Inherit scheduler: INHERIT

Program source

#define _GNU_SOURCE
#include <err.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>

static void
display_pthread_attr(pthread_attr_t *attr)
{

int s;
size_t stacksize;
size_t guardsize;
int policy;
struct sched_param schedparam;
int detachstate;
int inheritsched;

s = pthread_attr_getstacksize(attr, &stacksize);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getstacksize");
printf("Stack size: %zu\n", stacksize);

s = pthread_attr_getguardsize(attr, &guardsize);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getguardsize");
printf("Guard size: %zu\n", guardsize);

s = pthread_attr_getschedpolicy(attr, &policy);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedpolicy");
printf("Scheduling policy: %s\n",

(policy == SCHED_FIFO) ? "SCHED_FIFO" :
(policy == SCHED_RR) ? "SCHED_RR" :
(policy == SCHED_OTHER) ? "SCHED_OTHER" : "[unknown]");

s = pthread_attr_getschedparam(attr, &schedparam);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedparam");

Linux man-pages 6.16 2025-05-17 2275

pthread_getattr_default_np(3) Library Functions Manual pthread_getattr_default_np(3)

printf("Scheduling priority: %d\n", schedparam.sched_priority);

s = pthread_attr_getdetachstate(attr, &detachstate);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getdetachstate");
printf("Detach state: %s\n",

(detachstate == PTHREAD_CREATE_DETACHED) ? "DETACHED" :
(detachstate == PTHREAD_CREATE_JOINABLE) ? "JOINABLE" :
"???");

s = pthread_attr_getinheritsched(attr, &inheritsched);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getinheritsched");
printf("Inherit scheduler: %s\n",

(inheritsched == PTHREAD_INHERIT_SCHED) ? "INHERIT" :
(inheritsched == PTHREAD_EXPLICIT_SCHED) ? "EXPLICIT" :
"???");

}

int
main(void)
{

int s;
pthread_attr_t attr;

s = pthread_getattr_default_np(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getattr_default_np");

display_pthread_attr(&attr);

exit(EXIT_SUCCESS);
}

SEE ALSO
pthread_attr_getaffinity_np(3), pthread_attr_getdetachstate(3),
pthread_attr_getguardsize(3), pthread_attr_getinheritsched(3),
pthread_attr_getschedparam(3), pthread_attr_getschedpolicy(3),
pthread_attr_getscope(3), pthread_attr_getstack(3), pthread_attr_getstackaddr(3),
pthread_attr_getstacksize(3), pthread_attr_init(3), pthread_create(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2276

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

NAME
pthread_getattr_np - get attributes of created thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_getattr_np(pthread_t thread , pthread_attr_t *attr);

DESCRIPTION
The pthread_getattr_np() function initializes the thread attributes object referred to by
attr so that it contains actual attribute values describing the running thread thread .

The returned attribute values may differ from the corresponding attribute values passed
in the attr object that was used to create the thread using pthread_create(3). In particu-
lar, the following attributes may differ:

• the detach state, since a joinable thread may have detached itself after creation;

• the stack size, which the implementation may align to a suitable boundary.

• and the guard size, which the implementation may round upward to a multiple of the
page size, or ignore (i.e., treat as 0), if the application is allocating its own stack.

Furthermore, if the stack address attribute was not set in the thread attributes object used
to create the thread, then the returned thread attributes object will report the actual stack
address that the implementation selected for the thread.

When the thread attributes object returned by pthread_getattr_np() is no longer re-
quired, it should be destroyed using pthread_attr_destroy(3).

RETURN VALUE
On success, this function returns 0; on error, it returns a nonzero error number.

ERRORS
ENOMEM

Insufficient memory.

In addition, if thread refers to the main thread, then pthread_getattr_np() can fail be-
cause of errors from various underlying calls: fopen(3), if /proc/self/maps can’t be
opened; and getrlimit(2), if the RLIMIT_STACK resource limit is not supported.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_getattr_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the name.

HISTORY
glibc 2.2.3.

Linux man-pages 6.16 2025-09-25 2277

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

EXAMPLES
The program below demonstrates the use of pthread_getattr_np(). The program cre-
ates a thread that then uses pthread_getattr_np() to retrieve and display its guard size,
stack address, and stack size attributes. Command-line arguments can be used to set
these attributes to values other than the default when creating the thread. The shell ses-
sions below demonstrate the use of the program.

In the first run, on an x86-32 system, a thread is created using default attributes:

$ ulimit -s # No stack limit ==> default stack size is 2 MB
unlimited
$./a.out
Attributes of created thread:

Guard size = 4096 bytes
Stack address = 0x40196000 (EOS = 0x40397000)
Stack size = 0x201000 (2101248) bytes

In the following run, we see that if a guard size is specified, it is rounded up to the next
multiple of the system page size (4096 bytes on x86-32):

$./a.out -g 4097
Thread attributes object after initializations:

Guard size = 4097 bytes
Stack address = (nil)
Stack size = 0x0 (0) bytes

Attributes of created thread:
Guard size = 8192 bytes
Stack address = 0x40196000 (EOS = 0x40397000)
Stack size = 0x201000 (2101248) bytes

In the last run, the program manually allocates a stack for the thread. In this case, the
guard size attribute is ignored.

$./a.out -g 4096 -s 0x8000 -a
Allocated thread stack at 0x804d000

Thread attributes object after initializations:
Guard size = 4096 bytes
Stack address = 0x804d000 (EOS = 0x8055000)
Stack size = 0x8000 (32768) bytes

Attributes of created thread:
Guard size = 0 bytes
Stack address = 0x804d000 (EOS = 0x8055000)
Stack size = 0x8000 (32768) bytes

Program source

#define _GNU_SOURCE /* To get pthread_getattr_np() declaration */
#include <err.h>

Linux man-pages 6.16 2025-09-25 2278

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static void
display_stack_related_attributes(pthread_attr_t *attr, char *prefix)
{

int s;
size_t stack_size, guard_size;
void *stack_addr;

s = pthread_attr_getguardsize(attr, &guard_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getguardsize");
printf("%sGuard size = %zu bytes\n", prefix, guard_size);

s = pthread_attr_getstack(attr, &stack_addr, &stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getstack");
printf("%sStack address = %p", prefix, stack_addr);
if (stack_size > 0)

printf(" (EOS = %p)", (char *) stack_addr + stack_size);
printf("\n");
printf("%sStack size = %#zx (%zu) bytes\n",

prefix, stack_size, stack_size);
}

static void
display_thread_attributes(pthread_t thread, char *prefix)
{

int s;
pthread_attr_t attr;

s = pthread_getattr_np(thread, &attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getattr_np");

display_stack_related_attributes(&attr, prefix);

s = pthread_attr_destroy(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");
}

static void * /* Start function for thread we create */

Linux man-pages 6.16 2025-09-25 2279

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

thread_start(void *arg)
{

printf("Attributes of created thread:\n");
display_thread_attributes(pthread_self(), "\t");

exit(EXIT_SUCCESS); /* Terminate all threads */
}

static void
usage(char *pname, char *msg)
{

if (msg != NULL)
fputs(msg, stderr);

fprintf(stderr, "Usage: %s [-s stack-size [-a]]"
" [-g guard-size]\n", pname);

fprintf(stderr, "\t\t-a means program should allocate stack\n");
exit(EXIT_FAILURE);

}

static pthread_attr_t * /* Get thread attributes from command line */
get_thread_attributes_from_cl(int argc, char *argv[],

pthread_attr_t *attrp)
{

int s, opt, allocate_stack;
size_t stack_size, guard_size;
void *stack_addr;
pthread_attr_t *ret_attrp = NULL; /* Set to attrp if we initialize

a thread attributes object */
allocate_stack = 0;
stack_size = -1;
guard_size = -1;

while ((opt = getopt(argc, argv, "ag:s:")) != -1) {
switch (opt) {
case 'a': allocate_stack = 1; break;
case 'g': guard_size = strtoul(optarg, NULL, 0); break;
case 's': stack_size = strtoul(optarg, NULL, 0); break;
default: usage(argv[0], NULL);
}

}

if (allocate_stack && stack_size == -1)
usage(argv[0], "Specifying -a without -s makes no sense\n");

if (argc > optind)
usage(argv[0], "Extraneous command-line arguments\n");

Linux man-pages 6.16 2025-09-25 2280

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

if (stack_size != -1 || guard_size > 0) {
ret_attrp = attrp;

s = pthread_attr_init(attrp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_init");
}

if (stack_size != -1) {
if (!allocate_stack) {

s = pthread_attr_setstacksize(attrp, stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstacksize");
} else {

s = posix_memalign(&stack_addr, sysconf(_SC_PAGESIZE),
stack_size);

if (s != 0)
errc(EXIT_FAILURE, s, "posix_memalign");

printf("Allocated thread stack at %p\n\n", stack_addr);

s = pthread_attr_setstack(attrp, stack_addr, stack_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstacksize");
}

}

if (guard_size != -1) {
s = pthread_attr_setguardsize(attrp, guard_size);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setstacksize");
}

return ret_attrp;
}

int
main(int argc, char *argv[])
{

int s;
pthread_t thr;
pthread_attr_t attr;
pthread_attr_t *attrp = NULL; /* Set to &attr if we initialize

a thread attributes object */

attrp = get_thread_attributes_from_cl(argc, argv, &attr);

if (attrp != NULL) {

Linux man-pages 6.16 2025-09-25 2281

pthread_getattr_np(3) Library Functions Manual pthread_getattr_np(3)

printf("Thread attributes object after initializations:\n");
display_stack_related_attributes(attrp, "\t");
printf("\n");

}

s = pthread_create(&thr, attrp, &thread_start, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

if (attrp != NULL) {
s = pthread_attr_destroy(attrp);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");
}

pause(); /* Terminates when other thread calls exit() */
}

SEE ALSO
pthread_attr_getaffinity_np(3), pthread_attr_getdetachstate(3),
pthread_attr_getguardsize(3), pthread_attr_getinheritsched(3),
pthread_attr_getschedparam(3), pthread_attr_getschedpolicy(3),
pthread_attr_getscope(3), pthread_attr_getstack(3), pthread_attr_getstackaddr(3),
pthread_attr_getstacksize(3), pthread_attr_init(3), pthread_create(3), pthreads(7)

Linux man-pages 6.16 2025-09-25 2282

pthread_getcpuclockid(3) Library Functions Manual pthread_getcpuclockid(3)

NAME
pthread_getcpuclockid - retrieve ID of a thread’s CPU time clock

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>
#include <time.h>

int pthread_getcpuclockid(pthread_t thread , clockid_t *clockid);

DESCRIPTION
The pthread_getcpuclockid() function obtains the ID of the CPU-time clock of the
thread whose ID is given in thread , and returns it in the location pointed to by clockid .

RETURN VALUE
On success, this function returns 0; on error, it returns a nonzero error number.

ERRORS
ENOENT

Per-thread CPU time clocks are not supported by the system.

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_getcpuclockid()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

NOTES
When thread refers to the calling thread, this function returns an identifier that refers to
the same clock manipulated by clock_gettime(2) and clock_settime(2) when given the
clock ID CLOCK_THREAD_CPUTIME_ID.

EXAMPLES
The program below creates a thread and then uses clock_gettime(2) to retrieve the total
process CPU time, and the per-thread CPU time consumed by the two threads. The fol-
lowing shell session shows an example run:

$./a.out;
Main thread sleeping
Subthread starting infinite loop
Main thread consuming some CPU time...
Process total CPU time: 1.368
Main thread CPU time: 0.376
Subthread CPU time: 0.992

Linux man-pages 6.16 2025-08-20 2283

pthread_getcpuclockid(3) Library Functions Manual pthread_getcpuclockid(3)

Program source

/* Link with "-lrt" */

#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#include <time.h>
#include <unistd.h>

static void *
thread_start(void *arg)
{

printf("Subthread starting infinite loop\n");
for (;;)

continue;
}

static void
pclock(char *msg, clockid_t cid)
{

struct timespec ts;

printf("%s", msg);
if (clock_gettime(cid, &ts) == -1)

err(EXIT_FAILURE, "clock_gettime");
printf("%4jd.%03ld\n", (intmax_t) ts.tv_sec, ts.tv_nsec / 1000000);

}

int
main(void)
{

pthread_t thread;
clockid_t cid;
int s;

s = pthread_create(&thread, NULL, thread_start, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

printf("Main thread sleeping\n");
sleep(1);

Linux man-pages 6.16 2025-08-20 2284

pthread_getcpuclockid(3) Library Functions Manual pthread_getcpuclockid(3)

printf("Main thread consuming some CPU time...\n");
for (unsigned int j = 0; j < 2000000; j++)

getppid();

pclock("Process total CPU time: ", CLOCK_PROCESS_CPUTIME_ID);

s = pthread_getcpuclockid(pthread_self(), &cid);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getcpuclockid");
pclock("Main thread CPU time: ", cid);

/* The preceding 4 lines of code could have been replaced by:
pclock("Main thread CPU time: ", CLOCK_THREAD_CPUTIME_ID); */

s = pthread_getcpuclockid(thread, &cid);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getcpuclockid");
pclock("Subthread CPU time: 1 ", cid);

exit(EXIT_SUCCESS); /* Terminates both threads */
}

SEE ALSO
clock_gettime(2), clock_settime(2), timer_create(2), clock_getcpuclockid(3),
pthread_self(3), pthreads(7), time(7)

Linux man-pages 6.16 2025-08-20 2285

pthread_join(3) Library Functions Manual pthread_join(3)

NAME
pthread_join - join with a terminated thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_join(pthread_t thread , void **retval);

DESCRIPTION
The pthread_join() function waits for the thread specified by thread to terminate. If
that thread has already terminated, then pthread_join() returns immediately. The thread
specified by thread must be joinable.

If retval is not NULL, then pthread_join() copies the exit status of the target thread
(i.e., the value that the target thread supplied to pthread_exit(3)) into the location
pointed to by retval. If the target thread was canceled, then PTHREAD_CANCELED
is placed in the location pointed to by retval.

If multiple threads simultaneously try to join with the same thread, the results are unde-
fined. If the thread calling pthread_join() is canceled, then the target thread will remain
joinable (i.e., it will not be detached).

RETURN VALUE
On success, pthread_join() returns 0; on error, it returns an error number.

ERRORS
EDEADLK

A deadlock was detected (e.g., two threads tried to join with each other); or
thread specifies the calling thread.

EINVAL
thread is not a joinable thread.

EINVAL
Another thread is already waiting to join with this thread.

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_join()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
After a successful call to pthread_join(), the caller is guaranteed that the target thread
has terminated. The caller may then choose to do any clean-up that is required after

Linux man-pages 6.16 2025-05-17 2286

pthread_join(3) Library Functions Manual pthread_join(3)

termination of the thread (e.g., freeing memory or other resources that were allocated to
the target thread).

Joining with a thread that has previously been joined results in undefined behavior.

Failure to join with a thread that is joinable (i.e., one that is not detached), produces a
"zombie thread". Avoid doing this, since each zombie thread consumes some system re-
sources, and when enough zombie threads have accumulated, it will no longer be possi-
ble to create new threads (or processes).

There is no pthreads analog of waitpid(-1, &status, 0), that is, "join with any terminated
thread". If you believe you need this functionality, you probably need to rethink your
application design.

All of the threads in a process are peers: any thread can join with any other thread in the
process.

EXAMPLES
See pthread_create(3).

SEE ALSO
pthread_cancel(3), pthread_create(3), pthread_detach(3), pthread_exit(3),
pthread_tryjoin_np(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2287

pthread_key_create(3) Library Functions Manual pthread_key_create(3)

NAME
pthread_key_create, pthread_key_delete, pthread_setspecific, pthread_getspecific -
management of thread-specific data

SYNOPSIS
#include <pthread.h>

int pthread_key_create(pthread_key_t *key,
typeof(void (void *)) *destr_function;

int pthread_key_delete(pthread_key_t key);
int pthread_setspecific(pthread_key_t key, const void *pointer);
void * pthread_getspecific(pthread_key_t key);

DESCRIPTION
Programs often need global or static variables that have different values in different
threads. Since threads share one memory space, this cannot be achieved with regular
variables. Thread-specific data is the POSIX threads answer to this need.

Each thread possesses a private memory block, the thread-specific data area, or TSD
area for short. This area is indexed by TSD keys. The TSD area associates values of
type void * to TSD keys. TSD keys are common to all threads, but the value associated
with a given TSD key can be different in each thread.

For concreteness, the TSD areas can be viewed as arrays of void * pointers, TSD keys as
integer indices into these arrays, and the value of a TSD key as the value of the corre-
sponding array element in the calling thread.

When a thread is created, its TSD area initially associates NULL with all keys.

pthread_key_create() allocates a new TSD key. The key is stored in the location
pointed to by key. There is a limit of PTHREAD_KEYS_MAX on the number of keys
allocated at a given time. The value initially associated with the returned key is NULL
in all currently executing threads.

The destr_function argument, if not NULL, specifies a destructor function associated
with the key. When a thread terminates via pthread_exit() or by cancelation, de-
str_function is called with arguments the value associated with the key in that thread.
The destr_function is not called if that value is NULL. The order in which destructor
functions are called at thread termination time is unspecified.

Before the destructor function is called, the NULL value is associated with the key in
the current thread. A destructor function might, however, re-associate non-NULL val-
ues to that key or some other key. To deal with this, if after all the destructors have been
called for all non-NULL values, there are still some non-NULL values with associated
destructors, then the process is repeated. The glibc implementation stops the process af-
ter PTHREAD_DESTRUCTOR_ITERATIONS iterations, even if some non-NULL
values with associated descriptors remain. Other implementations may loop indefinitely.

pthread_key_delete() deallocates a TSD key. It does not check whether non-NULL
values are associated with that key in the currently executing threads, nor call the de-
structor function associated with the key.

pthread_setspecific() changes the value associated with key in the calling thread, stor-
ing the given pointer instead.

Linux man-pages 6.16 2025-05-17 2288

pthread_key_create(3) Library Functions Manual pthread_key_create(3)

pthread_getspecific() returns the value currently associated with key in the calling
thread.

RETURN VALUE
pthread_key_create(), pthread_key_delete(), and pthread_setspecific() return 0 on
success and a non-zero error code on failure. If successful, pthread_key_create()
stores the newly allocated key in the location pointed to by its key argument.

pthread_getspecific() returns the value associated with key on success, and NULL on
error.

ERRORS
pthread_key_create() returns the following error code on error:

EAGAIN
PTHREAD_KEYS_MAX keys are already allocated.

pthread_key_delete() and pthread_setspecific() return the following error code on er-
ror:

EINVAL
key is not a valid, allocated TSD key.

pthread_getspecific() returns NULL if key is not a valid, allocated TSD key.

SEE ALSO
pthread_create(3), pthread_exit(3), pthread_testcancel(3).

EXAMPLE
The following code fragment allocates a thread-specific array of 100 characters, with au-
tomatic reclamation at thread exit:

/* Key for the thread-specific buffer */
static pthread_key_t buffer_key;

/* Once-only initialisation of the key */
static pthread_once_t buffer_key_once = PTHREAD_ONCE_INIT;

/* Allocate the thread-specific buffer */
void buffer_alloc(void)
{
pthread_once(&buffer_key_once, buffer_key_alloc);
pthread_setspecific(buffer_key, malloc(100));

}

/* Return the thread-specific buffer */
char * get_buffer(void)
{
return (char *) pthread_getspecific(buffer_key);

}

/* Allocate the key */
static void buffer_key_alloc()

Linux man-pages 6.16 2025-05-17 2289

pthread_key_create(3) Library Functions Manual pthread_key_create(3)

{
pthread_key_create(&buffer_key, buffer_destroy);

}

/* Free the thread-specific buffer */
static void buffer_destroy(void * buf)
{
free(buf);

}

Linux man-pages 6.16 2025-05-17 2290

pthread_kill(3) Library Functions Manual pthread_kill(3)

NAME
pthread_kill - send a signal to a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <signal.h>

int pthread_kill(pthread_t thread , int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_kill():
_POSIX_C_SOURCE >= 199506L || _XOPEN_SOURCE >= 500

DESCRIPTION
The pthread_kill() function sends the signal sig to thread , a thread in the same process
as the caller. The signal is asynchronously directed to thread .

If sig is 0, then no signal is sent, but error checking is still performed.

RETURN VALUE
On success, pthread_kill() returns 0; on error, it returns an error number, and no signal
is sent.

ERRORS
EINVAL

An invalid signal was specified.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_kill()

VERSIONS
The glibc implementation of pthread_kill() gives an error (EINVAL) on attempts to
send either of the real-time signals used internally by the NPTL threading implementa-
tion. See nptl(7) for details.

POSIX.1-2008 recommends that if an implementation detects the use of a thread ID af-
ter the end of its lifetime, pthread_kill() should return the error ESRCH. The glibc im-
plementation returns this error in the cases where an invalid thread ID can be detected.
But note also that POSIX says that an attempt to use a thread ID whose lifetime has
ended produces undefined behavior, and an attempt to use an invalid thread ID in a call
to pthread_kill() can, for example, cause a segmentation fault.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Signal dispositions are process-wide: if a signal handler is installed, the handler will be
invoked in the thread thread , but if the disposition of the signal is "stop", "continue", or

Linux man-pages 6.16 2025-05-17 2291

pthread_kill(3) Library Functions Manual pthread_kill(3)

"terminate", this action will affect the whole process.

SEE ALSO
kill(2), sigaction(2), sigpending(2), pthread_self(3), pthread_sigmask(3), raise(3),
pthreads(7), signal(7)

Linux man-pages 6.16 2025-05-17 2292

pthread_kill_other_threads_np(3)Library Functions Manualpthread_kill_other_threads_np(3)

NAME
pthread_kill_other_threads_np - terminate all other threads in process

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_kill_other_threads_np(void);

DESCRIPTION
pthread_kill_other_threads_np() has an effect only in the LinuxThreads threading im-
plementation. On that implementation, calling this function causes the immediate termi-
nation of all threads in the application, except the calling thread. The cancelation state
and cancelation type of the to-be-terminated threads are ignored, and the cleanup han-
dlers are not called in those threads.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_kill_other_threads_np()

VERSIONS
In the NPTL threading implementation, pthread_kill_other_threads_np() exists, but
does nothing. (Nothing needs to be done, because the implementation does the right
thing during an execve(2).)

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the name.

HISTORY
glibc 2.0

NOTES
pthread_kill_other_threads_np() is intended to be called just before a thread calls ex-
ecve(2) or a similar function. This function is designed to address a limitation in the ob-
solete LinuxThreads implementation whereby the other threads of an application are not
automatically terminated (as POSIX.1-2001 requires) during execve(2).

SEE ALSO
execve(2), pthread_cancel(3), pthread_setcancelstate(3), pthread_setcanceltype(3),
pthreads(7)

Linux man-pages 6.16 2025-05-17 2293

pthread_mutex_consistent(3) Library Functions Manual pthread_mutex_consistent(3)

NAME
pthread_mutex_consistent - make a robust mutex consistent

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutex_consistent(pthread_mutex_t *mutex);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_mutex_consistent():
_POSIX_C_SOURCE >= 200809L

DESCRIPTION
This function makes a robust mutex consistent if it is in an inconsistent state. A mutex
can be left in an inconsistent state if its owner terminates while holding the mutex, in
which case the next owner who acquires the mutex will succeed and be notified by a re-
turn value of EOWNERDEAD from a call to pthread_mutex_lock().

RETURN VALUE
On success, pthread_mutex_consistent() returns 0. Otherwise, it returns a positive error
number to indicate the error.

ERRORS
EINVAL

The mutex is either not robust or is not in an inconsistent state.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.12. POSIX.1-2008.

Before the addition of pthread_mutex_consistent() to POSIX, glibc defined the follow-
ing equivalent nonstandard function if _GNU_SOURCE was defined:

[[deprecated]]
int pthread_mutex_consistent_np(const pthread_mutex_t *mutex);

This GNU-specific API, which first appeared in glibc 2.4, is nowadays obsolete and
should not be used in new programs; since glibc 2.34 it has been marked as deprecated.

NOTES
pthread_mutex_consistent() simply informs the implementation that the state (shared
data) guarded by the mutex has been restored to a consistent state and that normal opera-
tions can now be performed with the mutex. It is the application’s responsibility to en-
sure that the shared data has been restored to a consistent state before calling
pthread_mutex_consistent().

EXAMPLES
See pthread_mutexattr_setrobust(3).

Linux man-pages 6.16 2025-05-17 2294

pthread_mutex_consistent(3) Library Functions Manual pthread_mutex_consistent(3)

SEE ALSO
pthread_mutex_lock(3), pthread_mutexattr_getrobust(3), pthread_mutexattr_init(3),
pthread_mutexattr_setrobust(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2295

pthread_mutex_init(3) Library Functions Manual pthread_mutex_init(3)

NAME
pthread_mutex_init, pthread_mutex_lock, pthread_mutex_trylock, pthread_mutex_un-
lock, pthread_mutex_destroy - operations on mutexes

SYNOPSIS
#include <pthread.h>

pthread_mutex_t fastmutex = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t recmutex = PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP;
pthread_mutex_t errchkmutex = PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP;

int pthread_mutex_init(pthread_mutex_t *mutex,
const pthread_mutexattr_t *mutexattr);

int pthread_mutex_lock(pthread_mutex_t *mutex);
int pthread_mutex_trylock(pthread_mutex_t *mutex);
int pthread_mutex_unlock(pthread_mutex_t *mutex);
int pthread_mutex_destroy(pthread_mutex_t *mutex);

DESCRIPTION
A mutex is a MUTual EXclusion device, and is useful for protecting shared data struc-
tures from concurrent modifications, and implementing critical sections and monitors.

A mutex has two possible states: unlocked (not owned by any thread), and locked
(owned by one thread). A mutex can never be owned by two different threads simulta-
neously. A thread attempting to lock a mutex that is already locked by another thread is
suspended until the owning thread unlocks the mutex first.

pthread_mutex_init() initializes the mutex object pointed to by mutex according to the
mutex attributes specified in mutexattr. If mutexattr is NULL, default attributes are
used instead.

The LinuxThreads implementation supports only one mutex attributes, the mutex kind ,
which is either "fast", "recursive", or "error checking". The kind of a mutex determines
whether it can be locked again by a thread that already owns it. The default kind is
"fast". See pthread_mutexattr_init(3) for more information on mutex attributes.

Variables of type pthread_mutex_t can also be initialized statically, using the constants
PTHREAD_MUTEX_INITIALIZER (for fast mutexes), PTHREAD_RECUR-
SIVE_MUTEX_INITIALIZER_NP (for recursive mutexes), and PTHREAD_ER-
RORCHECK_MUTEX_INITIALIZER_NP (for error checking mutexes).

pthread_mutex_lock() locks the given mutex. If the mutex is currently unlocked, it be-
comes locked and owned by the calling thread, and pthread_mutex_lock() returns im-
mediately. If the mutex is already locked by another thread, pthread_mutex_lock()
suspends the calling thread until the mutex is unlocked.

If the mutex is already locked by the calling thread, the behavior of pthread_mu-
tex_lock() depends on the kind of the mutex. If the mutex is of the "fast" kind, the call-
ing thread is suspended until the mutex is unlocked, thus effectively causing the calling
thread to deadlock. If the mutex is of the "error checking" kind, pthread_mutex_lock()
returns immediately with the error code EDEADLK. If the mutex is of the "recursive"
kind, pthread_mutex_lock() succeeds and returns immediately, recording the number
of times the calling thread has locked the mutex. An equal number of

Linux man-pages 6.16 2025-05-17 2296

pthread_mutex_init(3) Library Functions Manual pthread_mutex_init(3)

pthread_mutex_unlock() operations must be performed before the mutex returns to the
unlocked state.

pthread_mutex_trylock() behaves identically to pthread_mutex_lock(), except that it
does not block the calling thread if the mutex is already locked by another thread (or by
the calling thread in the case of a "fast" mutex). Instead, pthread_mutex_trylock() re-
turns immediately with the error code EBUSY.

pthread_mutex_unlock() unlocks the given mutex. The mutex is assumed to be locked
and owned by the calling thread on entrance to pthread_mutex_unlock(). If the mutex
is of the "fast" kind, pthread_mutex_unlock() always returns it to the unlocked state.
If it is of the "recursive" kind, it decrements the locking count of the mutex (number of
pthread_mutex_lock() operations performed on it by the calling thread), and only
when this count reaches zero is the mutex actually unlocked.

On "error checking" and "recursive" mutexes, pthread_mutex_unlock() actually checks
at run-time that the mutex is locked on entrance, and that it was locked by the same
thread that is now calling pthread_mutex_unlock(). If these conditions are not met, an
error code is returned and the mutex remains unchanged. "Fast" mutexes perform no
such checks, thus allowing a locked mutex to be unlocked by a thread other than its
owner. This is non-portable behavior and must not be relied upon.

pthread_mutex_destroy() destroys a mutex object, freeing the resources it might hold.
The mutex must be unlocked on entrance. In the LinuxThreads implementation, no re-
sources are associated with mutex objects, thus pthread_mutex_destroy() actually does
nothing except checking that the mutex is unlocked.

CANCELLATION
None of the mutex functions is a cancelation point, not even pthread_mutex_lock(), in
spite of the fact that it can suspend a thread for arbitrary durations. This way, the status
of mutexes at cancelation points is predictable, allowing cancelation handlers to unlock
precisely those mutexes that need to be unlocked before the thread stops executing.
Consequently, threads using deferred cancelation should never hold a mutex for ex-
tended periods of time.

ASYNC-SIGNAL SAFETY
The mutex functions are not async-signal safe. What this means is that they should not
be called from a signal handler. In particular, calling pthread_mutex_lock() or
pthread_mutex_unlock() from a signal handler may deadlock the calling thread.

RETURN VALUE
pthread_mutex_init() always returns 0. The other mutex functions return 0 on success
and a non-zero error code on error.

ERRORS
The pthread_mutex_lock() function returns the following error code on error:

EINVAL
The mutex has not been properly initialized.

EDEADLK
The mutex is already locked by the calling thread ("error checking" mu-
texes only).

Linux man-pages 6.16 2025-05-17 2297

pthread_mutex_init(3) Library Functions Manual pthread_mutex_init(3)

The pthread_mutex_trylock() function returns the following error codes on error:

EBUSY
The mutex could not be acquired because it was currently locked.

EINVAL
The mutex has not been properly initialized.

The pthread_mutex_unlock() function returns the following error code on error:

EINVAL
The mutex has not been properly initialized.

EPERM
The calling thread does not own the mutex ("error checking" mutexes
only).

The pthread_mutex_destroy() function returns the following error code on error:

EBUSY
The mutex is currently locked.

SEE ALSO
pthread_mutexattr_init(3), pthread_mutexattr_setkind_np(3), pthread_cancel(3).

EXAMPLE
A shared global variable x can be protected by a mutex as follows:

int x;
pthread_mutex_t mut = PTHREAD_MUTEX_INITIALIZER;

All accesses and modifications to x should be bracketed by calls to pthread_mu-
tex_lock() and pthread_mutex_unlock() as follows:

pthread_mutex_lock(&mut);
/* operate on x */
pthread_mutex_unlock(&mut);

Linux man-pages 6.16 2025-05-17 2298

pthread_mutexattr_getpshared(3)Library Functions Manualpthread_mutexattr_getpshared(3)

NAME
pthread_mutexattr_getpshared, pthread_mutexattr_setpshared - get/set process-shared
mutex attribute

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getpshared(
const pthread_mutexattr_t *restrict attr,
int *restrict pshared);

int pthread_mutexattr_setpshared(pthread_mutexattr_t *attr,
int pshared);

DESCRIPTION
These functions get and set the process-shared attribute in a mutex attributes object.
This attribute must be appropriately set to ensure correct, efficient operation of a mutex
created using this attributes object.

The process-shared attribute can have one of the following values:

PTHREAD_PROCESS_PRIVATE
Mutexes created with this attributes object are to be shared only among threads
in the same process that initialized the mutex. This is the default value for the
process-shared mutex attribute.

PTHREAD_PROCESS_SHARED
Mutexes created with this attributes object can be shared between any threads
that have access to the memory containing the object, including threads in differ-
ent processes.

pthread_mutexattr_getpshared() places the value of the process-shared attribute of the
mutex attributes object referred to by attr in the location pointed to by pshared .

pthread_mutexattr_setpshared() sets the value of the process-shared attribute of the
mutex attributes object referred to by attr to the value specified in pshared.

If attr does not refer to an initialized mutex attributes object, the behavior is undefined.

RETURN VALUE
On success, these functions return 0. On error, they return a positive error number.

ERRORS
pthread_mutexattr_setpshared() can fail with the following errors:

EINVAL
The value specified in pshared is invalid.

ENOTSUP
pshared is PTHREAD_PROCESS_SHARED but the implementation does not
support process-shared mutexes.

Linux man-pages 6.16 2025-08-24 2299

pthread_mutexattr_getpshared(3)Library Functions Manualpthread_mutexattr_getpshared(3)

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
pthread_mutexattr_init(3), pthreads(7)

Linux man-pages 6.16 2025-08-24 2300

pthread_mutexattr_init(3) Library Functions Manual pthread_mutexattr_init(3)

NAME
pthread_mutexattr_init, pthread_mutexattr_destroy - initialize and destroy a mutex at-
tributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_init(pthread_mutexattr_t *attr);
int pthread_mutexattr_destroy(pthread_mutexattr_t *attr);

DESCRIPTION
The pthread_mutexattr_init() function initializes the mutex attributes object pointed to
by attr with default values for all attributes defined by the implementation.

The results of initializing an already initialized mutex attributes object are undefined.

The pthread_mutexattr_destroy() function destroys a mutex attribute object (making it
uninitialized). Once a mutex attributes object has been destroyed, it can be reinitialized
with pthread_mutexattr_init().

The results of destroying an uninitialized mutex attributes object are undefined.

RETURN VALUE
On success, these functions return 0. On error, they return a positive error number.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
Subsequent changes to a mutex attributes object do not affect mutex that have already
been initialized using that object.

SEE ALSO
pthread_mutex_init(3), pthread_mutexattr_getpshared(3),
pthread_mutexattr_getrobust(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2301

pthread_mutexattr_setkind_np(3)Library Functions Manual pthread_mutexattr_setkind_np(3)

NAME
pthread_mutexattr_setkind_np, pthread_mutexattr_getkind_np - deprecated mutex cre-
ation attributes

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_setkind_np(pthread_mutexattr_t *attr, int kind);
int pthread_mutexattr_getkind_np(const pthread_mutexattr_t *attr,

int *kind);

DESCRIPTION
These functions are deprecated, use pthread_mutexattr_settype(3) and pthread_mutex-
attr_gettype(3) instead.

RETURN VALUE
pthread_mutexattr_getkind_np() always returns 0.

pthread_mutexattr_setkind_np() returns 0 on success and a non-zero error code on er-
ror.

ERRORS
On error, pthread_mutexattr_setkind_np() returns the following error code:

EINVAL
kind is neither PTHREAD_MUTEX_FAST_NP nor PTHREAD_MU-
TEX_RECURSIVE_NP nor PTHREAD_MUTEX_ERRORCHECK_NP.

SEE ALSO
pthread_mutexattr_settype(3), pthread_mutexattr_gettype(3).

Linux man-pages 6.16 2025-05-17 2302

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

NAME
pthread_mutexattr_getrobust, pthread_mutexattr_setrobust - get and set the robustness
attribute of a mutex attributes object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_mutexattr_getrobust(const pthread_mutexattr_t *attr,
int *robustness);

int pthread_mutexattr_setrobust(pthread_mutexattr_t *attr,
int robustness);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_mutexattr_getrobust(), pthread_mutexattr_setrobust():
_POSIX_C_SOURCE >= 200809L

DESCRIPTION
The pthread_mutexattr_getrobust() function places the value of the robustness at-
tribute of the mutex attributes object referred to by attr in *robustness. The
pthread_mutexattr_setrobust() function sets the value of the robustness attribute of
the mutex attributes object referred to by attr to the value specified in *robustness.

The robustness attribute specifies the behavior of the mutex when the owning thread dies
without unlocking the mutex. The following values are valid for robustness:

PTHREAD_MUTEX_STALLED
This is the default value for a mutex attributes object. If a mutex is initialized
with the PTHREAD_MUTEX_STALLED attribute and its owner dies without
unlocking it, the mutex remains locked afterwards and any future attempts to call
pthread_mutex_lock(3) on the mutex will block indefinitely.

PTHREAD_MUTEX_ROBUST
If a mutex is initialized with the PTHREAD_MUTEX_ROBUST attribute and
its owner dies without unlocking it, any future attempts to call pthread_mu-
tex_lock(3) on this mutex will succeed and return EOWNERDEAD to indicate
that the original owner no longer exists and the mutex is in an inconsistent state.
Usually after EOWNERDEAD is returned, the next owner should call
pthread_mutex_consistent(3) on the acquired mutex to make it consistent again
before using it any further.

If the next owner unlocks the mutex using pthread_mutex_unlock(3) before mak-
ing it consistent, the mutex will be permanently unusable and any subsequent at-
tempts to lock it using pthread_mutex_lock(3) will fail with the error ENOTRE-
COVERABLE. The only permitted operation on such a mutex is pthread_mu-
tex_destroy(3).

If the next owner terminates before calling pthread_mutex_consistent(3), further
pthread_mutex_lock(3) operations on this mutex will still return EOWN-
ERDEAD.

Linux man-pages 6.16 2025-09-21 2303

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

Note that the attr argument of pthread_mutexattr_getrobust() and pthread_mutex-
attr_setrobust() should refer to a mutex attributes object that was initialized by
pthread_mutexattr_init(3), otherwise the behavior is undefined.

RETURN VALUE
On success, these functions return 0. On error, they return a positive error number.

In the glibc implementation, pthread_mutexattr_getrobust() always return zero.

ERRORS
EINVAL

A value other than PTHREAD_MUTEX_STALLED or PTHREAD_MU-
TEX_ROBUST was passed to pthread_mutexattr_setrobust().

VERSIONS
In the Linux implementation, when using process-shared robust mutexes, a waiting
thread also receives the EOWNERDEAD notification if the owner of a robust mutex
performs an execve(2) without first unlocking the mutex. POSIX.1 does not specify this
detail, but the same behavior also occurs in at least some other implementations.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.12. POSIX.1-2008.

Before the addition of pthread_mutexattr_getrobust() and pthread_mutexattr_setro-
bust() to POSIX, glibc defined the following equivalent nonstandard functions if
_GNU_SOURCE was defined:

[[deprecated]]
int pthread_mutexattr_getrobust_np(const pthread_mutexattr_t *attr,

int *robustness);
[[deprecated]]
int pthread_mutexattr_setrobust_np(const pthread_mutexattr_t *attr,

int robustness);

Correspondingly, the constants PTHREAD_MUTEX_STALLED_NP and
PTHREAD_MUTEX_ROBUST_NP were also defined.

These GNU-specific APIs, which first appeared in glibc 2.4, are nowadays obsolete and
should not be used in new programs; since glibc 2.34 these APIs are marked as depre-
cated.

EXAMPLES
The program below demonstrates the use of the robustness attribute of a mutex attributes
object. In this program, a thread holding the mutex dies prematurely without unlocking
the mutex. The main thread subsequently acquires the mutex successfully and gets the
error EOWNERDEAD, after which it makes the mutex consistent.

The following shell session shows what we see when running this program:

$./a.out;
[original owner] Setting lock...
[original owner] Locked. Now exiting without unlocking.

Linux man-pages 6.16 2025-09-21 2304

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

[main] Attempting to lock the robust mutex.
[main] pthread_mutex_lock() returned EOWNERDEAD
[main] Now make the mutex consistent
[main] Mutex is now consistent; unlocking

Program source
#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

static pthread_mutex_t mtx;

static void *
original_owner_thread(void *ptr)
{

printf("[original owner] Setting lock...\n");
pthread_mutex_lock(&mtx);
printf("[original owner] Locked. Now exiting without unlocking.\n");
pthread_exit(NULL);

}

int
main(void)
{

pthread_t thr;
pthread_mutexattr_t attr;
int s;

pthread_mutexattr_init(&attr);

pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST);

pthread_mutex_init(&mtx, &attr);

pthread_create(&thr, NULL, original_owner_thread, NULL);

sleep(2);

/* "original_owner_thread" should have exited by now. */

printf("[main] Attempting to lock the robust mutex.\n");
s = pthread_mutex_lock(&mtx);
if (s == EOWNERDEAD) {

printf("[main] pthread_mutex_lock() returned EOWNERDEAD\n");
printf("[main] Now make the mutex consistent\n");

Linux man-pages 6.16 2025-09-21 2305

pthread_mutexattr_setrobust(3) Library Functions Manual pthread_mutexattr_setrobust(3)

s = pthread_mutex_consistent(&mtx);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_mutex_consistent");
printf("[main] Mutex is now consistent; unlocking\n");
s = pthread_mutex_unlock(&mtx);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_mutex_unlock");

exit(EXIT_SUCCESS);
} else if (s == 0) {

printf("[main] pthread_mutex_lock() unexpectedly succeeded\n");
exit(EXIT_FAILURE);

} else {
printf("[main] pthread_mutex_lock() unexpectedly failed\n");
errc(EXIT_FAILURE, s, "pthread_mutex_lock");

}
}

SEE ALSO
get_robust_list(2), set_robust_list(2), pthread_mutex_consistent(3),
pthread_mutex_init(3), pthread_mutex_lock(3), pthreads(7)

Linux man-pages 6.16 2025-09-21 2306

pthread_once(3) Library Functions Manual pthread_once(3)

NAME
pthread_once - once-only initialization

SYNOPSIS
#include <pthread.h>

pthread_once_t once_control = PTHREAD_ONCE_INIT;

int pthread_once(pthread_once_t *once_control, typeof(void (void)) *init_routine;

DESCRIPTION
The purpose of pthread_once() is to ensure that a piece of initialization code is exe-
cuted at most once. The once_control argument points to a static or extern variable stat-
ically initialized to PTHREAD_ONCE_INIT.

The first time pthread_once() is called with a given once_control argument, it calls
init_routine with no argument and changes the value of the once_control variable to
record that initialization has been performed. Subsequent calls to pthread_once() with
the same once_control argument do nothing.

RETURN VALUE
pthread_once() always returns 0.

ERRORS
None.

Linux man-pages 6.16 2025-05-17 2307

pthread_rwlo . . . tr_setkind_np(3)Library Functions Manualpthread_rwlo . . . tr_setkind_np(3)

NAME
pthread_rwlockattr_setkind_np, pthread_rwlockattr_getkind_np - set/get the read-write
lock kind of the thread read-write lock attribute object

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_rwlockattr_setkind_np(pthread_rwlockattr_t *attr,
int pref);

int pthread_rwlockattr_getkind_np(
const pthread_rwlockattr_t *restrict attr,
int *restrict pref);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_rwlockattr_setkind_np(), pthread_rwlockattr_getkind_np():
_XOPEN_SOURCE >= 500 || _POSIX_C_SOURCE >= 200809L

DESCRIPTION
The pthread_rwlockattr_setkind_np() function sets the "lock kind" attribute of the
read-write lock attribute object referred to by attr to the value specified in pref . The ar-
gument pref may be set to one of the following:

PTHREAD_RWLOCK_PREFER_READER_NP
This is the default. A thread may hold multiple read locks; that is, read locks are
recursive. According to The Single Unix Specification, the behavior is unspeci-
fied when a reader tries to place a lock, and there is no write lock but writers are
waiting. Giving preference to the reader, as is set by
PTHREAD_RWLOCK_PREFER_READER_NP, implies that the reader will
receive the requested lock, even if a writer is waiting. As long as there are read-
ers, the writer will be starved.

PTHREAD_RWLOCK_PREFER_WRITER_NP
This is intended as the write lock analog of PTHREAD_RWLOCK_PRE-
FER_READER_NP. This is ignored by glibc because the POSIX requirement
to support recursive read locks would cause this option to create trivial dead-
locks; instead use PTHREAD_RWLOCK_PREFER_WRITER_NONRE-
CURSIVE_NP which ensures the application developer will not take recursive
read locks thus avoiding deadlocks.

PTHREAD_RWLOCK_PREFER_WRITER_NONRECURSIVE_NP
Setting the lock kind to this avoids writer starvation as long as any read locking
is not done in a recursive fashion.

The pthread_rwlockattr_getkind_np() function returns the value of the lock kind at-
tribute of the read-write lock attribute object referred to by attr in the pointer pref .

RETURN VALUE
On success, these functions return 0. Given valid pointer arguments, pthread_rwlock-
attr_getkind_np() always succeeds. On error, pthread_rwlockattr_setkind_np() re-
turns a nonzero error number.

Linux man-pages 6.16 2025-09-21 2308

pthread_rwlo . . . tr_setkind_np(3)Library Functions Manualpthread_rwlo . . . tr_setkind_np(3)

ERRORS
EINVAL

pref specifies an unsupported value.

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.1.

SEE ALSO
pthreads(7)

Linux man-pages 6.16 2025-09-21 2309

pthread_self (3) Library Functions Manual pthread_self (3)

NAME
pthread_self - obtain ID of the calling thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

pthread_t pthread_self(void);

DESCRIPTION
The pthread_self() function returns the ID of the calling thread. This is the same value
that is returned in *thread in the pthread_create(3) call that created this thread.

RETURN VALUE
This function always succeeds, returning the calling thread’s ID.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_self()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
POSIX.1 allows an implementation wide freedom in choosing the type used to represent
a thread ID; for example, representation using either an arithmetic type or a structure is
permitted. Therefore, variables of type pthread_t can’t portably be compared using the
C equality operator (==); use pthread_equal(3) instead.

Thread identifiers should be considered opaque: any attempt to use a thread ID other
than in pthreads calls is nonportable and can lead to unspecified results.

Thread IDs are guaranteed to be unique only within a process. A thread ID may be
reused after a terminated thread has been joined, or a detached thread has terminated.

The thread ID returned by pthread_self() is not the same thing as the kernel thread ID
returned by a call to gettid(2).

SEE ALSO
pthread_create(3), pthread_equal(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2310

pthread_setaffinity_np(3) Library Functions Manual pthread_setaffinity_np(3)

NAME
pthread_setaffinity_np, pthread_getaffinity_np - set/get CPU affinity of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_setaffinity_np(pthread_t thread , size_t cpusetsize,
const cpu_set_t *cpuset);

int pthread_getaffinity_np(pthread_t thread , size_t cpusetsize,
cpu_set_t *cpuset);

DESCRIPTION
The pthread_setaffinity_np() function sets the CPU affinity mask of the thread thread
to the CPU set pointed to by cpuset. If the call is successful, and the thread is not cur-
rently running on one of the CPUs in cpuset, then it is migrated to one of those CPUs.

The pthread_getaffinity_np() function returns the CPU affinity mask of the thread
thread in the buffer pointed to by cpuset.

For more details on CPU affinity masks, see sched_setaffinity(2). For a description of a
set of macros that can be used to manipulate and inspect CPU sets, see CPU_SET(3).

The argument cpusetsize is the length (in bytes) of the buffer pointed to by cpuset. Typ-
ically, this argument would be specified as sizeof(cpu_set_t). (It may be some other
value, if using the macros described in CPU_SET(3) for dynamically allocating a CPU
set.)

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
EFAULT

A supplied memory address was invalid.

EINVAL
(pthread_setaffinity_np()) The affinity bit mask mask contains no processors
that are currently physically on the system and permitted to the thread according
to any restrictions that may be imposed by the "cpuset" mechanism described in
cpuset(7).

EINVAL
(pthread_setaffinity_np()) cpuset specified a CPU that was outside the set sup-
ported by the kernel. (The kernel configuration option CONFIG_NR_CPUS
defines the range of the set supported by the kernel data type used to represent
CPU sets.)

EINVAL
(pthread_getaffinity_np()) cpusetsize is smaller than the size of the affinity
mask used by the kernel.

Linux man-pages 6.16 2025-09-21 2311

pthread_setaffinity_np(3) Library Functions Manual pthread_setaffinity_np(3)

ESRCH
No thread with the ID thread could be found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setaffinity_np(), pthread_getaffinity_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

HISTORY
glibc 2.3.4.

In glibc 2.3.3 only, versions of these functions were provided that did not have a cpuset-
size argument. Instead the CPU set size given to the underlying system calls was always
sizeof(cpu_set_t).

NOTES
After a call to pthread_setaffinity_np(), the set of CPUs on which the thread will actu-
ally run is the intersection of the set specified in the cpuset argument and the set of
CPUs actually present on the system. The system may further restrict the set of CPUs
on which the thread runs if the "cpuset" mechanism described in cpuset(7) is being used.
These restrictions on the actual set of CPUs on which the thread will run are silently im-
posed by the kernel.

These functions are implemented on top of the sched_setaffinity(2) and sched_getaffin-
ity(2) system calls.

A new thread created by pthread_create(3) inherits a copy of its creator’s CPU affinity
mask.

EXAMPLES
In the following program, the main thread uses pthread_setaffinity_np() to set its CPU
affinity mask to include CPUs 0 to 7 (which may not all be available on the system), and
then calls pthread_getaffinity_np() to check the resulting CPU affinity mask of the
thread.

#define _GNU_SOURCE
#include <err.h>
#include <pthread.h>
#include <sched.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

int s;
cpu_set_t cpuset;
pthread_t thread;

Linux man-pages 6.16 2025-09-21 2312

pthread_setaffinity_np(3) Library Functions Manual pthread_setaffinity_np(3)

thread = pthread_self();

/* Set affinity mask to include CPUs 0 to 7. */

CPU_ZERO(&cpuset);
for (size_t j = 0; j < 8; j++)

CPU_SET(j, &cpuset);

s = pthread_setaffinity_np(thread, sizeof(cpuset), &cpuset);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_setaffinity_np");

/* Check the actual affinity mask assigned to the thread. */

s = pthread_getaffinity_np(thread, sizeof(cpuset), &cpuset);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getaffinity_np");

printf("Set returned by pthread_getaffinity_np() contained:\n");
for (size_t j = 0; j < CPU_SETSIZE; j++)

if (CPU_ISSET(j, &cpuset))
printf(" CPU %zu\n", j);

exit(EXIT_SUCCESS);
}

SEE ALSO
sched_setaffinity(2), CPU_SET(3), pthread_attr_setaffinity_np(3), pthread_self(3),
sched_getcpu(3), cpuset(7), pthreads(7), sched(7)

Linux man-pages 6.16 2025-09-21 2313

pthread_setcancelstate(3) Library Functions Manual pthread_setcancelstate(3)

NAME
pthread_setcancelstate, pthread_setcanceltype - set cancelability state and type

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setcancelstate(int state, int *oldstate);
int pthread_setcanceltype(int type, int *oldtype);

DESCRIPTION
The pthread_setcancelstate() sets the cancelability state of the calling thread to the
value given in state. The previous cancelability state of the thread is returned in the
buffer pointed to by oldstate. The state argument must have one of the following val-
ues:

PTHREAD_CANCEL_ENABLE
The thread is cancelable. This is the default cancelability state in all new
threads, including the initial thread. The thread’s cancelability type determines
when a cancelable thread will respond to a cancelation request.

PTHREAD_CANCEL_DISABLE
The thread is not cancelable. If a cancelation request is received, it is blocked
until cancelability is enabled.

The pthread_setcanceltype() sets the cancelability type of the calling thread to the
value given in type. The previous cancelability type of the thread is returned in the
buffer pointed to by oldtype. The type argument must have one of the following values:

PTHREAD_CANCEL_DEFERRED
A cancelation request is deferred until the thread next calls a function that is a
cancelation point (see pthreads(7)). This is the default cancelability type in all
new threads, including the initial thread.

Even with deferred cancelation, a cancelation point in an asynchronous signal
handler may still be acted upon and the effect is as if it was an asynchronous
cancelation.

PTHREAD_CANCEL_ASYNCHRONOUS
The thread can be canceled at any time. (Typically, it will be canceled immedi-
ately upon receiving a cancelation request, but the system doesn’t guarantee
this.)

The set-and-get operation performed by each of these functions is atomic with respect to
other threads in the process calling the same function.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
The pthread_setcancelstate() can fail with the following error:

Linux man-pages 6.16 2025-05-17 2314

pthread_setcancelstate(3) Library Functions Manual pthread_setcancelstate(3)

EINVAL
Invalid value for state.

The pthread_setcanceltype() can fail with the following error:

EINVAL
Invalid value for type.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetypthread_setcancelstate(),
pthread_setcanceltype()

MT-Safe

Async-cancel safetypthread_setcancelstate(),
pthread_setcanceltype()

AC-Safe

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0 POSIX.1-2001.

NOTES
For details of what happens when a thread is canceled, see pthread_cancel(3).

Briefly disabling cancelability is useful if a thread performs some critical action that
must not be interrupted by a cancelation request. Beware of disabling cancelability for
long periods, or around operations that may block for long periods, since that will render
the thread unresponsive to cancelation requests.

Asynchronous cancelability
Setting the cancelability type to PTHREAD_CANCEL_ASYNCHRONOUS is rarely
useful. Since the thread could be canceled at any time, it cannot safely reserve re-
sources (e.g., allocating memory with malloc(3)), acquire mutexes, semaphores, or
locks, and so on. Reserving resources is unsafe because the application has no way of
knowing what the state of these resources is when the thread is canceled; that is, did
cancelation occur before the resources were reserved, while they were reserved, or after
they were released? Furthermore, some internal data structures (e.g., the linked list of
free blocks managed by the malloc(3) family of functions) may be left in an inconsistent
state if cancelation occurs in the middle of the function call. Consequently, clean-up
handlers cease to be useful.

Functions that can be safely asynchronously canceled are called async-cancel-safe func-
tions. POSIX.1-2001 and POSIX.1-2008 require only that pthread_cancel(3),
pthread_setcancelstate(), and pthread_setcanceltype() be async-cancel-safe. In gen-
eral, other library functions can’t be safely called from an asynchronously cancelable
thread.

One of the few circumstances in which asynchronous cancelability is useful is for cance-
lation of a thread that is in a pure compute-bound loop.

Linux man-pages 6.16 2025-05-17 2315

pthread_setcancelstate(3) Library Functions Manual pthread_setcancelstate(3)

Portability notes
The Linux threading implementations permit the oldstate argument of pthread_set-
cancelstate() to be NULL, in which case the information about the previous cancelabil-
ity state is not returned to the caller. Many other implementations also permit a NULL
oldstat argument, but POSIX.1 does not specify this point, so portable applications
should always specify a non-NULL value in oldstate. A precisely analogous set of
statements applies for the oldtype argument of pthread_setcanceltype().

EXAMPLES
See pthread_cancel(3).

SEE ALSO
pthread_cancel(3), pthread_cleanup_push(3), pthread_testcancel(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2316

pthread_setconcurrency(3) Library Functions Manual pthread_setconcurrency(3)

NAME
pthread_setconcurrency, pthread_getconcurrency - set/get the concurrency level

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setconcurrency(int new_level);
int pthread_getconcurrency(void);

DESCRIPTION
The pthread_setconcurrency() function informs the implementation of the applica-
tion’s desired concurrency level, specified in new_level. The implementation takes this
only as a hint: POSIX.1 does not specify the level of concurrency that should be pro-
vided as a result of calling pthread_setconcurrency().

Specifying new_level as 0 instructs the implementation to manage the concurrency level
as it deems appropriate.

pthread_getconcurrency() returns the current value of the concurrency level for this
process.

RETURN VALUE
On success, pthread_setconcurrency() returns 0; on error, it returns a nonzero error
number.

pthread_getconcurrency() always succeeds, returning the concurrency level set by a
previous call to pthread_setconcurrency(), or 0, if pthread_setconcurrency() has not
previously been called.

ERRORS
pthread_setconcurrency() can fail with the following error:

EINVAL
new_level is negative.

POSIX.1 also documents an EAGAIN error ("the value specified by new_level would
cause a system resource to be exceeded").

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setconcurrency(),
pthread_getconcurrency()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

NOTES
The default concurrency level is 0.

Linux man-pages 6.16 2025-05-17 2317

pthread_setconcurrency(3) Library Functions Manual pthread_setconcurrency(3)

Concurrency levels are meaningful only for M:N threading implementations, where at
any moment a subset of a process’s set of user-level threads may be bound to a smaller
number of kernel-scheduling entities. Setting the concurrency level allows the applica-
tion to give the system a hint as to the number of kernel-scheduling entities that should
be provided for efficient execution of the application.

Both LinuxThreads and NPTL are 1:1 threading implementations, so setting the concur-
rency level has no meaning. In other words, on Linux these functions merely exist for
compatibility with other systems, and they have no effect on the execution of a program.

SEE ALSO
pthread_attr_setscope(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2318

pthread_setname_np(3) Library Functions Manual pthread_setname_np(3)

NAME
pthread_setname_np, pthread_getname_np - set/get the name of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_setname_np(pthread_t thread , const char *name);
int pthread_getname_np(size_t size;

pthread_t thread , char name[size], size_t size);

DESCRIPTION
By default, all the threads created using pthread_create() inherit the program name.
The pthread_setname_np() function can be used to set a unique name for a thread,
which can be useful for debugging multithreaded applications. The thread name is a
meaningful C language string, whose length is restricted to 16 characters, including the
terminating null byte ('\0'). The thread argument specifies the thread whose name is to
be changed; name specifies the new name.

The pthread_getname_np() function can be used to retrieve the name of the thread.
The thread argument specifies the thread whose name is to be retrieved. The buffer
name is used to return the thread name; size specifies the number of bytes available in
name. The buffer specified by name should be at least 16 characters in length. The re-
turned thread name in the output buffer will be null terminated.

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number.

ERRORS
The pthread_setname_np() function can fail with the following error:

ERANGE
The length of the string specified pointed to by name exceeds the allowed limit.

The pthread_getname_np() function can fail with the following error:

ERANGE
The buffer specified by name and size is too small to hold the thread name.

If either of these functions fails to open /proc/self/task/ tid /comm, then the call may fail
with one of the errors described in open(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setname_np(), pthread_getname_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

Linux man-pages 6.16 2025-09-21 2319

pthread_setname_np(3) Library Functions Manual pthread_setname_np(3)

HISTORY
glibc 2.12.

NOTES
pthread_setname_np() internally writes to the thread-specific comm file under the
/proc filesystem: /proc/self/task/ tid /comm. pthread_getname_np() retrieves it from
the same location.

EXAMPLES
The program below demonstrates the use of pthread_setname_np() and pthread_get-
name_np().

The following shell session shows a sample run of the program:

$./a.out;
Created a thread. Default name is: a.out
The thread name after setting it is THREADFOO.
^Z # Suspend the program
[1]+ Stopped ./a.out
$ ps H -C a.out -o 'pid tid cmd comm'

PID TID CMD COMMAND
5990 5990 ./a.out a.out
5990 5991 ./a.out THREADFOO

$ cat /proc/5990/task/5990/comm
a.out
$ cat /proc/5990/task/5991/comm
THREADFOO

Program source

#define _GNU_SOURCE
#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>

#define NAMELEN 16

static void *
threadfunc(void *parm)
{

sleep(5); // allow main program to set the thread name
return NULL;

}

int
main(int argc, char *argv[])

Linux man-pages 6.16 2025-09-21 2320

pthread_setname_np(3) Library Functions Manual pthread_setname_np(3)

{
pthread_t thread;
int rc;
char thread_name[NAMELEN];

rc = pthread_create(&thread, NULL, threadfunc, NULL);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_create");

rc = pthread_getname_np(thread, thread_name, NAMELEN);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_getname_np");

printf("Created a thread. Default name is: %s\n", thread_name);
rc = pthread_setname_np(thread, (argc > 1) ? argv[1] : "THREADFOO");
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_setname_np");

sleep(2);

rc = pthread_getname_np(thread, thread_name, NAMELEN);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_getname_np");
printf("The thread name after setting it is %s.\n", thread_name);

rc = pthread_join(thread, NULL);
if (rc != 0)

errc(EXIT_FAILURE, rc, "pthread_join");

printf("Done\n");
exit(EXIT_SUCCESS);

}

SEE ALSO
prctl(2), pthread_create(3), pthreads(7)

Linux man-pages 6.16 2025-09-21 2321

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

NAME
pthread_setschedparam, pthread_getschedparam - set/get scheduling policy and para-
meters of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setschedparam(pthread_t thread , int policy,
const struct sched_param *param);

int pthread_getschedparam(pthread_t thread , int *restrict policy,
struct sched_param *restrict param);

DESCRIPTION
The pthread_setschedparam() function sets the scheduling policy and parameters of
the thread thread .

policy specifies the new scheduling policy for thread . The supported values for policy,
and their semantics, are described in sched(7).

The structure pointed to by param specifies the new scheduling parameters for thread .
Scheduling parameters are maintained in the following structure:

struct sched_param {
int sched_priority; /* Scheduling priority */

};

As can be seen, only one scheduling parameter is supported. For details of the permitted
ranges for scheduling priorities in each scheduling policy, see sched(7).

The pthread_getschedparam() function returns the scheduling policy and parameters
of the thread thread , in the buffers pointed to by policy and param, respectively. The
returned priority value is that set by the most recent pthread_setschedparam(),
pthread_setschedprio(3), or pthread_create(3) call that affected thread . The returned
priority does not reflect any temporary priority adjustments as a result of calls to any pri-
ority inheritance or priority ceiling functions (see, for example, pthread_mutexattr_set-
prioceiling(3) and pthread_mutexattr_setprotocol(3)).

RETURN VALUE
On success, these functions return 0; on error, they return a nonzero error number. If
pthread_setschedparam() fails, the scheduling policy and parameters of thread are not
changed.

ERRORS
Both of these functions can fail with the following error:

ESRCH
No thread with the ID thread could be found.

pthread_setschedparam() may additionally fail with the following errors:

Linux man-pages 6.16 2025-09-21 2322

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

EINVAL
policy is not a recognized policy, or param does not make sense for the policy.

EPERM
The caller does not have appropriate privileges to set the specified scheduling
policy and parameters.

POSIX.1 also documents an ENOTSUP ("attempt was made to set the policy or sched-
uling parameters to an unsupported value") error for pthread_setschedparam().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setschedparam(), pthread_getschedparam()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0 POSIX.1-2001.

NOTES
For a description of the permissions required to, and the effect of, changing a thread’s
scheduling policy and priority, and details of the permitted ranges for priorities in each
scheduling policy, see sched(7).

EXAMPLES
The program below demonstrates the use of pthread_setschedparam() and
pthread_getschedparam(), as well as the use of a number of other scheduling-related
pthreads functions.

In the following run, the main thread sets its scheduling policy to SCHED_FIFO with a
priority of 10, and initializes a thread attributes object with a scheduling policy attribute
of SCHED_RR and a scheduling priority attribute of 20. The program then sets (using
pthread_attr_setinheritsched(3)) the inherit scheduler attribute of the thread attributes
object to PTHREAD_EXPLICIT_SCHED, meaning that threads created using this at-
tributes object should take their scheduling attributes from the thread attributes object.
The program then creates a thread using the thread attributes object, and that thread dis-
plays its scheduling policy and priority.

$ su; # Need privilege to set real-time scheduling policies
Password:
./a.out -mf10 -ar20 -i e;
Scheduler settings of main thread

policy=SCHED_FIFO, priority=10

Scheduler settings in 'attr'
policy=SCHED_RR, priority=20
inheritsched is EXPLICIT

Scheduler attributes of new thread
policy=SCHED_RR, priority=20

Linux man-pages 6.16 2025-09-21 2323

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

In the above output, one can see that the scheduling policy and priority were taken from
the values specified in the thread attributes object.

The next run is the same as the previous, except that the inherit scheduler attribute is set
to PTHREAD_INHERIT_SCHED, meaning that threads created using the thread at-
tributes object should ignore the scheduling attributes specified in the attributes object
and instead take their scheduling attributes from the creating thread.

./a.out -mf10 -ar20 -i i;
Scheduler settings of main thread

policy=SCHED_FIFO, priority=10

Scheduler settings in 'attr'
policy=SCHED_RR, priority=20
inheritsched is INHERIT

Scheduler attributes of new thread
policy=SCHED_FIFO, priority=10

In the above output, one can see that the scheduling policy and priority were taken from
the creating thread, rather than the thread attributes object.

Note that if we had omitted the -i i option, the output would have been the same, since
PTHREAD_INHERIT_SCHED is the default for the inherit scheduler attribute.

Program source

/* pthreads_sched_test.c */

#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

[[noreturn]]
static void
usage(char *prog_name, char *msg)
{

if (msg != NULL)
fputs(msg, stderr);

fprintf(stderr, "Usage: %s [options]\n", prog_name);
fprintf(stderr, "Options are:\n");

#define fpe(msg) fprintf(stderr, "\t%s", msg) /* Shorter */
fpe("-a<policy><prio> Set scheduling policy and priority in\n");
fpe(" thread attributes object\n");
fpe(" <policy> can be\n");
fpe(" f SCHED_FIFO\n");

Linux man-pages 6.16 2025-09-21 2324

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

fpe(" r SCHED_RR\n");
fpe(" o SCHED_OTHER\n");
fpe("-A Use default thread attributes object\n");
fpe("-i {e|i} Set inherit scheduler attribute to\n");
fpe(" 'explicit' or 'inherit'\n");
fpe("-m<policy><prio> Set scheduling policy and priority on\n");
fpe(" main thread before pthread_create() call\n");
exit(EXIT_FAILURE);

}

static int
get_policy(char p, int *policy)
{

switch (p) {
case 'f': *policy = SCHED_FIFO; return 1;
case 'r': *policy = SCHED_RR; return 1;
case 'o': *policy = SCHED_OTHER; return 1;
default: return 0;
}

}

static void
display_sched_attr(int policy, const struct sched_param *param)
{

printf(" policy=%s, priority=%d\n",
(policy == SCHED_FIFO) ? "SCHED_FIFO" :
(policy == SCHED_RR) ? "SCHED_RR" :
(policy == SCHED_OTHER) ? "SCHED_OTHER" :
"???",
param->sched_priority);

}

static void
display_thread_sched_attr(char *msg)
{

int policy, s;
struct sched_param param;

s = pthread_getschedparam(pthread_self(), &policy, ¶m);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_getschedparam");

printf("%s\n", msg);
display_sched_attr(policy, ¶m);

}

static void *

Linux man-pages 6.16 2025-09-21 2325

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

thread_start(void *arg)
{

display_thread_sched_attr("Scheduler attributes of new thread");

return NULL;
}

int
main(int argc, char *argv[])
{

int s, opt, inheritsched, use_null_attrib, policy;
pthread_t thread;
pthread_attr_t attr;
pthread_attr_t *attrp;
char *attr_sched_str, *main_sched_str, *inheritsched_str;
struct sched_param param;

/* Process command-line options. */

use_null_attrib = 0;
attr_sched_str = NULL;
main_sched_str = NULL;
inheritsched_str = NULL;

while ((opt = getopt(argc, argv, "a:Ai:m:")) != -1) {
switch (opt) {
case 'a': attr_sched_str = optarg; break;
case 'A': use_null_attrib = 1; break;
case 'i': inheritsched_str = optarg; break;
case 'm': main_sched_str = optarg; break;
default: usage(argv[0], "Unrecognized option\n");
}

}

if (use_null_attrib
&& (inheritsched_str != NULL || attr_sched_str != NULL))

{
usage(argv[0], "Can't specify -A with -i or -a\n");

}

/* Optionally set scheduling attributes of main thread,
and display the attributes. */

if (main_sched_str != NULL) {
if (!get_policy(main_sched_str[0], &policy))

usage(argv[0], "Bad policy for main thread (-m)\n");
param.sched_priority = strtol(&main_sched_str[1], NULL, 0);

Linux man-pages 6.16 2025-09-21 2326

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

s = pthread_setschedparam(pthread_self(), policy, ¶m);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_setschedparam");
}

display_thread_sched_attr("Scheduler settings of main thread");
printf("\n");

/* Initialize thread attributes object according to options. */

attrp = NULL;

if (!use_null_attrib) {
s = pthread_attr_init(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_init");
attrp = &attr;

}

if (inheritsched_str != NULL) {
if (inheritsched_str[0] == 'e')

inheritsched = PTHREAD_EXPLICIT_SCHED;
else if (inheritsched_str[0] == 'i')

inheritsched = PTHREAD_INHERIT_SCHED;
else

usage(argv[0], "Value for -i must be 'e' or 'i'\n");

s = pthread_attr_setinheritsched(&attr, inheritsched);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setinheritsched");
}

if (attr_sched_str != NULL) {
if (!get_policy(attr_sched_str[0], &policy))

usage(argv[0], "Bad policy for 'attr' (-a)\n");
param.sched_priority = strtol(&attr_sched_str[1], NULL, 0);

s = pthread_attr_setschedpolicy(&attr, policy);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setschedpolicy");
s = pthread_attr_setschedparam(&attr, ¶m);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_setschedparam");
}

/* If we initialized a thread attributes object, display

Linux man-pages 6.16 2025-09-21 2327

pthread_setschedparam(3) Library Functions Manual pthread_setschedparam(3)

the scheduling attributes that were set in the object. */

if (attrp != NULL) {
s = pthread_attr_getschedparam(&attr, ¶m);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedparam");
s = pthread_attr_getschedpolicy(&attr, &policy);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_getschedpolicy");

printf("Scheduler settings in 'attr'\n");
display_sched_attr(policy, ¶m);

pthread_attr_getinheritsched(&attr, &inheritsched);
printf(" inheritsched is %s\n",

(inheritsched == PTHREAD_INHERIT_SCHED) ? "INHERIT" :
(inheritsched == PTHREAD_EXPLICIT_SCHED) ? "EXPLICIT" :
"???");

printf("\n");
}

/* Create a thread that will display its scheduling attributes. */

s = pthread_create(&thread, attrp, &thread_start, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

/* Destroy unneeded thread attributes object. */

if (!use_null_attrib) {
s = pthread_attr_destroy(&attr);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_attr_destroy");
}

s = pthread_join(thread, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_join");

exit(EXIT_SUCCESS);
}

SEE ALSO
getrlimit(2), sched_get_priority_min(2), pthread_attr_init(3),
pthread_attr_setinheritsched(3), pthread_attr_setschedparam(3),
pthread_attr_setschedpolicy(3), pthread_create(3), pthread_self(3),
pthread_setschedprio(3), pthreads(7), sched(7)

Linux man-pages 6.16 2025-09-21 2328

pthread_setschedprio(3) Library Functions Manual pthread_setschedprio(3)

NAME
pthread_setschedprio - set scheduling priority of a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_setschedprio(pthread_t thread , int prio);

DESCRIPTION
The pthread_setschedprio() function sets the scheduling priority of the thread thread
to the value specified in prio. (By contrast pthread_setschedparam(3) changes both the
scheduling policy and priority of a thread.)

RETURN VALUE
On success, this function returns 0; on error, it returns a nonzero error number. If
pthread_setschedprio() fails, the scheduling priority of thread is not changed.

ERRORS
EINVAL

prio is not valid for the scheduling policy of the specified thread.

EPERM
The caller does not have appropriate privileges to set the specified priority.

ESRCH
No thread with the ID thread could be found.

POSIX.1 also documents an ENOTSUP ("attempt was made to set the priority to an un-
supported value") error for pthread_setschedparam(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_setschedprio()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3.4. POSIX.1-2001.

NOTES
For a description of the permissions required to, and the effect of, changing a thread’s
scheduling priority, and details of the permitted ranges for priorities in each scheduling
policy, see sched(7).

SEE ALSO
getrlimit(2), sched_get_priority_min(2), pthread_attr_init(3),
pthread_attr_setinheritsched(3), pthread_attr_setschedparam(3),
pthread_attr_setschedpolicy(3), pthread_create(3), pthread_self(3),
pthread_setschedparam(3), pthreads(7), sched(7)

Linux man-pages 6.16 2025-09-21 2329

pthread_sigmask(3) Library Functions Manual pthread_sigmask(3)

NAME
pthread_sigmask - examine and change mask of blocked signals

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <signal.h>

int pthread_sigmask(int how, const sigset_t *set, sigset_t *oldset);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_sigmask():
_POSIX_C_SOURCE >= 199506L || _XOPEN_SOURCE >= 500

DESCRIPTION
The pthread_sigmask() function is just like sigprocmask(2), with the difference that its
use in multithreaded programs is explicitly specified by POSIX.1. Other differences are
noted in this page.

For a description of the arguments and operation of this function, see sigprocmask(2).

RETURN VALUE
On success, pthread_sigmask() returns 0; on error, it returns an error number.

ERRORS
See sigprocmask(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_sigmask()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
A new thread inherits a copy of its creator’s signal mask.

The glibc pthread_sigmask() function silently ignores attempts to block the two real-
time signals that are used internally by the NPTL threading implementation. See nptl(7)
for details.

EXAMPLES
The program below blocks some signals in the main thread, and then creates a dedicated
thread to fetch those signals via sigwait(3). The following shell session demonstrates its
use:

$./a.out &
[1] 5423
$ kill -QUIT %1
Signal handling thread got signal 3

Linux man-pages 6.16 2025-09-21 2330

pthread_sigmask(3) Library Functions Manual pthread_sigmask(3)

$ kill -USR1 %1
Signal handling thread got signal 10
$ kill -TERM %1
[1]+ Terminated ./a.out

Program source

#include <err.h>
#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

/* Simple error handling functions */

static void *
sig_thread(void *arg)
{

sigset_t *set = arg;
int s, sig;

for (;;) {
s = sigwait(set, &sig);
if (s != 0)

errc(EXIT_FAILURE, s, "sigwait");
printf("Signal handling thread got signal %d\n", sig);

}
}

int
main(void)
{

pthread_t thread;
sigset_t set;
int s;

/* Block SIGQUIT and SIGUSR1; other threads created by main()
will inherit a copy of the signal mask. */

sigemptyset(&set);
sigaddset(&set, SIGQUIT);
sigaddset(&set, SIGUSR1);
s = pthread_sigmask(SIG_BLOCK, &set, NULL);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_sigmask");

Linux man-pages 6.16 2025-09-21 2331

pthread_sigmask(3) Library Functions Manual pthread_sigmask(3)

s = pthread_create(&thread, NULL, &sig_thread, &set);
if (s != 0)

errc(EXIT_FAILURE, s, "pthread_create");

/* Main thread carries on to create other threads and/or do
other work. */

pause(); /* Dummy pause so we can test program */
}

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), pthread_attr_setsigmask_np(3),
pthread_create(3), pthread_kill(3), sigsetops(3), pthreads(7), signal(7)

Linux man-pages 6.16 2025-09-21 2332

pthread_sigqueue(3) Library Functions Manual pthread_sigqueue(3)

NAME
pthread_sigqueue - queue a signal and data to a thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <signal.h>
#include <pthread.h>

int pthread_sigqueue(pthread_t thread , int sig,
const union sigval value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_sigqueue():
_GNU_SOURCE

DESCRIPTION
The pthread_sigqueue() function performs a similar task to sigqueue(3), but, rather
than sending a signal to a process, it sends a signal to a thread in the same process as the
calling thread.

The thread argument is the ID of a thread in the same process as the caller. The sig ar-
gument specifies the signal to be sent. The value argument specifies data to accompany
the signal; see sigqueue(3) for details.

RETURN VALUE
On success, pthread_sigqueue() returns 0; on error, it returns an error number.

ERRORS
EAGAIN

The limit of signals which may be queued has been reached. (See signal(7) for
further information.)

EINVAL
sig was invalid.

ENOSYS
pthread_sigqueue() is not supported on this system.

ESRCH
thread is not valid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_sigqueue()

VERSIONS
The glibc implementation of pthread_sigqueue() gives an error (EINVAL) on attempts
to send either of the real-time signals used internally by the NPTL threading implemen-
tation. See nptl(7) for details.

Linux man-pages 6.16 2025-09-21 2333

pthread_sigqueue(3) Library Functions Manual pthread_sigqueue(3)

STANDARDS
GNU.

HISTORY
glibc 2.11.

SEE ALSO
rt_tgsigqueueinfo(2), sigaction(2), pthread_sigmask(3), sigqueue(3), sigwait(3),
pthreads(7), signal(7)

Linux man-pages 6.16 2025-09-21 2334

pthread_spin_init(3) Library Functions Manual pthread_spin_init(3)

NAME
pthread_spin_init, pthread_spin_destroy - initialize or destroy a spin lock

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_spin_init(pthread_spinlock_t *lock, int pshared);
int pthread_spin_destroy(pthread_spinlock_t *lock);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_spin_init(), pthread_spin_destroy():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
General note: Most programs should use mutexes instead of spin locks. Spin locks are
primarily useful in conjunction with real-time scheduling policies. See NOTES.

The pthread_spin_init() function allocates any resources required for the use of the
spin lock referred to by lock and initializes the lock to be in the unlocked state. The
pshared argument must have one of the following values:

PTHREAD_PROCESS_PRIVATE
The spin lock is to be operated on only by threads in the same process as the
thread that calls pthread_spin_init(). (Attempting to share the spin lock be-
tween processes results in undefined behavior.)

PTHREAD_PROCESS_SHARED
The spin lock may be operated on by any thread in any process that has access to
the memory containing the lock (i.e., the lock may be in a shared memory object
that is shared among multiple processes).

Calling pthread_spin_init() on a spin lock that has already been initialized results in
undefined behavior.

The pthread_spin_destroy() function destroys a previously initialized spin lock, free-
ing any resources that were allocated for that lock. Destroying a spin lock that has not
been previously been initialized or destroying a spin lock while another thread holds the
lock results in undefined behavior.

Once a spin lock has been destroyed, performing any operation on the lock other than
once more initializing it with pthread_spin_init() results in undefined behavior.

The result of performing operations such as pthread_spin_lock(3), pthread_spin_un-
lock(3), and pthread_spin_destroy() on copies of the object referred to by lock is unde-
fined.

RETURN VALUE
On success, there functions return zero. On failure, they return an error number. In the
event that pthread_spin_init() fails, the lock is not initialized.

Linux man-pages 6.16 2025-05-17 2335

pthread_spin_init(3) Library Functions Manual pthread_spin_init(3)

ERRORS
pthread_spin_init() may fail with the following errors:

EAGAIN
The system has insufficient resources to initialize a new spin lock.

ENOMEM
Insufficient memory to initialize the spin lock.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

Support for process-shared spin locks is a POSIX option. The option is supported in the
glibc implementation.

NOTES
Spin locks should be employed in conjunction with real-time scheduling policies
(SCHED_FIFO, or possibly SCHED_RR). Use of spin locks with nondeterministic
scheduling policies such as SCHED_OTHER probably indicates a design mistake. The
problem is that if a thread operating under such a policy is scheduled off the CPU while
it holds a spin lock, then other threads will waste time spinning on the lock until the lock
holder is once more rescheduled and releases the lock.

If threads create a deadlock situation while employing spin locks, those threads will spin
forever consuming CPU time.

User-space spin locks are not applicable as a general locking solution. They are, by def-
inition, prone to priority inversion and unbounded spin times. A programmer using spin
locks must be exceptionally careful not only in the code, but also in terms of system
configuration, thread placement, and priority assignment.

SEE ALSO
pthread_mutex_init(3), pthread_mutex_lock(3), pthread_spin_lock(3),
pthread_spin_unlock(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2336

pthread_spin_lock(3) Library Functions Manual pthread_spin_lock(3)

NAME
pthread_spin_lock, pthread_spin_trylock, pthread_spin_unlock - lock and unlock a spin
lock

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

int pthread_spin_lock(pthread_spinlock_t *lock);
int pthread_spin_trylock(pthread_spinlock_t *lock);
int pthread_spin_unlock(pthread_spinlock_t *lock);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

pthread_spin_lock(), pthread_spin_trylock():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
The pthread_spin_lock() function locks the spin lock referred to by lock. If the spin
lock is currently unlocked, the calling thread acquires the lock immediately. If the spin
lock is currently locked by another thread, the calling thread spins, testing the lock until
it becomes available, at which point the calling thread acquires the lock.

Calling pthread_spin_lock() on a lock that is already held by the caller or a lock that
has not been initialized with pthread_spin_init(3) results in undefined behavior.

The pthread_spin_trylock() function is like pthread_spin_lock(), except that if the
spin lock referred to by lock is currently locked, then, instead of spinning, the call re-
turns immediately with the error EBUSY.

The pthread_spin_unlock() function unlocks the spin lock referred to lock. If any
threads are spinning on the lock, one of those threads will then acquire the lock.

Calling pthread_spin_unlock() on a lock that is not held by the caller results in unde-
fined behavior.

RETURN VALUE
On success, these functions return zero. On failure, they return an error number.

ERRORS
pthread_spin_lock() may fail with the following errors:

EDEADLOCK
The system detected a deadlock condition.

pthread_spin_trylock() fails with the following errors:

EBUSY
The spin lock is currently locked by another thread.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2337

pthread_spin_lock(3) Library Functions Manual pthread_spin_lock(3)

HISTORY
glibc 2.2. POSIX.1-2001.

CAVEATS
Applying any of the functions described on this page to an uninitialized spin lock results
in undefined behavior.

Carefully read NOTES in pthread_spin_init(3).

SEE ALSO
pthread_spin_destroy(3), pthread_spin_init(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2338

pthread_testcancel(3) Library Functions Manual pthread_testcancel(3)

NAME
pthread_testcancel - request delivery of any pending cancelation request

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <pthread.h>

void pthread_testcancel(void);

DESCRIPTION
Calling pthread_testcancel() creates a cancelation point within the calling thread, so
that a thread that is otherwise executing code that contains no cancelation points will re-
spond to a cancelation request.

If cancelability is disabled (using pthread_setcancelstate(3)), or no cancelation request
is pending, then a call to pthread_testcancel() has no effect.

RETURN VALUE
This function does not return a value. If the calling thread is canceled as a consequence
of a call to this function, then the function does not return.

ERRORS
This function always succeeds.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_testcancel()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.0. POSIX.1-2001.

EXAMPLES
See pthread_cleanup_push(3).

SEE ALSO
pthread_cancel(3), pthread_cleanup_push(3), pthread_setcancelstate(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2339

pthread_tryjoin_np(3) Library Functions Manual pthread_tryjoin_np(3)

NAME
pthread_tryjoin_np, pthread_timedjoin_np - try to join with a terminated thread

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

int pthread_tryjoin_np(pthread_t thread , void **retval);
int pthread_timedjoin_np(pthread_t thread , void **retval,

const struct timespec *abstime);

DESCRIPTION
These functions operate in the same way as pthread_join(3), except for the differences
described on this page.

The pthread_tryjoin_np() function performs a nonblocking join with the thread thread ,
returning the exit status of the thread in *retval. If thread has not yet terminated, then
instead of blocking, as is done by pthread_join(3), the call returns an error.

The pthread_timedjoin_np() function performs a join-with-timeout. If thread has not
yet terminated, then the call blocks until a maximum time, specified in abstime, mea-
sured against the CLOCK_REALTIME clock. If the timeout expires before thread
terminates, the call returns an error. The abstime argument is a timespec(3) structure,
specifying an absolute time measured since the Epoch (see time(2)).

RETURN VALUE
On success, these functions return 0; on error, they return an error number.

ERRORS
These functions can fail with the same errors as pthread_join(3). pthread_tryjoin_np()
can in addition fail with the following error:

EBUSY
thread had not yet terminated at the time of the call.

pthread_timedjoin_np() can in addition fail with the following errors:

EINVAL
abstime value is invalid (tv_sec is less than 0 or tv_nsec is greater than 1e9).

ETIMEDOUT
The call timed out before thread terminated.

pthread_timedjoin_np() never returns the error EINTR.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_tryjoin_np(), pthread_timedjoin_np()

STANDARDS
GNU; hence the suffix "_np" (nonportable) in the names.

Linux man-pages 6.16 2025-05-17 2340

pthread_tryjoin_np(3) Library Functions Manual pthread_tryjoin_np(3)

HISTORY
glibc 2.3.3.

BUGS
The pthread_timedjoin_np() function measures time by internally calculating a relative
sleep interval that is then measured against the CLOCK_MONOTONIC clock instead
of the CLOCK_REALTIME clock. Consequently, the timeout is unaffected by discon-
tinuous changes to the CLOCK_REALTIME clock.

EXAMPLES
The following code waits to join for up to 5 seconds:

struct timespec ts;
int s;

...

if (clock_gettime(CLOCK_REALTIME, &ts) == -1) {
/* Handle error */

}

ts.tv_sec += 5;

s = pthread_timedjoin_np(thread, NULL, &ts);
if (s != 0) {

/* Handle error */
}

SEE ALSO
clock_gettime(2), pthread_exit(3), pthread_join(3), timespec(3), pthreads(7)

Linux man-pages 6.16 2025-05-17 2341

pthread_yield(3) Library Functions Manual pthread_yield(3)

NAME
pthread_yield - yield the processor

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <pthread.h>

[[deprecated]] int pthread_yield(void);

DESCRIPTION
Note: This function is deprecated; see below.

pthread_yield() causes the calling thread to relinquish the CPU. The thread is placed at
the end of the run queue for its static priority and another thread is scheduled to run. For
further details, see sched_yield(2)

RETURN VALUE
On success, pthread_yield() returns 0; on error, it returns an error number.

ERRORS
On Linux, this call always succeeds (but portable and future-proof applications should
nevertheless handle a possible error return).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepthread_yield()

VERSIONS
On Linux, this function is implemented as a call to sched_yield(2).

STANDARDS
None.

HISTORY
Deprecated since glibc 2.34. Use the standardized sched_yield(2) instead.

NOTES
pthread_yield() is intended for use with real-time scheduling policies (i.e.,
SCHED_FIFO or SCHED_RR). Use of pthread_yield() with nondeterministic sched-
uling policies such as SCHED_OTHER is unspecified and very likely means your ap-
plication design is broken.

SEE ALSO
sched_yield(2), pthreads(7), sched(7)

Linux man-pages 6.16 2025-09-21 2342

ptsname(3) Library Functions Manual ptsname(3)

NAME
ptsname, ptsname_r - get the name of the slave pseudoterminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

char *ptsname(int fd);
int ptsname_r(size_t size;

int fd , char buf [size], size_t size);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ptsname():
Since glibc 2.24:

_XOPEN_SOURCE >= 500
glibc 2.23 and earlier:

_XOPEN_SOURCE

ptsname_r():
_GNU_SOURCE

DESCRIPTION
The ptsname() function returns the name of the slave pseudoterminal device corre-
sponding to the master referred to by the file descriptor fd .

The ptsname_r() function is the reentrant equivalent of ptsname(). It returns the name
of the slave pseudoterminal device as a null-terminated string in the buffer pointed to by
buf . The size argument specifies the number of bytes available in buf .

RETURN VALUE
On success, ptsname() returns a pointer to a string in static storage which will be over-
written by subsequent calls. This pointer must not be freed. On failure, NULL is re-
turned.

On success, ptsname_r() returns 0. On failure, an error number is returned to indicate
the error.

ERRORS
EINVAL

(ptsname_r() only) buf is NULL. (This error is returned only for glibc 2.25 and
earlier.)

ENOTTY
fd does not refer to a pseudoterminal master device.

ERANGE
(ptsname_r() only) buf is too small.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-10-29 2343

ptsname(3) Library Functions Manual ptsname(3)

Interface Attribute Value
Thread safety MT-Unsafe race:ptsnameptsname()
Thread safety MT-Safeptsname_r()

VERSIONS
A version of ptsname_r() is documented on Tru64, HP-UX, and FreeBSD, but on those
implementations, -1 is returned on error, with errno set to indicate the error. Avoid us-
ing this function in portable programs.

STANDARDS
ptsname():

POSIX.1-2008.

ptsname_r():
POSIX.1-2024.

HISTORY
ptsname():

POSIX.1-2001. glibc 2.1.

ptsname() is part of the UNIX 98 pseudoterminal support (see pts(4)).

ptsname_r():
GNU.

SEE ALSO
grantpt(3), posix_openpt(3), ttyname(3), unlockpt(3), pts(4), pty(7)

Linux man-pages 6.16 2025-10-29 2344

putenv(3) Library Functions Manual putenv(3)

NAME
putenv - change or add an environment variable

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int putenv(char *string);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

putenv():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
The putenv() function adds or changes the value of environment variables. The argu-
ment string is of the form name=value. If name does not already exist in the environ-
ment, then string is added to the environment. If name does exist, then the value of
name in the environment is changed to value. The string pointed to by string becomes
part of the environment, so altering the string changes the environment.

RETURN VALUE
The putenv() function returns zero on success. On failure, it returns a nonzero value,
and errno is set to indicate the error.

ERRORS
ENOMEM

Insufficient space to allocate new environment.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:envputenv()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr2, 4.3BSD-Reno.

The putenv() function is not required to be reentrant, and the one in glibc 2.0 is not, but
the glibc 2.1 version is.

Since glibc 2.1.2, the glibc implementation conforms to SUSv2: the pointer string given
to putenv() is used. In particular, this string becomes part of the environment; changing
it later will change the environment. (Thus, it is an error to call putenv() with an auto-
matic variable as the argument, then return from the calling function while string is still
part of the environment.) However, from glibc 2.0 to glibc 2.1.1, it differs: a copy of the
string is used. On the one hand this causes a memory leak, and on the other hand it vio-
lates SUSv2.

Linux man-pages 6.16 2025-05-17 2345

putenv(3) Library Functions Manual putenv(3)

The 4.3BSD-Reno version, like glibc 2.0, uses a copy; this is fixed in all modern BSDs.

SUSv2 removes the const from the prototype, and so does glibc 2.1.3.

The GNU C library implementation provides a nonstandard extension. If string does
not include an equal sign:

putenv("NAME");

then the named variable is removed from the caller’s environment.

SEE ALSO
clearenv(3), getenv(3), setenv(3), unsetenv(3), environ(7)

Linux man-pages 6.16 2025-05-17 2346

putgrent(3) Library Functions Manual putgrent(3)

NAME
putgrent - write a group database entry to a file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <grp.h>

int putgrent(const struct group *restrict grp, FILE *restrict stream);

DESCRIPTION
The putgrent() function is the counterpart for fgetgrent(3). The function writes the con-
tent of the provided struct group into the stream. The list of group members must be
NULL-terminated or NULL-initialized.

The struct group is defined as follows:

struct group {
char *gr_name; /* group name */
char *gr_passwd; /* group password */
gid_t gr_gid; /* group ID */
char **gr_mem; /* group members */

};

RETURN VALUE
The function returns zero on success, and a nonzero value on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeputgrent()

STANDARDS
GNU.

SEE ALSO
fgetgrent(3), getgrent(3), group(5)

Linux man-pages 6.16 2025-05-17 2347

putpwent(3) Library Functions Manual putpwent(3)

NAME
putpwent - write a password file entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <sys/types.h>
#include <pwd.h>

int putpwent(const struct passwd *restrict p, FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

putpwent():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
The putpwent() function writes a password entry from the structure p in the file associ-
ated with stream.

The passwd structure is defined in <pwd.h> as follows:

struct passwd {
char *pw_name; /* username */
char *pw_passwd; /* user password */
uid_t pw_uid; /* user ID */
gid_t pw_gid; /* group ID */
char *pw_gecos; /* real name */
char *pw_dir; /* home directory */
char *pw_shell; /* shell program */

};

RETURN VALUE
The putpwent() function returns 0 on success. On failure, it returns -1, and errno is set
to indicate the error.

ERRORS
EINVAL

Invalid (NULL) argument given.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeputpwent()

STANDARDS
None.

Linux man-pages 6.16 2025-05-17 2348

putpwent(3) Library Functions Manual putpwent(3)

HISTORY
SVr4.

SEE ALSO
endpwent(3), fgetpwent(3), getpw(3), getpwent(3), getpwnam(3), getpwuid(3), setp-
went(3)

Linux man-pages 6.16 2025-05-17 2349

puts(3) Library Functions Manual puts(3)

NAME
fputc, fputs, putc, putchar, puts - output of characters and strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int fputc(int c, FILE *stream);
int putc(int c, FILE *stream);
int putchar(int c);

int fputs(const char *restrict s, FILE *restrict stream);
int puts(const char *s);

DESCRIPTION
fputc() writes the character c, cast to an unsigned char, to stream.

putc() is equivalent to fputc() except that it may be implemented as a macro which eval-
uates stream more than once.

putchar(c) is equivalent to putc(c, stdout).

fputs() writes the string s to stream, without its terminating null byte ('\0').

puts() writes the string s and a trailing newline to stdout.

Calls to the functions described here can be mixed with each other and with calls to
other output functions from the stdio library for the same output stream.

For nonlocking counterparts, see unlocked_stdio(3).

RETURN VALUE
fputc(), putc(), and putchar() return the character written as an unsigned char cast to
an int or EOF on error.

puts() and fputs() return a nonnegative number on success, or EOF on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safefputc(), fputs(), putc(), putchar(), puts()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, C99.

BUGS
It is not advisable to mix calls to output functions from the stdio library with low-level
calls to write(2) for the file descriptor associated with the same output stream; the results
will be undefined and very probably not what you want.

SEE ALSO
write(2), ferror(3), fgets(3), fopen(3), fputwc(3), fputws(3), fseek(3), fwrite(3),
putwchar(3), scanf(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-09-21 2350

puts(3) Library Functions Manual puts(3)

Linux man-pages 6.16 2025-09-21 2351

putwchar(3) Library Functions Manual putwchar(3)

NAME
putwchar - write a wide character to standard output

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t putwchar(wchar_t wc);

DESCRIPTION
The putwchar() function is the wide-character equivalent of the putchar(3) function. It
writes the wide character wc to stdout. If ferror(stdout) becomes true, it returns
WEOF. If a wide character conversion error occurs, it sets errno to EILSEQ and re-
turns WEOF. Otherwise, it returns wc.

For a nonlocking counterpart, see unlocked_stdio(3).

RETURN VALUE
The putwchar() function returns wc if no error occurred, or WEOF to indicate an error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeputwchar()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of putwchar() depends on the LC_CTYPE category of the current locale.

It is reasonable to expect that putwchar() will actually write the multibyte sequence
corresponding to the wide character wc.

SEE ALSO
fputwc(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-05-17 2352

qecvt(3) Library Functions Manual qecvt(3)

NAME
qecvt, qfcvt, qgcvt - convert a floating-point number to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

[[deprecated]] char *qecvt(long double number, int ndigits,
int *restrict decpt, int *restrict sign);

[[deprecated]] char *qfcvt(long double number, int ndigits,
int *restrict decpt, int *restrict sign);

[[deprecated]] char *qgcvt(long double number, int ndigit, char *buf);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

qecvt(), qfcvt(), qgcvt():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_SVID_SOURCE

DESCRIPTION
The functions qecvt(), qfcvt(), and qgcvt() are identical to ecvt(3), fcvt(3), and gcvt(3)
respectively, except that they use a long double argument number. See ecvt(3) and
gcvt(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:qecvtqecvt()
Thread safety MT-Unsafe race:qfcvtqfcvt()
Thread safety MT-Safeqgcvt()

STANDARDS
None.

HISTORY
SVr4, SunOS, GNU.

These functions are obsolete. Instead, snprintf(3) is recommended.

SEE ALSO
ecvt(3), ecvt_r(3), gcvt(3), sprintf(3)

Linux man-pages 6.16 2025-05-17 2353

qsort(3) Library Functions Manual qsort(3)

NAME
qsort, qsort_r - sort an array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

void qsort(size_t n, size_t size;
void base[n * size], size_t n, size_t size,
typeof(int (const void [size], const void [size]))

*compar);
void qsort_r(size_t n, size_t size;

void base[n * size], size_t n, size_t size,
typeof(int (const void [size], const void [size], void *))

*compar,
void *arg);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

qsort_r():
_GNU_SOURCE

DESCRIPTION
The qsort() function sorts an array with n elements of size size. The base argument
points to the start of the array.

The contents of the array are sorted in ascending order according to a comparison func-
tion pointed to by compar, which is called with two arguments that point to the objects
being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second. If two members compare as equal, their order in the sorted array is unde-
fined.

The qsort_r() function is identical to qsort() except that the comparison function com-
par takes a third argument. A pointer is passed to the comparison function via arg. In
this way, the comparison function does not need to use global variables to pass through
arbitrary arguments, and is therefore reentrant and safe to use in threads.

RETURN VALUE
The qsort() and qsort_r() functions return no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeqsort(), qsort_r()

STANDARDS
qsort()

C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2354

qsort(3) Library Functions Manual qsort(3)

HISTORY
qsort()

POSIX.1-2001, C89, SVr4, 4.3BSD.

qsort_r()
glibc 2.8.

NOTES
To compare C strings, the comparison function can call strcmp(3), as shown in the ex-
ample below.

EXAMPLES
For one example of use, see the example under bsearch(3).

Another example is the following program, which sorts the strings given in its com-
mand-line arguments:

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

static int
cmpstringp(const void *p1, const void *p2)
{

/* The actual arguments to this function are "pointers to
pointers to char", but strcmp(3) arguments are "pointers
to char", hence the following cast plus dereference. */

return strcmp(*(const char **) p1, *(const char **) p2);
}

int
main(int argc, char *argv[])
{

if (argc < 2) {
fprintf(stderr, "Usage: %s <string>...\n", argv[0]);
exit(EXIT_FAILURE);

}

qsort(&argv[1], argc - 1, sizeof(char *), cmpstringp);

for (size_t j = 1; j < argc; j++)
puts(argv[j]);

exit(EXIT_SUCCESS);
}

SEE ALSO
sort(1), alphasort(3), strcmp(3), versionsort(3)

Linux man-pages 6.16 2025-09-21 2355

raise(3) Library Functions Manual raise(3)

NAME
raise - send a signal to the caller

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int raise(int sig);

DESCRIPTION
The raise() function sends a signal to the calling process or thread. In a single-threaded
program it is equivalent to

kill(getpid(), sig);

In a multithreaded program it is equivalent to

pthread_kill(pthread_self(), sig);

If the signal causes a handler to be called, raise() will return only after the signal han-
dler has returned.

RETURN VALUE
raise() returns 0 on success, and nonzero for failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferaise()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89.

Since glibc 2.3.3, raise() is implemented by calling tgkill(2), if the kernel supports that
system call. Older glibc versions implemented raise() using kill(2).

SEE ALSO
getpid(2), kill(2), sigaction(2), signal(2), pthread_kill(3), signal(7)

Linux man-pages 6.16 2025-05-17 2356

rand(3) Library Functions Manual rand(3)

NAME
rand, rand_r, srand - pseudo-random number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int rand(void);
void srand(unsigned int seed);

[[deprecated]] int rand_r(unsigned int *seedp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

rand_r():
Since glibc 2.24:

_POSIX_C_SOURCE >= 199506L
glibc 2.23 and earlier

_POSIX_C_SOURCE

DESCRIPTION
The rand() function returns a pseudo-random integer in the range 0 to RAND_MAX in-
clusive (i.e., the mathematical range [0, RAND_MAX]).

The srand() function sets its argument as the seed for a new sequence of pseudo-random
integers to be returned by rand(). These sequences are repeatable by calling srand()
with the same seed value.

If no seed value is provided, the rand() function is automatically seeded with a value of
1.

The function rand() is not reentrant, since it uses hidden state that is modified on each
call. This might just be the seed value to be used by the next call, or it might be some-
thing more elaborate. In order to get reproducible behavior in a threaded application,
this state must be made explicit; this can be done using the reentrant function rand_r().

Like rand(), rand_r() returns a pseudo-random integer in the range [0, RAND_MAX].
The seedp argument is a pointer to an unsigned int that is used to store state between
calls. If rand_r() is called with the same initial value for the integer pointed to by
seedp, and that value is not modified between calls, then the same pseudo-random se-
quence will result.

The value pointed to by the seedp argument of rand_r() provides only a very small
amount of state, so this function will be a weak pseudo-random generator. Try
drand48_r(3) instead.

RETURN VALUE
The rand() and rand_r() functions return a value between 0 and RAND_MAX (inclu-
sive). The srand() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 2357

rand(3) Library Functions Manual rand(3)

Interface Attribute Value
Thread safety MT-Saferand(), rand_r(), srand()

VERSIONS
The versions of rand() and srand() in the Linux C Library use the same random number
generator as random(3) and srandom(3), so the lower-order bits should be as random as
the higher-order bits. However, on older rand() implementations, and on current imple-
mentations on different systems, the lower-order bits are much less random than the
higher-order bits. Do not use this function in applications intended to be portable when
good randomness is needed. (Use random(3) instead.)

STANDARDS
rand()
srand()

C11, POSIX.1-2008.

rand_r()
POSIX.1-2008.

HISTORY
rand()
srand()

SVr4, 4.3BSD, C89, POSIX.1-2001.

rand_r()
POSIX.1-2001. Obsolete in POSIX.1-2008.

EXAMPLES
POSIX.1-2001 gives the following example of an implementation of rand() and
srand(), possibly useful when one needs the same sequence on two different machines.

static unsigned long next = 1;

/* RAND_MAX assumed to be 32767 */
int myrand(void) {

next = next * 1103515245 + 12345;
return((unsigned) (next/65536) % 32768);

}

void mysrand(unsigned int seed) {
next = seed;

}

The following program can be used to display the pseudo-random sequence produced by
rand() when given a particular seed. When the seed is -1, the program uses a random
seed.

#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])

Linux man-pages 6.16 2025-05-17 2358

rand(3) Library Functions Manual rand(3)

{
int r;
unsigned int seed, nloops;

if (argc != 3) {
fprintf(stderr, "Usage: %s <seed> <nloops>\n", argv[0]);
exit(EXIT_FAILURE);

}

seed = atoi(argv[1]);
nloops = atoi(argv[2]);

if (seed == -1) {
seed = arc4random();
printf("seed: %u\n", seed);

}

srand(seed);
for (unsigned int j = 0; j < nloops; j++) {

r = rand();
printf("%d\n", r);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
drand48(3), random(3)

Linux man-pages 6.16 2025-05-17 2359

random(3) Library Functions Manual random(3)

NAME
random, srandom, initstate, setstate - random number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

long random(void);
void srandom(unsigned int seed);

char *initstate(size_t n;
unsigned int seed , char state[n], size_t n);

char *setstate(char *state);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

random(), srandom(), initstate(), setstate():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The random() function uses a nonlinear additive feedback random number generator
employing a default table of size 31 long integers to return successive pseudo-random
numbers in the range from 0 to 2^31 - 1. The period of this random number generator
is very large, approximately 16 * ((2^31) - 1).

The srandom() function sets its argument as the seed for a new sequence of pseudo-ran-
dom integers to be returned by random(). These sequences are repeatable by calling
srandom() with the same seed value. If no seed value is provided, the random() func-
tion is automatically seeded with a value of 1.

The initstate() function allows a state array state to be initialized for use by random().
The size of the state array n is used by initstate() to decide how sophisticated a random
number generator it should use—the larger the state array, the better the random num-
bers will be. Current "optimal" values for the size of the state array n are 8, 32, 64, 128,
and 256 bytes; other amounts will be rounded down to the nearest known amount. Us-
ing less than 8 bytes results in an error. seed is the seed for the initialization, which
specifies a starting point for the random number sequence, and provides for restarting at
the same point.

The setstate() function changes the state array used by the random() function. The
state array state is used for random number generation until the next call to initstate() or
setstate(). state must first have been initialized using initstate() or be the result of a
previous call of setstate().

RETURN VALUE
The random() function returns a value between 0 and (2^31) - 1. The srandom() func-
tion returns no value.

The initstate() function returns a pointer to the previous state array. On failure, it re-
turns NULL, and errno is set to indicate the error.

Linux man-pages 6.16 2025-06-28 2360

random(3) Library Functions Manual random(3)

On success, setstate() returns a pointer to the previous state array. On failure, it returns
NULL, and errno is set to indicate the error.

ERRORS
EINVAL

The state argument given to setstate() was NULL.

EINVAL
A state array of less than 8 bytes was specified to initstate().

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferandom(), srandom(), initstate(), setstate()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

NOTES
Random-number generation is a complex topic. Numerical Recipes in C: The Art of
Scientific Computing (William H. Press, Brian P. Flannery, Saul A. Teukolsky, William
T. Vetterling; New York: Cambridge University Press, 2007, 3rd ed.) provides an excel-
lent discussion of practical random-number generation issues in Chapter 7 (Random
Numbers).

For a more theoretical discussion which also covers many practical issues in depth, see
Chapter 3 (Random Numbers) in Donald E. Knuth’s The Art of Computer Programming,
volume 2 (Seminumerical Algorithms), 2nd ed.; Reading, Massachusetts: Addison-Wes-
ley Publishing Company, 1981.

CAVEATS
The random() function should not be used in multithreaded programs where repro-
ducible behavior is required. Use random_r(3) for that purpose.

BUGS
According to POSIX, initstate() should return NULL on error. In the glibc implementa-
tion, errno is (as specified) set on error, but the function does not return NULL.

SEE ALSO
getrandom(2), drand48(3), rand(3), random_r(3), srand(3)

Linux man-pages 6.16 2025-06-28 2361

random_r(3) Library Functions Manual random_r(3)

NAME
random_r, srandom_r, initstate_r, setstate_r - reentrant random number generator

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int random_r(struct random_data *restrict buf ,
int32_t *restrict result);

int srandom_r(unsigned int seed , struct random_data *buf);

int initstate_r(unsigned int seed ,
char statebuf [restrict .statelen], size_t statelen,
struct random_data *restrict buf);

int setstate_r(char *restrict statebuf ,
struct random_data *restrict buf);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

random_r(), srandom_r(), initstate_r(), setstate_r():
/* glibc >= 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
These functions are the reentrant equivalents of the functions described in random(3).
They are suitable for use in multithreaded programs where each thread needs to obtain
an independent, reproducible sequence of random numbers.

The random_r() function is like random(3), except that instead of using state informa-
tion maintained in a global variable, it uses the state information in the argument pointed
to by buf , which must have been previously initialized by initstate_r(). The generated
random number is returned in the argument result.

The srandom_r() function is like srandom(3), except that it initializes the seed for the
random number generator whose state is maintained in the object pointed to by buf ,
which must have been previously initialized by initstate_r(), instead of the seed associ-
ated with the global state variable.

The initstate_r() function is like initstate(3), except that it initializes the state in the ob-
ject pointed to by buf , rather than initializing the global state variable. Before calling
this function, the buf.state field must be initialized to NULL. The initstate_r() function
records a pointer to the statebuf argument inside the structure pointed to by buf . Thus,
statebuf should not be deallocated so long as buf is still in use. (So, statebuf should
typically be allocated as a static variable, or allocated on the heap using malloc(3) or
similar.)

The setstate_r() function is like setstate(3), except that it modifies the state in the object
pointed to by buf , rather than modifying the global state variable. state must first have
been initialized using initstate_r() or be the result of a previous call of setstate_r().

Linux man-pages 6.16 2025-09-07 2362

random_r(3) Library Functions Manual random_r(3)

RETURN VALUE
All of these functions return 0 on success. On error, -1 is returned, with errno set to in-
dicate the error.

ERRORS
EINVAL

A state array of less than 8 bytes was specified to initstate_r().

EINVAL
The statebuf or buf argument to setstate_r() was NULL.

EINVAL
The buf or result argument to random_r() was NULL.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:bufrandom_r(), srandom_r(), initstate_r(),
setstate_r()

STANDARDS
GNU.

BUGS
The initstate_r() interface is confusing. It appears that the random_data type is in-
tended to be opaque, but the implementation requires the user to either initialize the
buf.state field to NULL or zero out the entire structure before the call.

SEE ALSO
drand48(3), rand(3), random(3)

Linux man-pages 6.16 2025-09-07 2363

rcmd(3) Library Functions Manual rcmd(3)

NAME
rcmd, rresvport, iruserok, ruserok, rcmd_af, rresvport_af, iruserok_af, ruserok_af - rou-
tines for returning a stream to a remote command

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h> /* Or <unistd.h> on some systems */

int rcmd(char **restrict ahost, unsigned short inport,
const char *restrict locuser,
const char *restrict remuser,
const char *restrict cmd , int *restrict fd2p);

int rresvport(int *port);

int iruserok(uint32_t raddr, int superuser,
const char *ruser, const char *luser);

int ruserok(const char *rhost, int superuser,
const char *ruser, const char *luser);

int rcmd_af(char **restrict ahost, unsigned short inport,
const char *restrict locuser,
const char *restrict remuser,
const char *restrict cmd , int *restrict fd2p,
sa_family_t af);

int rresvport_af(int *port, sa_family_t af);

int iruserok_af(const void *restrict raddr, int superuser,
const char *restrict ruser, const char *restrict luser,
sa_family_t af);

int ruserok_af(const char *rhost, int superuser,
const char *ruser, const char *luser,
sa_family_t af);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

rcmd(), rcmd_af(), rresvport(), rresvport_af(), iruserok(), iruserok_af(), ruserok(),
ruserok_af():

Since glibc 2.19:
_DEFAULT_SOURCE

glibc 2.19 and earlier:
_BSD_SOURCE

DESCRIPTION
The rcmd() function is used by the superuser to execute a command on a remote ma-
chine using an authentication scheme based on privileged port numbers. The rresv-
port() function returns a file descriptor to a socket with an address in the privileged port
space. The iruserok() and ruserok() functions are used by servers to authenticate
clients requesting service with rcmd(). All four functions are used by the rshd(8) server
(among others).

Linux man-pages 6.16 2025-09-21 2364

rcmd(3) Library Functions Manual rcmd(3)

rcmd()
The rcmd() function looks up the host *ahost using gethostbyname(3), returning -1 if
the host does not exist. Otherwise, *ahost is set to the standard name of the host and a
connection is established to a server residing at the well-known Internet port inport.

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If fd2p is
nonzero, then an auxiliary channel to a control process will be set up, and a file descrip-
tor for it will be placed in *fd2p. The control process will return diagnostic output from
the command (unit 2) on this channel, and will also accept bytes on this channel as be-
ing UNIX signal numbers, to be forwarded to the process group of the command. If
fd2p is 0, then the stderr (unit 2 of the remote command) will be made the same as the
stdout and no provision is made for sending arbitrary signals to the remote process, al-
though you may be able to get its attention by using out-of-band data.

The protocol is described in detail in rshd(8)

rresvport()
The rresvport() function is used to obtain a socket with a privileged port bound to it.
This socket is suitable for use by rcmd() and several other functions. Privileged ports
are those in the range 0 to 1023. Only a privileged process (on Linux, a process that has
the CAP_NET_BIND_SERVICE capability in the user namespace governing its net-
work namespace) is allowed to bind to a privileged port. In the glibc implementation,
this function restricts its search to the ports from 512 to 1023. The port argument is
value-result: the value it supplies to the call is used as the starting point for a circular
search of the port range; on (successful) return, it contains the port number that was
bound to.

iruserok() and ruserok()
The iruserok() and ruserok() functions take a remote host’s IP address or name, respec-
tively, two usernames and a flag indicating whether the local user’s name is that of the
superuser. Then, if the user is not the superuser, it checks the /etc/hosts.equiv file. If
that lookup is not done, or is unsuccessful, the .rhosts in the local user’s home directory
is checked to see if the request for service is allowed.

If this file does not exist, is not a regular file, is owned by anyone other than the user or
the superuser, is writable by anyone other than the owner, or is hardlinked anywhere, the
check automatically fails. Zero is returned if the machine name is listed in the
hosts.equiv file, or the host and remote username are found in the .rhosts file; otherwise,
iruserok() and ruserok() return -1. If the local domain (as obtained from gethost-
name(2)) is the same as the remote domain, only the machine name need be specified.

If the IP address of the remote host is known, iruserok() should be used in preference to
ruserok(), as it does not require trusting the DNS server for the remote host’s domain.

*_af() variants
All of the functions described above work with IPv4 (AF_INET) sockets. The "_af"
variants take an extra argument that allows the socket address family to be specified.
For these functions, the af argument can be specified as AF_INET or AF_INET6. In
addition, rcmd_af() supports the use of AF_UNSPEC.

Linux man-pages 6.16 2025-09-21 2365

rcmd(3) Library Functions Manual rcmd(3)

RETURN VALUE
The rcmd() function returns a valid socket descriptor on success. It returns -1 on error
and prints a diagnostic message on the standard error.

The rresvport() function returns a valid, bound socket descriptor on success. On fail-
ure, it returns -1 and sets errno to indicate the error. The error code EAGAIN is over-
loaded to mean: "All network ports in use".

For information on the return from ruserok() and iruserok(), see above.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafercmd(), rcmd_af()
Thread safety MT-Saferresvport(), rresvport_af()
Thread safety MT-Safe localeiruserok(), ruserok(), iruserok_af(),

ruserok_af()

STANDARDS
BSD.

HISTORY
iruserok_af()
rcmd_af()
rresvport_af()
ruserok_af()

glibc 2.2.

Solaris, 4.2BSD. The "_af" variants are more recent additions, and are not present on as
wide a range of systems.

BUGS
iruserok() and iruserok_af() are declared in glibc headers only since glibc 2.12.

SEE ALSO
rlogin(1), rsh(1), rexec(3), rexecd(8), rlogind(8), rshd(8)

Linux man-pages 6.16 2025-09-21 2366

re_comp(3) Library Functions Manual re_comp(3)

NAME
re_comp, re_exec - BSD regex functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _REGEX_RE_COMP
#include <sys/types.h>
#include <regex.h>

[[deprecated]] char *re_comp(const char *regex);
[[deprecated]] int re_exec(const char *string);

DESCRIPTION
re_comp() is used to compile the null-terminated regular expression pointed to by
regex. The compiled pattern occupies a static area, the pattern buffer, which is overwrit-
ten by subsequent use of re_comp(). If regex is NULL, no operation is performed and
the pattern buffer’s contents are not altered.

re_exec() is used to assess whether the null-terminated string pointed to by string
matches the previously compiled regex.

RETURN VALUE
re_comp() returns NULL on successful compilation of regex otherwise it returns a
pointer to an appropriate error message.

re_exec() returns 1 for a successful match, zero for failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafere_comp(), re_exec()

STANDARDS
None.

HISTORY
4.3BSD.

These functions are obsolete; the functions documented in regcomp(3) should be used
instead.

SEE ALSO
regcomp(3), regex(7), GNU regex manual

Linux man-pages 6.16 2025-09-21 2367

readdir(3) Library Functions Manual readdir(3)

NAME
readdir - read a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

struct dirent *readdir(DIR *dirp);

DESCRIPTION
The readdir() function returns a pointer to a dirent structure representing the next direc-
tory entry in the directory stream pointed to by dirp. It returns NULL on reaching the
end of the directory stream or if an error occurred.

In the glibc implementation, the dirent structure is defined as follows:

struct dirent {
ino_t d_ino; /* Inode number */
off_t d_off; /* Not an offset; see below */
unsigned short d_reclen; /* Length of this record */
unsigned char d_type; /* Type of file; not supported

by all filesystem types */
char d_name[256]; /* Null-terminated filename */

};

The only fields in the dirent structure that are mandated by POSIX.1 are d_name and
d_ino. The other fields are unstandardized, and not present on all systems; see VER-
SIONS.

The fields of the dirent structure are as follows:

d_ino
This is the inode number of the file.

d_off
The value returned in d_off is the same as would be returned by calling telldir(3)
at the current position in the directory stream. Be aware that despite its type and
name, the d_off field is seldom any kind of directory offset on modern filesys-
tems. Applications should treat this field as an opaque value, making no as-
sumptions about its contents; see also telldir(3).

d_reclen
This is the size (in bytes) of the returned record. This may not match the size of
the structure definition shown above; see VERSIONS.

d_type
This field contains a value indicating the file type, making it possible to avoid the
expense of calling lstat(2) if further actions depend on the type of the file.

When a suitable feature test macro is defined (_DEFAULT_SOURCE since
glibc 2.19, or _BSD_SOURCE on glibc 2.19 and earlier), glibc defines the fol-
lowing macro constants for the value returned in d_type:

Linux man-pages 6.16 2025-09-21 2368

readdir(3) Library Functions Manual readdir(3)

DT_BLK This is a block device.

DT_CHR This is a character device.

DT_DIR This is a directory.

DT_FIFO This is a named pipe (FIFO).

DT_LNK This is a symbolic link.

DT_REG This is a regular file.

DT_SOCK This is a UNIX domain socket.

DT_UNKNOWN
The file type could not be determined.

Currently, only some filesystems (among them: Btrfs, ext2, ext3, and ext4) have
full support for returning the file type in d_type. All applications must properly
handle a return of DT_UNKNOWN.

d_name
This field contains the null terminated filename; see VERSIONS.

The data returned by readdir() may be overwritten by subsequent calls to readdir() for
the same directory stream.

RETURN VALUE
On success, readdir() returns a pointer to a dirent structure. (This structure may be sta-
tically allocated; do not attempt to free(3) it.)

If the end of the directory stream is reached, NULL is returned and errno is not
changed. If an error occurs, NULL is returned and errno is set to indicate the error. To
distinguish end of stream from an error, set errno to zero before calling readdir() and
then check the value of errno if NULL is returned.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:dirstreamreaddir()

In the current POSIX.1 specification (POSIX.1-2008), readdir() is not required to be
thread-safe. However, in modern implementations (including the glibc implementation),
concurrent calls to readdir() that specify different directory streams are thread-safe. In
cases where multiple threads must read from the same directory stream, using readdir()
with external synchronization is still preferable to the use of the deprecated readdir_r(3)
function. It is expected that a future version of POSIX.1 will require that readdir() be
thread-safe when concurrently employed on different directory streams.

VERSIONS
Only the fields d_name and (as an XSI extension) d_ino are specified in POSIX.1.
Other than Linux, the d_type field is available mainly only on BSD systems. The

Linux man-pages 6.16 2025-09-21 2369

readdir(3) Library Functions Manual readdir(3)

remaining fields are available on many, but not all systems. Under glibc, programs can
check for the availability of the fields not defined in POSIX.1 by testing whether the
macros _DIRENT_HAVE_D_NAMLEN, _DIRENT_HAVE_D_RECLEN,
_DIRENT_HAVE_D_OFF, or _DIRENT_HAVE_D_TYPE are defined.

The d_name field
The dirent structure definition shown above is taken from the glibc headers, and shows
the d_name field with a fixed size.

Warning: applications should avoid any dependence on the size of the d_name field.
POSIX defines it as char d_name[], a character array of unspecified size, with at most
NAME_MAX characters preceding the terminating null byte ('\0').

POSIX.1 explicitly notes that this field should not be used as an lvalue. The standard
also notes that the use of sizeof(d_name) is incorrect; use strlen(d_name) instead. (On
some systems, this field is defined as char d_name[1]!) By implication, the use
sizeof(struct dirent) to capture the size of the record including the size of d_name is also
incorrect.

Note that while the call

fpathconf(fd, _PC_NAME_MAX)

returns the value 255 for most filesystems, on some filesystems (e.g., CIFS, Windows
SMB servers), the null-terminated filename that is (correctly) returned in d_name can
actually exceed this size. In such cases, the d_reclen field will contain a value that ex-
ceeds the size of the glibc dirent structure shown above.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

NOTES
A directory stream is opened using opendir(3).

The order in which filenames are read by successive calls to readdir() depends on the
filesystem implementation; it is unlikely that the names will be sorted in any fashion.

SEE ALSO
getdents(2), read(2), closedir(3), dirfd(3), ftw(3), offsetof(3), opendir(3), readdir_r(3),
rewinddir(3), scandir(3), seekdir(3), telldir(3)

Linux man-pages 6.16 2025-09-21 2370

readdir_r(3) Library Functions Manual readdir_r(3)

NAME
readdir_r - read a directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

[[deprecated]] int readdir_r(DIR *restrict dirp,
struct dirent *restrict entry,
struct dirent **restrict result);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

readdir_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
This function is deprecated; use readdir(3) instead.

The readdir_r() function was invented as a reentrant version of readdir(3). It reads the
next directory entry from the directory stream dirp, and returns it in the caller-allocated
buffer pointed to by entry. For details of the dirent structure, see readdir(3).

A pointer to the returned buffer is placed in *result; if the end of the directory stream
was encountered, then NULL is instead returned in *result.

It is recommended that applications use readdir(3) instead of readdir_r(). Furthermore,
since glibc 2.24, glibc deprecates readdir_r(). The reasons are as follows:

• On systems where NAME_MAX is undefined, calling readdir_r() may be unsafe
because the interface does not allow the caller to specify the length of the buffer
used for the returned directory entry.

• On some systems, readdir_r() can’t read directory entries with very long names.
When the glibc implementation encounters such a name, readdir_r() fails with the
error ENAMETOOLONG after the final directory entry has been read . On some
other systems, readdir_r() may return a success status, but the returned d_name
field may not be null terminated or may be truncated.

• In the current POSIX.1 specification (POSIX.1-2008), readdir(3) is not required to
be thread-safe. However, in modern implementations (including the glibc imple-
mentation), concurrent calls to readdir(3) that specify different directory streams are
thread-safe. Therefore, the use of readdir_r() is generally unnecessary in multi-
threaded programs. In cases where multiple threads must read from the same direc-
tory stream, using readdir(3) with external synchronization is still preferable to the
use of readdir_r(), for the reasons given in the points above.

• It is expected that a future version of POSIX.1 will make readdir_r() obsolete, and
require that readdir(3) be thread-safe when concurrently employed on different di-
rectory streams.

Linux man-pages 6.16 2025-09-21 2371

readdir_r(3) Library Functions Manual readdir_r(3)

RETURN VALUE
The readdir_r() function returns 0 on success. On error, it returns a positive error num-
ber (listed under ERRORS). If the end of the directory stream is reached, readdir_r()
returns 0, and returns NULL in *result.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ENAMETOOLONG
A directory entry whose name was too long to be read was encountered.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safereaddir_r()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
readdir(3)

Linux man-pages 6.16 2025-09-21 2372

realpath(3) Library Functions Manual realpath(3)

NAME
realpath - return the canonicalized absolute pathname

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <limits.h>
#include <stdlib.h>

char *realpath(const char *restrict path,
char *restrict resolved_path);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

realpath():
_XOPEN_SOURCE >= 500

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
realpath() expands all symbolic links and resolves references to /./ , /../ and extra '/'
characters in the null-terminated string named by path to produce a canonicalized ab-
solute pathname. The resulting pathname is stored as a null-terminated string, up to a
maximum of PATH_MAX bytes, in the buffer pointed to by resolved_path. The result-
ing path will have no symbolic link, /./ or /../ components.

If resolved_path is specified as NULL, then realpath() uses malloc(3) to allocate a
buffer of up to PATH_MAX bytes to hold the resolved pathname, and returns a pointer
to this buffer. The caller should deallocate this buffer using free(3).

RETURN VALUE
If there is no error, realpath() returns a pointer to the resolved_path.

Otherwise, it returns NULL, the contents of the array resolved_path are undefined, and
errno is set to indicate the error.

ERRORS
EACCES

Read or search permission was denied for a component of the path prefix.

EINVAL
path is NULL. (Before glibc 2.3, this error is also returned if resolved_path is
NULL.)

EIO An I/O error occurred while reading from the filesystem.

ELOOP
Too many symbolic links were encountered in translating the pathname.

ENAMETOOLONG
A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

Linux man-pages 6.16 2025-05-17 2373

realpath(3) Library Functions Manual realpath(3)

ENOENT
The named file does not exist.

ENOMEM
Out of memory.

ENOTDIR
A component of the path prefix is not a directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferealpath()

VERSIONS
GNU extensions

If the call fails with either EACCES or ENOENT and resolved_path is not NULL, then
the prefix of path that is not readable or does not exist is returned in resolved_path.

STANDARDS
POSIX.1-2008.

HISTORY
4.4BSD, POSIX.1-2001, Solaris.

POSIX.1-2001 says that the behavior if resolved_path is NULL is implementation-de-
fined. POSIX.1-2008 specifies the behavior described in this page.

In 4.4BSD and Solaris, the limit on the pathname length is MAXPATHLEN (found in
<sys/param.h>). SUSv2 prescribes PATH_MAX and NAME_MAX, as found in <lim-
its.h> or provided by the pathconf(3) function. A typical source fragment would be

#ifdef PATH_MAX
path_max = PATH_MAX;

#else
path_max = pathconf(path, _PC_PATH_MAX);
if (path_max <= 0)

path_max = 4096;
#endif

(But see the BUGS section.)

BUGS
The POSIX.1-2001 standard version of this function is broken by design, since it is im-
possible to determine a suitable size for the output buffer, resolved_path. According to
POSIX.1-2001 a buffer of size PATH_MAX suffices, but PATH_MAX need not be a
defined constant, and may have to be obtained using pathconf(3). And asking path-
conf(3) does not really help, since, on the one hand POSIX warns that the result of path-
conf(3) may be huge and unsuitable for mallocing memory, and on the other hand path-
conf(3) may return -1 to signify that PATH_MAX is not bounded. The
resolved_path == NULL feature, not standardized in POSIX.1-2001, but standardized in
POSIX.1-2008, allows this design problem to be avoided.

Linux man-pages 6.16 2025-05-17 2374

realpath(3) Library Functions Manual realpath(3)

SEE ALSO
realpath(1), readlink(2), canonicalize_file_name(3), getcwd(3), pathconf(3), sysconf(3)

Linux man-pages 6.16 2025-05-17 2375

recno(3) Library Functions Manual recno(3)

NAME
recno - record number database access method

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <db.h>

DESCRIPTION
Note well: This page documents interfaces provided up until glibc 2.1. Since glibc 2.2,
glibc no longer provides these interfaces. Probably, you are looking for the APIs pro-
vided by the libdb library instead.

The routine dbopen(3) is the library interface to database files. One of the supported file
formats is record number files. The general description of the database access methods
is in dbopen(3), this manual page describes only the recno-specific information.

The record number data structure is either variable or fixed-length records stored in a
flat-file format, accessed by the logical record number. The existence of record number
five implies the existence of records one through four, and the deletion of record number
one causes record number five to be renumbered to record number four, as well as the
cursor, if positioned after record number one, to shift down one record.

The recno access-method-specific data structure provided to dbopen(3) is defined in the
<db.h> include file as follows:

typedef struct {
unsigned long flags;
unsigned int cachesize;
unsigned int psize;
int lorder;
size_t reclen;
unsigned char bval;
char *bfname;

} RECNOINFO;

The elements of this structure are defined as follows:

flags The flag value is specified by ORing any of the following values:

R_FIXEDLEN
The records are fixed-length, not byte delimited. The structure element
reclen specifies the length of the record, and the structure element bval is
used as the pad character. Any records, inserted into the database, that
are less than reclen bytes long are automatically padded.

R_NOKEY
In the interface specified by dbopen(3), the sequential record retrieval
fills in both the caller’s key and data structures. If the R_NOKEY flag is
specified, the cursor routines are not required to fill in the key structure.
This permits applications to retrieve records at the end of files without
reading all of the intervening records.

4.4 Berkeley Distribution 2025-09-21 2376

recno(3) Library Functions Manual recno(3)

R_SNAPSHOT
This flag requires that a snapshot of the file be taken when dbopen(3) is
called, instead of permitting any unmodified records to be read from the
original file.

cachesize
A suggested maximum size, in bytes, of the memory cache. This value is only
advisory, and the access method will allocate more memory rather than fail. If
cachesize is 0 (no size is specified), a default cache is used.

psize The recno access method stores the in-memory copies of its records in a btree.
This value is the size (in bytes) of the pages used for nodes in that tree. If psize
is 0 (no page size is specified), a page size is chosen based on the underlying
filesystem I/O block size. See btree(3) for more information.

lorder
The byte order for integers in the stored database metadata. The number should
represent the order as an integer; for example, big endian order would be the
number 4,321. If lorder is 0 (no order is specified), the current host order is
used.

reclen
The length of a fixed-length record.

bval The delimiting byte to be used to mark the end of a record for variable-length
records, and the pad character for fixed-length records. If no value is specified,
newlines ("\n") are used to mark the end of variable-length records and fixed-
length records are padded with spaces.

bfname
The recno access method stores the in-memory copies of its records in a btree. If
bfname is non-NULL, it specifies the name of the btree file, as if specified as the
filename for a dbopen(3) of a btree file.

The data part of the key/data pair used by the recno access method is the same as other
access methods. The key is different. The data field of the key should be a pointer to a
memory location of type recno_t, as defined in the <db.h> include file. This type is
normally the largest unsigned integral type available to the implementation. The size
field of the key should be the size of that type.

Because there can be no metadata associated with the underlying recno access method
files, any changes made to the default values (e.g., fixed record length or byte separator
value) must be explicitly specified each time the file is opened.

In the interface specified by dbopen(3), using the put interface to create a new record
will cause the creation of multiple, empty records if the record number is more than one
greater than the largest record currently in the database.

ERRORS
The recno access method routines may fail and set errno for any of the errors specified
for the library routine dbopen(3) or the following:

4.4 Berkeley Distribution 2025-09-21 2377

recno(3) Library Functions Manual recno(3)

EINVAL
An attempt was made to add a record to a fixed-length database that was too
large to fit.

BUGS
Only big and little endian byte order is supported.

SEE ALSO
btree(3), dbopen(3), hash(3), mpool(3)

Document Processing in a Relational Database System, Michael Stonebraker, Heidi
Stettner, Joseph Kalash, Antonin Guttman, Nadene Lynn, Memorandum No. UCB/ERL
M82/32, May 1982.

4.4 Berkeley Distribution 2025-09-21 2378

regex(3) Library Functions Manual regex(3)

NAME
regcomp, regexec, regerror, regfree - POSIX regex functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <regex.h>

int regcomp(regex_t *restrict preg, const char *restrict regex,
int cflags);

int regexec(const regex_t *restrict preg,
const char *restrict string,
size_t n, regmatch_t pmatch[_Nullable restrict n],
int eflags);

size_t regerror(size_t errbuf_size;
int errcode, const regex_t *_Nullable restrict preg,
char errbuf [_Nullable restrict errbuf_size],
size_t errbuf_size);

void regfree(regex_t *preg);

typedef struct {
size_t re_nsub;

} regex_t;

typedef struct {
regoff_t rm_so;
regoff_t rm_eo;

} regmatch_t;

typedef /* ... */ regoff_t;

DESCRIPTION
Compilation

regcomp() is used to compile a regular expression into a form that is suitable for subse-
quent regexec() searches.

On success, the pattern buffer at *preg is initialized. regex is a null-terminated string.
The locale must be the same when running regexec().

After regcomp() succeeds, preg->re_nsub holds the number of subexpressions in regex.
Thus, a value of preg->re_nsub + 1 passed as n to regexec() is sufficient to capture all
matches.

cflags is the bitwise OR of zero or more of the following:

REG_EXTENDED
Use POSIX Extended Regular Expression syntax when interpreting regex. If not
set, POSIX Basic Regular Expression syntax is used.

REG_ICASE
Do not differentiate case. Subsequent regexec() searches using this pattern
buffer will be case insensitive.

Linux man-pages 6.16 2025-09-21 2379

regex(3) Library Functions Manual regex(3)

REG_NOSUB
Report only overall success. regexec() will use only pmatch for REG_STAR-
TEND, ignoring n.

REG_NEWLINE
Match-any-character operators don’t match a newline.

A nonmatching list ([^...]) not containing a newline does not match a newline.

Match-beginning-of-line operator (̂) matches the empty string immediately af-
ter a newline, regardless of whether eflags, the execution flags of regexec(), con-
tains REG_NOTBOL.

Match-end-of-line operator ($) matches the empty string immediately before a
newline, regardless of whether eflags contains REG_NOTEOL.

Matching
regexec() is used to match a null-terminated string against the compiled pattern buffer in
*preg, which must have been initialised with regcomp(). eflags is the bitwise OR of
zero or more of the following flags:

REG_NOTBOL
The match-beginning-of-line operator always fails to match (but see the compila-
tion flag REG_NEWLINE above). This flag may be used when different por-
tions of a string are passed to regexec() and the beginning of the string should
not be interpreted as the beginning of the line.

REG_NOTEOL
The match-end-of-line operator always fails to match (but see the compilation
flag REG_NEWLINE above).

REG_STARTEND
Match [string + pmatch[0].rm_so, string + pmatch[0].rm_eo) instead of [string,
string + strlen(string)). This allows matching embedded NUL bytes and avoids
a strlen(3) on known-length strings. If any matches are returned (REG_NOSUB
wasn’t passed to regcomp(), the match succeeded, and n > 0), they overwrite
pmatch as usual, and the match offsets remain relative to string (not string +
pmatch[0].rm_so). This flag is a BSD extension, not present in POSIX.

Match offsets
Unless REG_NOSUB was passed to regcomp(), it is possible to obtain the locations of
matches within string: regexec() fills n elements of pmatch with results: pmatch[0]
corresponds to the entire match, pmatch[1] to the first subexpression, etc. If there were
more matches than n, they are discarded; if fewer, unused elements of pmatch are filled
with -1s.

Each returned valid (non--1) match corresponds to the range [string + rm_so, string +
rm_eo).

regoff_t is a signed integer type capable of storing the largest value that can be stored in
either an ptrdiff_t type or a ssize_t type.

Linux man-pages 6.16 2025-09-21 2380

regex(3) Library Functions Manual regex(3)

Error reporting
regerror() is used to turn the error codes that can be returned by both regcomp() and
regexec() into error message strings.

If preg isn’t a null pointer, errcode must be the latest error returned from an operation
on preg.

If errbuf_size isn’t 0, up to errbuf_size bytes are copied to errbuf ; the error string is al-
ways null-terminated, and truncated to fit.

Freeing
regfree() deinitializes the pattern buffer at *preg, freeing any associated memory; *preg
must have been initialized via regcomp().

RETURN VALUE
regcomp() returns zero for a successful compilation or an error code for failure.

regexec() returns zero for a successful match or REG_NOMATCH for failure.

regerror() returns the size of the buffer required to hold the string.

ERRORS
The following errors can be returned by regcomp():

REG_BADBR
Invalid use of back reference operator.

REG_BADPAT
Invalid use of pattern operators such as group or list.

REG_BADRPT
Invalid use of repetition operators such as using '*' as the first character.

REG_EBRACE
Un-matched brace interval operators.

REG_EBRACK
Un-matched bracket list operators.

REG_ECOLLATE
Invalid collating element.

REG_ECTYPE
Unknown character class name.

REG_EEND
Nonspecific error. This is not defined by POSIX.

REG_EESCAPE
Trailing backslash.

REG_EPAREN
Un-matched parenthesis group operators.

REG_ERANGE
Invalid use of the range operator; for example, the ending point of the range oc-
curs prior to the starting point.

Linux man-pages 6.16 2025-09-21 2381

regex(3) Library Functions Manual regex(3)

REG_ESIZE
Compiled regular expression requires a pattern buffer larger than 64 kB. This is
not defined by POSIX.

REG_ESPACE
The regex routines ran out of memory.

REG_ESUBREG
Invalid back reference to a subexpression.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeregcomp(), regexec()
Thread safety MT-Safe envregerror()
Thread safety MT-Saferegfree()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Prior to POSIX.1-2008, regoff_t was required to be capable of storing the largest value
that can be stored in either an off_t type or a ssize_t type.

CAVEATS
re_nsub is only required to be initialized if REG_NOSUB wasn’t specified, but all
known implementations initialize it regardless.

Both regex_t and regmatch_t may (and do) have more members, in any order. Always
reference them by name.

EXAMPLES
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <regex.h>

#define NITEMS(arr) (sizeof((arr)) / sizeof((arr)[0]))

static const char *const str =
"1) John Driverhacker;\n2) John Doe;\n3) John Foo;\n";

static const char *const re = "John.*o";

int main(void)
{

static const char *s = str;
regex_t regex;
regmatch_t pmatch[1];
regoff_t off, len;

Linux man-pages 6.16 2025-09-21 2382

regex(3) Library Functions Manual regex(3)

if (regcomp(®ex, re, REG_NEWLINE))
exit(EXIT_FAILURE);

printf("String = \"%s\"\n", str);
printf("Matches:\n");

for (unsigned int i = 0; ; i++) {
if (regexec(®ex, s, NITEMS(pmatch), pmatch, 0))

break;

off = pmatch[0].rm_so + (s - str);
len = pmatch[0].rm_eo - pmatch[0].rm_so;
printf("#%u:\n", i);
printf("offset = %jd; length = %jd\n", (intmax_t) off,

(intmax_t) len);
printf("substring = \"%.*s\"\n", len, s + pmatch[0].rm_so);

s += pmatch[0].rm_eo;
}

exit(EXIT_SUCCESS);
}

SEE ALSO
grep(1), regex(7)

The glibc manual section, Regular Expressions

Linux man-pages 6.16 2025-09-21 2383

remainder(3) Library Functions Manual remainder(3)

NAME
drem, dremf, dreml, remainder, remainderf, remainderl - floating-point remainder func-
tion

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double remainder(double x, double y);
float remainderf(float x, float y);
long double remainderl(long double x, long double y);

/* Obsolete synonyms */
[[deprecated]] double drem(double x, double y);
[[deprecated]] float dremf(float x, float y);
[[deprecated]] long double dreml(long double x, long double y);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

remainder():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

remainderf(), remainderl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

drem(), dremf(), dreml():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions compute the remainder of dividing x by y. The return value is x-n*y,
where n is the value x / y, rounded to the nearest integer. If the absolute value of x-n*y
is 0.5, n is chosen to be even.

These functions are unaffected by the current rounding mode (see fenv(3)).

The drem() function does precisely the same thing.

RETURN VALUE
On success, these functions return the floating-point remainder, x-n*y. If the return
value is 0, it has the sign of x.

If x or y is a NaN, a NaN is returned.

If x is an infinity, and y is not a NaN, a domain error occurs, and a NaN is returned.

If y is zero, and x is not a NaN, a domain error occurs, and a NaN is returned.

Linux man-pages 6.16 2025-05-17 2384

remainder(3) Library Functions Manual remainder(3)

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity and y is not a NaN
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

These functions do not set errno for this case.

Domain error: y is zero
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safedrem(), dremf(), dreml(), remainder(), remainderf(),
remainderl()

STANDARDS
remainder()
remainderf()
remainderl()

C11, POSIX.1-2008.

drem()
dremf()
dreml()

None.

HISTORY
remainder()
remainderf()
remainderl()

C99, POSIX.1-2001.

drem()
4.3BSD.

dremf()
dreml()

Tru64, glibc2.

BUGS
Before glibc 2.15, the call

remainder(nan(""), 0);

returned a NaN, as expected, but wrongly caused a domain error. Since glibc 2.15, a
silent NaN (i.e., no domain error) is returned.

Before glibc 2.15, errno was not set to EDOM for the domain error that occurs when x

Linux man-pages 6.16 2025-05-17 2385

remainder(3) Library Functions Manual remainder(3)

is an infinity and y is not a NaN.

EXAMPLES
The call "remainder(29.0, 3.0)" returns -1.

SEE ALSO
div(3), fmod(3), remquo(3)

Linux man-pages 6.16 2025-05-17 2386

remove(3) Library Functions Manual remove(3)

NAME
remove - remove a file or directory

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int remove(const char *path);

DESCRIPTION
remove() deletes a name from the filesystem. It calls unlink(2) for files, and rmdir(2)
for directories.

If the removed name was the last link to a file and no processes have the file open, the
file is deleted and the space it was using is made available for reuse.

If the name was the last link to a file, but any processes still have the file open, the file
will remain in existence until the last file descriptor referring to it is closed.

If the name referred to a symbolic link, the link is removed.

If the name referred to a socket, FIFO, or device, the name is removed, but processes
which have the object open may continue to use it.

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
The errors that occur are those for unlink(2) and rmdir(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferemove()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, 4.3BSD.

BUGS
Infelicities in the protocol underlying NFS can cause the unexpected disappearance of
files which are still being used.

SEE ALSO
rm(1), unlink(1), link(2), mknod(2), open(2), rename(2), rmdir(2), unlink(2), mkfifo(3),
symlink(7)

Linux man-pages 6.16 2025-05-17 2387

remquo(3) Library Functions Manual remquo(3)

NAME
remquo, remquof, remquol - remainder and part of quotient

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double remquo(double x, double y, int *quo);
float remquof(float x, float y, int *quo);
long double remquol(long double x, long double y, int *quo);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

remquo(), remquof(), remquol():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions compute the remainder and part of the quotient upon division of x by y.
A few bits of the quotient are stored via the quo pointer. The remainder is returned as
the function result.

The value of the remainder is the same as that computed by the remainder(3) function.

The value stored via the quo pointer has the sign of x / y and agrees with the quotient in
at least the low order 3 bits.

For example, remquo(29.0, 3.0) returns -1.0 and might store 2. Note that the actual
quotient might not fit in an integer.

RETURN VALUE
On success, these functions return the same value as the analogous functions described
in remainder(3).

If x or y is a NaN, a NaN is returned.

If x is an infinity, and y is not a NaN, a domain error occurs, and a NaN is returned.

If y is zero, and x is not a NaN, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity or y is 0, and the other argument is not a NaN.
An invalid floating-point exception (FE_INVALID) is raised.

These functions do not set errno.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferemquo(), remquof(), remquol()

Linux man-pages 6.16 2025-09-21 2388

remquo(3) Library Functions Manual remquo(3)

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

SEE ALSO
fmod(3), logb(3), remainder(3)

Linux man-pages 6.16 2025-09-21 2389

resolver(3) Library Functions Manual resolver(3)

NAME
res_ninit, res_nquery, res_nsearch, res_nquerydomain, res_nmkquery, res_nsend,
res_nclose, res_init, res_query, res_search, res_querydomain, res_mkquery, res_send,
dn_comp, dn_expand - resolver routines

LIBRARY
Resolver library (libresolv, -lresolv)

SYNOPSIS
#include <netinet/in.h>
#include <arpa/nameser.h>
#include <resolv.h>

struct __res_state;
typedef struct __res_state *res_state;

int res_ninit(res_state statep);

void res_nclose(res_state statep);

int res_nquery(int anslen;
res_state statep,
const char *dname,
int class, int type,
unsigned char answer[anslen], int anslen);

int res_nsearch(int anslen;
res_state statep,
const char *dname,
int class, int type,
unsigned char answer[anslen], int anslen);

int res_nquerydomain(int anslen;
res_state statep,
const char *name, const char *domain,
int class, int type,
unsigned char answer[anslen], int anslen);

int res_nmkquery(int datalen, int buflen;
res_state statep, int op,
const char *dname,
int class, int type,
const unsigned char data[datalen], int datalen,
const unsigned char *newrr,
unsigned char buf [buflen], int buflen);

int res_nsend(int msglen, int anslen;
res_state statep,
const unsigned char msg[msglen], int msglen,
unsigned char answer[anslen], int anslen);

int dn_comp(int length;
const char *exp_dn,
unsigned char comp_dn[length], int length,

Linux man-pages 6.16 2025-09-07 2390

resolver(3) Library Functions Manual resolver(3)

unsigned char **dnptrs,
unsigned char **lastdnptr);

int dn_expand(int length;
const unsigned char *msg,
const unsigned char *eomorig,
const unsigned char *comp_dn,
char exp_dn[length], int length);

[[deprecated]] extern struct __res_state _res;

[[deprecated]] int res_init(void);

[[deprecated]]
int res_query(int anslen;

const char *dname,
int class, int type,
unsigned char answer[anslen], int anslen);

[[deprecated]]
int res_search(int anslen;

const char *dname,
int class, int type,
unsigned char answer[anslen], int anslen);

[[deprecated]]
int res_querydomain(int anslen;

const char *name, const char *domain,
int class, int type,
unsigned char answer[anslen], int anslen);

[[deprecated]]
int res_mkquery(int datalen, int buflen;

int op,
const char *dname,
int class, int type,
const unsigned char data[datalen], int datalen,
const unsigned char *newrr,
unsigned char buf [buflen], int buflen);

[[deprecated]]
int res_send(int msglen, int anslen;

const unsigned char msg[msglen], int msglen,
unsigned char answer[anslen], int anslen);

DESCRIPTION
Note: This page is incomplete (various resolver functions provided by glibc are not de-
scribed) and likely out of date.

The functions described below make queries to and interpret the responses from Internet
domain name servers.

The API consists of a set of more modern, reentrant functions and an older set of non-
reentrant functions that have been superseded. The traditional resolver interfaces such

Linux man-pages 6.16 2025-09-07 2391

resolver(3) Library Functions Manual resolver(3)

as res_init() and res_query() use some static (global) state stored in the _res structure,
rendering these functions non-thread-safe. BIND 8.2 introduced a set of new interfaces
res_ninit(), res_nquery(), and so on, which take a res_state as their first argument, so
you can use a per-thread resolver state.

The res_ninit() and res_init() functions read the configuration files (see resolv.conf(5))
to get the default domain name and name server address(es). If no server is given, the
local host is tried. If no domain is given, that associated with the local host is used. It
can be overridden with the environment variable LOCALDOMAIN. res_ninit() or
res_init() is normally executed by the first call to one of the other functions. Every call
to res_ninit() requires a corresponding call to res_nclose() to free memory allocated by
res_ninit() and subsequent calls to res_nquery().

The res_nquery() and res_query() functions query the name server for the fully quali-
fied domain name name of specified type and class. The reply is left in the buffer an-
swer of length anslen supplied by the caller.

The res_nsearch() and res_search() functions make a query and waits for the response
like res_nquery() and res_query(), but in addition they implement the default and
search rules controlled by RES_DEFNAMES and RES_DNSRCH (see description of
_res options below).

The res_nquerydomain() and res_querydomain() functions make a query using
res_nquery()/res_query() on the concatenation of name and domain.

The following functions are lower-level routines used by res_nquery()/res_query()

The res_nmkquery() and res_mkquery() functions construct a query message in buf of
length buflen for the domain name dname. The query type op is one of the following
(typically QUERY):

QUERY
Standard query.

IQUERY
Inverse query. This option was removed in glibc 2.26, since it has not been sup-
ported by DNS servers for a very long time.

NS_NOTIFY_OP
Notify secondary of SOA (Start of Authority) change.

newrr is currently unused.

The res_nsend() and res_send() function send a preformatted query given in msg of
length msglen and returns the answer in answer which is of length anslen. They will
call res_ninit()/res_init() if it has not already been called.

The dn_comp() function compresses the domain name exp_dn and stores it in the buffer
comp_dn of length length. The compression uses an array of pointers dnptrs to previ-
ously compressed names in the current message. The first pointer points to the begin-
ning of the message and the list ends with NULL. The limit of the array is specified by
lastdnptr. If dnptr is NULL, domain names are not compressed. If lastdnptr is NULL,
the list of labels is not updated.

The dn_expand() function expands the compressed domain name comp_dn to a full

Linux man-pages 6.16 2025-09-07 2392

resolver(3) Library Functions Manual resolver(3)

domain name, which is placed in the buffer exp_dn of size length. The compressed
name is contained in a query or reply message, and msg points to the beginning of the
message.

The resolver routines use configuration and state information contained in a __res_state
structure (either passed as the statep argument, or in the global variable _res, in the case
of the older nonreentrant functions). The only field of this structure that is normally ma-
nipulated by the user is the options field. This field can contain the bitwise "OR" of the
following options:

RES_INIT
True if res_ninit() or res_init() has been called.

RES_DEBUG
Print debugging messages. This option is available only if glibc was built with
debugging enabled, which is not the default.

RES_AAONLY (unimplemented; deprecated in glibc 2.25)
Accept authoritative answers only. res_send() continues until it finds an authori-
tative answer or returns an error. This option was present but unimplemented
until glibc 2.24; since glibc 2.25, it is deprecated, and its usage produces a warn-
ing.

RES_USEVC
Use TCP connections for queries rather than UDP datagrams.

RES_PRIMARY (unimplemented; deprecated in glibc 2.25)
Query primary domain name server only. This option was present but unimple-
mented until glibc 2.24; since glibc 2.25, it is deprecated, and its usage produces
a warning.

RES_IGNTC
Ignore truncation errors. Don’t retry with TCP.

RES_RECURSE
Set the recursion desired bit in queries. Recursion is carried out by the domain
name server, not by res_send(). [Enabled by default].

RES_DEFNAMES
If set, res_search() will append the default domain name to single component
names—that is, those that do not contain a dot. [Enabled by default].

RES_STAYOPEN
Used with RES_USEVC to keep the TCP connection open between queries.

RES_DNSRCH
If set, res_search() will search for hostnames in the current domain and in parent
domains. This option is used by gethostbyname(3). [Enabled by default].

RES_INSECURE1
Accept a response from a wrong server. This can be used to detect potential se-
curity hazards, but you need to compile glibc with debugging enabled and use
RES_DEBUG option (for debug purpose only).

Linux man-pages 6.16 2025-09-07 2393

resolver(3) Library Functions Manual resolver(3)

RES_INSECURE2
Accept a response which contains a wrong query. This can be used to detect po-
tential security hazards, but you need to compile glibc with debugging enabled
and use RES_DEBUG option (for debug purpose only).

RES_NOALIASES
Disable usage of HOSTALIASES environment variable.

RES_USE_INET6
Try an AAAA query before an A query inside the gethostbyname(3) function,
and map IPv4 responses in IPv6 "tunneled form" if no AAAA records are found
but an A record set exists. Since glibc 2.25, this option is deprecated, and its us-
age produces a warning; applications should use getaddrinfo(3), rather than geth-
ostbyname(3).

RES_ROTATE
Causes round-robin selection of name servers from among those listed. This has
the effect of spreading the query load among all listed servers, rather than having
all clients try the first listed server first every time.

RES_NOCHECKNAME (unimplemented; deprecated in glibc 2.25)
Disable the modern BIND checking of incoming hostnames and mail names for
invalid characters such as underscore (_), non-ASCII, or control characters. This
option was present until glibc 2.24; since glibc 2.25, it is deprecated, and its us-
age produces a warning.

RES_KEEPTSIG (unimplemented; deprecated in glibc 2.25)
Do not strip TSIG records. This option was present but unimplemented until
glibc 2.24; since glibc 2.25, it is deprecated, and its usage produces a warning.

RES_BLAST (unimplemented; deprecated in glibc 2.25)
Send each query simultaneously and recursively to all servers. This option was
present but unimplemented until glibc 2.24; since glibc 2.25, it is deprecated,
and its usage produces a warning.

RES_USEBSTRING (glibc 2.3.4 to glibc 2.24)
Make reverse IPv6 lookups using the bit-label format described in RFC 2673; if
this option is not set (which is the default), then nibble format is used. This op-
tion was removed in glibc 2.25, since it relied on a backward-incompatible DNS
extension that was never deployed on the Internet.

RES_NOIP6DOTINT (glibc 2.24 and earlier)
Use ip6.arpa zone in IPv6 reverse lookup instead of ip6.int, which is deprecated
since glibc 2.3.4. This option is present up to and including glibc 2.24, where it
is enabled by default. In glibc 2.25, this option was removed.

RES_USE_EDNS0 (since glibc 2.6)
Enables support for the DNS extensions (EDNS0) described in RFC 2671.

RES_SNGLKUP (since glibc 2.10)
By default, glibc performs IPv4 and IPv6 lookups in parallel since glibc 2.9.
Some appliance DNS servers cannot handle these queries properly and make the
requests time out. This option disables the behavior and makes glibc perform the

Linux man-pages 6.16 2025-09-07 2394

resolver(3) Library Functions Manual resolver(3)

IPv6 and IPv4 requests sequentially (at the cost of some slowdown of the resolv-
ing process).

RES_SNGLKUPREOP
When RES_SNGLKUP option is enabled, opens a new socket for the each re-
quest.

RES_USE_DNSSEC
Use DNSSEC with OK bit in OPT record. This option implies
RES_USE_EDNS0.

RES_NOTLDQUERY
Do not look up unqualified name as a top-level domain (TLD).

RES_DEFAULT
Default option which implies: RES_RECURSE, RES_DEFNAMES,
RES_DNSRCH, and RES_NOIP6DOTINT.

RETURN VALUE
The res_ninit() and res_init() functions return 0 on success, or -1 if an error occurs.

The res_nquery(), res_query(), res_nsearch(), res_search(), res_nquerydomain(),
res_querydomain(), res_nmkquery(), res_mkquery(), res_nsend(), and res_send()
functions return the length of the response, or -1 if an error occurs.

The dn_comp() and dn_expand() functions return the length of the compressed name,
or -1 if an error occurs.

In the case of an error return from res_nquery(), res_query(), res_nsearch(),
res_search(), res_nquerydomain(), or res_querydomain(), the global variable h_er-
rno (see gethostbyname(3)) can be consulted to determine the error.

FILES
/etc/resolv.conf

resolver configuration file

/etc/host.conf
resolver configuration file

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeres_ninit(), res_nclose(), res_nquery(),
res_nsearch(), res_nquerydomain(),
res_nsend()

Thread safety MT-Saferes_nmkquery(), dn_comp(), dn_expand()

STANDARDS
None.

HISTORY
4.3BSD.

Linux man-pages 6.16 2025-09-07 2395

resolver(3) Library Functions Manual resolver(3)

SEE ALSO
gethostbyname(3), resolv.conf(5), resolver(5), hostname(7), named(8)

The GNU C library source file resolv/README.

Linux man-pages 6.16 2025-09-07 2396

rewinddir(3) Library Functions Manual rewinddir(3)

NAME
rewinddir - reset directory stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/types.h>
#include <dirent.h>

void rewinddir(DIR *dirp);

DESCRIPTION
The rewinddir() function resets the position of the directory stream dirp to the begin-
ning of the directory.

RETURN VALUE
The rewinddir() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferewinddir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
closedir(3), opendir(3), readdir(3), scandir(3), seekdir(3), telldir(3)

Linux man-pages 6.16 2025-05-17 2397

rexec(3) Library Functions Manual rexec(3)

NAME
rexec, rexec_af - return stream to a remote command

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

[[deprecated]]
int rexec(char **restrict ahost, int inport,

const char *restrict user, const char *restrict passwd ,
const char *restrict cmd , int *restrict fd2p);

[[deprecated]]
int rexec_af(char **restrict ahost, int inport,

const char *restrict user, const char *restrict passwd ,
const char *restrict cmd , int *restrict fd2p,
sa_family_t af);

rexec(), rexec_af():
Since glibc 2.19:

_DEFAULT_SOURCE
In glibc up to and including 2.19:

_BSD_SOURCE

DESCRIPTION
This interface is obsoleted by rcmd(3).

The rexec() function looks up the host *ahost using gethostbyname(3), returning -1 if
the host does not exist. Otherwise, *ahost is set to the standard name of the host. If a
username and password are both specified, then these are used to authenticate to the for-
eign host; otherwise, the environment and then the .netrc file in user’s home directory
are searched for appropriate information. If all this fails, the user is prompted for the in-
formation.

The port inport specifies which well-known DARPA Internet port to use for the connec-
tion; the call getservbyname("exec", "tcp") (see getservent(3)) will return a pointer to a
structure that contains the necessary port. The protocol for connection is described in
detail in rexecd(8)

If the connection succeeds, a socket in the Internet domain of type SOCK_STREAM is
returned to the caller, and given to the remote command as stdin and stdout. If fd2p is
nonzero, then an auxiliary channel to a control process will be setup, and a file descrip-
tor for it will be placed in *fd2p. The control process will return diagnostic output from
the command (unit 2) on this channel, and will also accept bytes on this channel as be-
ing UNIX signal numbers, to be forwarded to the process group of the command. The
diagnostic information returned does not include remote authorization failure, as the
secondary connection is set up after authorization has been verified. If fd2p is 0, then
the stderr (unit 2 of the remote command) will be made the same as the stdout and no
provision is made for sending arbitrary signals to the remote process, although you may
be able to get its attention by using out-of-band data.

Linux man-pages 6.16 2025-09-21 2398

rexec(3) Library Functions Manual rexec(3)

rexec_af()
The rexec() function works over IPv4 (AF_INET). By contrast, the rexec_af() function
provides an extra argument, af , that allows the caller to select the protocol. This argu-
ment can be specified as AF_INET, AF_INET6, or AF_UNSPEC (to allow the imple-
mentation to select the protocol).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsaferexec(), rexec_af()

STANDARDS
None.

HISTORY
rexec()

4.2BSD, BSD, Solaris.

rexec_af()
glibc 2.2.

BUGS
The rexec() function sends the unencrypted password across the network.

The underlying service is considered a big security hole, and therefore, not enabled on
many sites; see rexecd(8) for explanations.

SEE ALSO
rcmd(3), rexecd(8)

Linux man-pages 6.16 2025-09-21 2399

rint(3) Library Functions Manual rint(3)

NAME
nearbyint, nearbyintf, nearbyintl, rint, rintf, rintl - round to nearest integer

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double nearbyint(double x);
float nearbyintf(float x);
long double nearbyintl(long double x);

double rint(double x);
float rintf(float x);
long double rintl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

nearbyint(), nearbyintf(), nearbyintl():
_POSIX_C_SOURCE >= 200112L || _ISOC99_SOURCE

rint():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| _XOPEN_SOURCE >= 500
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

rintf(), rintl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The nearbyint(), nearbyintf(), and nearbyintl() functions round their argument to an
integer value in floating-point format, using the current rounding direction (see fes-
etround(3)) and without raising the inexact exception. When the current rounding direc-
tion is to nearest, these functions round halfway cases to the even integer in accordance
with IEEE-754.

The rint(), rintf(), and rintl() functions do the same, but will raise the inexact exception
(FE_INEXACT, checkable via fetestexcept(3)) when the result differs in value from the
argument.

RETURN VALUE
These functions return the rounded integer value.

If x is integral, +0, -0, NaN, or infinite, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 2400

rint(3) Library Functions Manual rint(3)

Interface Attribute Value
Thread safety MT-Safenearbyint(), nearbyintf(), nearbyintl(), rint(), rintf(),

rintl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

SUSv2 and POSIX.1-2001 contain text about overflow (which might set errno to
ERANGE, or raise an FE_OVERFLOW exception). In practice, the result cannot
overflow on any current machine, so this error-handling stuff was just nonsense. (More
precisely, overflow can happen only when the maximum value of the exponent is smaller
than the number of mantissa bits. For the IEEE-754 standard 32-bit and 64-bit floating-
point numbers the maximum value of the exponent is 127 (respectively, 1023), and the
number of mantissa bits including the implicit bit is 24 (respectively, 53).) This was re-
moved in POSIX.1-2008.

If you want to store the rounded value in an integer type, you probably want to use one
of the functions described in lrint(3) instead.

SEE ALSO
ceil(3), floor(3), lrint(3), round(3), trunc(3)

Linux man-pages 6.16 2025-05-17 2401

__riscv_flush_icache(3) Library Functions Manual __riscv_flush_icache(3)

NAME
__riscv_flush_icache - Flush icaches on RISC-V

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/cachectl.h>

int __riscv_flush_icache(void *start, void *end, unsigned long flags);

DESCRIPTION
__riscv_flush_icache() enforces ordering between stores and instruction cache fetches.

The range of addresses over which ordering is enforced is specified by start and end .

The flags argument controls the extent of this ordering, with the default behavior (a
flags value of 0) being to enforce the fence on all threads in the current process. Setting
the SYS_RISCV_FLUSH_ICACHE_LOCAL bit allows users to indicate that enforc-
ing ordering on only the current thread is necessary. All other flag bits are reserved.

STANDARDS
Linux on RISC-V.

HISTORY
Linux 4.15. glibc 2.27.

SEE ALSO
syscall(2)

Linux man-pages 6.16 2025-05-17 2402

round(3) Library Functions Manual round(3)

NAME
round, roundf, roundl - round to nearest integer, away from zero

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double round(double x);
float roundf(float x);
long double roundl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

round(), roundf(), roundl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round x to the nearest integer, but round halfway cases away from zero
(regardless of the current rounding direction, see fenv(3)), instead of to the nearest even
integer like rint(3).

For example, round(0.5) is 1.0, and round(-0.5) is -1.0.

RETURN VALUE
These functions return the rounded integer value.

If x is integral, +0, -0, NaN, or infinite, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Saferound(), roundf(), roundl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

POSIX.1-2001 contains text about overflow (which might set errno to ERANGE, or
raise an FE_OVERFLOW exception). In practice, the result cannot overflow on any
current machine, so this error-handling stuff was just nonsense. (More precisely, over-
flow can happen only when the maximum value of the exponent is smaller than the num-
ber of mantissa bits. For the IEEE-754 standard 32-bit and 64-bit floating-point num-
bers the maximum value of the exponent is 127 (respectively, 1023), and the number of
mantissa bits including the implicit bit is 24 (respectively, 53).) This was removed in
POSIX.1-2008.

If you want to store the rounded value in an integer type, you probably want to use one
of the functions described in lround(3) instead.

Linux man-pages 6.16 2025-05-17 2403

round(3) Library Functions Manual round(3)

SEE ALSO
ceil(3), floor(3), lround(3), nearbyint(3), rint(3), trunc(3)

Linux man-pages 6.16 2025-05-17 2404

roundup(3) Library Functions Manual roundup(3)

NAME
roundup - round up in steps

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/param.h>

roundup(x, step);

DESCRIPTION
This macro rounds x to the nearest multiple of step that is not less than x.

It is typically used for rounding up a pointer to align it or increasing a buffer to be allo-
cated.

This API is not designed to be generic, and doesn’t work in some cases that are not im-
portant for the typical use cases described above. See CAVEATS.

RETURN VALUE
This macro returns the rounded value.

STANDARDS
None.

CAVEATS
The arguments may be evaluated more than once.

x should be nonnegative, and step should be positive.

If x + step would overflow or wrap around, the behavior is undefined.

SEE ALSO
ceil(3), floor(3), lrint(3), rint(3), lround(3), round(3)

Linux man-pages 6.16 2025-05-17 2405

rpc(3) Library Functions Manual rpc(3)

NAME
rpc - library routines for remote procedure calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS AND DESCRIPTION
These routines allow C programs to make procedure calls on other machines across the
network. First, the client calls a procedure to send a data packet to the server. Upon re-
ceipt of the packet, the server calls a dispatch routine to perform the requested service,
and then sends back a reply. Finally, the procedure call returns to the client.

To take use of these routines, include the header file <rpc/rpc.h>.

The prototypes below make use of the following types:

typedef int bool_t;

typedef typeof(bool_t (XDR *, void *, ...)) *xdrproc_t;

typedef typeof(bool_t (caddr_t resp, struct sockaddr_in *raddr)
*resultproc_t;

See the header files for the declarations of the AUTH , CLIENT , SVCXPRT , and XDR
types.

void auth_destroy(AUTH *auth);

A macro that destroys the authentication information associated with auth. De-
struction usually involves deallocation of private data structures. The use of auth
is undefined after calling auth_destroy().

AUTH *authnone_create(void);

Create and return an RPC authentication handle that passes nonusable authenti-
cation information with each remote procedure call. This is the default authenti-
cation used by RPC.

AUTH *authunix_create(char *host, uid_t uid , gid_t gid ,
int n, gid_t aup_gids[n]);

Create and return an RPC authentication handle that contains authentication in-
formation. The parameter host is the name of the machine on which the infor-
mation was created; uid is the user’s user ID; gid is the user’s current group ID;
n and aup_gids refer to a counted array of groups to which the user belongs. It
is easy to impersonate a user.

AUTH *authunix_create_default(void);

Calls authunix_create() with the appropriate parameters.

int callrpc(char *host, unsigned long prognum,
unsigned long versnum, unsigned long procnum,
xdrproc_t inproc, const char *in,
xdrproc_t outproc, char *out);

Linux man-pages 6.16 2025-09-21 2406

rpc(3) Library Functions Manual rpc(3)

Call the remote procedure associated with prognum, versnum, and procnum on
the machine, host. The parameter in is the address of the procedure’s argu-
ment(s), and out is the address of where to place the result(s); inproc is used to
encode the procedure’s parameters, and outproc is used to decode the proce-
dure’s results. This routine returns zero if it succeeds, or the value of enum
clnt_stat cast to an integer if it fails. The routine clnt_perrno() is handy for
translating failure statuses into messages.

Warning: calling remote procedures with this routine uses UDP/IP as a transport;
see clntudp_create() for restrictions. You do not have control of timeouts or au-
thentication using this routine.

enum clnt_stat clnt_broadcast(unsigned long prognum,
unsigned long versnum, unsigned long procnum,
xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out,
resultproc_t eachresult);

Like callrpc(), except the call message is broadcast to all locally connected
broadcast nets. Each time it receives a response, this routine calls eachresult(),
whose form is:

eachresult(char *out, struct sockaddr_in *addr);

where out is the same as out passed to clnt_broadcast(), except that the remote
procedure’s output is decoded there; addr points to the address of the machine
that sent the results. If eachresult() returns zero, clnt_broadcast() waits for
more replies; otherwise it returns with appropriate status.

Warning: broadcast sockets are limited in size to the maximum transfer unit of
the data link. For ethernet, this value is 1500 bytes.

enum clnt_stat clnt_call(CLIENT *clnt, unsigned long procnum,
xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out,
struct timeval tout);

A macro that calls the remote procedure procnum associated with the client han-
dle, clnt, which is obtained with an RPC client creation routine such as clnt_cre-
ate(). The parameter in is the address of the procedure’s argument(s), and out is
the address of where to place the result(s); inproc is used to encode the proce-
dure’s parameters, and outproc is used to decode the procedure’s results; tout is
the time allowed for results to come back.

clnt_destroy(CLIENT *clnt);

A macro that destroys the client’s RPC handle. Destruction usually involves
deallocation of private data structures, including clnt itself. Use of clnt is unde-
fined after calling clnt_destroy(). If the RPC library opened the associated
socket, it will close it also. Otherwise, the socket remains open.

CLIENT *clnt_create(const char *host, unsigned long prog,
unsigned long vers, const char *proto);

Linux man-pages 6.16 2025-09-21 2407

rpc(3) Library Functions Manual rpc(3)

Generic client creation routine. host identifies the name of the remote host
where the server is located. proto indicates which kind of transport protocol to
use. The currently supported values for this field are “udp” and “tcp”. Default
timeouts are set, but can be modified using clnt_control().

Warning: using UDP has its shortcomings. Since UDP-based RPC messages can
hold only up to 8 Kbytes of encoded data, this transport cannot be used for pro-
cedures that take large arguments or return huge results.

bool_t clnt_control(CLIENT *cl, int req, char *info);

A macro used to change or retrieve various information about a client object.
req indicates the type of operation, and info is a pointer to the information. For
both UDP and TCP, the supported values of req and their argument types and
what they do are:

CLSET_TIMEOUT struct timeval // set total timeout
CLGET_TIMEOUT struct timeval // get total timeout

Note: if you set the timeout using clnt_control(), the timeout parameter passed
to clnt_call() will be ignored in all future calls.

CLGET_SERVER_ADDR struct sockaddr_in
// get server's address

The following operations are valid for UDP only:

CLSET_RETRY_TIMEOUT struct timeval // set the retry timeout
CLGET_RETRY_TIMEOUT struct timeval // get the retry timeout

The retry timeout is the time that "UDP RPC" waits for the server to reply before
retransmitting the request.

clnt_freeres(CLIENT * clnt, xdrproc_t outproc, char *out);

A macro that frees any data allocated by the RPC/XDR system when it decoded
the results of an RPC call. The parameter out is the address of the results, and
outproc is the XDR routine describing the results. This routine returns one if the
results were successfully freed, and zero otherwise.

void clnt_geterr(CLIENT *clnt, struct rpc_err *errp);

A macro that copies the error structure out of the client handle to the structure at
address errp.

void clnt_pcreateerror(const char *s);

Print a message to standard error indicating why a client RPC handle could not
be created. The message is prepended with string s and a colon. Used when a
clnt_create(), clntraw_create(), clnttcp_create(), or clntudp_create() call
fails.

void clnt_perrno(enum clnt_stat stat);

Print a message to standard error corresponding to the condition indicated by
stat. Used after callrpc().

clnt_perror(CLIENT *clnt, const char *s);

Linux man-pages 6.16 2025-09-21 2408

rpc(3) Library Functions Manual rpc(3)

Print a message to standard error indicating why an RPC call failed; clnt is the
handle used to do the call. The message is prepended with string s and a colon.
Used after clnt_call().

char *clnt_spcreateerror(const char *s);

Like clnt_pcreateerror(), except that it returns a string instead of printing to the
standard error.

Bugs: returns pointer to static data that is overwritten on each call.

char *clnt_sperrno(enum clnt_stat stat);

Take the same arguments as clnt_perrno(), but instead of sending a message to
the standard error indicating why an RPC call failed, return a pointer to a string
which contains the message. The string ends with a NEWLINE.

clnt_sperrno() is used instead of clnt_perrno() if the program does not have a
standard error (as a program running as a server quite likely does not), or if the
programmer does not want the message to be output with printf(3), or if a mes-
sage format different than that supported by clnt_perrno() is to be used. Note:
unlike clnt_sperror() and clnt_spcreateerror(), clnt_sperrno() returns pointer
to static data, but the result will not get overwritten on each call.

char *clnt_sperror(CLIENT *rpch, const char *s);

Like clnt_perror(), except that (like clnt_sperrno()) it returns a string instead of
printing to standard error.

Bugs: returns pointer to static data that is overwritten on each call.

CLIENT *clntraw_create(unsigned long prognum, unsigned long versnum);

This routine creates a toy RPC client for the remote program prognum, version
versnum. The transport used to pass messages to the service is actually a buffer
within the process’s address space, so the corresponding RPC server should live
in the same address space; see svcraw_create(). This allows simulation of RPC
and acquisition of RPC overheads, such as round trip times, without any kernel
interference. This routine returns NULL if it fails.

CLIENT *clnttcp_create(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
int *sockp, unsigned int sendsz, unsigned int recvsz);

This routine creates an RPC client for the remote program prognum, version ver-
snum; the client uses TCP/IP as a transport. The remote program is located at
Internet address *addr. If addr->sin_port is zero, then it is set to the actual
port that the remote program is listening on (the remote portmap service is con-
sulted for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. Since
TCP-based RPC uses buffered I/O, the user may specify the size of the send and
receive buffers with the parameters sendsz and recvsz; values of zero choose
suitable defaults. This routine returns NULL if it fails.

CLIENT *clntudp_create(struct sockaddr_in *addr,

Linux man-pages 6.16 2025-09-21 2409

rpc(3) Library Functions Manual rpc(3)

unsigned long prognum, unsigned long versnum,
struct timeval wait, int *sockp);

This routine creates an RPC client for the remote program prognum, version ver-
snum; the client uses use UDP/IP as a transport. The remote program is located
at Internet address addr. If addr->sin_port is zero, then it is set to actual port
that the remote program is listening on (the remote portmap service is consulted
for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. The UDP
transport resends the call message in intervals of wait time until a response is re-
ceived or until the call times out. The total time for the call to time out is speci-
fied by clnt_call().

Warning: since UDP-based RPC messages can hold only up to 8 Kbytes of en-
coded data, this transport cannot be used for procedures that take large argu-
ments or return huge results.

CLIENT *clntudp_bufcreate(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
struct timeval wait, int *sockp,
unsigned int sendsize, unsigned int recosize);

This routine creates an RPC client for the remote program prognum, on ver-
snum; the client uses use UDP/IP as a transport. The remote program is located
at Internet address addr. If addr->sin_port is zero, then it is set to actual port
that the remote program is listening on (the remote portmap service is consulted
for this information). The parameter sockp is a socket; if it is
RPC_ANYSOCK, then this routine opens a new one and sets sockp. The UDP
transport resends the call message in intervals of wait time until a response is re-
ceived or until the call times out. The total time for the call to time out is speci-
fied by clnt_call().

This allows the user to specify the maximum packet size for sending and receiv-
ing UDP-based RPC messages.

void get_myaddress(struct sockaddr_in *addr);

Stuff the machine’s IP address into *addr, without consulting the library routines
that deal with /etc/hosts. The port number is always set to htons(PMAP-
PORT).

struct pmaplist *pmap_getmaps(struct sockaddr_in *addr);

A user interface to the portmap service, which returns a list of the current RPC
program-to-port mappings on the host located at IP address *addr. This routine
can return NULL. The command rpcinfo -p uses this routine.

unsigned short pmap_getport(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
unsigned int protocol);

A user interface to the portmap service, which returns the port number on which
waits a service that supports program number prognum, version versnum, and
speaks the transport protocol associated with protocol. The value of protocol is

Linux man-pages 6.16 2025-09-21 2410

rpc(3) Library Functions Manual rpc(3)

most likely IPPROTO_UDP or IPPROTO_TCP. A return value of zero means
that the mapping does not exist or that the RPC system failed to contact the re-
mote portmap service. In the latter case, the global variable rpc_createerr con-
tains the RPC status.

enum clnt_stat pmap_rmtcall(struct sockaddr_in *addr,
unsigned long prognum, unsigned long versnum,
unsigned long procnum,
xdrproc_t inproc, char *in,
xdrproc_t outproc, char *out,
struct timeval tout, unsigned long *portp);

A user interface to the portmap service, which instructs portmap on the host at
IP address *addr to make an RPC call on your behalf to a procedure on that host.
The parameter *portp will be modified to the program’s port number if the pro-
cedure succeeds. The definitions of other parameters are discussed in callrpc()
and clnt_call(). This procedure should be used for a “ping” and nothing else.
See also clnt_broadcast().

bool_t pmap_set(unsigned long prognum, unsigned long versnum,
int protocol, unsigned short port);

A user interface to the portmap service, which establishes a mapping between
the triple [prognum,versnum,protocol] and port on the machine’s portmap ser-
vice. The value of protocol is most likely IPPROTO_UDP or IP-
PROTO_TCP. This routine returns one if it succeeds, zero otherwise. Auto-
matically done by svc_register().

bool_t pmap_unset(unsigned long prognum, unsigned long versnum);

A user interface to the portmap service, which destroys all mapping between the
triple [prognum,versnum,*] and ports on the machine’s portmap service. This
routine returns one if it succeeds, zero otherwise.

int registerrpc(unsigned long prognum, unsigned long versnum,
unsigned long procnum, typeof(char *(char *)) *procname,
xdrproc_t inproc, xdrproc_t outproc);

Register procedure procname with the RPC service package. If a request arrives
for program prognum, version versnum, and procedure procnum, procname is
called with a pointer to its parameter(s); procname should return a pointer to its
static result(s); inproc is used to decode the parameters while outproc is used to
encode the results. This routine returns zero if the registration succeeded, -1
otherwise.

Warning: remote procedures registered in this form are accessed using the
UDP/IP transport; see svcudp_create() for restrictions.

struct rpc_createerr rpc_createerr;

A global variable whose value is set by any RPC client creation routine that does
not succeed. Use the routine clnt_pcreateerror() to print the reason why.

void svc_destroy(SVCXPRT *xprt);

Linux man-pages 6.16 2025-09-21 2411

rpc(3) Library Functions Manual rpc(3)

A macro that destroys the RPC service transport handle, xprt. Destruction usu-
ally involves deallocation of private data structures, including xprt itself. Use of
xprt is undefined after calling this routine.

fd_set svc_fdset;

A global variable reflecting the RPC service side’s read file descriptor bit mask;
it is suitable as a parameter to the select(2) system call. This is of interest only if
a service implementor does their own asynchronous event processing, instead of
calling svc_run(). This variable is read-only (do not pass its address to
select(2)!), yet it may change after calls to svc_getreqset() or any creation rou-
tines.

int svc_fds;

Similar to svc_fdset, but limited to 32 file descriptors. This interface is obso-
leted by svc_fdset.

svc_freeargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

A macro that frees any data allocated by the RPC/XDR system when it decoded
the arguments to a service procedure using svc_getargs(). This routine returns 1
if the results were successfully freed, and zero otherwise.

svc_getargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

A macro that decodes the arguments of an RPC request associated with the RPC
service transport handle, xprt. The parameter in is the address where the argu-
ments will be placed; inproc is the XDR routine used to decode the arguments.
This routine returns one if decoding succeeds, and zero otherwise.

struct sockaddr_in *svc_getcaller(SVCXPRT *xprt);

The approved way of getting the network address of the caller of a procedure as-
sociated with the RPC service transport handle, xprt.

void svc_getreqset(fd_set *rdfds);

This routine is of interest only if a service implementor does not call svc_run(),
but instead implements custom asynchronous event processing. It is called when
the select(2) system call has determined that an RPC request has arrived on some
RPC socket(s); rdfds is the resultant read file descriptor bit mask. The routine
returns when all sockets associated with the value of rdfds have been serviced.

void svc_getreq(int rdfds);

Similar to svc_getreqset(), but limited to 32 file descriptors. This interface is
obsoleted by svc_getreqset().

bool_t svc_register(SVCXPRT *xprt, unsigned long prognum,
unsigned long versnum,
typeof(void (struct svc_req *, SVCXPRT *)) *dispatch,
unsigned long protocol);

Associates prognum and versnum with the service dispatch procedure, dispatch.
If protocol is zero, the service is not registered with the portmap service. If
protocol is nonzero, then a mapping of the triple [prognum,versnum,protocol]

Linux man-pages 6.16 2025-09-21 2412

rpc(3) Library Functions Manual rpc(3)

to xprt->xp_port is established with the local portmap service (generally pro-
tocol is zero, IPPROTO_UDP or IPPROTO_TCP). The procedure dispatch
has the following form:

dispatch(struct svc_req *request, SVCXPRT *xprt);

The svc_register() routine returns one if it succeeds, and zero otherwise.

void svc_run(void);

This routine never returns. It waits for RPC requests to arrive, and calls the ap-
propriate service procedure using svc_getreq() when one arrives. This proce-
dure is usually waiting for a select(2) system call to return.

bool_t svc_sendreply(SVCXPRT *xprt, xdrproc_t outproc, char *out);

Called by an RPC service’s dispatch routine to send the results of a remote pro-
cedure call. The parameter xprt is the request’s associated transport handle; out-
proc is the XDR routine which is used to encode the results; and out is the ad-
dress of the results. This routine returns one if it succeeds, zero otherwise.

void svc_unregister(unsigned long prognum, unsigned long versnum);

Remove all mapping of the double [prognum,versnum] to dispatch routines, and
of the triple [prognum,versnum,*] to port number.

void svcerr_auth(SVCXPRT *xprt, enum auth_stat why);

Called by a service dispatch routine that refuses to perform a remote procedure
call due to an authentication error.

void svcerr_decode(SVCXPRT *xprt);

Called by a service dispatch routine that cannot successfully decode its parame-
ters. See also svc_getargs().

void svcerr_noproc(SVCXPRT *xprt);

Called by a service dispatch routine that does not implement the procedure num-
ber that the caller requests.

void svcerr_noprog(SVCXPRT *xprt);

Called when the desired program is not registered with the RPC package. Ser-
vice implementors usually do not need this routine.

void svcerr_progvers(SVCXPRT *xprt, unsigned long low_vers,
unsigned long high_vers);

Called when the desired version of a program is not registered with the RPC
package. Service implementors usually do not need this routine.

void svcerr_systemerr(SVCXPRT *xprt);

Called by a service dispatch routine when it detects a system error not covered
by any particular protocol. For example, if a service can no longer allocate stor-
age, it may call this routine.

void svcerr_weakauth(SVCXPRT *xprt);

Linux man-pages 6.16 2025-09-21 2413

rpc(3) Library Functions Manual rpc(3)

Called by a service dispatch routine that refuses to perform a remote procedure
call due to insufficient authentication parameters. The routine calls
svcerr_auth(xprt, AUTH_TOOWEAK).

SVCXPRT *svcfd_create(int fd , unsigned int sendsize,
unsigned int recvsize);

Create a service on top of any open file descriptor. Typically, this file descriptor
is a connected socket for a stream protocol such as TCP. sendsize and recvsize
indicate sizes for the send and receive buffers. If they are zero, a reasonable de-
fault is chosen.

SVCXPRT *svcraw_create(void);

This routine creates a toy RPC service transport, to which it returns a pointer.
The transport is really a buffer within the process’s address space, so the corre-
sponding RPC client should live in the same address space; see clntraw_cre-
ate(). This routine allows simulation of RPC and acquisition of RPC overheads
(such as round trip times), without any kernel interference. This routine returns
NULL if it fails.

SVCXPRT *svctcp_create(int sock, unsigned int send_buf_size,
unsigned int recv_buf_size);

This routine creates a TCP/IP-based RPC service transport, to which it returns a
pointer. The transport is associated with the socket sock, which may be
RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local TCP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport’s socket descriptor, and
xprt->xp_port is the transport’s port number. This routine returns NULL if it
fails. Since TCP-based RPC uses buffered I/O, users may specify the size of
buffers; values of zero choose suitable defaults.

SVCXPRT *svcudp_bufcreate(int sock, unsigned int sendsize,
unsigned int recosize);

This routine creates a UDP/IP-based RPC service transport, to which it returns a
pointer. The transport is associated with the socket sock, which may be
RPC_ANYSOCK, in which case a new socket is created. If the socket is not
bound to a local UDP port, then this routine binds it to an arbitrary port. Upon
completion, xprt->xp_sock is the transport’s socket descriptor, and
xprt->xp_port is the transport’s port number. This routine returns NULL if it
fails.

This allows the user to specify the maximum packet size for sending and receiv-
ing UDP-based RPC messages.

SVCXPRT *svcudp_create(int sock);

This call is equivalent to svcudp_bufcreate(sock,SZ,SZ) for some default size SZ .

bool_t xdr_accepted_reply(XDR *xdrs, struct accepted_reply *ar);

Used for encoding RPC reply messages. This routine is useful for users who
wish to generate RPC-style messages without using the RPC package.

Linux man-pages 6.16 2025-09-21 2414

rpc(3) Library Functions Manual rpc(3)

bool_t xdr_authunix_parms(XDR *xdrs, struct authunix_parms *aupp);

Used for describing UNIX credentials. This routine is useful for users who wish
to generate these credentials without using the RPC authentication package.

void xdr_callhdr(XDR *xdrs, struct rpc_msg *chdr);

Used for describing RPC call header messages. This routine is useful for users
who wish to generate RPC-style messages without using the RPC package.

bool_t xdr_callmsg(XDR *xdrs, struct rpc_msg *cmsg);

Used for describing RPC call messages. This routine is useful for users who
wish to generate RPC-style messages without using the RPC package.

bool_t xdr_opaque_auth(XDR *xdrs, struct opaque_auth *ap);

Used for describing RPC authentication information messages. This routine is
useful for users who wish to generate RPC-style messages without using the
RPC package.

bool_t xdr_pmap(XDR *xdrs, struct pmap *regs);

Used for describing parameters to various portmap procedures, externally. This
routine is useful for users who wish to generate these parameters without using
the pmap interface.

bool_t xdr_pmaplist(XDR *xdrs, struct pmaplist **rp);

Used for describing a list of port mappings, externally. This routine is useful for
users who wish to generate these parameters without using the pmap interface.

bool_t xdr_rejected_reply(XDR *xdrs, struct rejected_reply *rr);

Used for describing RPC reply messages. This routine is useful for users who
wish to generate RPC-style messages without using the RPC package.

bool_t xdr_replymsg(XDR *xdrs, struct rpc_msg *rmsg);

Used for describing RPC reply messages. This routine is useful for users who
wish to generate RPC style messages without using the RPC package.

void xprt_register(SVCXPRT *xprt);

After RPC service transport handles are created, they should register themselves
with the RPC service package. This routine modifies the global variable svc_fds.
Service implementors usually do not need this routine.

void xprt_unregister(SVCXPRT *xprt);

Before an RPC service transport handle is destroyed, it should unregister itself
with the RPC service package. This routine modifies the global variable svc_fds.
Service implementors usually do not need this routine.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 2415

rpc(3) Library Functions Manual rpc(3)

Interface Attribute Value
Thread safety MT-Safeauth_destroy(), authnone_create(),

authunix_create(), authunix_create_default(),
callrpc(), clnt_broadcast(), clnt_call(), clnt_destroy(),
clnt_create(), clnt_control(), clnt_freeres(),
clnt_geterr(), clnt_pcreateerror(), clnt_perrno(),
clnt_perror(), clnt_spcreateerror(), clnt_sperrno(),
clnt_sperror(), clntraw_create(), clnttcp_create(),
clntudp_create(), clntudp_bufcreate(),
get_myaddress(), pmap_getmaps(), pmap_getport(),
pmap_rmtcall(), pmap_set(), pmap_unset(),
registerrpc(), svc_destroy(), svc_freeargs(),
svc_getargs(), svc_getcaller(), svc_getreqset(),
svc_getreq(), svc_register(), svc_run(),
svc_sendreply(), svc_unregister(), svcerr_auth(),
svcerr_decode(), svcerr_noproc(), svcerr_noprog(),
svcerr_progvers(), svcerr_systemerr(),
svcerr_weakauth(), svcfd_create(), svcraw_create(),
svctcp_create(), svcudp_bufcreate(),
svcudp_create(), xdr_accepted_reply(),
xdr_authunix_parms(), xdr_callhdr(),
xdr_callmsg(), xdr_opaque_auth(), xdr_pmap(),
xdr_pmaplist(), xdr_rejected_reply(),
xdr_replymsg(), xprt_register(), xprt_unregister()

SEE ALSO
xdr(3)

The following manuals:
Remote Procedure Calls: Protocol Specification
Remote Procedure Call Programming Guide
rpcgen Programming Guide

RPC: Remote Procedure Call Protocol Specification, RFC 1050, Sun Microsystems,
Inc., USC-ISI.

Linux man-pages 6.16 2025-09-21 2416

rpmatch(3) Library Functions Manual rpmatch(3)

NAME
rpmatch - determine if the answer to a question is affirmative or negative

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int rpmatch(const char *response);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

rpmatch():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_SVID_SOURCE

DESCRIPTION
rpmatch() handles a user response to yes or no questions, with support for internation-
alization.

response should be a null-terminated string containing a user-supplied response, perhaps
obtained with fgets(3) or getline(3).

The user’s language preference is taken into account per the environment variables
LANG, LC_MESSAGES, and LC_ALL, if the program has called setlocale(3) to ef-
fect their changes.

Regardless of the locale, responses matching ^[Yy] are always accepted as affirmative,
and those matching ^[Nn] are always accepted as negative.

RETURN VALUE
After examining response, rpmatch() returns 0 for a recognized negative response
("no"), 1 for a recognized positive response ("yes"), and -1 when the value of response
is unrecognized.

ERRORS
A return value of -1 may indicate either an invalid input, or some other error. It is in-
correct to only test if the return value is nonzero.

rpmatch() can fail for any of the reasons that regcomp(3) or regexec(3) can fail; the er-
ror is not available from errno or anywhere else, but indicates a failure of the regex en-
gine (but this case is indistinguishable from that of an unrecognized value of response).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localerpmatch()

STANDARDS
None.

Linux man-pages 6.16 2025-09-21 2417

rpmatch(3) Library Functions Manual rpmatch(3)

HISTORY
GNU, FreeBSD, AIX.

BUGS
The YESEXPR and NOEXPR of some locales (including "C") only inspect the first
character of the response. This can mean that "yno" et al. resolve to 1. This is an unfor-
tunate historical side-effect which should be fixed in time with proper localisation, and
should not deter from rpmatch() being the proper way to distinguish between binary an-
swers.

EXAMPLES
The following program displays the results when rpmatch() is applied to the string
given in the program’s command-line argument.

#define _DEFAULT_SOURCE
#include <locale.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

if (argc != 2 || strcmp(argv[1], "--help") == 0) {
fprintf(stderr, "%s response\n", argv[0]);
exit(EXIT_FAILURE);

}

setlocale(LC_ALL, "");
printf("rpmatch() returns: %d\n", rpmatch(argv[1]));
exit(EXIT_SUCCESS);

}

SEE ALSO
fgets(3), getline(3), nl_langinfo(3), regcomp(3), setlocale(3)

Linux man-pages 6.16 2025-09-21 2418

rtime(3) Library Functions Manual rtime(3)

NAME
rtime - get time from a remote machine

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/auth_des.h>

int rtime(struct sockaddr_in *addrp, struct rpc_timeval *timep,
struct rpc_timeval *timeout);

DESCRIPTION
This function uses the Time Server Protocol as described in RFC 868 to obtain the time
from a remote machine.

The Time Server Protocol gives the time in seconds since 00:00:00 UTC, 1 Jan 1900,
and this function subtracts the appropriate constant in order to convert the result to sec-
onds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).

When timeout is non-NULL, the udp/time socket (port 37) is used. Otherwise, the
tcp/time socket (port 37) is used.

RETURN VALUE
On success, 0 is returned, and the obtained 32-bit time value is stored in timep->tv_sec.
In case of error -1 is returned, and errno is set to indicate the error.

ERRORS
All errors for underlying functions (sendto(2), poll(2), recvfrom(2), connect(2), read(2))
can occur. Moreover:

EIO The number of returned bytes is not 4.

ETIMEDOUT
The waiting time as defined in timeout has expired.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safertime()

NOTES
Only IPv4 is supported.

Some in.timed versions support only TCP. Try the example program with use_tcp set to
1.

BUGS
rtime() in glibc 2.2.5 and earlier does not work properly on 64-bit machines.

EXAMPLES
This example requires that port 37 is up and open. You may check that the time entry
within /etc/inetd.conf is not commented out.

The program connects to a computer called "linux". Using "localhost" does not work.
The result is the localtime of the computer "linux".

Linux man-pages 6.16 2025-05-17 2419

rtime(3) Library Functions Manual rtime(3)

#include <errno.h>
#include <netdb.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>

#include <rpc/auth_des.h>

static int use_tcp = 0;
static const char servername[] = "linux";

int
main(void)
{

int ret;
time_t t;
struct hostent *hent;
struct rpc_timeval time1 = {0, 0};
struct rpc_timeval timeout = {1, 0};
struct sockaddr_in name;

memset(&name, 0, sizeof(name));
sethostent(1);
hent = gethostbyname(servername);
memcpy(&name.sin_addr, hent->h_addr, hent->h_length);

ret = rtime(&name, &time1, use_tcp ? NULL : &timeout);
if (ret < 0)

perror("rtime error");
else {

t = time1.tv_sec;
printf("%s\n", ctime(&t));

}

exit(EXIT_SUCCESS);
}

SEE ALSO
ntpdate(1), inetd(8)

Linux man-pages 6.16 2025-05-17 2420

rtnetlink(3) Library Functions Manual rtnetlink(3)

NAME
rtnetlink - macros to manipulate rtnetlink messages

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <asm/types.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>

rtnetlink_socket = socket(AF_NETLINK, int socket_type, NETLINK_ROUTE);

int RTA_OK(struct rtattr *rta, int size);

void *RTA_DATA(struct rtattr *rta);
unsigned int RTA_PAYLOAD(struct rtattr *rta);

struct rtattr *RTA_NEXT(struct rtattr *rta, unsigned int size);

unsigned int RTA_LENGTH(unsigned int size);
unsigned int RTA_SPACE(unsigned int size);

DESCRIPTION
All rtnetlink(7) messages consist of a netlink(7) message header and appended attrib-
utes. The attributes should be manipulated only using the macros provided here.

RTA_OK(rta, size) returns true if rta points to a valid routing attribute; size is the run-
ning size of the attribute buffer. When not true then you must assume there are no more
attributes in the message, even if size is nonzero.

RTA_DATA(rta) returns a pointer to the start of this attribute’s data.

RTA_PAYLOAD(rta) returns the size of this attribute’s data.

RTA_NEXT(rta, size) gets the next attribute after rta. Calling this macro will update
size. You should use RTA_OK to check the validity of the returned pointer.

RTA_LENGTH(size) returns the size which is required for size bytes of data plus the
header.

RTA_SPACE(size) returns the amount of space which will be needed in a message with
size bytes of data.

STANDARDS
Linux.

BUGS
This manual page is incomplete.

EXAMPLES
Creating a rtnetlink message to set the MTU of a device:

#include <linux/rtnetlink.h>

...

Linux man-pages 6.16 2025-05-17 2421

rtnetlink(3) Library Functions Manual rtnetlink(3)

struct {
struct nlmsghdr nh;
struct ifinfomsg if;
char attrbuf[512];

} req;

struct rtattr *rta;
unsigned int mtu = 1000;

int rtnetlink_sk = socket(AF_NETLINK, SOCK_DGRAM, NETLINK_ROUTE);

memset(&req, 0, sizeof(req));
req.nh.nlmsg_len = NLMSG_LENGTH(sizeof(req.if));
req.nh.nlmsg_flags = NLM_F_REQUEST;
req.nh.nlmsg_type = RTM_NEWLINK;
req.if.ifi_family = AF_UNSPEC;
req.if.ifi_index = INTERFACE_INDEX;
req.if.ifi_change = 0xffffffff; /* ??? */
rta = (struct rtattr *) ((char *) &req +

NLMSG_ALIGN(req.nh.nlmsg_len));
rta->rta_type = IFLA_MTU;
rta->rta_len = RTA_LENGTH(sizeof(mtu));
req.nh.nlmsg_len = NLMSG_ALIGN(req.nh.nlmsg_len) +

RTA_LENGTH(sizeof(mtu));
memcpy(RTA_DATA(rta), &mtu, sizeof(mtu));
send(rtnetlink_sk, &req, req.nh.nlmsg_len, 0);

SEE ALSO
netlink(3), netlink(7), rtnetlink(7)

Linux man-pages 6.16 2025-05-17 2422

scalb(3) Library Functions Manual scalb(3)

NAME
scalb, scalbf, scalbl - scale by an integer power of radix (OBSOLETE)

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

[[deprecated]] double scalb(double x, double e);
[[deprecated]] float scalbf(float x, float e);
[[deprecated]] long double scalbl(long double x, long double e);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

scalb():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

scalbf(), scalbl():
_XOPEN_SOURCE >= 600

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions multiply their first argument x by FLT_RADIX (probably 2) to the
power of e, that is:

x * FLT_RADIX ** e

The definition of FLT_RADIX can be obtained by including <float.h>.

RETURN VALUE
On success, these functions return x * FLT_RADIX ** e.

If x or e is a NaN, a NaN is returned.

If x is positive infinity (negative infinity), and e is not negative infinity, positive infinity
(negative infinity) is returned.

If x is +0 (-0), and e is not positive infinity, +0 (-0) is returned.

If x is zero, and e is positive infinity, a domain error occurs, and a NaN is returned.

If x is an infinity, and e is negative infinity, a domain error occurs, and a NaN is re-
turned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with a sign the same as x.

If the result underflows, a range error occurs, and the functions return zero, with a sign
the same as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

Linux man-pages 6.16 2025-07-19 2423

scalb(3) Library Functions Manual scalb(3)

The following errors can occur:

Domain error: x is 0, and e is positive infinity, or x is positive infinity and e is negative
infinity and the other argument is not a NaN

errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Range error, overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UNDER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safescalb(), scalbf(), scalbl()

STANDARDS
None.

HISTORY
scalb()

4.3BSD. Obsolescent in POSIX.1-2001; Removed in POSIX.1-2008, recom-
mending the use of scalbln(3), scalblnf(3), or scalblnl(3) instead.

BUGS
Before glibc 2.20, these functions did not set errno for domain and range errors.

SEE ALSO
ldexp(3), scalbln(3)

Linux man-pages 6.16 2025-07-19 2424

scalbln(3) Library Functions Manual scalbln(3)

NAME
scalbn, scalbnf, scalbnl, scalbln, scalblnf, scalblnl - scale by an integer power of radix

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double scalbln(double x, long e);
float scalblnf(float x, long e);
long double scalblnl(long double x, long e);

double scalbn(double x, int e);
float scalbnf(float x, int e);
long double scalbnl(long double x, int e);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

scalbln(), scalblnf(), scalblnl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE

scalbn(), scalbnf(), scalbnl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions multiply their first argument x by FLT_RADIX (probably 2) to the
power of e, that is:

x * FLT_RADIX ** e

The definition of FLT_RADIX can be obtained by including <float.h>.

RETURN VALUE
On success, these functions return x * FLT_RADIX ** e.

If x is a NaN, a NaN is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is returned.

If x is +0 (-0), +0 (-0) is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with a sign the same as x.

If the result underflows, a range error occurs, and the functions return zero, with a sign
the same as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Linux man-pages 6.16 2025-07-19 2425

scalbln(3) Library Functions Manual scalbln(3)

Range error, overflow
An overflow floating-point exception (FE_OVERFLOW) is raised.

Range error, underflow
errno is set to ERANGE. An underflow floating-point exception (FE_UNDER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safescalbn(), scalbnf(), scalbnl(), scalbln(), scalblnf(),
scalblnl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

HISTORY
These functions differ from the obsolete functions described in scalb(3) in the type of
their second argument. The functions described on this page have a second argument of
an integral type, while those in scalb(3) have a second argument of type double.

NOTES
If FLT_RADIX equals 2 (which is usual), then scalbn() is equivalent to ldexp(3).

BUGS
Before glibc 2.20, these functions did not set errno for range errors.

SEE ALSO
ldexp(3), scalb(3)

Linux man-pages 6.16 2025-07-19 2426

scandir(3) Library Functions Manual scandir(3)

NAME
scandir, scandirat, alphasort, versionsort - scan a directory for matching entries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

int scandir(const char *restrict dirp,
struct dirent ***restrict namelist,
typeof(int (const struct dirent *)) * filter,
typeof(int (const struct dirent **, const struct dirent **))

*compar);

int alphasort(const struct dirent **a, const struct dirent **b);
int versionsort(const struct dirent **a, const struct dirent **b);

#include <fcntl.h> /* Definition of AT_* constants */
#include <dirent.h>

int scandirat(int dirfd , const char *restrict dirp,
struct dirent ***restrict namelist,
typeof(int (const struct dirent *)) * filter,
typeof(int (const struct dirent **, const struct dirent **))

*compar);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

scandir(), alphasort():
/* Since glibc 2.10: */ _POSIX_C_SOURCE >= 200809L

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

versionsort():
_GNU_SOURCE

scandirat():
_GNU_SOURCE

DESCRIPTION
The scandir() function scans the directory dirp, calling filter() on each directory entry.
Entries for which filter() returns nonzero are stored in strings allocated via malloc(3),
sorted using qsort(3) with the comparison function compar(), and collected in array
namelist which is allocated via malloc(3). If filter is NULL, all entries are selected.

The alphasort() and versionsort() functions can be used as the comparison function
compar(). The former sorts directory entries using strcoll(3), the latter using strver-
scmp(3) on the strings (*a)->d_name and (*b)->d_name.

scandirat()
The scandirat() function operates in exactly the same way as scandir(), except for the
differences described here.

If dirp is relative, then it is interpreted relative to the directory referred to by the file de-
scriptor dirfd (rather than relative to the current working directory of the calling process,

Linux man-pages 6.16 2025-05-17 2427

scandir(3) Library Functions Manual scandir(3)

as is done by scandir() for a relative pathname).

If dirp is relative and dirfd is the special value AT_FDCWD, then dirp is interpreted
relative to the current working directory of the calling process (like scandir())

If dirp is absolute, then dirfd is ignored.

See openat(2) for an explanation of the need for scandirat().

RETURN VALUE
The scandir() function returns the number of directory entries selected. On error, -1 is
returned, with errno set to indicate the error.

The alphasort() and versionsort() functions return an integer less than, equal to, or
greater than zero if the first argument is considered to be respectively less than, equal to,
or greater than the second.

ERRORS
EBADF

(scandirat()) dirp is relative but dirfd is neither AT_FDCWD nor a valid file
descriptor.

ENOENT
The path in dirp does not exist.

ENOMEM
Insufficient memory to complete the operation.

ENOTDIR
The path in dirp is not a directory.

ENOTDIR
(scandirat()) dirp is relative and dirfd is a file descriptor referring to a file other
than a directory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safescandir(), scandirat()
Thread safety MT-Safe localealphasort(), versionsort()

STANDARDS
alphasort()
scandir()

POSIX.1-2008.

versionsort()
scandirat()

GNU.

HISTORY
alphasort()
scandir()

4.3BSD, POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2428

scandir(3) Library Functions Manual scandir(3)

versionsort()
glibc 2.1.

scandirat()
glibc 2.15.

NOTES
Since glibc 2.1, alphasort() calls strcoll(3); earlier it used strcmp(3).

Before glibc 2.10, the two arguments of alphasort() and versionsort() were typed as
const void *. When alphasort() was standardized in POSIX.1-2008, the argument type
was specified as the type-safe const struct dirent **, and glibc 2.10 changed the defini-
tion of alphasort() (and the nonstandard versionsort()) to match the standard.

EXAMPLES
The program below prints a list of the files in the current directory in reverse order.

Program source

#define _DEFAULT_SOURCE
#include <dirent.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct dirent **namelist;
int n;

n = scandir(".", &namelist, NULL, alphasort);
if (n == -1) {

perror("scandir");
exit(EXIT_FAILURE);

}

while (n--) {
printf("%s\n", namelist[n]->d_name);
free(namelist[n]);

}
free(namelist);

exit(EXIT_SUCCESS);
}

SEE ALSO
closedir(3), fnmatch(3), opendir(3), readdir(3), rewinddir(3), seekdir(3), strcmp(3), str-
coll(3), strverscmp(3), telldir(3)

Linux man-pages 6.16 2025-05-17 2429

scanf (3) Library Functions Manual scanf (3)

NAME
scanf, fscanf, vscanf, vfscanf - input FILE format conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int scanf(const char *restrict format, ...);
int fscanf(FILE *restrict stream,

const char *restrict format, ...);

#include <stdarg.h>

int vscanf(const char *restrict format, va_list ap);
int vfscanf(FILE *restrict stream,

const char *restrict format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vscanf(), vfscanf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The scanf() family of functions scans formatted input like sscanf(3), but read from a
FILE. It is very difficult to use these functions correctly, and it is preferable to read en-
tire lines with fgets(3) or getline(3) and parse them later with sscanf(3) or more special-
ized functions such as strtol(3).

The scanf() function reads input from the standard input stream stdin and fscanf() reads
input from the stream pointer stream.

The vfscanf() function is analogous to vfprintf(3) and reads input from the stream
pointer stream using a variable argument list of pointers (see stdarg(3). The vscanf()
function is analogous to vprintf(3) and reads from the standard input.

RETURN VALUE
On success, these functions return the number of input items successfully matched and
assigned; this can be fewer than provided for, or even zero, in the event of an early
matching failure.

The value EOF is returned if the end of input is reached before either the first successful
conversion or a matching failure occurs. EOF is also returned if a read error occurs, in
which case the error indicator for the stream (see ferror(3)) is set, and errno is set to in-
dicate the error.

ERRORS
EAGAIN

The file descriptor underlying stream is marked nonblocking, and the read opera-
tion would block.

EBADF
The file descriptor underlying stream is invalid, or not open for reading.

Linux man-pages 6.16 2025-09-21 2430

scanf (3) Library Functions Manual scanf (3)

EILSEQ
Input byte sequence does not form a valid character.

EINTR
The read operation was interrupted by a signal; see signal(7).

EINVAL
Not enough arguments; or format is NULL.

ENOMEM
Out of memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localescanf(), fscanf(), vscanf(), vfscanf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

CAVEATS
These functions make it difficult to distinguish newlines from other white space. This is
especially problematic with line-buffered input, like the standard input stream.

These functions can’t report errors after the last non-suppressed conversion specifica-
tion.

BUGS
It is impossible to accurately know how many characters these functions have consumed
from the input stream, since they only report the number of successful conversions. For
example, if the input is "123\n a", scanf("%d %d", &a, &b) will consume the digits, the
newline, and the space, but not the letter a. This makes it difficult to recover from in-
valid input.

SEE ALSO
fgets(3), getline(3), sscanf(3)

Linux man-pages 6.16 2025-09-21 2431

sched_getcpu(3) Library Functions Manual sched_getcpu(3)

NAME
sched_getcpu - determine CPU on which the calling thread is running

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sched.h>

int sched_getcpu(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sched_getcpu():
Since glibc 2.14:

_GNU_SOURCE
Before glibc 2.14:

_BSD_SOURCE || _SVID_SOURCE
/* _GNU_SOURCE also suffices */

DESCRIPTION
sched_getcpu() returns the number of the CPU on which the calling thread is currently
executing.

RETURN VALUE
On success, sched_getcpu() returns a nonnegative CPU number. On error, -1 is re-
turned and errno is set to indicate the error.

ERRORS
ENOSYS

This kernel does not implement getcpu(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesched_getcpu()

STANDARDS
GNU.

HISTORY
glibc 2.6.

NOTES
The call

cpu = sched_getcpu();

is equivalent to the following getcpu(2) call:

int c, s;
s = getcpu(&c, NULL);
cpu = (s == -1) ? s : c;

Linux man-pages 6.16 2025-05-17 2432

sched_getcpu(3) Library Functions Manual sched_getcpu(3)

SEE ALSO
getcpu(2), sched(7)

Linux man-pages 6.16 2025-05-17 2433

seekdir(3) Library Functions Manual seekdir(3)

NAME
seekdir - set the position of the next readdir() call in the directory stream.

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

void seekdir(DIR *dirp, long loc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

seekdir():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The seekdir() function sets the location in the directory stream from which the next
readdir(2) call will start. The loc argument should be a value returned by a previous call
to telldir(3).

RETURN VALUE
The seekdir() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeseekdir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

CAVEATS
Up to glibc 2.1.1, the type of the loc argument was off_t. POSIX.1-2001 specifies long,
and this is the type used since glibc 2.1.2. See telldir(3) for information on why you
should be careful in making any assumptions about the value in this argument.

SEE ALSO
lseek(2), closedir(3), opendir(3), readdir(3), rewinddir(3), scandir(3), telldir(3)

Linux man-pages 6.16 2025-05-17 2434

sem_close(3) Library Functions Manual sem_close(3)

NAME
sem_close - close a named semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_close(sem_t *sem);

DESCRIPTION
sem_close() closes the named semaphore referred to by sem, allowing any resources
that the system has allocated to the calling process for this semaphore to be freed.

RETURN VALUE
On success sem_close() returns 0; on error, -1 is returned, with errno set to indicate the
error.

ERRORS
EINVAL

sem is not a valid semaphore.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_close()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
All open named semaphores are automatically closed on process termination, or upon
execve(2).

SEE ALSO
sem_getvalue(3), sem_open(3), sem_post(3), sem_unlink(3), sem_wait(3),
sem_overview(7)

Linux man-pages 6.16 2025-05-17 2435

sem_destroy(3) Library Functions Manual sem_destroy(3)

NAME
sem_destroy - destroy an unnamed semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_destroy(sem_t *sem);

DESCRIPTION
sem_destroy() destroys the unnamed semaphore at the address pointed to by sem.

Only a semaphore that has been initialized by sem_init(3) should be destroyed using
sem_destroy().

Destroying a semaphore that other processes or threads are currently blocked on (in
sem_wait(3)) produces undefined behavior.

Using a semaphore that has been destroyed produces undefined results, until the sema-
phore has been reinitialized using sem_init(3).

RETURN VALUE
sem_destroy() returns 0 on success; on error, -1 is returned, and errno is set to indicate
the error.

ERRORS
EINVAL

sem is not a valid semaphore.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_destroy()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
An unnamed semaphore should be destroyed with sem_destroy() before the memory in
which it is located is deallocated. Failure to do this can result in resource leaks on some
implementations.

SEE ALSO
sem_init(3), sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.16 2025-05-17 2436

sem_getvalue(3) Library Functions Manual sem_getvalue(3)

NAME
sem_getvalue - get the value of a semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_getvalue(sem_t *restrict sem, int *restrict sval);

DESCRIPTION
sem_getvalue() places the current value of the semaphore pointed to sem into the inte-
ger pointed to by sval.

If one or more processes or threads are blocked waiting to lock the semaphore with
sem_wait(3), POSIX.1 permits two possibilities for the value returned in sval: either 0 is
returned; or a negative number whose absolute value is the count of the number of
processes and threads currently blocked in sem_wait(3). Linux adopts the former be-
havior.

RETURN VALUE
sem_getvalue() returns 0 on success; on error, -1 is returned and errno is set to indicate
the error.

ERRORS
EINVAL

sem is not a valid semaphore. (The glibc implementation currently does not
check whether sem is valid.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_getvalue()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The value of the semaphore may already have changed by the time sem_getvalue() re-
turns.

SEE ALSO
sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.16 2025-05-17 2437

sem_init(3) Library Functions Manual sem_init(3)

NAME
sem_init - initialize an unnamed semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_init(sem_t *sem, int pshared , unsigned int value);

DESCRIPTION
sem_init() initializes the unnamed semaphore at the address pointed to by sem. The
value argument specifies the initial value for the semaphore.

The pshared argument indicates whether this semaphore is to be shared between the
threads of a process, or between processes.

If pshared has the value 0, then the semaphore is shared between the threads of a
process, and should be located at some address that is visible to all threads (e.g., a global
variable, or a variable allocated dynamically on the heap).

If pshared is nonzero, then the semaphore is shared between processes, and should be
located in a region of shared memory (see shm_open(3), mmap(2), and shmget(2)).
(Since a child created by fork(2) inherits its parent’s memory mappings, it can also ac-
cess the semaphore.) Any process that can access the shared memory region can operate
on the semaphore using sem_post(3), sem_wait(3), and so on.

Initializing a semaphore that has already been initialized results in undefined behavior.

RETURN VALUE
sem_init() returns 0 on success; on error, -1 is returned, and errno is set to indicate the
error.

ERRORS
EINVAL

value exceeds SEM_VALUE_MAX.

ENOSYS
pshared is nonzero, but the system does not support process-shared semaphores
(see sem_overview(7)).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_init()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Bizarrely, POSIX.1-2001 does not specify the value that should be returned by a suc-
cessful call to sem_init(). POSIX.1-2008 rectifies this, specifying the zero return on
success.

Linux man-pages 6.16 2025-05-17 2438

sem_init(3) Library Functions Manual sem_init(3)

EXAMPLES
See shm_open(3) and sem_wait(3).

SEE ALSO
sem_destroy(3), sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.16 2025-05-17 2439

sem_open(3) Library Functions Manual sem_open(3)

NAME
sem_open - initialize and open a named semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <fcntl.h> /* For O_* constants */
#include <sys/stat.h> /* For mode constants */
#include <semaphore.h>

sem_t *sem_open(const char *name, int oflag, ...
/* mode_t mode, unsigned int value */);

DESCRIPTION
sem_open() creates a new POSIX semaphore or opens an existing semaphore. The
semaphore is identified by name. For details of the construction of name, see
sem_overview(7).

The oflag argument specifies flags that control the operation of the call. (Definitions of
the flags values can be obtained by including <fcntl.h>.) If O_CREAT is specified in
oflag, then the semaphore is created if it does not already exist. The owner (user ID) of
the semaphore is set to the effective user ID of the calling process. The group owner-
ship (group ID) is set to the effective group ID of the calling process. If both
O_CREAT and O_EXCL are specified in oflag, then an error is returned if a semaphore
with the given name already exists.

If O_CREAT is specified in oflag, then two additional arguments must be supplied.
The mode argument specifies the permissions to be placed on the new semaphore, as for
open(2). (Symbolic definitions for the permissions bits can be obtained by including
<sys/stat.h>.) The permissions settings are masked against the process umask. Both
read and write permission should be granted to each class of user that will access the
semaphore. The value argument specifies the initial value for the new semaphore. If
O_CREAT is specified, and a semaphore with the given name already exists, then mode
and value are ignored.

RETURN VALUE
On success, sem_open() returns the address of the new semaphore; this address is used
when calling other semaphore-related functions. On error, sem_open() returns
SEM_FAILED, with errno set to indicate the error.

ERRORS
EACCES

The semaphore exists, but the caller does not have permission to open it.

EEXIST
Both O_CREAT and O_EXCL were specified in oflag, but a semaphore with
this name already exists.

EINVAL
value was greater than SEM_VALUE_MAX.

Linux man-pages 6.16 2025-05-17 2440

sem_open(3) Library Functions Manual sem_open(3)

EINVAL
name consists of just "/", followed by no other characters.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
name was too long.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The O_CREAT flag was not specified in oflag and no semaphore with this name
exists; or, O_CREAT was specified, but name wasn’t well formed.

ENOMEM
Insufficient memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_open()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
sem_close(3), sem_getvalue(3), sem_post(3), sem_unlink(3), sem_wait(3),
sem_overview(7)

Linux man-pages 6.16 2025-05-17 2441

sem_post(3) Library Functions Manual sem_post(3)

NAME
sem_post - unlock a semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_post(sem_t *sem);

DESCRIPTION
sem_post() increments (unlocks) the semaphore pointed to by sem. If the semaphore’s
value consequently becomes greater than zero, then another process or thread blocked in
a sem_wait(3) call will be woken up and proceed to lock the semaphore.

RETURN VALUE
sem_post() returns 0 on success; on error, the value of the semaphore is left unchanged,
-1 is returned, and errno is set to indicate the error.

ERRORS
EINVAL

sem is not a valid semaphore.

EOVERFLOW
The value would exceed SEM_VALUE_MAX.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_post()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
sem_post() is async-signal-safe: it may be safely called within a signal handler.

EXAMPLES
See sem_wait(3) and shm_open(3).

SEE ALSO
sem_getvalue(3), sem_wait(3), sem_overview(7), signal-safety(7)

Linux man-pages 6.16 2025-08-19 2442

sem_unlink(3) Library Functions Manual sem_unlink(3)

NAME
sem_unlink - remove a named semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_unlink(const char *name);

DESCRIPTION
sem_unlink() removes the named semaphore referred to by name. The semaphore
name is removed immediately. The semaphore is destroyed once all other processes that
have the semaphore open close it.

RETURN VALUE
On success sem_unlink() returns 0; on error, -1 is returned, with errno set to indicate
the error.

ERRORS
EACCES

The caller does not have permission to unlink this semaphore.

ENAMETOOLONG
name was too long.

ENOENT
There is no semaphore with the given name.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_unlink()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

SEE ALSO
sem_getvalue(3), sem_open(3), sem_post(3), sem_wait(3), sem_overview(7)

Linux man-pages 6.16 2025-05-17 2443

sem_wait(3) Library Functions Manual sem_wait(3)

NAME
sem_wait, sem_timedwait, sem_trywait - lock a semaphore

LIBRARY
POSIX threads library (libpthread , -lpthread)

SYNOPSIS
#include <semaphore.h>

int sem_wait(sem_t *sem);
int sem_trywait(sem_t *sem);
int sem_timedwait(sem_t *restrict sem,

const struct timespec *restrict abs_timeout);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sem_timedwait():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
sem_wait() decrements (locks) the semaphore pointed to by sem. If the semaphore’s
value is greater than zero, then the decrement proceeds, and the function returns, imme-
diately. If the semaphore currently has the value zero, then the call blocks until either it
becomes possible to perform the decrement (i.e., the semaphore value rises above zero),
or a signal handler interrupts the call.

sem_trywait() is the same as sem_wait(), except that if the decrement cannot be imme-
diately performed, then call returns an error (errno set to EAGAIN) instead of blocking.

sem_timedwait() is the same as sem_wait(), except that abs_timeout specifies a limit
on the amount of time that the call should block if the decrement cannot be immediately
performed. The abs_timeout argument points to a timespec(3) structure that specifies an
absolute timeout in seconds and nanoseconds since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

If the timeout has already expired by the time of the call, and the semaphore could not
be locked immediately, then sem_timedwait() fails with a timeout error (errno set to
ETIMEDOUT).

If the operation can be performed immediately, then sem_timedwait() never fails with a
timeout error, regardless of the value of abs_timeout. Furthermore, the validity of
abs_timeout is not checked in this case.

RETURN VALUE
All of these functions return 0 on success; on error, the value of the semaphore is left
unchanged, -1 is returned, and errno is set to indicate the error.

ERRORS
EAGAIN

(sem_trywait()) The operation could not be performed without blocking (i.e.,
the semaphore currently has the value zero).

EINTR
The call was interrupted by a signal handler; see signal(7).

Linux man-pages 6.16 2025-09-21 2444

sem_wait(3) Library Functions Manual sem_wait(3)

EINVAL
sem is not a valid semaphore.

EINVAL
(sem_timedwait()) The value of abs_timeout.tv_nsecs is less than 0, or greater
than or equal to 1000 million.

ETIMEDOUT
(sem_timedwait()) The call timed out before the semaphore could be locked.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesem_wait(), sem_trywait(), sem_timedwait()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The (somewhat trivial) program shown below operates on an unnamed semaphore. The
program expects two command-line arguments. The first argument specifies a seconds
value that is used to set an alarm timer to generate a SIGALRM signal. This handler
performs a sem_post(3) to increment the semaphore that is being waited on in main()
using sem_timedwait(). The second command-line argument specifies the length of the
timeout, in seconds, for sem_timedwait(). The following shows what happens on two
different runs of the program:

$./a.out 2 3
About to call sem_timedwait()
sem_post() from handler
sem_timedwait() succeeded
$./a.out 2 1
About to call sem_timedwait()
sem_timedwait() timed out

Program source

#include <err.h>
#include <errno.h>
#include <semaphore.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <unistd.h>

#include <assert.h>

sem_t sem;

Linux man-pages 6.16 2025-09-21 2445

sem_wait(3) Library Functions Manual sem_wait(3)

static void
handler(int sig)
{

write(STDOUT_FILENO, "sem_post() from handler\n", 24);
if (sem_post(&sem) == -1) {

write(STDERR_FILENO, "sem_post() failed\n", 18);
_exit(EXIT_FAILURE);

}
}

int
main(int argc, char *argv[])
{

struct sigaction sa;
struct timespec ts;
int s;

if (argc != 3) {
fprintf(stderr, "Usage: %s <alarm-secs> <wait-secs>\n",

argv[0]);
exit(EXIT_FAILURE);

}

if (sem_init(&sem, 0, 0) == -1)
err(EXIT_FAILURE, "sem_init");

/* Establish SIGALRM handler; set alarm timer using argv[1]. */

sa.sa_handler = handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = 0;
if (sigaction(SIGALRM, &sa, NULL) == -1)

err(EXIT_FAILURE, "sigaction");

alarm(atoi(argv[1]));

/* Calculate relative interval as current time plus
number of seconds given argv[2]. */

if (clock_gettime(CLOCK_REALTIME, &ts) == -1)
err(EXIT_FAILURE, "clock_gettime");

ts.tv_sec += atoi(argv[2]);

printf("%s() about to call sem_timedwait()\n", __func__);
while ((s = sem_timedwait(&sem, &ts)) == -1 && errno == EINTR)

Linux man-pages 6.16 2025-09-21 2446

sem_wait(3) Library Functions Manual sem_wait(3)

continue; /* Restart if interrupted by handler. */

/* Check what happened. */

if (s == -1) {
if (errno == ETIMEDOUT)

printf("sem_timedwait() timed out\n");
else

perror("sem_timedwait");
} else

printf("sem_timedwait() succeeded\n");

exit((s == 0) ? EXIT_SUCCESS : EXIT_FAILURE);
}

SEE ALSO
clock_gettime(2), sem_getvalue(3), sem_post(3), timespec(3), sem_overview(7), time(7)

Linux man-pages 6.16 2025-09-21 2447

setaliasent(3) Library Functions Manual setaliasent(3)

NAME
setaliasent, endaliasent, getaliasent, getaliasent_r, getaliasbyname, getaliasbyname_r -
read an alias entry

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <aliases.h>

void setaliasent(void);
void endaliasent(void);

struct aliasent *getaliasent(void);
int getaliasent_r(size_t size;

struct aliasent *restrict result,
char buffer[restrict size], size_t size,
struct aliasent **restrict res);

struct aliasent *getaliasbyname(const char *name);
int getaliasbyname_r(size_t size;

const char *restrict name,
struct aliasent *restrict result,
char buffer[restrict size], size_t size,
struct aliasent **restrict res);

DESCRIPTION
One of the databases available with the Name Service Switch (NSS) is the aliases data-
base, that contains mail aliases. (To find out which databases are supported, try getent
--help.) Six functions are provided to access the aliases database.

The getaliasent() function returns a pointer to a structure containing the group informa-
tion from the aliases database. The first time it is called it returns the first entry; there-
after, it returns successive entries.

The setaliasent() function rewinds the file pointer to the beginning of the aliases data-
base.

The endaliasent() function closes the aliases database.

getaliasent_r() is the reentrant version of the previous function. The requested structure
is stored via the first argument but the programmer needs to fill the other arguments also.
Not providing enough space causes the function to fail.

The function getaliasbyname() takes the name argument and searches the aliases data-
base. The entry is returned as a pointer to a struct aliasent.

getaliasbyname_r() is the reentrant version of the previous function. The requested
structure is stored via the second argument but the programmer needs to fill the other ar-
guments also. Not providing enough space causes the function to fail.

The struct aliasent is defined in <aliases.h>:

struct aliasent {
char *alias_name; /* alias name */

Linux man-pages 6.16 2025-06-28 2448

setaliasent(3) Library Functions Manual setaliasent(3)

size_t alias_members_len;
char **alias_members; /* alias name list */
int alias_local;

};

RETURN VALUE
The functions getaliasent_r() and getaliasbyname_r() return a nonzero value on error.

FILES
The default alias database is the file /etc/aliases. This can be changed in the /etc/nss-
witch.conf file.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localesetaliasent(), endaliasent(), getaliasent_r(),
getaliasbyname_r()

Thread safety MT-Unsafegetaliasent(), getaliasbyname()

STANDARDS
GNU.

HISTORY
The NeXT system has similar routines:

#include <aliasdb.h>

void alias_setent(void);
void alias_endent(void);
alias_ent *alias_getent(void);
alias_ent *alias_getbyname(char *name);

EXAMPLES
The following example compiles with gcc example.c -o example. It will dump all names
in the alias database.

#include <aliases.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int
main(void)
{

struct aliasent *al;

setaliasent();
for (;;) {

al = getaliasent();
if (al == NULL)

break;

Linux man-pages 6.16 2025-06-28 2449

setaliasent(3) Library Functions Manual setaliasent(3)

printf("Name: %s\n", al->alias_name);
}
if (errno) {

perror("reading alias");
exit(EXIT_FAILURE);

}
endaliasent();
exit(EXIT_SUCCESS);

}

SEE ALSO
getgrent(3), getpwent(3), getspent(3), aliases(5)

Linux man-pages 6.16 2025-06-28 2450

setbuf (3) Library Functions Manual setbuf (3)

NAME
setbuf, setbuffer, setlinebuf, setvbuf - stream buffering operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int setvbuf(size_t size;
FILE *restrict stream, char buf [restrict size],
int mode, size_t size);

void setbuf(FILE *restrict stream, char *restrict buf);
void setbuffer(size_t size;

FILE *restrict stream, char buf [restrict size],
size_t size);

void setlinebuf(FILE *stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setbuffer(), setlinebuf():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The three types of buffering available are unbuffered, block buffered, and line buffered.
When an output stream is unbuffered, information appears on the destination file or ter-
minal as soon as written; when it is block buffered, many characters are saved up and
written as a block; when it is line buffered, characters are saved up until a newline is
output or input is read from any stream attached to a terminal device (typically stdin).
The function fflush(3) may be used to force the block out early. (See fclose(3).)

Normally, all files are block buffered. If a stream refers to a terminal (as stdout nor-
mally does), it is line buffered. The standard error stream stderr is always unbuffered
by default.

The setvbuf() function may be used on any open stream to change its buffer. The mode
argument must be one of the following three macros:

_IONBF
unbuffered

_IOLBF
line buffered

_IOFBF
fully buffered

Except for unbuffered files, the buf argument should point to a buffer at least size bytes
long; this buffer will be used instead of the current buffer. If the argument buf is NULL,
only the mode is affected; a new buffer will be allocated on the next read or write opera-
tion. The setvbuf() function may be used only after opening a stream and before any

Linux man-pages 6.16 2025-09-21 2451

setbuf (3) Library Functions Manual setbuf (3)

other operations have been performed on it.

The other three calls are, in effect, simply aliases for calls to setvbuf(). The setbuf()
function is exactly equivalent to the call

setvbuf(stream, buf, buf ? _IOFBF : _IONBF, BUFSIZ);

The setbuffer() function is the same, except that the size of the buffer is up to the caller,
rather than being determined by the default BUFSIZ. The setlinebuf() function is ex-
actly equivalent to the call:

setvbuf(stream, NULL, _IOLBF, 0);

RETURN VALUE
The function setvbuf() returns 0 on success. It returns nonzero on failure (mode is in-
valid or the request cannot be honored). It may set errno on failure.

The other functions do not return a value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesetbuf(), setbuffer(), setlinebuf(), setvbuf()

STANDARDS
setbuf()
setvbuf()

C11, POSIX.1-2008.

HISTORY
setbuf()
setvbuf()

C89, POSIX.1-2001.

CAVEATS
POSIX notes that the value of errno is unspecified after a call to setbuf() and further
notes that, since the value of errno is not required to be unchanged after a successful
call to setbuf(), applications should instead use setvbuf() in order to detect errors.

BUGS
You must make sure that the space that buf points to still exists by the time stream is
closed, which also happens at program termination. For example, the following is in-
valid:

#include <stdio.h>

int
main(void)
{

char buf[BUFSIZ];

setbuf(stdout, buf);
printf("Hello, world!\n");
return 0;

Linux man-pages 6.16 2025-09-21 2452

setbuf (3) Library Functions Manual setbuf (3)

}

SEE ALSO
stdbuf (1), fclose(3), fflush(3), fopen(3), fread(3), malloc(3), printf(3), puts(3)

Linux man-pages 6.16 2025-09-21 2453

setenv(3) Library Functions Manual setenv(3)

NAME
setenv - change or add an environment variable

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int setenv(const char *name, const char *value, int overwrite);
int unsetenv(const char *name);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setenv(), unsetenv():
_POSIX_C_SOURCE >= 200112L

|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
The setenv() function adds the variable name to the environment with the value value, if
name does not already exist. If name does exist in the environment, then its value is
changed to value if overwrite is nonzero; if overwrite is zero, then the value of name is
not changed (and setenv() returns a success status). This function makes copies of the
strings pointed to by name and value (by contrast with putenv(3)).

The unsetenv() function deletes the variable name from the environment. If name does
not exist in the environment, then the function succeeds, and the environment is un-
changed.

RETURN VALUE
setenv() and unsetenv() functions return zero on success, or -1 on error, with errno set
to indicate the error.

ERRORS
EINVAL

name is NULL, points to a string of length 0, or contains an '=' character.

ENOMEM
Insufficient memory to add a new variable to the environment.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:envsetenv(), unsetenv()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

Prior to glibc 2.2.2, unsetenv() was prototyped as returning void; more recent glibc ver-
sions follow the POSIX.1-compliant prototype shown in the SYNOPSIS.

Linux man-pages 6.16 2025-05-17 2454

setenv(3) Library Functions Manual setenv(3)

CAVEATS
POSIX.1 does not require setenv() or unsetenv() to be reentrant.

BUGS
POSIX.1 specifies that if name contains an '=' character, then setenv() should fail with
the error EINVAL; however, versions of glibc before glibc 2.3.4 allowed an '=' sign in
name.

SEE ALSO
clearenv(3), getenv(3), putenv(3), environ(7)

Linux man-pages 6.16 2025-05-17 2455

__setfpucw(3) Library Functions Manual __setfpucw(3)

NAME
__setfpucw - set FPU control word on i386 architecture (obsolete)

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <i386/fpu_control.h>

[[deprecated]] void __setfpucw(unsigned short control_word);

DESCRIPTION
__setfpucw() transfers control_word to the registers of the FPU (floating-point unit) on
the i386 architecture. This was used to control floating-point precision, rounding and
floating-point exceptions.

STANDARDS
GNU.

HISTORY
Removed in glibc 2.1.

NOTES
There are new functions from C99, with prototypes in <fenv.h>, to control FPU round-
ing modes, like fegetround(3), fesetround(3), and the floating-point environment, like
fegetenv(3), feholdexcept(3), fesetenv(3), feupdateenv(3), and FPU exception handling,
like feclearexcept(3), fegetexceptflag(3), feraiseexcept(3), fesetexceptflag(3), and fetes-
texcept(3).

If direct access to the FPU control word is still needed, the _FPU_GETCW and
_FPU_SETCW macros from <fpu_control.h> can be used.

EXAMPLES
__setfpucw(0x1372)

Set FPU control word on the i386 architecture to
• extended precision
• rounding to nearest
• exceptions on overflow, zero divide and NaN

SEE ALSO
feclearexcept(3)

<fpu_control.h>

Linux man-pages 6.16 2025-05-17 2456

setjmp(3) Library Functions Manual setjmp(3)

NAME
setjmp, sigsetjmp, longjmp, siglongjmp - performing a nonlocal goto

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <setjmp.h>

int setjmp(jmp_buf env);
int sigsetjmp(sigjmp_buf env, int savesigs);

[[noreturn]] void longjmp(jmp_buf env, int val);
[[noreturn]] void siglongjmp(sigjmp_buf env, int val);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setjmp(): see HISTORY.

sigsetjmp():
_POSIX_C_SOURCE

DESCRIPTION
The functions described on this page are used for performing "nonlocal gotos": transfer-
ring execution from one function to a predetermined location in another function. The
setjmp() function dynamically establishes the target to which control will later be trans-
ferred, and longjmp() performs the transfer of execution.

The setjmp() function saves various information about the calling environment (typi-
cally, the stack pointer, the instruction pointer, possibly the values of other registers and
the signal mask) in the buffer env for later use by longjmp(). In this case, setjmp() re-
turns 0.

The longjmp() function uses the information saved in env to transfer control back to the
point where setjmp() was called and to restore ("rewind") the stack to its state at the
time of the setjmp() call. In addition, and depending on the implementation (see
NOTES and HISTORY), the values of some other registers and the process signal mask
may be restored to their state at the time of the setjmp() call.

Following a successful longjmp(), execution continues as if setjmp() had returned for a
second time. This "fake" return can be distinguished from a true setjmp() call because
the "fake" return returns the value provided in val. If the programmer mistakenly passes
the value 0 in val, the "fake" return will instead return 1.

sigsetjmp() and siglongjmp()
sigsetjmp() and siglongjmp() also perform nonlocal gotos, but provide predictable han-
dling of the process signal mask.

If, and only if, the savesigs argument provided to sigsetjmp() is nonzero, the process’s
current signal mask is saved in env and will be restored if a siglongjmp() is later per-
formed with this env.

RETURN VALUE
setjmp() and sigsetjmp() return 0 when called directly; on the "fake" return that occurs
after longjmp() or siglongjmp(), the nonzero value specified in val is returned.

Linux man-pages 6.16 2025-05-17 2457

setjmp(3) Library Functions Manual setjmp(3)

The longjmp() or siglongjmp() functions do not return.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesetjmp(), sigsetjmp()
Thread safety MT-Safelongjmp(), siglongjmp()

STANDARDS
setjmp()
longjmp()

C11, POSIX.1-2008.

sigsetjmp()
siglongjmp()

POSIX.1-2008.

HISTORY
setjmp()
longjmp()

POSIX.1-2001, C89.

sigsetjmp()
siglongjmp()

POSIX.1-2001.

POSIX does not specify whether setjmp() will save the signal mask (to be later restored
during longjmp())In System V it will not. In 4.3BSD it will, and there is a function
_setjmp() that will not. The behavior under Linux depends on the glibc version and the
setting of feature test macros. Before glibc 2.19, setjmp() follows the System V behav-
ior by default, but the BSD behavior is provided if the _BSD_SOURCE feature test
macro is explicitly defined and none of _POSIX_SOURCE, _POSIX_C_SOURCE,
_XOPEN_SOURCE, _GNU_SOURCE, or _SVID_SOURCE is defined. Since glibc
2.19, <setjmp.h> exposes only the System V version of setjmp(). Programs that need
the BSD semantics should replace calls to setjmp() with calls to sigsetjmp() with a
nonzero savesigs argument.

NOTES
setjmp() and longjmp() can be useful for dealing with errors inside deeply nested func-
tion calls or to allow a signal handler to pass control to a specific point in the program,
rather than returning to the point where the handler interrupted the main program. In the
latter case, if you want to portably save and restore signal masks, use sigsetjmp() and
siglongjmp(). See also the discussion of program readability below.

CAVEATS
The compiler may optimize variables into registers, and longjmp() may restore the val-
ues of other registers in addition to the stack pointer and program counter. Conse-
quently, the values of automatic variables are unspecified after a call to longjmp() if
they meet all the following criteria:

Linux man-pages 6.16 2025-05-17 2458

setjmp(3) Library Functions Manual setjmp(3)

• they are local to the function that made the corresponding setjmp() call;

• their values are changed between the calls to setjmp() and longjmp(); and

• they are not declared as volatile.

Analogous remarks apply for siglongjmp().

Nonlocal gotos and program readability
While it can be abused, the traditional C "goto" statement at least has the benefit that
lexical cues (the goto statement and the target label) allow the programmer to easily per-
ceive the flow of control. Nonlocal gotos provide no such cues: multiple setjmp() calls
might employ the same jmp_buf variable so that the content of the variable may change
over the lifetime of the application. Consequently, the programmer may be forced to
perform detailed reading of the code to determine the dynamic target of a particular
longjmp() call. (To make the programmer’s life easier, each setjmp() call should em-
ploy a unique jmp_buf variable.)

Adding further difficulty, the setjmp() and longjmp() calls may not even be in the same
source code module.

In summary, nonlocal gotos can make programs harder to understand and maintain, and
an alternative should be used if possible.

Undefined behavior
If the function which called setjmp() returns before longjmp() is called, the behavior is
undefined. Some kind of subtle or unsubtle chaos is sure to result.

If, in a multithreaded program, a longjmp() call employs an env buffer that was initial-
ized by a call to setjmp() in a different thread, the behavior is undefined.

POSIX.1-2008 Technical Corrigendum 2 adds longjmp() and siglongjmp() to the list of
async-signal-safe functions. However, the standard recommends avoiding the use of
these functions from signal handlers and goes on to point out that if these functions are
called from a signal handler that interrupted a call to a non-async-signal-safe function
(or some equivalent, such as the steps equivalent to exit(3) that occur upon a return from
the initial call to main()), the behavior is undefined if the program subsequently makes a
call to a non-async-signal-safe function. The only way of avoiding undefined behavior
is to ensure one of the following:

• After long jumping from the signal handler, the program does not call any non-
async-signal-safe functions and does not return from the initial call to main().

• Any signal whose handler performs a long jump must be blocked during every call
to a non-async-signal-safe function and no non-async-signal-safe functions are
called after returning from the initial call to main().

SEE ALSO
signal(7), signal-safety(7)

Linux man-pages 6.16 2025-05-17 2459

setlocale(3) Library Functions Manual setlocale(3)

NAME
setlocale - set the current locale

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

char *setlocale(int category, const char *_Nullable locale);

DESCRIPTION
The setlocale() function is used to set or query the program’s current locale.

If locale is not NULL, the program’s current locale is modified according to the argu-
ments. The argument category determines which parts of the program’s current locale
should be modified.
Category Governs
LC_ALL All of the locale
LC_ADDRESS Formatting of addresses and geography-related items (*)
LC_COLLATE String collation
LC_CTYPE Character classification
LC_IDENTIFICATION Metadata describing the locale (*)
LC_MEASUREMENT Settings related to measurements (metric versus US cus-

tomary) (*)
LC_MESSAGES Localizable natural-language messages
LC_MONETARY Formatting of monetary values
LC_NAME Formatting of salutations for persons (*)
LC_NUMERIC Formatting of nonmonetary numeric values
LC_PAPER Settings related to the standard paper size (*)
LC_TELEPHONE Formats to be used with telephone services (*)
LC_TIME Formatting of date and time values

The categories marked with an asterisk in the above table are GNU extensions. For fur-
ther information on these locale categories, see locale(7).

The argument locale is a pointer to a character string containing the required setting of
category. Such a string is either a well-known constant like "C" or "da_DK" (see be-
low), or an opaque string that was returned by another call of setlocale().

If locale is an empty string, "" , each part of the locale that should be modified is set ac-
cording to the environment variables. The details are implementation-dependent. For
glibc, first (regardless of category), the environment variable LC_ALL is inspected,
next the environment variable with the same name as the category (see the table above),
and finally the environment variable LANG. The first existing environment variable is
used. If its value is not a valid locale specification, the locale is unchanged, and setlo-
cale() returns NULL.

The locale "C" or "POSIX" is a portable locale; it exists on all conforming systems.

A locale name is typically of the form language[_territory][.codeset][@modifier],
where language is an ISO 639 language code, territory is an ISO 3166 country code,
and codeset is a character set or encoding identifier like ISO-8859-1 or UTF-8. For a

Linux man-pages 6.16 2025-09-21 2460

setlocale(3) Library Functions Manual setlocale(3)

list of all supported locales, try "locale -a" (see locale(1)).

If locale is NULL, the current locale is only queried, not modified.

On startup of the main program, the portable "C" locale is selected as default. A pro-
gram may be made portable to all locales by calling:

setlocale(LC_ALL, "");

after program initialization, and then:

• using the values returned from a localeconv(3) call for locale-dependent informa-
tion;

• using the multibyte and wide character functions for text processing if
MB_CUR_MAX > 1;

• using strcoll(3) and strxfrm(3) to compare strings; and

• using wcscoll(3) and wcsxfrm(3) to compare wide-character strings.

RETURN VALUE
A successful call to setlocale() returns an opaque string that corresponds to the locale
set. This string may be allocated in static storage. The string returned is such that a
subsequent call with that string and its associated category will restore that part of the
process’s locale. The return value is NULL if the request cannot be honored.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe const:locale envsetlocale()

STANDARDS
C11, POSIX.1-2008.

Categories
LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

C11, POSIX.1-2008.

LC_MESSAGES
POSIX.1-2008.

Others:
GNU.

HISTORY
POSIX.1-2001, C89.

Categories

Linux man-pages 6.16 2025-09-21 2461

setlocale(3) Library Functions Manual setlocale(3)

LC_ALL
LC_COLLATE
LC_CTYPE
LC_MONETARY
LC_NUMERIC
LC_TIME

C89, POSIX.1-2001.

LC_MESSAGES
POSIX.1-2001.

Others:
GNU.

SEE ALSO
locale(1), localedef(1), isalpha(3), localeconv(3), nl_langinfo(3), rpmatch(3), strcoll(3),
strftime(3), charsets(7), locale(7)

Linux man-pages 6.16 2025-09-21 2462

setlogmask(3) Library Functions Manual setlogmask(3)

NAME
setlogmask - set log priority mask

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <syslog.h>

int setlogmask(int mask);

DESCRIPTION
A process has a log priority mask that determines which calls to syslog(3) may be
logged. All other calls will be ignored. Logging is enabled for the priorities that have
the corresponding bit set in mask. The initial mask is such that logging is enabled for
all priorities.

The setlogmask() function sets this logmask for the calling process, and returns the pre-
vious mask. If the mask argument is 0, the current logmask is not modified.

The eight priorities are LOG_EMERG, LOG_ALERT, LOG_CRIT, LOG_ERR,
LOG_WARNING, LOG_NOTICE, LOG_INFO, and LOG_DEBUG. The bit corre-
sponding to a priority p is LOG_MASK(p). Some systems also provide a macro
LOG_UPTO(p) for the mask of all priorities in the above list up to and including p.

RETURN VALUE
This function returns the previous log priority mask.

ERRORS
None.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:LogMasksetlogmask()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

LOG_UPTO() will be included in the next release of the POSIX specification (Issue 8).

SEE ALSO
closelog(3), openlog(3), syslog(3)

Linux man-pages 6.16 2025-05-17 2463

setnetgrent(3) Library Functions Manual setnetgrent(3)

NAME
setnetgrent, endnetgrent, getnetgrent, getnetgrent_r, innetgr - handle network group en-
tries

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <netdb.h>

int setnetgrent(const char *netgroup);
void endnetgrent(void);

int getnetgrent(char **restrict host,
char **restrict user, char **restrict domain);

int getnetgrent_r(size_t size;
char **restrict host,
char **restrict user, char **restrict domain,
char buf [restrict size], size_t size);

int innetgr(const char *netgroup, const char *host,
const char *user, const char *domain);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

setnetgrent(), endnetgrent(), getnetgrent(), getnetgrent_r(), innetgr():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The netgroup is a SunOS invention. A netgroup database is a list of string triples (host-
name, username, domainname) or other netgroup names. Any of the elements in a
triple can be empty, which means that anything matches. The functions described here
allow access to the netgroup databases. The file /etc/nsswitch.conf defines what data-
base is searched.

The setnetgrent() call defines the netgroup that will be searched by subsequent getnet-
grent() calls. The getnetgrent() function retrieves the next netgroup entry, and returns
pointers in host, user, domain. A null pointer means that the corresponding entry
matches any string. The pointers are valid only as long as there is no call to other net-
group-related functions. To avoid this problem you can use the GNU function getnet-
grent_r() that stores the strings in the supplied buffer. To free all allocated buffers use
endnetgrent().

In most cases you want to check only if the triplet (hostname, username, domainname)
is a member of a netgroup. The function innetgr() can be used for this without calling
the above three functions. Again, a null pointer is a wildcard and matches any string.
The function is thread-safe.

RETURN VALUE
These functions return 1 on success and 0 for failure.

Linux man-pages 6.16 2025-06-28 2464

setnetgrent(3) Library Functions Manual setnetgrent(3)

FILES
/etc/netgroup
/etc/nsswitch.conf

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetysetnetgrent(),
getnetgrent_r(),
innetgr()

MT-Unsafe race:netgrent locale

Thread safetyendnetgrent() MT-Unsafe race:netgrent
Thread safetygetnetgrent() MT-Unsafe race:netgrent race:netgrentbuf

locale

In the above table, netgrent in race:netgrent signifies that if any of the functions setnet-
grent(), getnetgrent_r(), innetgr(), getnetgrent(), or endnetgrent() are used in parallel
in different threads of a program, then data races could occur.

VERSIONS
In the BSD implementation, setnetgrent() returns void.

STANDARDS
None.

HISTORY
setnetgrent(), endnetgrent(), getnetgrent(), and innetgr() are available on most UNIX
systems. getnetgrent_r() is not widely available on other systems.

SEE ALSO
sethostent(3), setprotoent(3), setservent(3)

Linux man-pages 6.16 2025-06-28 2465

shm_open(3) Library Functions Manual shm_open(3)

NAME
shm_open, shm_unlink - create/open or unlink POSIX shared memory objects

LIBRARY
Real-time library (librt, -lrt)

SYNOPSIS
#include <sys/mman.h>
#include <sys/stat.h> /* For mode constants */
#include <fcntl.h> /* For O_* constants */

int shm_open(const char *name, int oflag, mode_t mode);
int shm_unlink(const char *name);

DESCRIPTION
shm_open() creates and opens a new, or opens an existing, POSIX shared memory ob-
ject. A POSIX shared memory object is in effect a handle which can be used by unre-
lated processes to mmap(2) the same region of shared memory. The shm_unlink()
function performs the converse operation, removing an object previously created by
shm_open().

The operation of shm_open() is analogous to that of open(2). name specifies the shared
memory object to be created or opened. For portable use, a shared memory object
should be identified by a name of the form /somename; that is, a null-terminated string
of up to NAME_MAX (i.e., 255) characters consisting of an initial slash, followed by
one or more characters, none of which are slashes.

oflag is a bit mask created by ORing together exactly one of O_RDONLY or
O_RDWR and any of the other flags listed here:

O_RDONLY
Open the object for read access. A shared memory object opened in this way
can be mmap(2)ed only for read (PROT_READ) access.

O_RDWR
Open the object for read-write access.

O_CREAT
Create the shared memory object if it does not exist. The user and group owner-
ship of the object are taken from the corresponding effective IDs of the calling
process, and the object’s permission bits are set according to the low-order 9 bits
of mode, except that those bits set in the process file mode creation mask (see
umask(2)) are cleared for the new object. A set of macro constants which can be
used to define mode is listed in open(2). (Symbolic definitions of these constants
can be obtained by including <sys/stat.h>.)

A new shared memory object initially has zero length—the size of the object can
be set using ftruncate(2). The newly allocated bytes of a shared memory object
are automatically initialized to 0.

O_EXCL
If O_CREAT was also specified, and a shared memory object with the given
name already exists, return an error. The check for the existence of the object,
and its creation if it does not exist, are performed atomically.

Linux man-pages 6.16 2025-09-21 2466

shm_open(3) Library Functions Manual shm_open(3)

O_TRUNC
If the shared memory object already exists, truncate it to zero bytes.

Definitions of these flag values can be obtained by including <fcntl.h>.

On successful completion shm_open() returns a new file descriptor referring to the
shared memory object. This file descriptor is guaranteed to be the lowest-numbered file
descriptor not previously opened within the process. The FD_CLOEXEC flag (see fc-
ntl(2)) is set for the file descriptor.

The file descriptor is normally used in subsequent calls to ftruncate(2) (for a newly cre-
ated object) and mmap(2). After a call to mmap(2) the file descriptor may be closed
without affecting the memory mapping.

The operation of shm_unlink() is analogous to unlink(2): it removes a shared memory
object name, and, once all processes have unmapped the object, deallocates and destroys
the contents of the associated memory region. After a successful shm_unlink(), at-
tempts to shm_open() an object with the same name fail (unless O_CREAT was speci-
fied, in which case a new, distinct object is created).

RETURN VALUE
On success, shm_open() returns a file descriptor (a nonnegative integer). On success,
shm_unlink() returns 0. On failure, both functions return -1 and set errno to indicate
the error.

ERRORS
EACCES

Permission to shm_unlink() the shared memory object was denied.

EACCES
Permission was denied to shm_open() name in the specified mode, or
O_TRUNC was specified and the caller does not have write permission on the
object.

EEXIST
Both O_CREAT and O_EXCL were specified to shm_open() and the shared
memory object specified by name already exists.

EINVAL
The name argument to shm_open() was invalid.

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENAMETOOLONG
The length of name exceeds PATH_MAX.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
An attempt was made to shm_open() a name that did not exist, and O_CREAT
was not specified.

Linux man-pages 6.16 2025-09-21 2467

shm_open(3) Library Functions Manual shm_open(3)

ENOENT
An attempt was to made to shm_unlink() a name that does not exist.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localeshm_open(), shm_unlink()

VERSIONS
POSIX leaves the behavior of the combination of O_RDONLY and O_TRUNC un-
specified. On Linux, this will successfully truncate an existing shared memory object—
this may not be so on other UNIX systems.

The POSIX shared memory object implementation on Linux makes use of a dedicated
tmpfs(5) filesystem that is normally mounted under /dev/shm.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2. POSIX.1-2001.

POSIX.1-2001 says that the group ownership of a newly created shared memory object
is set to either the calling process’s effective group ID or "a system default group ID".
POSIX.1-2008 says that the group ownership may be set to either the calling process’s
effective group ID or, if the object is visible in the filesystem, the group ID of the parent
directory.

EXAMPLES
The programs below employ POSIX shared memory and POSIX unnamed semaphores
to exchange a piece of data. The "bounce" program (which must be run first) raises the
case of a string that is placed into the shared memory by the "send" program. Once the
data has been modified, the "send" program then prints the contents of the modified
shared memory. An example execution of the two programs is the following:

$./pshm_ucase_bounce /myshm &
[1] 270171
$./pshm_ucase_send /myshm hello;
HELLO

Further detail about these programs is provided below.

Program source: pshm_ucase.h
The following header file is included by both programs below. Its primary purpose is to
define a structure that will be imposed on the memory object that is shared between the
two programs.

#ifndef PSHM_UCASE_H
#define PSHM_UCASE_H

#include <err.h>
#include <semaphore.h>
#include <stddef.h>

Linux man-pages 6.16 2025-09-21 2468

shm_open(3) Library Functions Manual shm_open(3)

#include <stdio.h>
#include <stdlib.h>

#define BUF_SIZE 1024 /* Maximum size for exchanged string */

/* Define a structure that will be imposed on the shared
memory object */

struct shmbuf {
sem_t sem1; /* POSIX unnamed semaphore */
sem_t sem2; /* POSIX unnamed semaphore */
size_t cnt; /* Number of bytes used in 'buf' */
char buf[BUF_SIZE]; /* Data being transferred */

};

#endif // include guard

Program source: pshm_ucase_bounce.c
The "bounce" program creates a new shared memory object with the name given in its
command-line argument and sizes the object to match the size of the shmbuf structure
defined in the header file. It then maps the object into the process’s address space, and
initializes two POSIX semaphores inside the object to 0.

After the "send" program has posted the first of the semaphores, the "bounce" program
upper cases the data that has been placed in the memory by the "send" program and then
posts the second semaphore to tell the "send" program that it may now access the shared
memory.

/* pshm_ucase_bounce.c

Licensed under GNU General Public License v2 or later.
*/
#include <ctype.h>
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>

#include "pshm_ucase.h"

int
main(int argc, char *argv[])
{

int fd;
char *shmpath;
struct shmbuf *shmp;

if (argc != 2) {

Linux man-pages 6.16 2025-09-21 2469

shm_open(3) Library Functions Manual shm_open(3)

fprintf(stderr, "Usage: %s /shm-path\n", argv[0]);
exit(EXIT_FAILURE);

}

shmpath = argv[1];

/* Create shared memory object and set its size to the size
of our structure. */

fd = shm_open(shmpath, O_CREAT | O_EXCL | O_RDWR, 0600);
if (fd == -1)

err(EXIT_FAILURE, "shm_open");

if (ftruncate(fd, sizeof(struct shmbuf)) == -1)
err(EXIT_FAILURE, "ftruncate");

/* Map the object into the caller's address space. */

shmp = mmap(NULL, sizeof(*shmp), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

if (shmp == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

/* Initialize semaphores as process-shared, with value 0. */

if (sem_init(&shmp->sem1, 1, 0) == -1)
err(EXIT_FAILURE, "sem_init-sem1");

if (sem_init(&shmp->sem2, 1, 0) == -1)
err(EXIT_FAILURE, "sem_init-sem2");

/* Wait for 'sem1' to be posted by peer before touching
shared memory. */

if (sem_wait(&shmp->sem1) == -1)
err(EXIT_FAILURE, "sem_wait");

/* Convert data in shared memory into upper case. */

for (size_t j = 0; j < shmp->cnt; j++)
shmp->buf[j] = toupper((unsigned char) shmp->buf[j]);

/* Post 'sem2' to tell the peer that it can now
access the modified data in shared memory. */

if (sem_post(&shmp->sem2) == -1)
err(EXIT_FAILURE, "sem_post");

Linux man-pages 6.16 2025-09-21 2470

shm_open(3) Library Functions Manual shm_open(3)

/* Unlink the shared memory object. Even if the peer process
is still using the object, this is okay. The object will
be removed only after all open references are closed. */

shm_unlink(shmpath);

exit(EXIT_SUCCESS);
}

Program source: pshm_ucase_send.c
The "send" program takes two command-line arguments: the pathname of a shared
memory object previously created by the "bounce" program and a string that is to be
copied into that object.

The program opens the shared memory object and maps the object into its address
space. It then copies the data specified in its second argument into the shared memory,
and posts the first semaphore, which tells the "bounce" program that it can now access
that data. After the "bounce" program posts the second semaphore, the "send" program
prints the contents of the shared memory on standard output.

/* pshm_ucase_send.c

Licensed under GNU General Public License v2 or later.
*/
#include <fcntl.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>

#include "pshm_ucase.h"

int
main(int argc, char *argv[])
{

int fd;
char *shmpath, *string;
size_t len;
struct shmbuf *shmp;

if (argc != 3) {
fprintf(stderr, "Usage: %s /shm-path string\n", argv[0]);
exit(EXIT_FAILURE);

}

shmpath = argv[1];
string = argv[2];

Linux man-pages 6.16 2025-09-21 2471

shm_open(3) Library Functions Manual shm_open(3)

len = strlen(string);

if (len > BUF_SIZE) {
fprintf(stderr, "String is too long\n");
exit(EXIT_FAILURE);

}

/* Open the existing shared memory object and map it
into the caller's address space. */

fd = shm_open(shmpath, O_RDWR, 0);
if (fd == -1)

err(EXIT_FAILURE, "shm_open");

shmp = mmap(NULL, sizeof(*shmp), PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

if (shmp == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

/* Copy data into the shared memory object. */

shmp->cnt = len;
memcpy(&shmp->buf, string, len);

/* Tell peer that it can now access shared memory. */

if (sem_post(&shmp->sem1) == -1)
err(EXIT_FAILURE, "sem_post");

/* Wait until peer says that it has finished accessing
the shared memory. */

if (sem_wait(&shmp->sem2) == -1)
err(EXIT_FAILURE, "sem_wait");

/* Write modified data in shared memory to standard output. */

if (write(STDOUT_FILENO, &shmp->buf, len) == -1)
err(EXIT_FAILURE, "write");

if (write(STDOUT_FILENO, "\n", 1) == -1)
err(EXIT_FAILURE, "write");

exit(EXIT_SUCCESS);
}

SEE ALSO
close(2), fchmod(2), fchown(2), fcntl(2), fstat(2), ftruncate(2), memfd_create(2),
mmap(2), open(2), umask(2), shm_overview(7)

Linux man-pages 6.16 2025-09-21 2472

shm_open(3) Library Functions Manual shm_open(3)

Linux man-pages 6.16 2025-09-21 2473

siginterrupt(3) Library Functions Manual siginterrupt(3)

NAME
siginterrupt - allow signals to interrupt system calls

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

[[deprecated]] int siginterrupt(int sig, int flag);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

siginterrupt():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE

DESCRIPTION
The siginterrupt() function changes the restart behavior when a system call is inter-
rupted by the signal sig. If the flag argument is false (0), then system calls will be
restarted if interrupted by the specified signal sig. This is the default behavior in Linux.

If the flag argument is true (1) and no data has been transferred, then a system call inter-
rupted by the signal sig will return -1 and errno will be set to EINTR.

If the flag argument is true (1) and data transfer has started, then the system call will be
interrupted and will return the actual amount of data transferred.

RETURN VALUE
The siginterrupt() function returns 0 on success. It returns -1 if the signal number sig
is invalid, with errno set to indicate the error.

ERRORS
EINVAL

The specified signal number is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetysiginterrupt() MT-Unsafe const:sigintr

STANDARDS
POSIX.1-2008.

HISTORY
4.3BSD, POSIX.1-2001. Obsolete in POSIX.1-2008, recommending the use of sigac-
tion(2) with the SA_RESTART flag instead.

SEE ALSO
signal(2)

Linux man-pages 6.16 2025-05-17 2474

signbit(3) Library Functions Manual signbit(3)

NAME
signbit - test sign of a real floating-point number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

int signbit(x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

signbit():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
signbit() is a generic macro which can work on all real floating-point types. It returns a
nonzero value if the value of x has its sign bit set.

This is not the same as x < 0.0, because IEEE 754 floating point allows zero to be
signed. The comparison -0.0 < 0.0 is false, but signbit(-0.0) will return a nonzero
value.

NaNs and infinities have a sign bit.

RETURN VALUE
The signbit() macro returns nonzero if the sign of x is negative; otherwise, it returns
zero.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesignbit()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

This function is defined in IEC 559 (and the appendix with recommended functions in
IEEE 754/IEEE 854).

SEE ALSO
copysign(3)

Linux man-pages 6.16 2025-09-21 2475

significand(3) Library Functions Manual significand(3)

NAME
significand, significandf, significandl - get mantissa of floating-point number

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double significand(double x);
float significandf(float x);
long double significandl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

significand(), significandf(), significandl():
/* Since glibc 2.19: */ _DEFAULT_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the mantissa of x scaled to the range [1, FLT_RADIX). They
are equivalent to

scalb(x, (double) -ilogb(x))

This function exists mainly for use in certain standardized tests for IEEE 754 confor-
mance.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesignificand(), significandf(), significandl()

STANDARDS
None.

significand()
BSD.

HISTORY
significand()

BSD.

SEE ALSO
ilogb(3), scalb(3)

Linux man-pages 6.16 2025-05-17 2476

sigpause(3) Library Functions Manual sigpause(3)

NAME
sigpause - atomically release blocked signals and wait for interrupt

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

[[deprecated]] int sigpause(int sigmask); /* BSD (but see VERSIONS) */

[[deprecated]] int sigpause(int sig); /* POSIX.1 / SysV / UNIX 95 */

DESCRIPTION
Don’t use this function. Use sigsuspend(2) instead.

The function sigpause() is designed to wait for some signal. It changes the process’s
signal mask (set of blocked signals), and then waits for a signal to arrive. Upon arrival
of a signal, the original signal mask is restored.

RETURN VALUE
If sigpause() returns, it was interrupted by a signal and the return value is -1 with errno
set to EINTR.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigpause()

VERSIONS
On Linux, this routine is a system call only on the Sparc (sparc64) architecture.

glibc uses the BSD version if the _BSD_SOURCE feature test macro is defined and
none of _POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE,
_GNU_SOURCE, or _SVID_SOURCE is defined. Otherwise, the System V version is
used, and feature test macros must be defined as follows to obtain the declaration:

• Since glibc 2.26: _XOPEN_SOURCE >= 500

• glibc 2.25 and earlier: _XOPEN_SOURCE

Since glibc 2.19, only the System V version is exposed by <signal.h>; applications that
formerly used the BSD sigpause() should be amended to use sigsuspend(2).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. Obsoleted in POSIX.1-2008.

The classical BSD version of this function appeared in 4.2BSD. It sets the process’s sig-
nal mask to sigmask. UNIX 95 standardized the incompatible System V version of this
function, which removes only the specified signal sig from the process’s signal mask.
The unfortunate situation with two incompatible functions with the same name was
solved by the sigsuspend(2) function, that takes a sigset_t * argument (instead of an
int).

Linux man-pages 6.16 2025-05-17 2477

sigpause(3) Library Functions Manual sigpause(3)

SEE ALSO
kill(2), sigaction(2), sigprocmask(2), sigsuspend(2), sigblock(3), sigvec(3), fea-
ture_test_macros(7)

Linux man-pages 6.16 2025-05-17 2478

sigqueue(3) Library Functions Manual sigqueue(3)

NAME
sigqueue - queue a signal and data to a process

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigqueue(pid_t pid , int sig, const union sigval value);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigqueue():
_POSIX_C_SOURCE >= 199309L

DESCRIPTION
sigqueue() sends the signal specified in sig to the process whose PID is given in pid .
The permissions required to send a signal are the same as for kill(2). As with kill(2), the
null signal (0) can be used to check if a process with a given PID exists.

The value argument is used to specify an accompanying item of data (either an integer
or a pointer value) to be sent with the signal, and has the following type:

union sigval {
int sival_int;
void *sival_ptr;

};

If the receiving process has installed a handler for this signal using the SA_SIGINFO
flag to sigaction(2), then it can obtain this data via the si_value field of the siginfo_t
structure passed as the second argument to the handler. Furthermore, the si_code field
of that structure will be set to SI_QUEUE.

RETURN VALUE
On success, sigqueue() returns 0, indicating that the signal was successfully queued to
the receiving process. Otherwise, -1 is returned and errno is set to indicate the error.

ERRORS
EAGAIN

The limit of signals which may be queued has been reached. (See signal(7) for
further information.)

EINVAL
sig was invalid.

EPERM
The process does not have permission to send the signal to the receiving process.
For the required permissions, see kill(2).

ESRCH
No process has a PID matching pid .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-05-17 2479

sigqueue(3) Library Functions Manual sigqueue(3)

Interface Attribute Value
Thread safety MT-Safesigqueue()

VERSIONS
C library/kernel differences

On Linux, sigqueue() is implemented using the rt_sigqueueinfo(2) system call. The
system call differs in its third argument, which is the siginfo_t structure that will be sup-
plied to the receiving process’s signal handler or returned by the receiving process’s sig-
timedwait(2) call. Inside the glibc sigqueue() wrapper, this argument, uinfo, is initial-
ized as follows:

uinfo.si_signo = sig; /* Argument supplied to sigqueue() */
uinfo.si_code = SI_QUEUE;
uinfo.si_pid = getpid(); /* Process ID of sender */
uinfo.si_uid = getuid(); /* Real UID of sender */
uinfo.si_value = val; /* Argument supplied to sigqueue() */

STANDARDS
POSIX.1-2008.

HISTORY
Linux 2.2. POSIX.1-2001.

NOTES
If this function results in the sending of a signal to the process that invoked it, and that
signal was not blocked by the calling thread, and no other threads were willing to handle
this signal (either by having it unblocked, or by waiting for it using sigwait(3)), then at
least some signal must be delivered to this thread before this function returns.

SEE ALSO
kill(2), rt_sigqueueinfo(2), sigaction(2), signal(2), pthread_sigqueue(3), sigwait(3), sig-
nal(7)

Linux man-pages 6.16 2025-05-17 2480

sigset(3) Library Functions Manual sigset(3)

NAME
sigset, sighold, sigrelse, sigignore - System V signal API

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

[[deprecated]] sighandler_t sigset(int sig, sighandler_t disp);

[[deprecated]] int sighold(int sig);
[[deprecated]] int sigrelse(int sig);
[[deprecated]] int sigignore(int sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigset(), sighold(), sigrelse(), sigignore():
_XOPEN_SOURCE >= 500

DESCRIPTION
These functions are provided in glibc as a compatibility interface for programs that
make use of the historical System V signal API. This API is obsolete: new applications
should use the POSIX signal API (sigaction(2), sigprocmask(2), etc.)

The sigset() function modifies the disposition of the signal sig. The disp argument can
be the address of a signal handler function, or one of the following constants:

SIG_DFL
Reset the disposition of sig to the default.

SIG_IGN
Ignore sig.

SIG_HOLD
Add sig to the process’s signal mask, but leave the disposition of sig unchanged.

If disp specifies the address of a signal handler, then sig is added to the process’s signal
mask during execution of the handler.

If disp was specified as a value other than SIG_HOLD, then sig is removed from the
process’s signal mask.

The dispositions for SIGKILL and SIGSTOP cannot be changed.

The sighold() function adds sig to the calling process’s signal mask.

The sigrelse() function removes sig from the calling process’s signal mask.

The sigignore() function sets the disposition of sig to SIG_IGN.

RETURN VALUE
On success, sigset() returns SIG_HOLD if sig was blocked before the call, or the sig-
nal’s previous disposition if it was not blocked before the call. On error, sigset() returns
-1, with errno set to indicate the error. (But see BUGS below.)

The sighold(), sigrelse(), and sigignore() functions return 0 on success; on error, these

Linux man-pages 6.16 2025-05-17 2481

sigset(3) Library Functions Manual sigset(3)

functions return -1 and set errno to indicate the error.

ERRORS
For sigset() see the ERRORS under sigaction(2) and sigprocmask(2).

For sighold() and sigrelse() see the ERRORS under sigprocmask(2).

For sigignore(), see the errors under sigaction(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigset(), sighold(), sigrelse(), sigignore()

STANDARDS
POSIX.1-2008.

sighandler_t
GNU. POSIX.1 uses the same type but without a typedef .

HISTORY
glibc 2.1. SVr4, POSIX.1-2001. POSIX.1-2008 marks these functions as obsolete, rec-
ommending the use of sigaction(2), sigprocmask(2), pthread_sigmask(3), and sigsus-
pend(2) instead.

NOTES
The sigset() function provides reliable signal handling semantics (as when calling sigac-
tion(2) with sa_mask equal to 0).

On System V, the signal() function provides unreliable semantics (as when calling
sigaction(2) with sa_mask equal to SA_RESETHAND | SA_NODEFER). On BSD, sig-
nal() provides reliable semantics. POSIX.1-2001 leaves these aspects of signal() un-
specified. See signal(2) for further details.

In order to wait for a signal, BSD and System V both provided a function named sig-
pause(3), but this function has a different argument on the two systems. See sigpause(3)
for details.

BUGS
Before glibc 2.2, sigset() did not unblock sig if disp was specified as a value other than
SIG_HOLD.

Before glibc 2.5, sigset() does not correctly return the previous disposition of the signal
in two cases. First, if disp is specified as SIG_HOLD, then a successful sigset() always
returns SIG_HOLD. Instead, it should return the previous disposition of the signal (un-
less the signal was blocked, in which case SIG_HOLD should be returned). Second, if
the signal is currently blocked, then the return value of a successful sigset() should be
SIG_HOLD. Instead, the previous disposition of the signal is returned. These prob-
lems have been fixed since glibc 2.5.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigprocmask(2), raise(3), sigpause(3),
sigvec(3), signal(7)

Linux man-pages 6.16 2025-05-17 2482

SIGSETOPS(3) Library Functions Manual SIGSETOPS(3)

NAME
sigemptyset, sigfillset, sigaddset, sigdelset, sigismember - POSIX signal set operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigemptyset(sigset_t *set);
int sigfillset(sigset_t *set);

int sigaddset(sigset_t *set, int signum);
int sigdelset(sigset_t *set, int signum);

int sigismember(const sigset_t *set, int signum);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigemptyset(), sigfillset(), sigaddset(), sigdelset(), sigismember():
_POSIX_C_SOURCE

DESCRIPTION
These functions allow the manipulation of POSIX signal sets.

sigemptyset() initializes the signal set given by set to empty, with all signals excluded
from the set.

sigfillset() initializes set to full, including all signals.

sigaddset() and sigdelset() add and delete respectively signal signum from set.

sigismember() tests whether signum is a member of set.

Objects of type sigset_t must be initialized by a call to either sigemptyset() or sig-
fillset() before being passed to the functions sigaddset(), sigdelset(), and sigismember()
or the additional glibc functions described below (sigisemptyset(), sigandset(), and sig-
orset())The results are undefined if this is not done.

RETURN VALUE
sigemptyset(), sigfillset(), sigaddset(), and sigdelset() return 0 on success and -1 on er-
ror.

sigismember() returns 1 if signum is a member of set, 0 if signum is not a member, and
-1 on error.

On error, these functions set errno to indicate the error.

ERRORS
EINVAL

signum is not a valid signal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigemptyset(), sigfillset(), sigaddset(), sigdelset(),
sigismember(), sigisemptyset(), sigorset(), sigandset()

Linux man-pages 6.16 2025-05-17 2483

SIGSETOPS(3) Library Functions Manual SIGSETOPS(3)

VERSIONS
GNU

If the _GNU_SOURCE feature test macro is defined, then <signal.h> exposes three
other functions for manipulating signal sets:

int sigisemptyset(const sigset_t *set);
int sigorset(sigset_t *dest, const sigset_t *left,

const sigset_t *right);
int sigandset(sigset_t *dest, const sigset_t *left,

const sigset_t *right);

sigisemptyset() returns 1 if set contains no signals, and 0 otherwise.

sigorset() places the union of the sets left and right in dest. sigandset() places the in-
tersection of the sets left and right in dest. Both functions return 0 on success, and -1
on failure.

These functions are nonstandard (a few other systems provide similar functions) and
their use should be avoided in portable applications.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
When creating a filled signal set, the glibc sigfillset() function does not include the two
real-time signals used internally by the NPTL threading implementation. See nptl(7) for
details.

SEE ALSO
sigaction(2), sigpending(2), sigprocmask(2), sigsuspend(2)

Linux man-pages 6.16 2025-05-17 2484

sigvec(3) Library Functions Manual sigvec(3)

NAME
sigvec, sigblock, sigsetmask, siggetmask, sigmask - BSD signal API

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

[[deprecated]] int sigvec(int sig, const struct sigvec *vec,
struct sigvec *ovec);

[[deprecated]] int sigmask(int signum);

[[deprecated]] int sigblock(int mask);
[[deprecated]] int sigsetmask(int mask);
[[deprecated]] int siggetmask(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
These functions are provided in glibc as a compatibility interface for programs that
make use of the historical BSD signal API. This API is obsolete: new applications
should use the POSIX signal API (sigaction(2), sigprocmask(2), etc.).

The sigvec() function sets and/or gets the disposition of the signal sig (like the POSIX
sigaction(2)). If vec is not NULL, it points to a sigvec structure that defines the new
disposition for sig. If ovec is not NULL, it points to a sigvec structure that is used to re-
turn the previous disposition of sig. To obtain the current disposition of sig without
changing it, specify NULL for vec, and a non-null pointer for ovec.

The dispositions for SIGKILL and SIGSTOP cannot be changed.

The sigvec structure has the following form:

struct sigvec {
void (*sv_handler)(int); /* Signal disposition */
int sv_mask; /* Signals to be blocked in handler */
int sv_flags; /* Flags */

};

The sv_handler field specifies the disposition of the signal, and is either: the address of
a signal handler function; SIG_DFL, meaning the default disposition applies for the sig-
nal; or SIG_IGN, meaning that the signal is ignored.

If sv_handler specifies the address of a signal handler, then sv_mask specifies a mask of
signals that are to be blocked while the handler is executing. In addition, the signal for
which the handler is invoked is also blocked. Attempts to block SIGKILL or
SIGSTOP are silently ignored.

Linux man-pages 6.16 2025-09-21 2485

sigvec(3) Library Functions Manual sigvec(3)

If sv_handler specifies the address of a signal handler, then the sv_flags field specifies
flags controlling what happens when the handler is called. This field may contain zero
or more of the following flags:

SV_INTERRUPT
If the signal handler interrupts a blocking system call, then upon return from the
handler the system call is not restarted: instead it fails with the error EINTR. If
this flag is not specified, then system calls are restarted by default.

SV_RESETHAND
Reset the disposition of the signal to the default before calling the signal handler.
If this flag is not specified, then the handler remains established until explicitly
removed by a later call to sigvec() or until the process performs an execve(2).

SV_ONSTACK
Handle the signal on the alternate signal stack (historically established under
BSD using the obsolete sigstack() function; the POSIX replacement is sigalt-
stack(2)).

The sigmask() macro constructs and returns a "signal mask" for signum. For example,
we can initialize the vec.sv_mask field given to sigvec() using code such as the follow-
ing:

vec.sv_mask = sigmask(SIGQUIT) | sigmask(SIGABRT);
/* Block SIGQUIT and SIGABRT during

handler execution */

The sigblock() function adds the signals in mask to the process’s signal mask (like
POSIX sigprocmask(SIG_BLOCK)), and returns the process’s previous signal mask.
Attempts to block SIGKILL or SIGSTOP are silently ignored.

The sigsetmask() function sets the process’s signal mask to the value given in mask
(like POSIX sigprocmask(SIG_SETMASK)), and returns the process’s previous signal
mask.

The siggetmask() function returns the process’s current signal mask. This call is equiv-
alent to sigblock(0).

RETURN VALUE
The sigvec() function returns 0 on success; on error, it returns -1 and sets errno to indi-
cate the error.

The sigblock() and sigsetmask() functions return the previous signal mask.

The sigmask() macro returns the signal mask for signum.

ERRORS
See the ERRORS under sigaction(2) and sigprocmask(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigvec(), sigmask(), sigblock(), sigsetmask(),
siggetmask()

Linux man-pages 6.16 2025-09-21 2486

sigvec(3) Library Functions Manual sigvec(3)

STANDARDS
None.

HISTORY
sigvec()
sigblock()
sigmask()
sigsetmask()

4.3BSD.

siggetmask()
Unclear origin.

sigvec()
Removed in glibc 2.21.

NOTES
On 4.3BSD, the signal() function provided reliable semantics (as when calling sigvec()
with vec.sv_mask equal to 0). On System V, signal() provides unreliable semantics.
POSIX.1 leaves these aspects of signal() unspecified. See signal(2) for further details.

In order to wait for a signal, BSD and System V both provided a function named sig-
pause(3), but this function has a different argument on the two systems. See sigpause(3)
for details.

SEE ALSO
kill(2), pause(2), sigaction(2), signal(2), sigprocmask(2), raise(3), sigpause(3),
sigset(3), signal(7)

Linux man-pages 6.16 2025-09-21 2487

sigwait(3) Library Functions Manual sigwait(3)

NAME
sigwait - wait for a signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <signal.h>

int sigwait(const sigset_t *restrict set, int *restrict sig);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigwait():
Since glibc 2.26:

_POSIX_C_SOURCE >= 199506L
glibc 2.25 and earlier:

_POSIX_C_SOURCE

DESCRIPTION
The sigwait() function suspends execution of the calling thread until one of the signals
specified in the signal set set becomes pending. For a signal to become pending, it must
first be blocked with sigprocmask(2). The function accepts the signal (removes it from
the pending list of signals), and returns the signal number in sig.

The operation of sigwait() is the same as sigwaitinfo(2), except that:

• sigwait() returns only the signal number, rather than a siginfo_t structure describing
the signal.

• The return values of the two functions are different.

RETURN VALUE
On success, sigwait() returns 0. On error, it returns a positive error number (listed in
ERRORS).

ERRORS
EINVAL

set contains an invalid signal number.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesigwait()

VERSIONS
sigwait() is implemented using sigtimedwait(2); consult its NOTES.

The glibc implementation of sigwait() silently ignores attempts to wait for the two real-
time signals that are used internally by the NPTL threading implementation. See nptl(7)
for details.

STANDARDS
POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2488

sigwait(3) Library Functions Manual sigwait(3)

HISTORY
POSIX.1-2001.

EXAMPLES
See pthread_sigmask(3).

SEE ALSO
sigaction(2), signalfd(2), sigpending(2), sigsuspend(2), sigwaitinfo(2), sigsetops(3), sig-
nal(7)

Linux man-pages 6.16 2025-05-17 2489

sin(3) Library Functions Manual sin(3)

NAME
sin, sinf, sinl - sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double sin(double x);
float sinf(float x);
long double sinl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sinf(), sinl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the sine of x, where x is given in radians.

RETURN VALUE
On success, these functions return the sine of x.

If x is a NaN, a NaN is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesin(), sinf(), sinl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a domain
error occurred.

Linux man-pages 6.16 2025-05-17 2490

sin(3) Library Functions Manual sin(3)

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), csin(3), sincos(3), tan(3)

Linux man-pages 6.16 2025-05-17 2491

sincos(3) Library Functions Manual sincos(3)

NAME
sincos, sincosf, sincosl - calculate sin and cos simultaneously

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <math.h>

void sincos(double x, double *sin, double *cos);
void sincosf(float x, float *sin, float *cos);
void sincosl(long double x, long double *sin, long double *cos);

DESCRIPTION
Several applications need sine and cosine of the same angle x. These functions compute
both at the same time, and store the results in *sin and *cos. Using this function can be
more efficient than two separate calls to sin(3) and cos(3).

If x is a NaN, a NaN is returned in *sin and *cos.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is returned
in *sin and *cos.

RETURN VALUE
These functions return void .

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesincos(), sincosf(), sincosl()

STANDARDS
GNU.

HISTORY
glibc 2.1.

NOTES
To see the performance advantage of sincos(), it may be necessary to disable gcc(1)
built-in optimizations, using flags such as:

cc -O -lm -fno-builtin prog.c

Linux man-pages 6.16 2025-05-17 2492

sincos(3) Library Functions Manual sincos(3)

BUGS
Before glibc 2.22, the glibc implementation did not set errno to EDOM when a domain
error occurred.

SEE ALSO
cos(3), sin(3), tan(3)

Linux man-pages 6.16 2025-05-17 2493

sinh(3) Library Functions Manual sinh(3)

NAME
sinh, sinhf, sinhl - hyperbolic sine function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double sinh(double x);
float sinhf(float x);
long double sinhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sinhf(), sinhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the hyperbolic sine of x, which is defined mathematically as:

sinh(x) = (exp(x) - exp(-x)) / 2

RETURN VALUE
On success, these functions return the hyperbolic sine of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), positive infinity (negative infinity) is returned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the same sign as x.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesinh(), sinhf(), sinhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

Linux man-pages 6.16 2025-05-17 2494

sinh(3) Library Functions Manual sinh(3)

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
acosh(3), asinh(3), atanh(3), cosh(3), csinh(3), tanh(3)

Linux man-pages 6.16 2025-05-17 2495

sleep(3) Library Functions Manual sleep(3)

NAME
sleep - sleep for a specified number of seconds

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

unsigned int sleep(unsigned int seconds);

DESCRIPTION
sleep() causes the calling thread to sleep either until the number of real-time seconds
specified in seconds have elapsed or until a signal arrives which is not ignored.

RETURN VALUE
Zero if the requested time has elapsed, or the number of seconds left to sleep, if the call
was interrupted by a signal handler.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe sig:SIGCHLD/linuxsleep()

VERSIONS
On Linux, sleep() is implemented via nanosleep(2). See the nanosleep(2) man page for
a discussion of the clock used.

On some systems, sleep() may be implemented using alarm(2) and SIGALRM
(POSIX.1 permits this); mixing calls to alarm(2) and sleep() is a bad idea.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

CAVEATS
Using longjmp(3) from a signal handler or modifying the handling of SIGALRM while
sleeping will cause undefined results.

SEE ALSO
sleep(1), alarm(2), nanosleep(2), signal(2), signal(7)

Linux man-pages 6.16 2025-05-17 2496

SLIST (3) Library Functions Manual SLIST (3)

NAME
SLIST_EMPTY, SLIST_ENTRY, SLIST_FIRST, SLIST_FOREACH, SLIST_HEAD,
SLIST_HEAD_INITIALIZER, SLIST_INIT, SLIST_INSERT_AFTER, SLIST_IN-
SERT_HEAD, SLIST_NEXT, SLIST_REMOVE, SLIST_REMOVE_HEAD - imple-
mentation of a singly linked list

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

SLIST_ENTRY(TYPE);

SLIST_HEAD(HEADNAME, TYPE);
SLIST_HEAD SLIST_HEAD_INITIALIZER(SLIST_HEAD head);
void SLIST_INIT(SLIST_HEAD *head);

int SLIST_EMPTY(SLIST_HEAD *head);

void SLIST_INSERT_HEAD(SLIST_HEAD *head ,
struct TYPE *elm, SLIST_ENTRY NAME);

void SLIST_INSERT_AFTER(struct TYPE *listelm,
struct TYPE *elm, SLIST_ENTRY NAME);

struct TYPE *SLIST_FIRST(SLIST_HEAD *head);
struct TYPE *SLIST_NEXT(struct TYPE *elm, SLIST_ENTRY NAME);

SLIST_FOREACH(struct TYPE *var, SLIST_HEAD *head , SLIST_ENTRY NAME);

void SLIST_REMOVE(SLIST_HEAD *head , struct TYPE *elm, TYPE,
SLIST_ENTRY NAME);

void SLIST_REMOVE_HEAD(SLIST_HEAD *head ,
SLIST_ENTRY NAME);

DESCRIPTION
These macros define and operate on singly linked lists.

In the macro definitions, TYPE is the name of a user-defined structure, that must contain
a field of type SLIST_ENTRY , named NAME. The argument HEADNAME is the name
of a user-defined structure that must be declared using the macro SLIST_HEAD().

Creation
A singly linked list is headed by a structure defined by the SLIST_HEAD() macro.
This structure contains a single pointer to the first element on the list. The elements are
singly linked for minimum space and pointer manipulation overhead at the expense of
O(n) removal for arbitrary elements. New elements can be added to the list after an ex-
isting element or at the head of the list. An SLIST_HEAD structure is declared as fol-
lows:

SLIST_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type of
the elements to be linked into the list. A pointer to the head of the list can later be de-
clared as:

Linux man-pages 6.16 2025-05-17 2497

SLIST (3) Library Functions Manual SLIST (3)

struct HEADNAME *headp;

(The names head and headp are user selectable.)

SLIST_ENTRY() declares a structure that connects the elements in the list.

SLIST_HEAD_INITIALIZER() evaluates to an initializer for the list head .

SLIST_INIT() initializes the list referenced by head .

SLIST_EMPTY() evaluates to true if there are no elements in the list.

Insertion
SLIST_INSERT_HEAD() inserts the new element elm at the head of the list.

SLIST_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
SLIST_FIRST() returns the first element in the list, or NULL if the list is empty.

SLIST_NEXT() returns the next element in the list.

SLIST_FOREACH() traverses the list referenced by head in the forward direction, as-
signing each element in turn to var.

Removal
SLIST_REMOVE() removes the element elm from the list.

SLIST_REMOVE_HEAD() removes the element elm from the head of the list. For
optimum efficiency, elements being removed from the head of the list should explicitly
use this macro instead of the generic SLIST_REMOVE().

RETURN VALUE
SLIST_EMPTY() returns nonzero if the list is empty, and zero if the list contains at
least one entry.

SLIST_FIRST(), and SLIST_NEXT() return a pointer to the first or next TYPE struc-
ture, respectively.

SLIST_HEAD_INITIALIZER() returns an initializer that can be assigned to the list
head .

STANDARDS
BSD.

HISTORY
4.4BSD.

BUGS
SLIST_FOREACH() doesn’t allow var to be removed or freed within the loop, as it
would interfere with the traversal. SLIST_FOREACH_SAFE(), which is present on
the BSDs but is not present in glibc, fixes this limitation by allowing var to safely be re-
moved from the list and freed from within the loop without interfering with the traversal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.16 2025-05-17 2498

SLIST (3) Library Functions Manual SLIST (3)

#include <sys/queue.h>

struct entry {
int data;
SLIST_ENTRY(entry) entries; /* Singly linked list */

};

SLIST_HEAD(slisthead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct slisthead head; /* Singly linked list

head */

SLIST_INIT(&head); /* Initialize the queue */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
SLIST_INSERT_HEAD(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
SLIST_INSERT_AFTER(n1, n2, entries);

SLIST_REMOVE(&head, n2, entry, entries);/* Deletion */
free(n2);

n3 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries); /* Deletion from the head */
free(n3);

for (unsigned int i = 0; i < 5; i++) {
n1 = malloc(sizeof(struct entry));
SLIST_INSERT_HEAD(&head, n1, entries);
n1->data = i;

}

/* Forward traversal */
SLIST_FOREACH(np, &head, entries)

printf("%i\n", np->data);

while (!SLIST_EMPTY(&head)) { /* List deletion */
n1 = SLIST_FIRST(&head);
SLIST_REMOVE_HEAD(&head, entries);
free(n1);

}
SLIST_INIT(&head);

Linux man-pages 6.16 2025-05-17 2499

SLIST (3) Library Functions Manual SLIST (3)

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.16 2025-05-17 2500

sockatmark(3) Library Functions Manual sockatmark(3)

NAME
sockatmark - determine whether socket is at out-of-band mark

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/socket.h>

int sockatmark(int sockfd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sockatmark():
_POSIX_C_SOURCE >= 200112L

DESCRIPTION
sockatmark() returns a value indicating whether or not the socket referred to by the file
descriptor sockfd is at the out-of-band mark. If the socket is at the mark, then 1 is re-
turned; if the socket is not at the mark, 0 is returned. This function does not remove the
out-of-band mark.

RETURN VALUE
A successful call to sockatmark() returns 1 if the socket is at the out-of-band mark, or 0
if it is not. On error, -1 is returned and errno is set to indicate the error.

ERRORS
EBADF

sockfd is not a valid file descriptor.

EINVAL
sockfd is not a file descriptor to which sockatmark() can be applied.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesockatmark()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.2.4. POSIX.1-2001.

NOTES
If sockatmark() returns 1, then the out-of-band data can be read using the MSG_OOB
flag of recv(2).

Out-of-band data is supported only on some stream socket protocols.

sockatmark() can safely be called from a handler for the SIGURG signal.

sockatmark() is implemented using the SIOCATMARK ioctl(2) operation.

BUGS
Prior to glibc 2.4, sockatmark() did not work.

Linux man-pages 6.16 2025-05-17 2501

sockatmark(3) Library Functions Manual sockatmark(3)

EXAMPLES
The following code can be used after receipt of a SIGURG signal to read (and discard)
all data up to the mark, and then read the byte of data at the mark:

char buf[BUF_LEN];
char oobdata;
int atmark, s;

for (;;) {
atmark = sockatmark(sockfd);
if (atmark == -1) {

perror("sockatmark");
break;

}

if (atmark)
break;

s = read(sockfd, buf, BUF_LEN);
if (s == -1)

perror("read");
if (s <= 0)

break;
}

if (atmark == 1) {
if (recv(sockfd, &oobdata, 1, MSG_OOB) == -1) {

perror("recv");
...

}
}

SEE ALSO
fcntl(2), recv(2), send(2), tcp(7)

Linux man-pages 6.16 2025-05-17 2502

sqrt(3) Library Functions Manual sqrt(3)

NAME
sqrt, sqrtf, sqrtl - square root function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double sqrt(double x);
float sqrtf(float x);
long double sqrtl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sqrtf(), sqrtl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the nonnegative square root of x.

RETURN VALUE
On success, these functions return the square root of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity, positive infinity is returned.

If x is less than -0, a domain error occurs, and a NaN is returned.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x less than -0
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesqrt(), sqrtf(), sqrtl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

Linux man-pages 6.16 2025-05-17 2503

sqrt(3) Library Functions Manual sqrt(3)

SEE ALSO
cbrt(3), csqrt(3), hypot(3)

Linux man-pages 6.16 2025-05-17 2504

sscanf (3) Library Functions Manual sscanf (3)

NAME
sscanf, vsscanf - input string format conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int sscanf(const char *restrict str,
const char *restrict format, ...);

#include <stdarg.h>

int vsscanf(const char *restrict str,
const char *restrict format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vsscanf():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The sscanf() family of functions scans formatted input according to format as described
below. This format may contain conversion specifications; the results from such conver-
sions, if any, are stored in the locations pointed to by the pointer arguments that follow
format. Each pointer argument must be of a type that is appropriate for the value re-
turned by the corresponding conversion specification.

If the number of conversion specifications in format exceeds the number of pointer ar-
guments, the results are undefined. If the number of pointer arguments exceeds the
number of conversion specifications, then the excess pointer arguments are evaluated,
but are otherwise ignored.

sscanf() These functions read their input from the string pointed to by str.

The vsscanf() function is analogous to vsprintf(3).

The format string consists of a sequence of directives which describe how to process
the sequence of input characters. If processing of a directive fails, no further input is
read, and sscanf() returns. A "failure" can be either of the following: input failure,
meaning that input characters were unavailable, or matching failure, meaning that the
input was inappropriate (see below).

A directive is one of the following:

• A sequence of white-space characters (space, tab, newline, etc.; see isspace(3)).
This directive matches any amount of white space, including none, in the input.

• An ordinary character (i.e., one other than white space or '%'). This character
must exactly match the next character of input.

• A conversion specification, which commences with a '%' (percent) character. A
sequence of characters from the input is converted according to this specifica-
tion, and the result is placed in the corresponding pointer argument. If the next
item of input does not match the conversion specification, the conversion fails—
this is a matching failure.

Linux man-pages 6.16 2025-09-21 2505

sscanf (3) Library Functions Manual sscanf (3)

Each conversion specification in format begins with either the character '%' or the char-
acter sequence "%n$" (see below for the distinction) followed by:

• An optional '*' assignment-suppression character: sscanf() reads input as di-
rected by the conversion specification, but discards the input. No corresponding
pointer argument is required, and this specification is not included in the count
of successful assignments returned by sscanf().

• For decimal conversions, an optional quote character ('). This specifies that the
input number may include thousands’ separators as defined by the LC_NU-
MERIC category of the current locale. (See setlocale(3).) The quote character
may precede or follow the '*' assignment-suppression character.

• An optional 'm' character. This is used with string conversions (%s, %c, %[),
and relieves the caller of the need to allocate a corresponding buffer to hold the
input: instead, sscanf() allocates a buffer of sufficient size, and assigns the ad-
dress of this buffer to the corresponding pointer argument, which should be a
pointer to a char * variable (this variable does not need to be initialized before
the call). The caller should subsequently free(3) this buffer when it is no longer
required.

• An optional decimal integer which specifies the maximum field width. Reading
of characters stops either when this maximum is reached or when a nonmatching
character is found, whichever happens first. Most conversions discard initial
white space characters (the exceptions are noted below), and these discarded
characters don’t count toward the maximum field width. String input conver-
sions store a terminating null byte ('\0') to mark the end of the input; the maxi-
mum field width does not include this terminator.

• An optional type modifier character. For example, the l type modifier is used
with integer conversions such as %d to specify that the corresponding pointer
argument refers to a long rather than a pointer to an int.

• A conversion specifier that specifies the type of input conversion to be per-
formed.

The conversion specifications in format are of two forms, either beginning with '%' or
beginning with "%n$". The two forms should not be mixed in the same format string,
except that a string containing "%n$" specifications can include %% and %*. If for-
mat contains '%' specifications, then these correspond in order with successive pointer
arguments. In the "%n$" form (which is specified in POSIX.1-2001, but not C99), n is
a decimal integer that specifies that the converted input should be placed in the location
referred to by the n-th pointer argument following format.

Conversions
The following type modifier characters can appear in a conversion specification:

h Indicates that the conversion will be one of d, i, o, u, x, X, or n, and the next
pointer is a pointer to a short or unsigned short (rather than int).

hh As for h, but the next pointer is a pointer to a signed char or unsigned char.

Linux man-pages 6.16 2025-09-21 2506

sscanf (3) Library Functions Manual sscanf (3)

j As for h, but the next pointer is a pointer to an intmax_t or a uintmax_t. This
modifier was introduced in C99.

l Indicates either that the conversion will be one of d, i, o, u, x, X, or n, and the
next pointer is a pointer to a long or unsigned long (rather than int), or that the
conversion will be one of e, f, or g, and the next pointer is a pointer to double
(rather than float). If used with %c or %s, the corresponding parameter is con-
sidered as a pointer to a wide character or wide-character string respectively.

ll (ell-ell) Indicates that the conversion will be one of b, d, i, o, u, x, X, or n, and
the next pointer is a pointer to a long long or unsigned long long (rather than
int).

L Indicates that the conversion will be either e, f, or g, and the next pointer is a
pointer to long double or (as a GNU extension) the conversion will be d, i, o, u,
or x, and the next pointer is a pointer to long long.

q equivalent to L. This specifier does not exist in ANSI C.

t As for h, but the next pointer is a pointer to a ptrdiff_t. This modifier was intro-
duced in C99.

z As for h, but the next pointer is a pointer to a size_t. This modifier was intro-
duced in C99.

The following conversion specifiers are available:

% Matches a literal '%'. That is, %% in the format string matches a single input
'%' character. No conversion is done (but initial white space characters are dis-
carded), and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a pointer
to int.

i Matches an optionally signed integer; the next pointer must be a pointer to int.
The integer is read in base 16 if it begins with 0x or 0X , in base 8 if it begins
with 0, and in base 10 otherwise. Only characters that correspond to the base are
used.

o Matches an unsigned octal integer; the next pointer must be a pointer to unsigned
int.

u Matches an unsigned decimal integer; the next pointer must be a pointer to un-
signed int.

x Matches an unsigned hexadecimal integer (that may optionally begin with a pre-
fix of 0x or 0X , which is discarded); the next pointer must be a pointer to un-
signed int.

X Equivalent to x.

f Matches an optionally signed floating-point number; the next pointer must be a
pointer to float.

e Equivalent to f.

Linux man-pages 6.16 2025-09-21 2507

sscanf (3) Library Functions Manual sscanf (3)

g Equivalent to f.

E Equivalent to f.

a (C99) Equivalent to f.

s Matches a sequence of non-white-space characters; the next pointer must be a
pointer to the initial element of a character array that is long enough to hold the
input sequence and the terminating null byte ('\0'), which is added automatically.
The input string stops at white space or at the maximum field width, whichever
occurs first.

c Matches a sequence of characters whose length is specified by the maximum
field width (default 1); the next pointer must be a pointer to char, and there must
be enough room for all the characters (no terminating null byte is added). The
usual skip of leading white space is suppressed. To skip white space first, use an
explicit space in the format.

[Matches a nonempty sequence of characters from the specified set of accepted
characters; the next pointer must be a pointer to char, and there must be enough
room for all the characters in the string, plus a terminating null byte. The usual
skip of leading white space is suppressed. The string is to be made up of charac-
ters in (or not in) a particular set; the set is defined by the characters between the
open bracket [character and a close bracket] character. The set excludes those
characters if the first character after the open bracket is a circumflex (̂). To in-
clude a close bracket in the set, make it the first character after the open bracket
or the circumflex; any other position will end the set. The hyphen character - is
also special; when placed between two other characters, it adds all intervening
characters to the set. To include a hyphen, make it the last character before the
final close bracket. For instance, [^]0-9-] means the set "everything except
close bracket, zero through nine, and hyphen". The string ends with the appear-
ance of a character not in the (or, with a circumflex, in) set or when the field
width runs out.

p Matches a pointer value (as printed by %p in printf(3)); the next pointer must be
a pointer to a pointer to void .

n Nothing is expected; instead, the number of characters consumed thus far from
the input is stored through the next pointer, which must be a pointer to int, or
variant whose size matches the (optionally) supplied integer length modifier.
This is not a conversion and does not increase the count returned by the func-
tion. The assignment can be suppressed with the * assignment-suppression char-
acter, but the effect on the return value is undefined. Therefore %*n conversions
should not be used.

RETURN VALUE
On success, these functions return the number of input items successfully matched and
assigned; this can be fewer than provided for, or even zero, in the event of an early
matching failure.

The value EOF is returned if the end of input is reached before either the first successful
conversion or a matching failure occurs.

Linux man-pages 6.16 2025-09-21 2508

sscanf (3) Library Functions Manual sscanf (3)

ERRORS
EILSEQ

Input byte sequence does not form a valid character.

EINVAL
Not enough arguments; or format is NULL.

ENOMEM
Out of memory.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localesscanf(), vsscanf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

The q specifier is the 4.4BSD notation for long long, while ll or the usage of L in integer
conversions is the GNU notation.

The Linux version of these functions is based on the GNU libio library. Take a look at
the info(1) documentation of GNU libc (glibc-1.08) for a more concise description.

NOTES
The ’a’ assignment-allocation modifier

Originally, the GNU C library supported dynamic allocation for string inputs (as a non-
standard extension) via the a character. (This feature is present at least as far back as
glibc 2.0.) Thus, one could write the following to have sscanf() allocate a buffer for a
string, with a pointer to that buffer being returned in *buf :

char *buf;
sscanf(str, "%as", &buf);

The use of the letter a for this purpose was problematic, since a is also specified by the
ISO C standard as a synonym for f (floating-point input). POSIX.1-2008 instead speci-
fies the m modifier for assignment allocation (as documented in DESCRIPTION,
above).

Note that the a modifier is not available if the program is compiled with gcc -std=c99
or gcc -D_ISOC99_SOURCE (unless _GNU_SOURCE is also specified), in which
case the a is interpreted as a specifier for floating-point numbers (see above).

Support for the m modifier was added to glibc 2.7, and new programs should use that
modifier instead of a.

As well as being standardized by POSIX, the m modifier has the following further ad-
vantages over the use of a:

• It may also be applied to %c conversion specifiers (e.g., %3mc).

Linux man-pages 6.16 2025-09-21 2509

sscanf (3) Library Functions Manual sscanf (3)

• It avoids ambiguity with respect to the %a floating-point conversion specifier (and is
unaffected by gcc -std=c99 etc.).

BUGS
Numeric conversion specifiers

Use of the numeric conversion specifiers produces undefined behavior for invalid input.
See C11 7.21.6.2/10 〈https://port70.net/%7Ensz/c/c11/n1570.html#7.21.6.2p10〉. This is
a bug in the ISO C standard, and not an inherent design issue with the API. However,
current implementations are not safe from that bug, so it is not recommended to use
them. Instead, programs should use functions such as strtol(3) to parse numeric input.
Alternatively, mitigate it by specifying a maximum field width.

Nonstandard modifiers
These functions are fully C99 conformant, but provide the additional modifiers q and a
as well as an additional behavior of the L and ll modifiers. The latter may be considered
to be a bug, as it changes the behavior of modifiers defined in C99.

Some combinations of the type modifiers and conversion specifiers defined by C99 do
not make sense (e.g., %Ld). While they may have a well-defined behavior on Linux,
this need not to be so on other systems. Therefore it usually is better to use modifiers
that are not defined by C99 at all, that is, use q instead of L in combination with d, i, o,
u, x, and X conversions or ll.

The usage of q is not the same as on 4.4BSD, as it may be used in float conversions
equivalently to L.

EXAMPLES
To use the dynamic allocation conversion specifier, specify m as a length modifier (thus
%ms or %m[range]). The caller must free(3) the returned string, as in the following
example:

char *p;
int n;

errno = 0;
n = sscanf(str, "%m[a-z]", &p);
if (n == 1) {

printf("read: %s\n", p);
free(p);

} else if (errno != 0) {
perror("sscanf");

} else {
fprintf(stderr, "No matching characters\n");

}

As shown in the above example, it is necessary to call free(3) only if the sscanf() call
successfully read a string.

SEE ALSO
getc(3), printf(3), setlocale(3), strtod(3), strtol(3), strtoul(3)

Linux man-pages 6.16 2025-09-21 2510

STAILQ(3) Library Functions Manual STAILQ(3)

NAME
SIMPLEQ_EMPTY, SIMPLEQ_ENTRY, SIMPLEQ_FIRST, SIMPLEQ_FOREACH,
SIMPLEQ_HEAD, SIMPLEQ_HEAD_INITIALIZER, SIMPLEQ_INIT, SIM-
PLEQ_INSERT_AFTER, SIMPLEQ_INSERT_HEAD, SIMPLEQ_INSERT_TAIL,
SIMPLEQ_NEXT, SIMPLEQ_REMOVE, SIMPLEQ_REMOVE_HEAD,
STAILQ_CONCAT, STAILQ_EMPTY, STAILQ_ENTRY, STAILQ_FIRST,
STAILQ_FOREACH, STAILQ_HEAD, STAILQ_HEAD_INITIALIZER,
STAILQ_INIT, STAILQ_INSERT_AFTER, STAILQ_INSERT_HEAD, STAILQ_IN-
SERT_TAIL, STAILQ_NEXT, STAILQ_REMOVE, STAILQ_REMOVE_HEAD, - im-
plementation of a singly linked tail queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

STAILQ_ENTRY(TYPE);

STAILQ_HEAD(HEADNAME, TYPE);
STAILQ_HEAD STAILQ_HEAD_INITIALIZER(STAILQ_HEAD head);
void STAILQ_INIT(STAILQ_HEAD *head);

int STAILQ_EMPTY(STAILQ_HEAD *head);

void STAILQ_INSERT_HEAD(STAILQ_HEAD *head ,
struct TYPE *elm, STAILQ_ENTRY NAME);

void STAILQ_INSERT_TAIL(STAILQ_HEAD *head ,
struct TYPE *elm, STAILQ_ENTRY NAME);

void STAILQ_INSERT_AFTER(STAILQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, STAILQ_ENTRY NAME);

struct TYPE *STAILQ_FIRST(STAILQ_HEAD *head);
struct TYPE *STAILQ_NEXT(struct TYPE *elm, STAILQ_ENTRY NAME);

STAILQ_FOREACH(struct TYPE *var, STAILQ_HEAD *head , STAILQ_ENTRY NAME);

void STAILQ_REMOVE(STAILQ_HEAD *head , struct TYPE *elm, TYPE,
STAILQ_ENTRY NAME);

void STAILQ_REMOVE_HEAD(STAILQ_HEAD *head ,
STAILQ_ENTRY NAME);

void STAILQ_CONCAT(STAILQ_HEAD *head1, STAILQ_HEAD *head2);
Note: Identical macros prefixed with SIMPLEQ instead of STAILQ exist; see VER-
SIONS.

DESCRIPTION
These macros define and operate on singly linked tail queues.

In the macro definitions, TYPE is the name of a user-defined structure, that must contain
a field of type STAILQ_ENTRY , named NAME. The argument HEADNAME is the
name of a user-defined structure that must be declared using the macro
STAILQ_HEAD().

Linux man-pages 6.16 2025-09-21 2511

STAILQ(3) Library Functions Manual STAILQ(3)

Creation
A singly linked tail queue is headed by a structure defined by the STAILQ_HEAD()
macro. This structure contains a pair of pointers, one to the first element in the tail
queue and the other to the last element in the tail queue. The elements are singly linked
for minimum space and pointer manipulation overhead at the expense of O(n) removal
for arbitrary elements. New elements can be added to the tail queue after an existing el-
ement, at the head of the tail queue, or at the end of the tail queue. A STAILQ_HEAD
structure is declared as follows:

STAILQ_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type of
the elements to be linked into the tail queue. A pointer to the head of the tail queue can
later be declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

STAILQ_ENTRY() declares a structure that connects the elements in the tail queue.

STAILQ_HEAD_INITIALIZER() evaluates to an initializer for the tail queue head .

STAILQ_INIT() initializes the tail queue referenced by head .

STAILQ_EMPTY() evaluates to true if there are no items on the tail queue.

Insertion
STAILQ_INSERT_HEAD() inserts the new element elm at the head of the tail queue.

STAILQ_INSERT_TAIL() inserts the new element elm at the end of the tail queue.

STAILQ_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
STAILQ_FIRST() returns the first item on the tail queue or NULL if the tail queue is
empty.

STAILQ_NEXT() returns the next item on the tail queue, or NULL this item is the last.

STAILQ_FOREACH() traverses the tail queue referenced by head in the forward di-
rection, assigning each element in turn to var.

Removal
STAILQ_REMOVE() removes the element elm from the tail queue.

STAILQ_REMOVE_HEAD() removes the element at the head of the tail queue. For
optimum efficiency, elements being removed from the head of the tail queue should use
this macro explicitly rather than the generic STAILQ_REMOVE() macro.

Other features
STAILQ_CONCAT() concatenates the tail queue headed by head2 onto the end of the
one headed by head1 removing all entries from the former.

RETURN VALUE
STAILQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue con-
tains at least one entry.

Linux man-pages 6.16 2025-09-21 2512

STAILQ(3) Library Functions Manual STAILQ(3)

STAILQ_FIRST(), and STAILQ_NEXT() return a pointer to the first or next TYPE
structure, respectively.

STAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned to the
queue head .

VERSIONS
Some BSDs provide SIMPLEQ instead of STAILQ. They are identical, but for histori-
cal reasons they were named differently on different BSDs. STAILQ originated on
FreeBSD, and SIMPLEQ originated on NetBSD. For compatibility reasons, some sys-
tems provide both sets of macros. glibc provides both STAILQ and SIMPLEQ, which
are identical except for a missing SIMPLEQ equivalent to STAILQ_CONCAT().

BUGS
STAILQ_FOREACH() doesn’t allow var to be removed or freed within the loop, as it
would interfere with the traversal. STAILQ_FOREACH_SAFE(), which is present on
the BSDs but is not present in glibc, fixes this limitation by allowing var to safely be re-
moved from the list and freed from within the loop without interfering with the traversal.

STANDARDS
BSD.

HISTORY
4.4BSD.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
STAILQ_ENTRY(entry) entries; /* Singly linked tail queue */

};

STAILQ_HEAD(stailhead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct stailhead head; /* Singly linked tail queue

head */

STAILQ_INIT(&head); /* Initialize the queue */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
STAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail */

Linux man-pages 6.16 2025-09-21 2513

STAILQ(3) Library Functions Manual STAILQ(3)

STAILQ_INSERT_TAIL(&head, n1, entries);

n2 = malloc(sizeof(struct entry)); /* Insert after */
STAILQ_INSERT_AFTER(&head, n1, n2, entries);

STAILQ_REMOVE(&head, n2, entry, entries); /* Deletion */
free(n2);

n3 = STAILQ_FIRST(&head);
STAILQ_REMOVE_HEAD(&head, entries); /* Deletion from the head */
free(n3);

n1 = STAILQ_FIRST(&head);
n1->data = 0;
for (unsigned int i = 1; i < 5; i++) {

n1 = malloc(sizeof(struct entry));
STAILQ_INSERT_HEAD(&head, n1, entries);
n1->data = i;

}
/* Forward traversal */

STAILQ_FOREACH(np, &head, entries)
printf("%i\n", np->data);

/* TailQ deletion */
n1 = STAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = STAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
STAILQ_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.16 2025-09-21 2514

STAILQ(3) Library Functions Manual STAILQ(3)

Linux man-pages 6.16 2025-09-21 2515

static_assert(3) Library Functions Manual static_assert(3)

NAME
static_assert, _Static_assert - fail compilation if assertion is false

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <assert.h>

void static_assert(bool constant-expression, const char *msg);

/* Since C23: */
void static_assert(bool constant-expression);

DESCRIPTION
This macro is similar to assert(3), but it works at compile time, generating a compila-
tion error (with an optional message) when the input is false (i.e., compares equal to
zero).

If the input is nonzero, no code is emitted.

msg must be a string literal. Since C23, this argument is optional.

There’s a keyword, _Static_assert(), that behaves identically, and can be used without
including <assert.h>.

RETURN VALUE
No value is returned.

VERSIONS
In C11, the second argument (msg) was mandatory; since C23, it can be omitted.

STANDARDS
C11 and later.

EXAMPLES
static_assert() can’t be used in some places, like for example at global scope. For that,
a macro must_be() can be written in terms of static_assert(). The following program
uses the macro to get the size of an array safely.

#include <assert.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

/*
* This macro behaves like static_assert(), failing to
* compile if its argument is not true. However, it always
* returns 0, which allows using it everywhere an expression
* can be used.
*/

#define must_be(e) \
(\

0 * (int) sizeof(\

Linux man-pages 6.16 2025-09-20 2516

static_assert(3) Library Functions Manual static_assert(3)

struct { \
static_assert(e); \
int ISO_C_forbids_a_struct_with_no_members; \

} \
) \

)

#define is_same_type(a, b) \
__builtin_types_compatible_p(typeof(a), typeof(b))

#define is_array(arr) (!is_same_type((arr), &*(arr)))
#define must_be_array(arr) must_be(is_array(arr))

#define sizeof_array(arr) (sizeof(arr) + must_be_array(arr))
#define NITEMS(arr) (sizeof((arr)) / sizeof((arr)[0]) \

+ must_be_array(arr))

int foo[10];
int8_t bar[sizeof_array(foo)];

int
main(void)
{

for (size_t i = 0; i < NITEMS(foo); i++) {
foo[i] = i;

}

memcpy(bar, foo, sizeof_array(bar));

for (size_t i = 0; i < NITEMS(bar); i++) {
printf("%d,", bar[i]);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
assert(3)

Linux man-pages 6.16 2025-09-20 2517

statvfs(3) Library Functions Manual statvfs(3)

NAME
statvfs, fstatvfs - get filesystem statistics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/statvfs.h>

int statvfs(const char *restrict path, struct statvfs *restrict buf);
int fstatvfs(int fd , struct statvfs *buf);

DESCRIPTION
The function statvfs() returns information about a mounted filesystem. path is the path-
name of any file within the mounted filesystem. buf is a pointer to a statvfs structure
defined approximately as follows:

struct statvfs {
unsigned long f_bsize; /* Filesystem block size */
unsigned long f_frsize; /* Fragment size */
fsblkcnt_t f_blocks; /* Size of fs in f_frsize units */
fsblkcnt_t f_bfree; /* Number of free blocks */
fsblkcnt_t f_bavail; /* Number of free blocks for

unprivileged users */
fsfilcnt_t f_files; /* Number of inodes */
fsfilcnt_t f_ffree; /* Number of free inodes */
fsfilcnt_t f_favail; /* Number of free inodes for

unprivileged users */
unsigned long f_fsid; /* Filesystem ID */
unsigned long f_flag; /* Mount flags */
unsigned long f_namemax; /* Maximum filename length */

};

Here the types fsblkcnt_t and fsfilcnt_t are defined in <sys/types.h>. Both used to be
unsigned long.

The field f_flag is a bit mask indicating various options that were employed when
mounting this filesystem. It contains zero or more of the following flags:

ST_MANDLOCK
Mandatory locking is permitted on the filesystem (see fcntl(2)).

ST_NOATIME
Do not update access times; see mount(2).

ST_NODEV
Disallow access to device special files on this filesystem.

ST_NODIRATIME
Do not update directory access times; see mount(2).

ST_NOEXEC
Execution of programs is disallowed on this filesystem.

Linux man-pages 6.16 2025-09-21 2518

statvfs(3) Library Functions Manual statvfs(3)

ST_NOSUID
The set-user-ID and set-group-ID bits are ignored by exec(3) for executable files
on this filesystem

ST_RDONLY
This filesystem is mounted read-only.

ST_RELATIME
Update atime relative to mtime/ctime; see mount(2).

ST_SYNCHRONOUS
Writes are synched to the filesystem immediately (see the description of
O_SYNC in open(2)).

It is unspecified whether all members of the returned struct have meaningful values on
all filesystems.

fstatvfs() returns the same information about an open file referenced by descriptor fd .

RETURN VALUE
On success, zero is returned. On error, -1 is returned, and errno is set to indicate the er-
ror.

ERRORS
EACCES

(statvfs()) Search permission is denied for a component of the path prefix of
path. (See also path_resolution(7).)

EBADF
(fstatvfs()) fd is not a valid open file descriptor.

EFAULT
Buf or path points to an invalid address.

EINTR
This call was interrupted by a signal; see signal(7).

EIO An I/O error occurred while reading from the filesystem.

ELOOP
(statvfs()) Too many symbolic links were encountered in translating path.

ENAMETOOLONG
(statvfs()) path is too long.

ENOENT
(statvfs()) The file referred to by path does not exist.

ENOMEM
Insufficient kernel memory was available.

ENOSYS
The filesystem does not support this call.

ENOTDIR
(statvfs()) A component of the path prefix of path is not a directory.

Linux man-pages 6.16 2025-09-21 2519

statvfs(3) Library Functions Manual statvfs(3)

EOVERFLOW
Some values were too large to be represented in the returned struct.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestatvfs(), fstatvfs()

VERSIONS
Only the ST_NOSUID and ST_RDONLY flags of the f_flag field are specified in
POSIX.1. To obtain definitions of the remaining flags, one must define
_GNU_SOURCE.

NOTES
The Linux kernel has system calls statfs(2) and fstatfs(2) to support this library call.

The glibc implementations of

pathconf(path, _PC_REC_XFER_ALIGN);
pathconf(path, _PC_ALLOC_SIZE_MIN);
pathconf(path, _PC_REC_MIN_XFER_SIZE);

respectively use the f_frsize, f_frsize, and f_bsize fields returned by a call to statvfs()
with the argument path.

Under Linux, f_favail is always the same as f_ffree, and there’s no way for a filesystem
to report otherwise. This is not an issue, since no filesystems with an inode root reserva-
tion exist.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Before glibc 2.13, statvfs() populated the bits of the f_flag field by scanning the mount
options shown in /proc/mounts. However, starting with Linux 2.6.36, the underlying
statfs(2) system call provides the necessary information via the f_flags field, and since
glibc 2.13, the statvfs() function will use information from that field rather than scan-
ning /proc/mounts.

SEE ALSO
statfs(2)

Linux man-pages 6.16 2025-09-21 2520

stdarg(3) Library Functions Manual stdarg(3)

NAME
stdarg, va_start, va_arg, va_end, va_copy - variable argument lists

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdarg.h>

void va_start(va_list ap, last);
type va_arg(va_list ap, type);
void va_end(va_list ap);
void va_copy(va_list dest, va_list src);

DESCRIPTION
A function may be called with a varying number of arguments of varying types. The in-
clude file <stdarg.h> declares a type va_list and defines three macros for stepping
through a list of arguments whose number and types are not known to the called func-
tion.

The called function must declare an object of type va_list which is used by the macros
va_start(), va_arg(), and va_end().

va_start()
The va_start() macro initializes ap for subsequent use by va_arg() and va_end(), and
must be called first.

The argument last is the name of the last argument before the variable argument list,
that is, the last argument of which the calling function knows the type.

Because the address of this argument may be used in the va_start() macro, it should not
be declared as a register variable, or as a function or an array type.

va_arg()
The va_arg() macro expands to an expression that has the type and value of the next ar-
gument in the call. The argument ap is the va_list ap initialized by va_start(). Each
call to va_arg() modifies ap so that the next call returns the next argument. The argu-
ment type is a type name specified so that the type of a pointer to an object that has the
specified type can be obtained simply by adding a * to type.

The first use of the va_arg() macro after that of the va_start() macro returns the argu-
ment after last. Successive invocations return the values of the remaining arguments.

If there is no next argument, or if type is not compatible with the type of the actual next
argument (as promoted according to the default argument promotions), random errors
will occur.

If ap is passed to a function that uses va_arg(ap,type), then the value of ap is undefined
after the return of that function.

va_end()
Each invocation of va_start() must be matched by a corresponding invocation of
va_end() in the same function. After the call va_end(ap) the variable ap is undefined.
Multiple traversals of the list, each bracketed by va_start() and va_end() are possible.
va_end() may be a macro or a function.

Linux man-pages 6.16 2025-05-17 2521

stdarg(3) Library Functions Manual stdarg(3)

va_copy()
The va_copy() macro copies the (previously initialized) variable argument list src to
dest. The behavior is as if va_start() were applied to dest with the same last argument,
followed by the same number of va_arg() invocations that was used to reach the current
state of src.

An obvious implementation would have a va_list be a pointer to the stack frame of the
variadic function. In such a setup (by far the most common) there seems nothing against
an assignment

va_list aq = ap;

Unfortunately, there are also systems that make it an array of pointers (of length 1), and
there one needs

va_list aq;
*aq = *ap;

Finally, on systems where arguments are passed in registers, it may be necessary for
va_start() to allocate memory, store the arguments there, and also an indication of
which argument is next, so that va_arg() can step through the list. Now va_end() can
free the allocated memory again. To accommodate this situation, C99 adds a macro
va_copy(), so that the above assignment can be replaced by

va_list aq;
va_copy(aq, ap);
...
va_end(aq);

Each invocation of va_copy() must be matched by a corresponding invocation of
va_end() in the same function. Some systems that do not supply va_copy() have
__va_copy instead, since that was the name used in the draft proposal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeva_start(), va_end(), va_copy()
Thread safety MT-Safe race:apva_arg()

STANDARDS
C11, POSIX.1-2008.

HISTORY
va_start()
va_arg()
va_end()

C89, POSIX.1-2001.

va_copy()
C99, POSIX.1-2001.

CAVEATS
Unlike the historical varargs macros, the stdarg macros do not permit programmers to
code a function with no fixed arguments. This problem generates work mainly when

Linux man-pages 6.16 2025-05-17 2522

stdarg(3) Library Functions Manual stdarg(3)

converting varargs code to stdarg code, but it also creates difficulties for variadic func-
tions that wish to pass all of their arguments on to a function that takes a va_list argu-
ment, such as vfprintf(3).

EXAMPLES
The function foo takes a string of format characters and prints out the argument associ-
ated with each format character based on the type.

#include <stdio.h>
#include <stdarg.h>

void
foo(char *fmt, ...) /* '...' is C syntax for a variadic function */

{
va_list ap;
int d;
char c;
char *s;

va_start(ap, fmt);
while (*fmt)

switch (*fmt++) {
case 's': /* string */

s = va_arg(ap, char *);
printf("string %s\n", s);
break;

case 'd': /* int */
d = va_arg(ap, int);
printf("int %d\n", d);
break;

case 'c': /* char */
/* need a cast here since va_arg only

takes fully promoted types */
c = (char) va_arg(ap, int);
printf("char %c\n", c);
break;

}
va_end(ap);

}

SEE ALSO
vprintf(3), vscanf(3), vsyslog(3)

Linux man-pages 6.16 2025-05-17 2523

stdin(3) Library Functions Manual stdin(3)

NAME
stdin, stdout, stderr - standard I/O streams

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

DESCRIPTION
Under normal circumstances every UNIX program has three streams opened for it when
it starts up, one for input, one for output, and one for printing diagnostic or error mes-
sages. These are typically attached to the user’s terminal (see tty(4)) but might instead
refer to files or other devices, depending on what the parent process chose to set up.
(See also the "Redirections" section of sh(1)

The input stream is referred to as "standard input"; the output stream is referred to as
"standard output"; and the error stream is referred to as "standard error". These terms
are abbreviated to form the symbols used to refer to these files, namely stdin, stdout,
and stderr.

Each of these symbols is a stdio(3) macro of type pointer to FILE, and can be used with
functions like fprintf(3) or fread(3).

Since FILEs are a buffering wrapper around UNIX file descriptors, the same underlying
files may also be accessed using the raw UNIX file interface, that is, the functions like
read(2) and lseek(2).

On program startup, the integer file descriptors associated with the streams stdin, stdout,
and stderr are 0, 1, and 2, respectively. The preprocessor symbols STDIN_FILENO,
STDOUT_FILENO, and STDERR_FILENO are defined with these values in
<unistd.h>. (Applying freopen(3) to one of these streams can change the file descriptor
number associated with the stream.)

Note that mixing use of FILEs and raw file descriptors can produce unexpected results
and should generally be avoided. (For the masochistic among you: POSIX.1, section
8.2.3, describes in detail how this interaction is supposed to work.) A general rule is
that file descriptors are handled in the kernel, while stdio is just a library. This means
for example, that after an exec(3), the child inherits all open file descriptors, but all old
streams have become inaccessible.

Since the symbols stdin, stdout, and stderr are specified to be macros, assigning to them
is nonportable. The standard streams can be made to refer to different files with help of
the library function freopen(3), specially introduced to make it possible to reassign
stdin, stdout, and stderr. The standard streams are closed by a call to exit(3) and by
normal program termination.

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2524

stdin(3) Library Functions Manual stdin(3)

The standards also stipulate that these three streams shall be open at program startup.

HISTORY
C89, POSIX.1-2001.

NOTES
The stream stderr is unbuffered. The stream stdout is line-buffered when it points to a
terminal. Partial lines will not appear until fflush(3) or exit(3) is called, or a newline is
printed. This can produce unexpected results, especially with debugging output. The
buffering mode of the standard streams (or any other stream) can be changed using the
setbuf(3) or setvbuf(3) call. Note that in case stdin is associated with a terminal, there
may also be input buffering in the terminal driver, entirely unrelated to stdio buffering.
(Indeed, normally terminal input is line buffered in the kernel.) This kernel input han-
dling can be modified using calls like tcsetattr(3); see also stty(1), and termios(3).

SEE ALSO
csh(1), sh(1), open(2), fopen(3), stdio(3)

Linux man-pages 6.16 2025-09-21 2525

stdio(3) Library Functions Manual stdio(3)

NAME
stdio - standard input/output library functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

extern FILE *stdin;
extern FILE *stdout;
extern FILE *stderr;

DESCRIPTION
The standard I/O library provides a simple and efficient buffered stream I/O interface.
Input and output is mapped into logical data streams and the physical I/O characteristics
are concealed. The functions and macros are listed below; more information is available
from the individual man pages.

A stream is associated with an external file (which may be a physical device) by opening
a file, which may involve creating a new file. Creating an existing file causes its former
contents to be discarded. If a file can support positioning requests (such as a disk file, as
opposed to a terminal), then a file position indicator associated with the stream is posi-
tioned at the start of the file (byte zero), unless the file is opened with append mode. If
append mode is used, it is unspecified whether the position indicator will be placed at
the start or the end of the file. The position indicator is maintained by subsequent reads,
writes, and positioning requests. All input occurs as if the characters were read by suc-
cessive calls to the fgetc(3) function; all output takes place as if all characters were writ-
ten by successive calls to the fputc(3) function.

A file is disassociated from a stream by closing the file. Output streams are flushed (any
unwritten buffer contents are transferred to the host environment) before the stream is
disassociated from the file. The value of a pointer to a FILE object is indeterminate af-
ter a file is closed (garbage).

A file may be subsequently reopened, by the same or another program execution, and its
contents reclaimed or modified (if it can be repositioned at the start). If the main func-
tion returns to its original caller, or the exit(3) function is called, all open files are closed
(hence all output streams are flushed) before program termination. Other methods of
program termination, such as abort(3) do not bother about closing files properly.

At program startup, three text streams are predefined and need not be opened explicitly:
standard input (for reading conventional input), standard output (for writing conven-
tional output), and standard error (for writing diagnostic output). These streams are ab-
breviated stdin, stdout, and stderr. When opened, the standard error stream is not fully
buffered; the standard input and output streams are fully buffered if and only if the
streams do not refer to an interactive device.

Output streams that refer to terminal devices are always line buffered by default; pend-
ing output to such streams is written automatically whenever an input stream that refers
to a terminal device is read. In cases where a large amount of computation is done after
printing part of a line on an output terminal, it is necessary to fflush(3) the standard

Linux man-pages 6.16 2025-09-21 2526

stdio(3) Library Functions Manual stdio(3)

output before going off and computing so that the output will appear.

The stdio library is a part of the library libc and routines are automatically loaded as
needed by cc(1)The SYNOPSIS sections of the following manual pages indicate which
include files are to be used, what the compiler declaration for the function looks like,
and which external variables are of interest.

The following are defined as macros; these names may not be reused without first re-
moving their current definitions with #undef: BUFSIZ, EOF, FILENAME_MAX,
FOPEN_MAX, L_cuserid, L_ctermid, L_tmpnam, NULL, SEEK_END,
SEEK_SET, SEEK_CUR, TMP_MAX, clearerr, feof, ferror, fileno, getc, getchar,
putc, putchar, stderr, stdin, stdout. Function versions of the macro functions feof,
ferror, clearerr, fileno, getc, getchar, putc, and putchar exist and will be used if the
macros definitions are explicitly removed.

List of functions
Function Description
clearerr(3) check and reset stream status
fclose(3) close a stream
fdopen(3) stream open functions
feof(3) check and reset stream status
ferror(3) check and reset stream status
fflush(3) flush a stream
fgetc(3) get next character or word from input stream
fgetpos(3) reposition a stream
fgets(3) get a line from a stream
fileno(3) return the integer descriptor of the argument stream
fmemopen(3) open memory as stream
fopen(3) stream open functions
fopencookie(3) open a custom stream
fprintf(3) formatted output conversion
fpurge(3) flush a stream
fputc(3) output a character or word to a stream
fputs(3) output a line to a stream
fread(3) binary stream input/output
freopen(3) stream open functions
fscanf(3) input format conversion
fseek(3) reposition a stream
fsetpos(3) reposition a stream
ftell(3) reposition a stream
fwrite(3) binary stream input/output
getc(3) get next character or word from input stream
getchar(3) get next character or word from input stream
gets(3) get a line from a stream
getw(3) get next character or word from input stream
mktemp(3) make temporary filename (unique)
open_memstream(3) open a dynamic memory buffer stream
open_wmemstream(3) open a dynamic memory buffer stream

Linux man-pages 6.16 2025-09-21 2527

stdio(3) Library Functions Manual stdio(3)

perror(3) system error messages
printf(3) formatted output conversion
putc(3) output a character or word to a stream
putchar(3) output a character or word to a stream
puts(3) output a line to a stream
putw(3) output a character or word to a stream
remove(3) remove directory entry
rewind(3) reposition a stream
scanf(3) input format conversion
setbuf(3) stream buffering operations
setbuffer(3) stream buffering operations
setlinebuf(3) stream buffering operations
setvbuf(3) stream buffering operations
sprintf(3) formatted output conversion
sscanf(3) input format conversion
strerror(3) system error messages
sys_errlist(3) system error messages
sys_nerr(3) system error messages
tempnam(3) temporary file routines
tmpfile(3) temporary file routines
tmpnam(3) temporary file routines
ungetc(3) un-get character from input stream
vfprintf(3) formatted output conversion
vfscanf(3) input format conversion
vprintf(3) formatted output conversion
vscanf(3) input format conversion
vsprintf(3) formatted output conversion
vsscanf(3) input format conversion

STANDARDS
C11, POSIX.1-2008.

HISTORY
C89, POSIX.1-2001.

SEE ALSO
close(2), open(2), read(2), write(2), stdout(3), unlocked_stdio(3)

Linux man-pages 6.16 2025-09-21 2528

stdio_ext(3) Library Functions Manual stdio_ext(3)

NAME
__fbufsize, __flbf, __fpending, __fpurge, __freadable, __freading, __fsetlocking,
__fwritable, __fwriting, _flushlbf - interfaces to stdio FILE structure

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <stdio_ext.h>

size_t __fbufsize(FILE *stream);
size_t __fpending(FILE *stream);
int __flbf(FILE *stream);
int __freadable(FILE *stream);
int __fwritable(FILE *stream);
int __freading(FILE *stream);
int __fwriting(FILE *stream);
int __fsetlocking(FILE *stream, int type);
void _flushlbf(void);
void __fpurge(FILE *stream);

DESCRIPTION
Solaris introduced routines to allow portable access to the internals of the FILE struc-
ture, and glibc also implemented these.

The __fbufsize() function returns the size of the buffer currently used by the given
stream.

The __fpending() function returns the number of characters in the output buffer. For
wide-oriented streams the unit is wide characters. This function is undefined on buffers
in reading mode, or opened read-only.

The __flbf() function returns a nonzero value if the stream is line-buffered, and zero oth-
erwise.

The __freadable() function returns a nonzero value if the stream allows reading, and
zero otherwise.

The __fwritable() function returns a nonzero value if the stream allows writing, and
zero otherwise.

The __freading() function returns a nonzero value if the stream is read-only, or if the
last operation on the stream was a read operation, and zero otherwise.

The __fwriting() function returns a nonzero value if the stream is write-only (or ap-
pend-only), or if the last operation on the stream was a write operation, and zero other-
wise.

The __fsetlocking() function can be used to select the desired type of locking on the
stream. It returns the current type. The type argument can take the following three val-
ues:

Linux man-pages 6.16 2025-05-17 2529

stdio_ext(3) Library Functions Manual stdio_ext(3)

FSETLOCKING_INTERNAL
Perform implicit locking around every operation on the given stream (except for
the *_unlocked ones). This is the default.

FSETLOCKING_BYCALLER
The caller will take care of the locking (possibly using flockfile(3) in case there is
more than one thread), and the stdio routines will not do locking until the state is
reset to FSETLOCKING_INTERNAL.

FSETLOCKING_QUERY
Don’t change the type of locking. (Only return it.)

The _flushlbf() function flushes all line-buffered streams. (Presumably so that output to
a terminal is forced out, say before reading keyboard input.)

The __fpurge() function discards the contents of the stream’s buffer.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:stream__fbufsize(), __fpending(), __fpurge(),
__fsetlocking()

Thread safety MT-Safe__flbf(), __freadable(), __freading(),
__fwritable(), __fwriting(), _flushlbf()

SEE ALSO
flockfile(3), fpurge(3)

Linux man-pages 6.16 2025-05-17 2530

stpncpy(3) Library Functions Manual stpncpy(3)

NAME
stpncpy, strncpy - fill a fixed-size buffer with non-null bytes from a string, padding with
null bytes as needed

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strncpy(size_t dsize;
char dst[restrict dsize], const char *restrict src,
size_t dsize);

char *stpncpy(size_t dsize;
char dst[restrict dsize], const char *restrict src,
size_t dsize);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

stpncpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
These functions copy non-null bytes from the string pointed to by src into the array
pointed to by dst. If the source has too few non-null bytes to fill the destination, the
functions pad the destination with trailing null bytes. If the destination buffer, limited
by its size, isn’t large enough to hold the copy, the resulting character sequence is trun-
cated. For the difference between the two functions, see RETURN VALUE.

An implementation of these functions might be:

char *
strncpy(char *restrict dst, const char *restrict src, size_t dsize)
{

stpncpy(dst, src, dsize);
return dst;

}

char *
stpncpy(char *restrict dst, const char *restrict src, size_t dsize)
{

size_t dlen;

dlen = strnlen(src, dsize);
return memset(mempcpy(dst, src, dlen), 0, dsize - dlen);

}

Linux man-pages 6.16 2025-09-07 2531

stpncpy(3) Library Functions Manual stpncpy(3)

RETURN VALUE
strncpy()

returns dst.

stpncpy()
returns a pointer to one past the last non-null wide character written, that is,
dest + strnlen(src, n).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestpncpy(), strncpy()

STANDARDS
strncpy()

C11, POSIX.1-2008.

stpncpy()
POSIX.1-2008.

HISTORY
strncpy()

C89, POSIX.1-2001, SVr4, 4.3BSD.

stpncpy()
glibc 1.07. POSIX.1-2008.

CAVEATS
The name of these functions is confusing. These functions produce a null-padded char-
acter sequence, not a string (see string_copying(7)). For example:

strncpy(buf, "1", 5); // { '1', 0, 0, 0, 0 }
strncpy(buf, "1234", 5); // { '1', '2', '3', '4', 0 }
strncpy(buf, "12345", 5); // { '1', '2', '3', '4', '5' }
strncpy(buf, "123456", 5); // { '1', '2', '3', '4', '5' }

It’s impossible to distinguish truncation by the result of the call, from a character se-
quence that just fits the destination buffer; truncation should be detected by comparing
the length of the input string with the size of the destination buffer.

If you’re going to use this function in chained calls, it would be useful to develop a simi-
lar function that accepts a pointer to the end (one after the last element) of the destina-
tion buffer instead of its size.

EXAMPLES
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(void)
{

Linux man-pages 6.16 2025-09-07 2532

stpncpy(3) Library Functions Manual stpncpy(3)

char *p;
char buf1[20];
char buf2[20];
size_t len;

if (sizeof(buf2) < strlen("Hello world!"))
errx("strncpy: truncating character sequence");

strncpy(buf2, "Hello world!", sizeof(buf2));
len = strnlen(buf2, sizeof(buf2));

printf("[len = %zu]: ", len);
fwrite(buf2, 1, len, stdout);
putchar('\n');

if (sizeof(buf1) < strlen("Hello world!"))
errx("stpncpy: truncating character sequence");

p = stpncpy(buf1, "Hello world!", sizeof(buf1));
len = p - buf1;

printf("[len = %zu]: ", len);
fwrite(buf1, 1, len, stdout);
putchar('\n');

exit(EXIT_SUCCESS);
}

SEE ALSO
wcpncpy(3), string_copying(7)

Linux man-pages 6.16 2025-09-07 2533

strcasecmp(3) Library Functions Manual strcasecmp(3)

NAME
strcasecmp, strncasecmp - compare two strings ignoring case

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

int strcasecmp(const char *s1, const char *s2);
int strncasecmp(size_t n;

const char s1[n], const char s2[n], size_t n);

DESCRIPTION
The strcasecmp() function performs a byte-by-byte comparison of the strings s1 and s2,
ignoring the case of the characters. It returns an integer less than, equal to, or greater
than zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

The strncasecmp() function is similar, except that it compares no more than n bytes of
s1 and s2.

RETURN VALUE
The strcasecmp() and strncasecmp() functions return an integer less than, equal to, or
greater than zero if s1 is, after ignoring case, found to be less than, to match, or be
greater than s2, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrcasecmp(), strncasecmp()

STANDARDS
POSIX.1-2008.

HISTORY
4.4BSD, POSIX.1-2001.

The strcasecmp() and strncasecmp() functions first appeared in 4.4BSD, where they
were declared in <string.h>. Thus, for reasons of historical compatibility, the glibc
<string.h> header file also declares these functions, if the _DEFAULT_SOURCE (or,
in glibc 2.19 and earlier, _BSD_SOURCE) feature test macro is defined.

The POSIX.1-2008 standard says of these functions:

When the LC_CTYPE category of the locale being used is from the POSIX lo-
cale, these functions shall behave as if the strings had been converted to lower-
case and then a byte comparison performed. Otherwise, the results are unspeci-
fied.

SEE ALSO
memcmp(3), strcmp(3), strcoll(3), string(3), strncmp(3), wcscasecmp(3), wc-
sncasecmp(3)

Linux man-pages 6.16 2025-09-07 2534

strchr(3) Library Functions Manual strchr(3)

NAME
strchr, strrchr, strchrnul - locate character in string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strchr(const char *s, int c);
char *strrchr(const char *s, int c);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

char *strchrnul(const char *s, int c);

DESCRIPTION
The strchr() function returns a pointer to the first occurrence of the character c in the
string s.

The strrchr() function returns a pointer to the last occurrence of the character c in the
string s.

The strchrnul() function is like strchr() except that if c is not found in s, then it returns
a pointer to the null byte at the end of s, rather than NULL.

Here "character" means "byte"; these functions do not work with wide or multibyte
characters.

RETURN VALUE
The strchr() and strrchr() functions return a pointer to the matched character or NULL
if the character is not found. The terminating null byte is considered part of the string,
so that if c is specified as '\0', these functions return a pointer to the terminator.

The strchrnul() function returns a pointer to the matched character, or a pointer to the
null byte at the end of s (i.e., s+strlen(s)) if the character is not found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrchr(), strrchr(), strchrnul()

STANDARDS
strchr()
strrchr()

C11, POSIX.1-2008.

strchrnul()
GNU.

HISTORY
strchr()
strrchr()

POSIX.1-2001, C89, SVr4, 4.3BSD.

Linux man-pages 6.16 2025-09-21 2535

strchr(3) Library Functions Manual strchr(3)

strchrnul()
glibc 2.1.1, FreeBSD 10, NetBSD 8.

SEE ALSO
memchr(3), string(3), strlen(3), strpbrk(3), strsep(3), strspn(3), strstr(3), strtok(3), wc-
schr(3), wcsrchr(3)

Linux man-pages 6.16 2025-09-21 2536

strcmp(3) Library Functions Manual strcmp(3)

NAME
strcmp, strncmp - compare two strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int strcmp(const char *s1, const char *s2);
int strncmp(size_t n;

const char s1[n], const char s2[n], size_t n);

DESCRIPTION
The strcmp() function compares the two strings s1 and s2. The locale is not taken into
account (for a locale-aware comparison, see strcoll(3)). The comparison is done using
unsigned characters.

strcmp() returns an integer indicating the result of the comparison, as follows:

• 0, if the s1 and s2 are equal;

• a negative value if s1 is less than s2;

• a positive value if s1 is greater than s2.

The strncmp() function is similar, except it compares only the first (at most) n bytes of
s1 and s2.

RETURN VALUE
The strcmp() and strncmp() functions return an integer less than, equal to, or greater
than zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrcmp(), strncmp()

VERSIONS
POSIX.1 specifies only that:

The sign of a nonzero return value shall be determined by the sign of the differ-
ence between the values of the first pair of bytes (both interpreted as type un-
signed char) that differ in the strings being compared.

In glibc, as in most other implementations, the return value is the arithmetic result of
subtracting the last compared byte in s2 from the last compared byte in s1. (If the two
characters are equal, this difference is 0.)

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

Linux man-pages 6.16 2025-06-28 2537

strcmp(3) Library Functions Manual strcmp(3)

EXAMPLES
The program below can be used to demonstrate the operation of strcmp() (when given
two arguments) and strncmp() (when given three arguments). First, some examples us-
ing strcmp():

$./string_comp ABC ABC;
<str1> and <str2> are equal
$./string_comp ABC AB; # 'C' is ASCII 67; 'C' - '\0' = 67
<str1> is greater than <str2> (67)
$./string_comp ABA ABZ; # 'A' is ASCII 65; 'Z' is ASCII 90
<str1> is less than <str2> (-25)
$./string_comp ABJ ABC;
<str1> is greater than <str2> (7)
$./string_comp $'\201' A; # 0201 - 0101 = 0100 (or 64 decimal)
<str1> is greater than <str2> (64)

The last example uses bash(1)-specific syntax to produce a string containing an 8-bit
ASCII code; the result demonstrates that the string comparison uses unsigned charac-
ters.

And then some examples using strncmp():

$./string_comp ABC AB 3;
<str1> is greater than <str2> (67)
$./string_comp ABC AB 2;
<str1> and <str2> are equal in the first 2 bytes

Program source

/* string_comp.c

Licensed under GNU General Public License v2 or later.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

int res;

if (argc < 3) {
fprintf(stderr, "Usage: %s <str1> <str2> [<n>]\n", argv[0]);
exit(EXIT_FAILURE);

}

if (argc == 3)
res = strcmp(argv[1], argv[2]);

else

Linux man-pages 6.16 2025-06-28 2538

strcmp(3) Library Functions Manual strcmp(3)

res = strncmp(argv[1], argv[2], atoi(argv[3]));

if (res == 0) {
printf("<str1> and <str2> are equal");
if (argc > 3)

printf(" in the first %d bytes\n", atoi(argv[3]));
printf("\n");

} else if (res < 0) {
printf("<str1> is less than <str2> (%d)\n", res);

} else {
printf("<str1> is greater than <str2> (%d)\n", res);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
memcmp(3), strcasecmp(3), strcoll(3), string(3), strncasecmp(3), strverscmp(3), wc-
scmp(3), wcsncmp(3), ascii(7)

Linux man-pages 6.16 2025-06-28 2539

strcoll(3) Library Functions Manual strcoll(3)

NAME
strcoll - compare two strings using the current locale

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

int strcoll(const char *s1, const char *s2);

DESCRIPTION
The strcoll() function compares the two strings s1 and s2. It returns an integer less than,
equal to, or greater than zero if s1 is found, respectively, to be less than, to match, or be
greater than s2. The comparison is based on strings interpreted as appropriate for the
program’s current locale for category LC_COLLATE. (See setlocale(3).)

RETURN VALUE
The strcoll() function returns an integer less than, equal to, or greater than zero if s1 is
found, respectively, to be less than, to match, or be greater than s2, when both are inter-
preted as appropriate for the current locale.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrcoll()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

NOTES
In the POSIX or C locales strcoll() is equivalent to strcmp(3).

SEE ALSO
memcmp(3), setlocale(3), strcasecmp(3), strcmp(3), string(3), strxfrm(3)

Linux man-pages 6.16 2025-05-17 2540

strcpy(3) Library Functions Manual strcpy(3)

NAME
stpcpy, strcpy, strcat - copy or catenate a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *stpcpy(char *restrict dst, const char *restrict src);
char *strcpy(char *restrict dst, const char *restrict src);
char *strcat(char *restrict dst, const char *restrict src);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

stpcpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
stpcpy()
strcpy()

These functions copy the string pointed to by src, into a string at the buffer
pointed to by dst. The programmer is responsible for allocating a destination
buffer large enough, that is, strlen(src) + 1. For the difference between the two
functions, see RETURN VALUE.

strcat()
This function catenates the string pointed to by src, after the string pointed to by
dst (overwriting its terminating null byte). The programmer is responsible for
allocating a destination buffer large enough, that is, strlen(dst) + strlen(src) + 1.

An implementation of these functions might be:

char *
stpcpy(char *restrict dst, const char *restrict src)
{

char *p;

p = mempcpy(dst, src, strlen(src));
*p = '\0';

return p;
}

char *
strcpy(char *restrict dst, const char *restrict src)
{

stpcpy(dst, src);
return dst;

Linux man-pages 6.16 2025-05-17 2541

strcpy(3) Library Functions Manual strcpy(3)

}

char *
strcat(char *restrict dst, const char *restrict src)
{

stpcpy(dst + strlen(dst), src);
return dst;

}

RETURN VALUE
stpcpy()

This function returns a pointer to the terminating null byte of the copied string.

strcpy()
strcat()

These functions return dst.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestpcpy(), strcpy(), strcat()

STANDARDS
stpcpy()

POSIX.1-2008.

strcpy()
strcat()

C11, POSIX.1-2008.

STANDARDS
stpcpy()

POSIX.1-2008.

strcpy()
strcat()

POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
The strings src and dst may not overlap.

If the destination buffer is not large enough, the behavior is undefined. See _FOR-
TIFY_SOURCE in feature_test_macros(7).

strcat() can be very inefficient. Read about Shlemiel the painter
〈https://www.joelonsoftware.com/2001/12/11/back-to-basics/〉.

EXAMPLES
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

Linux man-pages 6.16 2025-05-17 2542

strcpy(3) Library Functions Manual strcpy(3)

int
main(void)
{

char *p;
char *buf1;
char *buf2;
size_t len, size;

size = strlen("Hello ") + strlen("world") + strlen("!") + 1;
buf1 = malloc(sizeof(*buf1) * size);
if (buf1 == NULL)

err(EXIT_FAILURE, "malloc()");
buf2 = malloc(sizeof(*buf2) * size);
if (buf2 == NULL)

err(EXIT_FAILURE, "malloc()");

p = buf1;
p = stpcpy(p, "Hello ");
p = stpcpy(p, "world");
p = stpcpy(p, "!");
len = p - buf1;

printf("[len = %zu]: ", len);
puts(buf1); // "Hello world!"
free(buf1);

strcpy(buf2, "Hello ");
strcat(buf2, "world");
strcat(buf2, "!");
len = strlen(buf2);

printf("[len = %zu]: ", len);
puts(buf2); // "Hello world!"
free(buf2);

exit(EXIT_SUCCESS);
}

SEE ALSO
strdup(3), string(3), wcscpy(3), string_copying(7)

Linux man-pages 6.16 2025-05-17 2543

strdup(3) Library Functions Manual strdup(3)

NAME
strdup, strndup, strdupa, strndupa - duplicate a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strdup(const char *s);

char *strndup(size_t n;
const char s[n], size_t n);

char *strdupa(const char *s);
char *strndupa(size_t n;

const char s[n], size_t n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strdup():
_XOPEN_SOURCE >= 500

|| /* Since glibc 2.12: */ _POSIX_C_SOURCE >= 200809L
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

strndup():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

strdupa(), strndupa():
_GNU_SOURCE

DESCRIPTION
The strdup() function returns a pointer to a new string which is a duplicate of the string
s. Memory for the new string is obtained with malloc(3), and can be freed with free(3).

The strndup() function is similar, but copies at most n bytes. If s is longer than n, only
n bytes are copied, and a terminating null byte ('\0') is added.

strdupa() and strndupa() are similar, but use alloca(3) to allocate the buffer.

RETURN VALUE
On success, the strdup() function returns a pointer to the duplicated string. It returns
NULL if insufficient memory was available, with errno set to indicate the error.

ERRORS
ENOMEM

Insufficient memory available to allocate duplicate string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrdup(), strndup(), strdupa(), strndupa()

Linux man-pages 6.16 2025-06-28 2544

strdup(3) Library Functions Manual strdup(3)

STANDARDS
strdup()
strndup()

POSIX.1-2008.

strdupa()
strndupa()

GNU.

HISTORY
strdup()

SVr4, 4.3BSD-Reno, POSIX.1-2001.

strndup()
POSIX.1-2008.

strdupa()
strndupa()

GNU.

SEE ALSO
alloca(3), calloc(3), free(3), malloc(3), realloc(3), string(3), wcsdup(3)

Linux man-pages 6.16 2025-06-28 2545

streq(3) Library Functions Manual streq(3)

NAME
streq - strings equal

LIBRARY
gnulib - The GNU Portability Library

SYNOPSIS
#include <string.h>

bool streq(const char *s1, const char *s2);

DESCRIPTION
streq() determines whether the strings s1 and s2 are equal.

RETURN VALUE
streq() returns true if and only if the strings s1 and s2 are equal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestreq()

STANDARDS
GNU.

HISTORY
gnulib 202601.

SEE ALSO
memeq(3), strcmp(3), string(3)

Linux man-pages 6.16 2025-09-20 2546

strerror(3) Library Functions Manual strerror(3)

NAME
strerror, strerrorname_np, strerrordesc_np, strerror_r, strerror_l - return string describ-
ing error number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strerror(int errnum);
const char *strerrorname_np(int errnum);
const char *strerrordesc_np(int errnum);

int strerror_r(size_t size;
int errnum, char buf [size], size_t size);
/* XSI-compliant */

char *strerror_r(size_t size;
int errnum, char buf [size], size_t size);
/* GNU-specific */

char *strerror_l(int errnum, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strerrorname_np(), strerrordesc_np():
_GNU_SOURCE

strerror_r():
The XSI-compliant version is provided if:

(_POSIX_C_SOURCE >= 200112L) && ! _GNU_SOURCE
Otherwise, the GNU-specific version is provided.

DESCRIPTION
The strerror() function returns a pointer to a string that describes the error code passed
in the argument errnum, possibly using the LC_MESSAGES part of the current locale
to select the appropriate language. (For example, if errnum is EINVAL, the returned
description will be "Invalid argument".) This string must not be modified by the appli-
cation, and the returned pointer will be invalidated on a subsequent call to strerror() or
strerror_l(), or if the thread that obtained the string exits. No other library function, in-
cluding perror(3), will modify this string.

Like strerror(), the strerrordesc_np() function returns a pointer to a string that de-
scribes the error code passed in the argument errnum, with the difference that the re-
turned string is not translated according to the current locale.

The strerrorname_np() function returns a pointer to a string containing the name of the
error code passed in the argument errnum. For example, given EPERM as an argu-
ment, this function returns a pointer to the string "EPERM". Given 0 as an argument,
this function returns a pointer to the string "0".

strerror_r()
strerror_r() is like strerror(), but might use the supplied buffer buf instead of allocat-
ing one internally. This function is available in two versions: an XSI-compliant version

Linux man-pages 6.16 2025-06-28 2547

strerror(3) Library Functions Manual strerror(3)

specified in POSIX.1-2001 (available since glibc 2.3.4, but not POSIX-compliant until
glibc 2.13), and a GNU-specific version (available since glibc 2.0). The XSI-compliant
version is provided with the feature test macros settings shown in the SYNOPSIS; other-
wise the GNU-specific version is provided. If no feature test macros are explicitly de-
fined, then (since glibc 2.4) _POSIX_C_SOURCE is defined by default with the value
200112L, so that the XSI-compliant version of strerror_r() is provided by default.

The XSI-compliant strerror_r() is preferred for portable applications. It returns the er-
ror string in the user-supplied buffer buf of size size.

The GNU-specific strerror_r() returns a pointer to a string containing the error mes-
sage. This may be either a pointer to a string that the function stores in buf , or a pointer
to some (immutable) static string (in which case buf is unused). If the function stores a
string in buf , then at most size bytes are stored (the string may be truncated if size is too
small and errnum is unknown). The string always includes a terminating null byte ('\0').

strerror_l()
strerror_l() is like strerror(), but maps errnum to a locale-dependent error message in
the locale specified by locale. The behavior of strerror_l() is undefined if locale is the
special locale object LC_GLOBAL_LOCALE or is not a valid locale object handle.

RETURN VALUE
The strerror(), strerror_l(), and the GNU-specific strerror_r() functions return the ap-
propriate error description string, or an "Unknown error nnn" message if the error num-
ber is unknown.

On success, strerrorname_np() and strerrordesc_np() return the appropriate error de-
scription string. If errnum is an invalid error number, these functions return NULL.

The XSI-compliant strerror_r() function returns 0 on success. On error, a (positive) er-
ror number is returned (since glibc 2.13), or -1 is returned and errno is set to indicate
the error (before glibc 2.13).

POSIX.1-2001 and POSIX.1-2008 require that a successful call to strerror() or str-
error_l() shall leave errno unchanged, and note that, since no function return value is
reserved to indicate an error, an application that wishes to check for errors should initial-
ize errno to zero before the call, and then check errno after the call.

ERRORS
EINVAL

The value of errnum is not a valid error number.

ERANGE
Insufficient storage was supplied to contain the error description string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-06-28 2548

strerror(3) Library Functions Manual strerror(3)

Interface Attribute Value
Thread safetystrerror() MT-Safe
Thread safety MT-Safestrerrorname_np(),

strerrordesc_np()
Thread safety MT-Safestrerror_r(),

strerror_l()

Before glibc 2.32, strerror() is not MT-Safe.

STANDARDS
strerror()

C11, POSIX.1-2008.

strerror_r()
strerror_l()

POSIX.1-2008.

strerrorname_np()
strerrordesc_np()

GNU.

POSIX.1-2001 permits strerror() to set errno if the call encounters an error, but does
not specify what value should be returned as the function result in the event of an error.
On some systems, strerror() returns NULL if the error number is unknown. On other
systems, strerror() returns a string something like "Error nnn occurred" and sets errno
to EINVAL if the error number is unknown. C99 and POSIX.1-2008 require the return
value to be non-NULL.

HISTORY
strerror()

POSIX.1-2001, C89.

strerror_r()
POSIX.1-2001.

strerror_l()
glibc 2.6. POSIX.1-2008.

strerrorname_np()
strerrordesc_np()

glibc 2.32.

NOTES
strerrorname_np() and strerrordesc_np() are thread-safe and async-signal-safe.

SEE ALSO
err(3), errno(3), error(3), perror(3), strsignal(3), locale(7), signal-safety(7)

Linux man-pages 6.16 2025-06-28 2549

strfmon(3) Library Functions Manual strfmon(3)

NAME
strfmon, strfmon_l - convert monetary value to a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <monetary.h>

ssize_t strfmon(size_t size;
char s[restrict size], size_t size,
const char *restrict format, ...);

ssize_t strfmon_l(size_t size;
char s[restrict size], size_t size, locale_t l,
const char *restrict format, ...);

DESCRIPTION
The strfmon() function formats the specified monetary amount according to the current
locale and format specification format and places the result in the character array s of
size bytes.

The strfmon_l() function performs the same task, but uses the locale specified by l. The
behavior of strfmon_l() is undefined if l is the special locale object
LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid locale object handle.

Ordinary characters in format are copied to s without conversion. Conversion specifiers
are introduced by a '%' character. Immediately following it there can be zero or more of
the following flags:

= f The single-byte character f is used as the numeric fill character (to be used with
a left precision, see below). When not specified, the space character is used.

^ Do not use any grouping characters that might be defined for the current locale.
By default, grouping is enabled.

(or +
The (flag indicates that negative amounts should be enclosed between parenthe-
ses. The + flag indicates that signs should be handled in the default way, that is,
amounts are preceded by the locale’s sign indication, for example, nothing for
positive, "-" for negative.

! Omit the currency symbol.

- Left justify all fields. The default is right justification.

Next, there may be a field width: a decimal digit string specifying a minimum field
width in bytes. The default is 0. A result smaller than this width is padded with spaces
(on the left, unless the left-justify flag was given).

Next, there may be a left precision of the form "#" followed by a decimal digit string. If
the number of digits left of the radix character is smaller than this, the representation is
padded on the left with the numeric fill character. Grouping characters are not counted
in this field width.

Next, there may be a right precision of the form "." followed by a decimal digit string.

Linux man-pages 6.16 2025-09-21 2550

strfmon(3) Library Functions Manual strfmon(3)

The amount being formatted is rounded to the specified number of digits prior to format-
ting. The default is specified in the frac_digits and int_frac_digits items of the current
locale. If the right precision is 0, no radix character is printed. (The radix character
here is determined by LC_MONETARY, and may differ from that specified by
LC_NUMERIC.)

Finally, the conversion specification must be ended with a conversion character. The
three conversion characters are

% (In this case, the entire specification must be exactly "%%".) Put a '%' character
in the result string.

i One argument of type double is converted using the locale’s international cur-
rency format.

n One argument of type double is converted using the locale’s national currency
format.

RETURN VALUE
The strfmon() function returns the number of characters placed in the array s, not in-
cluding the terminating null byte, provided the string, including the terminating null
byte, fits. Otherwise, it sets errno to E2BIG, returns -1, and the contents of the array is
undefined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrfmon()
Thread safety MT-Safestrfmon_l()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

EXAMPLES
The call

strfmon(buf, sizeof(buf), "[%^=*#6n] [%=*#6i]",
1234.567, 1234.567);

outputs

[€ **1234,57] [EUR **1 234,57]

in the nl_NL locale. The de_DE, de_CH , en_AU , and en_GB locales yield

[**1234,57 €] [**1.234,57 EUR]
[Fr. **1234.57] [CHF **1'234.57]
[$**1234.57] [AUD**1,234.57]
[£**1234.57] [GBP**1,234.57]

SEE ALSO
duplocale(3), setlocale(3), sprintf(3), locale(7)

Linux man-pages 6.16 2025-09-21 2551

strfromd(3) Library Functions Manual strfromd(3)

NAME
strfromd, strfromf, strfroml - convert a floating-point value into a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int strfromd(size_t n;
char str[restrict n], size_t n,
const char *restrict format, double fp);

int strfromf(size_t n;
char str[restrict n], size_t n,
const char *restrict format, float fp);

int strfroml(size_t n;
char str[restrict n], size_t n,
const char *restrict format, long double fp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strfromd(), strfromf(), strfroml():
__STDC_WANT_IEC_60559_BFP_EXT__

DESCRIPTION
These functions convert a floating-point value, fp, into a string of characters, str, with a
configurable format string. At most n characters are stored into str.

The terminating null byte (’\0’) is written if and only if n is sufficiently large, otherwise
the written string is truncated at n characters.

The strfromd(), strfromf(), and strfroml() functions are equivalent to

snprintf(str, n, format, fp);

except for the format string.

Format of the format string
The format string must start with the character '%'. This is followed by an optional pre-
cision which starts with the period character (.), followed by an optional decimal integer.
If no integer is specified after the period character, a precision of zero is used. Finally,
the format string should have one of the conversion specifiers a, A, e, E, f, F, g, or G.

The conversion specifier is applied based on the floating-point type indicated by the
function suffix. Therefore, unlike snprintf(), the format string does not have a length
modifier character. See snprintf(3) for a detailed description of these conversion speci-
fiers.

The implementation conforms to the C99 standard on conversion of NaN and infinity
values:

If fp is a NaN, +NaN, or -NaN, and f (or a, e, g) is the conversion specifier, the
conversion is to "nan", "nan", or "-nan", respectively. If F (or A, E, G) is the
conversion specifier, the conversion is to "NAN" or "-NAN".

Likewise if fp is infinity, it is converted to [-]inf or [-]INF.

Linux man-pages 6.16 2025-06-28 2552

strfromd(3) Library Functions Manual strfromd(3)

A malformed format string results in undefined behavior.

RETURN VALUE
The strfromd(), strfromf(), and strfroml() functions return the number of characters
that would have been written in str if n had enough space, not counting the terminating
null byte. Thus, a return value of n or greater means that the output was truncated.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7) and the POSIX
Safety Concepts section in GNU C Library manual.

Interface Attribute Value
Thread safety MT-Safe locale
Async-signal safety AS-Unsafe heap
Async-cancel safety AC-Unsafe mem

strfromd(), strfromf(), strfroml()

Note: these attributes are preliminary.

STANDARDS
ISO/IEC TS 18661-1.

VERSIONS
strfromd()
strfromf()
strfroml()

glibc 2.25.

NOTES
These functions take account of the LC_NUMERIC category of the current locale.

EXAMPLES
To convert the value 12.1 as a float type to a string using decimal notation, resulting in
"12.100000":

#define __STDC_WANT_IEC_60559_BFP_EXT__
#include <stdlib.h>
int ssize = 10;
char s[ssize];
strfromf(s, ssize, "%f", 12.1);

To convert the value 12.3456 as a float type to a string using decimal notation with two
digits of precision, resulting in "12.35":

#define __STDC_WANT_IEC_60559_BFP_EXT__
#include <stdlib.h>
int ssize = 10;
char s[ssize];
strfromf(s, ssize, "%.2f", 12.3456);

To convert the value 12.345e19 as a double type to a string using scientific notation with
zero digits of precision, resulting in "1E+20":

#define __STDC_WANT_IEC_60559_BFP_EXT__
#include <stdlib.h>

Linux man-pages 6.16 2025-06-28 2553

strfromd(3) Library Functions Manual strfromd(3)

int ssize = 10;
char s[ssize];
strfromd(s, ssize, "%.E", 12.345e19);

SEE ALSO
atof(3), snprintf(3), strtod(3)

Linux man-pages 6.16 2025-06-28 2554

strfry(3) Library Functions Manual strfry(3)

NAME
strfry - randomize a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

char *strfry(char *string);

DESCRIPTION
The strfry() function randomizes the contents of string by randomly swapping charac-
ters in the string. The result is an anagram of string.

RETURN VALUE
The strfry() functions returns a pointer to the randomized string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrfry()

STANDARDS
GNU.

SEE ALSO
memfrob(3), string(3)

Linux man-pages 6.16 2025-05-17 2555

strftime(3) Library Functions Manual strftime(3)

NAME
strftime - format date and time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

size_t strftime(size_t max;
char s[restrict max], size_t max,
const char *restrict format,
const struct tm *restrict tm);

size_t strftime_l(size_t max;
char s[restrict max], size_t max,
const char *restrict format,
const struct tm *restrict tm,
locale_t locale);

DESCRIPTION
The strftime() function formats the broken-down time tm according to the format speci-
fication format and places the result in the character array s of size max. The broken-
down time structure tm is defined in <time.h>. See also ctime(3).

The format specification is a null-terminated string and may contain special character
sequences called conversion specifications, each of which is introduced by a '%' charac-
ter and terminated by some other character known as a conversion specifier character.
All other character sequences are ordinary character sequences.

The characters of ordinary character sequences (including the null byte) are copied ver-
batim from format to s. However, the characters of conversion specifications are re-
placed as shown in the list below. In this list, the field(s) employed from the tm struc-
ture are also shown.

%a The abbreviated name of the day of the week according to the current locale.
(Calculated from tm_wday.) (The specific names used in the current locale can
be obtained by calling nl_langinfo(3) with ABDAY_{1–7} as an argument.)

%A The full name of the day of the week according to the current locale. (Calcu-
lated from tm_wday.) (The specific names used in the current locale can be ob-
tained by calling nl_langinfo(3) with DAY_{1–7} as an argument.)

%b The abbreviated month name according to the current locale. (Calculated from
tm_mon.) (The specific names used in the current locale can be obtained by call-
ing nl_langinfo(3) with ABMON_{1–12} as an argument.)

%B The full month name according to the current locale. (Calculated from tm_mon.)
(The specific names used in the current locale can be obtained by calling
nl_langinfo(3) with MON_{1–12} as an argument.)

%c The preferred date and time representation for the current locale. (The specific
format used in the current locale can be obtained by calling nl_langinfo(3) with
D_T_FMT as an argument for the %c conversion specification, and with

Linux man-pages 6.16 2025-09-21 2556

strftime(3) Library Functions Manual strftime(3)

ERA_D_T_FMT for the %Ec conversion specification.) (In the POSIX locale
this is equivalent to %a %b %e %H:%M:%S %Y.)

%C The century number (year/100) as a 2-digit integer. (SU) (The %EC conversion
specification corresponds to the name of the era.) (Calculated from tm_year.)

%d The day of the month as a decimal number (range 01 to 31). (Calculated from
tm_mday.)

%D Equivalent to %m/%d/%y. (Yecch—for Americans only. Americans should
note that in other countries %d/%m/%y is rather common. This means that in
international context this format is ambiguous and should not be used.) (SU)

%e Like %d, the day of the month as a decimal number, but a leading zero is re-
placed by a space. (SU) (Calculated from tm_mday.)

%E Modifier: use alternative ("era-based") format; see below. (SU)

%F Equivalent to %Y-%m-%d (the ISO 8601 date format). (C99)

%G The ISO 8601 week-based year (see NOTES) with century as a decimal number.
The 4-digit year corresponding to the ISO week number (see %V). This has the
same format and value as %Y, except that if the ISO week number belongs to
the previous or next year, that year is used instead. (TZ) (Calculated from
tm_year, tm_yday, and tm_wday.)

%g Like %G, but without century, that is, with a 2-digit year (00–99). (TZ) (Calcu-
lated from tm_year, tm_yday, and tm_wday.)

%h Equivalent to %b. (SU)

%H The hour as a decimal number using a 24-hour clock (range 00 to 23). (Calcu-
lated from tm_hour.)

%I The hour as a decimal number using a 12-hour clock (range 01 to 12). (Calcu-
lated from tm_hour.)

%j The day of the year as a decimal number (range 001 to 366). (Calculated from
tm_yday.)

%k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are
preceded by a blank. (See also %H.) (Calculated from tm_hour.) (TZ)

%l The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are
preceded by a blank. (See also %I.) (Calculated from tm_hour.) (TZ)

%m The month as a decimal number (range 01 to 12). (Calculated from tm_mon.)

%M The minute as a decimal number (range 00 to 59). (Calculated from tm_min.)

%n A newline character. (SU)

%O Modifier: use alternative numeric symbols; see below. (SU)

%p Either "AM" or "PM" according to the given time value, or the corresponding
strings for the current locale. Noon is treated as "PM" and midnight as "AM".
(Calculated from tm_hour.) (The specific string representations used for "AM"
and "PM" in the current locale can be obtained by calling nl_langinfo(3) with

Linux man-pages 6.16 2025-09-21 2557

strftime(3) Library Functions Manual strftime(3)

AM_STR and PM_STR, respectively.)

%P Like %p but in lowercase: "am" or "pm" or a corresponding string for the cur-
rent locale. (Calculated from tm_hour.) (GNU)

%r The time in a.m. or p.m. notation. (SU) (The specific format used in the current
locale can be obtained by calling nl_langinfo(3) with T_FMT_AMPM as an ar-
gument.) (In the POSIX locale this is equivalent to %I:%M:%S %p.)

%R The time in 24-hour notation (%H:%M). (SU) For a version including the sec-
onds, see %T below.

%s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).
(TZ) (Calculated from mktime(tm).)

%S The second as a decimal number (range 00 to 60). (The range is up to 60 to al-
low for occasional leap seconds.) (Calculated from tm_sec.)

%t A tab character. (SU)

%T The time in 24-hour notation (%H:%M:%S). (SU)

%u The day of the week as a decimal, range 1 to 7, Monday being 1. See also %w.
(Calculated from tm_wday.) (SU)

%U The week number of the current year as a decimal number, range 00 to 53, start-
ing with the first Sunday as the first day of week 01. See also %V and %W.
(Calculated from tm_yday and tm_wday.)

%V The ISO 8601 week number (see NOTES) of the current year as a decimal num-
ber, range 01 to 53, where week 1 is the first week that has at least 4 days in the
new year. See also %U and %W. (Calculated from tm_year, tm_yday, and
tm_wday.) (SU)

%w The day of the week as a decimal, range 0 to 6, Sunday being 0. See also %u.
(Calculated from tm_wday.)

%W The week number of the current year as a decimal number, range 00 to 53, start-
ing with the first Monday as the first day of week 01. (Calculated from tm_yday
and tm_wday.)

%x The preferred date representation for the current locale without the time. (The
specific format used in the current locale can be obtained by calling nl_lang-
info(3) with D_FMT as an argument for the %x conversion specification, and
with ERA_D_FMT for the %Ex conversion specification.) (In the POSIX lo-
cale this is equivalent to %m/%d/%y.)

%X The preferred time representation for the current locale without the date. (The
specific format used in the current locale can be obtained by calling nl_lang-
info(3) with T_FMT as an argument for the %X conversion specification, and
with ERA_T_FMT for the %EX conversion specification.) (In the POSIX lo-
cale this is equivalent to %H:%M:%S.)

%y The year as a decimal number without a century (range 00 to 99). (The %Ey
conversion specification corresponds to the year since the beginning of the era
denoted by the %EC conversion specification.) (Calculated from tm_year)

Linux man-pages 6.16 2025-09-21 2558

strftime(3) Library Functions Manual strftime(3)

%Y The year as a decimal number including the century. (The %EY conversion
specification corresponds to the full alternative year representation.) (Calculated
from tm_year)

%z The +hhmm or -hhmm numeric timezone (that is, the hour and minute offset
from UTC). (SU)

%Z The timezone name or abbreviation.

%+ The date and time in date(1) format. (TZ) (Not supported in glibc2.)

%% A literal '%' character.

Some conversion specifications can be modified by preceding the conversion specifier
character by the E or O modifier to indicate that an alternative format should be used. If
the alternative format or specification does not exist for the current locale, the behavior
will be as if the unmodified conversion specification were used. (SU) The Single UNIX
Specification mentions %Ec, %EC, %Ex, %EX, %Ey, %EY, %Od, %Oe, %OH,
%OI, %Om, %OM, %OS, %Ou, %OU, %OV, %Ow, %OW, %Oy, where the ef-
fect of the O modifier is to use alternative numeric symbols (say, roman numerals), and
that of the E modifier is to use a locale-dependent alternative representation. The rules
governing date representation with the E modifier can be obtained by supplying ERA as
an argument to a nl_langinfo(3). One example of such alternative forms is the Japanese
era calendar scheme in the ja_JP glibc locale.

strftime_l() is equivalent to strftime(), except it uses the specified locale instead of the
current locale. The behaviour is undefined if locale is invalid or LC_GLOBAL_LO-
CALE.

RETURN VALUE
Provided that the result string, including the terminating null byte, does not exceed max
bytes, strftime() returns the number of bytes (excluding the terminating null byte)
placed in the array s. If the length of the result string (including the terminating null
byte) would exceed max bytes, then strftime() returns 0, and the contents of the array
are undefined.

Note that the return value 0 does not necessarily indicate an error. For example, in many
locales %p yields an empty string. An empty format string will likewise yield an
empty string.

ENVIRONMENT
The environment variables TZ and LC_TIME are used.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localestrftime(), strftime_l()

STANDARDS
strftime()

C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2559

strftime(3) Library Functions Manual strftime(3)

strftime_l()
POSIX.1-2008.

HISTORY
strftime()

SVr4, C89.

strftime_l()
POSIX.1-2008.

There are strict inclusions between the set of conversions given in ANSI C (unmarked),
those given in the Single UNIX Specification (marked SU), those given in Olson’s time-
zone package (marked TZ), and those given in glibc (marked GNU), except that %+ is
not supported in glibc2. On the other hand glibc2 has several more extensions.
POSIX.1 only refers to ANSI C; POSIX.2 describes under date(1) several extensions
that could apply to strftime() as well. The %F conversion is in C99 and
POSIX.1-2001.

In SUSv2, the %S specifier allowed a range of 00 to 61, to allow for the theoretical pos-
sibility of a minute that included a double leap second (there never has been such a
minute).

NOTES
ISO 8601 week dates

%G, %g, and %V yield values calculated from the week-based year defined by the
ISO 8601 standard. In this system, weeks start on a Monday, and are numbered from
01, for the first week, up to 52 or 53, for the last week. Week 1 is the first week where
four or more days fall within the new year (or, synonymously, week 01 is: the first week
of the year that contains a Thursday; or, the week that has 4 January in it). When three
or fewer days of the first calendar week of the new year fall within that year, then the
ISO 8601 week-based system counts those days as part of week 52 or 53 of the preced-
ing year. For example, 1 January 2010 is a Friday, meaning that just three days of that
calendar week fall in 2010. Thus, the ISO 8601 week-based system considers these
days to be part of week 53 (%V) of the year 2009 (%G); week 01 of ISO 8601 year
2010 starts on Monday, 4 January 2010. Similarly, the first two days of January 2011
are considered to be part of week 52 of the year 2010.

glibc notes
glibc provides some extensions for conversion specifications. (These extensions are not
specified in POSIX.1-2001, but a few other systems provide similar features.) Between
the '%' character and the conversion specifier character, an optional flag and field width
may be specified. (These precede the E or O modifiers, if present.)

The following flag characters are permitted:

_ (underscore) Pad a numeric result string with spaces.

- (dash) Do not pad a numeric result string.

0 Pad a numeric result string with zeros even if the conversion specifier character
uses space-padding by default.

Linux man-pages 6.16 2025-09-21 2560

strftime(3) Library Functions Manual strftime(3)

^ Convert alphabetic characters in result string to uppercase.

Swap the case of the result string. (This flag works only with certain conversion
specifier characters, and of these, it is only really useful with %Z.)

An optional decimal width specifier may follow the (possibly absent) flag. If the natural
size of the field is smaller than this width, then the result string is padded (on the left) to
the specified width.

BUGS
If the output string would exceed max bytes, errno is not set. This makes it impossible
to distinguish this error case from cases where the format string legitimately produces a
zero-length output string. POSIX.1-2001 does not specify any errno settings for strf-
time().

Some buggy versions of gcc(1) complain about the use of %c: warning: `%c' yields
only last 2 digits of year in some locales. Of course programmers are encouraged to use
%c, as it gives the preferred date and time representation. One meets all kinds of
strange obfuscations to circumvent this gcc(1) problem. A relatively clean one is to add
an intermediate function

size_t
my_strftime(char *s, size_t max, const char *fmt,

const struct tm *tm)
{

return strftime(s, max, fmt, tm);
}

Nowadays, gcc(1) provides the -Wno-format-y2k option to prevent the warning, so
that the above workaround is no longer required.

EXAMPLES
RFC 2822-compliant date format (with an English locale for %a and %b)

"%a, %d %b %Y %T %z"

RFC 822-compliant date format (with an English locale for %a and %b)

"%a, %d %b %y %T %z"

Example program
The program below can be used to experiment with strftime().

Some examples of the result string produced by the glibc implementation of strftime()
are as follows:

$./a.out '%m'
Result string is "11"
$./a.out '%5m'
Result string is "00011"
$./a.out '%_5m'
Result string is " 11"

Linux man-pages 6.16 2025-09-21 2561

strftime(3) Library Functions Manual strftime(3)

Program source

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

int
main(int argc, char *argv[])
{

char outstr[200];
time_t t;
struct tm *tmp;

if (argc != 2) {
fprintf(stderr, "Usage: %s: <format-string>\n", argv[0]);
exit(EXIT_FAILURE);

}

t = time(NULL);
tmp = localtime(&t);
if (tmp == NULL) {

perror("localtime");
exit(EXIT_FAILURE);

}

if (strftime(outstr, sizeof(outstr), argv[1], tmp) == 0) {
fprintf(stderr, "strftime returned 0");
exit(EXIT_FAILURE);

}

printf("Result string is \"%s\"\n", outstr);
exit(EXIT_SUCCESS);

}

SEE ALSO
date(1), time(2), ctime(3), nl_langinfo(3), setlocale(3), sprintf(3), strptime(3)

Linux man-pages 6.16 2025-09-21 2562

string(3) Library Functions Manual string(3)

NAME
stpcpy, strcasecmp, strcat, strchr, strcmp, strcoll, strcpy, strcspn, strdup, strfry, strlen,
strncat, strncmp, strncpy, strncasecmp, strpbrk, strrchr, strsep, strspn, strstr, strtok,
strxfrm, index, rindex - string operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <strings.h>

strcasecmp(3)
Compare two strings, ignoring case.

strncasecmp(3)
Compare the first bytes of two strings, ignoring case.

index(3)
Identical to strchr(3).

rindex(3)
Identical to strrchr(3).

#include <string.h>

stpcpy(3)
Copy a string, returning a pointer to the end of the resulting string.

strcat(3)
Append a string into an existing string.

strchr(3)
Find the first occurrence of a character in a string.

strcmp(3)
Compare two strings.

strcoll(3)
Compare two strings, using the current locale.

strcpy(3)
Copy a string.

strcspn(3)
Calculate the length of the initial segment of a string which does not contain any
of the rejected bytes.

strdup(3)
Duplicate a string in memory allocated using malloc(3).

strfry(3)
Randomly swap the characters in a string.

strlen(3)
Return the length of a string.

Linux man-pages 6.16 2025-05-17 2563

string(3) Library Functions Manual string(3)

strncat(3)
Append non-null bytes from an array to a string, and null-terminate the result.

strncmp(3)
Compare the first bytes of two strings.

strpbrk(3)
Find the first occurrence in a string of one of the bytes in the accepted bytes.

strrchr(3)
Find the last occurrence of a character in a string.

strsep(3)
Extract the initial field in a string that is delimited by one of the delimiter bytes.

strspn(3)
Calculate the length of the initial segment of a string that consists entirely of ac-
cepted bytes.

strstr(3)
Find the first occurrence of a substring in a string.

strtok(3)
Extract tokens from a string that are delimited by one of the delimiter bytes.

strxfrm(3)
Transforms a string to the current locale and copies the first bytes to a buffer.

strncpy(3)
Fill a fixed-size buffer with leading non-null bytes from a source array, padding
with null bytes as needed.

DESCRIPTION
The string functions perform operations on null-terminated strings. See the individual
man pages for descriptions of each function.

SEE ALSO
bstring(3), stpcpy(3), strcasecmp(3), strcat(3), strchr(3), strcmp(3), strcoll(3), strcpy(3),
strcspn(3), strdup(3), strfry(3), strlen(3), strncasecmp(3), strncat(3), strncmp(3),
strncpy(3), strpbrk(3), strrchr(3), strsep(3), strspn(3), strstr(3), strtok(3), strxfrm(3)

Linux man-pages 6.16 2025-05-17 2564

strlen(3) Library Functions Manual strlen(3)

NAME
strlen - calculate the length of a string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strlen(const char *s);

DESCRIPTION
The strlen() function calculates the length of the string pointed to by s, excluding the
terminating null byte ('\0').

RETURN VALUE
The strlen() function returns the number of bytes in the string pointed to by s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrlen()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

NOTES
In cases where the input buffer may not contain a terminating null byte, strnlen(3)
should be used instead.

SEE ALSO
string(3), strnlen(3), wcslen(3), wcsnlen(3)

Linux man-pages 6.16 2025-05-17 2565

strncat(3) Library Functions Manual strncat(3)

NAME
strncat - append non-null bytes from a source array to a string, and null-terminate the
result

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strncat(size_t ssize;
char *restrict dst, const char src[restrict ssize],
size_t ssize);

DESCRIPTION
This function appends at most ssize non-null bytes from the array pointed to by src, fol-
lowed by a null character, to the end of the string pointed to by dst. dst must point to a
string contained in a buffer that is large enough, that is, the buffer size must be at least
strlen(dst) + strnlen(src, ssize) + 1.

An implementation of this function might be:

char *
strncat(char *restrict dst, const char *restrict src, size_t ssize)
{

#define strnul(s) (s + strlen(s))

stpcpy(mempcpy(strnul(dst), src, strnlen(src, ssize)), "");
return dst;

}

RETURN VALUE
strncat() returns dst.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrncat()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

CAVEATS
The name of this function is confusing; it has no relation to strncpy(3).

If the destination buffer does not already contain a string, or is not large enough, the be-
havior is undefined. See _FORTIFY_SOURCE in feature_test_macros(7).

BUGS
This function can be very inefficient. Read about Shlemiel the painter
〈https://www.joelonsoftware.com/2001/12/11/back-to-basics/〉.

Linux man-pages 6.16 2025-09-20 2566

strncat(3) Library Functions Manual strncat(3)

EXAMPLES
#include <err.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define NITEMS(arr) (sizeof((arr)) / sizeof((arr)[0]))

int
main(void)
{

size_t n;

// Null-padded fixed-size character sequences
char pre[4] = "pre.";
char new_post[50] = ".foo.bar";

// Strings
char post[] = ".post";
char src[] = "some_long_body.post";
char *dest;

n = NITEMS(pre) + strlen(src) - strlen(post) + NITEMS(new_post) + 1;
dest = malloc(sizeof(*dest) * n);
if (dest == NULL)

err(EXIT_FAILURE, "malloc()");

dest[0] = '\0'; // There’s no ’cpy’ function to this ’cat’.
strncat(dest, pre, NITEMS(pre));
strncat(dest, src, strlen(src) - strlen(post));
strncat(dest, new_post, NITEMS(new_post));

puts(dest); // "pre.some_long_body.foo.bar"
free(dest);
exit(EXIT_SUCCESS);

}

SEE ALSO
string(3), string_copying(7)

Linux man-pages 6.16 2025-09-20 2567

strnlen(3) Library Functions Manual strnlen(3)

NAME
strnlen - determine the length of a fixed-size string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strnlen(size_t maxlen;
const char s[maxlen], size_t maxlen);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strnlen():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The strnlen() function returns the number of bytes in the string pointed to by s, exclud-
ing the terminating null byte ('\0'), but at most maxlen. In doing this, strnlen() looks
only at the first maxlen characters in the string pointed to by s and never beyond
s[maxlen-1].

RETURN VALUE
The strnlen() function returns strlen(s), if that is less than maxlen, or maxlen if there is
no null terminating ('\0') among the first maxlen characters pointed to by s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrnlen()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2008.

SEE ALSO
strlen(3)

Linux man-pages 6.16 2025-06-28 2568

strpbrk(3) Library Functions Manual strpbrk(3)

NAME
strpbrk - search a string for any of a set of bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strpbrk(const char *s, const char *accept);

DESCRIPTION
The strpbrk() function locates the first occurrence in the string s of any of the bytes in
the string accept.

RETURN VALUE
The strpbrk() function returns a pointer to the byte in s that matches one of the bytes in
accept, or NULL if no such byte is found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrpbrk()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
memchr(3), strchr(3), string(3), strsep(3), strspn(3), strstr(3), strtok(3), wcspbrk(3)

Linux man-pages 6.16 2025-05-17 2569

strptime(3) Library Functions Manual strptime(3)

NAME
strptime - convert a string representation of time to a time tm structure

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <time.h>

char *strptime(const char *restrict s, const char *restrict format,
struct tm *restrict tm);

DESCRIPTION
The strptime() function is the converse of strftime(3); it converts the character string
pointed to by s to values which are stored in the "broken-down time" structure pointed
to by tm, using the format specified by format.

The broken-down time structure tm is described in tm(3type).

The format argument is a character string that consists of field descriptors and text char-
acters, reminiscent of scanf(3). Each field descriptor consists of a % character followed
by another character that specifies the replacement for the field descriptor. All other
characters in the format string must have a matching character in the input string, ex-
cept for whitespace, which matches zero or more whitespace characters in the input
string. There should be whitespace or other alphanumeric characters between any two
field descriptors.

The strptime() function processes the input string from left to right. Each of the three
possible input elements (whitespace, literal, or format) are handled one after the other.
If the input cannot be matched to the format string, the function stops. The remainder of
the format and input strings are not processed.

The supported input field descriptors are listed below. In case a text string (such as the
name of a day of the week or a month name) is to be matched, the comparison is case
insensitive. In case a number is to be matched, leading zeros are permitted but not re-
quired.

%% The % character.

%a or %A
The name of the day of the week according to the current locale, in abbreviated
form or the full name.

%b or %B or %h
The month name according to the current locale, in abbreviated form or the full
name.

%c The date and time representation for the current locale.

%C The century number (0–99).

%d or %e
The day of month (1–31).

Linux man-pages 6.16 2025-05-17 2570

strptime(3) Library Functions Manual strptime(3)

%D Equivalent to %m/%d/%y. (This is the American style date, very confusing to
non-Americans, especially since %d/%m/%y is widely used in Europe. The
ISO 8601 standard format is %Y-%m-%d.)

%H The hour (0–23).

%I The hour on a 12-hour clock (1–12).

%j The day number in the year (1–366).

%m The month number (1–12).

%M The minute (0–59).

%n Arbitrary whitespace.

%p The locale’s equivalent of AM or PM. (Note: there may be none.)

%r The 12-hour clock time (using the locale’s AM or PM). In the POSIX locale
equivalent to %I:%M:%S %p. If t_fmt_ampm is empty in the LC_TIME part
of the current locale, then the behavior is undefined.

%R Equivalent to %H:%M.

%S The second (0–60; 60 may occur for leap seconds; earlier also 61 was allowed).

%t Arbitrary whitespace.

%T Equivalent to %H:%M:%S.

%U The week number with Sunday the first day of the week (0–53). The first Sun-
day of January is the first day of week 1.

%w The ordinal number of the day of the week (0–6), with Sunday = 0.

%W The week number with Monday the first day of the week (0–53). The first Mon-
day of January is the first day of week 1.

%x The date, using the locale’s date format.

%X The time, using the locale’s time format.

%y The year within century (0–99). When a century is not otherwise specified, val-
ues in the range 69–99 refer to years in the twentieth century (1969–1999); val-
ues in the range 00–68 refer to years in the twenty-first century (2000–2068).

%Y The year, including century (for example, 1991).

Some field descriptors can be modified by the E or O modifier characters to indicate that
an alternative format or specification should be used. If the alternative format or specifi-
cation does not exist in the current locale, the unmodified field descriptor is used.

The E modifier specifies that the input string may contain alternative locale-dependent
versions of the date and time representation:

%Ec The locale’s alternative date and time representation.

%EC
The name of the base year (period) in the locale’s alternative representation.

Linux man-pages 6.16 2025-05-17 2571

strptime(3) Library Functions Manual strptime(3)

%Ex
The locale’s alternative date representation.

%EX
The locale’s alternative time representation.

%Ey
The offset from %EC (year only) in the locale’s alternative representation.

%EY
The full alternative year representation.

The O modifier specifies that the numerical input may be in an alternative locale-depen-
dent format:

%Od or %Oe
The day of the month using the locale’s alternative numeric symbols; leading ze-
ros are permitted but not required.

%OH
The hour (24-hour clock) using the locale’s alternative numeric symbols.

%OI
The hour (12-hour clock) using the locale’s alternative numeric symbols.

%Om
The month using the locale’s alternative numeric symbols.

%OM
The minutes using the locale’s alternative numeric symbols.

%OS
The seconds using the locale’s alternative numeric symbols.

%OU
The week number of the year (Sunday as the first day of the week) using the lo-
cale’s alternative numeric symbols.

%Ow
The ordinal number of the day of the week (Sunday=0), using the locale’s alter-
native numeric symbols.

%OW
The week number of the year (Monday as the first day of the week) using the lo-
cale’s alternative numeric symbols.

%Oy
The year (offset from %C) using the locale’s alternative numeric symbols.

RETURN VALUE
The return value of the function is a pointer to the first character not processed in this
function call. In case the input string contains more characters than required by the for-
mat string, the return value points right after the last consumed input character. In case
the whole input string is consumed, the return value points to the null byte at the end of
the string. If strptime() fails to match all of the format string and therefore an error oc-
curred, the function returns NULL.

Linux man-pages 6.16 2025-05-17 2572

strptime(3) Library Functions Manual strptime(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localestrptime()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SUSv2.

NOTES
In principle, this function does not initialize tm but stores only the values specified.
This means that tm should be initialized before the call. Details differ a bit between dif-
ferent UNIX systems. The glibc implementation does not touch those fields which are
not explicitly specified, except that it recomputes the tm_wday and tm_yday field if any
of the year, month, or day elements changed.

The 'y' (year in century) specification is taken to specify a year in the range 1950–2049
by glibc 2.0. It is taken to be a year in 1969–2068 since glibc 2.1.

glibc notes
For reasons of symmetry, glibc tries to support for strptime() the same format charac-
ters as for strftime(3). (In most cases, the corresponding fields are parsed, but no field in
tm is changed.) This leads to

%F Equivalent to %Y-%m-%d, the ISO 8601 date format.

%g The year corresponding to the ISO week number, but without the century (0–99).

%G The year corresponding to the ISO week number. (For example, 1991.)

%u The day of the week as a decimal number (1–7, where Monday = 1).

%V The ISO 8601:1988 week number as a decimal number (1–53). If the week
(starting on Monday) containing 1 January has four or more days in the new
year, then it is considered week 1. Otherwise, it is the last week of the previous
year, and the next week is week 1.

%z An RFC-822/ISO 8601 standard timezone specification.

%Z The timezone name.

Similarly, because of GNU extensions to strftime(3), %k is accepted as a synonym for
%H, and %l should be accepted as a synonym for %I, and %P is accepted as a syn-
onym for %p. Finally

%s The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC).
Leap seconds are not counted unless leap second support is available.

The glibc implementation does not require whitespace between two field descriptors.

EXAMPLES
The following example demonstrates the use of strptime() and strftime(3).

#define _XOPEN_SOURCE
#include <stdio.h>

Linux man-pages 6.16 2025-05-17 2573

strptime(3) Library Functions Manual strptime(3)

#include <stdlib.h>
#include <string.h>
#include <time.h>

int
main(void)
{

struct tm tm;
char buf[255];

memset(&tm, 0, sizeof(tm));
strptime("2001-11-12 18:31:01", "%Y-%m-%d %H:%M:%S", &tm);
strftime(buf, sizeof(buf), "%d %b %Y %H:%M", &tm);
puts(buf);
exit(EXIT_SUCCESS);

}

SEE ALSO
time(2), getdate(3), scanf(3), setlocale(3), strftime(3)

Linux man-pages 6.16 2025-05-17 2574

strsep(3) Library Functions Manual strsep(3)

NAME
strsep - extract token from string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strsep(char **restrict stringp, const char *restrict delim);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strsep():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
If *stringp is NULL, the strsep() function returns NULL and does nothing else. Other-
wise, this function finds the first token in the string *stringp that is delimited by one of
the bytes in the string delim. This token is terminated by overwriting the delimiter with
a null byte ('\0'), and *stringp is updated to point past the token. In case no delimiter
was found, the token is taken to be the entire string *stringp, and *stringp is made
NULL.

RETURN VALUE
The strsep() function returns a pointer to the token, that is, it returns the original value
of *stringp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrsep()

STANDARDS
BSD.

HISTORY
4.4BSD.

The strsep() function was introduced as a replacement for strtok(3), since the latter can-
not handle empty fields.

CAVEATS
Be cautious when using this function. If you do use it, note that:

• This function modifies its first argument.

• This function cannot be used on constant strings.

• The identity of the delimiting character is lost.

Linux man-pages 6.16 2025-05-17 2575

strsep(3) Library Functions Manual strsep(3)

EXAMPLES
The program below is a port of the one found in strtok(3), which, however, doesn’t dis-
card multiple delimiters or empty tokens:

$./a.out 'a/bbb///cc;xxx:yyy:' ':;' '/'
1: a/bbb///cc

--> a
--> bbb
-->
-->
--> cc

2: xxx
--> xxx

3: yyy
--> yyy

4:
-->

Program source

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

char *token, *subtoken;

if (argc != 4) {
fprintf(stderr, "Usage: %s string delim subdelim\n", argv[0]);
exit(EXIT_FAILURE);

}

for (unsigned int j = 1; (token = strsep(&argv[1], argv[2])); j++) {
printf("%u: %s\n", j, token);

while ((subtoken = strsep(&token, argv[3])))
printf("\t --> %s\n", subtoken);

}

exit(EXIT_SUCCESS);
}

SEE ALSO
memchr(3), strchr(3), string(3), strpbrk(3), strspn(3), strstr(3), strtok(3)

Linux man-pages 6.16 2025-05-17 2576

strsignal(3) Library Functions Manual strsignal(3)

NAME
strsignal, sigabbrev_np, sigdescr_np, sys_siglist - return string describing signal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strsignal(int sig);
const char *sigdescr_np(int sig);
const char *sigabbrev_np(int sig);

[[deprecated]] extern const char *const sys_siglist[];

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

sigabbrev_np(), sigdescr_np():
_GNU_SOURCE

strsignal():
From glibc 2.10 to glibc 2.31:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

sys_siglist:
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The strsignal() function returns a string describing the signal number passed in the ar-
gument sig. The string can be used only until the next call to strsignal(). The string re-
turned by strsignal() is localized according to the LC_MESSAGES category in the cur-
rent locale.

The sigdescr_np() function returns a string describing the signal number passed in the
argument sig. Unlike strsignal() this string is not influenced by the current locale.

The sigabbrev_np() function returns the abbreviated name of the signal, sig. For exam-
ple, given the value SIGINT, it returns the string "INT".

The (deprecated) array sys_siglist holds the signal description strings indexed by signal
number. The strsignal() or the sigdescr_np() function should be used instead of this ar-
ray; see also VERSIONS.

RETURN VALUE
The strsignal() function returns the appropriate description string, or an unknown signal
message if the signal number is invalid. On some systems (but not on Linux), NULL
may instead be returned for an invalid signal number.

The sigdescr_np() and sigabbrev_np() functions return the appropriate description
string. The returned string is statically allocated and valid for the lifetime of the

Linux man-pages 6.16 2025-09-21 2577

strsignal(3) Library Functions Manual strsignal(3)

program. These functions return NULL for an invalid signal number.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetystrsignal() MT-Unsafe race:strsignal locale
Thread safety MT-Safesigdescr_np(),

sigabbrev_np()

STANDARDS
strsignal()

POSIX.1-2008.

sigdescr_np()
sigabbrev_np()

GNU.

sys_siglist
None.

HISTORY
strsignal()

POSIX.1-2008. Solaris, BSD.

sigdescr_np()
sigabbrev_np()

glibc 2.32.

sys_siglist
Removed in glibc 2.32.

NOTES
sigdescr_np() and sigabbrev_np() are thread-safe and async-signal-safe.

SEE ALSO
psignal(3), strerror(3)

Linux man-pages 6.16 2025-09-21 2578

strspn(3) Library Functions Manual strspn(3)

NAME
strspn, strcspn - get length of a prefix substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strspn(const char *s, const char *accept);
size_t strcspn(const char *s, const char *reject);

DESCRIPTION
The strspn() function calculates the length (in bytes) of the initial segment of s which
consists entirely of bytes in accept.

The strcspn() function calculates the length of the initial segment of s which consists
entirely of bytes not in reject.

RETURN VALUE
The strspn() function returns the number of bytes in the initial segment of s which con-
sist only of bytes from accept.

The strcspn() function returns the number of bytes in the initial segment of s which are
not in the string reject.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrspn(), strcspn()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
memchr(3), strchr(3), string(3), strpbrk(3), strsep(3), strstr(3), strtok(3), wcscspn(3),
wcsspn(3)

Linux man-pages 6.16 2025-05-17 2579

strstr(3) Library Functions Manual strstr(3)

NAME
strstr, strcasestr - locate a substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strstr(const char *haystack, const char *needle);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

char *strcasestr(const char *haystack, const char *needle);

DESCRIPTION
The strstr() function finds the first occurrence of the substring needle in the string
haystack. The terminating null bytes ('\0') are not compared.

The strcasestr() function is like strstr(), but ignores the case of both arguments.

RETURN VALUE
These functions return a pointer to the beginning of the located substring, or NULL if
the substring is not found.

If needle is the empty string, the return value is always haystack itself.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrstr()
Thread safety MT-Safe localestrcasestr()

STANDARDS
strstr()

C11, POSIX.1-2008.

strcasestr()
GNU.

HISTORY
strstr()

POSIX.1-2001, C89.

strcasestr()
GNU.

SEE ALSO
memchr(3), memmem(3), strcasecmp(3), strchr(3), string(3), strpbrk(3), strsep(3), str-
spn(3), strtok(3), wcsstr(3)

Linux man-pages 6.16 2025-05-17 2580

strtod(3) Library Functions Manual strtod(3)

NAME
strtod, strtof, strtold - convert ASCII string to floating-point number

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

double strtod(const char *restrict nptr,
char **_Nullable restrict endptr);

float strtof(const char *restrict nptr,
char **_Nullable restrict endptr);

long double strtold(const char *restrict nptr,
char **_Nullable restrict endptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtof(), strtold():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The strtod(), strtof(), and strtold() functions convert the initial portion of the string
pointed to by nptr to double, float, and long double representation, respectively.

The expected form of the (initial portion of the) string is optional leading white space as
recognized by isspace(3), an optional plus ('+') or minus sign ('-') and then either (i) a
decimal number, or (ii) a hexadecimal number, or (iii) an infinity, or (iv) a NAN (not-a-
number).

A decimal number consists of a nonempty sequence of decimal digits possibly contain-
ing a radix character (decimal point, locale-dependent, usually '.'), optionally followed
by a decimal exponent. A decimal exponent consists of an 'E' or 'e', followed by an op-
tional plus or minus sign, followed by a nonempty sequence of decimal digits, and indi-
cates multiplication by a power of 10.

A hexadecimal number consists of a "0x" or "0X" followed by a nonempty sequence of
hexadecimal digits possibly containing a radix character, optionally followed by a bi-
nary exponent. A binary exponent consists of a 'P' or 'p', followed by an optional plus or
minus sign, followed by a nonempty sequence of decimal digits, and indicates multipli-
cation by a power of 2. At least one of radix character and binary exponent must be
present.

An infinity is either "INF" or "INFINITY", disregarding case.

A NAN is "NAN" (disregarding case) optionally followed by a string, (n-char-se-
quence), where n-char-sequence specifies in an implementation-dependent way the type
of NAN (see VERSIONS).

RETURN VALUE
These functions return the converted value, if any.

If endptr is not NULL, a pointer to the character after the last character used in the con-
version is stored in the location referenced by endptr.

Linux man-pages 6.16 2025-05-17 2581

strtod(3) Library Functions Manual strtod(3)

If no conversion is performed, zero is returned and (unless endptr is null) the value of
nptr is stored in the location referenced by endptr.

If the correct value would cause overflow, plus or minus HUGE_VAL, HUGE_VALF,
or HUGE_VALL is returned (according to the return type and sign of the value), and
ERANGE is stored in errno.

If the correct value would cause underflow, a value with magnitude no larger than
DBL_MIN, FLT_MIN, or LDBL_MIN is returned and ERANGE is stored in errno.

ERRORS
ERANGE

Overflow or underflow occurred.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtod(), strtof(), strtold()

VERSIONS
In the glibc implementation, the n-char-sequence that optionally follows "NAN" is in-
terpreted as an integer number (with an optional ’0’ or ’0x’ prefix to select base 8 or 16)
that is to be placed in the mantissa component of the returned value.

STANDARDS
C11, POSIX.1-2008.

HISTORY
strtod()

C89, POSIX.1-2001.

strtof()
strtold()

C99, POSIX.1-2001.

CAVEATS
Since 0 can legitimately be returned on both success and failure, the calling program
should set errno to 0 before the call, and then determine if an error occurred by check-
ing whether errno has a nonzero value after the call.

EXAMPLES
See the example on the strtol(3) manual page; the use of the functions described in this
manual page is similar.

SEE ALSO
atof(3), atoi(3), atol(3), nan(3), nanf(3), nanl(3), strfromd(3), strtol(3), strtoul(3)

Linux man-pages 6.16 2025-05-17 2582

strtoimax(3) Library Functions Manual strtoimax(3)

NAME
strtoimax, strtoumax - convert string to integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <inttypes.h>

intmax_t strtoimax(const char *restrict nptr, char **restrict endptr,
int base);

uintmax_t strtoumax(const char *restrict nptr, char **restrict endptr,
int base);

DESCRIPTION
These functions are just like strtol(3) and strtoul(3), except that they return a value of
type intmax_t and uintmax_t, respectively.

RETURN VALUE
On success, the converted value is returned. If nothing was found to convert, zero is re-
turned. On overflow or underflow INTMAX_MAX or INTMAX_MIN or UINT-
MAX_MAX is returned, and errno is set to ERANGE.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtoimax(), strtoumax()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
imaxabs(3), imaxdiv(3), strtol(3), strtoul(3), wcstoimax(3)

Linux man-pages 6.16 2025-05-17 2583

strtok(3) Library Functions Manual strtok(3)

NAME
strtok, strtok_r - extract tokens from strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

char *strtok(char *_Nullable restrict str, const char *restrict delim);
char *strtok_r(char *_Nullable restrict str, const char *restrict delim,

char **restrict saveptr);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtok_r():
_POSIX_C_SOURCE

|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The strtok() function breaks a string into a sequence of zero or more nonempty tokens.
On the first call to strtok(), the string to be parsed should be specified in str. In each
subsequent call that should parse the same string, str must be NULL.

The delim argument specifies a set of bytes that delimit the tokens in the parsed string.
The caller may specify different strings in delim in successive calls that parse the same
string.

Each call to strtok() returns a pointer to a null-terminated string containing the next to-
ken. This string does not include the delimiting byte. If no more tokens are found, str-
tok() returns NULL.

A sequence of calls to strtok() that operate on the same string maintains a pointer that
determines the point from which to start searching for the next token. The first call to
strtok() sets this pointer to point to the first byte of the string. The start of the next to-
ken is determined by scanning forward for the next nondelimiter byte in str. If such a
byte is found, it is taken as the start of the next token. If no such byte is found, then
there are no more tokens, and strtok() returns NULL. (A string that is empty or that
contains only delimiters will thus cause strtok() to return NULL on the first call.)

The end of each token is found by scanning forward until either the next delimiter byte
is found or until the terminating null byte ('\0') is encountered. If a delimiter byte is
found, it is overwritten with a null byte to terminate the current token, and strtok() saves
a pointer to the following byte; that pointer will be used as the starting point when
searching for the next token. In this case, strtok() returns a pointer to the start of the
found token.

From the above description, it follows that a sequence of two or more contiguous delim-
iter bytes in the parsed string is considered to be a single delimiter, and that delimiter
bytes at the start or end of the string are ignored. Put another way: the tokens returned
by strtok() are always nonempty strings. Thus, for example, given the string
"aaa;;bbb,", successive calls to strtok() that specify the delimiter string ";," would re-
turn the strings "aaa" and "bbb", and then a null pointer.

Linux man-pages 6.16 2025-05-17 2584

strtok(3) Library Functions Manual strtok(3)

The strtok_r() function is a reentrant version of strtok(). The saveptr argument is a
pointer to a char * variable that is used internally by strtok_r() in order to maintain
context between successive calls that parse the same string.

On the first call to strtok_r(), str should point to the string to be parsed, and the value
of *saveptr is ignored (but see VERSIONS). In subsequent calls, str should be NULL,
and saveptr (and the buffer that it points to) should be unchanged since the previous
call.

Different strings may be parsed concurrently using sequences of calls to strtok_r() that
specify different saveptr arguments.

RETURN VALUE
The strtok() and strtok_r() functions return a pointer to the next token, or NULL if
there are no more tokens.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:strtokstrtok()
Thread safety MT-Safestrtok_r()

VERSIONS
On some implementations, *saveptr is required to be NULL on the first call to str-
tok_r() that is being used to parse str.

STANDARDS
strtok()

C11, POSIX.1-2008.

strtok_r()
POSIX.1-2008.

HISTORY
strtok()

POSIX.1-2001, C89, SVr4, 4.3BSD.

strtok_r()
POSIX.1-2001.

BUGS
Be cautious when using these functions. If you do use them, note that:

• These functions modify their first argument.

• These functions cannot be used on constant strings.

• The identity of the delimiting byte is lost.

• The strtok() function uses a static buffer while parsing, so it’s not thread safe. Use
strtok_r() if this matters to you.

EXAMPLES
The program below uses nested loops that employ strtok_r() to break a string into a
two-level hierarchy of tokens. The first command-line argument specifies the string to
be parsed. The second argument specifies the delimiter byte(s) to be used to separate

Linux man-pages 6.16 2025-05-17 2585

strtok(3) Library Functions Manual strtok(3)

that string into "major" tokens. The third argument specifies the delimiter byte(s) to be
used to separate the "major" tokens into subtokens.

An example of the output produced by this program is the following:

$./a.out 'a/bbb///cc;xxx:yyy:' ':;' '/'
1: a/bbb///cc

--> a
--> bbb
--> cc

2: xxx
--> xxx

3: yyy
--> yyy

Program source

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

char *str1, *str2, *token, *subtoken;
char *saveptr1, *saveptr2;
int j;

if (argc != 4) {
fprintf(stderr, "Usage: %s string delim subdelim\n",

argv[0]);
exit(EXIT_FAILURE);

}

for (j = 1, str1 = argv[1]; ; j++, str1 = NULL) {
token = strtok_r(str1, argv[2], &saveptr1);
if (token == NULL)

break;
printf("%d: %s\n", j, token);

for (str2 = token; ; str2 = NULL) {
subtoken = strtok_r(str2, argv[3], &saveptr2);
if (subtoken == NULL)

break;
printf("\t --> %s\n", subtoken);

}
}

exit(EXIT_SUCCESS);

Linux man-pages 6.16 2025-05-17 2586

strtok(3) Library Functions Manual strtok(3)

}

Another example program using strtok() can be found in getaddrinfo_a(3).

SEE ALSO
memchr(3), strchr(3), string(3), strpbrk(3), strsep(3), strspn(3), strstr(3), wcstok(3)

Linux man-pages 6.16 2025-05-17 2587

strtol(3) Library Functions Manual strtol(3)

NAME
strtol, strtoll, strtoq - convert a string to a long integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

long strtol(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

long long strtoll(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtoll():
_ISOC99_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The strtol() function converts the initial part of the string in nptr to a long integer value
according to the given base, which must be between 2 and 36 inclusive, or be the special
value 0.

The string may begin with an arbitrary amount of white space (as determined by is-
space(3)) followed by a single optional '+' or '-' sign. If base is zero or 16, the string
may then include a "0x" or "0X" prefix, and the number will be read in base 16; if base
is zero or 2, the string may then include a "0b" or "0B" prefix, and the number will be
read in base 2; otherwise, a zero base is taken as 10 (decimal) unless the next character
is '0', in which case it is taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter 'A' in either uppercase or lowercase represents 10, 'B' represents 11, and so forth,
with 'Z' representing 35.)

If endptr is not NULL, and the base is supported, strtol() stores the address of the first
invalid character in *endptr. If there were no digits at all, strtol() stores the original
value of nptr in *endptr (and returns 0). In particular, if *nptr is not '\0' but **endptr is
'\0' on return, the entire string is valid.

The strtoll() function works just like the strtol() function but returns a long long integer
value.

RETURN VALUE
The strtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If an underflow occurs, strtol() returns LONG_MIN. If an overflow
occurs, strtol() returns LONG_MAX. In both cases, errno is set to ERANGE. Pre-
cisely the same holds for strtoll() (with LLONG_MIN and LLONG_MAX instead of
LONG_MIN and LONG_MAX).

Linux man-pages 6.16 2025-09-21 2588

strtol(3) Library Functions Manual strtol(3)

ERRORS
This function does not modify errno on success.

EINVAL
(not in C99) The given base contains an unsupported value.

ERANGE
The resulting value was out of range.

The implementation may also set errno to EINVAL in case no conversion was per-
formed (no digits seen, and 0 returned).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtol(), strtoll(), strtoq()

VERSIONS
According to POSIX.1, in locales other than "C" and "POSIX", these functions may ac-
cept other, implementation-defined numeric strings.

BSD also has

quad_t strtoq(const char *nptr, char **endptr, int base);

with completely analogous definition. Depending on the wordsize of the current archi-
tecture, this may be equivalent to strtoll() or to strtol().

STANDARDS
C23, POSIX.1-2024.

HISTORY
strtol()

POSIX.1-2001, C89, SVr4, 4.3BSD.

strtoll()
POSIX.1-2001, C99.

"0b", "0B"
C23. glibc 2.38. (Not in POSIX.)

CAVEATS
Range checks

Since strtol() can legitimately return 0, LONG_MAX, or LONG_MIN
(LLONG_MAX or LLONG_MIN for strtoll()) on both success and failure, the calling
program should set errno to 0 before the call, and then determine if an error occurred by
checking whether errno == ERANGE after the call.

errno = 0;
n = strtol(s, &end, base);
if (end == s)

goto no_number;
if ((errno == ERANGE && n == LONG_MIN) || n < min)

goto too_low;
if ((errno == ERANGE && n == LONG_MAX) || n > max)

Linux man-pages 6.16 2025-09-21 2589

strtol(3) Library Functions Manual strtol(3)

goto too_high;

base
If the base needs to be tested, it should be tested in a call where the string is known to
succeed. Otherwise, it’s impossible to portably differentiate the errors.

errno = 0;
strtol("0", NULL, base);
if (errno == EINVAL)

goto unsupported_base;

BUGS
White space

These functions silently accept leading white space. To reject white space, call is-
space(3) before strtol().

EXAMPLES
The program shown below demonstrates the use of strtol(). The first command-line ar-
gument specifies a string from which strtol() should parse a number. The second (op-
tional) argument specifies the base to be used for the conversion. (This argument is con-
verted to numeric form using atoi(3), a function that performs no error checking and has
a simpler interface than strtol().) Some examples of the results produced by this pro-
gram are the following:

$./a.out 123
strtol() returned 123
$./a.out ' 123'
strtol() returned 123
$./a.out 123abc
strtol() returned 123
Further characters after number: "abc"
$./a.out 123abc 55
strtol: Invalid argument
$./a.out ''
No digits were found
$./a.out 4000000000
strtol: Numerical result out of range

Program source

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

int base;
char *endptr, *str;
long val;

Linux man-pages 6.16 2025-09-21 2590

strtol(3) Library Functions Manual strtol(3)

if (argc < 2) {
fprintf(stderr, "Usage: %s str [base]\n", argv[0]);
exit(EXIT_FAILURE);

}

str = argv[1];
base = (argc > 2) ? atoi(argv[2]) : 0;

errno = 0; /* To distinguish success/failure after call */
strtol("0", NULL, base);
if (errno == EINVAL) {

perror("strtol");
exit(EXIT_FAILURE);

}

errno = 0; /* To distinguish success/failure after call */
val = strtol(str, &endptr, base);

/* Check for various possible errors. */

if (errno == ERANGE) {
perror("strtol");
exit(EXIT_FAILURE);

}

if (endptr == str) {
fprintf(stderr, "No digits were found\n");
exit(EXIT_FAILURE);

}

/* If we got here, strtol() successfully parsed a number. */

printf("strtol() returned %ld\n", val);

if (*endptr != '\0') /* Not necessarily an error. */
printf("Further characters after number: \"%s\"\n", endptr);

exit(EXIT_SUCCESS);
}

SEE ALSO
atof(3), atoi(3), atol(3), strtod(3), strtoimax(3), strtoul(3)

Linux man-pages 6.16 2025-09-21 2591

strtoul(3) Library Functions Manual strtoul(3)

NAME
strtoul, strtoull, strtouq - convert a string to an unsigned long integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

unsigned long strtoul(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

unsigned long long strtoull(const char *restrict nptr,
char **_Nullable restrict endptr, int base);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

strtoull():
_ISOC99_SOURCE

|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The strtoul() function converts the initial part of the string in nptr to an unsigned long
value according to the given base, which must be between 2 and 36 inclusive, or be the
special value 0.

The string may begin with an arbitrary amount of white space (as determined by is-
space(3)) followed by a single optional '+' or '-' sign. If base is zero or 16, the string
may then include a "0x" or "0X" prefix, and the number will be read in base 16; if base
is zero or 2, the string may then include a "0b" or "0B" prefix, and the number will be
read in base 2; otherwise, a zero base is taken as 10 (decimal) unless the next character
is '0', in which case it is taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious man-
ner, stopping at the first character which is not a valid digit in the given base. (In bases
above 10, the letter 'A' in either uppercase or lowercase represents 10, 'B' represents 11,
and so forth, with 'Z' representing 35.)

If endptr is not NULL, and the base is supported, strtoul() stores the address of the first
invalid character in *endptr. If there were no digits at all, strtoul() stores the original
value of nptr in *endptr (and returns 0). In particular, if *nptr is not '\0' but **endptr is
'\0' on return, the entire string is valid.

The strtoull() function works just like the strtoul() function but returns an unsigned
long long value.

RETURN VALUE
The strtoul() function returns either the result of the conversion, or, if there was a lead-
ing minus sign, the negation of the result of the conversion represented as an unsigned
value, unless the original (nonnegated) value would overflow; in the latter case, strtoul()
returns ULONG_MAX and sets errno to ERANGE. Precisely the same holds for str-
toull() (with ULLONG_MAX instead of ULONG_MAX).

Linux man-pages 6.16 2025-09-21 2592

strtoul(3) Library Functions Manual strtoul(3)

ERRORS
This function does not modify errno on success.

EINVAL
(not in C99) The given base contains an unsupported value.

ERANGE
The resulting value was out of range.

The implementation may also set errno to EINVAL in case no conversion was per-
formed (no digits seen, and 0 returned).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrtoul(), strtoull(), strtouq()

VERSIONS
In locales other than the "C" locale, other strings may be accepted. (For example, the
thousands separator of the current locale may be supported.)

BSD also has

u_quad_t strtouq(const char *nptr, char **endptr, int base);

with completely analogous definition. Depending on the wordsize of the current archi-
tecture, this may be equivalent to strtoull() or to strtoul().

STANDARDS
C23, POSIX.1-2024.

HISTORY
strtoul()

POSIX.1-2001, C89, SVr4.

strtoull()
POSIX.1-2001, C99.

"0b", "0B"
C23. glibc 2.38. (Not in POSIX.)

CAVEATS
Since strtoul() can legitimately return 0 or ULONG_MAX (ULLONG_MAX for str-
toull()) on both success and failure, the calling program should set errno to 0 before the
call, and then determine if an error occurred by checking whether errno has a nonzero
value after the call.

BUGS
Signed numbers

Some negative values are considered valid input and are silently converted to
unsigned long.

White space
These functions silently accept leading whitespace.

Linux man-pages 6.16 2025-09-21 2593

strtoul(3) Library Functions Manual strtoul(3)

isalnum(3)
To reject white space and/or a sign, call isalnum(3) before strtoul().

EXAMPLES
See the example on the strtol(3) manual page; the use of the functions described in this
manual page is similar.

SEE ALSO
a64l(3), atof(3), atoi(3), atol(3), strtod(3), strtol(3), strtoumax(3)

Linux man-pages 6.16 2025-09-21 2594

strverscmp(3) Library Functions Manual strverscmp(3)

NAME
strverscmp - compare two version strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <string.h>

int strverscmp(const char *s1, const char *s2);

DESCRIPTION
For a dataset like jan1, jan2, ..., jan9, jan10, ... sorting it lexicographically yields
jan1, jan10, ..., jan2, ..., jan9. The task of strverscmp() is to compare two strings
yielding the former order, while strcmp(3) finds only the lexicographic order. This func-
tion does not use the locale category LC_COLLATE, so is meant mostly for situations
where the strings are expected to be in ASCII. This is different from the ordering pro-
duced by sort(1) -V.

What this function does is the following. If both strings are equal, return 0. Otherwise,
find the position between two bytes with the property that before it both strings are
equal, while directly after it there is a difference. Find the largest consecutive digit
strings containing (or starting at, or ending at) this position. If one or both of these is
empty, then return what strcmp(3) would have returned (numerical ordering of byte val-
ues). Otherwise, compare both digit strings numerically, where digit strings with one or
more leading zeros are interpreted as if they have a decimal point in front (so that in par-
ticular digit strings with more leading zeros come before digit strings with fewer leading
zeros). Thus, the ordering is 000, 00, 01, 010, 09, 0, 1, 9, 10.

RETURN VALUE
The strverscmp() function returns an integer less than, equal to, or greater than zero if
s1 is found, respectively, to be earlier than, equal to, or later than s2.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safestrverscmp()

STANDARDS
GNU.

EXAMPLES
The program below can be used to demonstrate the behavior of strverscmp(). It uses
strverscmp() to compare the two strings given as its command-line arguments. An ex-
ample of its use is the following:

$./a.out jan1 jan10;
jan1 < jan10

Program source

#define _GNU_SOURCE

Linux man-pages 6.16 2025-09-25 2595

strverscmp(3) Library Functions Manual strverscmp(3)

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int
main(int argc, char *argv[])
{

int res;

if (argc != 3) {
fprintf(stderr, "Usage: %s <string1> <string2>\n", argv[0]);
exit(EXIT_FAILURE);

}

res = strverscmp(argv[1], argv[2]);

printf("%s %s %s\n", argv[1],
(res < 0) ? "<" : (res == 0) ? "==" : ">", argv[2]);

exit(EXIT_SUCCESS);
}

SEE ALSO
rename(1), strcasecmp(3), strcmp(3), strcoll(3)

Linux man-pages 6.16 2025-09-25 2596

strxfrm(3) Library Functions Manual strxfrm(3)

NAME
strxfrm - string transformation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <string.h>

size_t strxfrm(size_t size;
char dest[restrict size], const char src[restrict size],
size_t size);

DESCRIPTION
The strxfrm() function transforms the src string into a form such that the result of str-
cmp(3) on two strings that have been transformed with strxfrm() is the same as the re-
sult of strcoll(3) on the two strings before their transformation. The first size bytes of
the transformed string are placed in dest. The transformation is based on the program’s
current locale for category LC_COLLATE. (See setlocale(3)).

RETURN VALUE
The strxfrm() function returns the number of bytes required to store the transformed
string in dest excluding the terminating null byte ('\0'). If the value returned is size or
more, the contents of dest are indeterminate.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localestrxfrm()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD.

SEE ALSO
memcmp(3), setlocale(3), strcasecmp(3), strcmp(3), strcoll(3), string(3)

Linux man-pages 6.16 2025-09-07 2597

strxfrm(3) Library Functions Manual strxfrm(3)

Linux man-pages 6.16 2025-09-07 2598

swab(3) Library Functions Manual swab(3)

NAME
swab - swap adjacent bytes

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>

void swab(ssize_t n;
const void from[restrict n], void to[restrict n],
ssize_t n);

DESCRIPTION
The swab() function copies n bytes from the array pointed to by from to the array
pointed to by to, exchanging adjacent even and odd bytes. This function is used to ex-
change data between machines that have different low/high byte ordering.

This function does nothing when n is negative. When n is positive and odd, it handles
n-1 bytes as above, and does something unspecified with the last byte. (In other words,
n should be even.)

RETURN VALUE
The swab() function returns no value.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeswab()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, SVr4, 4.3BSD.

SEE ALSO
bstring(3)

Linux man-pages 6.16 2025-06-28 2599

sysconf (3) Library Functions Manual sysconf (3)

NAME
sysconf - get configuration information at run time

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

long sysconf(int name);

DESCRIPTION
POSIX allows an application to test at compile or run time whether certain options are
supported, or what the value is of certain configurable constants or limits.

At compile time this is done by including <unistd.h> and/or <limits.h> and testing the
value of certain macros.

At run time, one can ask for numerical values using the present function sysconf(). One
can ask for numerical values that may depend on the filesystem in which a file resides
using fpathconf(3) and pathconf(3). One can ask for string values using confstr(3).

The values obtained from these functions are system configuration constants. They do
not change during the lifetime of a process.

For options, typically, there is a constant _POSIX_FOO that may be defined in
<unistd.h>. If it is undefined, one should ask at run time. If it is defined to -1, then the
option is not supported. If it is defined to 0, then relevant functions and headers exist,
but one has to ask at run time what degree of support is available. If it is defined to a
value other than -1 or 0, then the option is supported. Usually the value (such as
200112L) indicates the year and month of the POSIX revision describing the option.
glibc uses the value 1 to indicate support as long as the POSIX revision has not been
published yet. The sysconf() argument will be _SC_FOO. For a list of options, see
posixoptions(7).

For variables or limits, typically, there is a constant _FOO, maybe defined in <lim-
its.h>, or _POSIX_FOO, maybe defined in <unistd.h>. The constant will not be de-
fined if the limit is unspecified. If the constant is defined, it gives a guaranteed value,
and a greater value might actually be supported. If an application wants to take advan-
tage of values which may change between systems, a call to sysconf() can be made. The
sysconf() argument will be _SC_FOO.

POSIX.1 variables
We give the name of the variable, the name of the sysconf() argument used to inquire
about its value, and a short description.

First, the POSIX.1 compatible values.

ARG_MAX - _SC_ARG_MAX
The maximum length of the arguments to the exec(3) family of functions. Must
not be less than _POSIX_ARG_MAX (4096).

CHILD_MAX - _SC_CHILD_MAX
The maximum number of simultaneous processes per user ID. Must not be less
than _POSIX_CHILD_MAX (25).

Linux man-pages 6.16 2025-09-21 2600

sysconf (3) Library Functions Manual sysconf (3)

HOST_NAME_MAX - _SC_HOST_NAME_MAX
Maximum length of a hostname, not including the terminating null byte, as re-
turned by gethostname(2). Must not be less than
_POSIX_HOST_NAME_MAX (255).

LOGIN_NAME_MAX - _SC_LOGIN_NAME_MAX
Maximum length of a login name, including the terminating null byte. Must not
be less than _POSIX_LOGIN_NAME_MAX (9).

NGROUPS_MAX - _SC_NGROUPS_MAX
Maximum number of supplementary group IDs.

clock ticks - _SC_CLK_TCK
The number of clock ticks per second. The corresponding variable is obsolete.
It was of course called CLK_TCK. (Note: the macro CLOCKS_PER_SEC
does not give information: it must equal 1000000.)

OPEN_MAX - _SC_OPEN_MAX
The maximum number of files that a process can have open at any time. Must
not be less than _POSIX_OPEN_MAX (20).

PAGESIZE - _SC_PAGESIZE
Size of a page in bytes. Must not be less than 1.

PAGE_SIZE - _SC_PAGE_SIZE
A synonym for PAGESIZE/_SC_PAGESIZE. (Both PAGESIZE and
PAGE_SIZE are specified in POSIX.)

RE_DUP_MAX - _SC_RE_DUP_MAX
The number of repeated occurrences of a BRE permitted by regexec(3) and reg-
comp(3). Must not be less than _POSIX2_RE_DUP_MAX (255).

STREAM_MAX - _SC_STREAM_MAX
The maximum number of streams that a process can have open at any time. If
defined, it has the same value as the standard C macro FOPEN_MAX. Must not
be less than _POSIX_STREAM_MAX (8).

SYMLOOP_MAX - _SC_SYMLOOP_MAX
The maximum number of symbolic links seen in a pathname before resolution
returns ELOOP. Must not be less than _POSIX_SYMLOOP_MAX (8).

TTY_NAME_MAX - _SC_TTY_NAME_MAX
The maximum length of terminal device name, including the terminating null
byte. Must not be less than _POSIX_TTY_NAME_MAX (9).

TZNAME_MAX - _SC_TZNAME_MAX
The maximum number of bytes in a timezone name. Must not be less than
_POSIX_TZNAME_MAX (6).

_POSIX_VERSION - _SC_VERSION
indicates the year and month the POSIX.1 standard was approved in the format
YYYYMML; the value 199009L indicates the Sept. 1990 revision.

Linux man-pages 6.16 2025-09-21 2601

sysconf (3) Library Functions Manual sysconf (3)

POSIX.2 variables
Next, the POSIX.2 values, giving limits for utilities.

BC_BASE_MAX - _SC_BC_BASE_MAX
indicates the maximum obase value accepted by the bc(1) utility.

BC_DIM_MAX - _SC_BC_DIM_MAX
indicates the maximum value of elements permitted in an array by bc(1)

BC_SCALE_MAX - _SC_BC_SCALE_MAX
indicates the maximum scale value allowed by bc(1)

BC_STRING_MAX - _SC_BC_STRING_MAX
indicates the maximum length of a string accepted by bc(1)

COLL_WEIGHTS_MAX - _SC_COLL_WEIGHTS_MAX
indicates the maximum numbers of weights that can be assigned to an entry of
the LC_COLLATE order keyword in the locale definition file.

EXPR_NEST_MAX - _SC_EXPR_NEST_MAX
is the maximum number of expressions which can be nested within parentheses
by expr(1)

LINE_MAX - _SC_LINE_MAX
The maximum length of a utility’s input line, either from standard input or from
a file. This includes space for a trailing newline.

RE_DUP_MAX - _SC_RE_DUP_MAX
The maximum number of repeated occurrences of a regular expression when the
interval notation \{m,n\} is used.

POSIX2_VERSION - _SC_2_VERSION
indicates the version of the POSIX.2 standard in the format of YYYYMML.

POSIX2_C_DEV - _SC_2_C_DEV
indicates whether the POSIX.2 C language development facilities are supported.

POSIX2_FORT_DEV - _SC_2_FORT_DEV
indicates whether the POSIX.2 FORTRAN development utilities are supported.

POSIX2_FORT_RUN - _SC_2_FORT_RUN
indicates whether the POSIX.2 FORTRAN run-time utilities are supported.

_POSIX2_LOCALEDEF - _SC_2_LOCALEDEF
indicates whether the POSIX.2 creation of locales via localedef(1) is supported.

POSIX2_SW_DEV - _SC_2_SW_DEV
indicates whether the POSIX.2 software development utilities option is sup-
ported.

These values also exist, but may not be standard.

- _SC_PHYS_PAGES
The number of pages of physical memory. Note that it is possible for the prod-
uct of this value and the value of _SC_PAGESIZE to overflow.

Linux man-pages 6.16 2025-09-21 2602

sysconf (3) Library Functions Manual sysconf (3)

- _SC_AVPHYS_PAGES
The number of currently available pages of physical memory.

- _SC_NPROCESSORS_CONF
The number of processors configured. See also get_nprocs_conf(3).

- _SC_NPROCESSORS_ONLN
The number of processors currently online (available). See also
get_nprocs_conf(3).

RETURN VALUE
The return value of sysconf() is one of the following:

• On error, -1 is returned and errno is set to indicate the error (for example, EINVAL,
indicating that name is invalid).

• If name corresponds to a maximum or minimum limit, and that limit is indetermi-
nate, -1 is returned and errno is not changed. (To distinguish an indeterminate limit
from an error, set errno to zero before the call, and then check whether errno is
nonzero when -1 is returned.)

• If name corresponds to an option, a positive value is returned if the option is sup-
ported, and -1 is returned if the option is not supported.

• Otherwise, the current value of the option or limit is returned. This value will not be
more restrictive than the corresponding value that was described to the application in
<unistd.h> or <limits.h> when the application was compiled.

ERRORS
EINVAL

name is invalid.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe envsysconf()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

BUGS
It is difficult to use ARG_MAX because it is not specified how much of the argument
space for exec(3) is consumed by the user’s environment variables.

Some returned values may be huge; they are not suitable for allocating memory.

SEE ALSO
bc(1), expr(1), getconf (1), locale(1), confstr(3), fpathconf(3), pathconf(3), posixop-
tions(7)

Linux man-pages 6.16 2025-09-21 2603

syslog(3) Library Functions Manual syslog(3)

NAME
closelog, openlog, syslog, vsyslog - send messages to the system logger

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <syslog.h>

void openlog(const char *ident, int option, int facility);
void syslog(int priority, const char * format, ...);
void closelog(void);

void vsyslog(int priority, const char * format, va_list ap);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

vsyslog():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
openlog()

openlog() opens a connection to the system logger for a program.

The string pointed to by ident is prepended to every message, and is typically set to the
program name. If ident is NULL, the program name is used. (POSIX.1-2008 does not
specify the behavior when ident is NULL.)

The option argument specifies flags which control the operation of openlog() and subse-
quent calls to syslog(). The facility argument establishes a default to be used if none is
specified in subsequent calls to syslog(). The values that may be specified for option
and facility are described below.

The use of openlog() is optional; it will automatically be called by syslog() if necessary,
in which case ident will default to NULL.

syslog() and vsyslog()
syslog() generates a log message, which will be distributed by syslogd(8)

The priority argument is formed by ORing together a facility value and a level value
(described below). If no facility value is ORed into priority, then the default value set
by openlog() is used, or, if there was no preceding openlog() call, a default of
LOG_USER is employed.

The remaining arguments are a format, as in printf(3), and any arguments required by
the format, except that the two-character sequence %m will be replaced by the error
message string strerror(errno)The format string need not include a terminating newline
character.

The function vsyslog() performs the same task as syslog() with the difference that it
takes a set of arguments which have been obtained using the stdarg(3) variable argument
list macros.

Linux man-pages 6.16 2025-09-21 2604

syslog(3) Library Functions Manual syslog(3)

closelog()
closelog() closes the file descriptor being used to write to the system logger. The use of
closelog() is optional.

Values for option
The option argument to openlog() is a bit mask constructed by ORing together any of
the following values:

LOG_CONS Write directly to the system console if there is an error while sending
to the system logger.

LOG_NDELAY
Open the connection immediately (normally, the connection is
opened when the first message is logged). This may be useful, for ex-
ample, if a subsequent chroot(2) would make the pathname used in-
ternally by the logging facility unreachable.

LOG_NOWAIT
Don’t wait for child processes that may have been created while log-
ging the message. (The GNU C library does not create a child
process, so this option has no effect on Linux.)

LOG_ODELAY
The converse of LOG_NDELAY; opening of the connection is de-
layed until syslog() is called. (This is the default, and need not be
specified.)

LOG_PERROR
(Not in POSIX.1-2001 or POSIX.1-2008.) Also log the message to
stderr.

LOG_PID Include the caller’s PID with each message.

Values for facility
The facility argument is used to specify what type of program is logging the message.
This lets the configuration file specify that messages from different facilities will be han-
dled differently.

LOG_AUTH security/authorization messages

LOG_AUTHPRIV
security/authorization messages (private)

LOG_CRON clock daemon (cron and at)

LOG_DAEMON
system daemons without separate facility value

LOG_FTP ftp daemon

LOG_KERN kernel messages (these can’t be generated from user processes)

LOG_LOCAL0 through LOG_LOCAL7
reserved for local use

Linux man-pages 6.16 2025-09-21 2605

syslog(3) Library Functions Manual syslog(3)

LOG_LPR line printer subsystem

LOG_MAIL mail subsystem

LOG_NEWS USENET news subsystem

LOG_SYSLOG
messages generated internally by syslogd(8)

LOG_USER (default)
generic user-level messages

LOG_UUCP UUCP subsystem

Values for level
This determines the importance of the message. The levels are, in order of decreasing
importance:

LOG_EMERG system is unusable

LOG_ALERT action must be taken immediately

LOG_CRIT critical conditions

LOG_ERR error conditions

LOG_WARNING
warning conditions

LOG_NOTICE normal, but significant, condition

LOG_INFO informational message

LOG_DEBUG debug-level message

The function setlogmask(3) can be used to restrict logging to specified levels only.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeopenlog(), closelog()
Thread safety MT-Safe env localesyslog(), vsyslog()

STANDARDS
syslog()
openlog()
closelog()

POSIX.1-2008.

vsyslog()
None.

HISTORY
syslog()

4.2BSD, SUSv2, POSIX.1-2001.

openlog()

Linux man-pages 6.16 2025-09-21 2606

syslog(3) Library Functions Manual syslog(3)

closelog()
4.3BSD, SUSv2, POSIX.1-2001.

vsyslog()
4.3BSD-Reno.

POSIX.1-2001 specifies only the LOG_USER and LOG_LOCAL* values for facility.
However, with the exception of LOG_AUTHPRIV and LOG_FTP, the other facility
values appear on most UNIX systems.

The LOG_PERROR value for option is not specified by POSIX.1-2001 or
POSIX.1-2008, but is available in most versions of UNIX.

NOTES
The argument ident in the call of openlog() is probably stored as-is. Thus, if the string
it points to is changed, syslog() may start prepending the changed string, and if the
string it points to ceases to exist, the results are undefined. Most portable is to use a
string constant.

Never pass a string with user-supplied data as a format, use the following instead:

syslog(priority, "%s", string);

SEE ALSO
journalctl(1), logger(1), setlogmask(3), syslog.conf (5), syslogd(8)

Linux man-pages 6.16 2025-09-21 2607

system(3) Library Functions Manual system(3)

NAME
system - execute a shell command

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int system(const char *command);

DESCRIPTION
The system() library function behaves as if it used fork(2) to create a child process that
executed the shell command specified in command using execl(3) as follows:

execl("/bin/sh", "sh", "-c", command, (char *) NULL);

system() returns after the command has been completed.

During execution of the command, SIGCHLD will be blocked, and SIGINT and
SIGQUIT will be ignored, in the process that calls system(). (These signals will be
handled according to their defaults inside the child process that executes command .)

If command is NULL, then system() returns a status indicating whether a shell is avail-
able on the system.

RETURN VALUE
The return value of system() is one of the following:

• If command is NULL, then a nonzero value if a shell is available, or 0 if no shell is
available.

• If a child process could not be created, or its status could not be retrieved, the return
value is -1 and errno is set to indicate the error.

• If a shell could not be executed in the child process, then the return value is as
though the child shell terminated by calling _exit(2) with the status 127.

• If all system calls succeed, then the return value is the termination status of the child
shell used to execute command . (The termination status of a shell is the termination
status of the last command it executes.)

In the last two cases, the return value is a "wait status" that can be examined using the
macros described in waitpid(2). (i.e., WIFEXITED(), WEXITSTATUS(), and so on).

system() does not affect the wait status of any other children.

ERRORS
system() can fail with any of the same errors as fork(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesystem()

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2608

system(3) Library Functions Manual system(3)

HISTORY
POSIX.1-2001, C89.

NOTES
system() provides simplicity and convenience: it handles all of the details of calling
fork(2), execl(3), and waitpid(2), as well as the necessary manipulations of signals; in
addition, the shell performs the usual substitutions and I/O redirections for command .
The main cost of system() is inefficiency: additional system calls are required to create
the process that runs the shell and to execute the shell.

If the _XOPEN_SOURCE feature test macro is defined (before including any header
files), then the macros described in waitpid(2) (WEXITSTATUS(), etc.) are made avail-
able when including <stdlib.h>.

As mentioned, system() ignores SIGINT and SIGQUIT. This may make programs that
call it from a loop uninterruptible, unless they take care themselves to check the exit sta-
tus of the child. For example:

while (something) {
int ret = system("foo");

if (WIFSIGNALED(ret) &&
(WTERMSIG(ret) == SIGINT || WTERMSIG(ret) == SIGQUIT))

break;
}

According to POSIX.1, it is unspecified whether handlers registered using pthread_at-
fork(3) are called during the execution of system(). In the glibc implementation, such
handlers are not called.

Before glibc 2.1.3, the check for the availability of /bin/sh was not actually performed if
command was NULL; instead it was always assumed to be available, and system() al-
ways returned 1 in this case. Since glibc 2.1.3, this check is performed because, even
though POSIX.1-2001 requires a conforming implementation to provide a shell, that
shell may not be available or executable if the calling program has previously called ch-
root(2) (which is not specified by POSIX.1-2001).

It is possible for the shell command to terminate with a status of 127, which yields a
system() return value that is indistinguishable from the case where a shell could not be
executed in the child process.

Caveats
Do not use system() from a privileged program (a set-user-ID or set-group-ID program,
or a program with capabilities) because strange values for some environment variables
might be used to subvert system integrity. For example, PATH could be manipulated so
that an arbitrary program is executed with privilege. Use the exec(3) family of functions
instead, but not execlp(3) or execvp(3) (which also use the PATH environment variable
to search for an executable).

system() will not, in fact, work properly from programs with set-user-ID or set-group-
ID privileges on systems on which /bin/sh is bash version 2: as a security measure, bash
2 drops privileges on startup. (Debian uses a different shell, dash(1), which does not do

Linux man-pages 6.16 2025-09-21 2609

system(3) Library Functions Manual system(3)

this when invoked as sh.)

Any user input that is employed as part of command should be carefully sanitized, to
ensure that unexpected shell commands or command options are not executed. Such
risks are especially grave when using system() from a privileged program.

BUGS
If the command name starts with a hyphen, sh(1) interprets the command name as an
option, and the behavior is undefined. (See the -c option to sh(1)To work around this
problem, prepend the command with a space as in the following call:

system(" -unfortunate-command-name");

SEE ALSO
sh(1), execve(2), fork(2), sigaction(2), sigprocmask(2), wait(2), exec(3), signal(7)

Linux man-pages 6.16 2025-09-21 2610

sysv_signal(3) Library Functions Manual sysv_signal(3)

NAME
sysv_signal - signal handling with System V semantics

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <signal.h>

typedef typeof(void (int)) *sighandler_t;

sighandler_t sysv_signal(int signum, sighandler_t handler);

DESCRIPTION
The sysv_signal() function takes the same arguments, and performs the same task, as
signal(2).

However sysv_signal() provides the System V unreliable signal semantics, that is: a) the
disposition of the signal is reset to the default when the handler is invoked; b) delivery
of further instances of the signal is not blocked while the signal handler is executing;
and c) if the handler interrupts (certain) blocking system calls, then the system call is not
automatically restarted.

RETURN VALUE
The sysv_signal() function returns the previous value of the signal handler, or
SIG_ERR on error.

ERRORS
As for signal(2).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safesysv_signal()

VERSIONS
Use of sysv_signal() should be avoided; use sigaction(2) instead.

On older Linux systems, sysv_signal() and signal(2) were equivalent. But on newer
systems, signal(2) provides reliable signal semantics; see signal(2) for details.

The use of sighandler_t is a GNU extension; this type is defined only if the
_GNU_SOURCE feature test macro is defined.

STANDARDS
None.

SEE ALSO
sigaction(2), signal(2), bsd_signal(3), signal(7)

Linux man-pages 6.16 2025-09-21 2611

TAILQ(3) Library Functions Manual TAILQ(3)

NAME
TAILQ_CONCAT, TAILQ_EMPTY, TAILQ_ENTRY, TAILQ_FIRST, TAILQ_FORE-
ACH, TAILQ_FOREACH_REVERSE, TAILQ_HEAD, TAILQ_HEAD_INITIAL-
IZER, TAILQ_INIT, TAILQ_INSERT_AFTER, TAILQ_INSERT_BEFORE,
TAILQ_INSERT_HEAD, TAILQ_INSERT_TAIL, TAILQ_LAST, TAILQ_NEXT,
TAILQ_PREV, TAILQ_REMOVE - implementation of a doubly linked tail queue

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/queue.h>

TAILQ_ENTRY(TYPE);

TAILQ_HEAD(HEADNAME, TYPE);
TAILQ_HEAD TAILQ_HEAD_INITIALIZER(TAILQ_HEAD head);
void TAILQ_INIT(TAILQ_HEAD *head);

int TAILQ_EMPTY(TAILQ_HEAD *head);

void TAILQ_INSERT_HEAD(TAILQ_HEAD *head ,
struct TYPE *elm, TAILQ_ENTRY NAME);

void TAILQ_INSERT_TAIL(TAILQ_HEAD *head ,
struct TYPE *elm, TAILQ_ENTRY NAME);

void TAILQ_INSERT_BEFORE(struct TYPE *listelm,
struct TYPE *elm, TAILQ_ENTRY NAME);

void TAILQ_INSERT_AFTER(TAILQ_HEAD *head , struct TYPE *listelm,
struct TYPE *elm, TAILQ_ENTRY NAME);

struct TYPE *TAILQ_FIRST(TAILQ_HEAD *head);
struct TYPE *TAILQ_LAST(TAILQ_HEAD *head , HEADNAME);
struct TYPE *TAILQ_PREV(struct TYPE *elm, HEADNAME, TAILQ_ENTRY NAME);
struct TYPE *TAILQ_NEXT(struct TYPE *elm, TAILQ_ENTRY NAME);

TAILQ_FOREACH(struct TYPE *var, TAILQ_HEAD *head ,
TAILQ_ENTRY NAME);

TAILQ_FOREACH_REVERSE(struct TYPE *var, TAILQ_HEAD *head , HEADNAME,
TAILQ_ENTRY NAME);

void TAILQ_REMOVE(TAILQ_HEAD *head , struct TYPE *elm,
TAILQ_ENTRY NAME);

void TAILQ_CONCAT(TAILQ_HEAD *head1, TAILQ_HEAD *head2,
TAILQ_ENTRY NAME);

DESCRIPTION
These macros define and operate on doubly linked tail queues.

In the macro definitions, TYPE is the name of a user defined structure, that must contain
a field of type TAILQ_ENTRY , named NAME. The argument HEADNAME is the name
of a user defined structure that must be declared using the macro TAILQ_HEAD().

Linux man-pages 6.16 2025-05-17 2612

TAILQ(3) Library Functions Manual TAILQ(3)

Creation
A tail queue is headed by a structure defined by the TAILQ_HEAD() macro. This
structure contains a pair of pointers, one to the first element in the queue and the other to
the last element in the queue. The elements are doubly linked so that an arbitrary ele-
ment can be removed without traversing the queue. New elements can be added to the
queue after an existing element, before an existing element, at the head of the queue, or
at the end of the queue. A TAILQ_HEAD structure is declared as follows:

TAILQ_HEAD(HEADNAME, TYPE) head;

where struct HEADNAME is the structure to be defined, and struct TYPE is the type of
the elements to be linked into the queue. A pointer to the head of the queue can later be
declared as:

struct HEADNAME *headp;

(The names head and headp are user selectable.)

TAILQ_ENTRY() declares a structure that connects the elements in the queue.

TAILQ_HEAD_INITIALIZER() evaluates to an initializer for the queue head .

TAILQ_INIT() initializes the queue referenced by

TAILQ_EMPTY() evaluates to true if there are no items on the queue. head .

Insertion
TAILQ_INSERT_HEAD() inserts the new element elm at the head of the queue.

TAILQ_INSERT_TAIL() inserts the new element elm at the end of the queue.

TAILQ_INSERT_BEFORE() inserts the new element elm before the element listelm.

TAILQ_INSERT_AFTER() inserts the new element elm after the element listelm.

Traversal
TAILQ_FIRST() returns the first item on the queue, or NULL if the queue is empty.

TAILQ_LAST() returns the last item on the queue. If the queue is empty the return
value is NULL.

TAILQ_PREV() returns the previous item on the queue, or NULL if this item is the
first.

TAILQ_NEXT() returns the next item on the queue, or NULL if this item is the last.

TAILQ_FOREACH() traverses the queue referenced by head in the forward direction,
assigning each element in turn to var. var is set to NULL if the loop completes nor-
mally, or if there were no elements.

TAILQ_FOREACH_REVERSE() traverses the queue referenced by head in the re-
verse direction, assigning each element in turn to var.

Removal
TAILQ_REMOVE() removes the element elm from the queue.

Other features
TAILQ_CONCAT() concatenates the queue headed by head2 onto the end of the one
headed by head1 removing all entries from the former.

Linux man-pages 6.16 2025-05-17 2613

TAILQ(3) Library Functions Manual TAILQ(3)

RETURN VALUE
TAILQ_EMPTY() returns nonzero if the queue is empty, and zero if the queue contains
at least one entry.

TAILQ_FIRST(), TAILQ_LAST(), TAILQ_PREV(), and TAILQ_NEXT() return a
pointer to the first, last, previous, or next TYPE structure, respectively.

TAILQ_HEAD_INITIALIZER() returns an initializer that can be assigned to the
queue head .

STANDARDS
BSD.

HISTORY
4.4BSD.

CAVEATS
TAILQ_FOREACH() and TAILQ_FOREACH_REVERSE() don’t allow var to be
removed or freed within the loop, as it would interfere with the traversal.
TAILQ_FOREACH_SAFE() and TAILQ_FOREACH_REVERSE_SAFE(), which
are present on the BSDs but are not present in glibc, fix this limitation by allowing var
to safely be removed from the list and freed from within the loop without interfering
with the traversal.

EXAMPLES
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/queue.h>

struct entry {
int data;
TAILQ_ENTRY(entry) entries; /* Tail queue */

};

TAILQ_HEAD(tailhead, entry);

int
main(void)
{

struct entry *n1, *n2, *n3, *np;
struct tailhead head; /* Tail queue head */
int i;

TAILQ_INIT(&head); /* Initialize the queue */

n1 = malloc(sizeof(struct entry)); /* Insert at the head */
TAILQ_INSERT_HEAD(&head, n1, entries);

n1 = malloc(sizeof(struct entry)); /* Insert at the tail */
TAILQ_INSERT_TAIL(&head, n1, entries);

Linux man-pages 6.16 2025-05-17 2614

TAILQ(3) Library Functions Manual TAILQ(3)

n2 = malloc(sizeof(struct entry)); /* Insert after */
TAILQ_INSERT_AFTER(&head, n1, n2, entries);

n3 = malloc(sizeof(struct entry)); /* Insert before */
TAILQ_INSERT_BEFORE(n2, n3, entries);

TAILQ_REMOVE(&head, n2, entries); /* Deletion */
free(n2);

/* Forward traversal */
i = 0;
TAILQ_FOREACH(np, &head, entries)

np->data = i++;
/* Reverse traversal */

TAILQ_FOREACH_REVERSE(np, &head, tailhead, entries)
printf("%i\n", np->data);

/* TailQ deletion */
n1 = TAILQ_FIRST(&head);
while (n1 != NULL) {

n2 = TAILQ_NEXT(n1, entries);
free(n1);
n1 = n2;

}
TAILQ_INIT(&head);

exit(EXIT_SUCCESS);
}

SEE ALSO
insque(3), queue(7)

Linux man-pages 6.16 2025-05-17 2615

tan(3) Library Functions Manual tan(3)

NAME
tan, tanf, tanl - tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double tan(double x);
float tanf(float x);
long double tanl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tanf(), tanl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the tangent of x, where x is given in radians.

RETURN VALUE
On success, these functions return the tangent of x.

If x is a NaN, a NaN is returned.

If x is positive infinity or negative infinity, a domain error occurs, and a NaN is returned.

If the correct result would overflow, a range error occurs, and the functions return
HUGE_VAL, HUGE_VALF, or HUGE_VALL, respectively, with the mathematically
correct sign.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is an infinity
errno is set to EDOM (but see BUGS). An invalid floating-point exception
(FE_INVALID) is raised.

Range error: result overflow
An overflow floating-point exception (FE_OVERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetan(), tanf(), tanl()

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2616

tan(3) Library Functions Manual tan(3)

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

BUGS
Before glibc 2.10, the glibc implementation did not set errno to EDOM when a domain
error occurred.

SEE ALSO
acos(3), asin(3), atan(3), atan2(3), cos(3), ctan(3), sin(3)

Linux man-pages 6.16 2025-05-17 2617

tanh(3) Library Functions Manual tanh(3)

NAME
tanh, tanhf, tanhl - hyperbolic tangent function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double tanh(double x);
float tanhf(float x);
long double tanhl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tanhf(), tanhl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
These functions return the hyperbolic tangent of x, which is defined mathematically as:

tanh(x) = sinh(x) / cosh(x)

RETURN VALUE
On success, these functions return the hyperbolic tangent of x.

If x is a NaN, a NaN is returned.

If x is +0 (-0), +0 (-0) is returned.

If x is positive infinity (negative infinity), +1 (-1) is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetanh(), tanhf(), tanhl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
C99, POSIX.1-2001.

The variant returning double also conforms to SVr4, 4.3BSD, C89.

SEE ALSO
acosh(3), asinh(3), atanh(3), cosh(3), ctanh(3), sinh(3)

Linux man-pages 6.16 2025-05-17 2618

tanh(3) Library Functions Manual tanh(3)

Linux man-pages 6.16 2025-05-17 2619

tcgetpgrp(3) Library Functions Manual tcgetpgrp(3)

NAME
tcgetpgrp, tcsetpgrp - get and set terminal foreground process group

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t tcgetpgrp(int fd);
int tcsetpgrp(int fd , pid_t pgrp);

DESCRIPTION
The function tcgetpgrp() returns the process group ID of the foreground process group
on the terminal associated to fd , which must be the controlling terminal of the calling
process.

The function tcsetpgrp() makes the process group with process group ID pgrp the fore-
ground process group on the terminal associated to fd , which must be the controlling
terminal of the calling process, and still be associated with its session. Moreover, pgrp
must be a (nonempty) process group belonging to the same session as the calling
process.

If tcsetpgrp() is called by a member of a background process group in its session, and
the calling process is not blocking or ignoring SIGTTOU, a SIGTTOU signal is sent to
all members of this background process group.

RETURN VALUE
When fd refers to the controlling terminal of the calling process, the function tcgetp-
grp() will return the foreground process group ID of that terminal if there is one, and
some value larger than 1 that is not presently a process group ID otherwise. When fd
does not refer to the controlling terminal of the calling process, -1 is returned, and errno
is set to indicate the error.

When successful, tcsetpgrp() returns 0. Otherwise, it returns -1, and errno is set to in-
dicate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

EINVAL
pgrp has an unsupported value.

ENOTTY
The calling process does not have a controlling terminal, or it has one but it is
not described by fd , or, for tcsetpgrp(), this controlling terminal is no longer as-
sociated with the session of the calling process.

EPERM
pgrp has a supported value, but is not the process group ID of a process in the
same session as the calling process.

Linux man-pages 6.16 2025-05-17 2620

tcgetpgrp(3) Library Functions Manual tcgetpgrp(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetcgetpgrp(), tcsetpgrp()

VERSIONS
These functions are implemented via the TIOCGPGRP and TIOCSPGRP ioctls.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

The ioctls appeared in 4.2BSD. The functions are POSIX inventions.

SEE ALSO
setpgid(2), setsid(2), credentials(7)

Linux man-pages 6.16 2025-05-17 2621

tcgetsid(3) Library Functions Manual tcgetsid(3)

NAME
tcgetsid - get session ID

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE 500 /* See feature_test_macros(7) */
#include <termios.h>

pid_t tcgetsid(int fd);

DESCRIPTION
The function tcgetsid() returns the session ID of the current session that has the terminal
associated to fd as controlling terminal. This terminal must be the controlling terminal
of the calling process.

RETURN VALUE
When fd refers to the controlling terminal of our session, the function tcgetsid() will re-
turn the session ID of this session. Otherwise, -1 is returned, and errno is set to indi-
cate the error.

ERRORS
EBADF

fd is not a valid file descriptor.

ENOTTY
The calling process does not have a controlling terminal, or it has one but it is
not described by fd .

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetcgetsid()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

This function is implemented via the TIOCGSID ioctl(2), present since Linux 2.1.71.

SEE ALSO
getsid(2)

Linux man-pages 6.16 2025-05-17 2622

telldir(3) Library Functions Manual telldir(3)

NAME
telldir - return current location in directory stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <dirent.h>

long telldir(DIR *dirp);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

telldir():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The telldir() function returns the current location associated with the directory stream
dirp.

RETURN VALUE
On success, the telldir() function returns the current location in the directory stream.
On error, -1 is returned, and errno is set to indicate the error.

ERRORS
EBADF

Invalid directory stream descriptor dirp.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetelldir()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.3BSD.

Up to glibc 2.1.1, the return type of telldir() was off_t. POSIX.1-2001 specifies long,
and this is the type used since glibc 2.1.2.

In early filesystems, the value returned by telldir() was a simple file offset within a di-
rectory. Modern filesystems use tree or hash structures, rather than flat tables, to repre-
sent directories. On such filesystems, the value returned by telldir() (and used internally
by readdir(3)) is a "cookie" that is used by the implementation to derive a position
within a directory. Application programs should treat this strictly as an opaque value,
making no assumptions about its contents.

SEE ALSO
closedir(3), opendir(3), readdir(3), rewinddir(3), scandir(3), seekdir(3)

Linux man-pages 6.16 2025-05-17 2623

tempnam(3) Library Functions Manual tempnam(3)

NAME
tempnam - create a name for a temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

char *tempnam(const char *dir, const char *pfx);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tempnam():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Never use this function. Use mkstemp(3) or tmpfile(3) instead.

The tempnam() function returns a pointer to a string that is a valid filename, and such
that a file with this name did not exist when tempnam() checked. The filename suffix
of the pathname generated will start with pfx in case pfx is a non-NULL string of at
most five bytes. The directory prefix part of the pathname generated is required to be
"appropriate" (often that at least implies writable).

Attempts to find an appropriate directory go through the following steps:

(1) In case the environment variable TMPDIR exists and contains the name of an ap-
propriate directory, that is used.

(2) Otherwise, if the dir argument is non-NULL and appropriate, it is used.

(3) Otherwise, P_tmpdir (as defined in <stdio.h>) is used when appropriate.

(4) Finally an implementation-defined directory may be used.

The string returned by tempnam() is allocated using malloc(3) and hence should be
freed by free(3).

RETURN VALUE
On success, the tempnam() function returns a pointer to a unique temporary filename.
It returns NULL if a unique name cannot be generated, with errno set to indicate the er-
ror.

ERRORS
ENOMEM

Allocation of storage failed.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe envtempnam()

Linux man-pages 6.16 2025-05-17 2624

tempnam(3) Library Functions Manual tempnam(3)

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, 4.3BSD, POSIX.1-2001. Obsoleted in POSIX.1-2008.

NOTES
Although tempnam() generates names that are difficult to guess, it is nevertheless possi-
ble that between the time that tempnam() returns a pathname, and the time that the pro-
gram opens it, another program might create that pathname using open(2), or create it as
a symbolic link. This can lead to security holes. To avoid such possibilities, use the
open(2) O_EXCL flag to open the pathname. Or better yet, use mkstemp(3) or tmp-
file(3).

SUSv2 does not mention the use of TMPDIR; glibc will use it only when the program
is not set-user-ID. On SVr4, the directory used under (4) is /tmp (and this is what glibc
does).

Because it dynamically allocates memory used to return the pathname, tempnam() is
reentrant, and thus thread safe, unlike tmpnam(3).

The tempnam() function generates a different string each time it is called, up to
TMP_MAX (defined in <stdio.h>) times. If it is called more than TMP_MAX times,
the behavior is implementation defined.

tempnam() uses at most the first five bytes from pfx.

The glibc implementation of tempnam() fails with the error EEXIST upon failure to
find a unique name.

BUGS
The precise meaning of "appropriate" is undefined; it is unspecified how accessibility of
a directory is determined.

SEE ALSO
mkstemp(3), mktemp(3), tmpfile(3), tmpnam(3)

Linux man-pages 6.16 2025-05-17 2625

termios(3) Library Functions Manual termios(3)

NAME
termios, tcgetattr, tcsetattr, tcsendbreak, tcdrain, tcflush, tcflow, cfmakeraw, cfgetospeed,
cfgetispeed, cfsetispeed, cfsetospeed, cfsetspeed - get and set terminal attributes, line
control, get and set baud rate

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <termios.h>
#include <unistd.h>

int tcgetattr(int fd , struct termios *termios_p);
int tcsetattr(int fd , int optional_actions,

const struct termios *termios_p);

int tcsendbreak(int fd , int duration);
int tcdrain(int fd);
int tcflush(int fd , int queue_selector);
int tcflow(int fd , int action);

void cfmakeraw(struct termios *termios_p);

speed_t cfgetispeed(const struct termios *termios_p);
speed_t cfgetospeed(const struct termios *termios_p);

int cfsetispeed(struct termios *termios_p, speed_t speed);
int cfsetospeed(struct termios *termios_p, speed_t speed);
int cfsetspeed(struct termios *termios_p, speed_t speed);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

cfsetspeed(), cfmakeraw():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The termios functions describe a general terminal interface that is provided to control
asynchronous communications ports.

The termios structure
Many of the functions described here have a termios_p argument that is a pointer to a
termios structure. This structure contains at least the following members:

tcflag_t c_iflag; /* input modes */
tcflag_t c_oflag; /* output modes */
tcflag_t c_cflag; /* control modes */
tcflag_t c_lflag; /* local modes */
cc_t c_cc[NCCS]; /* special characters */

The values that may be assigned to these fields are described below. In the case of the
first four bit-mask fields, the definitions of some of the associated flags that may be set
are exposed only if a specific feature test macro (see feature_test_macros(7)) is defined,

Linux man-pages 6.16 2025-09-21 2626

termios(3) Library Functions Manual termios(3)

as noted in brackets ("[]").

In the descriptions below, "not in POSIX" means that the value is not specified in
POSIX.1-2001, and "XSI" means that the value is specified in POSIX.1-2001 as part of
the XSI extension.

c_iflag flag constants:

IGNBRK
Ignore BREAK condition on input.

BRKINT
If IGNBRK is set, a BREAK is ignored. If it is not set but BRKINT is set, then
a BREAK causes the input and output queues to be flushed, and if the terminal is
the controlling terminal of a foreground process group, it will cause a SIGINT
to be sent to this foreground process group. When neither IGNBRK nor
BRKINT are set, a BREAK reads as a null byte ('\0'), except when PARMRK
is set, in which case it reads as the sequence \377 \0 \0.

IGNPAR
Ignore framing errors and parity errors.

PARMRK
If this bit is set, input bytes with parity or framing errors are marked when
passed to the program. This bit is meaningful only when INPCK is set and
IGNPAR is not set. The way erroneous bytes are marked is with two preceding
bytes, \377 and \0. Thus, the program actually reads three bytes for one erro-
neous byte received from the terminal. If a valid byte has the value \377, and
ISTRIP (see below) is not set, the program might confuse it with the prefix that
marks a parity error. Therefore, a valid byte \377 is passed to the program as two
bytes, \377 \377, in this case.

If neither IGNPAR nor PARMRK is set, read a character with a parity error or
framing error as \0.

INPCK
Enable input parity checking.

ISTRIP
Strip off eighth bit.

INLCR
Translate NL to CR on input.

IGNCR
Ignore carriage return on input.

ICRNL
Translate carriage return to newline on input (unless IGNCR is set).

IUCLC
(not in POSIX) Map uppercase characters to lowercase on input.

Linux man-pages 6.16 2025-09-21 2627

termios(3) Library Functions Manual termios(3)

IXON
Enable XON/XOFF flow control on output.

IXANY
(XSI) Typing any character will restart stopped output. (The default is to allow
just the START character to restart output.)

IXOFF
Enable XON/XOFF flow control on input.

IMAXBEL
(not in POSIX) Ring bell when input queue is full. Linux does not implement
this bit, and acts as if it is always set.

IUTF8 (since Linux 2.6.4)
(not in POSIX) Input is UTF8; this allows character-erase to be correctly per-
formed in cooked mode.

c_oflag flag constants:

OPOST
Enable implementation-defined output processing.

OLCUC
(not in POSIX) Map lowercase characters to uppercase on output.

ONLCR
(XSI) Map NL to CR-NL on output.

OCRNL
Map CR to NL on output.

ONOCR
Don’t output CR at column 0.

ONLRET
The NL character is assumed to do the carriage-return function; the kernel’s idea
of the current column is set to 0 after both NL and CR.

OFILL
Send fill characters for a delay, rather than using a timed delay.

OFDEL
Fill character is ASCII DEL (0177). If unset, fill character is ASCII NUL ('\0').
(Not implemented on Linux.)

NLDLY
Newline delay mask. Values are NL0 and NL1. [requires _BSD_SOURCE or
_SVID_SOURCE or _XOPEN_SOURCE]

CRDLY
Carriage return delay mask. Values are CR0, CR1, CR2, or CR3. [requires
_BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

TABDLY
Horizontal tab delay mask. Values are TAB0, TAB1, TAB2, TAB3 (or XTABS,
but see the BUGS section). A value of TAB3, that is, XTABS, expands tabs to

Linux man-pages 6.16 2025-09-21 2628

termios(3) Library Functions Manual termios(3)

spaces (with tab stops every eight columns). [requires _BSD_SOURCE or
_SVID_SOURCE or _XOPEN_SOURCE]

BSDLY
Backspace delay mask. Values are BS0 or BS1. (Has never been implemented.)
[requires _BSD_SOURCE or _SVID_SOURCE or _XOPEN_SOURCE]

VTDLY
Vertical tab delay mask. Values are VT0 or VT1.

FFDLY
Form feed delay mask. Values are FF0 or FF1. [requires _BSD_SOURCE or
_SVID_SOURCE or _XOPEN_SOURCE]

c_cflag flag constants:

CBAUD
(not in POSIX) Baud speed mask (4+1 bits). [requires _BSD_SOURCE or
_SVID_SOURCE]

CBAUDEX
(not in POSIX) Extra baud speed mask (1 bit), included in CBAUD. [requires
_BSD_SOURCE or _SVID_SOURCE]

(POSIX says that the baud speed is stored in the termios structure without speci-
fying where precisely, and provides cfgetispeed() and cfsetispeed() for getting at
it. Some systems use bits selected by CBAUD in c_cflag, other systems use sep-
arate fields, for example, sg_ispeed and sg_ospeed .)

CSIZE
Character size mask. Values are CS5, CS6, CS7, or CS8.

CSTOPB
Set two stop bits, rather than one.

CREAD
Enable receiver.

PARENB
Enable parity generation on output and parity checking for input.

PARODD
If set, then parity for input and output is odd; otherwise even parity is used.

HUPCL
Lower modem control lines after last process closes the device (hang up).

CLOCAL
Ignore modem control lines.

LOBLK
(not in POSIX) Block output from a noncurrent shell layer. For use by shl (shell
layers). (Not implemented on Linux.)

CIBAUD
(not in POSIX) Mask for input speeds. The values for the CIBAUD bits are the
same as the values for the CBAUD bits, shifted left IBSHIFT bits. [requires

Linux man-pages 6.16 2025-09-21 2629

termios(3) Library Functions Manual termios(3)

_BSD_SOURCE or _SVID_SOURCE] (Not implemented in glibc, supported
on Linux via TCGET* and TCSET* ioctls; see ioctl_tty(2))

CMSPAR
(not in POSIX) Use "stick" (mark/space) parity (supported on certain serial de-
vices): if PARODD is set, the parity bit is always 1; if PARODD is not set, then
the parity bit is always 0. [requires _BSD_SOURCE or _SVID_SOURCE]

CRTSCTS
(not in POSIX) Enable RTS/CTS (hardware) flow control. [requires
_BSD_SOURCE or _SVID_SOURCE]

c_lflag flag constants:

ISIG When any of the characters INTR, QUIT, SUSP, or DSUSP are received, gener-
ate the corresponding signal.

ICANON
Enable canonical mode (described below).

XCASE
(not in POSIX; not supported under Linux) If ICANON is also set, terminal is
uppercase only. Input is converted to lowercase, except for characters preceded
by \. On output, uppercase characters are preceded by \ and lowercase characters
are converted to uppercase. [requires _BSD_SOURCE or _SVID_SOURCE or
_XOPEN_SOURCE]

ECHO
Echo input characters.

ECHOE
If ICANON is also set, the ERASE character erases the preceding input charac-
ter, and WERASE erases the preceding word.

ECHOK
If ICANON is also set, the KILL character erases the current line.

ECHONL
If ICANON is also set, echo the NL character even if ECHO is not set.

ECHOCTL
(not in POSIX) If ECHO is also set, terminal special characters other than TAB,
NL, START, and STOP are echoed as ^X, where X is the character with ASCII
code 0x40 greater than the special character. For example, character 0x08 (BS)
is echoed as ^H. [requires _BSD_SOURCE or _SVID_SOURCE]

ECHOPRT
(not in POSIX) If ICANON and ECHO are also set, characters are printed as
they are being erased. [requires _BSD_SOURCE or _SVID_SOURCE]

ECHOKE
(not in POSIX) If ICANON is also set, KILL is echoed by erasing each charac-
ter on the line, as specified by ECHOE and ECHOPRT. [requires
_BSD_SOURCE or _SVID_SOURCE]

Linux man-pages 6.16 2025-09-21 2630

termios(3) Library Functions Manual termios(3)

DEFECHO
(not in POSIX) Echo only when a process is reading. (Not implemented on
Linux.)

FLUSHO
(not in POSIX; not supported under Linux) Output is being flushed. This flag is
toggled by typing the DISCARD character. [requires _BSD_SOURCE or
_SVID_SOURCE]

NOFLSH
Disable flushing the input and output queues when generating signals for the
INT, QUIT, and SUSP characters.

TOSTOP
Send the SIGTTOU signal to the process group of a background process which
tries to write to its controlling terminal.

PENDIN
(not in POSIX; not supported under Linux) All characters in the input queue are
reprinted when the next character is read. (bash(1) handles typeahead this way.)
[requires _BSD_SOURCE or _SVID_SOURCE]

IEXTEN
Enable implementation-defined input processing. This flag, as well as ICANON
must be enabled for the special characters EOL2, LNEXT, REPRINT, WERASE
to be interpreted, and for the IUCLC flag to be effective.

The c_cc array defines the terminal special characters. The symbolic indices (initial val-
ues) and meaning are:

VDISCARD
(not in POSIX; not supported under Linux; 017, SI, Ctrl-O) Toggle: start/stop
discarding pending output. Recognized when IEXTEN is set, and then not
passed as input.

VDSUSP
(not in POSIX; not supported under Linux; 031, EM, Ctrl-Y) Delayed suspend
character (DSUSP): send SIGTSTP signal when the character is read by the user
program. Recognized when IEXTEN and ISIG are set, and the system supports
job control, and then not passed as input.

VEOF
(004, EOT, Ctrl-D) End-of-file character (EOF). More precisely: this character
causes the pending tty buffer to be sent to the waiting user program without wait-
ing for end-of-line. If it is the first character of the line, the read(2) in the user
program returns 0, which signifies end-of-file. Recognized when ICANON is
set, and then not passed as input.

VEOL
(0, NUL) Additional end-of-line character (EOL). Recognized when ICANON
is set.

Linux man-pages 6.16 2025-09-21 2631

termios(3) Library Functions Manual termios(3)

VEOL2
(not in POSIX; 0, NUL) Yet another end-of-line character (EOL2). Recognized
when ICANON is set.

VERASE
(0177, DEL, rubout, or 010, BS, Ctrl-H, or also #) Erase character (ERASE).
This erases the previous not-yet-erased character, but does not erase past EOF or
beginning-of-line. Recognized when ICANON is set, and then not passed as in-
put.

VINTR
(003, ETX, Ctrl-C, or also 0177, DEL, rubout) Interrupt character (INTR). Send
a SIGINT signal. Recognized when ISIG is set, and then not passed as input.

VKILL
(025, NAK, Ctrl-U, or Ctrl-X, or also @) Kill character (KILL). This erases the
input since the last EOF or beginning-of-line. Recognized when ICANON is
set, and then not passed as input.

VLNEXT
(not in POSIX; 026, SYN, Ctrl-V) Literal next (LNEXT). Quotes the next input
character, depriving it of a possible special meaning. Recognized when IEX-
TEN is set, and then not passed as input.

VMIN
Minimum number of characters for noncanonical read (MIN).

VQUIT
(034, FS, Ctrl-\) Quit character (QUIT). Send SIGQUIT signal. Recognized
when ISIG is set, and then not passed as input.

VREPRINT
(not in POSIX; 022, DC2, Ctrl-R) Reprint unread characters (REPRINT). Rec-
ognized when ICANON and IEXTEN are set, and then not passed as input.

VSTART
(021, DC1, Ctrl-Q) Start character (START). Restarts output stopped by the
Stop character. Recognized when IXON is set, and then not passed as input.

VSTATUS
(not in POSIX; not supported under Linux; status request: 024, DC4, Ctrl-T).
Status character (STATUS). Display status information at terminal, including
state of foreground process and amount of CPU time it has consumed. Also
sends a SIGINFO signal (not supported on Linux) to the foreground process
group.

VSTOP
(023, DC3, Ctrl-S) Stop character (STOP). Stop output until Start character
typed. Recognized when IXON is set, and then not passed as input.

VSUSP
(032, SUB, Ctrl-Z) Suspend character (SUSP). Send SIGTSTP signal. Recog-
nized when ISIG is set, and then not passed as input.

Linux man-pages 6.16 2025-09-21 2632

termios(3) Library Functions Manual termios(3)

VSWTCH
(not in POSIX; not supported under Linux; 0, NUL) Switch character (SWTCH).
Used in System V to switch shells in shell layers, a predecessor to shell job con-
trol.

VTIME
Timeout in deciseconds for noncanonical read (TIME).

VWERASE
(not in POSIX; 027, ETB, Ctrl-W) Word erase (WERASE). Recognized when
ICANON and IEXTEN are set, and then not passed as input.

An individual terminal special character can be disabled by setting the value of the cor-
responding c_cc element to _POSIX_VDISABLE.

The above symbolic subscript values are all different, except that VTIME, VMIN may
have the same value as VEOL, VEOF, respectively. In noncanonical mode, the special
character meaning is replaced by the timeout meaning. For an explanation of VMIN
and VTIME, see the description of noncanonical mode below.

Retrieving and changing terminal settings
tcgetattr() gets the parameters associated with the object referred by fd , and stores
them in the termios structure referenced by termios_p. This function may be invoked
from a background process; however, the terminal attributes may be subsequently
changed by a foreground process.

tcsetattr() sets the parameters associated with the terminal (unless support is required
from the underlying hardware that is not available) from the termios structure referred to
by termios_p. optional_actions specifies when the changes take effect:

TCSANOW
the change occurs immediately.

TCSADRAIN
the change occurs after all output written to fd has been transmitted. This option
should be used when changing parameters that affect output.

TCSAFLUSH
the change occurs after all output written to the object referred by fd has been
transmitted, and all input that has been received but not read will be discarded
before the change is made.

Canonical and noncanonical mode
The setting of the ICANON canon flag in c_lflag determines whether the terminal is op-
erating in canonical mode (ICANON set) or noncanonical mode (ICANON unset). By
default, ICANON is set.

In canonical mode:

• Input is made available line by line. An input line is available when one of the line
delimiters is typed (NL, EOL, EOL2; or EOF at the start of line). Except in the case
of EOF, the line delimiter is included in the buffer returned by read(2).

Linux man-pages 6.16 2025-09-21 2633

termios(3) Library Functions Manual termios(3)

• Line editing is enabled (ERASE, KILL; and if the IEXTEN flag is set: WERASE,
REPRINT, LNEXT). A read(2) returns at most one line of input; if the read(2) re-
quested fewer bytes than are available in the current line of input, then only as many
bytes as requested are read, and the remaining characters will be available for a fu-
ture read(2).

• The maximum line length is 4096 chars (including the terminating newline charac-
ter); lines longer than 4096 chars are truncated. After 4095 characters, input pro-
cessing (e.g., ISIG and ECHO* processing) continues, but any input data after 4095
characters up to (but not including) any terminating newline is discarded. This en-
sures that the terminal can always receive more input until at least one line can be
read.

In noncanonical mode input is available immediately (without the user having to type a
line-delimiter character), no input processing is performed, and line editing is disabled.
The read buffer will only accept 4095 chars; this provides the necessary space for a new-
line char if the input mode is switched to canonical. The settings of MIN (c_cc[VMIN])
and TIME (c_cc[VTIME]) determine the circumstances in which a read(2) completes;
there are four distinct cases:

MIN == 0, TIME == 0 (polling read)
If data is available, read(2) returns immediately, with the lesser of the number of
bytes available, or the number of bytes requested. If no data is available, read(2)
returns 0.

MIN > 0, TIME == 0 (blocking read)
read(2) blocks until MIN bytes are available, and returns up to the number of
bytes requested.

MIN == 0, TIME > 0 (read with timeout)
TIME specifies the limit for a timer in tenths of a second. The timer is started
when read(2) is called. read(2) returns either when at least one byte of data is
available, or when the timer expires. If the timer expires without any input be-
coming available, read(2) returns 0. If data is already available at the time of the
call to read(2), the call behaves as though the data was received immediately af-
ter the call.

MIN > 0, TIME > 0 (read with interbyte timeout)
TIME specifies the limit for a timer in tenths of a second. Once an initial byte of
input becomes available, the timer is restarted after each further byte is received.
read(2) returns when any of the following conditions is met:

• MIN bytes have been received.

• The interbyte timer expires.

• The number of bytes requested by read(2) has been received. (POSIX does
not specify this termination condition, and on some other implementations
read(2) does not return in this case.)

Because the timer is started only after the initial byte becomes available, at least
one byte will be read. If data is already available at the time of the call to
read(2), the call behaves as though the data was received immediately after the

Linux man-pages 6.16 2025-09-21 2634

termios(3) Library Functions Manual termios(3)

call.

POSIX does not specify whether the setting of the O_NONBLOCK file status flag takes
precedence over the MIN and TIME settings. If O_NONBLOCK is set, a read(2) in
noncanonical mode may return immediately, regardless of the setting of MIN or TIME.
Furthermore, if no data is available, POSIX permits a read(2) in noncanonical mode to
return either 0, or -1 with errno set to EAGAIN.

Raw mode
cfmakeraw() sets the terminal to something like the "raw" mode of the old Version 7
terminal driver: input is available character by character, echoing is disabled, and all
special processing of terminal input and output characters is disabled. The terminal at-
tributes are set as follows:

termios_p->c_iflag &= ~(IGNBRK | BRKINT | PARMRK | ISTRIP
| INLCR | IGNCR | ICRNL | IXON);

termios_p->c_oflag &= ~OPOST;
termios_p->c_lflag &= ~(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
termios_p->c_cflag &= ~(CSIZE | PARENB);
termios_p->c_cflag |= CS8;

Line control
tcsendbreak() transmits a continuous stream of zero-valued bits for a specific duration,
if the terminal is using asynchronous serial data transmission. If duration is zero, it
transmits zero-valued bits for at least 0.25 seconds, and not more than 0.5 seconds. If
duration is not zero, it sends zero-valued bits for some implementation-defined length of
time.

If the terminal is not using asynchronous serial data transmission, tcsendbreak() returns
without taking any action.

tcdrain() waits until all output written to the object referred to by fd has been transmit-
ted.

tcflush() discards data written to the object referred to by fd but not transmitted, or data
received but not read, depending on the value of queue_selector:

TCIFLUSH
flushes data received but not read.

TCOFLUSH
flushes data written but not transmitted.

TCIOFLUSH
flushes both data received but not read, and data written but not transmitted.

tcflow() suspends transmission or reception of data on the object referred to by fd , de-
pending on the value of action:

TCOOFF
suspends output.

TCOON
restarts suspended output.

Linux man-pages 6.16 2025-09-21 2635

termios(3) Library Functions Manual termios(3)

TCIOFF
transmits a STOP character, which stops the terminal device from transmitting
data to the system.

TCION
transmits a START character, which starts the terminal device transmitting data
to the system.

The default on open of a terminal file is that neither its input nor its output is suspended.

Line speed
The baud rate functions are provided for getting and setting the values of the input and
output baud rates in the termios structure. The new values do not take effect until tcse-
tattr() is successfully called.

Setting the speed to B0 instructs the modem to "hang up". The actual bit rate corre-
sponding to B38400 may be altered with setserial(8)

The input and output baud rates are stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure pointed to by
termios_p.

cfsetospeed() sets the output baud rate stored in the termios structure pointed to by
termios_p to speed , which must be one of these constants:

B0
B50
B75
B110
B134
B150
B200
B300
B600
B1200
B1800
B2400
B4800
B9600
B19200
B38400
B57600
B115200
B230400
B460800
B500000
B576000
B921600
B1000000

Linux man-pages 6.16 2025-09-21 2636

termios(3) Library Functions Manual termios(3)

B1152000
B1500000
B2000000

These constants are additionally supported on the SPARC architecture:

B76800
B153600
B307200
B614400

These constants are additionally supported on non-SPARC architectures:

B2500000
B3000000
B3500000
B4000000

Due to differences between architectures, portable applications should check if a partic-
ular Bnnn constant is defined prior to using it.

The zero baud rate, B0, is used to terminate the connection. If B0 is specified, the mo-
dem control lines shall no longer be asserted. Normally, this will disconnect the line.
CBAUDEX is a mask for the speeds beyond those defined in POSIX.1 (57600 and
above). Thus, B57600 & CBAUDEX is nonzero.

Setting the baud rate to a value other than those defined by Bnnn constants is possible
via the TCSETS2 ioctl; see ioctl_tty(2).

cfgetispeed() returns the input baud rate stored in the termios structure.

cfsetispeed() sets the input baud rate stored in the termios structure to speed , which
must be specified as one of the Bnnn constants listed above for cfsetospeed(). If the in-
put baud rate is set to the literal constant 0 (not the symbolic constant B0), the input
baud rate will be equal to the output baud rate.

cfsetspeed() is a 4.4BSD extension. It takes the same arguments as cfsetispeed(), and
sets both input and output speed.

RETURN VALUE
cfgetispeed() returns the input baud rate stored in the termios structure.

cfgetospeed() returns the output baud rate stored in the termios structure.

All other functions return:

0 on success.

-1 on failure and set errno to indicate the error.

Note that tcsetattr() returns success if any of the requested changes could be success-
fully carried out. Therefore, when making multiple changes, it may be necessary to fol-
low this call with a further call to tcgetattr() to check that all changes have been per-
formed successfully.

Linux man-pages 6.16 2025-09-21 2637

termios(3) Library Functions Manual termios(3)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetcgetattr(), tcsetattr(), tcdrain(), tcflush(), tcflow(),
tcsendbreak(), cfmakeraw(), cfgetispeed(),
cfgetospeed(), cfsetispeed(), cfsetospeed(),
cfsetspeed()

STANDARDS
tcgetattr()
tcsetattr()
tcsendbreak()
tcdrain()
tcflush()
tcflow()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()

POSIX.1-2008.

cfmakeraw()
cfsetspeed()

BSD.

HISTORY
tcgetattr()
tcsetattr()
tcsendbreak()
tcdrain()
tcflush()
tcflow()
cfgetispeed()
cfgetospeed()
cfsetispeed()
cfsetospeed()

POSIX.1-2001.

cfmakeraw()
cfsetspeed()

BSD.

NOTES
UNIX V7 and several later systems have a list of baud rates where after the values B0
through B9600 one finds the two constants EXTA, EXTB ("External A" and "External
B"). Many systems extend the list with much higher baud rates.

The effect of a nonzero duration with tcsendbreak() varies. SunOS specifies a break of
duration * N seconds, where N is at least 0.25, and not more than 0.5. Linux, AIX,
DU, Tru64 send a break of duration milliseconds. FreeBSD and NetBSD and HP-UX

Linux man-pages 6.16 2025-09-21 2638

termios(3) Library Functions Manual termios(3)

and MacOS ignore the value of duration. Under Solaris and UnixWare, tcsendbreak()
with nonzero duration behaves like tcdrain().

BUGS
On the Alpha architecture before Linux 4.16 (and glibc before glibc 2.28), the XTABS
value was different from TAB3 and it was ignored by the N_TTY line discipline code of
the terminal driver as a result (because as it wasn’t part of the TABDLY mask).

SEE ALSO
reset(1), setterm(1), stty(1), tput(1), tset(1), tty(1), ioctl_console(2), ioctl_tty(2),
cc_t(3type), speed_t(3type), tcflag_t(3type), setserial(8)

Linux man-pages 6.16 2025-09-21 2639

tgamma(3) Library Functions Manual tgamma(3)

NAME
tgamma, tgammaf, tgammal - true gamma function

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double tgamma(double x);
float tgammaf(float x);
long double tgammal(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tgamma(), tgammaf(), tgammal():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions calculate the Gamma function of x.

The Gamma function is defined by

Gamma(x) = integral from 0 to infinity of t^(x-1) e^-t dt

It is defined for every real number except for nonpositive integers. For nonnegative inte-
gral m one has

Gamma(m+1) = m!

and, more generally, for all x:

Gamma(x+1) = x * Gamma(x)

Furthermore, the following is valid for all values of x outside the poles:

Gamma(x) * Gamma(1 - x) = PI / sin(PI * x)

RETURN VALUE
On success, these functions return Gamma(x).

If x is a NaN, a NaN is returned.

If x is positive infinity, positive infinity is returned.

If x is a negative integer, or is negative infinity, a domain error occurs, and a NaN is re-
turned.

If the result overflows, a range error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the correct mathematical sign.

If the result underflows, a range error occurs, and the functions return 0, with the correct
mathematical sign.

If x is -0 or +0, a pole error occurs, and the functions return HUGE_VAL,
HUGE_VALF, or HUGE_VALL, respectively, with the same sign as the 0.

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

Linux man-pages 6.16 2025-05-17 2640

tgamma(3) Library Functions Manual tgamma(3)

The following errors can occur:

Domain error: x is a negative integer, or negative infinity
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised (but see BUGS).

Pole error: x is +0 or -0
errno is set to ERANGE. A divide-by-zero floating-point exception (FE_DI-
VBYZERO) is raised.

Range error: result overflow
errno is set to ERANGE. An overflow floating-point exception (FE_OVER-
FLOW) is raised.

glibc also gives the following error which is not specified in C99 or POSIX.1-2001.

Range error: result underflow
An underflow floating-point exception (FE_UNDERFLOW) is raised, and er-
rno is set to ERANGE.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetgamma(), tgammaf(), tgammal()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

NOTES
This function had to be called "true gamma function" since there is already a function
gamma(3) that returns something else (see gamma(3) for details).

BUGS
Before glibc 2.18, the glibc implementation of these functions did not set errno to
EDOM when x is negative infinity.

Before glibc 2.19, the glibc implementation of these functions did not set errno to
ERANGE on an underflow range error.

In glibc versions 2.3.3 and earlier, an argument of +0 or -0 incorrectly produced a do-
main error (errno set to EDOM and an FE_INVALID exception raised), rather than a
pole error.

SEE ALSO
gamma(3), lgamma(3)

Linux man-pages 6.16 2025-05-17 2641

timegm(3) Library Functions Manual timegm(3)

NAME
timegm, timelocal - inverses of gmtime and localtime

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

[[deprecated]] time_t timelocal(struct tm *tm);
time_t timegm(struct tm *tm);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

timelocal(), timegm():
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
The functions timelocal() and timegm() are the inverses of localtime(3) and gmtime(3).
Both functions take a broken-down time and convert it to calendar time (seconds since
the Epoch, 1970-01-01 00:00:00 +0000, UTC). The difference between the two func-
tions is that timelocal() takes the local timezone into account when doing the conver-
sion, while timegm() takes the input value to be Coordinated Universal Time (UTC).

RETURN VALUE
On success, these functions return the calendar time (seconds since the Epoch), ex-
pressed as a value of type time_t. On error, they return the value (time_t) -1 and set er-
rno to indicate the error.

ERRORS
EOVERFLOW

The result cannot be represented.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localetimelocal(), timegm()

STANDARDS
BSD.

HISTORY
GNU, BSD.

The timelocal() function is equivalent to the POSIX standard function mktime(3). There
is no reason to ever use it.

SEE ALSO
gmtime(3), localtime(3), mktime(3), tzset(3)

Linux man-pages 6.16 2025-05-17 2642

timeradd(3) Library Functions Manual timeradd(3)

NAME
timeradd, timersub, timercmp, timerclear, timerisset - timeval operations

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/time.h>

void timeradd(struct timeval *a, struct timeval *b,
struct timeval *res);

void timersub(struct timeval *a, struct timeval *b,
struct timeval *res);

void timerclear(struct timeval *tvp);
int timerisset(struct timeval *tvp);

int timercmp(struct timeval *a, struct timeval *b, CMP);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
Since glibc 2.19:

_DEFAULT_SOURCE
glibc 2.19 and earlier:

_BSD_SOURCE

DESCRIPTION
The macros are provided to operate on timeval structures, defined in <sys/time.h> as:

struct timeval {
time_t tv_sec; /* seconds */
suseconds_t tv_usec; /* microseconds */

};

timeradd() adds the time values in a and b, and places the sum in the timeval pointed to
by res. The result is normalized such that res->tv_usec has a value in the range 0 to
999,999.

timersub() subtracts the time value in b from the time value in a, and places the result
in the timeval pointed to by res. The result is normalized such that res->tv_usec has a
value in the range 0 to 999,999.

timerclear() zeros out the timeval structure pointed to by tvp, so that it represents the
Epoch: 1970-01-01 00:00:00 +0000 (UTC).

timerisset() returns true (nonzero) if either field of the timeval structure pointed to by
tvp contains a nonzero value.

timercmp() compares the timer values in a and b using the comparison operator CMP,
and returns true (nonzero) or false (0) depending on the result of the comparison. Some
systems (but not Linux/glibc), have a broken timercmp() implementation, in which
CMP of >=, <=, and == do not work; portable applications can instead use

!timercmp(..., <)
!timercmp(..., >)

Linux man-pages 6.16 2025-05-17 2643

timeradd(3) Library Functions Manual timeradd(3)

!timercmp(..., !=)

RETURN VALUE
timerisset() and timercmp() return true (nonzero) or false (0).

ERRORS
No errors are defined.

STANDARDS
None.

HISTORY
BSD.

SEE ALSO
gettimeofday(2), time(7)

Linux man-pages 6.16 2025-05-17 2644

timespec_get(3) Library Functions Manual timespec_get(3)

NAME
timespec_get, timespec_getres - ISO C interface to clock and time functions

LIBRARY
Standard C library (libc, -lc),

SYNOPSIS
#include <time.h>

int timespec_get(struct timespec *res, int base);
int timespec_getres(struct timespec *tp, int base);

DESCRIPTION
The timespec_get() function stores the current time, based on the specified time base, in
the timespec(3type) structure pointed to by res.

The timespec_getres() function stores the resolution of times retrieved by time-
spec_get() with the specified time base in the timespec(3type) structure pointed to by tp,
if tp is non-NULL. For a particular time base, the resolution is constant for the lifetime
of the calling process.

TIME_UTC is always a supported time base, and is the only time base supported on
Linux. The time and resolution in this time base are the same as those retrieved by
clock_gettime(CLOCK_REALTIME, res) and clock_getres(CLOCK_REALTIME, tp), re-
spectively. Other systems may support additional time bases.

RETURN VALUE
timespec_get() returns the nonzero base if it is a supported time base and the current
time was successfully retrieved, or 0 otherwise.

timespec_getres() returns the nonzero base if it is a supported time base, or 0 otherwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetimespec_get(), timespec_getres()

STANDARDS
timespec_get()
TIME_UTC

C23 (though ISO C doesn’t specify the time epoch), POSIX.1-2024.

timespec_getres()
C23.

HISTORY
timespec_get()
TIME_UTC

C11, POSIX.1-2024, glibc 2.16, musl 1.1.10.

timespec_getres()
C23, glibc 2.34.

Linux man-pages 6.16 2025-02-10 2645

timespec_get(3) Library Functions Manual timespec_get(3)

SEE ALSO
clock_gettime(2), clock_getres(2)

Linux man-pages 6.16 2025-02-10 2646

TIMEVAL_TO_TIMESPEC(3) Library Functions Manual TIMEVAL_TO_TIMESPEC(3)

NAME
TIMEVAL_TO_TIMESPEC, TIMESPEC_TO_TIMEVAL - convert between time
structures

SYNOPSIS
#define _GNU_SOURCE
#include <sys/time.h>

void TIMEVAL_TO_TIMESPEC(const struct timeval *tv, struct timespec *ts);
void TIMESPEC_TO_TIMEVAL(struct timeval *tv, const struct timespec *ts);

DESCRIPTION
These macros convert from a timeval(3type) to a timespec(3type) structure, and vice
versa, respectively.

This is especially useful for writing interfaces that receive a type, but are implemented
with calls to functions that receive the other one.

STANDARDS
GNU, BSD.

Linux man-pages 6.16 2025-05-17 2647

tmpfile(3) Library Functions Manual tmpfile(3)

NAME
tmpfile - create a temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

FILE *tmpfile(void);

DESCRIPTION
The tmpfile() function opens a unique temporary file in binary read/write (w+b) mode.
The file will be automatically deleted when it is closed or the program terminates.

RETURN VALUE
The tmpfile() function returns a stream descriptor, or NULL if a unique filename cannot
be generated or the unique file cannot be opened. In the latter case, errno is set to indi-
cate the error.

ERRORS
EACCES

Search permission denied for directory in file’s path prefix.

EEXIST
Unable to generate a unique filename.

EINTR
The call was interrupted by a signal; see signal(7).

EMFILE
The per-process limit on the number of open file descriptors has been reached.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOSPC
There was no room in the directory to add the new filename.

EROFS
Read-only filesystem.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetmpfile()

VERSIONS
The standard does not specify the directory that tmpfile() will use. glibc will try the
path prefix P_tmpdir defined in <stdio.h>, and if that fails, then the directory /tmp.

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2648

tmpfile(3) Library Functions Manual tmpfile(3)

HISTORY
POSIX.1-2001, C89, SVr4, 4.3BSD, SUSv2.

NOTES
POSIX.1-2001 specifies: an error message may be written to stdout if the stream cannot
be opened.

SEE ALSO
exit(3), mkstemp(3), mktemp(3), tempnam(3), tmpnam(3)

Linux man-pages 6.16 2025-09-21 2649

tmpnam(3) Library Functions Manual tmpnam(3)

NAME
tmpnam, tmpnam_r - create a name for a temporary file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

[[deprecated]] char *tmpnam(char *s);
[[deprecated]] char *tmpnam_r(char *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tmpnam_r()
Since glibc 2.19:

_DEFAULT_SOURCE
Up to and including glibc 2.19:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Note: avoid using these functions; use mkstemp(3) or tmpfile(3) instead.

The tmpnam() function returns a pointer to a string that is a valid filename, and such
that a file with this name did not exist at some point in time, so that naive programmers
may think it a suitable name for a temporary file. If the argument s is NULL, this name
is generated in an internal static buffer and may be overwritten by the next call to tmp-
nam(). If s is not NULL, the name is copied to the character array (of length at least
L_tmpnam) pointed to by s and the value s is returned in case of success.

The created pathname has a directory prefix P_tmpdir. (Both L_tmpnam and P_tmpdir
are defined in <stdio.h>, just like the TMP_MAX mentioned below.)

The tmpnam_r() function performs the same task as tmpnam(), but returns NULL (to
indicate an error) if s is NULL.

RETURN VALUE
These functions return a pointer to a unique temporary filename, or NULL if a unique
name cannot be generated.

ERRORS
No errors are defined.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:tmpnam/!stmpnam()
Thread safety MT-Safetmpnam_r()

STANDARDS
tmpnam()

C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2650

tmpnam(3) Library Functions Manual tmpnam(3)

tmpnam_r()
None.

HISTORY
tmpnam()

SVr4, 4.3BSD, C89, POSIX.1-2001. Obsolete in POSIX.1-2008.

tmpnam_r()
Solaris.

NOTES
The tmpnam() function generates a different string each time it is called, up to
TMP_MAX times. If it is called more than TMP_MAX times, the behavior is imple-
mentation defined.

Although these functions generate names that are difficult to guess, it is nevertheless
possible that between the time that the pathname is returned and the time that the pro-
gram opens it, another program might create that pathname using open(2), or create it as
a symbolic link. This can lead to security holes. To avoid such possibilities, use the
open(2) O_EXCL flag to open the pathname. Or better yet, use mkstemp(3) or tmp-
file(3).

Portable applications that use threads cannot call tmpnam() with a NULL argument if
either _POSIX_THREADS or _POSIX_THREAD_SAFE_FUNCTIONS is defined.

BUGS
Never use these functions. Use mkstemp(3) or tmpfile(3) instead.

SEE ALSO
mkstemp(3), mktemp(3), tempnam(3), tmpfile(3)

Linux man-pages 6.16 2025-09-21 2651

toascii(3) Library Functions Manual toascii(3)

NAME
toascii - convert character to ASCII

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ctype.h>

[[deprecated]] int toascii(int c);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

toascii():
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
toascii() converts c to a 7-bit unsigned char value that fits into the ASCII character set,
by clearing the high-order bits.

RETURN VALUE
The value returned is that of the converted character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetoascii()

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, BSD, POSIX.1-2001. Obsolete in POSIX.1-2008, noting that it cannot be used
portably in a localized application.

BUGS
Many people will be unhappy if you use this function. This function will convert ac-
cented letters into random characters.

SEE ALSO
isascii(3), tolower(3), toupper(3)

Linux man-pages 6.16 2025-05-17 2652

toupper(3) Library Functions Manual toupper(3)

NAME
toupper, tolower, toupper_l, tolower_l - convert uppercase or lowercase

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ctype.h>

int toupper(int c);
int tolower(int c);

int toupper_l(int c, locale_t locale);
int tolower_l(int c, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

toupper_l(), tolower_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
These functions convert lowercase letters to uppercase, and vice versa.

If c is a lowercase letter, toupper() returns its uppercase equivalent, if an uppercase rep-
resentation exists in the current locale. Otherwise, it returns c. The toupper_l() func-
tion performs the same task, but uses the locale referred to by the locale handle locale.

If c is an uppercase letter, tolower() returns its lowercase equivalent, if a lowercase rep-
resentation exists in the current locale. Otherwise, it returns c. The tolower_l() func-
tion performs the same task, but uses the locale referred to by the locale handle locale.

If c is neither an unsigned char value nor EOF, the behavior of these functions is unde-
fined.

The behavior of toupper_l() and tolower_l() is undefined if locale is the special locale
object LC_GLOBAL_LOCALE (see duplocale(3)) or is not a valid locale object han-
dle.

RETURN VALUE
The value returned is that of the converted letter, or c if the conversion was not possible.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetoupper(), tolower(), toupper_l(), tolower_l()

STANDARDS
toupper()
tolower()

C11, POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2653

toupper(3) Library Functions Manual toupper(3)

toupper_l()
tolower_l()

POSIX.1-2008.

HISTORY
toupper()
tolower()

C89, 4.3BSD, POSIX.1-2001.

toupper_l()
tolower_l()

POSIX.1-2008.

NOTES
The standards require that the argument c for these functions is either EOF or a value
that is representable in the type unsigned char. If the argument c is of type char, it must
be cast to unsigned char, as in the following example:

char c;
...
res = toupper((unsigned char) c);

This is necessary because char may be the equivalent signed char, in which case a byte
where the top bit is set would be sign extended when converting to int, yielding a value
that is outside the range of unsigned char.

The details of what constitutes an uppercase or lowercase letter depend on the locale.
For example, the default "C" locale does not know about umlauts, so no conversion is
done for them.

In some non-English locales, there are lowercase letters with no corresponding upper-
case equivalent; the German sharp s is one example.

SEE ALSO
isalpha(3), newlocale(3), setlocale(3), towlower(3), towupper(3), uselocale(3), locale(7)

Linux man-pages 6.16 2025-05-17 2654

towctrans(3) Library Functions Manual towctrans(3)

NAME
towctrans - wide-character transliteration

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wint_t towctrans(wint_t wc, wctrans_t desc);

DESCRIPTION
If wc is a wide character, then the towctrans() function translates it according to the
transliteration descriptor desc. If wc is WEOF, WEOF is returned.

desc must be a transliteration descriptor returned by the wctrans(3) function.

RETURN VALUE
The towctrans() function returns the translated wide character, or WEOF if wc is
WEOF.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetowctrans()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of towctrans() depends on the LC_CTYPE category of the current locale.

SEE ALSO
towlower(3), towupper(3), wctrans(3)

Linux man-pages 6.16 2025-05-17 2655

towlower(3) Library Functions Manual towlower(3)

NAME
towlower, towlower_l - convert a wide character to lowercase

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wint_t towlower(wint_t wc);
wint_t towlower_l(wint_t wc, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

towlower_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The towlower() function is the wide-character equivalent of the tolower(3) function. If
wc is an uppercase wide character, and there exists a lowercase equivalent in the current
locale, it returns the lowercase equivalent of wc. In all other cases, wc is returned un-
changed.

The towlower_l() function performs the same task, but performs the conversion based
on the character type information in the locale specified by locale. The behavior of
towlower_l() is undefined if locale is the special locale object LC_GLOBAL_LO-
CALE (see duplocale(3)) or is not a valid locale object handle.

The argument wc must be representable as a wchar_t and be a valid character in the lo-
cale or be the value WEOF.

RETURN VALUE
If wc was convertible to lowercase, towlower() returns its lowercase equivalent; other-
wise it returns wc.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localetowlower()
Thread safety MT-Safetowlower_l()

STANDARDS
towlower()

C11, POSIX.1-2008 (XSI).

towlower_l()
POSIX.1-2008.

STANDARDS

Linux man-pages 6.16 2025-05-17 2656

towlower(3) Library Functions Manual towlower(3)

towlower()
C99, POSIX.1-2001 (XSI). Obsolete in POSIX.1-2008 (XSI).

towlower_l()
glibc 2.3. POSIX.1-2008.

NOTES
The behavior of these functions depends on the LC_CTYPE category of the locale.

These functions are not very appropriate for dealing with Unicode characters, because
Unicode knows about three cases: upper, lower, and title case.

SEE ALSO
iswlower(3), towctrans(3), towupper(3), locale(7)

Linux man-pages 6.16 2025-05-17 2657

towupper(3) Library Functions Manual towupper(3)

NAME
towupper, towupper_l - convert a wide character to uppercase

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wint_t towupper(wint_t wc);
wint_t towupper_l(wint_t wc, locale_t locale);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

towupper_l():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The towupper() function is the wide-character equivalent of the toupper(3) function. If
wc is a lowercase wide character, and there exists an uppercase equivalent in the current
locale, it returns the uppercase equivalent of wc. In all other cases, wc is returned un-
changed.

The towupper_l() function performs the same task, but performs the conversion based
on the character type information in the locale specified by locale. The behavior of
towupper_l() is undefined if locale is the special locale object LC_GLOBAL_LO-
CALE (see duplocale(3)) or is not a valid locale object handle.

The argument wc must be representable as a wchar_t and be a valid character in the lo-
cale or be the value WEOF.

RETURN VALUE
If wc was convertible to uppercase, towupper() returns its uppercase equivalent; other-
wise it returns wc.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localetowupper()
Thread safety MT-Safetowupper_l()

STANDARDS
towupper()

C11, POSIX.1-2008 (XSI).

towupper_l()
POSIX.1-2008.

HISTORY

Linux man-pages 6.16 2025-05-17 2658

towupper(3) Library Functions Manual towupper(3)

towupper()
C99, POSIX.1-2001 (XSI). Obsolete in POSIX.1-2008 (XSI).

towupper_l()
POSIX.1-2008. glibc 2.3.

NOTES
The behavior of these functions depends on the LC_CTYPE category of the locale.

These functions are not very appropriate for dealing with Unicode characters, because
Unicode knows about three cases: upper, lower, and title case.

SEE ALSO
iswupper(3), towctrans(3), towlower(3), locale(7)

Linux man-pages 6.16 2025-05-17 2659

trunc(3) Library Functions Manual trunc(3)

NAME
trunc, truncf, truncl - round to integer, toward zero

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double trunc(double x);
float truncf(float x);
long double truncl(long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

trunc(), truncf(), truncl():
_ISOC99_SOURCE || _POSIX_C_SOURCE >= 200112L

DESCRIPTION
These functions round x to the nearest integer value that is not larger in magnitude than
x.

RETURN VALUE
These functions return the rounded integer value, in floating format.

If x is integral, infinite, or NaN, x itself is returned.

ERRORS
No errors occur.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safetrunc(), truncf(), truncl()

STANDARDS
C11, POSIX.1-2008.

HISTORY
glibc 2.1. C99, POSIX.1-2001.

NOTES
The integral value returned by these functions may be too large to store in an integer
type (int, long, etc.). To avoid an overflow, which will produce undefined results, an ap-
plication should perform a range check on the returned value before assigning it to an
integer type.

SEE ALSO
ceil(3), floor(3), lrint(3), nearbyint(3), rint(3), round(3)

Linux man-pages 6.16 2025-05-17 2660

tsearch(3) Library Functions Manual tsearch(3)

NAME
tsearch, tfind, tdelete, twalk, twalk_r, tdestroy - manage a binary search tree

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <search.h>

typedef enum { preorder, postorder, endorder, leaf } VISIT;

void *tfind(const void *key, void *const *rootp,
typeof(int (const void *, const void *)) *compar);

void *tsearch(const void *key, void **rootp,
typeof(int (const void *, const void *)) *compar);

void *tdelete(const void *restrict key, void **restrict rootp,
typeof(int (const void *, const void *)) *compar);

void twalk(const void *root,
typeof(void (const void *nodep, VISIT which, int depth))

*action);

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <search.h>

void twalk_r(const void *root,
typeof(void (const void *nodep, VISIT which, void *closure))

*action,
void *closure);

void tdestroy(void *root,
typeof(void (void *nodep)) * free_node);

DESCRIPTION
tsearch(), tfind(), twalk(), and tdelete() manage a binary search tree. They are general-
ized from Knuth (6.2.2) Algorithm T. The first field in each node of the tree is a pointer
to the corresponding data item. (The calling program must store the actual data.) com-
par points to a comparison routine, which takes pointers to two items. It should return
an integer which is negative, zero, or positive, depending on whether the first item is less
than, equal to, or greater than the second.

tsearch() searches the tree for an item. key points to the item to be searched for. rootp
points to a variable which points to the root of the tree. If the tree is empty, then the
variable that rootp points to should be set to NULL. If the item is found in the tree, then
tsearch() returns a pointer to the corresponding tree node. (In other words, tsearch() re-
turns a pointer to a pointer to the data item.) If the item is not found, then tsearch()
adds it, and returns a pointer to the corresponding tree node.

tfind() is like tsearch(), except that if the item is not found, then tfind() returns NULL.

tdelete() deletes an item from the tree. Its arguments are the same as for tsearch().

twalk() performs depth-first, left-to-right traversal of a binary tree. root points to the
starting node for the traversal. If that node is not the root, then only part of the tree will
be visited. twalk() calls the user function action each time a node is visited (that is,
three times for an internal node, and once for a leaf). action, in turn, takes three

Linux man-pages 6.16 2025-05-17 2661

tsearch(3) Library Functions Manual tsearch(3)

arguments. The first argument is a pointer to the node being visited. The structure of
the node is unspecified, but it is possible to cast the pointer to a pointer-to-pointer-to-ele-
ment in order to access the element stored within the node. The application must not
modify the structure pointed to by this argument. The second argument is an integer
which takes one of the values preorder, postorder, or endorder depending on whether
this is the first, second, or third visit to the internal node, or the value leaf if this is the
single visit to a leaf node. (These symbols are defined in <search.h>.) The third argu-
ment is the depth of the node; the root node has depth zero.

(More commonly, preorder, postorder, and endorder are known as preorder, in-
order, and postorder: before visiting the children, after the first and before the second,
and after visiting the children. Thus, the choice of name postorder is rather confusing.)

twalk_r() is similar to twalk(), but instead of the depth argument, the closure argument
pointer is passed to each invocation of the action callback, unchanged. This pointer can
be used to pass information to and from the callback function in a thread-safe fashion,
without resorting to global variables.

tdestroy() removes the whole tree pointed to by root, freeing all resources allocated by
the tsearch() function. For the data in each tree node the function free_node is called.
The pointer to the data is passed as the argument to the function. If no such work is nec-
essary, free_node must point to a function doing nothing.

RETURN VALUE
tsearch() returns a pointer to a matching node in the tree, or to the newly added node, or
NULL if there was insufficient memory to add the item. tfind() returns a pointer to the
node, or NULL if no match is found. If there are multiple items that match the key, the
item whose node is returned is unspecified.

tdelete() returns a pointer to the parent of the node deleted, or NULL if the item was not
found. If the deleted node was the root node, tdelete() returns a dangling pointer that
must not be accessed.

tsearch(), tfind(), and tdelete() also return NULL if rootp was NULL on entry.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe race:rootptsearch(), tfind(), tdelete()
Thread safety MT-Safe race:roottwalk()
Thread safety MT-Safe race:roottwalk_r()
Thread safety MT-Safetdestroy()

STANDARDS
tsearch()
tfind()
tdelete()
twalk()

POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2662

tsearch(3) Library Functions Manual tsearch(3)

tdestroy()
twalk_r()

GNU.

HISTORY
tsearch()
tfind()
tdelete()
twalk()

POSIX.1-2001, POSIX.1-2008, SVr4.

twalk_r()
glibc 2.30.

NOTES
twalk() takes a pointer to the root, while the other functions take a pointer to a variable
which points to the root.

tdelete() frees the memory required for the node in the tree. The user is responsible for
freeing the memory for the corresponding data.

The example program depends on the fact that twalk() makes no further reference to a
node after calling the user function with argument "endorder" or "leaf". This works with
the GNU library implementation, but is not in the System V documentation.

EXAMPLES
The following program inserts twelve random numbers into a binary tree, where dupli-
cate numbers are collapsed, then prints the numbers in order.

#define _GNU_SOURCE /* Expose declaration of tdestroy() */
#include <search.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

static void *root = NULL;

static void *
xmalloc(size_t n)
{

void *p;

p = malloc(n);
if (p)

return p;
fprintf(stderr, "insufficient memory\n");
exit(EXIT_FAILURE);

}

static int

Linux man-pages 6.16 2025-05-17 2663

tsearch(3) Library Functions Manual tsearch(3)

compare(const void *pa, const void *pb)
{

if (*(int *) pa < *(int *) pb)
return -1;

if (*(int *) pa > *(int *) pb)
return 1;

return 0;
}

static void
action(const void *nodep, VISIT which, int depth)
{

int *datap;

switch (which) {
case preorder:

break;
case postorder:

datap = *(int **) nodep;
printf("%6d\n", *datap);
break;

case endorder:
break;

case leaf:
datap = *(int **) nodep;
printf("%6d\n", *datap);
break;

}
}

int
main(void)
{

int *ptr;
int **val;

srand(time(NULL));
for (unsigned int i = 0; i < 12; i++) {

ptr = xmalloc(sizeof(*ptr));
*ptr = rand() & 0xff;
val = tsearch(ptr, &root, compare);
if (val == NULL)

exit(EXIT_FAILURE);
if (*val != ptr)

free(ptr);
}
twalk(root, action);

Linux man-pages 6.16 2025-05-17 2664

tsearch(3) Library Functions Manual tsearch(3)

tdestroy(root, free);
exit(EXIT_SUCCESS);

}

SEE ALSO
bsearch(3), hsearch(3), lsearch(3), qsort(3)

Linux man-pages 6.16 2025-05-17 2665

ttyname(3) Library Functions Manual ttyname(3)

NAME
ttyname, ttyname_r - return name of a terminal

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

char *ttyname(int fd);
int ttyname_r(size_t size;

int fd , char buf [size], size_t size);

DESCRIPTION
The function ttyname() returns a pointer to the null-terminated pathname of the termi-
nal device that is open on the file descriptor fd , or NULL on error (for example, if fd is
not connected to a terminal). The return value may point to static data, possibly over-
written by the next call. The function ttyname_r() stores this pathname in the buffer
buf of size size.

RETURN VALUE
The function ttyname() returns a pointer to a pathname on success. On error, NULL is
returned, and errno is set to indicate the error. The function ttyname_r() returns 0 on
success, and an error number upon error.

ERRORS
EBADF

Bad file descriptor.

ENODEV
fd refers to a slave pseudoterminal device but the corresponding pathname could
not be found (see NOTES).

ENOTTY
fd does not refer to a terminal device.

ERANGE
(ttyname_r()) size was too small to allow storing the pathname.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:ttynamettyname()
Thread safety MT-Safettyname_r()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001, 4.2BSD.

NOTES
A process that keeps a file descriptor that refers to a pts(4) device open when switching
to another mount namespace that uses a different /dev/ptmx instance may still

Linux man-pages 6.16 2025-06-28 2666

ttyname(3) Library Functions Manual ttyname(3)

accidentally find that a device path of the same name for that file descriptor exists.
However, this device path refers to a different device and thus can’t be used to access the
device that the file descriptor refers to. Calling ttyname() or ttyname_r() on the file de-
scriptor in the new mount namespace will cause these functions to return NULL and set
errno to ENODEV.

SEE ALSO
tty(1), fstat(2), ctermid(3), isatty(3), pts(4)

Linux man-pages 6.16 2025-06-28 2667

ttyslot(3) Library Functions Manual ttyslot(3)

NAME
ttyslot - find the slot of the current user’s terminal in some file

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h> /* See NOTES */

int ttyslot(void);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ttyslot():
Since glibc 2.24:

_DEFAULT_SOURCE
From glibc 2.20 to glibc 2.23:

_DEFAULT_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)
glibc 2.19 and earlier:

_BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE < 500)

DESCRIPTION
The legacy function ttyslot() returns the index of the current user’s entry in some file.

Now "What file?" you ask. Well, let’s first look at some history.

Ancient history
There used to be a file /etc/ttys in UNIX V6, that was read by the init(1) program to find
out what to do with each terminal line. Each line consisted of three characters. The first
character was either '0' or '1', where '0' meant "ignore". The second character denoted
the terminal: '8' stood for "/dev/tty8". The third character was an argument to getty(8)
indicating the sequence of line speeds to try ('-' was: start trying 110 baud). Thus a typ-
ical line was "18-". A hang on some line was solved by changing the '1' to a '0', signal-
ing init, changing back again, and signaling init again.

In UNIX V7 the format was changed: here the second character was the argument to
getty(8) indicating the sequence of line speeds to try ('0' was: cycle through
300-1200-150-110 baud; '4' was for the on-line console DECwriter) while the rest of the
line contained the name of the tty. Thus a typical line was "14console".

Later systems have more elaborate syntax. System V-like systems have /etc/inittab in-
stead.

Ancient history (2)
On the other hand, there is the file /etc/utmp listing the people currently logged in. It is
maintained by login(1)It has a fixed size, and the appropriate index in the file was deter-
mined by login(1) using the ttyslot() call to find the number of the line in /etc/ttys
(counting from 1).

The semantics of ttyslot
Thus, the function ttyslot() returns the index of the controlling terminal of the calling
process in the file /etc/ttys, and that is (usually) the same as the index of the entry for the
current user in the file /etc/utmp. BSD still has the /etc/ttys file, but System V-like sys-
tems do not, and hence cannot refer to it. Thus, on such systems the documentation says

Linux man-pages 6.16 2025-05-17 2668

ttyslot(3) Library Functions Manual ttyslot(3)

that ttyslot() returns the current user’s index in the user accounting data base.

RETURN VALUE
If successful, this function returns the slot number. On error (e.g., if none of the file de-
scriptors 0, 1, or 2 is associated with a terminal that occurs in this data base) it returns 0
on UNIX V6 and V7 and BSD-like systems, but -1 on System V-like systems.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafettyslot()

VERSIONS
The utmp file is found in various places on various systems, such as /etc/utmp,
/var/adm/utmp, /var/run/utmp.

STANDARDS
None.

HISTORY
SUSv1; marked as LEGACY in SUSv2; removed in POSIX.1-2001. SUSv2 requires -1
on error.

The glibc2 implementation of this function reads the file _PATH_TTYS, defined in
<ttyent.h> as "/etc/ttys". It returns 0 on error. Since Linux systems do not usually have
"/etc/ttys", it will always return 0.

On BSD-like systems and Linux, the declaration of ttyslot() is provided by <unistd.h>.
On System V-like systems, the declaration is provided by <stdlib.h>. Since glibc 2.24,
<stdlib.h> also provides the declaration with the following feature test macro defini-
tions:

(_XOPEN_SOURCE >= 500 ||
(_XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED))

&& ! (_POSIX_C_SOURCE >= 200112L || _XOPEN_SOURCE >= 600)

Minix also has fttyslot(fd)

SEE ALSO
getttyent(3), ttyname(3), utmp(5)

Linux man-pages 6.16 2025-05-17 2669

tzset(3) Library Functions Manual tzset(3)

NAME
tzset, tzname, timezone, daylight - initialize time conversion information

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <time.h>

void tzset(void);

extern char *tzname[2];
extern long timezone;
extern int daylight;

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tzset():
_POSIX_C_SOURCE

tzname:
_POSIX_C_SOURCE

timezone, daylight:
_XOPEN_SOURCE

|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE

DESCRIPTION
The tzset() function initializes the tzname variable from the TZ environment variable.
This function is automatically called by the other time conversion functions that depend
on the timezone. In a System-V-like environment, it will also set the variables timezone
(seconds West of UTC) and daylight (to 0 if this timezone does not have any daylight
saving time rules, or to nonzero if there is a time, past, present, or future when daylight
saving time applies).

The tzset() function initializes these variables to unspecified values if this timezone is a
geographical timezone like "America/New_York" (see below).

If the TZ variable does not appear in the environment, the system timezone is used. The
system timezone is configured by copying, or linking, a file in the tzfile(5) format to
/etc/localtime. A timezone database of these files may be located in the system time-
zone directory (see the FILES section below).

If the TZ variable does appear in the environment, but its value is empty, or its value
cannot be interpreted using any of the formats specified below, then Coordinated Uni-
versal Time (UTC) is used.

A nonempty value of TZ can be one of two formats, either of which can be preceded by
a colon which is ignored. The first format is a string of characters that directly represent
the timezone to be used:

std offset[dst[offset][,start[/time],end[/time]]]

There are no spaces in the specification. The std string specifies an abbreviation for the
timezone and must be three or more alphabetic characters. When enclosed between the

Linux man-pages 6.16 2025-05-17 2670

tzset(3) Library Functions Manual tzset(3)

less-than (<) and greater-than (>) signs, the character set is expanded to include the plus
(+) sign, the minus (-) sign, and digits. The offset string immediately follows std and
specifies the time value to be added to the local time to get Coordinated Universal Time
(UTC). The offset is positive if the local timezone is west of the Prime Meridian and
negative if it is east. The hour must be between 0 and 24, and the minutes and seconds
00 and 59:

[+|-]hh[:mm[:ss]]

The dst string and offset specify the name and offset for the corresponding daylight sav-
ing timezone. If the offset is omitted, it defaults to one hour ahead of standard time.

The start field specifies when daylight saving time goes into effect and the end field
specifies when the change is made back to standard time. These fields may have the fol-
lowing formats:

Jn This specifies the Julian day with n between 1 and 365. Leap days are not
counted. In this format, February 29 can’t be represented; February 28 is day 59,
and March 1 is always day 60.

n This specifies the zero-based Julian day with n between 0 and 365. February 29
is counted in leap years.

Mm.w.d
This specifies day d (0 <= d <= 6) of week w (1 <= w <= 5) of month m
(1 <= m <= 12). Week 1 is the first week in which day d occurs and week 5 is
the last week in which day d occurs. Day 0 is a Sunday.

The time fields specify when, in the local time currently in effect, the change to the other
time occurs. They use the same format as offset except that the hour can be in the range
[-167, 167] to represent times before and after the named day. If omitted, the default is
02:00:00.

Here is an example for New Zealand, where the standard time (NZST) is 12 hours ahead
of UTC, and daylight saving time (NZDT), 13 hours ahead of UTC, runs from Septem-
ber’s last Sunday, at the default time 02:00:00, to April’s first Sunday at 03:00:00.

TZ="NZST-12:00:00NZDT-13:00:00,M9.5.0,M4.1.0/3"

The second —or "geographical"— format specifies that the timezone information
should be read from a file:

filespec

The filespec specifies a tzfile(5)-format file to read the timezone information from. If
filespec does not begin with a '/', the file specification is relative to the system timezone
directory. If the specified file cannot be read or interpreted, Coordinated Universal Time
(UTC) is used; however, applications should not depend on random filespec values
standing for UTC, as TZ formats may be extended in the future.

Here’s an example, once more for New Zealand:

TZ="Pacific/Auckland"

Linux man-pages 6.16 2025-05-17 2671

tzset(3) Library Functions Manual tzset(3)

ENVIRONMENT
TZ If this variable is set its value takes precedence over the system configured time-

zone.

TZDIR
If this variable is set its value takes precedence over the system configured time-
zone database directory path.

FILES
/etc/localtime

The system timezone file.

/usr/share/zoneinfo/
The system timezone database directory.

/usr/share/zoneinfo/posixrules
When a TZ string includes a dst timezone without anything following it, then
this file is used for the start/end rules. It is in the tzfile(5) format. By default, the
zoneinfo Makefile hard links it to the America/New_York tzfile.

Above are the current standard file locations, but they are configurable when glibc is
compiled.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe env localetzset()

STANDARDS
POSIX.1-2024.

HISTORY
tzset()
tzname

POSIX.1-1988, SVr4, 4.3BSD.

timezone
daylight

POSIX.1-2001 (XSI), SVr4, 4.3BSD.

4.3BSD had a function char *timezone(zone, dst) that returned the name of the time-
zone corresponding to its first argument (minutes West of UTC). If the second argument
was 0, the standard name was used, otherwise the daylight saving time version.

CAVEATS
Because the values of tzname, timezone, and daylight are often unspecified, and access-
ing them can lead to undefined behavior in multithreaded applications, code should in-
stead obtain time zone offset and abbreviations from the tm_gmtoff and tm_zone mem-
bers of the broken-down time structure tm(3type).

BUGS
Since this function does not report errors, there’s no way to know if the value of TZ rep-
resents a valid time zone.

Linux man-pages 6.16 2025-05-17 2672

tzset(3) Library Functions Manual tzset(3)

SEE ALSO
date(1), gettimeofday(2), time(2), ctime(3), getenv(3), tzfile(5)

Linux man-pages 6.16 2025-05-17 2673

ualarm(3) Library Functions Manual ualarm(3)

NAME
ualarm - schedule signal after given number of microseconds

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

useconds_t ualarm(useconds_t usecs, useconds_t interval);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

ualarm():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The ualarm() function causes the signal SIGALRM to be sent to the invoking process
after (not less than) usecs microseconds. The delay may be lengthened slightly by any
system activity or by the time spent processing the call or by the granularity of system
timers.

Unless caught or ignored, the SIGALRM signal will terminate the process.

If the interval argument is nonzero, further SIGALRM signals will be sent every inter-
val microseconds after the first.

RETURN VALUE
This function returns the number of microseconds remaining for any alarm that was pre-
viously set, or 0 if no alarm was pending.

ERRORS
EINTR

Interrupted by a signal; see signal(7).

EINVAL
usecs or interval is not smaller than 1000000. (On systems where that is consid-
ered an error.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeualarm()

STANDARDS
None.

HISTORY
4.3BSD, POSIX.1-2001. POSIX.1-2001 marks it as obsolete. Removed in
POSIX.1-2008.

Linux man-pages 6.16 2025-09-21 2674

ualarm(3) Library Functions Manual ualarm(3)

4.3BSD, SUSv2, and POSIX do not define any errors.

POSIX.1-2001 does not specify what happens if the usecs argument is 0. On Linux
(and probably most other systems), the effect is to cancel any pending alarm.

The type useconds_t is an unsigned integer type capable of holding integers in the range
[0,1000000]. On the original BSD implementation, and in glibc before glibc 2.1, the ar-
guments to ualarm() were instead typed as unsigned int. Programs will be more
portable if they never mention useconds_t explicitly.

The interaction of this function with other timer functions such as alarm(2), sleep(3),
nanosleep(2), setitimer(2), timer_create(2), timer_delete(2), timer_getoverrun(2),
timer_gettime(2), timer_settime(2), usleep(3) is unspecified.

This function is obsolete. Use setitimer(2) or POSIX interval timers (timer_create(2),
etc.) instead.

SEE ALSO
alarm(2), getitimer(2), nanosleep(2), select(2), setitimer(2), usleep(3), time(7)

Linux man-pages 6.16 2025-09-21 2675

ulimit(3) Library Functions Manual ulimit(3)

NAME
ulimit - get and set user limits

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <ulimit.h>

[[deprecated]] long ulimit(int cmd , long newlimit);

DESCRIPTION
Warning: this routine is obsolete. Use getrlimit(2), setrlimit(2), and sysconf(3) instead.
For the shell command ulimit, see bash(1)

The ulimit() call will get or set some limit for the calling process. The cmd argument
can have one of the following values.

UL_GETFSIZE
Return the limit on the size of a file, in units of 512 bytes.

UL_SETFSIZE
Set the limit on the size of a file.

3 (Not implemented for Linux.) Return the maximum possible address of the data
segment.

4 (Implemented but no symbolic constant provided.) Return the maximum num-
ber of files that the calling process can open.

RETURN VALUE
On success, ulimit() returns a nonnegative value. On error, -1 is returned, and errno is
set to indicate the error.

ERRORS
EPERM

An unprivileged process tried to increase a limit.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeulimit()

STANDARDS
POSIX.1-2008.

HISTORY
SVr4, POSIX.1-2001. POSIX.1-2008 marks it as obsolete.

SEE ALSO
bash(1), getrlimit(2), setrlimit(2), sysconf(3)

Linux man-pages 6.16 2025-05-17 2676

undocumented(3) Library Functions Manual undocumented(3)

NAME
undocumented - undocumented library functions

SYNOPSIS
Undocumented library functions

DESCRIPTION
This man page mentions those library functions which are implemented in the standard
libraries but not yet documented in man pages.

Solicitation
If you have information about these functions, please look in the source code, write a
man page (using a style similar to that of the other Linux section 3 man pages), and send
it to mtk.manpages@gmail.com for inclusion in the next man page release.

The list
authdes_create(3), authdes_getucred(3), authdes_pk_create(3), clntunix_create(3),
creat64(3), dn_skipname(3), fcrypt(3), fp_nquery(3), fp_query(3), fp_resstat(3),
freading(3), freopen64(3), fseeko64(3), ftello64(3), ftw64(3), fwscanf (3), get_av-
phys_pages(3), getdirentries64(3), getmsg(3), getnetname(3), get_phys_pages(3), get-
publickey(3), getsecretkey(3), h_errlist(3), host2netname(3), hostalias(3),
inet_nsap_addr(3), inet_nsap_ntoa(3), init_des(3), libc_nls_init(3), mstats(3), net-
name2host(3), netname2user(3), nlist(3), obstack_free(3), parse_printf_format(3),
p_cdname(3), p_cdnname(3), p_class(3), p_fqname(3), p_option(3), p_query(3),
printf_size(3), printf_size_info(3), p_rr(3), p_time(3), p_type(3), putlong(3), put-
short(3), re_compile_fastmap(3), re_compile_pattern(3), register_printf_function(3),
re_match(3), re_match_2(3), re_rx_search(3), re_search(3), re_search_2(3), re_set_reg-
isters(3), re_set_syntax(3), res_send_setqhook(3), res_send_setrhook(3), ruserpass(3),
setfileno(3), sethostfile(3), svc_exit(3), svcudp_enablecache(3), tell(3), thrd_create(3),
thrd_current(3), thrd_equal(3), thrd_sleep(3), thrd_yield(3), tr_break(3), tzsetwall(3),
ufc_dofinalperm(3), ufc_doit(3), user2netname(3), wcschrnul(3), wcsftime(3), ws-
canf (3), xdr_authdes_cred(3), xdr_authdes_verf (3), xdr_cryptkeyarg(3), xdr_cryp-
tkeyres(3), xdr_datum(3), xdr_des_block(3), xdr_domainname(3), xdr_getcredres(3),
xdr_keybuf (3), xdr_keystatus(3), xdr_mapname(3), xdr_netnamestr(3), xdr_netobj(3),
xdr_passwd(3), xdr_peername(3), xdr_rmtcall_args(3), xdr_rmtcallres(3), xdr_unix-
cred(3), xdr_yp_buf (3), xdr_yp_inaddr(3), xdr_ypbind_binding(3), xdr_yp-
bind_resp(3), xdr_ypbind_resptype(3), xdr_ypbind_setdom(3), xdr_ypdelete_args(3),
xdr_ypmaplist(3), xdr_ypmaplist_str(3), xdr_yppasswd(3), xdr_ypreq_key(3),
xdr_ypreq_nokey(3), xdr_ypresp_all(3), xdr_ypresp_all_seq(3),
xdr_ypresp_key_val(3), xdr_ypresp_maplist(3), xdr_ypresp_master(3), xdr_ypresp_or-
der(3), xdr_ypresp_val(3), xdr_ypstat(3), xdr_ypupdate_args(3), yp_all(3),
yp_bind(3), yperr_string(3), yp_first(3), yp_get_default_domain(3), yp_maplist(3),
yp_master(3), yp_match(3), yp_next(3), yp_order(3), ypprot_err(3), yp_unbind(3),
yp_update(3)

Linux man-pages 6.16 2025-05-17 2677

ungetwc(3) Library Functions Manual ungetwc(3)

NAME
ungetwc - push back a wide character onto a FILE stream

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wint_t ungetwc(wint_t wc, FILE *stream);

DESCRIPTION
The ungetwc() function is the wide-character equivalent of the ungetc(3) function. It
pushes back a wide character onto stream and returns it.

If wc is WEOF, it returns WEOF. If wc is an invalid wide character, it sets errno to
EILSEQ and returns WEOF.

If wc is a valid wide character, it is pushed back onto the stream and thus becomes avail-
able for future wide-character read operations. The file-position indicator is decre-
mented by one or more. The end-of-file indicator is cleared. The backing storage of the
file is not affected.

Note: wc need not be the last wide-character read from the stream; it can be any other
valid wide character.

If the implementation supports multiple push-back operations in a row, the pushed-back
wide characters will be read in reverse order; however, only one level of push-back is
guaranteed.

RETURN VALUE
The ungetwc() function returns wc when successful, or WEOF upon failure.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeungetwc()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of ungetwc() depends on the LC_CTYPE category of the current locale.

SEE ALSO
fgetwc(3)

Linux man-pages 6.16 2025-09-21 2678

unlocked_stdio(3) Library Functions Manual unlocked_stdio(3)

NAME
getc_unlocked, getchar_unlocked, putc_unlocked, putchar_unlocked - nonlocking stdio
functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int getc_unlocked(FILE *stream);
int getchar_unlocked(void);
int putc_unlocked(int c, FILE *stream);
int putchar_unlocked(int c);

void clearerr_unlocked(FILE *stream);
int feof_unlocked(FILE *stream);
int ferror_unlocked(FILE *stream);
int fileno_unlocked(FILE *stream);
int fflush_unlocked(FILE *_Nullable stream);

int fgetc_unlocked(FILE *stream);
int fputc_unlocked(int c, FILE *stream);

size_t fread_unlocked(size_t size, size_t n;
void ptr[restrict size * n],
size_t size, size_t n,
FILE *restrict stream);

size_t fwrite_unlocked(size_t size, size_t n;
const void ptr[restrict size * n],
size_t size, size_t n,
FILE *restrict stream);

char *fgets_unlocked(int n;
char s[restrict n], int n, FILE *restrict stream);

int fputs_unlocked(const char *restrict s, FILE *restrict stream);

#include <wchar.h>

wint_t getwc_unlocked(FILE *stream);
wint_t getwchar_unlocked(void);
wint_t fgetwc_unlocked(FILE *stream);

wint_t fputwc_unlocked(wchar_t wc, FILE *stream);
wint_t putwc_unlocked(wchar_t wc, FILE *stream);
wint_t putwchar_unlocked(wchar_t wc);

wchar_t *fgetws_unlocked(int n;
wchar_t ws[restrict n], int n,
FILE *restrict stream);

int fputws_unlocked(const wchar_t *restrict ws,
FILE *restrict stream);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

Linux man-pages 6.16 2025-09-21 2679

unlocked_stdio(3) Library Functions Manual unlocked_stdio(3)

getc_unlocked(), getchar_unlocked(), putc_unlocked(), putchar_unlocked():
/* glibc >= 2.24: */ _POSIX_C_SOURCE >= 199309L

|| /* glibc <= 2.23: */ _POSIX_C_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

clearerr_unlocked(), feof_unlocked(), ferror_unlocked(), fileno_unlocked(),
fflush_unlocked(), fgetc_unlocked(), fputc_unlocked(), fread_unlocked(),
fwrite_unlocked():

/* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

fgets_unlocked(), fputs_unlocked(), getwc_unlocked(), getwchar_unlocked(),
fgetwc_unlocked(), fputwc_unlocked(), putwchar_unlocked(), fgetws_unlocked(),
fputws_unlocked():

_GNU_SOURCE

DESCRIPTION
Each of these functions has the same behavior as its counterpart without the "_un-
locked" suffix, except that they do not use locking (they do not set locks themselves, and
do not test for the presence of locks set by others) and hence are thread-unsafe. See
flockfile(3).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetygetc_unlocked(),
putc_unlocked(),
clearerr_unlocked(),
fflush_unlocked(),
fgetc_unlocked(),
fputc_unlocked(),
fread_unlocked(),
fwrite_unlocked(),
fgets_unlocked(),
fputs_unlocked(),
getwc_unlocked(),
fgetwc_unlocked(),
fputwc_unlocked(),
putwc_unlocked(),
fgetws_unlocked(),
fputws_unlocked()

MT-Safe race:stream

Thread safetygetchar_unlocked(),
getwchar_unlocked()

MT-Unsafe race:stdin

Thread safetyputchar_unlocked(),
putwchar_unlocked()

MT-Unsafe race:stdout

Thread safety MT-Safefeof_unlocked(),
ferror_unlocked(),
fileno_unlocked()

Linux man-pages 6.16 2025-09-21 2680

unlocked_stdio(3) Library Functions Manual unlocked_stdio(3)

STANDARDS
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()

POSIX.1-2008.

Others:
None.

HISTORY
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()

POSIX.1-2001.

SEE ALSO
flockfile(3), stdio(3)

Linux man-pages 6.16 2025-09-21 2681

unlockpt(3) Library Functions Manual unlockpt(3)

NAME
unlockpt - unlock a pseudoterminal master/slave pair

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE
#include <stdlib.h>

int unlockpt(int fd);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

unlockpt():
Since glibc 2.24:

_XOPEN_SOURCE >= 500
glibc 2.23 and earlier:

_XOPEN_SOURCE

DESCRIPTION
The unlockpt() function unlocks the slave pseudoterminal device corresponding to the
master pseudoterminal referred to by the file descriptor fd .

unlockpt() should be called before opening the slave side of a pseudoterminal.

RETURN VALUE
When successful, unlockpt() returns 0. Otherwise, it returns -1 and sets errno to indi-
cate the error.

ERRORS
EBADF

The fd argument is not a file descriptor open for writing.

EINVAL
The fd argument is not associated with a master pseudoterminal.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeunlockpt()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1. POSIX.1-2001.

SEE ALSO
grantpt(3), posix_openpt(3), ptsname(3), pts(4), pty(7)

Linux man-pages 6.16 2025-09-21 2682

updwtmp(3) Library Functions Manual updwtmp(3)

NAME
updwtmp, logwtmp - append an entry to the wtmp file

LIBRARY
System utilities library (libutil, -lutil)

SYNOPSIS
#include <utmp.h>

void updwtmp(const char *wtmp_path, const struct utmp *ut);
void logwtmp(const char *line, const char *name, const char *host);

DESCRIPTION
updwtmp() appends the utmp structure ut to the wtmp file.

logwtmp() constructs a utmp structure using line, name, host, current time, and current
process ID. Then it calls updwtmp() to append the structure to the wtmp file.

FILES
/var/log/wtmp

database of past user logins

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe sig:ALRM timerupdwtmp(), logwtmp()

VERSIONS
For consistency with the other "utmpx" functions (see getutxent(3)), glibc provides
(since glibc 2.1):

#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <utmpx.h>
void updwtmpx (const char *wtmpx_path, const struct utmpx *utx);

This function performs the same task as updwtmp(), but differs in that it takes a utmpx
structure as its last argument.

STANDARDS
None.

HISTORY
Solaris, NetBSD.

SEE ALSO
getutxent(3), wtmp(5)

Linux man-pages 6.16 2025-05-17 2683

uselocale(3) Library Functions Manual uselocale(3)

NAME
uselocale - set/get the locale for the calling thread

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <locale.h>

locale_t uselocale(locale_t newloc);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

uselocale():
Since glibc 2.10:

_XOPEN_SOURCE >= 700
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The uselocale() function sets the current locale for the calling thread, and returns the
thread’s previously current locale. After a successful call to uselocale(), any calls by
this thread to functions that depend on the locale will operate as though the locale has
been set to newloc.

The newloc argument can have one of the following values:

A handle returned by a call to
newlocale(3) or duplocale(3) The calling thread’s current locale is set to the
specified locale.

The special locale object handle
LC_GLOBAL_LOCALE The calling thread’s current locale is set to the global
locale determined by setlocale(3).

(locale_t) 0
The calling thread’s current locale is left unchanged (and the current locale is re-
turned as the function result).

RETURN VALUE
On success, uselocale() returns the locale handle that was set by the previous call to use-
locale() in this thread, or LC_GLOBAL_LOCALE if there was no such previous call.
On error, it returns (locale_t) 0, and sets errno to indicate the error.

ERRORS
EINVAL

newloc does not refer to a valid locale object.

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.3. POSIX.1-2008.

Linux man-pages 6.16 2025-05-17 2684

uselocale(3) Library Functions Manual uselocale(3)

NOTES
Unlike setlocale(3), uselocale() does not allow selective replacement of individual lo-
cale categories. To employ a locale that differs in only a few categories from the current
locale, use calls to duplocale(3) and newlocale(3) to obtain a locale object equivalent to
the current locale and modify the desired categories in that object.

EXAMPLES
See newlocale(3) and duplocale(3).

SEE ALSO
locale(1), duplocale(3), freelocale(3), newlocale(3), setlocale(3), locale(5), locale(7)

Linux man-pages 6.16 2025-05-17 2685

usleep(3) Library Functions Manual usleep(3)

NAME
usleep - suspend execution for microsecond intervals

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <unistd.h>

int usleep(useconds_t usec);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

usleep():
Since glibc 2.12:

(_XOPEN_SOURCE >= 500) && ! (_POSIX_C_SOURCE >= 200809L)
|| /* glibc >= 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _BSD_SOURCE

Before glibc 2.12:
_BSD_SOURCE || _XOPEN_SOURCE >= 500

DESCRIPTION
The usleep() function suspends execution of the calling thread for (at least) usec mi-
croseconds. The sleep may be lengthened slightly by any system activity or by the time
spent processing the call or by the granularity of system timers.

RETURN VALUE
The usleep() function returns 0 on success. On error, -1 is returned, with errno set to
indicate the error.

ERRORS
EINTR

Interrupted by a signal; see signal(7).

EINVAL
usec is greater than or equal to 1000000. (On systems where that is considered
an error.)

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safeusleep()

STANDARDS
None.

HISTORY
4.3BSD, POSIX.1-2001. POSIX.1-2001 declares it obsolete, suggesting nanosleep(2)
instead. Removed in POSIX.1-2008.

On the original BSD implementation, and before glibc 2.2.2, the return type of this func-
tion is void . The POSIX version returns int, and this is also the prototype used since
glibc 2.2.2.

Only the EINVAL error return is documented by SUSv2 and POSIX.1-2001.

Linux man-pages 6.16 2025-09-21 2686

usleep(3) Library Functions Manual usleep(3)

CAVEATS
The interaction of this function with the SIGALRM signal, and with other timer func-
tions such as alarm(2), sleep(3), nanosleep(2), setitimer(2), timer_create(2),
timer_delete(2), timer_getoverrun(2), timer_gettime(2), timer_settime(2), ualarm(3) is
unspecified.

SEE ALSO
alarm(2), getitimer(2), nanosleep(2), select(2), setitimer(2), sleep(3), ualarm(3), usec-
onds_t(3type), time(7)

Linux man-pages 6.16 2025-09-21 2687

wcpcpy(3) Library Functions Manual wcpcpy(3)

NAME
wcpcpy - copy a wide-character string, returning a pointer to its end

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcpcpy(wchar_t *restrict dest, const wchar_t *restrict src);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcpcpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcpcpy() function is the wide-character equivalent of the stpcpy(3) function. It
copies the wide-character string pointed to by src, including the terminating null wide
character (L'\0'), to the array pointed to by dest.

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(src)+1 wide charac-
ters at dest.

RETURN VALUE
wcpcpy() returns a pointer to the end of the wide-character string dest, that is, a pointer
to the terminating null wide character.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcpcpy()

STANDARDS
POSIX.1-2008.

SEE ALSO
strcpy(3), wcscpy(3)

Linux man-pages 6.16 2025-05-17 2688

wcpncpy(3) Library Functions Manual wcpncpy(3)

NAME
wcpncpy - copy a fixed-size string of wide characters, returning a pointer to its end

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcpncpy(size_t n;
wchar_t dest[restrict n],
const wchar_t *restrict src,
size_t n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcpncpy():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcpncpy() function is the wide-character equivalent of the stpncpy(3) function. It
copies at most n wide characters from the wide-character string pointed to by src, in-
cluding the terminating null wide (L'\0'), to the array pointed to by dest. Exactly n wide
characters are written at dest. If the length wcslen(src) is smaller than n, the remaining
wide characters in the array pointed to by dest are filled with L'\0' characters. If the
length wcslen(src) is greater than or equal to n, the string pointed to by dest will not be
L'\0' terminated.

The strings may not overlap.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wcpncpy() returns a pointer to one past the last non-null wide character written, that is,
dest + wcsnlen(src, n).

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcpncpy()

STANDARDS
POSIX.1-2008.

SEE ALSO
stpncpy(3), wcsncpy(3)

Linux man-pages 6.16 2025-07-11 2689

wcrtomb(3) Library Functions Manual wcrtomb(3)

NAME
wcrtomb - convert a wide character to a multibyte sequence

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcrtomb(char *restrict s, wchar_t wc, mbstate_t *restrict ps);

DESCRIPTION
The main case for this function is when s is not NULL and wc is not a null wide charac-
ter (L'\0'). In this case, the wcrtomb() function converts the wide character wc to its
multibyte representation and stores it at the beginning of the character array pointed to
by s. It updates the shift state *ps, and returns the length of said multibyte representa-
tion, that is, the number of bytes written at s.

A different case is when s is not NULL, but wc is a null wide character (L'\0'). In this
case, the wcrtomb() function stores at the character array pointed to by s the shift se-
quence needed to bring *ps back to the initial state, followed by a '\0' byte. It updates
the shift state *ps (i.e., brings it into the initial state), and returns the length of the shift
sequence plus one, that is, the number of bytes written at s.

A third case is when s is NULL. In this case, wc is ignored, and the function effectively
returns

wcrtomb(buf, L'\0', ps)

where buf is an internal anonymous buffer.

In all of the above cases, if ps is NULL, a static anonymous state known only to the
wcrtomb() function is used instead.

At most MB_CUR_MAX bytes will be written at s. The programmer must ensure that
there is enough room to store the multibyte sequence at s.

RETURN VALUE
The wcrtomb() function returns the number of bytes that have been or would have been
written to the byte array at s. If wc can not be represented as a multibyte sequence (ac-
cording to the current locale), (size_t) -1 is returned, and errno set to EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe race:wcrtomb/!pswcrtomb()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wcrtomb() depends on the LC_CTYPE category of the current locale.

Linux man-pages 6.16 2025-05-17 2690

wcrtomb(3) Library Functions Manual wcrtomb(3)

Passing NULL as ps is not multithread safe.

SEE ALSO
mbsinit(3), wcsrtombs(3)

Linux man-pages 6.16 2025-05-17 2691

wcscasecmp(3) Library Functions Manual wcscasecmp(3)

NAME
wcscasecmp, wcsncasecmp - compare two wide-character strings, ignoring case

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wcscasecmp(const wchar_t *s1, const wchar_t *s2);
int wcsncasecmp(size_t n;

const wchar_t s1[n], const wchar_t s2[n], size_t n);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcscasecmp(), wcsncasecmp():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcscasecmp() function is the wide-character equivalent of the strcasecmp(3) func-
tion. It compares the wide-character string pointed to by s1 and the wide-character
string pointed to by s2, ignoring case differences (towupper(3), towlower(3)).

The wcsncasecmp() function is similar (the wide-character equivalent of strn-
casecmp(3)), except that it compares no more than n wide characters of s1 and s2.

RETURN VALUE
The wcscasecmp() and wcsncasecmp() functions return an integer less than, equal to,
or greater than zero if s1 is, after ignoring case, found to be less than, to match, or be
greater than s2, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcscasecmp(), wcsncasecmp()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.

NOTES
The behavior of wcscasecmp() depends on the LC_CTYPE category of the current lo-
cale.

SEE ALSO
strcasecmp(3), wcscmp(3)

Linux man-pages 6.16 2025-09-07 2692

wcscat(3) Library Functions Manual wcscat(3)

NAME
wcscat - concatenate two wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcscat(wchar_t *restrict dest, const wchar_t *restrict src);

DESCRIPTION
The wcscat() function is the wide-character equivalent of the strcat(3) function. It
copies the wide-character string pointed to by src, including the terminating null wide
character (L'\0'), to the end of the wide-character string pointed to by dest.

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(dest)+wcslen(src)+1
wide characters at dest.

RETURN VALUE
wcscat() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscat()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcat(3), wcpcpy(3), wcscpy(3), wcsncat(3)

Linux man-pages 6.16 2025-05-17 2693

wcschr(3) Library Functions Manual wcschr(3)

NAME
wcschr - search a wide character in a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcschr(const wchar_t *wcs, wchar_t wc);

DESCRIPTION
The wcschr() function is the wide-character equivalent of the strchr(3) function. It
searches the first occurrence of wc in the wide-character string pointed to by wcs.

RETURN VALUE
The wcschr() function returns a pointer to the first occurrence of wc in the wide-charac-
ter string pointed to by wcs, or NULL if wc does not occur in the string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcschr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strchr(3), wcspbrk(3), wcsrchr(3), wcsstr(3), wmemchr(3)

Linux man-pages 6.16 2025-05-17 2694

wcscmp(3) Library Functions Manual wcscmp(3)

NAME
wcscmp - compare two wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wcscmp(const wchar_t *s1, const wchar_t *s2);

DESCRIPTION
The wcscmp() function is the wide-character equivalent of the strcmp(3) function. It
compares the wide-character string pointed to by s1 and the wide-character string
pointed to by s2.

RETURN VALUE
The wcscmp() function returns zero if the wide-character strings at s1 and s2 are equal.
It returns an integer greater than zero if at the first differing position i, the corresponding
wide-character s1[i] is greater than s2[i]. It returns an integer less than zero if at the
first differing position i, the corresponding wide-character s1[i] is less than s2[i].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcmp(3), wcscasecmp(3), wmemcmp(3)

Linux man-pages 6.16 2025-05-17 2695

wcscpy(3) Library Functions Manual wcscpy(3)

NAME
wcscpy - copy a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcscpy(wchar_t *restrict dest, const wchar_t *restrict src);

DESCRIPTION
The wcscpy() function is the wide-character equivalent of the strcpy(3) function. It
copies the wide-character string pointed to by src, including the terminating null wide
character (L'\0'), to the array pointed to by dest.

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(src)+1 wide charac-
ters at dest.

RETURN VALUE
wcscpy() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcpy(3), wcpcpy(3), wcscat(3), wcsdup(3), wmemcpy(3)

Linux man-pages 6.16 2025-05-17 2696

wcscspn(3) Library Functions Manual wcscspn(3)

NAME
wcscspn - search a wide-character string for any of a set of wide characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcscspn(const wchar_t *wcs, const wchar_t *reject);

DESCRIPTION
The wcscspn() function is the wide-character equivalent of the strcspn(3) function. It
determines the length of the longest initial segment of wcs which consists entirely of
wide-characters not listed in reject. In other words, it searches for the first occurrence in
the wide-character string wcs of any of the characters in the wide-character string reject.

RETURN VALUE
The wcscspn() function returns the number of wide characters in the longest initial seg-
ment of wcs which consists entirely of wide-characters not listed in reject. In other
words, it returns the position of the first occurrence in the wide-character string wcs of
any of the characters in the wide-character string reject, or wcslen(wcs) if there is none.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcscspn()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strcspn(3), wcspbrk(3), wcsspn(3)

Linux man-pages 6.16 2025-05-17 2697

wcsdup(3) Library Functions Manual wcsdup(3)

NAME
wcsdup - duplicate a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsdup(const wchar_t *s);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcsdup():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcsdup() function is the wide-character equivalent of the strdup(3) function. It al-
locates and returns a new wide-character string whose initial contents is a duplicate of
the wide-character string pointed to by s.

Memory for the new wide-character string is obtained with malloc(3), and should be
freed with free(3).

RETURN VALUE
On success, wcsdup() returns a pointer to the new wide-character string. On error, it re-
turns NULL, with errno set to indicate the error.

ERRORS
ENOMEM

Insufficient memory available to allocate duplicate string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsdup()

STANDARDS
POSIX.1-2008.

HISTORY
libc5, glibc 2.0.

SEE ALSO
strdup(3), wcscpy(3)

Linux man-pages 6.16 2025-05-17 2698

wcslen(3) Library Functions Manual wcslen(3)

NAME
wcslen - determine the length of a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcslen(const wchar_t *s);

DESCRIPTION
The wcslen() function is the wide-character equivalent of the strlen(3) function. It de-
termines the length of the wide-character string pointed to by s, excluding the terminat-
ing null wide character (L'\0').

RETURN VALUE
The wcslen() function returns the number of wide characters in s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcslen()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
In cases where the input buffer may not contain a terminating null wide character, wc-
snlen(3) should be used instead.

SEE ALSO
strlen(3)

Linux man-pages 6.16 2025-05-17 2699

wcsncat(3) Library Functions Manual wcsncat(3)

NAME
wcsncat - concatenate two wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncat(size_t n;
wchar_t *restrict dest,
const wchar_t src[restrict n],
size_t n);

DESCRIPTION
The wcsncat() function is the wide-character equivalent of the strncat(3) function. It
copies at most n wide characters from the wide-character string pointed to by src to the
end of the wide-character string pointed to by dest, and adds a terminating null wide
character (L'\0').

The strings may not overlap.

The programmer must ensure that there is room for at least wcslen(dest)+n+1 wide char-
acters at dest.

RETURN VALUE
wcsncat() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsncat()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strncat(3), wcscat(3)

Linux man-pages 6.16 2025-06-28 2700

wcsncmp(3) Library Functions Manual wcsncmp(3)

NAME
wcsncmp - compare two fixed-size wide-character strings

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wcsncmp(size_t n;
const wchar_t s1[n], const wchar_t s2[n], size_t n);

DESCRIPTION
The wcsncmp() function is the wide-character equivalent of the strncmp(3) function. It
compares the wide-character string pointed to by s1 and the wide-character string
pointed to by s2, but at most n wide characters from each string. In each string, the
comparison extends only up to the first occurrence of a null wide character (L'\0'), if any.

RETURN VALUE
The wcsncmp() function returns zero if the wide-character strings at s1 and s2, trun-
cated to at most length n, are equal. It returns an integer greater than zero if at the first
differing position i (i < n), the corresponding wide-character s1[i] is greater than s2[i].
It returns an integer less than zero if at the first differing position i (i < n), the corre-
sponding wide-character s1[i] is less than s2[i].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsncmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strncmp(3), wcsncasecmp(3)

Linux man-pages 6.16 2025-09-07 2701

wcsncpy(3) Library Functions Manual wcsncpy(3)

NAME
wcsncpy - copy a fixed-size string of wide characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsncpy(size_t n;
wchar_t dest[restrict n],
const wchar_t *restrict src,
size_t n);

DESCRIPTION
The wcsncpy() function is the wide-character equivalent of the strncpy(3) function. It
copies at most n wide characters from the wide-character string pointed to by src, in-
cluding the terminating null wide character (L'\0'), to the array pointed to by dest. Ex-
actly n wide characters are written at dest. If the length wcslen(src) is smaller than n,
the remaining wide characters in the array pointed to by dest are filled with null wide
characters. If the length wcslen(src) is greater than or equal to n, the string pointed to
by dest will not be terminated by a null wide character.

The strings may not overlap.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wcsncpy() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsncpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strncpy(3)

Linux man-pages 6.16 2025-06-28 2702

wcsnlen(3) Library Functions Manual wcsnlen(3)

NAME
wcsnlen - determine the length of a fixed-size wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsnlen(size_t maxlen;
const wchar_t s[maxlen], size_t maxlen);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcsnlen():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcsnlen() function is the wide-character equivalent of the strnlen(3) function. It re-
turns the number of wide-characters in the string pointed to by s, not including the ter-
minating null wide character (L'\0'), but at most maxlen wide characters (note: this para-
meter is not a byte count). In doing this, wcsnlen() looks at only the first maxlen wide
characters at s and never beyond s[maxlen-1].

RETURN VALUE
The wcsnlen() function returns wcslen(s), if that is less than maxlen, or maxlen if there
is no null wide character among the first maxlen wide characters pointed to by s.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsnlen()

STANDARDS
POSIX.1-2008.

HISTORY
glibc 2.1.

SEE ALSO
strnlen(3), wcslen(3)

Linux man-pages 6.16 2025-06-28 2703

wcsnrtombs(3) Library Functions Manual wcsnrtombs(3)

NAME
wcsnrtombs - convert a wide-character string to a multibyte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsnrtombs(size_t dsize;
char dest[restrict dsize],
const wchar_t **restrict src,
size_t nwc, size_t dsize, mbstate_t *restrict ps);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wcsnrtombs():
Since glibc 2.10:

_POSIX_C_SOURCE >= 200809L
Before glibc 2.10:

_GNU_SOURCE

DESCRIPTION
The wcsnrtombs() function is like the wcsrtombs(3) function, except that the number of
wide characters to be converted, starting at *src, is limited to nwc.

If dest is not NULL, the wcsnrtombs() function converts at most nwc wide characters
from the wide-character string *src to a multibyte string starting at dest. At most dsize
bytes are written to dest. The shift state *ps is updated. The conversion is effectively
performed by repeatedly calling wcrtomb(dest, *src, ps), as long as this call succeeds,
and then incrementing dest by the number of bytes written and *src by one. The conver-
sion can stop for three reasons:

• A wide character has been encountered that can not be represented as a multibyte se-
quence (according to the current locale). In this case, *src is left pointing to the in-
valid wide character, (size_t) -1 is returned, and errno is set to EILSEQ.

• nwc wide characters have been converted without encountering a null wide character
(L'\0'), or the size limit forces a stop. In this case, *src is left pointing to the next
wide character to be converted, and the number of bytes written to dest is returned.

• The wide-character string has been completely converted, including the terminating
null wide character (which has the side effect of bringing back *ps to the initial
state). In this case, *src is set to NULL, and the number of bytes written to dest, ex-
cluding the terminating null byte ('\0'), is returned.

If dest is NULL, dsize is ignored, and the conversion proceeds as above, except that the
converted bytes are not written out to memory, and that no destination size limit exists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
wcsnrtombs() function is used instead.

The programmer must ensure that there is room for at least dsize bytes at dest.

Linux man-pages 6.16 2025-09-07 2704

wcsnrtombs(3) Library Functions Manual wcsnrtombs(3)

RETURN VALUE
The wcsnrtombs() function returns the number of bytes that make up the converted part
of multibyte sequence, not including the terminating null byte. If a wide character was
encountered which could not be converted, (size_t) -1 is returned, and errno set to
EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetywcsnrtombs() MT-Unsafe race:wcsnrtombs/!ps

STANDARDS
POSIX.1-2008.

NOTES
The behavior of wcsnrtombs() depends on the LC_CTYPE category of the current lo-
cale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbsinit(3), wcsrtombs(3)

Linux man-pages 6.16 2025-09-07 2705

wcspbrk(3) Library Functions Manual wcspbrk(3)

NAME
wcspbrk - search a wide-character string for any of a set of wide characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcspbrk(const wchar_t *wcs, const wchar_t *accept);

DESCRIPTION
The wcspbrk() function is the wide-character equivalent of the strpbrk(3) function. It
searches for the first occurrence in the wide-character string pointed to by wcs of any of
the characters in the wide-character string pointed to by accept.

RETURN VALUE
The wcspbrk() function returns a pointer to the first occurrence in wcs of any of the
characters listed in accept. If wcs contains none of these characters, NULL is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcspbrk()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strpbrk(3), wcschr(3), wcscspn(3)

Linux man-pages 6.16 2025-05-17 2706

wcsrchr(3) Library Functions Manual wcsrchr(3)

NAME
wcsrchr - search a wide character in a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsrchr(const wchar_t *wcs, wchar_t wc);

DESCRIPTION
The wcsrchr() function is the wide-character equivalent of the strrchr(3) function. It
searches the last occurrence of wc in the wide-character string pointed to by wcs.

RETURN VALUE
The wcsrchr() function returns a pointer to the last occurrence of wc in the wide-char-
acter string pointed to by wcs, or NULL if wc does not occur in the string.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsrchr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strrchr(3), wcschr(3)

Linux man-pages 6.16 2025-05-17 2707

wcsrtombs(3) Library Functions Manual wcsrtombs(3)

NAME
wcsrtombs - convert a wide-character string to a multibyte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsrtombs(size_t dsize;
char dest[restrict dsize],
const wchar_t **restrict src,
size_t dsize, mbstate_t *restrict ps);

DESCRIPTION
If dest is not NULL, the wcsrtombs() function converts the wide-character string *src to
a multibyte string starting at dest. At most dsize bytes are written to dest. The shift
state *ps is updated. The conversion is effectively performed by repeatedly calling wcr-
tomb(dest, *src, ps), as long as this call succeeds, and then incrementing dest by the
number of bytes written and *src by one. The conversion can stop for three reasons:

• A wide character has been encountered that can not be represented as a multibyte se-
quence (according to the current locale). In this case, *src is left pointing to the in-
valid wide character, (size_t) -1 is returned, and errno is set to EILSEQ.

• The size limit forces a stop. In this case, *src is left pointing to the next wide char-
acter to be converted, and the number of bytes written to dest is returned.

• The wide-character string has been completely converted, including the terminating
null wide character (L'\0'), which has the side effect of bringing back *ps to the ini-
tial state. In this case, *src is set to NULL, and the number of bytes written to dest,
excluding the terminating null byte ('\0'), is returned.

If dest is NULL, dsize is ignored, and the conversion proceeds as above, except that the
converted bytes are not written out to memory, and that no size limit exists.

In both of the above cases, if ps is NULL, a static anonymous state known only to the
wcsrtombs() function is used instead.

The programmer must ensure that there is room for at least dsize bytes at dest.

RETURN VALUE
The wcsrtombs() function returns the number of bytes that make up the converted part
of multibyte sequence, not including the terminating null byte. If a wide character was
encountered which could not be converted, (size_t) -1 is returned, and errno set to
EILSEQ.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetywcsrtombs() MT-Unsafe race:wcsrtombs/!ps

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-07 2708

wcsrtombs(3) Library Functions Manual wcsrtombs(3)

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wcsrtombs() depends on the LC_CTYPE category of the current lo-
cale.

Passing NULL as ps is not multithread safe.

SEE ALSO
iconv(3), mbsinit(3), wcrtomb(3), wcsnrtombs(3), wcstombs(3)

Linux man-pages 6.16 2025-09-07 2709

wcsspn(3) Library Functions Manual wcsspn(3)

NAME
wcsspn - get length of a prefix wide-character substring

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

size_t wcsspn(const wchar_t *wcs, const wchar_t *accept);

DESCRIPTION
The wcsspn() function is the wide-character equivalent of the strspn(3) function. It de-
termines the length of the longest initial segment of wcs which consists entirely of wide-
characters listed in accept. In other words, it searches for the first occurrence in the
wide-character string wcs of a wide-character not contained in the wide-character string
accept.

RETURN VALUE
The wcsspn() function returns the number of wide characters in the longest initial seg-
ment of wcs which consists entirely of wide-characters listed in accept. In other words,
it returns the position of the first occurrence in the wide-character string wcs of a wide-
character not contained in the wide-character string accept, or wcslen(wcs) if there is
none.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsspn()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strspn(3), wcscspn(3)

Linux man-pages 6.16 2025-05-17 2710

wcsstr(3) Library Functions Manual wcsstr(3)

NAME
wcsstr - locate a substring in a wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcsstr(const wchar_t *haystack, const wchar_t *needle);

DESCRIPTION
The wcsstr() function is the wide-character equivalent of the strstr(3) function. It
searches for the first occurrence of the wide-character string needle (without its termi-
nating null wide character (L'\0')) as a substring in the wide-character string haystack.

RETURN VALUE
The wcsstr() function returns a pointer to the first occurrence of needle in haystack. It
returns NULL if needle does not occur as a substring in haystack.

Note the special case: If needle is the empty wide-character string, the return value is al-
ways haystack itself.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcsstr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
strstr(3), wcschr(3)

Linux man-pages 6.16 2025-05-17 2711

wcstoimax(3) Library Functions Manual wcstoimax(3)

NAME
wcstoimax, wcstoumax - convert wide-character string to integer

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stddef.h>
#include <inttypes.h>

intmax_t wcstoimax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

uintmax_t wcstoumax(const wchar_t *restrict nptr,
wchar_t **restrict endptr, int base);

DESCRIPTION
These functions are just like wcstol(3) and wcstoul(3), except that they return a value of
type intmax_t and uintmax_t, respectively.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcstoimax(), wcstoumax()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
imaxabs(3), imaxdiv(3), strtoimax(3), strtoumax(3), wcstol(3), wcstoul(3)

Linux man-pages 6.16 2025-05-17 2712

wcstok(3) Library Functions Manual wcstok(3)

NAME
wcstok - split wide-character string into tokens

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wcstok(wchar_t *restrict wcs, const wchar_t *restrict delim,
wchar_t **restrict ptr);

DESCRIPTION
The wcstok() function is the wide-character equivalent of the strtok(3) function, with an
added argument to make it multithread-safe. It can be used to split a wide-character
string wcs into tokens, where a token is defined as a substring not containing any wide-
characters from delim.

The search starts at wcs, if wcs is not NULL, or at *ptr, if wcs is NULL. First, any de-
limiter wide-characters are skipped, that is, the pointer is advanced beyond any wide-
characters which occur in delim. If the end of the wide-character string is now reached,
wcstok() returns NULL, to indicate that no tokens were found, and stores an appropriate
value in *ptr, so that subsequent calls to wcstok() will continue to return NULL. Other-
wise, the wcstok() function recognizes the beginning of a token and returns a pointer to
it, but before doing that, it zero-terminates the token by replacing the next wide-charac-
ter which occurs in delim with a null wide character (L'\0'), and it updates *ptr so that
subsequent calls will continue searching after the end of recognized token.

RETURN VALUE
The wcstok() function returns a pointer to the next token, or NULL if no further token
was found.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcstok()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The original wcs wide-character string is destructively modified during the operation.

EXAMPLES
The following code loops over the tokens contained in a wide-character string.

wchar_t *wcs = ...;
wchar_t *token;
wchar_t *state;
for (token = wcstok(wcs, L" \t\n", &state);

token != NULL;

Linux man-pages 6.16 2025-05-17 2713

wcstok(3) Library Functions Manual wcstok(3)

token = wcstok(NULL, L" \t\n", &state)) {
...

}

SEE ALSO
strtok(3), wcschr(3)

Linux man-pages 6.16 2025-05-17 2714

wcstombs(3) Library Functions Manual wcstombs(3)

NAME
wcstombs - convert a wide-character string to a multibyte string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

size_t wcstombs(size_t dsize;
char dest[restrict dsize], const wchar_t *restrict src,
size_t dsize);

DESCRIPTION
If dest is not NULL, the wcstombs() function converts the wide-character string src to a
multibyte string starting at dest. At most dsize bytes are written to dest. The sequence
of characters placed in dest begins in the initial shift state. The conversion can stop for
three reasons:

• A wide character has been encountered that can not be represented as a multibyte se-
quence (according to the current locale). In this case, (size_t) -1 is returned.

• The length limit forces a stop. In this case, the number of bytes written to dest is re-
turned, but the shift state at this point is lost.

• The wide-character string has been completely converted, including the terminating
null wide character (L'\0'). In this case, the conversion ends in the initial shift state.
The number of bytes written to dest, excluding the terminating null byte ('\0'), is re-
turned.

The programmer must ensure that there is room for at least dsize bytes at dest.

If dest is NULL, dsize is ignored, and the conversion proceeds as above, except that the
converted bytes are not written out to memory, and no length limit exists.

In order to avoid the case 2 above, the programmer should make sure dsize is greater
than or equal to wcstombs(NULL,src,0)+1.

RETURN VALUE
The wcstombs() function returns the number of bytes that make up the converted part of
a multibyte sequence, not including the terminating null byte. If a wide character was
encountered which could not be converted, (size_t) -1 is returned.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewcstombs()

VERSIONS
The function wcsrtombs(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

Linux man-pages 6.16 2025-09-07 2715

wcstombs(3) Library Functions Manual wcstombs(3)

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wcstombs() depends on the LC_CTYPE category of the current locale.

SEE ALSO
mblen(3), mbstowcs(3), mbtowc(3), wcsrtombs(3), wctomb(3)

Linux man-pages 6.16 2025-09-07 2716

wcswidth(3) Library Functions Manual wcswidth(3)

NAME
wcswidth - determine columns needed for a fixed-size wide-character string

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <wchar.h>

int wcswidth(const wchar_t *s, size_t n);

DESCRIPTION
The wcswidth() function returns the number of columns needed to represent the wide-
character string pointed to by s, but at most n wide characters. If a nonprintable wide
character occurs among these characters, -1 is returned.

RETURN VALUE
The wcswidth() function returns the number of column positions for the wide-character
string s, truncated to at most length n.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcswidth()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

NOTES
The behavior of wcswidth() depends on the LC_CTYPE category of the current locale.

SEE ALSO
iswprint(3), wcwidth(3)

Linux man-pages 6.16 2025-05-17 2717

wctob(3) Library Functions Manual wctob(3)

NAME
wctob - try to represent a wide character as a single byte

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wctob(wint_t c);

DESCRIPTION
The wctob() function tests whether the multibyte representation of the wide character c,
starting in the initial state, consists of a single byte. If so, it is returned as an unsigned
char.

Never use this function. It cannot help you in writing internationalized programs. Inter-
nationalized programs must never distinguish single-byte and multibyte characters.

RETURN VALUE
The wctob() function returns the single-byte representation of c, if it exists, or EOF oth-
erwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewctob()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctob() depends on the LC_CTYPE category of the current locale.

This function should never be used. Internationalized programs must never distinguish
single-byte and multibyte characters. Use either wctomb(3) or the thread-safe wcr-
tomb(3) instead.

SEE ALSO
btowc(3), wcrtomb(3), wctomb(3)

Linux man-pages 6.16 2025-05-17 2718

wctomb(3) Library Functions Manual wctomb(3)

NAME
wctomb - convert a wide character to a multibyte sequence

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdlib.h>

int wctomb(char *s, wchar_t wc);

DESCRIPTION
If s is not NULL, the wctomb() function converts the wide character wc to its multibyte
representation and stores it at the beginning of the character array pointed to by s. It up-
dates the shift state, which is stored in a static anonymous variable known only to the
wctomb() function, and returns the length of said multibyte representation, that is, the
number of bytes written at s.

At most MB_CUR_MAX bytes will be written at s. The programmer must ensure that
there is enough room to store the multibyte sequence at s.

If s is NULL, the wctomb() function resets the shift state, known only to this function,
to the initial state, and returns nonzero if the encoding has nontrivial shift state, or zero
if the encoding is stateless.

RETURN VALUE
If s is not NULL, the wctomb() function returns the number of bytes that have been
written to the byte array at s. If wc can not be represented as a multibyte sequence (ac-
cording to the current locale), -1 is returned.

If s is NULL, the wctomb() function returns nonzero if the encoding has nontrivial shift
state, or zero if the encoding is stateless.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Unsafe racewctomb()

VERSIONS
The function wcrtomb(3) provides a better interface to the same functionality.

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctomb() depends on the LC_CTYPE category of the current locale.

SEE ALSO
MB_CUR_MAX(3), mblen(3), mbstowcs(3), mbtowc(3), wcrtomb(3), wcstombs(3)

Linux man-pages 6.16 2025-05-17 2719

wctrans(3) Library Functions Manual wctrans(3)

NAME
wctrans - wide-character translation mapping

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wctrans_t wctrans(const char *name);

DESCRIPTION
The wctrans_t type represents a mapping which can map a wide character to another
wide character. Its nature is implementation-dependent, but the special value (wc-
trans_t) 0 denotes an invalid mapping. Nonzero wctrans_t values can be passed to the
towctrans(3) function to actually perform the wide-character mapping.

The wctrans() function returns a mapping, given by its name. The set of valid names
depends on the LC_CTYPE category of the current locale, but the following names are
valid in all locales.

"tolower" - realizes the tolower(3) mapping
"toupper" - realizes the toupper(3) mapping

RETURN VALUE
The wctrans() function returns a mapping descriptor if the name is valid. Otherwise, it
returns (wctrans_t) 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewctrans()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctrans() depends on the LC_CTYPE category of the current locale.

SEE ALSO
towctrans(3)

Linux man-pages 6.16 2025-05-17 2720

wctype(3) Library Functions Manual wctype(3)

NAME
wctype - wide-character classification

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wctype.h>

wctype_t wctype(const char *name);

DESCRIPTION
The wctype_t type represents a property which a wide character may or may not have.
In other words, it represents a class of wide characters. This type’s nature is implemen-
tation-dependent, but the special value (wctype_t) 0 denotes an invalid property.
Nonzero wctype_t values can be passed to the iswctype(3) function to actually test
whether a given wide character has the property.

The wctype() function returns a property, given by its name. The set of valid names de-
pends on the LC_CTYPE category of the current locale, but the following names are
valid in all locales.

"alnum" - realizes the isalnum(3) classification function
"alpha" - realizes the isalpha(3) classification function
"blank" - realizes the isblank(3) classification function
"cntrl" - realizes the iscntrl(3) classification function
"digit" - realizes the isdigit(3) classification function
"graph" - realizes the isgraph(3) classification function
"lower" - realizes the islower(3) classification function
"print" - realizes the isprint(3) classification function
"punct" - realizes the ispunct(3) classification function
"space" - realizes the isspace(3) classification function
"upper" - realizes the isupper(3) classification function
"xdigit" - realizes the isxdigit(3) classification function

RETURN VALUE
The wctype() function returns a property descriptor if the name is valid. Otherwise, it
returns (wctype_t) 0.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewctype()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

NOTES
The behavior of wctype() depends on the LC_CTYPE category of the current locale.

Linux man-pages 6.16 2025-05-17 2721

wctype(3) Library Functions Manual wctype(3)

SEE ALSO
iswctype(3)

Linux man-pages 6.16 2025-05-17 2722

wcwidth(3) Library Functions Manual wcwidth(3)

NAME
wcwidth - determine columns needed for a wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#define _XOPEN_SOURCE /* See feature_test_macros(7) */
#include <wchar.h>

int wcwidth(wchar_t wc);

DESCRIPTION
The wcwidth() function returns the number of columns needed to represent the wide
character wc. If wc is a printable wide character, the value is at least 0. If wc is null
wide character (L'\0'), the value is 0. Otherwise, -1 is returned.

RETURN VALUE
The wcwidth() function returns the number of column positions for wc.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewcwidth()

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

Note that before glibc 2.2.5, glibc used the prototype

int wcwidth(wint_t wc);

NOTES
The behavior of wcwidth() depends on the LC_CTYPE category of the current locale.

SEE ALSO
iswprint(3), wcswidth(3)

Linux man-pages 6.16 2025-05-17 2723

wmemchr(3) Library Functions Manual wmemchr(3)

NAME
wmemchr - search a wide character in a wide-character array

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemchr(size_t n;
const wchar_t s[n], wchar_t c, size_t n);

DESCRIPTION
The wmemchr() function is the wide-character equivalent of the memchr(3) function. It
searches the n wide characters starting at s for the first occurrence of the wide character
c.

RETURN VALUE
The wmemchr() function returns a pointer to the first occurrence of c among the n wide
characters starting at s, or NULL if c does not occur among these.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemchr()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memchr(3), wcschr(3)

Linux man-pages 6.16 2025-06-28 2724

wmemcmp(3) Library Functions Manual wmemcmp(3)

NAME
wmemcmp - compare two arrays of wide-characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

int wmemcmp(size_t n;
const wchar_t s1[n], const wchar_t s2[n], size_t n);

DESCRIPTION
The wmemcmp() function is the wide-character equivalent of the memcmp(3) function.
It compares the n wide-characters starting at s1 and the n wide-characters starting at s2.

RETURN VALUE
The wmemcmp() function returns zero if the wide-character arrays of size n at s1 and
s2 are equal. It returns an integer greater than zero if at the first differing position i (i <
n), the corresponding wide-character s1[i] is greater than s2[i]. It returns an integer
less than zero if at the first differing position i (i < n), the corresponding wide-character
s1[i] is less than s2[i].

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemcmp()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memcmp(3), wcscmp(3)

Linux man-pages 6.16 2025-09-07 2725

wmemcpy(3) Library Functions Manual wmemcpy(3)

NAME
wmemcpy - copy an array of wide-characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemcpy(size_t n;
wchar_t dest[restrict n],
const wchar_t src[restrict n],
size_t n);

DESCRIPTION
The wmemcpy() function is the wide-character equivalent of the memcpy(3) function.
It copies n wide characters from the array starting at src to the array starting at dest.

The arrays may not overlap; use wmemmove(3) to copy between overlapping arrays.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wmemcpy() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemcpy()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memcpy(3), wcscpy(3), wmemmove(3), wmempcpy(3)

Linux man-pages 6.16 2025-09-21 2726

wmemmove(3) Library Functions Manual wmemmove(3)

NAME
wmemmove - copy an array of wide-characters

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemmove(size_t n;
wchar_t dest[n], const wchar_t src[n], size_t n);

DESCRIPTION
The wmemmove() function is the wide-character equivalent of the memmove(3) func-
tion. It copies n wide characters from the array starting at src to the array starting at
dest. The arrays may overlap.

The programmer must ensure that there is room for at least n wide characters at dest.

RETURN VALUE
wmemmove() returns dest.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemmove()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memmove(3), wmemcpy(3)

Linux man-pages 6.16 2025-09-07 2727

wmemset(3) Library Functions Manual wmemset(3)

NAME
wmemset - fill an array of wide-characters with a constant wide character

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wchar.h>

wchar_t *wmemset(size_t n;
wchar_t wcs[n], wchar_t wc, size_t n);

DESCRIPTION
The wmemset() function is the wide-character equivalent of the memset(3) function. It
fills the array of n wide-characters starting at wcs with n copies of the wide character
wc.

RETURN VALUE
wmemset() returns wcs.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safewmemset()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

SEE ALSO
memset(3)

Linux man-pages 6.16 2025-06-28 2728

wordexp(3) Library Functions Manual wordexp(3)

NAME
wordexp, wordfree - perform word expansion like a posix-shell

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <wordexp.h>

int wordexp(const char *restrict s, wordexp_t *restrict p, int flags);
void wordfree(wordexp_t *p);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

wordexp(), wordfree():
_XOPEN_SOURCE

DESCRIPTION
The function wordexp() performs a shell-like expansion of the string s and returns the
result in the structure pointed to by p. The data type wordexp_t is a structure that at
least has the fields we_wordc, we_wordv, and we_offs. The field we_wordc is a size_t
that gives the number of words in the expansion of s. The field we_wordv is a char **
that points to the array of words found. The field we_offs of type size_t is sometimes
(depending on flags, see below) used to indicate the number of initial elements in the
we_wordv array that should be filled with NULLs.

The function wordfree() frees the allocated memory again. More precisely, it does not
free its argument, but it frees the array we_wordv and the strings that points to.

The string argument
Since the expansion is the same as the expansion by the shell (see sh(1)) of the parame-
ters to a command, the string s must not contain characters that would be illegal in shell
command parameters. In particular, there must not be any unescaped newline or |, &, ;,
<, >, (,), {, } characters outside a command substitution or parameter substitution con-
text.

If the argument s contains a word that starts with an unquoted comment character #,
then it is unspecified whether that word and all following words are ignored, or the # is
treated as a non-comment character.

The expansion
The expansion done consists of the following stages: tilde expansion (replacing ~user by
user’s home directory), variable substitution (replacing $FOO by the value of the envi-
ronment variable FOO), command substitution (replacing $(command) or `command`
by the output of command), arithmetic expansion, field splitting, wildcard expansion,
quote removal.

The result of expansion of special parameters ($@, $*, $#, $?, $-, $$, $!, $0) is unspeci-
fied.

Field splitting is done using the environment variable $IFS. If it is not set, the field sep-
arators are space, tab, and newline.

Linux man-pages 6.16 2025-05-17 2729

wordexp(3) Library Functions Manual wordexp(3)

The output array
The array we_wordv contains the words found, followed by a NULL.

The flags argument
The flag argument is a bitwise inclusive OR of the following values:

WRDE_APPEND
Append the words found to the array resulting from a previous call.

WRDE_DOOFFS
Insert we_offs initial NULLs in the array we_wordv. (These are not counted in
the returned we_wordc.)

WRDE_NOCMD
Don’t do command substitution.

WRDE_REUSE
The argument p resulted from a previous call to wordexp(), and wordfree() was
not called. Reuse the allocated storage.

WRDE_SHOWERR
Normally during command substitution stderr is redirected to /dev/null. This
flag specifies that stderr is not to be redirected.

WRDE_UNDEF
Consider it an error if an undefined shell variable is expanded.

RETURN VALUE
On success, wordexp() returns 0. On failure, wordexp() returns one of the following
nonzero values:

WRDE_BADCHAR
Illegal occurrence of newline or one of |, &, ;, <, >, (,), {, }.

WRDE_BADVAL
An undefined shell variable was referenced, and the WRDE_UNDEF flag told
us to consider this an error.

WRDE_CMDSUB
Command substitution requested, but the WRDE_NOCMD flag told us to con-
sider this an error.

WRDE_NOSPACE
Out of memory.

WRDE_SYNTAX
Shell syntax error, such as unbalanced parentheses or unmatched quotes.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safetywordexp() MT-Unsafe race:utent const:env env sig:ALRM timer
locale

Thread safety MT-Safewordfree()

In the above table, utent in race:utent signifies that if any of the functions setutent(3),

Linux man-pages 6.16 2025-05-17 2730

wordexp(3) Library Functions Manual wordexp(3)

getutent(3), or endutent(3) are used in parallel in different threads of a program, then
data races could occur. wordexp() calls those functions, so we use race:utent to remind
users.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.1.

EXAMPLES
The output of the following example program is approximately that of "ls [a-c]*.c".

#include <stdio.h>
#include <stdlib.h>
#include <wordexp.h>

int
main(void)
{

wordexp_t p;
char **w;

wordexp("[a-c]*.c", &p, 0);
w = p.we_wordv;
for (size_t i = 0; i < p.we_wordc; i++)

printf("%s\n", w[i]);
wordfree(&p);
exit(EXIT_SUCCESS);

}

SEE ALSO
fnmatch(3), glob(3)

Linux man-pages 6.16 2025-05-17 2731

wprintf (3) Library Functions Manual wprintf (3)

NAME
wprintf, fwprintf, swprintf, vwprintf, vfwprintf, vswprintf - formatted wide-character
output conversion

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int wprintf(const wchar_t *restrict format, ...);
int fwprintf(FILE *restrict stream,

const wchar_t *restrict format, ...);
int swprintf(size_t n;

wchar_t wcs[restrict n], size_t n,
const wchar_t *restrict format, ...);

int vwprintf(const wchar_t *restrict format, va_list args);
int vfwprintf(FILE *restrict stream,

const wchar_t *restrict format, va_list args);
int vswprintf(size_t n;

wchar_t wcs[restrict n], size_t n,
const wchar_t *restrict format, va_list args);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

All functions shown above:
_XOPEN_SOURCE >= 500 || _ISOC99_SOURCE

|| _POSIX_C_SOURCE >= 200112L

DESCRIPTION
The wprintf() family of functions is the wide-character equivalent of the printf(3) fam-
ily of functions. It performs formatted output of wide characters.

The wprintf() and vwprintf() functions perform wide-character output to stdout. std-
out must not be byte oriented; see fwide(3) for more information.

The fwprintf() and vfwprintf() functions perform wide-character output to stream.
stream must not be byte oriented; see fwide(3) for more information.

The swprintf() and vswprintf() functions perform wide-character output to an array of
wide characters. The programmer must ensure that there is room for at least n wide
characters at wcs.

These functions are like the printf(3), vprintf(3), fprintf(3), vfprintf(3), sprintf(3),
vsprintf(3) functions except for the following differences:

• The format string is a wide-character string.

• The output consists of wide characters, not bytes.

• swprintf() and vswprintf() take a n argument, sprintf(3) and vsprintf(3) do not.
(snprintf(3) and vsnprintf(3) take a n argument, but these functions do not return
-1 upon buffer overflow on Linux.)

Linux man-pages 6.16 2025-09-21 2732

wprintf (3) Library Functions Manual wprintf (3)

The treatment of the conversion characters c and s is different:

c If no l modifier is present, the int argument is converted to a wide character by a
call to the btowc(3) function, and the resulting wide character is written. If an l
modifier is present, the wint_t (wide character) argument is written.

s If no l modifier is present: the const char * argument is expected to be a pointer
to an array of character type (pointer to a string) containing a multibyte character
sequence beginning in the initial shift state. Characters from the array are con-
verted to wide characters (each by a call to the mbrtowc(3) function with a con-
version state starting in the initial state before the first byte). The resulting wide
characters are written up to (but not including) the terminating null wide charac-
ter (L'\0'). If a precision is specified, no more wide characters than the number
specified are written. Note that the precision determines the number of wide
characters written, not the number of bytes or screen positions. The array must
contain a terminating null byte ('\0'), unless a precision is given and it is so small
that the number of converted wide characters reaches it before the end of the ar-
ray is reached. If an l modifier is present: the const wchar_t * argument is ex-
pected to be a pointer to an array of wide characters. Wide characters from the
array are written up to (but not including) a terminating null wide character. If a
precision is specified, no more than the number specified are written. The array
must contain a terminating null wide character, unless a precision is given and it
is smaller than or equal to the number of wide characters in the array.

RETURN VALUE
The functions return the number of wide characters written, excluding the terminating
null wide character in case of the functions swprintf() and vswprintf(). On error, -1 is
returned, and errno is set to indicate the error.

ERRORS
See write(2) and putwc(3). In addition, the following error may occur:

EOVERFLOW
The value to be returned is greater than INT_MAX.

The fwprintf() and wprintf() functions may fail additionally if:

ENOMEM
Insufficient storage space is available.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safe localewprintf(), fwprintf(), swprintf(), vwprintf(),
vfwprintf(), vswprintf()

STANDARDS
C11, POSIX.1-2008.

HISTORY
POSIX.1-2001, C99.

Linux man-pages 6.16 2025-09-21 2733

wprintf (3) Library Functions Manual wprintf (3)

NOTES
The behavior of wprintf() et al. depends on the LC_CTYPE category of the current lo-
cale.

If the format string contains non-ASCII wide characters, the program will work cor-
rectly only if the LC_CTYPE category of the current locale at run time is the same as
the LC_CTYPE category of the current locale at compile time. This is because the
wchar_t representation is platform- and locale-dependent. (The glibc represents wide
characters using their Unicode (ISO/IEC 10646) code point, but other platforms don’t
do this. Also, the use of C99 universal character names of the form \unnnn does not
solve this problem.) Therefore, in internationalized programs, the format string should
consist of ASCII wide characters only, or should be constructed at run time in an inter-
nationalized way (e.g., using gettext(3) or iconv(3), followed by mbstowcs(3)).

SEE ALSO
fprintf(3), fputwc(3), fwide(3), printf(3), snprintf(3)

Linux man-pages 6.16 2025-09-21 2734

XCRYPT (3) Library Functions Manual XCRYPT (3)

NAME
xencrypt, xdecrypt, passwd2des - RFS password encryption

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <rpc/des_crypt.h>

void passwd2des(char *passwd , char *key);

int xencrypt(char *secret, char *passwd);
int xdecrypt(char *secret, char *passwd);

DESCRIPTION
WARNING: Do not use these functions in new code. They do not achieve any type of
acceptable cryptographic security guarantees.

The function passwd2des() takes a character string passwd of arbitrary length and fills
a character array key of length 8. The array key is suitable for use as DES key. It has
odd parity set in bit 0 of each byte. Both other functions described here use this func-
tion to turn their argument passwd into a DES key.

The xencrypt() function takes the ASCII character string secret given in hex, which
must have a length that is a multiple of 16, encrypts it using the DES key derived from
passwd by passwd2des(), and outputs the result again in secret as a hex string of the
same length.

The xdecrypt() function performs the converse operation.

RETURN VALUE
The functions xencrypt() and xdecrypt() return 1 on success and 0 on error.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safepasswd2des(), xencrypt(), xdecrypt()

VERSIONS
These functions are available since glibc 2.1.

BUGS
The prototypes are missing from the abovementioned include file.

SEE ALSO
cbc_crypt(3)

Linux man-pages 6.16 2025-05-17 2735

xdr(3) Library Functions Manual xdr(3)

NAME
xdr - library routines for external data representation

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS AND DESCRIPTION
These routines allow C programmers to describe arbitrary data structures in a machine-
independent fashion. Data for remote procedure calls are transmitted using these rou-
tines.

The prototypes below are declared in <rpc/xdr.h> and make use of the following types:

typedef int bool_t;

typedef typeof(bool_t (XDR *, void *, ...)) *xdrproc_t;

For the declaration of the XDR type, see <rpc/xdr.h>.

bool_t xdr_array(XDR *xdrs, char **arrp, unsigned int *sizep,
unsigned int maxsize, unsigned int elsize,
xdrproc_t elproc);

A filter primitive that translates between variable-length arrays and their corre-
sponding external representations. The argument arrp is the address of the
pointer to the array, while sizep is the address of the element count of the array;
this element count cannot exceed maxsize. The argument elsize is the sizeof
each of the array’s elements, and elproc is an XDR filter that translates between
the array elements’ C form, and their external representation. This routine re-
turns one if it succeeds, zero otherwise.

bool_t xdr_bool(XDR *xdrs, bool_t *bp);

A filter primitive that translates between booleans (C integers) and their external
representations. When encoding data, this filter produces values of either one or
zero. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_bytes(XDR *xdrs, char **sp, unsigned int *sizep,
unsigned int maxsize);

A filter primitive that translates between counted byte strings and their external
representations. The argument sp is the address of the string pointer. The length
of the string is located at address sizep; strings cannot be longer than maxsize.
This routine returns one if it succeeds, zero otherwise.

bool_t xdr_char(XDR *xdrs, char *cp);

A filter primitive that translates between C characters and their external represen-
tations. This routine returns one if it succeeds, zero otherwise. Note: encoded
characters are not packed, and occupy 4 bytes each. For arrays of characters, it
is worthwhile to consider xdr_bytes(), xdr_opaque(), or xdr_string().

void xdr_destroy(XDR *xdrs);

A macro that invokes the destroy routine associated with the XDR stream, xdrs.
Destruction usually involves freeing private data structures associated with the

Linux man-pages 6.16 2025-09-21 2736

xdr(3) Library Functions Manual xdr(3)

stream. Using xdrs after invoking xdr_destroy() is undefined.

bool_t xdr_double(XDR *xdrs, double *dp);

A filter primitive that translates between C double precision numbers and their
external representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_enum(XDR *xdrs, enum_t *ep);

A filter primitive that translates between C enums (actually integers) and their
external representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_float(XDR *xdrs, float * fp);

A filter primitive that translates between C floats and their external representa-
tions. This routine returns one if it succeeds, zero otherwise.

void xdr_free(xdrproc_t proc, char *objp);

Generic freeing routine. The first argument is the XDR routine for the object be-
ing freed. The second argument is a pointer to the object itself. Note: the
pointer passed to this routine is not freed, but what it points to is freed (recur-
sively).

unsigned int xdr_getpos(XDR *xdrs);

A macro that invokes the get-position routine associated with the XDR stream,
xdrs. The routine returns an unsigned integer, which indicates the position of the
XDR byte stream. A desirable feature of XDR streams is that simple arithmetic
works with this number, although the XDR stream instances need not guarantee
this.

long *xdr_inline(XDR *xdrs, int len);

A macro that invokes the inline routine associated with the XDR stream, xdrs.
The routine returns a pointer to a contiguous piece of the stream’s buffer; len is
the byte length of the desired buffer. Note: pointer is cast to long *.

Warning: xdr_inline() may return NULL (0) if it cannot allocate a contiguous
piece of a buffer. Therefore the behavior may vary among stream instances; it
exists for the sake of efficiency.

bool_t xdr_int(XDR *xdrs, int *ip);

A filter primitive that translates between C integers and their external representa-
tions. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_long(XDR *xdrs, long *lp);

A filter primitive that translates between C long integers and their external repre-
sentations. This routine returns one if it succeeds, zero otherwise.

void xdrmem_create(XDR *xdrs, char *addr, unsigned int size,
enum xdr_op op);

This routine initializes the XDR stream object pointed to by xdrs. The stream’s
data is written to, or read from, a chunk of memory at location addr whose
length is no more than size bytes long. The op determines the direction of the

Linux man-pages 6.16 2025-09-21 2737

xdr(3) Library Functions Manual xdr(3)

XDR stream (either XDR_ENCODE, XDR_DECODE, or XDR_FREE).

bool_t xdr_opaque(XDR *xdrs, char *cp, unsigned int cnt);

A filter primitive that translates between fixed size opaque data and its external
representation. The argument cp is the address of the opaque object, and cnt is
its size in bytes. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_pointer(XDR *xdrs, char **objpp,
unsigned int objsize, xdrproc_t xdrobj);

Like xdr_reference() except that it serializes null pointers, whereas xdr_refer-
ence() does not. Thus, xdr_pointer() can represent recursive data structures,
such as binary trees or linked lists.

void xdrrec_create(XDR *xdrs, unsigned int sendsize,
unsigned int recvsize, char *handle,
typeof(int (char *, char *, int)) *readit,
typeof(int (char *, char *, int)) *writeit);

This routine initializes the XDR stream object pointed to by xdrs. The stream’s
data is written to a buffer of size sendsize; a value of zero indicates the system
should use a suitable default. The stream’s data is read from a buffer of size
recvsize; it too can be set to a suitable default by passing a zero value. When a
stream’s output buffer is full, writeit is called. Similarly, when a stream’s input
buffer is empty, readit is called. The behavior of these two routines is similar to
the system calls read(2) and write(2), except that handle is passed to the former
routines as the first argument. Note: the XDR stream’s op field must be set by
the caller.

Warning: to read from an XDR stream created by this API, you’ll need to call
xdrrec_skiprecord() first before calling any other XDR APIs. This inserts addi-
tional bytes in the stream to provide record boundary information. Also, XDR
streams created with different xdr*_create APIs are not compatible for the same
reason.

bool_t xdrrec_endofrecord(XDR *xdrs, int sendnow);

This routine can be invoked only on streams created by xdrrec_create(). The
data in the output buffer is marked as a completed record, and the output buffer
is optionally written out if sendnow is nonzero. This routine returns one if it
succeeds, zero otherwise.

bool_t xdrrec_eof(XDR *xdrs);

This routine can be invoked only on streams created by xdrrec_create(). After
consuming the rest of the current record in the stream, this routine returns one if
the stream has no more input, zero otherwise.

bool_t xdrrec_skiprecord(XDR *xdrs);

This routine can be invoked only on streams created by xdrrec_create(). It tells
the XDR implementation that the rest of the current record in the stream’s input
buffer should be discarded. This routine returns one if it succeeds, zero other-
wise.

Linux man-pages 6.16 2025-09-21 2738

xdr(3) Library Functions Manual xdr(3)

bool_t xdr_reference(XDR *xdrs, char **pp, unsigned int size,
xdrproc_t proc);

A primitive that provides pointer chasing within structures. The argument pp is
the address of the pointer; size is the sizeof the structure that *pp points to; and
proc is an XDR procedure that filters the structure between its C form and its ex-
ternal representation. This routine returns one if it succeeds, zero otherwise.

Warning: this routine does not understand null pointers. Use xdr_pointer() in-
stead.

xdr_setpos(XDR *xdrs, unsigned int pos);

A macro that invokes the set position routine associated with the XDR stream
xdrs. The argument pos is a position value obtained from xdr_getpos(). This
routine returns one if the XDR stream could be repositioned, and zero otherwise.

Warning: it is difficult to reposition some types of XDR streams, so this routine
may fail with one type of stream and succeed with another.

bool_t xdr_short(XDR *xdrs, short *sp);

A filter primitive that translates between C short integers and their external rep-
resentations. This routine returns one if it succeeds, zero otherwise.

void xdrstdio_create(XDR *xdrs, FILE * file, enum xdr_op op);

This routine initializes the XDR stream object pointed to by xdrs. The XDR
stream data is written to, or read from, the stdio stream file. The argument op
determines the direction of the XDR stream (either XDR_ENCODE, XDR_DE-
CODE, or XDR_FREE).

Warning: the destroy routine associated with such XDR streams calls fflush(3) on
the file stream, but never fclose(3).

bool_t xdr_string(XDR *xdrs, char **sp, unsigned int maxsize);

A filter primitive that translates between C strings and their corresponding exter-
nal representations. Strings cannot be longer than maxsize. Note: sp is the ad-
dress of the string’s pointer. This routine returns one if it succeeds, zero other-
wise.

bool_t xdr_u_char(XDR *xdrs, unsigned char *ucp);

A filter primitive that translates between unsigned C characters and their external
representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_u_int(XDR *xdrs, unsigned int *up);

A filter primitive that translates between C unsigned integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_u_long(XDR *xdrs, unsigned long *ulp);

A filter primitive that translates between C unsigned long integers and their ex-
ternal representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_u_short(XDR *xdrs, unsigned short *usp);

Linux man-pages 6.16 2025-09-21 2739

xdr(3) Library Functions Manual xdr(3)

A filter primitive that translates between C unsigned short integers and their ex-
ternal representations. This routine returns one if it succeeds, zero otherwise.

bool_t xdr_union(XDR *xdrs, enum_t *dscmp, char *unp,
const struct xdr_discrim *choices,
xdrproc_t defaultarm); /* may equal NULL */

A filter primitive that translates between a discriminated C union and its corre-
sponding external representation. It first translates the discriminant of the union
located at dscmp. This discriminant is always an enum_t. Next the union lo-
cated at unp is translated. The argument choices is a pointer to an array of
xdr_discrim() structures. Each structure contains an ordered pair of
[value,proc]. If the union’s discriminant is equal to the associated value, then
the proc is called to translate the union. The end of the xdr_discrim() structure
array is denoted by a routine of value NULL. If the discriminant is not found in
the choices array, then the defaultarm procedure is called (if it is not NULL).
Returns one if it succeeds, zero otherwise.

bool_t xdr_vector(XDR *xdrs, char *arrp, unsigned int size,
unsigned int elsize, xdrproc_t elproc);

A filter primitive that translates between fixed-length arrays and their corre-
sponding external representations. The argument arrp is the address of the
pointer to the array, while size is the element count of the array. The argument
elsize is the sizeof each of the array’s elements, and elproc is an XDR filter that
translates between the array elements’ C form, and their external representation.
This routine returns one if it succeeds, zero otherwise.

bool_t xdr_void(void);

This routine always returns one. It may be passed to RPC routines that require a
function argument, where nothing is to be done.

bool_t xdr_wrapstring(XDR *xdrs, char **sp);

A primitive that calls xdr_string(xdrs, sp,MAXUN.UNSIGNED); where
MAXUN.UNSIGNED is the maximum value of an unsigned integer.
xdr_wrapstring() is handy because the RPC package passes a maximum of two
XDR routines as arguments, and xdr_string(), one of the most frequently used
primitives, requires three. Returns one if it succeeds, zero otherwise.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).

Linux man-pages 6.16 2025-09-21 2740

xdr(3) Library Functions Manual xdr(3)

Interface Attribute Value
Thread safety MT-Safexdr_array(), xdr_bool(), xdr_bytes(), xdr_char(),

xdr_destroy(), xdr_double(), xdr_enum(),
xdr_float(), xdr_free(), xdr_getpos(), xdr_inline(),
xdr_int(), xdr_long(), xdrmem_create(),
xdr_opaque(), xdr_pointer(), xdrrec_create(),
xdrrec_eof(), xdrrec_endofrecord(),
xdrrec_skiprecord(), xdr_reference(), xdr_setpos(),
xdr_short(), xdrstdio_create(), xdr_string(),
xdr_u_char(), xdr_u_int(), xdr_u_long(),
xdr_u_short(), xdr_union(), xdr_vector(),
xdr_void(), xdr_wrapstring()

SEE ALSO
rpc(3)

The following manuals:
eXternal Data Representation Standard: Protocol Specification
eXternal Data Representation: Sun Technical Notes
XDR: External Data Representation Standard , RFC 1014, Sun Microsystems,
Inc., USC-ISI.

Linux man-pages 6.16 2025-09-21 2741

xdr(3) Library Functions Manual xdr(3)

Linux man-pages 6.16 2025-09-21 2742

y0(3) Library Functions Manual y0(3)

NAME
y0, y0f, y0l, y1, y1f, y1l, yn, ynf, ynl - Bessel functions of the second kind

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <math.h>

double y0(double x);
double y1(double x);
double yn(int n, double x);

float y0f(float x);
float y1f(float x);
float ynf(int n, float x);

long double y0l(long double x);
long double y1l(long double x);
long double ynl(int n, long double x);

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

y0(), y1(), yn():
_XOPEN_SOURCE

|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

y0f(), y0l(), y1f(), y1l(), ynf(), ynl():
_XOPEN_SOURCE >= 600

|| (_ISOC99_SOURCE && _XOPEN_SOURCE)
|| /* Since glibc 2.19: */ _DEFAULT_SOURCE
|| /* glibc <= 2.19: */ _SVID_SOURCE || _BSD_SOURCE

DESCRIPTION
The y0() and y1() functions return Bessel functions of x of the second kind of orders 0
and 1, respectively. The yn() function returns the Bessel function of x of the second
kind of order n.

The value of x must be positive.

The y0f(), y1f(), and ynf() functions are versions that take and return float values. The
y0l(), y1l(), and ynl() functions are versions that take and return long double values.

RETURN VALUE
On success, these functions return the appropriate Bessel value of the second kind for x.

If x is a NaN, a NaN is returned.

If x is negative, a domain error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively. (POSIX.1-2001 also allows a NaN
return for this case.)

If x is 0.0, a pole error occurs, and the functions return -HUGE_VAL, -HUGE_VALF,
or -HUGE_VALL, respectively.

If the result underflows, a range error occurs, and the functions return 0.0

Linux man-pages 6.16 2025-05-17 2743

y0(3) Library Functions Manual y0(3)

If the result overflows, a range error occurs, and the functions return -HUGE_VAL,
-HUGE_VALF, or -HUGE_VALL, respectively. (POSIX.1-2001 also allows a 0.0 re-
turn for this case.)

ERRORS
See math_error(7) for information on how to determine whether an error has occurred
when calling these functions.

The following errors can occur:

Domain error: x is negative
errno is set to EDOM. An invalid floating-point exception (FE_INVALID) is
raised.

Pole error: x is 0.0
errno is set to ERANGE and an FE_DIVBYZERO exception is raised (but see
BUGS).

Range error: result underflow
errno is set to ERANGE. No FE_UNDERFLOW exception is returned by
fetestexcept(3) for this case.

Range error: result overflow
errno is set to ERANGE (but see BUGS). An overflow floating-point exception
(FE_OVERFLOW) is raised.

ATTRIBUTES
For an explanation of the terms used in this section, see attributes(7).
Interface Attribute Value

Thread safety MT-Safey0(), y0f(), y0l()
Thread safety MT-Safey1(), y1f(), y1l()
Thread safety MT-Safeyn(), ynf(), ynl()

STANDARDS
y0()
y1()
yn() POSIX.1-2008.

Others:
BSD.

HISTORY
y0()
y1()
yn() SVr4, 4.3BSD, POSIX.1-2001.

Others:
BSD.

BUGS
Before glibc 2.19, these functions misdiagnosed pole errors: errno was set to EDOM,
instead of ERANGE and no FE_DIVBYZERO exception was raised.

Before glibc 2.17, did not set errno for "range error: result underflow".

Linux man-pages 6.16 2025-05-17 2744

y0(3) Library Functions Manual y0(3)

In glibc 2.3.2 and earlier, these functions do not raise an invalid floating-point exception
(FE_INVALID) when a domain error occurs.

SEE ALSO
j0(3)

Linux man-pages 6.16 2025-05-17 2745

gnu::aligned(3attr) gnu::aligned(3attr)

NAME
gnu::aligned - set alignment of an object

SYNOPSIS
[[gnu::aligned(alignment)]]
[[gnu::aligned]]

DESCRIPTION
This attribute can be applied to a type or a variable, and sets its alignment in bytes.

If the alignment is not specified, the maximum alignment is used. This is equivalent to

[[gnu::aligned(alignof(max_align_t))]]

VERSIONS
__attribute__((aligned(alignment)))

__declspec(align(alignment))

C11 provides the _Alignas() type specifier, which has similar semantics.

STANDARDS
GNU.

HISTORY
gcc, g++, clang 11, clang++ 2.8.0.

CAVEATS
This attribute can increase the natural alignment of a type, but it can’t decrease it.

The linker may limit the maximum alignment that can be applied.

Linux man-pages 6.16 2025-06-28 2746

gnu::format(3attr) gnu::format(3attr)

NAME
gnu::format - specify the style of format string

SYNOPSIS
[[gnu::format(style, fmt-idx, first-idx)]]

DESCRIPTION
This attribute can be applied to a function. It specifies that a function parameter is a for-
mat string, and specifies the style of the format string. This allows checking the syntax
of the format string, as well as the types of the variadic arguments. The style can be one
of the following.

printf
scanf
strftime
strfmon

fmt-idx is a 1-based index that specifies the position of the format string within the para-
meter list.

first-idx is a 1-based index that specifies the position of the first argument that corre-
sponds to the format string. If the first argument is part of a va_list argument, it should
be specified as 0.

VERSIONS
GNU syntax

__attribute__((format(style, fmt-idx, first-idx)))

Styles
On some targets, other styles are additionally supported.

MinGW
Microsoft Windows

ms_printf
ms_scanf
ms_strftime

These correspond to the formats supported by the msvcrt.dll library.

GCC-only.

Solaris
cmn_err

Darwin
CFString

OpenBSD
kprintf
syslog
syslog

Clang-only.

Linux man-pages 6.16 2025-09-25 2747

gnu::format(3attr) gnu::format(3attr)

FreeBSD
freebsd_kprintf

Clang-only.

In some languages, other styles are additionally supported.

Objective-C
NSString

Non-variadic functions
Clang accepts the attribute on non-variadic functions as an extension.

STANDARDS
GNU.

HISTORY
gcc, g++, clang 2.8, clang++ 2.8.

EXAMPLES
[[gnu::format(printf, 3, 0)]]
int
vstprintf(int size;

char buf[restrict size], int size,
const char *restrict fmt, va_list args)

{
int len;

if (size == 0) {
errno = EOVERFLOW;
return -1;

}

len = vsnprintf(buf, size, fmt, args);
if (len >= size) {

errno = E2BIG;
return -1;

}

return len;
}

[[gnu::format(printf, 3, 4)]]
int
stprintf(int size;

char buf[restrict size], int size,
const char *restrict fmt, ...)

{
int len;
va_list args;

va_start(args, fmt);

Linux man-pages 6.16 2025-09-25 2748

gnu::format(3attr) gnu::format(3attr)

len = vstprintf(buf, size, fmt, args);
va_end(args);

return len;
}

Linux man-pages 6.16 2025-09-25 2749

EOF(3const) EOF(3const)

NAME
EOF - end of file or error indicator

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdio.h>

#define EOF /* ... */

DESCRIPTION
EOF represents the end of an input file, or an error indication. It is a negative value, of
type int.

EOF is not a character (it can’t be represented by unsigned char). It is instead a sen-
tinel value outside of the valid range for valid characters.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

CAVEATS
Programs can’t pass this value to an output function to "write" the end of a file. That
would likely result in undefined behavior. Instead, closing the writing stream or file de-
scriptor that refers to such file is the way to signal the end of that file.

SEE ALSO
feof(3), fgetc(3)

Linux man-pages 6.16 2025-10-29 2750

EXIT_SUCCESS(3const) EXIT_SUCCESS(3const)

NAME
EXIT_SUCCESS, EXIT_FAILURE - termination status constants

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdlib.h>

#define EXIT_SUCCESS 0
#define EXIT_FAILURE /* nonzero */

DESCRIPTION
EXIT_SUCCESS and EXIT_FAILURE represent a successful and unsuccessful exit
status respectively, and can be used as arguments to the exit(3) function.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

EXAMPLES
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{

FILE *fp;

if (argc != 2) {
fprintf(stderr, "Usage: %s <file>\n", argv[0]);
exit(EXIT_FAILURE);

}

fp = fopen(argv[1], "r");
if (fp == NULL) {

perror(argv[1]);
exit(EXIT_FAILURE);

}

/* Other code omitted */

fclose(fp);
exit(EXIT_SUCCESS);

}

SEE ALSO
exit(3), sysexits.h(3head)

Linux man-pages 6.16 2025-10-29 2751

NULL(3const) NULL(3const)

NAME
NULL - null pointer constant

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

#define NULL ((void *) 0)

DESCRIPTION
NULL represents a null pointer constant, that is, a pointer that does not point to any-
thing.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

NOTES
The following headers also provide NULL: <locale.h>, <stdio.h>, <stdlib.h>,
<string.h>, <time.h>, <unistd.h>, and <wchar.h>.

CAVEATS
It is undefined behavior to dereference a null pointer, and that usually causes a segmen-
tation fault in practice.

It is also undefined behavior to perform pointer arithmetic on it.

NULL - NULL is undefined behavior, according to ISO C, but is defined to be 0 in C++.

To avoid confusing human readers of the code, do not compare pointer variables to 0,
and do not assign 0 to them. Instead, always use NULL.

NULL shouldn’t be confused with NUL, which is an ascii(7) character, represented in C
as '\0'.

BUGS
When it is necessary to set a pointer variable to a null pointer, it is not enough to use
memset(3) to zero the pointer (this is usually done when zeroing a struct that contains
pointers), since ISO C and POSIX don’t guarantee that a bit pattern of all 0s represent a
null pointer. See the EXAMPLES section in getaddrinfo(3) for an example program
that does this correctly.

SEE ALSO
void(3type)

Linux man-pages 6.16 2025-10-29 2752

NULL(3const) NULL(3const)

Linux man-pages 6.16 2025-10-29 2753

printf.h(3head) printf.h(3head)

NAME
printf.h, register_printf_specifier, register_printf_modifier, register_printf_type,
printf_function, printf_arginfo_size_function, printf_va_arg_function, printf_info,
PA_INT, PA_CHAR, PA_WCHAR, PA_STRING, PA_WSTRING, PA_POINTER,
PA_FLOAT, PA_DOUBLE, PA_LAST, PA_FLAG_LONG_LONG,
PA_FLAG_LONG_DOUBLE, PA_FLAG_LONG, PA_FLAG_SHORT,
PA_FLAG_PTR - define custom behavior for printf-like functions

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <printf.h>

int register_printf_specifier(int spec, printf_function func,
printf_arginfo_size_function arginfo);

int register_printf_modifier(const wchar_t *str);
int register_printf_type(printf_va_arg_function fct);

Callbacks
typedef int printf_function(FILE *stream, const struct printf_info *info,

const void *const args[]);
typedef int printf_arginfo_size_function(const struct printf_info *info,

size_t n, int argtypes[n], int size[n]);
typedef void printf_va_arg_function(void *mem, va_list *ap);

Types
struct printf_info {

int prec; // Precision
int width; // Width
wchar_t spec; // Format letter
unsigned int is_long_double:1;// L or ll flag
unsigned int is_short:1; // h flag
unsigned int is_long:1; // l flag
unsigned int alt:1; // # flag
unsigned int space:1; // Space flag
unsigned int left:1; // - flag
unsigned int showsign:1; // + flag
unsigned int group:1; // ' flag
unsigned int extra:1; // For special use
unsigned int is_char:1; // hh flag
unsigned int wide:1; // True for wide character streams
unsigned int i18n:1; // I flag
unsigned int is_binary128:1; /* Floating-point argument is

ABI-compatible with
IEC 60559 binary128 */

unsigned short user; // Bits for user-installed modifiers
wchar_t pad; // Padding character

};

Linux man-pages 6.16 2025-05-17 2754

printf.h(3head) printf.h(3head)

Constants
#define PA_FLAG_LONG_LONG /* ... */
#define PA_FLAG_LONG_DOUBLE /* ... */
#define PA_FLAG_LONG /* ... */
#define PA_FLAG_SHORT /* ... */
#define PA_FLAG_PTR /* ... */

DESCRIPTION
These functions serve to extend and/or modify the behavior of the printf(3) family of
functions.

register_printf_specifier()
This function registers a custom conversion specifier for the printf(3) family of func-
tions.

spec The character which will be used as a conversion specifier in the format string.

func Callback function that will be executed by the printf(3) family of functions to
format the input arguments into the output stream.

stream
Output stream where the formatted output should be printed. This stream
transparently represents the output, even in the case of functions that
write to a string.

info Structure that holds context information, including the modifiers speci-
fied in the format string. This holds the same contents as in arginfo.

args Array of pointers to the arguments to the printf(3)-like function.

arginfo
Callback function that will be executed by the printf(3) family of functions to
know how many arguments should be parsed for the custom specifier and also
their types.

info Structure that holds context information, including the modifiers speci-
fied in the format string. This holds the same contents as in func.

n Number of arguments remaining to be parsed.

argtypes
This array should be set to define the type of each of the arguments that
will be parsed. Each element in the array represents one of the argu-
ments to be parsed, in the same order that they are passed to the
printf(3)-like function. Each element should be set to a base type (PA_*)
from the enum above, or a custom one, and optionally ORed with an ap-
propriate length modifier (PA_FLAG_*).

The type is determined by using one of the following constants:

PA_INT
int.

Linux man-pages 6.16 2025-05-17 2755

printf.h(3head) printf.h(3head)

PA_CHAR
int, cast to char.

PA_WCHAR
wchar_t.

PA_STRING
const char *, a '\0'-terminated string.

PA_WSTRING
const wchar_t *, a wide character L'\0'-terminated string.

PA_POINTER
void *.

PA_FLOAT
float.

PA_DOUBLE
double.

PA_LAST
TODO.

size For user-defined types, the size of the type (in bytes) should also be spec-
ified through this array. Otherwise, leave it unused.

arginfo is called before func, and prepares some information needed to call func.

register_printf_modifier()
TODO

register_printf_type()
TODO

RETURN VALUE
register_printf_specifier(), register_printf_modifier(), and register_printf_type() re-
turn zero on success, or -1 on error.

Callbacks
The callback of type printf_function should return the number of characters written, or
-1 on error.

The callback of type printf_arginfo_size_function should return the number of argu-
ments to be parsed by this specifier. It also passes information about the type of those
arguments to the caller through argtypes. On error, it should return -1.

ERRORS
EINVAL

The specifier was not a valid character.

STANDARDS
GNU.

HISTORY
register_printf_function(3) is an older function similar to register_printf_specifier(),
and is now deprecated. That function can’t handle user-defined types.

Linux man-pages 6.16 2025-05-17 2756

printf.h(3head) printf.h(3head)

register_printf_specifier() supersedes register_printf_function(3).

EXAMPLES
The following example program registers the ’b’ and ’B’ specifiers to print integers in
binary format, mirroring rules for other unsigned conversion specifiers like ’x’ and ’u’.
This can be used to print in binary prior to C23.

/* This code is in the public domain */

#include <err.h>
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/param.h>

#include <printf.h>

#define GROUP_SEP '\''

struct Printf_Pad {
char ch;
size_t len;

};

static int b_printf(FILE *stream, const struct printf_info *info,
const void *const args[]);

static int b_arginf_sz(const struct printf_info *info,
size_t n, int argtypes[n], int size[n]);

static uintmax_t b_value(const struct printf_info *info,
const void *arg);

static size_t b_bin_repr(char bin[UINTMAX_WIDTH],
const struct printf_info *info, const void *arg);

static size_t b_bin_len(const struct printf_info *info,
ptrdiff_t min_len);

static size_t b_pad_len(const struct printf_info *info,
ptrdiff_t bin_len);

static ssize_t b_print_prefix(FILE *stream,
const struct printf_info *info);

static ssize_t b_pad_zeros(FILE *stream, const struct printf_info *info,
ptrdiff_t min_len);

static ssize_t b_print_number(FILE *stream,
const struct printf_info *info,
const char bin[UINTMAX_WIDTH],
size_t min_len, size_t bin_len);

Linux man-pages 6.16 2025-05-17 2757

printf.h(3head) printf.h(3head)

static char pad_ch(const struct printf_info *info);
static ssize_t pad_spaces(FILE *stream, size_t pad_len);

int
main(void)
{

if (register_printf_specifier('b', b_printf, b_arginf_sz) == -1)
err(EXIT_FAILURE, "register_printf_specifier('b', ...)");

if (register_printf_specifier('B', b_printf, b_arginf_sz) == -1)
err(EXIT_FAILURE, "register_printf_specifier('B', ...)");

printf("....----....----....----....----\n");
printf("%llb;\n", 0x5Ellu);
printf("%lB;\n", 0x5Elu);
printf("%b;\n", 0x5Eu);
printf("%hB;\n", 0x5Eu);
printf("%hhb;\n", 0x5Eu);
printf("%jb;\n", (uintmax_t)0x5E);
printf("%zb;\n", (size_t)0x5E);
printf("....----....----....----....----\n");
printf("%#b;\n", 0x5Eu);
printf("%#B;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("%10b;\n", 0x5Eu);
printf("%010b;\n", 0x5Eu);
printf("%.10b;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("%-10B;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("%'B;\n", 0x5Eu);
printf("....----....----....----....----\n");
printf("....----....----....----....----\n");
printf("%#16.12b;\n", 0xAB);
printf("%-#'20.12b;\n", 0xAB);
printf("%#'020B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%#020B;\n", 0xAB);
printf("%'020B;\n", 0xAB);
printf("%020B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%#021B;\n", 0xAB);
printf("%'021B;\n", 0xAB);
printf("%021B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%#022B;\n", 0xAB);
printf("%'022B;\n", 0xAB);
printf("%022B;\n", 0xAB);

Linux man-pages 6.16 2025-05-17 2758

printf.h(3head) printf.h(3head)

printf("....----....----....----....----\n");
printf("%#023B;\n", 0xAB);
printf("%'023B;\n", 0xAB);
printf("%023B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%-#'19.11b;\n", 0xAB);
printf("%#'019B;\n", 0xAB);
printf("%#019B;\n", 0xAB);
printf("....----....----....----....----\n");
printf("%'019B;\n", 0xAB);
printf("%019B;\n", 0xAB);
printf("%#016b;\n", 0xAB);
printf("....----....----....----....----\n");

return 0;
}

static int
b_printf(FILE *stream, const struct printf_info *info,

const void *const args[])
{

char bin[UINTMAX_WIDTH];
size_t min_len, bin_len;
ssize_t len, tmp;
struct Printf_Pad pad = {0};

len = 0;

min_len = b_bin_repr(bin, info, args[0]);
bin_len = b_bin_len(info, min_len);

pad.ch = pad_ch(info);
if (pad.ch == ' ')

pad.len = b_pad_len(info, bin_len);

/* Padding with ' ' (right aligned) */
if ((pad.ch == ' ') && !info->left) {

tmp = pad_spaces(stream, pad.len);
if (tmp == EOF)

return EOF;
len += tmp;

}

/* "0b"/"0B" prefix */
if (info->alt) {

tmp = b_print_prefix(stream, info);
if (tmp == EOF)

Linux man-pages 6.16 2025-05-17 2759

printf.h(3head) printf.h(3head)

return EOF;
len += tmp;

}

/* Padding with '0' */
if (pad.ch == '0') {

tmp = b_pad_zeros(stream, info, min_len);
if (tmp == EOF)

return EOF;
len += tmp;

}

/* Print number (including leading 0s to fill precision) */
tmp = b_print_number(stream, info, bin, min_len, bin_len);
if (tmp == EOF)

return EOF;
len += tmp;

/* Padding with ' ' (left aligned) */
if (info->left) {

tmp = pad_spaces(stream, pad.len);
if (tmp == EOF)

return EOF;
len += tmp;

}

return len;
}

static int
b_arginf_sz(const struct printf_info *info, size_t n, int argtypes[n],

[[maybe_unused]] int size[n])
{

if (n < 1)
return -1;

if (info->is_long_double)
argtypes[0] = PA_INT | PA_FLAG_LONG_LONG;

else if (info->is_long)
argtypes[0] = PA_INT | PA_FLAG_LONG;

else
argtypes[0] = PA_INT;

return 1;
}

static uintmax_t

Linux man-pages 6.16 2025-05-17 2760

printf.h(3head) printf.h(3head)

b_value(const struct printf_info *info, const void *arg)
{

if (info->is_long_double)
return *(const unsigned long long *)arg;

if (info->is_long)
return *(const unsigned long *)arg;

/* short and char are both promoted to int */
return *(const unsigned int *)arg;

}

static size_t
b_bin_repr(char bin[UINTMAX_WIDTH],

const struct printf_info *info, const void *arg)
{

size_t min_len;
uintmax_t val;

val = b_value(info, arg);

bin[0] = '0';
for (min_len = 0; val; min_len++) {

bin[min_len] = '0' + (val % 2);
val >>= 1;

}

return MAX(min_len, 1);
}

static size_t
b_bin_len(const struct printf_info *info, ptrdiff_t min_len)
{

return MAX(info->prec, min_len);
}

static size_t
b_pad_len(const struct printf_info *info, ptrdiff_t bin_len)
{

ptrdiff_t pad_len;

pad_len = info->width - bin_len;
if (info->alt)

pad_len -= 2;
if (info->group)

pad_len -= (bin_len - 1) / 4;

return MAX(pad_len, 0);

Linux man-pages 6.16 2025-05-17 2761

printf.h(3head) printf.h(3head)

}

static ssize_t
b_print_prefix(FILE *stream, const struct printf_info *info)
{

ssize_t len;

len = 0;
if (fputc('0', stream) == EOF)

return EOF;
len++;
if (fputc(info->spec, stream) == EOF)

return EOF;
len++;

return len;
}

static ssize_t
b_pad_zeros(FILE *stream, const struct printf_info *info,

ptrdiff_t min_len)
{

ssize_t len;
ptrdiff_t tmp;

len = 0;
tmp = info->width - (info->alt * 2);
if (info->group)

tmp -= tmp / 5 - !(tmp % 5);
for (ptrdiff_t i = tmp - 1; i > min_len - 1; i--) {

if (fputc('0', stream) == EOF)
return EOF;

len++;

if (!info->group || (i % 4))
continue;

if (fputc(GROUP_SEP, stream) == EOF)
return EOF;

len++;
}

return len;
}

static ssize_t
b_print_number(FILE *stream, const struct printf_info *info,

const char bin[UINTMAX_WIDTH],

Linux man-pages 6.16 2025-05-17 2762

printf.h(3head) printf.h(3head)

size_t min_len, size_t bin_len)
{

ssize_t len;

len = 0;

/* Print leading zeros to fill precision */
for (size_t i = bin_len - 1; i > min_len - 1; i--) {

if (fputc('0', stream) == EOF)
return EOF;

len++;

if (!info->group || (i % 4))
continue;

if (fputc(GROUP_SEP, stream) == EOF)
return EOF;

len++;
}

/* Print number */
for (size_t i = min_len - 1; i < min_len; i--) {

if (fputc(bin[i], stream) == EOF)
return EOF;

len++;

if (!info->group || (i % 4) || !i)
continue;

if (fputc(GROUP_SEP, stream) == EOF)
return EOF;

len++;
}

return len;
}

static char
pad_ch(const struct printf_info *info)
{

if ((info->prec != -1) || (info->pad == ' ') || info->left)
return ' ';

return '0';
}

static ssize_t
pad_spaces(FILE *stream, size_t pad_len)
{

ssize_t len;

Linux man-pages 6.16 2025-05-17 2763

printf.h(3head) printf.h(3head)

len = 0;
for (size_t i = pad_len - 1; i < pad_len; i--) {

if (fputc(' ', stream) == EOF)
return EOF;

len++;
}

return len;
}

SEE ALSO
asprintf(3), printf(3), wprintf(3)

Linux man-pages 6.16 2025-05-17 2764

sysexits.h(3head) sysexits.h(3head)

NAME
sysexits.h - exit codes for programs

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sysexits.h>
#define EX_OK 0 /* successful termination */

#define EX__BASE 64 /* base value for error messages */

#define EX_USAGE 64 /* command line usage error */
#define EX_DATAERR 65 /* data format error */
#define EX_NOINPUT 66 /* cannot open input */
#define EX_NOUSER 67 /* addressee unknown */
#define EX_NOHOST 68 /* host name unknown */
#define EX_UNAVAILABLE 69 /* service unavailable */
#define EX_SOFTWARE 70 /* internal software error */
#define EX_OSERR 71 /* system error (e.g., can’t fork) */
#define EX_OSFILE 72 /* critical OS file missing */
#define EX_CANTCREAT 73 /* can’t create (user) output file */
#define EX_IOERR 74 /* input/output error */
#define EX_TEMPFAIL 75 /* temp failure; user is invited to retry */
#define EX_PROTOCOL 76 /* remote error in protocol */
#define EX_NOPERM 77 /* permission denied */
#define EX_CONFIG 78 /* configuration error */

#define EX__MAX ... /* maximum listed value */

DESCRIPTION
A few programs exit with the following error codes.

The successful exit is always indicated by a status of 0, or EX_OK (equivalent to
EXIT_SUCCESS from <stdlib.h>). Error numbers begin at EX__BASE to reduce the
possibility of clashing with other exit statuses that random programs may already return.
The meaning of the code is approximately as follows:

EX_USAGE
The command was used incorrectly, e.g., with the wrong number of arguments, a
bad flag, bad syntax in a parameter, or whatever.

EX_DATAERR
The input data was incorrect in some way. This should only be used for user’s
data and not system files.

EX_NOINPUT
An input file (not a system file) did not exist or was not readable. This could
also include errors like "No message" to a mailer (if it cared to catch it).

EX_NOUSER
The user specified did not exist. This might be used for mail addresses or remote
logins.

Linux man-pages 6.16 2025-09-21 2765

sysexits.h(3head) sysexits.h(3head)

EX_NOHOST
The host specified did not exist. This is used in mail addresses or network re-
quests.

EX_UNAVAILABLE
A service is unavailable. This can occur if a support program or file does not ex-
ist. This can also be used as a catch-all message when something you wanted to
do doesn’t work, but you don’t know why.

EX_SOFTWARE
An internal software error has been detected. This should be limited to non-op-
erating system related errors if possible.

EX_OSERR
An operating system error has been detected. This is intended to be used for
such things as "cannot fork", "cannot create pipe", or the like. It includes things
like getuid(2) returning a user that does not exist in the passwd(5) file.

EX_OSFILE
Some system file (e.g., /etc/passwd , /etc/utmp, etc.) does not exist, cannot be
opened, or has some sort of error (e.g., syntax error).

EX_CANTCREAT
A (user specified) output file cannot be created.

EX_IOERR
An error occurred while doing I/O on some file.

EX_TEMPFAIL
Temporary failure, indicating something that is not really an error. For example
that a mailer could not create a connection, and the request should be reat-
tempted later.

EX_PROTOCOL
The remote system returned something that was "not possible" during a protocol
exchange.

EX_OSFILE
You did not have sufficient permission to perform the operation. This is not in-
tended for file system problems, which should use EX_NOINPUT or
EX_CANTCREAT, but rather for higher level permissions.

EX_CONFIG
Something was found in an unconfigured or misconfigured state.

The numerical values corresponding to the symbolical ones are given in parenthesis for
easy reference.

STANDARDS
BSD.

HISTORY
The <sysexits.h> file appeared in 4.0BSD for use by the deliverymail utility, later re-
named to sendmail(8)

Linux man-pages 6.16 2025-09-21 2766

sysexits.h(3head) sysexits.h(3head)

CAVEATS
The choice of an appropriate exit value is often ambiguous.

SEE ALSO
err(3), error(3), exit(3)

Linux man-pages 6.16 2025-09-21 2767

aiocb(3type) aiocb(3type)

NAME
aiocb - asynchronous I/O control block

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <aio.h>

struct aiocb {
int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority offset */
struct sigevent aio_sigevent; /* Signal number and value */
int aio_lio_opcode; /* Operation to be performed */

};

DESCRIPTION
For further information about this structure, see aio(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

SEE ALSO
aio_cancel(3), aio_error(3), aio_fsync(3), aio_read(3), aio_return(3), aio_suspend(3),
aio_write(3), lio_listio(3)

Linux man-pages 6.16 2025-10-29 2768

blkcnt_t(3type) blkcnt_t(3type)

NAME
blkcnt_t - file block counts

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ blkcnt_t;

DESCRIPTION
Used for file block counts. It is a signed integer type.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/stat.h>.

SEE ALSO
stat(3type)

Linux man-pages 6.16 2025-10-29 2769

blksize_t(3type) blksize_t(3type)

NAME
blksize_t - file block sizes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ blksize_t;

DESCRIPTION
Used for file block sizes. It is a signed integer type.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/stat.h>.

SEE ALSO
stat(3type)

Linux man-pages 6.16 2025-10-29 2770

cc_t(3type) cc_t(3type)

NAME
cc_t, speed_t, tcflag_t - terminal special characters, baud rates, modes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <termios.h>

typedef /* ... */ cc_t;
typedef /* ... */ speed_t;
typedef /* ... */ tcflag_t;

DESCRIPTION
cc_t is used for terminal special characters, speed_t for baud rates, and tcflag_t for
modes.

All are unsigned integer types.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

SEE ALSO
termios(3)

Linux man-pages 6.16 2025-10-29 2771

clock_t(3type) clock_t(3type)

NAME
clock_t - system time

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

typedef /* ... */ clock_t;

DESCRIPTION
Used for system time in clock ticks or CLOCKS_PER_SEC (defined in <time.h>).
According to POSIX, it is an integer type or a real-floating type.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

NOTES
The following headers also provide this type: <sys/types.h> and <sys/times.h>.

SEE ALSO
times(2), clock(3)

Linux man-pages 6.16 2025-10-29 2772

clockid_t(3type) clockid_t(3type)

NAME
clockid_t - clock ID for the clock and timer functions

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ clockid_t;

DESCRIPTION
Used for clock ID type in the clock and timer functions. It is defined as an arithmetic
type.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <time.h>.

SEE ALSO
clock_adjtime(2), clock_getres(2), clock_nanosleep(2), timer_create(2), clock_getcpu-
clockid(3)

Linux man-pages 6.16 2025-10-29 2773

dev_t(3type) dev_t(3type)

NAME
dev_t - device ID

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ dev_t;

DESCRIPTION
Used for device IDs. It is an integer type. For further details of this type, see
makedev(3).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/stat.h>.

SEE ALSO
mknod(2), stat(3type)

Linux man-pages 6.16 2025-10-29 2774

div_t(3type) div_t(3type)

NAME
div_t, ldiv_t, lldiv_t, imaxdiv_t - quotient and remainder of an integer division

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdlib.h>

typedef struct {
int quot; /* Quotient */
int rem; /* Remainder */

} div_t;

typedef struct {
long quot; /* Quotient */
long rem; /* Remainder */

} ldiv_t;

typedef struct {
long long quot; /* Quotient */
long long rem; /* Remainder */

} lldiv_t;

#include <inttypes.h>

typedef struct {
intmax_t quot; /* Quotient */
intmax_t rem; /* Remainder */

} imaxdiv_t;

DESCRIPTION
[[l]l]div_t is the type of the value returned by the [[l]l]div(3) function.

imaxdiv_t is the type of the value returned by the imaxdiv(3) function.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
div(3), imaxdiv(3), ldiv(3), lldiv(3)

Linux man-pages 6.16 2025-10-29 2775

double_t(3type) double_t(3type)

NAME
float_t, double_t - most efficient floating types

LIBRARY
Math library (libm)

SYNOPSIS
#include <math.h>

typedef /* ... */ float_t;
typedef /* ... */ double_t;

DESCRIPTION
The implementation’s most efficient floating types at least as wide as float and double
respectively. Their type depends on the value of the macro FLT_EVAL_METHOD
(defined in <float.h>):

FLT_EVAL_METHOD float_t double_t
0 float double
1 double double
2 long double long double

For other values of FLT_EVAL_METHOD, the types of float_t and double_t are im-
plementation-defined.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
float.h(0p), math.h(0p)

Linux man-pages 6.16 2025-10-29 2776

epoll_event(3type) epoll_event(3type)

NAME
epoll_event, epoll_data, epoll_data_t - epoll event

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/epoll.h>

struct epoll_event {
uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */

};

union epoll_data {
void *ptr;
int fd;
uint32_t u32;
uint64_t u64;

};

typedef union epoll_data epoll_data_t;

DESCRIPTION
The epoll_event structure specifies data that the kernel should save and return when the
corresponding file descriptor becomes ready.

VERSIONS
C library/kernel differences

The Linux kernel headers also provide this type, with a slightly different definition:

#include <linux/eventpoll.h>

struct epoll_event {
__poll_t events;
__u64 data;

};

STANDARDS
Linux.

SEE ALSO
epoll_wait(2), epoll_ctl(2)

Linux man-pages 6.16 2025-05-17 2777

fenv_t(3type) fenv_t(3type)

NAME
fenv_t, fexcept_t - floating-point environment

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <fenv.h>

typedef /* ... */ fenv_t;
typedef /* ... */ fexcept_t;

DESCRIPTION
fenv_t represents the entire floating-point environment, including control modes and
status flags.

fexcept_t represents the floating-point status flags collectively.

For further details see fenv(3).

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
fenv(3)

Linux man-pages 6.16 2025-10-29 2778

FILE(3type) FILE(3type)

NAME
FILE - input/output stream

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdio.h>

typedef /* ... */ FILE;

DESCRIPTION
An object type used for streams.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

NOTES
The following header also provides this type: <wchar.h>.

SEE ALSO
fclose(3), flockfile(3), fopen(3), fprintf(3), fread(3), fscanf(3), stdin(3), stdio(3)

Linux man-pages 6.16 2025-10-29 2779

id_t(3type) id_t(3type)

NAME
pid_t, uid_t, gid_t, id_t - process/user/group identifier

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ pid_t;
typedef /* ... */ uid_t;
typedef /* ... */ gid_t;
typedef /* ... */ id_t;

DESCRIPTION
pid_t is a type used for storing process IDs, process group IDs, and session IDs. It is a
signed integer type.

uid_t is a type used to hold user IDs. It is an integer type.

gid_t is a type used to hold group IDs. It is an integer type.

id_t is a type used to hold a general identifier. It is an integer type that can be used to
contain a pid_t, uid_t, or gid_t.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide pid_t: <fcntl.h>, <sched.h>, <signal.h>,
<spawn.h>, <sys/msg.h>, <sys/sem.h>, <sys/shm.h>, <sys/wait.h>, <termios.h>,
<time.h>, <unistd.h>, and <utmpx.h>.

The following headers also provide uid_t: <pwd.h>, <signal.h>, <stropts.h>,
<sys/ipc.h>, <sys/stat.h>, and <unistd.h>.

The following headers also provide gid_t: <grp.h>, <pwd.h>, <signal.h>, <stropts.h>,
<sys/ipc.h>, <sys/stat.h>, and <unistd.h>.

The following header also provides id_t: <sys/resource.h>.

SEE ALSO
chown(2), fork(2), getegid(2), geteuid(2), getgid(2), getgroups(2), getpgid(2), getpid(2),
getppid(2), getpriority(2), getpwnam(3), getresgid(2), getresuid(2), getsid(2), gettid(2),
getuid(2), kill(2), pidfd_open(2), sched_setscheduler(2), waitid(2), getgrnam(3),
sigqueue(3), credentials(7)

Linux man-pages 6.16 2025-10-29 2780

id_t(3type) id_t(3type)

Linux man-pages 6.16 2025-10-29 2781

intmax_t(3type) intmax_t(3type)

NAME
intmax_t, uintmax_t - greatest-width basic integer types

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdint.h>

typedef /* ... */ intmax_t;
typedef /* ... */ uintmax_t;

#define INTMAX_WIDTH /* ... */
#define UINTMAX_WIDTH INTMAX_WIDTH

#define INTMAX_MAX /* 2**(INTMAX_WIDTH - 1) - 1 */
#define INTMAX_MIN /* - 2**(INTMAX_WIDTH - 1) */
#define UINTMAX_MAX /* 2**UINTMAX_WIDTH - 1 */

#define INTMAX_C(c) c ## /* ... */
#define UINTMAX_C(c) c ## /* ... */

DESCRIPTION
intmax_t is a signed integer type capable of representing any value of any basic signed
integer type supported by the implementation. It is capable of storing values in the
range [INTMAX_MIN, INTMAX_MAX].

uintmax_t is an unsigned integer type capable of representing any value of any basic un-
signed integer type supported by the implementation. It is capable of storing values in
the range [0, UINTMAX_MAX].

The macros [U]INTMAX_WIDTH expand to the width in bits of these types.

The macros [U]INTMAX_MAX expand to the maximum value that these types can
hold.

The macro INTMAX_MIN expands to the minimum value that intmax_t can hold.

The macros [U]INTMAX_C() expand their argument to an integer constant of type
[u]intmax_t.

The length modifier for [u]intmax_t for the printf(3) and the scanf(3) families of func-
tions is j; resulting commonly in %jd, %ji, %ju, or %jx for printing [u]intmax_t val-
ues.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

NOTES
The following header also provides these types: <inttypes.h>.

BUGS
These types may not be as large as extended integer types, such as __int128

Linux man-pages 6.16 2025-10-29 2782

intmax_t(3type) intmax_t(3type)

SEE ALSO
int64_t(3type), intptr_t(3type), printf(3), strtoimax(3)

Linux man-pages 6.16 2025-10-29 2783

intN_t(3type) intN_t(3type)

NAME
intN_t, int8_t, int16_t, int32_t, int64_t, uintN_t, uint8_t, uint16_t, uint32_t, uint64_t -
fixed-width basic integer types

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdint.h>

typedef /* ... */ int8_t;
typedef /* ... */ int16_t;
typedef /* ... */ int32_t;
typedef /* ... */ int64_t;

typedef /* ... */ uint8_t;
typedef /* ... */ uint16_t;
typedef /* ... */ uint32_t;
typedef /* ... */ uint64_t;

#define INT8_WIDTH 8
#define INT16_WIDTH 16
#define INT32_WIDTH 32
#define INT64_WIDTH 64

#define UINT8_WIDTH 8
#define UINT16_WIDTH 16
#define UINT32_WIDTH 32
#define UINT64_WIDTH 64

#define INT8_MAX /* 2**(INT8_WIDTH - 1) - 1 */
#define INT16_MAX /* 2**(INT16_WIDTH - 1) - 1 */
#define INT32_MAX /* 2**(INT32_WIDTH - 1) - 1 */
#define INT64_MAX /* 2**(INT64_WIDTH - 1) - 1 */

#define INT8_MIN /* - 2**(INT8_WIDTH - 1) */
#define INT16_MIN /* - 2**(INT16_WIDTH - 1) */
#define INT32_MIN /* - 2**(INT32_WIDTH - 1) */
#define INT64_MIN /* - 2**(INT64_WIDTH - 1) */

#define UINT8_MAX /* 2**INT8_WIDTH - 1 */
#define UINT16_MAX /* 2**INT16_WIDTH - 1 */
#define UINT32_MAX /* 2**INT32_WIDTH - 1 */
#define UINT64_MAX /* 2**INT64_WIDTH - 1 */

#define INT8_C(c) c ## /* ... */
#define INT16_C(c) c ## /* ... */
#define INT32_C(c) c ## /* ... */
#define INT64_C(c) c ## /* ... */

#define UINT8_C(c) c ## /* ... */
#define UINT16_C(c) c ## /* ... */
#define UINT32_C(c) c ## /* ... */
#define UINT64_C(c) c ## /* ... */

Linux man-pages 6.16 2025-10-29 2784

intN_t(3type) intN_t(3type)

DESCRIPTION
intN_t are signed integer types of a fixed width of exactly N bits, N being the value
specified in its type name. They are be capable of storing values in the range
[INTN_MIN, INTN_MAX], substituting N by the appropriate number.

uintN_t are unsigned integer types of a fixed width of exactly N bits, N being the value
specified in its type name. They are capable of storing values in the range [0,
UINTN_MAX], substituting N by the appropriate number.

According to POSIX, [u]int8_t, [u]int16_t, and [u]int32_t are required; [u]int64_t are
only required in implementations that provide integer types with width 64; and all other
types of this form are optional.

The macros [U]INTN_WIDTH expand to the width in bits of these types (N).

The macros [U]INTN_MAX expand to the maximum value that these types can hold.

The macros INTN_MIN expand to the minimum value that these types can hold.

The macros [U]INTN_C() expand their argument to an integer constant of type
[u]intN_t.

The length modifiers for the [u]intN_t types for the printf(3) family of functions are ex-
panded by macros of the forms PRIdN, PRIiN, PRIuN, and PRIxN (defined in <int-
types.h>); resulting for example in %"PRId64" or %"PRIi64" for printing int64_t
values. The length modifiers for the [u]intN_t types for the scanf(3) family of functions
are expanded by macros of the forms SCNdN, SCNiN, SCNuN, and SCNxN, (defined
in <inttypes.h>); resulting for example in %"SCNu8" or %"SCNx8" for scanning
uint8_t values.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

The [U]INTN_WIDTH macros were added in C23.

NOTES
The following header also provides these types: <inttypes.h>. <arpa/inet.h> also pro-
vides uint16_t and uint32_t.

SEE ALSO
intmax_t(3type), intptr_t(3type), printf(3)

Linux man-pages 6.16 2025-10-29 2785

intptr_t(3type) intptr_t(3type)

NAME
intptr_t, uintptr_t - integer types wide enough to hold pointers

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdint.h>

typedef /* ... */ intptr_t;
typedef /* ... */ uintptr_t;

#define INTPTR_WIDTH /* ... */
#define UINTPTR_WIDTH INTPTR_WIDTH

#define INTPTR_MAX /* 2**(INTPTR_WIDTH - 1) - 1 */
#define INTPTR_MIN /* - 2**(INTPTR_WIDTH - 1) */
#define UINTPTR_MAX /* 2**UINTPTR_WIDTH - 1 */

DESCRIPTION
intptr_t is a signed integer type such that any valid (void *) value can be converted to
this type and then converted back. It is capable of storing values in the range
[INTPTR_MIN, INTPTR_MAX].

uintptr_t is an unsigned integer type such that any valid (void *) value can be converted
to this type and then converted back. It is capable of storing values in the range [0,
UINTPTR_MAX].

The macros [U]INTPTR_WIDTH expand to the width in bits of these types.

The macros [U]INTPTR_MAX expand to the maximum value that these types can
hold.

The macro INTPTR_MIN expands to the minimum value that intptr_t can hold.

The length modifiers for the [u]intptr_t types for the printf(3) family of functions are ex-
panded by the macros PRIdPTR, PRIiPTR, and PRIuPTR (defined in <inttypes.h>);
resulting commonly in %"PRIdPTR" or %"PRIiPTR" for printing intptr_t values.
The length modifiers for the [u]intptr_t types for the scanf(3) family of functions are ex-
panded by the macros SCNdPTR, SCNiPTR, and SCNuPTR (defined in <int-
types.h>); resulting commonly in %"SCNuPTR" for scanning uintptr_t values.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

NOTES
The following header also provides these types: <inttypes.h>.

SEE ALSO
intmax_t(3type), void(3)

Linux man-pages 6.16 2025-10-29 2786

iovec(3type) iovec(3type)

NAME
iovec - Vector I/O data structure

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/uio.h>

struct iovec {
void *iov_base; /* Starting address */
size_t iov_len; /* Size of the memory pointed to by iov_base. */

};

DESCRIPTION
Describes a region of memory, beginning at iov_base address and with the size of
iov_len bytes. System calls use arrays of this structure, where each element of the array
represents a memory region, and the whole array represents a vector of memory regions.
The maximum number of iovec structures in that array is limited by IOV_MAX (de-
fined in <limits.h>, or accessible via the call sysconf(_SC_IOV_MAX)).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides this type: <sys/socket.h>.

SEE ALSO
process_madvise(2), readv(2)

Linux man-pages 6.16 2025-10-29 2787

itimerspec(3type) itimerspec(3type)

NAME
itimerspec - interval for a timer with nanosecond precision

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

struct itimerspec {
struct timespec it_interval; /* Interval for periodic timer */
struct timespec it_value; /* Initial expiration */

};

DESCRIPTION
Describes the initial expiration of a timer, and its interval, in seconds and nanoseconds.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

SEE ALSO
timerfd_create(2), timer_settime(2), timespec(3type)

Linux man-pages 6.16 2025-10-29 2788

lconv(3type) lconv(3type)

NAME
lconv - numeric formatting information

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <locale.h>

struct lconv { /* Values in the "C" locale: */
char *decimal_point; /* "." */
char *thousands_sep; /* "" */
char *grouping; /* "" */
char *mon_decimal_point; /* "" */
char *mon_thousands_sep; /* "" */
char *mon_grouping; /* "" */
char *positive_sign; /* "" */
char *negative_sign; /* "" */
char *currency_symbol; /* "" */
char frac_digits; /* CHAR_MAX */
char p_cs_precedes; /* CHAR_MAX */
char n_cs_precedes; /* CHAR_MAX */
char p_sep_by_space; /* CHAR_MAX */
char n_sep_by_space; /* CHAR_MAX */
char p_sign_posn; /* CHAR_MAX */
char n_sign_posn; /* CHAR_MAX */
char *int_curr_symbol; /* "" */
char int_frac_digits; /* CHAR_MAX */
char int_p_cs_precedes; /* CHAR_MAX */
char int_n_cs_precedes; /* CHAR_MAX */
char int_p_sep_by_space; /* CHAR_MAX */
char int_n_sep_by_space; /* CHAR_MAX */
char int_p_sign_posn; /* CHAR_MAX */
char int_n_sign_posn; /* CHAR_MAX */

};

DESCRIPTION
Contains members related to the formatting of numeric values. In the "C" locale, its
members have the values shown in the comments above.

STANDARDS
C11, POSIX.1-2024.

HISTORY
POSIX.1-2001.

SEE ALSO
setlocale(3), localeconv(3), charsets(7), locale(7)

Linux man-pages 6.16 2025-10-29 2789

locale_t(3type) locale_t(3type)

NAME
locale_t - locale object

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <locale.h>

typedef /* ... */ locale_t;

DESCRIPTION
locale_t is a type used for storing a locale object.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2008.

NOTES
The following headers also provide this type: <ctype.h>, <langinfo.h>, <monetary.h>,
<string.h>, <strings.h>, <time.h>, <wchar.h>, <wctype.h>.

SEE ALSO
duplocale(3), freelocale(3), newlocale(3), setlocale(3), uselocale(3), locale(5), locale(7)

Linux man-pages 6.16 2025-10-29 2790

mbstate_t(3type) mbstate_t(3type)

NAME
mbstate_t - multi-byte-character conversion state

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <wchar.h>

typedef /* ... */ mbstate_t;

DESCRIPTION
Character conversion between the multibyte representation and the wide character repre-
sentation uses conversion state, of type mbstate_t. Conversion of a string uses a finite-
state machine; when it is interrupted after the complete conversion of a number of char-
acters, it may need to save a state for processing the remaining characters. Such a con-
version state is needed for the sake of encodings such as ISO/IEC 2022 and UTF-7.

The initial state is the state at the beginning of conversion of a string. There are two
kinds of state: the one used by multibyte to wide character conversion functions, such as
mbsrtowcs(3), and the one used by wide character to multibyte conversion functions,
such as wcsrtombs(3), but they both fit in a mbstate_t, and they both have the same rep-
resentation for an initial state.

For 8-bit encodings, all states are equivalent to the initial state. For multibyte encodings
like UTF-8, EUC-*, BIG5, or SJIS, the wide character to multibyte conversion functions
never produce non-initial states, but the multibyte to wide-character conversion func-
tions like mbrtowc(3) do produce non-initial states when interrupted in the middle of a
character.

One possible way to create an mbstate_t in initial state is to set it to zero:

mbstate_t state;
memset(&state, 0, sizeof(state));

On Linux, the following works as well, but might generate compiler warnings:

mbstate_t state = { 0 };

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

SEE ALSO
mbrlen(3), mbrtowc(3), mbsinit(3), mbsrtowcs(3), wcrtomb(3), wcsrtombs(3)

Linux man-pages 6.16 2025-10-29 2791

mode_t(3type) mode_t(3type)

NAME
mode_t - file attributes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ mode_t;

DESCRIPTION
Used for some file attributes (e.g., file mode). It is an integer type.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide this type: <fcntl.h>, <ndbm.h>, <spawn.h>,
<sys/ipc.h>, <sys/mman.h>, and <sys/stat.h>.

SEE ALSO
chmod(2), mkdir(2), open(2), umask(2), stat(3type)

Linux man-pages 6.16 2025-10-29 2792

off_t(3type) off_t(3type)

NAME
off_t, off64_t, loff_t - file sizes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ off_t;

#define _LARGEFILE64_SOURCE
#include <sys/types.h>

typedef /* ... */ off64_t;

#define _GNU_SOURCE
#include <sys/types.h>

typedef /* ... */ loff_t;

DESCRIPTION
off_t is used for describing file sizes. It is a signed integer type.

off64_t is a 64-bit version of the type, used in glibc.

loff_t is a 64-bit version of the type, introduced by the Linux kernel.

STANDARDS
off_t POSIX.1-2024.

off64_t
GNU and some BSDs.

loff_t
Linux.

VERSIONS
off_t POSIX.1-2001.

<aio.h> and <stdio.h> define off_t since POSIX.1-2008.

NOTES
On some architectures, the width of off_t can be controlled with the feature test macro
_FILE_OFFSET_BITS.

The following headers also provide off_t: <aio.h>, <fcntl.h>, <stdio.h>,
<sys/mman.h>, <sys/stat.h>, and <unistd.h>.

SEE ALSO
copy_file_range(2), llseek(2), lseek(2), mmap(2), posix_fadvise(2), pread(2), reada-
head(2), sync_file_range(2), truncate(2), fseeko(3), lockf(3), lseek64(3), posix_fallo-
cate(3), feature_test_macros(7)

Linux man-pages 6.16 2025-10-29 2793

off_t(3type) off_t(3type)

Linux man-pages 6.16 2025-10-29 2794

ptrdiff_t(3type) ptrdiff_t(3type)

NAME
ptrdiff_t - count of elements or array index

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

typedef /* ... */ ptrdiff_t;

DESCRIPTION
Used for a count of elements, or an array index. It is the result of subtracting two point-
ers. It is a signed integer type capable of storing values in the range [PTRDIFF_MIN,
PTRDIFF_MAX].

The length modifier for ptrdiff_t for the printf(3) and the scanf(3) families of functions
is t, resulting commonly in %td or %ti for printing ptrdiff_t values.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

SEE ALSO
size_t(3type)

Linux man-pages 6.16 2025-10-29 2795

sigevent(3type) sigevent(3type)

NAME
sigevent, sigval - structure for notification from asynchronous routines

SYNOPSIS
#include <signal.h>

struct sigevent {
int sigev_notify; /* Notification type */
int sigev_signo; /* Signal number */
union sigval sigev_value; /* Data passed with notification */

typeof(void (union sigval)) *sigev_notify_function;
/* Notification function

(SIGEV_THREAD) */
pthread_attr_t *sigev_notify_attributes;

/* Notification attributes */

/* Linux only: */
pid_t sigev_notify_thread_id;

/* ID of thread to signal
(SIGEV_THREAD_ID) */

};

union sigval { /* Data passed with notification */
int sival_int; /* Integer value */
void *sival_ptr; /* Pointer value */

};

DESCRIPTION
sigevent

The sigevent structure is used by various APIs to describe the way a process is to be no-
tified about an event (e.g., completion of an asynchronous request, expiration of a timer,
or the arrival of a message).

The definition shown in the SYNOPSIS is approximate: some of the fields in the
sigevent structure may be defined as part of a union. Programs should employ only
those fields relevant to the value specified in sigev_notify.

The sigev_notify field specifies how notification is to be performed. This field can have
one of the following values:

SIGEV_NONE
A "null" notification: don’t do anything when the event occurs.

SIGEV_SIGNAL
Notify the process by sending the signal specified in sigev_signo.

If the signal is caught with a signal handler that was registered using the sigac-
tion(2) SA_SIGINFO flag, then the following fields are set in the siginfo_t
structure that is passed as the second argument of the handler:

Linux man-pages 6.16 2025-10-29 2796

sigevent(3type) sigevent(3type)

si_code This field is set to a value that depends on the API delivering the no-
tification.

si_signo This field is set to the signal number (i.e., the same value as in
sigev_signo).

si_value This field is set to the value specified in sigev_value.

Depending on the API, other fields may also be set in the siginfo_t structure.

The same information is also available if the signal is accepted using sigwait-
info(2).

SIGEV_THREAD
Notify the process by invoking sigev_notify_function "as if" it were the start
function of a new thread. (Among the implementation possibilities here are that
each timer notification could result in the creation of a new thread, or that a sin-
gle thread is created to receive all notifications.) The function is invoked with
sigev_value as its sole argument. If sigev_notify_attributes is not NULL, it
should point to a pthread_attr_t structure that defines attributes for the new
thread (see pthread_attr_init(3)).

SIGEV_THREAD_ID (Linux-specific)
Currently used only by POSIX timers; see timer_create(2).

sigval
Data passed with a signal.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

<aio.h> and <time.h> define sigevent since POSIX.1-2008.

NOTES
The following headers also provide sigevent: <aio.h>, <mqueue.h>, and <time.h>.

SEE ALSO
timer_create(2), getaddrinfo_a(3), lio_listio(3), mq_notify(3), pthread_sigqueue(3),
sigqueue(3), aiocb(3type), siginfo_t(3type)

Linux man-pages 6.16 2025-10-29 2797

size_t(3type) size_t(3type)

NAME
size_t, ssize_t - count of bytes

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

typedef /* ... */ size_t;

#include <sys/types.h>

typedef /* ... */ ssize_t;

DESCRIPTION
size_t

Used for a count of bytes. It is the result of the sizeof () operator. It is an un-
signed integer type capable of storing values in the range [0, SIZE_MAX].

ssize_t
Used for a count of bytes or an error indication. It is a signed integer type capa-
ble of storing values at least in the range [-1, SSIZE_MAX].

Use with printf(3) and scanf(3)
size_t

The length modifier for size_t for the printf(3) and the scanf(3) families of func-
tions is z, resulting commonly in %zu or %zx for printing size_t values.

ssize_t
glibc and most other implementations provide a length modifier for ssize_t for
the printf(3) and the scanf(3) families of functions, which is z; resulting com-
monly in %zd or %zi for printing ssize_t values. Although z works for ssize_t
on most implementations, portable POSIX programs should avoid using it—for
example, by converting the value to intmax_t and using its length modifier (j).

STANDARDS
size_t

C11, POSIX.1-2024.

ssize_t
POSIX.1-2024.

HISTORY
size_t

C89, POSIX.1-2001.

ssize_t
POSIX.1-2001.

<aio.h>, <glob.h>, <grp.h>, <iconv.h>, <mqueue.h>, <pwd.h>, <signal.h>, and
<sys/socket.h> define size_t since POSIX.1-2008.

<aio.h>, <mqueue.h>, and <sys/socket.h> define ssize_t since POSIX.1-2008.

Linux man-pages 6.16 2025-10-29 2798

size_t(3type) size_t(3type)

NOTES
size_t

The following headers also provide size_t: <aio.h>, <glob.h>, <grp.h>,
<iconv.h>, <monetary.h>, <mqueue.h>, <ndbm.h>, <pwd.h>, <regex.h>,
<search.h>, <signal.h>, <stdio.h>, <stdlib.h>, <string.h>, <strings.h>,
<sys/mman.h>, <sys/msg.h>, <sys/sem.h>, <sys/shm.h>, <sys/socket.h>,
<sys/types.h>, <sys/uio.h>, <time.h>, <unistd.h>, <wchar.h>, and <word-
exp.h>.

ssize_t
The following headers also provide ssize_t: <aio.h>, <monetary.h>,
<mqueue.h>, <stdio.h>, <sys/msg.h>, <sys/socket.h>, <sys/uio.h>, and
<unistd.h>.

SEE ALSO
read(2), readlink(2), readv(2), recv(2), send(2), write(2), fread(3), fwrite(3),
memcmp(3), memcpy(3), memset(3), offsetof(3), ptrdiff_t(3type)

Linux man-pages 6.16 2025-10-29 2799

sockaddr(3type) sockaddr(3type)

NAME
sockaddr, sockaddr_storage, sockaddr_in, sockaddr_in6, sockaddr_un, socklen_t,
in_addr, in6_addr, in_addr_t, in_port_t, - socket address

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/socket.h>

struct sockaddr {
sa_family_t sa_family; /* Address family */
char sa_data[]; /* Socket address */

};

struct sockaddr_storage {
sa_family_t ss_family; /* Address family */

};

typedef /* ... */ socklen_t;
typedef /* ... */ sa_family_t;

Internet domain sockets
#include <netinet/in.h>

struct sockaddr_in {
sa_family_t sin_family; /* AF_INET */
in_port_t sin_port; /* Port number */
struct in_addr sin_addr; /* IPv4 address */

};

struct sockaddr_in6 {
sa_family_t sin6_family; /* AF_INET6 */
in_port_t sin6_port; /* Port number */
uint32_t sin6_flowinfo; /* IPv6 flow info */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id; /* Set of interfaces for a scope */

};

struct in_addr {
in_addr_t s_addr;

};

struct in6_addr {
uint8_t s6_addr[16];

};

typedef uint32_t in_addr_t;

Linux man-pages 6.16 2025-10-29 2800

sockaddr(3type) sockaddr(3type)

typedef uint16_t in_port_t;

UNIX domain sockets
#include <sys/un.h>

struct sockaddr_un {
sa_family_t sun_family; /* Address family */
char sun_path[]; /* Socket pathname */

};

DESCRIPTION
sockaddr

Describes a socket address.

sockaddr_storage
A structure at least as large as any other sockaddr_* address structures. It’s
aligned so that a pointer to it can be cast as a pointer to other sockaddr_* struc-
tures and used to access its fields.

socklen_t
Describes the length of a socket address. This is an integer type of at least 32
bits.

sa_family_t
Describes a socket’s protocol family. This is an unsigned integer type.

Internet domain sockets
sockaddr_in

Describes an IPv4 Internet domain socket address. The sin_port and sin_addr
members are stored in network byte order.

sockaddr_in6
Describes an IPv6 Internet domain socket address. The sin6_addr.s6_addr array
is used to contain a 128-bit IPv6 address, stored in network byte order.

UNIX domain sockets
sockaddr_un

Describes a UNIX domain socket address.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

socklen_t was invented by POSIX. See also accept(2).

These structures were invented before modern ISO C strict-aliasing rules. If aliasing
rules are applied strictly, these structures would be extremely difficult to use without in-
voking undefined behavior. POSIX.1-2024 fixed this by requiring that implementations
make sure that these structures can be safely used as they were designed.

NOTES
socklen_t is also defined in <netdb.h>.

Linux man-pages 6.16 2025-10-29 2801

sockaddr(3type) sockaddr(3type)

sa_family_t is also defined in <netinet/in.h> and <sys/un.h>.

SEE ALSO
accept(2), bind(2), connect(2), getpeername(2), getsockname(2), getsockopt(2),
sendto(2), setsockopt(2), socket(2), socketpair(2), getaddrinfo(3), gethostbyaddr(3), get-
nameinfo(3), htonl(3), ipv6(7), socket(7)

Linux man-pages 6.16 2025-10-29 2802

stat(3type) stat(3type)

NAME
stat - file status

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/stat.h>

struct stat {
dev_t st_dev; /* ID of device containing file */
ino_t st_ino; /* Inode number */
mode_t st_mode; /* File type and mode */
nlink_t st_nlink; /* Number of hard links */
uid_t st_uid; /* User ID of owner */
gid_t st_gid; /* Group ID of owner */
dev_t st_rdev; /* Device ID (if special file) */
off_t st_size; /* Total size, in bytes */
blksize_t st_blksize; /* Block size for filesystem I/O */
blkcnt_t st_blocks; /* Number of 512 B blocks allocated */

/* Since POSIX.1-2008, this structure supports nanosecond
precision for the following timestamp fields.
For the details before POSIX.1-2008, see VERSIONS. */

struct timespec st_atim; /* Time of last access */
struct timespec st_mtim; /* Time of last modification */
struct timespec st_ctim; /* Time of last status change */

#define st_atime st_atim.tv_sec /* Backward compatibility */
#define st_mtime st_mtim.tv_sec
#define st_ctime st_ctim.tv_sec
};

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

st_atim, st_mtim, st_ctim:
Since glibc 2.12:

_POSIX_C_SOURCE >= 200809L || _XOPEN_SOURCE >= 700
glibc 2.19 and earlier:

_BSD_SOURCE || _SVID_SOURCE

DESCRIPTION
Describes information about a file.

The fields are as follows:

st_dev
This field describes the device on which this file resides. (The major(3) and mi-
nor(3) macros may be useful to decompose the device ID in this field.)

Linux man-pages 6.16 2025-10-29 2803

stat(3type) stat(3type)

st_ino
This field contains the file’s inode number.

st_mode
This field contains the file type and mode. See inode(7) for further information.

st_nlink
This field contains the number of hard links to the file.

st_uid
This field contains the user ID of the owner of the file.

st_gid
This field contains the ID of the group owner of the file.

st_rdev
This field describes the device that this file (inode) represents.

st_size
This field gives the size of the file (if it is a regular file or a symbolic link) in
bytes. The size of a symbolic link is the length of the pathname it contains,
without a terminating null byte.

st_blksize
This field gives the "preferred" block size for efficient filesystem I/O.

st_blocks
This field indicates the number of blocks allocated to the file, in 512-byte units.
(This may be smaller than st_size/512 when the file has holes.)

st_atime
This is the time of the last access of file data.

st_mtime
This is the time of last modification of file data.

st_ctime
This is the file’s last status change timestamp (time of last change to the inode).

For further information on the above fields, see inode(7).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

Old kernels and old standards did not support nanosecond timestamp fields. Instead,
there were three timestamp fields—st_atime, st_mtime, and st_ctime—typed as time_t
that recorded timestamps with one-second precision.

Since Linux 2.5.48, the stat structure supports nanosecond resolution for the three file
timestamp fields. The nanosecond components of each timestamp are available via
names of the form st_atim.tv_nsec, if suitable test macros are defined. Nanosecond
timestamps were standardized in POSIX.1-2008, and, starting with glibc 2.12, glibc ex-
poses the nanosecond component names if _POSIX_C_SOURCE is defined with the
value 200809L or greater, or _XOPEN_SOURCE is defined with the value 700 or

Linux man-pages 6.16 2025-10-29 2804

stat(3type) stat(3type)

greater. Up to and including glibc 2.19, the definitions of the nanoseconds components
are also defined if _BSD_SOURCE or _SVID_SOURCE is defined. If none of the
aforementioned macros are defined, then the nanosecond values are exposed with names
of the form st_atimensec.

NOTES
The following header also provides this type: <ftw.h>.

SEE ALSO
stat(2), inode(7)

Linux man-pages 6.16 2025-10-29 2805

time_t(3type) time_t(3type)

NAME
time_t, suseconds_t, useconds_t - integer time

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

typedef /* ... */ time_t;

#include <sys/types.h>

typedef /* ... */ suseconds_t;
typedef /* ... */ useconds_t;

DESCRIPTION
time_t

Used for time in seconds. According to POSIX, it is an integer type of at least
64 bits.

suseconds_t
Used for time in microseconds. It is a signed integer type capable of storing val-
ues at least in the range [-1, 1000000].

useconds_t
Used for time in microseconds. It is an unsigned integer type capable of storing
values at least in the range [0, 1000000].

STANDARDS
time_t

C11, POSIX.1-2024.

suseconds_t
POSIX.1-2024.

useconds_t
None.

HISTORY
time_t

C89, POSIX.1-2001.

suseconds_t
POSIX.1-2001.

useconds_t
POSIX.1-2001. Removed in POSIX.1-2008.

Header files
<sched.h> defines time_t since POSIX.1-2008.

time_t
In POSIX.1-2001, time_t was specified as being either an integer type or a real-floating
type. However, existing implementations used an integer type, and POSIX.1-2008 tight-
ened the specification to reflect this.

Linux man-pages 6.16 2025-10-29 2806

time_t(3type) time_t(3type)

POSIX.1-2024 required that the width of time_t is at least 64 bits.

NOTES
On some architectures, the width of time_t can be controlled with the feature test macro
_TIME_BITS. See feature_test_macros(7).

The following headers also provide time_t: <sched.h>, <sys/msg.h>, <sys/select.h>,
<sys/sem.h>, <sys/shm.h>, <sys/stat.h>, <sys/time.h>, <sys/types.h>, and <utime.h>.

The following headers also provide suseconds_t: <sys/select.h> and <sys/time.h>.

The following headers also provided useconds_t: <unistd.h>.

SEE ALSO
stime(2), time(2), ctime(3), difftime(3), usleep(3), timeval(3type)

Linux man-pages 6.16 2025-10-29 2807

timer_t(3type) timer_t(3type)

NAME
timer_t - timer ID

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/types.h>

typedef /* ... */ timer_t;

DESCRIPTION
Used for timer ID returned by timer_create(2).

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following header also provides timer_t: <time.h>.

SEE ALSO
timer_create(2), timer_delete(2), timer_getoverrun(2), timer_settime(2)

Linux man-pages 6.16 2025-10-29 2808

timespec(3type) timespec(3type)

NAME
timespec - time in seconds and nanoseconds

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

struct timespec {
time_t tv_sec; /* Seconds */
/* ... */ tv_nsec; /* Nanoseconds [0, 999'999'999] */

};

DESCRIPTION
Describes times in seconds and nanoseconds.

tv_nsec is of an implementation-defined signed type capable of holding the specified
range. Under glibc, this is usually long, and long long on X32. It can be safely down-
cast to any concrete 32-bit integer type for processing.

VERSIONS
Prior to C23, tv_nsec was long.

STANDARDS
C11, POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide this type: <aio.h>, <mqueue.h>, <sched.h>, <sig-
nal.h>, <sys/select.h>, and <sys/stat.h>.

SEE ALSO
clock_gettime(2), clock_nanosleep(2), nanosleep(2), timerfd_gettime(2), timer_get-
time(2), time_t(3type), timeval(3type)

Linux man-pages 6.16 2025-10-29 2809

timeval(3type) timeval(3type)

NAME
timeval - time in seconds and microseconds

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <sys/time.h>

struct timeval {
time_t tv_sec; /* Seconds */
suseconds_t tv_usec; /* Microseconds */

};

DESCRIPTION
Describes times in seconds and microseconds.

STANDARDS
POSIX.1-2024.

HISTORY
POSIX.1-2001.

NOTES
The following headers also provide this type: <sys/resource.h>, <sys/select.h>, and
<utmpx.h>.

SEE ALSO
gettimeofday(2), select(2), utimes(2), adjtime(3), futimes(3), timeradd(3), susec-
onds_t(3type), time_t(3type), timespec(3type)

Linux man-pages 6.16 2025-10-29 2810

tm(3type) tm(3type)

NAME
tm - broken-down time

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <time.h>

struct tm {
int tm_sec; /* Seconds [0, 60] */
int tm_min; /* Minutes [0, 59] */
int tm_hour; /* Hour [0, 23] */
int tm_mday; /* Day of the month [1, 31] */
int tm_mon; /* Month [0, 11] (January = 0) */
int tm_year; /* Year minus 1900 */
int tm_wday; /* Day of the week [0, 6] (Sunday = 0) */
int tm_yday; /* Day of the year [0, 365] (Jan/01 = 0) */
int tm_isdst; /* Daylight savings flag */

/* Since POSIX.1-2024: */
long tm_gmtoff; /* Seconds East of UTC */
const char *tm_zone; /* Timezone abbreviation */

};

Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

tm_gmtoff , tm_zone:
Since glibc 2.20:

_DEFAULT_SOURCE
glibc 2.20 and earlier:

_BSD_SOURCE

DESCRIPTION
Describes time, broken down into distinct components.

tm_isdst describes whether daylight saving time is in effect at the time described. The
value is positive if daylight saving time is in effect, zero if it is not, and negative if the
information is not available.

tm_gmtoff is the difference, in seconds, of the timezone represented by this broken-
down time and UTC (this is the additive inverse of timezone(3)).

tm_zone is the equivalent of tzname(3) for the timezone represented by this broken-
down time.

VERSIONS
In C90, tm_sec could represent values in the range [0, 61], which could represent a dou-
ble leap second. UTC doesn’t permit double leap seconds, so it was limited to 60 in
C99.

timezone(3), as a variable, is an XSI extension: some systems provide the V7-compati-
ble timezone(3) function. The tm_gmtoff field provides an alternative (with the opposite

Linux man-pages 6.16 2025-10-29 2811

tm(3type) tm(3type)

sign) for those systems.

tm_zone points to static storage and may be overridden on subsequent calls to local-
time(3) and similar functions (however, this never happens under glibc).

STANDARDS
C23, POSIX.1-2024.

HISTORY
C89, POSIX.1-1988.

tm_gmtoff and tm_zone originate from 4.3BSD-Tahoe (where tm_zone is a char *), and
were first standardized in POSIX.1-2024.

NOTES
tm_sec can represent a leap second with the value 60.

SEE ALSO
ctime(3), strftime(3), strptime(3), time(7)

Linux man-pages 6.16 2025-10-29 2812

va_list(3type) va_list(3type)

NAME
va_list - variable argument list

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stdarg.h>

typedef /* ... */ va_list;

DESCRIPTION
Used by functions with a varying number of arguments of varying types. The function
must declare an object of type va_list which is used by the macros va_start(3),
va_arg(3), va_copy(3), and va_end(3) to traverse the list of arguments.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

NOTES
The following headers also provide va_list: <stdio.h> and <wchar.h>.

SEE ALSO
va_start(3), va_arg(3), va_copy(3), va_end(3)

Linux man-pages 6.16 2025-10-29 2813

void(3type) void(3type)

NAME
void - abstract type

SYNOPSIS
void *

DESCRIPTION
A pointer to any object type may be converted to a pointer to void and back. POSIX
further requires that any pointer, including pointers to functions, may be converted to a
pointer to void and back.

Conversions from and to any other pointer type are done implicitly, not requiring casts at
all. Note that this feature prevents any kind of type checking: the programmer should be
careful not to convert a void * value to a type incompatible to that of the underlying
data, because that would result in undefined behavior.

This type is useful in function parameters and return value to allow passing values of
any type. The function will typically use some mechanism to know the real type of the
data being passed via a pointer to void .

A value of this type can’t be dereferenced, as it would give a value of type void , which
is not possible. Likewise, pointer arithmetic is not possible with this type. However, in
GNU C, pointer arithmetic is allowed as an extension to the standard; this is done by
treating the size of a void or of a function as 1. A consequence of this is that sizeof is
also allowed on void and on function types, and returns 1.

Use with printf(3) and scanf(3)
The conversion specifier for void * for the printf(3) and the scanf(3) families of func-
tions is p.

VERSIONS
The POSIX requirement about compatibility between void * and function pointers was
added in POSIX.1-2008 Technical Corrigendum 1 (2013).

STANDARDS
C11, POSIX.1-2024.

HISTORY
C89, POSIX.1-2001.

SEE ALSO
malloc(3), memcmp(3), memcpy(3), memset(3), intptr_t(3type)

Linux man-pages 6.16 2025-10-29 2814

wchar_t(3type) wchar_t(3type)

NAME
wchar_t - wide-character type

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <stddef.h>

typedef /* ... */ wchar_t;

#include <stdint.h>

#define WCHAR_WIDTH /* ... */
#define WCHAR_MAX /* ... */
#define WCHAR_MIN /* ... */

DESCRIPTION
wchar_t is a type used for storing a wide character. It is an integer type.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

The WCHAR_WIDTH macro was added in C23.

NOTES
The following headers also provide this type: <inttypes.h>, <stdlib.h>, <wchar.h>,
<wctype.h>.

The following header also provides these macros: <wchar.h>.

SEE ALSO
wint_t(3type), fputwc(3)

Linux man-pages 6.16 2025-10-29 2815

wint_t(3type) wint_t(3type)

NAME
wint_t, WEOF - integer type capable of storing any wchar_t of WEOF

LIBRARY
Standard C library (libc)

SYNOPSIS
#include <wchar.h>

typedef /* ... */ wint_t;

#define WEOF /* ... */

#include <stdint.h>

#define WINT_WIDTH /* ... */
#define WINT_MAX /* ... */
#define WINT_MIN /* ... */

DESCRIPTION
wint_t is a type used in functions that work with wide characters. It is capable of stor-
ing any valid wchar_t or WEOF. It is an integer type.

WEOF is used by wide-character functions to indicate the end of an input file or an er-
ror. It is of type wint_t.

STANDARDS
C11, POSIX.1-2024.

HISTORY
C99, POSIX.1-2001.

The WINT_WIDTH macro was added in C23.

NOTES
The following header also provides wint_t and WEOF: <wctype.h>.

SEE ALSO
wchar_t(3type), fputwc(3)

Linux man-pages 6.16 2025-10-29 2816

intro(4) Kernel Interfaces Manual intro(4)

NAME
intro - introduction to special files

DESCRIPTION
Section 4 of the manual describes special files (devices).

FILES
/dev/* — device files

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

SEE ALSO
mknod(1), mknod(2), standards(7)

Linux man-pages 6.16 2025-05-17 2817

cciss(4) Kernel Interfaces Manual cciss(4)

NAME
cciss - HP Smart Array block driver

SYNOPSIS
modprobe cciss [cciss_allow_hpsa=1]

DESCRIPTION
Note: This obsolete driver was removed in Linux 4.14, as it is superseded by the hpsa(4)
driver in newer kernels.

cciss is a block driver for older HP Smart Array RAID controllers.

Options
cciss_allow_hpsa=1: This option prevents the cciss driver from attempting to drive any
controllers that the hpsa(4) driver is capable of controlling, which is to say, the cciss dri-
ver is restricted by this option to the following controllers:

Smart Array 5300
Smart Array 5i
Smart Array 532
Smart Array 5312
Smart Array 641
Smart Array 642
Smart Array 6400
Smart Array 6400 EM
Smart Array 6i
Smart Array P600
Smart Array P400i
Smart Array E200i
Smart Array E200
Smart Array E200i
Smart Array E200i
Smart Array E200i
Smart Array E500

Supported hardware
The cciss driver supports the following Smart Array boards:

Smart Array 5300
Smart Array 5i
Smart Array 532
Smart Array 5312
Smart Array 641
Smart Array 642
Smart Array 6400
Smart Array 6400 U320 Expansion Module
Smart Array 6i
Smart Array P600
Smart Array P800
Smart Array E400
Smart Array P400i

Linux man-pages 6.16 2025-09-21 2818

cciss(4) Kernel Interfaces Manual cciss(4)

Smart Array E200
Smart Array E200i
Smart Array E500
Smart Array P700m
Smart Array P212
Smart Array P410
Smart Array P410i
Smart Array P411
Smart Array P812
Smart Array P712m
Smart Array P711m

Configuration details
To configure HP Smart Array controllers, use the HP Array Configuration Utility (either
hpacuxe(8) or hpacucli(8)) or the Offline ROM-based Configuration Utility (ORCA)
run from the Smart Array’s option ROM at boot time.

FILES
Device nodes

The device naming scheme is as follows:

Major numbers:

104 cciss0
105 cciss1
106 cciss2
105 cciss3
108 cciss4
109 cciss5
110 cciss6
111 cciss7

Minor numbers:

b7 b6 b5 b4 b3 b2 b1 b0
|----+----| |----+----|

| |
| +-------- Partition ID (0=wholedev, 1-15 partition)
|
+-------------------- Logical Volume number

The device naming scheme is:
/dev/cciss/c0d0 Controller 0, disk 0, whole device
/dev/cciss/c0d0p1 Controller 0, disk 0, partition 1
/dev/cciss/c0d0p2 Controller 0, disk 0, partition 2
/dev/cciss/c0d0p3 Controller 0, disk 0, partition 3

/dev/cciss/c1d1 Controller 1, disk 1, whole device
/dev/cciss/c1d1p1 Controller 1, disk 1, partition 1
/dev/cciss/c1d1p2 Controller 1, disk 1, partition 2

Linux man-pages 6.16 2025-09-21 2819

cciss(4) Kernel Interfaces Manual cciss(4)

/dev/cciss/c1d1p3 Controller 1, disk 1, partition 3

Files in /proc
The files /proc/driver/cciss/cciss[0-9]+ contain information about the configuration of
each controller. For example:

$ cd /proc/driver/cciss;
$ ls -l;
total 0
-rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss0
-rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss1
-rw-r--r-- 1 root root 0 2010-09-10 10:38 cciss2
$ cat cciss2;
cciss2: HP Smart Array P800 Controller
Board ID: 0x3223103c
Firmware Version: 7.14
IRQ: 16
Logical drives: 1
Current Q depth: 0
Current # commands on controller: 0
Max Q depth since init: 1
Max # commands on controller since init: 2
Max SG entries since init: 32
Sequential access devices: 0

cciss/c2d0: 36.38GB RAID 0

Files in /sys
/sys/bus/pci/devices/ dev /ccissX /cXdY /model

Displays the SCSI INQUIRY page 0 model for logical drive Y of controller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /rev
Displays the SCSI INQUIRY page 0 revision for logical drive Y of controller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /unique_id
Displays the SCSI INQUIRY page 83 serial number for logical drive Y of con-
troller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /vendor
Displays the SCSI INQUIRY page 0 vendor for logical drive Y of controller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /block:cciss!cXdY
A symbolic link to /sys/block/cciss!cXdY.

/sys/bus/pci/devices/ dev /ccissX /rescan
When this file is written to, the driver rescans the controller to discover any new,
removed, or modified logical drives.

/sys/bus/pci/devices/ dev /ccissX /resettable
A value of 1 displayed in this file indicates that the "reset_devices=1" kernel pa-
rameter (used by kdump) is honored by this controller. A value of 0 indicates
that the "reset_devices=1" kernel parameter will not be honored. Some models

Linux man-pages 6.16 2025-09-21 2820

cciss(4) Kernel Interfaces Manual cciss(4)

of Smart Array are not able to honor this parameter.

/sys/bus/pci/devices/ dev /ccissX /cXdY /lunid
Displays the 8-byte LUN ID used to address logical drive Y of controller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /raid_level
Displays the RAID level of logical drive Y of controller X .

/sys/bus/pci/devices/ dev /ccissX /cXdY /usage_count
Displays the usage count (number of opens) of logical drive Y of controller X .

SCSI tape drive and medium changer support
SCSI sequential access devices and medium changer devices are supported and appro-
priate device nodes are automatically created (e.g., /dev/st0, /dev/st1, etc.; see st(4) for
more details.) You must enable "SCSI tape drive support for Smart Array 5xxx" and
"SCSI support" in your kernel configuration to be able to use SCSI tape drives with your
Smart Array 5xxx controller.

Additionally, note that the driver will not engage the SCSI core at init time. The driver
must be directed to dynamically engage the SCSI core via the /proc filesystem entry,
which the "block" side of the driver creates as /proc/driver/cciss/cciss* at run time.
This is because at driver init time, the SCSI core may not yet be initialized (because the
driver is a block driver) and attempting to register it with the SCSI core in such a case
would cause a hang. This is best done via an initialization script (typically in /etc/init.d ,
but could vary depending on distribution). For example:

for x in /proc/driver/cciss/cciss[0-9]*
do

echo "engage scsi" > $x
done

Once the SCSI core is engaged by the driver, it cannot be disengaged (except by unload-
ing the driver, if it happens to be linked as a module.)

Note also that if no sequential access devices or medium changers are detected, the
SCSI core will not be engaged by the action of the above script.

Hot plug support for SCSI tape drives
Hot plugging of SCSI tape drives is supported, with some caveats. The cciss driver must
be informed that changes to the SCSI bus have been made. This may be done via the
/proc filesystem. For example:

echo "rescan" > /proc/scsi/cciss0/1

This causes the driver to:

(1) query the adapter about changes to the physical SCSI buses and/or fiber
channel arbitrated loop, and

(2) make note of any new or removed sequential access devices or medium
changers.

The driver will output messages indicating which devices have been added or removed
and the controller, bus, target, and lun used to address each device. The driver then noti-
fies the SCSI midlayer of these changes.

Linux man-pages 6.16 2025-09-21 2821

cciss(4) Kernel Interfaces Manual cciss(4)

Note that the naming convention of the /proc filesystem entries contains a number in ad-
dition to the driver name (e.g., "cciss0" instead of just "cciss", which you might expect).

Note: Only sequential access devices and medium changers are presented as SCSI de-
vices to the SCSI midlayer by the cciss driver. Specifically, physical SCSI disk drives
are not presented to the SCSI midlayer. The only disk devices that are presented to the
kernel are logical drives that the array controller constructs from regions on the physical
drives. The logical drives are presented to the block layer (not to the SCSI midlayer). It
is important for the driver to prevent the kernel from accessing the physical drives di-
rectly, since these drives are used by the array controller to construct the logical drives.

SCSI error handling for tape drives and medium changers
The Linux SCSI midlayer provides an error-handling protocol that is initiated whenever
a SCSI command fails to complete within a certain amount of time (which can vary de-
pending on the command). The cciss driver participates in this protocol to some extent.
The normal protocol is a four-step process:

(1) First, the device is told to abort the command.

(2) If that doesn’t work, the device is reset.

(3) If that doesn’t work, the SCSI bus is reset.

(4) If that doesn’t work, the host bus adapter is reset.

The cciss driver is a block driver as well as a SCSI driver and only the tape drives and
medium changers are presented to the SCSI midlayer. Furthermore, unlike more
straightforward SCSI drivers, disk I/O continues through the block side during the SCSI
error-recovery process. Therefore, the cciss driver implements only the first two of
these actions, aborting the command, and resetting the device. Note also that most tape
drives will not oblige in aborting commands, and sometimes it appears they will not
even obey a reset command, though in most circumstances they will. If the command
cannot be aborted and the device cannot be reset, the device will be set offline.

In the event that the error-handling code is triggered and a tape drive is successfully re-
set or the tardy command is successfully aborted, the tape drive may still not allow I/O
to continue until some command is issued that positions the tape to a known position.
Typically you must rewind the tape (by issuing mt -f /dev/st0 rewind for example) be-
fore I/O can proceed again to a tape drive that was reset.

SEE ALSO
hpsa(4), cciss_vol_status(8), hpacucli(8), hpacuxe(8)

〈http://cciss.sf.net〉, and Documentation/blockdev/cciss.txt and Documentation/ABI/test-
ing/sysfs-bus-pci-devices-cciss in the Linux kernel source tree

Linux man-pages 6.16 2025-09-21 2822

console_codes(4) Kernel Interfaces Manual console_codes(4)

NAME
console_codes - Linux console escape and control sequences

DESCRIPTION
The Linux console implements a large subset of the VT102 and ECMA-48 /
ISO/IEC 6429 / ANSI X3.64 terminal controls, plus certain private-mode sequences for
changing the color palette, character-set mapping, and so on. In the tabular descriptions
below, the second column gives ECMA-48 or DEC mnemonics (the latter if prefixed
with DEC) for the given function. Sequences without a mnemonic are neither
ECMA-48 nor VT102.

After all the normal output processing has been done, and a stream of characters arrives
at the console driver for actual printing, the first thing that happens is a translation from
the code used for processing to the code used for printing.

If the console is in UTF-8 mode, then the incoming bytes are first assembled into 16-bit
Unicode codes. Otherwise, each byte is transformed according to the current mapping
table (which translates it to a Unicode value). See the Character Sets section below for
discussion.

In the normal case, the Unicode value is converted to a font index, and this is stored in
video memory, so that the corresponding glyph (as found in video ROM) appears on the
screen. Note that the use of Unicode (and the design of the PC hardware) allows us to
use 512 different glyphs simultaneously.

If the current Unicode value is a control character, or we are currently processing an es-
cape sequence, the value will treated specially. Instead of being turned into a font index
and rendered as a glyph, it may trigger cursor movement or other control functions. See
the Linux Console Controls section below for discussion.

It is generally not good practice to hard-wire terminal controls into programs. Linux
supports a terminfo(5) database of terminal capabilities. Rather than emitting console
escape sequences by hand, you will almost always want to use a terminfo-aware screen
library or utility such as ncurses(3), tput(1), or reset(1)

Linux console controls
This section describes all the control characters and escape sequences that invoke spe-
cial functions (i.e., anything other than writing a glyph at the current cursor location) on
the Linux console.

Control characters

A character is a control character if (before transformation according to the mapping ta-
ble) it has one of the 14 codes 00 (NUL), 07 (BEL), 08 (BS), 09 (HT), 0a (LF), 0b (VT),
0c (FF), 0d (CR), 0e (SO), 0f (SI), 18 (CAN), 1a (SUB), 1b (ESC), 7f (DEL). One can
set a "display control characters" mode (see below), and allow 07, 09, 0b, 18, 1a, 7f to
be displayed as glyphs. On the other hand, in UTF-8 mode all codes 00–1f are regarded
as control characters, regardless of any "display control characters" mode.

If we have a control character, it is acted upon immediately and then discarded (even in
the middle of an escape sequence) and the escape sequence continues with the next char-
acter. (However, ESC starts a new escape sequence, possibly aborting a previous unfin-
ished one, and CAN and SUB abort any escape sequence.) The recognized control

Linux man-pages 6.16 2025-10-10 2823

console_codes(4) Kernel Interfaces Manual console_codes(4)

characters are BEL, BS, HT, LF, VT, FF, CR, SO, SI, CAN, SUB, ESC, DEL, CSI.
They do what one would expect:

BEL (0x07, ^G)
beeps;

BS (0x08, ^H)
backspaces one column (but not past the beginning of the line);

HT (0x09, ^I)
goes to the next tab stop or to the end of the line if there is no earlier tab stop;

LF (0x0A, ^J)
VT (0x0B, ^K)
FF (0x0C, ^L)

all give a linefeed, and if LF/NL (new-line mode) is set also a carriage return;

CR (0x0D, ^M)
gives a carriage return;

SO (0x0E, ^N)
activates the G1 character set;

SI (0x0F, ^O)
activates the G0 character set;

CAN (0x18, ^X)
SUB (0x1A, ^Z)

abort escape sequences;

ESC (0x1B, ^[)
starts an escape sequence;

DEL (0x7F)
is ignored;

CSI (0x9B)
is equivalent to ESC [.

ESC- but not CSI-sequences

ESC c RIS Reset.
ESC D IND Linefeed.
ESC E NEL Newline.
ESC H HTS Set tab stop at current column.
ESC M RI Reverse linefeed.
ESC Z DECID DEC private identification. The kernel returns the string

ESC [? 6 c, claiming that it is a VT102.
ESC 7 DECSC Save current state (cursor coordinates, attributes, character

sets pointed at by G0, G1).
ESC 8 DECRC Restore state most recently saved by ESC 7.
ESC % Start sequence selecting character set
ESC % @ Select default (ISO/IEC 646 / ISO/IEC 8859-1)
ESC % G Select UTF-8

Linux man-pages 6.16 2025-10-10 2824

console_codes(4) Kernel Interfaces Manual console_codes(4)

ESC % 8 Select UTF-8 (obsolete)
ESC # 8 DECALN DEC screen alignment test - fill screen with E’s.
ESC (Start sequence defining G0 character set (followed by one of

B, 0, U, K, as below)
ESC (B Select default (ISO/IEC 8859-1 mapping).
ESC (0 Select VT100 graphics mapping.
ESC (U Select null mapping - straight to character ROM.
ESC (K Select user mapping - the map that is loaded by the utility

mapscrn(8)
ESC) Start sequence defining G1 (followed by one of B, 0, U, K,

as above).
ESC > DECPNM Set numeric keypad mode
ESC = DECPAM Set application keypad mode
ESC] OSC Operating System Command prefix.
ESC] R Reset palette.
ESC] P Set palette, with parameter given in 7 hexadecimal digits nr-

rggbb after the final P. Here n is the color (0–15), and
rrggbb indicates the red/green/blue values (0–255).

ECMA-48 CSI sequences

CSI (or ESC [) is followed by a sequence of parameters, at most NPAR (16), that are
decimal numbers separated by semicolons. An empty or absent parameter is taken to be
0. The sequence of parameters may be preceded by a single question mark.

However, after CSI [(or ESC [[) a single character is read and this entire sequence is
ignored. (The idea is to ignore an echoed function key.)

The action of a CSI sequence is determined by its final character.

@ ICH Insert the indicated # of blank characters.
A CUU Move cursor up the indicated # of rows.
B CUD Move cursor down the indicated # of rows.
C CUF Move cursor right the indicated # of columns.
D CUB Move cursor left the indicated # of columns.
E CNL Move cursor down the indicated # of rows, to column 1.
F CPL Move cursor up the indicated # of rows, to column 1.
G CHA Move cursor to indicated column in current row.
H CUP Move cursor to the indicated row, column (origin at 1,1).
J ED Erase display (default: from cursor to end of display).

ESC [1 J: erase from start to cursor.
ESC [2 J: erase whole display.
ESC [3 J: erase whole display including scroll-back buffer (since
Linux 3.0).

K EL Erase line (default: from cursor to end of line).
ESC [1 K: erase from start of line to cursor.
ESC [2 K: erase whole line.

L IL Insert the indicated # of blank lines.
M DL Delete the indicated # of lines.

Linux man-pages 6.16 2025-10-10 2825

console_codes(4) Kernel Interfaces Manual console_codes(4)

P DCH Delete the indicated # of characters on current line.
X ECH Erase the indicated # of characters on current line.
a HPR Move cursor right the indicated # of columns.
c DA Answer ESC [? 6 c: "I am a VT102".
d VPA Move cursor to the indicated row, current column.
e VPR Move cursor down the indicated # of rows.
f HVP Move cursor to the indicated row, column.
g TBC Without parameter: clear tab stop at current position.

ESC [3 g: delete all tab stops.
h SM Set Mode (see below).
l RM Reset Mode (see below).
m SGR Set attributes (see below).
n DSR Status report (see below).
q DECLL Set keyboard LEDs.

ESC [0 q: clear all LEDs
ESC [1 q: set Scroll Lock LED
ESC [2 q: set Num Lock LED
ESC [3 q: set Caps Lock LED

r DECSTBM Set scrolling region; parameters are top and bottom row.
s SCOSC Save cursor location.
u SCORC Restore cursor location.
` HPA Move cursor to indicated column in current row.

ECMA-48 Select Graphic Rendition

The ECMA-48 SGR sequence ESC [parameters m sets display attributes. Several at-
tributes can be set in the same sequence, separated by semicolons. An empty parameter
(between semicolons or string initiator or terminator) is interpreted as a zero.

parameter result
0 reset all attributes to their defaults
1 set bold
2 set half-bright (simulated with color on a color display)
3 set italic (since Linux 2.6.22; simulated with color on a color display)
4 set underscore (simulated with color on a color display) (the colors used to

simulate dim or underline are set using ESC] ...)
5 set blink
7 set reverse video
10 reset selected mapping, display control flag, and toggle meta flag

(ECMA-48 says "primary font").
11 select null mapping, set display control flag, reset toggle meta flag

(ECMA-48 says "first alternate font").
12 select null mapping, set display control flag, set toggle meta flag

(ECMA-48 says "second alternate font"). The toggle meta flag causes the
high bit of a byte to be toggled before the mapping table translation is
done.

21 set underline; before Linux 4.17, this value set normal intensity (as is done
in many other terminals)

Linux man-pages 6.16 2025-10-10 2826

console_codes(4) Kernel Interfaces Manual console_codes(4)

22 set normal intensity
23 italic off (since Linux 2.6.22)
24 underline off
25 blink off
27 reverse video off
30 set black foreground
31 set red foreground
32 set green foreground
33 set brown foreground
34 set blue foreground
35 set magenta foreground
36 set cyan foreground
37 set white foreground
38 256/24-bit foreground color follows, shoehorned into 16 basic colors (be-

fore Linux 3.16: set underscore on, set default foreground color)
39 set default foreground color (before Linux 3.16: set underscore off, set de-

fault foreground color)
40 set black background
41 set red background
42 set green background
43 set brown background
44 set blue background
45 set magenta background
46 set cyan background
47 set white background
48 256/24-bit background color follows, shoehorned into 8 basic colors
49 set default background color
90..97 set foreground to bright versions of 30..37
100..107 set background, same as 40..47 (bright not supported)

Commands 38 and 48 require further arguments:

;5;x 256 color: values 0..15 are IBGR (black, red, green, ..., white), 16..231 a
6x6x6 color cube, 232..255 a grayscale ramp

;2;r;g;b 24-bit color, r/g/b components are in the range 0..255

ECMA-48 Mode Switches

ESC [3 h
DECCRM (default off): Display control chars.

ESC [4 h
DECIM (default off): Set insert mode.

ESC [20 h
LF/NL (default off): Automatically follow echo of LF, VT, or FF with CR.

ECMA-48 Status Report Commands

ESC [5 n
Device status report (DSR): Answer is ESC [0 n (Terminal OK).

Linux man-pages 6.16 2025-10-10 2827

console_codes(4) Kernel Interfaces Manual console_codes(4)

ESC [6 n
Cursor position report (CPR): Answer is ESC [y ; x R, where x,y is the cursor
location.

DEC Private Mode (DECSET/DECRST) sequences

These are not described in ECMA-48. We list the Set Mode sequences; the Reset Mode
sequences are obtained by replacing the final 'h' by 'l'.

ESC [? 1 h
DECCKM (default off): When set, the cursor keys send an ESC O prefix, rather
than ESC [.

ESC [? 3 h
DECCOLM (default off = 80 columns): 80/132 col mode switch. The driver
sources note that this alone does not suffice; some user-mode utility such as
resizecons(8) has to change the hardware registers on the console video card.

ESC [? 5 h
DECSCNM (default off): Set reverse-video mode.

ESC [? 6 h
DECOM (default off): When set, cursor addressing is relative to the upper left
corner of the scrolling region.

ESC [? 7 h
DECAWM (default on): Set autowrap on. In this mode, a graphic character
emitted after column 80 (or column 132 if DECCOLM is on) forces a wrap to
the beginning of the following line first.

ESC [? 8 h
DECARM (default on): Set keyboard autorepeat on.

ESC [? 9 h
X10 Mouse Reporting (default off): Set reporting mode to 1 (or reset to 0) —see
below—.

ESC [? 25 h
DECTECM (default on): Make cursor visible.

ESC [? 1000 h
X11 Mouse Reporting (default off): Set reporting mode to 2 (or reset to 0) —see
below—.

Linux Console Private CSI Sequences

The following sequences are neither ECMA-48 nor native VT102. They are native to
the Linux console driver. Colors are in SGR parameters: 0 = black, 1 = red, 2 = green, 3
= brown, 4 = blue, 5 = magenta, 6 = cyan, 7 = white; 8–15 = bright versions of 0–7.

ESC [1 ; n] Set color n as the underline color.
ESC [2 ; n] Set color n as the dim color.
ESC [8] Make the current color pair the default attributes.
ESC [9 ; n] Set screen blank timeout to n minutes.

Linux man-pages 6.16 2025-10-10 2828

console_codes(4) Kernel Interfaces Manual console_codes(4)

ESC [10 ; n] Set bell frequency in Hz.
ESC [11 ; n] Set bell duration in msec.
ESC [12 ; n] Bring specified console to the front.
ESC [13] Unblank the screen.
ESC [14 ; n] Set the VESA powerdown interval in minutes.
ESC [15] Bring the previous console to the front (since Linux 2.6.0).
ESC [16 ; n] Set the cursor blink interval in milliseconds (since Linux 4.2).

Character sets
The kernel knows about 4 translations of bytes into console-screen symbols. The four
tables are: a) Latin1 -> PC, b) VT100 graphics -> PC, c) PC -> PC, d) user-defined.

There are two character sets, called G0 and G1, and one of them is the current character
set. (Initially G0.) Typing ^N causes G1 to become current, ^O causes G0 to become
current.

These variables G0 and G1 point at a translation table, and can be changed by the user.
Initially they point at tables a) and b), respectively. The sequences ESC (B and ESC (0
and ESC (U and ESC (K cause G0 to point at translation table a), b), c), and d), respec-
tively. The sequences ESC) B and ESC) 0 and ESC) U and ESC) K cause G1 to point
at translation table a), b), c), and d), respectively.

The sequence ESC c causes a terminal reset, which is what you want if the screen is all
garbled. The oft-advised "echo ^V^O" will make only G0 current, but there is no guar-
antee that G0 points at table a). In some distributions there is a program reset(1) that
just does "echo ^[c". If your terminfo entry for the console is correct (and has an entry
rs1=\Ec), then "tput reset" will also work.

The user-defined mapping table can be set using mapscrn(8)The result of the mapping is
that if a symbol c is printed, the symbol s = map[c] is sent to the video memory. The
bitmap that corresponds to s is found in the character ROM, and can be changed using
setfont(8)

Mouse tracking
The mouse tracking facility is intended to return xterm(1)-compatible mouse status re-
ports. Because the console driver has no way to know the device or type of the mouse,
these reports are returned in the console input stream only when the virtual terminal dri-
ver receives a mouse update ioctl. These ioctls must be generated by a mouse-aware
user-mode application such as the gpm(8) daemon.

The mouse tracking escape sequences generated by xterm(1) encode numeric parame-
ters in a single character as value+040. For example, '!' is 1. The screen coordinate sys-
tem is 1-based.

The X10 compatibility mode sends an escape sequence on button press encoding the lo-
cation and the mouse button pressed. It is enabled by sending ESC [? 9 h and disabled
with ESC [? 9 l. On button press, xterm(1) sends ESC [M bxy (6 characters). Here b
is button-1, and x and y are the x and y coordinates of the mouse when the button was
pressed. This is the same code the kernel also produces.

Normal tracking mode (not implemented in Linux 2.0.24) sends an escape sequence on
both button press and release. Modifier information is also sent. It is enabled by

Linux man-pages 6.16 2025-10-10 2829

console_codes(4) Kernel Interfaces Manual console_codes(4)

sending ESC [? 1000 h and disabled with ESC [? 1000 l. On button press or release,
xterm(1) sends ESC [M bxy. The low two bits of b encode button information: 0=MB1
pressed, 1=MB2 pressed, 2=MB3 pressed, 3=release. The upper bits encode what modi-
fiers were down when the button was pressed and are added together: 4=Shift, 8=Meta,
16=Control. Again x and y are the x and y coordinates of the mouse event. The upper
left corner is (1,1).

Comparisons with other terminals
Many different terminal types are described, like the Linux console, as being
"VT100-compatible". Here we discuss differences between the Linux console and the
two most important others, the DEC VT102 and xterm(1)

Control-character handling

The VT102 also recognized the following control characters:

NUL (0x00)
was ignored;

ENQ (0x05)
triggered an answerback message;

DC1 (0x11, ^Q, XON)
resumed transmission;

DC3 (0x13, ^S, XOFF)
caused VT100 to ignore (and stop transmitting) all codes except XOFF and
XON.

VT100-like DC1/DC3 processing may be enabled by the terminal driver.

The xterm(1) program (in VT100 mode) recognizes the control characters BEL, BS, HT,
LF, VT, FF, CR, SO, SI, ESC.

Escape sequences

VT100 console sequences not implemented on the Linux console:

ESC N SS2 Single shift 2. (Select G2 character set for the next character only.)
ESC O SS3 Single shift 3. (Select G3 character set for the next character only.)
ESC P DCS Device control string (ended by ESC \)
ESC X SOS Start of string.
ESC ^ PM Privacy message (ended by ESC \)
ESC \ ST String terminator
ESC * ... Designate G2 character set
ESC + ... Designate G3 character set

The program xterm(1) (in VT100 mode) recognizes ESC c, ESC # 8, ESC >, ESC =,
ESC D, ESC E, ESC H, ESC M, ESC N, ESC O, ESC P ... ESC \, ESC Z (it answers
ESC [? 1 ; 2 c, "I am a VT100 with advanced video option") and ESC ^ ... ESC \ with
the same meanings as indicated above. It accepts ESC (, ESC), ESC *, ESC + fol-
lowed by 0, A, B for the DEC special character and line drawing set, UK, and US-
ASCII, respectively.

The user can configure xterm(1) to respond to VT220-specific control sequences, and it

Linux man-pages 6.16 2025-10-10 2830

console_codes(4) Kernel Interfaces Manual console_codes(4)

will identify itself as a VT52, VT100, and up depending on the way it is configured and
initialized.

It accepts ESC] (OSC) for the setting of certain resources. In addition to the ECMA-48
string terminator (ST), xterm(1) accepts a BEL to terminate an OSC string. These are a
few of the OSC control sequences recognized by xterm(1):

ESC] 0 ; txt ST Set icon name and window ti-
tle to txt.

ESC] 1 ; txt ST Set icon name to txt.
ESC] 2 ; txt ST Set window title to txt.
ESC] 4 ; num; txt ST Set ANSI color num to txt.
ESC] 10 ; txt ST Set dynamic text color to txt.
ESC] 4 6 ; name ST Change log file to name (nor-

mally disabled by a compile-
time option).

ESC] 5 0 ; fn ST Set font to fn.

It recognizes the following with slightly modified meaning (saving more state, behaving
closer to VT100/VT220):

ESC 7 DECSC Save cursor
ESC 8 DECRC Restore cursor

It also recognizes

ESC F Cursor to lower left corner of screen (if enabled by
xterm(1)hpLowerleftBugCompat resource).

ESC l Memory lock (per HP terminals). Locks memory above the cursor.
ESC m Memory unlock (per HP terminals).
ESC n LS2 Invoke the G2 character set.
ESC o LS3 Invoke the G3 character set.
ESC | LS3R Invoke the G3 character set as GR.
ESC } LS2R Invoke the G2 character set as GR.
ESC ~ LS1R Invoke the G1 character set as GR.

It also recognizes ESC % and provides a more complete UTF-8 implementation than
Linux console.

CSI Sequences

Old versions of xterm(1), for example, from X11R5, interpret the blink SGR as a bold
SGR. Later versions which implemented ANSI colors, for example, XFree86 3.1.2A in
1995, improved this by allowing the blink attribute to be displayed as a color. Modern
versions of xterm(1) implement blink SGR as blinking text and still allow colored text
as an alternate rendering of SGRs. Stock X11R6 versions did not recognize the color-
setting SGRs until the X11R6.8 release, which incorporated XFree86 xterm(1)All
ECMA-48 CSI sequences recognized by Linux are also recognized by xterm(1), how-
ever xterm(1) implements several ECMA-48 and DEC control sequences not recognized
by Linux.

The xterm(1) program recognizes all of the DEC Private Mode sequences listed above,
but none of the Linux private-mode sequences. For discussion of xterm(1)own private-

Linux man-pages 6.16 2025-10-10 2831

console_codes(4) Kernel Interfaces Manual console_codes(4)

mode sequences, refer to the Xterm Control Sequences document by Edward Moy,
Stephen Gildea, and Thomas E. Dickey available with the X distribution. That docu-
ment, though terse, is much longer than this manual page. For a chronological
overview,

〈http://invisible-island.net/xterm/xterm.log.html〉

details changes to xterm(1)

The vttest program

〈http://invisible-island.net/vttest/〉

demonstrates many of these control sequences. The xterm(1) source distribution also
contains sample scripts which exercise other features.

NOTES
ESC 8 (DECRC) is not able to restore the character set changed with ESC %.

BUGS
In Linux 2.0.23, CSI is broken, and NUL is not ignored inside escape sequences.

Some older kernel versions (after Linux 2.0) interpret 8-bit control sequences. These
"C1 controls" use codes between 128 and 159 to replace ESC [, ESC] and similar two-
byte control sequence initiators. There are fragments of that in modern kernels (either
overlooked or broken by changes to support UTF-8), but the implementation is incom-
plete and should be regarded as unreliable.

Linux "private mode" sequences do not follow the rules in ECMA-48 for private mode
control sequences. In particular, those ending with] do not use a standard terminating
character. The OSC (set palette) sequence is a greater problem, since xterm(1) may in-
terpret this as a control sequence which requires a string terminator (ST). Unlike the
setterm(1) sequences which will be ignored (since they are invalid control sequences),
the palette sequence will make xterm(1) appear to hang (though pressing the return-key
will fix that). To accommodate applications which have been hardcoded to use Linux
control sequences, set the xterm(1) resource brokenLinuxOSC to true.

An older version of this document implied that Linux recognizes the ECMA-48 control
sequence for invisible text. It is ignored.

SEE ALSO
ioctl_console(2), charsets(7)

Linux man-pages 6.16 2025-10-10 2832

cpuid(4) Kernel Interfaces Manual cpuid(4)

NAME
cpuid - x86 CPUID access device

DESCRIPTION
CPUID provides an interface for querying information about the x86 CPU.

This device is accessed by lseek(2) or pread(2) to the appropriate CPUID level and read-
ing in chunks of 16 bytes. A larger read size means multiple reads of consecutive levels.

The lower 32 bits of the file position is used as the incoming %eax, and the upper 32
bits of the file position as the incoming %ecx, the latter is intended for "counting" eax
levels like eax=4.

This driver uses /dev/cpu/CPUNUM/cpuid , where CPUNUM is the minor number, and
on an SMP box will direct the access to CPU CPUNUM as listed in /proc/cpuinfo.

This file is protected so that it can be read only by the user root, or members of the
group root.

NOTES
The CPUID instruction can be directly executed by a program using inline assembler.
However this device allows convenient access to all CPUs without changing process
affinity.

Most of the information in cpuid is reported by the kernel in cooked form either in
/proc/cpuinfo or through subdirectories in /sys/devices/system/cpu. Direct CPUID ac-
cess through this device should only be used in exceptional cases.

The cpuid driver is not auto-loaded. On modular kernels you might need to use the fol-
lowing command to load it explicitly before use:

$ modprobe cpuid

There is no support for CPUID functions that require additional input registers.

Early i486 CPUs do not support the CPUID instruction; opening this device for those
CPUs fails with EIO.

SEE ALSO
cpuid(1)

Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 2A: Instruction Set Reference, A-M, 3-180 CPUID reference.

Intel Corporation, Intel Processor Identification and the CPUID Instruction, Application
note 485.

Linux man-pages 6.16 2025-05-17 2833

dsp56k(4) Kernel Interfaces Manual dsp56k(4)

NAME
dsp56k - DSP56001 interface device

SYNOPSIS
#include <asm/dsp56k.h>

ssize_t read(int fd , void *data, size_t length);
ssize_t write(int fd , void *data, size_t length);

int ioctl(int fd , DSP56K_UPLOAD, struct dsp56k_upload *program);
int ioctl(int fd , DSP56K_SET_TX_WSIZE, int wsize);
int ioctl(int fd , DSP56K_SET_RX_WSIZE, int wsize);
int ioctl(int fd , DSP56K_HOST_FLAGS, struct dsp56k_host_flags * flags);
int ioctl(int fd , DSP56K_HOST_CMD, int cmd);

CONFIGURATION
The dsp56k device is a character device with major number 55 and minor number 0.

DESCRIPTION
The Motorola DSP56001 is a fully programmable 24-bit digital signal processor found
in Atari Falcon030-compatible computers. The dsp56k special file is used to control the
DSP56001, and to send and receive data using the bidirectional handshaked host port.

To send a data stream to the signal processor, use write(2) to the device, and read(2) to
receive processed data. The data can be sent or received in 8, 16, 24, or 32-bit quantities
on the host side, but will always be seen as 24-bit quantities in the DSP56001.

The following ioctl(2) calls are used to control the dsp56k device:

DSP56K_UPLOAD
resets the DSP56001 and uploads a program. The third ioctl(2) argument must
be a pointer to a struct dsp56k_upload with members .bin pointing to a
DSP56001 binary program, and .len set to the length of the program, counted in
24-bit words.

DSP56K_SET_TX_WSIZE
sets the transmit word size. Allowed values are in the range 1 to 4, and is the
number of bytes that will be sent at a time to the DSP56001. These data quanti-
ties will either be padded with bytes containing zero, or truncated to fit the native
24-bit data format of the DSP56001.

DSP56K_SET_RX_WSIZE
sets the receive word size. Allowed values are in the range 1 to 4, and is the
number of bytes that will be received at a time from the DSP56001. These data
quantities will either truncated, or padded with a null byte ('\0'), to fit the native
24-bit data format of the DSP56001.

DSP56K_HOST_FLAGS
read and write the host flags. The host flags are four general-purpose bits that
can be read by both the hosting computer and the DSP56001. Bits 0 and 1 can
be written by the host, and bits 2 and 3 can be written by the DSP56001.

To access the host flags, the third ioctl(2) argument must be a pointer to a
struct dsp56k_host_flags. If bit 0 or 1 is set in the .dir member, the

Linux man-pages 6.16 2025-05-17 2834

dsp56k(4) Kernel Interfaces Manual dsp56k(4)

corresponding bit in .out will be written to the host flags. The state of all host
flags will be returned in the lower four bits of the .status member.

DSP56K_HOST_CMD
sends a host command. Allowed values are in the range 0 to 31, and is a user-de-
fined command handled by the program running in the DSP56001.

FILES
/dev/dsp56k

SEE ALSO
linux/include/asm-m68k/dsp56k.h, linux/drivers/char/dsp56k.c,
〈http://dsp56k.nocrew.org/〉 , DSP56000/DSP56001 Digital Signal Processor User’s Man-
ual

Linux man-pages 6.16 2025-05-17 2835

fd(4) Kernel Interfaces Manual fd(4)

NAME
fd - floppy disk device

CONFIGURATION
Floppy drives are block devices with major number 2. Typically they are owned by
root:floppy (i.e., user root, group floppy) and have either mode 0660 (access checking
via group membership) or mode 0666 (everybody has access). The minor numbers en-
code the device type, drive number, and controller number. For each device type (that
is, combination of density and track count) there is a base minor number. To this base
number, add the drive’s number on its controller and 128 if the drive is on the secondary
controller. In the following device tables, n represents the drive number.

Warning: if you use formats with more tracks than supported by your drive, you
may cause it mechanical damage. Trying once if more tracks than the usual 40/80 are
supported should not damage it, but no warranty is given for that. If you are not sure,
don’t create device entries for those formats, so as to prevent their usage.

Drive-independent device files which automatically detect the media format and capac-
ity:
Name Base

minor #
fdn 0

5.25 inch double-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnd360 360 40 9 2 4

5.25 inch high-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnh360 360 40 9 2 20
fdnh410 410 41 10 2 48
fdnh420 420 42 10 2 64
fdnh720 720 80 9 2 24
fdnh880 880 80 11 2 80
fdnh1200 1200 80 15 2 8
fdnh1440 1440 80 18 2 40
fdnh1476 1476 82 18 2 56
fdnh1494 1494 83 18 2 72
fdnh1600 1600 80 20 2 92

3.5 inch double-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnu360 360 80 9 1 12
fdnu720 720 80 9 2 16
fdnu800 800 80 10 2 120
fdnu1040 1040 80 13 2 84

Linux man-pages 6.16 2025-05-17 2836

fd(4) Kernel Interfaces Manual fd(4)

fdnu1120 1120 80 14 2 88

3.5 inch high-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnu360 360 40 9 2 12
fdnu720 720 80 9 2 16
fdnu820 820 82 10 2 52
fdnu830 830 83 10 2 68
fdnu1440 1440 80 18 2 28
fdnu1600 1600 80 20 2 124
fdnu1680 1680 80 21 2 44
fdnu1722 1722 82 21 2 60
fdnu1743 1743 83 21 2 76
fdnu1760 1760 80 22 2 96
fdnu1840 1840 80 23 2 116
fdnu1920 1920 80 24 2 100

3.5 inch extra-density device files:
Name Capacity Cyl. Sect. Heads Base

KiB minor #
fdnu2880 2880 80 36 2 32
fdnCompaQ 2880 80 36 2 36
fdnu3200 3200 80 40 2 104
fdnu3520 3520 80 44 2 108
fdnu3840 3840 80 48 2 112

DESCRIPTION
fd special files access the floppy disk drives in raw mode. The following ioctl(2) calls
are supported by fd devices:

FDCLRPRM
clears the media information of a drive (geometry of disk in drive).

FDSETPRM
sets the media information of a drive. The media information will be lost when
the media is changed.

FDDEFPRM
sets the media information of a drive (geometry of disk in drive). The media in-
formation will not be lost when the media is changed. This will disable autode-
tection. In order to reenable autodetection, you have to issue an FDCLRPRM.

FDGETDRVTYP
returns the type of a drive (name parameter). For formats which work in several
drive types, FDGETDRVTYP returns a name which is appropriate for the oldest
drive type which supports this format.

FDFLUSH
invalidates the buffer cache for the given drive.

Linux man-pages 6.16 2025-05-17 2837

fd(4) Kernel Interfaces Manual fd(4)

FDSETMAXERRS
sets the error thresholds for reporting errors, aborting the operation, recalibrat-
ing, resetting, and reading sector by sector.

FDSETMAXERRS
gets the current error thresholds.

FDGETDRVTYP
gets the internal name of the drive.

FDWERRORCLR
clears the write error statistics.

FDWERRORGET
reads the write error statistics. These include the total number of write errors,
the location and disk of the first write error, and the location and disk of the last
write error. Disks are identified by a generation number which is incremented at
(almost) each disk change.

FDTWADDLE
Switch the drive motor off for a few microseconds. This might be needed in or-
der to access a disk whose sectors are too close together.

FDSETDRVPRM
sets various drive parameters.

FDGETDRVPRM
reads these parameters back.

FDGETDRVSTAT
gets the cached drive state (disk changed, write protected et al.)

FDPOLLDRVSTAT
polls the drive and return its state.

FDGETFDCSTAT
gets the floppy controller state.

FDRESET
resets the floppy controller under certain conditions.

FDRAWCMD
sends a raw command to the floppy controller.

For more precise information, consult also the <linux/fd.h> and <linux/fdreg.h> include
files, as well as the floppycontrol(1) manual page.

FILES
/dev/fd*

NOTES
The various formats permit reading and writing many types of disks. However, if a
floppy is formatted with an inter-sector gap that is too small, performance may drop, to
the point of needing a few seconds to access an entire track. To prevent this, use inter-
leaved formats.

It is not possible to read floppies which are formatted using GCR (group code

Linux man-pages 6.16 2025-05-17 2838

fd(4) Kernel Interfaces Manual fd(4)

recording), which is used by Apple II and Macintosh computers (800k disks).

Reading floppies which are hard sectored (one hole per sector, with the index hole being
a little skewed) is not supported. This used to be common with older 8-inch floppies.

SEE ALSO
chown(1), floppycontrol(1), getfdprm(1), mknod(1), superformat(1), mount(8), setfd-
prm(8)

Linux man-pages 6.16 2025-05-17 2839

full(4) Kernel Interfaces Manual full(4)

NAME
full - always full device

CONFIGURATION
If your system does not have /dev/full created already, it can be created with the follow-
ing commands:

mknod -m 666 /dev/full c 1 7
chown root:root /dev/full

DESCRIPTION
The file /dev/full has major device number 1 and minor device number 7.

Writes to the /dev/full device fail with an ENOSPC error. This can be used to test how
a program handles disk-full errors.

Reads from the /dev/full device will return \0 characters.

Seeks on /dev/full will always succeed.

FILES
/dev/full

SEE ALSO
mknod(1), null(4), zero(4)

Linux man-pages 6.16 2025-05-17 2840

fuse(4) Kernel Interfaces Manual fuse(4)

NAME
fuse - Filesystem in Userspace (FUSE) device

SYNOPSIS
#include <linux/fuse.h>

DESCRIPTION
This device is the primary interface between the FUSE filesystem driver and a user-
space process wishing to provide the filesystem (referred to in the rest of this manual
page as the filesystem daemon). This manual page is intended for those interested in
understanding the kernel interface itself. Those implementing a FUSE filesystem may
wish to make use of a user-space library such as libfuse that abstracts away the low-level
interface.

At its core, FUSE is a simple client-server protocol, in which the Linux kernel is the
client and the daemon is the server. After obtaining a file descriptor for this device, the
daemon may read(2) requests from that file descriptor and is expected to write(2) back
its replies. It is important to note that a file descriptor is associated with a unique FUSE
filesystem. In particular, opening a second copy of this device, will not allow access to
resources created through the first file descriptor (and vice versa).

The basic protocol
Every message that is read by the daemon begins with a header described by the follow-
ing structure:

struct fuse_in_header {
uint32_t len; /* Total size of the data,

including this header */
uint32_t opcode; /* The kind of operation (see below) */
uint64_t unique; /* A unique identifier for this request */
uint64_t nodeid; /* ID of the filesystem object

being operated on */
uint32_t uid; /* UID of the requesting process */
uint32_t gid; /* GID of the requesting process */
uint32_t pid; /* PID of the requesting process */
uint32_t padding;

};

The header is followed by a variable-size data portion (which may be empty) specific to
the requested operation (the requested operation is indicated by opcode).

The daemon should then process the request and —if applicable— send a reply (almost
all operations require a reply; if they do not, this is documented below), by performing a
write(2) to the file descriptor. All replies must start with the following header:

struct fuse_out_header {
uint32_t len; /* Total size of data written to

the file descriptor */
int32_t error; /* Any error that occurred (0 if none) */
uint64_t unique; /* The value from the

corresponding request */
};

Linux man-pages 6.16 2025-09-21 2841

fuse(4) Kernel Interfaces Manual fuse(4)

This header is also followed by (potentially empty) variable-sized data depending on the
executed request. However, if the reply is an error reply (i.e., error is set), then no fur-
ther payload data should be sent, independent of the request.

Exchanged messages
This section should contain documentation for each of the messages in the protocol.
This manual page is currently incomplete, so not all messages are documented. For
each message, first the struct sent by the kernel is given, followed by a description of the
semantics of the message.

FUSE_INIT

struct fuse_init_in {
uint32_t major;
uint32_t minor;
uint32_t max_readahead; /* Since protocol v7.6 */
uint32_t flags; /* Since protocol v7.6 */

};

This is the first request sent by the kernel to the daemon. It is used to negotiate
the protocol version and other filesystem parameters. Note that the protocol ver-
sion may affect the layout of any structure in the protocol (including this struc-
ture). The daemon must thus remember the negotiated version and flags for each
session. As of the writing of this man page, the highest supported kernel proto-
col version is 7.26.

Users should be aware that the descriptions in this manual page may be incom-
plete or incorrect for older or more recent protocol versions.

The reply for this request has the following format:

struct fuse_init_out {
uint32_t major;
uint32_t minor;
uint32_t max_readahead; /* Since v7.6 */
uint32_t flags; /* Since v7.6; some flags bits

were introduced later */
uint16_t max_background; /* Since v7.13 */
uint16_t congestion_threshold; /* Since v7.13 */
uint32_t max_write; /* Since v7.5 */
uint32_t time_gran; /* Since v7.6 */
uint32_t unused[9];

};

If the major version supported by the kernel is larger than that supported by the
daemon, the reply shall consist of only uint32_t major (following the usual
header), indicating the largest major version supported by the daemon. The ker-
nel will then issue a new FUSE_INIT request conforming to the older version.
In the reverse case, the daemon should quietly fall back to the kernel’s major ver-
sion.

Linux man-pages 6.16 2025-09-21 2842

fuse(4) Kernel Interfaces Manual fuse(4)

The negotiated minor version is considered to be the minimum of the minor ver-
sions provided by the daemon and the kernel and both parties should use the pro-
tocol corresponding to said minor version.

FUSE_GETATTR

struct fuse_getattr_in {
uint32_t getattr_flags;
uint32_t dummy;
uint64_t fh; /* Set only if

(getattr_flags & FUSE_GETATTR_FH)
};

The requested operation is to compute the attributes to be returned by stat(2) and
similar operations for the given filesystem object. The object for which the at-
tributes should be computed is indicated either by header->nodeid or, if the
FUSE_GETATTR_FH flag is set, by the file handle fh. The latter case of oper-
ation is analogous to fstat(2).

For performance reasons, these attributes may be cached in the kernel for a spec-
ified duration of time. While the cache timeout has not been exceeded, the at-
tributes will be served from the cache and will not cause additional
FUSE_GETATTR requests.

The computed attributes and the requested cache timeout should then be returned
in the following structure:

struct fuse_attr_out {
/* Attribute cache duration (seconds + nanoseconds) */
uint64_t attr_valid;
uint32_t attr_valid_nsec;
uint32_t dummy;
struct fuse_attr {

uint64_t ino;
uint64_t size;
uint64_t blocks;
uint64_t atime;
uint64_t mtime;
uint64_t ctime;
uint32_t atimensec;
uint32_t mtimensec;
uint32_t ctimensec;
uint32_t mode;
uint32_t nlink;
uint32_t uid;
uint32_t gid;
uint32_t rdev;
uint32_t blksize;
uint32_t padding;

} attr;
};

Linux man-pages 6.16 2025-09-21 2843

fuse(4) Kernel Interfaces Manual fuse(4)

FUSE_ACCESS

struct fuse_access_in {
uint32_t mask;
uint32_t padding;

};

If the default_permissions mount options is not used, this request may be used
for permissions checking. No reply data is expected, but errors may be indicated
as usual by setting the error field in the reply header (in particular, access denied
errors may be indicated by returning -EACCES).

FUSE_OPEN
FUSE_OPENDIR

struct fuse_open_in {
uint32_t flags; /* The flags that were passed

to the open(2) */
uint32_t unused;

};

The requested operation is to open the node indicated by header->nodeid . The
exact semantics of what this means will depend on the filesystem being imple-
mented. However, at the very least the filesystem should validate that the re-
quested flags are valid for the indicated resource and then send a reply with the
following format:

struct fuse_open_out {
uint64_t fh;
uint32_t open_flags;
uint32_t padding;

};

The fh field is an opaque identifier that the kernel will use to refer to this re-
source The open_flags field is a bit mask of any number of the flags that indicate
properties of this file handle to the kernel:

FOPEN_DIRECT_IO
Bypass page cache for this open file.

FOPEN_KEEP_CACHE
Don’t invalidate the data cache on open.

FOPEN_NONSEEKABLE
The file is not seekable.

FUSE_READ
FUSE_READDIR

struct fuse_read_in {
uint64_t fh;
uint64_t offset;
uint32_t size;
uint32_t read_flags;
uint64_t lock_owner;

Linux man-pages 6.16 2025-09-21 2844

fuse(4) Kernel Interfaces Manual fuse(4)

uint32_t flags;
uint32_t padding;

};

The requested action is to read up to size bytes of the file or directory, starting at
offset. The bytes should be returned directly following the usual reply header.

FUSE_INTERRUPT
struct fuse_interrupt_in {

uint64_t unique;
};

The requested action is to cancel the pending operation indicated by unique.
This request requires no response. However, receipt of this message does not by
itself cancel the indicated operation. The kernel will still expect a reply to said
operation (e.g., an EINTR error or a short read). At most one FUSE_INTER-
RUPT request will be issued for a given operation. After issuing said operation,
the kernel will wait uninterruptibly for completion of the indicated request.

FUSE_LOOKUP
Directly following the header is a filename to be looked up in the directory indi-
cated by header->nodeid . The expected reply is of the form:

struct fuse_entry_out {
uint64_t nodeid; /* Inode ID */
uint64_t generation; /* Inode generation */
uint64_t entry_valid;
uint64_t attr_valid;
uint32_t entry_valid_nsec;
uint32_t attr_valid_nsec;
struct fuse_attr attr;

};

The combination of nodeid and generation must be unique for the filesystem’s
lifetime.

The interpretation of timeouts and attr is as for FUSE_GETATTR.

FUSE_FLUSH
struct fuse_flush_in {

uint64_t fh;
uint32_t unused;
uint32_t padding;
uint64_t lock_owner;

};

The requested action is to flush any pending changes to the indicated file handle.
No reply data is expected. However, an empty reply message still needs to be is-
sued once the flush operation is complete.

FUSE_RELEASE

Linux man-pages 6.16 2025-09-21 2845

fuse(4) Kernel Interfaces Manual fuse(4)

FUSE_RELEASEDIR
struct fuse_release_in {

uint64_t fh;
uint32_t flags;
uint32_t release_flags;
uint64_t lock_owner;

};

These are the converse of FUSE_OPEN and FUSE_OPENDIR respectively.
The daemon may now free any resources associated with the file handle fh as the
kernel will no longer refer to it. There is no reply data associated with this re-
quest, but a reply still needs to be issued once the request has been completely
processed.

FUSE_STATFS
This operation implements statfs(2) for this filesystem. There is no input data
associated with this request. The expected reply data has the following structure:

struct fuse_kstatfs {
uint64_t blocks;
uint64_t bfree;
uint64_t bavail;
uint64_t files;
uint64_t ffree;
uint32_t bsize;
uint32_t namelen;
uint32_t frsize;
uint32_t padding;
uint32_t spare[6];

};

struct fuse_statfs_out {
struct fuse_kstatfs st;

};

For the interpretation of these fields, see statfs(2).

ERRORS
E2BIG

Returned from read(2) operations when the kernel’s request is too large for the
provided buffer and the request was FUSE_SETXATTR.

EINVAL
Returned from write(2) if validation of the reply failed. Not all mistakes in
replies will be caught by this validation. However, basic mistakes, such as short
replies or an incorrect unique value, are detected.

EIO Returned from read(2) operations when the kernel’s request is too large for the
provided buffer.

Note: There are various ways in which incorrect use of these interfaces can cause
operations on the provided filesystem’s files and directories to fail with EIO.

Linux man-pages 6.16 2025-09-21 2846

fuse(4) Kernel Interfaces Manual fuse(4)

Among the possible incorrect uses are:

• changing mode & S_IFMT for an inode that has previously been reported to
the kernel; or

• giving replies to the kernel that are shorter than what the kernel expected.

ENODEV
Returned from read(2) and write(2) if the FUSE filesystem was unmounted.

EPERM
Returned from operations on a /dev/fuse file descriptor that has not been
mounted.

STANDARDS
Linux.

NOTES
The following messages are not yet documented in this manual page:

FUSE_BATCH_FORGET
FUSE_BMAP
FUSE_CREATE
FUSE_DESTROY
FUSE_FALLOCATE
FUSE_FORGET
FUSE_FSYNC
FUSE_FSYNCDIR
FUSE_GETLK
FUSE_GETXATTR
FUSE_IOCTL
FUSE_LINK
FUSE_LISTXATTR
FUSE_LSEEK
FUSE_MKDIR
FUSE_MKNOD
FUSE_NOTIFY_REPLY
FUSE_POLL
FUSE_READDIRPLUS
FUSE_READLINK
FUSE_REMOVEXATTR
FUSE_RENAME
FUSE_RENAME2
FUSE_RMDIR
FUSE_SETATTR
FUSE_SETLK
FUSE_SETLKW
FUSE_SYMLINK
FUSE_UNLINK
FUSE_WRITE

Linux man-pages 6.16 2025-09-21 2847

fuse(4) Kernel Interfaces Manual fuse(4)

SEE ALSO
fusermount(1), mount.fuse(8)

Linux man-pages 6.16 2025-09-21 2848

hd(4) Kernel Interfaces Manual hd(4)

NAME
hd - MFM/IDE hard disk devices

DESCRIPTION
The hd* devices are block devices to access MFM/IDE hard disk drives in raw mode.
The master drive on the primary IDE controller (major device number 3) is hda; the
slave drive is hdb. The master drive of the second controller (major device number 22)
is hdc and the slave is hdd.

General IDE block device names have the form hdX, or hdXP, where X is a letter de-
noting the physical drive, and P is a number denoting the partition on that physical
drive. The first form, hdX, is used to address the whole drive. Partition numbers are as-
signed in the order the partitions are discovered, and only nonempty, nonextended parti-
tions get a number. However, partition numbers 1–4 are given to the four partitions de-
scribed in the MBR (the "primary" partitions), regardless of whether they are unused or
extended. Thus, the first logical partition will be hdX5. Both DOS-type partitioning
and BSD-disklabel partitioning are supported. You can have at most 63 partitions on an
IDE disk.

For example, /dev/hda refers to all of the first IDE drive in the system; and /dev/hdb3
refers to the third DOS "primary" partition on the second one.

They are typically created by:

mknod -m 660 /dev/hda b 3 0
mknod -m 660 /dev/hda1 b 3 1
mknod -m 660 /dev/hda2 b 3 2
...
mknod -m 660 /dev/hda8 b 3 8
mknod -m 660 /dev/hdb b 3 64
mknod -m 660 /dev/hdb1 b 3 65
mknod -m 660 /dev/hdb2 b 3 66
...
mknod -m 660 /dev/hdb8 b 3 72
chown root:disk /dev/hd*

FILES
/dev/hd*

SEE ALSO
chown(1), mknod(1), sd(4), mount(8)

Linux man-pages 6.16 2025-09-21 2849

hpsa(4) Kernel Interfaces Manual hpsa(4)

NAME
hpsa - HP Smart Array SCSI driver

SYNOPSIS
modprobe hpsa [hpsa_allow_any=1]

DESCRIPTION
hpsa is a SCSI driver for HP Smart Array RAID controllers.

Options
hpsa_allow_any=1: This option allows the driver to attempt to operate on any HP Smart
Array hardware RAID controller, even if it is not explicitly known to the driver. This al-
lows newer hardware to work with older drivers. Typically this is used to allow installa-
tion of operating systems from media that predates the RAID controller, though it may
also be used to enable hpsa to drive older controllers that would normally be handled by
the cciss(4) driver. These older boards have not been tested and are not supported with
hpsa, and cciss(4) should still be used for these.

Supported hardware
The hpsa driver supports the following Smart Array boards:

Smart Array P700M
Smart Array P212
Smart Array P410
Smart Array P410i
Smart Array P411
Smart Array P812
Smart Array P712m
Smart Array P711m
StorageWorks P1210m

Since Linux 4.14, the following Smart Array boards are also supported:

Smart Array 5300
Smart Array 5312
Smart Array 532
Smart Array 5i
Smart Array 6400
Smart Array 6400 EM
Smart Array 641
Smart Array 642
Smart Array 6i
Smart Array E200
Smart Array E200i
Smart Array E200i
Smart Array E200i
Smart Array E200i
Smart Array E500
Smart Array P400
Smart Array P400i
Smart Array P600

Linux man-pages 6.16 2025-05-17 2850

hpsa(4) Kernel Interfaces Manual hpsa(4)

Smart Array P700m
Smart Array P800

Configuration details
To configure HP Smart Array controllers, use the HP Array Configuration Utility (either
hpacuxe(8) or hpacucli(8)) or the Offline ROM-based Configuration Utility (ORCA)
run from the Smart Array’s option ROM at boot time.

FILES
Device nodes

Logical drives are accessed via the SCSI disk driver (sd(4)), tape drives via the SCSI
tape driver (st(4)), and the RAID controller via the SCSI generic driver (sg(4)), with de-
vice nodes named /dev/sd*, /dev/st*, and /dev/sg*, respectively.

HPSA-specific host attribute files in /sys
/sys/class/scsi_host/host*/rescan

This is a write-only attribute. Writing to this attribute will cause the driver to
scan for new, changed, or removed devices (e.g., hot-plugged tape drives, or
newly configured or deleted logical drives, etc.) and notify the SCSI midlayer of
any changes detected. Normally a rescan is triggered automatically by HP’s Ar-
ray Configuration Utility (either the GUI or the command-line variety); thus, for
logical drive changes, the user should not normally have to use this attribute.
This attribute may be useful when hot plugging devices like tape drives, or entire
storage boxes containing preconfigured logical drives.

/sys/class/scsi_host/host*/firmware_revision
This attribute contains the firmware version of the Smart Array.

For example:

cd /sys/class/scsi_host/host4;
cat firmware_revision;
7.14

HPSA-specific disk attribute files in /sys
/sys/class/scsi_disk/c:b:t:l/device/unique_id

This attribute contains a 32 hex-digit unique ID for each logical drive.

For example:

cd /sys/class/scsi_disk/4:0:0:0/device;
cat unique_id;
600508B1001044395355323037570F77

/sys/class/scsi_disk/c:b:t:l/device/raid_level
This attribute contains the RAID level of each logical drive.

For example:

cd /sys/class/scsi_disk/4:0:0:0/device;
cat raid_level;
RAID 0

Linux man-pages 6.16 2025-05-17 2851

hpsa(4) Kernel Interfaces Manual hpsa(4)

/sys/class/scsi_disk/c:b:t:l/device/lunid
This attribute contains the 16 hex-digit (8 byte) LUN ID by which a logical drive
or physical device can be addressed. c:b:t:l are the controller, bus, target, and
lun of the device.

For example:

cd /sys/class/scsi_disk/4:0:0:0/device;
cat lunid;
0x0000004000000000

Supported ioctl() operations
For compatibility with applications written for the cciss(4) driver, many, but not all of
the ioctls supported by the cciss(4) driver are also supported by the hpsa driver. The
data structures used by these ioctls are described in the Linux kernel source file in-
clude/linux/cciss_ioctl.h.

CCISS_DEREGDISK
CCISS_REGNEWDISK
CCISS_REGNEWD

These three ioctls all do exactly the same thing, which is to cause the driver to
rescan for new devices. This does exactly the same thing as writing to the hpsa-
specific host "rescan" attribute.

CCISS_GETPCIINFO
Returns PCI domain, bus, device, and function and "board ID" (PCI subsystem
ID).

CCISS_GETDRIVVER
Returns driver version in three bytes encoded as:

(major_version << 16) | (minor_version << 8) |
(subminor_version)

CCISS_PASSTHRU
CCISS_BIG_PASSTHRU

Allows "BMIC" and "CISS" commands to be passed through to the Smart Array.
These are used extensively by the HP Array Configuration Utility, SNMP storage
agents, and so on. See cciss_vol_status at 〈http://cciss.sf.net〉 for some exam-
ples.

SEE ALSO
cciss(4), sd(4), st(4), cciss_vol_status(8), hpacucli(8), hpacuxe(8)

〈http://cciss.sf.net〉, and Documentation/scsi/hpsa.txt and Documentation/ABI/test-
ing/sysfs-bus-pci-devices-cciss in the Linux kernel source tree

Linux man-pages 6.16 2025-05-17 2852

initrd(4) Kernel Interfaces Manual initrd(4)

NAME
initrd - boot loader initialized RAM disk

CONFIGURATION
/dev/initrd is a read-only block device assigned major number 1 and minor number 250.
Typically /dev/initrd is owned by root:disk with mode 0400 (read access by root only).
If the Linux system does not have /dev/initrd already created, it can be created with the
following commands:

mknod -m 400 /dev/initrd b 1 250
chown root:disk /dev/initrd

Also, support for both "RAM disk" and "Initial RAM disk" (e.g., CON-
FIG_BLK_DEV_RAM=y and CONFIG_BLK_DEV_INITRD=y) must be compiled
directly into the Linux kernel to use /dev/initrd . When using /dev/initrd , the RAM disk
driver cannot be loaded as a module.

DESCRIPTION
The special file /dev/initrd is a read-only block device. This device is a RAM disk that
is initialized (e.g., loaded) by the boot loader before the kernel is started. The kernel
then can use /dev/initrd’s contents for a two-phase system boot-up.

In the first boot-up phase, the kernel starts up and mounts an initial root filesystem from
the contents of /dev/initrd (e.g., RAM disk initialized by the boot loader). In the second
phase, additional drivers or other modules are loaded from the initial root device’s con-
tents. After loading the additional modules, a new root filesystem (i.e., the normal root
filesystem) is mounted from a different device.

Boot-up operation
When booting up with initrd, the system boots as follows:

(1) The boot loader loads the kernel program and /dev/initrd’s contents into memory.

(2) On kernel startup, the kernel uncompresses and copies the contents of the device
/dev/initrd onto device /dev/ram0 and then frees the memory used by /dev/initrd .

(3) The kernel then read-write mounts the device /dev/ram0 as the initial root filesys-
tem.

(4) If the indicated normal root filesystem is also the initial root filesystem (e.g.,
/dev/ram0) then the kernel skips to the last step for the usual boot sequence.

(5) If the executable file /linuxrc is present in the initial root filesystem, /linuxrc is
executed with UID 0. (The file /linuxrc must have executable permission. The
file /linuxrc can be any valid executable, including a shell script.)

(6) If /linuxrc is not executed or when /linuxrc terminates, the normal root filesystem
is mounted. (If /linuxrc exits with any filesystems mounted on the initial root
filesystem, then the behavior of the kernel is UNSPECIFIED. See the NOTES
section for the current kernel behavior.)

(7) If the normal root filesystem has a directory /initrd , the device /dev/ram0 is
moved from / to /initrd . Otherwise, if the directory /initrd does not exist, the de-
vice /dev/ram0 is unmounted. (When moved from / to /initrd , /dev/ram0 is not
unmounted and therefore processes can remain running from /dev/ram0. If

Linux man-pages 6.16 2025-05-17 2853

initrd(4) Kernel Interfaces Manual initrd(4)

directory /initrd does not exist on the normal root filesystem and any processes
remain running from /dev/ram0 when /linuxrc exits, the behavior of the kernel is
UNSPECIFIED. See the NOTES section for the current kernel behavior.)

(8) The usual boot sequence (e.g., invocation of /sbin/init) is performed on the nor-
mal root filesystem.

Options
The following boot loader options, when used with initrd, affect the kernel’s boot-up
operation:

initrd= filename
Specifies the file to load as the contents of /dev/initrd . For LOADLIN this is a
command-line option. For LILO you have to use this command in the LILO
configuration file /etc/lilo.config. The filename specified with this option will
typically be a gzipped filesystem image.

noinitrd
This boot option disables the two-phase boot-up operation. The kernel performs
the usual boot sequence as if /dev/initrd was not initialized. With this option,
any contents of /dev/initrd loaded into memory by the boot loader contents are
preserved. This option permits the contents of /dev/initrd to be any data and
need not be limited to a filesystem image. However, device /dev/initrd is read-
only and can be read only one time after system startup.

root=device-name
Specifies the device to be used as the normal root filesystem. For LOADLIN
this is a command-line option. For LILO this is a boot time option or can be
used as an option line in the LILO configuration file /etc/lilo.config. The device
specified by this option must be a mountable device having a suitable root
filesystem.

Changing the normal root filesystem
By default, the kernel’s settings (e.g., set in the kernel file with rdev(8) or compiled into
the kernel file), or the boot loader option setting is used for the normal root filesystems.
For an NFS-mounted normal root filesystem, one has to use the nfs_root_name and
nfs_root_addrs boot options to give the NFS settings. For more information on NFS-
mounted root see the kernel documentation file Documentation/filesystems/nfs/nfs-
root.txt (or Documentation/filesystems/nfsroot.txt before Linux 2.6.33). For more infor-
mation on setting the root filesystem see also the LILO and LOADLIN documentation.

It is also possible for the /linuxrc executable to change the normal root device. For /lin-
uxrc to change the normal root device, /proc must be mounted. After mounting /proc,
/linuxrc changes the normal root device by writing into the proc files /proc/sys/ker-
nel/real-root-dev, /proc/sys/kernel/nfs-root-name, and /proc/sys/kernel/nfs-root-addrs.
For a physical root device, the root device is changed by having /linuxrc write the new
root filesystem device number into /proc/sys/kernel/real-root-dev. For an NFS root
filesystem, the root device is changed by having /linuxrc write the NFS setting into files
/proc/sys/kernel/nfs-root-name and /proc/sys/kernel/nfs-root-addrs and then writing
0xff (e.g., the pseudo-NFS-device number) into file /proc/sys/kernel/real-root-dev. For
example, the following shell command line would change the normal root device to

Linux man-pages 6.16 2025-05-17 2854

initrd(4) Kernel Interfaces Manual initrd(4)

/dev/hdb1:

echo 0x365 >/proc/sys/kernel/real-root-dev

For an NFS example, the following shell command lines would change the normal root
device to the NFS directory /var/nfsroot on a local networked NFS server with IP num-
ber 193.8.232.7 for a system with IP number 193.8.232.2 and named "idefix":

echo /var/nfsroot >/proc/sys/kernel/nfs-root-name
echo 193.8.232.2:193.8.232.7::255.255.255.0:idefix \

>/proc/sys/kernel/nfs-root-addrs
echo 255 >/proc/sys/kernel/real-root-dev

Note: The use of /proc/sys/kernel/real-root-dev to change the root filesystem is obso-
lete. See the Linux kernel source file Documentation/admin-guide/initrd.rst (or Docu-
mentation/initrd.txt before Linux 4.10) as well as pivot_root(2) and pivot_root(8) for in-
formation on the modern method of changing the root filesystem.

Usage
The main motivation for implementing initrd was to allow for modular kernel configu-
ration at system installation.

A possible system installation scenario is as follows:

(1) The loader program boots from floppy or other media with a minimal kernel (e.g.,
support for /dev/ram, /dev/initrd , and the ext2 filesystem) and loads /dev/initrd
with a gzipped version of the initial filesystem.

(2) The executable /linuxrc determines what is needed to (1) mount the normal root
filesystem (i.e., device type, device drivers, filesystem) and (2) the distribution
media (e.g., CD-ROM, network, tape, ...). This can be done by asking the user, by
auto-probing, or by using a hybrid approach.

(3) The executable /linuxrc loads the necessary modules from the initial root filesys-
tem.

(4) The executable /linuxrc creates and populates the root filesystem. (At this stage
the normal root filesystem does not have to be a completed system yet.)

(5) The executable /linuxrc sets /proc/sys/kernel/real-root-dev, unmounts /proc, the
normal root filesystem and any other filesystems it has mounted, and then termi-
nates.

(6) The kernel then mounts the normal root filesystem.

(7) Now that the filesystem is accessible and intact, the boot loader can be installed.

(8) The boot loader is configured to load into /dev/initrd a filesystem with the set of
modules that was used to bring up the system. (e.g., device /dev/ram0 can be
modified, then unmounted, and finally, the image is written from /dev/ram0 to a
file.)

(9) The system is now bootable and additional installation tasks can be performed.

The key role of /dev/initrd in the above is to reuse the configuration data during normal
system operation without requiring initial kernel selection, a large generic kernel or, re-
compiling the kernel.

Linux man-pages 6.16 2025-05-17 2855

initrd(4) Kernel Interfaces Manual initrd(4)

A second scenario is for installations where Linux runs on systems with different hard-
ware configurations in a single administrative network. In such cases, it may be desir-
able to use only a small set of kernels (ideally only one) and to keep the system-specific
part of configuration information as small as possible. In this case, create a common file
with all needed modules. Then, only the /linuxrc file or a file executed by /linuxrc
would be different.

A third scenario is more convenient recovery disks. Because information like the loca-
tion of the root filesystem partition is not needed at boot time, the system loaded from
/dev/initrd can use a dialog and/or auto-detection followed by a possible sanity check.

Last but not least, Linux distributions on CD-ROM may use initrd for easy installation
from the CD-ROM. The distribution can use LOADLIN to directly load /dev/initrd
from CD-ROM without the need of any floppies. The distribution could also use a
LILO boot floppy and then bootstrap a bigger RAM disk via /dev/initrd from the CD-
ROM.

FILES
/dev/initrd
/dev/ram0
/linuxrc
/initrd

NOTES
• With the current kernel, any filesystems that remain mounted when /dev/ram0 is

moved from / to /initrd continue to be accessible. However, the /proc/mounts en-
tries are not updated.

• With the current kernel, if directory /initrd does not exist, then /dev/ram0 will not
be fully unmounted if /dev/ram0 is used by any process or has any filesystem
mounted on it. If /dev/ram0 is not fully unmounted, then /dev/ram0 will remain in
memory.

• Users of /dev/initrd should not depend on the behavior given in the above notes.
The behavior may change in future versions of the Linux kernel.

SEE ALSO
chown(1), mknod(1), ram(4), freeramdisk(8), rdev(8)

Documentation/admin-guide/initrd.rst (or Documentation/initrd.txt before Linux 4.10)
in the Linux kernel source tree, the LILO documentation, the LOADLIN documentation,
the SYSLINUX documentation

Linux man-pages 6.16 2025-05-17 2856

lirc(4) Kernel Interfaces Manual lirc(4)

NAME
lirc - lirc devices

DESCRIPTION
The /dev/lirc* character devices provide a low-level bidirectional interface to infra-red
(IR) remotes. Most of these devices can receive, and some can send. When receiving or
sending data, the driver works in two different modes depending on the underlying hard-
ware.

Some hardware (typically TV-cards) decodes the IR signal internally and provides de-
coded button presses as scancode values. Drivers for this kind of hardware work in
LIRC_MODE_SCANCODE mode. Such hardware usually does not support sending
IR signals. Furthermore, such hardware can only decode a limited set of IR protocols,
usually only the protocol of the specific remote which is bundled with, for example, a
TV-card.

Other hardware provides a stream of pulse/space durations. Such drivers work in
LIRC_MODE_MODE2 mode. Such hardware can be used with (almost) any kind of
remote. This type of hardware can also be used in LIRC_MODE_SCANCODE mode,
in which case the kernel IR decoders will decode the IR. These decoders can be written
in extended BPF (see bpf(2)) and attached to the lirc device. Sometimes, this kind of
hardware also supports sending IR data.

The LIRC_GET_FEATURES ioctl (see below) allows probing for whether receiving
and sending is supported, and in which modes, amongst other features.

Reading input with the LIRC_MODE_MODE2 mode
In the LIRC_MODE_MODE2 mode, the data returned by read(2) provides 32-bit val-
ues representing a space or a pulse duration. The time of the duration (microseconds) is
encoded in the lower 24 bits. Pulse (also known as flash) indicates a duration of infrared
light being detected, and space (also known as gap) indicates a duration with no in-
frared. If the duration of space exceeds the inactivity timeout, a special timeout package
is delivered, which marks the end of a message. The upper 8 bits indicate the type of
package:

LIRC_MODE2_SPACE
Value reflects a space duration (microseconds).

LIRC_MODE2_PULSE
Value reflects a pulse duration (microseconds).

LIRC_MODE2_FREQUENCY
Value reflects a frequency (Hz); see the LIRC_SET_MEASURE_CAR-
RIER_MODE ioctl.

LIRC_MODE2_TIMEOUT
Value reflects a space duration (microseconds). The package reflects a timeout; see
the LIRC_SET_REC_TIMEOUT_REPORTS ioctl.

LIRC_MODE2_OVERFLOW
The IR receiver encountered an overflow, and as a result data is missing (since
Linux 5.18).

Linux man-pages 6.16 2025-09-21 2857

lirc(4) Kernel Interfaces Manual lirc(4)

Reading input with the LIRC_MODE_SCANCODE mode
In the LIRC_MODE_SCANCODE mode, the data returned by read(2) reflects de-
coded button presses, in the struct lirc_scancode. The scancode is stored in the scan-
code field, and the IR protocol is stored in rc_proto. This field has one the values of the
enum rc_proto.

Writing output with the LIRC_MODE_PULSE mode
The data written to the character device using write(2) is a pulse/space sequence of inte-
ger values. Pulses and spaces are only marked implicitly by their position. The data
must start and end with a pulse, thus it must always include an odd number of samples.
The write(2) function blocks until the data has been transmitted by the hardware. If
more data is provided than the hardware can send, the write(2) call fails with the error
EINVAL.

Writing output with the LIRC_MODE_SCANCODE mode
The data written to the character devices must be a single struct lirc_scancode. The
scancode and rc_proto fields must be filled in, all other fields must be 0. The kernel IR
encoders will convert the scancode to pulses and spaces. The protocol or scancode is in-
valid, or the lirc device cannot transmit.

IOCTL COMMANDS
#include <linux/lirc.h> /* But see BUGS */

int ioctl(int fd, int cmd, int *val);

The following ioctl(2) operations are provided by the lirc character device to probe or
change specific lirc hardware settings.

Always Supported Commands
/dev/lirc* devices always support the following commands:

LIRC_GET_FEATURES (void)
Returns a bit mask of combined features bits; see FEATURES.

If a device returns an error code for LIRC_GET_FEATURES, it is safe to assume it is
not a lirc device.

Optional Commands
Some lirc devices support the commands listed below. Unless otherwise stated, these
fail with the error ENOTTY if the operation isn’t supported, or with the error EINVAL
if the operation failed, or invalid arguments were provided. If a driver does not an-
nounce support of certain features, invoking the corresponding ioctls will fail with the
error ENOTTY.

LIRC_GET_REC_MODE (void)
If the lirc device has no receiver, this operation fails with the error ENOTTY.
Otherwise, it returns the receive mode, which will be one of:

LIRC_MODE_MODE2
The driver returns a sequence of pulse/space durations.

LIRC_MODE_SCANCODE
The driver returns struct lirc_scancode values, each of which represents a
decoded button press.

Linux man-pages 6.16 2025-09-21 2858

lirc(4) Kernel Interfaces Manual lirc(4)

LIRC_SET_REC_MODE (int)
Set the receive mode. val is either LIRC_MODE_SCANCODE or
LIRC_MODE_MODE2. If the lirc device has no receiver, this operation fails
with the error ENOTTY.

LIRC_GET_SEND_MODE (void)
Return the send mode. LIRC_MODE_PULSE or LIRC_MODE_SCAN-
CODE is supported. If the lirc device cannot send, this operation fails with the
error ENOTTY.

LIRC_SET_SEND_MODE (int)
Set the send mode. val is either LIRC_MODE_SCANCODE or
LIRC_MODE_PULSE. If the lirc device cannot send, this operation fails with
the error ENOTTY.

LIRC_SET_SEND_CARRIER (int)
Set the modulation frequency. The argument is the frequency (Hz).

LIRC_SET_SEND_DUTY_CYCLE (int)
Set the carrier duty cycle. val is a number in the range [0,100] which describes
the pulse width as a percentage of the total cycle. Currently, no special meaning
is defined for 0 or 100, but the values are reserved for future use.

LIRC_GET_MIN_TIMEOUT(void)
LIRC_GET_MAX_TIMEOUT(void)

Some devices have internal timers that can be used to detect when there has been
no IR activity for a long time. This can help lircd(8) in detecting that an IR sig-
nal is finished and can speed up the decoding process. These operations return
integer values with the minimum/maximum timeout that can be set (microsec-
onds). Some devices have a fixed timeout. For such drivers,
LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT will fail
with the error ENOTTY.

LIRC_SET_REC_TIMEOUT (int)
Set the integer value for IR inactivity timeout (microseconds). To be accepted,
the value must be within the limits defined by LIRC_GET_MIN_TIMEOUT
and LIRC_GET_MAX_TIMEOUT. A value of 0 (if supported by the hard-
ware) disables all hardware timeouts and data should be reported as soon as pos-
sible. If the exact value cannot be set, then the next possible value greater than
the given value should be set.

LIRC_GET_REC_TIMEOUT (void)
Return the current inactivity timeout (microseconds). Available since Linux
4.18.

LIRC_SET_REC_TIMEOUT_REPORTS (int)
Enable (val is 1) or disable (val is 0) timeout packages in
LIRC_MODE_MODE2. The behavior of this operation has varied across ker-
nel versions:

Linux man-pages 6.16 2025-09-21 2859

lirc(4) Kernel Interfaces Manual lirc(4)

• Since Linux 5.17: timeout packages are always enabled and this ioctl is a no-
op.

• Since Linux 4.16: timeout packages are enabled by default. Each time the
lirc device is opened, the LIRC_SET_REC_TIMEOUT operation can be
used to disable (and, if desired, to later re-enable) the timeout on the file de-
scriptor.

• In Linux 4.15 and earlier: timeout packages are disabled by default, and en-
abling them (via LIRC_SET_REC_TIMEOUT) on any file descriptor asso-
ciated with the lirc device has the effect of enabling timeouts for all file de-
scriptors referring to that device (until timeouts are disabled again).

LIRC_SET_REC_CARRIER (int)
Set the upper bound of the receive carrier frequency (Hz). See
LIRC_SET_REC_CARRIER_RANGE.

LIRC_SET_REC_CARRIER_RANGE (int)
Sets the lower bound of the receive carrier frequency (Hz). For this to take af-
fect, first set the lower bound using the LIRC_SET_REC_CAR-
RIER_RANGE ioctl, and then the upper bound using the
LIRC_SET_REC_CARRIER ioctl.

LIRC_SET_MEASURE_CARRIER_MODE (int)
Enable (val is 1) or disable (val is 0) the measure mode. If enabled, from the
next key press on, the driver will send LIRC_MODE2_FREQUENCY packets.
By default, this should be turned off.

LIRC_GET_REC_RESOLUTION (void)
Return the driver resolution (microseconds).

LIRC_SET_TRANSMITTER_MASK (int)
Enable the set of transmitters specified in val, which contains a bit mask where
each enabled transmitter is a 1. The first transmitter is encoded by the least sig-
nificant bit, and so on. When an invalid bit mask is given, for example a bit is set
even though the device does not have so many transmitters, this operation returns
the number of available transmitters and does nothing otherwise.

LIRC_SET_WIDEBAND_RECEIVER (int)
Some devices are equipped with a special wide band receiver which is intended
to be used to learn the output of an existing remote. This ioctl can be used to en-
able (val equals 1) or disable (val equals 0) this functionality. This might be
useful for devices that otherwise have narrow band receivers that prevent them to
be used with certain remotes. Wide band receivers may also be more precise.
On the other hand, their disadvantage usually is reduced range of reception.

Note: wide band receiver may be implicitly enabled if you enable carrier reports.
In that case, it will be disabled as soon as you disable carrier reports. Trying to
disable a wide band receiver while carrier reports are active will do nothing.

FEATURES
the LIRC_GET_FEATURES ioctl returns a bit mask describing features of the driver.
The following bits may be returned in the mask:

Linux man-pages 6.16 2025-09-21 2860

lirc(4) Kernel Interfaces Manual lirc(4)

LIRC_CAN_REC_MODE2
The driver is capable of receiving using LIRC_MODE_MODE2.

LIRC_CAN_REC_SCANCODE
The driver is capable of receiving using LIRC_MODE_SCANCODE.

LIRC_CAN_SET_SEND_CARRIER
The driver supports changing the modulation frequency using
LIRC_SET_SEND_CARRIER.

LIRC_CAN_SET_SEND_DUTY_CYCLE
The driver supports changing the duty cycle using
LIRC_SET_SEND_DUTY_CYCLE.

LIRC_CAN_SET_TRANSMITTER_MASK
The driver supports changing the active transmitter(s) using
LIRC_SET_TRANSMITTER_MASK.

LIRC_CAN_SET_REC_CARRIER
The driver supports setting the receive carrier frequency using
LIRC_SET_REC_CARRIER. Any lirc device since the drivers were merged
in Linux 2.6.36 must have LIRC_CAN_SET_REC_CARRIER_RANGE set if
LIRC_CAN_SET_REC_CARRIER feature is set.

LIRC_CAN_SET_REC_CARRIER_RANGE
The driver supports LIRC_SET_REC_CARRIER_RANGE. The lower bound
of the carrier must first be set using the LIRC_SET_REC_CAR-
RIER_RANGE ioctl, before using the LIRC_SET_REC_CARRIER ioctl to
set the upper bound.

LIRC_CAN_GET_REC_RESOLUTION
The driver supports LIRC_GET_REC_RESOLUTION.

LIRC_CAN_SET_REC_TIMEOUT
The driver supports LIRC_SET_REC_TIMEOUT.

LIRC_CAN_MEASURE_CARRIER
The driver supports measuring of the modulation frequency using
LIRC_SET_MEASURE_CARRIER_MODE.

LIRC_CAN_USE_WIDEBAND_RECEIVER
The driver supports learning mode using LIRC_SET_WIDEBAND_RE-
CEIVER.

LIRC_CAN_SEND_PULSE
The driver supports sending using LIRC_MODE_PULSE or
LIRC_MODE_SCANCODE

BUGS
Using these devices requires the kernel source header file lirc.h. This file is not avail-
able before Linux 4.6. Users of older kernels could use the file bundled in
〈http://www.lirc.org〉.

Linux man-pages 6.16 2025-09-21 2861

lirc(4) Kernel Interfaces Manual lirc(4)

SEE ALSO
ir-ctl(1), lircd(8), bpf(2)

〈https://www.kernel.org/doc/html/latest/userspace-api/media/rc/lirc-dev.html〉

Linux man-pages 6.16 2025-09-21 2862

loop(4) Kernel Interfaces Manual loop(4)

NAME
loop, loop-control - loop devices

SYNOPSIS
#include <linux/loop.h>

DESCRIPTION
The loop device is a block device that maps its data blocks not to a physical device such
as a hard disk or optical disk drive, but to the blocks of a regular file in a filesystem or to
another block device. This can be useful for example to provide a block device for a
filesystem image stored in a file, so that it can be mounted with the mount(8) command.
You could do

$ dd if=/dev/zero of=file.img bs=1MiB count=10;
$ sudo losetup /dev/loop4 file.img;
$ sudo mkfs -t ext4 /dev/loop4;
$ sudo mkdir /myloopdev;
$ sudo mount /dev/loop4 /myloopdev;

See losetup(8) for another example.

A transfer function can be specified for each loop device for encryption and decryption
purposes.

The following ioctl(2) operations are provided by the loop block device:

LOOP_SET_FD
Associate the loop device with the open file whose file descriptor is passed as the
(third) ioctl(2) argument.

LOOP_CLR_FD
Disassociate the loop device from any file descriptor.

LOOP_SET_STATUS
Set the status of the loop device using the (third) ioctl(2) argument. This argu-
ment is a pointer to a loop_info structure, defined in <linux/loop.h> as:

struct loop_info {
int lo_number; /* ioctl r/o */
dev_t lo_device; /* ioctl r/o */
unsigned long lo_inode; /* ioctl r/o */
dev_t lo_rdevice; /* ioctl r/o */
int lo_offset;
int lo_encrypt_type;
int lo_encrypt_key_size; /* ioctl w/o */
int lo_flags; /* ioctl r/w (r/o before

Linux 2.6.25) */
char lo_name[LO_NAME_SIZE];
unsigned char lo_encrypt_key[LO_KEY_SIZE];

/* ioctl w/o */
unsigned long lo_init[2];
char reserved[4];

};

Linux man-pages 6.16 2025-08-20 2863

loop(4) Kernel Interfaces Manual loop(4)

The encryption type (lo_encrypt_type) should be one of LO_CRYPT_NONE,
LO_CRYPT_XOR, LO_CRYPT_DES, LO_CRYPT_FISH2,
LO_CRYPT_BLOW, LO_CRYPT_CAST128, LO_CRYPT_IDEA,
LO_CRYPT_DUMMY, LO_CRYPT_SKIPJACK, or (since Linux 2.6.0)
LO_CRYPT_CRYPTOAPI.

The lo_flags field is a bit mask that can include zero or more of the following:

LO_FLAGS_READ_ONLY
The loopback device is read-only.

LO_FLAGS_AUTOCLEAR (since Linux 2.6.25)
The loopback device will autodestruct on last close.

LO_FLAGS_PARTSCAN (since Linux 3.2)
Allow automatic partition scanning.

LO_FLAGS_DIRECT_IO (since Linux 4.10)
Use direct I/O mode to access the backing file.

The only lo_flags that can be modified by LOOP_SET_STATUS are
LO_FLAGS_AUTOCLEAR and LO_FLAGS_PARTSCAN.

LOOP_GET_STATUS
Get the status of the loop device. The (third) ioctl(2) argument must be a pointer
to a struct loop_info.

LOOP_CHANGE_FD (since Linux 2.6.5)
Switch the backing store of the loop device to the new file identified file descrip-
tor specified in the (third) ioctl(2) argument, which is an integer. This operation
is possible only if the loop device is read-only and the new backing store is the
same size and type as the old backing store.

LOOP_SET_CAPACITY (since Linux 2.6.30)
Resize a live loop device. One can change the size of the underlying backing
store and then use this operation so that the loop driver learns about the new size.
This operation takes no argument.

LOOP_SET_DIRECT_IO (since Linux 4.10)
Set DIRECT I/O mode on the loop device, so that it can be used to open backing
file. The (third) ioctl(2) argument is an unsigned long value. A nonzero repre-
sents direct I/O mode.

LOOP_SET_BLOCK_SIZE (since Linux 4.14)
Set the block size of the loop device. The (third) ioctl(2) argument is an un-
signed long value. This value must be a power of two in the range [512,page-
size]; otherwise, an EINVAL error results.

LOOP_CONFIGURE (since Linux 5.8)
Setup and configure all loop device parameters in a single step using the (third)
ioctl(2) argument. This argument is a pointer to a loop_config structure, defined
in <linux/loop.h> as:

struct loop_config {
__u32 fd;

Linux man-pages 6.16 2025-08-20 2864

loop(4) Kernel Interfaces Manual loop(4)

__u32 block_size;
struct loop_info64 info;
__u64 __reserved[8];

};

In addition to doing what LOOP_SET_STATUS can do, LOOP_CONFIG-
URE can also be used to do the following:

• set the correct block size immediately by setting loop_config.block_size;

• explicitly request direct I/O mode by setting LO_FLAGS_DIRECT_IO in
loop_config.info.lo_flags; and

• explicitly request read-only mode by setting LO_FLAGS_READ_ONLY in
loop_config.info.lo_flags.

Since Linux 2.6, there are two new ioctl(2) operations:

LOOP_SET_STATUS64
LOOP_GET_STATUS64

These are similar to LOOP_SET_STATUS and LOOP_GET_STATUS de-
scribed above but use the loop_info64 structure, which has some additional fields
and a larger range for some other fields:

struct loop_info64 {
uint64_t lo_device; /* ioctl r/o */
uint64_t lo_inode; /* ioctl r/o */
uint64_t lo_rdevice; /* ioctl r/o */
uint64_t lo_offset;
uint64_t lo_sizelimit; /* bytes, 0 == max available */
uint32_t lo_number; /* ioctl r/o */
uint32_t lo_encrypt_type;
uint32_t lo_encrypt_key_size; /* ioctl w/o */
uint32_t lo_flags; i /* ioctl r/w (r/o before

Linux 2.6.25) */
uint8_t lo_file_name[LO_NAME_SIZE];
uint8_t lo_crypt_name[LO_NAME_SIZE];
uint8_t lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
uint64_t lo_init[2];

};

/dev/loop-control
Since Linux 3.1, the kernel provides the /dev/loop-control device, which permits an ap-
plication to dynamically find a free device, and to add and remove loop devices from the
system. To perform these operations, one first opens /dev/loop-control and then em-
ploys one of the following ioctl(2) operations:

LOOP_CTL_GET_FREE
Allocate or find a free loop device for use. On success, the device number is re-
turned as the result of the call. This operation takes no argument.

Linux man-pages 6.16 2025-08-20 2865

loop(4) Kernel Interfaces Manual loop(4)

LOOP_CTL_ADD
Add the new loop device whose device number is specified as a long integer in
the third ioctl(2) argument. On success, the device index is returned as the result
of the call. If the device is already allocated, the call fails with the error EEX-
IST.

LOOP_CTL_REMOVE
Remove the loop device whose device number is specified as a long integer in
the third ioctl(2) argument. On success, the device number is returned as the re-
sult of the call. If the device is in use, the call fails with the error EBUSY.

FILES
/dev/loop*

The loop block special device files.

EXAMPLES
The program below uses the /dev/loop-control device to find a free loop device, opens
the loop device, opens a file to be used as the underlying storage for the device, and then
associates the loop device with the backing store. The following shell session demon-
strates the use of the program:

$ dd if=/dev/zero of=file.img bs=1MiB count=10;
10+0 records in
10+0 records out
10485760 bytes (10 MB) copied, 0.00609385 s, 1.7 GB/s
$ sudo ./mnt_loop file.img;
loopname = /dev/loop5

Program source

#include <err.h>
#include <fcntl.h>
#include <linux/loop.h>
#include <sys/ioctl.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int
main(int argc, char *argv[])
{

int loopctlfd, loopfd, backingfile;
long devnr;
char loopname[4096];

if (argc != 2) {
fprintf(stderr, "Usage: %s backing-file\n", argv[0]);
exit(EXIT_FAILURE);

}

Linux man-pages 6.16 2025-08-20 2866

loop(4) Kernel Interfaces Manual loop(4)

loopctlfd = open("/dev/loop-control", O_RDWR);
if (loopctlfd == -1)

err(EXIT_FAILURE, "open: /dev/loop-control");

devnr = ioctl(loopctlfd, LOOP_CTL_GET_FREE);
if (devnr == -1)

err(EXIT_FAILURE, "ioctl-LOOP_CTL_GET_FREE");

sprintf(loopname, "/dev/loop%ld", devnr);
printf("loopname = %s\n", loopname);

loopfd = open(loopname, O_RDWR);
if (loopfd == -1)

err(EXIT_FAILURE, "open: loopname");

backingfile = open(argv[1], O_RDWR);
if (backingfile == -1)

err(EXIT_FAILURE, "open: backing-file");

if (ioctl(loopfd, LOOP_SET_FD, backingfile) == -1)
err(EXIT_FAILURE, "ioctl-LOOP_SET_FD");

exit(EXIT_SUCCESS);
}

SEE ALSO
losetup(8), mount(8)

Linux man-pages 6.16 2025-08-20 2867

lp(4) Kernel Interfaces Manual lp(4)

NAME
lp - line printer devices

SYNOPSIS
#include <linux/lp.h>

CONFIGURATION
lp[0–2] are character devices for the parallel line printers; they have major number 6 and
minor number 0–2. The minor numbers correspond to the printer port base addresses
0x03bc, 0x0378, and 0x0278. Usually they have mode 220 and are owned by user root
and group lp. You can use printer ports either with polling or with interrupts. Interrupts
are recommended when high traffic is expected, for example, for laser printers. For typ-
ical dot matrix printers, polling will usually be enough. The default is polling.

DESCRIPTION
The following ioctl(2) calls are supported:

int ioctl(int fd, LPTIME, int arg)
Sets the amount of time that the driver sleeps before rechecking the printer when
the printer’s buffer appears to be filled to arg. If you have a fast printer, decrease
this number; if you have a slow printer, then increase it. This is in hundredths of
a second, the default 2 being 0.02 seconds. It influences only the polling driver.

int ioctl(int fd, LPCHAR, int arg)
Sets the maximum number of busy-wait iterations which the polling driver does
while waiting for the printer to get ready for receiving a character to arg. If
printing is too slow, increase this number; if the system gets too slow, decrease
this number. The default is 1000. It influences only the polling driver.

int ioctl(int fd, LPABORT, int arg)
If arg is 0, the printer driver will retry on errors, otherwise it will abort. The de-
fault is 0.

int ioctl(int fd, LPABORTOPEN, int arg)
If arg is 0, open(2) will be aborted on error, otherwise error will be ignored. The
default is to ignore it.

int ioctl(int fd, LPCAREFUL, int arg)
If arg is 0, then the out-of-paper, offline, and error signals are required to be
false on all writes; otherwise, they are ignored. The default is to ignore them.

int ioctl(int fd, LPWAIT, int arg)
Sets the number of busy waiting iterations to wait before strobing the printer to
accept a just-written character, and the number of iterations to wait before turn-
ing the strobe off again, to arg. The specification says this time should be 0.5
microseconds, but experience has shown the delay caused by the code is already
enough. For that reason, the default value is 0. This is used for both the polling
and the interrupt driver.

int ioctl(int fd, LPSETIRQ, int arg)
This ioctl(2) requires superuser privileges. It takes an int containing the new
IRQ as argument. As a side effect, the printer will be reset. When arg is 0, the
polling driver will be used, which is also default.

Linux man-pages 6.16 2025-09-21 2868

lp(4) Kernel Interfaces Manual lp(4)

int ioctl(int fd, LPGETIRQ, int *arg)
Stores the currently used IRQ in arg.

int ioctl(int fd, LPGETSTATUS, int *arg)
Stores the value of the status port in arg. The bits have the following meaning:
LP_PBUSY inverted busy input, active high
LP_PACK unchanged acknowledge input, active low
LP_POUTPA unchanged out-of-paper input, active high
LP_PSELECD unchanged selected input, active high
LP_PERRORP unchanged error input, active low

Refer to your printer manual for the meaning of the signals. Note that undocu-
mented bits may also be set, depending on your printer.

int ioctl(int fd, LPRESET)
Resets the printer. No argument is used.

FILES
/dev/lp*

SEE ALSO
chmod(1), chown(1), mknod(1), lpcntl(8), tunelp(8)

Linux man-pages 6.16 2025-09-21 2869

mem(4) Kernel Interfaces Manual mem(4)

NAME
mem, kmem, port - system memory, kernel memory and system ports

DESCRIPTION
/dev/mem is a character device file that is an image of the main memory of the com-
puter. It may be used, for example, to examine (and even patch) the system.

Byte addresses in /dev/mem are interpreted as physical memory addresses. References
to nonexistent locations cause errors to be returned.

Examining and patching is likely to lead to unexpected results when read-only or write-
only bits are present.

Since Linux 2.6.26, and depending on the architecture, the CONFIG_STRICT_DE-
VMEM kernel configuration option limits the areas which can be accessed through this
file. For example: on x86, RAM access is not allowed but accessing memory-mapped
PCI regions is.

It is typically created by:

mknod -m 660 /dev/mem c 1 1
chown root:kmem /dev/mem

The file /dev/kmem is the same as /dev/mem, except that the kernel virtual memory
rather than physical memory is accessed. Since Linux 2.6.26, this file is available only
if the CONFIG_DEVKMEM kernel configuration option is enabled.

It is typically created by:

mknod -m 640 /dev/kmem c 1 2
chown root:kmem /dev/kmem

/dev/port is similar to /dev/mem, but the I/O ports are accessed.

It is typically created by:

mknod -m 660 /dev/port c 1 4
chown root:kmem /dev/port

FILES
/dev/mem
/dev/kmem
/dev/port

SEE ALSO
chown(1), mknod(1), ioperm(2)

Linux man-pages 6.16 2025-05-17 2870

mouse(4) Kernel Interfaces Manual mouse(4)

NAME
mouse - serial mouse interface

CONFIGURATION
Serial mice are connected to a serial RS232/V24 dialout line, see ttyS(4) for a descrip-
tion.

DESCRIPTION
Introduction

The pinout of the usual 9 pin plug as used for serial mice is:

pin name used for
2 RX Data
3 TX -12 V, Imax = 10 mA
4 DTR +12 V, Imax = 10 mA
7 RTS +12 V, Imax = 10 mA
5 GND Ground

This is the specification, in fact 9 V suffices with most mice.

The mouse driver can recognize a mouse by dropping RTS to low and raising it again.
About 14 ms later the mouse will send 0x4D ('M') on the data line. After a further 63
ms, a Microsoft-compatible 3-button mouse will send 0x33 ('3').

The relative mouse movement is sent as dx (positive means right) and dy (positive
means down). Various mice can operate at different speeds. To select speeds, cycle
through the speeds 9600, 4800, 2400, and 1200 bit/s, each time writing the two charac-
ters from the table below and waiting 0.1 seconds. The following table shows available
speeds and the strings that select them:

bit/s string
9600 *q
4800 *p
2400 *o
1200 *n

The first byte of a data packet can be used for synchronization purposes.

Microsoft protocol
The Microsoft protocol uses 1 start bit, 7 data bits, no parity and one stop bit at the
speed of 1200 bits/sec. Data is sent to RxD in 3-byte packets. The dx and dy move-
ments are sent as two’s-complement, lb (rb) are set when the left (right) button is
pressed:

byte d6 d5 d4 d3 d2 d1 d0
1 1 lb rb dy7 dy6 dx7 dx6
2 0 dx5 dx4 dx3 dx2 dx1 dx0
3 0 dy5 dy4 dy3 dy2 dy1 dy0

3-button Microsoft protocol
Original Microsoft mice only have two buttons. However, there are some three button
mice which also use the Microsoft protocol. Pressing or releasing the middle button is
reported by sending a packet with zero movement and no buttons pressed. (Thus, unlike
for the other two buttons, the status of the middle button is not reported in each packet.)

Linux man-pages 6.16 2025-05-17 2871

mouse(4) Kernel Interfaces Manual mouse(4)

Logitech protocol
Logitech serial 3-button mice use a different extension of the Microsoft protocol: when
the middle button is up, the above 3-byte packet is sent. When the middle button is
down a 4-byte packet is sent, where the 4th byte has value 0x20 (or at least has the 0x20
bit set). In particular, a press of the middle button is reported as 0,0,0,0x20 when no
other buttons are down.

Mousesystems protocol
The Mousesystems protocol uses 1 start bit, 8 data bits, no parity, and two stop bits at
the speed of 1200 bits/sec. Data is sent to RxD in 5-byte packets. dx is sent as the sum
of the two two’s-complement values, dy is send as negated sum of the two two’s-com-
plement values. lb (mb, rb) are cleared when the left (middle, right) button is pressed:

byte d7 d6 d5 d4 d3 d2 d1 d0
1 1 0 0 0 0 lb mb rb
2 0 dxa6 dxa5 dxa4 dxa3 dxa2 dxa1 dxa0
3 0 dya6 dya5 dya4 dya3 dya2 dya1 dya0
4 0 dxb6 dxb5 dxb4 dxb3 dxb2 dxb1 dxb0
5 0 dyb6 dyb5 dyb4 dyb3 dyb2 dyb1 dyb0

Bytes 4 and 5 describe the change that occurred since bytes 2 and 3 were transmitted.

Sun protocol
The Sun protocol is the 3-byte version of the above 5-byte Mousesystems protocol: the
last two bytes are not sent.

MM protocol
The MM protocol uses 1 start bit, 8 data bits, odd parity, and one stop bit at the speed of
1200 bits/sec. Data is sent to RxD in 3-byte packets. dx and dy are sent as single
signed values, the sign bit indicating a negative value. lb (mb, rb) are set when the left
(middle, right) button is pressed:

byte d7 d6 d5 d4 d3 d2 d1 d0
1 1 0 0 dxs dys lb mb rb
2 0 dx6 dx5 dx4 dx3 dx2 dx1 dx0
3 0 dy6 dy5 dy4 dy3 dy2 dy1 dy0

FILES
/dev/mouse

A commonly used symbolic link pointing to a mouse device.

SEE ALSO
ttyS(4), gpm(8)

Linux man-pages 6.16 2025-05-17 2872

msr(4) Kernel Interfaces Manual msr(4)

NAME
msr - x86 CPU MSR access device

DESCRIPTION
/dev/cpu/CPUNUM/msr provides an interface to read and write the model-specific reg-
isters (MSRs) of an x86 CPU. CPUNUM is the number of the CPU to access as listed
in /proc/cpuinfo.

The register access is done by opening the file and seeking to the MSR number as offset
in the file, and then reading or writing in chunks of 8 bytes. An I/O transfer of more
than 8 bytes means multiple reads or writes of the same register.

This file is protected so that it can be read and written only by the user root, or members
of the group root.

NOTES
The msr driver is not auto-loaded. On modular kernels you might need to use the fol-
lowing command to load it explicitly before use:

$ modprobe msr

SEE ALSO
Intel Corporation Intel 64 and IA-32 Architectures Software Developer’s Manual Vol-
ume 3B Appendix B, for an overview of the Intel CPU MSRs.

Linux man-pages 6.16 2025-05-17 2873

null(4) Kernel Interfaces Manual null(4)

NAME
null, zero - data sink

DESCRIPTION
Data written to the /dev/null and /dev/zero special files is discarded.

Reads from /dev/null always return end of file (i.e., read(2) returns 0), whereas reads
from /dev/zero always return bytes containing zero ('\0' characters).

These devices are typically created by:

mknod -m 666 /dev/null c 1 3
mknod -m 666 /dev/zero c 1 5
chown root:root /dev/null /dev/zero

FILES
/dev/null
/dev/zero

NOTES
If these devices are not writable and readable for all users, many programs will act
strangely.

Since Linux 2.6.31, reads from /dev/zero are interruptible by signals. (This change was
made to help with bad latencies for large reads from /dev/zero.)

SEE ALSO
chown(1), mknod(1), full(4)

Linux man-pages 6.16 2025-05-17 2874

pts(4) Kernel Interfaces Manual pts(4)

NAME
ptmx, pts - pseudoterminal master and slave

DESCRIPTION
The file /dev/ptmx (the pseudoterminal multiplexor device) is a character file with major
number 5 and minor number 2, usually with mode 0666 and ownership root:root. It is
used to create a pseudoterminal master and slave pair.

When a process opens /dev/ptmx, it gets a file descriptor for a pseudoterminal master
and a pseudoterminal slave device is created in the /dev/pts directory. Each file descrip-
tor obtained by opening /dev/ptmx is an independent pseudoterminal master with its
own associated slave, whose path can be found by passing the file descriptor to pt-
sname(3).

Before opening the pseudoterminal slave, you must pass the master’s file descriptor to
grantpt(3) and unlockpt(3).

Once both the pseudoterminal master and slave are open, the slave provides processes
with an interface that is identical to that of a real terminal.

Data written to the slave is presented on the master file descriptor as input. Data written
to the master is presented to the slave as input.

In practice, pseudoterminals are used for implementing terminal emulators such as
xterm(1), in which data read from the pseudoterminal master is interpreted by the appli-
cation in the same way a real terminal would interpret the data, and for implementing re-
mote-login programs such as sshd(8), in which data read from the pseudoterminal mas-
ter is sent across the network to a client program that is connected to a terminal or termi-
nal emulator.

Pseudoterminals can also be used to send input to programs that normally refuse to read
input from pipes (such as su(1), and passwd(1)).

FILES
/dev/ptmx, /dev/pts/*

NOTES
The Linux support for the above (known as UNIX 98 pseudoterminal naming) is done
using the devpts filesystem, which should be mounted on /dev/pts.

SEE ALSO
getpt(3), grantpt(3), ptsname(3), unlockpt(3), pty(7)

Linux man-pages 6.16 2025-05-17 2875

ram(4) Kernel Interfaces Manual ram(4)

NAME
ram - ram disk device

DESCRIPTION
The ram device is a block device to access the ram disk in raw mode.

It is typically created by:

mknod -m 660 /dev/ram b 1 1
chown root:disk /dev/ram

FILES
/dev/ram

SEE ALSO
chown(1), mknod(1), mount(8)

Linux man-pages 6.16 2025-05-17 2876

random(4) Kernel Interfaces Manual random(4)

NAME
random, urandom - kernel random number source devices

SYNOPSIS
#include <linux/random.h>

int ioctl(fd , RNDrequest, param);

DESCRIPTION
The character special files /dev/random and /dev/urandom (present since Linux 1.3.30)
provide an interface to the kernel’s random number generator. The file /dev/random has
major device number 1 and minor device number 8. The file /dev/urandom has major
device number 1 and minor device number 9.

The random number generator gathers environmental noise from device drivers and
other sources into an entropy pool. The generator also keeps an estimate of the number
of bits of noise in the entropy pool. From this entropy pool, random numbers are cre-
ated.

Linux 3.17 and later provides the simpler and safer getrandom(2) interface which re-
quires no special files; see the getrandom(2) manual page for details.

When read, the /dev/urandom device returns random bytes using a pseudorandom num-
ber generator seeded from the entropy pool. Reads from this device do not block (i.e.,
the CPU is not yielded), but can incur an appreciable delay when requesting large
amounts of data.

When read during early boot time, /dev/urandom may return data prior to the entropy
pool being initialized. If this is of concern in your application, use getrandom(2) or
/dev/random instead.

The /dev/random device is a legacy interface which dates back to a time where the cryp-
tographic primitives used in the implementation of /dev/urandom were not widely
trusted. It will return random bytes only within the estimated number of bits of fresh
noise in the entropy pool, blocking if necessary. /dev/random is suitable for applica-
tions that need high quality randomness, and can afford indeterminate delays.

When the entropy pool is empty, reads from /dev/random will block until additional en-
vironmental noise is gathered. Since Linux 5.6, the O_NONBLOCK flag is ignored as
/dev/random will no longer block except during early boot process. In earlier versions,
if open(2) is called for /dev/random with the O_NONBLOCK flag, a subsequent
read(2) will not block if the requested number of bytes is not available. Instead, the
available bytes are returned. If no byte is available, read(2) will return -1 and errno
will be set to EAGAIN.

The O_NONBLOCK flag has no effect when opening /dev/urandom. When calling
read(2) for the device /dev/urandom, reads of up to 256 bytes will return as many bytes
as are requested and will not be interrupted by a signal handler. Reads with a buffer
over this limit may return less than the requested number of bytes or fail with the error
EINTR, if interrupted by a signal handler.

Since Linux 3.16, a read(2) from /dev/urandom will return at most 32 MB. A read(2)
from /dev/random will return at most 512 bytes (340 bytes before Linux 2.6.12).

Linux man-pages 6.16 2025-09-21 2877

random(4) Kernel Interfaces Manual random(4)

Writing to /dev/random or /dev/urandom will update the entropy pool with the data
written, but this will not result in a higher entropy count. This means that it will impact
the contents read from both files, but it will not make reads from /dev/random faster.

Usage
The /dev/random interface is considered a legacy interface, and /dev/urandom is pre-
ferred and sufficient in all use cases, with the exception of applications which require
randomness during early boot time; for these applications, getrandom(2) must be used
instead, because it will block until the entropy pool is initialized.

If a seed file is saved across reboots as recommended below, the output is cryptographi-
cally secure against attackers without local root access as soon as it is reloaded in the
boot sequence, and perfectly adequate for network encryption session keys. (All major
Linux distributions have saved the seed file across reboots since 2000 at least.) Since
reads from /dev/random may block, users will usually want to open it in nonblocking
mode (or perform a read with timeout), and provide some sort of user notification if the
desired entropy is not immediately available.

Configuration
If your system does not have /dev/random and /dev/urandom created already, they can
be created with the following commands:

mknod -m 666 /dev/random c 1 8
mknod -m 666 /dev/urandom c 1 9
chown root:root /dev/random /dev/urandom

When a Linux system starts up without much operator interaction, the entropy pool may
be in a fairly predictable state. This reduces the actual amount of noise in the entropy
pool below the estimate. In order to counteract this effect, it helps to carry entropy pool
information across shut-downs and start-ups. To do this, add the lines to an appropriate
script which is run during the Linux system start-up sequence:

echo "Initializing random number generator..."
random_seed=/var/run/random-seed
Carry a random seed from start-up to start-up
Load and then save the whole entropy pool
if [-f $random_seed]; then

cat $random_seed >/dev/urandom
else

touch $random_seed
fi
chmod 600 $random_seed
poolfile=/proc/sys/kernel/random/poolsize
[-r $poolfile] && bits=$(cat $poolfile) || bits=4096
bytes=$(expr $bits / 8)
dd if=/dev/urandom of=$random_seed count=1 bs=$bytes

Also, add the following lines in an appropriate script which is run during the Linux sys-
tem shutdown:

Carry a random seed from shut-down to start-up
Save the whole entropy pool

Linux man-pages 6.16 2025-09-21 2878

random(4) Kernel Interfaces Manual random(4)

echo "Saving random seed..."
random_seed=/var/run/random-seed
touch $random_seed
chmod 600 $random_seed
poolfile=/proc/sys/kernel/random/poolsize
[-r $poolfile] && bits=$(cat $poolfile) || bits=4096
bytes=$(expr $bits / 8)
dd if=/dev/urandom of=$random_seed count=1 bs=$bytes

In the above examples, we assume Linux 2.6.0 or later, where /proc/sys/kernel/ran-
dom/poolsize returns the size of the entropy pool in bits (see below).

/proc interfaces
The files in the directory /proc/sys/kernel/random (present since Linux 2.3.16) provide
additional information about the /dev/random device:

entropy_avail
This read-only file gives the available entropy, in bits. This will be a number in
the range 0 to 4096.

poolsize
This file gives the size of the entropy pool. The semantics of this file vary across
kernel versions:

Linux 2.4:
This file gives the size of the entropy pool in bytes. Normally, this file
will have the value 512, but it is writable, and can be changed to any
value for which an algorithm is available. The choices are 32, 64, 128,
256, 512, 1024, or 2048.

Linux 2.6 and later:
This file is read-only, and gives the size of the entropy pool in bits. It
contains the value 4096.

read_wakeup_threshold
This file contains the number of bits of entropy required for waking up processes
that sleep waiting for entropy from /dev/random. The default is 64.

write_wakeup_threshold
This file contains the number of bits of entropy below which we wake up
processes that do a select(2) or poll(2) for write access to /dev/random. These
values can be changed by writing to the files.

uuid
boot_id

These read-only files contain random strings like
6fd5a44b-35f4-4ad4-a9b9-6b9be13e1fe9. The former is generated afresh for
each read, the latter was generated once.

ioctl(2) interface
The following ioctl(2) requests are defined on file descriptors connected to either
/dev/random or /dev/urandom. All requests performed will interact with the input en-
tropy pool impacting both /dev/random and /dev/urandom. The CAP_SYS_ADMIN

Linux man-pages 6.16 2025-09-21 2879

random(4) Kernel Interfaces Manual random(4)

capability is required for all requests except RNDGETENTCNT.

RNDGETENTCNT
Retrieve the entropy count of the input pool, the contents will be the same as the
entropy_avail file under proc. The result will be stored in the int pointed to by
the argument.

RNDADDTOENTCNT
Increment or decrement the entropy count of the input pool by the value pointed
to by the argument.

RNDGETPOOL
Removed in Linux 2.6.9.

RNDADDENTROPY
Add some additional entropy to the input pool, incrementing the entropy count.
This differs from writing to /dev/random or /dev/urandom, which only adds
some data but does not increment the entropy count. The following structure is
used:

struct rand_pool_info {
int entropy_count;
int buf_size;
__u32 buf[0];

};

Here entropy_count is the value added to (or subtracted from) the entropy count,
and buf is the buffer of size buf_size which gets added to the entropy pool.

RNDZAPENTCNT
RNDCLEARPOOL

Zero the entropy count of all pools and add some system data (such as wall
clock) to the pools.

FILES
/dev/random
/dev/urandom

NOTES
For an overview and comparison of the various interfaces that can be used to obtain ran-
domness, see random(7).

BUGS
During early boot time, reads from /dev/urandom may return data prior to the entropy
pool being initialized.

SEE ALSO
mknod(1), getrandom(2), random(7)

RFC 1750, "Randomness Recommendations for Security"

Linux man-pages 6.16 2025-09-21 2880

rtc(4) Kernel Interfaces Manual rtc(4)

NAME
rtc - real-time clock

SYNOPSIS
#include <linux/rtc.h>

int ioctl(fd , RTC_request, param);

DESCRIPTION
This is the interface to drivers for real-time clocks (RTCs).

Most computers have one or more hardware clocks which record the current "wall
clock" time. These are called "Real Time Clocks" (RTCs). One of these usually has
battery backup power so that it tracks the time even while the computer is turned off.
RTCs often provide alarms and other interrupts.

All i386 PCs, and ACPI-based systems, have an RTC that is compatible with the Mo-
torola MC146818 chip on the original PC/AT. Today such an RTC is usually integrated
into the mainboard’s chipset (south bridge), and uses a replaceable coin-sized backup
battery.

Non-PC systems, such as embedded systems built around system-on-chip processors,
use other implementations. They usually won’t offer the same functionality as the RTC
from a PC/AT.

RTC vs system clock
RTCs should not be confused with the system clock, which is a software clock main-
tained by the kernel and used to implement gettimeofday(2) and time(2), as well as set-
ting timestamps on files, and so on. The system clock reports seconds and microseconds
since a start point, defined to be the POSIX Epoch: 1970-01-01 00:00:00 +0000 (UTC).
(One common implementation counts timer interrupts, once per "jiffy", at a frequency of
100, 250, or 1000 Hz.) That is, it is supposed to report wall clock time, which RTCs
also do.

A key difference between an RTC and the system clock is that RTCs run even when the
system is in a low power state (including "off"), and the system clock can’t. Until it is
initialized, the system clock can only report time since system boot, not since the
POSIX Epoch. So at boot time, and after resuming from a system low power state, the
system clock will often be set to the current wall clock time using an RTC. Systems
without an RTC need to set the system clock using another clock, maybe across the net-
work or by entering that data manually.

RTC functionality
RTCs can be read and written with hwclock(8), or directly with the ioctl(2) requests
listed below.

Besides tracking the date and time, many RTCs can also generate interrupts

• on every clock update (i.e., once per second);

• at periodic intervals with a frequency that can be set to any power-of-2 multiple in
the range 2 Hz to 8192 Hz;

Linux man-pages 6.16 2025-09-21 2881

rtc(4) Kernel Interfaces Manual rtc(4)

• on reaching a previously specified alarm time.

Each of those interrupt sources can be enabled or disabled separately. On many sys-
tems, the alarm interrupt can be configured as a system wakeup event, which can resume
the system from a low power state such as Suspend-to-RAM (STR, called S3 in ACPI
systems), Hibernation (called S4 in ACPI systems), or even "off" (called S5 in ACPI
systems). On some systems, the battery backed RTC can’t issue interrupts, but another
one can.

The /dev/rtc (or /dev/rtc0, /dev/rtc1, etc.) device can be opened only once (until it is
closed) and it is read-only. On read(2) and select(2) the calling process is blocked until
the next interrupt from that RTC is received. Following the interrupt, the process can
read a long integer, of which the least significant byte contains a bit mask encoding the
types of interrupt that occurred, while the remaining 3 bytes contain the number of inter-
rupts since the last read(2).

ioctl(2) interface
The following ioctl(2) requests are defined on file descriptors connected to RTC devices:

RTC_RD_TIME
Returns this RTC’s time in the following structure:

struct rtc_time {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday; /* unused */
int tm_yday; /* unused */
int tm_isdst; /* unused */

};

The fields in this structure have the same meaning and ranges as for the tm struc-
ture described in gmtime(3). A pointer to this structure should be passed as the
third ioctl(2) argument.

RTC_SET_TIME
Sets this RTC’s time to the time specified by the rtc_time structure pointed to by
the third ioctl(2) argument. To set the RTC’s time the process must be privileged
(i.e., have the CAP_SYS_TIME capability).

RTC_ALM_READ
RTC_ALM_SET

Read and set the alarm time, for RTCs that support alarms. The alarm interrupt
must be separately enabled or disabled using the RTC_AIE_ON,
RTC_AIE_OFF requests. The third ioctl(2) argument is a pointer to an
rtc_time structure. Only the tm_sec, tm_min, and tm_hour fields of this struc-
ture are used.

Linux man-pages 6.16 2025-09-21 2882

rtc(4) Kernel Interfaces Manual rtc(4)

RTC_IRQP_READ
RTC_IRQP_SET

Read and set the frequency for periodic interrupts, for RTCs that support peri-
odic interrupts. The periodic interrupt must be separately enabled or disabled us-
ing the RTC_PIE_ON, RTC_PIE_OFF requests. The third ioctl(2) argument
is an unsigned long * or an unsigned long, respectively. The value is the fre-
quency in interrupts per second. The set of allowable frequencies is the multi-
ples of two in the range 2 to 8192. Only a privileged process (i.e., one having
the CAP_SYS_RESOURCE capability) can set frequencies above the value
specified in /proc/sys/dev/rtc/max-user-freq. (This file contains the value 64 by
default.)

RTC_AIE_ON
RTC_AIE_OFF

Enable or disable the alarm interrupt, for RTCs that support alarms. The third
ioctl(2) argument is ignored.

RTC_UIE_ON
RTC_UIE_OFF

Enable or disable the interrupt on every clock update, for RTCs that support this
once-per-second interrupt. The third ioctl(2) argument is ignored.

RTC_PIE_ON
RTC_PIE_OFF

Enable or disable the periodic interrupt, for RTCs that support these periodic in-
terrupts. The third ioctl(2) argument is ignored. Only a privileged process (i.e.,
one having the CAP_SYS_RESOURCE capability) can enable the periodic in-
terrupt if the frequency is currently set above the value specified in
/proc/sys/dev/rtc/max-user-freq.

RTC_EPOCH_READ
RTC_EPOCH_SET

Many RTCs encode the year in an 8-bit register which is either interpreted as an
8-bit binary number or as a BCD number. In both cases, the number is inter-
preted relative to this RTC’s Epoch. The RTC’s Epoch is initialized to 1900 on
most systems but on Alpha and MIPS it might also be initialized to 1952, 1980,
or 2000, depending on the value of an RTC register for the year. With some
RTCs, these operations can be used to read or to set the RTC’s Epoch, respec-
tively. The third ioctl(2) argument is an unsigned long * or an unsigned long, re-
spectively, and the value returned (or assigned) is the Epoch. To set the RTC’s
Epoch the process must be privileged (i.e., have the CAP_SYS_TIME capabil-
ity).

RTC_WKALM_RD
RTC_WKALM_SET

Some RTCs support a more powerful alarm interface, using these ioctls to read
or write the RTC’s alarm time (respectively) with this structure:

struct rtc_wkalrm {
unsigned char enabled;
unsigned char pending;

Linux man-pages 6.16 2025-09-21 2883

rtc(4) Kernel Interfaces Manual rtc(4)

struct rtc_time time;
};

The enabled flag is used to enable or disable the alarm interrupt, or to read its
current status; when using these calls, RTC_AIE_ON and RTC_AIE_OFF are
not used. The pending flag is used by RTC_WKALM_RD to report a pending
interrupt (so it’s mostly useless on Linux, except when talking to the RTC man-
aged by EFI firmware). The time field is as used with RTC_ALM_READ and
RTC_ALM_SET except that the tm_mday, tm_mon, and tm_year fields are also
valid. A pointer to this structure should be passed as the third ioctl(2) argument.

FILES
/dev/rtc
/dev/rtc0
/dev/rtc1
. . . RTC special character device files.

/proc/driver/rtc
status of the (first) RTC.

NOTES
When the kernel’s system time is synchronized with an external reference using adj-
timex(2) it will update a designated RTC periodically every 11 minutes. To do so, the
kernel has to briefly turn off periodic interrupts; this might affect programs using that
RTC.

An RTC’s Epoch has nothing to do with the POSIX Epoch which is used only for the
system clock.

If the year according to the RTC’s Epoch and the year register is less than 1970 it is as-
sumed to be 100 years later, that is, between 2000 and 2069.

Some RTCs support "wildcard" values in alarm fields, to support scenarios like periodic
alarms at fifteen minutes after every hour, or on the first day of each month. Such usage
is nonportable; portable user-space code expects only a single alarm interrupt, and will
either disable or reinitialize the alarm after receiving it.

Some RTCs support periodic interrupts with periods that are multiples of a second rather
than fractions of a second; multiple alarms; programmable output clock signals; non-
volatile memory; and other hardware capabilities that are not currently exposed by this
API.

SEE ALSO
date(1), adjtimex(2), gettimeofday(2), settimeofday(2), stime(2), time(2), gmtime(3),
time(7), hwclock(8)

Documentation/rtc.txt in the Linux kernel source tree

Linux man-pages 6.16 2025-09-21 2884

sd(4) Kernel Interfaces Manual sd(4)

NAME
sd - driver for SCSI disk drives

SYNOPSIS
#include <linux/hdreg.h> /* for HDIO_GETGEO */
#include <linux/fs.h> /* for BLKGETSIZE and BLKRRPART */

CONFIGURATION
The block device name has the following form: sdlp, where l is a letter denoting the
physical drive, and p is a number denoting the partition on that physical drive. Often,
the partition number, p, will be left off when the device corresponds to the whole drive.

SCSI disks have a major device number of 8, and a minor device number of the form (16
* drive_number) + partition_number, where drive_number is the number of the physi-
cal drive in order of detection, and partition_number is as follows:

• partition 0 is the whole drive

• partitions 1–4 are the DOS "primary" partitions

• partitions 5–8 are the DOS "extended" (or "logical") partitions

For example, /dev/sda will have major 8, minor 0, and will refer to all of the first SCSI
drive in the system; and /dev/sdb3 will have major 8, minor 19, and will refer to the
third DOS "primary" partition on the second SCSI drive in the system.

At this time, only block devices are provided. Raw devices have not yet been imple-
mented.

DESCRIPTION
The following ioctls are provided:

HDIO_GETGEO
Returns the BIOS disk parameters in the following structure:

struct hd_geometry {
unsigned char heads;
unsigned char sectors;
unsigned short cylinders;
unsigned long start;

};

A pointer to this structure is passed as the ioctl(2) parameter.

The information returned in the parameter is the disk geometry of the drive as
understood by DOS! This geometry is not the physical geometry of the drive. It
is used when constructing the drive’s partition table, however, and is needed for
convenient operation of fdisk(1), efdisk(1), and lilo(1)If the geometry informa-
tion is not available, zero will be returned for all of the parameters.

BLKGETSIZE
Returns the device size in sectors. The ioctl(2) parameter should be a pointer to
a long.

Linux man-pages 6.16 2025-09-21 2885

sd(4) Kernel Interfaces Manual sd(4)

BLKRRPART
Forces a reread of the SCSI disk partition tables. No parameter is needed.

The SCSI ioctl(2) operations are also supported. If the ioctl(2) parameter is re-
quired, and it is NULL, then ioctl(2) fails with the error EINVAL.

FILES
/dev/sd[a-h]

the whole device

/dev/sd[a-h][0-8]
individual block partitions

Linux man-pages 6.16 2025-09-21 2886

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

NAME
sk98lin - Marvell/SysKonnect Gigabit Ethernet driver v6.21

SYNOPSIS
insmod sk98lin.o [Speed_A=i,j,...] [Speed_B=i,j,...] [AutoNeg_A=i,j,...] [Au-
toNeg_B=i,j,...] [DupCap_A=i,j,...] [DupCap_B=i,j,...] [FlowCtrl_A=i,j,...] [Flow-
Ctrl_B=i,j,...] [Role_A=i,j,...] [Role_B=i,j,...] [ConType=i,j,...] [Moderation=i,j,...]
[IntsPerSec=i,j,...] [PrefPort=i,j,...] [RlmtMode=i,j,...]

DESCRIPTION
Note: This obsolete driver was removed in Linux 2.6.26.

sk98lin is the Gigabit Ethernet driver for Marvell and SysKonnect network adapter
cards. It supports SysKonnect SK-98xx/SK-95xx compliant Gigabit Ethernet Adapter
and any Yukon compliant chipset.

When loading the driver using insmod, parameters for the network adapter cards might
be stated as a sequence of comma separated commands. If for instance two network
adapters are installed and AutoNegotiation on Port A of the first adapter should be ON,
but on the Port A of the second adapter switched OFF, one must enter:

insmod sk98lin.o AutoNeg_A=On,Off

After sk98lin is bound to one or more adapter cards and the /proc filesystem is mounted
on your system, a dedicated statistics file will be created in the folder /proc/net/sk98lin
for all ports of the installed network adapter cards. Those files are named eth[x], where
x is the number of the interface that has been assigned to a dedicated port by the system.

If loading is finished, any desired IP address can be assigned to the respective eth[x]
interface using the ifconfig(8) command. This causes the adapter to connect to the
Ethernet and to display a status message on the console saying "ethx: network
connection up using port y" followed by the configured or detected connection
parameters.

The sk98lin also supports large frames (also called jumbo frames). Using jumbo frames
can improve throughput tremendously when transferring large amounts of data. To
enable large frames, the MTU (maximum transfer unit) size for an interface is to be set
to a high value. The default MTU size is 1500 and can be changed up to 9000 (bytes).
Setting the MTU size can be done when assigning the IP address to the interface or later
by using the ifconfig(8) command with the mtu parameter. If for instance eth0 needs an
IP address and a large frame MTU size, the following two commands might be used:

ifconfig eth0 10.1.1.1
ifconfig eth0 mtu 9000

Those two commands might even be combined into one:

ifconfig eth0 10.1.1.1 mtu 9000

Note that large frames can be used only if permitted by your network infrastructure.
This means, that any switch being used in your Ethernet must also support large frames.
Quite some switches support large frames, but need to be configured to do so. Most of
the times, their default setting is to support only standard frames with an MTU size of
1500 (bytes). In addition to the switches inside the network, all network adapters that

Linux man-pages 6.16 2025-05-17 2887

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

are to be used must also be enabled regarding jumbo frames. If an adapter is not set to
receive large frames, it will simply drop them.

Switching back to the standard Ethernet frame size can be done by using the ifconfig(8)
command again:

ifconfig eth0 mtu 1500

The Marvell/SysKonnect Gigabit Ethernet driver for Linux is able to support VLAN and
Link Aggregation according to IEEE standards 802.1, 802.1q, and 802.3ad. Those
features are available only after installation of open source modules which can be found
on the Internet:

VLAN : 〈http://www.candelatech.com/~greear/vlan.html〉
Link Aggregation: 〈http://www.st.rim.or.jp/~yumo〉

Note that Marvell/SysKonnect does not offer any support for these open source modules
and does not take the responsibility for any kind of failures or problems arising when us-
ing these modules.

Parameters
Speed_A=i,j,...

This parameter is used to set the speed capabilities of port A of an adapter card.
It is valid only for Yukon copper adapters. Possible values are: 10, 100, 1000, or
Auto; Auto is the default. Usually, the speed is negotiated between the two ports
during link establishment. If this fails, a port can be forced to a specific setting
with this parameter.

Speed_B=i,j,...
This parameter is used to set the speed capabilities of port B of an adapter card.
It is valid only for Yukon copper adapters. Possible values are: 10, 100, 1000, or
Auto; Auto is the default. Usually, the speed is negotiated between the two ports
during link establishment. If this fails, a port can be forced to a specific setting
with this parameter.

AutoNeg_A=i,j,...
Enables or disables the use of autonegotiation of port A of an adapter card. Pos-
sible values are: On, Off , or Sense; On is the default. The Sense mode automati-
cally detects whether the link partner supports auto-negotiation or not.

AutoNeg_B=i,j,...
Enables or disables the use of autonegotiation of port B of an adapter card. Pos-
sible values are: On, Off , or Sense; On is the default. The Sense mode automati-
cally detects whether the link partner supports auto-negotiation or not.

DupCap_A=i,j,...
This parameter indicates the duplex mode to be used for port A of an adapter
card. Possible values are: Half , Full, or Both; Both is the default. This parame-
ter is relevant only if AutoNeg_A of port A is not set to Sense. If AutoNeg_A is
set to On, all three values of DupCap_A (Half , Full, or Both) might be stated.
If AutoNeg_A is set to Off , only DupCap_A values Full and Half are allowed.
This DupCap_A parameter is useful if your link partner does not support all pos-
sible duplex combinations.

Linux man-pages 6.16 2025-05-17 2888

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

DupCap_B=i,j,...
This parameter indicates the duplex mode to be used for port B of an adapter
card. Possible values are: Half , Full, or Both; Both is the default. This parame-
ter is relevant only if AutoNeg_B of port B is not set to Sense. If AutoNeg_B is
set to On, all three values of DupCap_B (Half , Full, or Both) might be stated.
If AutoNeg_B is set to Off , only DupCap_B values Full and Half are allowed.
This DupCap_B parameter is useful if your link partner does not support all pos-
sible duplex combinations.

FlowCtrl_A=i,j,...
This parameter can be used to set the flow control capabilities the port reports
during auto-negotiation. Possible values are: Sym, SymOrRem, LocSend , or
None; SymOrRem is the default. The different modes have the following mean-
ing:

Sym = Symmetric
Both link partners are allowed to send PAUSE frames.

SymOrRem = SymmetricOrRemote
Both or only remote partner are allowed to send PAUSE frames.

LocSend = LocalSend
Only local link partner is allowed to send PAUSE frames.

None = None
No link partner is allowed to send PAUSE frames.

Note that this parameter is ignored if AutoNeg_A is set to Off .

FlowCtrl_B=i,j,...
This parameter can be used to set the flow control capabilities the port reports
during auto-negotiation. Possible values are: Sym, SymOrRem, LocSend , or
None; SymOrRem is the default. The different modes have the following mean-
ing:

Sym = Symmetric
Both link partners are allowed to send PAUSE frames.

SymOrRem = SymmetricOrRemote
Both or only remote partner are allowed to send PAUSE frames.

LocSend = LocalSend
Only local link partner is allowed to send PAUSE frames.

None = None
No link partner is allowed to send PAUSE frames.

Note that this parameter is ignored if AutoNeg_B is set to Off .

Role_A=i,j,...
This parameter is valid only for 1000Base-T adapter cards. For two 1000Base-T
ports to communicate, one must take the role of the master (providing timing in-
formation), while the other must be the slave. Possible values are: Auto, Master,
or Slave; Auto is the default. Usually, the role of a port is negotiated between
two ports during link establishment, but if that fails the port A of an adapter card

Linux man-pages 6.16 2025-05-17 2889

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

can be forced to a specific setting with this parameter.

Role_B=i,j,...
This parameter is valid only for 1000Base-T adapter cards. For two 1000Base-T
ports to communicate, one must take the role of the master (providing timing in-
formation), while the other must be the slave. Possible values are: Auto, Master,
or Slave; Auto is the default. Usually, the role of a port is negotiated between
two ports during link establishment, but if that fails the port B of an adapter card
can be forced to a specific setting with this parameter.

ConType=i,j,...
This parameter is a combination of all five per-port parameters within one single
parameter. This simplifies the configuration of both ports of an adapter card.
The different values of this variable reflect the most meaningful combinations of
port parameters. Possible values and their corresponding combination of per-
port parameters:

ConType DupCap AutoNeg FlowCtrl Role Speed
Auto Both On SymOrRem Auto Auto
100FD Full Off None Auto 100
100HD Half Off None Auto 100
10FD Full Off None Auto 10
10HD Half Off None Auto 10

Stating any other port parameter together with this ConType parameter will result
in a merged configuration of those settings. This is due to the fact, that the per-
port parameters (e.g., Speed_A) have a higher priority than the combined vari-
able ConType.

Moderation=i,j,...
Interrupt moderation is employed to limit the maximum number of interrupts the
driver has to serve. That is, one or more interrupts (which indicate any transmit
or receive packet to be processed) are queued until the driver processes them.
When queued interrupts are to be served, is determined by the IntsPerSec para-
meter, which is explained later below. Possible moderation modes are: None,
Static, or Dynamic; None is the default. The different modes have the following
meaning:

None No interrupt moderation is applied on the adapter card. Therefore, each
transmit or receive interrupt is served immediately as soon as it appears on the
interrupt line of the adapter card.

Static Interrupt moderation is applied on the adapter card. All transmit and re-
ceive interrupts are queued until a complete moderation interval ends. If such a
moderation interval ends, all queued interrupts are processed in one big bunch
without any delay. The term Static reflects the fact, that interrupt moderation is
always enabled, regardless how much network load is currently passing via a
particular interface. In addition, the duration of the moderation interval has a
fixed length that never changes while the driver is operational.

Dynamic Interrupt moderation might be applied on the adapter card, depending
on the load of the system. If the driver detects that the system load is too high,

Linux man-pages 6.16 2025-05-17 2890

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

the driver tries to shield the system against too much network load by enabling
interrupt moderation. If—at a later time—the CPU utilization decreases again
(or if the network load is negligible), the interrupt moderation will automatically
be disabled.

Interrupt moderation should be used when the driver has to handle one or more
interfaces with a high network load, which—as a consequence—leads also to a
high CPU utilization. When moderation is applied in such high network load sit-
uations, CPU load might be reduced by 20–30% on slow computers.

Note that the drawback of using interrupt moderation is an increase of the round-
trip-time (RTT), due to the queuing and serving of interrupts at dedicated moder-
ation times.

IntsPerSec=i,j,...
This parameter determines the length of any interrupt moderation interval. As-
suming that static interrupt moderation is to be used, an IntsPerSec parameter
value of 2000 will lead to an interrupt moderation interval of 500 microseconds.
Possible values for this parameter are in the range of 30...40000 (interrupts per
second). The default value is 2000.

This parameter is used only if either static or dynamic interrupt moderation is
enabled on a network adapter card. This parameter is ignored if no moderation
is applied.

Note that the duration of the moderation interval is to be chosen with care. At
first glance, selecting a very long duration (e.g., only 100 interrupts per second)
seems to be meaningful, but the increase of packet-processing delay is tremen-
dous. On the other hand, selecting a very short moderation time might compen-
sate the use of any moderation being applied.

PrefPort=i,j,...
This parameter is used to force the preferred port to A or B (on dual-port net-
work adapters). The preferred port is the one that is used if both ports A and B
are detected as fully functional. Possible values are: A or B; A is the default.

RlmtMode=i,j,...
RLMT monitors the status of the port. If the link of the active port fails, RLMT
switches immediately to the standby link. The virtual link is maintained as long
as at least one "physical" link is up. This parameters states how RLMT should
monitor both ports. Possible values are: CheckLinkState, CheckLocalPort,
CheckSeg, or DualNet; CheckLinkState is the default. The different modes have
the following meaning:

CheckLinkState Check link state only: RLMT uses the link state reported by the
adapter hardware for each individual port to determine whether a port can be
used for all network traffic or not.

CheckLocalPort In this mode, RLMT monitors the network path between the
two ports of an adapter by regularly exchanging packets between them. This
mode requires a network configuration in which the two ports are able to "see"
each other (i.e., there must not be any router between the ports).

Linux man-pages 6.16 2025-05-17 2891

sk98lin(4) Kernel Interfaces Manual sk98lin(4)

CheckSeg Check local port and segmentation: This mode supports the same
functions as the CheckLocalPort mode and additionally checks network segmen-
tation between the ports. Therefore, this mode is to be used only if Gigabit Eth-
ernet switches are installed on the network that have been configured to use the
Spanning Tree protocol.

DualNet In this mode, ports A and B are used as separate devices. If you have a
dual port adapter, port A will be configured as eth[x] and port B as eth[x+1].
Both ports can be used independently with distinct IP addresses. The preferred
port setting is not used. RLMT is turned off.

Note that RLMT modes CheckLocalPort and CheckLinkState are designed to op-
erate in configurations where a network path between the ports on one adapter
exists. Moreover, they are not designed to work where adapters are connected
back-to-back.

FILES
/proc/net/sk98lin/eth[x]

The statistics file of a particular interface of an adapter card. It contains generic
information about the adapter card plus a detailed summary of all transmit and
receive counters.

/usr/src/linux/Documentation/networking/sk98lin.txt
This is the README file of the sk98lin driver. It contains a detailed installation
HOWTO and describes all parameters of the driver. It denotes also common
problems and provides the solution to them.

BUGS
Report any bugs to linux@syskonnect.de

SEE ALSO
ifconfig(8), insmod(8), modprobe(8)

Linux man-pages 6.16 2025-05-17 2892

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

NAME
smartpqi - Microchip Smart Storage SCSI driver

SYNOPSIS
modprobe smartpqi [disable_device_id_wildcards={0|1}]

[disable_heartbeat={0|1}] [disable_ctrl_shutdown={0|1}]
[lockup_action={none|reboot|panic}] [expose_ld_first={0|1}]
[hide_vsep={0|1}] [disable_managed_interrupts={0|1}]
[ctrl_ready_timeout={0|[30,1800]}]

DESCRIPTION
smartpqi is a SCSI driver for Microchip Smart Storage controllers.

Supported ioctl() operations
For compatibility with applications written for the cciss(4) and hpsa(4) drivers, many,
but not all of the ioctl(2) operations supported by the hpsa driver are also supported by
the smartpqi driver. The data structures used by these operations are described in the
Linux kernel source file include/linux/cciss_ioctl.h.

CCISS_DEREGDISK
CCISS_REGNEWDISK
CCISS_REGNEWD

These operations all do exactly the same thing, which is to cause the driver to re-
scan for new devices. This does exactly the same thing as writing to the smart-
pqi-specific host rescan attribute.

CCISS_GETPCIINFO
This operation returns the PCI domain, bus, device, and function and "board ID"
(PCI subsystem ID).

CCISS_GETDRIVVER
This operation returns the driver version in four bytes, encoded as:

(major_version << 28) | (minor_version << 24) |
(release << 16) | revision

CCISS_PASSTHRU
Allows BMIC and CISS commands to be passed through to the controller.

Boot options
disable_device_id_wildcards={0|1}

Disables support for device ID wildcards. The default value is 0 (wildcards are
enabled).

disable_heartbeat={0|1}
Disables support for the controller’s heartbeat check. This parameter is used for
debugging purposes. The default value is 0 (the controller’s heartbeat check is
enabled).

disable_ctrl_shutdown={0|1}
Disables support for shutting down the controller in the event of a controller
lockup. The default value is 0 (controller will be shut down).

Linux man-pages 6.16 2025-08-22 2893

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

lockup_action={none|reboot|panic}
Specifies the action the driver takes when a controller lockup is detected. The
default action is none.
parameter action
none take controller offline only
reboot reboot the system
panic panic the system

expose_ld_first={0|1}
This option exposes logical devices to the OS before physical devices. The de-
fault value is 0 (physical devices exposed first).

hide_vsep={0|1}
This option disables exposure of the virtual SEP to the OS. The default value is
0 (virtual SEP is exposed).

disable_managed_interrupts={0|1}
Disables driver utilization of Linux kernel managed interrupts for controllers.
The managed interrupts feature automatically distributes interrupts to all avail-
able CPUs and assigns SMP affinity. The default value is 0 (managed interrupts
enabled).

ctrl_ready_timeout={0|[30,1800]}
This option specifies the timeout in seconds for the driver to wait for the con-
troller to be ready. The valid range is 0 or [30, 1800]. The default value is 0,
which causes the driver to use a timeout of 180 seconds.

FILES
Device nodes

Disk drives are accessed via the SCSI disk driver (sd), tape drives via the SCSI tape dri-
ver (st), and the RAID controller via the SCSI generic driver (sg), with device nodes
named /dev/sd*, /dev/st*, and /dev/sg*, respectively.

SmartPQI-specific host attribute files in /sys
/sys/class/scsi_host/host* /rescan

The host rescan attribute is a write-only attribute. Writing to this attribute will
cause the driver to scan for new, changed, or removed devices (e.g., hot-plugged
tape drives, or newly configured or deleted logical volumes) and notify the SCSI
mid-layer of any changes detected. Usually this action is triggered automatically
by configuration changes, so the user should not normally have to write to this
file. Doing so may be useful when hot-plugging devices such as tape drives or
entire storage boxes containing pre-configured logical volumes.

/sys/class/scsi_host/host* /lockup_action
The host lockup_action attribute is a read/write attribute. This attribute will
cause the driver to perform a specific action in the unlikely event that a controller
lockup has been detected. See OPTIONS above for an explanation of the
lockup_action values.

/sys/class/scsi_host/host* /driver_version
The driver_version attribute is read-only. This attribute contains the smartpqi
driver version.

Linux man-pages 6.16 2025-08-22 2894

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

For example:

$ cat /sys/class/scsi_host/host1/driver_version
1.1.2-126

/sys/class/scsi_host/host* /firmware_version
The firmware_version attribute is read-only. This attribute contains the con-
troller firmware version.

For example:

$ cat /sys/class/scsi_host/host1/firmware_version
1.29-112

/sys/class/scsi_host/host* /model
The model attribute is read-only. This attribute contains the product identifica-
tion string of the controller.

For example:

$ cat /sys/class/scsi_host/host1/model
1100-16i

/sys/class/scsi_host/host* /serial_number
The serial_number attribute is read-only. This attribute contains the unique
identification number of the controller.

For example:

$ cat /sys/class/scsi_host/host1/serial_number
6A316373777

/sys/class/scsi_host/host* /vendor
The vendor attribute is read-only. This attribute contains the vendor identifica-
tion string of the controller.

For example:

$ cat /sys/class/scsi_host/host1/vendor
Adaptec

/sys/class/scsi_host/host* /enable_stream_detection
The enable_stream_detection attribute is read-write. This attribute enables/dis-
ables stream detection in the driver. Enabling stream detection can improve se-
quential write performance for ioaccel-enabled volumes. See the
ssd_smart_path_enabled disk attribute section for details on ioaccel-enabled
volumes. The default value is 1 (stream detection enabled).

Enable example:

$ echo 1 > /sys/class/scsi_host/host1/enable_stream_detection

/sys/class/scsi_host/host* /enable_r5_writes
The enable_r5_writes attribute is read-write. This attribute enables/disables
RAID 5 write operations for ioaccel-enabled volumes. Enabling can improve se-
quential write performance. See the ssd_smart_path_enabled disk attribute
section for details on ioaccel-enabled volumes. The default value is 1 (RAID 5

Linux man-pages 6.16 2025-08-22 2895

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

writes enabled).

Enable example:

$ echo 1 > /sys/class/scsi_host/host1/enable_r5_writes

/sys/class/scsi_host/host* /enable_r6_writes
The enable_r6_writes attribute is read-write. This attribute enables/disables
RAID 6 write operations for ioaccel-enabled volumes. Enabling can improve se-
quential write performance. See the ssd_smart_path_enabled disk attribute
section for details on ioaccel-enabled volumes. The default value is 1 (RAID 6
writes enabled).

Enable example:

$ echo 1 > /sys/class/scsi_host/host1/enable_r6_writes

SmartPQI-specific disk attribute files in /sys
In the file specifications below, c stands for the number of the appropriate SCSI con-
troller, b is the bus number, t the target number, and l is the logical unit number (LUN).

/sys/class/scsi_disk/ c:b:t:l /device/raid_level
The raid_level attribute is read-only. This attribute contains the RAID level of
the logical volume.

For example:

$ cat /sys/class/scsi_disk/4:0:0:0/device/raid_level
RAID 0

/sys/class/scsi_disk/ c:b:t:l /device/sas_address
The sas_address attribute is read-only. This attribute contains the SAS address
of the device.

For example:

$ cat /sys/class/scsi_disk/1:0:3:0/device/sas_address
0x5001173d028543a2

/sys/class/scsi_disk/ c:b:t:l /device/ssd_smart_path_enabled
The ssd_smart_path_enabled attribute is read-only. This attribute is for ioaccel-
enabled volumes. (Ioaccel is an alternative driver submission path that allows
the driver to send I/O requests directly to backend SCSI devices, bypassing the
controller firmware. This results in an increase in performance. This method is
used for HBA disks and for logical volumes comprised of SSDs.) Contains 1 if
ioaccel is enabled for the volume and 0 otherwise.

For example:

$ cat /sys/class/scsi_disk/1:0:3:0/device/ssd_smart_path_enabled

/sys/class/scsi_disk/ c:b:t:l /device/lunid
The lunid attribute is read-only. This attribute contains the SCSI LUN ID for the
device.

For example:

Linux man-pages 6.16 2025-08-22 2896

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

$ cat /sys/class/scsi_disk/13:1:0:3/device/lunid
0x0300004000000000

/sys/class/scsi_disk/ c:b:t:l /device/unique_id
The unique_id attribute is read-only. This attribute contains a 16-byte ID that
uniquely identifies the device within the controller.

For example:

$ cat /sys/class/scsi_disk/13:1:0:3/device/unique_id
600508B1001C6D4723A8E98D704FDB94

/sys/class/scsi_disk/ c:b:t:l /device/path_info
The path_info attribute is read-only. This attribute contains the c:b:t:l of the de-
vice along with the device type and whether the device is Active or Inactive. If
the device is an HBA device, path_info will also display the PORT, BOX, and
BAY the device is plugged into.

For example:

$ cat /sys/class/scsi_disk/13:1:0:3/device/path_info
[13:1:0:3] Direct-Access Active

$ cat /sys/class/scsi_disk/12:0:9:0/device/path_info
[12:0:9:0] Direct-Access PORT: C1 BOX: 1 BAY: 14 Inactive
[12:0:9:0] Direct-Access PORT: C0 BOX: 1 BAY: 14 Active

/sys/class/scsi_disk/ c:b:t:l /device/raid_bypass_cnt
The raid_bypass_cnt attribute is read-only. This attribute contains the number of
I/O requests that have gone through the ioaccel path for ioaccel-enabled vol-
umes. See the ssd_smart_path_enabled disk attribute section for details on
ioaccel-enabled volumes.

For example:

$ cat /sys/class/scsi_disk/13:1:0:3/device/raid_bypass_cnt
0x300

/sys/class/scsi_disk/ c:b:t:l /device/sas_ncq_prio_enable
The sas_ncq_prio_enable attribute is read/write. This attribute enables SATA
NCQ priority support. This attribute works only when device has NCQ support
and controller firmware can handle IO with NCQ priority attribute.

For example:

$ echo 1 > /sys/class/scsi_disk/13:1:0:3/device/sas_ncq_prio_enable

VERSIONS
The smartpqi driver was added in Linux 4.9.

NOTES
Configuration

To configure a Microchip Smart Storage controller, refer to the User Guide for the con-
troller, which can be found by searching for the specific controller at
〈https://www.microchip.com/design-centers/storage〉.

Linux man-pages 6.16 2025-08-22 2897

smartpqi(4) Kernel Interfaces Manual smartpqi(4)

HISTORY
/sys/class/scsi_host/host*/version was replaced by two sysfs entries:

/sys/class/scsi_host/host*/driver_version

/sys/class/scsi_host/host*/firmware_version

SEE ALSO
cciss(4), hpsa(4), sd(4), st(4), sg(4)

Documentation/ABI/testing/sysfs-bus-pci-devices-cciss in the Linux kernel source
tree.

Linux man-pages 6.16 2025-08-22 2898

st(4) Kernel Interfaces Manual st(4)

NAME
st - SCSI tape device

SYNOPSIS
#include <sys/mtio.h>

int ioctl(int fd , int request [, (void *)arg3]);
int ioctl(int fd , MTIOCTOP, (struct mtop *)mt_cmd);
int ioctl(int fd , MTIOCGET, (struct mtget *)mt_status);
int ioctl(int fd , MTIOCPOS, (struct mtpos *)mt_pos);

DESCRIPTION
The st driver provides the interface to a variety of SCSI tape devices. Currently, the dri-
ver takes control of all detected devices of type “sequential-access”. The st driver uses
major device number 9.

Each device uses eight minor device numbers. The lowermost five bits in the minor
numbers are assigned sequentially in the order of detection. In the 2.6 kernel, the bits
above the eight lowermost bits are concatenated to the five lowermost bits to form the
tape number. The minor numbers can be grouped into two sets of four numbers: the
principal (auto-rewind) minor device numbers, n, and the “no-rewind” device numbers,
(n + 128). Devices opened using the principal device number will be sent a REWIND
command when they are closed. Devices opened using the “no-rewind” device number
will not. (Note that using an auto-rewind device for positioning the tape with, for in-
stance, mt does not lead to the desired result: the tape is rewound after the mt command
and the next command starts from the beginning of the tape).

Within each group, four minor numbers are available to define devices with different
characteristics (block size, compression, density, etc.) When the system starts up, only
the first device is available. The other three are activated when the default characteris-
tics are defined (see below). (By changing compile-time constants, it is possible to
change the balance between the maximum number of tape drives and the number of mi-
nor numbers for each drive. The default allocation allows control of 32 tape drives. For
instance, it is possible to control up to 64 tape drives with two minor numbers for differ-
ent options.)

Devices are typically created by:

mknod -m 666 /dev/st0 c 9 0
mknod -m 666 /dev/st0l c 9 32
mknod -m 666 /dev/st0m c 9 64
mknod -m 666 /dev/st0a c 9 96
mknod -m 666 /dev/nst0 c 9 128
mknod -m 666 /dev/nst0l c 9 160
mknod -m 666 /dev/nst0m c 9 192
mknod -m 666 /dev/nst0a c 9 224

There is no corresponding block device.

The driver uses an internal buffer that has to be large enough to hold at least one tape
block. Before Linux 2.1.121, the buffer is allocated as one contiguous block. This lim-
its the block size to the largest contiguous block of memory the kernel allocator can

Linux man-pages 6.16 2025-09-21 2899

st(4) Kernel Interfaces Manual st(4)

provide. The limit is currently 128 kB for 32-bit architectures and 256 kB for 64-bit ar-
chitectures. In newer kernels the driver allocates the buffer in several parts if necessary.
By default, the maximum number of parts is 16. This means that the maximum block
size is very large (2 MB if allocation of 16 blocks of 128 kB succeeds).

The driver’s internal buffer size is determined by a compile-time constant which can be
overridden with a kernel startup option. In addition to this, the driver tries to allocate a
larger temporary buffer at run time if necessary. However, run-time allocation of large
contiguous blocks of memory may fail and it is advisable not to rely too much on dy-
namic buffer allocation before Linux 2.1.121 (this applies also to demand-loading the
driver with kerneld or kmod).

The driver does not specifically support any tape drive brand or model. After system
start-up the tape device options are defined by the drive firmware. For example, if the
drive firmware selects fixed-block mode, the tape device uses fixed-block mode. The
options can be changed with explicit ioctl(2) calls and remain in effect when the device
is closed and reopened. Setting the options affects both the auto-rewind and the non-
rewind device.

Different options can be specified for the different devices within the subgroup of four.
The options take effect when the device is opened. For example, the system administra-
tor can define one device that writes in fixed-block mode with a certain block size, and
one which writes in variable-block mode (if the drive supports both modes).

The driver supports tape partitions if they are supported by the drive. (Note that the
tape partitions have nothing to do with disk partitions. A partitioned tape can be seen as
several logical tapes within one medium.) Partition support has to be enabled with an
ioctl(2). The tape location is preserved within each partition across partition changes.
The partition used for subsequent tape operations is selected with an ioctl(2). The parti-
tion switch is executed together with the next tape operation in order to avoid unneces-
sary tape movement. The maximum number of partitions on a tape is defined by a com-
pile-time constant (originally four). The driver contains an ioctl(2) that can format a
tape with either one or two partitions.

Device /dev/tape is usually created as a hard or soft link to the default tape device on the
system.

Starting from Linux 2.6.2, the driver exports in the sysfs directory /sys/class/scsi_tape
the attached devices and some parameters assigned to the devices.

Data transfer
The driver supports operation in both fixed-block mode and variable-block mode (if sup-
ported by the drive). In fixed-block mode the drive writes blocks of the specified size
and the block size is not dependent on the byte counts of the write system calls. In vari-
able-block mode one tape block is written for each write call and the byte count deter-
mines the size of the corresponding tape block. Note that the blocks on the tape don’t
contain any information about the writing mode: when reading, the only important thing
is to use commands that accept the block sizes on the tape.

In variable-block mode the read byte count does not have to match the tape block size
exactly. If the byte count is larger than the next block on tape, the driver returns the data
and the function returns the actual block size. If the block size is larger than the byte

Linux man-pages 6.16 2025-09-21 2900

st(4) Kernel Interfaces Manual st(4)

count, an error is returned.

In fixed-block mode the read byte counts can be arbitrary if buffering is enabled, or a
multiple of the tape block size if buffering is disabled. Before Linux 2.1.121 allow
writes with arbitrary byte count if buffering is enabled. In all other cases (before Linux
2.1.121 with buffering disabled or newer kernel) the write byte count must be a multiple
of the tape block size.

In Linux 2.6, the driver tries to use direct transfers between the user buffer and the de-
vice. If this is not possible, the driver’s internal buffer is used. The reasons for not us-
ing direct transfers include improper alignment of the user buffer (default is 512 bytes
but this can be changed by the HBA driver), one or more pages of the user buffer not
reachable by the SCSI adapter, and so on.

A filemark is automatically written to tape if the last tape operation before close was a
write.

When a filemark is encountered while reading, the following happens. If there are data
remaining in the buffer when the filemark is found, the buffered data is returned. The
next read returns zero bytes. The following read returns data from the next file. The end
of recorded data is signaled by returning zero bytes for two consecutive read calls. The
third read returns an error.

Ioctls
The driver supports three ioctl(2) requests. Requests not recognized by the st driver are
passed to the SCSI driver. The definitions below are from /usr/include/linux/mtio.h:

MTIOCTOP — perform a tape operation
This request takes an argument of type (struct mtop *). Not all drives support all opera-
tions. The driver returns an EIO error if the drive rejects an operation.

/* Structure for MTIOCTOP - mag tape op command: */
struct mtop {

short mt_op; /* operations defined below */
int mt_count; /* how many of them */

};

Magnetic tape operations for normal tape use:

MTBSF
Backward space over mt_count filemarks.

MTBSFM
Backward space over mt_count filemarks. Reposition the tape to the EOT side
of the last filemark.

MTBSR
Backward space over mt_count records (tape blocks).

MTBSS
Backward space over mt_count setmarks.

MTCOMPRESSION
Enable compression of tape data within the drive if mt_count is nonzero and dis-
able compression if mt_count is zero. This command uses the MODE page 15

Linux man-pages 6.16 2025-09-21 2901

st(4) Kernel Interfaces Manual st(4)

supported by most DATs.

MTEOM
Go to the end of the recorded media (for appending files).

MTERASE
Erase tape. With Linux 2.6, short erase (mark tape empty) is performed if the ar-
gument is zero. Otherwise, long erase (erase all) is done.

MTFSF
Forward space over mt_count filemarks.

MTFSFM
Forward space over mt_count filemarks. Reposition the tape to the BOT side of
the last filemark.

MTFSR
Forward space over mt_count records (tape blocks).

MTFSS
Forward space over mt_count setmarks.

MTLOAD
Execute the SCSI load command. A special case is available for some HP au-
toloaders. If mt_count is the constant MT_ST_HPLOADER_OFFSET plus a
number, the number is sent to the drive to control the autoloader.

MTLOCK
Lock the tape drive door.

MTMKPART
Format the tape into one or two partitions. If mt_count is positive, it gives the
size of partition 1 and partition 0 contains the rest of the tape. If mt_count is
zero, the tape is formatted into one partition. From Linux 4.6, a negative
mt_count specifies the size of partition 0 and the rest of the tape contains parti-
tion 1. The physical ordering of partitions depends on the drive. This command
is not allowed for a drive unless the partition support is enabled for the drive (see
MT_ST_CAN_PARTITIONS below).

MTNOP
No op—flushes the driver’s buffer as a side effect. Should be used before read-
ing status with MTIOCGET.

MTOFFL
Rewind and put the drive off line.

MTRESET
Reset drive.

MTRETEN
Re-tension tape.

MTREW
Rewind.

Linux man-pages 6.16 2025-09-21 2902

st(4) Kernel Interfaces Manual st(4)

MTSEEK
Seek to the tape block number specified in mt_count. This operation requires ei-
ther a SCSI-2 drive that supports the LOCATE command (device-specific ad-
dress) or a Tandberg-compatible SCSI-1 drive (Tandberg, Archive Viper,
Wangtek, ...). The block number should be one that was previously returned by
MTIOCPOS if device-specific addresses are used.

MTSETBLK
Set the drive’s block length to the value specified in mt_count. A block length of
zero sets the drive to variable block size mode.

MTSETDENSITY
Set the tape density to the code in mt_count. The density codes supported by a
drive can be found from the drive documentation.

MTSETPART
The active partition is switched to mt_count. The partitions are numbered from
zero. This command is not allowed for a drive unless the partition support is en-
abled for the drive (see MT_ST_CAN_PARTITIONS below).

MTUNLOAD
Execute the SCSI unload command (does not eject the tape).

MTUNLOCK
Unlock the tape drive door.

MTWEOF
Write mt_count filemarks.

MTWSM
Write mt_count setmarks.

Magnetic tape operations for setting of device options (by the superuser):

MTSETDRVBUFFER
Set various drive and driver options according to bits encoded in mt_count.
These consist of the drive’s buffering mode, a set of Boolean driver options, the
buffer write threshold, defaults for the block size and density, and timeouts (only
since Linux 2.1). A single operation can affect only one item in the list below
(the Booleans counted as one item.)

A value having zeros in the high-order 4 bits will be used to set the drive’s
buffering mode. The buffering modes are:

0 The drive will not report GOOD status on write commands until the data
blocks are actually written to the medium.

1 The drive may report GOOD status on write commands as soon as all the
data has been transferred to the drive’s internal buffer.

2 The drive may report GOOD status on write commands as soon as (a) all
the data has been transferred to the drive’s internal buffer, and (b) all
buffered data from different initiators has been successfully written to the
medium.

Linux man-pages 6.16 2025-09-21 2903

st(4) Kernel Interfaces Manual st(4)

To control the write threshold the value in mt_count must include the constant
MT_ST_WRITE_THRESHOLD bitwise ORed with a block count in the low
28 bits. The block count refers to 1024-byte blocks, not the physical block size
on the tape. The threshold cannot exceed the driver’s internal buffer size (see
DESCRIPTION, above).

To set and clear the Boolean options the value in mt_count must include one of
the constants MT_ST_BOOLEANS, MT_ST_SETBOOLEANS,
MT_ST_CLEARBOOLEANS, or MT_ST_DEFBOOLEANS bitwise ORed
with whatever combination of the following options is desired. Using
MT_ST_BOOLEANS the options can be set to the values defined in the corre-
sponding bits. With MT_ST_SETBOOLEANS the options can be selectively
set and with MT_ST_DEFBOOLEANS selectively cleared.

The default options for a tape device are set with MT_ST_DEFBOOLEANS.
A nonactive tape device (e.g., device with minor 32 or 160) is activated when the
default options for it are defined the first time. An activated device inherits from
the device activated at start-up the options not set explicitly.

The Boolean options are:

MT_ST_BUFFER_WRITES (Default: true)
Buffer all write operations in fixed-block mode. If this option is false and
the drive uses a fixed block size, then all write operations must be for a
multiple of the block size. This option must be set false to write reliable
multivolume archives.

MT_ST_ASYNC_WRITES (Default: true)
When this option is true, write operations return immediately without
waiting for the data to be transferred to the drive if the data fits into the
driver’s buffer. The write threshold determines how full the buffer must
be before a new SCSI write command is issued. Any errors reported by
the drive will be held until the next operation. This option must be set
false to write reliable multivolume archives.

MT_ST_READ_AHEAD (Default: true)
This option causes the driver to provide read buffering and read-ahead in
fixed-block mode. If this option is false and the drive uses a fixed block
size, then all read operations must be for a multiple of the block size.

MT_ST_TWO_FM (Default: false)
This option modifies the driver behavior when a file is closed. The nor-
mal action is to write a single filemark. If the option is true, the driver
will write two filemarks and backspace over the second one.

Note: This option should not be set true for QIC tape drives since they
are unable to overwrite a filemark. These drives detect the end of
recorded data by testing for blank tape rather than two consecutive file-
marks. Most other current drives also detect the end of recorded data and
using two filemarks is usually necessary only when interchanging tapes
with some other systems.

Linux man-pages 6.16 2025-09-21 2904

st(4) Kernel Interfaces Manual st(4)

MT_ST_DEBUGGING (Default: false)
This option turns on various debugging messages from the driver (effec-
tive only if the driver was compiled with DEBUG defined nonzero).

MT_ST_FAST_EOM (Default: false)
This option causes the MTEOM operation to be sent directly to the
drive, potentially speeding up the operation but causing the driver to lose
track of the current file number normally returned by the MTIOCGET
request. If MT_ST_FAST_EOM is false, the driver will respond to an
MTEOM request by forward spacing over files.

MT_ST_AUTO_LOCK (Default: false)
When this option is true, the drive door is locked when the device file is
opened and unlocked when it is closed.

MT_ST_DEF_WRITES (Default: false)
The tape options (block size, mode, compression, etc.) may change when
changing from one device linked to a drive to another device linked to the
same drive depending on how the devices are defined. This option de-
fines when the changes are enforced by the driver using SCSI-commands
and when the drives auto-detection capabilities are relied upon. If this
option is false, the driver sends the SCSI-commands immediately when
the device is changed. If the option is true, the SCSI-commands are not
sent until a write is requested. In this case, the drive firmware is allowed
to detect the tape structure when reading and the SCSI-commands are
used only to make sure that a tape is written according to the correct
specification.

MT_ST_CAN_BSR (Default: false)
When read-ahead is used, the tape must sometimes be spaced backward
to the correct position when the device is closed and the SCSI command
to space backward over records is used for this purpose. Some older dri-
ves can’t process this command reliably and this option can be used to in-
struct the driver not to use the command. The end result is that, with
read-ahead and fixed-block mode, the tape may not be correctly posi-
tioned within a file when the device is closed. With Linux 2.6, the de-
fault is true for drives supporting SCSI-3.

MT_ST_NO_BLKLIMS (Default: false)
Some drives don’t accept the READ BLOCK LIMITS SCSI command.
If this is used, the driver does not use the command. The drawback is
that the driver can’t check before sending commands if the selected block
size is acceptable to the drive.

MT_ST_CAN_PARTITIONS (Default: false)
This option enables support for several partitions within a tape. The op-
tion applies to all devices linked to a drive.

MT_ST_SCSI2LOGICAL (Default: false)
This option instructs the driver to use the logical block addresses defined
in the SCSI-2 standard when performing the seek and tell operations

Linux man-pages 6.16 2025-09-21 2905

st(4) Kernel Interfaces Manual st(4)

(both with MTSEEK and MTIOCPOS commands and when changing
tape partition). Otherwise, the device-specific addresses are used. It is
highly advisable to set this option if the drive supports the logical ad-
dresses because they count also filemarks. There are some drives that
support only the logical block addresses.

MT_ST_SYSV (Default: false)
When this option is enabled, the tape devices use the System V seman-
tics. Otherwise, the BSD semantics are used. The most important differ-
ence between the semantics is what happens when a device used for read-
ing is closed: in System V semantics the tape is spaced forward past the
next filemark if this has not happened while using the device. In BSD se-
mantics the tape position is not changed.

MT_NO_WAIT (Default: false)
Enables immediate mode (i.e., don’t wait for the command to finish) for
some commands (e.g., rewind).

An example:

struct mtop mt_cmd;
mt_cmd.mt_op = MTSETDRVBUFFER;
mt_cmd.mt_count = MT_ST_BOOLEANS |

MT_ST_BUFFER_WRITES | MT_ST_ASYNC_WRITES;
ioctl(fd, MTIOCTOP, mt_cmd);

The default block size for a device can be set with MT_ST_DEF_BLKSIZE
and the default density code can be set with MT_ST_DEFDENSITY. The val-
ues for the parameters are or’ed with the operation code.

With Linux 2.1.x and later, the timeout values can be set with the subcommand
MT_ST_SET_TIMEOUT ORed with the timeout in seconds. The long time-
out (used for rewinds and other commands that may take a long time) can be set
with MT_ST_SET_LONG_TIMEOUT. The kernel defaults are very long to
make sure that a successful command is not timed out with any drive. Because
of this, the driver may seem stuck even if it is only waiting for the timeout.
These commands can be used to set more practical values for a specific drive.
The timeouts set for one device apply for all devices linked to the same drive.

Starting from Linux 2.4.19 and Linux 2.5.43, the driver supports a status bit
which indicates whether the drive requests cleaning. The method used by the
drive to return cleaning information is set using the MT_ST_SEL_CLN sub-
command. If the value is zero, the cleaning bit is always zero. If the value is
one, the TapeAlert data defined in the SCSI-3 standard is used (not yet imple-
mented). Values 2–17 are reserved. If the lowest eight bits are >= 18, bits from
the extended sense data are used. The bits 9–16 specify a mask to select the bits
to look at and the bits 17–23 specify the bit pattern to look for. If the bit pattern
is zero, one or more bits under the mask indicate the cleaning request. If the pat-
tern is nonzero, the pattern must match the masked sense data byte.

Linux man-pages 6.16 2025-09-21 2906

st(4) Kernel Interfaces Manual st(4)

MTIOCGET — get status
This request takes an argument of type (struct mtget *).

/* structure for MTIOCGET - mag tape get status command */
struct mtget {

long mt_type;
long mt_resid;
/* the following registers are device dependent */
long mt_dsreg;
long mt_gstat;
long mt_erreg;
/* The next two fields are not always used */
daddr_t mt_fileno;
daddr_t mt_blkno;

};

mt_type
The header file defines many values for mt_type, but the current driver reports
only the generic types MT_ISSCSI1 (Generic SCSI-1 tape) and MT_ISSCSI2
(Generic SCSI-2 tape).

mt_resid
contains the current tape partition number.

mt_dsreg
reports the drive’s current settings for block size (in the low 24 bits) and density
(in the high 8 bits). These fields are defined by MT_ST_BLKSIZE_SHIFT,
MT_ST_BLKSIZE_MASK, MT_ST_DENSITY_SHIFT, and MT_ST_DEN-
SITY_MASK.

mt_gstat
reports generic (device independent) status information. The header file defines
macros for testing these status bits:

GMT_EOF(x)
The tape is positioned just after a filemark (always false after an MT-
SEEK operation).

GMT_BOT (x)
The tape is positioned at the beginning of the first file (always false after
an MTSEEK operation).

GMT_EOT (x)
A tape operation has reached the physical End Of Tape.

GMT_SM(x)
The tape is currently positioned at a setmark (always false after an MT-
SEEK operation).

GMT_EOD(x)
The tape is positioned at the end of recorded data.

Linux man-pages 6.16 2025-09-21 2907

st(4) Kernel Interfaces Manual st(4)

GMT_WR_PROT (x)
The drive is write-protected. For some drives this can also mean that the
drive does not support writing on the current medium type.

GMT_ONLINE(x)
The last open(2) found the drive with a tape in place and ready for opera-
tion.

GMT_D_6250(x)
GMT_D_1600(x)
GMT_D_800(x)

This “generic” status information reports the current density setting for
9-track ½" tape drives only.

GMT_DR_OPEN (x)
The drive does not have a tape in place.

GMT_IM_REP_EN (x)
Immediate report mode. This bit is set if there are no guarantees that the
data has been physically written to the tape when the write call returns. It
is set zero only when the driver does not buffer data and the drive is set
not to buffer data.

GMT_CLN (x)
The drive has requested cleaning. Implemented since Linux 2.4.19 and
Linux 2.5.43.

mt_erreg
The only field defined in mt_erreg is the recovered error count in the low 16 bits
(as defined by MT_ST_SOFTERR_SHIFT and MT_ST_SOFTERR_MASK).
Due to inconsistencies in the way drives report recovered errors, this count is of-
ten not maintained (most drives do not by default report soft errors but this can
be changed with a SCSI MODE SELECT command).

mt_fileno
reports the current file number (zero-based). This value is set to -1 when the file
number is unknown (e.g., after MTBSS or MTSEEK).

mt_blkno
reports the block number (zero-based) within the current file. This value is set to
-1 when the block number is unknown (e.g., after MTBSF, MTBSS, or MT-
SEEK).

MTIOCPOS — get tape position
This request takes an argument of type (struct mtpos *) and reports the drive’s notion of
the current tape block number, which is not the same as mt_blkno returned by MTI-
OCGET. This drive must be a SCSI-2 drive that supports the READ POSITION com-
mand (device-specific address) or a Tandberg-compatible SCSI-1 drive (Tandberg,
Archive Viper, Wangtek, ...).

/* structure for MTIOCPOS - mag tape get position command */
struct mtpos {

long mt_blkno; /* current block number */

Linux man-pages 6.16 2025-09-21 2908

st(4) Kernel Interfaces Manual st(4)

};

RETURN VALUE
EACCES

An attempt was made to write or erase a write-protected tape. (This error is not
detected during open(2).)

EBUSY
The device is already in use or the driver was unable to allocate a buffer.

EFAULT
The command parameters point to memory not belonging to the calling process.

EINVAL
An ioctl(2) had an invalid argument, or a requested block size was invalid.

EIO The requested operation could not be completed.

ENOMEM
The byte count in read(2) is smaller than the next physical block on the tape.
(Before Linux 2.2.18 and Linux 2.4.0 the extra bytes have been silently ignored.)

ENOSPC
A write operation could not be completed because the tape reached end-of-
medium.

ENOSYS
Unknown ioctl(2).

ENXIO
During opening, the tape device does not exist.

EOVERFLOW
An attempt was made to read or write a variable-length block that is larger than
the driver’s internal buffer.

EROFS
Open is attempted with O_WRONLY or O_RDWR when the tape in the drive
is write-protected.

FILES
/dev/st*

the auto-rewind SCSI tape devices

/dev/nst*
the nonrewind SCSI tape devices

NOTES
• When exchanging data between systems, both systems have to agree on the physical

tape block size. The parameters of a drive after startup are often not the ones most
operating systems use with these devices. Most systems use drives in variable-block
mode if the drive supports that mode. This applies to most modern drives, including
DATs, 8mm helical scan drives, DLTs, etc. It may be advisable to use these drives in
variable-block mode also in Linux (i.e., use MTSETBLK or MTSETDEFBLK at
system startup to set the mode), at least when exchanging data with a foreign

Linux man-pages 6.16 2025-09-21 2909

st(4) Kernel Interfaces Manual st(4)

system. The drawback of this is that a fairly large tape block size has to be used to
get acceptable data transfer rates on the SCSI bus.

• Many programs (e.g., tar(1)) allow the user to specify the blocking factor on the
command line. Note that this determines the physical block size on tape only in
variable-block mode.

• In order to use SCSI tape drives, the basic SCSI driver, a SCSI-adapter driver and
the SCSI tape driver must be either configured into the kernel or loaded as modules.
If the SCSI-tape driver is not present, the drive is recognized but the tape support de-
scribed in this page is not available.

• The driver writes error messages to the console/log. The SENSE codes written into
some messages are automatically translated to text if verbose SCSI messages are en-
abled in kernel configuration.

• The driver’s internal buffering allows good throughput in fixed-block mode also with
small read(2) and write(2) byte counts. With direct transfers this is not possible and
may cause a surprise when moving to the 2.6 kernel. The solution is to tell the soft-
ware to use larger transfers (often telling it to use larger blocks). If this is not possi-
ble, direct transfers can be disabled.

SEE ALSO
mt(1)

The file drivers/scsi/README.st or Documentation/scsi/st.txt (kernel >= 2.6) in the
Linux kernel source tree contains the most recent information about the driver and its
configuration possibilities

Linux man-pages 6.16 2025-09-21 2910

tty(4) Kernel Interfaces Manual tty(4)

NAME
tty - controlling terminal

DESCRIPTION
The file /dev/tty is a character file with major number 5 and minor number 0, usually
with mode 0666 and ownership root:tty. It is a synonym for the controlling terminal of a
process, if any.

In addition to the ioctl(2) requests supported by the device that tty refers to, the ioctl(2)
request TIOCNOTTY is supported.

TIOCNOTTY
Detach the calling process from its controlling terminal.

If the process is the session leader, then SIGHUP and SIGCONT signals are sent to the
foreground process group and all processes in the current session lose their controlling
tty.

This ioctl(2) call works only on file descriptors connected to /dev/tty. It is used by dae-
mon processes when they are invoked by a user at a terminal. The process attempts to
open /dev/tty. If the open succeeds, it detaches itself from the terminal by using TIOC-
NOTTY, while if the open fails, it is obviously not attached to a terminal and does not
need to detach itself.

FILES
/dev/tty

SEE ALSO
chown(1), mknod(1), ioctl(2), ioctl_console(2), ioctl_tty(2), termios(3), ttyS(4), vcs(4),
pty(7), agetty(8), mingetty(8)

Linux man-pages 6.16 2025-05-17 2911

ttyS(4) Kernel Interfaces Manual ttyS(4)

NAME
ttyS - serial terminal lines

DESCRIPTION
ttyS[0-3] are character devices for the serial terminal lines.

They are typically created by:

mknod -m 660 /dev/ttyS0 c 4 64 # base address 0x3f8
mknod -m 660 /dev/ttyS1 c 4 65 # base address 0x2f8
mknod -m 660 /dev/ttyS2 c 4 66 # base address 0x3e8
mknod -m 660 /dev/ttyS3 c 4 67 # base address 0x2e8
chown root:tty /dev/ttyS[0-3]

FILES
/dev/ttyS[0-3]

SEE ALSO
chown(1), mknod(1), tty(4), agetty(8), mingetty(8), setserial(8)

Linux man-pages 6.16 2025-05-17 2912

vcs(4) Kernel Interfaces Manual vcs(4)

NAME
vcs, vcsa - virtual console memory

DESCRIPTION
/dev/vcs0 is a character device with major number 7 and minor number 0, usually with
mode 0644 and ownership root:tty. It refers to the memory of the currently displayed
virtual console terminal.

/dev/vcs[1-63] are character devices for virtual console terminals, they have major
number 7 and minor number 1 to 63, usually mode 0644 and ownership root:tty.
/dev/vcsa[0-63] are the same, but using unsigned shorts (in host byte order) that in-
clude attributes, and prefixed with four bytes giving the screen dimensions and cursor
position: lines, columns, x, y. (x = y = 0 at the top left corner of the screen.)

When a 512-character font is loaded, the 9th bit position can be fetched by applying the
ioctl(2) VT_GETHIFONTMASK operation (available since Linux 2.6.18) on
/dev/tty[1-63]; the value is returned in the unsigned short pointed to by the third ioctl(2)
argument.

These devices replace the screendump ioctl(2) operations of ioctl_console(2), so the sys-
tem administrator can control access using filesystem permissions.

The devices for the first eight virtual consoles may be created by:

for x in 0 1 2 3 4 5 6 7 8; do
mknod -m 644 /dev/vcs$x c 7 $x;
mknod -m 644 /dev/vcsa$x c 7 $[$x+128];

done
chown root:tty /dev/vcs*

No ioctl(2) requests are supported.

FILES
/dev/vcs[0-63]
/dev/vcsa[0-63]

VERSIONS
Introduced with Linux 1.1.92.

EXAMPLES
You may do a screendump on vt3 by switching to vt1 and typing

cat /dev/vcs3 >foo

Note that the output does not contain newline characters, so some processing may be re-
quired, like in

fold -w 81 /dev/vcs3 | lpr

or (horrors)

setterm -dump 3 -file /proc/self/fd/1

The /dev/vcsa0 device is used for Braille support.

This program displays the character and screen attributes under the cursor of the second
virtual console, then changes the background color there:

Linux man-pages 6.16 2025-05-17 2913

vcs(4) Kernel Interfaces Manual vcs(4)

#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <fcntl.h>
#include <sys/ioctl.h>
#include <linux/vt.h>

int
main(void)
{

int fd;
char *device = "/dev/vcsa2";
char *console = "/dev/tty2";
struct {unsigned char lines, cols, x, y;} scrn;
unsigned short s;
unsigned short mask;
unsigned char attrib;
int ch;

fd = open(console, O_RDWR);
if (fd < 0) {

perror(console);
exit(EXIT_FAILURE);

}
if (ioctl(fd, VT_GETHIFONTMASK, &mask) < 0) {

perror("VT_GETHIFONTMASK");
exit(EXIT_FAILURE);

}
(void) close(fd);
fd = open(device, O_RDWR);
if (fd < 0) {

perror(device);
exit(EXIT_FAILURE);

}
(void) read(fd, &scrn, 4);
(void) lseek(fd, 4 + 2*(scrn.y*scrn.cols + scrn.x), SEEK_SET);
(void) read(fd, &s, 2);
ch = s & 0xff;
if (s & mask)

ch |= 0x100;
attrib = ((s & ~mask) >> 8);
printf("ch=%#03x attrib=%#02x\n", ch, attrib);
s ^= 0x1000;
(void) lseek(fd, -2, SEEK_CUR);
(void) write(fd, &s, 2);
exit(EXIT_SUCCESS);

}

Linux man-pages 6.16 2025-05-17 2914

vcs(4) Kernel Interfaces Manual vcs(4)

SEE ALSO
ioctl_console(2), tty(4), ttyS(4), gpm(8)

Linux man-pages 6.16 2025-05-17 2915

veth(4) Kernel Interfaces Manual veth(4)

NAME
veth - Virtual Ethernet Device

DESCRIPTION
The veth devices are virtual Ethernet devices. They can act as tunnels between network
namespaces to create a bridge to a physical network device in another namespace, but
can also be used as standalone network devices.

veth devices are always created in interconnected pairs. A pair can be created using the
command:

ip link add <p1-name> type veth peer name <p2-name>

In the above, p1-name and p2-name are the names assigned to the two connected end
points.

Packets transmitted on one device in the pair are immediately received on the other de-
vice. When either device is down, the link state of the pair is down.

veth device pairs are useful for combining the network facilities of the kernel together in
interesting ways. A particularly interesting use case is to place one end of a veth pair in
one network namespace and the other end in another network namespace, thus allowing
communication between network namespaces. To do this, one can provide the netns pa-
rameter when creating the interfaces:

ip link add <p1-name> netns <p1-ns> type veth peer <p2-name> netns <p2-ns>

or, for an existing veth pair, move one side to the other namespace:

ip link set <p2-name> netns <p2-ns>

ethtool(8) can be used to find the peer of a veth network interface, using commands
something like:

ip link add ve_A type veth peer name ve_B; # Create veth pair
ethtool -S ve_A; # Discover interface index of peer
NIC statistics:

peer_ifindex: 16
ip link | grep '^16:'; # Look up interface
16: ve_B@ve_A: <BROADCAST,MULTICAST,M-DOWN> mtu 1500 qdisc ...

SEE ALSO
clone(2), network_namespaces(7), ip(8), ip-link(8), ip-netns(8)

Linux man-pages 6.16 2025-05-17 2916

wavelan(4) Kernel Interfaces Manual wavelan(4)

NAME
wavelan - AT&T GIS WaveLAN ISA device driver

SYNOPSIS
insmod wavelan_cs.o [io=B,B..] [irq=I,I..] [name=N,N..]

DESCRIPTION
This driver is obsolete: it was removed in Linux 2.6.35.

wavelan is the low-level device driver for the NCR / AT&T / Lucent WaveLAN ISA
and Digital (DEC) RoamAbout DS wireless ethernet adapter. This driver is available as
a module or might be compiled in the kernel. This driver supports multiple cards in
both forms (up to 4) and allocates the next available ethernet device (eth0..eth#) for each
card found, unless a device name is explicitly specified (see below). This device name
will be reported in the kernel log file with the MAC address, NWID, and frequency used
by the card.

Parameters
This section applies to the module form (parameters passed on the insmod(8) command
line). If the driver is included in the kernel, use the ether=IRQ,IO,NAME syntax on the
kernel command line.

io Specify the list of base addresses where to search for wavelan cards (setting by
dip switch on the card). If you don’t specify any io address, the driver will scan
0x390 and 0x3E0 addresses, which might conflict with other hardware...

irq Set the list of IRQs that each wavelan card should use (the value is saved in per-
manent storage for future use).

name
Set the list of names to be used for each wavelan card device (name used by if-
config(8)).

Wireless extensions
Use iwconfig(8) to manipulate wireless extensions.

NWID (or domain)
Set the network ID [0 to FFFF] or disable it [off]. As the NWID is stored in the card
Permanent Storage Area, it will be reused at any further invocation of the driver.

Frequency & channels
For the 2.4 GHz 2.00 Hardware, you are able to set the frequency by specifying one of
the 10 defined channels (2.412, 2.422, 2.425, 2.4305, 2.432, 2.442, 2.452, 2.460, 2.462
or 2.484) or directly as a numeric value. The frequency is changed immediately and
permanently. Frequency availability depends on the regulations...

Statistics spy
Set a list of MAC addresses in the driver (up to 8) and get the last quality of link for
each of those (see iwspy(8)).

/proc/net/wireless
status is the status reported by the modem. Link quality reports the quality of the modu-
lation on the air (direct sequence spread spectrum) [max = 16]. Level and Noise refer to
the signal level and noise level [max = 64]. The crypt discarded packet and misc

Linux man-pages 6.16 2025-05-17 2917

wavelan(4) Kernel Interfaces Manual wavelan(4)

discarded packet counters are not implemented.

Private ioctl
You may use iwpriv(8) to manipulate private ioctls.

Quality and level threshold
Enables you to define the quality and level threshold used by the modem (packet below
that level are discarded).

Histogram
This functionality makes it possible to set a number of signal level intervals and to count
the number of packets received in each of those defined intervals. This distribution
might be used to calculate the mean value and standard deviation of the signal level.

Specific notes
This driver fails to detect some non-NCR/AT&T/Lucent Wavelan cards. If this hap-
pens for you, you must look in the source code on how to add your card to the detection
routine.

Some of the mentioned features are optional. You may enable or disable them by
changing flags in the driver header and recompile.

SEE ALSO
wavelan_cs(4), ifconfig(8), insmod(8), iwconfig(8), iwpriv(8), iwspy(8)

Linux man-pages 6.16 2025-05-17 2918

intro(5) File Formats Manual intro(5)

NAME
intro - introduction to file formats and filesystems

DESCRIPTION
Section 5 of the manual describes various file formats, as well as the corresponding C
structures, if any.

In addition, this section contains a number of pages that document various filesystems.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

SEE ALSO
standards(7)

Linux man-pages 6.16 2025-05-17 2919

acct(5) File Formats Manual acct(5)

NAME
acct - process accounting file

SYNOPSIS
#include <sys/acct.h>

DESCRIPTION
If the kernel is built with the process accounting option enabled (CON-
FIG_BSD_PROCESS_ACCT), then calling acct(2) starts process accounting, for ex-
ample:

acct("/var/log/pacct");

When process accounting is enabled, the kernel writes a record to the accounting file as
each process on the system terminates. This record contains information about the ter-
minated process, and is defined in <sys/acct.h> as follows:

#define ACCT_COMM 16

typedef u_int16_t comp_t;

struct acct {
char ac_flag; /* Accounting flags */
u_int16_t ac_uid; /* Accounting user ID */
u_int16_t ac_gid; /* Accounting group ID */
u_int16_t ac_tty; /* Controlling terminal */
u_int32_t ac_btime; /* Process creation time

(seconds since the Epoch) */
comp_t ac_utime; /* User CPU time */
comp_t ac_stime; /* System CPU time */
comp_t ac_etime; /* Elapsed time */
comp_t ac_mem; /* Average memory usage (kB) */
comp_t ac_io; /* Characters transferred (unused) */
comp_t ac_rw; /* Blocks read or written (unused) */
comp_t ac_minflt; /* Minor page faults */
comp_t ac_majflt; /* Major page faults */
comp_t ac_swaps; /* Number of swaps (unused) */
u_int32_t ac_exitcode; /* Process termination status

(see wait(2)) */
char ac_comm[ACCT_COMM+1];

/* Command name (basename of last
executed command; null-terminated) */

char ac_pad[X]; /* padding bytes */
};

enum { /* Bits that may be set in ac_flag field */
AFORK = 0x01, /* Has executed fork, but no exec */
ASU = 0x02, /* Used superuser privileges */
ACORE = 0x08, /* Dumped core */
AXSIG = 0x10 /* Killed by a signal */

Linux man-pages 6.16 2025-09-21 2920

acct(5) File Formats Manual acct(5)

};

The comp_t data type is a floating-point value consisting of a 3-bit, base-8 exponent,
and a 13-bit mantissa. A value, c, of this type can be converted to a (long) integer as
follows:

v = (c & 0x1fff) << (((c >> 13) & 0x7) * 3);

The ac_utime, ac_stime, and ac_etime fields measure time in "clock ticks"; divide these
values by sysconf(_SC_CLK_TCK) to convert them to seconds.

Version 3 accounting file format
Since Linux 2.6.8, an optional alternative version of the accounting file can be produced
if the CONFIG_BSD_PROCESS_ACCT_V3 option is set when building the kernel.
With this option is set, the records written to the accounting file contain additional fields,
and the width of c_uid and ac_gid fields is widened from 16 to 32 bits (in line with the
increased size of UID and GIDs in Linux 2.4 and later). The records are defined as fol-
lows:

struct acct_v3 {
char ac_flag; /* Flags */
char ac_version; /* Always set to ACCT_VERSION (3) */
u_int16_t ac_tty; /* Controlling terminal */
u_int32_t ac_exitcode; /* Process termination status */
u_int32_t ac_uid; /* Real user ID */
u_int32_t ac_gid; /* Real group ID */
u_int32_t ac_pid; /* Process ID */
u_int32_t ac_ppid; /* Parent process ID */
u_int32_t ac_btime; /* Process creation time */
float ac_etime; /* Elapsed time */
comp_t ac_utime; /* User CPU time */
comp_t ac_stime; /* System time */
comp_t ac_mem; /* Average memory usage (kB) */
comp_t ac_io; /* Characters transferred (unused) */
comp_t ac_rw; /* Blocks read or written

(unused) */
comp_t ac_minflt; /* Minor page faults */
comp_t ac_majflt; /* Major page faults */
comp_t ac_swaps; /* Number of swaps (unused) */
char ac_comm[ACCT_COMM]; /* Command name */

};

VERSIONS
Although it is present on most systems, it is not standardized, and the details vary some-
what between systems.

STANDARDS
None.

HISTORY
glibc 2.6.

Linux man-pages 6.16 2025-09-21 2921

acct(5) File Formats Manual acct(5)

Process accounting originated on BSD.

NOTES
Records in the accounting file are ordered by termination time of the process.

Up to and including Linux 2.6.9, a separate accounting record is written for each thread
created using the NPTL threading library; since Linux 2.6.10, a single accounting record
is written for the entire process on termination of the last thread in the process.

The /proc/sys/kernel/acct file, described in proc(5), defines settings that control the be-
havior of process accounting when disk space runs low.

SEE ALSO
lastcomm(1), acct(2), accton(8), sa(8)

Linux man-pages 6.16 2025-09-21 2922

charmap(5) File Formats Manual charmap(5)

NAME
charmap - character set description file

DESCRIPTION
A character set description (charmap) defines all available characters and their encod-
ings in a character set. localedef(1) can use charmaps to create locale variants for differ-
ent character sets.

Syntax
The charmap file starts with a header that may consist of the following keywords:

<code_set_name>
is followed by the name of the character map.

<comment_char>
is followed by a character that will be used as the comment character for the rest
of the file. It defaults to the number sign (#).

<escape_char>
is followed by a character that should be used as the escape character for the rest
of the file to mark characters that should be interpreted in a special way. It de-
faults to the backslash (\).

<mb_cur_max>
is followed by the maximum number of bytes for a character. The default value
is 1.

<mb_cur_min>
is followed by the minimum number of bytes for a character. This value must be
less than or equal than <mb_cur_max>. If not specified, it defaults to
<mb_cur_max>.

The character set definition section starts with the keyword CHARMAP in the first col-
umn.

The following lines may have one of the two following forms to define the character set:

<character> byte-sequence comment
This form defines exactly one character and its byte sequence, comment being
optional.

<character>..<character> byte-sequence comment
This form defines a character range and its byte sequence, comment being op-
tional.

The character set definition section ends with the string END CHARMAP.

The character set definition section may optionally be followed by a section to define
widths of characters.

The WIDTH_DEFAULT keyword can be used to define the default width for all charac-
ters not explicitly listed. The default character width is 1.

The width section for individual characters starts with the keyword WIDTH in the first
column.

The following lines may have one of the two following forms to define the widths of the

Linux man-pages 6.16 2025-05-17 2923

charmap(5) File Formats Manual charmap(5)

characters:

<character> width
This form defines the width of exactly one character.

<character>...<character> width
This form defines the width for all the characters in the range.

The width definition section ends with the string END WIDTH .

FILES
/usr/share/i18n/charmaps

Usual default character map path.

STANDARDS
POSIX.2.

EXAMPLES
The Euro sign is defined as follows in the UTF-8 charmap:

<U20AC> /xe2/x82/xac EURO SIGN

SEE ALSO
iconv(1), locale(1), localedef(1), locale(5), charsets(7)

Linux man-pages 6.16 2025-05-17 2924

core(5) File Formats Manual core(5)

NAME
core - core dump file

DESCRIPTION
The default action of certain signals is to cause a process to terminate and produce a
core dump file, a file containing an image of the process’s memory at the time of termi-
nation. This image can be used in a debugger (e.g., gdb(1)) to inspect the state of the
program at the time that it terminated. A list of the signals which cause a process to
dump core can be found in signal(7).

A process can set its soft RLIMIT_CORE resource limit to place an upper limit on the
size of the core dump file that will be produced if it receives a "core dump" signal; see
getrlimit(2) for details.

There are various circumstances in which a core dump file is not produced:

• The process does not have permission to write the core file. (By default, the core file
is called core or core.pid , where pid is the ID of the process that dumped core, and
is created in the current working directory. See below for details on naming.) Writ-
ing the core file fails if the directory in which it is to be created is not writable, or if
a file with the same name exists and is not writable or is not a regular file (e.g., it is a
directory or a symbolic link).

• A (writable, regular) file with the same name as would be used for the core dump al-
ready exists, but there is more than one hard link to that file.

• The filesystem where the core dump file would be created is full; or has run out of
inodes; or is mounted read-only; or the user has reached their quota for the filesys-
tem.

• The directory in which the core dump file is to be created does not exist.

• The RLIMIT_CORE (core file size) or RLIMIT_FSIZE (file size) resource limits
for the process are set to zero; see getrlimit(2) and the documentation of the shell’s
ulimit command (limit in csh(1)). However, RLIMIT_CORE will be ignored if the
system is configured to pipe core dumps to a program.

• The binary being executed by the process does not have read permission enabled.
(This is a security measure to ensure that an executable whose contents are not read-
able does not produce a—possibly readable—core dump containing an image of the
executable.)

• The process is executing a set-user-ID (set-group-ID) program that is owned by a
user (group) other than the real user (group) ID of the process, or the process is exe-
cuting a program that has file capabilities (see capabilities(7)). (However, see the
description of the prctl(2) PR_SET_DUMPABLE operation, and the description of
the /proc/sys/fs/suid_dumpable file in proc(5).)

• /proc/sys/kernel/core_pattern is empty and /proc/sys/kernel/core_uses_pid contains
the value 0. (These files are described below.) Note that if /proc/sys/ker-
nel/core_pattern is empty and /proc/sys/kernel/core_uses_pid contains the value 1,
core dump files will have names of the form .pid , and such files are hidden unless
one uses the ls(1) -a option.

Linux man-pages 6.16 2025-09-21 2925

core(5) File Formats Manual core(5)

• (Since Linux 3.7) The kernel was configured without the CONFIG_COREDUMP
option.

In addition, a core dump may exclude part of the address space of the process if the
madvise(2) MADV_DONTDUMP flag was employed.

On systems that employ systemd(1) as the init framework, core dumps may instead be
placed in a location determined by systemd(1)See below for further details.

Naming of core dump files
By default, a core dump file is named core, but the /proc/sys/kernel/core_pattern file
(since Linux 2.6 and 2.4.21) can be set to define a template that is used to name core
dump files. The template can contain % specifiers which are substituted by the follow-
ing values when a core file is created:

%%
A single % character.

%c
Core file size soft resource limit of crashing process (since Linux 2.6.24).

%d
Dump mode—same as value returned by prctl(2) PR_GET_DUMPABLE
(since Linux 3.7).

%e
The process or thread’s comm value, which typically is the same as the exe-
cutable filename (without path prefix, and truncated to a maximum of 15 char-
acters), but may have been modified to be something different; see the discus-
sion of /proc/ pid /comm and /proc/ pid /task/ tid /comm in proc(5).

%E
Pathname of executable, with slashes ('/') replaced by exclamation marks ('!')
(since Linux 3.0).

%F
PIDFD of dumped process (since Linux 6.16).

%g
Numeric real GID of dumped process.

%h
Hostname (same as nodename returned by uname(2)).

%i TID of thread that triggered core dump, as seen in the PID namespace in
which the thread resides (since Linux 3.18).

%I TID of thread that triggered core dump, as seen in the initial PID namespace
(since Linux 3.18).

%p
PID of dumped process, as seen in the PID namespace in which the process
resides.

%P
PID of dumped process, as seen in the initial PID namespace (since Linux
3.12).

%s
Number of signal causing dump.

Linux man-pages 6.16 2025-09-21 2926

core(5) File Formats Manual core(5)

%t Time of dump, expressed as seconds since the Epoch, 1970-01-01 00:00:00
+0000 (UTC).

%u
Numeric real UID of dumped process.

A single % at the end of the template is dropped from the core filename, as is the combi-
nation of a % followed by any character other than those listed above. All other charac-
ters in the template become a literal part of the core filename. The template may include
'/' characters, which are interpreted as delimiters for directory names. The maximum
size of the resulting core filename is 128 bytes (64 bytes before Linux 2.6.19). The de-
fault value in this file is "core". For backward compatibility, if /proc/sys/ker-
nel/core_pattern does not include %p and /proc/sys/kernel/core_uses_pid (see below) is
nonzero, then .PID will be appended to the core filename.

Paths are interpreted according to the settings that are active for the crashing process.
That means the crashing process’s mount namespace (see mount_namespaces(7)), its
current working directory (found via getcwd(2)), and its root directory (see chroot(2)).

Since Linux 2.4, Linux has also provided a more primitive method of controlling the
name of the core dump file. If the /proc/sys/kernel/core_uses_pid file contains the value
0, then a core dump file is simply named core. If this file contains a nonzero value, then
the core dump file includes the process ID in a name of the form core.PID.

Since Linux 3.6, if /proc/sys/fs/suid_dumpable is set to 2 ("suidsafe"), the pattern must
be either an absolute pathname (starting with a leading '/' character) or a pipe, as defined
below.

Piping core dumps to a program
Since Linux 2.6.19, Linux supports an alternate syntax for the /proc/sys/ker-
nel/core_pattern file. If the first character of this file is a pipe symbol (|), then the re-
mainder of the line is interpreted as the command-line for a user-space program (or
script) that is to be executed.

Since Linux 5.3.0, the pipe template is split on spaces into an argument list before the
template parameters are expanded. In earlier kernels, the template parameters are ex-
panded first and the resulting string is split on spaces into an argument list. This means
that in earlier kernels executable names added by the %e and %E template parameters
could get split into multiple arguments. So the core dump handler needs to put the exe-
cutable names as the last argument and ensure it joins all parts of the executable name
using spaces. Executable names with multiple spaces in them are not correctly repre-
sented in earlier kernels, meaning that the core dump handler needs to use mechanisms
to find the executable name.

Instead of being written to a file, the core dump is given as standard input to the pro-
gram. Note the following points:

• The program must be specified using an absolute pathname (or a pathname relative
to the root directory, /), and must immediately follow the ’|’ character.

• The command-line arguments can include any of the % specifiers listed above. For
example, to pass the PID of the process that is being dumped, specify %p in an argu-
ment.

Linux man-pages 6.16 2025-09-21 2927

core(5) File Formats Manual core(5)

• The process created to run the program runs as user and group root.

• Running as root does not confer any exceptional security bypasses. Namely, LSMs
(e.g., SELinux) are still active and may prevent the handler from accessing details
about the crashed process via /proc/ pid.

• The program pathname is interpreted with respect to the initial mount namespace as
it is always executed there. It is not affected by the settings (e.g., root directory,
mount namespace, current working directory) of the crashing process.

• The process runs in the initial namespaces (PID, mount, user, and so on) and not in
the namespaces of the crashing process. One can utilize specifiers such as %P to
find the right /proc/ pid directory and probe/enter the crashing process’s namespaces
if needed.

• The process starts with its current working directory as the root directory. If desired,
it is possible change to the working directory of the dumping process by employing
the value provided by the %P specifier to change to the location of the dumping
process via /proc/ pid /cwd .

• Command-line arguments can be supplied to the program (since Linux 2.6.24), de-
limited by white space (up to a total line length of 128 bytes).

• The RLIMIT_CORE limit is not enforced for core dumps that are piped to a pro-
gram via this mechanism.

/proc/sys/kernel/core_pipe_limit
When collecting core dumps via a pipe to a user-space program, it can be useful for the
collecting program to gather data about the crashing process from that process’s
/proc/ pid directory. In order to do this safely, the kernel must wait for the program col-
lecting the core dump to exit, so as not to remove the crashing process’s /proc/ pid files
prematurely. This in turn creates the possibility that a misbehaving collecting program
can block the reaping of a crashed process by simply never exiting.

Since Linux 2.6.32, the /proc/sys/kernel/core_pipe_limit can be used to defend against
this possibility. The value in this file defines how many concurrent crashing processes
may be piped to user-space programs in parallel. If this value is exceeded, then those
crashing processes above this value are noted in the kernel log and their core dumps are
skipped.

A value of 0 in this file is special. It indicates that unlimited processes may be captured
in parallel, but that no waiting will take place (i.e., the collecting program is not guaran-
teed access to /proc/<crashing-PID>). The default value for this file is 0.

Controlling which mappings are written to the core dump
Since Linux 2.6.23, the Linux-specific /proc/ pid /coredump_filter file can be used to
control which memory segments are written to the core dump file in the event that a core
dump is performed for the process with the corresponding process ID.

The value in the file is a bit mask of memory mapping types (see mmap(2)). If a bit is
set in the mask, then memory mappings of the corresponding type are dumped; other-
wise, they are not dumped. The bits in this file have the following meanings:

Linux man-pages 6.16 2025-09-21 2928

core(5) File Formats Manual core(5)

bit 0 Dump anonymous private mappings.
bit 1 Dump anonymous shared mappings.
bit 2 Dump file-backed private mappings.
bit 3 Dump file-backed shared mappings.
bit 4 (since Linux 2.6.24)

Dump ELF headers.
bit 5 (since Linux 2.6.28)

Dump private huge pages.
bit 6 (since Linux 2.6.28)

Dump shared huge pages.
bit 7 (since Linux 4.4)

Dump private DAX pages.
bit 8 (since Linux 4.4)

Dump shared DAX pages.

By default, the following bits are set: 0, 1, 4 (if the CONFIG_CORE_DUMP_DE-
FAULT_ELF_HEADERS kernel configuration option is enabled), and 5. This default
can be modified at boot time using the coredump_filter boot option.

The value of this file is displayed in hexadecimal. (The default value is thus displayed
as 33.)

Memory-mapped I/O pages such as frame buffer are never dumped, and virtual DSO
(vdso(7)) pages are always dumped, regardless of the coredump_filter value.

A child process created via fork(2) inherits its parent’s coredump_filter value; the core-
dump_filter value is preserved across an execve(2).

It can be useful to set coredump_filter in the parent shell before running a program, for
example:

$ echo 0x7 > /proc/self/coredump_filter
$./some_program

This file is provided only if the kernel was built with the CONFIG_ELF_CORE con-
figuration option.

Core dumps and systemd
On systems using the systemd(1) init framework, core dumps may be placed in a loca-
tion determined by systemd(1)To do this, systemd(1) employs the core_pattern feature
that allows piping core dumps to a program. One can verify this by checking whether
core dumps are being piped to the systemd-coredump(8) program:

$ cat /proc/sys/kernel/core_pattern;
|/usr/lib/systemd/systemd-coredump %P %u %g %s %t %c %e

In this case, core dumps will be placed in the location configured for systemd-core-
dump(8), typically as lz4(1) compressed files in the directory /var/lib/systemd/core-
dump/ . One can list the core dumps that have been recorded by systemd-coredump(8)
using coredumpctl(1):

$ coredumpctl list | tail -5;
Wed 2017-10-11 22:25:30 CEST 2748 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:29:10 CEST 2716 1000 1000 3 present /usr/bin/sleep

Linux man-pages 6.16 2025-09-21 2929

core(5) File Formats Manual core(5)

Thu 2017-10-12 06:30:50 CEST 2767 1000 1000 3 present /usr/bin/sleep
Thu 2017-10-12 06:37:40 CEST 2918 1000 1000 3 present /usr/bin/cat
Thu 2017-10-12 08:13:07 CEST 2955 1000 1000 3 present /usr/bin/cat

The information shown for each core dump includes the date and time of the dump, the
PID, UID, and GID of the dumping process, the signal number that caused the core
dump, and the pathname of the executable that was being run by the dumped process.
Various options to coredumpctl(1) allow a specified coredump file to be pulled from the
systemd(1) location into a specified file. For example, to extract the core dump for PID
2955 shown above to a file named core in the current directory, one could use:

$ coredumpctl dump 2955 -o core;

For more extensive details, see the coredumpctl(1) manual page.

To (persistently) disable the systemd(1) mechanism that archives core dumps, restoring
to something more like traditional Linux behavior, one can set an override for the sys-
temd(1) mechanism, using something like:

echo "kernel.core_pattern=core.%p" > \;
/etc/sysctl.d/50-coredump.conf

/lib/systemd/systemd-sysctl;

It is also possible to temporarily (i.e., until the next reboot) change the core_pattern set-
ting using a command such as the following (which causes the names of core dump files
to include the executable name as well as the number of the signal which triggered the
core dump):

sysctl -w kernel.core_pattern="%e-%s.core";

NOTES
The gdb(1) gcore command can be used to obtain a core dump of a running process.

In Linux versions up to and including 2.6.27, if a multithreaded process (or, more pre-
cisely, a process that shares its memory with another process by being created with the
CLONE_VM flag of clone(2)) dumps core, then the process ID is always appended to
the core filename, unless the process ID was already included elsewhere in the filename
via a %p specification in /proc/sys/kernel/core_pattern. (This is primarily useful when
employing the obsolete LinuxThreads implementation, where each thread of a process
has a different PID.)

EXAMPLES
The program below can be used to demonstrate the use of the pipe syntax in the
/proc/sys/kernel/core_pattern file. The following shell session demonstrates the use of
this program (compiled to create an executable named core_pattern_pipe_test):

$ cc -o core_pattern_pipe_test core_pattern_pipe_test.c
$ su
Password:
echo "|$PWD/core_pattern_pipe_test %p UID=%u GID=%g sig=%s" > \

/proc/sys/kernel/core_pattern
exit
$ sleep 100
^\ # type control-backslash

Linux man-pages 6.16 2025-09-21 2930

core(5) File Formats Manual core(5)

Quit (core dumped)
$ cat core.info
argc=5
argc[0]=</home/mtk/core_pattern_pipe_test>
argc[1]=<20575>
argc[2]=<UID=1000>
argc[3]=<GID=100>
argc[4]=<sig=3>
Total bytes in core dump: 282624

Program source

/* core_pattern_pipe_test.c */

#define _GNU_SOURCE
#include <sys/stat.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define BUF_SIZE 1024

int
main(int argc, char *argv[])
{

ssize_t nread, tot;
char buf[BUF_SIZE];
FILE *fp;
char cwd[PATH_MAX];

/* Change our current working directory to that of the
crashing process. */

snprintf(cwd, PATH_MAX, "/proc/%s/cwd", argv[1]);
chdir(cwd);

/* Write output to file "core.info" in that directory. */

fp = fopen("core.info", "w+");
if (fp == NULL)

exit(EXIT_FAILURE);

/* Display command-line arguments given to core_pattern
pipe program. */

fprintf(fp, "argc=%d\n", argc);

Linux man-pages 6.16 2025-09-21 2931

core(5) File Formats Manual core(5)

for (size_t j = 0; j < argc; j++)
fprintf(fp, "argc[%zu]=<%s>\n", j, argv[j]);

/* Count bytes in standard input (the core dump). */

tot = 0;
while ((nread = read(STDIN_FILENO, buf, BUF_SIZE)) > 0)

tot += nread;
fprintf(fp, "Total bytes in core dump: %zd\n", tot);

fclose(fp);
exit(EXIT_SUCCESS);

}

SEE ALSO
bash(1), coredumpctl(1), gdb(1), getrlimit(2), mmap(2), prctl(2), sigaction(2), elf(5),
proc(5), pthreads(7), signal(7), systemd-coredump(8)

Linux man-pages 6.16 2025-09-21 2932

dir_colors(5) File Formats Manual dir_colors(5)

NAME
dir_colors - configuration file for dircolors(1)

DESCRIPTION
The program ls(1) uses the environment variable LS_COLORS to determine the colors
in which the filenames are to be displayed. This environment variable is usually set by a
command like

eval `dircolors some_path/dir_colors`

found in a system default shell initialization file, like /etc/profile or /etc/csh.cshrc. (See
also dircolors(1)Usually, the file used here is /etc/DIR_COLORS and can be overridden
by a .dir_colors file in one’s home directory.

This configuration file consists of several statements, one per line. Anything right of a
hash mark (#) is treated as a comment, if the hash mark is at the beginning of a line or is
preceded by at least one whitespace. Blank lines are ignored.

The global section of the file consists of any statement before the first TERM state-
ment. Any statement in the global section of the file is considered valid for all terminal
types. Following the global section is one or more terminal-specific sections, preceded
by one or more TERM statements which specify the terminal types (as given by the
TERM environment variable) the following declarations apply to. It is always possible
to override a global declaration by a subsequent terminal-specific one.

The following statements are recognized; case is insignificant:

TERM terminal-type
Starts a terminal-specific section and specifies which terminal it applies to. Mul-
tiple TERM statements can be used to create a section which applies for several
terminal types.

COLOR yes|all|no|none|tty
(Slackware only; ignored by GNU dircolors(1)Specifies that colorization should
always be enabled (yes or all), never enabled (no or none), or enabled only if the
output is a terminal (tty). The default is no.

EIGHTBIT yes|no
(Slackware only; ignored by GNU dircolors(1)Specifies that eight-bit
ISO/IEC 8859 characters should be enabled by default. For compatibility rea-
sons, this can also be specified as 1 for yes or 0 for no. The default is no.

OPTIONS options
(Slackware only; ignored by GNU dircolors(1)Adds command-line options to
the default ls command line. The options can be any valid ls command-line op-
tions, and should include the leading minus sign. Note that dircolors does not
verify the validity of these options.

NORMAL color-sequence
Specifies the color used for normal (nonfilename) text.

Synonym: NORM.

Linux man-pages 6.16 2025-10-05 2933

dir_colors(5) File Formats Manual dir_colors(5)

FILE color-sequence
Specifies the color used for a regular file.

DIR color-sequence
Specifies the color used for directories.

LINK color-sequence
Specifies the color used for a symbolic link.

Synonyms: LNK, SYMLINK.

ORPHAN color-sequence
Specifies the color used for an orphaned symbolic link (one which points to a
nonexistent file). If this is unspecified, ls will use the LINK color instead.

MISSING color-sequence
Specifies the color used for a missing file (a nonexistent file which nevertheless
has a symbolic link pointing to it). If this is unspecified, ls will use the FILE
color instead.

FIFO color-sequence
Specifies the color used for a FIFO (named pipe).

Synonym: PIPE.

SOCK color-sequence
Specifies the color used for a socket.

DOOR color-sequence
(Supported since fileutils 4.1) Specifies the color used for a door (Solaris 2.5 and
later).

BLK color-sequence
Specifies the color used for a block device special file.

Synonym: BLOCK.

CHR color-sequence
Specifies the color used for a character device special file.

Synonym: CHAR.

EXEC color-sequence
Specifies the color used for a file with the executable attribute set.

SUID color-sequence
Specifies the color used for a file with the set-user-ID attribute set.

Synonym: SETUID.

SGID color-sequence
Specifies the color used for a file with the set-group-ID attribute set.

Synonym: SETGID.

STICKY color-sequence
Specifies the color used for a directory with the sticky attribute set.

Linux man-pages 6.16 2025-10-05 2934

dir_colors(5) File Formats Manual dir_colors(5)

STICKY_OTHER_WRITABLE color-sequence
Specifies the color used for an other-writable directory with the executable at-
tribute set.

Synonym: OWT.

OTHER_WRITABLE color-sequence
Specifies the color used for an other-writable directory without the executable at-
tribute set.

Synonym: OWR.

LEFTCODE color-sequence
Specifies the left code for non-ISO/IEC 6429 terminals (see below).

Synonym: LEFT.

RIGHTCODE color-sequence
Specifies the right code for non-ISO/IEC 6429 terminals (see below).

Synonym: RIGHT.

ENDCODE color-sequence
Specifies the end code for non-ISO/IEC 6429 terminals (see below).

Synonym: END.

*extension color-sequence
Specifies the color used for any file that ends in extension.

.extension color-sequence
Same as *.extension. Specifies the color used for any file that ends in .extension.
Note that the period is included in the extension, which makes it impossible to
specify an extension not starting with a period, such as ~ for emacs backup files.
This form should be considered obsolete.

ISO/IEC 6429 (ANSI) color sequences
Most color-capable ASCII terminals today use ISO/IEC 6429 (ANSI) color sequences,
and many common terminals without color capability, including xterm and the widely
used and cloned DEC VT100, will recognize ISO/IEC 6429 color codes and harmlessly
eliminate them from the output or emulate them. ls uses ISO/IEC 6429 codes by de-
fault, assuming colorization is enabled.

ISO/IEC 6429 color sequences are composed of sequences of numbers separated by
semicolons. The most common codes are:

0 to restore default color
1 for brighter colors
4 for underlined text
5 for flashing text
30 for black foreground
31 for red foreground
32 for green foreground
33 for yellow (or brown) foreground
34 for blue foreground

Linux man-pages 6.16 2025-10-05 2935

dir_colors(5) File Formats Manual dir_colors(5)

35 for purple foreground
36 for cyan foreground
37 for white (or gray) foreground
40 for black background
41 for red background
42 for green background
43 for yellow (or brown) background
44 for blue background
45 for purple background
46 for cyan background
47 for white (or gray) background

Not all commands will work on all systems or display devices.

ls uses the following defaults:
NORMAL 0 Normal (nonfilename) text
FILE 0 Regular file
DIR 32 Directory
LINK 36 Symbolic link
ORPHAN undefined Orphaned symbolic link
MISSING undefined Missing file
FIFO 31 Named pipe (FIFO)
SOCK 33 Socket
BLK 44;37 Block device
CHR 44;37 Character device
EXEC 35 Executable file

A few terminal programs do not recognize the default properly. If all text gets colorized
after you do a directory listing, change the NORMAL and FILE codes to the numerical
codes for your normal foreground and background colors.

Other terminal types (advanced configuration)
If you have a color-capable (or otherwise highlighting) terminal (or printer!) which uses
a different set of codes, you can still generate a suitable setup. To do so, you will have
to use the LEFTCODE, RIGHTCODE, and ENDCODE definitions.

When writing out a filename, ls generates the following output sequence: LEFTCODE
typecode RIGHTCODE filename ENDCODE, where the typecode is the color se-
quence that depends on the type or name of file. If the ENDCODE is undefined, the se-
quence LEFTCODE NORMAL RIGHTCODE will be used instead. The purpose of
the left- and rightcodes is merely to reduce the amount of typing necessary (and to hide
ugly escape codes away from the user). If they are not appropriate for your terminal,
you can eliminate them by specifying the respective keyword on a line by itself.

NOTE: If the ENDCODE is defined in the global section of the setup file, it cannot be
undefined in a terminal-specific section of the file. This means any NORMAL defini-
tion will have no effect. A different ENDCODE can, however, be specified, which
would have the same effect.

Linux man-pages 6.16 2025-10-05 2936

dir_colors(5) File Formats Manual dir_colors(5)

Escape sequences
To specify control- or blank characters in the color sequences or filename extensions, ei-
ther C-style \-escaped notation or stty-style ^-notation can be used. The C-style nota-
tion includes the following characters:

\a Bell (ASCII 7)
\b Backspace (ASCII 8)
\e Escape (ASCII 27)
\f Form feed (ASCII 12)
\n Newline (ASCII 10)
\r Carriage Return (ASCII 13)
\t Tab (ASCII 9)
\v Vertical Tab (ASCII 11)
\? Delete (ASCII 127)
\nnn Any character (octal notation)
\xnnn Any character (hexadecimal notation)
_ Space
\\ Backslash (\)
\^ Caret (^)
\# Hash mark (#)

Note that escapes are necessary to enter a space, backslash, caret, or any control charac-
ter anywhere in the string, as well as a hash mark as the first character.

FILES
/etc/DIR_COLORS

System-wide configuration file.

~/.dir_colors
Per-user configuration file.

This page describes the dir_colors file format as used in the fileutils-4.1 package; other
versions may differ slightly.

NOTES
The default LEFTCODE and RIGHTCODE definitions, which are used by
ISO/IEC 6429 terminals are:

LEFTCODE \e[
RIGHTCODE m

The default ENDCODE is undefined.

SEE ALSO
dircolors(1), ls(1), stty(1), xterm(1)

Linux man-pages 6.16 2025-10-05 2937

ELF(5) File Formats Manual ELF(5)

NAME
elf - format of Executable and Linking Format (ELF) files

SYNOPSIS
#include <elf.h>

DESCRIPTION
The header file <elf.h> defines the format of ELF executable binary files. Amongst
these files are normal executable files, relocatable object files, core files, and shared ob-
jects.

An executable file using the ELF file format consists of an ELF header, followed by a
program header table or a section header table, or both. The ELF header is always at
offset zero of the file. The program header table and the section header table’s offset in
the file are defined in the ELF header. The two tables describe the rest of the particulari-
ties of the file.

This header file describes the above mentioned headers as C structures and also includes
structures for dynamic sections, relocation sections and symbol tables.

Basic types
The following types are used for N-bit architectures (N=32,64, ElfN stands for Elf32 or
Elf64, uintN_t stands for uint32_t or uint64_t):

ElfN_Addr Unsigned program address, uintN_t
ElfN_Off Unsigned file offset, uintN_t
ElfN_Section Unsigned section index, uint16_t
ElfN_Versym Unsigned version symbol information, uint16_t
Elf_Byte unsigned char
ElfN_Half uint16_t
ElfN_Sword int32_t
ElfN_Word uint32_t
ElfN_Sxword int64_t
ElfN_Xword uint64_t

(Note: the *BSD terminology is a bit different. There, Elf64_Half is twice as large as
Elf32_Half , and Elf64Quarter is used for uint16_t. In order to avoid confusion these
types are replaced by explicit ones in the below.)

All data structures that the file format defines follow the "natural" size and alignment
guidelines for the relevant class. If necessary, data structures contain explicit padding to
ensure 4-byte alignment for 4-byte objects, to force structure sizes to a multiple of 4,
and so on.

ELF header (Ehdr)
The ELF header is described by the type Elf32_Ehdr or Elf64_Ehdr:

#define EI_NIDENT 16

typedef struct {
unsigned char e_ident[EI_NIDENT];
uint16_t e_type;
uint16_t e_machine;

Linux man-pages 6.16 2025-09-21 2938

ELF(5) File Formats Manual ELF(5)

uint32_t e_version;
ElfN_Addr e_entry;
ElfN_Off e_phoff;
ElfN_Off e_shoff;
uint32_t e_flags;
uint16_t e_ehsize;
uint16_t e_phentsize;
uint16_t e_phnum;
uint16_t e_shentsize;
uint16_t e_shnum;
uint16_t e_shstrndx;

} ElfN_Ehdr;

The fields have the following meanings:

e_ident
This array of bytes specifies how to interpret the file, independent of the proces-
sor or the file’s remaining contents. Within this array everything is named by
macros, which start with the prefix EI_ and may contain values which start with
the prefix ELF. The following macros are defined:

EI_MAG0
The first byte of the magic number. It must be filled with ELFMAG0.
(0: 0x7f)

EI_MAG1
The second byte of the magic number. It must be filled with ELFMAG1.
(1: 'E')

EI_MAG2
The third byte of the magic number. It must be filled with ELFMAG2.
(2: 'L')

EI_MAG3
The fourth byte of the magic number. It must be filled with ELFMAG3.
(3: 'F')

EI_CLASS
The fifth byte identifies the architecture for this binary:

ELFCLASSNONE
This class is invalid.

ELFCLASS32
This defines the 32-bit architecture. It supports ma-
chines with files and virtual address spaces up to 4 Gi-
gabytes.

ELFCLASS64
This defines the 64-bit architecture.

EI_DATA
The sixth byte specifies the data encoding of the processor-specific data
in the file. Currently, these encodings are supported:

Linux man-pages 6.16 2025-09-21 2939

ELF(5) File Formats Manual ELF(5)

ELFDATANONE
Unknown data format.

ELFDATA2LSB
Two’s complement, little-endian.

ELFDATA2MSB
Two’s complement, big-endian.

EI_VERSION
The seventh byte is the version number of the ELF specification:

EV_NONE Invalid version.
EV_CURRENT

Current version.

EI_OSABI
The eighth byte identifies the operating system and ABI to which the ob-
ject is targeted. Some fields in other ELF structures have flags and values
that have platform-specific meanings; the interpretation of those fields is
determined by the value of this byte. For example:

ELFOSABI_NONE Same as ELFOSABI_SYSV
ELFOSABI_SYSV UNIX System V ABI
ELFOSABI_HPUX HP-UX ABI
ELFOSABI_NETBSD NetBSD ABI
ELFOSABI_LINUX Linux ABI
ELFOSABI_SOLARIS

Solaris ABI
ELFOSABI_IRIX IRIX ABI
ELFOSABI_FREEBSD

FreeBSD ABI
ELFOSABI_TRU64 TRU64 UNIX ABI
ELFOSABI_ARM ARM architecture ABI
ELFOSABI_STANDALONE

Stand-alone (embedded) ABI

EI_ABIVERSION
The ninth byte identifies the version of the ABI to which the object is tar-
geted. This field is used to distinguish among incompatible versions of
an ABI. The interpretation of this version number is dependent on the
ABI identified by the EI_OSABI field. Applications conforming to this
specification use the value 0.

EI_PAD
Start of padding. These bytes are reserved and set to zero. Programs
which read them should ignore them. The value for EI_PAD will change
in the future if currently unused bytes are given meanings.

EI_NIDENT
The size of the e_ident array.

Linux man-pages 6.16 2025-09-21 2940

ELF(5) File Formats Manual ELF(5)

e_type
This member of the structure identifies the object file type:

ET_NONE An unknown type.
ET_REL A relocatable file.
ET_EXEC An executable file.
ET_DYN A shared object.
ET_CORE A core file.

e_machine
This member specifies the required architecture for an individual file. For exam-
ple:

EM_NONE An unknown machine
EM_M32 AT&T WE 32100
EM_SPARC Sun Microsystems SPARC
EM_386 Intel 80386
EM_68K Motorola 68000
EM_88K Motorola 88000
EM_860 Intel 80860
EM_MIPS MIPS RS3000 (big-endian only)
EM_PARISC HP/PA
EM_SPARC32PLUS

SPARC with enhanced instruction set
EM_PPC PowerPC
EM_PPC64 PowerPC 64-bit
EM_S390 IBM S/390
EM_ARM Advanced RISC Machines
EM_SH Renesas SuperH
EM_SPARCV9 SPARC v9 64-bit
EM_IA_64 Intel Itanium
EM_X86_64 AMD x86-64
EM_VAX DEC Vax

e_version
This member identifies the file version:

EV_NONE Invalid version
EV_CURRENT Current version

e_entry
This member gives the virtual address to which the system first transfers control,
thus starting the process. If the file has no associated entry point, this member
holds zero.

e_phoff
This member holds the program header table’s file offset in bytes. If the file has
no program header table, this member holds zero.

e_shoff
This member holds the section header table’s file offset in bytes. If the file has
no section header table, this member holds zero.

Linux man-pages 6.16 2025-09-21 2941

ELF(5) File Formats Manual ELF(5)

e_flags
This member holds processor-specific flags associated with the file. Flag names
take the form EF_‘machine_flag’. Currently, no flags have been defined.

e_ehsize
This member holds the ELF header’s size in bytes.

e_phentsize
This member holds the size in bytes of one entry in the file’s program header ta-
ble; all entries are the same size.

e_phnum
This member holds the number of entries in the program header table. Thus the
product of e_phentsize and e_phnum gives the table’s size in bytes. If a file has
no program header, e_phnum holds the value zero.

If the number of entries in the program header table is larger than or equal to
PN_XNUM (0xffff), this member holds PN_XNUM (0xffff) and the real num-
ber of entries in the program header table is held in the sh_info member of the
initial entry in section header table. Otherwise, the sh_info member of the initial
entry contains the value zero.

PN_XNUM
This is defined as 0xffff, the largest number e_phnum can have, specify-
ing where the actual number of program headers is assigned.

e_shentsize
This member holds a sections header’s size in bytes. A section header is one en-
try in the section header table; all entries are the same size.

e_shnum
This member holds the number of entries in the section header table. Thus the
product of e_shentsize and e_shnum gives the section header table’s size in
bytes. If a file has no section header table, e_shnum holds the value of zero.

If the number of entries in the section header table is larger than or equal to
SHN_LORESERVE (0xff00), e_shnum holds the value zero and the real num-
ber of entries in the section header table is held in the sh_size member of the ini-
tial entry in section header table. Otherwise, the sh_size member of the initial
entry in the section header table holds the value zero.

e_shstrndx
This member holds the section header table index of the entry associated with
the section name string table. If the file has no section name string table, this
member holds the value SHN_UNDEF.

If the index of section name string table section is larger than or equal to
SHN_LORESERVE (0xff00), this member holds SHN_XINDEX (0xffff) and
the real index of the section name string table section is held in the sh_link mem-
ber of the initial entry in section header table. Otherwise, the sh_link member of
the initial entry in section header table contains the value zero.

Linux man-pages 6.16 2025-09-21 2942

ELF(5) File Formats Manual ELF(5)

Program header (Phdr)
An executable or shared object file’s program header table is an array of structures, each
describing a segment or other information the system needs to prepare the program for
execution. An object file segment contains one or more sections. Program headers are
meaningful only for executable and shared object files. A file specifies its own program
header size with the ELF header’s e_phentsize and e_phnum members. The ELF pro-
gram header is described by the type Elf32_Phdr or Elf64_Phdr depending on the ar-
chitecture:

typedef struct {
uint32_t p_type;
Elf32_Off p_offset;
Elf32_Addr p_vaddr;
Elf32_Addr p_paddr;
uint32_t p_filesz;
uint32_t p_memsz;
uint32_t p_flags;
uint32_t p_align;

} Elf32_Phdr;

typedef struct {
uint32_t p_type;
uint32_t p_flags;
Elf64_Off p_offset;
Elf64_Addr p_vaddr;
Elf64_Addr p_paddr;
uint64_t p_filesz;
uint64_t p_memsz;
uint64_t p_align;

} Elf64_Phdr;

The main difference between the 32-bit and the 64-bit program header lies in the loca-
tion of the p_flags member in the total struct.

p_type
This member of the structure indicates what kind of segment this array element
describes or how to interpret the array element’s information.

PT_NULL
The array element is unused and the other members’ values are un-
defined. This lets the program header have ignored entries.

PT_LOAD
The array element specifies a loadable segment, described by
p_filesz and p_memsz. The bytes from the file are mapped to the
beginning of the memory segment. If the segment’s memory size
p_memsz is larger than the file size p_filesz, the "extra" bytes are
defined to hold the value 0 and to follow the segment’s initialized
area. The file size may not be larger than the memory size. Load-
able segment entries in the program header table appear in ascend-
ing order, sorted on the p_vaddr member.

Linux man-pages 6.16 2025-09-21 2943

ELF(5) File Formats Manual ELF(5)

PT_DYNAMIC
The array element specifies dynamic linking information.

PT_INTERP
The array element specifies the location and size of a null-termi-
nated pathname to invoke as an interpreter. This segment type is
meaningful only for executable files (though it may occur for shared
objects). However it may not occur more than once in a file. If it is
present, it must precede any loadable segment entry.

PT_NOTE
The array element specifies the location of notes (ElfN_Nhdr).

PT_SHLIB
This segment type is reserved but has unspecified semantics. Pro-
grams that contain an array element of this type do not conform to
the ABI.

PT_PHDR
The array element, if present, specifies the location and size of the
program header table itself, both in the file and in the memory im-
age of the program. This segment type may not occur more than
once in a file. Moreover, it may occur only if the program header ta-
ble is part of the memory image of the program. If it is present, it
must precede any loadable segment entry.

PT_LOPROC
PT_HIPROC

Values in the inclusive range [PT_LOPROC, PT_HIPROC] are re-
served for processor-specific semantics.

PT_GNU_STACK
GNU extension which is used by the Linux kernel to control the
state of the stack via the flags set in the p_flags member.

p_offset
This member holds the offset from the beginning of the file at which the first
byte of the segment resides.

p_vaddr
This member holds the virtual address at which the first byte of the segment re-
sides in memory.

p_paddr
On systems for which physical addressing is relevant, this member is reserved
for the segment’s physical address. Under BSD this member is not used and
must be zero.

p_filesz
This member holds the number of bytes in the file image of the segment. It may
be zero.

Linux man-pages 6.16 2025-09-21 2944

ELF(5) File Formats Manual ELF(5)

p_memsz
This member holds the number of bytes in the memory image of the segment. It
may be zero.

p_flags
This member holds a bit mask of flags relevant to the segment:

PF_X
An executable segment.

PF_W
A writable segment.

PF_R
A readable segment.

A text segment commonly has the flags PF_X and PF_R. A data segment com-
monly has PF_W and PF_R.

p_align
This member holds the value to which the segments are aligned in memory and
in the file. Loadable process segments must have congruent values for p_vaddr
and p_offset, modulo the page size. Values of zero and one mean no alignment
is required. Otherwise, p_align should be a positive, integral power of two, and
p_vaddr should equal p_offset, modulo p_align.

Section header (Shdr)
A file’s section header table lets one locate all the file’s sections. The section header ta-
ble is an array of Elf32_Shdr or Elf64_Shdr structures. The ELF header’s e_shoff
member gives the byte offset from the beginning of the file to the section header table.
e_shnum holds the number of entries the section header table contains. e_shentsize
holds the size in bytes of each entry.

A section header table index is a subscript into this array. Some section header table in-
dices are reserved: the initial entry and the indices between SHN_LORESERVE and
SHN_HIRESERVE. The initial entry is used in ELF extensions for e_phnum,
e_shnum, and e_shstrndx; in other cases, each field in the initial entry is set to zero. An
object file does not have sections for these special indices:

SHN_UNDEF
This value marks an undefined, missing, irrelevant, or otherwise meaningless
section reference.

SHN_LORESERVE
This value specifies the lower bound of the range of reserved indices.

SHN_LOPROC
SHN_HIPROC

Values greater in the inclusive range [SHN_LOPROC, SHN_HIPROC] are re-
served for processor-specific semantics.

SHN_ABS
This value specifies the absolute value for the corresponding reference. For ex-
ample, a symbol defined relative to section number SHN_ABS has an absolute
value and is not affected by relocation.

Linux man-pages 6.16 2025-09-21 2945

ELF(5) File Formats Manual ELF(5)

SHN_COMMON
Symbols defined relative to this section are common symbols, such as FOR-
TRAN COMMON or unallocated C external variables.

SHN_HIRESERVE
This value specifies the upper bound of the range of reserved indices. The sys-
tem reserves indices between SHN_LORESERVE and SHN_HIRESERVE,
inclusive. The section header table does not contain entries for the reserved in-
dices.

The section header has the following structure:

typedef struct {
uint32_t sh_name;
uint32_t sh_type;
uint32_t sh_flags;
Elf32_Addr sh_addr;
Elf32_Off sh_offset;
uint32_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint32_t sh_addralign;
uint32_t sh_entsize;

} Elf32_Shdr;

typedef struct {
uint32_t sh_name;
uint32_t sh_type;
uint64_t sh_flags;
Elf64_Addr sh_addr;
Elf64_Off sh_offset;
uint64_t sh_size;
uint32_t sh_link;
uint32_t sh_info;
uint64_t sh_addralign;
uint64_t sh_entsize;

} Elf64_Shdr;

No real differences exist between the 32-bit and 64-bit section headers.

sh_name
This member specifies the name of the section. Its value is an index into the sec-
tion header string table section, giving the location of a null-terminated string.

sh_type
This member categorizes the section’s contents and semantics.

SHT_NULL
This value marks the section header as inactive. It does not have an asso-
ciated section. Other members of the section header have undefined val-
ues.

Linux man-pages 6.16 2025-09-21 2946

ELF(5) File Formats Manual ELF(5)

SHT_PROGBITS
This section holds information defined by the program, whose format and
meaning are determined solely by the program.

SHT_SYMTAB
This section holds a symbol table. Typically, SHT_SYMTAB provides
symbols for link editing, though it may also be used for dynamic linking.
As a complete symbol table, it may contain many symbols unnecessary
for dynamic linking. An object file can also contain a SHT_DYNSYM
section. The index of the associated string table section can be found in
the sh_link member.

SHT_STRTAB
This section holds a string table. An object file may have multiple string
table sections.

SHT_RELA
This section holds relocation entries with explicit addends, such as type
Elf32_Rela for the 32-bit class of object files. An object may have multi-
ple relocation sections.

SHT_HASH
This section holds a symbol hash table. An object participating in dy-
namic linking must contain a symbol hash table. An object file may have
only one hash table.

SHT_DYNAMIC
This section holds information for dynamic linking. An object file may
have only one dynamic section.

SHT_NOTE
This section holds notes (ElfN_Nhdr).

SHT_NOBITS
A section of this type occupies no space in the file but otherwise resem-
bles SHT_PROGBITS. Although this section contains no bytes, the
sh_offset member contains the conceptual file offset.

SHT_REL
This section holds relocation offsets without explicit addends, such as
type Elf32_Rel for the 32-bit class of object files. An object file may
have multiple relocation sections.

SHT_SHLIB
This section is reserved but has unspecified semantics.

SHT_DYNSYM
This section holds a minimal set of dynamic linking symbols. An object
file can also contain a SHT_SYMTAB section.

SHT_LOPROC
SHT_HIPROC

Values in the inclusive range [SHT_LOPROC, SHT_HIPROC] are re-
served for processor-specific semantics.

Linux man-pages 6.16 2025-09-21 2947

ELF(5) File Formats Manual ELF(5)

SHT_LOUSER
This value specifies the lower bound of the range of indices reserved for
application programs.

SHT_HIUSER
This value specifies the upper bound of the range of indices reserved for
application programs. Section types between SHT_LOUSER and
SHT_HIUSER may be used by the application, without conflicting with
current or future system-defined section types.

sh_flags
Sections support one-bit flags that describe miscellaneous attributes. If a flag bit
is set in sh_flags, the attribute is "on" for the section. Otherwise, the attribute is
"off" or does not apply. Undefined attributes are set to zero.

SHF_WRITE
This section contains data that should be writable during process execu-
tion.

SHF_ALLOC
This section occupies memory during process execution. Some control
sections do not reside in the memory image of an object file. This at-
tribute is off for those sections.

SHF_EXECINSTR
This section contains executable machine instructions.

SHF_MASKPROC
All bits included in this mask are reserved for processor-specific seman-
tics.

sh_addr
If this section appears in the memory image of a process, this member holds the
address at which the section’s first byte should reside. Otherwise, the member
contains zero.

sh_offset
This member’s value holds the byte offset from the beginning of the file to the
first byte in the section. One section type, SHT_NOBITS, occupies no space in
the file, and its sh_offset member locates the conceptual placement in the file.

sh_size
This member holds the section’s size in bytes. Unless the section type is
SHT_NOBITS, the section occupies sh_size bytes in the file. A section of type
SHT_NOBITS may have a nonzero size, but it occupies no space in the file.

sh_link
This member holds a section header table index link, whose interpretation de-
pends on the section type.

sh_info
This member holds extra information, whose interpretation depends on the sec-
tion type.

Linux man-pages 6.16 2025-09-21 2948

ELF(5) File Formats Manual ELF(5)

sh_addralign
Some sections have address alignment constraints. If a section holds a double-
word, the system must ensure doubleword alignment for the entire section. That
is, the value of sh_addr must be congruent to zero, modulo the value of sh_ad-
dralign. Only zero and positive integral powers of two are allowed. The value 0
or 1 means that the section has no alignment constraints.

sh_entsize
Some sections hold a table of fixed-sized entries, such as a symbol table. For
such a section, this member gives the size in bytes for each entry. This member
contains zero if the section does not hold a table of fixed-size entries.

Various sections hold program and control information:

.bss This section holds uninitialized data that contributes to the program’s memory
image. By definition, the system initializes the data with zeros when the pro-
gram begins to run. This section is of type SHT_NOBITS. The attribute types
are SHF_ALLOC and SHF_WRITE.

.comment
This section holds version control information. This section is of type
SHT_PROGBITS. No attribute types are used.

.ctors
This section holds initialized pointers to the C++ constructor functions. This
section is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and
SHF_WRITE.

.data This section holds initialized data that contribute to the program’s memory im-
age. This section is of type SHT_PROGBITS. The attribute types are
SHF_ALLOC and SHF_WRITE.

.data1
This section holds initialized data that contribute to the program’s memory im-
age. This section is of type SHT_PROGBITS. The attribute types are
SHF_ALLOC and SHF_WRITE.

.debug
This section holds information for symbolic debugging. The contents are un-
specified. This section is of type SHT_PROGBITS. No attribute types are
used.

.dtors
This section holds initialized pointers to the C++ destructor functions. This sec-
tion is of type SHT_PROGBITS. The attribute types are SHF_ALLOC and
SHF_WRITE.

.dynamic
This section holds dynamic linking information. The section’s attributes will in-
clude the SHF_ALLOC bit. Whether the SHF_WRITE bit is set is processor-
specific. This section is of type SHT_DYNAMIC. See the attributes above.

Linux man-pages 6.16 2025-09-21 2949

ELF(5) File Formats Manual ELF(5)

.dynstr
This section holds strings needed for dynamic linking, most commonly the
strings that represent the names associated with symbol table entries. This sec-
tion is of type SHT_STRTAB. The attribute type used is SHF_ALLOC.

.dynsym
This section holds the dynamic linking symbol table. This section is of type
SHT_DYNSYM. The attribute used is SHF_ALLOC.

.fini This section holds executable instructions that contribute to the process termina-
tion code. When a program exits normally the system arranges to execute the
code in this section. This section is of type SHT_PROGBITS. The attributes
used are SHF_ALLOC and SHF_EXECINSTR.

.gnu.version
This section holds the version symbol table, an array of ElfN_Half elements.
This section is of type SHT_GNU_versym. The attribute type used is
SHF_ALLOC.

.gnu.version_d
This section holds the version symbol definitions, a table of ElfN_Verdef struc-
tures. This section is of type SHT_GNU_verdef. The attribute type used is
SHF_ALLOC.

.gnu.version_r
This section holds the version symbol needed elements, a table of ElfN_Verneed
structures. This section is of type SHT_GNU_versym. The attribute type used
is SHF_ALLOC.

.got This section holds the global offset table. This section is of type SHT_PROG-
BITS. The attributes are processor-specific.

.hash
This section holds a symbol hash table. This section is of type SHT_HASH.
The attribute used is SHF_ALLOC.

.init This section holds executable instructions that contribute to the process initial-
ization code. When a program starts to run the system arranges to execute the
code in this section before calling the main program entry point. This section is
of type SHT_PROGBITS. The attributes used are SHF_ALLOC and
SHF_EXECINSTR.

.interp
This section holds the pathname of a program interpreter. If the file has a load-
able segment that includes the section, the section’s attributes will include the
SHF_ALLOC bit. Otherwise, that bit will be off. This section is of type
SHT_PROGBITS.

.line This section holds line number information for symbolic debugging, which de-
scribes the correspondence between the program source and the machine code.
The contents are unspecified. This section is of type SHT_PROGBITS. No at-
tribute types are used.

Linux man-pages 6.16 2025-09-21 2950

ELF(5) File Formats Manual ELF(5)

.note This section holds various notes. This section is of type SHT_NOTE. No at-
tribute types are used.

.note.ABI-tag
This section is used to declare the expected run-time ABI of the ELF image. It
may include the operating system name and its run-time versions. This section
is of type SHT_NOTE. The only attribute used is SHF_ALLOC.

.note.gnu.build-id
This section is used to hold an ID that uniquely identifies the contents of the ELF
image. Different files with the same build ID should contain the same exe-
cutable content. See the --build-id option to the GNU linker (ld(1)) for more
details. This section is of type SHT_NOTE. The only attribute used is
SHF_ALLOC.

.note.GNU-stack
This section is used in Linux object files for declaring stack attributes. This sec-
tion is of type SHT_PROGBITS. The only attribute used is SHF_EXECIN-
STR. This indicates to the GNU linker that the object file requires an executable
stack.

.note.openbsd.ident
OpenBSD native executables usually contain this section to identify themselves
so the kernel can bypass any compatibility ELF binary emulation tests when
loading the file.

.plt This section holds the procedure linkage table. This section is of type
SHT_PROGBITS. The attributes are processor-specific.

.relNAME
This section holds relocation information as described below. If the file has a
loadable segment that includes relocation, the section’s attributes will include the
SHF_ALLOC bit. Otherwise, the bit will be off. By convention, "NAME" is
supplied by the section to which the relocations apply. Thus a relocation section
for .text normally would have the name .rel.text. This section is of type
SHT_REL.

.relaNAME
This section holds relocation information as described below. If the file has a
loadable segment that includes relocation, the section’s attributes will include the
SHF_ALLOC bit. Otherwise, the bit will be off. By convention, "NAME" is
supplied by the section to which the relocations apply. Thus a relocation section
for .text normally would have the name .rela.text. This section is of type
SHT_RELA.

.rodata
This section holds read-only data that typically contributes to a nonwritable seg-
ment in the process image. This section is of type SHT_PROGBITS. The at-
tribute used is SHF_ALLOC.

Linux man-pages 6.16 2025-09-21 2951

ELF(5) File Formats Manual ELF(5)

.rodata1
This section holds read-only data that typically contributes to a nonwritable seg-
ment in the process image. This section is of type SHT_PROGBITS. The at-
tribute used is SHF_ALLOC.

.shstrtab
This section holds section names. This section is of type SHT_STRTAB. No
attribute types are used.

.strtab
This section holds strings, most commonly the strings that represent the names
associated with symbol table entries. If the file has a loadable segment that in-
cludes the symbol string table, the section’s attributes will include the SHF_AL-
LOC bit. Otherwise, the bit will be off. This section is of type SHT_STRTAB.

.symtab
This section holds a symbol table. If the file has a loadable segment that in-
cludes the symbol table, the section’s attributes will include the SHF_ALLOC
bit. Otherwise, the bit will be off. This section is of type SHT_SYMTAB.

.text This section holds the "text", or executable instructions, of a program. This sec-
tion is of type SHT_PROGBITS. The attributes used are SHF_ALLOC and
SHF_EXECINSTR.

String and symbol tables
String table sections hold null-terminated character sequences, commonly called strings.
The object file uses these strings to represent symbol and section names. One references
a string as an index into the string table section. The first byte, which is index zero, is
defined to hold a null byte ('\0'). Similarly, a string table’s last byte is defined to hold a
null byte, ensuring null termination for all strings.

An object file’s symbol table holds information needed to locate and relocate a pro-
gram’s symbolic definitions and references. A symbol table index is a subscript into this
array.

typedef struct {
uint32_t st_name;
Elf32_Addr st_value;
uint32_t st_size;
unsigned char st_info;
unsigned char st_other;
uint16_t st_shndx;

} Elf32_Sym;

typedef struct {
uint32_t st_name;
unsigned char st_info;
unsigned char st_other;
uint16_t st_shndx;
Elf64_Addr st_value;
uint64_t st_size;

} Elf64_Sym;

Linux man-pages 6.16 2025-09-21 2952

ELF(5) File Formats Manual ELF(5)

The 32-bit and 64-bit versions have the same members, just in a different order.

st_name
This member holds an index into the object file’s symbol string table, which
holds character representations of the symbol names. If the value is nonzero, it
represents a string table index that gives the symbol name. Otherwise, the sym-
bol has no name.

st_value
This member gives the value of the associated symbol.

st_size
Many symbols have associated sizes. This member holds zero if the symbol has
no size or an unknown size.

st_info
This member specifies the symbol’s type and binding attributes:

STT_NOTYPE
The symbol’s type is not defined.

STT_OBJECT
The symbol is associated with a data object.

STT_FUNC
The symbol is associated with a function or other executable code.

STT_SECTION
The symbol is associated with a section. Symbol table entries of this
type exist primarily for relocation and normally have STB_LOCAL
bindings.

STT_FILE
By convention, the symbol’s name gives the name of the source file asso-
ciated with the object file. A file symbol has STB_LOCAL bindings, its
section index is SHN_ABS, and it precedes the other STB_LOCAL
symbols of the file, if it is present.

STT_LOPROC
STT_HIPROC

Values in the inclusive range [STT_LOPROC, STT_HIPROC] are re-
served for processor-specific semantics.

STB_LOCAL
Local symbols are not visible outside the object file containing their defi-
nition. Local symbols of the same name may exist in multiple files with-
out interfering with each other.

STB_GLOBAL
Global symbols are visible to all object files being combined. One file’s
definition of a global symbol will satisfy another file’s undefined refer-
ence to the same symbol.

Linux man-pages 6.16 2025-09-21 2953

ELF(5) File Formats Manual ELF(5)

STB_WEAK
Weak symbols resemble global symbols, but their definitions have lower
precedence.

STB_LOPROC
STB_HIPROC

Values in the inclusive range [STB_LOPROC, STB_HIPROC] are re-
served for processor-specific semantics.

There are macros for packing and unpacking the binding and type fields:

ELF32_ST_BIND(info)
ELF64_ST_BIND(info)

Extract a binding from an st_info value.

ELF32_ST_TYPE(info)
ELF64_ST_TYPE(info)

Extract a type from an st_info value.

ELF32_ST_INFO(bind , type)
ELF64_ST_INFO(bind , type)

Convert a binding and a type into an st_info value.

st_other
This member defines the symbol visibility.

STV_DEFAULT
Default symbol visibility rules. Global and weak symbols are available
to other modules; references in the local module can be interposed by de-
finitions in other modules.

STV_INTERNAL
Processor-specific hidden class.

STV_HIDDEN
Symbol is unavailable to other modules; references in the local module
always resolve to the local symbol (i.e., the symbol can’t be interposed
by definitions in other modules).

STV_PROTECTED
Symbol is available to other modules, but references in the local module
always resolve to the local symbol.

There are macros for extracting the visibility type:

ELF32_ST_VISIBILITY (other) or ELF64_ST_VISIBILITY (other)

st_shndx
Every symbol table entry is "defined" in relation to some section. This member
holds the relevant section header table index.

Relocation entries (Rel & Rela)
Relocation is the process of connecting symbolic references with symbolic definitions.
Relocatable files must have information that describes how to modify their section con-
tents, thus allowing executable and shared object files to hold the right information for a
process’s program image. Relocation entries are these data.

Linux man-pages 6.16 2025-09-21 2954

ELF(5) File Formats Manual ELF(5)

Relocation structures that do not need an addend:

typedef struct {
Elf32_Addr r_offset;
uint32_t r_info;

} Elf32_Rel;

typedef struct {
Elf64_Addr r_offset;
uint64_t r_info;

} Elf64_Rel;

Relocation structures that need an addend:

typedef struct {
Elf32_Addr r_offset;
uint32_t r_info;
int32_t r_addend;

} Elf32_Rela;

typedef struct {
Elf64_Addr r_offset;
uint64_t r_info;
int64_t r_addend;

} Elf64_Rela;

r_offset
This member gives the location at which to apply the relocation action. For a re-
locatable file, the value is the byte offset from the beginning of the section to the
storage unit affected by the relocation. For an executable file or shared object,
the value is the virtual address of the storage unit affected by the relocation.

r_info
This member gives both the symbol table index with respect to which the reloca-
tion must be made and the type of relocation to apply. Relocation types are
processor-specific. When the text refers to a relocation entry’s relocation type or
symbol table index, it means the result of applying ELF[32|64]_R_TYPE or
ELF[32|64]_R_SYM, respectively, to the entry’s r_info member.

r_addend
This member specifies a constant addend used to compute the value to be stored
into the relocatable field.

Dynamic tags (Dyn)
The .dynamic section contains a series of structures that hold relevant dynamic linking
information. The d_tag member controls the interpretation of d_un.

typedef struct {
Elf32_Sword d_tag;
union {

Elf32_Word d_val;
Elf32_Addr d_ptr;

} d_un;

Linux man-pages 6.16 2025-09-21 2955

ELF(5) File Formats Manual ELF(5)

} Elf32_Dyn;
extern Elf32_Dyn _DYNAMIC[];

typedef struct {
Elf64_Sxword d_tag;
union {

Elf64_Xword d_val;
Elf64_Addr d_ptr;

} d_un;
} Elf64_Dyn;
extern Elf64_Dyn _DYNAMIC[];

d_tag
This member may have any of the following values:

DT_NULL Marks end of dynamic section

DT_NEEDED
String table offset to name of a needed library

DT_PLTRELSZ
Size in bytes of PLT relocation entries

DT_PLTGOT
Address of PLT and/or GOT

DT_HASH Address of symbol hash table

DT_STRTAB
Address of string table

DT_SYMTAB
Address of symbol table

DT_RELA Address of Rela relocation table

DT_RELASZ
Size in bytes of the Rela relocation table

DT_RELAENT
Size in bytes of a Rela relocation table entry

DT_STRSZ Size in bytes of string table

DT_SYMENT
Size in bytes of a symbol table entry

DT_INIT Address of the initialization function

DT_FINI Address of the termination function

DT_SONAME
String table offset to name of shared object

DT_RPATH
String table offset to search path for direct and indirect library de-
pendencies

Linux man-pages 6.16 2025-09-21 2956

ELF(5) File Formats Manual ELF(5)

DT_SYMBOLIC
Alert linker to search this shared object before the executable for
symbols

DT_REL Address of Rel relocation table

DT_RELSZ
Size in bytes of Rel relocation table

DT_RELENT
Size in bytes of a Rel table entry

DT_PLTREL
Type of relocation entry to which the PLT refers (Rela or Rel)

DT_DEBUG
Undefined use for debugging

DT_TEXTREL
Absence of this entry indicates that no relocation entries should
apply to a nonwritable segment

DT_JMPREL
Address of relocation entries associated solely with the PLT

DT_BIND_NOW
Instruct dynamic linker to process all relocations before transfer-
ring control to the executable

DT_RUNPATH
String table offset to search path for direct library dependencies

DT_LOPROC
DT_HIPROC

Values in the inclusive range [DT_LOPROC, DT_HIPROC] are
reserved for processor-specific semantics

d_val
This member represents integer values with various interpretations.

d_ptr
This member represents program virtual addresses. When interpreting these ad-
dresses, the actual address should be computed based on the original file value
and memory base address. Files do not contain relocation entries to fixup these
addresses.

_DYNAMIC
Array containing all the dynamic structures in the .dynamic section. This is au-
tomatically populated by the linker.

Notes (Nhdr)
ELF notes allow for appending arbitrary information for the system to use. They are
largely used by core files (e_type of ET_CORE), but many projects define their own set
of extensions. For example, the GNU tool chain uses ELF notes to pass information
from the linker to the C library.

Linux man-pages 6.16 2025-09-21 2957

ELF(5) File Formats Manual ELF(5)

Note sections contain a series of notes (see the struct definitions below). Each note is
followed by the name field (whose length is defined in n_namesz) and then by the de-
scriptor field (whose length is defined in n_descsz) and whose starting address has a 4
byte alignment. Neither field is defined in the note struct due to their arbitrary lengths.

An example for parsing out two consecutive notes should clarify their layout in memory:

void *memory, *name, *desc;
Elf64_Nhdr *note, *next_note;

/* The buffer is pointing to the start of the section/segment. */
note = memory;

/* If the name is defined, it follows the note. */
name = note->n_namesz == 0 ? NULL : memory + sizeof(*note);

/* If the descriptor is defined, it follows the name
(with alignment). */

desc = note->n_descsz == 0 ? NULL :
memory + sizeof(*note) + ALIGN_UP(note->n_namesz, 4);

/* The next note follows both (with alignment). */
next_note = memory + sizeof(*note) +

ALIGN_UP(note->n_namesz, 4) +
ALIGN_UP(note->n_descsz, 4);

Keep in mind that the interpretation of n_type depends on the namespace defined by the
n_namesz field. If the n_namesz field is not set (e.g., is 0), then there are two sets of
notes: one for core files and one for all other ELF types. If the namespace is unknown,
then tools will usually fallback to these sets of notes as well.

typedef struct {
Elf32_Word n_namesz;
Elf32_Word n_descsz;
Elf32_Word n_type;

} Elf32_Nhdr;

typedef struct {
Elf64_Word n_namesz;
Elf64_Word n_descsz;
Elf64_Word n_type;

} Elf64_Nhdr;

n_namesz
The length of the name field in bytes. The contents will immediately follow this
note in memory. The name is null terminated. For example, if the name is
"GNU", then n_namesz will be set to 4.

Linux man-pages 6.16 2025-09-21 2958

ELF(5) File Formats Manual ELF(5)

n_descsz
The length of the descriptor field in bytes. The contents will immediately follow
the name field in memory.

n_type
Depending on the value of the name field, this member may have any of the fol-
lowing values:

Core files (e_type = ET_CORE)
Notes used by all core files. These are highly operating system or archi-
tecture specific and often require close coordination with kernels, C li-
braries, and debuggers. These are used when the namespace is the default
(i.e., n_namesz will be set to 0), or a fallback when the namespace is un-
known.

NT_PRSTATUS prstatus struct
NT_FPREGSET fpregset struct
NT_PRPSINFO prpsinfo struct
NT_PRXREG prxregset struct
NT_TASKSTRUCT task structure
NT_PLATFORM String from sysinfo(SI_PLATFORM)
NT_AUXV auxv array
NT_GWINDOWS gwindows struct
NT_ASRS asrset struct
NT_PSTATUS pstatus struct
NT_PSINFO psinfo struct
NT_PRCRED prcred struct
NT_UTSNAME utsname struct
NT_LWPSTATUS lwpstatus struct
NT_LWPSINFO lwpinfo struct
NT_PRFPXREG fprxregset struct
NT_SIGINFO siginfo_t (size might increase over time)
NT_FILE Contains information about mapped files
NT_PRXFPREG user_fxsr_struct
NT_PPC_VMX PowerPC Altivec/VMX registers
NT_PPC_SPE PowerPC SPE/EVR registers
NT_PPC_VSX PowerPC VSX registers
NT_386_TLS i386 TLS slots (struct user_desc)
NT_386_IOPERM x86 io permission bitmap (1=deny)
NT_X86_XSTATE x86 extended state using xsave
NT_S390_HIGH_GPRS

s390 upper register halves
NT_S390_TIMER s390 timer register
NT_S390_TODCMP s390 time-of-day (TOD) clock comparator reg-

ister
NT_S390_TODPREG s390 time-of-day (TOD) programmable register
NT_S390_CTRS s390 control registers

Linux man-pages 6.16 2025-09-21 2959

ELF(5) File Formats Manual ELF(5)

NT_S390_PREFIX s390 prefix register
NT_S390_LAST_BREAK

s390 breaking event address
NT_S390_SYSTEM_CALL

s390 system call restart data
NT_S390_TDB s390 transaction diagnostic block
NT_ARM_VFP ARM VFP/NEON registers
NT_ARM_TLS ARM TLS register
NT_ARM_HW_BREAK

ARM hardware breakpoint registers
NT_ARM_HW_WATCH

ARM hardware watchpoint registers
NT_ARM_SYSTEM_CALL

ARM system call number

n_name = GNU
Extensions used by the GNU tool chain.

NT_GNU_ABI_TAG
Operating system (OS) ABI information. The desc field will be 4
words:

[0] OS descriptor (ELF_NOTE_OS_LINUX,
ELF_NOTE_OS_GNU, and so on)

[1] major version of the ABI
[2] minor version of the ABI
[3] subminor version of the ABI

NT_GNU_HWCAP
Synthetic hwcap information. The desc field begins with two
words:

[0] number of entries
[1] bit mask of enabled entries

Then follow variable-length entries, one byte followed by a null-
terminated hwcap name string. The byte gives the bit number to
test if enabled, (1U << bit) & bit mask.

NT_GNU_BUILD_ID
Unique build ID as generated by the GNU ld(1) --build-id op-
tion. The desc consists of any nonzero number of bytes.

NT_GNU_GOLD_VERSION
The desc contains the GNU Gold linker version used.

Default/unknown namespace (e_type != ET_CORE)
These are used when the namespace is the default (i.e., n_namesz will be
set to 0), or a fallback when the namespace is unknown.

NT_VERSION
A version string of some sort.

Linux man-pages 6.16 2025-09-21 2960

ELF(5) File Formats Manual ELF(5)

NT_ARCH Architecture information.

NOTES
ELF first appeared in System V. The ELF format is an adopted standard.

The extensions for e_phnum, e_shnum, and e_shstrndx respectively are Linux exten-
sions. Sun, BSD, and AMD64 also support them; for further information, look under
SEE ALSO.

SEE ALSO
as(1), elfedit(1), gdb(1), ld(1), nm(1), objcopy(1), objdump(1), patchelf (1), readelf (1),
size(1), strings(1), strip(1), execve(2), dl_iterate_phdr(3), core(5), ld.so(8)

Hewlett-Packard, Elf-64 Object File Format.

Santa Cruz Operation, System V Application Binary Interface.

UNIX System Laboratories, "Object Files", Executable and Linking Format (ELF).

Sun Microsystems, Linker and Libraries Guide.

AMD64 ABI Draft, System V Application Binary Interface AMD64 Architecture Proces-
sor Supplement.

Linux man-pages 6.16 2025-09-21 2961

erofs(5) File Formats Manual erofs(5)

NAME
erofs - the Enhanced Read-Only File System

DESCRIPTION
erofs is a create-once read-only filesystem, with support for compression and a multi-
device backing store.

There are two inode formats:

• 32-byte compact with 16-bit UID/GID, 32-bit file size, and no file times
• 64-byte extended with 32-bit UID/GID, 64-bit file size, and a modification time

(st_mtim).

Mount options
user_xattr
nouser_xattr

Controls whether user extended attributes are exposed. Defaults to yes.

acl
noacl

Controls whether POSIX acl(5)s are exposed. Defaults to yes.

cache_strategy=disabled|readahead|readaround
Cache allocation for compressed files: never, if reading from start of file, regard-
less of position. Defaults to readaround.

dax
dax=always|never

Direct Access control. If always and the source device supports DAX, uncom-
pressed non-inlined files will be read directly, without going through the page
cache. dax is a synonym for always. Defaults to unset, which is equivalent to
never.

device=blobdev
Add extra device holding some of the data. Must be given as many times and in
the same order as --blobdev was to mkfs.erofs(1)

domain_id=did
fsid=id

Control CacheFiles on-demand read support. To be documented.

VERSIONS
erofs images are versioned through the use of feature flags; these are listed in the -E
section of mkfs.erofs(1),

CONFIGURATION
Linux must be configured with the CONFIG_EROFS_FS option to mount EROFS
filesystems. There are sub-configuration items that restrict the availability of some of
the parameters above.

SEE ALSO
mkfs.erofs(1), fsck.erofs(1), dump.erofs(1)

Documentation/filesystems/erofs.txt in the Linux source.

Linux man-pages 6.16 2025-09-21 2962

filesystems(5) File Formats Manual filesystems(5)

NAME
filesystems - Linux filesystem types: ext, ext2, ext3, ext4, hpfs, iso9660, JFS, minix,
msdos, ncpfs nfs, ntfs, proc, Reiserfs, smb, sysv, umsdos, vfat, XFS, xiafs

DESCRIPTION
When, as is customary, the proc filesystem is mounted on /proc, you can find in the file
/proc/filesystems which filesystems your kernel currently supports; see proc(5) for more
details. There is also a legacy sysfs(2) system call (whose availability is controlled by
the CONFIG_SYSFS_SYSCALL kernel build configuration option since Linux 3.15)
that enables enumeration of the currently available filesystem types regardless of /proc
availability and/or sanity.

If you need a currently unsupported filesystem, insert the corresponding kernel module
or recompile the kernel.

In order to use a filesystem, you have to mount it; see mount(2) and mount(8)

The following list provides a short description of the available or historically available
filesystems in the Linux kernel. See the kernel documentation for a comprehensive
description of all options and limitations.

erofs is the Enhanced Read-Only File System, stable since Linux 5.4. See erofs(5).

ext is an elaborate extension of the minix filesystem. It has been completely
superseded by the second version of the extended filesystem (ext2) and has been
removed from the kernel (in Linux 2.1.21).

ext2 is a disk filesystem that was used by Linux for fixed disks as well as removable
media. The second extended filesystem was designed as an extension of the
extended filesystem (ext). See ext2(5)

ext3 is a journaling version of the ext2 filesystem. It is easy to switch back and forth
between ext2 and ext3. See ext3(5)

ext4 is a set of upgrades to ext3 including substantial performance and reliability
enhancements, plus large increases in volume, file, and directory size limits. See
ext4(5)

hpfs is the High Performance Filesystem, used in OS/2. This filesystem is read-only
under Linux due to the lack of available documentation.

iso9660
is a CD-ROM filesystem type conforming to the ISO/IEC 9660 standard.

High Sierra
Linux supports High Sierra, the precursor to the ISO/IEC 9660 standard
for CD-ROM filesystems. It is automatically recognized within the
iso9660 filesystem support under Linux.

Rock Ridge
Linux also supports the System Use Sharing Protocol records specified
by the Rock Ridge Interchange Protocol. They are used to further
describe the files in the iso9660 filesystem to a UNIX host, and provide
information such as long filenames, UID/GID, POSIX permissions, and
devices. It is automatically recognized within the iso9660 filesystem

Linux man-pages 6.16 2025-09-21 2963

filesystems(5) File Formats Manual filesystems(5)

support under Linux.

JFS is a journaling filesystem, developed by IBM, that was integrated into Linux
2.4.24.

minix
is the filesystem used in the Minix operating system, the first to run under Linux.
It has a number of shortcomings, including a 64 MB partition size limit, short
filenames, and a single timestamp. It remains useful for floppies and RAM
disks.

msdos
is the filesystem used by DOS, Windows, and some OS/2 computers. msdos
filenames can be no longer than 8 characters, followed by an optional period and
3 character extension.

ncpfs
is a network filesystem that supports the NCP protocol, used by Novell NetWare.
It was removed from the kernel in Linux 4.17.

To use ncpfs, you need special programs, which can be found at
〈ftp://ftp.gwdg.de/pub/linux/misc/ncpfs〉.

nfs is the network filesystem used to access disks located on remote computers.

ntfs is the filesystem native to Microsoft Windows NT, supporting features like
ACLs, journaling, encryption, and so on.

proc is a pseudo filesystem which is used as an interface to kernel data structures
rather than reading and interpreting /dev/kmem. In particular, its files do not take
disk space. See proc(5).

Reiserfs
is a journaling filesystem, designed by Hans Reiser, that was integrated into
Linux 2.4.1.

smb is a network filesystem that supports the SMB protocol, used by Windows. See
〈https://www.samba.org/samba/smbfs/〉.

sysv is an implementation of the System V/Coherent filesystem for Linux. It imple-
ments all of Xenix FS, System V/386 FS, and Coherent FS.

umsdos
is an extended DOS filesystem used by Linux. It adds capability for long file-
names, UID/GID, POSIX permissions, and special files (devices, named pipes,
etc.) under the DOS filesystem, without sacrificing compatibility with DOS.

tmpfs
is a filesystem whose contents reside in virtual memory. Since the files on such
filesystems typically reside in RAM, file access is extremely fast. See tmpfs(5).

vfat is an extended FAT filesystem used by Microsoft Windows95 and Windows NT.
vfat adds the capability to use long filenames under the MSDOS filesystem.

Linux man-pages 6.16 2025-09-21 2964

filesystems(5) File Formats Manual filesystems(5)

XFS is a journaling filesystem, developed by SGI, that was integrated into Linux
2.4.20.

xiafs was designed and implemented to be a stable, safe filesystem by extending the
Minix filesystem code. It provides the basic most requested features without un-
due complexity. The xiafs filesystem is no longer actively developed or main-
tained. It was removed from the kernel in Linux 2.1.21.

SEE ALSO
fuse(4), btrfs(5), ext2(5), ext3(5), ext4(5), nfs(5), proc(5), sysfs(5), tmpfs(5), xfs(5),
fsck(8), mkfs(8), mount(8)

Linux man-pages 6.16 2025-09-21 2965

ftpusers(5) File Formats Manual ftpusers(5)

NAME
ftpusers - list of users that may not log in via the FTP daemon

DESCRIPTION
The text file ftpusers contains a list of users that may not log in using the File Transfer
Protocol (FTP) server daemon. This file is used not merely for system administration
purposes but also for improving security within a TCP/IP networked environment.

The ftpusers file will typically contain a list of the users that either have no business us-
ing ftp or have too many privileges to be allowed to log in through the FTP server dae-
mon. Such users usually include root, daemon, bin, uucp, and news.

If your FTP server daemon doesn’t use ftpusers, then it is suggested that you read its
documentation to find out how to block access for certain users. Washington University
FTP server Daemon (wuftpd) and Professional FTP Daemon (proftpd) are known to
make use of ftpusers.

Format
The format of ftpusers is very simple. There is one account name (or username) per
line. Lines starting with a # are ignored.

FILES
/etc/ftpusers

SEE ALSO
passwd(5), proftpd(8), wuftpd(8)

Linux man-pages 6.16 2025-05-17 2966

gai.conf (5) File Formats Manual gai.conf (5)

NAME
gai.conf - getaddrinfo(3) configuration file

DESCRIPTION
A call to getaddrinfo(3) might return multiple answers. According to RFC 3484 these
answers must be sorted so that the answer with the highest success rate is first in the list.
The RFC provides an algorithm for the sorting. The static rules are not always ade-
quate, though. For this reason, the RFC also requires that system administrators should
have the possibility to dynamically change the sorting. For the glibc implementation,
this can be achieved with the /etc/gai.conf file.

Each line in the configuration file consists of a keyword and its parameters. White
spaces in any place are ignored. Lines starting with '#' are comments and are ignored.

The keywords currently recognized are:

label netmask precedence
The value is added to the label table used in the RFC 3484 sorting. If any label
definition is present in the configuration file, the default table is not used. All the
label definitions of the default table which are to be maintained have to be dupli-
cated. Following the keyword, the line has to contain a network mask and a
precedence value.

precedence netmask precedence
This keyword is similar to label, but instead the value is added to the precedence
table as specified in RFC 3484. Once again, the presence of a single precedence
line in the configuration file causes the default table to not be used.

reload <yes|no>
This keyword controls whether a process checks whether the configuration file
has been changed since the last time it was read. If the value is "yes", the file is
reread. This might cause problems in multithreaded applications and is gener-
ally a bad idea. The default is "no".

scopev4 mask value
Add another rule to the RFC 3484 scope table for IPv4 address. By default, the
scope IDs described in section 3.2 in RFC 3438 are used. Changing these de-
faults should hardly ever be necessary.

FILES
/etc/gai.conf

VERSIONS
The gai.conf file is supported since glibc 2.5.

EXAMPLES
The default table according to RFC 3484 would be specified with the following configu-
ration file:

label ::1/128 0
label ::/0 1
label 2002::/16 2
label ::/96 3
label ::ffff:0:0/96 4

Linux man-pages 6.16 2025-05-17 2967

gai.conf (5) File Formats Manual gai.conf (5)

precedence ::1/128 50
precedence ::/0 40
precedence 2002::/16 30
precedence ::/96 20
precedence ::ffff:0:0/96 10

SEE ALSO
getaddrinfo(3), RFC 3484

Linux man-pages 6.16 2025-05-17 2968

group(5) File Formats Manual group(5)

NAME
group - user group file

DESCRIPTION
The /etc/group file is a text file that defines the groups on the system. There is one entry
per line, with the following format:

group_name:password:GID:user_list

The fields are as follows:

group_name
the name of the group.

password
the (encrypted) group password. If this field is empty, no password is needed.

GID the numeric group ID.

user_list
a list of the usernames that are members of this group, separated by commas.

FILES
/etc/group

BUGS
As the 4.2BSD initgroups(3) man page says: no one seems to keep /etc/group up-to-
date.

SEE ALSO
chgrp(1), gpasswd(1), groups(1), login(1), newgrp(1), sg(1), getgrent(3), getgrnam(3),
gshadow(5), passwd(5), vigr(8)

Linux man-pages 6.16 2025-05-17 2969

host.conf (5) File Formats Manual host.conf (5)

NAME
host.conf - resolver configuration file

DESCRIPTION
The file /etc/host.conf contains configuration information specific to the resolver library.
It should contain one configuration keyword per line, followed by appropriate configura-
tion information. The following keywords are recognized:

trim This keyword may be listed more than once. Each time it should be followed by
a list of domains, separated by colons (':'), semicolons (';') or commas (','), with
the leading dot. When set, the resolver library will automatically trim the given
domain name from the end of any hostname resolved via DNS. This is intended
for use with local hosts and domains. (Related note: trim will not affect host-
names gathered via NIS or the hosts(5) file. Care should be taken to ensure that
the first hostname for each entry in the hosts file is fully qualified or unqualified,
as appropriate for the local installation.)

multi Valid values are on and off . If set to on, the resolver library will return all valid
addresses for a host that appears in the /etc/hosts file, instead of only the first.
This is off by default, as it may cause a substantial performance loss at sites with
large hosts files.

reorder
Valid values are on and off . If set to on, the resolver library will attempt to re-
order host addresses so that local addresses (i.e., on the same subnet) are listed
first when a gethostbyname(3) is performed. Reordering is done for all lookup
methods. The default value is off .

ENVIRONMENT
The following environment variables can be used to allow users to override the behavior
which is configured in /etc/host.conf :

RESOLV_HOST_CONF
If set, this variable points to a file that should be read instead of /etc/host.conf .

RESOLV_MULTI
Overrides the multi command.

RESOLV_REORDER
Overrides the reorder command.

RESOLV_ADD_TRIM_DOMAINS
A list of domains, separated by colons (':'), semicolons (';'), or commas (','), with
the leading dot, which will be added to the list of domains that should be
trimmed.

RESOLV_OVERRIDE_TRIM_DOMAINS
A list of domains, separated by colons (':'), semicolons (';'), or commas (','), with
the leading dot, which will replace the list of domains that should be trimmed.
Overrides the trim command.

FILES

Linux man-pages 6.16 2025-05-17 2970

host.conf (5) File Formats Manual host.conf (5)

/etc/host.conf
Resolver configuration file

/etc/resolv.conf
Resolver configuration file

/etc/hosts
Local hosts database

NOTES
The following differences exist compared to the original implementation. A new com-
mand spoof and a new environment variable RESOLV_SPOOF_CHECK can take ar-
guments like off , nowarn, and warn. Line comments can appear anywhere and not only
at the beginning of a line.

Historical
The nsswitch.conf(5) file is the modern way of controlling the order of host lookups.

In glibc 2.4 and earlier, the following keyword is recognized:

order
This keyword specifies how host lookups are to be performed. It should be fol-
lowed by one or more lookup methods, separated by commas. Valid methods are
bind , hosts, and nis.

RESOLV_SERV_ORDER
Overrides the order command.

Since glibc 2.0.7, and up through glibc 2.24, the following keywords and environment
variable have been recognized but never implemented:

nospoof
Valid values are on and off . If set to on, the resolver library will attempt to pre-
vent hostname spoofing to enhance the security of rlogin and rsh. It works as
follows: after performing a host address lookup, the resolver library will perform
a hostname lookup for that address. If the two hostnames do not match, the
query fails. The default value is off .

spoofalert
Valid values are on and off . If this option is set to on and the nospoof option is
also set, the resolver library will log a warning of the error via the syslog facility.
The default value is off .

spoof
Valid values are off , nowarn, and warn. If this option is set to off , spoofed ad-
dresses are permitted and no warnings will be emitted via the syslog facility. If
this option is set to warn, the resolver library will attempt to prevent hostname
spoofing to enhance the security and log a warning of the error via the syslog fa-
cility. If this option is set to nowarn, the resolver library will attempt to prevent
hostname spoofing to enhance the security but not emit warnings via the syslog
facility. Setting this option to anything else is equal to setting it to nowarn.

Linux man-pages 6.16 2025-05-17 2971

host.conf (5) File Formats Manual host.conf (5)

RESOLV_SPOOF_CHECK
Overrides the nospoof , spoofalert, and spoof commands in the same way as the
spoof command is parsed. Valid values are off , nowarn, and warn.

SEE ALSO
gethostbyname(3), hosts(5), nsswitch.conf(5), resolv.conf(5), hostname(7), named(8)

Linux man-pages 6.16 2025-05-17 2972

hosts.equiv(5) File Formats Manual hosts.equiv(5)

NAME
hosts.equiv - list of hosts and users that are granted "trusted" r command access to your
system

DESCRIPTION
The file /etc/hosts.equiv allows or denies hosts and users to use the r-commands (e.g.,
rlogin, rsh, or rcp) without supplying a password.

The file uses the following format:

+|[-]hostname|+@netgroup|-@netgroup [+|[-]username|+@netgroup|-@netgroup]

The hostname is the name of a host which is logically equivalent to the local host.
Users logged into that host are allowed to access like-named user accounts on the local
host without supplying a password. The hostname may be (optionally) preceded by a
plus (+) sign. If the plus sign is used alone, it allows any host to access your system.
You can explicitly deny access to a host by preceding the hostname by a minus (-) sign.
Users from that host must always supply additional credentials, including possibly a
password. For security reasons you should always use the FQDN of the hostname and
not the short hostname.

The username entry grants a specific user access to all user accounts (except root) with-
out supplying a password. That means the user is NOT restricted to like-named ac-
counts. The username may be (optionally) preceded by a plus (+) sign. You can also
explicitly deny access to a specific user by preceding the username with a minus (-)
sign. This says that the user is not trusted no matter what other entries for that host ex-
ist.

Netgroups can be specified by preceding the netgroup by an @ sign.

Be extremely careful when using the plus (+) sign. A simple typographical error could
result in a standalone plus sign. A standalone plus sign is a wildcard character that
means "any host"!

FILES
/etc/hosts.equiv

NOTES
Some systems will honor the contents of this file only when it has owner root and no
write permission for anybody else. Some exceptionally paranoid systems even require
that there be no other hard links to the file.

Modern systems use the Pluggable Authentication Modules library (PAM). With PAM a
standalone plus sign is considered a wildcard character which means "any host" only
when the word promiscuous is added to the auth component line in your PAM file for
the particular service (e.g., rlogin).

EXAMPLES
Below are some example /etc/host.equiv or ~/.rhosts files.

Allow any user to log in from any host:

+

Allow any user from host with a matching local account to log in:

Linux man-pages 6.16 2025-05-17 2973

hosts.equiv(5) File Formats Manual hosts.equiv(5)

host

Note: the use of +host is never a valid syntax, including attempting to specify that any
user from the host is allowed.

Allow any user from host to log in:

host +

Note: this is distinct from the previous example since it does not require a matching lo-
cal account.

Allow user from host to log in as any non-root user:

host user

Allow all users with matching local accounts from host to log in except for baduser:

host -baduser
host

Deny all users from host:

-host

Note: the use of -host -user is never a valid syntax, including attempting to specify that
a particular user from the host is not trusted.

Allow all users with matching local accounts on all hosts in a netgroup:

+@netgroup

Disallow all users on all hosts in a netgroup:

-@netgroup

Allow all users in a netgroup to log in from host as any non-root user:

host +@netgroup

Allow all users with matching local accounts on all hosts in a netgroup except baduser:

+@netgroup -baduser
+@netgroup

Note: the deny statements must always precede the allow statements because the file is
processed sequentially until the first matching rule is found.

SEE ALSO
rhosts(5), rlogind(8), rshd(8)

Linux man-pages 6.16 2025-05-17 2974

hosts(5) File Formats Manual hosts(5)

NAME
hosts - static table lookup for hostnames

SYNOPSIS
/etc/hosts

DESCRIPTION
This manual page describes the format of the /etc/hosts file. This file is a simple text
file that associates IP addresses with hostnames, one line per IP address. For each host a
single line should be present with the following information:

IP_address canonical_hostname [aliases...]

The IP address can conform to either IPv4 or IPv6. Fields of the entry are separated by
any number of blanks and/or tab characters. Text from a "#" character until the end of
the line is a comment, and is ignored. Host names may contain only alphanumeric char-
acters, minus signs ("-"), and periods ("."). They must begin with an alphabetic charac-
ter and end with an alphanumeric character. Optional aliases provide for name changes,
alternate spellings, shorter hostnames, or generic hostnames (for example, localhost). If
required, a host may have two separate entries in this file; one for each version of the In-
ternet Protocol (IPv4 and IPv6).

The Berkeley Internet Name Domain (BIND) Server implements the Internet name
server for UNIX systems. It augments or replaces the /etc/hosts file or hostname
lookup, and frees a host from relying on /etc/hosts being up to date and complete.

In modern systems, even though the host table has been superseded by DNS, it is still
widely used for:

bootstrapping
Most systems have a small host table containing the name and address informa-
tion for important hosts on the local network. This is useful when DNS is not
running, for example during system bootup.

NIS Sites that use NIS use the host table as input to the NIS host database. Even
though NIS can be used with DNS, most NIS sites still use the host table with an
entry for all local hosts as a backup.

isolated nodes
Very small sites that are isolated from the network use the host table instead of
DNS. If the local information rarely changes, and the network is not connected
to the Internet, DNS offers little advantage.

FILES
/etc/hosts

NOTES
Modifications to this file normally take effect immediately, except in cases where the file
is cached by applications.

Historical notes
RFC 952 gave the original format for the host table, though it has since changed.

Before the advent of DNS, the host table was the only way of resolving hostnames on
the fledgling Internet. Indeed, this file could be created from the official host data base

Linux man-pages 6.16 2025-05-17 2975

hosts(5) File Formats Manual hosts(5)

maintained at the Network Information Control Center (NIC), though local changes
were often required to bring it up to date regarding unofficial aliases and/or unknown
hosts. The NIC no longer maintains the hosts.txt files, though looking around at the
time of writing (circa 2000), there are historical hosts.txt files on the WWW. I just
found three, from 92, 94, and 95.

EXAMPLES
The following lines are desirable for IPv4 capable hosts
127.0.0.1 localhost

127.0.1.1 is often used for the FQDN of the machine
127.0.1.1 thishost.example.org thishost
192.168.1.10 foo.example.org foo
192.168.1.13 bar.example.org bar
146.82.138.7 master.debian.org master
209.237.226.90 www.opensource.org

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

SEE ALSO
hostname(1), resolver(3), host.conf(5), resolv.conf(5), resolver(5), hostname(7),
named(8)

Internet RFC 952

Linux man-pages 6.16 2025-05-17 2976

issue(5) File Formats Manual issue(5)

NAME
issue - prelogin message and identification file

DESCRIPTION
/etc/issue is a text file which contains a message or system identification to be printed
before the login prompt. It may contain various @char and \char sequences, if sup-
ported by the getty-type program employed on the system.

FILES
/etc/issue

SEE ALSO
motd(5), agetty(8), mingetty(8)

Linux man-pages 6.16 2025-05-17 2977

locale(5) File Formats Manual locale(5)

NAME
locale - describes a locale definition file

DESCRIPTION
The locale definition file contains all the information that the localedef(1) command
needs to convert it into the binary locale database.

The definition files consist of sections which each describe a locale category in detail.
See locale(7) for additional details for these categories.

Syntax
The locale definition file starts with a header that may consist of the following key-
words:

escape_char
is followed by a character that should be used as the escape-character for the rest
of the file to mark characters that should be interpreted in a special way. It de-
faults to the backslash (\).

comment_char
is followed by a character that will be used as the comment-character for the rest
of the file. It defaults to the number sign (#).

The locale definition has one part for each locale category. Each part can be copied
from another existing locale or can be defined from scratch. If the category should be
copied, the only valid keyword in the definition is copy followed by the name of the lo-
cale in double quotes which should be copied. The exceptions for this rule are
LC_COLLATE and LC_CTYPE where a copy statement can be followed by locale-
specific rules and selected overrides.

When defining a locale or a category from scratch, an existing system- provided locale
definition file should be used as a reference to follow common glibc conventions.

Locale category sections
The following category sections are defined by POSIX:

• LC_CTYPE

• LC_COLLATE

• LC_MESSAGES

• LC_MONETARY

• LC_NUMERIC

• LC_TIME

In addition, since glibc 2.2, the GNU C library supports the following nonstandard cate-
gories:

• LC_ADDRESS

• LC_IDENTIFICATION

• LC_MEASUREMENT

Linux man-pages 6.16 2025-09-21 2978

locale(5) File Formats Manual locale(5)

• LC_NAME

• LC_PAPER

• LC_TELEPHONE

See locale(7) for a more detailed description of each category.

LC_ADDRESS
The definition starts with the string LC_ADDRESS in the first column.

The following keywords are allowed:

postal_fmt
followed by a string containing field descriptors that define the format used for
postal addresses in the locale. The following field descriptors are recognized:

%n Person’s name, possibly constructed with the LC_NAME name_fmt key-
word (since glibc 2.24).

%a
Care of person, or organization.

%f Firm name.

%d
Department name.

%b
Building name.

%s
Street or block (e.g., Japanese) name.

%h
House number or designation.

%N
Insert an end-of-line if the previous descriptor’s value was not an empty
string; otherwise, ignore.

%t Insert a space if the previous descriptor’s value was not an empty string;
otherwise, ignore.

%r Room number, door designation.

%e
Floor number.

%C
Country designation, from the country_post keyword.

%l Local township within town or city (since glibc 2.24).

%z
Zip number, postal code.

%T
Town, city.

Linux man-pages 6.16 2025-09-21 2979

locale(5) File Formats Manual locale(5)

%S
State, province, or prefecture.

%c
Country, as taken from data record.

Each field descriptor may have an 'R' after the '%' to specify that the information
is taken from a Romanized version string of the entity.

country_name
followed by the country name in the language of the current document (e.g.,
"Deutschland" for the de_DE locale).

country_post
followed by the abbreviation of the country (for example, CEPT-MAILCODE
codes).

country_ab2
followed by the two-letter abbreviation of the country (ISO 3166).

country_ab3
followed by the three-letter abbreviation of the country (ISO 3166).

country_num
followed by the numeric country code (ISO 3166).

country_car
followed by the international license plate country code.

country_isbn
followed by the ISBN code (for books).

lang_name
followed by the language name in the language of the current document.

lang_ab
followed by the two-letter abbreviation of the language (ISO 639).

lang_term
followed by the three-letter abbreviation of the language (ISO 639-2/T).

lang_lib
followed by the three-letter abbreviation of the language for library use
(ISO 639-2/B). Applications should in general prefer lang_term over lang_lib.

The LC_ADDRESS definition ends with the string END LC_ADDRESS.

LC_CTYPE
The definition starts with the string LC_CTYPE in the first column.

The following keywords are allowed:

upper
followed by a list of uppercase letters. The letters A through Z are included au-
tomatically. Characters also specified as cntrl, digit, punct, or space are not al-
lowed.

Linux man-pages 6.16 2025-09-21 2980

locale(5) File Formats Manual locale(5)

lower
followed by a list of lowercase letters. The letters a through z are included auto-
matically. Characters also specified as cntrl, digit, punct, or space are not al-
lowed.

alpha
followed by a list of letters. All character specified as either upper or lower are
automatically included. Characters also specified as cntrl, digit, punct, or
space are not allowed.

digit followed by the characters classified as numeric digits. Only the digits 0 through
9 are allowed. They are included by default in this class.

space
followed by a list of characters defined as white-space characters. Characters
also specified as upper, lower, alpha, digit, graph, or xdigit are not allowed.
The characters <space>, <form-feed>, <newline>, <carriage-return>, <tab>,
and <vertical-tab> are automatically included.

cntrl followed by a list of control characters. Characters also specified as upper,
lower, alpha, digit, punct, graph, print, or xdigit are not allowed.

punct
followed by a list of punctuation characters. Characters also specified as upper,
lower, alpha, digit, cntrl, xdigit, or the <space> character are not allowed.

graph
followed by a list of printable characters, not including the <space> character.
The characters defined as upper, lower, alpha, digit, xdigit, and punct are auto-
matically included. Characters also specified as cntrl are not allowed.

print followed by a list of printable characters, including the <space> character. The
characters defined as upper, lower, alpha, digit, xdigit, punct, and the <space>
character are automatically included. Characters also specified as cntrl are not
allowed.

xdigit
followed by a list of characters classified as hexadecimal digits. The decimal
digits must be included followed by one or more set of six characters in ascend-
ing order. The following characters are included by default: 0 through 9, a
through f, A through F.

blank
followed by a list of characters classified as blank. The characters <space> and
<tab> are automatically included.

charclass
followed by a list of locale-specific character class names which are then to be
defined in the locale.

toupper
followed by a list of mappings from lowercase to uppercase letters. Each map-
ping is a pair of a lowercase and an uppercase letter separated with a , and en-
closed in parentheses.

Linux man-pages 6.16 2025-09-21 2981

locale(5) File Formats Manual locale(5)

tolower
followed by a list of mappings from uppercase to lowercase letters. If the key-
word tolower is not present, the reverse of the toupper list is used.

map totitle
followed by a list of mapping pairs of characters and letters to be used in titles
(headings).

class followed by a locale-specific character class definition, starting with the class
name followed by the characters belonging to the class.

charconv
followed by a list of locale-specific character mapping names which are then to
be defined in the locale.

outdigit
followed by a list of alternate output digits for the locale.

map to_inpunct
followed by a list of mapping pairs of alternate digits and separators for input
digits for the locale.

map to_outpunct
followed by a list of mapping pairs of alternate separators for output for the lo-
cale.

translit_start
marks the start of the transliteration rules section. The section can contain the
include keyword in the beginning followed by locale-specific rules and over-
rides. Any rule specified in the locale file will override any rule copied or in-
cluded from other files. In case of duplicate rule definitions in the locale file,
only the first rule is used.

A transliteration rule consist of a character to be transliterated followed by a list
of transliteration targets separated by semicolons. The first target which can be
presented in the target character set is used, if none of them can be used the de-
fault_missing character will be used instead.

include
in the transliteration rules section includes a transliteration rule file (and option-
ally a repertoire map file).

default_missing
in the transliteration rules section defines the default character to be used for
transliteration where none of the targets cannot be presented in the target charac-
ter set.

translit_end
marks the end of the transliteration rules.

The LC_CTYPE definition ends with the string END LC_CTYPE.

LC_COLLATE
Note that glibc does not support all POSIX-defined options, only the options described
below are supported (as of glibc 2.23).

Linux man-pages 6.16 2025-09-21 2982

locale(5) File Formats Manual locale(5)

The definition starts with the string LC_COLLATE in the first column.

The following keywords are allowed:

coll_weight_max
followed by the number representing used collation levels. This keyword is rec-
ognized but ignored by glibc.

collating-element
followed by the definition of a collating-element symbol representing a multi-
character collating element.

collating-symbol
followed by the definition of a collating symbol that can be used in collation or-
der statements.

define
followed by string to be evaluated in an ifdef string / else / endif construct.

reorder-after
followed by a redefinition of a collation rule.

reorder-end
marks the end of the redefinition of a collation rule.

reorder-sections-after
followed by a script name to reorder listed scripts after.

reorder-sections-end
marks the end of the reordering of sections.

script
followed by a declaration of a script.

symbol-equivalence
followed by a collating-symbol to be equivalent to another defined collating-
symbol.

The collation rule definition starts with a line:

order_start
followed by a list of keywords chosen from forward, backward, or position.
The order definition consists of lines that describe the collation order and is ter-
minated with the keyword order_end .

The LC_COLLATE definition ends with the string END LC_COLLATE.

LC_IDENTIFICATION
The definition starts with the string LC_IDENTIFICATION in the first column.

The following keywords are allowed:

title followed by the title of the locale document (e.g., "Maori language locale for
New Zealand").

source
followed by the name of the organization that maintains this document.

Linux man-pages 6.16 2025-09-21 2983

locale(5) File Formats Manual locale(5)

address
followed by the address of the organization that maintains this document.

contact
followed by the name of the contact person at the organization that maintains
this document.

email
followed by the email address of the person or organization that maintains this
document.

tel followed by the telephone number (in international format) of the organization
that maintains this document. As of glibc 2.24, this keyword is deprecated in fa-
vor of other contact methods.

fax followed by the fax number (in international format) of the organization that
maintains this document. As of glibc 2.24, this keyword is deprecated in favor
of other contact methods.

language
followed by the name of the language to which this document applies.

territory
followed by the name of the country/geographic extent to which this document
applies.

audience
followed by a description of the audience for which this document is intended.

application
followed by a description of any special application for which this document is
intended.

abbreviation
followed by the short name for provider of the source of this document.

revision
followed by the revision number of this document.

date followed by the revision date of this document.

In addition, for each of the categories defined by the document, there should be a line
starting with the keyword category, followed by:

(1) a string that identifies this locale category definition,

(2) a semicolon, and

(3) one of the LC_* identifiers.

The LC_IDENTIFICATION definition ends with the string END LC_IDENTIFICA-
TION .

LC_MESSAGES
The definition starts with the string LC_MESSAGES in the first column.

The following keywords are allowed:

Linux man-pages 6.16 2025-09-21 2984

locale(5) File Formats Manual locale(5)

yesexpr
followed by a regular expression that describes possible yes-responses.

noexpr
followed by a regular expression that describes possible no-responses.

yesstr
followed by the output string corresponding to "yes".

nostr followed by the output string corresponding to "no".

The LC_MESSAGES definition ends with the string END LC_MESSAGES.

LC_MEASUREMENT
The definition starts with the string LC_MEASUREMENT in the first column.

The following keywords are allowed:

measurement
followed by number identifying the standard used for measurement. The follow-
ing values are recognized:

1 Metric.

2 US customary measurements.

The LC_MEASUREMENT definition ends with the string END LC_MEASURE-
MENT .

LC_MONETARY
The definition starts with the string LC_MONETARY in the first column.

The following keywords are allowed:

int_curr_symbol
followed by the international currency symbol. This must be a 4-character string
containing the international currency symbol as defined by the ISO 4217 stan-
dard (three characters) followed by a separator.

currency_symbol
followed by the local currency symbol.

mon_decimal_point
followed by the single-character string that will be used as the decimal delimiter
when formatting monetary quantities.

mon_thousands_sep
followed by the single-character string that will be used as a group separator
when formatting monetary quantities.

mon_grouping
followed by a sequence of integers separated by semicolons that describe the for-
matting of monetary quantities. See grouping below for details.

positive_sign
followed by a string that is used to indicate a positive sign for monetary quanti-
ties.

Linux man-pages 6.16 2025-09-21 2985

locale(5) File Formats Manual locale(5)

negative_sign
followed by a string that is used to indicate a negative sign for monetary quanti-
ties.

int_frac_digits
followed by the number of fractional digits that should be used when formatting
with the int_curr_symbol.

frac_digits
followed by the number of fractional digits that should be used when formatting
with the currency_symbol.

p_cs_precedes
followed by an integer that indicates the placement of currency_symbol for a
nonnegative formatted monetary quantity:

0 the symbol succeeds the value.

1 the symbol precedes the value.

p_sep_by_space
followed by an integer that indicates the separation of currency_symbol, the sign
string, and the value for a nonnegative formatted monetary quantity. The follow-
ing values are recognized:

0 No space separates the currency symbol and the value.

1 If the currency symbol and the sign string are adjacent, a space separates
them from the value; otherwise a space separates the currency symbol and
the value.

2 If the currency symbol and the sign string are adjacent, a space separates
them from the value; otherwise a space separates the sign string and the
value.

n_cs_precedes
followed by an integer that indicates the placement of currency_symbol for a
negative formatted monetary quantity. The same values are recognized as for
p_cs_precedes.

n_sep_by_space
followed by an integer that indicates the separation of currency_symbol, the sign
string, and the value for a negative formatted monetary quantity. The same val-
ues are recognized as for p_sep_by_space.

p_sign_posn
followed by an integer that indicates where the positive_sign should be placed
for a nonnegative monetary quantity:

0 Parentheses enclose the quantity and the currency_symbol or int_curr_sym-
bol.

1 The sign string precedes the quantity and the currency_symbol or the
int_curr_symbol.

Linux man-pages 6.16 2025-09-21 2986

locale(5) File Formats Manual locale(5)

2 The sign string succeeds the quantity and the currency_symbol or the
int_curr_symbol.

3 The sign string precedes the currency_symbol or the int_curr_symbol.

4 The sign string succeeds the currency_symbol or the int_curr_symbol.

n_sign_posn
followed by an integer that indicates where the negative_sign should be placed
for a negative monetary quantity. The same values are recognized as for
p_sign_posn.

int_p_cs_precedes
followed by an integer that indicates the placement of int_curr_symbol for a
nonnegative internationally formatted monetary quantity. The same values are
recognized as for p_cs_precedes.

int_n_cs_precedes
followed by an integer that indicates the placement of int_curr_symbol for a neg-
ative internationally formatted monetary quantity. The same values are recog-
nized as for p_cs_precedes.

int_p_sep_by_space
followed by an integer that indicates the separation of int_curr_symbol, the sign
string, and the value for a nonnegative internationally formatted monetary quan-
tity. The same values are recognized as for p_sep_by_space.

int_n_sep_by_space
followed by an integer that indicates the separation of int_curr_symbol, the sign
string, and the value for a negative internationally formatted monetary quantity.
The same values are recognized as for p_sep_by_space.

int_p_sign_posn
followed by an integer that indicates where the positive_sign should be placed
for a nonnegative internationally formatted monetary quantity. The same values
are recognized as for p_sign_posn.

int_n_sign_posn
followed by an integer that indicates where the negative_sign should be placed
for a negative internationally formatted monetary quantity. The same values are
recognized as for p_sign_posn.

The LC_MONETARY definition ends with the string END LC_MONETARY .

LC_NAME
The definition starts with the string LC_NAME in the first column.

Various keywords are allowed, but only name_fmt is mandatory. Other keywords are
needed only if there is common convention to use the corresponding salutation in this
locale. The allowed keywords are as follows:

name_fmt
followed by a string containing field descriptors that define the format used for
names in the locale. The following field descriptors are recognized:

Linux man-pages 6.16 2025-09-21 2987

locale(5) File Formats Manual locale(5)

%f Family name(s).

%F
Family names in uppercase.

%g
First given name.

%G
First given initial.

%l First given name with Latin letters.

%o
Other shorter name.

%m
Additional given name(s).

%M
Initials for additional given name(s).

%p
Profession.

%s
Salutation, such as "Doctor".

%S
Abbreviated salutation, such as "Mr." or "Dr.".

%d
Salutation, using the FDCC-sets conventions.

%t If the preceding field descriptor resulted in an empty string, then the empty
string, otherwise a space character.

name_gen
followed by the general salutation for any gender.

name_mr
followed by the salutation for men.

name_mrs
followed by the salutation for married women.

name_miss
followed by the salutation for unmarried women.

name_ms
followed by the salutation valid for all women.

The LC_NAME definition ends with the string END LC_NAME.

LC_NUMERIC
The definition starts with the string LC_NUMERIC in the first column.

The following keywords are allowed:

Linux man-pages 6.16 2025-09-21 2988

locale(5) File Formats Manual locale(5)

decimal_point
followed by the single-character string that will be used as the decimal delimiter
when formatting numeric quantities.

thousands_sep
followed by the single-character string that will be used as a group separator
when formatting numeric quantities.

grouping
followed by a sequence of integers separated by semicolons that describe the for-
matting of numeric quantities.

Each integer specifies the number of digits in a group. The first integer defines
the size of the group immediately to the left of the decimal delimiter. Subse-
quent integers define succeeding groups to the left of the previous group. If the
last integer is not -1, then the size of the previous group (if any) is repeatedly
used for the remainder of the digits. If the last integer is -1, then no further
grouping is performed.

The LC_NUMERIC definition ends with the string END LC_NUMERIC.

LC_PAPER
The definition starts with the string LC_PAPER in the first column.

The following keywords are allowed:

height
followed by the height, in millimeters, of the standard paper format.

width
followed by the width, in millimeters, of the standard paper format.

The LC_PAPER definition ends with the string END LC_PAPER.

LC_TELEPHONE
The definition starts with the string LC_TELEPHONE in the first column.

The following keywords are allowed:

tel_int_fmt
followed by a string that contains field descriptors that identify the format used
to dial international numbers. The following field descriptors are recognized:

%a
Area code without nationwide prefix (the prefix is often "00").

%A
Area code including nationwide prefix.

%l Local number (within area code).

%e
Extension (to local number).

%c
Country code.

Linux man-pages 6.16 2025-09-21 2989

locale(5) File Formats Manual locale(5)

%C
Alternate carrier service code used for dialing abroad.

%t If the preceding field descriptor resulted in an empty string, then the empty
string, otherwise a space character.

tel_dom_fmt
followed by a string that contains field descriptors that identify the format used
to dial domestic numbers. The recognized field descriptors are the same as for
tel_int_fmt.

int_select
followed by the prefix used to call international phone numbers.

int_prefix
followed by the prefix used from other countries to dial this country.

The LC_TELEPHONE definition ends with the string END LC_TELEPHONE.

LC_TIME
The definition starts with the string LC_TIME in the first column.

The following keywords are allowed:

abday
followed by a list of abbreviated names of the days of the week. The list starts
with the first day of the week as specified by week (Sunday by default). See
NOTES.

day followed by a list of names of the days of the week. The list starts with the first
day of the week as specified by week (Sunday by default). See NOTES.

abmon
followed by a list of abbreviated month names.

mon followed by a list of month names.

d_t_fmt
followed by the appropriate date and time format (for syntax, see strftime(3)).

d_fmt
followed by the appropriate date format (for syntax, see strftime(3)).

t_fmt followed by the appropriate time format (for syntax, see strftime(3)).

am_pm
followed by the appropriate representation of the am and pm strings. This
should be left empty for locales not using AM/PM convention.

t_fmt_ampm
followed by the appropriate time format (for syntax, see strftime(3)) when using
12h clock format. This should be left empty for locales not using AM/PM con-
vention.

era followed by semicolon-separated strings that define how years are counted and
displayed for each era in the locale. Each string has the following format:

direction:offset:start_date:end_date:era_name:era_format

Linux man-pages 6.16 2025-09-21 2990

locale(5) File Formats Manual locale(5)

The fields are to be defined as follows:

direction
Either + or -. + means the years closer to start_date have lower numbers
than years closer to end_date. - means the opposite.

offset
The number of the year closest to start_date in the era, corresponding to the
%Ey descriptor (see strptime(3)).

start_date
The start of the era in the form of yyyy/mm/dd . Years prior AD 1 are repre-
sented as negative numbers.

end_date
The end of the era in the form of yyyy/mm/dd , or one of the two special val-
ues of -* or +*. -* means the ending date is the beginning of time. +*
means the ending date is the end of time.

era_name
The name of the era corresponding to the %EC descriptor (see strptime(3)).

era_format
The format of the year in the era corresponding to the %EY descriptor (see
strptime(3)).

era_d_fmt
followed by the format of the date in alternative era notation, corresponding to
the %Ex descriptor (see strptime(3)).

era_t_fmt
followed by the format of the time in alternative era notation, corresponding to
the %EX descriptor (see strptime(3)).

era_d_t_fmt
followed by the format of the date and time in alternative era notation, corre-
sponding to the %Ec descriptor (see strptime(3)).

alt_digits
followed by the alternative digits used for date and time in the locale.

week followed by a list of three values separated by semicolons: The number of days
in a week (by default 7), a date of beginning of the week (by default corresponds
to Sunday), and the minimal length of the first week in year (by default 4). Re-
garding the start of the week, 19971130 shall be used for Sunday and 19971201
shall be used for Monday. See NOTES.

first_weekday (since glibc 2.2)
followed by the number of the day from the day list to be shown as the first day
of the week in calendar applications. The default value of 1 corresponds to ei-
ther Sunday or Monday depending on the value of the second week list item.
See NOTES.

Linux man-pages 6.16 2025-09-21 2991

locale(5) File Formats Manual locale(5)

first_workday (since glibc 2.2)
followed by the number of the first working day from the day list. The default
value is 2. See NOTES.

cal_direction
followed by a number value that indicates the direction for the display of calen-
dar dates, as follows:

1 Left-right from top.

2 Top-down from left.

3 Right-left from top.

date_fmt
followed by the appropriate date representation for date(1) (for syntax, see strf-
time(3)).

The LC_TIME definition ends with the string END LC_TIME.

FILES
/usr/lib/locale/locale-archive

Usual default locale archive location.

/usr/share/i18n/locales
Usual default path for locale definition files.

STANDARDS
POSIX.2.

NOTES
The collective GNU C library community wisdom regarding abday, day, week,
first_weekday, and first_workday states at https://sourceware.org/glibc/wiki/Locales the
following:

• The value of the second week list item specifies the base of the abday and day lists.

• first_weekday specifies the offset of the first day-of-week in the abday and day lists.

• For compatibility reasons, all glibc locales should set the value of the second week
list item to 19971130 (Sunday) and base the abday and day lists appropriately, and
set first_weekday and first_workday to 1 or 2, depending on whether the week and
work week actually starts on Sunday or Monday for the locale.

SEE ALSO
iconv(1), locale(1), localedef(1), localeconv(3), newlocale(3), setlocale(3), strftime(3),
strptime(3), uselocale(3), charmap(5), charsets(7), locale(7), unicode(7), utf-8(7)

Linux man-pages 6.16 2025-09-21 2992

motd(5) File Formats Manual motd(5)

NAME
motd - message of the day

DESCRIPTION
The contents of /etc/motd are displayed by login(1) after a successful login but just be-
fore it executes the login shell.

The abbreviation "motd" stands for "message of the day", and this file has been tradi-
tionally used for exactly that (it requires much less disk space than mail to all users).

FILES
/etc/motd

SEE ALSO
login(1), issue(5)

Linux man-pages 6.16 2025-05-17 2993

networks(5) File Formats Manual networks(5)

NAME
networks - network name information

DESCRIPTION
The file /etc/networks is a plain ASCII file that describes known DARPA networks and
symbolic names for these networks. Each line represents a network and has the follow-
ing structure:

name number aliases . . .

where the fields are delimited by spaces or tabs. Empty lines are ignored. The hash
character (#) indicates the start of a comment: this character, and the remaining charac-
ters up to the end of the current line, are ignored by library functions that process the
file.

The field descriptions are:

name
The symbolic name for the network. Network names can contain any printable
characters except white-space characters or the comment character.

number
The official number for this network in numbers-and-dots notation (see inet(3)).
The trailing ".0" (for the host component of the network address) may be omit-
ted.

aliases
Optional aliases for the network.

This file is read by the route(8) and netstat(8) utilities. Only Class A, B, or C networks
are supported, partitioned networks (i.e., network/26 or network/28) are not supported
by this file.

FILES
/etc/networks

The networks definition file.

SEE ALSO
getnetbyaddr(3), getnetbyname(3), getnetent(3), netstat(8), route(8)

Linux man-pages 6.16 2025-05-17 2994

nologin(5) File Formats Manual nologin(5)

NAME
nologin - prevent unprivileged users from logging into the system

DESCRIPTION
If the file /etc/nologin exists and is readable, login(1) will allow access only to root.
Other users will be shown the contents of this file and their logins will be refused. This
provides a simple way of temporarily disabling all unprivileged logins.

FILES
/etc/nologin

SEE ALSO
login(1), shutdown(8)

Linux man-pages 6.16 2025-05-17 2995

nscd.conf (5) File Formats Manual nscd.conf (5)

NAME
nscd.conf - name service cache daemon configuration file

DESCRIPTION
The file /etc/nscd.conf is read from nscd(8) at startup. Each line specifies either an at-
tribute and a value, or an attribute, service, and a value. Fields are separated either by
SPACE or TAB characters. A '#' (number sign) indicates the beginning of a comment;
following characters, up to the end of the line, are not interpreted by nscd.

Valid services are passwd , group, hosts, services, or netgroup.

logfile debug-file-name
Specifies name of the file to which debug info should be written.

debug-level value
Sets the desired debug level. 0 hides debug info. 1 shows general debug info. 2
additionally shows data in cache dumps. 3 (and above) shows all debug info.
The default is 0.

threads number
This is the initial number of threads that are started to wait for requests. At least
five threads will always be created. The number of threads may increase dynam-
ically up to max-threads in response to demand from clients, but never de-
creases.

max-threads number
Specifies the maximum number of threads. The default is 32.

server-user user
If this option is set, nscd will run as this user and not as root. If a separate cache
for every user is used (-S parameter), this option is ignored.

stat-user user
Specifies the user who is allowed to request statistics.

reload-count unlimited | number
Sets a limit on the number of times a cached entry gets reloaded without being
used before it gets removed. The limit can take values ranging from 0 to 254;
values 255 or higher behave the same as unlimited. Limit values can be speci-
fied in either decimal or hexadecimal with a "0x" prefix. The special value un-
limited is case-insensitive. The default limit is 5. A limit of 0 turns off the re-
loading feature. See NOTES below for further discussion of reloading.

paranoia <yes|no>
Enabling paranoia mode causes nscd to restart itself periodically. The default is
no.

restart-interval time
Sets the restart interval to time seconds if periodic restart is enabled by enabling
paranoia mode. The default is 3600.

enable-cache service <yes|no>
Enables or disables the specified service cache. The default is no.

positive-time-to-live service value

Linux man-pages 6.16 2025-09-25 2996

nscd.conf (5) File Formats Manual nscd.conf (5)

Sets the TTL (time-to-live) for positive entries (successful queries) in the speci-
fied cache for service. Value is in seconds. Larger values increase cache hit
rates and reduce mean response times, but increase problems with cache coher-
ence. Note that for some name services (including specifically DNS) the TTL
returned from the name service is used and this attribute is ignored.

negative-time-to-live service value
Sets the TTL (time-to-live) for negative entries (unsuccessful queries) in the
specified cache for service. Value is in seconds. Can result in significant perfor-
mance improvements if there are several files owned by UIDs (user IDs) not in
system databases (for example, untarring the Linux kernel sources as root);
should be kept small to reduce cache coherency problems.

suggested-size service value
This is the internal hash table size, value should remain a prime number for opti-
mum efficiency. The default is 211.

check-files service <yes|no>
Enables or disables checking the file belonging to the specified service for
changes. The files are /etc/passwd , /etc/group, /etc/hosts, /etc/resolv.conf ,
/etc/services, and /etc/netgroup. The default is yes.

persistent service <yes|no>
Keep the content of the cache for service over server restarts; useful when para-
noia mode is set. The default is no.

shared service <yes|no>
The memory mapping of the nscd databases for service is shared with the clients
so that they can directly search in them instead of having to ask the daemon over
the socket each time a lookup is performed. The default is no. Note that a cache
miss will still result in asking the daemon over the socket.

max-db-size service bytes
The maximum allowable size, in bytes, of the database files for the service. The
default is 33554432.

auto-propagate service <yes|no>
When set to no for passwd or group service, then the .byname requests are not
added to passwd.byuid or group.bygid cache. This can help with tables contain-
ing multiple records for the same ID. The default is yes. This option is valid
only for services passwd and group.

NOTES
The default values stated in this manual page originate from the source code of nscd(8)
and are used if not overridden in the configuration file. The default values used in the
configuration file of your distribution might differ.

Reloading
nscd(8) has a feature called reloading, whose behavior can be surprising.

Reloading is enabled when the reload-count attribute has a non-zero value. The default
value in the source code enables reloading, although your distribution may differ.

When reloading is enabled, positive cached entries (the results of successful queries) do

Linux man-pages 6.16 2025-09-25 2997

nscd.conf (5) File Formats Manual nscd.conf (5)

not simply expire when their TTL is up. Instead, at the expiry time, nscd will "reload",
i.e., re-issue to the name service the same query that created the cached entry, to get a
new value to cache. Depending on /etc/nsswitch.conf this may mean that a DNS,
LDAP, or NIS request is made. If the new query is successful, reloading will repeat
when the new value would expire, until reload-count reloads have happened for the en-
try, and only then will it actually be removed from the cache. A request from a client
which hits the entry will reset the reload counter on the entry. Purging the cache using
nscd -i overrides the reload logic and removes the entry.

Reloading has the effect of extending cache entry TTLs without compromising on cache
coherency, at the cost of additional load on the backing name service. Whether this is a
good idea on your system depends on details of your applications’ behavior, your name
service, and the effective TTL values of your cache entries. Note that for some name
services (for example, DNS), the effective TTL is the value returned from the name ser-
vice and not the value of the positive-time-to-live attribute.

Please consider the following advice carefully:

• If your application will make a second request for the same name, after more than 1
TTL but before reload-count TTLs, and is sensitive to the latency of a cache miss,
then reloading may be a good idea for you.

• If your name service is configured to return very short TTLs, and your applications
only make requests rarely under normal circumstances, then reloading may result in
additional load on your backing name service without any benefit to applications,
which is probably a bad idea for you.

• If your name service capacity is limited, reloading may have the surprising effect of
increasing load on your name service instead of reducing it, and may be a bad idea
for you.

• Setting reload-count to unlimited is almost never a good idea, as it will result in a
cache that never expires entries and puts never-ending additional load on the backing
name service.

Some distributions have an init script for nscd(8) with a reload command which uses
nscd -i to purge the cache. That use of the word "reload" is entirely different from the
"reloading" described here.

SEE ALSO
nscd(8)

Linux man-pages 6.16 2025-09-25 2998

nss(5) File Formats Manual nss(5)

NAME
nss - Name Service Switch configuration file

DESCRIPTION
Each call to a function which retrieves data from a system database like the password or
group database is handled by the Name Service Switch implementation in the GNU C li-
brary. The various services provided are implemented by independent modules, each of
which naturally varies widely from the other.

The default implementations coming with the GNU C library are by default conservative
and do not use unsafe data. This might be very costly in some situations, especially
when the databases are large. Some modules allow the system administrator to request
taking shortcuts if these are known to be safe. It is then the system administrator’s re-
sponsibility to ensure the assumption is correct.

There are other modules where the implementation changed over time. If an implemen-
tation used to sacrifice speed for memory consumption, it might create problems if the
preference is switched.

The /etc/default/nss file contains a number of variable assignments. Each variable con-
trols the behavior of one or more NSS modules. White spaces are ignored. Lines begin-
ning with '#' are treated as comments.

The variables currently recognized are:

NETID_AUTHORITATIVE = TRUE |FALSE
If set to TRUE, the NIS backend for the initgroups(3) function will accept the in-
formation from the netid.byname NIS map as authoritative. This can speed up
the function significantly if the group.byname map is large. The content of the
netid.byname map is used as is. The system administrator has to make sure it is
correctly generated.

SERVICES_AUTHORITATIVE = TRUE |FALSE
If set to TRUE, the NIS backend for the getservbyname(3) and getservby-
name_r(3) functions will assume that the services.byservicename NIS map exists
and is authoritative, particularly that it contains both keys with /proto and with-
out /proto for both primary service names and service aliases. The system ad-
ministrator has to make sure it is correctly generated.

SETENT_BATCH_READ = TRUE |FALSE
If set to TRUE, the NIS backend for the setpwent(3) and setgrent(3) functions
will read the entire database at once and then hand out the requests one by one
from memory with every corresponding getpwent(3) or getgrent(3) call respec-
tively. Otherwise, each getpwent(3) or getgrent(3) call might result in a network
communication with the server to get the next entry.

FILES
/etc/default/nss

EXAMPLES
The default configuration corresponds to the following configuration file:

NETID_AUTHORITATIVE=FALSE
SERVICES_AUTHORITATIVE=FALSE

Linux man-pages 6.16 2025-05-17 2999

nss(5) File Formats Manual nss(5)

SETENT_BATCH_READ=FALSE

SEE ALSO
nsswitch.conf(5)

Linux man-pages 6.16 2025-05-17 3000

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

NAME
nsswitch.conf - Name Service Switch configuration file

DESCRIPTION
The Name Service Switch (NSS) configuration file, /etc/nsswitch.conf , is used by the
GNU C Library and certain other applications to determine the sources from which to
obtain name-service information in a range of categories, and in what order. Each cate-
gory of information is identified by a database name.

The file is plain ASCII text, with columns separated by spaces or tab characters. The
first column specifies the database name. The remaining columns describe the order of
sources to query and a limited set of actions that can be performed by lookup result.

The following databases are understood by the GNU C Library:

aliases Mail aliases, used by getaliasent(3) and related functions.

ethers Ethernet numbers.

group Groups of users, used by getgrent(3) and related functions.

hosts Host names and numbers, used by gethostbyname(3) and related func-
tions.

initgroups Supplementary group access list, used by getgrouplist(3) function.

netgroup Network-wide list of hosts and users, used for access rules. C libraries
before glibc 2.1 supported netgroups only over NIS.

networks Network names and numbers, used by getnetent(3) and related functions.

passwd User passwords, used by getpwent(3) and related functions.

protocols Network protocols, used by getprotoent(3) and related functions.

publickey Public and secret keys for Secure_RPC used by NFS and NIS+.

rpc Remote procedure call names and numbers, used by getrpcbyname(3)
and related functions.

services Network services, used by getservent(3) and related functions.

shadow Shadow user passwords, used by getspnam(3) and related functions.

The GNU C Library ignores databases with unknown names. Some applications use
this to implement special handling for their own databases. For example, sudo(8) con-
sults the sudoers database. Delegation of subordinate user/group IDs can be configured
using the subid database. Refer to subuid(5) and subgid(5) for more details.

Here is an example /etc/nsswitch.conf file:

passwd: compat
group: compat
shadow: compat

hosts: dns [!UNAVAIL=return] files
networks: nis [NOTFOUND=return] files
ethers: nis [NOTFOUND=return] files

Linux man-pages 6.16 2025-05-17 3001

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

protocols: nis [NOTFOUND=return] files
rpc: nis [NOTFOUND=return] files
services: nis [NOTFOUND=return] files

The first column is the database name. The remaining columns specify:

• One or more service specifications, for example, "files", "db", or "nis". The order of
the services on the line determines the order in which those services will be queried,
in turn, until a result is found.

• Optional actions to perform if a particular result is obtained from the preceding ser-
vice, for example, "[NOTFOUND=return]".

The service specifications supported on your system depend on the presence of shared
libraries, and are therefore extensible. Libraries called /lib/libnss_SERVICE.so.X will
provide the named SERVICE. On a standard installation, you can use "files", "db",
"nis", and "nisplus". For the hosts database, you can additionally specify "dns". For the
passwd, group, and shadow databases, you can additionally specify "compat" (see
Compatibility mode below). The version number X may be 1 for glibc 2.0, or 2 for
glibc 2.1 and later. On systems with additional libraries installed, you may have access
to further services such as "hesiod", "ldap", "winbind", and "wins".

An action may also be specified following a service specification. The action modifies
the behavior following a result obtained from the preceding data source. Action items
take the general form:

[STATUS=ACTION]
[!STATUS=ACTION]

where

STATUS => success | notfound | unavail | tryagain
ACTION => return | continue | merge

The ! negates the test, matching all possible results except the one specified. The case of
the keywords is not significant.

The STATUS value is matched against the result of the lookup function called by the
preceding service specification, and can be one of:

success No error occurred and the requested entry is returned. The default
action for this condition is "return".

notfound The lookup succeeded, but the requested entry was not found. The
default action for this condition is "continue".

unavail The service is permanently unavailable. This can mean either that
the required file cannot be read, or, for network services, that the
server is not available or does not allow queries. The default action
for this condition is "continue".

tryagain The service is temporarily unavailable. This could mean a file is
locked or a server currently cannot accept more connections. The
default action for this condition is "continue".

The ACTION value can be one of:

Linux man-pages 6.16 2025-05-17 3002

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

return Return a result now. Do not call any further lookup functions.
However, for compatibility reasons, if this is the selected action for
the group database and the notfound status, and the configuration
file does not contain the initgroups line, the next lookup function is
always called, without affecting the search result.

continue Call the next lookup function.

merge [SUCCESS=merge] is used between two database entries. When a
group is located in the first of the two group entries, processing will
continue on to the next one. If the group is also found in the next
entry (and the group name and GID are an exact match), the mem-
ber list of the second entry will be added to the group object to be
returned. Available since glibc 2.24. Note that merging will not be
done for getgrent(3) nor will duplicate members be pruned when
they occur in both entries being merged.

Compatibility mode (compat)
The NSS "compat" service is similar to "files" except that it additionally permits special
entries in corresponding files for granting users or members of netgroups access to the
system. The following entries are valid in this mode:

For passwd and shadow databases:

+user Include the specified user from the NIS passwd/shadow map.

+@netgroup Include all users in the given netgroup.

-user Exclude the specified user from the NIS passwd/shadow map.

-@netgroup Exclude all users in the given netgroup.

+ Include every user, except previously excluded ones, from the
NIS passwd/shadow map.

For group database:

+group Include the specified group from the NIS group map.

-group Exclude the specified group from the NIS group map.

+ Include every group, except previously excluded ones, from the
NIS group map.

By default, the source is "nis", but this may be overridden by specifying any NSS ser-
vice except "compat" itself as the source for the pseudo-databases passwd_compat,
group_compat, and shadow_compat.

FILES
A service named SERVICE is implemented by a shared object library named lib-
nss_SERVICE.so.X that resides in /lib.

/etc/nsswitch.conf NSS configuration file.
/lib/libnss_compat.so.X implements "compat" source.
/lib/libnss_db.so.X implements "db" source.

Linux man-pages 6.16 2025-05-17 3003

nsswitch.conf (5) File Formats Manual nsswitch.conf (5)

/lib/libnss_dns.so.X implements "dns" source.
/lib/libnss_files.so.X implements "files" source.
/lib/libnss_hesiod.so.X implements "hesiod" source.
/lib/libnss_nis.so.X implements "nis" source.
/lib/libnss_nisplus.so.X implements "nisplus" source.

The following files are read when "files" source is specified for respective databases:

aliases /etc/aliases
ethers /etc/ethers
group /etc/group
hosts /etc/hosts
initgroups /etc/group
netgroup /etc/netgroup
networks /etc/networks
passwd /etc/passwd
protocols /etc/protocols
publickey /etc/publickey
rpc /etc/rpc
services /etc/services
shadow /etc/shadow

NOTES
Starting with glibc 2.33, nsswitch.conf is automatically reloaded if the file is changed.
In earlier versions, the entire file was read only once within each process. If the file was
later changed, the process would continue using the old configuration.

Traditionally, there was only a single source for service information, often in the form of
a single configuration file (e.g., /etc/passwd). However, as other name services, such as
the Network Information Service (NIS) and the Domain Name Service (DNS), became
popular, a method was needed that would be more flexible than fixed search orders
coded into the C library. The Name Service Switch mechanism, which was based on the
mechanism used by Sun Microsystems in the Solaris 2 C library, introduced a cleaner
solution to the problem.

SEE ALSO
getent(1), nss(5)

Linux man-pages 6.16 2025-05-17 3004

passwd(5) File Formats Manual passwd(5)

NAME
passwd - password file

DESCRIPTION
The /etc/passwd file is a text file that describes user login accounts for the system. It
should have read permission allowed for all users (many utilities, like ls(1) use it to map
user IDs to usernames), but write access only for the superuser.

In the good old days there was no great problem with this general read permission.
Everybody could read the encrypted passwords, but the hardware was too slow to crack
a well-chosen password, and moreover the basic assumption used to be that of a friendly
user-community. These days many people run some version of the shadow password
suite, where /etc/passwd has an 'x' character in the password field, and the encrypted
passwords are in /etc/shadow, which is readable by the superuser only.

If the encrypted password, whether in /etc/passwd or in /etc/shadow, is an empty string,
login is allowed without even asking for a password. Note that this functionality may be
intentionally disabled in applications, or configurable (for example using the "nullok" or
"nonull" arguments to pam_unix(8)).

If the encrypted password in /etc/passwd is "*NP*" (without the quotes), the shadow
record should be obtained from an NIS+ server.

Regardless of whether shadow passwords are used, many system administrators use an
asterisk (*) in the encrypted password field to make sure that this user can not authenti-
cate themself using a password. (But see NOTES below.)

If you create a new login, first put an asterisk (*) in the password field, then use
passwd(1) to set it.

Each line of the file describes a single user, and contains seven colon-separated fields:

name:password:UID:GID:GECOS:directory:shell

The field are as follows:

name This is the user’s login name. It should not contain capital letters.

password This is either the encrypted user password, an asterisk (*), or the letter 'x'.
(See pwconv(8) for an explanation of 'x'.)

UID The privileged root login account (superuser) has the user ID 0.

GID This is the numeric primary group ID for this user. (Additional groups
for the user are defined in the system group file; see group(5)).

GECOS This field (sometimes called the "comment field") is optional and used
only for informational purposes. Usually, it contains the full username.
Some programs (for example, finger(1)) display information from this
field.

GECOS stands for "General Electric Comprehensive Operating System",
which was renamed to GCOS when GE’s large systems division was sold
to Honeywell. Dennis Ritchie has reported: "Sometimes we sent printer
output or batch jobs to the GCOS machine. The gcos field in the pass-
word file was a place to stash the information for the $IDENTcard. Not

Linux man-pages 6.16 2025-09-21 3005

passwd(5) File Formats Manual passwd(5)

elegant."

directory This is the user’s home directory: the initial directory where the user is
placed after logging in. The value in this field is used to set the HOME
environment variable.

shell This is the program to run at login (if empty, use /bin/sh). If set to a
nonexistent executable, the user will be unable to login through lo-
gin(1)The value in this field is used to set the SHELL environment vari-
able.

FILES
/etc/passwd

NOTES
If you want to create user groups, there must be an entry in /etc/group, or no group will
exist.

If the encrypted password is set to an asterisk (*), the user will be unable to login using
login(1), but may still login using rlogin(1), run existing processes and initiate new ones
through rsh(1), cron(8), at(1), or mail filters, etc. Trying to lock an account by simply
changing the shell field yields the same result and additionally allows the use of su(1)

SEE ALSO
chfn(1), chsh(1), login(1), passwd(1), su(1), crypt(3), getpwent(3), getpwnam(3),
group(5), shadow(5), vipw(8)

Linux man-pages 6.16 2025-09-21 3006

proc(5) File Formats Manual proc(5)

NAME
proc - process information, system information, and sysctl pseudo-filesystem

DESCRIPTION
The proc filesystem is a pseudo-filesystem which provides an interface to kernel data
structures. It is commonly mounted at /proc. Typically, it is mounted automatically by
the system, but it can also be mounted manually using a command such as:

mount -t proc proc /proc

Most of the files in the proc filesystem are read-only, but some files are writable, allow-
ing kernel variables to be changed.

Mount options
The proc filesystem supports the following mount options:

hidepid=n (since Linux 3.3)
This option controls who can access the information in /proc/ pid directories.
The argument, n, is one of the following values:

Everybody may access all
/proc/ pid directories. This is the traditional behavior, and the default if this
mount option is not specified.

1 Users may not access files and subdirectories inside any /proc/ pid directo-
ries but their own (the /proc/ pid directories themselves remain visible).
Sensitive files such as /proc/ pid /cmdline and /proc/ pid /status are now pro-
tected against other users. This makes it impossible to learn whether any
user is running a specific program (so long as the program doesn’t other-
wise reveal itself by its behavior).

2 As for mode 1, but in addition the /proc/ pid directories belonging to other
users become invisible. This means that /proc/ pid entries can no longer be
used to discover the PIDs on the system. This doesn’t hide the fact that a
process with a specific PID value exists (it can be learned by other means,
for example, by "kill -0 $PID"), but it hides a process’s UID and GID,
which could otherwise be learned by employing stat(2) on a /proc/ pid di-
rectory. This greatly complicates an attacker’s task of gathering informa-
tion about running processes (e.g., discovering whether some daemon is
running with elevated privileges, whether another user is running some sen-
sitive program, whether other users are running any program at all, and so
on).

gid=gid (since Linux 3.3)
Specifies the ID of a group whose members are authorized to learn process
information otherwise prohibited by hidepid (i.e., users in this group be-
have as though /proc was mounted with hidepid=0). This group should be
used instead of approaches such as putting nonroot users into the sudoers(5)
file.

subset=pid (since Linux 5.8)
Show only the specified subset of procfs, hiding all top level files and directories
in the procfs that are not related to tasks.

Linux man-pages 6.16 2025-10-05 3007

proc(5) File Formats Manual proc(5)

Overview
Underneath /proc, there are the following general groups of files and subdirectories:

/proc/ pid subdirectories
Each one of these subdirectories contains files and subdirectories exposing infor-
mation about the process with the corresponding process ID.

Underneath each of the /proc/ pid directories, a task subdirectory contains subdi-
rectories of the form task/ tid, which contain corresponding information about
each of the threads in the process, where tid is the kernel thread ID of the thread.

The /proc/ pid subdirectories are visible when iterating through /proc with get-
dents(2) (and thus are visible when one uses ls(1) to view the contents of /proc).

/proc/ tid subdirectories
Each one of these subdirectories contains files and subdirectories exposing infor-
mation about the thread with the corresponding thread ID. The contents of these
directories are the same as the corresponding /proc/ pid /task/ tid directories.

The /proc/ tid subdirectories are not visible when iterating through /proc with
getdents(2) (and thus are not visible when one uses ls(1) to view the contents of
/proc).

/proc/self
When a process accesses this magic symbolic link, it resolves to the process’s
own /proc/ pid directory.

/proc/thread-self
When a thread accesses this magic symbolic link, it resolves to the process’s own
/proc/self/task/ tid directory.

/proc/[a-z]*
Various other files and subdirectories under /proc expose system-wide informa-
tion.

All of the above are described in more detail in separate manpages whose names start
with proc_.

NOTES
Many files contain strings (e.g., the environment and command line) that are in the inter-
nal format, with subfields terminated by null bytes ('\0'). When inspecting such files,
you may find that the results are more readable if you use a command of the following
form to display them:

$ cat file | tr '\000' '\n'

SEE ALSO
cat(1), dmesg(1), find(1), free(1), htop(1), init(1), ps(1), pstree(1), tr(1), uptime(1),
chroot(2), mmap(2), readlink(2), syslog(2), slabinfo(5), sysfs(5), hier(7), namespaces(7),
time(7), arp(8), hdparm(8), ifconfig(8), lsmod(8), lspci(8), mount(8), netstat(8),
procinfo(8), route(8), sysctl(8)

The Linux kernel source files: Documentation/filesystems/proc.rst, Documentation/ad-
min-guide/sysctl/fs.rst, Documentation/admin-guide/sysctl/kernel.rst, Documenta-
tion/admin-guide/sysctl/net.rst, and Documentation/admin-guide/sysctl/vm.rst.

Linux man-pages 6.16 2025-10-05 3008

proc_apm(5) File Formats Manual proc_apm(5)

NAME
/proc/apm - advanced power management

DESCRIPTION
/proc/apm

Advanced power management version and battery information when CON-
FIG_APM is defined at kernel compilation time.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3009

proc_buddyinfo(5) File Formats Manual proc_buddyinfo(5)

NAME
/proc/buddyinfo - memory fragmentation

DESCRIPTION
/proc/buddyinfo

This file contains information which is used for diagnosing memory fragmenta-
tion issues. Each line starts with the identification of the node and the name of
the zone which together identify a memory region. This is then followed by the
count of available chunks of a certain order in which these zones are split. The
size in bytes of a certain order is given by the formula:

(2^order) * PAGE_SIZE

The binary buddy allocator algorithm inside the kernel will split one chunk into
two chunks of a smaller order (thus with half the size) or combine two contigu-
ous chunks into one larger chunk of a higher order (thus with double the size) to
satisfy allocation requests and to counter memory fragmentation. The order
matches the column number, when starting to count at zero.

For example on an x86-64 system:
Node 0, zone DMA 1 1 1 0 2 1 1 0 1 1 3
Node 0, zone DMA32 65 47 4 81 52 28 13 10 5 1 404
Node 0, zone Normal 216 55 189 101 84 38 37 27 5 3 587

In this example, there is one node containing three zones and there are 11 differ-
ent chunk sizes. If the page size is 4 kilobytes, then the first zone called DMA
(on x86 the first 16 megabyte of memory) has 1 chunk of 4 kilobytes (order 0)
available and has 3 chunks of 4 megabytes (order 10) available.

If the memory is heavily fragmented, the counters for higher order chunks will
be zero and allocation of large contiguous areas will fail.

Further information about the zones can be found in /proc/zoneinfo.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3010

proc_bus(5) File Formats Manual proc_bus(5)

NAME
/proc/bus/ - installed buses

DESCRIPTION
/proc/bus/

Contains subdirectories for installed buses.

/proc/bus/pccard/
Subdirectory for PCMCIA devices when CONFIG_PCMCIA is set at kernel
compilation time.

/proc/bus/pccard/drivers

/proc/bus/pci/
Contains various bus subdirectories and pseudo-files containing information
about PCI buses, installed devices, and device drivers. Some of these files are
not ASCII.

/proc/bus/pci/devices
Information about PCI devices. They may be accessed through lspci(8) and set-
pci(8)

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3011

proc_cgroups(5) File Formats Manual proc_cgroups(5)

NAME
/proc/cgroups - control groups

DESCRIPTION
/proc/cgroups (since Linux 2.6.24)

See cgroups(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3012

proc_cmdline(5) File Formats Manual proc_cmdline(5)

NAME
/proc/cmdline - kernel boot arguments

DESCRIPTION
/proc/cmdline

Arguments passed to the Linux kernel at boot time. Often done via a boot man-
ager such as lilo(8) or grub(8)Any arguments embedded in the kernel image or
initramfs via CONFIG_BOOT_CONFIG will also be displayed.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3013

proc_config.gz(5) File Formats Manual proc_config.gz(5)

NAME
/proc/config.gz - kernel build configuration

DESCRIPTION
/proc/config.gz (since Linux 2.6)

This file exposes the configuration options that were used to build the currently
running kernel, in the same format as they would be shown in the .config file that
resulted when configuring the kernel (using make xconfig, make config, or simi-
lar). The file contents are compressed; view or search them using zcat(1) and
zgrep(1)As long as no changes have been made to the following file, the contents
of /proc/config.gz are the same as those provided by:

cat /lib/modules/$(uname -r)/build/.config

/proc/config.gz is provided only if the kernel is configured with CONFIG_IK-
CONFIG_PROC.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3014

proc_cpuinfo(5) File Formats Manual proc_cpuinfo(5)

NAME
/proc/cpuinfo - CPU and system architecture information

DESCRIPTION
/proc/cpuinfo

This is a collection of CPU and system architecture dependent items, for each
supported architecture a different list. Two common entries are processor which
gives CPU number and bogomips; a system constant that is calculated during
kernel initialization. SMP machines have information for each CPU. The
lscpu(1) command gathers its information from this file.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3015

proc_crypto(5) File Formats Manual proc_crypto(5)

NAME
/proc/crypto - ciphers provided by kernel crypto API

DESCRIPTION
/proc/crypto

A list of the ciphers provided by the kernel crypto API. For details, see the ker-
nel Linux Kernel Crypto API documentation available under the kernel source
directory Documentation/crypto/ (or Documentation/DocBook before Linux
4.10; the documentation can be built using a command such as make htmldocs in
the root directory of the kernel source tree).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3016

proc_devices(5) File Formats Manual proc_devices(5)

NAME
/proc/devices - major numbers and device groups

DESCRIPTION
/proc/devices

Text listing of major numbers and device groups. This can be used by
MAKEDEV scripts for consistency with the kernel.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3017

proc_diskstats(5) File Formats Manual proc_diskstats(5)

NAME
/proc/diskstats - disk I/O statistics

DESCRIPTION
/proc/diskstats (since Linux 2.5.69)

This file contains disk I/O statistics for each disk device. See the Linux kernel
source file Documentation/admin-guide/iostats.rst (or Documenta-
tion/iostats.txt before Linux 5.3) for further information.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3018

proc_dma(5) File Formats Manual proc_dma(5)

NAME
/proc/dma - ISA DMA channels

DESCRIPTION
/proc/dma

This is a list of the registered ISA DMA (direct memory access) channels in use.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3019

proc_driver(5) File Formats Manual proc_driver(5)

NAME
/proc/driver/ - empty dir

DESCRIPTION
/proc/driver/

Empty subdirectory.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3020

proc_execdomains(5) File Formats Manual proc_execdomains(5)

NAME
/proc/execdomains - ABI personalities (obsolete)

DESCRIPTION
/proc/execdomains

Used to list ABI personalities before Linux 4.1; now contains a constant string
for userspace compatibility.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3021

proc_fb(5) File Formats Manual proc_fb(5)

NAME
/proc/fb - frame buffer

DESCRIPTION
/proc/fb

Frame buffer information when CONFIG_FB is defined during kernel compila-
tion.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3022

proc_filesystems(5) File Formats Manual proc_filesystems(5)

NAME
/proc/filesystems - supported filesystems

DESCRIPTION
/proc/filesystems

A text listing of the filesystems which are supported by the kernel, namely
filesystems which were compiled into the kernel or whose kernel modules are
currently loaded. (See also filesystems(5).) If a filesystem is marked with
"nodev", this means that it does not require a block device to be mounted (e.g.,
virtual filesystem, network filesystem).

Incidentally, this file may be used by mount(8) when no filesystem is specified
and it didn’t manage to determine the filesystem type. Then filesystems con-
tained in this file are tried (excepted those that are marked with "nodev").

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3023

proc_fs(5) File Formats Manual proc_fs(5)

NAME
/proc/fs/ - mounted filesystems

DESCRIPTION
/proc/fs/

Contains subdirectories that in turn contain files with information about (certain)
mounted filesystems.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3024

proc_ide(5) File Formats Manual proc_ide(5)

NAME
/proc/ide/ - IDE channels and attached devices

DESCRIPTION
/proc/ide

This directory exists on systems with the IDE bus. There are directories for each
IDE channel and attached device. Files include:

cache buffer size in KB
capacity number of sectors
driver driver version
geometry physical and logical geometry
identify in hexadecimal
media media type
model manufacturer's model number
settings drive settings
smart_thresholds IDE disk management thresholds (in hex)
smart_values IDE disk management values (in hex)

The hdparm(8) utility provides access to this information in a friendly format.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3025

proc_interrupts(5) File Formats Manual proc_interrupts(5)

NAME
/proc/interrupts - number of interrupts

DESCRIPTION
/proc/interrupts

This is used to record the number of interrupts per CPU per IO device. Since
Linux 2.6.24, for the i386 and x86-64 architectures, at least, this also includes in-
terrupts internal to the system (that is, not associated with a device as such), such
as NMI (nonmaskable interrupt), LOC (local timer interrupt), and for SMP sys-
tems, TLB (TLB flush interrupt), RES (rescheduling interrupt), CAL (remote
function call interrupt), and possibly others. Very easy to read formatting, done
in ASCII.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3026

proc_iomem(5) File Formats Manual proc_iomem(5)

NAME
/proc/iomem - I/O memory map

DESCRIPTION
/proc/iomem

I/O memory map in Linux 2.4.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3027

proc_ioports(5) File Formats Manual proc_ioports(5)

NAME
/proc/ioports - I/O port regions

DESCRIPTION
/proc/ioports

This is a list of currently registered Input-Output port regions that are in use.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3028

proc_kallsyms(5) File Formats Manual proc_kallsyms(5)

NAME
/proc/kallsyms - kernel exported symbols

DESCRIPTION
/proc/kallsyms (since Linux 2.5.71)

This holds the kernel exported symbol definitions used by the modules(X) tools
to dynamically link and bind loadable modules. In Linux 2.5.47 and earlier, a
similar file with slightly different syntax was named ksyms.

HISTORY
/proc/ksyms (Linux 1.1.23–2.5.47)

See /proc/kallsyms.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3029

proc_kcore(5) File Formats Manual proc_kcore(5)

NAME
/proc/kcore - physical memory

DESCRIPTION
/proc/kcore

This file represents the physical memory of the system and is stored in the ELF
core file format. With this pseudo-file, and an unstripped kernel
(/usr/src/linux/vmlinux) binary, GDB can be used to examine the current state of
any kernel data structures.

The total length of the file is the size of physical memory (RAM) plus 4 KiB.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3030

proc_keys(5) File Formats Manual proc_keys(5)

NAME
/proc/keys, /proc/key-users - in-kernel key management

DESCRIPTION
/proc/keys (since Linux 2.6.10)

See keyrings(7).

/proc/key-users (since Linux 2.6.10)
See keyrings(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3031

proc_kmsg(5) File Formats Manual proc_kmsg(5)

NAME
/proc/kmsg - kernel messages

DESCRIPTION
/proc/kmsg

This file can be used instead of the syslog(2) system call to read kernel messages.
A process must have superuser privileges to read this file, and only one process
should read this file. This file should not be read if a syslog process is running
which uses the syslog(2) system call facility to log kernel messages.

Information in this file is retrieved with the dmesg(1) program.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3032

proc_kpagecgroup(5) File Formats Manual proc_kpagecgroup(5)

NAME
/proc/kpagecgroup - memory cgroups

DESCRIPTION
/proc/kpagecgroup (since Linux 4.3)

This file contains a 64-bit inode number of the memory cgroup each page is
charged to, indexed by page frame number (see the discussion of
/proc/ pid /pagemap).

The /proc/kpagecgroup file is present only if the CONFIG_MEMCG kernel
configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3033

proc_kpagecount(5) File Formats Manual proc_kpagecount(5)

NAME
/proc/kpagecount - count of mappings of physical pages

DESCRIPTION
/proc/kpagecount (since Linux 2.6.25)

This file contains a 64-bit count of the number of times each physical page frame
is mapped, indexed by page frame number (see the discussion of
/proc/ pid /pagemap).

The /proc/kpagecount file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3034

proc_kpageflags(5) File Formats Manual proc_kpageflags(5)

NAME
/proc/kpageflags - physical pages frame masks

DESCRIPTION
/proc/kpageflags (since Linux 2.6.25)

This file contains 64-bit masks corresponding to each physical page frame; it is
indexed by page frame number (see the discussion of /proc/ pid /pagemap). The
bits are as follows:

0 - KPF_LOCKED
1 - KPF_ERROR
2 - KPF_REFERENCED
3 - KPF_UPTODATE
4 - KPF_DIRTY
5 - KPF_LRU
6 - KPF_ACTIVE
7 - KPF_SLAB
8 - KPF_WRITEBACK
9 - KPF_RECLAIM

10 - KPF_BUDDY
11 - KPF_MMAP (since Linux 2.6.31)
12 - KPF_ANON (since Linux 2.6.31)
13 - KPF_SWAPCACHE (since Linux 2.6.31)
14 - KPF_SWAPBACKED (since Linux 2.6.31)
15 - KPF_COMPOUND_HEAD (since Linux 2.6.31)
16 - KPF_COMPOUND_TAIL (since Linux 2.6.31)
17 - KPF_HUGE (since Linux 2.6.31)
18 - KPF_UNEVICTABLE (since Linux 2.6.31)
19 - KPF_HWPOISON (since Linux 2.6.31)
20 - KPF_NOPAGE (since Linux 2.6.31)
21 - KPF_KSM (since Linux 2.6.32)
22 - KPF_THP (since Linux 3.4)
23 - KPF_BALLOON (since Linux 3.18)
24 - KPF_ZERO_PAGE (since Linux 4.0)
25 - KPF_IDLE (since Linux 4.3)
26 - KPF_PGTABLE (since Linux 4.18)

For further details on the meanings of these bits, see the kernel source file Docu-
mentation/admin-guide/mm/pagemap.rst. Before Linux 2.6.29, KPF_WRITE-
BACK, KPF_RECLAIM, KPF_BUDDY, and KPF_LOCKED did not report
correctly.

The /proc/kpageflags file is present only if the CONFIG_PROC_PAGE_MON-
ITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3035

proc_loadavg(5) File Formats Manual proc_loadavg(5)

NAME
/proc/loadavg - load average

DESCRIPTION
/proc/loadavg

The first three fields in this file are load average figures giving the number of
jobs in the run queue (state R) or waiting for disk I/O (state D) averaged over 1,
5, and 15 minutes. They are the same as the load average numbers given by up-
time(1) and other programs. The fourth field consists of two numbers separated
by a slash (/). The first of these is the number of currently runnable kernel
scheduling entities (processes, threads). The value after the slash is the number
of kernel scheduling entities that currently exist on the system. The fifth field is
the PID of the process that was most recently created on the system.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3036

proc_locks(5) File Formats Manual proc_locks(5)

NAME
/proc/locks - current file locks and leases

DESCRIPTION
/proc/locks

This file shows current file locks (flock(2) and fcntl(2)) and leases (fcntl(2)).

An example of the content shown in this file is the following:

1: POSIX ADVISORY READ 5433 08:01:7864448 128 128
2: FLOCK ADVISORY WRITE 2001 08:01:7864554 0 EOF
3: FLOCK ADVISORY WRITE 1568 00:2f:32388 0 EOF
4: POSIX ADVISORY WRITE 699 00:16:28457 0 EOF
5: POSIX ADVISORY WRITE 764 00:16:21448 0 0
6: POSIX ADVISORY READ 3548 08:01:7867240 1 1
7: POSIX ADVISORY READ 3548 08:01:7865567 1826 2335
8: OFDLCK ADVISORY WRITE -1 08:01:8713209 128 191

The fields shown in each line are as follows:

[1] The ordinal position of the lock in the list.

[2] The lock type. Values that may appear here include:

FLOCK
This is a BSD file lock created using flock(2).

OFDLCK
This is an open file description (OFD) lock created using fcntl(2).

POSIX
This is a POSIX byte-range lock created using fcntl(2).

[3] Among the strings that can appear here are the following:

ADVISORY
This is an advisory lock.

MANDATORY
This is a mandatory lock.

[4] The type of lock. Values that can appear here are:

READ
This is a POSIX or OFD read lock, or a BSD shared lock.

WRITE
This is a POSIX or OFD write lock, or a BSD exclusive lock.

[5] The PID of the process that owns the lock.

Because OFD locks are not owned by a single process (since multiple
processes may have file descriptors that refer to the same open file descrip-
tion), the value -1 is displayed in this field for OFD locks. (Before Linux
4.14, a bug meant that the PID of the process that initially acquired the
lock was displayed instead of the value -1.)

Linux man-pages 6.16 2025-05-17 3037

proc_locks(5) File Formats Manual proc_locks(5)

[6] Three colon-separated subfields that identify the major and minor device
ID of the device containing the filesystem where the locked file resides,
followed by the inode number of the locked file.

[7] The byte offset of the first byte of the lock. For BSD locks, this value is
always 0.

[8] The byte offset of the last byte of the lock. EOF in this field means that
the lock extends to the end of the file. For BSD locks, the value shown is
always EOF .

Since Linux 4.9, the list of locks shown in /proc/locks is filtered to show just the
locks for the processes in the PID namespace (see pid_namespaces(7)) for which
the /proc filesystem was mounted. (In the initial PID namespace, there is no fil-
tering of the records shown in this file.)

The lslocks(8) command provides a bit more information about each lock.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3038

proc_malloc(5) File Formats Manual proc_malloc(5)

NAME
/proc/malloc - debug malloc (obsolete)

DESCRIPTION
/proc/malloc (only up to and including Linux 2.2)

This file is present only if CONFIG_DEBUG_MALLOC was defined during
compilation.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3039

proc_meminfo(5) File Formats Manual proc_meminfo(5)

NAME
/proc/meminfo - memory usage

DESCRIPTION
/proc/meminfo

This file reports statistics about memory usage on the system. It is used by
free(1) to report the amount of free and used memory (both physical and swap)
on the system as well as the shared memory and buffers used by the kernel.
Each line of the file consists of a parameter name, followed by a colon, the value
of the parameter, and an option unit of measurement (e.g., "kB"). The list below
describes the parameter names and the format specifier required to read the field
value. Except as noted below, all of the fields have been present since at least
Linux 2.6.0. Some fields are displayed only if the kernel was configured with
various options; those dependencies are noted in the list.

MemTotal %lu
Total usable RAM (i.e., physical RAM minus a few reserved bits and the
kernel binary code).

MemFree %lu
The sum of LowFree+HighFree.

MemAvailable %lu (since Linux 3.14)
An estimate of how much memory is available for starting new applica-
tions, without swapping.

Buffers %lu
Relatively temporary storage for raw disk blocks that shouldn’t get
tremendously large (20 MB or so).

Cached %lu
In-memory cache for files read from the disk (the page cache). Doesn’t
include SwapCached .

SwapCached %lu
Memory that once was swapped out, is swapped back in but still also is
in the swap file. (If memory pressure is high, these pages don’t need to
be swapped out again because they are already in the swap file. This
saves I/O.)

Active %lu
Memory that has been used more recently and usually not reclaimed un-
less absolutely necessary.

Inactive %lu
Memory which has been less recently used. It is more eligible to be re-
claimed for other purposes.

Active(anon) %lu (since Linux 2.6.28)
[To be documented.]

Inactive(anon) %lu (since Linux 2.6.28)
[To be documented.]

Linux man-pages 6.16 2025-09-21 3040

proc_meminfo(5) File Formats Manual proc_meminfo(5)

Active(file) %lu (since Linux 2.6.28)
[To be documented.]

Inactive(file) %lu (since Linux 2.6.28)
[To be documented.]

Unevictable %lu (since Linux 2.6.28)
(From Linux 2.6.28 to Linux 2.6.30, CONFIG_UNEVICTABLE_LRU
was required.) [To be documented.]

Mlocked %lu (since Linux 2.6.28)
(From Linux 2.6.28 to Linux 2.6.30, CONFIG_UNEVICTABLE_LRU
was required.) [To be documented.]

HighTotal %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) Total
amount of highmem. Highmem is all memory above ~860 MB of physi-
cal memory. Highmem areas are for use by user-space programs, or for
the page cache. The kernel must use tricks to access this memory, mak-
ing it slower to access than lowmem.

HighFree %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)
Amount of free highmem.

LowTotal %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.) Total
amount of lowmem. Lowmem is memory which can be used for every-
thing that highmem can be used for, but it is also available for the ker-
nel’s use for its own data structures. Among many other things, it is
where everything from Slab is allocated. Bad things happen when you’re
out of lowmem.

LowFree %lu
(Starting with Linux 2.6.19, CONFIG_HIGHMEM is required.)
Amount of free lowmem.

MmapCopy %lu (since Linux 2.6.29)
(CONFIG_MMU is required.) [To be documented.]

SwapTotal %lu
Total amount of swap space available.

SwapFree %lu
Amount of swap space that is currently unused.

Dirty %lu
Memory which is waiting to get written back to the disk.

Writeback %lu
Memory which is actively being written back to the disk.

AnonPages %lu (since Linux 2.6.18)
Non-file backed pages mapped into user-space page tables.

Linux man-pages 6.16 2025-09-21 3041

proc_meminfo(5) File Formats Manual proc_meminfo(5)

Mapped %lu
Files which have been mapped into memory (with mmap(2)), such as li-
braries.

Shmem %lu (since Linux 2.6.32)
Amount of memory consumed in tmpfs(5) filesystems, System V, and
POSIX shared memory, as well as shared anonymous mappings
(MAP_SHARED|MAP_ANONYMOUS).

KReclaimable %lu (since Linux 4.20)
Kernel allocations that the kernel will attempt to reclaim under memory
pressure. Includes SReclaimable (below), and other direct allocations
with a shrinker.

Slab %lu
In-kernel data structures cache. (See slabinfo(5).)

SReclaimable %lu (since Linux 2.6.19)
Part of Slab, that might be reclaimed, such as caches.

SUnreclaim %lu (since Linux 2.6.19)
Part of Slab, that cannot be reclaimed on memory pressure.

KernelStack %lu (since Linux 2.6.32)
Amount of memory allocated to kernel stacks.

PageTables %lu (since Linux 2.6.18)
Amount of memory dedicated to the lowest level of page tables.

Quicklists %lu (since Linux 2.6.27)
(CONFIG_QUICKLIST is required.) [To be documented.]

NFS_Unstable %lu (since Linux 2.6.18)
NFS pages sent to the server, but not yet committed to stable storage.

Bounce %lu (since Linux 2.6.18)
Memory used for block device "bounce buffers".

WritebackTmp %lu (since Linux 2.6.26)
Memory used by FUSE for temporary writeback buffers.

CommitLimit %lu (since Linux 2.6.10)
This is the total amount of memory currently available to be allocated on
the system, expressed in kilobytes. This limit is adhered to only if strict
overcommit accounting is enabled (mode 2 in /proc/sys/vm/overcom-
mit_memory). The limit is calculated according to the formula described
under /proc/sys/vm/overcommit_memory. For further details, see the ker-
nel source file Documentation/vm/overcommit-accounting.rst.

Committed_AS %lu
The amount of memory presently allocated on the system. The commit-
ted memory is a sum of all of the memory which has been allocated by
processes, even if it has not been "used" by them as of yet. A process
which allocates 1 GB of memory (using malloc(3) or similar), but
touches only 300 MB of that memory will show up as using only 300

Linux man-pages 6.16 2025-09-21 3042

proc_meminfo(5) File Formats Manual proc_meminfo(5)

MB of memory even if it has the address space allocated for the entire 1
GB.

This 1 GB is memory which has been "committed" to by the VM and can
be used at any time by the allocating application. With strict overcommit
enabled on the system (mode 2 in /proc/sys/vm/overcommit_memory), al-
locations which would exceed the CommitLimit will not be permitted.
This is useful if one needs to guarantee that processes will not fail due to
lack of memory once that memory has been successfully allocated.

VmallocTotal %lu
Total size of vmalloc memory area.

VmallocUsed %lu
Amount of vmalloc area which is used. Since Linux 4.4, this field is no
longer calculated, and is hard coded as 0. See /proc/vmallocinfo.

VmallocChunk %lu
Largest contiguous block of vmalloc area which is free. Since Linux 4.4,
this field is no longer calculated and is hard coded as 0. See /proc/vmal-
locinfo.

HardwareCorrupted %lu (since Linux 2.6.32)
(CONFIG_MEMORY_FAILURE is required.) [To be documented.]

LazyFree %lu (since Linux 4.12)
Shows the amount of memory marked by madvise(2) MADV_FREE.

AnonHugePages %lu (since Linux 2.6.38)
(CONFIG_TRANSPARENT_HUGEPAGE is required.) Non-file
backed huge pages mapped into user-space page tables.

ShmemHugePages %lu (since Linux 4.8)
(CONFIG_TRANSPARENT_HUGEPAGE is required.) Memory used
by shared memory (shmem) and tmpfs(5) allocated with huge pages.

ShmemPmdMapped %lu (since Linux 4.8)
(CONFIG_TRANSPARENT_HUGEPAGE is required.) Shared mem-
ory mapped into user space with huge pages.

CmaTotal %lu (since Linux 3.1)
Total CMA (Contiguous Memory Allocator) pages. (CONFIG_CMA is
required.)

CmaFree %lu (since Linux 3.1)
Free CMA (Contiguous Memory Allocator) pages. (CONFIG_CMA is
required.)

HugePages_Total %lu
(CONFIG_HUGETLB_PAGE is required.) The size of the pool of
huge pages.

HugePages_Free %lu
(CONFIG_HUGETLB_PAGE is required.) The number of huge pages
in the pool that are not yet allocated.

Linux man-pages 6.16 2025-09-21 3043

proc_meminfo(5) File Formats Manual proc_meminfo(5)

HugePages_Rsvd %lu (since Linux 2.6.17)
(CONFIG_HUGETLB_PAGE is required.) This is the number of huge
pages for which a commitment to allocate from the pool has been made,
but no allocation has yet been made. These reserved huge pages guaran-
tee that an application will be able to allocate a huge page from the pool
of huge pages at fault time.

HugePages_Surp %lu (since Linux 2.6.24)
(CONFIG_HUGETLB_PAGE is required.) This is the number of huge
pages in the pool above the value in /proc/sys/vm/nr_hugepages. The
maximum number of surplus huge pages is controlled by
/proc/sys/vm/nr_overcommit_hugepages.

Hugepagesize %lu
(CONFIG_HUGETLB_PAGE is required.) The size of huge pages.

DirectMap4k %lu (since Linux 2.6.27)
Number of bytes of RAM linearly mapped by kernel in 4 kB pages.
(x86.)

DirectMap4M %lu (since Linux 2.6.27)
Number of bytes of RAM linearly mapped by kernel in 4 MB pages.
(x86 with CONFIG_X86_64 or CONFIG_X86_PAE enabled.)

DirectMap2M %lu (since Linux 2.6.27)
Number of bytes of RAM linearly mapped by kernel in 2 MB pages.
(x86 with neither CONFIG_X86_64 nor CONFIG_X86_PAE enabled.)

DirectMap1G %lu (since Linux 2.6.27)
(x86 with CONFIG_X86_64 and CONFIG_X86_DIRECT_GB-
PAGES enabled.)

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3044

proc_modules(5) File Formats Manual proc_modules(5)

NAME
/proc/modules - loaded modules

DESCRIPTION
/proc/modules

A text list of the modules that have been loaded by the system. See also
lsmod(8)

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3045

proc_mtrr(5) File Formats Manual proc_mtrr(5)

NAME
/proc/mtrr - memory type range registers

DESCRIPTION
/proc/mtrr

Memory Type Range Registers. See the Linux kernel source file Documenta-
tion/x86/mtrr.rst (or Documentation/x86/mtrr.txt before Linux 5.2, or Documen-
tation/mtrr.txt before Linux 2.6.28) for details.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3046

proc_partitions(5) File Formats Manual proc_partitions(5)

NAME
/proc/partitions - major and minor numbers of partitions

DESCRIPTION
/proc/partitions

Contains the major and minor numbers of each partition as well as the number of
1024-byte blocks and the partition name.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3047

proc_pci(5) File Formats Manual proc_pci(5)

NAME
/proc/pci - PCI devices

DESCRIPTION
/proc/pci

This is a listing of all PCI devices found during kernel initialization and their
configuration.

This file has been deprecated in favor of a new /proc interface for PCI
(/proc/bus/pci). It became optional in Linux 2.2 (available with CON-
FIG_PCI_OLD_PROC set at kernel compilation). It became once more
nonoptionally enabled in Linux 2.4. Next, it was deprecated in Linux 2.6 (still
available with CONFIG_PCI_LEGACY_PROC set), and finally removed alto-
gether since Linux 2.6.17.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3048

proc_pid(5) File Formats Manual proc_pid(5)

NAME
/proc/pid/, /proc/self/ - process information

DESCRIPTION
/proc/ pid /

There is a numerical subdirectory for each running process; the subdirectory is
named by the process ID. Each /proc/ pid subdirectory contains the pseudo-files
and directories described below.

The files inside each /proc/ pid directory are normally owned by the effective
user and effective group ID of the process. However, as a security measure, the
ownership is made root:root if the process’s "dumpable" attribute is set to a
value other than 1.

Before Linux 4.11, root:root meant the "global" root user ID and group ID (i.e.,
UID 0 and GID 0 in the initial user namespace). Since Linux 4.11, if the process
is in a noninitial user namespace that has a valid mapping for user (group) ID 0
inside the namespace, then the user (group) ownership of the files under
/proc/ pid is instead made the same as the root user (group) ID of the namespace.
This means that inside a container, things work as expected for the container
"root" user.

The process’s "dumpable" attribute may change for the following reasons:

• The attribute was explicitly set via the prctl(2) PR_SET_DUMPABLE oper-
ation.

• The attribute was reset to the value in the file /proc/sys/fs/suid_dumpable
(described below), for the reasons described in prctl(2).

Resetting the "dumpable" attribute to 1 reverts the ownership of the /proc/ pid /*
files to the process’s effective UID and GID. Note, however, that if the effective
UID or GID is subsequently modified, then the "dumpable" attribute may be re-
set, as described in prctl(2). Therefore, it may be desirable to reset the
"dumpable" attribute after making any desired changes to the process’s effective
UID or GID.

/proc/self/
This directory refers to the process accessing the /proc filesystem, and is identi-
cal to the /proc directory named by the process ID of the same process.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3049

proc_pid_attr(5) File Formats Manual proc_pid_attr(5)

NAME
/proc/pid/attr/ - security-related attributes

DESCRIPTION
/proc/ pid /attr/

The files in this directory provide an API for security modules. The contents of
this directory are files that can be read and written in order to set security-related
attributes. This directory was added to support SELinux, but the intention was
that the API be general enough to support other security modules. For the pur-
pose of explanation, examples of how SELinux uses these files are provided be-
low.

This directory is present only if the kernel was configured with CONFIG_SE-
CURITY.

/proc/ pid /attr/current (since Linux 2.6.0)
The contents of this file represent the current security attributes of the process.

In SELinux, this file is used to get the security context of a process. Prior to
Linux 2.6.11, this file could not be used to set the security context (a write was
always denied), since SELinux limited process security transitions to execve(2)
(see the description of /proc/ pid /attr/exec, below). Since Linux 2.6.11,
SELinux lifted this restriction and began supporting "set" operations via writes
to this node if authorized by policy, although use of this operation is only suit-
able for applications that are trusted to maintain any desired separation between
the old and new security contexts.

Prior to Linux 2.6.28, SELinux did not allow threads within a multithreaded
process to set their security context via this node as it would yield an inconsis-
tency among the security contexts of the threads sharing the same memory
space. Since Linux 2.6.28, SELinux lifted this restriction and began supporting
"set" operations for threads within a multithreaded process if the new security
context is bounded by the old security context, where the bounded relation is de-
fined in policy and guarantees that the new security context has a subset of the
permissions of the old security context.

Other security modules may choose to support "set" operations via writes to this
node.

/proc/ pid /attr/exec (since Linux 2.6.0)
This file represents the attributes to assign to the process upon a subsequent ex-
ecve(2).

In SELinux, this is needed to support role/domain transitions, and execve(2) is
the preferred point to make such transitions because it offers better control over
the initialization of the process in the new security label and the inheritance of
state. In SELinux, this attribute is reset on execve(2) so that the new program re-
verts to the default behavior for any execve(2) calls that it may make. In
SELinux, a process can set only its own /proc/ pid /attr/exec attribute.

Linux man-pages 6.16 2025-05-17 3050

proc_pid_attr(5) File Formats Manual proc_pid_attr(5)

/proc/ pid /attr/fscreate (since Linux 2.6.0)
This file represents the attributes to assign to files created by subsequent calls to
open(2), mkdir(2), symlink(2), and mknod(2)

SELinux employs this file to support creation of a file (using the aforementioned
system calls) in a secure state, so that there is no risk of inappropriate access be-
ing obtained between the time of creation and the time that attributes are set. In
SELinux, this attribute is reset on execve(2), so that the new program reverts to
the default behavior for any file creation calls it may make, but the attribute will
persist across multiple file creation calls within a program unless it is explicitly
reset. In SELinux, a process can set only its own /proc/ pid /attr/fscreate at-
tribute.

/proc/ pid /attr/keycreate (since Linux 2.6.18)
If a process writes a security context into this file, all subsequently created keys
(add_key(2)) will be labeled with this context. For further information, see the
kernel source file Documentation/security/keys/core.rst (or file Documenta-
tion/security/keys.txt between Linux 3.0 and Linux 4.13, or Documenta-
tion/keys.txt before Linux 3.0).

/proc/ pid /attr/prev (since Linux 2.6.0)
This file contains the security context of the process before the last execve(2);
that is, the previous value of /proc/ pid /attr/current.

/proc/ pid /attr/socketcreate (since Linux 2.6.18)
If a process writes a security context into this file, all subsequently created sock-
ets will be labeled with this context.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3051

proc_pid_autogroup(5) File Formats Manual proc_pid_autogroup(5)

NAME
proc_pid_autogroup - group tasks for the scheduler

DESCRIPTION
/proc/ pid /autogroup (since Linux 2.6.38)

See sched(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3052

proc_pid_auxv(5) File Formats Manual proc_pid_auxv(5)

NAME
/proc/pid/auxv - exec(3) information

DESCRIPTION
/proc/ pid /auxv (since Linux 2.6.0)

This contains the contents of the ELF interpreter information passed to the
process at exec time. The format is one unsigned long ID plus one unsigned
long value for each entry. The last entry contains two zeros. See also getaux-
val(3).

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3053

proc_pid_cgroup(5) File Formats Manual proc_pid_cgroup(5)

NAME
/proc/pid/cgroup - control group

DESCRIPTION
/proc/ pid /cgroup (since Linux 2.6.24)

See cgroups(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3054

proc_pid_clear_refs(5) File Formats Manual proc_pid_clear_refs(5)

NAME
/proc/pid/clear_refs - reset the PG_Referenced and ACCESSED/YOUNG bits

DESCRIPTION
/proc/ pid /clear_refs (since Linux 2.6.22)

This is a write-only file, writable only by owner of the process.

The following values may be written to the file:

1 (since Linux 2.6.22)
Reset the PG_Referenced and ACCESSED/YOUNG bits for all the pages
associated with the process. (Before Linux 2.6.32, writing any nonzero
value to this file had this effect.)

2 (since Linux 2.6.32)
Reset the PG_Referenced and ACCESSED/YOUNG bits for all anony-
mous pages associated with the process.

3 (since Linux 2.6.32)
Reset the PG_Referenced and ACCESSED/YOUNG bits for all file-
mapped pages associated with the process.

Clearing the PG_Referenced and ACCESSED/YOUNG bits provides a method
to measure approximately how much memory a process is using. One first in-
spects the values in the "Referenced" fields for the VMAs shown in
/proc/ pid /smaps to get an idea of the memory footprint of the process. One then
clears the PG_Referenced and ACCESSED/YOUNG bits and, after some mea-
sured time interval, once again inspects the values in the "Referenced" fields to
get an idea of the change in memory footprint of the process during the mea-
sured interval. If one is interested only in inspecting the selected mapping types,
then the value 2 or 3 can be used instead of 1.

Further values can be written to affect different properties:

4 (since Linux 3.11)
Clear the soft-dirty bit for all the pages associated with the process. This
is used (in conjunction with /proc/ pid /pagemap) by the check-point re-
store system to discover which pages of a process have been dirtied since
the file /proc/ pid /clear_refs was written to.

5 (since Linux 4.0)
Reset the peak resident set size ("high water mark") to the process’s cur-
rent resident set size value.

Writing any value to /proc/ pid /clear_refs other than those listed above has no
effect.

The /proc/ pid /clear_refs file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3055

proc_pid_cmdline(5) File Formats Manual proc_pid_cmdline(5)

NAME
/proc/pid/cmdline - command line

DESCRIPTION
/proc/ pid /cmdline

This read-only file holds the complete command line for the process, unless the
process is a zombie. In the latter case, there is nothing in this file: that is, a read
on this file will return 0 characters.

For processes which are still running, the command-line arguments appear in this
file in the same layout as they do in process memory: If the process is well-be-
haved, it is a set of strings separated by null bytes ('\0'), with a further null byte
after the last string.

This is the common case, but processes have the freedom to override the memory
region and break assumptions about the contents or format of the /proc/ pid /cmd-
line file.

If, after an execve(2), the process modifies its argv strings, those changes will
show up here. This is not the same thing as modifying the argv array.

Furthermore, a process may change the memory location that this file refers via
prctl(2) operations such as PR_SET_MM_ARG_START.

Think of this file as the command line that the process wants you to see.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3056

proc_pid_comm(5) File Formats Manual proc_pid_comm(5)

NAME
/proc/pid/comm - command name

DESCRIPTION
/proc/ pid /comm (since Linux 2.6.33)

This file exposes the process’s comm value—that is, the command name associ-
ated with the process. Different threads in the same process may have different
comm values, accessible via /proc/ pid /task/ tid /comm. A thread may modify its
comm value, or that of any of other thread in the same thread group (see the dis-
cussion of CLONE_THREAD in clone(2)), by writing to the file
/proc/self/task/ tid /comm. Strings longer than TASK_COMM_LEN (16) char-
acters (including the terminating null byte) are silently truncated.

This file provides a superset of the prctl(2) PR_SET_NAME and
PR_GET_NAME operations, and is employed by pthread_setname_np(3) when
used to rename threads other than the caller. The value in this file is used for the
%e specifier in /proc/sys/kernel/core_pattern; see core(5).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3057

proc_pid_coredump_filter(5) File Formats Manual proc_pid_coredump_filter(5)

NAME
/proc/pid/coredump_filter - core dump filter

DESCRIPTION
/proc/ pid /coredump_filter (since Linux 2.6.23)

See core(5).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3058

proc_pid_cpuset(5) File Formats Manual proc_pid_cpuset(5)

NAME
/proc/pid/cpuset - CPU affinity sets

DESCRIPTION
/proc/ pid /cpuset (since Linux 2.6.12)

See cpuset(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3059

proc_pid_cwd(5) File Formats Manual proc_pid_cwd(5)

NAME
/proc/pid/cwd - symbolic link to current working directory

DESCRIPTION
/proc/ pid /cwd

This is a symbolic link to the current working directory of the process. To find
out the current working directory of process 20, for instance, you can do this:

$ cd /proc/20/cwd; pwd -P

In a multithreaded process, the contents of this symbolic link are not available if
the main thread has already terminated (typically by calling pthread_exit(3)).

Permission to dereference or read (readlink(2)) this symbolic link is governed
by a ptrace access mode PTRACE_MODE_READ_FSCREDS check; see
ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3060

proc_pid_environ(5) File Formats Manual proc_pid_environ(5)

NAME
/proc/pid/environ - initial environment

DESCRIPTION
/proc/ pid /environ

This file contains the initial environment that was set when the currently execut-
ing program was started via execve(2). The entries are separated by null bytes
('\0'), and there may be a null byte at the end. Thus, to print out the environment
of process 1, you would do:

$ cat /proc/1/environ | tr '\000' '\n'

If, after an execve(2), the process modifies its environment (e.g., by calling func-
tions such as putenv(3) or modifying the environ(7) variable directly), this file
will not reflect those changes.

Furthermore, a process may change the memory location that this file refers via
prctl(2) operations such as PR_SET_MM_ENV_START.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3061

proc_pid_exe(5) File Formats Manual proc_pid_exe(5)

NAME
/proc/pid/exe - symbolic link to program pathname

DESCRIPTION
/proc/ pid /exe

Under Linux 2.2 and later, this file is a symbolic link containing the actual path-
name of the executed command. This symbolic link can be dereferenced nor-
mally; attempting to open it will open the executable. You can even type
/proc/ pid /exe to run another copy of the same executable that is being run by
process pid . If the pathname has been unlinked, the symbolic link will contain
the string ' (deleted)' appended to the original pathname. In a multithreaded
process, the contents of this symbolic link are not available if the main thread
has already terminated (typically by calling pthread_exit(3)).

Permission to dereference or read (readlink(2)) this symbolic link is governed
by a ptrace access mode PTRACE_MODE_READ_FSCREDS check; see
ptrace(2).

Under Linux 2.0 and earlier, /proc/ pid /exe is a pointer to the binary which was
executed, and appears as a symbolic link. A readlink(2) call on this file under
Linux 2.0 returns a string in the format:

[device]:inode

For example, [0301]:1502 would be inode 1502 on device major 03 (IDE, MFM,
etc. drives) minor 01 (first partition on the first drive).

find(1) with the -inum option can be used to locate the file.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3062

proc_pid_fd(5) File Formats Manual proc_pid_fd(5)

NAME
/proc/pid/fd/ - file descriptors

DESCRIPTION
/proc/ pid /fd/

This is a subdirectory containing one entry for each file which the process has
open, named by its file descriptor, and which is a symbolic link to the actual file.
Thus, 0 is standard input, 1 standard output, 2 standard error, and so on.

For file descriptors for pipes and sockets, the entries will be symbolic links
whose content is the file type with the inode. A readlink(2) call on this file re-
turns a string in the format:

type:[inode]

For example, socket:[2248868] will be a socket and its inode is 2248868. For
sockets, that inode can be used to find more information in one of the files under
/proc/net/ .

For file descriptors that have no corresponding inode (e.g., file descriptors pro-
duced by bpf(2), epoll_create(2), eventfd(2), inotify_init(2), perf_event_open(2),
signalfd(2), timerfd_create(2), and userfaultfd(2)), the entry will be a symbolic
link with contents of the form

anon_inode:file-type

In many cases (but not all), the file-type is surrounded by square brackets.

For example, an epoll file descriptor will have a symbolic link whose content is
the string anon_inode:[eventpoll].

In a multithreaded process, the contents of this directory are not available if the
main thread has already terminated (typically by calling pthread_exit(3)).

Programs that take a filename as a command-line argument, but don’t take input
from standard input if no argument is supplied, and programs that write to a file
named as a command-line argument, but don’t send their output to standard out-
put if no argument is supplied, can nevertheless be made to use standard input or
standard output by using /proc/ pid /fd files as command-line arguments. For ex-
ample, assuming that -i is the flag designating an input file and -o is the flag
designating an output file:

$ foobar -i /proc/self/fd/0 -o /proc/self/fd/1 ...

and you have a working filter.

/proc/self/fd/N is approximately the same as /dev/fd/N in some UNIX and
UNIX-like systems. Most Linux MAKEDEV scripts symbolically link /dev/fd
to /proc/self/fd , in fact.

Most systems provide symbolic links /dev/stdin, /dev/stdout, and /dev/stderr,
which respectively link to the files 0, 1, and 2 in /proc/self/fd . Thus the example
command above could be written as:

$ foobar -i /dev/stdin -o /dev/stdout ...

Linux man-pages 6.16 2025-09-21 3063

proc_pid_fd(5) File Formats Manual proc_pid_fd(5)

Permission to dereference or read (readlink(2)) the symbolic links in this direc-
tory is governed by a ptrace access mode PTRACE_MODE_READ_FS-
CREDS check; see ptrace(2).

Note that for file descriptors referring to inodes (pipes and sockets, see above),
those inodes still have permission bits and ownership information distinct from
those of the /proc/ pid /fd entry, and that the owner may differ from the user and
group IDs of the process. An unprivileged process may lack permissions to open
them, as in this example:

$ echo test | sudo -u nobody cat
test
$ echo test | sudo -u nobody cat /proc/self/fd/0
cat: /proc/self/fd/0: Permission denied

File descriptor 0 refers to the pipe created by the shell and owned by that shell’s
user, which is not nobody, so cat does not have permission to create a new file
descriptor to read from that inode, even though it can still read from its existing
file descriptor 0.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3064

proc_pid_fdinfo(5) File Formats Manual proc_pid_fdinfo(5)

NAME
/proc/pid/fdinfo/ - information about file descriptors

DESCRIPTION
This is a subdirectory containing one entry for each file which the process has open,
named by its file descriptor. The files in this directory are readable only by the owner of
the process. The contents of each file can be read to obtain information about the corre-
sponding file descriptor. The content depends on the type of file referred to by the corre-
sponding file descriptor.

For regular files and directories, we see something like:

$ cat /proc/12015/fdinfo/4
pos: 1000
flags: 01002002
mnt_id: 21

The fields are as follows:

pos This is a decimal number showing the file offset.

flags This is an octal number that displays the file access mode and file status flags
(see open(2)). If the close-on-exec file descriptor flag is set, then flags will also
include the value O_CLOEXEC.

Before Linux 3.1, this field incorrectly displayed the setting of O_CLOEXEC at
the time the file was opened, rather than the current setting of the close-on-exec
flag.

mnt_id
This field, present since Linux 3.15, is the ID of the mount containing this file.
See the description of /proc/ pid /mountinfo.

For eventfd file descriptors (see eventfd(2)), we see (since Linux 3.8) the following
fields:

pos: 0
flags: 02
mnt_id: 10
eventfd-count: 40

eventfd-count is the current value of the eventfd counter, in hexadecimal.

For epoll file descriptors (see epoll(7)), we see (since Linux 3.8) the following fields:

pos: 0
flags: 02
mnt_id: 10
tfd: 9 events: 19 data: 74253d2500000009
tfd: 7 events: 19 data: 74253d2500000007

Each of the lines beginning tfd describes one of the file descriptors being monitored via
the epoll file descriptor (see epoll_ctl(2) for some details). The tfd field is the number of
the file descriptor. The events field is a hexadecimal mask of the events being monitored
for this file descriptor. The data field is the data value associated with this file

Linux man-pages 6.16 2025-05-17 3065

proc_pid_fdinfo(5) File Formats Manual proc_pid_fdinfo(5)

descriptor.

For signalfd file descriptors (see signalfd(2)), we see (since Linux 3.8) the following
fields:

pos: 0
flags: 02
mnt_id: 10
sigmask: 0000000000000006

sigmask is the hexadecimal mask of signals that are accepted via this signalfd file de-
scriptor. (In this example, bits 2 and 3 are set, corresponding to the signals SIGINT and
SIGQUIT; see signal(7).)

For inotify file descriptors (see inotify(7)), we see (since Linux 3.8) the following fields:

pos: 0
flags: 00
mnt_id: 11
inotify wd:2 ino:7ef82a sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:2af87e00220ffd73
inotify wd:1 ino:192627 sdev:800001 mask:800afff ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:27261900802dfd73

Each of the lines beginning with "inotify" displays information about one file or direc-
tory that is being monitored. The fields in this line are as follows:

wd A watch descriptor number (in decimal).

ino The inode number of the target file (in hexadecimal).

sdev The ID of the device where the target file resides (in hexadecimal).

mask The mask of events being monitored for the target file (in hexadecimal).

If the kernel was built with exportfs support, the path to the target file is exposed as a file
handle, via three hexadecimal fields: fhandle-bytes, fhandle-type, and f_handle.

For fanotify file descriptors (see fanotify(7)), we see (since Linux 3.8) the following
fields:

pos: 0
flags: 02
mnt_id: 11
fanotify flags:0 event-flags:88002
fanotify ino:19264f sdev:800001 mflags:0 mask:1 ignored_mask:0 fhandle-bytes:8 fhandle-type:1 f_handle:4f261900a82dfd73

The fourth line displays information defined when the fanotify group was created via
fanotify_init(2):

flags The flags argument given to fanotify_init(2) (expressed in hexadecimal).

event-flags
The event_f_flags argument given to fanotify_init(2) (expressed in hexadecimal).

Each additional line shown in the file contains information about one of the marks in the
fanotify group. Most of these fields are as for inotify, except:

Linux man-pages 6.16 2025-05-17 3066

proc_pid_fdinfo(5) File Formats Manual proc_pid_fdinfo(5)

mflags
The flags associated with the mark (expressed in hexadecimal).

mask The events mask for this mark (expressed in hexadecimal).

ignored_mask
The mask of events that are ignored for this mark (expressed in hexadecimal).

For details on these fields, see fanotify_mark(2).

For timerfd file descriptors (see timerfd(2)), we see (since Linux 3.17) the following
fields:

pos: 0
flags: 02004002
mnt_id: 13
clockid: 0
ticks: 0
settime flags: 03
it_value: (7695568592, 640020877)
it_interval: (0, 0)

clockid
This is the numeric value of the clock ID (corresponding to one of the
CLOCK_* constants defined via <time.h>) that is used to mark the progress of
the timer (in this example, 0 is CLOCK_REALTIME).

ticks This is the number of timer expirations that have occurred, (i.e., the value that
read(2) on it would return).

settime flags
This field lists the flags with which the timerfd was last armed (see timerfd_set-
time(2)), in octal (in this example, both TFD_TIMER_ABSTIME and
TFD_TIMER_CANCEL_ON_SET are set).

it_value
This field contains the amount of time until the timer will next expire, expressed
in seconds and nanoseconds. This is always expressed as a relative value, re-
gardless of whether the timer was created using the TFD_TIMER_ABSTIME
flag.

it_interval
This field contains the interval of the timer, in seconds and nanoseconds. (The
it_value and it_interval fields contain the values that timerfd_gettime(2) on this
file descriptor would return.)

HISTORY
Linux 2.6.22.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3067

proc_pid_io(5) File Formats Manual proc_pid_io(5)

NAME
/proc/pid/io - I/O statistics

DESCRIPTION
/proc/ pid /io (since Linux 2.6.20)

This file contains I/O statistics for the process and its waited-for children, for ex-
ample:

cat /proc/3828/io
rchar: 323934931
wchar: 323929600
syscr: 632687
syscw: 632675
read_bytes: 0
write_bytes: 323932160
cancelled_write_bytes: 0

The fields are as follows:

rchar: characters read
The number of bytes returned by successful read(2) and similar system
calls.

wchar: characters written
The number of bytes returned by successful write(2) and similar system
calls.

syscr: read syscalls
The number of "file read" system calls—those from the read(2) family,
sendfile(2), copy_file_range(2), and ioctl(2) BTRFS_IOC_EN-
CODED_READ[_32] (including when invoked by the kernel as part of
other syscalls).

syscw: write syscalls
The number of "file write" system calls—those from the write(2) family,
sendfile(2), copy_file_range(2), and ioctl(2) BTRFS_IOC_EN-
CODED_WRITE[_32] (including when invoked by the kernel as part of
other syscalls).

read_bytes: bytes read
The number of bytes really fetched from the storage layer. This is accu-
rate for block-backed filesystems.

write_bytes: bytes written
The number of bytes really sent to the storage layer.

cancelled_write_bytes:
The above statistics fail to account for truncation: if a process writes 1
MB to a regular file and then removes it, said 1 MB will not be written,
but will have nevertheless been accounted as a 1 MB write. This field
represents the number of bytes "saved" from I/O writeback. This can
yield to having done negative I/O if caches dirtied by another process are
truncated. cancelled_write_bytes applies to I/O already accounted-for in

Linux man-pages 6.16 2025-05-17 3068

proc_pid_io(5) File Formats Manual proc_pid_io(5)

write_bytes.

Permission to access this file is governed by ptrace(2) access mode
PTRACE_MODE_READ_FSCREDS.

CAVEATS
These counters are not atomic: on systems where 64-bit integer operations may tear, a
counter could be updated simultaneously with a read, yielding an incorrect intermediate
value.

SEE ALSO
getrusage(2), proc(5)

Linux man-pages 6.16 2025-05-17 3069

proc_pid_limits(5) File Formats Manual proc_pid_limits(5)

NAME
/proc/pid/limits - resource limits

DESCRIPTION
/proc/ pid /limits (since Linux 2.6.24)

This file displays the soft limit, hard limit, and units of measurement for each of
the process’s resource limits (see getrlimit(2)). Up to and including Linux
2.6.35, this file is protected to allow reading only by the real UID of the process.
Since Linux 2.6.36, this file is readable by all users on the system.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3070

proc_pid_map_files(5) File Formats Manual proc_pid_map_files(5)

NAME
/proc/pid/map_files/ - memory-mapped files

DESCRIPTION
/proc/ pid /map_files/ (since Linux 3.3)

This subdirectory contains entries corresponding to memory-mapped files (see
mmap(2)). Entries are named by memory region start and end address pair (ex-
pressed as hexadecimal numbers), and are symbolic links to the mapped files
themselves. Here is an example, with the output wrapped and reformatted to fit
on an 80-column display:

ls -l /proc/self/map_files/
lr-------- 1 root root 64 Apr 16 21:31

3252e00000-3252e20000 -> /usr/lib64/ld-2.15.so
...

Although these entries are present for memory regions that were mapped with
the MAP_FILE flag, the way anonymous shared memory (regions created with
the MAP_ANON | MAP_SHARED flags) is implemented in Linux means that
such regions also appear on this directory. Here is an example where the target
file is the deleted /dev/zero one:

lrw------- 1 root root 64 Apr 16 21:33
7fc075d2f000-7fc075e6f000 -> /dev/zero (deleted)

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

Until Linux 4.3, this directory appeared only if the CONFIG_CHECK-
POINT_RESTORE kernel configuration option was enabled.

Capabilities are required to read the contents of the symbolic links in this direc-
tory: before Linux 5.9, the reading process requires CAP_SYS_ADMIN in the
initial user namespace; since Linux 5.9, the reading process must have either
CAP_SYS_ADMIN or CAP_CHECKPOINT_RESTORE in the initial (i.e.,
root) user namespace.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3071

proc_pid_maps(5) File Formats Manual proc_pid_maps(5)

NAME
/proc/pid/maps - mapped memory regions

DESCRIPTION
/proc/ pid /maps

A file containing the currently mapped memory regions and their access permis-
sions. See mmap(2) for some further information about memory mappings.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

The format of the file is:

address perms offset dev inode pathname
00400000-00452000 r-xp 00000000 08:02 173521 /usr/bin/dbus-daemon
00651000-00652000 r--p 00051000 08:02 173521 /usr/bin/dbus-daemon
00652000-00655000 rw-p 00052000 08:02 173521 /usr/bin/dbus-daemon
00e03000-00e24000 rw-p 00000000 00:00 0 [heap]
00e24000-011f7000 rw-p 00000000 00:00 0 [heap]
...
35b1800000-35b1820000 r-xp 00000000 08:02 135522 /usr/lib64/ld-2.15.so
35b1a1f000-35b1a20000 r--p 0001f000 08:02 135522 /usr/lib64/ld-2.15.so
35b1a20000-35b1a21000 rw-p 00020000 08:02 135522 /usr/lib64/ld-2.15.so
35b1a21000-35b1a22000 rw-p 00000000 00:00 0
35b1c00000-35b1dac000 r-xp 00000000 08:02 135870 /usr/lib64/libc-2.15.so
35b1dac000-35b1fac000 ---p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so
35b1fac000-35b1fb0000 r--p 001ac000 08:02 135870 /usr/lib64/libc-2.15.so
35b1fb0000-35b1fb2000 rw-p 001b0000 08:02 135870 /usr/lib64/libc-2.15.so
...
f2c6ff8c000-7f2c7078c000 rw-p 00000000 00:00 0 [stack:986]
...
7fffb2c0d000-7fffb2c2e000 rw-p 00000000 00:00 0 [stack]
7fffb2d48000-7fffb2d49000 r-xp 00000000 00:00 0 [vdso]

The address field is the address space in the process that the mapping occupies.
The perms field is a set of permissions:

r = read
w = write
x = execute
s = shared
p = private (copy on write)

The offset field is the offset into the file/whatever; dev is the device (major:mi-
nor); inode is the inode on that device. 0 indicates that no inode is associated
with the memory region, as would be the case with BSS (uninitialized data).

The pathname field will usually be the file that is backing the mapping. For ELF
files, you can easily coordinate with the offset field by looking at the Offset field
in the ELF program headers (readelf -l).

Linux man-pages 6.16 2025-09-21 3072

proc_pid_maps(5) File Formats Manual proc_pid_maps(5)

There are additional helpful pseudo-paths:

[stack]
The initial process’s (also known as the main thread’s) stack.

[stack:tid] (from Linux 3.4 to Linux 4.4)
A thread’s stack (where the tid is a thread ID). It corresponds to the
/proc/ pid /task/ tid / path. This field was removed in Linux 4.5, since
providing this information for a process with large numbers of threads is
expensive.

[vdso]
The virtual dynamically linked shared object. See vdso(7).

[heap]
The process’s heap.

[anon:name] (since Linux 5.17)
A named private anonymous mapping. Set with prctl(2)
PR_SET_VMA_ANON_NAME.

[anon_shmem:name] (since Linux 6.2)
A named shared anonymous mapping. Set with prctl(2)
PR_SET_VMA_ANON_NAME.

If the pathname field is blank, this is an anonymous mapping as obtained via
mmap(2). There is no easy way to coordinate this back to a process’s source,
short of running it through gdb(1), strace(1), or similar.

pathname is shown unescaped except for newline characters, which are replaced
with an octal escape sequence. As a result, it is not possible to determine
whether the original pathname contained a newline character or the literal \012
character sequence.

If the mapping is file-backed and the file has been deleted, the string " (deleted)"
is appended to the pathname. Note that this is ambiguous too.

Under Linux 2.0, there is no field giving pathname.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3073

proc_pid_mem(5) File Formats Manual proc_pid_mem(5)

NAME
/proc/pid/mem - memory

DESCRIPTION
/proc/ pid /mem

This file can be used to access the pages of a process’s memory through open(2),
read(2), and lseek(2).

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3074

proc_pid_mountinfo(5) File Formats Manual proc_pid_mountinfo(5)

NAME
/proc/pid/mountinfo - mount information

DESCRIPTION
/proc/ pid /mountinfo (since Linux 2.6.26)

This file contains information about mounts in the process’s mount namespace
(see mount_namespaces(7)). It supplies various information (e.g., propagation
state, root of mount for bind mounts, identifier for each mount and its parent)
that is missing from the (older) /proc/ pid /mounts file, and fixes various other
problems with that file (e.g., nonextensibility, failure to distinguish per-mount
versus per-superblock options).

The file contains lines of the form:

36 35 98:0 /mnt1 /mnt2 rw,noatime master:1 - ext3 /dev/root rw,errors=continue
(1)(2)(3) (4) (5) (6) (7) (8) (9) (10) (11)

The numbers in parentheses are labels for the descriptions below:

(1) mount ID: a unique ID for the mount (may be reused after umount(2)).

(2) parent ID: the ID of the parent mount (or of self for the root of this mount
namespace’s mount tree).

If a new mount is stacked on top of a previous existing mount (so that it
hides the existing mount) at pathname P, then the parent of the new
mount is the previous mount at that location. Thus, when looking at all
the mounts stacked at a particular location, the top-most mount is the one
that is not the parent of any other mount at the same location. (Note,
however, that this top-most mount will be accessible only if the longest
path subprefix of P that is a mount point is not itself hidden by a stacked
mount.)

If the parent mount lies outside the process’s root directory (see
chroot(2)), the ID shown here won’t have a corresponding record in
mountinfo whose mount ID (field 1) matches this parent mount ID (be-
cause mounts that lie outside the process’s root directory are not shown
in mountinfo). As a special case of this point, the process’s root mount
may have a parent mount (for the initramfs filesystem) that lies outside
the process’s root directory, and an entry for that mount will not appear in
mountinfo.

(3) major:minor: the value of st_dev for files on this filesystem (see stat(2)).

(4) root: the pathname of the directory in the filesystem which forms the root
of this mount.

(5) mount point: the pathname of the mount point relative to the process’s
root directory.

(6) mount options: per-mount options (see mount(2)).

(7) optional fields: zero or more fields of the form "tag[:value]"; see below.

Linux man-pages 6.16 2025-05-17 3075

proc_pid_mountinfo(5) File Formats Manual proc_pid_mountinfo(5)

(8) separator: the end of the optional fields is marked by a single hyphen.

(9) filesystem type: the filesystem type in the form "type[.subtype]".

(10) mount source: filesystem-specific information or "none".

(11) super options: per-superblock options (see mount(2)).

Currently, the possible optional fields are shared , master, propagate_from, and
unbindable. See mount_namespaces(7) for a description of these fields. Parsers
should ignore all unrecognized optional fields.

For more information on mount propagation see Documentation/filesys-
tems/sharedsubtree.rst (or Documentation/filesystems/sharedsubtree.txt before
Linux 5.8) in the Linux kernel source tree.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3076

proc_pid_mounts(5) File Formats Manual proc_pid_mounts(5)

NAME
/proc/pid/mounts - mounted filesystems

DESCRIPTION
/proc/ pid /mounts (since Linux 2.4.19)

This file lists all the filesystems currently mounted in the process’s mount name-
space (see mount_namespaces(7)). The format of this file is documented in
fstab(5)

Since Linux 2.6.15, this file is pollable: after opening the file for reading, a
change in this file (i.e., a filesystem mount or unmount) causes select(2) to mark
the file descriptor as having an exceptional condition, and poll(2) and
epoll_wait(2) mark the file as having a priority event (POLLPRI). (Before
Linux 2.6.30, a change in this file was indicated by the file descriptor being
marked as readable for select(2), and being marked as having an error condition
for poll(2) and epoll_wait(2).)

/proc/mounts
Before Linux 2.4.19, this file was a list of all the filesystems currently mounted
on the system. With the introduction of per-process mount namespaces in Linux
2.4.19 (see mount_namespaces(7)), this file became a link to /proc/self/mounts,
which lists the mounts of the process’s own mount namespace. The format of
this file is documented in fstab(5)

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3077

proc_pid_mountstats(5) File Formats Manual proc_pid_mountstats(5)

NAME
/proc/pid/mountstats - mount statistics

DESCRIPTION
/proc/ pid /mountstats (since Linux 2.6.17)

This file exports information (statistics, configuration information) about the
mounts in the process’s mount namespace (see mount_namespaces(7)). Lines in
this file have the form:

device /dev/sda7 mounted on /home with fstype ext3 [stats]
(1) (2) (3) (4)

The fields in each line are:

(1) The name of the mounted device (or "nodevice" if there is no correspond-
ing device).

(2) The mount point within the filesystem tree.

(3) The filesystem type.

(4) Optional statistics and configuration information. Currently (as at Linux
2.6.26), only NFS filesystems export information via this field.

This file is readable only by the owner of the process.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3078

proc_pid_net(5) File Formats Manual proc_pid_net(5)

NAME
/proc/pid/net/, /proc/net/ - network layer information

DESCRIPTION
/proc/ pid /net/ (since Linux 2.6.25)

See the description of /proc/net.

/proc/net/
This directory contains various files and subdirectories containing information
about the networking layer. The files contain ASCII structures and are, there-
fore, readable with cat(1)However, the standard netstat(8) suite provides much
cleaner access to these files.

With the advent of network namespaces, various information relating to the net-
work stack is virtualized (see network_namespaces(7)). Thus, since Linux
2.6.25, /proc/net is a symbolic link to the directory /proc/self/net, which con-
tains the same files and directories as listed below. However, these files and di-
rectories now expose information for the network namespace of which the
process is a member.

/proc/net/arp
This holds an ASCII readable dump of the kernel ARP table used for address
resolutions. It will show both dynamically learned and preprogrammed ARP en-
tries. The format is:

IP address HW type Flags HW address Mask Device
192.168.0.50 0x1 0x2 00:50:BF:25:68:F3 * eth0
192.168.0.250 0x1 0xc 00:00:00:00:00:00 * eth0

Here "IP address" is the IPv4 address of the machine and the "HW type" is the
hardware type of the address from RFC 826. The flags are the internal flags of
the ARP structure (as defined in /usr/include/linux/if_arp.h) and the "HW ad-
dress" is the data link layer mapping for that IP address if it is known.

/proc/net/dev
The dev pseudo-file contains network device status information. This gives the
number of received and sent packets, the number of errors and collisions and
other basic statistics. These are used by the ifconfig(8) program to report device
status. The format is:

Inter-| Receive | Transmit
face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier compressed

lo: 2776770 11307 0 0 0 0 0 0 2776770 11307 0 0 0 0 0 0
eth0: 1215645 2751 0 0 0 0 0 0 1782404 4324 0 0 0 427 0 0
ppp0: 1622270 5552 1 0 0 0 0 0 354130 5669 0 0 0 0 0 0
tap0: 7714 81 0 0 0 0 0 0 7714 81 0 0 0 0 0 0

/proc/net/dev_mcast
Defined in /usr/src/linux/net/core/dev_mcast.c:

indx interface_name dmi_u dmi_g dmi_address
2 eth0 1 0 01005e000001
3 eth1 1 0 01005e000001

Linux man-pages 6.16 2025-09-21 3079

proc_pid_net(5) File Formats Manual proc_pid_net(5)

4 eth2 1 0 01005e000001

/proc/net/igmp
Internet Group Management Protocol. Defined in /usr/src/linux/net/core/igmp.c.

/proc/net/rarp
This file uses the same format as the arp file and contains the current reverse
mapping database used to provide rarp(8) reverse address lookup services. If
RARP is not configured into the kernel, this file will not be present.

/proc/net/raw
Holds a dump of the RAW socket table. Much of the information is not of use
apart from debugging. The "sl" value is the kernel hash slot for the socket, the
"local_address" is the local address and protocol number pair. "St" is the internal
status of the socket. The "tx_queue" and "rx_queue" are the outgoing and in-
coming data queue in terms of kernel memory usage. The "tr", "tm->when",
and "rexmits" fields are not used by RAW. The "uid" field holds the effective
UID of the creator of the socket.

/proc/net/snmp
This file holds the ASCII data needed for the IP, ICMP, TCP, and UDP manage-
ment information bases for an SNMP agent.

/proc/net/tcp
Holds a dump of the TCP socket table. Much of the information is not of use
apart from debugging. The "sl" value is the kernel hash slot for the socket, the
"local_address" is the local address and port number pair. The "rem_address" is
the remote address and port number pair (if connected). "St" is the internal sta-
tus of the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming
data queue in terms of kernel memory usage. The "tr", "tm->when", and
"rexmits" fields hold internal information of the kernel socket state and are use-
ful only for debugging. The "uid" field holds the effective UID of the creator of
the socket.

/proc/net/udp
Holds a dump of the UDP socket table. Much of the information is not of use
apart from debugging. The "sl" value is the kernel hash slot for the socket, the
"local_address" is the local address and port number pair. The "rem_address" is
the remote address and port number pair (if connected). "St" is the internal sta-
tus of the socket. The "tx_queue" and "rx_queue" are the outgoing and incoming
data queue in terms of kernel memory usage. The "tr", "tm->when", and
"rexmits" fields are not used by UDP. The "uid" field holds the effective UID of
the creator of the socket. The format is:

sl local_address rem_address st tx_queue rx_queue tr rexmits tm->when uid
1: 01642C89:0201 0C642C89:03FF 01 00000000:00000001 01:000071BA 00000000 0
1: 00000000:0801 00000000:0000 0A 00000000:00000000 00:00000000 6F000100 0
1: 00000000:0201 00000000:0000 0A 00000000:00000000 00:00000000 00000000 0

/proc/net/unix
Lists the UNIX domain sockets present within the system and their status. The
format is:

Linux man-pages 6.16 2025-09-21 3080

proc_pid_net(5) File Formats Manual proc_pid_net(5)

Num RefCount Protocol Flags Type St Inode Path
0: 00000002 00000000 00000000 0001 03 42
1: 00000001 00000000 00010000 0001 01 1948 /dev/printer

The fields are as follows:

Num: the kernel table slot number.

RefCount:
the number of users of the socket.

Protocol: currently always 0.

Flags: the internal kernel flags holding the status of the socket.

Type: the socket type. For SOCK_STREAM sockets, this is 0001; for
SOCK_DGRAM sockets, it is 0002; and for SOCK_SEQ-
PACKET sockets, it is 0005.

St: the internal state of the socket.

Inode: the inode number of the socket.

Path: the bound pathname (if any) of the socket. Sockets in the abstract
namespace are included in the list, and are shown with a Path that
commences with the character ’@’.

/proc/net/netfilter/nfnetlink_queue
This file contains information about netfilter user-space queueing, if used. Each
line represents a queue. Queues that have not been subscribed to by user space
are not shown.

1 4207 0 2 65535 0 0 0 1
(1) (2) (3)(4) (5) (6) (7) (8)

The fields in each line are:

(1) The ID of the queue. This matches what is specified in the
--queue-num or --queue-balance options to the iptables(8)
NFQUEUE target. See iptables-extensions(8) for more information.

(2) The netlink port ID subscribed to the queue.

(3) The number of packets currently queued and waiting to be processed by
the application.

(4) The copy mode of the queue. It is either 1 (metadata only) or 2 (also
copy payload data to user space).

(5) Copy range; that is, how many bytes of packet payload should be copied
to user space at most.

(6) queue dropped. Number of packets that had to be dropped by the kernel
because too many packets are already waiting for user space to send back
the mandatory accept/drop verdicts.

Linux man-pages 6.16 2025-09-21 3081

proc_pid_net(5) File Formats Manual proc_pid_net(5)

(7) queue user dropped. Number of packets that were dropped within the
netlink subsystem. Such drops usually happen when the corresponding
socket buffer is full; that is, user space is not able to read messages fast
enough.

(8) sequence number. Every queued packet is associated with a (32-bit) mo-
notonically increasing sequence number. This shows the ID of the most
recent packet queued.

The last number exists only for compatibility reasons and is always 1.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3082

proc_pid_ns(5) File Formats Manual proc_pid_ns(5)

NAME
/proc/pid/ns/ - namespaces

DESCRIPTION
/proc/ pid /ns/ (since Linux 3.0)

This is a subdirectory containing one entry for each namespace that supports be-
ing manipulated by setns(2). For more information, see namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3083

proc_pid_numa_maps(5) File Formats Manual proc_pid_numa_maps(5)

NAME
/proc/pid/numa_maps - NUMA memory policy and allocation

DESCRIPTION
/proc/ pid /numa_maps (since Linux 2.6.14)

See numa(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3084

proc_pid_oom_score(5) File Formats Manual proc_pid_oom_score(5)

NAME
/proc/pid/oom_score - OOM-killer score

DESCRIPTION
/proc/ pid /oom_score (since Linux 2.6.11)

This file displays the current score that the kernel gives to this process for the
purpose of selecting a process for the OOM-killer. A higher score means that the
process is more likely to be selected by the OOM-killer. The basis for this score
is the amount of memory used by the process, with increases (+) or decreases (-)
for factors including:

• whether the process is privileged (-).

Before Linux 2.6.36 the following factors were also used in the calculation of
oom_score:

• whether the process creates a lot of children using fork(2) (+);

• whether the process has been running a long time, or has used a lot of CPU
time (-);

• whether the process has a low nice value (i.e., > 0) (+); and

• whether the process is making direct hardware access (-).

The oom_score also reflects the adjustment specified by the oom_score_adj or
oom_adj setting for the process.

SEE ALSO
proc(5), proc_pid_oom_score_adj(5)

Linux man-pages 6.16 2025-05-17 3085

proc_pid_oom_score_adj(5) File Formats Manual proc_pid_oom_score_adj(5)

NAME
/proc/pid/oom_score_adj - OOM-killer score adjustment

DESCRIPTION
/proc/ pid /oom_score_adj (since Linux 2.6.36)

This file can be used to adjust the badness heuristic used to select which process
gets killed in out-of-memory conditions.

The badness heuristic assigns a value to each candidate task ranging from 0
(never kill) to 1000 (always kill) to determine which process is targeted. The
units are roughly a proportion along that range of allowed memory the process
may allocate from, based on an estimation of its current memory and swap use.
For example, if a task is using all allowed memory, its badness score will be
1000. If it is using half of its allowed memory, its score will be 500.

There is an additional factor included in the badness score: root processes are
given 3% extra memory over other tasks.

The amount of "allowed" memory depends on the context in which the OOM-
killer was called. If it is due to the memory assigned to the allocating task’s
cpuset being exhausted, the allowed memory represents the set of mems assigned
to that cpuset (see cpuset(7)). If it is due to a mempolicy’s node(s) being ex-
hausted, the allowed memory represents the set of mempolicy nodes. If it is due
to a memory limit (or swap limit) being reached, the allowed memory is that
configured limit. Finally, if it is due to the entire system being out of memory,
the allowed memory represents all allocatable resources.

The value of oom_score_adj is added to the badness score before it is used to de-
termine which task to kill. Acceptable values range from -1000
(OOM_SCORE_ADJ_MIN) to +1000 (OOM_SCORE_ADJ_MAX). This al-
lows user space to control the preference for OOM-killing, ranging from always
preferring a certain task or completely disabling it from OOM-killing. The low-
est possible value, -1000, is equivalent to disabling OOM-killing entirely for
that task, since it will always report a badness score of 0.

Consequently, it is very simple for user space to define the amount of memory to
consider for each task. Setting an oom_score_adj value of +500, for example, is
roughly equivalent to allowing the remainder of tasks sharing the same system,
cpuset, mempolicy, or memory controller resources to use at least 50% more
memory. A value of -500, on the other hand, would be roughly equivalent to
discounting 50% of the task’s allowed memory from being considered as scoring
against the task.

For backward compatibility with previous kernels, /proc/ pid /oom_adj can still
be used to tune the badness score. Its value is scaled linearly with
oom_score_adj.

Writing to /proc/ pid /oom_score_adj or /proc/ pid /oom_adj will change the
other with its scaled value.

The choom(1) program provides a command-line interface for adjusting the
oom_score_adj value of a running process or a newly executed command.

Linux man-pages 6.16 2025-05-17 3086

proc_pid_oom_score_adj(5) File Formats Manual proc_pid_oom_score_adj(5)

HISTORY
/proc/ pid /oom_adj (since Linux 2.6.11)

This file can be used to adjust the score used to select which process should be
killed in an out-of-memory (OOM) situation. The kernel uses this value for a
bit-shift operation of the process’s oom_score value: valid values are in the range
-16 to +15, plus the special value -17, which disables OOM-killing altogether
for this process. A positive score increases the likelihood of this process being
killed by the OOM-killer; a negative score decreases the likelihood.

The default value for this file is 0; a new process inherits its parent’s oom_adj
setting. A process must be privileged (CAP_SYS_RESOURCE) to update this
file, although a process can always increase its own oom_adj setting (since
Linux 2.6.20).

Since Linux 2.6.36, use of this file is deprecated in favor of
/proc/ pid /oom_score_adj, and finally removed in Linux 3.7.

SEE ALSO
proc(5), proc_pid_oom_score(5)

Linux man-pages 6.16 2025-05-17 3087

proc_pid_pagemap(5) File Formats Manual proc_pid_pagemap(5)

NAME
/proc/pid/pagemap - mapping of virtual pages

DESCRIPTION
/proc/ pid /pagemap (since Linux 2.6.25)

This file shows the mapping of each of the process’s virtual pages into physical
page frames or swap area. It contains one 64-bit value for each virtual page,
with the bits set as follows:

63 If set, the page is present in RAM.

62 If set, the page is in swap space

61 (since Linux 3.5)
The page is a file-mapped page or a shared anonymous page.

60–58 (since Linux 3.11)
Zero

57 (since Linux 5.14)
If set, the page is write-protected through userfaultfd(2).

56 (since Linux 4.2)
The page is exclusively mapped.

55 (since Linux 3.11)
PTE is soft-dirty (see the kernel source file Documentation/admin-
guide/mm/soft-dirty.rst).

54–0 If the page is present in RAM (bit 63), then these bits provide the page
frame number, which can be used to index /proc/kpageflags and
/proc/kpagecount. If the page is present in swap (bit 62), then bits 4–0
give the swap type, and bits 54–5 encode the swap offset.

Before Linux 3.11, bits 60–55 were used to encode the base-2 log of the page
size.

To employ /proc/ pid /pagemap efficiently, use /proc/ pid /maps to determine
which areas of memory are actually mapped and seek to skip over unmapped re-
gions.

The /proc/ pid /pagemap file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3088

proc_pid_personality(5) File Formats Manual proc_pid_personality(5)

NAME
/proc/pid/personality - execution domain

DESCRIPTION
/proc/ pid /personality (since Linux 2.6.28)

This read-only file exposes the process’s execution domain, as set by personal-
ity(2). The value is displayed in hexadecimal notation.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3089

proc_pid_projid_map(5) File Formats Manual proc_pid_projid_map(5)

NAME
/proc/pid/projid_map - project ID mappings

DESCRIPTION
/proc/ pid /projid_map (since Linux 3.7)

See user_namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3090

proc_pid_root(5) File Formats Manual proc_pid_root(5)

NAME
/proc/pid/root/ - symbolic link to root directory

DESCRIPTION
/proc/ pid /root/

UNIX and Linux support the idea of a per-process root of the filesystem, set by
the chroot(2) system call. This file is a symbolic link that points to the process’s
root directory, and behaves in the same way as exe, and fd/*.

Note however that this file is not merely a symbolic link. It provides the same
view of the filesystem (including namespaces and the set of per-process mounts)
as the process itself. An example illustrates this point. In one terminal, we start
a shell in new user and mount namespaces, and in that shell we create some new
mounts:

$ PS1='sh1# ' unshare -Urnm;
sh1# mount -t tmpfs tmpfs /etc; # Mount empty tmpfs at /etc
sh1# mount --bind /usr /dev; # Mount /usr at /dev
sh1# echo $$;
27123

In a second terminal window, in the initial mount namespace, we look at the con-
tents of the corresponding mounts in the initial and new namespaces:

$ PS1='sh2# ' sudo sh;
sh2# ls /etc | wc -l; # In initial NS
309
sh2# ls /proc/27123/root/etc | wc -l; # /etc in other NS
0 # The empty tmpfs dir
sh2# ls /dev | wc -l; # In initial NS
205
sh2# ls /proc/27123/root/dev | wc -l; # /dev in other NS
11 # Actually bind

mounted to /usr
sh2# ls /usr | wc -l; # /usr in initial NS
11

In a multithreaded process, the contents of the /proc/ pid /root symbolic link are
not available if the main thread has already terminated (typically by calling
pthread_exit(3)).

Permission to dereference or read (readlink(2)) this symbolic link is governed
by a ptrace access mode PTRACE_MODE_READ_FSCREDS check; see
ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3091

proc_pid_seccomp(5) File Formats Manual proc_pid_seccomp(5)

NAME
/proc/pid/seccomp - secure computing mode

DESCRIPTION
/proc/ pid /seccomp (Linux 2.6.12 to Linux 2.6.22)

This file can be used to read and change the process’s secure computing (sec-
comp) mode setting. It contains the value 0 if the process is not in seccomp
mode, and 1 if the process is in strict seccomp mode (see seccomp(2)). Writing
1 to this file places the process irreversibly in strict seccomp mode. (Further at-
tempts to write to the file fail with the EPERM error.)

In Linux 2.6.23, this file went away, to be replaced by the prctl(2)
PR_GET_SECCOMP and PR_SET_SECCOMP operations (and later by sec-
comp(2) and the Seccomp field in /proc/ pid /status).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3092

proc_pid_setgroups(5) File Formats Manual proc_pid_setgroups(5)

NAME
/proc/pid/setgroups - allow or deny setting groups

DESCRIPTION
/proc/ pid /setgroups (since Linux 3.19)

See user_namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3093

proc_pid_smaps(5) File Formats Manual proc_pid_smaps(5)

NAME
/proc/pid/smaps - XXX: What does ’s’ in "smaps" stand for?

DESCRIPTION
/proc/ pid /smaps (since Linux 2.6.14)

This file shows memory consumption for each of the process’s mappings. (The
pmap(1) command displays similar information, in a form that may be easier for
parsing.) For each mapping there is a series of lines such as the following:

00400000-0048a000 r-xp 00000000 fd:03 960637 /bin/bash
Size: 552 kB
Rss: 460 kB
Pss: 100 kB
Shared_Clean: 452 kB
Shared_Dirty: 0 kB
Private_Clean: 8 kB
Private_Dirty: 0 kB
Referenced: 460 kB
Anonymous: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
Swap: 0 kB
KernelPageSize: 4 kB
MMUPageSize: 4 kB
Locked: 0 kB
ProtectionKey: 0
VmFlags: rd ex mr mw me dw

The first of these lines shows the same information as is displayed for the map-
ping in /proc/ pid /maps. The following lines show the size of the mapping, the
amount of the mapping that is currently resident in RAM ("Rss"), the process’s
proportional share of this mapping ("Pss"), the number of clean and dirty shared
pages in the mapping, and the number of clean and dirty private pages in the
mapping. "Referenced" indicates the amount of memory currently marked as
referenced or accessed. "Anonymous" shows the amount of memory that does
not belong to any file. "Swap" shows how much would-be-anonymous memory
is also used, but out on swap.

The "KernelPageSize" line (available since Linux 2.6.29) is the page size used
by the kernel to back the virtual memory area. This matches the size used by the
MMU in the majority of cases. However, one counter-example occurs on PPC64
kernels whereby a kernel using 64 kB as a base page size may still use 4 kB
pages for the MMU on older processors. To distinguish the two attributes, the
"MMUPageSize" line (also available since Linux 2.6.29) reports the page size
used by the MMU.

The "Locked" indicates whether the mapping is locked in memory or not.

The "ProtectionKey" line (available since Linux 4.9, on x86 only) contains the
memory protection key (see pkeys(7)) associated with the virtual memory area.

Linux man-pages 6.16 2025-10-05 3094

proc_pid_smaps(5) File Formats Manual proc_pid_smaps(5)

This entry is present only if the kernel was built with the CONFIG_X86_IN-
TEL_MEMORY_PROTECTION_KEYS configuration option (since Linux
4.6).

The "VmFlags" line (available since Linux 3.8) represents the kernel flags asso-
ciated with the virtual memory area, encoded using the following two-letter
codes:

rd readable
wr writable
ex executable
sh shared
mr may read
mw may write
me may execute
ms may share
gd stack segment grows down
pf pure PFN range
dw disabled write to the mapped file
lo pages are locked in memory
io memory mapped I/O area
sr sequential read advise provided
rr random read advise provided
dc do not copy area on fork
de do not expand area on remapping
ac area is accountable
nr swap space is not reserved for the area
ht area uses huge tlb pages
sf perform synchronous page faults (since Linux 4.15)
nl non-linear mapping (removed in Linux 4.0)
ar architecture specific flag
wf wipe on fork (since Linux 4.14)
dd do not include area into core dump
sd soft-dirty flag (since Linux 3.13)
mm mixed map area
hg huge page advise flag
nh no-huge page advise flag
mg mergeable advise flag
um userfaultfd missing pages tracking (since Linux 4.3)
uw userfaultfd wprotect pages tracking (since Linux 4.3)

The /proc/ pid /smaps file is present only if the CON-
FIG_PROC_PAGE_MONITOR kernel configuration option is enabled.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-10-05 3095

proc_pid_stack(5) File Formats Manual proc_pid_stack(5)

NAME
/proc/pid/stack - kernel stack

DESCRIPTION
/proc/ pid /stack (since Linux 2.6.29)

This file provides a symbolic trace of the function calls in this process’s kernel
stack. This file is provided only if the kernel was built with the CON-
FIG_STACKTRACE configuration option.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3096

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

NAME
/proc/pid/stat - status information

DESCRIPTION
/proc/ pid /stat

Status information about the process. This is used by ps(1)It is defined in the
kernel source file fs/proc/array.c.

The fields, in order, with their proper scanf(3) format specifiers, are listed below.
Whether or not certain of these fields display valid information is governed by a
ptrace access mode PTRACE_MODE_READ_FSCREDS |
PTRACE_MODE_NOAUDIT check (refer to ptrace(2)). If the check denies
access, then the field value is displayed as 0. The affected fields are indicated
with the marking [PT].

(1) pid %d
The process ID.

(2) comm %s
The filename of the executable, in parentheses. Strings longer than
TASK_COMM_LEN (16) characters (including the terminating null
byte) are silently truncated. This is visible whether or not the executable
is swapped out.

(3) state %c
One of the following characters, indicating process state:

R Running

S Sleeping in an interruptible wait

D Waiting in uninterruptible disk sleep

Z Zombie

T Stopped (on a signal) or (before Linux 2.6.33) trace stopped

t Tracing stop (Linux 2.6.33 onward)

W Paging (only before Linux 2.6.0)

X Dead (from Linux 2.6.0 onward)

x Dead (Linux 2.6.33 to 3.13 only)

K Wakekill (Linux 2.6.33 to 3.13 only)

W Waking (Linux 2.6.33 to 3.13 only)

P Parked (Linux 3.9 to 3.13 only)

I Idle (Linux 4.14 onward)

(4) ppid %d
The PID of the parent of this process.

(5) pgrp %d
The process group ID of the process.

Linux man-pages 6.16 2025-09-21 3097

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

(6) session %d
The session ID of the process.

(7) tty_nr %d
The controlling terminal of the process. (The minor device number is
contained in the combination of bits 31 to 20 and 7 to 0; the major device
number is in bits 15 to 8.)

(8) tpgid %d
The ID of the foreground process group of the controlling terminal of the
process.

(9) flags %u
The kernel flags word of the process. For bit meanings, see the PF_* de-
fines in the Linux kernel source file include/linux/sched.h. Details de-
pend on the kernel version.

The format for this field was %lu before Linux 2.6.

(10) minflt %lu
The number of minor faults the process has made which have not re-
quired loading a memory page from disk.

(11) cminflt %lu
The number of minor faults that the process’s waited-for children have
made.

(12) majflt %lu
The number of major faults the process has made which have required
loading a memory page from disk.

(13) cmajflt %lu
The number of major faults that the process’s waited-for children have
made.

(14) utime %lu
Amount of time that this process has been scheduled in user mode, mea-
sured in clock ticks (divide by sysconf(_SC_CLK_TCK)). This includes
guest time, guest_time (time spent running a virtual CPU, see below), so
that applications that are not aware of the guest time field do not lose that
time from their calculations.

(15) stime %lu
Amount of time that this process has been scheduled in kernel mode,
measured in clock ticks (divide by sysconf(_SC_CLK_TCK)).

(16) cutime %ld
Amount of time that this process’s waited-for children have been sched-
uled in user mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)). (See also times(2).) This includes guest time,
cguest_time (time spent running a virtual CPU, see below).

Linux man-pages 6.16 2025-09-21 3098

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

(17) cstime %ld
Amount of time that this process’s waited-for children have been sched-
uled in kernel mode, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)).

(18) priority %ld
(Explanation for Linux 2.6) For processes running a real-time scheduling
policy (policy below; see sched_setscheduler(2)), this is the negated
scheduling priority, minus one; that is, a number in the range -2 to -100,
corresponding to real-time priorities 1 to 99. For processes running un-
der a non-real-time scheduling policy, this is the raw nice value (setpri-
ority(2)) as represented in the kernel. The kernel stores nice values as
numbers in the range 0 (high) to 39 (low), corresponding to the user-visi-
ble nice range of -20 to 19.

Before Linux 2.6, this was a scaled value based on the scheduler weight-
ing given to this process.

(19) nice %ld
The nice value (see setpriority(2)), a value in the range 19 (low priority)
to -20 (high priority).

(20) num_threads %ld
Number of threads in this process (since Linux 2.6). Before Linux 2.6,
this field was hard coded to 0 as a placeholder for an earlier removed
field.

(21) itrealvalue %ld
The time in jiffies before the next SIGALRM is sent to the process due
to an interval timer. Since Linux 2.6.17, this field is no longer main-
tained, and is hard coded as 0.

(22) starttime %llu
The time the process started after system boot. Before Linux 2.6, this
value was expressed in jiffies. Since Linux 2.6, the value is expressed in
clock ticks (divide by sysconf(_SC_CLK_TCK)).

The format for this field was %lu before Linux 2.6.

(23) vsize %lu
Virtual memory size in bytes.

(24) rss %ld
Resident Set Size: number of pages the process has in real memory. This
is just the pages which count toward text, data, or stack space. This does
not include pages which have not been demand-loaded in, or which are
swapped out. This value is inaccurate; see /proc/ pid /statm below.

(25) rsslim %lu
Current soft limit in bytes on the rss of the process; see the description of
RLIMIT_RSS in getrlimit(2).

Linux man-pages 6.16 2025-09-21 3099

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

(26) startcode %lu [PT]
The address above which program text can run.

(27) endcode %lu [PT]
The address below which program text can run.

(28) startstack%lu [PT]
The address of the start (i.e., bottom) of the stack.

(29) kstkesp %lu [PT]
The current value of ESP (stack pointer), as found in the kernel stack
page for the process.

(30) kstkeip %lu [PT]
The current EIP (instruction pointer).

(31) signal %lu
The bitmap of pending signals, displayed as a decimal number. Obsolete,
because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(32) blocked %lu
The bitmap of blocked signals, displayed as a decimal number. Obsolete,
because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(33) sigignore %lu
The bitmap of ignored signals, displayed as a decimal number. Obsolete,
because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(34) sigcatch %lu
The bitmap of caught signals, displayed as a decimal number. Obsolete,
because it does not provide information on real-time signals; use
/proc/ pid /status instead.

(35) wchan %lu [PT]
This is the "channel" in which the process is waiting. It is the address of
a location in the kernel where the process is sleeping. The corresponding
symbolic name can be found in /proc/ pid /wchan.

(36) nswap %lu
Number of pages swapped (not maintained).

(37) cnswap %lu
Cumulative nswap for child processes (not maintained).

(38) exit_signal %d (since Linux 2.1.22)
Signal to be sent to parent when we die.

(39) processor %d (since Linux 2.2.8)
CPU number last executed on.

Linux man-pages 6.16 2025-09-21 3100

proc_pid_stat(5) File Formats Manual proc_pid_stat(5)

(40) rt_priority %u (since Linux 2.5.19)
Real-time scheduling priority, a number in the range 1 to 99 for processes
scheduled under a real-time policy, or 0, for non-real-time processes (see
sched_setscheduler(2)).

(41) policy %u (since Linux 2.5.19)
Scheduling policy (see sched_setscheduler(2)). Decode using the
SCHED_* constants in linux/sched.h.

The format for this field was %lu before Linux 2.6.22.

(42) delayacct_blkio_ticks %llu (since Linux 2.6.18)
Aggregated block I/O delays, measured in clock ticks (centiseconds).

(43) guest_time %lu (since Linux 2.6.24)
Guest time of the process (time spent running a virtual CPU for a guest
operating system), measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)).

(44) cguest_time %ld (since Linux 2.6.24)
Guest time of the process’s children, measured in clock ticks (divide by
sysconf(_SC_CLK_TCK)).

(45) start_data %lu (since Linux 3.3) [PT]
Address above which program initialized and uninitialized (BSS) data are
placed.

(46) end_data %lu (since Linux 3.3) [PT]
Address below which program initialized and uninitialized (BSS) data
are placed.

(47) start_brk %lu (since Linux 3.3) [PT]
Address above which program heap can be expanded with brk(2).

(48) arg_start %lu (since Linux 3.5) [PT]
Address above which program command-line arguments (argv) are
placed.

(49) arg_end %lu (since Linux 3.5) [PT]
Address below program command-line arguments (argv) are placed.

(50) env_start %lu (since Linux 3.5) [PT]
Address above which program environment is placed.

(51) env_end %lu (since Linux 3.5) [PT]
Address below which program environment is placed.

(52) exit_code %d (since Linux 3.5) [PT]
The thread’s exit status in the form reported by waitpid(2).

SEE ALSO
proc(5), proc_pid_status(5)

Linux man-pages 6.16 2025-09-21 3101

proc_pid_statm(5) File Formats Manual proc_pid_statm(5)

NAME
/proc/pid/statm - memory usage information

DESCRIPTION
/proc/ pid /statm

Provides information about memory usage, measured in pages. The columns
are:

size (1) total program size
(same as VmSize in /proc/pid/status)

resident (2) resident set size
(inaccurate; same as VmRSS in /proc/pid/status)

shared (3) number of resident shared pages
(i.e., backed by a file)
(inaccurate; same as RssFile+RssShmem in
/proc/pid/status)

text (4) text (code)
lib (5) library (unused since Linux 2.6; always 0)
data (6) data + stack
dt (7) dirty pages (unused since Linux 2.6; always 0)

Some of these values are inaccurate because of a kernel-internal scalability opti-
mization. If accurate values are required, use /proc/ pid /smaps or
/proc/ pid /smaps_rollup instead, which are much slower but provide accurate,
detailed information.

SEE ALSO
proc(5), proc_pid_status(5)

Linux man-pages 6.16 2025-05-17 3102

proc_pid_status(5) File Formats Manual proc_pid_status(5)

NAME
/proc/pid/status - memory usage and status information

DESCRIPTION
/proc/ pid /status

Provides much of the information in /proc/ pid /stat and /proc/ pid /statm in a for-
mat that’s easier for humans to parse. Here’s an example:

$ cat /proc/$$/status
Name: bash
Umask: 0022
State: S (sleeping)
Tgid: 17248
Ngid: 0
Pid: 17248
PPid: 17200
TracerPid: 0
Uid: 1000 1000 1000 1000
Gid: 100 100 100 100
FDSize: 256
Groups: 16 33 100
NStgid: 17248
NSpid: 17248
NSpgid: 17248
NSsid: 17200
VmPeak: 131168 kB
VmSize: 131168 kB
VmLck: 0 kB
VmPin: 0 kB
VmHWM: 13484 kB
VmRSS: 13484 kB
RssAnon: 10264 kB
RssFile: 3220 kB
RssShmem: 0 kB
VmData: 10332 kB
VmStk: 136 kB
VmExe: 992 kB
VmLib: 2104 kB
VmPTE: 76 kB
VmPMD: 12 kB
VmSwap: 0 kB
HugetlbPages: 0 kB # 4.4
CoreDumping: 0 # 4.15
Threads: 1
SigQ: 0/3067
SigPnd: 0000000000000000
ShdPnd: 0000000000000000
SigBlk: 0000000000010000

Linux man-pages 6.16 2025-09-21 3103

proc_pid_status(5) File Formats Manual proc_pid_status(5)

SigIgn: 0000000000384004
SigCgt: 000000004b813efb
CapInh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: ffffffffffffffff
CapAmb: 0000000000000000
NoNewPrivs: 0
Seccomp: 0
Seccomp_filters: 0
Speculation_Store_Bypass: vulnerable
Cpus_allowed: 00000001
Cpus_allowed_list: 0
Mems_allowed: 1
Mems_allowed_list: 0
voluntary_ctxt_switches: 150
nonvoluntary_ctxt_switches: 545

The fields are as follows:

Name
Command run by this process. Strings longer than
TASK_COMM_LEN (16) characters (including the terminating null
byte) are silently truncated.

Umask
Process umask, expressed in octal with a leading zero; see umask(2).
(Since Linux 4.7.)

State Current state of the process. One of "R (running)", "S (sleeping)", "D
(disk sleep)", "T (stopped)", "t (tracing stop)", "Z (zombie)", or "X
(dead)".

Tgid Thread group ID (i.e., Process ID).

Ngid NUMA group ID (0 if none; since Linux 3.13).

Pid Thread ID (see gettid(2)).

PPid PID of parent process.

TracerPid
PID of process tracing this process (0 if not being traced).

Uid
Gid Real, effective, saved set, and filesystem UIDs (GIDs).

FDSize
Number of file descriptor slots currently allocated.

Groups
Supplementary group list.

Linux man-pages 6.16 2025-09-21 3104

proc_pid_status(5) File Formats Manual proc_pid_status(5)

NStgid
Thread group ID (i.e., PID) in each of the PID namespaces of which pid
is a member. The leftmost entry shows the value with respect to the PID
namespace of the process that mounted this procfs (or the root namespace
if mounted by the kernel), followed by the value in successively nested
inner namespaces. (Since Linux 4.1.)

NSpid
Thread ID in each of the PID namespaces of which pid is a member.
The fields are ordered as for NStgid . (Since Linux 4.1.)

NSpgid
Process group ID in each of the PID namespaces of which pid is a mem-
ber. The fields are ordered as for NStgid . (Since Linux 4.1.)

NSsid
descendant namespace session ID hierarchy Session ID in each of the
PID namespaces of which pid is a member. The fields are ordered as for
NStgid . (Since Linux 4.1.)

VmPeak
Peak virtual memory size.

VmSize
Virtual memory size.

VmLck
Locked memory size (see mlock(2)).

VmPin
Pinned memory size (since Linux 3.2). These are pages that can’t be
moved because something needs to directly access physical memory.

VmHWM
Peak resident set size ("high water mark"). This value is inaccurate; see
/proc/ pid /statm above.

VmRSS
Resident set size. Note that the value here is the sum of RssAnon, Rss-
File, and RssShmem. This value is inaccurate; see /proc/ pid /statm
above.

RssAnon
Size of resident anonymous memory. (since Linux 4.5). This value is in-
accurate; see /proc/ pid /statm above.

RssFile
Size of resident file mappings. (since Linux 4.5). This value is inaccu-
rate; see /proc/ pid /statm above.

RssShmem
Size of resident shared memory (includes System V shared memory,
mappings from tmpfs(5), and shared anonymous mappings). (since
Linux 4.5).

Linux man-pages 6.16 2025-09-21 3105

proc_pid_status(5) File Formats Manual proc_pid_status(5)

VmData
VmStk
VmExe

Size of data, stack, and text segments. This value is inaccurate; see
/proc/ pid /statm above.

VmLib
Shared library code size.

VmPTE
Page table entries size (since Linux 2.6.10).

VmPMD
Size of second-level page tables (added in Linux 4.0; removed in Linux
4.15).

VmSwap
Swapped-out virtual memory size by anonymous private pages; shmem
swap usage is not included (since Linux 2.6.34). This value is inaccu-
rate; see /proc/ pid /statm above.

HugetlbPages
Size of hugetlb memory portions (since Linux 4.4).

CoreDumping
Contains the value 1 if the process is currently dumping core, and 0 if it
is not (since Linux 4.15). This information can be used by a monitoring
process to avoid killing a process that is currently dumping core, which
could result in a corrupted core dump file.

Threads
Number of threads in process containing this thread.

SigQ This field contains two slash-separated numbers that relate to queued sig-
nals for the real user ID of this process. The first of these is the number
of currently queued signals for this real user ID, and the second is the re-
source limit on the number of queued signals for this process (see the de-
scription of RLIMIT_SIGPENDING in getrlimit(2)).

SigPnd
ShdPnd

Mask (expressed in hexadecimal) of signals pending for thread and for
process as a whole (see pthreads(7) and signal(7)).

SigBlk
SigIgn
SigCgt

Masks (expressed in hexadecimal) indicating signals being blocked, ig-
nored, and caught (see signal(7)).

CapInh
CapPrm

Linux man-pages 6.16 2025-09-21 3106

proc_pid_status(5) File Formats Manual proc_pid_status(5)

CapEff
Masks (expressed in hexadecimal) of capabilities enabled in inheritable,
permitted, and effective sets (see capabilities(7)).

CapBnd
Capability bounding set, expressed in hexadecimal (since Linux 2.6.26,
see capabilities(7)).

CapAmb
Ambient capability set, expressed in hexadecimal (since Linux 4.3, see
capabilities(7)).

NoNewPrivs
Value of the no_new_privs bit (since Linux 4.10, see prctl(2)).

Seccomp
Seccomp mode of the process (since Linux 3.8, see seccomp(2)). 0
means SECCOMP_MODE_DISABLED; 1 means SEC-
COMP_MODE_STRICT; 2 means SECCOMP_MODE_FILTER.
This field is provided only if the kernel was built with the CON-
FIG_SECCOMP kernel configuration option enabled.

Seccomp_filters
Number of seccomp filters attached to the process (since Linux 5.9, see
seccomp(2)).

Speculation_Store_Bypass
Speculation flaw mitigation state (since Linux 4.17, see prctl(2)).

Cpus_allowed
Hexadecimal mask of CPUs on which this process may run (since Linux
2.6.24, see cpuset(7)).

Cpus_allowed_list
Same as previous, but in "list format" (since Linux 2.6.26, see cpuset(7)).

Mems_allowed
Mask of memory nodes allowed to this process (since Linux 2.6.24, see
cpuset(7)).

Mems_allowed_list
Same as previous, but in "list format" (since Linux 2.6.26, see cpuset(7)).

voluntary_ctxt_switches
nonvoluntary_ctxt_switches

Number of voluntary and involuntary context switches (since Linux
2.6.23).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3107

proc_pid_syscall(5) File Formats Manual proc_pid_syscall(5)

NAME
/proc/pid/syscall - currently executed system call

DESCRIPTION
/proc/ pid /syscall (since Linux 2.6.27)

This file exposes the system call number and argument registers for the system
call currently being executed by the process, followed by the values of the stack
pointer and program counter registers. The values of all six argument registers
are exposed, although most system calls use fewer registers.

If the process is blocked, but not in a system call, then the file displays -1 in
place of the system call number, followed by just the values of the stack pointer
and program counter. If process is not blocked, then the file contains just the
string "running".

This file is present only if the kernel was configured with CON-
FIG_HAVE_ARCH_TRACEHOOK.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3108

proc_pid_task(5) File Formats Manual proc_pid_task(5)

NAME
/proc/pid/task/, /proc/tid/, /proc/thread-self/ - thread information

DESCRIPTION
/proc/ pid /task/ (since Linux 2.6.0)

This is a directory that contains one subdirectory for each thread in the process.
The name of each subdirectory is the numerical thread ID (tid) of the thread (see
gettid(2)).

Within each of these subdirectories, there is a set of files with the same names
and contents as under the /proc/ pid directories. For attributes that are shared by
all threads, the contents for each of the files under the task/ tid subdirectories will
be the same as in the corresponding file in the parent /proc/ pid directory (e.g., in
a multithreaded process, all of the task/ tid /cwd files will have the same value as
the /proc/ pid /cwd file in the parent directory, since all of the threads in a process
share a working directory). For attributes that are distinct for each thread, the
corresponding files under task/ tid may have different values (e.g., various fields
in each of the task/ tid /status files may be different for each thread), or they
might not exist in /proc/ pid at all.

In a multithreaded process, the contents of the /proc/ pid /task directory are not
available if the main thread has already terminated (typically by calling
pthread_exit(3)).

/proc/ tid /
There is a numerical subdirectory for each running thread that is not a thread
group leader (i.e., a thread whose thread ID is not the same as its process ID); the
subdirectory is named by the thread ID. Each one of these subdirectories con-
tains files and subdirectories exposing information about the thread with the
thread ID tid . The contents of these directories are the same as the correspond-
ing /proc/ pid /task/ tid directories.

The /proc/ tid subdirectories are not visible when iterating through /proc with
getdents(2) (and thus are not visible when one uses ls(1) to view the contents of
/proc). However, the pathnames of these directories are visible to (i.e., usable as
arguments in) system calls that operate on pathnames.

/proc/thread-self/ (since Linux 3.17)
This directory refers to the thread accessing the /proc filesystem, and is identical
to the /proc/self/task/ tid directory named by the process thread ID (tid) of the
same thread.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-08-29 3109

proc_pid_timers(5) File Formats Manual proc_pid_timers(5)

NAME
/proc/pid/timers - POSIX timers

DESCRIPTION
/proc/ pid /timers (since Linux 3.10)

A list of the POSIX timers for this process. Each timer is listed with a line that
starts with the string "ID:". For example:

ID: 1
signal: 60/00007fff86e452a8
notify: signal/pid.2634
ClockID: 0
ID: 0
signal: 60/00007fff86e452a8
notify: signal/pid.2634
ClockID: 1

The lines shown for each timer have the following meanings:

ID The ID for this timer. This is not the same as the timer ID returned by
timer_create(2); rather, it is the same kernel-internal ID that is available
via the si_timerid field of the siginfo_t structure (see sigaction(2)).

signal
This is the signal number that this timer uses to deliver notifications fol-
lowed by a slash, and then the sigev_value value supplied to the signal
handler. Valid only for timers that notify via a signal.

notify
The part before the slash specifies the mechanism that this timer uses to
deliver notifications, and is one of "thread", "signal", or "none". Immedi-
ately following the slash is either the string "tid" for timers with
SIGEV_THREAD_ID notification, or "pid" for timers that notify by
other mechanisms. Following the "." is the PID of the process (or the
kernel thread ID of the thread) that will be delivered a signal if the timer
delivers notifications via a signal.

ClockID
This field identifies the clock that the timer uses for measuring time. For
most clocks, this is a number that matches one of the user-space
CLOCK_* constants exposed via <time.h>.
CLOCK_PROCESS_CPUTIME_ID timers display with a value of -6
in this field. CLOCK_THREAD_CPUTIME_ID timers display with a
value of -2 in this field.

This file is available only when the kernel was configured with CON-
FIG_CHECKPOINT_RESTORE.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3110

proc_pid_timerslack_ns(5) File Formats Manual proc_pid_timerslack_ns(5)

NAME
/proc/pid/timerslack_ns - timer slack in nanoseconds

DESCRIPTION
/proc/ pid /timerslack_ns (since Linux 4.6)

This file exposes the process’s "current" timer slack value, expressed in nanosec-
onds. The file is writable, allowing the process’s timer slack value to be
changed. Writing 0 to this file resets the "current" timer slack to the "default"
timer slack value. For further details, see the discussion of PR_SET_TIMER-
SLACK in prctl(2).

Initially, permission to access this file was governed by a ptrace access mode
PTRACE_MODE_ATTACH_FSCREDS check (see ptrace(2)). However, this
was subsequently deemed too strict a requirement (and had the side effect that
requiring a process to have the CAP_SYS_PTRACE capability would also al-
low it to view and change any process’s memory). Therefore, since Linux 4.9,
only the (weaker) CAP_SYS_NICE capability is required to access this file.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3111

proc_pid_uid_map(5) File Formats Manual proc_pid_uid_map(5)

NAME
/proc/pid/gid_map, /proc/pid/uid_map - user and group ID mappings

DESCRIPTION
/proc/ pid /gid_map (since Linux 3.5)

See user_namespaces(7).

/proc/ pid /uid_map (since Linux 3.5)
See user_namespaces(7).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3112

proc_pid_wchan(5) File Formats Manual proc_pid_wchan(5)

NAME
/proc/pid/wchan - wait channel

DESCRIPTION
/proc/ pid /wchan (since Linux 2.6.0)

The symbolic name corresponding to the location in the kernel where the process
is sleeping.

Permission to access this file is governed by a ptrace access mode
PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3113

proc_profile(5) File Formats Manual proc_profile(5)

NAME
/proc/profile - kernel profiling

DESCRIPTION
/proc/profile (since Linux 2.4)

This file is present only if the kernel was booted with the profile=1 command-
line option. It exposes kernel profiling information in a binary format for use by
readprofile(1)Writing (e.g., an empty string) to this file resets the profiling coun-
ters; on some architectures, writing a binary integer "profiling multiplier" of size
sizeof(int) sets the profiling interrupt frequency.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3114

proc_scsi(5) File Formats Manual proc_scsi(5)

NAME
/proc/scsi/ - SCSI

DESCRIPTION
/proc/scsi/

A directory with the scsi mid-level pseudo-file and various SCSI low-level driver
directories, which contain a file for each SCSI host in this system, all of which
give the status of some part of the SCSI IO subsystem. These files contain
ASCII structures and are, therefore, readable with cat(1)

You can also write to some of the files to reconfigure the subsystem or switch
certain features on or off.

/proc/scsi/scsi
This is a listing of all SCSI devices known to the kernel. The listing is similar to
the one seen during bootup. scsi currently supports only the add-single-device
command which allows root to add a hotplugged device to the list of known de-
vices.

The command

echo 'scsi add-single-device 1 0 5 0' > /proc/scsi/scsi

will cause host scsi1 to scan on SCSI channel 0 for a device on ID 5 LUN 0. If
there is already a device known on this address or the address is invalid, an error
will be returned.

/proc/scsi/ drivername /
drivername can currently be NCR53c7xx, aha152x, aha1542, aha1740, aic7xxx,
buslogic, eata_dma, eata_pio, fdomain, in2000, pas16, qlogic, scsi_debug, sea-
gate, t128, u15-24f, ultrastore, or wd7000. These directories show up for all dri-
vers that registered at least one SCSI HBA. Every directory contains one file per
registered host. Every host-file is named after the number the host was assigned
during initialization.

Reading these files will usually show driver and host configuration, statistics, and
so on.

Writing to these files allows different things on different hosts. For example,
with the latency and nolatency commands, root can switch on and off command
latency measurement code in the eata_dma driver. With the lockup and unlock
commands, root can control bus lockups simulated by the scsi_debug driver.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3115

proc_slabinfo(5) File Formats Manual proc_slabinfo(5)

NAME
/proc/slabinfo - kernel caches

DESCRIPTION
/proc/slabinfo

Information about kernel caches. See slabinfo(5) for details.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3116

proc_stat(5) File Formats Manual proc_stat(5)

NAME
/proc/stat - kernel system statistics

DESCRIPTION
/proc/stat

kernel/system statistics. Varies with architecture. Common entries include:

cpu 10132153 290696 3084719 46828483 16683 0 25195 0 175628 0
cpu0 1393280 32966 572056 13343292 6130 0 17875 0 23933 0

The amount of time, measured in units of USER_HZ (1/100ths of a sec-
ond on most architectures, use sysconf(_SC_CLK_TCK) to obtain the
right value), that the system ("cpu" line) or the specific CPU ("cpuN"
line) spent in various states:

user (1) Time spent in user mode.

nice (2) Time spent in user mode with low priority (nice).

system
(3) Time spent in system mode.

idle (4) Time spent in the idle task. This value should be USER_HZ
times the second entry in the /proc/uptime pseudo-file.

iowait (since Linux 2.5.41)
(5) Time waiting for I/O to complete. This value is not reliable,
for the following reasons:

• The CPU will not wait for I/O to complete; iowait is the time
that a task is waiting for I/O to complete. When a CPU goes
into idle state for outstanding task I/O, another task will be
scheduled on this CPU.

• On a multi-core CPU, the task waiting for I/O to complete is
not running on any CPU, so the iowait of each CPU is difficult
to calculate.

• The value in this field may decrease in certain conditions.

irq (since Linux 2.6.0)
(6) Time servicing interrupts.

softirq (since Linux 2.6.0)
(7) Time servicing softirqs.

steal (since Linux 2.6.11)
(8) Stolen time, which is the time spent in other operating systems
when running in a virtualized environment

guest (since Linux 2.6.24)
(9) Time spent running a virtual CPU for guest operating systems
under the control of the Linux kernel.

guest_nice (since Linux 2.6.33)
(10) Time spent running a niced guest (virtual CPU for guest op-
erating systems under the control of the Linux kernel).

Linux man-pages 6.16 2025-05-17 3117

proc_stat(5) File Formats Manual proc_stat(5)

page 5741 1808
The number of pages the system paged in and the number that were
paged out (from disk).

swap 1 0
The number of swap pages that have been brought in and out.

intr 1462898
This line shows counts of interrupts serviced since boot time, for each of
the possible system interrupts. The first column is the total of all inter-
rupts serviced including unnumbered architecture specific interrupts;
each subsequent column is the total for that particular numbered inter-
rupt. Unnumbered interrupts are not shown, only summed into the total.

disk_io: (2,0):(31,30,5764,1,2) (3,0):...
(major,disk_idx):(noinfo, read_io_ops, blks_read, write_io_ops,
blks_written)
(Linux 2.4 only)

ctxt 115315
The number of context switches that the system underwent.

btime 769041601
boot time, in seconds since the Epoch, 1970-01-01 00:00:00 +0000
(UTC).

processes 86031
Number of forks since boot.

procs_running 6
Number of processes in runnable state. (Linux 2.5.45 onward.)

procs_blocked 2
Number of processes blocked waiting for I/O to complete. (Linux 2.5.45
onward.)

softirq 229245889 94 60001584 13619 5175704 2471304 28 51212741
59130143 0 51240672

This line shows the number of softirq for all CPUs. The first column is
the total of all softirqs and each subsequent column is the total for partic-
ular softirq. (Linux 2.6.31 onward.)

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3118

proc_swaps(5) File Formats Manual proc_swaps(5)

NAME
/proc/swaps - swap areas

DESCRIPTION
/proc/swaps

Swap areas in use. See also swapon(8)

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3119

proc_sys(5) File Formats Manual proc_sys(5)

NAME
/proc/sys/ - system information, and sysctl pseudo-filesystem

DESCRIPTION
/proc/sys/

This directory (present since Linux 1.3.57) contains a number of files and subdi-
rectories corresponding to kernel variables. These variables can be read and in
some cases modified using the /proc filesystem, and the (deprecated) sysctl(2)
system call.

String values may be terminated by either '\0' or '\n'.

Integer and long values may be written either in decimal or in hexadecimal nota-
tion (e.g., 0x3FFF). When writing multiple integer or long values, these may be
separated by any of the following whitespace characters: ' ', '\t', or '\n'. Using
other separators leads to the error EINVAL.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3120

proc_sys_abi(5) File Formats Manual proc_sys_abi(5)

NAME
/proc/sys/abi/ - application binary information

DESCRIPTION
/proc/sys/abi/ (since Linux 2.4.10)

This directory may contain files with application binary information. See the
Linux kernel source file Documentation/sysctl/abi.rst (or Documenta-
tion/sysctl/abi.txt before Linux 5.3) for more information.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-05-17 3121

proc_sys_debug(5) File Formats Manual proc_sys_debug(5)

NAME
/proc/sys/debug/ - debug

DESCRIPTION
/proc/sys/debug/

This directory may be empty.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-05-17 3122

proc_sys_dev(5) File Formats Manual proc_sys_dev(5)

NAME
/proc/sys/dev/ - device-specific information

DESCRIPTION
/proc/sys/dev/

This directory contains device-specific information (e.g., dev/cdrom/info). On
some systems, it may be empty.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-05-17 3123

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

NAME
/proc/sys/fs/ - kernel variables related to filesystems

DESCRIPTION
/proc/sys/fs/

This directory contains the files and subdirectories for kernel variables related to
filesystems.

/proc/sys/fs/aio-max-nr
/proc/sys/fs/aio-nr (both since Linux 2.6.4)

aio-nr is the running total of the number of events specified by io_setup(2) calls
for all currently active AIO contexts. If aio-nr reaches aio-max-nr, then
io_setup(2) will fail with the error EAGAIN. Raising aio-max-nr does not re-
sult in the preallocation or resizing of any kernel data structures.

/proc/sys/fs/binfmt_misc
Documentation for files in this directory can be found in the Linux kernel source
in the file Documentation/admin-guide/binfmt-misc.rst (or in Documenta-
tion/binfmt_misc.txt on older kernels).

/proc/sys/fs/dentry-state (since Linux 2.2)
This file contains information about the status of the directory cache (dcache).
The file contains six numbers, nr_dentry, nr_unused , age_limit (age in seconds),
want_pages (pages requested by system) and two dummy values.

• nr_dentry is the number of allocated dentries (dcache entries). This field is
unused in Linux 2.2.

• nr_unused is the number of unused dentries.

• age_limit is the age in seconds after which dcache entries can be reclaimed
when memory is short.

• want_pages is nonzero when the kernel has called shrink_dcache_pages()
and the dcache isn’t pruned yet.

/proc/sys/fs/dir-notify-enable
This file can be used to disable or enable the dnotify interface described in fc-
ntl(2) on a system-wide basis. A value of 0 in this file disables the interface, and
a value of 1 enables it.

/proc/sys/fs/dquot-max
This file shows the maximum number of cached disk quota entries. On some
(2.4) systems, it is not present. If the number of free cached disk quota entries is
very low and you have some awesome number of simultaneous system users,
you might want to raise the limit.

/proc/sys/fs/dquot-nr
This file shows the number of allocated disk quota entries and the number of free
disk quota entries.

/proc/sys/fs/epoll/ (since Linux 2.6.28)
This directory contains the file max_user_watches, which can be used to limit
the amount of kernel memory consumed by the epoll interface. For further

Linux man-pages 6.16 2025-09-21 3124

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

details, see epoll(7).

/proc/sys/fs/file-max
This file defines a system-wide limit on the number of open files for all
processes. System calls that fail when encountering this limit fail with the error
ENFILE. (See also setrlimit(2), which can be used by a process to set the per-
process limit, RLIMIT_NOFILE, on the number of files it may open.) If you
get lots of error messages in the kernel log about running out of file handles
(open file descriptions) (look for "VFS: file-max limit <number> reached"), try
increasing this value:

echo 100000 > /proc/sys/fs/file-max

Privileged processes (CAP_SYS_ADMIN) can override the file-max limit.

/proc/sys/fs/file-nr
This (read-only) file contains three numbers: the number of allocated file handles
(i.e., the number of open file descriptions; see open(2)); the number of free file
handles; and the maximum number of file handles (i.e., the same value as
/proc/sys/fs/file-max). If the number of allocated file handles is close to the max-
imum, you should consider increasing the maximum. Before Linux 2.6, the ker-
nel allocated file handles dynamically, but it didn’t free them again. Instead the
free file handles were kept in a list for reallocation; the "free file handles" value
indicates the size of that list. A large number of free file handles indicates that
there was a past peak in the usage of open file handles. Since Linux 2.6, the ker-
nel does deallocate freed file handles, and the "free file handles" value is always
zero.

/proc/sys/fs/inode-max (only present until Linux 2.2)
This file contains the maximum number of in-memory inodes. This value should
be 3–4 times larger than the value in file-max, since stdin, stdout and network
sockets also need an inode to handle them. When you regularly run out of in-
odes, you need to increase this value.

Starting with Linux 2.4, there is no longer a static limit on the number of inodes,
and this file is removed.

/proc/sys/fs/inode-nr
This file contains the first two values from inode-state.

/proc/sys/fs/inode-state
This file contains seven numbers: nr_inodes, nr_free_inodes, preshrink, and
four dummy values (always zero).

nr_inodes is the number of inodes the system has allocated. nr_free_inodes rep-
resents the number of free inodes.

preshrink is nonzero when the nr_inodes > inode-max and the system needs to
prune the inode list instead of allocating more; since Linux 2.4, this field is a
dummy value (always zero).

/proc/sys/fs/inotify/ (since Linux 2.6.13)
This directory contains files max_queued_events, max_user_instances, and
max_user_watches, that can be used to limit the amount of kernel memory

Linux man-pages 6.16 2025-09-21 3125

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

consumed by the inotify interface. For further details, see inotify(7).

/proc/sys/fs/lease-break-time
This file specifies the grace period that the kernel grants to a process holding a
file lease (fcntl(2)) after it has sent a signal to that process notifying it that an-
other process is waiting to open the file. If the lease holder does not remove or
downgrade the lease within this grace period, the kernel forcibly breaks the
lease.

/proc/sys/fs/leases-enable
This file can be used to enable or disable file leases (fcntl(2)) on a system-wide
basis. If this file contains the value 0, leases are disabled. A nonzero value en-
ables leases.

/proc/sys/fs/mount-max (since Linux 4.9)
The value in this file specifies the maximum number of mounts that may exist in
a mount namespace. The default value in this file is 100,000.

/proc/sys/fs/mqueue/ (since Linux 2.6.6)
This directory contains files msg_max, msgsize_max, and queues_max, control-
ling the resources used by POSIX message queues. See mq_overview(7) for de-
tails.

/proc/sys/fs/nr_open (since Linux 2.6.25)
This file imposes a ceiling on the value to which the RLIMIT_NOFILE re-
source limit can be raised (see getrlimit(2)). This ceiling is enforced for both un-
privileged and privileged process. The default value in this file is 1048576. (Be-
fore Linux 2.6.25, the ceiling for RLIMIT_NOFILE was hard-coded to the
same value.)

/proc/sys/fs/overflowgid
/proc/sys/fs/overflowuid

These files allow you to change the value of the fixed UID and GID. The default
is 65534. Some filesystems support only 16-bit UIDs and GIDs, although in
Linux UIDs and GIDs are 32 bits. When one of these filesystems is mounted
with writes enabled, any UID or GID that would exceed 65535 is translated to
the overflow value before being written to disk.

/proc/sys/fs/pipe-max-size (since Linux 2.6.35)
See pipe(7).

/proc/sys/fs/pipe-user-pages-hard (since Linux 4.5)
See pipe(7).

/proc/sys/fs/pipe-user-pages-soft (since Linux 4.5)
See pipe(7).

/proc/sys/fs/protected_fifos (since Linux 4.19)
The value in this file is/can be set to one of the following:

Writing to FIFOs is unrestricted.

Linux man-pages 6.16 2025-09-21 3126

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

1 Don’t allow O_CREAT open(2) on FIFOs that the caller doesn’t own in
world-writable sticky directories, unless the FIFO is owned by the owner of
the directory.

2 As for the value 1, but the restriction also applies to group-writable sticky
directories.

The intent of the above protections is to avoid unintentional writes to an attacker-
controlled FIFO when a program expected to create a regular file.

/proc/sys/fs/protected_hardlinks (since Linux 3.6)
When the value in this file is 0, no restrictions are placed on the creation of hard
links (i.e., this is the historical behavior before Linux 3.6). When the value in
this file is 1, a hard link can be created to a target file only if one of the following
conditions is true:

• The calling process has the CAP_FOWNER capability in its user name-
space and the file UID has a mapping in the namespace.

• The filesystem UID of the process creating the link matches the owner (UID)
of the target file (as described in credentials(7), a process’s filesystem UID is
normally the same as its effective UID).

• All of the following conditions are true:

• the target is a regular file;

• the target file does not have its set-user-ID mode bit enabled;

• the target file does not have both its set-group-ID and group-executable
mode bits enabled; and

• the caller has permission to read and write the target file (either via the
file’s permissions mask or because it has suitable capabilities).

The default value in this file is 0. Setting the value to 1 prevents a longstanding
class of security issues caused by hard-link-based time-of-check, time-of-use
races, most commonly seen in world-writable directories such as /tmp. The
common method of exploiting this flaw is to cross privilege boundaries when
following a given hard link (i.e., a root process follows a hard link created by an-
other user). Additionally, on systems without separated partitions, this stops
unauthorized users from "pinning" vulnerable set-user-ID and set-group-ID files
against being upgraded by the administrator, or linking to special files.

/proc/sys/fs/protected_regular (since Linux 4.19)
The value in this file is/can be set to one of the following:

Writing to regular files is unrestricted.

1 Don’t allow O_CREAT open(2) on regular files that the caller doesn’t own
in world-writable sticky directories, unless the regular file is owned by the
owner of the directory.

2 As for the value 1, but the restriction also applies to group-writable sticky
directories.

Linux man-pages 6.16 2025-09-21 3127

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

The intent of the above protections is similar to protected_fifos, but allows an
application to avoid writes to an attacker-controlled regular file, where the appli-
cation expected to create one.

/proc/sys/fs/protected_symlinks (since Linux 3.6)
When the value in this file is 0, no restrictions are placed on following symbolic
links (i.e., this is the historical behavior before Linux 3.6). When the value in
this file is 1, symbolic links are followed only in the following circumstances:

• the filesystem UID of the process following the link matches the owner
(UID) of the symbolic link (as described in credentials(7), a process’s
filesystem UID is normally the same as its effective UID);

• the link is not in a sticky world-writable directory; or

• the symbolic link and its parent directory have the same owner (UID)

A system call that fails to follow a symbolic link because of the above restric-
tions returns the error EACCES in errno.

The default value in this file is 0. Setting the value to 1 avoids a longstanding
class of security issues based on time-of-check, time-of-use races when access-
ing symbolic links.

/proc/sys/fs/suid_dumpable (since Linux 2.6.13)
The value in this file is assigned to a process’s "dumpable" flag in the circum-
stances described in prctl(2). In effect, the value in this file determines whether
core dump files are produced for set-user-ID or otherwise protected/tainted bina-
ries. The "dumpable" setting also affects the ownership of files in a process’s
/proc/ pid directory, as described above.

Three different integer values can be specified:

0 (default)
This provides the traditional (pre-Linux 2.6.13) behavior. A core dump
will not be produced for a process which has changed credentials (by
calling seteuid(2), setgid(2), or similar, or by executing a set-user-ID or
set-group-ID program) or whose binary does not have read permission
enabled.

1 ("debug")
All processes dump core when possible. (Reasons why a process might
nevertheless not dump core are described in core(5).) The core dump is
owned by the filesystem user ID of the dumping process and no security
is applied. This is intended for system debugging situations only: this
mode is insecure because it allows unprivileged users to examine the
memory contents of privileged processes.

2 ("suidsafe")
Any binary which normally would not be dumped (see "0" above) is
dumped readable by root only. This allows the user to remove the core
dump file but not to read it. For security reasons core dumps in this mode
will not overwrite one another or other files. This mode is appropriate
when administrators are attempting to debug problems in a normal

Linux man-pages 6.16 2025-09-21 3128

proc_sys_fs(5) File Formats Manual proc_sys_fs(5)

environment.

Additionally, since Linux 3.6, /proc/sys/kernel/core_pattern must either
be an absolute pathname or a pipe command, as detailed in core(5).
Warnings will be written to the kernel log if core_pattern does not follow
these rules, and no core dump will be produced.

For details of the effect of a process’s "dumpable" setting on ptrace access mode
checking, see ptrace(2).

/proc/sys/fs/super-max
This file controls the maximum number of superblocks, and thus the maximum
number of mounted filesystems the kernel can have. You need increase only su-
per-max if you need to mount more filesystems than the current value in su-
per-max allows you to.

/proc/sys/fs/super-nr
This file contains the number of filesystems currently mounted.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-09-21 3129

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

NAME
/proc/sys/kernel/ - control a range of kernel parameters

DESCRIPTION
/proc/sys/kernel/

This directory contains files controlling a range of kernel parameters, as de-
scribed below.

/proc/sys/kernel/acct
This file contains three numbers: highwater, lowwater, and frequency. If BSD-
style process accounting is enabled, these values control its behavior. If free
space on filesystem where the log lives goes below lowwater percent, accounting
suspends. If free space gets above highwater percent, accounting resumes. fre-
quency determines how often the kernel checks the amount of free space (value
is in seconds). Default values are 4, 2, and 30. That is, suspend accounting if
2% or less space is free; resume it if 4% or more space is free; consider informa-
tion about amount of free space valid for 30 seconds.

/proc/sys/kernel/auto_msgmni (Linux 2.6.27 to Linux 3.18)
From Linux 2.6.27 to Linux 3.18, this file was used to control recomputing of
the value in /proc/sys/kernel/msgmni upon the addition or removal of memory or
upon IPC namespace creation/removal. Echoing "1" into this file enabled ms-
gmni automatic recomputing (and triggered a recomputation of msgmni based on
the current amount of available memory and number of IPC namespaces). Echo-
ing "0" disabled automatic recomputing. (Automatic recomputing was also dis-
abled if a value was explicitly assigned to /proc/sys/kernel/msgmni.) The default
value in auto_msgmni was 1.

Since Linux 3.19, the content of this file has no effect (because msgmni defaults
to near the maximum value possible), and reads from this file always return the
value "0".

/proc/sys/kernel/cap_last_cap (since Linux 3.2)
See capabilities(7).

/proc/sys/kernel/cap-bound (from Linux 2.2 to Linux 2.6.24)
This file holds the value of the kernel capability bounding set (expressed as a
signed decimal number). This set is ANDed against the capabilities permitted to
a process during execve(2). Starting with Linux 2.6.25, the system-wide capabil-
ity bounding set disappeared, and was replaced by a per-thread bounding set; see
capabilities(7).

/proc/sys/kernel/core_pattern
See core(5).

/proc/sys/kernel/core_pipe_limit
See core(5).

/proc/sys/kernel/core_uses_pid
See core(5).

Linux man-pages 6.16 2025-09-21 3130

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

/proc/sys/kernel/ctrl-alt-del
This file controls the handling of Ctrl-Alt-Del from the keyboard. When the
value in this file is 0, Ctrl-Alt-Del is trapped and sent to the init(1) program to
handle a graceful restart. When the value is greater than zero, Linux’s reaction
to a Vulcan Nerve Pinch (tm) will be an immediate reboot, without even syncing
its dirty buffers. Note: when a program (like dosemu) has the keyboard in "raw"
mode, the Ctrl-Alt-Del is intercepted by the program before it ever reaches the
kernel tty layer, and it’s up to the program to decide what to do with it.

/proc/sys/kernel/dmesg_restrict (since Linux 2.6.37)
The value in this file determines who can see kernel syslog contents. A value of
0 in this file imposes no restrictions. If the value is 1, only privileged users can
read the kernel syslog. (See syslog(2) for more details.) Since Linux 3.4, only
users with the CAP_SYS_ADMIN capability may change the value in this file.

/proc/sys/kernel/domainname
/proc/sys/kernel/hostname

can be used to set the NIS/YP domainname and the hostname of your box in ex-
actly the same way as the commands domainname(1) and hostname(1), that is:

echo 'darkstar' > /proc/sys/kernel/hostname
echo 'mydomain' > /proc/sys/kernel/domainname

has the same effect as

hostname 'darkstar'
domainname 'mydomain'

Note, however, that the classic darkstar.frop.org has the hostname "darkstar" and
DNS (Internet Domain Name Server) domainname "frop.org", not to be con-
fused with the NIS (Network Information Service) or YP (Yellow Pages) do-
mainname. These two domain names are in general different. For a detailed dis-
cussion see the hostname(1) man page.

/proc/sys/kernel/hotplug
This file contains the pathname for the hotplug policy agent. The default value
in this file is /sbin/hotplug.

/proc/sys/kernel/htab-reclaim (before Linux 2.4.9.2)
(PowerPC only) If this file is set to a nonzero value, the PowerPC htab (see ker-
nel file Documentation/powerpc/ppc_htab.txt) is pruned each time the system
hits the idle loop.

/proc/sys/kernel/keys/
This directory contains various files that define parameters and limits for the key-
management facility. These files are described in keyrings(7).

/proc/sys/kernel/kptr_restrict (since Linux 2.6.38)
The value in this file determines whether kernel addresses are exposed via /proc
files and other interfaces. A value of 0 in this file imposes no restrictions. If the
value is 1, kernel pointers printed using the %pK format specifier will be re-
placed with zeros unless the user has the CAP_SYSLOG capability. If the value
is 2, kernel pointers printed using the %pK format specifier will be replaced with

Linux man-pages 6.16 2025-09-21 3131

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

zeros regardless of the user’s capabilities. The initial default value for this file
was 1, but the default was changed to 0 in Linux 2.6.39. Since Linux 3.4, only
users with the CAP_SYS_ADMIN capability can change the value in this file.

/proc/sys/kernel/l2cr
(PowerPC only) This file contains a flag that controls the L2 cache of G3 proces-
sor boards. If 0, the cache is disabled. Enabled if nonzero.

/proc/sys/kernel/modprobe
This file contains the pathname for the kernel module loader. The default value
is /sbin/modprobe. The file is present only if the kernel is built with the CON-
FIG_MODULES (CONFIG_KMOD in Linux 2.6.26 and earlier) option en-
abled. It is described by the Linux kernel source file Documentation/kmod.txt
(present only in Linux 2.4 and earlier).

/proc/sys/kernel/modules_disabled (since Linux 2.6.31)
A toggle value indicating if modules are allowed to be loaded in an otherwise
modular kernel. This toggle defaults to off (0), but can be set true (1). Once
true, modules can be neither loaded nor unloaded, and the toggle cannot be set
back to false. The file is present only if the kernel is built with the CON-
FIG_MODULES option enabled.

/proc/sys/kernel/msgmax (since Linux 2.2)
This file defines a system-wide limit specifying the maximum number of bytes in
a single message written on a System V message queue.

/proc/sys/kernel/msgmni (since Linux 2.4)
This file defines the system-wide limit on the number of message queue identi-
fiers. See also /proc/sys/kernel/auto_msgmni.

/proc/sys/kernel/msgmnb (since Linux 2.2)
This file defines a system-wide parameter used to initialize the msg_qbytes set-
ting for subsequently created message queues. The msg_qbytes setting specifies
the maximum number of bytes that may be written to the message queue.

/proc/sys/kernel/ngroups_max (since Linux 2.6.4)
This is a read-only file that displays the upper limit on the number of a process’s
group memberships.

/proc/sys/kernel/ns_last_pid (since Linux 3.3)
See pid_namespaces(7).

/proc/sys/kernel/ostype
/proc/sys/kernel/osrelease

These files give substrings of /proc/version.

/proc/sys/kernel/overflowgid
/proc/sys/kernel/overflowuid

These files duplicate the files /proc/sys/fs/overflowgid and /proc/sys/fs/over-
flowuid .

/proc/sys/kernel/panic
This file gives read/write access to the kernel variable panic_timeout. If this is
zero, the kernel will loop on a panic; if nonzero, it indicates that the kernel

Linux man-pages 6.16 2025-09-21 3132

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

should autoreboot after this number of seconds. When you use the software
watchdog device driver, the recommended setting is 60.

/proc/sys/kernel/panic_on_oops (since Linux 2.5.68)
This file controls the kernel’s behavior when an oops or BUG is encountered. If
this file contains 0, then the system tries to continue operation. If it contains 1,
then the system delays a few seconds (to give klogd time to record the oops out-
put) and then panics. If the /proc/sys/kernel/panic file is also nonzero, then the
machine will be rebooted.

/proc/sys/kernel/pid_max (since Linux 2.5.34)
This file specifies the value at which PIDs wrap around (i.e., the value in this file
is one greater than the maximum PID). PIDs greater than this value are not allo-
cated; thus, the value in this file also acts as a system-wide limit on the total
number of processes and threads. The default value for this file, 32768, results
in the same range of PIDs as on earlier kernels. On 32-bit platforms, 32768 is
the maximum value for pid_max. On 64-bit systems, pid_max can be set to any
value up to 2^22 (PID_MAX_LIMIT, approximately 4 million).

/proc/sys/kernel/powersave-nap (PowerPC only)
This file contains a flag. If set, Linux-PPC will use the "nap" mode of powersav-
ing, otherwise the "doze" mode will be used.

/proc/sys/kernel/printk
See syslog(2).

/proc/sys/kernel/pty (since Linux 2.6.4)
This directory contains two files relating to the number of UNIX 98 pseudoter-
minals (see pts(4)) on the system.

/proc/sys/kernel/pty/max
This file defines the maximum number of pseudoterminals.

/proc/sys/kernel/pty/nr
This read-only file indicates how many pseudoterminals are currently in use.

/proc/sys/kernel/random/
This directory contains various parameters controlling the operation of the file
/dev/random. See random(4) for further information.

/proc/sys/kernel/random/uuid (since Linux 2.4)
Each read from this read-only file returns a randomly generated 128-bit UUID,
as a string in the standard UUID format.

/proc/sys/kernel/randomize_va_space (since Linux 2.6.12)
Select the address space layout randomization (ASLR) policy for the system (on
architectures that support ASLR). Three values are supported for this file:

0 Turn ASLR off. This is the default for architectures that don’t support
ASLR, and when the kernel is booted with the norandmaps parameter.

1 Make the addresses of mmap(2) allocations, the stack, and the VDSO
page randomized. Among other things, this means that shared libraries
will be loaded at randomized addresses. The text segment of PIE-linked

Linux man-pages 6.16 2025-09-21 3133

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

binaries will also be loaded at a randomized address. This value is the
default if the kernel was configured with CONFIG_COMPAT_BRK.

2 (Since Linux 2.6.25) Also support heap randomization. This value is the
default if the kernel was not configured with CONFIG_COM-
PAT_BRK.

/proc/sys/kernel/real-root-dev
This file is documented in the Linux kernel source file Documentation/ad-
min-guide/initrd.rst (or Documentation/initrd.txt before Linux 4.10).

/proc/sys/kernel/reboot-cmd (Sparc only)
This file seems to be a way to give an argument to the SPARC ROM/Flash boot
loader. Maybe to tell it what to do after rebooting?

/proc/sys/kernel/rtsig-max
(Up to and including Linux 2.6.7; see setrlimit(2)) This file can be used to tune
the maximum number of POSIX real-time (queued) signals that can be outstand-
ing in the system.

/proc/sys/kernel/rtsig-nr
(Up to and including Linux 2.6.7.) This file shows the number of POSIX real-
time signals currently queued.

/proc/ pid /sched_autogroup_enabled (since Linux 2.6.38)
See sched(7).

/proc/sys/kernel/sched_child_runs_first (since Linux 2.6.23)
If this file contains the value zero, then, after a fork(2), the parent is first sched-
uled on the CPU. If the file contains a nonzero value, then the child is scheduled
first on the CPU. (Of course, on a multiprocessor system, the parent and the
child might both immediately be scheduled on a CPU.)

/proc/sys/kernel/sched_rr_timeslice_ms (since Linux 3.9)
See sched_rr_get_interval(2).

/proc/sys/kernel/sched_rt_period_us (since Linux 2.6.25)
See sched(7).

/proc/sys/kernel/sched_rt_runtime_us (since Linux 2.6.25)
See sched(7).

/proc/sys/kernel/seccomp/ (since Linux 4.14)
This directory provides additional seccomp information and configuration. See
seccomp(2) for further details.

/proc/sys/kernel/sem (since Linux 2.4)
This file contains 4 numbers defining limits for System V IPC semaphores.
These fields are, in order:

SEMMSL
The maximum semaphores per semaphore set.

Linux man-pages 6.16 2025-09-21 3134

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

SEMMNS
A system-wide limit on the number of semaphores in all semaphore sets.

SEMOPM
The maximum number of operations that may be specified in a semop(2)
call.

SEMMNI
A system-wide limit on the maximum number of semaphore identifiers.

/proc/sys/kernel/sg-big-buff
This file shows the size of the generic SCSI device (sg) buffer. You can’t tune it
just yet, but you could change it at compile time by editing include/scsi/sg.h and
changing the value of SG_BIG_BUFF. However, there shouldn’t be any reason
to change this value.

/proc/sys/kernel/shm_rmid_forced (since Linux 3.1)
If this file is set to 1, all System V shared memory segments will be marked for
destruction as soon as the number of attached processes falls to zero; in other
words, it is no longer possible to create shared memory segments that exist inde-
pendently of any attached process.

The effect is as though a shmctl(2) IPC_RMID is performed on all existing seg-
ments as well as all segments created in the future (until this file is reset to 0).
Note that existing segments that are attached to no process will be immediately
destroyed when this file is set to 1. Setting this option will also destroy segments
that were created, but never attached, upon termination of the process that cre-
ated the segment with shmget(2).

Setting this file to 1 provides a way of ensuring that all System V shared memory
segments are counted against the resource usage and resource limits (see the de-
scription of RLIMIT_AS in getrlimit(2)) of at least one process.

Because setting this file to 1 produces behavior that is nonstandard and could
also break existing applications, the default value in this file is 0. Set this file to
1 only if you have a good understanding of the semantics of the applications us-
ing System V shared memory on your system.

/proc/sys/kernel/shmall (since Linux 2.2)
This file contains the system-wide limit on the total number of pages of System
V shared memory.

/proc/sys/kernel/shmmax (since Linux 2.2)
This file can be used to query and set the run-time limit on the maximum (Sys-
tem V IPC) shared memory segment size that can be created. Shared memory
segments up to 1 GB are now supported in the kernel. This value defaults to
SHMMAX.

/proc/sys/kernel/shmmni (since Linux 2.4)
This file specifies the system-wide maximum number of System V shared mem-
ory segments that can be created.

Linux man-pages 6.16 2025-09-21 3135

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

/proc/sys/kernel/sysctl_writes_strict (since Linux 3.16)
The value in this file determines how the file offset affects the behavior of updat-
ing entries in files under /proc/sys. The file has three possible values:

-1 This provides legacy handling, with no printk warnings. Each write(2) must
fully contain the value to be written, and multiple writes on the same file
descriptor will overwrite the entire value, regardless of the file position.

(default) This provides the same behavior as for -1,
but printk warnings are written for processes that perform writes when the
file offset is not 0.

1 Respect the file offset when writing strings into /proc/sys files. Multiple
writes will append to the value buffer. Anything written beyond the maxi-
mum length of the value buffer will be ignored. Writes to numeric
/proc/sys entries must always be at file offset 0 and the value must be fully
contained in the buffer provided to write(2).

/proc/sys/kernel/sysrq
This file controls the functions allowed to be invoked by the SysRq key. By de-
fault, the file contains 1 meaning that every possible SysRq request is allowed (in
older kernel versions, SysRq was disabled by default, and you were required to
specifically enable it at run-time, but this is not the case any more). Possible val-
ues in this file are:

Disable sysrq completely

1 Enable all functions of sysrq

> 1 Bit mask of allowed sysrq functions, as follows:
2 Enable control of console logging level
4 Enable control of keyboard (SAK, unraw)
8 Enable debugging dumps of processes etc.
16 Enable sync command
32 Enable remount read-only
64 Enable signaling of processes (term, kill, oom-kill)
128 Allow reboot/poweroff
256 Allow nicing of all real-time tasks

This file is present only if the CONFIG_MAGIC_SYSRQ kernel configuration
option is enabled. For further details see the Linux kernel source file Documen-
tation/admin-guide/sysrq.rst (or Documentation/sysrq.txt before Linux 4.10).

/proc/sys/kernel/version
This file contains a string such as:

#5 Wed Feb 25 21:49:24 MET 1998

The "#5" means that this is the fifth kernel built from this source base and the
date following it indicates the time the kernel was built.

/proc/sys/kernel/threads-max (since Linux 2.3.11)
This file specifies the system-wide limit on the number of threads (tasks) that can
be created on the system.

Linux man-pages 6.16 2025-09-21 3136

proc_sys_kernel(5) File Formats Manual proc_sys_kernel(5)

Since Linux 4.1, the value that can be written to threads-max is bounded. The
minimum value that can be written is 20. The maximum value that can be writ-
ten is given by the constant FUTEX_TID_MASK (0x3fffffff). If a value out-
side of this range is written to threads-max, the error EINVAL occurs.

The value written is checked against the available RAM pages. If the thread
structures would occupy too much (more than 1/8th) of the available RAM
pages, threads-max is reduced accordingly.

/proc/sys/kernel/yama/ptrace_scope (since Linux 3.5)
See ptrace(2).

/proc/sys/kernel/zero-paged (PowerPC only)
This file contains a flag. When enabled (nonzero), Linux-PPC will pre-zero
pages in the idle loop, possibly speeding up get_free_pages.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-09-21 3137

proc_sys_net(5) File Formats Manual proc_sys_net(5)

NAME
/proc/sys/net/ - networking

DESCRIPTION
/proc/sys/net/

This directory contains networking stuff. Explanations for some of the files un-
der this directory can be found in tcp(7) and ip(7).

/proc/sys/net/core/bpf_jit_enable
See bpf(2).

/proc/sys/net/core/somaxconn
This file defines a ceiling value for the backlog argument of listen(2); see the lis-
ten(2) manual page for details.

SEE ALSO
proc(5), proc_net(5)

Linux man-pages 6.16 2025-05-17 3138

proc_sys_proc(5) File Formats Manual proc_sys_proc(5)

NAME
/proc/sys/proc/ - ???

DESCRIPTION
/proc/sys/proc/

This directory may be empty.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-05-17 3139

proc_sys_sunrpc(5) File Formats Manual proc_sys_sunrpc(5)

NAME
/proc/sys/sunrpc/ - Sun remote procedure call for NFS

DESCRIPTION
/proc/sys/sunrpc/

This directory supports Sun remote procedure call for network filesystem (NFS).
On some systems, it is not present.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-05-17 3140

proc_sys_user(5) File Formats Manual proc_sys_user(5)

NAME
/proc/sys/user/ - limits on the number of namespaces of various types

DESCRIPTION
/proc/sys/user/ (since Linux 4.9)

See namespaces(7).

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-05-17 3141

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

NAME
/proc/sys/vm/ - virtual memory subsystem

DESCRIPTION
/proc/sys/vm/

This directory contains files for memory management tuning, buffer, and cache
management.

/proc/sys/vm/admin_reserve_kbytes (since Linux 3.10)
This file defines the amount of free memory (in KiB) on the system that should
be reserved for users with the capability CAP_SYS_ADMIN.

The default value in this file is the minimum of [3% of free pages, 8MiB] ex-
pressed as KiB. The default is intended to provide enough for the superuser to
log in and kill a process, if necessary, under the default overcommit ’guess’
mode (i.e., 0 in /proc/sys/vm/overcommit_memory).

Systems running in "overcommit never" mode (i.e., 2 in /proc/sys/vm/overcom-
mit_memory) should increase the value in this file to account for the full virtual
memory size of the programs used to recover (e.g., login(1) ssh(1), and top(1))
Otherwise, the superuser may not be able to log in to recover the system. For ex-
ample, on x86-64 a suitable value is 131072 (128MiB reserved).

Changing the value in this file takes effect whenever an application requests
memory.

/proc/sys/vm/compact_memory (since Linux 2.6.35)
When 1 is written to this file, all zones are compacted such that free memory is
available in contiguous blocks where possible. The effect of this action can be
seen by examining /proc/buddyinfo.

Present only if the kernel was configured with CONFIG_COMPACTION.

/proc/sys/vm/drop_caches (since Linux 2.6.16)
Writing to this file causes the kernel to drop clean caches, dentries, and inodes
from memory, causing that memory to become free. This can be useful for
memory management testing and performing reproducible filesystem bench-
marks. Because writing to this file causes the benefits of caching to be lost, it
can degrade overall system performance.

To free pagecache, use:

echo 1 > /proc/sys/vm/drop_caches

To free dentries and inodes, use:

echo 2 > /proc/sys/vm/drop_caches

To free pagecache, dentries, and inodes, use:

echo 3 > /proc/sys/vm/drop_caches

Because writing to this file is a nondestructive operation and dirty objects are not
freeable, the user should run sync(1) first.

Linux man-pages 6.16 2025-09-21 3142

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

/proc/sys/vm/hugetlb_shm_group (since Linux 2.6.7)
This writable file contains a group ID that is allowed to allocate memory using
huge pages. If a process has a filesystem group ID or any supplementary group
ID that matches this group ID, then it can make huge-page allocations without
holding the CAP_IPC_LOCK capability; see memfd_create(2), mmap(2), and
shmget(2).

/proc/sys/vm/legacy_va_layout (since Linux 2.6.9)
If nonzero, this disables the new 32-bit memory-mapping layout; the kernel will
use the legacy (2.4) layout for all processes.

/proc/sys/vm/memory_failure_early_kill (since Linux 2.6.32)
Control how to kill processes when an uncorrected memory error (typically a
2-bit error in a memory module) that cannot be handled by the kernel is detected
in the background by hardware. In some cases (like the page still having a valid
copy on disk), the kernel will handle the failure transparently without affecting
any applications. But if there is no other up-to-date copy of the data, it will kill
processes to prevent any data corruptions from propagating.

The file has one of the following values:

1 Kill all processes that have the corrupted-and-not-reloadable page
mapped as soon as the corruption is detected. Note that this is not sup-
ported for a few types of pages, such as kernel internally allocated data or
the swap cache, but works for the majority of user pages.

0 Unmap the corrupted page from all processes and kill a process only if it
tries to access the page.

The kill is performed using a SIGBUS signal with si_code set to
BUS_MCEERR_AO. Processes can handle this if they want to; see sigac-
tion(2) for more details.

This feature is active only on architectures/platforms with advanced machine
check handling and depends on the hardware capabilities.

Applications can override the memory_failure_early_kill setting individually
with the prctl(2) PR_MCE_KILL operation.

Present only if the kernel was configured with CONFIG_MEMORY_FAIL-
URE.

/proc/sys/vm/memory_failure_recovery (since Linux 2.6.32)
Enable memory failure recovery (when supported by the platform).

1 Attempt recovery.

0 Always panic on a memory failure.

Present only if the kernel was configured with CONFIG_MEMORY_FAIL-
URE.

/proc/sys/vm/oom_dump_tasks (since Linux 2.6.25)
Enables a system-wide task dump (excluding kernel threads) to be produced
when the kernel performs an OOM-killing. The dump includes the following

Linux man-pages 6.16 2025-09-21 3143

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

information for each task (thread, process): thread ID, real user ID, thread group
ID (process ID), virtual memory size, resident set size, the CPU that the task is
scheduled on, oom_adj score (see the description of /proc/ pid /oom_adj), and
command name. This is helpful to determine why the OOM-killer was invoked
and to identify the rogue task that caused it.

If this contains the value zero, this information is suppressed. On very large sys-
tems with thousands of tasks, it may not be feasible to dump the memory state
information for each one. Such systems should not be forced to incur a perfor-
mance penalty in OOM situations when the information may not be desired.

If this is set to nonzero, this information is shown whenever the OOM-killer ac-
tually kills a memory-hogging task.

The default value is 0.

/proc/sys/vm/oom_kill_allocating_task (since Linux 2.6.24)
This enables or disables killing the OOM-triggering task in out-of-memory situa-
tions.

If this is set to zero, the OOM-killer will scan through the entire tasklist and se-
lect a task based on heuristics to kill. This normally selects a rogue memory-
hogging task that frees up a large amount of memory when killed.

If this is set to nonzero, the OOM-killer simply kills the task that triggered the
out-of-memory condition. This avoids a possibly expensive tasklist scan.

If /proc/sys/vm/panic_on_oom is nonzero, it takes precedence over whatever
value is used in /proc/sys/vm/oom_kill_allocating_task.

The default value is 0.

/proc/sys/vm/overcommit_kbytes (since Linux 3.14)
This writable file provides an alternative to /proc/sys/vm/overcommit_ratio for
controlling the CommitLimit when /proc/sys/vm/overcommit_memory has the
value 2. It allows the amount of memory overcommitting to be specified as an
absolute value (in kB), rather than as a percentage, as is done with overcom-
mit_ratio. This allows for finer-grained control of CommitLimit on systems with
extremely large memory sizes.

Only one of overcommit_kbytes or overcommit_ratio can have an effect: if over-
commit_kbytes has a nonzero value, then it is used to calculate CommitLimit,
otherwise overcommit_ratio is used. Writing a value to either of these files
causes the value in the other file to be set to zero.

/proc/sys/vm/overcommit_memory
This file contains the kernel virtual memory accounting mode. Values are:

0: heuristic overcommit (this is the default)
1: always overcommit, never check
2: always check, never overcommit

In mode 0, calls of mmap(2) with MAP_NORESERVE are not checked, and the
default check is very weak, leading to the risk of getting a process "OOM-
killed".

Linux man-pages 6.16 2025-09-21 3144

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

In mode 1, the kernel pretends there is always enough memory, until memory ac-
tually runs out. One use case for this mode is scientific computing applications
that employ large sparse arrays. Before Linux 2.6.0, any nonzero value implies
mode 1.

In mode 2 (available since Linux 2.6), the total virtual address space that can be
allocated (CommitLimit in /proc/meminfo) is calculated as

CommitLimit = (total_RAM - total_huge_TLB) *
overcommit_ratio / 100 + total_swap

where:

• total_RAM is the total amount of RAM on the system;

• total_huge_TLB is the amount of memory set aside for huge pages;

• overcommit_ratio is the value in /proc/sys/vm/overcommit_ratio; and

• total_swap is the amount of swap space.

For example, on a system with 16 GB of physical RAM, 16 GB of swap, no
space dedicated to huge pages, and an overcommit_ratio of 50, this formula
yields a CommitLimit of 24 GB.

Since Linux 3.14, if the value in /proc/sys/vm/overcommit_kbytes is nonzero,
then CommitLimit is instead calculated as:

CommitLimit = overcommit_kbytes + total_swap

See also the description of /proc/sys/vm/admin_reserve_kbytes and
/proc/sys/vm/user_reserve_kbytes.

/proc/sys/vm/overcommit_ratio (since Linux 2.6.0)
This writable file defines a percentage by which memory can be overcommitted.
The default value in the file is 50. See the description of /proc/sys/vm/overcom-
mit_memory.

/proc/sys/vm/panic_on_oom (since Linux 2.6.18)
This enables or disables a kernel panic in an out-of-memory situation.

If this file is set to the value 0, the kernel’s OOM-killer will kill some rogue
process. Usually, the OOM-killer is able to kill a rogue process and the system
will survive.

If this file is set to the value 1, then the kernel normally panics when out-of-
memory happens. However, if a process limits allocations to certain nodes using
memory policies (mbind(2) MPOL_BIND) or cpusets (cpuset(7)) and those
nodes reach memory exhaustion status, one process may be killed by the OOM-
killer. No panic occurs in this case: because other nodes’ memory may be free,
this means the system as a whole may not have reached an out-of-memory situa-
tion yet.

If this file is set to the value 2, the kernel always panics when an out-of-memory
condition occurs.

Linux man-pages 6.16 2025-09-21 3145

proc_sys_vm(5) File Formats Manual proc_sys_vm(5)

The default value is 0. 1 and 2 are for failover of clustering. Select either ac-
cording to your policy of failover.

/proc/sys/vm/swappiness
The value in this file controls how aggressively the kernel will swap memory
pages. Higher values increase aggressiveness, lower values decrease aggressive-
ness. The default value is 60.

/proc/sys/vm/user_reserve_kbytes (since Linux 3.10)
Specifies an amount of memory (in KiB) to reserve for user processes. This is
intended to prevent a user from starting a single memory hogging process, such
that they cannot recover (kill the hog). The value in this file has an effect only
when /proc/sys/vm/overcommit_memory is set to 2 ("overcommit never" mode).
In this case, the system reserves an amount of memory that is the minimum of
[3% of current process size, user_reserve_kbytes].

The default value in this file is the minimum of [3% of free pages, 128MiB] ex-
pressed as KiB.

If the value in this file is set to zero, then a user will be allowed to allocate all
free memory with a single process (minus the amount reserved by
/proc/sys/vm/admin_reserve_kbytes). Any subsequent attempts to execute a
command will result in "fork: Cannot allocate memory".

Changing the value in this file takes effect whenever an application requests
memory.

/proc/sys/vm/unprivileged_userfaultfd (since Linux 5.2)
This (writable) file exposes a flag that controls whether unprivileged processes
are allowed to employ userfaultfd(2). If this file has the value 1, then unprivi-
leged processes may use userfaultfd(2). If this file has the value 0, then only
processes that have the CAP_SYS_PTRACE capability may employ user-
faultfd(2). The default value in this file is 1.

SEE ALSO
proc(5), proc_sys(5)

Linux man-pages 6.16 2025-09-21 3146

proc_sysrq-trigger(5) File Formats Manual proc_sysrq-trigger(5)

NAME
/proc/sysrq-trigger - SysRq function

DESCRIPTION
/proc/sysrq-trigger (since Linux 2.4.21)

Writing a character to this file triggers the same SysRq function as typing ALT-
SysRq-<character> (see the description of /proc/sys/kernel/sysrq). This file is
normally writable only by root. For further details see the Linux kernel source
file Documentation/admin-guide/sysrq.rst (or Documentation/sysrq.txt before
Linux 4.10).

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3147

proc_sysvipc(5) File Formats Manual proc_sysvipc(5)

NAME
/proc/sysvipc/ - System V IPC

DESCRIPTION
/proc/sysvipc/

Subdirectory containing the pseudo-files msg, sem and shm. These files list the
System V Interprocess Communication (IPC) objects (respectively: message
queues, semaphores, and shared memory) that currently exist on the system, pro-
viding similar information to that available via ipcs(1)These files have headers
and are formatted (one IPC object per line) for easy understanding. sysvipc(7)
provides further background on the information shown by these files.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3148

proc_tid_children(5) File Formats Manual proc_tid_children(5)

NAME
/proc/tid/children - child tasks

DESCRIPTION
/proc/ tid /children (since Linux 3.5)

A space-separated list of child tasks of this task. Each child task is represented
by its TID.

This option is intended for use by the checkpoint-restore (CRIU) system, and re-
liably provides a list of children only if all of the child processes are stopped or
frozen. It does not work properly if children of the target task exit while the file
is being read! Exiting children may cause non-exiting children to be omitted
from the list. This makes this interface even more unreliable than classic PID-
based approaches if the inspected task and its children aren’t frozen, and most
code should probably not use this interface.

Until Linux 4.2, the presence of this file was governed by the CON-
FIG_CHECKPOINT_RESTORE kernel configuration option. Since Linux
4.2, it is governed by the CONFIG_PROC_CHILDREN option.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3149

proc_timer_list(5) File Formats Manual proc_timer_list(5)

NAME
/proc/timer_list - pending timers

DESCRIPTION
/proc/timer_list (since Linux 2.6.21)

This read-only file exposes a list of all currently pending (high-resolution)
timers, all clock-event sources, and their parameters in a human-readable form.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3150

proc_timer_stats(5) File Formats Manual proc_timer_stats(5)

NAME
/proc/timer_stats - timer statistics

DESCRIPTION
/proc/timer_stats (from Linux 2.6.21 until Linux 4.10)

This is a debugging facility to make timer (ab)use in a Linux system visible to
kernel and user-space developers. It can be used by kernel and user-space devel-
opers to verify that their code does not make undue use of timers. The goal is to
avoid unnecessary wakeups, thereby optimizing power consumption.

If enabled in the kernel (CONFIG_TIMER_STATS), but not used, it has almost
zero run-time overhead and a relatively small data-structure overhead. Even if
collection is enabled at run time, overhead is low: all the locking is per-CPU and
lookup is hashed.

The /proc/timer_stats file is used both to control sampling facility and to read
out the sampled information.

The timer_stats functionality is inactive on bootup. A sampling period can be
started using the following command:

echo 1 > /proc/timer_stats

The following command stops a sampling period:

echo 0 > /proc/timer_stats

The statistics can be retrieved by:

$ cat /proc/timer_stats

While sampling is enabled, each readout from /proc/timer_stats will see newly
updated statistics. Once sampling is disabled, the sampled information is kept
until a new sample period is started. This allows multiple readouts.

Sample output from /proc/timer_stats:

$ cat /proc/timer_stats
Timer Stats Version: v0.3
Sample period: 1.764 s
Collection: active

255, 0 swapper/3 hrtimer_start_range_ns (tick_sched_timer)
71, 0 swapper/1 hrtimer_start_range_ns (tick_sched_timer)
58, 0 swapper/0 hrtimer_start_range_ns (tick_sched_timer)

4, 1694 gnome-shell mod_delayed_work_on (delayed_work_timer_fn)
17, 7 rcu_sched rcu_gp_kthread (process_timeout)

...
1, 4911 kworker/u16:0 mod_delayed_work_on (delayed_work_timer_fn)

1D, 2522 kworker/0:0 queue_delayed_work_on (delayed_work_timer_fn)
1029 total events, 583.333 events/sec

The output columns are:

Linux man-pages 6.16 2025-09-21 3151

proc_timer_stats(5) File Formats Manual proc_timer_stats(5)

[1] a count of the number of events, optionally (since Linux 2.6.23) followed
by the letter 'D' if this is a deferrable timer;

[2] the PID of the process that initialized the timer;

[3] the name of the process that initialized the timer;

[4] the function where the timer was initialized; and (in parentheses) the call-
back function that is associated with the timer.

During the Linux 4.11 development cycle, this file was removed because of secu-
rity concerns, as it exposes information across namespaces. Furthermore, it is
possible to obtain the same information via in-kernel tracing facilities such as
ftrace.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-09-21 3152

proc_tty(5) File Formats Manual proc_tty(5)

NAME
/proc/tty/ - tty

DESCRIPTION
/proc/tty/

Subdirectory containing the pseudo-files and subdirectories for tty drivers and
line disciplines.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3153

proc_uptime(5) File Formats Manual proc_uptime(5)

NAME
/proc/uptime - system uptime

DESCRIPTION
/proc/uptime

This file contains two numbers (values in seconds): the uptime of the system (in-
cluding time spent in suspend) and the amount of time spent in the idle process.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3154

proc_version(5) File Formats Manual proc_version(5)

NAME
/proc/version - kernel version

DESCRIPTION
/proc/version

This string identifies the kernel version that is currently running. It includes the
contents of /proc/sys/kernel/ostype, /proc/sys/kernel/osrelease, and
/proc/sys/kernel/version. For example:

Linux version 1.0.9 (quinlan@phaze) #1 Sat May 14 01:51:54 EDT 1994

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3155

proc_vmstat(5) File Formats Manual proc_vmstat(5)

NAME
/proc/vmstat - virtual memory statistics

DESCRIPTION
/proc/vmstat (since Linux 2.6.0)

This file displays various virtual memory statistics. Each line of this file con-
tains a single name-value pair, delimited by white space. Some lines are present
only if the kernel was configured with suitable options. (In some cases, the op-
tions required for particular files have changed across kernel versions, so they are
not listed here. Details can be found by consulting the kernel source code.) The
following fields may be present:

nr_free_pages (since Linux 2.6.31)

nr_alloc_batch (since Linux 3.12)

nr_inactive_anon (since Linux 2.6.28)

nr_active_anon (since Linux 2.6.28)

nr_inactive_file (since Linux 2.6.28)

nr_active_file (since Linux 2.6.28)

nr_unevictable (since Linux 2.6.28)

nr_mlock (since Linux 2.6.28)

nr_anon_pages (since Linux 2.6.18)

nr_mapped (since Linux 2.6.0)

nr_file_pages (since Linux 2.6.18)

nr_dirty (since Linux 2.6.0)

nr_writeback (since Linux 2.6.0)

nr_slab_reclaimable (since Linux 2.6.19)

nr_slab_unreclaimable (since Linux 2.6.19)

nr_page_table_pages (since Linux 2.6.0)

nr_kernel_stack (since Linux 2.6.32)
Amount of memory allocated to kernel stacks.

nr_unstable (since Linux 2.6.0)

nr_bounce (since Linux 2.6.12)

nr_vmscan_write (since Linux 2.6.19)

nr_vmscan_immediate_reclaim (since Linux 3.2)

nr_writeback_temp (since Linux 2.6.26)

nr_isolated_anon (since Linux 2.6.32)

nr_isolated_file (since Linux 2.6.32)

Linux man-pages 6.16 2025-05-17 3156

proc_vmstat(5) File Formats Manual proc_vmstat(5)

nr_shmem (since Linux 2.6.32)
Pages used by shmem and tmpfs(5).

nr_dirtied (since Linux 2.6.37)

nr_written (since Linux 2.6.37)

nr_pages_scanned (since Linux 3.17)

numa_hit (since Linux 2.6.18)

numa_miss (since Linux 2.6.18)

numa_foreign (since Linux 2.6.18)

numa_interleave (since Linux 2.6.18)

numa_local (since Linux 2.6.18)

numa_other (since Linux 2.6.18)

workingset_refault (since Linux 3.15)

workingset_activate (since Linux 3.15)

workingset_nodereclaim (since Linux 3.15)

nr_anon_transparent_hugepages (since Linux 2.6.38)

nr_free_cma (since Linux 3.7)
Number of free CMA (Contiguous Memory Allocator) pages.

nr_dirty_threshold (since Linux 2.6.37)

nr_dirty_background_threshold (since Linux 2.6.37)

pgpgin (since Linux 2.6.0)

pgpgout (since Linux 2.6.0)

pswpin (since Linux 2.6.0)

pswpout (since Linux 2.6.0)

pgalloc_dma (since Linux 2.6.5)

pgalloc_dma32 (since Linux 2.6.16)

pgalloc_normal (since Linux 2.6.5)

pgalloc_high (since Linux 2.6.5)

pgalloc_movable (since Linux 2.6.23)

pgfree (since Linux 2.6.0)

pgactivate (since Linux 2.6.0)

pgdeactivate (since Linux 2.6.0)

pgfault (since Linux 2.6.0)

pgmajfault (since Linux 2.6.0)

Linux man-pages 6.16 2025-05-17 3157

proc_vmstat(5) File Formats Manual proc_vmstat(5)

pgrefill_dma (since Linux 2.6.5)

pgrefill_dma32 (since Linux 2.6.16)

pgrefill_normal (since Linux 2.6.5)

pgrefill_high (since Linux 2.6.5)

pgrefill_movable (since Linux 2.6.23)

pgsteal_kswapd_dma (since Linux 3.4)

pgsteal_kswapd_dma32 (since Linux 3.4)

pgsteal_kswapd_normal (since Linux 3.4)

pgsteal_kswapd_high (since Linux 3.4)

pgsteal_kswapd_movable (since Linux 3.4)

pgsteal_direct_dma

pgsteal_direct_dma32 (since Linux 3.4)

pgsteal_direct_normal (since Linux 3.4)

pgsteal_direct_high (since Linux 3.4)

pgsteal_direct_movable (since Linux 2.6.23)

pgscan_kswapd_dma

pgscan_kswapd_dma32 (since Linux 2.6.16)

pgscan_kswapd_normal (since Linux 2.6.5)

pgscan_kswapd_high

pgscan_kswapd_movable (since Linux 2.6.23)

pgscan_direct_dma

pgscan_direct_dma32 (since Linux 2.6.16)

pgscan_direct_normal

pgscan_direct_high

pgscan_direct_movable (since Linux 2.6.23)

pgscan_direct_throttle (since Linux 3.6)

zone_reclaim_failed (since linux 2.6.31)

pginodesteal (since linux 2.6.0)

slabs_scanned (since linux 2.6.5)

kswapd_inodesteal (since linux 2.6.0)

kswapd_low_wmark_hit_quickly (since Linux 2.6.33)

kswapd_high_wmark_hit_quickly (since Linux 2.6.33)

Linux man-pages 6.16 2025-05-17 3158

proc_vmstat(5) File Formats Manual proc_vmstat(5)

pageoutrun (since Linux 2.6.0)

allocstall (since Linux 2.6.0)

pgrotated (since Linux 2.6.0)

drop_pagecache (since Linux 3.15)

drop_slab (since Linux 3.15)

numa_pte_updates (since Linux 3.8)

numa_huge_pte_updates (since Linux 3.13)

numa_hint_faults (since Linux 3.8)

numa_hint_faults_local (since Linux 3.8)

numa_pages_migrated (since Linux 3.8)

pgmigrate_success (since Linux 3.8)

pgmigrate_fail (since Linux 3.8)

compact_migrate_scanned (since Linux 3.8)

compact_free_scanned (since Linux 3.8)

compact_isolated (since Linux 3.8)

compact_stall (since Linux 2.6.35)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

compact_fail (since Linux 2.6.35)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

compact_success (since Linux 2.6.35)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

htlb_buddy_alloc_success (since Linux 2.6.26)

htlb_buddy_alloc_fail (since Linux 2.6.26)

unevictable_pgs_culled (since Linux 2.6.28)

unevictable_pgs_scanned (since Linux 2.6.28)

unevictable_pgs_rescued (since Linux 2.6.28)

unevictable_pgs_mlocked (since Linux 2.6.28)

unevictable_pgs_munlocked (since Linux 2.6.28)

unevictable_pgs_cleared (since Linux 2.6.28)

unevictable_pgs_stranded (since Linux 2.6.28)

thp_fault_alloc (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

thp_fault_fallback (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

Linux man-pages 6.16 2025-05-17 3159

proc_vmstat(5) File Formats Manual proc_vmstat(5)

thp_collapse_alloc (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

thp_collapse_alloc_failed (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

thp_split (since Linux 2.6.39)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

thp_zero_page_alloc (since Linux 3.8)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

thp_zero_page_alloc_failed (since Linux 3.8)
See the kernel source file Documentation/admin-guide/mm/transhuge.rst.

balloon_inflate (since Linux 3.18)

balloon_deflate (since Linux 3.18)

balloon_migrate (since Linux 3.18)

nr_tlb_remote_flush (since Linux 3.12)

nr_tlb_remote_flush_received (since Linux 3.12)

nr_tlb_local_flush_all (since Linux 3.12)

nr_tlb_local_flush_one (since Linux 3.12)

vmacache_find_calls (since Linux 3.16)

vmacache_find_hits (since Linux 3.16)

vmacache_full_flushes (since Linux 3.19)

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3160

proc_zoneinfo(5) File Formats Manual proc_zoneinfo(5)

NAME
/proc/zoneinfo - memory zones

DESCRIPTION
/proc/zoneinfo (since Linux 2.6.13)

This file displays information about memory zones. This is useful for analyzing
virtual memory behavior.

SEE ALSO
proc(5)

Linux man-pages 6.16 2025-05-17 3161

protocols(5) File Formats Manual protocols(5)

NAME
protocols - protocols definition file

DESCRIPTION
This file is a plain ASCII file, describing the various DARPA internet protocols that are
available from the TCP/IP subsystem. It should be consulted instead of using the num-
bers in the ARPA include files, or, even worse, just guessing them. These numbers will
occur in the protocol field of any IP header.

Keep this file untouched since changes would result in incorrect IP packages. Protocol
numbers and names are specified by the IANA (Internet Assigned Numbers Authority).

Each line is of the following format:

protocol number aliases . . .

where the fields are delimited by spaces or tabs. Empty lines are ignored. If a line con-
tains a hash mark (#), the hash mark and the part of the line following it are ignored.

The field descriptions are:

protocol
the native name for the protocol. For example ip, tcp, or udp.

number
the official number for this protocol as it will appear within the IP header.

aliases
optional aliases for the protocol.

This file might be distributed over a network using a network-wide naming service like
Yellow Pages/NIS or BIND/Hesiod.

FILES
/etc/protocols

The protocols definition file.

SEE ALSO
getprotoent(3)

〈http://www.iana.org/assignments/protocol-numbers〉

Linux man-pages 6.16 2025-09-21 3162

repertoiremap(5) File Formats Manual repertoiremap(5)

NAME
repertoiremap - map symbolic character names to Unicode code points

DESCRIPTION
A repertoire map defines mappings between symbolic character names (mnemonics) and
Unicode code points when compiling a locale with localedef(1). Using a repertoire map
is optional, it is needed only when symbolic names are used instead of now preferred
Unicode code points.

Syntax
The repertoiremap file starts with a header that may consist of the following keywords:

comment_char
is followed by a character that will be used as the comment character for the rest
of the file. It defaults to the number sign (#).

escape_char
is followed by a character that should be used as the escape character for the rest
of the file to mark characters that should be interpreted in a special way. It de-
faults to the backslash (\).

The mapping section starts with the keyword CHARIDS in the first column.

The mapping lines have the following form:

<symbolic-name> <code-point> comment
This defines exactly one mapping, comment being optional.

The mapping section ends with the string END CHARIDS.

FILES
/usr/share/i18n/repertoiremaps

Usual default repertoire map path.

STANDARDS
POSIX.2.

NOTES
Repertoire maps are deprecated in favor of Unicode code points.

EXAMPLES
A mnemonic for the Euro sign can be defined as follows:

<Eu> <U20AC> EURO SIGN

SEE ALSO
locale(1), localedef(1), charmap(5), locale(5)

Linux man-pages 6.16 2025-05-17 3163

resolv.conf (5) File Formats Manual resolv.conf (5)

NAME
resolv.conf - resolver configuration file

SYNOPSIS
/etc/resolv.conf

DESCRIPTION
The resolver is a set of routines in the C library that provide access to the Internet Do-
main Name System (DNS). The resolver configuration file contains information that is
read by the resolver routines the first time they are invoked by a process. The file is de-
signed to be human readable and contains a list of keywords with values that provide
various types of resolver information. The configuration file is considered a trusted
source of DNS information; see the trust-ad option below for details.

If this file does not exist, only the name server on the local machine will be queried, and
the search list contains the local domain name determined from the hostname.

The different configuration options are:

nameserver Name server IP address
Internet address of a name server that the resolver should query, either an IPv4
address (in dot notation), or an IPv6 address in colon (and possibly dot) notation
as per RFC 2373. Up to MAXNS (currently 3, see <resolv.h>) name servers
may be listed, one per keyword. If there are multiple servers, the resolver library
queries them in the order listed. If no nameserver entries are present, the de-
fault is to use the name server on the local machine. (The algorithm used is to
try a name server, and if the query times out, try the next, until out of name
servers, then repeat trying all the name servers until a maximum number of re-
tries are made.)

search Search list for host-name lookup.
By default, the search list contains one entry, the local domain name. It is deter-
mined from the local hostname returned by gethostname(2); the local domain
name is taken to be everything after the first '.'. Finally, if the hostname does not
contain a '.', the root domain is assumed as the local domain name.

This may be changed by listing the desired domain search path following the
search keyword with spaces or tabs separating the names. Resolver queries hav-
ing fewer than ndots dots (default is 1) in them will be attempted using each
component of the search path in turn until a match is found. For environments
with multiple subdomains please read options ndots:n below to avoid man-in-
the-middle attacks and unnecessary traffic for the root-dns-servers. Note that
this process may be slow and will generate a lot of network traffic if the servers
for the listed domains are not local, and that queries will time out if no server is
available for one of the domains.

If there are multiple search directives, only the search list from the last instance
is used.

In glibc 2.25 and earlier, the search list is limited to six domains with a total of
256 characters. Since glibc 2.26, the search list is unlimited.

4th Berkeley Distribution 2025-09-21 3164

resolv.conf (5) File Formats Manual resolv.conf (5)

The domain directive is an obsolete name for the search directive that handles
one search list entry only.

sortlist
This option allows addresses returned by gethostbyname(3) to be sorted. A
sortlist is specified by IP-address-netmask pairs. The netmask is optional and
defaults to the natural netmask of the net. The IP address and optional network
pairs are separated by slashes. Up to 10 pairs may be specified. Here is an ex-
ample:

sortlist 130.155.160.0/255.255.240.0 130.155.0.0

options
Options allows certain internal resolver variables to be modified. The syntax is

options option ...

where option is one of the following:

debug
Sets RES_DEBUG in _res.options (effective only if glibc was built with
debug support; see resolver(3)).

ndots:n
Sets a threshold for the number of dots which must appear in a name
given to res_query(3) (see resolver(3)) before an initial absolute query
will be made. The default for n is 1, meaning that if there are any dots in
a name, the name will be tried first as an absolute name before any
search list elements are appended to it. The value for this option is
silently capped to 15.

timeout:n
Sets the amount of time the resolver will wait for a response from a re-
mote name server before retrying the query via a different name server.
This may not be the total time taken by any resolver API call and there is
no guarantee that a single resolver API call maps to a single timeout.
Measured in seconds, the default is RES_TIMEOUT (currently 5, see
<resolv.h>). The value for this option is silently capped to 30.

attempts:n
Sets the number of times the resolver will send a query to its name
servers before giving up and returning an error to the calling application.
The default is RES_DFLRETRY (currently 2, see <resolv.h>). The
value for this option is silently capped to 5.

rotate
Sets RES_ROTATE in _res.options, which causes round-robin selection
of name servers from among those listed. This has the effect of spread-
ing the query load among all listed servers, rather than having all clients
try the first listed server first every time.

no-aaaa (since glibc 2.36)
Sets RES_NOAAAA in _res.options, which suppresses AAAA queries
made by the stub resolver, including AAAA lookups triggered by NSS-

4th Berkeley Distribution 2025-09-21 3165

resolv.conf (5) File Formats Manual resolv.conf (5)

based interfaces such as getaddrinfo(3). Only DNS lookups are affected:
IPv6 data in hosts(5) is still used, getaddrinfo(3) with AI_PASSIVE will
still produce IPv6 addresses, and configured IPv6 name servers are still
used. To produce correct Name Error (NXDOMAIN) results, AAAA
queries are translated to A queries. This option is intended preliminary
for diagnostic purposes, to rule out that AAAA DNS queries have ad-
verse impact. It is incompatible with EDNS0 usage and DNSSEC valida-
tion by applications.

no-check-names
Sets RES_NOCHECKNAME in _res.options, which disables the mod-
ern BIND checking of incoming hostnames and mail names for invalid
characters such as underscore (_), non-ASCII, or control characters.

inet6 Sets RES_USE_INET6 in _res.options. This has the effect of trying an
AAAA query before an A query inside the gethostbyname(3) function,
and of mapping IPv4 responses in IPv6 "tunneled form" if no AAAA
records are found but an A record set exists. Since glibc 2.25, this option
is deprecated; applications should use getaddrinfo(3), rather than gethost-
byname(3).

ip6-bytestring (since glibc 2.3.4 to glibc 2.24)
Sets RES_USEBSTRING in _res.options. This causes reverse IPv6
lookups to be made using the bit-label format described in RFC 2673; if
this option is not set (which is the default), then nibble format is used.
This option was removed in glibc 2.25, since it relied on a backward-in-
compatible DNS extension that was never deployed on the Internet.

ip6-dotint/no-ip6-dotint (glibc 2.3.4 to glibc 2.24)
Clear/set RES_NOIP6DOTINT in _res.options. When this option is
clear (ip6-dotint), reverse IPv6 lookups are made in the (deprecated)
ip6.int zone; when this option is set (no-ip6-dotint), reverse IPv6
lookups are made in the ip6.arpa zone by default. These options are
available up to glibc 2.24, where no-ip6-dotint is the default. Since
ip6-dotint support long ago ceased to be available on the Internet, these
options were removed in glibc 2.25.

edns0 (since glibc 2.6)
Sets RES_USE_EDNS0 in _res.options. This enables support for the
DNS extensions described in RFC 2671.

single-request (since glibc 2.10)
Sets RES_SNGLKUP in _res.options. By default, glibc performs IPv4
and IPv6 lookups in parallel since glibc 2.9. Some appliance DNS
servers cannot handle these queries properly and make the requests time
out. This option disables the behavior and makes glibc perform the IPv6
and IPv4 requests sequentially (at the cost of some slowdown of the re-
solving process).

4th Berkeley Distribution 2025-09-21 3166

resolv.conf (5) File Formats Manual resolv.conf (5)

single-request-reopen (since glibc 2.9)
Sets RES_SNGLKUPREOP in _res.options. The resolver uses the
same socket for the A and AAAA requests. Some hardware mistakenly
sends back only one reply. When that happens the client system will sit
and wait for the second reply. Turning this option on changes this behav-
ior so that if two requests from the same port are not handled correctly it
will close the socket and open a new one before sending the second re-
quest.

no-tld-query (since glibc 2.14)
Sets RES_NOTLDQUERY in _res.options. This option causes
res_nsearch() to not attempt to resolve an unqualified name as if it were
a top level domain (TLD). This option can cause problems if the site has
‘‘localhost’’ as a TLD rather than having localhost on one or more ele-
ments of the search list. This option has no effect if neither RES_DEF-
NAMES or RES_DNSRCH is set.

use-vc (since glibc 2.14)
Sets RES_USEVC in _res.options. This option forces the use of TCP
for DNS resolutions.

no-reload (since glibc 2.26)
Sets RES_NORELOAD in _res.options. This option disables automatic
reloading of a changed configuration file.

trust-ad (since glibc 2.31)
Sets RES_TRUSTAD in _res.options. This option controls the AD bit
behavior of the stub resolver. If a validating resolver sets the AD bit in a
response, it indicates that the data in the response was verified according
to the DNSSEC protocol. In order to rely on the AD bit, the local system
has to trust both the DNSSEC-validating resolver and the network path to
it, which is why an explicit opt-in is required. If the trust-ad option is
active, the stub resolver sets the AD bit in outgoing DNS queries (to en-
able AD bit support), and preserves the AD bit in responses. Without
this option, the AD bit is not set in queries, and it is always removed
from responses before they are returned to the application. This means
that applications can trust the AD bit in responses if the trust-ad option
has been set correctly.

In glibc 2.30 and earlier, the AD is not set automatically in queries, and is
passed through unchanged to applications in responses.

The search keyword of a system’s resolv.conf file can be overridden on a per-process
basis by setting the environment variable LOCALDOMAIN to a space-separated list of
search domains.

The options keyword of a system’s resolv.conf file can be amended on a per-process ba-
sis by setting the environment variable RES_OPTIONS to a space-separated list of re-
solver options as explained above under options.

The keyword and value must appear on a single line, and the keyword (e.g., name-
server) must start the line. The value follows the keyword, separated by white space.

4th Berkeley Distribution 2025-09-21 3167

resolv.conf (5) File Formats Manual resolv.conf (5)

Lines that contain a semicolon (;) or hash character (#) in the first column are treated as
comments.

FILES
/etc/resolv.conf , <resolv.h>

SEE ALSO
gethostbyname(3), resolver(3), host.conf(5), hosts(5), nsswitch.conf(5), hostname(7),
named(8)

Name Server Operations Guide for BIND

4th Berkeley Distribution 2025-09-21 3168

rpc(5) File Formats Manual rpc(5)

NAME
rpc - RPC program number data base

SYNOPSIS
/etc/rpc

DESCRIPTION
The rpc file contains user readable names that can be used in place of RPC program
numbers. Each line has the following information:

• name of server for the RPC program
• RPC program number
• aliases

Items are separated by any number of blanks and/or tab characters. A '#' indicates the
beginning of a comment; characters from the '#' to the end of the line are not interpreted
by routines which search the file.

Here is an example of the /etc/rpc file from the Sun RPC Source distribution.

#
rpc 88/08/01 4.0 RPCSRC; from 1.12 88/02/07 SMI
#
portmapper 100000 portmap sunrpc
rstatd 100001 rstat rstat_svc rup perfmeter
rusersd 100002 rusers
nfs 100003 nfsprog
ypserv 100004 ypprog
mountd 100005 mount showmount
ypbind 100007
walld 100008 rwall shutdown
yppasswdd 100009 yppasswd
etherstatd 100010 etherstat
rquotad 100011 rquotaprog quota rquota
sprayd 100012 spray
3270_mapper 100013
rje_mapper 100014
selection_svc 100015 selnsvc
database_svc 100016
rexd 100017 rex
alis 100018
sched 100019
llockmgr 100020
nlockmgr 100021
x25.inr 100022
statmon 100023
status 100024
bootparam 100026
ypupdated 100028 ypupdate
keyserv 100029 keyserver
tfsd 100037

Linux man-pages 6.16 2025-05-17 3169

rpc(5) File Formats Manual rpc(5)

nsed 100038
nsemntd 100039

FILES
/etc/rpc

RPC program number data base

SEE ALSO
getrpcent(3)

Linux man-pages 6.16 2025-05-17 3170

securetty(5) File Formats Manual securetty(5)

NAME
securetty - list of terminals on which root is allowed to login

DESCRIPTION
The file /etc/securetty contains the names of terminals (one per line, without leading
/dev/) which are considered secure for the transmission of certain authentication tokens.

It is used by (some versions of) login(1) to restrict the terminals on which root is al-
lowed to login. See login.defs(5) if you use the shadow suite.

On PAM enabled systems, it is used for the same purpose by pam_securetty(8) to re-
strict the terminals on which empty passwords are accepted.

FILES
/etc/securetty

SEE ALSO
login(1), login.defs(5), pam_securetty(8)

Linux man-pages 6.16 2025-05-17 3171

services(5) File Formats Manual services(5)

NAME
services - Internet network services list

DESCRIPTION
services is a plain ASCII file providing a mapping between human-friendly textual
names for internet services, and their underlying assigned port numbers and protocol
types. Every networking program should look into this file to get the port number (and
protocol) for its service. The C library routines getservent(3), getservbyname(3), get-
servbyport(3), setservent(3), and endservent(3) support querying this file from pro-
grams.

Port numbers are assigned by the IANA (Internet Assigned Numbers Authority), and
their current policy is to assign both TCP and UDP protocols when assigning a port
number. Therefore, most entries will have two entries, even for TCP-only services.

Port numbers below 1024 (so-called "low numbered" ports) can be bound to only by
root (see bind(2), tcp(7), and udp(7)). This is so clients connecting to low numbered
ports can trust that the service running on the port is the standard implementation, and
not a rogue service run by a user of the machine. Well-known port numbers specified by
the IANA are normally located in this root-only space.

The presence of an entry for a service in the services file does not necessarily mean that
the service is currently running on the machine. See inetd.conf (5) for the configuration
of Internet services offered. Note that not all networking services are started by in-
etd(8), and so won’t appear in inetd.conf (5)In particular, news (NNTP) and mail
(SMTP) servers are often initialized from the system boot scripts.

The location of the services file is defined by _PATH_SERVICES in <netdb.h>. This
is usually set to /etc/services.

Each line describes one service, and is of the form:

service-name port/protocol [aliases ...]

where:

service-name
is the friendly name the service is known by and looked up under. It is case sen-
sitive. Often, the client program is named after the service-name.

port is the port number (in decimal) to use for this service.

protocol
is the type of protocol to be used. This field should match an entry in the proto-
cols(5) file. Typical values include tcp and udp.

aliases
is an optional space or tab separated list of other names for this service. Again,
the names are case sensitive.

Either spaces or tabs may be used to separate the fields.

Comments are started by the hash sign (#) and continue until the end of the line. Blank
lines are skipped.

The service-name should begin in the first column of the file, since leading spaces are

Linux man-pages 6.16 2025-05-17 3172

services(5) File Formats Manual services(5)

not stripped. service-names can be any printable characters excluding space and tab.
However, a conservative choice of characters should be used to minimize compatibility
problems. For example, a-z, 0-9, and hyphen (-) would seem a sensible choice.

Lines not matching this format should not be present in the file. (Currently, they are
silently skipped by getservent(3), getservbyname(3), and getservbyport(3). However,
this behavior should not be relied on.)

This file might be distributed over a network using a network-wide naming service like
Yellow Pages/NIS or BIND/Hesiod.

A sample services file might look like this:

netstat 15/tcp
qotd 17/tcp quote
msp 18/tcp # message send protocol
msp 18/udp # message send protocol
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
22 - unassigned
telnet 23/tcp

FILES
/etc/services

The Internet network services list

<netdb.h>
Definition of _PATH_SERVICES

SEE ALSO
listen(2), endservent(3), getservbyname(3), getservbyport(3), getservent(3), setser-
vent(3), inetd.conf (5), protocols(5), inetd(8)

Assigned Numbers RFC, most recently RFC 1700, (AKA STD0002).

Linux man-pages 6.16 2025-05-17 3173

shells(5) File Formats Manual shells(5)

NAME
shells - pathnames of valid login shells

DESCRIPTION
/etc/shells is a text file which contains the full pathnames of valid login shells. This file
is consulted by chsh(1) and available to be queried by other programs.

Be aware that there are programs which consult this file to find out if a user is a normal
user; for example, FTP daemons traditionally disallow access to users with shells not in-
cluded in this file.

FILES
/etc/shells

EXAMPLES
/etc/shells may contain the following paths:

/bin/sh
/bin/bash
/bin/csh

SEE ALSO
chsh(1), getusershell(3), pam_shells(8)

Linux man-pages 6.16 2025-05-17 3174

slabinfo(5) File Formats Manual slabinfo(5)

NAME
slabinfo - kernel slab allocator statistics

SYNOPSIS
cat /proc/slabinfo

DESCRIPTION
Frequently used objects in the Linux kernel (buffer heads, inodes, dentries, etc.) have
their own cache. The file /proc/slabinfo gives statistics on these caches. The following
(edited) output shows an example of the contents of this file:

$ sudo cat /proc/slabinfo;
slabinfo - version: 2.1
name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab> ...
sigqueue 100 100 160 25 1 : tunables 0 0 0 : slabdata 4 4 0
sighand_cache 355 405 2112 15 8 : tunables 0 0 0 : slabdata 27 27 0
kmalloc-8192 96 96 8192 4 8 : tunables 0 0 0 : slabdata 24 24 0
...

The first line of output includes a version number, which allows an application that is
reading the file to handle changes in the file format. (See VERSIONS, below.) The next
line lists the names of the columns in the remaining lines.

Each of the remaining lines displays information about a specified cache. Following the
cache name, the output shown in each line shows three components for each cache:

• statistics

• tunables

• slabdata

The statistics are as follows:

active_objs
The number of objects that are currently active (i.e., in use).

num_objs
The total number of allocated objects (i.e., objects that are both in use and not in
use).

objsize
The size of objects in this slab, in bytes.

objperslab
The number of objects stored in each slab.

pagesperslab
The number of pages allocated for each slab.

The tunables entries in each line show tunable parameters for the corresponding cache.
When using the default SLUB allocator, there are no tunables, the /proc/slabinfo file is
not writable, and the value 0 is shown in these fields. When using the older SLAB allo-
cator, the tunables for a particular cache can be set by writing lines of the following
form to /proc/slabinfo:

echo 'name limit batchcount sharedfactor' > /proc/slabinfo;

Linux man-pages 6.16 2025-09-21 3175

slabinfo(5) File Formats Manual slabinfo(5)

Here, name is the cache name, and limit, batchcount, and sharedfactor are integers
defining new values for the corresponding tunables. The limit value should be a positive
value, batchcount should be a positive value that is less than or equal to limit, and
sharedfactor should be nonnegative. If any of the specified values is invalid, the cache
settings are left unchanged.

The tunables entries in each line contain the following fields:

limit The maximum number of objects that will be cached.

batchcount
On SMP systems, this specifies the number of objects to transfer at one time
when refilling the available object list.

sharedfactor
[To be documented]

The slabdata entries in each line contain the following fields:

active_slabs
The number of active slabs.

nums_slabs
The total number of slabs.

sharedavail
[To be documented]

Note that because of object alignment and slab cache overhead, objects are not normally
packed tightly into pages. Pages with even one in-use object are considered in-use and
cannot be freed.

Kernels configured with CONFIG_DEBUG_SLAB will also have additional statistics
fields in each line, and the first line of the file will contain the string "(statistics)". The
statistics field include: the high water mark of active objects; the number of times ob-
jects have been allocated; the number of times the cache has grown (new pages added to
this cache); the number of times the cache has been reaped (unused pages removed from
this cache); and the number of times there was an error allocating new pages to this
cache.

VERSIONS
The /proc/slabinfo file first appeared in Linux 2.1.23. The file is versioned, and over
time there have been a number of versions with different layouts:

1.0 Present throughout the Linux 2.2.x kernel series.

1.1 Present in the Linux 2.4.x kernel series.

1.2 A format that was briefly present in the Linux 2.5 development series.

2.0 Present in Linux 2.6.x kernels up to and including Linux 2.6.9.

2.1 The current format, which first appeared in Linux 2.6.10.

NOTES
Only root can read and (if the kernel was configured with CONFIG_SLAB) write the
/proc/slabinfo file.

Linux man-pages 6.16 2025-09-21 3176

slabinfo(5) File Formats Manual slabinfo(5)

The total amount of memory allocated to the SLAB/SLUB cache is shown in the Slab
field of /proc/meminfo.

SEE ALSO
slabtop(1)

The kernel source file Documentation/vm/slub.txt and tools/vm/slabinfo.c.

Linux man-pages 6.16 2025-09-21 3177

sysfs(5) File Formats Manual sysfs(5)

NAME
sysfs - a filesystem for exporting kernel objects

DESCRIPTION
The sysfs filesystem is a pseudo-filesystem which provides an interface to kernel data
structures. (More precisely, the files and directories in sysfs provide a view of the kob-
ject structures defined internally within the kernel.) The files under sysfs provide infor-
mation about devices, kernel modules, filesystems, and other kernel components.

The sysfs filesystem is commonly mounted at /sys. Typically, it is mounted automati-
cally by the system, but it can also be mounted manually using a command such as:

mount -t sysfs sysfs /sys

Many of the files in the sysfs filesystem are read-only, but some files are writable, allow-
ing kernel variables to be changed. To avoid redundancy, symbolic links are heavily
used to connect entries across the filesystem tree.

Files and directories
The following list describes some of the files and directories under the /sys hierarchy.

/sys/block
This subdirectory contains one symbolic link for each block device that has been
discovered on the system. The symbolic links point to corresponding directories
under /sys/devices.

/sys/bus
This directory contains one subdirectory for each of the bus types in the kernel.
Inside each of these directories are two subdirectories:

devices
This subdirectory contains symbolic links to entries in /sys/devices that
correspond to the devices discovered on this bus.

drivers
This subdirectory contains one subdirectory for each device driver that is
loaded on this bus.

/sys/class
This subdirectory contains a single layer of further subdirectories for each of the
device classes that have been registered on the system (e.g., terminals, network
devices, block devices, graphics devices, sound devices, and so on). Inside each
of these subdirectories are symbolic links for each of the devices in this class.
These symbolic links refer to entries in the /sys/devices directory.

/sys/class/net
Each of the entries in this directory is a symbolic link representing one of the
real or virtual networking devices that are visible in the network namespace of
the process that is accessing the directory. Each of these symbolic links refers to
entries in the /sys/devices directory.

/sys/dev
This directory contains two subdirectories block/ and char/ , corresponding, re-
spectively, to the block and character devices on the system. Inside each of these

Linux man-pages 6.16 2025-09-21 3178

sysfs(5) File Formats Manual sysfs(5)

subdirectories are symbolic links with names of the form major-ID:minor-ID,
where the ID values correspond to the major and minor ID of a specific device.
Each symbolic link points to the sysfs directory for a device. The symbolic links
inside /sys/dev thus provide an easy way to look up the sysfs interface using the
device IDs returned by a call to stat(2) (or similar).

The following shell session shows an example from /sys/dev:

$ stat -c "%t %T" /dev/null;
1 3
$ readlink /sys/dev/char/1\:3;
../../devices/virtual/mem/null
$ ls -Fd /sys/devices/virtual/mem/null;
/sys/devices/virtual/mem/null/
$ ls -d1 /sys/devices/virtual/mem/null/*;
/sys/devices/virtual/mem/null/dev
/sys/devices/virtual/mem/null/power/
/sys/devices/virtual/mem/null/subsystem@
/sys/devices/virtual/mem/null/uevent

/sys/devices
This is a directory that contains a filesystem representation of the kernel device
tree, which is a hierarchy of device structures within the kernel.

/sys/firmware
This subdirectory contains interfaces for viewing and manipulating firmware-
specific objects and attributes.

/sys/fs
This directory contains subdirectories for some filesystems. A filesystem will
have a subdirectory here only if it chose to explicitly create the subdirectory.

/sys/fs/cgroup
This directory conventionally is used as a mount point for a tmpfs(5) filesystem
containing mount points for cgroups(7) filesystems.

/sys/fs/smackfs
The directory contains configuration files for the SMACK LSM. See the kernel
source file Documentation/admin-guide/LSM/Smack.rst.

/sys/hypervisor
[To be documented]

/sys/kernel
This subdirectory contains various files and subdirectories that provide informa-
tion about the running kernel.

/sys/kernel/cgroup/
For information about the files in this directory, see cgroups(7).

/sys/kernel/debug/tracing
Mount point for the tracefs filesystem used by the kernel’s ftrace facility. (For
information on ftrace, see the kernel source file Documentation/trace/ftrace.txt.)

Linux man-pages 6.16 2025-09-21 3179

sysfs(5) File Formats Manual sysfs(5)

/sys/kernel/mm
This subdirectory contains various files and subdirectories that provide informa-
tion about the kernel’s memory management subsystem.

/sys/kernel/mm/hugepages
This subdirectory contains one subdirectory for each of the huge page sizes that
the system supports. The subdirectory name indicates the huge page size (e.g.,
hugepages-2048kB). Within each of these subdirectories is a set of files that can
be used to view and (in some cases) change settings associated with that huge
page size. For further information, see the kernel source file Documentation/ad-
min-guide/mm/hugetlbpage.rst.

/sys/module
This subdirectory contains one subdirectory for each module that is loaded into
the kernel. The name of each directory is the name of the module. In each of
the subdirectories, there may be following files:

coresize
[to be documented]

initsize
[to be documented]

initstate
[to be documented]

refcnt
[to be documented]

srcversion
[to be documented]

taint [to be documented]

uevent
[to be documented]

version
[to be documented]

In each of the subdirectories, there may be following subdirectories:

drivers
[To be documented]

holders
[To be documented]

notes
[To be documented]

parameters
This directory contains one file for each module parameter, with each file
containing the value of the corresponding parameter. Some of these files
are writable, allowing the

Linux man-pages 6.16 2025-09-21 3180

sysfs(5) File Formats Manual sysfs(5)

sections
This subdirectories contains files with information about module sec-
tions. This information is mainly used for debugging.

[To be documented]

/sys/power
[To be documented]

STANDARDS
Linux.

HISTORY
Linux 2.6.0.

NOTES
This manual page is incomplete, possibly inaccurate, and is the kind of thing that needs
to be updated very often.

SEE ALSO
proc(5), udev(7)

P. Mochel (2005). The sysfs filesystem. Proceedings of the 2005 Ottawa Linux Sympo-
sium.

The kernel source file Documentation/filesystems/sysfs.txt and various other files in
Documentation/ABI and Documentation/*/sysfs.txt

Linux man-pages 6.16 2025-09-21 3181

termcap(5) File Formats Manual termcap(5)

NAME
termcap - terminal capability database

DESCRIPTION
The termcap database is an obsolete facility for describing the capabilities of character-
cell terminals and printers. It is retained only for compatibility with old programs; new
programs should use the terminfo(5) database and associated libraries.

/etc/termcap is an ASCII file (the database master) that lists the capabilities of many dif-
ferent types of terminals. Programs can read termcap to find the particular escape codes
needed to control the visual attributes of the terminal actually in use. (Other aspects of
the terminal are handled by stty(1)The termcap database is indexed on the TERM envi-
ronment variable.

Termcap entries must be defined on a single logical line, with '\' used to suppress the
newline. Fields are separated by ':'. The first field of each entry starts at the left-hand
margin, and contains a list of names for the terminal, separated by '|'.

The first subfield may (in BSD termcap entries from 4.3BSD and earlier) contain a short
name consisting of two characters. This short name may consist of capital or small let-
ters. In 4.4BSD termcap entries this field is omitted.

The second subfield (first, in the newer 4.4BSD format) contains the name used by the
environment variable TERM. It should be spelled in lowercase letters. Selectable hard-
ware capabilities should be marked by appending a hyphen and a suffix to this name.
See below for an example. Usual suffixes are w (more than 80 characters wide), am (au-
tomatic margins), nam (no automatic margins), and rv (reverse video display). The third
subfield contains a long and descriptive name for this termcap entry.

Subsequent fields contain the terminal capabilities; any continued capability lines must
be indented one tab from the left margin.

Although there is no defined order, it is suggested to write first boolean, then numeric,
and then string capabilities, each sorted alphabetically without looking at lower or upper
spelling. Capabilities of similar functions can be written in one line.

Example for:

Head line: vt|vt101|DEC VT 101 terminal in 80 character mode:\
Head line: Vt|vt101-w|DEC VT 101 terminal in (wide) 132 character mode:\
Boolean: :bs:\
Numeric: :co#80:\
String: :sr=\E[H:\

Boolean capabilities
5i Printer will not echo on screen
am Automatic margins which means automatic line wrap
bs Control-H (8 dec.) performs a backspace
bw Backspace on left margin wraps to previous line and right margin
da Display retained above screen
db Display retained below screen
eo A space erases all characters at cursor position
es Escape sequences and special characters work in status line

Linux man-pages 6.16 2025-09-21 3182

termcap(5) File Formats Manual termcap(5)

gn Generic device
hc This is a hardcopy terminal
HC The cursor is hard to see when not on bottom line
hs Has a status line
hz Hazeltine bug, the terminal can not print tilde characters
in Terminal inserts null bytes, not spaces, to fill whitespace
km Terminal has a meta key
mi Cursor movement works in insert mode
ms Cursor movement works in standout/underline mode
NP No pad character
NR ti does not reverse te
nx No padding, must use XON/XOFF
os Terminal can overstrike
ul Terminal underlines although it can not overstrike
xb Beehive glitch, f1 sends ESCAPE, f2 sends ^C
xn Newline/wraparound glitch
xo Terminal uses xon/xoff protocol
xs Text typed over standout text will be displayed in standout
xt Teleray glitch, destructive tabs and odd standout mode

Numeric capabilities
co Number of columns
dB Delay in milliseconds for backspace on hardcopy terminals
dC Delay in milliseconds for carriage return on hardcopy terminals
dF Delay in milliseconds for form feed on hardcopy terminals
dN Delay in milliseconds for new line on hardcopy terminals
dT Delay in milliseconds for tabulator stop on hardcopy terminals
dV Delay in milliseconds for vertical tabulator stop on

hardcopy terminals
it Difference between tab positions
lh Height of soft labels
lm Lines of memory
lw Width of soft labels
li Number of lines
Nl Number of soft labels
pb Lowest baud rate which needs padding
sg Standout glitch
ug Underline glitch
vt virtual terminal number
ws Width of status line if different from screen width

String capabilities
!1 shifted save key
!2 shifted suspend key
!3 shifted undo key
#1 shifted help key
#2 shifted home key
#3 shifted input key

Linux man-pages 6.16 2025-09-21 3183

termcap(5) File Formats Manual termcap(5)

#4 shifted cursor left key
%0 redo key
%1 help key
%2 mark key
%3 message key
%4 move key
%5 next-object key
%6 open key
%7 options key
%8 previous-object key
%9 print key
%a shifted message key
%b shifted move key
%c shifted next key
%d shifted options key
%e shifted previous key
%f shifted print key
%g shifted redo key
%h shifted replace key
%i shifted cursor right key
%j shifted resume key
&0 shifted cancel key
&1 reference key
&2 refresh key
&3 replace key
&4 restart key
&5 resume key
&6 save key
&7 suspend key
&8 undo key
&9 shifted begin key
*0 shifted find key
*1 shifted command key
*2 shifted copy key
*3 shifted create key
*4 shifted delete character
*5 shifted delete line
*6 select key
*7 shifted end key
*8 shifted clear line key
*9 shifted exit key
@0 find key
@1 begin key
@2 cancel key
@3 close key
@4 command key
@5 copy key

Linux man-pages 6.16 2025-09-21 3184

termcap(5) File Formats Manual termcap(5)

@6 create key
@7 end key
@8 enter/send key
@9 exit key
al Insert one line
AL Insert %1 lines
ac Pairs of block graphic characters to map alternate character set
ae End alternative character set
as Start alternative character set for block graphic characters
bc Backspace, if not ^H
bl Audio bell
bt Move to previous tab stop
cb Clear from beginning of line to cursor
cc Dummy command character
cd Clear to end of screen
ce Clear to end of line
ch Move cursor horizontally only to column %1
cl Clear screen and cursor home
cm Cursor move to row %1 and column %2 (on screen)
CM Move cursor to row %1 and column %2 (in memory)
cr Carriage return
cs Scroll region from line %1 to %2
ct Clear tabs
cv Move cursor vertically only to line %1
dc Delete one character
DC Delete %1 characters
dl Delete one line
DL Delete %1 lines
dm Begin delete mode
do Cursor down one line
DO Cursor down #1 lines
ds Disable status line
eA Enable alternate character set
ec Erase %1 characters starting at cursor
ed End delete mode
ei End insert mode
ff Formfeed character on hardcopy terminals
fs Return character to its position before going to status line
F1 The string sent by function key f11
F2 The string sent by function key f12
F3 The string sent by function key f13
... ...
F9 The string sent by function key f19
FA The string sent by function key f20
FB The string sent by function key f21
... ...
FZ The string sent by function key f45

Linux man-pages 6.16 2025-09-21 3185

termcap(5) File Formats Manual termcap(5)

Fa The string sent by function key f46
Fb The string sent by function key f47
... ...
Fr The string sent by function key f63
hd Move cursor a half line down
ho Cursor home
hu Move cursor a half line up
i1 Initialization string 1 at login
i3 Initialization string 3 at login
is Initialization string 2 at login
ic Insert one character
IC Insert %1 characters
if Initialization file
im Begin insert mode
ip Insert pad time and needed special characters after insert
iP Initialization program
K1 upper left key on keypad
K2 center key on keypad
K3 upper right key on keypad
K4 bottom left key on keypad
K5 bottom right key on keypad
k0 Function key 0
k1 Function key 1
k2 Function key 2
k3 Function key 3
k4 Function key 4
k5 Function key 5
k6 Function key 6
k7 Function key 7
k8 Function key 8
k9 Function key 9
k; Function key 10
ka Clear all tabs key
kA Insert line key
kb Backspace key
kB Back tab stop
kC Clear screen key
kd Cursor down key
kD Key for delete character under cursor
ke turn keypad off
kE Key for clear to end of line
kF Key for scrolling forward/down
kh Cursor home key
kH Cursor hown down key
kI Insert character/Insert mode key
kl Cursor left key
kL Key for delete line

Linux man-pages 6.16 2025-09-21 3186

termcap(5) File Formats Manual termcap(5)

kM Key for exit insert mode
kN Key for next page
kP Key for previous page
kr Cursor right key
kR Key for scrolling backward/up
ks Turn keypad on
kS Clear to end of screen key
kt Clear this tab key
kT Set tab here key
ku Cursor up key
l0 Label of zeroth function key, if not f0
l1 Label of first function key, if not f1
l2 Label of first function key, if not f2
... ...
la Label of tenth function key, if not f10
le Cursor left one character
ll Move cursor to lower left corner
LE Cursor left %1 characters
LF Turn soft labels off
LO Turn soft labels on
mb Start blinking
MC Clear soft margins
md Start bold mode
me End all mode like so, us, mb, md, and mr
mh Start half bright mode
mk Dark mode (Characters invisible)
ML Set left soft margin
mm Put terminal in meta mode
mo Put terminal out of meta mode
mp Turn on protected attribute
mr Start reverse mode
MR Set right soft margin
nd Cursor right one character
nw Carriage return command
pc Padding character
pf Turn printer off
pk Program key %1 to send string %2 as if typed by user
pl Program key %1 to execute string %2 in local mode
pn Program soft label %1 to show string %2
po Turn the printer on
pO Turn the printer on for %1 (<256) bytes
ps Print screen contents on printer
px Program key %1 to send string %2 to computer
r1 Reset string 1 to set terminal to sane modes
r2 Reset string 2 to set terminal to sane modes
r3 Reset string 3 to set terminal to sane modes
RA disable automatic margins

Linux man-pages 6.16 2025-09-21 3187

termcap(5) File Formats Manual termcap(5)

rc Restore saved cursor position
rf Reset string filename
RF Request for input from terminal
RI Cursor right %1 characters
rp Repeat character %1 for %2 times
rP Padding after character sent in replace mode
rs Reset string
RX Turn off XON/XOFF flow control
sa Set %1 %2 %3 %4 %5 %6 %7 %8 %9 attributes
SA enable automatic margins
sc Save cursor position
se End standout mode
sf Normal scroll one line
SF Normal scroll %1 lines
so Start standout mode
sr Reverse scroll
SR scroll back %1 lines
st Set tabulator stop in all rows at current column
SX Turn on XON/XOFF flow control
ta move to next hardware tab
tc Read in terminal description from another entry
te End program that uses cursor motion
ti Begin program that uses cursor motion
ts Move cursor to column %1 of status line
uc Underline character under cursor and move cursor right
ue End underlining
up Cursor up one line
UP Cursor up %1 lines
us Start underlining
vb Visible bell
ve Normal cursor visible
vi Cursor invisible
vs Standout cursor
wi Set window from line %1 to %2 and column %3 to %4
XF XOFF character if not ^S

There are several ways of defining the control codes for string capabilities:

Every normal character represents itself, except '^', '\', and '%'.

A ^x means Control-x. Control-A equals 1 decimal.

\x means a special code. x can be one of the following characters:
E Escape (27)
n Linefeed (10)
r Carriage return (13)
t Tabulation (9)
b Backspace (8)
f Form feed (12)

Linux man-pages 6.16 2025-09-21 3188

termcap(5) File Formats Manual termcap(5)

0 Null character. A \xxx specifies the octal character xxx.

i Increments parameters by one.

r Single parameter capability

+ Add value of next character to this parameter and do binary output

2 Do ASCII output of this parameter with a field with of 2

d Do ASCII output of this parameter with a field with of 3

% Print a '%'

If you use binary output, then you should avoid the null character ('\0') because it termi-
nates the string. You should reset tabulator expansion if a tabulator can be the binary
output of a parameter.

Warning:
The above metacharacters for parameters may be wrong: they document Minix
termcap which may not be compatible with Linux termcap.

The block graphic characters can be specified by three string capabilities:

as start the alternative charset

ae end the alternative charset

ac pairs of characters. The first character is the name of the block graphic symbol
and the second characters is its definition.

The following names are available:

+ right arrow (>)
, left arrow (<)
. down arrow (v)
0 full square (#)
I lantern (#)
- upper arrow (^)
’ rhombus (+)
a chess board (:)
f degree (’)
g plus-minus (#)
h square (#)
j right bottom corner (+)
k right upper corner (+)
l left upper corner (+)
m left bottom corner (+)
n cross (+)
o upper horizontal line (-)
q middle horizontal line (-)
s bottom horizontal line (_)
t left tee (+)
u right tee (+)
v bottom tee (+)

Linux man-pages 6.16 2025-09-21 3189

termcap(5) File Formats Manual termcap(5)

w normal tee (+)
x vertical line (|)
~ paragraph (???)

The values in parentheses are suggested defaults which are used by the curses library, if
the capabilities are missing.

SEE ALSO
ncurses(3), termcap(3), terminfo(5)

Linux man-pages 6.16 2025-09-21 3190

tmpfs(5) File Formats Manual tmpfs(5)

NAME
tmpfs - a virtual memory filesystem

DESCRIPTION
The tmpfs facility allows the creation of filesystems whose contents reside in virtual
memory. Since the files on such filesystems typically reside in RAM, file access is ex-
tremely fast.

The filesystem is automatically created when mounting a filesystem with the type tmpfs
via a command such as the following:

$ sudo mount -t tmpfs -o size=10M tmpfs /mnt/mytmpfs

A tmpfs filesystem has the following properties:

• The filesystem can employ swap space when physical memory pressure demands it.

• The filesystem consumes only as much physical memory and swap space as is re-
quired to store the current contents of the filesystem.

• During a remount operation (mount -o remount), the filesystem size can be changed
(without losing the existing contents of the filesystem).

If a tmpfs filesystem is unmounted, its contents are discarded (lost).

Mount options
The tmpfs filesystem supports the following mount options:

size=bytes
Specify an upper limit on the size of the filesystem. The size is given in bytes,
and rounded up to entire pages. The limit is removed if the size is 0.

The size may have a k, m, or g suffix for Ki, Mi, Gi (binary kilo (kibi), binary
mega (mebi), and binary giga (gibi)).

The size may also have a % suffix to limit this instance to a percentage of physi-
cal RAM.

The default, when neither size nor nr_blocks is specified, is size=50%.

nr_blocks=blocks
The same as size, but in blocks of PAGE_CACHE_SIZE.

Blocks may be specified with k, m, or g suffixes like size, but not a % suffix.

nr_inodes=inodes
The maximum number of inodes for this instance. The default is half of the
number of your physical RAM pages, or (on a machine with highmem) the num-
ber of lowmem RAM pages, whichever is smaller. The limit is removed if the
number is 0.

Inodes may be specified with k, m, or g suffixes like size, but not a % suffix.

noswap(since Linux 6.4)
Disables swap. Remounts must respect the original settings. By default swap is
enabled.

Linux man-pages 6.16 2025-09-21 3191

tmpfs(5) File Formats Manual tmpfs(5)

mode=mode
Set initial permissions of the root directory.

gid=gid (since Linux 2.5.7)
Set the initial group ID of the root directory.

uid=uid (since Linux 2.5.7)
Set the initial user ID of the root directory.

huge=huge_option (since Linux 4.7.0)
Set the huge table memory allocation policy for all files in this instance (if CON-
FIG_TRANSPARENT_HUGEPAGE is enabled).

The huge_option value is one of the following:

never
Do not allocate huge pages. This is the default.

always
Attempt to allocate huge pages every time a new page is needed.

within_size
Only allocate huge page if it will be fully within i_size. Also respect
fadvise(2) and madvise(2) hints

advise
Only allocate huge pages if requested with fadvise(2) or madvise(2).

deny For use in emergencies, to force the huge option off from all mounts.

force Force the huge option on for all mounts; useful for testing.

mpol=mpol_option (since Linux 2.6.15)
Set the NUMA memory allocation policy for all files in this instance (if CON-
FIG_NUMA is enabled).

The mpol_option value is one of the following:

default
Use the process allocation policy (see set_mempolicy(2)).

prefer:node
Preferably allocate memory from the given node.

bind:nodelist
Allocate memory only from nodes in nodelist.

interleave
Allocate from each node in turn.

interleave:nodelist
Allocate from each node of in turn.

local Preferably allocate memory from the local node.

In the above, nodelist is a comma-separated list of decimal numbers and ranges
that specify NUMA nodes. A range is a pair of hyphen-separated decimal num-
bers, the smallest and largest node numbers in the range. For example,

Linux man-pages 6.16 2025-09-21 3192

tmpfs(5) File Formats Manual tmpfs(5)

mpol=bind:0-3,5,7,9-15.

VERSIONS
The tmpfs facility was added in Linux 2.4, as a successor to the older ramfs facility,
which did not provide limit checking or allow for the use of swap space.

NOTES
In order for user-space tools and applications to create tmpfs filesystems, the kernel
must be configured with the CONFIG_TMPFS option.

The tmpfs filesystem supports extended attributes (see xattr(7)), but user extended at-
tributes are not permitted.

An internal shared memory filesystem is used for System V shared memory (shmget(2))
and shared anonymous mappings (mmap(2) with the MAP_SHARED and
MAP_ANONYMOUS flags). This filesystem is available regardless of whether the
kernel was configured with the CONFIG_TMPFS option.

A tmpfs filesystem mounted at /dev/shm is used for the implementation of POSIX
shared memory (shm_overview(7)) and POSIX semaphores (sem_overview(7)).

The amount of memory consumed by all tmpfs filesystems is shown in the Shmem field
of /proc/meminfo and in the shared field displayed by free(1)

The tmpfs facility was formerly called shmfs.

SEE ALSO
df (1), du(1), memfd_create(2), mmap(2), set_mempolicy(2), shm_open(3), mount(8)

The kernel source files Documentation/filesystems/tmpfs.txt and Documentation/admin-
guide/mm/transhuge.rst.

Linux man-pages 6.16 2025-09-21 3193

ttytype(5) File Formats Manual ttytype(5)

NAME
ttytype - terminal device to default terminal type mapping

DESCRIPTION
The /etc/ttytype file associates termcap(5) and terminfo(5) terminal type names with tty
lines. Each line consists of a terminal type, followed by whitespace, followed by a tty
name (a device name without the /dev/ prefix).

This association is used by the program tset(1) to set the environment variable TERM
to the default terminal name for the user’s current tty.

This facility was designed for a traditional time-sharing environment featuring char-
acter-cell terminals hardwired to a UNIX minicomputer. It is little used on modern
workstation and personal UNIX systems.

FILES
/etc/ttytype

the tty definitions file.

EXAMPLES
A typical /etc/ttytype is:

con80x25 tty1
vt320 ttys0

SEE ALSO
termcap(5), terminfo(5), agetty(8), mingetty(8)

Linux man-pages 6.16 2025-05-17 3194

tzfile(5) File Formats Manual tzfile(5)

NAME
tzfile - timezone information

DESCRIPTION
The timezone information files used by tzset(3) are typically found under a directory
with a name like /usr/share/zoneinfo. These files use the format described in Internet
RFC 9636. Each file is a sequence of 8-bit bytes. In a file, a binary integer is repre-
sented by a sequence of one or more bytes in network order (bigendian, or high-order
byte first), with all bits significant, a signed binary integer is represented using two’s
complement, and a boolean is represented by a one-byte binary integer that is either 0
(false) or 1 (true). The format begins with a 44-byte header containing the following
fields:

• The magic four-byte ASCII sequence “TZif” identifies the file as a timezone infor-
mation file.

• A byte identifying the version of the file’s format (as of 2021, either an ASCII NUL,
“2”, “3”, or “4”).

• Fifteen bytes containing zeros reserved for future use.

• Six four-byte integer values, in the following order:

tzh_ttisutcnt
The number of UT/local indicators stored in the file. (UT is Universal Time.)

tzh_ttisstdcnt
The number of standard/wall indicators stored in the file.

tzh_leapcnt
The number of leap seconds for which data entries are stored in the file.

tzh_timecnt
The number of transition times for which data entries are stored in the file.

tzh_typecnt
The number of local time types for which data entries are stored in the file (must
not be zero).

tzh_charcnt
The number of bytes of time zone abbreviation strings stored in the file.

The above header is followed by the following fields, whose lengths depend on the con-
tents of the header:

• tzh_timecnt four-byte signed integer values sorted in ascending order. These values
are written in network byte order. Each is used as a transition time (as returned by
time(2)) at which the rules for computing local time change.

• tzh_timecnt one-byte unsigned integer values; each one but the last tells which of
the different types of local time types described in the file is associated with the time
period starting with the same-indexed transition time and continuing up to but not in-
cluding the next transition time. (The last time type is present only for consistency
checking with the proleptic TZ string described below.) These values serve as in-
dices into the next field.

Time Zone Database 3195

tzfile(5) File Formats Manual tzfile(5)

• tzh_typecnt ttinfo entries, each defined as follows:

struct ttinfo {
int32_t tt_utoff;
unsigned char tt_isdst;
unsigned char tt_desigidx;

};

Each structure is written as a four-byte signed integer value for tt_utoff, in network
byte order, followed by a one-byte boolean for tt_isdst and a one-byte value for
tt_desigidx. In each structure, tt_utoff gives the number of seconds to be added to
UT, tt_isdst tells whether tm_isdst should be set by localtime(3) and tt_desigidx
serves as an index into the array of time zone abbreviation bytes that follow the
ttinfo entries in the file; if the designated string is "-00", the ttinfo entry is a place-
holder indicating that local time is unspecified. The tt_utoff value is never equal to
-2**31, to let 32-bit clients negate it without overflow. Also, in realistic applications
tt_utoff is in the range [-89999, 93599] (i.e., more than -25 hours and less than 26
hours); this allows easy support by implementations that already support the POSIX-
required range [-24:59:59, 25:59:59].

• tzh_charcnt bytes that represent time zone designations, which are null-terminated
byte strings, each indexed by the tt_desigidx values mentioned above. The byte
strings can overlap if one is a suffix of the other. The encoding of these strings is not
specified.

• tzh_leapcnt pairs of four-byte values, written in network byte order; the first value
of each pair gives the non-negative time (as returned by time(2)) at which a leap sec-
ond occurs or at which the leap second table expires; the second is a signed integer
specifying the correction, which is the total number of leap seconds to be applied
during the time period starting at the given time. The pairs of values are sorted in
strictly ascending order by time. Each pair denotes one leap second, either positive
or negative, except that if the last pair has the same correction as the previous one,
the last pair denotes the leap second table’s expiration time. Each leap second is at
the end of a UTC calendar month. The first leap second has a non-negative occur-
rence time, and is a positive leap second if and only if its correction is positive; the
correction for each leap second after the first differs from the previous leap second
by either 1 for a positive leap second, or -1 for a negative leap second. If the leap
second table is empty, the leap-second correction is zero for all timestamps; other-
wise, for timestamps before the first occurrence time, the leap-second correction is
zero if the first pair’s correction is 1 or -1, and is unspecified otherwise (which can
happen only in files truncated at the start).

• tzh_ttisstdcnt standard/wall indicators, each stored as a one-byte boolean; they tell
whether the transition times associated with local time types were specified as stan-
dard time or local (wall clock) time.

• tzh_ttisutcnt UT/local indicators, each stored as a one-byte boolean; they tell
whether the transition times associated with local time types were specified as UT or
local time. If a UT/local indicator is set, the corresponding standard/wall indicator

Time Zone Database 3196

tzfile(5) File Formats Manual tzfile(5)

must also be set.

The standard/wall and UT/local indicators were designed for transforming a TZif file’s
transition times into transitions appropriate for another time zone specified via a prolep-
tic TZ string that lacks rules. For example, when TZ="EET-2EEST" and there is no
TZif file "EET-2EEST", the idea was to adapt the transition times from a TZif file with
the well-known name "posixrules" that is present only for this purpose and is a copy of
the file "Europe/Brussels", a file with a different UT offset. POSIX does not specify the
details of this obsolete transformational behavior, the default rules are installation-de-
pendent, and no implementation is known to support this feature for timestamps past
2037, so users desiring (say) Greek time should instead specify TZ="Europe/Athens"
for better historical coverage, falling back on TZ="EET-2EEST,M3.5.0/3,M10.5.0/4" if
POSIX conformance is required and older timestamps need not be handled accurately.

The localtime(3) function normally uses the first ttinfo structure in the file if either
tzh_timecnt is zero or the time argument is less than the first transition time recorded in
the file.

Version 2 format
For version-2-format timezone files, the above header and data are followed by a second
header and data, identical in format except that eight bytes are used for each transition
time or leap second time. (Leap second counts remain four bytes.) After the second
header and data comes a newline-enclosed string in the style of the contents of a prolep-
tic TZ, for use in handling instants after the last transition time stored in the file or for
all instants if the file has no transitions. The TZ string is empty (i.e., nothing between
the newlines) if there is no proleptic representation for such instants. If non-empty, the
TZ string must agree with the local time type after the last transition time if present in
the eight-byte data; for example, given the string “WET0WEST,M3.5.0/1,M10.5.0” then
if a last transition time is in July, the transition’s local time type must specify a daylight-
saving time abbreviated “WEST” that is one hour east of UT. Also, if there is at least
one transition, time type 0 is associated with the time period from the indefinite past up
to but not including the earliest transition time.

Version 3 format
For version-3-format timezone files, a TZ string (see newtzset(3)) may use the following
POSIX.1-2024 extensions to POSIX.1-2017: First, as in
TZ="<-02>2<-01>,M3.5.0/-1,M10.5.0/0", the hours part of its transition times may be
signed and range from -167 through 167 instead of being limited to unsigned values
from 0 through 24. Second, as in TZ="XXX3EDT4,0/0,J365/23", DST is in effect all
year if it starts January 1 at 00:00 and ends December 31 at 24:00 plus the difference be-
tween daylight saving and standard time.

Version 4 format
For version-4-format TZif files, the first leap second record can have a correction that is
neither +1 nor -1, to represent truncation of the TZif file at the start. Also, if two or
more leap second transitions are present and the last entry’s correction equals the previ-
ous one, the last entry denotes the expiration of the leap second table instead of a leap
second; timestamps after this expiration are unreliable in that future releases will likely
add leap second entries after the expiration, and the added leap seconds will change how
post-expiration timestamps are treated.

Time Zone Database 3197

tzfile(5) File Formats Manual tzfile(5)

Interoperability considerations
Future changes to the format may append more data.

Version 1 files are considered a legacy format and should not be generated, as they do
not support transition times after the year 2038. Readers that understand only Version 1
must ignore any data that extends beyond the calculated end of the version 1 data block.

Other than version 1, writers should generate the lowest version number needed by a
file’s data. For example, a writer should generate a version 4 file only if its leap second
table either expires or is truncated at the start. Likewise, a writer not generating a ver-
sion 4 file should generate a version 3 file only if TZ string extensions are necessary to
accurately model transition times.

The sequence of time changes defined by the version 1 header and data block should be
a contiguous sub-sequence of the time changes defined by the version 2+ header and
data block, and by the footer. This guideline helps obsolescent version 1 readers agree
with current readers about timestamps within the contiguous sub-sequence. It also lets
writers not supporting obsolescent readers use a tzh_timecnt of zero in the version 1
data block to save space.

When a TZif file contains a leap second table expiration time, TZif readers should either
refuse to process post-expiration timestamps, or process them as if the expiration time
did not exist (possibly with an error indication).

Time zone designations should consist of at least three (3) and no more than six (6)
ASCII characters from the set of alphanumerics, “-”, and “+”. This is for compatibility
with POSIX requirements for time zone abbreviations.

When reading a version 2 or higher file, readers should ignore the version 1 header and
data block except for the purpose of skipping over them.

Readers should calculate the total lengths of the headers and data blocks and check that
they all fit within the actual file size, as part of a validity check for the file.

When a positive leap second occurs, readers should append an extra second to the local
minute containing the second just before the leap second. If this occurs when the UTC
offset is not a multiple of 60 seconds, the leap second occurs earlier than the last second
of the local minute and the minute’s remaining local seconds are numbered through 60
instead of the usual 59; the UTC offset is unaffected.

Common interoperability issues
This section documents common problems in reading or writing TZif files. Most of
these are problems in generating TZif files for use by older readers. The goals of this
section are to help:

• TZif writers output files that avoid common pitfalls in older or buggy TZif readers,

• TZif readers avoid common pitfalls when reading files generated by future TZif writ-
ers, and

• any future specification authors see what sort of problems arise when the TZif format
is changed.

When new versions of the TZif format have been defined, a design goal has been that a
reader can successfully use a TZif file even if the file is of a later TZif version than what

Time Zone Database 3198

tzfile(5) File Formats Manual tzfile(5)

the reader was designed for. When complete compatibility was not achieved, an attempt
was made to limit glitches to rarely used timestamps and allow simple partial
workarounds in writers designed to generate newer-version data useful even for older-
version readers. This section attempts to document these compatibility issues and
workarounds as well as documenting other common bugs in readers.

Interoperability problems with TZif include the following:

• Some readers examine only version 1 data. As a partial workaround, a writer can
output as much version 1 data as possible. However, a reader should ignore version
1 data, and should use version 2+ data even if the reader’s native timestamps have
only 32 bits.

• Some readers designed for version 2 might mishandle timestamps after a version 3 or
higher file’s last transition, because they cannot parse the POSIX.1-2024 extensions
to POSIX.1-2017 in the proleptic TZ string. As a partial workaround, a writer can
output more transitions than necessary, so that only far-future timestamps are mis-
handled by version 2 readers.

• Some readers designed for version 2 do not support permanent daylight saving time
with transitions after 24:00 – e.g., a TZ string “EST5EDT,0/0,J365/25” denoting per-
manent Eastern Daylight Time (-04). As a workaround, a writer can substitute stan-
dard time for two time zones east, e.g., “XXX3EDT4,0/0,J365/23” for a time zone
with a never-used standard time (XXX, -03) and negative daylight saving time
(EDT, -04) all year. Alternatively, as a partial workaround, a writer can substitute
standard time for the next time zone east – e.g., “AST4” for permanent Atlantic Stan-
dard Time (-04).

• Some readers designed for version 2 or 3 and that require strict conformance to RFC
9636 reject version 4 files whose leap second tables are truncated at the start or end
in expiration times.

• Some readers ignore the footer, and instead predict future timestamps from the time
type of the last transition. As a partial workaround, a writer can output more transi-
tions than necessary.

• Some stripped-down readers ignore everything but the footer, and use its proleptic
TZ string to calculate all timestamps. Although this approach often works for cur-
rent and future timestamps, it obviously has problems with past timestamps, and
even for current timestamps it can fail for settings like TZ="Africa/Casablanca".
This corresponds to a TZif file containing explicit transitions through the year 2087,
followed by a footer containing the TZ string “<+01>-1”, which should be used only
for timestamps after the last explicit transition.

• Some readers do not use time type 0 for timestamps before the first transition, in that
they infer a time type using a heuristic that does not always select time type 0. As a
partial workaround, a writer can output a dummy (no-op) first transition at an early
time.

• Some readers mishandle timestamps before the first transition that has a timestamp
that is not less than -2**31. Readers that support only 32-bit timestamps are likely
to be more prone to this problem, for example, when they process 64-bit transitions

Time Zone Database 3199

tzfile(5) File Formats Manual tzfile(5)

only some of which are representable in 32 bits. As a partial workaround, a writer
can output a dummy transition at timestamp -2**31.

• Some readers mishandle a transition if its timestamp has the minimum possible
signed 64-bit value. Timestamps less than -2**59 are not recommended.

• Some readers mishandle proleptic TZ strings that contain “<” or “>”. As a partial
workaround, a writer can avoid using “<” or “>” for time zone abbreviations contain-
ing only alphabetic characters.

• Many readers mishandle time zone abbreviations that contain non-ASCII characters.
These characters are not recommended.

• Some readers may mishandle time zone abbreviations that contain fewer than 3 or
more than 6 characters or that contain ASCII characters other than alphanumerics,
“-”, and “+”. These abbreviations are not recommended.

• Some readers mishandle TZif files that specify daylight-saving time UT offsets that
are less than the UT offsets for the corresponding standard time. These readers do
not support locations like Ireland, which uses the equivalent of the TZ string
“IST-1GMT0,M10.5.0,M3.5.0/1”, observing standard time (IST, +01) in summer
and daylight saving time (GMT, +00) in winter. As a partial workaround, a writer
can output data for the equivalent of the TZ string “GMT0IST,M3.5.0/1,M10.5.0”,
thus swapping standard and daylight saving time. Although this workaround
misidentifies which part of the year uses daylight saving time, it records UT offsets
and time zone abbreviations correctly.

• Some readers generate ambiguous timestamps for positive leap seconds that occur
when the UTC offset is not a multiple of 60 seconds. For example, with UTC offset
+01:23:45 and a positive leap second 78796801 (1972-06-30 23:59:60 UTC), some
readers will map both 78796800 and 78796801 to 01:23:45 local time the next day
instead of mapping the latter to 01:23:46, and they will map 78796815 to 01:23:59
instead of to 01:23:60. This has not yet been a practical problem, since no civil au-
thority has observed such UTC offsets since leap seconds were introduced in 1972.

Some interoperability problems are reader bugs that are listed here mostly as warnings
to developers of readers.

• Some readers do not support negative timestamps. Developers of distributed applica-
tions should keep this in mind if they need to deal with pre-1970 data.

• Some readers mishandle timestamps before the first transition that has a non-negative
timestamp. Readers that do not support negative timestamps are likely to be more
prone to this problem.

• Some readers mishandle time zone abbreviations like “-08” that contain “+”, “-”, or
digits.

• Some readers mishandle UT offsets that are out of the traditional range of -12
through +12 hours, and so do not support locations like Kiritimati that are outside
this range.

Time Zone Database 3200

tzfile(5) File Formats Manual tzfile(5)

• Some readers mishandle UT offsets in the range [-3599, -1] seconds from UT be-
cause they integer-divide the offset by 3600 to get 0 and then display the hour part as
“+00”.

• Some readers mishandle UT offsets that are not a multiple of one hour, or of 15 min-
utes, or of 1 minute.

SEE ALSO
time(2), localtime(3), tzset(3), tzselect(8), zdump(8), zic(8).

Olson A, Eggert P, Murchison K. The Time Zone Information Format (TZif). October
2024. Internet RFC 9636 〈https://www.rfc-editor.org/rfc/rfc9636〉
doi:10.17487/RFC9636 〈https://doi.org/10.17487/RFC9636〉.

Time Zone Database 3201

utmp(5) File Formats Manual utmp(5)

NAME
utmp, wtmp - login records

SYNOPSIS
#include <utmp.h>

DESCRIPTION
The utmp file allows one to discover information about who is currently using the sys-
tem. There may be more users currently using the system, because not all programs use
utmp logging.

Warning: utmp must not be writable by the user class "other", because many system
programs (foolishly) depend on its integrity. You risk faked system logfiles and modifi-
cations of system files if you leave utmp writable to any user other than the owner and
group owner of the file.

The file is a sequence of utmp structures, declared as follows in <utmp.h> (note that this
is only one of several definitions around; details depend on the version of libc):

/* Values for ut_type field, below */

#define EMPTY 0 /* Record does not contain valid info
(formerly known as UT_UNKNOWN on Linux) */

#define RUN_LVL 1 /* Change in system run-level (see
init(1)) */

#define BOOT_TIME 2 /* Time of system boot (in ut_tv) */
#define NEW_TIME 3 /* Time after system clock change

(in ut_tv) */
#define OLD_TIME 4 /* Time before system clock change

(in ut_tv) */
#define INIT_PROCESS 5 /* Process spawned by init(1) */
#define LOGIN_PROCESS 6 /* Session leader process for user login */
#define USER_PROCESS 7 /* Normal process */
#define DEAD_PROCESS 8 /* Terminated process */
#define ACCOUNTING 9 /* Not implemented */

#define UT_LINESIZE 32
#define UT_NAMESIZE 32
#define UT_HOSTSIZE 256

struct exit_status { /* Type for ut_exit, below */
short e_termination; /* Process termination status */
short e_exit; /* Process exit status */

};

struct utmp {
short ut_type; /* Type of record */
pid_t ut_pid; /* PID of login process */
char ut_line[UT_LINESIZE]; /* Device name of tty - "/dev/" */
char ut_id[4]; /* Terminal name suffix,

Linux man-pages 6.16 2025-09-21 3202

utmp(5) File Formats Manual utmp(5)

or inittab(5) ID */
char ut_user[UT_NAMESIZE]; /* Username */
char ut_host[UT_HOSTSIZE]; /* Hostname for remote login, or

kernel version for run-level
messages */

struct exit_status ut_exit; /* Exit status of a process
marked as DEAD_PROCESS; not
used by Linux init(1) */

/* The ut_session and ut_tv fields must be the same size when
compiled 32- and 64-bit. This allows data files and shared
memory to be shared between 32- and 64-bit applications. */

#if __WORDSIZE == 64 && defined __WORDSIZE_COMPAT32
int32_t ut_session; /* Session ID (getsid(2)),

used for windowing */
struct {

int32_t tv_sec; /* Seconds */
int32_t tv_usec; /* Microseconds */

} ut_tv; /* Time entry was made */
#else

long ut_session; /* Session ID */
struct timeval ut_tv; /* Time entry was made */

#endif

int32_t ut_addr_v6[4]; /* Internet address of remote
host; IPv4 address uses
just ut_addr_v6[0] */

char __unused[20]; /* Reserved for future use */
};

/* Backward compatibility hacks */
#define ut_name ut_user
#ifndef _NO_UT_TIME
#define ut_time ut_tv.tv_sec
#endif
#define ut_xtime ut_tv.tv_sec
#define ut_addr ut_addr_v6[0]

This structure gives the name of the special file associated with the user’s terminal, the
user’s login name, and the time of login in the form of time(2). String fields are termi-
nated by a null byte ('\0') if they are shorter than the size of the field.

The first entries ever created result from init(1) processing inittab(5)Before an entry is
processed, though, init(1) cleans up utmp by setting ut_type to DEAD_PROCESS,
clearing ut_user, ut_host, and ut_time with null bytes for each record which ut_type is
not DEAD_PROCESS or RUN_LVL and where no process with PID ut_pid exists. If
no empty record with the needed ut_id can be found, init(1) creates a new one. It sets
ut_id from the inittab, ut_pid and ut_time to the current values, and ut_type to
INIT_PROCESS.

Linux man-pages 6.16 2025-09-21 3203

utmp(5) File Formats Manual utmp(5)

mingetty(8) (or agetty(8)) locates the entry by the PID, changes ut_type to LO-
GIN_PROCESS, changes ut_time, sets ut_line, and waits for connection to be estab-
lished. login(1), after a user has been authenticated, changes ut_type to
USER_PROCESS, changes ut_time, and sets ut_host and ut_addr. Depending on
mingetty(8) (or agetty(8)) and login(1), records may be located by ut_line instead of the
preferable ut_pid .

When init(1) finds that a process has exited, it locates its utmp entry by ut_pid , sets
ut_type to DEAD_PROCESS, and clears ut_user, ut_host, and ut_time with null bytes.

xterm(1) and other terminal emulators directly create a USER_PROCESS record and
generate the ut_id by using the string that suffix part of the terminal name (the charac-
ters following /dev/ [pt]ty). If they find a DEAD_PROCESS for this ID, they recycle it,
otherwise they create a new entry. If they can, they will mark it as DEAD_PROCESS
on exiting and it is advised that they null ut_line, ut_time, ut_user, and ut_host as well.

telnetd(8) sets up a LOGIN_PROCESS entry and leaves the rest to login(1) as usual.
After the telnet session ends, telnetd(8) cleans up utmp in the described way.

The wtmp file records all logins and logouts. Its format is exactly like utmp except that
a null username indicates a logout on the associated terminal. Furthermore, the terminal
name ~ with username shutdown or reboot indicates a system shutdown or reboot and
the pair of terminal names |/} logs the old/new system time when date(1) changes it.
wtmp is maintained by login(1), init(1), and some versions of getty(8) (e.g., mingetty(8)
or agetty(8)). None of these programs creates the file, so if it is removed, record-keep-
ing is turned off.

FILES
/var/run/utmp
/var/log/wtmp

VERSIONS
POSIX.1 does not specify a utmp structure, but rather one named utmpx (as part of the
XSI extension), with specifications for the fields ut_type, ut_pid , ut_line, ut_id , ut_user,
and ut_tv. POSIX.1 does not specify the lengths of the ut_line and ut_user fields.

Linux defines the utmpx structure to be the same as the utmp structure.

STANDARDS
Linux.

HISTORY
Linux utmp entries conform neither to v7/BSD nor to System V; they are a mix of the
two.

v7/BSD has fewer fields; most importantly it lacks ut_type, which causes native
v7/BSD-like programs to display (for example) dead or login entries. Further, there is
no configuration file which allocates slots to sessions. BSD does so because it lacks
ut_id fields.

In Linux (as in System V), the ut_id field of a record will never change once it has been
set, which reserves that slot without needing a configuration file. Clearing ut_id may re-
sult in race conditions leading to corrupted utmp entries and potential security holes.
Clearing the abovementioned fields by filling them with null bytes is not required by

Linux man-pages 6.16 2025-09-21 3204

utmp(5) File Formats Manual utmp(5)

System V semantics, but makes it possible to run many programs which assume BSD
semantics and which do not modify utmp. Linux uses the BSD conventions for line
contents, as documented above.

System V has no ut_host or ut_addr_v6 fields.

NOTES
Unlike various other systems, where utmp logging can be disabled by removing the file,
utmp must always exist on Linux. If you want to disable who(1), then do not make
utmp world readable.

The file format is machine-dependent, so it is recommended that it be processed only on
the machine architecture where it was created.

Note that on biarch platforms, that is, systems which can run both 32-bit and 64-bit ap-
plications (x86-64, ppc64, s390x, etc.), ut_tv is the same size in 32-bit mode as in 64-bit
mode. The same goes for ut_session and ut_time if they are present. This allows data
files and shared memory to be shared between 32-bit and 64-bit applications. This is
achieved by changing the type of ut_session to int32_t, and that of ut_tv to a struct with
two int32_t fields tv_sec and tv_usec. Since ut_tv may not be the same as
struct timeval, then instead of the call:

gettimeofday((struct timeval *) &ut.ut_tv, NULL);

the following method of setting this field is recommended:

struct utmp ut;
struct timeval tv;

gettimeofday(&tv, NULL);
ut.ut_tv.tv_sec = tv.tv_sec;
ut.ut_tv.tv_usec = tv.tv_usec;

SEE ALSO
ac(1), date(1), init(1), last(1), login(1), logname(1), lslogins(1), users(1), utmpdump(1),
who(1), getutent(3), getutmp(3), login(3), logout(3), logwtmp(3), updwtmp(3)

Linux man-pages 6.16 2025-09-21 3205

intro(6) Games Manual intro(6)

NAME
intro - introduction to games

DESCRIPTION
Section 6 of the manual describes the games and funny little programs available on the
system.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

Linux man-pages 6.16 2025-05-17 3206

intro(7) Miscellaneous Information Manual intro(7)

NAME
intro - introduction to overview and miscellany section

DESCRIPTION
Section 7 of the manual provides overviews on various topics, and describes conventions
and protocols, character set standards, the standard filesystem layout, and miscellaneous
other things.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

SEE ALSO
standards(7)

Linux man-pages 6.16 2025-05-17 3207

address_families(7) Miscellaneous Information Manual address_families(7)

NAME
address_families - socket address families (domains)

SYNOPSIS
#include <sys/types.h> /* See NOTES */
#include <sys/socket.h>

int socket(int domain, int type, int protocol);

DESCRIPTION
The domain argument of the socket(2) specifies a communication domain; this selects
the protocol family which will be used for communication. These families are defined
in <sys/socket.h>. The formats currently understood by the Linux kernel include:

AF_UNIX
AF_LOCAL

Local communication. For further information, see unix(7).

AF_INET
IPv4 Internet protocols. For further information, see ip(7).

AF_AX25
Amateur radio AX.25 protocol. For further information, see ax25(4)

AF_IPX
IPX - Novell protocols.

AF_APPLETALK
AppleTalk For further information, see ddp(7).

AF_NETROM
AX.25 packet layer protocol. For further information, see netrom(4), The Packet
Radio Protocols and Linux
〈https://www.tldp.org/HOWTO/AX25-HOWTO/x61.html〉 and the AX.25,
NET/ROM , and ROSE network programming chapters of the Linux Amateur Ra-
dio AX.25 HOWTO
〈https://www.tldp.org/HOWTO/AX25-HOWTO/x2107.html〉.

AF_BRIDGE
Can’t be used for creating sockets; mostly used for bridge links in rtnetlink(7)
protocol commands.

AF_ATMPVC
Access to raw ATM Permanent Virtual Circuits (PVCs). For further information,
see the ATM on Linux HOWTO 〈https://www.tldp.org/HOWTO/text/ATM-Linux-
HOWTO〉.

AF_X25
ITU-T X.25 / ISO/IEC 8208 protocol. For further information, see x25(7).

AF_INET6
IPv6 Internet protocols. For further information, see ipv6(7).

Linux man-pages 6.16 2025-09-21 3208

address_families(7) Miscellaneous Information Manual address_families(7)

AF_ROSE
RATS (Radio Amateur Telecommunications Society). Open Systems environ-
ment (ROSE) AX.25 packet layer protocol. For further information, see the re-
sources listed for AF_NETROM.

AF_DECnet
DECet protocol sockets. See Documentation/networking/decnet.txt in the Linux
kernel source tree for details.

AF_NETBEUI
Reserved for "802.2LLC project"; never used.

AF_SECURITY
This was a short-lived (between Linux 2.1.30 and 2.1.99pre2) protocol family for
firewall upcalls.

AF_KEY
Key management protocol, originally developed for usage with IPsec (since
Linux 2.1.38). This has no relation to keyctl(2) and the in-kernel key storage fa-
cility. See RFC 2367 PF_KEY Key Management API, Version 2
〈https://tools.ietf.org/html/rfc2367〉 for details.

AF_NETLINK
Kernel user interface device. For further information, see netlink(7).

AF_PACKET
Low-level packet interface. For further information, see packet(7).

AF_ECONET
Acorn Econet protocol (removed in Linux 3.5). See the Econet documentation
〈http://www.8bs.com/othrdnld/manuals/econet.shtml〉 for details.

AF_ATMSVC
Access to ATM Switched Virtual Circuits (SVCs) See the ATM on Linux
HOWTO 〈https://www.tldp.org/HOWTO/text/ATM-Linux-HOWTO〉 for details.

AF_RDS
Reliable Datagram Sockets (RDS) protocol (since Linux 2.6.30). RDS over
RDMA has no relation to AF_SMC or AF_XDP. For further information, see
rds(7), rds-rdma(7), and Documentation/networking/rds.txt in the Linux kernel
source tree.

AF_IRDA
Socket interface over IrDA (moved to staging in Linux 4.14, removed in Linux
4.17). For further information, see irda(7)

AF_PPPOX
Generic PPP transport layer, for setting up L2 tunnels (L2TP and PPPoE). See
Documentation/networking/l2tp.txt in the Linux kernel source tree for details.

AF_WANPIPE
Legacy protocol for wide area network (WAN) connectivity that was used by
Sangoma WAN cards (called "WANPIPE"); removed in Linux 2.6.21.

Linux man-pages 6.16 2025-09-21 3209

address_families(7) Miscellaneous Information Manual address_families(7)

AF_LLC
Logical link control (IEEE 802.2 LLC) protocol, upper part of data link layer of
ISO/OSI networking protocol stack (since Linux 2.4); has no relation to
AF_PACKET. See chapter 13.5.3. Logical Link Control in Understanding
Linux Kernel Internals (O’Reilly Media, 2006) and IEEE Standards for Local
Area Networks: Logical Link Control (The Institute of Electronics and Electron-
ics Engineers, Inc., New York, New York, 1985) for details. See also some his-
torical notes 〈https://wiki.linuxfoundation.org/networking/llc〉 regarding its de-
velopment.

AF_IB
InfiniBand native addressing (since Linux 3.11).

AF_MPLS
Multiprotocol Label Switching (since Linux 4.1); mostly used for configuring
MPLS routing via netlink(7), as it doesn’t expose ability to create sockets to user
space.

AF_CAN
Controller Area Network automotive bus protocol (since Linux 2.6.25). See
Documentation/networking/can.rst in the Linux kernel source tree for details.

AF_TIPC
TIPC, "cluster domain sockets" protocol (since Linux 2.6.16). See TIPC Pro-
grammer’s Guide 〈http://tipc.io/programming.html〉 and the protocol description
〈http://tipc.io/protocol.html〉 for details.

AF_BLUETOOTH
Bluetooth low-level socket protocol (since Linux 3.11). See Bluetooth Manage-
ment API overview 〈https://git.kernel.org/pub/scm/bluetooth/bluez.git
/tree/doc/mgmt-api.txt〉 and An Introduction to Bluetooth Programming by Al-
bert Huang 〈https://people.csail.mit.edu/albert/bluez-intro/〉 for details.

AF_IUCV
IUCV (inter-user communication vehicle) z/VM protocol for hypervisor-guest
interaction (since Linux 2.6.21); has no relation to AF_VSOCK and/or
AF_SMC See IUCV protocol overview 〈https://www.ibm.com/support
/knowledgecenter/en/SSB27U_6.4.0/com.ibm.zvm.v640.hcpb4/iucv.htm〉 for de-
tails.

AF_RXRPC
Rx, Andrew File System remote procedure call protocol (since Linux 2.6.22).
See Documentation/networking/rxrpc.txt in the Linux kernel source tree for de-
tails.

AF_ISDN
New "modular ISDN" driver interface protocol (since Linux 2.6.27). See the
mISDN wiki 〈http://www.misdn.eu/wiki/Main_Page/〉 for details.

AF_PHONET
Nokia cellular modem IPC/RPC interface (since Linux 2.6.31). See Documenta-
tion/networking/phonet.txt in the Linux kernel source tree for details.

Linux man-pages 6.16 2025-09-21 3210

address_families(7) Miscellaneous Information Manual address_families(7)

AF_IEEE802154
IEEE 802.15.4 WPAN (wireless personal area network) raw packet protocol
(since Linux 2.6.31). See Documentation/networking/ieee802154.txt in the
Linux kernel source tree for details.

AF_CAIF
Ericsson’s Communication CPU to Application CPU interface (CAIF) protocol
(since Linux 2.6.36). See Documentation/networking/caif/Linux-CAIF.txt in the
Linux kernel source tree for details.

AF_ALG
Interface to kernel crypto API (since Linux 2.6.38). See Documenta-
tion/crypto/userspace-if.rst in the Linux kernel source tree for details.

AF_VSOCK
VMWare VSockets protocol for hypervisor-guest interaction (since Linux 3.9);
has no relation to AF_IUCV and AF_SMC. For further information, see
vsock(7).

AF_KCM
KCM (kernel connection multiplexer) interface (since Linux 4.6). See Docu-
mentation/networking/kcm.txt in the Linux kernel source tree for details.

AF_QIPCRTR
Qualcomm IPC router interface protocol (since Linux 4.7).

AF_SMC
SMC-R (shared memory communications over RDMA) protocol (since Linux
4.11), and SMC-D (shared memory communications, direct memory access) pro-
tocol for intra-node z/VM quest interaction (since Linux 4.19); has no relation to
AF_RDS, AF_IUCV or AF_VSOCK. See RFC 7609 IBM’s Shared Memory
Communications over RDMA (SMC-R) Protocol
〈https://tools.ietf.org/html/rfc7609〉 for details regarding SMC-R. See SMC-D
Reference Information 〈https://www-01.ibm.com/software/network/commserver
/SMC-D/index.html〉 for details regarding SMC-D.

AF_XDP
XDP (express data path) interface (since Linux 4.18). See Documentation/net-
working/af_xdp.rst in the Linux kernel source tree for details.

AF_MCTP
MCTP (Management Component Transport Protocol) interface (since Linux
5.15), as defined by the DMTF specification DSP0236. For further information,
see mctp(7).

SEE ALSO
socket(2), socket(7)

Linux man-pages 6.16 2025-09-21 3211

AIO(7) Miscellaneous Information Manual AIO(7)

NAME
aio - POSIX asynchronous I/O overview

DESCRIPTION
The POSIX asynchronous I/O (AIO) interface allows applications to initiate one or more
I/O operations that are performed asynchronously (i.e., in the background). The appli-
cation can elect to be notified of completion of the I/O operation in a variety of ways: by
delivery of a signal, by instantiation of a thread, or no notification at all.

The POSIX AIO interface consists of the following functions:

aio_read(3)
Enqueue a read request. This is the asynchronous analog of read(2).

aio_write(3)
Enqueue a write request. This is the asynchronous analog of write(2).

aio_fsync(3)
Enqueue a sync request for the I/O operations on a file descriptor. This is the
asynchronous analog of fsync(2) and fdatasync(2).

aio_error(3)
Obtain the error status of an enqueued I/O request.

aio_return(3)
Obtain the return status of a completed I/O request.

aio_suspend(3)
Suspend the caller until one or more of a specified set of I/O requests completes.

aio_cancel(3)
Attempt to cancel outstanding I/O requests on a specified file descriptor.

lio_listio(3)
Enqueue multiple I/O requests using a single function call.

The aiocb ("asynchronous I/O control block") structure defines parameters that control
an I/O operation. An argument of this type is employed with all of the functions listed
above. This structure has the following form:

#include <aiocb.h>

struct aiocb {
/* The order of these fields is implementation-dependent */

int aio_fildes; /* File descriptor */
off_t aio_offset; /* File offset */
volatile void *aio_buf; /* Location of buffer */
size_t aio_nbytes; /* Length of transfer */
int aio_reqprio; /* Request priority */
struct sigevent aio_sigevent; /* Notification method */
int aio_lio_opcode; /* Operation to be performed;

lio_listio() only */

Linux man-pages 6.16 2025-09-21 3212

AIO(7) Miscellaneous Information Manual AIO(7)

/* Various implementation-internal fields not shown */
};

/* Operation codes for 'aio_lio_opcode': */

enum { LIO_READ, LIO_WRITE, LIO_NOP };

The fields of this structure are as follows:

aio_fildes
The file descriptor on which the I/O operation is to be performed.

aio_offset
This is the file offset at which the I/O operation is to be performed.

aio_buf
This is the buffer used to transfer data for a read or write operation.

aio_nbytes
This is the size of the buffer pointed to by aio_buf .

aio_reqprio
This field specifies a value that is subtracted from the calling thread’s real-time
priority in order to determine the priority for execution of this I/O request (see
pthread_setschedparam(3)). The specified value must be between 0 and the
value returned by sysconf(_SC_AIO_PRIO_DELTA_MAX). This field is ignored
for file synchronization operations.

aio_sigevent
This field is a structure that specifies how the caller is to be notified when the
asynchronous I/O operation completes. Possible values for
aio_sigevent.sigev_notify are SIGEV_NONE, SIGEV_SIGNAL, and
SIGEV_THREAD. See sigevent(3type) for further details.

aio_lio_opcode
The type of operation to be performed; used only for lio_listio(3).

In addition to the standard functions listed above, the GNU C library provides the fol-
lowing extension to the POSIX AIO API:

aio_init(3)
Set parameters for tuning the behavior of the glibc POSIX AIO implementation.

ERRORS
EINVAL

The aio_reqprio field of the aiocb structure was less than 0, or was greater than
the limit returned by the call sysconf(_SC_AIO_PRIO_DELTA_MAX).

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001. glibc 2.1.

Linux man-pages 6.16 2025-09-21 3213

AIO(7) Miscellaneous Information Manual AIO(7)

NOTES
It is a good idea to zero out the control block buffer before use (see memset(3)). The
control block buffer and the buffer pointed to by aio_buf must not be changed while the
I/O operation is in progress. These buffers must remain valid until the I/O operation
completes.

Simultaneous asynchronous read or write operations using the same aiocb structure
yield undefined results.

The current Linux POSIX AIO implementation is provided in user space by glibc. This
has a number of limitations, most notably that maintaining multiple threads to perform
I/O operations is expensive and scales poorly. Work has been in progress for some time
on a kernel state-machine-based implementation of asynchronous I/O (see io_submit(2),
io_setup(2), io_cancel(2), io_destroy(2), io_getevents(2)), but this implementation
hasn’t yet matured to the point where the POSIX AIO implementation can be com-
pletely reimplemented using the kernel system calls.

EXAMPLES
The program below opens each of the files named in its command-line arguments and
queues a request on the resulting file descriptor using aio_read(3). The program then
loops, periodically monitoring each of the I/O operations that is still in progress using
aio_error(3). Each of the I/O requests is set up to provide notification by delivery of a
signal. After all I/O requests have completed, the program retrieves their status using
aio_return(3).

The SIGQUIT signal (generated by typing control-\) causes the program to request can-
celation of each of the outstanding requests using aio_cancel(3).

Here is an example of what we might see when running this program. In this example,
the program queues two requests to standard input, and these are satisfied by two lines
of input containing "abc" and "x".

$./a.out /dev/stdin /dev/stdin;
opened /dev/stdin on descriptor 3
opened /dev/stdin on descriptor 4
aio_error():

for request 0 (descriptor 3): In progress
for request 1 (descriptor 4): In progress

abc
I/O completion signal received
aio_error():

for request 0 (descriptor 3): I/O succeeded
for request 1 (descriptor 4): In progress

aio_error():
for request 1 (descriptor 4): In progress

x
I/O completion signal received
aio_error():

for request 1 (descriptor 4): I/O succeeded
All I/O requests completed
aio_return():

Linux man-pages 6.16 2025-09-21 3214

AIO(7) Miscellaneous Information Manual AIO(7)

for request 0 (descriptor 3): 4
for request 1 (descriptor 4): 2

Program source

#include <err.h>
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h>
#include <aio.h>
#include <signal.h>

#define BUF_SIZE 20 /* Size of buffers for read operations */

struct ioRequest { /* Application-defined structure for tracking
I/O requests */

int reqNum;
int status;
struct aiocb *aiocbp;

};

static volatile sig_atomic_t gotSIGQUIT = 0;
/* On delivery of SIGQUIT, we attempt to

cancel all outstanding I/O requests */

static void /* Handler for SIGQUIT */
quitHandler(int sig)
{

gotSIGQUIT = 1;
}

#define IO_SIGNAL SIGUSR1 /* Signal used to notify I/O completion */

static void /* Handler for I/O completion signal */
aioSigHandler(int sig, siginfo_t *si, void *ucontext)
{

if (si->si_code == SI_ASYNCIO) {
write(STDOUT_FILENO, "I/O completion signal received\n", 31);

/* The corresponding ioRequest structure would be available as
struct ioRequest *ioReq = si->si_value.sival_ptr;

and the file descriptor would then be available via
ioReq->aiocbp->aio_fildes */

}
}

Linux man-pages 6.16 2025-09-21 3215

AIO(7) Miscellaneous Information Manual AIO(7)

int
main(int argc, char *argv[])
{

struct sigaction sa;
int s;
int numReqs; /* Total number of queued I/O requests */
int openReqs; /* Number of I/O requests still in progress */

if (argc < 2) {
fprintf(stderr, "Usage: %s <pathname> <pathname>...\n",

argv[0]);
exit(EXIT_FAILURE);

}

numReqs = argc - 1;

/* Allocate our arrays. */

struct ioRequest *ioList = calloc(numReqs, sizeof(*ioList));
if (ioList == NULL)

err(EXIT_FAILURE, "calloc");

struct aiocb *aiocbList = calloc(numReqs, sizeof(*aiocbList));
if (aiocbList == NULL)

err(EXIT_FAILURE, "calloc");

/* Establish handlers for SIGQUIT and the I/O completion signal. */

sa.sa_flags = SA_RESTART;
sigemptyset(&sa.sa_mask);

sa.sa_handler = quitHandler;
if (sigaction(SIGQUIT, &sa, NULL) == -1)

err(EXIT_FAILURE, "sigaction");

sa.sa_flags = SA_RESTART | SA_SIGINFO;
sa.sa_sigaction = aioSigHandler;
if (sigaction(IO_SIGNAL, &sa, NULL) == -1)

err(EXIT_FAILURE, "sigaction");

/* Open each file specified on the command line, and queue
a read request on the resulting file descriptor. */

for (size_t j = 0; j < numReqs; j++) {
ioList[j].reqNum = j;
ioList[j].status = EINPROGRESS;
ioList[j].aiocbp = &aiocbList[j];

Linux man-pages 6.16 2025-09-21 3216

AIO(7) Miscellaneous Information Manual AIO(7)

ioList[j].aiocbp->aio_fildes = open(argv[j + 1], O_RDONLY);
if (ioList[j].aiocbp->aio_fildes == -1)

err(EXIT_FAILURE, "open");
printf("opened %s on descriptor %d\n", argv[j + 1],

ioList[j].aiocbp->aio_fildes);

ioList[j].aiocbp->aio_buf = malloc(BUF_SIZE);
if (ioList[j].aiocbp->aio_buf == NULL)

err(EXIT_FAILURE, "malloc");

ioList[j].aiocbp->aio_nbytes = BUF_SIZE;
ioList[j].aiocbp->aio_reqprio = 0;
ioList[j].aiocbp->aio_offset = 0;
ioList[j].aiocbp->aio_sigevent.sigev_notify = SIGEV_SIGNAL;
ioList[j].aiocbp->aio_sigevent.sigev_signo = IO_SIGNAL;
ioList[j].aiocbp->aio_sigevent.sigev_value.sival_ptr =

&ioList[j];

s = aio_read(ioList[j].aiocbp);
if (s == -1)

err(EXIT_FAILURE, "aio_read");
}

openReqs = numReqs;

/* Loop, monitoring status of I/O requests. */

while (openReqs > 0) {
sleep(3); /* Delay between each monitoring step */

if (gotSIGQUIT) {

/* On receipt of SIGQUIT, attempt to cancel each of the
outstanding I/O requests, and display status returned
from the cancelation requests. */

printf("got SIGQUIT; canceling I/O requests: \n");

for (size_t j = 0; j < numReqs; j++) {
if (ioList[j].status == EINPROGRESS) {

printf(" Request %zu on descriptor %d:", j,
ioList[j].aiocbp->aio_fildes);

s = aio_cancel(ioList[j].aiocbp->aio_fildes,
ioList[j].aiocbp);

if (s == AIO_CANCELED)
printf("I/O canceled\n");

Linux man-pages 6.16 2025-09-21 3217

AIO(7) Miscellaneous Information Manual AIO(7)

else if (s == AIO_NOTCANCELED)
printf("I/O not canceled\n");

else if (s == AIO_ALLDONE)
printf("I/O all done\n");

else
perror("aio_cancel");

}
}

gotSIGQUIT = 0;
}

/* Check the status of each I/O request that is still
in progress. */

printf("aio_error():\n");
for (size_t j = 0; j < numReqs; j++) {

if (ioList[j].status == EINPROGRESS) {
printf(" for request %zu (descriptor %d): ",

j, ioList[j].aiocbp->aio_fildes);
ioList[j].status = aio_error(ioList[j].aiocbp);

switch (ioList[j].status) {
case 0:

printf("I/O succeeded\n");
break;

case EINPROGRESS:
printf("In progress\n");
break;

case ECANCELED:
printf("Canceled\n");
break;

default:
perror("aio_error");
break;

}

if (ioList[j].status != EINPROGRESS)
openReqs--;

}
}

}

printf("All I/O requests completed\n");

/* Check status return of all I/O requests. */

Linux man-pages 6.16 2025-09-21 3218

AIO(7) Miscellaneous Information Manual AIO(7)

printf("aio_return():\n");
for (size_t j = 0; j < numReqs; j++) {

ssize_t s;

s = aio_return(ioList[j].aiocbp);
printf(" for request %zu (descriptor %d): %zd\n",

j, ioList[j].aiocbp->aio_fildes, s);
}

exit(EXIT_SUCCESS);
}

SEE ALSO
io_cancel(2), io_destroy(2), io_getevents(2), io_setup(2), io_submit(2), aio_cancel(3),
aio_error(3), aio_init(3), aio_read(3), aio_return(3), aio_write(3), lio_listio(3)

"Asynchronous I/O Support in Linux 2.5", Bhattacharya, Pratt, Pulavarty, and Morgan,
Proceedings of the Linux Symposium, 2003,
〈https://www.kernel.org/doc/ols/2003/ols2003-pages-351-366.pdf〉

Linux man-pages 6.16 2025-09-21 3219

ARMSCII-8(7) Miscellaneous Information Manual ARMSCII-8(7)

NAME
armscii-8 - Armenian character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The Armenian Standard Code for Information Interchange, 8-bit coded character set.

ArmSCII-8 characters
The following table displays the characters in ArmSCII-8 that are printable and unlisted
in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
242 162 A2 ARMENIAN SMALL LIGATURE ECH YIWN
243 163 A3 ARMENIAN FULL STOP
244 164 A4) RIGHT PARENTHESIS
245 165 A5 (LEFT PARENTHESIS
246 166 A6 » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
247 167 A7 « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
250 168 A8 — EM DASH
251 169 A9 . FULL STOP
252 170 AA ARMENIAN COMMA
253 171 AB , COMMA
254 172 AC - HYPHEN-MINUS
255 173 AD ARMENIAN HYPHEN
256 174 AE … HORIZONTAL ELLIPSIS
257 175 AF ARMENIAN EXCLAMATION MARK
260 176 B0 ARMENIAN EMPHASIS MARK
261 177 B1 ARMENIAN QUESTION MARK
262 178 B2 ARMENIAN CAPITAL LETTER AYB
263 179 B3 ARMENIAN SMALL LETTER AYB
264 180 B4 ARMENIAN CAPITAL LETTER BEN
265 181 B5 ARMENIAN SMALL LETTER BEN
266 182 B6 ARMENIAN CAPITAL LETTER GIM
267 183 B7 ARMENIAN SMALL LETTER GIM
270 184 B8 ARMENIAN CAPITAL LETTER DA
271 185 B9 ARMENIAN SMALL LETTER DA
272 186 BA ARMENIAN CAPITAL LETTER ECH
273 187 BB ARMENIAN SMALL LETTER ECH
274 188 BC ARMENIAN CAPITAL LETTER ZA
275 189 BD ARMENIAN SMALL LETTER ZA
276 190 BE ARMENIAN CAPITAL LETTER EH
277 191 BF ARMENIAN SMALL LETTER EH
300 192 C0 ARMENIAN CAPITAL LETTER ET
301 193 C1 ARMENIAN SMALL LETTER ET
302 194 C2 ARMENIAN CAPITAL LETTER TO
303 195 C3 ARMENIAN SMALL LETTER TO
304 196 C4 ARMENIAN CAPITAL LETTER ZHE
305 197 C5 ARMENIAN SMALL LETTER ZHE

Linux man-pages 6.16 2025-05-17 3220

ARMSCII-8(7) Miscellaneous Information Manual ARMSCII-8(7)

306 198 C6 ARMENIAN CAPITAL LETTER INI
307 199 C7 ARMENIAN SMALL LETTER INI
310 200 C8 ARMENIAN CAPITAL LETTER LIWN
311 201 C9 ARMENIAN SMALL LETTER LIWN
312 202 CA ARMENIAN CAPITAL LETTER XEH
313 203 CB ARMENIAN SMALL LETTER XEH
314 204 CC ARMENIAN CAPITAL LETTER CA
315 205 CD ARMENIAN SMALL LETTER CA
316 206 CE ARMENIAN CAPITAL LETTER KEN
317 207 CF ARMENIAN SMALL LETTER KEN
320 208 D0 ARMENIAN CAPITAL LETTER HO
321 209 D1 ARMENIAN SMALL LETTER HO
322 210 D2 ARMENIAN CAPITAL LETTER JA
323 211 D3 ARMENIAN SMALL LETTER JA
324 212 D4 ARMENIAN CAPITAL LETTER GHAD
325 213 D5 ARMENIAN SMALL LETTER GHAD
326 214 D6 ARMENIAN CAPITAL LETTER CHEH
327 215 D7 ARMENIAN SMALL LETTER CHEH
330 216 D8 ARMENIAN CAPITAL LETTER MEN
331 217 D9 ARMENIAN SMALL LETTER MEN
332 218 DA ARMENIAN CAPITAL LETTER YI
333 219 DB ARMENIAN SMALL LETTER YI
334 220 DC ARMENIAN CAPITAL LETTER NOW
335 221 DD ARMENIAN SMALL LETTER NOW
336 222 DE ARMENIAN CAPITAL LETTER SHA
337 223 DF ARMENIAN SMALL LETTER SHA
340 224 E0 ARMENIAN CAPITAL LETTER VO
341 225 E1 ARMENIAN SMALL LETTER VO
342 226 E2 ARMENIAN CAPITAL LETTER CHA
343 227 E3 ARMENIAN SMALL LETTER CHA
344 228 E4 ARMENIAN CAPITAL LETTER PEH
345 229 E5 ARMENIAN SMALL LETTER PEH
346 230 E6 ARMENIAN CAPITAL LETTER JHEH
347 231 E7 ARMENIAN SMALL LETTER JHEH
350 232 E8 ARMENIAN CAPITAL LETTER RA
351 233 E9 ARMENIAN SMALL LETTER RA
352 234 EA ARMENIAN CAPITAL LETTER SEH
353 235 EB ARMENIAN SMALL LETTER SEH
354 236 EC ARMENIAN CAPITAL LETTER VEW
355 237 ED ARMENIAN SMALL LETTER VEW
356 238 EE ARMENIAN CAPITAL LETTER TIWN
357 239 EF ARMENIAN SMALL LETTER TIWN
360 240 F0 ARMENIAN CAPITAL LETTER REH
361 241 F1 ARMENIAN SMALL LETTER REH
362 242 F2 ARMENIAN CAPITAL LETTER CO
363 243 F3 ARMENIAN SMALL LETTER CO

Linux man-pages 6.16 2025-05-17 3221

ARMSCII-8(7) Miscellaneous Information Manual ARMSCII-8(7)

364 244 F4 ARMENIAN CAPITAL LETTER YIWN
365 245 F5 ARMENIAN SMALL LETTER YIWN
366 246 F6 ARMENIAN CAPITAL LETTER PIWR
367 247 F7 ARMENIAN SMALL LETTER PIWR
370 248 F8 ARMENIAN CAPITAL LETTER KEH
371 249 F9 ARMENIAN SMALL LETTER KEH
372 250 FA ARMENIAN CAPITAL LETTER OH
373 251 FB ARMENIAN SMALL LETTER OH
374 252 FC ARMENIAN CAPITAL LETTER FEH
375 253 FD ARMENIAN SMALL LETTER FEH
376 254 FE ARMENIAN APOSTROPHE

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3222

arp(7) Miscellaneous Information Manual arp(7)

NAME
arp - Linux ARP kernel module.

DESCRIPTION
This kernel protocol module implements the Address Resolution Protocol defined in
RFC 826. It is used to convert between Layer2 hardware addresses and IPv4 protocol
addresses on directly connected networks. The user normally doesn’t interact directly
with this module except to configure it; instead it provides a service for other protocols
in the kernel.

A user process can receive ARP packets by using packet(7) sockets. There is also a
mechanism for managing the ARP cache in user-space by using netlink(7) sockets. The
ARP table can also be controlled via ioctl(2) on any AF_INET socket.

The ARP module maintains a cache of mappings between hardware addresses and pro-
tocol addresses. The cache has a limited size so old and less frequently used entries are
garbage-collected. Entries which are marked as permanent are never deleted by the
garbage-collector. The cache can be directly manipulated by the use of ioctls and its be-
havior can be tuned by the /proc interfaces described below.

When there is no positive feedback for an existing mapping after some time (see the
/proc interfaces below), a neighbor cache entry is considered stale. Positive feedback
can be gotten from a higher layer; for example, from a successful TCP ACK. Other pro-
tocols can signal forward progress using the MSG_CONFIRM flag to sendmsg(2).
When there is no forward progress, ARP tries to reprobe. It first tries to ask a local arp
daemon app_solicit times for an updated MAC address. If that fails and an old MAC
address is known, a unicast probe is sent ucast_solicit times. If that fails too, it will
broadcast a new ARP request to the network. Requests are sent only when there is data
queued for sending.

Linux will automatically add a nonpermanent proxy arp entry when it receives a request
for an address it forwards to and proxy arp is enabled on the receiving interface. When
there is a reject route for the target, no proxy arp entry is added.

Ioctls
Three ioctls are available on all AF_INET sockets. They take a pointer to a struct
arpreq as their argument.

struct arpreq {
struct sockaddr arp_pa; /* protocol address */
struct sockaddr arp_ha; /* hardware address */
int arp_flags; /* flags */
struct sockaddr arp_netmask; /* netmask of protocol address */
char arp_dev[16];

};

SIOCSARP, SIOCDARP and SIOCGARP respectively set, delete, and get an ARP
mapping. Setting and deleting ARP maps are privileged operations and may be per-
formed only by a process with the CAP_NET_ADMIN capability or an effective UID
of 0.

arp_pa must be an AF_INET address and arp_ha must have the same type as the

Linux man-pages 6.16 2025-09-21 3223

arp(7) Miscellaneous Information Manual arp(7)

device which is specified in arp_dev. arp_dev is a zero-terminated string which names
a device.

arp_flags
flag meaning
ATF_COM Lookup complete
ATF_PERM Permanent entry
ATF_PUBL Publish entry
ATF_USETRAILERS Trailers requested
ATF_NETMASK Use a netmask
ATF_DONTPUB Don’t answer

If the ATF_NETMASK flag is set, then arp_netmask should be valid. Linux 2.2 does
not support proxy network ARP entries, so this should be set to 0xffffffff, or 0 to remove
an existing proxy arp entry. ATF_USETRAILERS is obsolete and should not be used.

/proc interfaces
ARP supports a range of /proc interfaces to configure parameters on a global or per-in-
terface basis. The interfaces can be accessed by reading or writing the
/proc/sys/net/ipv4/neigh/*/* files. Each interface in the system has its own directory in
/proc/sys/net/ipv4/neigh/ . The setting in the "default" directory is used for all newly
created devices. Unless otherwise specified, time-related interfaces are specified in sec-
onds.

anycast_delay (since Linux 2.2)
The maximum number of jiffies to delay before replying to a IPv6 neighbor so-
licitation message. Anycast support is not yet implemented. Defaults to 1 sec-
ond.

app_solicit (since Linux 2.2)
The maximum number of probes to send to the user space ARP daemon via
netlink before dropping back to multicast probes (see mcast_solicit). Defaults to
0.

base_reachable_time (since Linux 2.2)
Once a neighbor has been found, the entry is considered to be valid for at least a
random value between base_reachable_time/2 and 3*base_reachable_time/2.
An entry’s validity will be extended if it receives positive feedback from higher
level protocols. Defaults to 30 seconds. This file is now obsolete in favor of
base_reachable_time_ms.

base_reachable_time_ms (since Linux 2.6.12)
As for base_reachable_time, but measures time in milliseconds. Defaults to
30000 milliseconds.

delay_first_probe_time (since Linux 2.2)
Delay before first probe after it has been decided that a neighbor is stale. De-
faults to 5 seconds.

gc_interval (since Linux 2.2)
How frequently the garbage collector for neighbor entries should attempt to run.
Defaults to 30 seconds.

Linux man-pages 6.16 2025-09-21 3224

arp(7) Miscellaneous Information Manual arp(7)

gc_stale_time (since Linux 2.2)
Determines how often to check for stale neighbor entries. When a neighbor en-
try is considered stale, it is resolved again before sending data to it. Defaults to
60 seconds.

gc_thresh1 (since Linux 2.2)
The minimum number of entries to keep in the ARP cache. The garbage collec-
tor will not run if there are fewer than this number of entries in the cache. De-
faults to 128.

gc_thresh2 (since Linux 2.2)
The soft maximum number of entries to keep in the ARP cache. The garbage
collector will allow the number of entries to exceed this for 5 seconds before col-
lection will be performed. Defaults to 512.

gc_thresh3 (since Linux 2.2)
The hard maximum number of entries to keep in the ARP cache. The garbage
collector will always run if there are more than this number of entries in the
cache. Defaults to 1024.

locktime (since Linux 2.2)
The minimum number of jiffies to keep an ARP entry in the cache. This pre-
vents ARP cache thrashing if there is more than one potential mapping (gener-
ally due to network misconfiguration). Defaults to 1 second.

mcast_solicit (since Linux 2.2)
The maximum number of attempts to resolve an address by multicast/broadcast
before marking the entry as unreachable. Defaults to 3.

proxy_delay (since Linux 2.2)
When an ARP request for a known proxy-ARP address is received, delay up to
proxy_delay jiffies before replying. This is used to prevent network flooding in
some cases. Defaults to 0.8 seconds.

proxy_qlen (since Linux 2.2)
The maximum number of packets which may be queued to proxy-ARP ad-
dresses. Defaults to 64.

retrans_time (since Linux 2.2)
The number of jiffies to delay before retransmitting a request. Defaults to 1 sec-
ond. This file is now obsolete in favor of retrans_time_ms.

retrans_time_ms (since Linux 2.6.12)
The number of milliseconds to delay before retransmitting a request. Defaults to
1000 milliseconds.

ucast_solicit (since Linux 2.2)
The maximum number of attempts to send unicast probes before asking the ARP
daemon (see app_solicit). Defaults to 3.

unres_qlen (since Linux 2.2)
The maximum number of packets which may be queued for each unresolved ad-
dress by other network layers. Defaults to 3.

Linux man-pages 6.16 2025-09-21 3225

arp(7) Miscellaneous Information Manual arp(7)

VERSIONS
The struct arpreq changed in Linux 2.0 to include the arp_dev member and the ioctl
numbers changed at the same time. Support for the old ioctls was dropped in Linux 2.2.

Support for proxy arp entries for networks (netmask not equal 0xffffffff) was dropped in
Linux 2.2. It is replaced by automatic proxy arp setup by the kernel for all reachable
hosts on other interfaces (when forwarding and proxy arp is enabled for the interface).

The neigh/* interfaces did not exist before Linux 2.2.

BUGS
Some timer settings are specified in jiffies, which is architecture- and kernel version-de-
pendent; see time(7).

There is no way to signal positive feedback from user space. This means connection-
oriented protocols implemented in user space will generate excessive ARP traffic, be-
cause ndisc will regularly reprobe the MAC address. The same problem applies for
some kernel protocols (e.g., NFS over UDP).

This man page mashes together functionality that is IPv4-specific with functionality that
is shared between IPv4 and IPv6.

SEE ALSO
capabilities(7), ip(7), arpd(8)

RFC 826 for a description of ARP. RFC 2461 for a description of IPv6 neighbor discov-
ery and the base algorithms used. Linux 2.2+ IPv4 ARP uses the IPv6 algorithms when
applicable.

Linux man-pages 6.16 2025-09-21 3226

ascii(7) Miscellaneous Information Manual ascii(7)

NAME
ascii - ASCII character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
ASCII is the American Standard Code for Information Interchange. It is a 7-bit code.
Many 8-bit codes (e.g., ISO/IEC 8859-1) contain ASCII as their lower half. The inter-
national counterpart of ASCII is known as ISO/IEC 646-IRV.

The following table contains the 128 ASCII characters.

C program '\X' escapes are noted.

Oct Dec Hex Char Oct Dec Hex Char

000 0 00 NUL '\0' (null character) 100 64 40 @
001 1 01 SOH (start of heading) 101 65 41 A
002 2 02 STX (start of text) 102 66 42 B
003 3 03 ETX (end of text) 103 67 43 C
004 4 04 EOT (end of transmission) 104 68 44 D
005 5 05 ENQ (enquiry) 105 69 45 E
006 6 06 ACK (acknowledge) 106 70 46 F
007 7 07 BEL '\a' (bell) 107 71 47 G
010 8 08 BS '\b' (backspace) 110 72 48 H
011 9 09 HT '\t' (horizontal tab) 111 73 49 I
012 10 0A LF '\n' (new line) 112 74 4A J
013 11 0B VT '\v' (vertical tab) 113 75 4B K
014 12 0C FF '\f' (form feed) 114 76 4C L
015 13 0D CR '\r' (carriage ret) 115 77 4D M
016 14 0E SO (shift out) 116 78 4E N
017 15 0F SI (shift in) 117 79 4F O
020 16 10 DLE (data link escape) 120 80 50 P
021 17 11 DC1 (device control 1) 121 81 51 Q
022 18 12 DC2 (device control 2) 122 82 52 R
023 19 13 DC3 (device control 3) 123 83 53 S
024 20 14 DC4 (device control 4) 124 84 54 T
025 21 15 NAK (negative ack.) 125 85 55 U
026 22 16 SYN (synchronous idle) 126 86 56 V
027 23 17 ETB (end of trans. blk) 127 87 57 W
030 24 18 CAN (cancel) 130 88 58 X
031 25 19 EM (end of medium) 131 89 59 Y
032 26 1A SUB (substitute) 132 90 5A Z
033 27 1B ESC (escape) 133 91 5B [
034 28 1C FS (file separator) 134 92 5C \ '\\'
035 29 1D GS (group separator) 135 93 5D]
036 30 1E RS (record separator) 136 94 5E ^
037 31 1F US (unit separator) 137 95 5F _
040 32 20 SPACE 140 96 60 `
041 33 21 ! 141 97 61 a
042 34 22 " 142 98 62 b

Linux man-pages 6.16 2025-10-05 3227

ascii(7) Miscellaneous Information Manual ascii(7)

043 35 23 # 143 99 63 c
044 36 24 $ 144 100 64 d
045 37 25 % 145 101 65 e
046 38 26 & 146 102 66 f
047 39 27 ' 147 103 67 g
050 40 28 (150 104 68 h
051 41 29) 151 105 69 i
052 42 2A * 152 106 6A j
053 43 2B + 153 107 6B k
054 44 2C , 154 108 6C l
055 45 2D - 155 109 6D m
056 46 2E . 156 110 6E n
057 47 2F / 157 111 6F o
060 48 30 0 160 112 70 p
061 49 31 1 161 113 71 q
062 50 32 2 162 114 72 r
063 51 33 3 163 115 73 s
064 52 34 4 164 116 74 t
065 53 35 5 165 117 75 u
066 54 36 6 166 118 76 v
067 55 37 7 167 119 77 w
070 56 38 8 170 120 78 x
071 57 39 9 171 121 79 y
072 58 3A : 172 122 7A z
073 59 3B ; 173 123 7B {
074 60 3C < 174 124 7C |
075 61 3D = 175 125 7D }
076 62 3E > 176 126 7E ~
077 63 3F ? 177 127 7F DEL

Tables
For convenience, below are more compact tables in hex and decimal.

2 3 4 5 6 7 30 40 50 60 70 80 90 100 110 120
------------- ---------------------------------

0: 0 @ P ` p 0: (2 < F P Z d n x
1: ! 1 A Q a q 1:) 3 = G Q [e o y
2: " 2 B R b r 2: * 4 > H R \ f p z
3: # 3 C S c s 3: ! + 5 ? I S] g q {
4: $ 4 D T d t 4: " , 6 @ J T ^ h r |
5: % 5 E U e u 5: # - 7 A K U _ i s }
6: & 6 F V f v 6: $. 8 B L V ` j t ~
7: ' 7 G W g w 7: % / 9 C M W a k u DEL
8: (8 H X h x 8: & 0 : D N X b l v
9:) 9 I Y i y 9: ' 1 ; E O Y c m w
A: * : J Z j z
B: + ; K [k {
C: , < L \ l |

Linux man-pages 6.16 2025-10-05 3228

ascii(7) Miscellaneous Information Manual ascii(7)

D: - = M] m }
E: . > N ^ n ~
F: / ? O _ o DEL

NOTES
History

/etc/ascii (VII) appears in the UNIX Programmer’s Manual.

On older terminals, the underscore code is displayed as a left arrow, called backarrow,
the caret is displayed as an up-arrow and the vertical bar has a hole in the middle.

Uppercase and lowercase characters differ by just one bit and the ASCII character 2 dif-
fers from the double quote by just one bit, too. That made it much easier to encode
characters mechanically or with a non-microcontroller-based electronic keyboard and
that pairing was found on old teletypes.

The ASCII standard was published by the United States of America Standards Institute
(USASI) in 1968.

SEE ALSO
charsets(7), iso_8859-1(7), iso_8859-2(7), iso_8859-3(7), iso_8859-4(7),
iso_8859-5(7), iso_8859-6(7), iso_8859-7(7), iso_8859-8(7), iso_8859-9(7),
iso_8859-10(7), iso_8859-11(7), iso_8859-13(7), iso_8859-14(7), iso_8859-15(7),
iso_8859-16(7), utf-8(7)

Linux man-pages 6.16 2025-10-05 3229

attributes(7) Miscellaneous Information Manual attributes(7)

NAME
attributes - POSIX safety concepts

DESCRIPTION
Note: the text of this man page is based on the material taken from the "POSIX Safety
Concepts" section of the GNU C Library manual. Further details on the topics de-
scribed here can be found in that manual.

Various function manual pages include a section ATTRIBUTES that describes the safety
of calling the function in various contexts. This section annotates functions with the fol-
lowing safety markings:

MT-Safe
MT-Safe or Thread-Safe functions are safe to call in the presence of other
threads. MT, in MT-Safe, stands for Multi Thread.

Being MT-Safe does not imply a function is atomic, nor that it uses any of the
memory synchronization mechanisms POSIX exposes to users. It is even possi-
ble that calling MT-Safe functions in sequence does not yield an MT-Safe com-
bination. For example, having a thread call two MT-Safe functions one right af-
ter the other does not guarantee behavior equivalent to atomic execution of a
combination of both functions, since concurrent calls in other threads may inter-
fere in a destructive way.

Whole-program optimizations that could inline functions across library inter-
faces may expose unsafe reordering, and so performing inlining across the GNU
C Library interface is not recommended. The documented MT-Safety status is
not guaranteed under whole-program optimization. However, functions defined
in user-visible headers are designed to be safe for inlining.

MT-Unsafe
MT-Unsafe functions are not safe to call in a multithreaded programs.

Other keywords that appear in safety notes are defined in subsequent sections.

Conditionally safe features
For some features that make functions unsafe to call in certain contexts, there are known
ways to avoid the safety problem other than refraining from calling the function alto-
gether. The keywords that follow refer to such features, and each of their definitions in-
dicates how the whole program needs to be constrained in order to remove the safety
problem indicated by the keyword. Only when all the reasons that make a function un-
safe are observed and addressed, by applying the documented constraints, does the func-
tion become safe to call in a context.

init Functions marked with init as an MT-Unsafe feature perform MT-Unsafe initial-
ization when they are first called.

Calling such a function at least once in single-threaded mode removes this spe-
cific cause for the function to be regarded as MT-Unsafe. If no other cause for
that remains, the function can then be safely called after other threads are started.

race Functions annotated with race as an MT-Safety issue operate on objects in ways
that may cause data races or similar forms of destructive interference out of con-
current execution. In some cases, the objects are passed to the functions by

Linux man-pages 6.16 2025-09-07 3230

attributes(7) Miscellaneous Information Manual attributes(7)

users; in others, they are used by the functions to return values to users; in oth-
ers, they are not even exposed to users.

const
Functions marked with const as an MT-Safety issue non-atomically modify in-
ternal objects that are better regarded as constant, because a substantial portion
of the GNU C Library accesses them without synchronization. Unlike race,
which causes both readers and writers of internal objects to be regarded as MT-
Unsafe, this mark is applied to writers only. Writers remain MT-Unsafe to call,
but the then-mandatory constness of objects they modify enables readers to be
regarded as MT-Safe (as long as no other reasons for them to be unsafe remain),
since the lack of synchronization is not a problem when the objects are effec-
tively constant.

The identifier that follows the const mark will appear by itself as a safety note in
readers. Programs that wish to work around this safety issue, so as to call writ-
ers, may use a non-recursive read-write lock associated with the identifier, and
guard all calls to functions marked with const followed by the identifier with a
write lock, and all calls to functions marked with the identifier by itself with a
read lock.

sig Functions marked with sig as a MT-Safety issue may temporarily install a signal
handler for internal purposes, which may interfere with other uses of the signal,
identified after a colon.

This safety problem can be worked around by ensuring that no other uses of the
signal will take place for the duration of the call. Holding a non-recursive mutex
while calling all functions that use the same temporary signal; blocking that sig-
nal before the call and resetting its handler afterwards is recommended.

term Functions marked with term as an MT-Safety issue may change the terminal set-
tings in the recommended way, namely: call tcgetattr(3), modify some flags, and
then call tcsetattr(3), this creates a window in which changes made by other
threads are lost. Thus, functions marked with term are MT-Unsafe.

It is thus advisable for applications using the terminal to avoid concurrent and
reentrant interactions with it, by not using it in signal handlers or blocking sig-
nals that might use it, and holding a lock while calling these functions and inter-
acting with the terminal. This lock should also be used for mutual exclusion
with functions marked with race:tcattr(fd), where fd is a file descriptor for the
controlling terminal. The caller may use a single mutex for simplicity, or use
one mutex per terminal, even if referenced by different file descriptors.

Other safety remarks
Additional keywords may be attached to functions, indicating features that do not make
a function unsafe to call, but that may need to be taken into account in certain classes of
programs:

locale
Functions annotated with locale as an MT-Safety issue read from the locale ob-
ject without any form of synchronization. Functions annotated with locale
called concurrently with locale changes may behave in ways that do not

Linux man-pages 6.16 2025-09-07 3231

attributes(7) Miscellaneous Information Manual attributes(7)

correspond to any of the locales active during their execution, but an unpre-
dictable mix thereof.

We do not mark these functions as MT-Unsafe, however, because functions that
modify the locale object are marked with const:locale and regarded as unsafe.
Being unsafe, the latter are not to be called when multiple threads are running or
asynchronous signals are enabled, and so the locale can be considered effectively
constant in these contexts, which makes the former safe.

env Functions marked with env as an MT-Safety issue access the environment with
getenv(3) or similar, without any guards to ensure safety in the presence of con-
current modifications.

We do not mark these functions as MT-Unsafe, however, because functions that
modify the environment are all marked with const:env and regarded as unsafe.
Being unsafe, the latter are not to be called when multiple threads are running or
asynchronous signals are enabled, and so the environment can be considered ef-
fectively constant in these contexts, which makes the former safe.

hostid
Functions marked with hostid as an MT-Safety issue read from the system-wide
data structures that hold the "host ID" of the machine. These data structures can-
not generally be modified atomically. Since it is expected that the "host ID" will
not normally change, the function that reads from it (gethostid(3)) is regarded as
safe, whereas the function that modifies it (sethostid(3)) is marked with
const:hostid , indicating it may require special care if it is to be called. In this
specific case, the special care amounts to system-wide (not merely intra-process)
coordination.

sigintr
Functions marked with sigintr as an MT-Safety issue access the GNU C Library
_sigintr internal data structure without any guards to ensure safety in the pres-
ence of concurrent modifications.

We do not mark these functions as MT-Unsafe, however, because functions that
modify this data structure are all marked with const:sigintr and regarded as un-
safe. Being unsafe, the latter are not to be called when multiple threads are run-
ning or asynchronous signals are enabled, and so the data structure can be con-
sidered effectively constant in these contexts, which makes the former safe.

cwd Functions marked with cwd as an MT-Safety issue may temporarily change the
current working directory during their execution, which may cause relative path-
names to be resolved in unexpected ways in other threads or within asynchro-
nous signal or cancelation handlers.

This is not enough of a reason to mark so-marked functions as MT-Unsafe, but
when this behavior is optional (e.g., nftw(3) with FTW_CHDIR), avoiding the
option may be a good alternative to using full pathnames or file descriptor-rela-
tive (e.g., openat(2)) system calls.

Linux man-pages 6.16 2025-09-07 3232

attributes(7) Miscellaneous Information Manual attributes(7)

:identifier
Annotations may sometimes be followed by identifiers, intended to group several
functions that, for example, access the data structures in an unsafe way, as in
race and const, or to provide more specific information, such as naming a signal
in a function marked with sig. It is envisioned that it may be applied to lock and
corrupt as well in the future.

In most cases, the identifier will name a set of functions, but it may name global
objects or function arguments, or identifiable properties or logical components
associated with them, with a notation such as, for example, :buf(arg) to denote a
buffer associated with the argument arg, or :tcattr(fd) to denote the terminal at-
tributes of a file descriptor fd .

The most common use for identifiers is to provide logical groups of functions
and arguments that need to be protected by the same synchronization primitive in
order to ensure safe operation in a given context.

/condition
Some safety annotations may be conditional, in that they only apply if a boolean
expression involving arguments, global variables or even the underlying kernel
evaluates to true. For example, /!ps and /one_per_line indicate the preceding
marker only applies when argument ps is NULL, or global variable
one_per_line is nonzero.

When all marks that render a function unsafe are adorned with such conditions,
and none of the named conditions hold, then the function can be regarded as
safe.

SEE ALSO
pthreads(7), signal-safety(7)

Linux man-pages 6.16 2025-09-07 3233

boot(7) Miscellaneous Information Manual boot(7)

NAME
boot - System bootup process based on UNIX System V Release 4

DESCRIPTION
The bootup process (or " boot sequence") varies in details among systems, but can be
roughly divided into phases controlled by the following components:

(1) hardware

(2) operating system (OS) loader

(3) kernel

(4) root user-space process (init(8) and inittab(5))

(5) boot scripts

Each of these is described below in more detail.

Hardware
After power-on or hard reset, control is given to a program stored in read-only memory
(normally PROM); for historical reasons involving the personal computer, this program
is often called "the BIOS".

This program normally performs a basic self-test of the machine and accesses non-
volatile memory to read further parameters. This memory in the PC is battery-backed
CMOS memory, so most people refer to it as "the CMOS"; outside of the PC world, it is
usually called "the NVRAM" (nonvolatile RAM).

The parameters stored in the NVRAM vary among systems, but as a minimum, they
should specify which device can supply an OS loader, or at least which devices may be
probed for one; such a device is known as "the boot device". The hardware boot stage
loads the OS loader from a fixed position on the boot device, and then transfers control
to it.

Note:
The device from which the OS loader is read may be attached via a network, in
which case, the details of booting are further specified by protocols such as
DHCP, TFTP, PXE, Etherboot, etc.

OS loader
The main job of the OS loader is to locate the kernel on some device, load it, and run it.
Most OS loaders allow interactive use, in order to enable specification of an alternative
kernel (maybe a backup in case the one last compiled isn’t functioning) and to pass op-
tional parameters to the kernel.

In a traditional PC, the OS loader is located in the initial 512-byte block of the boot de-
vice; this block is known as "the MBR" (Master Boot Record).

In most systems, the OS loader is very limited due to various constraints. Even on non-
PC systems, there are some limitations on the size and complexity of this loader, but the
size limitation of the PC MBR (512 bytes, including the partition table) makes it almost
impossible to squeeze much functionality into it.

Therefore, most systems split the role of loading the OS between a primary OS loader
and a secondary OS loader; this secondary OS loader may be located within a larger

Linux man-pages 6.16 2025-09-21 3234

boot(7) Miscellaneous Information Manual boot(7)

portion of persistent storage, such as a disk partition.

In Linux, the OS loader is often grub(8) (an alternative is lilo(8)).

Kernel
When the kernel is loaded, it initializes various components of the computer and operat-
ing system; each portion of software responsible for such a task is usually considered "a
driver" for the applicable component. The kernel starts the virtual memory swapper (it
is a kernel process, called "kswapd" in a modern Linux kernel), and mounts some
filesystem at the root path, / .

Some of the parameters that may be passed to the kernel relate to these activities (for ex-
ample, the default root filesystem can be overridden); for further information on Linux
kernel parameters, read bootparam(7).

Only then does the kernel create the initial user-space process, which is given the num-
ber 1 as its PID (process ID). Traditionally, this process executes the program
/sbin/init, to which are passed the parameters that haven’t already been handled by the
kernel.

Root user-space process
Note:

The following description applies to an OS based on UNIX System V Release 4.
However, a number of widely used systems have adopted a related but funda-
mentally different approach known as systemd(1), for which the bootup process
is detailed in its associated bootup(7)

When /sbin/init starts, it reads /etc/inittab for further instructions. This file defines what
should be run when the /sbin/init program is instructed to enter a particular run level,
giving the administrator an easy way to establish an environment for some usage; each
run level is associated with a set of services (for example, run level S is single-user
mode, and run level 2 entails running most network services).

The administrator may change the current run level via init(1), and query the current run
level via runlevel(8)

However, since it is not convenient to manage individual services by editing this file,
/etc/inittab only bootstraps a set of scripts that actually start/stop the individual services.

Boot scripts
Note:

The following description applies to an OS based on UNIX System V Release 4.
However, a number of widely used systems (Slackware Linux, FreeBSD,
OpenBSD) have a somewhat different scheme for boot scripts.

For each managed service (mail, nfs server, cron, etc.), there is a single startup script lo-
cated in a specific directory (/etc/init.d in most versions of Linux). Each of these scripts
accepts as a single argument the word "start" (causing it to start the service) or the word
"stop" (causing it to stop the service). The script may optionally accept other conve-
nience parameters (e.g., "restart" to stop and then start, "status" to display the service
status, etc.). Running the script without parameters displays the possible arguments.

Linux man-pages 6.16 2025-09-21 3235

boot(7) Miscellaneous Information Manual boot(7)

Sequencing directories
To make specific scripts start/stop at specific run levels and in a specific order, there are
sequencing directories, normally of the form /etc/rc[0-6S].d . In each of these directo-
ries, there are links (usually symbolic) to the scripts in the /etc/init.d directory.

A primary script (usually /etc/rc) is called from inittab(5); this primary script calls each
service’s script via a link in the relevant sequencing directory. Each link whose name
begins with 'S' is called with the argument "start" (thereby starting the service). Each
link whose name begins with 'K' is called with the argument "stop" (thereby stopping
the service).

To define the starting or stopping order within the same run level, the name of a link
contains an order-number. Also, for clarity, the name of a link usually ends with the
name of the service to which it refers. For example, the link /etc/rc2.d/S80sendmail
starts the sendmail(8) service on run level 2. This happens after /etc/rc2.d/S12syslog is
run but before /etc/rc2.d/S90xfs is run.

To manage these links is to manage the boot order and run levels; under many systems,
there are tools to help with this task (e.g., chkconfig(8)).

Boot configuration
A program that provides a service is often called a "daemon". Usually, a daemon may
receive various command-line options and parameters. To allow a system administrator
to change these inputs without editing an entire boot script, some separate configuration
file is used, and is located in a specific directory where an associated boot script may
find it (/etc/sysconfig on older Red Hat systems).

In older UNIX systems, such a file contained the actual command line options for a dae-
mon, but in modern Linux systems (and also in HP-UX), it just contains shell variables.
A boot script in /etc/init.d reads and includes its configuration file (that is, it "sources"
its configuration file) and then uses the variable values.

FILES
/etc/init.d/ , /etc/rc[S0-6].d/ , /etc/sysconfig/

SEE ALSO
init(1), systemd(1), inittab(5), bootparam(7), bootup(7), runlevel(8), shutdown(8)

Linux man-pages 6.16 2025-09-21 3236

bootparam(7) Miscellaneous Information Manual bootparam(7)

NAME
bootparam - introduction to boot time parameters of the Linux kernel

DESCRIPTION
The Linux kernel accepts certain ’command-line options’ or ’boot time parameters’ at
the moment it is started. In general, this is used to supply the kernel with information
about hardware parameters that the kernel would not be able to determine on its own, or
to avoid/override the values that the kernel would otherwise detect.

When the kernel is booted directly by the BIOS, you have no opportunity to specify any
parameters. So, in order to take advantage of this possibility you have to use a boot
loader that is able to pass parameters, such as GRUB.

The argument list
The kernel command line is parsed into a list of strings (boot arguments) separated by
spaces. Most of the boot arguments have the form:

name[=value_1][,value_2]...[,value_10]

where ’name’ is a unique keyword that is used to identify what part of the kernel the as-
sociated values (if any) are to be given to. Note the limit of 10 is real, as the present
code handles only 10 comma separated parameters per keyword. (However, you can
reuse the same keyword with up to an additional 10 parameters in unusually compli-
cated situations, assuming the setup function supports it.)

Most of the sorting is coded in the kernel source file init/main.c. First, the kernel checks
to see if the argument is any of the special arguments ’root=’, ’nfsroot=’, ’nfsaddrs=’,
’ro’, ’rw’, ’debug’, or ’init’. The meaning of these special arguments is described below.

Then it walks a list of setup functions to see if the specified argument string (such as
’foo’) has been associated with a setup function (’foo_setup()’) for a particular device or
part of the kernel. If you passed the kernel the line foo=3,4,5,6 then the kernel would
search the bootsetups array to see if ’foo’ was registered. If it was, then it would call the
setup function associated with ’foo’ (foo_setup()) and hand it the arguments 3, 4, 5, and
6 as given on the kernel command line.

Anything of the form ’foo=bar’ that is not accepted as a setup function as described
above is then interpreted as an environment variable to be set. A (useless?) example
would be to use ’TERM=vt100’ as a boot argument.

Any remaining arguments that were not picked up by the kernel and were not interpreted
as environment variables are then passed onto PID 1, which is usually the init(1) pro-
gram. The most common argument that is passed to the init process is the word ’single’
which instructs it to boot the computer in single user mode, and not launch all the usual
daemons. Check the manual page for the version of init(1) installed on your system to
see what arguments it accepts.

General non-device-specific boot arguments
’init=...’

This sets the initial command to be executed by the kernel. If this is not set, or
cannot be found, the kernel will try /sbin/init, then /etc/init, then /bin/init, then
/bin/sh and panic if all of this fails.

Linux man-pages 6.16 2025-09-21 3237

bootparam(7) Miscellaneous Information Manual bootparam(7)

’nfsaddrs=...’
This sets the NFS boot address to the given string. This boot address is used in
case of a net boot.

’nfsroot=...’
This sets the NFS root name to the given string. If this string does not begin
with ’/’ or ’,’ or a digit, then it is prefixed by ’/tftpboot/’. This root name is used
in case of a net boot.

’root=...’
This argument tells the kernel what device is to be used as the root filesystem
while booting. The default of this setting is determined at compile time, and
usually is the value of the root device of the system that the kernel was built on.
To override this value, and select the second floppy drive as the root device, one
would use ’root=/dev/fd1’.

The root device can be specified symbolically or numerically. A symbolic speci-
fication has the form /dev/XXYN , where XX designates the device type (e.g.,
’hd’ for ST-506 compatible hard disk, with Y in ’a’–’d’; ’sd’ for SCSI compati-
ble disk, with Y in ’a’–’e’), Y the driver letter or number, and N the number (in
decimal) of the partition on this device.

Note that this has nothing to do with the designation of these devices on your
filesystem. The ’/dev/’ part is purely conventional.

The more awkward and less portable numeric specification of the above possible
root devices in major/minor format is also accepted. (For example, /dev/sda3 is
major 8, minor 3, so you could use ’root=0x803’ as an alternative.)

’rootdelay=’
This parameter sets the delay (in seconds) to pause before attempting to mount
the root filesystem.

’rootflags=...’
This parameter sets the mount option string for the root filesystem (see also
fstab(5)).

’rootfstype=...’
The ’rootfstype’ option tells the kernel to mount the root filesystem as if it where
of the type specified. This can be useful (for example) to mount an ext3 filesys-
tem as ext2 and then remove the journal in the root filesystem, in fact reverting
its format from ext3 to ext2 without the need to boot the box from alternate me-
dia.

’ro’
’rw’ The ’ro’ option tells the kernel to mount the root filesystem as ’read-only’ so that

filesystem consistency check programs (fsck) can do their work on a quiescent
filesystem. No processes can write to files on the filesystem in question until it is
’remounted’ as read/write capable, for example, by ’mount -w -n -o remount /’.
(See also mount(8)

The ’rw’ option tells the kernel to mount the root filesystem read/write. This is
the default.

Linux man-pages 6.16 2025-09-21 3238

bootparam(7) Miscellaneous Information Manual bootparam(7)

’resume=...’
This tells the kernel the location of the suspend-to-disk data that you want the
machine to resume from after hibernation. Usually, it is the same as your swap
partition or file. Example:

resume=/dev/hda2

’reserve=...’
This is used to protect I/O port regions from probes. The form of the command
is:

reserve=iobase,extent[,iobase,extent]...

In some machines it may be necessary to prevent device drivers from checking
for devices (auto-probing) in a specific region. This may be because of hardware
that reacts badly to the probing, or hardware that would be mistakenly identified,
or merely hardware you don’t want the kernel to initialize.

The reserve boot-time argument specifies an I/O port region that shouldn’t be
probed. A device driver will not probe a reserved region, unless another boot ar-
gument explicitly specifies that it do so.

For example, the boot line

reserve=0x300,32 blah=0x300

keeps all device drivers except the driver for ’blah’ from probing 0x300-0x31f.

’panic=N’
By default, the kernel will not reboot after a panic, but this option will cause a
kernel reboot after N seconds (if N is greater than zero). This panic timeout can
also be set by

echo N > /proc/sys/kernel/panic

’reboot=[warm|cold][,[bios|hard]]’
Since Linux 2.0.22, a reboot is by default a cold reboot. One asks for the old de-
fault with ’reboot=warm’. (A cold reboot may be required to reset certain hard-
ware, but might destroy not yet written data in a disk cache. A warm reboot may
be faster.) By default, a reboot is hard, by asking the keyboard controller to
pulse the reset line low, but there is at least one type of motherboard where that
doesn’t work. The option ’reboot=bios’ will instead jump through the BIOS.

’nosmp’
’maxcpus=N’

(Only when __SMP__ is defined.) A command-line option of ’nosmp’ or ’max-
cpus=0’ will disable SMP activation entirely; an option ’maxcpus=N’ limits the
maximum number of CPUs activated in SMP mode to N.

Boot arguments for use by kernel developers
’debug’

Kernel messages are handed off to a daemon (e.g., klogd(8) or similar) so that
they may be logged to disk. Messages with a priority above console_loglevel are
also printed on the console. (For a discussion of log levels, see syslog(2).) By
default, console_loglevel is set to log messages at levels higher than

Linux man-pages 6.16 2025-09-21 3239

bootparam(7) Miscellaneous Information Manual bootparam(7)

KERN_DEBUG. This boot argument will cause the kernel to also print mes-
sages logged at level KERN_DEBUG. The console loglevel can also be set on a
booted system via the /proc/sys/kernel/printk file (described in syslog(2)), the
syslog(2) SYSLOG_ACTION_CONSOLE_LEVEL operation, or dmesg(8)

’profile=N’
It is possible to enable a kernel profiling function, if one wishes to find out where
the kernel is spending its CPU cycles. Profiling is enabled by setting the variable
prof_shift to a nonzero value. This is done either by specifying CON-
FIG_PROFILE at compile time, or by giving the ’profile=’ option. Now the
value that prof_shift gets will be N, when given, or CONFIG_PRO-
FILE_SHIFT, when that is given, or 2, the default. The significance of this
variable is that it gives the granularity of the profiling: each clock tick, if the sys-
tem was executing kernel code, a counter is incremented:

profile[address >> prof_shift]++;

The raw profiling information can be read from /proc/profile. Probably you’ll
want to use a tool such as readprofile.c to digest it. Writing to /proc/profile will
clear the counters.

Boot arguments for ramdisk use
(Only if the kernel was compiled with CONFIG_BLK_DEV_RAM.) In general it is a
bad idea to use a ramdisk under Linux—the system will use available memory more ef-
ficiently itself. But while booting, it is often useful to load the floppy contents into a
ramdisk. One might also have a system in which first some modules (for filesystem or
hardware) must be loaded before the main disk can be accessed.

In Linux 1.3.48, ramdisk handling was changed drastically. Earlier, the memory
was allocated statically, and there was a ’ramdisk=N’ parameter to tell its size.
(This could also be set in the kernel image at compile time.) These days ram
disks use the buffer cache, and grow dynamically. For a lot of information on
the current ramdisk setup, see the kernel source file Documentation/block-
dev/ramdisk.txt (Documentation/ramdisk.txt in older kernels).

There are four parameters, two boolean and two integral.

’load_ramdisk=N’
If N=1, do load a ramdisk. If N=0, do not load a ramdisk. (This is the default.)

’prompt_ramdisk=N’
If N=1, do prompt for insertion of the floppy. (This is the default.) If N=0, do
not prompt. (Thus, this parameter is never needed.)

’ramdisk_size=N’ or (obsolete) ’ramdisk=N’
Set the maximal size of the ramdisk(s) to N kB. The default is 4096 (4 MB).

’ramdisk_start=N’
Sets the starting block number (the offset on the floppy where the ramdisk starts)
to N. This is needed in case the ramdisk follows a kernel image.

’noinitrd’
(Only if the kernel was compiled with CONFIG_BLK_DEV_RAM and CON-
FIG_BLK_DEV_INITRD.) These days it is possible to compile the kernel to

Linux man-pages 6.16 2025-09-21 3240

bootparam(7) Miscellaneous Information Manual bootparam(7)

use initrd. When this feature is enabled, the boot process will load the kernel
and an initial ramdisk; then the kernel converts initrd into a "normal" ramdisk,
which is mounted read-write as root device; then /linuxrc is executed; afterward
the "real" root filesystem is mounted, and the initrd filesystem is moved over to
/initrd; finally, the usual boot sequence (e.g., invocation of /sbin/init) is per-
formed.

For a detailed description of the initrd feature, see the kernel source file Docu-
mentation/admin-guide/initrd.rst (or Documentation/initrd.txt before Linux
4.10).

The ’noinitrd’ option tells the kernel that although it was compiled for operation
with initrd, it should not go through the above steps, but leave the initrd data un-
der /dev/initrd . (This device can be used only once: the data is freed as soon as
the last process that used it has closed /dev/initrd .)

Boot arguments for SCSI devices
General notation for this section:

iobase -- the first I/O port that the SCSI host occupies. These are specified in hexadeci-
mal notation, and usually lie in the range from 0x200 to 0x3ff.

irq -- the hardware interrupt that the card is configured to use. Valid values will be de-
pendent on the card in question, but will usually be 5, 7, 9, 10, 11, 12, and 15. The other
values are usually used for common peripherals like IDE hard disks, floppies, serial
ports, and so on.

scsi-id -- the ID that the host adapter uses to identify itself on the SCSI bus. Only some
host adapters allow you to change this value, as most have it permanently specified in-
ternally. The usual default value is 7, but the Seagate and Future Domain TMC-950
boards use 6.

parity -- whether the SCSI host adapter expects the attached devices to supply a parity
value with all information exchanges. Specifying a one indicates parity checking is en-
abled, and a zero disables parity checking. Again, not all adapters will support selection
of parity behavior as a boot argument.

’max_scsi_luns=...’
A SCSI device can have a number of ’subdevices’ contained within itself. The
most common example is one of the new SCSI CD-ROMs that handle more than
one disk at a time. Each CD is addressed as a ’Logical Unit Number’ (LUN) of
that particular device. But most devices, such as hard disks, tape drives, and
such are only one device, and will be assigned to LUN zero.

Some poorly designed SCSI devices cannot handle being probed for LUNs not
equal to zero. Therefore, if the compile-time flag CON-
FIG_SCSI_MULTI_LUN is not set, newer kernels will by default probe only
LUN zero.

To specify the number of probed LUNs at boot, one enters ’max_scsi_luns=n’ as
a boot arg, where n is a number between one and eight. To avoid problems as
described above, one would use n=1 to avoid upsetting such broken devices.

Linux man-pages 6.16 2025-09-21 3241

bootparam(7) Miscellaneous Information Manual bootparam(7)

SCSI tape configuration
Some boot time configuration of the SCSI tape driver can be achieved by using
the following:

st=buf_size[,write_threshold[,max_bufs]]

The first two numbers are specified in units of kB. The default buf_size is 32k B,
and the maximum size that can be specified is a ridiculous 16384 kB. The
write_threshold is the value at which the buffer is committed to tape, with a de-
fault value of 30 kB. The maximum number of buffers varies with the number of
drives detected, and has a default of two. An example usage would be:

st=32,30,2

Full details can be found in the file Documentation/scsi/st.txt (or dri-
vers/scsi/README.st for older kernels) in the Linux kernel source.

Hard disks
IDE Disk/CD-ROM Driver Parameters

The IDE driver accepts a number of parameters, which range from disk geome-
try specifications, to support for broken controller chips. Drive-specific options
are specified by using ’hdX=’ with X in ’a’–’h’.

Non-drive-specific options are specified with the prefix ’hd=’. Note that using a
drive-specific prefix for a non-drive-specific option will still work, and the option
will just be applied as expected.

Also note that ’hd=’ can be used to refer to the next unspecified drive in the (a,
..., h) sequence. For the following discussions, the ’hd=’ option will be cited for
brevity. See the file Documentation/ide/ide.txt (or Documentation/ide.txt in
older kernels, or drivers/block/README.ide in ancient kernels) in the Linux ker-
nel source for more details.

The ’hd=cyls,heads,sects[,wpcom[,irq]]’ options
These options are used to specify the physical geometry of the disk. Only the
first three values are required. The cylinder/head/sectors values will be those
used by fdisk. The write precompensation value is ignored for IDE disks. The
IRQ value specified will be the IRQ used for the interface that the drive resides
on, and is not really a drive-specific parameter.

The ’hd=serialize’ option
The dual IDE interface CMD-640 chip is broken as designed such that when dri-
ves on the secondary interface are used at the same time as drives on the primary
interface, it will corrupt your data. Using this option tells the driver to make sure
that both interfaces are never used at the same time.

The ’hd=noprobe’ option
Do not probe for this drive. For example,

hdb=noprobe hdb=1166,7,17

would disable the probe, but still specify the drive geometry so that it would be
registered as a valid block device, and hence usable.

Linux man-pages 6.16 2025-09-21 3242

bootparam(7) Miscellaneous Information Manual bootparam(7)

The ’hd=nowerr’ option
Some drives apparently have the WRERR_STAT bit stuck on permanently.
This enables a work-around for these broken devices.

The ’hd=cdrom’ option
This tells the IDE driver that there is an ATAPI compatible CD-ROM attached in
place of a normal IDE hard disk. In most cases the CD-ROM is identified auto-
matically, but if it isn’t then this may help.

Standard ST-506 Disk Driver Options (’hd=’)
The standard disk driver can accept geometry arguments for the disks similar to
the IDE driver. Note however that it expects only three values (C/H/S); any
more or any less and it will silently ignore you. Also, it accepts only ’hd=’ as an
argument, that is, ’hda=’ and so on are not valid here. The format is as follows:

hd=cyls,heads,sects

If there are two disks installed, the above is repeated with the geometry parame-
ters of the second disk.

Ethernet devices
Different drivers make use of different parameters, but they all at least share having an
IRQ, an I/O port base value, and a name. In its most generic form, it looks something
like this:

ether=irq,iobase[,param_1[,...param_8]],name

The first nonnumeric argument is taken as the name. The param_n values (if applicable)
usually have different meanings for each different card/driver. Typical param_n values
are used to specify things like shared memory address, interface selection, DMA chan-
nel and the like.

The most common use of this parameter is to force probing for a second ethercard, as
the default is to probe only for one. This can be accomplished with a simple:

ether=0,0,eth1

Note that the values of zero for the IRQ and I/O base in the above example tell the dri-
ver(s) to autoprobe.

The Ethernet-HowTo has extensive documentation on using multiple cards and on the
card/driver-specific implementation of the param_n values where used. Interested read-
ers should refer to the section in that document on their particular card.

The floppy disk driver
There are many floppy driver options, and they are all listed in Documentation/block-
dev/floppy.txt (or Documentation/floppy.txt in older kernels, or dri-
vers/block/README.fd for ancient kernels) in the Linux kernel source. See that file for
the details.

The sound driver
The sound driver can also accept boot arguments to override the compiled-in values.
This is not recommended, as it is rather complex. It is described in the Linux kernel
source file Documentation/sound/oss/README.OSS (drivers/sound/Readme.linux in
older kernel versions). It accepts a boot argument of the form:

Linux man-pages 6.16 2025-09-21 3243

bootparam(7) Miscellaneous Information Manual bootparam(7)

sound=device1[,device2[,device3...[,device10]]]

where each deviceN value is of the following format 0xTaaaId and the bytes are used as
follows:

T - device type: 1=FM, 2=SB, 3=PAS, 4=GUS, 5=MPU401, 6=SB16,
7=SB16-MPU401

aaa - I/O address in hex.

I - interrupt line in hex (i.e., 10=a, 11=b, ...)

d - DMA channel.

As you can see, it gets pretty messy, and you are better off to compile in your own per-
sonal values as recommended. Using a boot argument of ’sound=0’ will disable the
sound driver entirely.

The line printer driver
’lp=’

Syntax:

lp=0
lp=auto
lp=reset
lp=port[,port...]

You can tell the printer driver what ports to use and what ports not to use. The
latter comes in handy if you don’t want the printer driver to claim all available
parallel ports, so that other drivers (e.g., PLIP, PPA) can use them instead.

The format of the argument is multiple port names. For example, lp=none,par-
port0 would use the first parallel port for lp1, and disable lp0. To disable the
printer driver entirely, one can use lp=0.

SEE ALSO
klogd(8), mount(8)

For up-to-date information, see the kernel source file Documentation/admin-guide/ker-
nel-parameters.txt.

Linux man-pages 6.16 2025-09-21 3244

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

NAME
BPF-HELPERS - list of eBPF helper functions

DESCRIPTION
The extended Berkeley Packet Filter (eBPF) subsystem consists in programs written in a
pseudo-assembly language, then attached to one of the several kernel hooks and run in
reaction of specific events. This framework differs from the older, "classic" BPF (or
"cBPF") in several aspects, one of them being the ability to call special functions (or
"helpers") from within a program. These functions are restricted to a white-list of
helpers defined in the kernel.

These helpers are used by eBPF programs to interact with the system, or with the con-
text in which they work. For instance, they can be used to print debugging messages, to
get the time since the system was booted, to interact with eBPF maps, or to manipulate
network packets. Since there are several eBPF program types, and that they do not run in
the same context, each program type can only call a subset of those helpers.

Due to eBPF conventions, a helper can not have more than five arguments.

Internally, eBPF programs call directly into the compiled helper functions without re-
quiring any foreign-function interface. As a result, calling helpers introduces no over-
head, thus offering excellent performance.

This document is an attempt to list and document the helpers available to eBPF develop-
ers. They are sorted by chronological order (the oldest helpers in the kernel at the top).

HELPERS
void *bpf_map_lookup_elem(struct bpf_map *map, const void *key)

Description
Perform a lookup in map for an entry associated to key.

Return
Map value associated to key, or NULL if no entry was found.

long bpf_map_update_elem(struct bpf_map *map, const void *key, const void
*value, u64 flags)

Description
Add or update the value of the entry associated to key in map with
value. flags is one of:

BPF_NOEXIST
The entry for key must not exist in the map.

BPF_EXIST
The entry for key must already exist in the map.

BPF_ANY
No condition on the existence of the entry for key.

Flag value BPF_NOEXIST cannot be used for maps of types

Linux v6.17 2025-06-26 3245

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

BPF_MAP_TYPE_ARRAY or BPF_MAP_TYPE_PERCPU_AR-
RAY (all elements always exist), the helper would return an error.

Return
0 on success, or a negative error in case of failure.

long bpf_map_delete_elem(struct bpf_map *map, const void *key)

Description
Delete entry with key from map.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read(void *dst, u32 size, const void *unsafe_ptr)

Description
For tracing programs, safely attempt to read size bytes from kernel
space address unsafe_ptr and store the data in dst.

Generally, use bpf_probe_read_user() or bpf_probe_read_kernel()
instead.

Return
0 on success, or a negative error in case of failure.

u64 bpf_ktime_get_ns(void)

Description
Return the time elapsed since system boot, in nanoseconds. Does not
include time the system was suspended. See: clock_get-
time(CLOCK_MONOTONIC)

Return
Current ktime.

long bpf_trace_printk(const char *fmt, u32 fmt_size, ...)

Description
This helper is a "printk()-like" facility for debugging. It prints a mes-
sage defined by format fmt (of size fmt_size) to file /sys/kernel/trac-
ing/trace from TraceFS, if available. It can take up to three additional
u64 arguments (as an eBPF helpers, the total number of arguments is
limited to five).

Each time the helper is called, it appends a line to the trace. Lines are
discarded while /sys/kernel/tracing/trace is open, use /sys/kernel/trac-
ing/trace_pipe to avoid this. The format of the trace is customizable,
and the exact output one will get depends on the options set in /sys/ker-
nel/tracing/trace_options (see also the README file under the same di-
rectory). However, it usually defaults to something like:

telnet-470 [001] .N.. 419421.045894: 0x00000001: <formatted msg>

Linux v6.17 2025-06-26 3246

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

In the above:

• telnet is the name of the current task.

• 470 is the PID of the current task.

• 001 is the CPU number on which the task is running.

• In .N.., each character refers to a set of options (whether irqs are
enabled, scheduling options, whether hard/softirqs are running,
level of preempt_disabled respectively). N means that
TIF_NEED_RESCHED and PREEMPT_NEED_RESCHED
are set.

• 419421.045894 is a timestamp.

• 0x00000001 is a fake value used by BPF for the instruction
pointer register.

• <formatted msg> is the message formatted with fmt.

The conversion specifiers supported by fmt are similar, but more lim-
ited than for printk(). They are %d, %i, %u, %x, %ld, %li, %lu,
%lx, %lld, %lli, %llu, %llx, %p, %s. No modifier (size of field,
padding with zeroes, etc.) is available, and the helper will return
-EINVAL (but print nothing) if it encounters an unknown specifier.

Also, note that bpf_trace_printk() is slow, and should only be used
for debugging purposes. For this reason, a notice block (spanning sev-
eral lines) is printed to kernel logs and states that the helper should not
be used "for production use" the first time this helper is used (or more
precisely, when trace_printk() buffers are allocated). For passing val-
ues to user space, perf events should be preferred.

Return
The number of bytes written to the buffer, or a negative error in case of
failure.

u32 bpf_get_prandom_u32(void)

Description
Get a pseudo-random number.

From a security point of view, this helper uses its own pseudo-random
internal state, and cannot be used to infer the seed of other random func-
tions in the kernel. However, it is essential to note that the generator
used by the helper is not cryptographically secure.

Return
A random 32-bit unsigned value.

u32 bpf_get_smp_processor_id(void)

Linux v6.17 2025-06-26 3247

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Get the SMP (symmetric multiprocessing) processor id. Note that all
programs run with migration disabled, which means that the SMP
processor id is stable during all the execution of the program.

Return
The SMP id of the processor running the program.

long bpf_skb_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32 len,
u64 flags)

Description
Store len bytes from address from into the packet associated to skb, at
offset. The flags are a combination of the following values:

BPF_F_RECOMPUTE_CSUM
Automatically update skb->csum after storing the bytes.

BPF_F_INVALIDATE_HASH
Set skb->hash, skb->swhash and skb->l4hash to 0.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_l3_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64 size)

Description
Recompute the layer 3 (e.g. IP) checksum for the packet associated to
skb. Computation is incremental, so the helper must know the former
value of the header field that was modified (from), the new value of this
field (to), and the number of bytes (2 or 4) for this field, stored in size.
Alternatively, it is possible to store the difference between the previous
and the new values of the header field in to, by setting from and size to
0. For both methods, offset indicates the location of the IP checksum
within the packet.

This helper works in combination with bpf_csum_diff(), which does
not update the checksum in-place, but offers more flexibility and can
handle sizes larger than 2 or 4 for the checksum to update.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Linux v6.17 2025-06-26 3248

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 on success, or a negative error in case of failure.

long bpf_l4_csum_replace(struct sk_buff *skb, u32 offset, u64 from, u64 to, u64
flags)

Description
Recompute the layer 4 (e.g. TCP, UDP or ICMP) checksum for the
packet associated to skb. Computation is incremental, so the helper must
know the former value of the header field that was modified (from), the
new value of this field (to), and the number of bytes (2 or 4) for this
field, stored on the lowest four bits of flags. Alternatively, it is possible
to store the difference between the previous and the new values of the
header field in to, by setting from and the four lowest bits of flags to 0.
For both methods, offset indicates the location of the IP checksum
within the packet. In addition to the size of the field, flags can be added
(bitwise OR) actual flags. With BPF_F_MARK_MANGLED_0, a null
checksum is left untouched (unless BPF_F_MARK_ENFORCE is
added as well), and for updates resulting in a null checksum the value is
set to CSUM_MANGLED_0 instead. Flag BPF_F_PSEUDO_HDR
indicates that the modified header field is part of the pseudo-header.
Flag BPF_F_IPV6 should be set for IPv6 packets.

This helper works in combination with bpf_csum_diff(), which does
not update the checksum in-place, but offers more flexibility and can
handle sizes larger than 2 or 4 for the checksum to update.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_tail_call(void *ctx, struct bpf_map *prog_array_map, u32 index)

Description
This special helper is used to trigger a "tail call", or in other words, to
jump into another eBPF program. The same stack frame is used (but
values on stack and in registers for the caller are not accessible to the
callee). This mechanism allows for program chaining, either for raising
the maximum number of available eBPF instructions, or to execute
given programs in conditional blocks. For security reasons, there is an
upper limit to the number of successive tail calls that can be performed.

Upon call of this helper, the program attempts to jump into a program
referenced at index index in prog_array_map, a special map of type
BPF_MAP_TYPE_PROG_ARRAY, and passes ctx, a pointer to the
context.

Linux v6.17 2025-06-26 3249

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

If the call succeeds, the kernel immediately runs the first instruction of
the new program. This is not a function call, and it never returns to the
previous program. If the call fails, then the helper has no effect, and the
caller continues to run its subsequent instructions. A call can fail if the
destination program for the jump does not exist (i.e. index is superior to
the number of entries in prog_array_map), or if the maximum number
of tail calls has been reached for this chain of programs. This limit is
defined in the kernel by the macro MAX_TAIL_CALL_CNT (not ac-
cessible to user space), which is currently set to 33.

Return
0 on success, or a negative error in case of failure.

long bpf_clone_redirect(struct sk_buff *skb, u32 ifindex, u64 flags)

Description
Clone and redirect the packet associated to skb to another net device of
index ifindex. Both ingress and egress interfaces can be used for redirec-
tion. The BPF_F_INGRESS value in flags is used to make the distinc-
tion (ingress path is selected if the flag is present, egress path other-
wise). This is the only flag supported for now.

In comparison with bpf_redirect() helper, bpf_clone_redirect() has the
associated cost of duplicating the packet buffer, but this can be executed
out of the eBPF program. Conversely, bpf_redirect() is more efficient,
but it is handled through an action code where the redirection happens
only after the eBPF program has returned.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure. Positive error indi-
cates a potential drop or congestion in the target device. The particular
positive error codes are not defined.

u64 bpf_get_current_pid_tgid(void)

Description
Get the current pid and tgid.

Return
A 64-bit integer containing the current tgid and pid, and created as
such: current_task->tgid << 32 | current_task->pid.

u64 bpf_get_current_uid_gid(void)

Description
Get the current uid and gid.

Linux v6.17 2025-06-26 3250

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
A 64-bit integer containing the current GID and UID, and created as
such: current_gid << 32 | current_uid.

long bpf_get_current_comm(void *buf, u32 size_of_buf)

Description
Copy the comm attribute of the current task into buf of size_of_buf. The
comm attribute contains the name of the executable (excluding the path)
for the current task. The size_of_buf must be strictly positive. On suc-
cess, the helper makes sure that the buf is NUL-terminated. On failure,
it is filled with zeroes.

Return
0 on success, or a negative error in case of failure.

u32 bpf_get_cgroup_classid(struct sk_buff *skb)

Description
Retrieve the classid for the current task, i.e. for the net_cls cgroup to
which skb belongs.

This helper can be used on TC egress path, but not on ingress.

The net_cls cgroup provides an interface to tag network packets based
on a user-provided identifier for all traffic coming from the tasks be-
longing to the related cgroup. See also the related kernel documentation,
available from the Linux sources in file Documentation/ad-
min-guide/cgroup-v1/net_cls.rst.

The Linux kernel has two versions for cgroups: there are cgroups v1 and
cgroups v2. Both are available to users, who can use a mixture of them,
but note that the net_cls cgroup is for cgroup v1 only. This makes it in-
compatible with BPF programs run on cgroups, which is a
cgroup-v2-only feature (a socket can only hold data for one version of
cgroups at a time).

This helper is only available is the kernel was compiled with the CON-
FIG_CGROUP_NET_CLASSID configuration option set to "y" or to
"m".

Return
The classid, or 0 for the default unconfigured classid.

long bpf_skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)

Description
Push a vlan_tci (VLAN tag control information) of protocol vlan_proto
to the packet associated to skb, then update the checksum. Note that if
vlan_proto is different from ETH_P_8021Q and ETH_P_8021AD, it is
considered to be ETH_P_8021Q.

Linux v6.17 2025-06-26 3251

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_vlan_pop(struct sk_buff *skb)

Description
Pop a VLAN header from the packet associated to skb.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_get_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32
size, u64 flags)

Description
Get tunnel metadata. This helper takes a pointer key to an empty struct
bpf_tunnel_key of size, that will be filled with tunnel metadata for the
packet associated to skb. The flags can be set to BPF_F_TUN-
INFO_IPV6, which indicates that the tunnel is based on IPv6 protocol
instead of IPv4.

The struct bpf_tunnel_key is an object that generalizes the principal
parameters used by various tunneling protocols into a single struct. This
way, it can be used to easily make a decision based on the contents of
the encapsulation header, "summarized" in this struct. In particular, it
holds the IP address of the remote end (IPv4 or IPv6, depending on the
case) in key->remote_ipv4 or key->remote_ipv6. Also, this struct ex-
poses the key->tunnel_id, which is generally mapped to a VNI (Virtual
Network Identifier), making it programmable together with the
bpf_skb_set_tunnel_key() helper.

Let's imagine that the following code is part of a program attached to
the TC ingress interface, on one end of a GRE tunnel, and is supposed
to filter out all messages coming from remote ends with IPv4 address
other than 10.0.0.1:

int ret;
struct bpf_tunnel_key key = {};
ret = bpf_skb_get_tunnel_key(skb, &key, sizeof(key), 0);
if (ret < 0)

return TC_ACT_SHOT; // drop packet

Linux v6.17 2025-06-26 3252

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

if (key.remote_ipv4 != 0x0a000001)
return TC_ACT_SHOT; // drop packet

return TC_ACT_OK; // accept packet

This interface can also be used with all encapsulation devices that can
operate in "collect metadata" mode: instead of having one network de-
vice per specific configuration, the "collect metadata" mode only re-
quires a single device where the configuration can be extracted from
this helper.

This can be used together with various tunnels such as VXLan, Gen-
eve, GRE or IP in IP (IPIP).

Return
0 on success, or a negative error in case of failure.

long bpf_skb_set_tunnel_key(struct sk_buff *skb, struct bpf_tunnel_key *key, u32
size, u64 flags)

Description
Populate tunnel metadata for packet associated to skb. The tunnel meta-
data is set to the contents of key, of size. The flags can be set to a combi-
nation of the following values:

BPF_F_TUNINFO_IPV6
Indicate that the tunnel is based on IPv6 protocol instead of
IPv4.

BPF_F_ZERO_CSUM_TX
For IPv4 packets, add a flag to tunnel metadata indicating that
checksum computation should be skipped and checksum set to
zeroes.

BPF_F_DONT_FRAGMENT
Add a flag to tunnel metadata indicating that the packet should
not be fragmented.

BPF_F_SEQ_NUMBER
Add a flag to tunnel metadata indicating that a sequence num-
ber should be added to tunnel header before sending the packet.
This flag was added for GRE encapsulation, but might be used
with other protocols as well in the future.

BPF_F_NO_TUNNEL_KEY
Add a flag to tunnel metadata indicating that no tunnel key
should be set in the resulting tunnel header.

Here is a typical usage on the transmit path:

struct bpf_tunnel_key key;
populate key ...

bpf_skb_set_tunnel_key(skb, &key, sizeof(key), 0);

Linux v6.17 2025-06-26 3253

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

bpf_clone_redirect(skb, vxlan_dev_ifindex, 0);

See also the description of the bpf_skb_get_tunnel_key() helper for
additional information.

Return
0 on success, or a negative error in case of failure.

u64 bpf_perf_event_read(struct bpf_map *map, u64 flags)

Description
Read the value of a perf event counter. This helper relies on a map of
type BPF_MAP_TYPE_PERF_EVENT_ARRAY. The nature of the
perf event counter is selected when map is updated with perf event file
descriptors. The map is an array whose size is the number of available
CPUs, and each cell contains a value relative to one CPU. The value to
retrieve is indicated by flags, that contains the index of the CPU to look
up, masked with BPF_F_INDEX_MASK. Alternatively, flags can be
set to BPF_F_CURRENT_CPU to indicate that the value for the cur-
rent CPU should be retrieved.

Note that before Linux 4.13, only hardware perf event can be retrieved.

Also, be aware that the newer helper bpf_perf_event_read_value() is
recommended over bpf_perf_event_read() in general. The latter has
some ABI quirks where error and counter value are used as a return
code (which is wrong to do since ranges may overlap). This issue is
fixed with bpf_perf_event_read_value(), which at the same time pro-
vides more features over the bpf_perf_event_read() interface. Please
refer to the description of bpf_perf_event_read_value() for details.

Return
The value of the perf event counter read from the map, or a negative er-
ror code in case of failure.

long bpf_redirect(u32 ifindex, u64 flags)

Description
Redirect the packet to another net device of index ifindex. This helper is
somewhat similar to bpf_clone_redirect(), except that the packet is not
cloned, which provides increased performance.

Except for XDP, both ingress and egress interfaces can be used for redi-
rection. The BPF_F_INGRESS value in flags is used to make the dis-
tinction (ingress path is selected if the flag is present, egress path other-
wise). Currently, XDP only supports redirection to the egress interface,
and accepts no flag at all.

The same effect can also be attained with the more generic bpf_redi-
rect_map(), which uses a BPF map to store the redirect target instead of
providing it directly to the helper.

Linux v6.17 2025-06-26 3254

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
For XDP, the helper returns XDP_REDIRECT on success or
XDP_ABORTED on error. For other program types, the values are
TC_ACT_REDIRECT on success or TC_ACT_SHOT on error.

u32 bpf_get_route_realm(struct sk_buff *skb)

Description
Retrieve the realm or the route, that is to say the tclassid field of the
destination for the skb. The identifier retrieved is a user-provided tag,
similar to the one used with the net_cls cgroup (see description for
bpf_get_cgroup_classid() helper), but here this tag is held by a route (a
destination entry), not by a task.

Retrieving this identifier works with the clsact TC egress hook (see also
tc-bpf(8)), or alternatively on conventional classful egress qdiscs, but
not on TC ingress path. In case of clsact TC egress hook, this has the
advantage that, internally, the destination entry has not been dropped yet
in the transmit path. Therefore, the destination entry does not need to be
artificially held via netif_keep_dst() for a classful qdisc until the skb is
freed.

This helper is available only if the kernel was compiled with CON-
FIG_IP_ROUTE_CLASSID configuration option.

Return
The realm of the route for the packet associated to skb, or 0 if none was
found.

long bpf_perf_event_output(void *ctx, struct bpf_map *map, u64 flags, void *data,
u64 size)

Description
Write raw data blob into a special BPF perf event held by map of type
BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event must
have the following attributes: PERF_SAMPLE_RAW as sample_type,
PERF_TYPE_SOFTWARE as type, and
PERF_COUNT_SW_BPF_OUTPUT as config.

The flags are used to indicate the index in map for which the value must
be put, masked with BPF_F_INDEX_MASK. Alternatively, flags can
be set to BPF_F_CURRENT_CPU to indicate that the index of the
current CPU core should be used.

The value to write, of size, is passed through eBPF stack and pointed by
data.

The context of the program ctx needs also be passed to the helper.

On user space, a program willing to read the values needs to call

Linux v6.17 2025-06-26 3255

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

perf_event_open() on the perf event (either for one or for all CPUs)
and to store the file descriptor into the map. This must be done before
the eBPF program can send data into it. An example is available in file
samples/bpf/trace_output_user.c in the Linux kernel source tree (the
eBPF program counterpart is in samples/bpf/trace_output.bpf.c).

bpf_perf_event_output() achieves better performance than
bpf_trace_printk() for sharing data with user space, and is much better
suitable for streaming data from eBPF programs.

Note that this helper is not restricted to tracing use cases and can be
used with programs attached to TC or XDP as well, where it allows for
passing data to user space listeners. Data can be:

• Only custom structs,

• Only the packet payload, or

• A combination of both.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_load_bytes(const void *skb, u32 offset, void *to, u32 len)

Description
This helper was provided as an easy way to load data from a packet. It
can be used to load len bytes from offset from the packet associated to
skb, into the buffer pointed by to.

Since Linux 4.7, usage of this helper has mostly been replaced by "di-
rect packet access", enabling packet data to be manipulated with
skb->data and skb->data_end pointing respectively to the first byte of
packet data and to the byte after the last byte of packet data. However, it
remains useful if one wishes to read large quantities of data at once
from a packet into the eBPF stack.

Return
0 on success, or a negative error in case of failure.

long bpf_get_stackid(void *ctx, struct bpf_map *map, u64 flags)

Description
Walk a user or a kernel stack and return its id. To achieve this, the
helper needs ctx, which is a pointer to the context on which the tracing
program is executed, and a pointer to a map of type
BPF_MAP_TYPE_STACK_TRACE.

The last argument, flags, holds the number of stack frames to skip (from
0 to 255), masked with BPF_F_SKIP_FIELD_MASK. The next bits
can be used to set a combination of the following flags:

Linux v6.17 2025-06-26 3256

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

BPF_F_USER_STACK
Collect a user space stack instead of a kernel stack.

BPF_F_FAST_STACK_CMP
Compare stacks by hash only.

BPF_F_REUSE_STACKID
If two different stacks hash into the same stackid, discard the
old one.

The stack id retrieved is a 32 bit long integer handle which can be fur-
ther combined with other data (including other stack ids) and used as a
key into maps. This can be useful for generating a variety of graphs
(such as flame graphs or off-cpu graphs).

For walking a stack, this helper is an improvement over
bpf_probe_read(), which can be used with unrolled loops but is not
efficient and consumes a lot of eBPF instructions. Instead,
bpf_get_stackid() can collect up to PERF_MAX_STACK_DEPTH
both kernel and user frames. Note that this limit can be controlled with
the sysctl program, and that it should be manually increased in order to
profile long user stacks (such as stacks for Java programs). To do so,
use:

sysctl kernel.perf_event_max_stack=<new value>

Return
The positive or null stack id on success, or a negative error in case of
failure.

s64 bpf_csum_diff(__be32 *from, u32 from_size, __be32 *to, u32 to_size, __wsum
seed)

Description
Compute a checksum difference, from the raw buffer pointed by from,
of length from_size (that must be a multiple of 4), towards the raw
buffer pointed by to, of size to_size (same remark). An optional seed
can be added to the value (this can be cascaded, the seed may come
from a previous call to the helper).

This is flexible enough to be used in several ways:

• With from_size == 0, to_size > 0 and seed set to checksum, it can be
used when pushing new data.

• With from_size > 0, to_size == 0 and seed set to checksum, it can be
used when removing data from a packet.

• With from_size > 0, to_size > 0 and seed set to 0, it can be used to
compute a diff. Note that from_size and to_size do not need to be
equal.

Linux v6.17 2025-06-26 3257

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

This helper can be used in combination with bpf_l3_csum_replace()
and bpf_l4_csum_replace(), to which one can feed in the difference
computed with bpf_csum_diff().

Return
The checksum result, or a negative error code in case of failure.

long bpf_skb_get_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

Description
Retrieve tunnel options metadata for the packet associated to skb, and
store the raw tunnel option data to the buffer opt of size.

This helper can be used with encapsulation devices that can operate in
"collect metadata" mode (please refer to the related note in the descrip-
tion of bpf_skb_get_tunnel_key() for more details). A particular exam-
ple where this can be used is in combination with the Geneve encapsula-
tion protocol, where it allows for pushing (with bpf_skb_get_tun-
nel_opt() helper) and retrieving arbitrary TLVs (Type-Length-Value
headers) from the eBPF program. This allows for full customization of
these headers.

Return
The size of the option data retrieved.

long bpf_skb_set_tunnel_opt(struct sk_buff *skb, void *opt, u32 size)

Description
Set tunnel options metadata for the packet associated to skb to the op-
tion data contained in the raw buffer opt of size.

See also the description of the bpf_skb_get_tunnel_opt() helper for ad-
ditional information.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_change_proto(struct sk_buff *skb, __be16 proto, u64 flags)

Description
Change the protocol of the skb to proto. Currently supported are transi-
tion from IPv4 to IPv6, and from IPv6 to IPv4. The helper takes care of
the groundwork for the transition, including resizing the socket buffer.
The eBPF program is expected to fill the new headers, if any, via
skb_store_bytes() and to recompute the checksums with
bpf_l3_csum_replace() and bpf_l4_csum_replace(). The main case
for this helper is to perform NAT64 operations out of an eBPF program.

Internally, the GSO type is marked as dodgy so that headers are checked
and segments are recalculated by the GSO/GRO engine. The size for
GSO target is adapted as well.

Linux v6.17 2025-06-26 3258

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

All values for flags are reserved for future usage, and must be left at
zero.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_change_type(struct sk_buff *skb, u32 type)

Description
Change the packet type for the packet associated to skb. This comes
down to setting skb->pkt_type to type, except the eBPF program does
not have a write access to skb->pkt_type beside this helper. Using a
helper here allows for graceful handling of errors.

The major use case is to change incoming skb*s to **PACKET_HOST*
in a programmatic way instead of having to recirculate via redirect(...,
BPF_F_INGRESS), for example.

Note that type only allows certain values. At this time, they are:

PACKET_HOST
Packet is for us.

PACKET_BROADCAST
Send packet to all.

PACKET_MULTICAST
Send packet to group.

PACKET_OTHERHOST
Send packet to someone else.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_under_cgroup(struct sk_buff *skb, struct bpf_map *map, u32 index)

Description
Check whether skb is a descendant of the cgroup2 held by map of type
BPF_MAP_TYPE_CGROUP_ARRAY, at index.

Return
The return value depends on the result of the test, and can be:

• 0, if the skb failed the cgroup2 descendant test.

• 1, if the skb succeeded the cgroup2 descendant test.

Linux v6.17 2025-06-26 3259

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• A negative error code, if an error occurred.

u32 bpf_get_hash_recalc(struct sk_buff *skb)

Description
Retrieve the hash of the packet, skb->hash. If it is not set, in particular
if the hash was cleared due to mangling, recompute this hash. Later ac-
cesses to the hash can be done directly with skb->hash.

Calling bpf_set_hash_invalid(), changing a packet prototype with
bpf_skb_change_proto(), or calling bpf_skb_store_bytes() with the
BPF_F_INVALIDATE_HASH are actions susceptible to clear the hash
and to trigger a new computation for the next call to bpf_get_hash_re-
calc().

Return
The 32-bit hash.

u64 bpf_get_current_task(void)

Description
Get the current task.

Return
A pointer to the current task struct.

long bpf_probe_write_user(void *dst, const void *src, u32 len)

Description
Attempt in a safe way to write len bytes from the buffer src to dst in
memory. It only works for threads that are in user context, and dst must
be a valid user space address.

This helper should not be used to implement any kind of security mech-
anism because of TOC-TOU attacks, but rather to debug, divert, and
manipulate execution of semi-cooperative processes.

Keep in mind that this feature is meant for experiments, and it has a risk
of crashing the system and running programs. Therefore, when an
eBPF program using this helper is attached, a warning including PID
and process name is printed to kernel logs.

Return
0 on success, or a negative error in case of failure.

long bpf_current_task_under_cgroup(struct bpf_map *map, u32 index)

Description
Check whether the probe is being run is the context of a given subset of
the cgroup2 hierarchy. The cgroup2 to test is held by map of type
BPF_MAP_TYPE_CGROUP_ARRAY, at index.

Linux v6.17 2025-06-26 3260

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
The return value depends on the result of the test, and can be:

• 1, if current task belongs to the cgroup2.

• 0, if current task does not belong to the cgroup2.

• A negative error code, if an error occurred.

long bpf_skb_change_tail(struct sk_buff *skb, u32 len, u64 flags)

Description
Resize (trim or grow) the packet associated to skb to the new len. The
flags are reserved for future usage, and must be left at zero.

The basic idea is that the helper performs the needed work to change the
size of the packet, then the eBPF program rewrites the rest via helpers
like bpf_skb_store_bytes(), bpf_l3_csum_replace(), bpf_l3_csum_re-
place() and others. This helper is a slow path utility intended for replies
with control messages. And because it is targeted for slow path, the
helper itself can afford to be slow: it implicitly linearizes, unclones and
drops offloads from the skb.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_pull_data(struct sk_buff *skb, u32 len)

Description
Pull in non-linear data in case the skb is non-linear and not all of len
are part of the linear section. Make len bytes from skb readable and
writable. If a zero value is passed for len, then all bytes in the linear part
of skb will be made readable and writable.

This helper is only needed for reading and writing with direct packet ac-
cess.

For direct packet access, testing that offsets to access are within packet
boundaries (test on skb->data_end) is susceptible to fail if offsets are
invalid, or if the requested data is in non-linear parts of the skb. On fail-
ure the program can just bail out, or in the case of a non-linear buffer,
use a helper to make the data available. The bpf_skb_load_bytes()
helper is a first solution to access the data. Another one consists in using
bpf_skb_pull_data to pull in once the non-linear parts, then retesting
and eventually access the data.

At the same time, this also makes sure the skb is uncloned, which is a

Linux v6.17 2025-06-26 3261

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

necessary condition for direct write. As this needs to be an invariant for
the write part only, the verifier detects writes and adds a prologue that is
calling bpf_skb_pull_data() to effectively unclone the skb from the
very beginning in case it is indeed cloned.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

s64 bpf_csum_update(struct sk_buff *skb, __wsum csum)

Description
Add the checksum csum into skb->csum in case the driver has supplied
a checksum for the entire packet into that field. Return an error other-
wise. This helper is intended to be used in combination with
bpf_csum_diff(), in particular when the checksum needs to be updated
after data has been written into the packet through direct packet access.

Return
The checksum on success, or a negative error code in case of failure.

void bpf_set_hash_invalid(struct sk_buff *skb)

Description
Invalidate the current skb->hash. It can be used after mangling on
headers through direct packet access, in order to indicate that the hash is
outdated and to trigger a recalculation the next time the kernel tries to
access this hash or when the bpf_get_hash_recalc() helper is called.

Return
void.

long bpf_get_numa_node_id(void)

Description
Return the id of the current NUMA node. The primary use case for this
helper is the selection of sockets for the local NUMA node, when the
program is attached to sockets using the SO_ATTACH_REUSE-
PORT_EBPF option (see also socket(7)), but the helper is also avail-
able to other eBPF program types, similarly to bpf_get_smp_proces-
sor_id().

Return
The id of current NUMA node.

long bpf_skb_change_head(struct sk_buff *skb, u32 len, u64 flags)

Description
Grows headroom of packet associated to skb and adjusts the offset of
the MAC header accordingly, adding len bytes of space. It automatically

Linux v6.17 2025-06-26 3262

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

extends and reallocates memory as required.

This helper can be used on a layer 3 skb to push a MAC header for redi-
rection into a layer 2 device.

All values for flags are reserved for future usage, and must be left at
zero.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_xdp_adjust_head(struct xdp_buff *xdp_md, int delta)

Description
Adjust (move) xdp_md->data by delta bytes. Note that it is possible to
use a negative value for delta. This helper can be used to prepare the
packet for pushing or popping headers.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_str(void *dst, u32 size, const void *unsafe_ptr)

Description
Copy a NUL terminated string from an unsafe kernel address unsafe_ptr
to dst. See bpf_probe_read_kernel_str() for more details.

Generally, use bpf_probe_read_user_str() or bpf_probe_read_ker-
nel_str() instead.

Return
On success, the strictly positive length of the string, including the trail-
ing NUL character. On error, a negative value.

u64 bpf_get_socket_cookie(struct sk_buff *skb)

Description
If the struct sk_buff pointed by skb has a known socket, retrieve the
cookie (generated by the kernel) of this socket. If no cookie has been
set yet, generate a new cookie. Once generated, the socket cookie re-
mains stable for the life of the socket. This helper can be useful for
monitoring per socket networking traffic statistics as it provides a global

Linux v6.17 2025-06-26 3263

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

socket identifier that can be assumed unique.

Return
A 8-byte long unique number on success, or 0 if the socket field is
missing inside skb.

u64 bpf_get_socket_cookie(struct bpf_sock_addr *ctx)

Description
Equivalent to bpf_get_socket_cookie() helper that accepts skb, but gets
socket from struct bpf_sock_addr context.

Return
A 8-byte long unique number.

u64 bpf_get_socket_cookie(struct bpf_sock_ops *ctx)

Description
Equivalent to bpf_get_socket_cookie() helper that accepts skb, but gets
socket from struct bpf_sock_ops context.

Return
A 8-byte long unique number.

u64 bpf_get_socket_cookie(struct sock *sk)

Description
Equivalent to bpf_get_socket_cookie() helper that accepts sk, but gets
socket from a BTF struct sock. This helper also works for sleepable
programs.

Return
A 8-byte long unique number or 0 if sk is NULL.

u32 bpf_get_socket_uid(struct sk_buff *skb)

Description
Get the owner UID of the socked associated to skb.

Return
The owner UID of the socket associated to skb. If the socket is NULL,
or if it is not a full socket (i.e. if it is a time-wait or a request socket in-
stead), overflowuid value is returned (note that overflowuid might also
be the actual UID value for the socket).

long bpf_set_hash(struct sk_buff *skb, u32 hash)

Description
Set the full hash for skb (set the field skb->hash) to value hash.

Return

long bpf_setsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)

Description
Emulate a call to setsockopt() on the socket associated to bpf_socket,
which must be a full socket. The level at which the option resides and
the name optname of the option must be specified, see setsockopt(2) for

Linux v6.17 2025-06-26 3264

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

more information. The option value of length optlen is pointed by opt-
val.

bpf_socket should be one of the following:

• struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

• struct bpf_sock_addr for BPF_CGROUP_INET4_CONNECT,
BPF_CGROUP_INET6_CONNECT and
BPF_CGROUP_UNIX_CONNECT.

This helper actually implements a subset of setsockopt(). It supports
the following levels:

• SOL_SOCKET, which supports the following optnames:
SO_RCVBUF, SO_SNDBUF, SO_MAX_PACING_RATE,
SO_PRIORITY, SO_RCVLOWAT, SO_MARK, SO_BIND-
TODEVICE, SO_KEEPALIVE, SO_REUSEADDR,
SO_REUSEPORT, SO_BINDTOIFINDEX, SO_TXREHASH.

• IPPROTO_TCP, which supports the following optnames:
TCP_CONGESTION, TCP_BPF_IW, TCP_BPF_SND-
CWND_CLAMP, TCP_SAVE_SYN, TCP_KEEPIDLE,
TCP_KEEPINTVL, TCP_KEEPCNT, TCP_SYNCNT,
TCP_USER_TIMEOUT, TCP_NOTSENT_LOWAT,
TCP_NODELAY, TCP_MAXSEG, TCP_WINDOW_CLAMP,
TCP_THIN_LINEAR_TIMEOUTS,
TCP_BPF_DELACK_MAX, TCP_BPF_RTO_MIN,
TCP_BPF_SOCK_OPS_CB_FLAGS.

• IPPROTO_IP, which supports optname IP_TOS.

• IPPROTO_IPV6, which supports the following optnames:
IPV6_TCLASS, IPV6_AUTOFLOWLABEL.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_adjust_room(struct sk_buff *skb, s32 len_diff, u32 mode, u64 flags)

Description
Grow or shrink the room for data in the packet associated to skb by
len_diff, and according to the selected mode.

By default, the helper will reset any offloaded checksum indicator of the
skb to CHECKSUM_NONE. This can be avoided by the following flag:

• BPF_F_ADJ_ROOM_NO_CSUM_RESET: Do not reset of-
floaded checksum data of the skb to CHECKSUM_NONE.

There are two supported modes at this time:

Linux v6.17 2025-06-26 3265

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• BPF_ADJ_ROOM_MAC: Adjust room at the mac layer (room
space is added or removed between the layer 2 and layer 3 headers).

• BPF_ADJ_ROOM_NET: Adjust room at the network layer (room
space is added or removed between the layer 3 and layer 4 headers).

The following flags are supported at this time:

• BPF_F_ADJ_ROOM_FIXED_GSO: Do not adjust gso_size. Ad-
justing mss in this way is not allowed for datagrams.

• BPF_F_ADJ_ROOM_ENCAP_L3_IPV4,
BPF_F_ADJ_ROOM_ENCAP_L3_IPV6: Any new space is re-
served to hold a tunnel header. Configure skb offsets and other
fields accordingly.

• BPF_F_ADJ_ROOM_ENCAP_L4_GRE,
BPF_F_ADJ_ROOM_ENCAP_L4_UDP: Use with ENCAP_L3
flags to further specify the tunnel type.

• BPF_F_ADJ_ROOM_ENCAP_L2(len): Use with ENCAP_L3/L4
flags to further specify the tunnel type; len is the length of the inner
MAC header.

• BPF_F_ADJ_ROOM_ENCAP_L2_ETH: Use with
BPF_F_ADJ_ROOM_ENCAP_L2 flag to further specify the L2
type as Ethernet.

• BPF_F_ADJ_ROOM_DECAP_L3_IPV4,
BPF_F_ADJ_ROOM_DECAP_L3_IPV6: Indicate the new IP
header version after decapsulating the outer IP header. Used when
the inner and outer IP versions are different.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_redirect_map(struct bpf_map *map, u64 key, u64 flags)

Description
Redirect the packet to the endpoint referenced by map at index key. De-
pending on its type, this map can contain references to net devices (for
forwarding packets through other ports), or to CPUs (for redirecting
XDP frames to another CPU; but this is only implemented for native
XDP (with driver support) as of this writing).

The lower two bits of flags are used as the return code if the map lookup
fails. This is so that the return value can be one of the XDP program re-
turn codes up to XDP_TX, as chosen by the caller. The higher bits of

Linux v6.17 2025-06-26 3266

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

flags can be set to BPF_F_BROADCAST or BPF_F_EX-
CLUDE_INGRESS as defined below.

With BPF_F_BROADCAST the packet will be broadcasted to all the in-
terfaces in the map, with BPF_F_EXCLUDE_INGRESS the ingress in-
terface will be excluded when do broadcasting.

See also bpf_redirect(), which only supports redirecting to an ifindex,
but doesn't require a map to do so.

Return
XDP_REDIRECT on success, or the value of the two lower bits of the
flags argument on error.

long bpf_sk_redirect_map(struct sk_buff *skb, struct bpf_map *map, u32 key, u64
flags)

Description
Redirect the packet to the socket referenced by map (of type
BPF_MAP_TYPE_SOCKMAP) at index key. Both ingress and egress
interfaces can be used for redirection. The BPF_F_INGRESS value in
flags is used to make the distinction (ingress path is selected if the flag
is present, egress path otherwise). This is the only flag supported for
now.

Return
SK_PASS on success, or SK_DROP on error.

long bpf_sock_map_update(struct bpf_sock_ops *skops, struct bpf_map *map, void
*key, u64 flags)

Description
Add an entry to, or update a map referencing sockets. The skops is used
as a new value for the entry associated to key. flags is one of:

BPF_NOEXIST
The entry for key must not exist in the map.

BPF_EXIST
The entry for key must already exist in the map.

BPF_ANY
No condition on the existence of the entry for key.

If the map has eBPF programs (parser and verdict), those will be inher-
ited by the socket being added. If the socket is already attached to
eBPF programs, this results in an error.

Return
0 on success, or a negative error in case of failure.

long bpf_xdp_adjust_meta(struct xdp_buff *xdp_md, int delta)

Linux v6.17 2025-06-26 3267

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Adjust the address pointed by xdp_md->data_meta by delta (which
can be positive or negative). Note that this operation modifies the ad-
dress stored in xdp_md->data, so the latter must be loaded only after
the helper has been called.

The use of xdp_md->data_meta is optional and programs are not re-
quired to use it. The rationale is that when the packet is processed with
XDP (e.g. as DoS filter), it is possible to push further meta data along
with it before passing to the stack, and to give the guarantee that an
ingress eBPF program attached as a TC classifier on the same device
can pick this up for further post-processing. Since TC works with
socket buffers, it remains possible to set from XDP the mark or prior-
ity pointers, or other pointers for the socket buffer. Having this scratch
space generic and programmable allows for more flexibility as the user
is free to store whatever meta data they need.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_perf_event_read_value(struct bpf_map *map, u64 flags, struct
bpf_perf_event_value *buf, u32 buf_size)

Description
Read the value of a perf event counter, and store it into buf of size
buf_size. This helper relies on a map of type
BPF_MAP_TYPE_PERF_EVENT_ARRAY. The nature of the perf
event counter is selected when map is updated with perf event file de-
scriptors. The map is an array whose size is the number of available
CPUs, and each cell contains a value relative to one CPU. The value to
retrieve is indicated by flags, that contains the index of the CPU to look
up, masked with BPF_F_INDEX_MASK. Alternatively, flags can be
set to BPF_F_CURRENT_CPU to indicate that the value for the cur-
rent CPU should be retrieved.

This helper behaves in a way close to bpf_perf_event_read() helper,
save that instead of just returning the value observed, it fills the buf
structure. This allows for additional data to be retrieved: in particular,
the enabled and running times (in buf->enabled and buf->running, re-
spectively) are copied. In general, bpf_perf_event_read_value() is rec-
ommended over bpf_perf_event_read(), which has some ABI issues
and provides fewer functionalities.

These values are interesting, because hardware PMU (Performance

Linux v6.17 2025-06-26 3268

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Monitoring Unit) counters are limited resources. When there are more
PMU based perf events opened than available counters, kernel will mul-
tiplex these events so each event gets certain percentage (but not all) of
the PMU time. In case that multiplexing happens, the number of sam-
ples or counter value will not reflect the case compared to when no mul-
tiplexing occurs. This makes comparison between different runs diffi-
cult. Typically, the counter value should be normalized before compar-
ing to other experiments. The usual normalization is done as follows.

normalized_counter = counter * t_enabled / t_running

Where t_enabled is the time enabled for event and t_running is the
time running for event since last normalization. The enabled and run-
ning times are accumulated since the perf event open. To achieve scal-
ing factor between two invocations of an eBPF program, users can use
CPU id as the key (which is typical for perf array usage model) to re-
member the previous value and do the calculation inside the eBPF pro-
gram.

Return
0 on success, or a negative error in case of failure.

long bpf_perf_prog_read_value(struct bpf_perf_event_data *ctx, struct
bpf_perf_event_value *buf, u32 buf_size)

Description
For an eBPF program attached to a perf event, retrieve the value of the
event counter associated to ctx and store it in the structure pointed by
buf and of size buf_size. Enabled and running times are also stored in
the structure (see description of helper bpf_perf_event_read_value()
for more details).

Return
0 on success, or a negative error in case of failure.

long bpf_getsockopt(void *bpf_socket, int level, int optname, void *optval, int optlen)

Description
Emulate a call to getsockopt() on the socket associated to bpf_socket,
which must be a full socket. The level at which the option resides and
the name optname of the option must be specified, see getsockopt(2)
for more information. The retrieved value is stored in the structure
pointed by opval and of length optlen.

bpf_socket should be one of the following:

• struct bpf_sock_ops for BPF_PROG_TYPE_SOCK_OPS.

• struct bpf_sock_addr for BPF_CGROUP_INET4_CONNECT,
BPF_CGROUP_INET6_CONNECT and
BPF_CGROUP_UNIX_CONNECT.

Linux v6.17 2025-06-26 3269

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

This helper actually implements a subset of getsockopt(). It supports
the same set of optnames that is supported by the bpf_setsockopt()
helper. The exceptions are TCP_BPF_* is bpf_setsockopt() only and
TCP_SAVED_SYN is bpf_getsockopt() only.

Return
0 on success, or a negative error in case of failure.

long bpf_override_return(struct pt_regs *regs, u64 rc)

Description
Used for error injection, this helper uses kprobes to override the return
value of the probed function, and to set it to rc. The first argument is
the context regs on which the kprobe works.

This helper works by setting the PC (program counter) to an override
function which is run in place of the original probed function. This
means the probed function is not run at all. The replacement function
just returns with the required value.

This helper has security implications, and thus is subject to restrictions.
It is only available if the kernel was compiled with the CON-
FIG_BPF_KPROBE_OVERRIDE configuration option, and in this
case it only works on functions tagged with ALLOW_ERROR_IN-
JECTION in the kernel code.

Return

long bpf_sock_ops_cb_flags_set(struct bpf_sock_ops *bpf_sock, int argval)

Description
Attempt to set the value of the bpf_sock_ops_cb_flags field for the full
TCP socket associated to bpf_sock_ops to argval.

The primary use of this field is to determine if there should be calls to
eBPF programs of type BPF_PROG_TYPE_SOCK_OPS at various
points in the TCP code. A program of the same type can change its
value, per connection and as necessary, when the connection is estab-
lished. This field is directly accessible for reading, but this helper must
be used for updates in order to return an error if an eBPF program tries
to set a callback that is not supported in the current kernel.

argval is a flag array which can combine these flags:

• BPF_SOCK_OPS_RTO_CB_FLAG (retransmission time out)

• BPF_SOCK_OPS_RETRANS_CB_FLAG (retransmission)

• BPF_SOCK_OPS_STATE_CB_FLAG (TCP state change)

• BPF_SOCK_OPS_RTT_CB_FLAG (every RTT)

Therefore, this function can be used to clear a callback flag by setting

Linux v6.17 2025-06-26 3270

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

the appropriate bit to zero. e.g. to disable the RTO callback:

bpf_sock_ops_cb_flags_set(bpf_sock,
bpf_sock->bpf_sock_ops_cb_flags &
˜BPF_SOCK_OPS_RTO_CB_FLAG)

Here are some examples of where one could call such eBPF program:

• When RTO fires.

• When a packet is retransmitted.

• When the connection terminates.

• When a packet is sent.

• When a packet is received.

Return
Code -EINVAL if the socket is not a full TCP socket; otherwise, a pos-
itive number containing the bits that could not be set is returned (which
comes down to 0 if all bits were set as required).

long bpf_msg_redirect_map(struct sk_msg_buff *msg, struct bpf_map *map, u32
key, u64 flags)

Description
This helper is used in programs implementing policies at the socket
level. If the message msg is allowed to pass (i.e. if the verdict eBPF pro-
gram returns SK_PASS), redirect it to the socket referenced by map (of
type BPF_MAP_TYPE_SOCKMAP) at index key. Both ingress and
egress interfaces can be used for redirection. The BPF_F_INGRESS
value in flags is used to make the distinction (ingress path is selected if
the flag is present, egress path otherwise). This is the only flag sup-
ported for now.

Return
SK_PASS on success, or SK_DROP on error.

long bpf_msg_apply_bytes(struct sk_msg_buff *msg, u32 bytes)

Description
For socket policies, apply the verdict of the eBPF program to the next
bytes (number of bytes) of message msg.

For example, this helper can be used in the following cases:

• A single sendmsg() or sendfile() system call contains multiple logi-
cal messages that the eBPF program is supposed to read and for
which it should apply a verdict.

• An eBPF program only cares to read the first bytes of a msg. If the
message has a large payload, then setting up and calling the eBPF
program repeatedly for all bytes, even though the verdict is already
known, would create unnecessary overhead.

Linux v6.17 2025-06-26 3271

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

When called from within an eBPF program, the helper sets a counter
internal to the BPF infrastructure, that is used to apply the last verdict
to the next bytes. If bytes is smaller than the current data being
processed from a sendmsg() or sendfile() system call, the first bytes
will be sent and the eBPF program will be re-run with the pointer for
start of data pointing to byte number bytes + 1. If bytes is larger than
the current data being processed, then the eBPF verdict will be applied
to multiple sendmsg() or sendfile() calls until bytes are consumed.

Note that if a socket closes with the internal counter holding a
non-zero value, this is not a problem because data is not being
buffered for bytes and is sent as it is received.

Return

long bpf_msg_cork_bytes(struct sk_msg_buff *msg, u32 bytes)

Description
For socket policies, prevent the execution of the verdict eBPF program
for message msg until bytes (byte number) have been accumulated.

This can be used when one needs a specific number of bytes before a
verdict can be assigned, even if the data spans multiple sendmsg() or
sendfile() calls. The extreme case would be a user calling sendmsg() re-
peatedly with 1-byte long message segments. Obviously, this is bad for
performance, but it is still valid. If the eBPF program needs bytes bytes
to validate a header, this helper can be used to prevent the eBPF pro-
gram to be called again until bytes have been accumulated.

Return

long bpf_msg_pull_data(struct sk_msg_buff *msg, u32 start, u32 end, u64 flags)

Description
For socket policies, pull in non-linear data from user space for msg and
set pointers msg->data and msg->data_end to start and end bytes off-
sets into msg, respectively.

If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg it
can only parse data that the (data, data_end) pointers have already con-
sumed. For sendmsg() hooks this is likely the first scatterlist element.
But for calls relying on the sendpage handler (e.g. sendfile()) this will
be the range (0, 0) because the data is shared with user space and by de-
fault the objective is to avoid allowing user space to modify data while
(or after) eBPF verdict is being decided. This helper can be used to pull
in data and to set the start and end pointer to given values. Data will be
copied if necessary (i.e. if data was not linear and if start and end point-
ers do not point to the same chunk).

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done

Linux v6.17 2025-06-26 3272

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

All values for flags are reserved for future usage, and must be left at
zero.

Return
0 on success, or a negative error in case of failure.

long bpf_bind(struct bpf_sock_addr *ctx, struct sockaddr *addr, int addr_len)

Description
Bind the socket associated to ctx to the address pointed by addr, of
length addr_len. This allows for making outgoing connection from the
desired IP address, which can be useful for example when all processes
inside a cgroup should use one single IP address on a host that has mul-
tiple IP configured.

This helper works for IPv4 and IPv6, TCP and UDP sockets. The do-
main (addr->sa_family) must be AF_INET (or AF_INET6). It's ad-
vised to pass zero port (sin_port or sin6_port) which triggers
IP_BIND_ADDRESS_NO_PORT-like behavior and lets the kernel ef-
ficiently pick up an unused port as long as 4-tuple is unique. Passing
non-zero port might lead to degraded performance.

Return
0 on success, or a negative error in case of failure.

long bpf_xdp_adjust_tail(struct xdp_buff *xdp_md, int delta)

Description
Adjust (move) xdp_md->data_end by delta bytes. It is possible to both
shrink and grow the packet tail. Shrink done via delta being a negative
integer.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_skb_get_xfrm_state(struct sk_buff *skb, u32 index, struct bpf_xfrm_state
*xfrm_state, u32 size, u64 flags)

Description
Retrieve the XFRM state (IP transform framework, see also
ip-xfrm(8)) at index in XFRM "security path" for skb.

The retrieved value is stored in the struct bpf_xfrm_state pointed by
xfrm_state and of length size.

Linux v6.17 2025-06-26 3273

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

All values for flags are reserved for future usage, and must be left at
zero.

This helper is available only if the kernel was compiled with CON-
FIG_XFRM configuration option.

Return
0 on success, or a negative error in case of failure.

long bpf_get_stack(void *ctx, void *buf, u32 size, u64 flags)

Description
Return a user or a kernel stack in bpf program provided buffer. To
achieve this, the helper needs ctx, which is a pointer to the context on
which the tracing program is executed. To store the stacktrace, the bpf
program provides buf with a nonnegative size.

The last argument, flags, holds the number of stack frames to skip (from
0 to 255), masked with BPF_F_SKIP_FIELD_MASK. The next bits
can be used to set the following flags:

BPF_F_USER_STACK
Collect a user space stack instead of a kernel stack.

BPF_F_USER_BUILD_ID
Collect (build_id, file_offset) instead of ips for user stack, only
valid if BPF_F_USER_STACK is also specified.

file_offset is an offset relative to the beginning of the executable
or shared object file backing the vma which the ip falls in. It is
not an offset relative to that object's base address. Accordingly,
it must be adjusted by adding (sh_addr - sh_offset), where
sh_{addr,offset} correspond to the executable section contain-
ing file_offset in the object, for comparisons to symbols'
st_value to be valid.

bpf_get_stack() can collect up to PERF_MAX_STACK_DEPTH
both kernel and user frames, subject to sufficient large buffer size.
Note that this limit can be controlled with the sysctl program, and that
it should be manually increased in order to profile long user stacks
(such as stacks for Java programs). To do so, use:

sysctl kernel.perf_event_max_stack=<new value>

Return
The non-negative copied buf length equal to or less than size on suc-
cess, or a negative error in case of failure.

long bpf_skb_load_bytes_relative(const void *skb, u32 offset, void *to, u32 len, u32
start_header)

Linux v6.17 2025-06-26 3274

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
This helper is similar to bpf_skb_load_bytes() in that it provides an
easy way to load len bytes from offset from the packet associated to skb,
into the buffer pointed by to. The difference to bpf_skb_load_bytes() is
that a fifth argument start_header exists in order to select a base offset
to start from. start_header can be one of:

BPF_HDR_START_MAC
Base offset to load data from is skb's mac header.

BPF_HDR_START_NET
Base offset to load data from is skb's network header.

In general, "direct packet access" is the preferred method to access
packet data, however, this helper is in particular useful in socket filters
where skb->data does not always point to the start of the mac header
and where "direct packet access" is not available.

Return
0 on success, or a negative error in case of failure.

long bpf_fib_lookup(void *ctx, struct bpf_fib_lookup *params, int plen, u32 flags)

Description
Do FIB lookup in kernel tables using parameters in params. If lookup
is successful and result shows packet is to be forwarded, the neighbor
tables are searched for the nexthop. If successful (ie., FIB lookup
shows forwarding and nexthop is resolved), the nexthop address is re-
turned in ipv4_dst or ipv6_dst based on family, smac is set to mac ad-
dress of egress device, dmac is set to nexthop mac address, rt_metric is
set to metric from route (IPv4/IPv6 only), and ifindex is set to the device
index of the nexthop from the FIB lookup.

plen argument is the size of the passed in struct. flags argument can be
a combination of one or more of the following values:

BPF_FIB_LOOKUP_DIRECT
Do a direct table lookup vs full lookup using FIB rules.

BPF_FIB_LOOKUP_TBID
Used with BPF_FIB_LOOKUP_DIRECT. Use the routing ta-
ble ID present in params->tbid for the fib lookup.

BPF_FIB_LOOKUP_OUTPUT
Perform lookup from an egress perspective (default is ingress).

BPF_FIB_LOOKUP_SKIP_NEIGH
Skip the neighbour table lookup. params->dmac and
params->smac will not be set as output. A common use case is
to call bpf_redirect_neigh() after doing bpf_fib_lookup().

Linux v6.17 2025-06-26 3275

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

BPF_FIB_LOOKUP_SRC
Derive and set source IP addr in params->ipv{4,6}_src for the
nexthop. If the src addr cannot be derived,
BPF_FIB_LKUP_RET_NO_SRC_ADDR is returned. In this
case, params->dmac and params->smac are not set either.

BPF_FIB_LOOKUP_MARK
Use the mark present in params->mark for the fib lookup.
This option should not be used with BPF_FIB_LOOKUP_DI-
RECT, as it only has meaning for full lookups.

ctx is either struct xdp_md for XDP programs or struct sk_buff tc
cls_act programs.

Return

• < 0 if any input argument is invalid

• 0 on success (packet is forwarded, nexthop neighbor exists)

• > 0 one of BPF_FIB_LKUP_RET_ codes explaining why the
packet is not forwarded or needs assist from full stack

If lookup fails with BPF_FIB_LKUP_RET_FRAG_NEEDED, then
the MTU was exceeded and output params->mtu_result contains the
MTU.

long bpf_sock_hash_update(struct bpf_sock_ops *skops, struct bpf_map *map,
void *key, u64 flags)

Description
Add an entry to, or update a sockhash map referencing sockets. The
skops is used as a new value for the entry associated to key. flags is one
of:

BPF_NOEXIST
The entry for key must not exist in the map.

BPF_EXIST
The entry for key must already exist in the map.

BPF_ANY
No condition on the existence of the entry for key.

If the map has eBPF programs (parser and verdict), those will be inher-
ited by the socket being added. If the socket is already attached to
eBPF programs, this results in an error.

Return
0 on success, or a negative error in case of failure.

long bpf_msg_redirect_hash(struct sk_msg_buff *msg, struct bpf_map *map, void
*key, u64 flags)

Linux v6.17 2025-06-26 3276

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
This helper is used in programs implementing policies at the socket
level. If the message msg is allowed to pass (i.e. if the verdict eBPF pro-
gram returns SK_PASS), redirect it to the socket referenced by map (of
type BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress
and egress interfaces can be used for redirection. The
BPF_F_INGRESS value in flags is used to make the distinction
(ingress path is selected if the flag is present, egress path otherwise).
This is the only flag supported for now.

Return
SK_PASS on success, or SK_DROP on error.

long bpf_sk_redirect_hash(struct sk_buff *skb, struct bpf_map *map, void *key,
u64 flags)

Description
This helper is used in programs implementing policies at the skb socket
level. If the sk_buff skb is allowed to pass (i.e. if the verdict eBPF pro-
gram returns SK_PASS), redirect it to the socket referenced by map (of
type BPF_MAP_TYPE_SOCKHASH) using hash key. Both ingress
and egress interfaces can be used for redirection. The
BPF_F_INGRESS value in flags is used to make the distinction
(ingress path is selected if the flag is present, egress otherwise). This is
the only flag supported for now.

Return
SK_PASS on success, or SK_DROP on error.

long bpf_lwt_push_encap(struct sk_buff *skb, u32 type, void *hdr, u32 len)

Description
Encapsulate the packet associated to skb within a Layer 3 protocol
header. This header is provided in the buffer at address hdr, with len its
size in bytes. type indicates the protocol of the header and can be one of:

BPF_LWT_ENCAP_SEG6
IPv6 encapsulation with Segment Routing Header (struct
ipv6_sr_hdr). hdr only contains the SRH, the IPv6 header is
computed by the kernel.

BPF_LWT_ENCAP_SEG6_INLINE
Only works if skb contains an IPv6 packet. Insert a Segment
Routing Header (struct ipv6_sr_hdr) inside the IPv6 header.

BPF_LWT_ENCAP_IP
IP encapsulation (GRE/GUE/IPIP/etc). The outer header must
be IPv4 or IPv6, followed by zero or more additional headers,
up to LWT_BPF_MAX_HEADROOM total bytes in all
prepended headers. Please note that if skb_is_gso(skb) is true,
no more than two headers can be prepended, and the inner
header, if present, should be either GRE or UDP/GUE.

Linux v6.17 2025-06-26 3277

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

BPF_LWT_ENCAP_SEG6* types can be called by BPF programs of
type BPF_PROG_TYPE_LWT_IN; BPF_LWT_ENCAP_IP type
can be called by bpf programs of types
BPF_PROG_TYPE_LWT_IN and
BPF_PROG_TYPE_LWT_XMIT.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_lwt_seg6_store_bytes(struct sk_buff *skb, u32 offset, const void *from, u32
len)

Description
Store len bytes from address from into the packet associated to skb, at
offset. Only the flags, tag and TLVs inside the outermost IPv6 Segment
Routing Header can be modified through this helper.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_lwt_seg6_adjust_srh(struct sk_buff *skb, u32 offset, s32 delta)

Description
Adjust the size allocated to TLVs in the outermost IPv6 Segment Rout-
ing Header contained in the packet associated to skb, at position offset
by delta bytes. Only offsets after the segments are accepted. delta can
be as well positive (growing) as negative (shrinking).

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the helper
is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_lwt_seg6_action(struct sk_buff *skb, u32 action, void *param, u32
param_len)

Description
Apply an IPv6 Segment Routing action of type action to the packet as-
sociated to skb. Each action takes a parameter contained at address

Linux v6.17 2025-06-26 3278

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

param, and of length param_len bytes. action can be one of:

SEG6_LOCAL_ACTION_END_X
End.X action: Endpoint with Layer-3 cross-connect. Type of
param: struct in6_addr.

SEG6_LOCAL_ACTION_END_T
End.T action: Endpoint with specific IPv6 table lookup. Type
of param: int.

SEG6_LOCAL_ACTION_END_B6
End.B6 action: Endpoint bound to an SRv6 policy. Type of
param: struct ipv6_sr_hdr.

SEG6_LOCAL_ACTION_END_B6_ENCAP
End.B6.Encap action: Endpoint bound to an SRv6 encapsula-
tion policy. Type of param: struct ipv6_sr_hdr.

A call to this helper is susceptible to change the underlying packet
buffer. Therefore, at load time, all checks on pointers previously done
by the verifier are invalidated and must be performed again, if the
helper is used in combination with direct packet access.

Return
0 on success, or a negative error in case of failure.

long bpf_rc_repeat(void *ctx)

Description
This helper is used in programs implementing IR decoding, to report a
successfully decoded repeat key message. This delays the generation of
a key up event for previously generated key down event.

Some IR protocols like NEC have a special IR message for repeating
last button, for when a button is held down.

The ctx should point to the lirc sample as passed into the program.

This helper is only available is the kernel was compiled with the CON-
FIG_BPF_LIRC_MODE2 configuration option set to "y".

Return

long bpf_rc_keydown(void *ctx, u32 protocol, u64 scancode, u32 toggle)

Description
This helper is used in programs implementing IR decoding, to report a
successfully decoded key press with scancode, toggle value in the given
protocol. The scancode will be translated to a keycode using the rc
keymap, and reported as an input key down event. After a period a key
up event is generated. This period can be extended by calling either
bpf_rc_keydown() again with the same values, or calling bpf_rc_re-
peat().

Linux v6.17 2025-06-26 3279

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Some protocols include a toggle bit, in case the button was released and
pressed again between consecutive scancodes.

The ctx should point to the lirc sample as passed into the program.

The protocol is the decoded protocol number (see enum rc_proto for
some predefined values).

This helper is only available is the kernel was compiled with the CON-
FIG_BPF_LIRC_MODE2 configuration option set to "y".

Return

u64 bpf_skb_cgroup_id(struct sk_buff *skb)

Description
Return the cgroup v2 id of the socket associated with the skb. This is
roughly similar to the bpf_get_cgroup_classid() helper for cgroup v1
by providing a tag resp. identifier that can be matched on or used for
map lookups e.g. to implement policy. The cgroup v2 id of a given path
in the hierarchy is exposed in user space through the f_handle API in or-
der to get to the same 64-bit id.

This helper can be used on TC egress path, but not on ingress, and is
available only if the kernel was compiled with the CON-
FIG_SOCK_CGROUP_DATA configuration option.

Return
The id is returned or 0 in case the id could not be retrieved.

u64 bpf_get_current_cgroup_id(void)

Description
Get the current cgroup id based on the cgroup within which the current
task is running.

Return
A 64-bit integer containing the current cgroup id based on the cgroup
within which the current task is running.

void *bpf_get_local_storage(void *map, u64 flags)

Description
Get the pointer to the local storage area. The type and the size of the lo-
cal storage is defined by the map argument. The flags meaning is spe-
cific for each map type, and has to be 0 for cgroup local storage.

Depending on the BPF program type, a local storage area can be shared
between multiple instances of the BPF program, running simultane-
ously.

A user should care about the synchronization by himself. For example,

Linux v6.17 2025-06-26 3280

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

by using the BPF_ATOMIC instructions to alter the shared data.

Return
A pointer to the local storage area.

long bpf_sk_select_reuseport(struct sk_reuseport_md *reuse, struct bpf_map
*map, void *key, u64 flags)

Description
Select a SO_REUSEPORT socket from a
BPF_MAP_TYPE_REUSEPORT_SOCKARRAY map. It checks
the selected socket is matching the incoming request in the socket
buffer.

Return
0 on success, or a negative error in case of failure.

u64 bpf_skb_ancestor_cgroup_id(struct sk_buff *skb, int ancestor_level)

Description
Return id of cgroup v2 that is ancestor of cgroup associated with the skb
at the ancestor_level. The root cgroup is at ancestor_level zero and
each step down the hierarchy increments the level. If ancestor_level ==
level of cgroup associated with skb, then return value will be same as
that of bpf_skb_cgroup_id().

The helper is useful to implement policies based on cgroups that are up-
per in hierarchy than immediate cgroup associated with skb.

The format of returned id and helper limitations are same as in
bpf_skb_cgroup_id().

Return
The id is returned or 0 in case the id could not be retrieved.

struct bpf_sock *bpf_sk_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32 tu-
ple_size, u64 netns, u64 flags)

Description
Look for TCP socket matching tuple, optionally in a child network
namespace netns. The return value must be checked, and if non-NULL,
released via bpf_sk_release().

The ctx should point to the context of the program, such as the skb or
socket (depending on the hook in use). This is used to determine the
base network namespace for the lookup.

tuple_size must be one of:

sizeof(tuple->ipv4)
Look for an IPv4 socket.

Linux v6.17 2025-06-26 3281

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

sizeof(tuple->ipv6)
Look for an IPv6 socket.

If the netns is a negative signed 32-bit integer, then the socket lookup
table in the netns associated with the ctx will be used. For the TC
hooks, this is the netns of the device in the skb. For socket hooks, this
is the netns of the socket. If netns is any other signed 32-bit value
greater than or equal to zero then it specifies the ID of the netns rela-
tive to the netns associated with the ctx. netns values beyond the range
of 32-bit integers are reserved for future use.

All values for flags are reserved for future usage, and must be left at
zero.

This helper is available only if the kernel was compiled with CON-
FIG_NET configuration option.

Return
Pointer to struct bpf_sock, or NULL in case of failure. For sockets
with reuseport option, the struct bpf_sock result is from
reuse->socks[] using the hash of the tuple.

struct bpf_sock *bpf_sk_lookup_udp(void *ctx, struct bpf_sock_tuple *tuple, u32
tuple_size, u64 netns, u64 flags)

Description
Look for UDP socket matching tuple, optionally in a child network
namespace netns. The return value must be checked, and if non-NULL,
released via bpf_sk_release().

The ctx should point to the context of the program, such as the skb or
socket (depending on the hook in use). This is used to determine the
base network namespace for the lookup.

tuple_size must be one of:

sizeof(tuple->ipv4)
Look for an IPv4 socket.

sizeof(tuple->ipv6)
Look for an IPv6 socket.

If the netns is a negative signed 32-bit integer, then the socket lookup
table in the netns associated with the ctx will be used. For the TC
hooks, this is the netns of the device in the skb. For socket hooks, this
is the netns of the socket. If netns is any other signed 32-bit value
greater than or equal to zero then it specifies the ID of the netns rela-
tive to the netns associated with the ctx. netns values beyond the range
of 32-bit integers are reserved for future use.

Linux v6.17 2025-06-26 3282

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

All values for flags are reserved for future usage, and must be left at
zero.

This helper is available only if the kernel was compiled with CON-
FIG_NET configuration option.

Return
Pointer to struct bpf_sock, or NULL in case of failure. For sockets
with reuseport option, the struct bpf_sock result is from
reuse->socks[] using the hash of the tuple.

long bpf_sk_release(void *sock)

Description
Release the reference held by sock. sock must be a non-NULL pointer
that was returned from bpf_sk_lookup_xxx().

Return
0 on success, or a negative error in case of failure.

long bpf_map_push_elem(struct bpf_map *map, const void *value, u64 flags)

Description
Push an element value in map. flags is one of:

BPF_EXIST
If the queue/stack is full, the oldest element is removed to make
room for this.

Return
0 on success, or a negative error in case of failure.

long bpf_map_pop_elem(struct bpf_map *map, void *value)

Description
Pop an element from map.

Return
0 on success, or a negative error in case of failure.

long bpf_map_peek_elem(struct bpf_map *map, void *value)

Description
Get an element from map without removing it.

Return
0 on success, or a negative error in case of failure.

long bpf_msg_push_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)

Description
For socket policies, insert len bytes into msg at offset start.

If a program of type BPF_PROG_TYPE_SK_MSG is run on a msg it
may want to insert metadata or options into the msg. This can later be
read and used by any of the lower layer BPF hooks.

Linux v6.17 2025-06-26 3283

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

This helper may fail if under memory pressure (a malloc fails) in these
cases BPF programs will get an appropriate error and BPF programs
will need to handle them.

Return
0 on success, or a negative error in case of failure.

long bpf_msg_pop_data(struct sk_msg_buff *msg, u32 start, u32 len, u64 flags)

Description
Will remove len bytes from a msg starting at byte start. This may result
in ENOMEM errors under certain situations if an allocation and copy
are required due to a full ring buffer. However, the helper will try to
avoid doing the allocation if possible. Other errors can occur if input pa-
rameters are invalid either due to start byte not being valid part of msg
payload and/or pop value being to large.

Return
0 on success, or a negative error in case of failure.

long bpf_rc_pointer_rel(void *ctx, s32 rel_x, s32 rel_y)

Description
This helper is used in programs implementing IR decoding, to report a
successfully decoded pointer movement.

The ctx should point to the lirc sample as passed into the program.

This helper is only available is the kernel was compiled with the CON-
FIG_BPF_LIRC_MODE2 configuration option set to "y".

Return

long bpf_spin_lock(struct bpf_spin_lock *lock)

Description
Acquire a spinlock represented by the pointer lock, which is stored as
part of a value of a map. Taking the lock allows to safely update the rest
of the fields in that value. The spinlock can (and must) later be released
with a call to bpf_spin_unlock(lock).

Spinlocks in BPF programs come with a number of restrictions and con-
straints:

• bpf_spin_lock objects are only allowed inside maps of types
BPF_MAP_TYPE_HASH and BPF_MAP_TYPE_ARRAY (this
list could be extended in the future).

• BTF description of the map is mandatory.

• The BPF program can take ONE lock at a time, since taking two or
more could cause dead locks.

Linux v6.17 2025-06-26 3284

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• Only one struct bpf_spin_lock is allowed per map element.

• When the lock is taken, calls (either BPF to BPF or helpers) are not
allowed.

• The BPF_LD_ABS and BPF_LD_IND instructions are not allowed
inside a spinlock-ed region.

• The BPF program MUST call bpf_spin_unlock() to release the
lock, on all execution paths, before it returns.

• The BPF program can access struct bpf_spin_lock only via the
bpf_spin_lock() and bpf_spin_unlock() helpers. Loading or storing
data into the struct bpf_spin_lock lock; field of a map is not al-
lowed.

• To use the bpf_spin_lock() helper, the BTF description of the map
value must be a struct and have struct bpf_spin_lock anyname;
field at the top level. Nested lock inside another struct is not al-
lowed.

• The struct bpf_spin_lock lock field in a map value must be aligned
on a multiple of 4 bytes in that value.

• Syscall with command BPF_MAP_LOOKUP_ELEM does not
copy the bpf_spin_lock field to user space.

• Syscall with command BPF_MAP_UPDATE_ELEM, or update
from a BPF program, do not update the bpf_spin_lock field.

• bpf_spin_lock cannot be on the stack or inside a networking packet
(it can only be inside of a map values).

• bpf_spin_lock is available to root only.

• Tracing programs and socket filter programs cannot use
bpf_spin_lock() due to insufficient preemption checks (but this may
change in the future).

• bpf_spin_lock is not allowed in inner maps of map-in-map.

Return

long bpf_spin_unlock(struct bpf_spin_lock *lock)

Description
Release the lock previously locked by a call to bpf_spin_lock(lock).

Return

struct bpf_sock *bpf_sk_fullsock(struct bpf_sock *sk)

Description
This helper gets a struct bpf_sock pointer such that all the fields in this
bpf_sock can be accessed.

Linux v6.17 2025-06-26 3285

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
A struct bpf_sock pointer on success, or NULL in case of failure.

struct bpf_tcp_sock *bpf_tcp_sock(struct bpf_sock *sk)

Description
This helper gets a struct bpf_tcp_sock pointer from a struct bpf_sock
pointer.

Return
A struct bpf_tcp_sock pointer on success, or NULL in case of failure.

long bpf_skb_ecn_set_ce(struct sk_buff *skb)

Description
Set ECN (Explicit Congestion Notification) field of IP header to CE
(Congestion Encountered) if current value is ECT (ECN Capable Trans-
port). Otherwise, do nothing. Works with IPv6 and IPv4.

Return
1 if the CE flag is set (either by the current helper call or because it was
already present), 0 if it is not set.

struct bpf_sock *bpf_get_listener_sock(struct bpf_sock *sk)

Description
Return a struct bpf_sock pointer in TCP_LISTEN state. bpf_sk_re-
lease() is unnecessary and not allowed.

Return
A struct bpf_sock pointer on success, or NULL in case of failure.

struct bpf_sock *bpf_skc_lookup_tcp(void *ctx, struct bpf_sock_tuple *tuple, u32
tuple_size, u64 netns, u64 flags)

Description
Look for TCP socket matching tuple, optionally in a child network
namespace netns. The return value must be checked, and if non-NULL,
released via bpf_sk_release().

This function is identical to bpf_sk_lookup_tcp(), except that it also re-
turns timewait or request sockets. Use bpf_sk_fullsock() or
bpf_tcp_sock() to access the full structure.

This helper is available only if the kernel was compiled with CON-
FIG_NET configuration option.

Return
Pointer to struct bpf_sock, or NULL in case of failure. For sockets
with reuseport option, the struct bpf_sock result is from
reuse->socks[] using the hash of the tuple.

long bpf_tcp_check_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th,
u32 th_len)

Linux v6.17 2025-06-26 3286

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Check whether iph and th contain a valid SYN cookie ACK for the lis-
tening socket in sk.

iph points to the start of the IPv4 or IPv6 header, while iph_len contains
sizeof(struct iphdr) or sizeof(struct ipv6hdr).

th points to the start of the TCP header, while th_len contains the length
of the TCP header (at least sizeof(struct tcphdr)).

Return
0 if iph and th are a valid SYN cookie ACK, or a negative error other-
wise.

long bpf_sysctl_get_name(struct bpf_sysctl *ctx, char *buf, size_t buf_len, u64 flags)

Description
Get name of sysctl in /proc/sys/ and copy it into provided by program
buffer buf of size buf_len.

The buffer is always NUL terminated, unless it's zero-sized.

If flags is zero, full name (e.g. "net/ipv4/tcp_mem") is copied. Use
BPF_F_SYSCTL_BASE_NAME flag to copy base name only (e.g.
"tcp_mem").

Return
Number of character copied (not including the trailing NUL).

-E2BIG if the buffer wasn't big enough (buf will contain truncated
name in this case).

long bpf_sysctl_get_current_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)

Description
Get current value of sysctl as it is presented in /proc/sys (incl. newline,
etc), and copy it as a string into provided by program buffer buf of size
buf_len.

The whole value is copied, no matter what file position user space is-
sued e.g. sys_read at.

The buffer is always NUL terminated, unless it's zero-sized.

Return
Number of character copied (not including the trailing NUL).

-E2BIG if the buffer wasn't big enough (buf will contain truncated
name in this case).

-EINVAL if current value was unavailable, e.g. because sysctl is

Linux v6.17 2025-06-26 3287

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

uninitialized and read returns -EIO for it.

long bpf_sysctl_get_new_value(struct bpf_sysctl *ctx, char *buf, size_t buf_len)

Description
Get new value being written by user space to sysctl (before the actual
write happens) and copy it as a string into provided by program buffer
buf of size buf_len.

User space may write new value at file position > 0.

The buffer is always NUL terminated, unless it's zero-sized.

Return
Number of character copied (not including the trailing NUL).

-E2BIG if the buffer wasn't big enough (buf will contain truncated
name in this case).

-EINVAL if sysctl is being read.

long bpf_sysctl_set_new_value(struct bpf_sysctl *ctx, const char *buf, size_t
buf_len)

Description
Override new value being written by user space to sysctl with value pro-
vided by program in buffer buf of size buf_len.

buf should contain a string in same form as provided by user space on
sysctl write.

User space may write new value at file position > 0. To override the
whole sysctl value file position should be set to zero.

Return
0 on success.

-E2BIG if the buf_len is too big.

-EINVAL if sysctl is being read.

long bpf_strtol(const char *buf, size_t buf_len, u64 flags, long *res)

Description
Convert the initial part of the string from buffer buf of size buf_len to a
long integer according to the given base and save the result in res.

The string may begin with an arbitrary amount of white space (as deter-
mined by isspace(3)) followed by a single optional '- ' sign.

Five least significant bits of flags encode base, other bits are currently
unused.

Linux v6.17 2025-06-26 3288

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Base must be either 8, 10, 16 or 0 to detect it automatically similar to
user space strtol(3).

Return
Number of characters consumed on success. Must be positive but no
more than buf_len.

-EINVAL if no valid digits were found or unsupported base was pro-
vided.

-ERANGE if resulting value was out of range.

long bpf_strtoul(const char *buf, size_t buf_len, u64 flags, unsigned long *res)

Description
Convert the initial part of the string from buffer buf of size buf_len to an
unsigned long integer according to the given base and save the result in
res.

The string may begin with an arbitrary amount of white space (as deter-
mined by isspace(3)).

Five least significant bits of flags encode base, other bits are currently
unused.

Base must be either 8, 10, 16 or 0 to detect it automatically similar to
user space strtoul(3).

Return
Number of characters consumed on success. Must be positive but no
more than buf_len.

-EINVAL if no valid digits were found or unsupported base was pro-
vided.

-ERANGE if resulting value was out of range.

void *bpf_sk_storage_get(struct bpf_map *map, void *sk, void *value, u64 flags)

Description
Get a bpf-local-storage from a sk.

Logically, it could be thought of getting the value from a map with sk as
the key. From this perspective, the usage is not much different from
bpf_map_lookup_elem(map, &sk) except this helper enforces the key
must be a full socket and the map must be a
BPF_MAP_TYPE_SK_STORAGE also.

Underneath, the value is stored locally at sk instead of the map. The
map is used as the bpf-local-storage "type". The bpf-local-storage
"type" (i.e. the map) is searched against all bpf-local-storages residing

Linux v6.17 2025-06-26 3289

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

at sk.

sk is a kernel struct sock pointer for LSM program. sk is a struct
bpf_sock pointer for other program types.

An optional flags (BPF_SK_STORAGE_GET_F_CREATE) can be
used such that a new bpf-local-storage will be created if one does not
exist. value can be used together with BPF_SK_STOR-
AGE_GET_F_CREATE to specify the initial value of a bpf-lo-
cal-storage. If value is NULL, the new bpf-local-storage will be zero
initialized.

Return
A bpf-local-storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf-lo-
cal-storage.

long bpf_sk_storage_delete(struct bpf_map *map, void *sk)

Description
Delete a bpf-local-storage from a sk.

Return
0 on success.

-ENOENT if the bpf-local-storage cannot be found. -EINVAL if sk
is not a fullsock (e.g. a request_sock).

long bpf_send_signal(u32 sig)

Description
Send signal sig to the process of the current task. The signal may be de-
livered to any of this process's threads.

Return
0 on success or successfully queued.

-EBUSY if work queue under nmi is full.

-EINVAL if sig is invalid.

-EPERM if no permission to send the sig.

-EAGAIN if bpf program can try again.

s64 bpf_tcp_gen_syncookie(void *sk, void *iph, u32 iph_len, struct tcphdr *th, u32
th_len)

Description
Try to issue a SYN cookie for the packet with corresponding IP/TCP
headers, iph and th, on the listening socket in sk.

Linux v6.17 2025-06-26 3290

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

iph points to the start of the IPv4 or IPv6 header, while iph_len contains
sizeof(struct iphdr) or sizeof(struct ipv6hdr).

th points to the start of the TCP header, while th_len contains the length
of the TCP header with options (at least sizeof(struct tcphdr)).

Return
On success, lower 32 bits hold the generated SYN cookie in followed
by 16 bits which hold the MSS value for that cookie, and the top 16 bits
are unused.

On failure, the returned value is one of the following:

-EINVAL SYN cookie cannot be issued due to error

-ENOENT SYN cookie should not be issued (no SYN flood)

-EOPNOTSUPP kernel configuration does not enable SYN cookies

-EPROTONOSUPPORT IP packet version is not 4 or 6

long bpf_skb_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64
size)

Description
Write raw data blob into a special BPF perf event held by map of type
BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event must
have the following attributes: PERF_SAMPLE_RAW as sample_type,
PERF_TYPE_SOFTWARE as type, and
PERF_COUNT_SW_BPF_OUTPUT as config.

The flags are used to indicate the index in map for which the value must
be put, masked with BPF_F_INDEX_MASK. Alternatively, flags can
be set to BPF_F_CURRENT_CPU to indicate that the index of the
current CPU core should be used.

The value to write, of size, is passed through eBPF stack and pointed by
data.

ctx is a pointer to in-kernel struct sk_buff.

This helper is similar to bpf_perf_event_output() but restricted to
raw_tracepoint bpf programs.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_user(void *dst, u32 size, const void *unsafe_ptr)

Linux v6.17 2025-06-26 3291

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Safely attempt to read size bytes from user space address unsafe_ptr and
store the data in dst.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_kernel(void *dst, u32 size, const void *unsafe_ptr)

Description
Safely attempt to read size bytes from kernel space address unsafe_ptr
and store the data in dst.

Return
0 on success, or a negative error in case of failure.

long bpf_probe_read_user_str(void *dst, u32 size, const void *unsafe_ptr)

Description
Copy a NUL terminated string from an unsafe user address unsafe_ptr
to dst. The size should include the terminating NUL byte. In case the
string length is smaller than size, the target is not padded with further
NUL bytes. If the string length is larger than size, just size-1 bytes are
copied and the last byte is set to NUL.

On success, returns the number of bytes that were written, including the
terminal NUL. This makes this helper useful in tracing programs for
reading strings, and more importantly to get its length at runtime. See
the following snippet:

SEC("kprobe/sys_open")
void bpf_sys_open(struct pt_regs *ctx)
{

char buf[PATHLEN]; // PATHLEN is defined to 256
int res = bpf_probe_read_user_str(buf, sizeof(buf),

ctx->di);
// Consume buf, for example push it to
// userspace via bpf_perf_event_output(); we
// can use res (the string length) as event
// size, after checking its boundaries.

}

In comparison, using bpf_probe_read_user() helper here instead to
read the string would require to estimate the length at compile time,
and would often result in copying more memory than necessary.

Another useful use case is when parsing individual process arguments
or individual environment variables navigating cur-
rent->mm->arg_start and current->mm->env_start: using this
helper and the return value, one can quickly iterate at the right offset of
the memory area.

Linux v6.17 2025-06-26 3292

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
On success, the strictly positive length of the output string, including the
trailing NUL character. On error, a negative value.

long bpf_probe_read_kernel_str(void *dst, u32 size, const void *unsafe_ptr)

Description
Copy a NUL terminated string from an unsafe kernel address unsafe_ptr
to dst. Same semantics as with bpf_probe_read_user_str() apply.

Return
On success, the strictly positive length of the string, including the trail-
ing NUL character. On error, a negative value.

long bpf_tcp_send_ack(void *tp, u32 rcv_nxt)

Description
Send out a tcp-ack. tp is the in-kernel struct tcp_sock. rcv_nxt is the
ack_seq to be sent out.

Return
0 on success, or a negative error in case of failure.

long bpf_send_signal_thread(u32 sig)

Description
Send signal sig to the thread corresponding to the current task.

Return
0 on success or successfully queued.

-EBUSY if work queue under nmi is full.

-EINVAL if sig is invalid.

-EPERM if no permission to send the sig.

-EAGAIN if bpf program can try again.

u64 bpf_jiffies64(void)

Description
Obtain the 64bit jiffies

Return
The 64 bit jiffies

long bpf_read_branch_records(struct bpf_perf_event_data *ctx, void *buf, u32 size,
u64 flags)

Description
For an eBPF program attached to a perf event, retrieve the branch
records (struct perf_branch_entry) associated to ctx and store it in the
buffer pointed by buf up to size size bytes.

Linux v6.17 2025-06-26 3293

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
On success, number of bytes written to buf. On error, a negative value.

The flags can be set to BPF_F_GET_BRANCH_RECORDS_SIZE to
instead return the number of bytes required to store all the branch en-
tries. If this flag is set, buf may be NULL.

-EINVAL if arguments invalid or size not a multiple of sizeof(struct
perf_branch_entry).

-ENOENT if architecture does not support branch records.

long bpf_get_ns_current_pid_tgid(u64 dev, u64 ino, struct bpf_pidns_info *nsdata,
u32 size)

Description
Returns 0 on success, values for pid and tgid as seen from the current
namespace will be returned in nsdata.

Return
0 on success, or one of the following in case of failure:

-EINVAL if dev and inum supplied don't match dev_t and inode num-
ber with nsfs of current task, or if dev conversion to dev_t lost high bits.

-ENOENT if pidns does not exists for the current task.

long bpf_xdp_output(void *ctx, struct bpf_map *map, u64 flags, void *data, u64
size)

Description
Write raw data blob into a special BPF perf event held by map of type
BPF_MAP_TYPE_PERF_EVENT_ARRAY. This perf event must
have the following attributes: PERF_SAMPLE_RAW as sample_type,
PERF_TYPE_SOFTWARE as type, and
PERF_COUNT_SW_BPF_OUTPUT as config.

The flags are used to indicate the index in map for which the value must
be put, masked with BPF_F_INDEX_MASK. Alternatively, flags can
be set to BPF_F_CURRENT_CPU to indicate that the index of the
current CPU core should be used.

The value to write, of size, is passed through eBPF stack and pointed by
data.

ctx is a pointer to in-kernel struct xdp_buff.

This helper is similar to bpf_perf_eventoutput() but restricted to
raw_tracepoint bpf programs.

Linux v6.17 2025-06-26 3294

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 on success, or a negative error in case of failure.

u64 bpf_get_netns_cookie(void *ctx)

Description
Retrieve the cookie (generated by the kernel) of the network namespace
the input ctx is associated with. The network namespace cookie remains
stable for its lifetime and provides a global identifier that can be as-
sumed unique. If ctx is NULL, then the helper returns the cookie for the
initial network namespace. The cookie itself is very similar to that of
bpf_get_socket_cookie() helper, but for network namespaces instead of
sockets.

Return
A 8-byte long opaque number.

u64 bpf_get_current_ancestor_cgroup_id(int ancestor_level)

Description
Return id of cgroup v2 that is ancestor of the cgroup associated with the
current task at the ancestor_level. The root cgroup is at ancestor_level
zero and each step down the hierarchy increments the level. If ances-
tor_level == level of cgroup associated with the current task, then return
value will be the same as that of bpf_get_current_cgroup_id().

The helper is useful to implement policies based on cgroups that are up-
per in hierarchy than immediate cgroup associated with the current task.

The format of returned id and helper limitations are same as in
bpf_get_current_cgroup_id().

Return
The id is returned or 0 in case the id could not be retrieved.

long bpf_sk_assign(struct sk_buff *skb, void *sk, u64 flags)

Description
Helper is overloaded depending on BPF program type. This description
applies to BPF_PROG_TYPE_SCHED_CLS and
BPF_PROG_TYPE_SCHED_ACT programs.

Assign the sk to the skb. When combined with appropriate routing con-
figuration to receive the packet towards the socket, will cause skb to be
delivered to the specified socket. Subsequent redirection of skb via
bpf_redirect(), bpf_clone_redirect() or other methods outside of BPF
may interfere with successful delivery to the socket.

This operation is only valid from TC ingress path.

The flags argument must be zero.

Linux v6.17 2025-06-26 3295

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
0 on success, or a negative error in case of failure:

-EINVAL if specified flags are not supported.

-ENOENT if the socket is unavailable for assignment.

-ENETUNREACH if the socket is unreachable (wrong netns).

-EOPNOTSUPP if the operation is not supported, for example a call
from outside of TC ingress.

long bpf_sk_assign(struct bpf_sk_lookup *ctx, struct bpf_sock *sk, u64 flags)

Description
Helper is overloaded depending on BPF program type. This description
applies to BPF_PROG_TYPE_SK_LOOKUP programs.

Select the sk as a result of a socket lookup.

For the operation to succeed passed socket must be compatible with the
packet description provided by the ctx object.

L4 protocol (IPPROTO_TCP or IPPROTO_UDP) must be an exact
match. While IP family (AF_INET or AF_INET6) must be compatible,
that is IPv6 sockets that are not v6-only can be selected for IPv4 pack-
ets.

Only TCP listeners and UDP unconnected sockets can be selected. sk
can also be NULL to reset any previous selection.

flags argument can combination of following values:

• BPF_SK_LOOKUP_F_REPLACE to override the previous socket
selection, potentially done by a BPF program that ran before us.

• BPF_SK_LOOKUP_F_NO_REUSEPORT to skip load-balanc-
ing within reuseport group for the socket being selected.

On success ctx->sk will point to the selected socket.

Return
0 on success, or a negative errno in case of failure.

• -EAFNOSUPPORT if socket family (sk->family) is not compati-
ble with packet family (ctx->family).

• -EEXIST if socket has been already selected, potentially by an-
other program, and BPF_SK_LOOKUP_F_REPLACE flag was
not specified.

Linux v6.17 2025-06-26 3296

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• -EINVAL if unsupported flags were specified.

• -EPROTOTYPE if socket L4 protocol (sk->protocol) doesn't
match packet protocol (ctx->protocol).

• -ESOCKTNOSUPPORT if socket is not in allowed state (TCP lis-
tening or UDP unconnected).

u64 bpf_ktime_get_boot_ns(void)

Description
Return the time elapsed since system boot, in nanoseconds. Does in-
clude the time the system was suspended. See: clock_get-
time(CLOCK_BOOTTIME)

Return
Current ktime.

long bpf_seq_printf(struct seq_file *m, const char *fmt, u32 fmt_size, const void
*data, u32 data_len)

Description
bpf_seq_printf() uses seq_file seq_printf() to print out the format
string. The m represents the seq_file. The fmt and fmt_size are for the
format string itself. The data and data_len are format string arguments.
The data are a u64 array and corresponding format string values are
stored in the array. For strings and pointers where pointees are accessed,
only the pointer values are stored in the data array. The data_len is the
size of data in bytes - must be a multiple of 8.

Formats %s, %p{i,I}{4,6} requires to read kernel memory. Reading
kernel memory may fail due to either invalid address or valid address
but requiring a major memory fault. If reading kernel memory fails, the
string for %s will be an empty string, and the ip address for
%p{i,I}{4,6} will be 0. Not returning error to bpf program is consistent
with what bpf_trace_printk() does for now.

Return
0 on success, or a negative error in case of failure:

-EBUSY if per-CPU memory copy buffer is busy, can try again by re-
turning 1 from bpf program.

-EINVAL if arguments are invalid, or if fmt is invalid/unsupported.

-E2BIG if fmt contains too many format specifiers.

-EOVERFLOW if an overflow happened: The same object will be
tried again.

Linux v6.17 2025-06-26 3297

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_seq_write(struct seq_file *m, const void *data, u32 len)

Description
bpf_seq_write() uses seq_file seq_write() to write the data. The m rep-
resents the seq_file. The data and len represent the data to write in
bytes.

Return
0 on success, or a negative error in case of failure:

-EOVERFLOW if an overflow happened: The same object will be
tried again.

u64 bpf_sk_cgroup_id(void *sk)

Description
Return the cgroup v2 id of the socket sk.

sk must be a non-NULL pointer to a socket, e.g. one returned from
bpf_sk_lookup_xxx(), bpf_sk_fullsock(), etc. The format of returned
id is same as in bpf_skb_cgroup_id().

This helper is available only if the kernel was compiled with the CON-
FIG_SOCK_CGROUP_DATA configuration option.

Return
The id is returned or 0 in case the id could not be retrieved.

u64 bpf_sk_ancestor_cgroup_id(void *sk, int ancestor_level)

Description
Return id of cgroup v2 that is ancestor of cgroup associated with the sk
at the ancestor_level. The root cgroup is at ancestor_level zero and
each step down the hierarchy increments the level. If ancestor_level ==
level of cgroup associated with sk, then return value will be same as that
of bpf_sk_cgroup_id().

The helper is useful to implement policies based on cgroups that are up-
per in hierarchy than immediate cgroup associated with sk.

The format of returned id and helper limitations are same as in
bpf_sk_cgroup_id().

Return
The id is returned or 0 in case the id could not be retrieved.

long bpf_ringbuf_output(void *ringbuf, void *data, u64 size, u64 flags)

Description
Copy size bytes from data into a ring buffer ringbuf. If
BPF_RB_NO_WAKEUP is specified in flags, no notification of new
data availability is sent. If BPF_RB_FORCE_WAKEUP is specified
in flags, notification of new data availability is sent unconditionally. If 0

Linux v6.17 2025-06-26 3298

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

is specified in flags, an adaptive notification of new data availability is
sent.

An adaptive notification is a notification sent whenever the user-space
process has caught up and consumed all available payloads. In case the
user-space process is still processing a previous payload, then no notifi-
cation is needed as it will process the newly added payload automati-
cally.

Return
0 on success, or a negative error in case of failure.

void *bpf_ringbuf_reserve(void *ringbuf, u64 size, u64 flags)

Description
Reserve size bytes of payload in a ring buffer ringbuf. flags must be 0.

Return
Valid pointer with size bytes of memory available; NULL, otherwise.

void bpf_ringbuf_submit(void *data, u64 flags)

Description
Submit reserved ring buffer sample, pointed to by data. If
BPF_RB_NO_WAKEUP is specified in flags, no notification of new
data availability is sent. If BPF_RB_FORCE_WAKEUP is specified
in flags, notification of new data availability is sent unconditionally. If 0
is specified in flags, an adaptive notification of new data availability is
sent.

See 'bpf_ringbuf_output()' for the definition of adaptive notification.

Return
Nothing. Always succeeds.

void bpf_ringbuf_discard(void *data, u64 flags)

Description
Discard reserved ring buffer sample, pointed to by data. If
BPF_RB_NO_WAKEUP is specified in flags, no notification of new
data availability is sent. If BPF_RB_FORCE_WAKEUP is specified
in flags, notification of new data availability is sent unconditionally. If 0
is specified in flags, an adaptive notification of new data availability is
sent.

See 'bpf_ringbuf_output()' for the definition of adaptive notification.

Return
Nothing. Always succeeds.

u64 bpf_ringbuf_query(void *ringbuf, u64 flags)

Linux v6.17 2025-06-26 3299

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Query various characteristics of provided ring buffer. What exactly is
queries is determined by flags:

• BPF_RB_AVAIL_DATA: Amount of data not yet consumed.

• BPF_RB_RING_SIZE: The size of ring buffer.

• BPF_RB_CONS_POS: Consumer position (can wrap around).

• BPF_RB_PROD_POS: Producer(s) position (can wrap around).

Data returned is just a momentary snapshot of actual values and could
be inaccurate, so this facility should be used to power heuristics and
for reporting, not to make 100% correct calculation.

Return
Requested value, or 0, if flags are not recognized.

long bpf_csum_level(struct sk_buff *skb, u64 level)

Description
Change the skbs checksum level by one layer up or down, or reset it en-
tirely to none in order to have the stack perform checksum validation.
The level is applicable to the following protocols: TCP, UDP, GRE,
SCTP, FCOE. For example, a decap of | ETH | IP | UDP | GUE | IP |
TCP | into | ETH | IP | TCP | through bpf_skb_adjust_room() helper
with passing in BPF_F_ADJ_ROOM_NO_CSUM_RESET flag
would require one call to bpf_csum_level() with
BPF_CSUM_LEVEL_DEC since the UDP header is removed. Simi-
larly, an encap of the latter into the former could be accompanied by a
helper call to bpf_csum_level() with BPF_CSUM_LEVEL_INC if the
skb is still intended to be processed in higher layers of the stack instead
of just egressing at tc.

There are three supported level settings at this time:

• BPF_CSUM_LEVEL_INC: Increases skb->csum_level for skbs
with CHECKSUM_UNNECESSARY.

• BPF_CSUM_LEVEL_DEC: Decreases skb->csum_level for skbs
with CHECKSUM_UNNECESSARY.

• BPF_CSUM_LEVEL_RESET: Resets skb->csum_level to 0 and
sets CHECKSUM_NONE to force checksum validation by the
stack.

• BPF_CSUM_LEVEL_QUERY: No-op, returns the current
skb->csum_level.

Return
0 on success, or a negative error in case of failure. In the case of
BPF_CSUM_LEVEL_QUERY, the current skb->csum_level is re-
turned or the error code -EACCES in case the skb is not subject to

Linux v6.17 2025-06-26 3300

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

CHECKSUM_UNNECESSARY.

struct tcp6_sock *bpf_skc_to_tcp6_sock(void *sk)

Description
Dynamically cast a sk pointer to a tcp6_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct tcp_sock *bpf_skc_to_tcp_sock(void *sk)

Description
Dynamically cast a sk pointer to a tcp_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct tcp_timewait_sock *bpf_skc_to_tcp_timewait_sock(void *sk)

Description
Dynamically cast a sk pointer to a tcp_timewait_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct tcp_request_sock *bpf_skc_to_tcp_request_sock(void *sk)

Description
Dynamically cast a sk pointer to a tcp_request_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

struct udp6_sock *bpf_skc_to_udp6_sock(void *sk)

Description
Dynamically cast a sk pointer to a udp6_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

long bpf_get_task_stack(struct task_struct *task, void *buf, u32 size, u64 flags)

Description
Return a user or a kernel stack in bpf program provided buffer. Note:
the user stack will only be populated if the task is the current task; all
other tasks will return -EOPNOTSUPP. To achieve this, the helper
needs task, which is a valid pointer to struct task_struct. To store the
stacktrace, the bpf program provides buf with a nonnegative size.

The last argument, flags, holds the number of stack frames to skip (from
0 to 255), masked with BPF_F_SKIP_FIELD_MASK. The next bits
can be used to set the following flags:

BPF_F_USER_STACK
Collect a user space stack instead of a kernel stack. The task
must be the current task.

Linux v6.17 2025-06-26 3301

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

BPF_F_USER_BUILD_ID
Collect buildid+offset instead of ips for user stack, only valid if
BPF_F_USER_STACK is also specified.

bpf_get_task_stack() can collect up to
PERF_MAX_STACK_DEPTH both kernel and user frames, subject
to sufficient large buffer size. Note that this limit can be controlled
with the sysctl program, and that it should be manually increased in or-
der to profile long user stacks (such as stacks for Java programs). To
do so, use:

sysctl kernel.perf_event_max_stack=<new value>

Return
The non-negative copied buf length equal to or less than size on suc-
cess, or a negative error in case of failure.

long bpf_load_hdr_opt(struct bpf_sock_ops *skops, void *searchby_res, u32 len,
u64 flags)

Description
Load header option. Support reading a particular TCP header option for
bpf program (BPF_PROG_TYPE_SOCK_OPS).

If flags is 0, it will search the option from the skops->skb_data. The
comment in struct bpf_sock_ops has details on what skb_data contains
under different skops->op.

The first byte of the searchby_res specifies the kind that it wants to
search.

If the searching kind is an experimental kind (i.e. 253 or 254 according
to RFC6994). It also needs to specify the "magic" which is either 2
bytes or 4 bytes. It then also needs to specify the size of the magic by
using the 2nd byte which is "kind-length" of a TCP header option and
the "kind-length" also includes the first 2 bytes "kind" and
"kind-length" itself as a normal TCP header option also does.

For example, to search experimental kind 254 with 2 byte magic
0xeB9F, the searchby_res should be [254, 4, 0xeB, 0x9F, 0, 0, 0].

To search for the standard window scale option (3), the searchby_res
should be [3, 0, 0, 0]. Note, kind-length must be 0 for regular op-
tion.

Searching for No-Op (0) and End-of-Option-List (1) are not sup-
ported.

len must be at least 2 bytes which is the minimal size of a header option.

Linux v6.17 2025-06-26 3302

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Supported flags:

• BPF_LOAD_HDR_OPT_TCP_SYN to search from the saved_syn
packet or the just-received syn packet.

Return
> 0 when found, the header option is copied to searchby_res. The re-
turn value is the total length copied. On failure, a negative error code is
returned:

-EINVAL if a parameter is invalid.

-ENOMSG if the option is not found.

-ENOENT if no syn packet is available when
BPF_LOAD_HDR_OPT_TCP_SYN is used.

-ENOSPC if there is not enough space. Only len number of bytes are
copied.

-EFAULT on failure to parse the header options in the packet.

-EPERM if the helper cannot be used under the current skops->op.

long bpf_store_hdr_opt(struct bpf_sock_ops *skops, const void *from, u32 len, u64
flags)

Description
Store header option. The data will be copied from buffer from with
length len to the TCP header.

The buffer from should have the whole option that includes the kind,
kind-length, and the actual option data. The len must be at least
kind-length long. The kind-length does not have to be 4 byte aligned.
The kernel will take care of the padding and setting the 4 bytes aligned
value to th->doff.

This helper will check for duplicated option by searching the same op-
tion in the outgoing skb.

This helper can only be called during
BPF_SOCK_OPS_WRITE_HDR_OPT_CB.

Return
0 on success, or negative error in case of failure:

-EINVAL If param is invalid.

-ENOSPC if there is not enough space in the header. Nothing has been
written

Linux v6.17 2025-06-26 3303

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

-EEXIST if the option already exists.

-EFAULT on failure to parse the existing header options.

-EPERM if the helper cannot be used under the current skops->op.

long bpf_reserve_hdr_opt(struct bpf_sock_ops *skops, u32 len, u64 flags)

Description
Reserve len bytes for the bpf header option. The space will be used by
bpf_store_hdr_opt() later in
BPF_SOCK_OPS_WRITE_HDR_OPT_CB.

If bpf_reserve_hdr_opt() is called multiple times, the total number of
bytes will be reserved.

This helper can only be called during
BPF_SOCK_OPS_HDR_OPT_LEN_CB.

Return
0 on success, or negative error in case of failure:

-EINVAL if a parameter is invalid.

-ENOSPC if there is not enough space in the header.

-EPERM if the helper cannot be used under the current skops->op.

void *bpf_inode_storage_get(struct bpf_map *map, void *inode, void *value, u64
flags)

Description
Get a bpf_local_storage from an inode.

Logically, it could be thought of as getting the value from a map with
inode as the key. From this perspective, the usage is not much different
from bpf_map_lookup_elem(map, &inode) except this helper enforces
the key must be an inode and the map must also be a
BPF_MAP_TYPE_INODE_STORAGE.

Underneath, the value is stored locally at inode instead of the map. The
map is used as the bpf-local-storage "type". The bpf-local-storage
"type" (i.e. the map) is searched against all bpf_local_storage residing at
inode.

An optional flags (BPF_LOCAL_STORAGE_GET_F_CREATE) can
be used such that a new bpf_local_storage will be created if one does
not exist. value can be used together with BPF_LOCAL_STOR-
AGE_GET_F_CREATE to specify the initial value of a bpf_lo-
cal_storage. If value is NULL, the new bpf_local_storage will be zero

Linux v6.17 2025-06-26 3304

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

initialized.

Return
A bpf_local_storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf_lo-
cal_storage.

int bpf_inode_storage_delete(struct bpf_map *map, void *inode)

Description
Delete a bpf_local_storage from an inode.

Return
0 on success.

-ENOENT if the bpf_local_storage cannot be found.

long bpf_d_path(struct path *path, char *buf, u32 sz)

Description
Return full path for given struct path object, which needs to be the ker-
nel BTF path object. The path is returned in the provided buffer buf of
size sz and is zero terminated.

Return
On success, the strictly positive length of the string, including the trail-
ing NUL character. On error, a negative value.

long bpf_copy_from_user(void *dst, u32 size, const void *user_ptr)

Description
Read size bytes from user space address user_ptr and store the data in
dst. This is a wrapper of copy_from_user().

Return
0 on success, or a negative error in case of failure.

long bpf_snprintf_btf(char *str, u32 str_size, struct btf_ptr *ptr, u32 btf_ptr_size,
u64 flags)

Description
Use BTF to store a string representation of ptr->ptr in str, using
ptr->type_id. This value should specify the type that ptr->ptr points
to. LLVM __builtin_btf_type_id(type, 1) can be used to look up vm-
linux BTF type ids. Traversing the data structure using BTF, the type in-
formation and values are stored in the first str_size - 1 bytes of str.
Safe copy of the pointer data is carried out to avoid kernel crashes dur-
ing operation. Smaller types can use string space on the stack; larger
programs can use map data to store the string representation.

The string can be subsequently shared with userspace via
bpf_perf_event_output() or ring buffer interfaces. bpf_trace_printk() is
to be avoided as it places too small a limit on string size to be useful.

Linux v6.17 2025-06-26 3305

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

flags is a combination of

BTF_F_COMPACT
no formatting around type information

BTF_F_NONAME
no struct/union member names/types

BTF_F_PTR_RAW
show raw (unobfuscated) pointer values; equivalent to printk
specifier %px.

BTF_F_ZERO
show zero-valued struct/union members; they are not dis-
played by default

Return
The number of bytes that were written (or would have been written if
output had to be truncated due to string size), or a negative error in cases
of failure.

long bpf_seq_printf_btf(struct seq_file *m, struct btf_ptr *ptr, u32 ptr_size, u64
flags)

Description
Use BTF to write to seq_write a string representation of ptr->ptr, using
ptr->type_id as per bpf_snprintf_btf(). flags are identical to those used
for bpf_snprintf_btf.

Return
0 on success or a negative error in case of failure.

u64 bpf_skb_cgroup_classid(struct sk_buff *skb)

Description
See bpf_get_cgroup_classid() for the main description. This helper
differs from bpf_get_cgroup_classid() in that the cgroup v1 net_cls
class is retrieved only from the skb's associated socket instead of the
current process.

Return
The id is returned or 0 in case the id could not be retrieved.

long bpf_redirect_neigh(u32 ifindex, struct bpf_redir_neigh *params, int plen, u64
flags)

Description
Redirect the packet to another net device of index ifindex and fill in L2
addresses from neighboring subsystem. This helper is somewhat similar
to bpf_redirect(), except that it populates L2 addresses as well, mean-
ing, internally, the helper relies on the neighbor lookup for the L2 ad-
dress of the nexthop.

The helper will perform a FIB lookup based on the skb's networking
header to get the address of the next hop, unless this is supplied by the

Linux v6.17 2025-06-26 3306

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

caller in the params argument. The plen argument indicates the len of
params and should be set to 0 if params is NULL.

The flags argument is reserved and must be 0. The helper is currently
only supported for tc BPF program types, and enabled for IPv4 and
IPv6 protocols.

Return
The helper returns TC_ACT_REDIRECT on success or
TC_ACT_SHOT on error.

void *bpf_per_cpu_ptr(const void *percpu_ptr, u32 cpu)

Description
Take a pointer to a percpu ksym, percpu_ptr, and return a pointer to the
percpu kernel variable on cpu. A ksym is an extern variable decorated
with '__ksym'. For ksym, there is a global var (either static or global)
defined of the same name in the kernel. The ksym is percpu if the global
var is percpu. The returned pointer points to the global percpu var on
cpu.

bpf_per_cpu_ptr() has the same semantic as per_cpu_ptr() in the kernel,
except that bpf_per_cpu_ptr() may return NULL. This happens if cpu is
larger than nr_cpu_ids. The caller of bpf_per_cpu_ptr() must check the
returned value.

Return
A pointer pointing to the kernel percpu variable on cpu, or NULL, if
cpu is invalid.

void *bpf_this_cpu_ptr(const void *percpu_ptr)

Description
Take a pointer to a percpu ksym, percpu_ptr, and return a pointer to the
percpu kernel variable on this cpu. See the description of 'ksym' in
bpf_per_cpu_ptr().

bpf_this_cpu_ptr() has the same semantic as this_cpu_ptr() in the ker-
nel. Different from bpf_per_cpu_ptr(), it would never return NULL.

Return
A pointer pointing to the kernel percpu variable on this cpu.

long bpf_redirect_peer(u32 ifindex, u64 flags)

Description
Redirect the packet to another net device of index ifindex. This helper is
somewhat similar to bpf_redirect(), except that the redirection happens
to the ifindex' peer device and the netns switch takes place from ingress
to ingress without going through the CPU's backlog queue.

skb->mark and skb->tstamp are not cleared during the netns switch.

Linux v6.17 2025-06-26 3307

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

The flags argument is reserved and must be 0. The helper is currently
only supported for tc BPF program types at the ingress hook and for
veth and netkit target device types. The peer device must reside in a dif-
ferent network namespace.

Return
The helper returns TC_ACT_REDIRECT on success or
TC_ACT_SHOT on error.

void *bpf_task_storage_get(struct bpf_map *map, struct task_struct *task, void
*value, u64 flags)

Description
Get a bpf_local_storage from the task.

Logically, it could be thought of as getting the value from a map with
task as the key. From this perspective, the usage is not much different
from bpf_map_lookup_elem(map, &task) except this helper enforces
the key must be a task_struct and the map must also be a
BPF_MAP_TYPE_TASK_STORAGE.

Underneath, the value is stored locally at task instead of the map. The
map is used as the bpf-local-storage "type". The bpf-local-storage
"type" (i.e. the map) is searched against all bpf_local_storage residing at
task.

An optional flags (BPF_LOCAL_STORAGE_GET_F_CREATE) can
be used such that a new bpf_local_storage will be created if one does
not exist. value can be used together with BPF_LOCAL_STOR-
AGE_GET_F_CREATE to specify the initial value of a bpf_lo-
cal_storage. If value is NULL, the new bpf_local_storage will be zero
initialized.

Return
A bpf_local_storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf_lo-
cal_storage.

long bpf_task_storage_delete(struct bpf_map *map, struct task_struct *task)

Description
Delete a bpf_local_storage from a task.

Return
0 on success.

-ENOENT if the bpf_local_storage cannot be found.

struct task_struct *bpf_get_current_task_btf(void)

Linux v6.17 2025-06-26 3308

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Return a BTF pointer to the "current" task. This pointer can also be
used in helpers that accept an ARG_PTR_TO_BTF_ID of type
task_struct.

Return
Pointer to the current task.

long bpf_bprm_opts_set(struct linux_binprm *bprm, u64 flags)

Description
Set or clear certain options on bprm:

BPF_F_BPRM_SECUREEXEC Set the secureexec bit which sets the
AT_SECURE auxv for glibc. The bit is cleared if the flag is not speci-
fied.

Return
-EINVAL if invalid flags are passed, zero otherwise.

u64 bpf_ktime_get_coarse_ns(void)

Description
Return a coarse-grained version of the time elapsed since system boot,
in nanoseconds. Does not include time the system was suspended.

See: clock_gettime(CLOCK_MONOTONIC_COARSE)

Return
Current ktime.

long bpf_ima_inode_hash(struct inode *inode, void *dst, u32 size)

Description
Returns the stored IMA hash of the inode (if it's available). If the hash
is larger than size, then only size bytes will be copied to dst

Return
The hash_algo is returned on success, -EOPNOTSUPP if IMA is dis-
abled or -EINVAL if invalid arguments are passed.

struct socket *bpf_sock_from_file(struct file *file)

Description
If the given file represents a socket, returns the associated socket.

Return
A pointer to a struct socket on success or NULL if the file is not a
socket.

long bpf_check_mtu(void *ctx, u32 ifindex, u32 *mtu_len, s32 len_diff, u64 flags)

Description
Check packet size against exceeding MTU of net device (based on
ifindex). This helper will likely be used in combination with helpers
that adjust/change the packet size.

Linux v6.17 2025-06-26 3309

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

The argument len_diff can be used for querying with a planned size
change. This allows to check MTU prior to changing packet ctx. Provid-
ing a len_diff adjustment that is larger than the actual packet size (result-
ing in negative packet size) will in principle not exceed the MTU, which
is why it is not considered a failure. Other BPF helpers are needed for
performing the planned size change; therefore the responsibility for
catching a negative packet size belongs in those helpers.

Specifying ifindex zero means the MTU check is performed against the
current net device. This is practical if this isn't used prior to redirect.

On input mtu_len must be a valid pointer, else verifier will reject BPF
program. If the value mtu_len is initialized to zero then the ctx packet
size is use. When value mtu_len is provided as input this specify the L3
length that the MTU check is done against. Remember XDP and TC
length operate at L2, but this value is L3 as this correlate to MTU and
IP-header tot_len values which are L3 (similar behavior as
bpf_fib_lookup).

The Linux kernel route table can configure MTUs on a more specific
per route level, which is not provided by this helper. For route level
MTU checks use the bpf_fib_lookup() helper.

ctx is either struct xdp_md for XDP programs or struct sk_buff for tc
cls_act programs.

The flags argument can be a combination of one or more of the follow-
ing values:

BPF_MTU_CHK_SEGS
This flag will only works for ctx struct sk_buff. If packet con-
text contains extra packet segment buffers (often knows as
GSO skb), then MTU check is harder to check at this point, be-
cause in transmit path it is possible for the skb packet to get
re-segmented (depending on net device features). This could
still be a MTU violation, so this flag enables performing MTU
check against segments, with a different violation return code
to tell it apart. Check cannot use len_diff.

On return mtu_len pointer contains the MTU value of the net device.
Remember the net device configured MTU is the L3 size, which is re-
turned here and XDP and TC length operate at L2. Helper take this
into account for you, but remember when using MTU value in your
BPF-code.

Return

Linux v6.17 2025-06-26 3310

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• 0 on success, and populate MTU value in mtu_len pointer.

• < 0 if any input argument is invalid (mtu_len not updated)

MTU violations return positive values, but also populate MTU value in
mtu_len pointer, as this can be needed for implementing PMTU hand-
ing:

• BPF_MTU_CHK_RET_FRAG_NEEDED

• BPF_MTU_CHK_RET_SEGS_TOOBIG

long bpf_for_each_map_elem(struct bpf_map *map, void *callback_fn, void *call-
back_ctx, u64 flags)

Description
For each element in map, call callback_fn function with map, call-
back_ctx and other map-specific parameters. The callback_fn should
be a static function and the callback_ctx should be a pointer to the
stack. The flags is used to control certain aspects of the helper. Cur-
rently, the flags must be 0.

The following are a list of supported map types and their respective ex-
pected callback signatures:

BPF_MAP_TYPE_HASH, BPF_MAP_TYPE_PERCPU_HASH,
BPF_MAP_TYPE_LRU_HASH, BPF_MAP_TYPE_LRU_PER-
CPU_HASH, BPF_MAP_TYPE_ARRAY, BPF_MAP_TYPE_PER-
CPU_ARRAY

long (*callback_fn)(struct bpf_map *map, const void *key, void *value,
void *ctx);

For per_cpu maps, the map_value is the value on the cpu where the
bpf_prog is running.

If callback_fn return 0, the helper will continue to the next element. If
return value is 1, the helper will skip the rest of elements and return.
Other return values are not used now.

Return
The number of traversed map elements for success, -EINVAL for in-
valid flags.

long bpf_snprintf(char *str, u32 str_size, const char *fmt, u64 *data, u32 data_len)

Description
Outputs a string into the str buffer of size str_size based on a format
string stored in a read-only map pointed by fmt.

Each format specifier in fmt corresponds to one u64 element in the data
array. For strings and pointers where pointees are accessed, only the

Linux v6.17 2025-06-26 3311

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

pointer values are stored in the data array. The data_len is the size of
data in bytes - must be a multiple of 8.

Formats %s and %p{i,I}{4,6} require to read kernel memory. Reading
kernel memory may fail due to either invalid address or valid address
but requiring a major memory fault. If reading kernel memory fails, the
string for %s will be an empty string, and the ip address for
%p{i,I}{4,6} will be 0. Not returning error to bpf program is consistent
with what bpf_trace_printk() does for now.

Return
The strictly positive length of the formatted string, including the trailing
zero character. If the return value is greater than str_size, str contains a
truncated string, guaranteed to be zero-terminated except when str_size
is 0.

Or -EBUSY if the per-CPU memory copy buffer is busy.

long bpf_sys_bpf(u32 cmd, void *attr, u32 attr_size)

Description
Execute bpf syscall with given arguments.

Return
A syscall result.

long bpf_btf_find_by_name_kind(char *name, int name_sz, u32 kind, int flags)

Description
Find BTF type with given name and kind in vmlinux BTF or in mod-
ule's BTFs.

Return
Returns btf_id and btf_obj_fd in lower and upper 32 bits.

long bpf_sys_close(u32 fd)

Description
Execute close syscall for given FD.

Return
A syscall result.

long bpf_timer_init(struct bpf_timer *timer, struct bpf_map *map, u64 flags)

Description
Initialize the timer. First 4 bits of flags specify clockid. Only
CLOCK_MONOTONIC, CLOCK_REALTIME, CLOCK_BOOTTIME
are allowed. All other bits of flags are reserved. The verifier will reject
the program if timer is not from the same map.

Return
0 on success. -EBUSY if timer is already initialized. -EINVAL if in-
valid flags are passed. -EPERM if timer is in a map that doesn't have
any user references. The user space should either hold a file descriptor

Linux v6.17 2025-06-26 3312

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

to a map with timers or pin such map in bpffs. When map is unpinned
or file descriptor is closed all timers in the map will be cancelled and
freed.

long bpf_timer_set_callback(struct bpf_timer *timer, void *callback_fn)

Description
Configure the timer to call callback_fn static function.

Return
0 on success. -EINVAL if timer was not initialized with
bpf_timer_init() earlier. -EPERM if timer is in a map that doesn't have
any user references. The user space should either hold a file descriptor
to a map with timers or pin such map in bpffs. When map is unpinned
or file descriptor is closed all timers in the map will be cancelled and
freed.

long bpf_timer_start(struct bpf_timer *timer, u64 nsecs, u64 flags)

Description
Set timer expiration N nanoseconds from the current time. The config-
ured callback will be invoked in soft irq context on some cpu and will
not repeat unless another bpf_timer_start() is made. In such case the
next invocation can migrate to a different cpu. Since struct bpf_timer is
a field inside map element the map owns the timer. The
bpf_timer_set_callback() will increment refcnt of BPF program to make
sure that callback_fn code stays valid. When user space reference to a
map reaches zero all timers in a map are cancelled and corresponding
program's refcnts are decremented. This is done to make sure that
Ctrl-C of a user process doesn't leave any timers running. If map is
pinned in bpffs the callback_fn can re-arm itself indefinitely.
bpf_map_update/delete_elem() helpers and user space sys_bpf com-
mands cancel and free the timer in the given map element. The map can
contain timers that invoke callback_fn-s from different programs. The
same callback_fn can serve different timers from different maps if
key/value layout matches across maps. Every bpf_timer_set_callback()
can have different callback_fn.

flags can be one of:

BPF_F_TIMER_ABS
Start the timer in absolute expire value instead of the default
relative one.

BPF_F_TIMER_CPU_PIN
Timer will be pinned to the CPU of the caller.

Return
0 on success. -EINVAL if timer was not initialized with
bpf_timer_init() earlier or invalid flags are passed.

Linux v6.17 2025-06-26 3313

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_timer_cancel(struct bpf_timer *timer)

Description
Cancel the timer and wait for callback_fn to finish if it was running.

Return
0 if the timer was not active. 1 if the timer was active. -EINVAL if
timer was not initialized with bpf_timer_init() earlier. -EDEADLK if
callback_fn tried to call bpf_timer_cancel() on its own timer which
would have led to a deadlock otherwise.

u64 bpf_get_func_ip(void *ctx)

Description
Get address of the traced function (for tracing and kprobe programs).

When called for kprobe program attached as uprobe it returns probe ad-
dress for both entry and return uprobe.

Return
Address of the traced function for kprobe. 0 for kprobes placed within
the function (not at the entry). Address of the probe for uprobe and re-
turn uprobe.

u64 bpf_get_attach_cookie(void *ctx)

Description
Get bpf_cookie value provided (optionally) during the program attach-
ment. It might be different for each individual attachment, even if BPF
program itself is the same. Expects BPF program context ctx as a first
argument.

Supported for the following program types:

• kprobe/uprobe;

• tracepoint;

• perf_event.

Return
Value specified by user at BPF link creation/attachment time or 0, if it
was not specified.

long bpf_task_pt_regs(struct task_struct *task)

Description
Get the struct pt_regs associated with task.

Return
A pointer to struct pt_regs.

long bpf_get_branch_snapshot(void *entries, u32 size, u64 flags)

Description
Get branch trace from hardware engines like Intel LBR. The hardware
engine is stopped shortly after the helper is called. Therefore, the user

Linux v6.17 2025-06-26 3314

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

need to filter branch entries based on the actual use case. To capture
branch trace before the trigger point of the BPF program, the helper
should be called at the beginning of the BPF program.

The data is stored as struct perf_branch_entry into output buffer entries.
size is the size of entries in bytes. flags is reserved for now and must be
zero.

Return
On success, number of bytes written to buf. On error, a negative value.

-EINVAL if flags is not zero.

-ENOENT if architecture does not support branch records.

long bpf_trace_vprintk(const char *fmt, u32 fmt_size, const void *data, u32
data_len)

Description
Behaves like bpf_trace_printk() helper, but takes an array of u64 to
format and can handle more format args as a result.

Arguments are to be used as in bpf_seq_printf() helper.

Return
The number of bytes written to the buffer, or a negative error in case of
failure.

struct unix_sock *bpf_skc_to_unix_sock(void *sk)

Description
Dynamically cast a sk pointer to a unix_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

long bpf_kallsyms_lookup_name(const char *name, int name_sz, int flags, u64 *res)

Description
Get the address of a kernel symbol, returned in res. res is set to 0 if the
symbol is not found.

Return
On success, zero. On error, a negative value.

-EINVAL if flags is not zero.

-EINVAL if string name is not the same size as name_sz.

-ENOENT if symbol is not found.

-EPERM if caller does not have permission to obtain kernel address.

Linux v6.17 2025-06-26 3315

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_find_vma(struct task_struct *task, u64 addr, void *callback_fn, void *call-
back_ctx, u64 flags)

Description
Find vma of task that contains addr, call callback_fn function with task,
vma, and callback_ctx. The callback_fn should be a static function and
the callback_ctx should be a pointer to the stack. The flags is used to
control certain aspects of the helper. Currently, the flags must be 0.

The expected callback signature is

long (*callback_fn)(struct task_struct *task, struct vm_area_struct
*vma, void *callback_ctx);

Return
0 on success. -ENOENT if task->mm is NULL, or no vma contains
addr. -EBUSY if failed to try lock mmap_lock. -EINVAL for invalid
flags.

long bpf_loop(u32 nr_loops, void *callback_fn, void *callback_ctx, u64 flags)

Description
For nr_loops, call callback_fn function with callback_ctx as the con-
text parameter. The callback_fn should be a static function and the
callback_ctx should be a pointer to the stack. The flags is used to con-
trol certain aspects of the helper. Currently, the flags must be 0. Cur-
rently, nr_loops is limited to 1 << 23 (˜8 million) loops.

long (*callback_fn)(u64 index, void *ctx);

where index is the current index in the loop. The index is zero-indexed.

If callback_fn returns 0, the helper will continue to the next loop. If re-
turn value is 1, the helper will skip the rest of the loops and return.
Other return values are not used now, and will be rejected by the veri-
fier.

Return
The number of loops performed, -EINVAL for invalid flags, -E2BIG
if nr_loops exceeds the maximum number of loops.

long bpf_strncmp(const char *s1, u32 s1_sz, const char *s2)

Description
Do strncmp() between s1 and s2. s1 doesn't need to be null-terminated
and s1_sz is the maximum storage size of s1. s2 must be a read-only
string.

Return
An integer less than, equal to, or greater than zero if the first s1_sz bytes
of s1 is found to be less than, to match, or be greater than s2.

Linux v6.17 2025-06-26 3316

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_get_func_arg(void *ctx, u32 n, u64 *value)

Description
Get n-th argument register (zero based) of the traced function (for trac-
ing programs) returned in value.

Return
0 on success. -EINVAL if n >= argument register count of traced func-
tion.

long bpf_get_func_ret(void *ctx, u64 *value)

Description
Get return value of the traced function (for tracing programs) in value.

Return
0 on success. -EOPNOTSUPP for tracing programs other than
BPF_TRACE_FEXIT or BPF_MODIFY_RETURN.

long bpf_get_func_arg_cnt(void *ctx)

Description
Get number of registers of the traced function (for tracing programs)
where function arguments are stored in these registers.

Return
The number of argument registers of the traced function.

int bpf_get_retval(void)

Description
Get the BPF program's return value that will be returned to the upper
layers.

This helper is currently supported by cgroup programs and only by the
hooks where BPF program's return value is returned to the userspace via
errno.

Return
The BPF program's return value.

int bpf_set_retval(int retval)

Description
Set the BPF program's return value that will be returned to the upper
layers.

This helper is currently supported by cgroup programs and only by the
hooks where BPF program's return value is returned to the userspace via
errno.

Note that there is the following corner case where the program exports
an error via bpf_set_retval but signals success via 'return 1':

bpf_set_retval(-EPERM); return 1;

Linux v6.17 2025-06-26 3317

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

In this case, the BPF program's return value will use helper's
-EPERM. This still holds true for cgroup/bind{4,6} which supports
extra 'return 3' success case.

Return
0 on success, or a negative error in case of failure.

u64 bpf_xdp_get_buff_len(struct xdp_buff *xdp_md)

Description
Get the total size of a given xdp buff (linear and paged area)

Return
The total size of a given xdp buffer.

long bpf_xdp_load_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)

Description
This helper is provided as an easy way to load data from a xdp buffer. It
can be used to load len bytes from offset from the frame associated to
xdp_md, into the buffer pointed by buf.

Return
0 on success, or a negative error in case of failure.

long bpf_xdp_store_bytes(struct xdp_buff *xdp_md, u32 offset, void *buf, u32 len)

Description
Store len bytes from buffer buf into the frame associated to xdp_md, at
offset.

Return
0 on success, or a negative error in case of failure.

long bpf_copy_from_user_task(void *dst, u32 size, const void *user_ptr, struct
task_struct *tsk, u64 flags)

Description
Read size bytes from user space address user_ptr in tsk's address space,
and stores the data in dst. flags is not used yet and is provided for future
extensibility. This helper can only be used by sleepable programs.

Return
0 on success, or a negative error in case of failure. On error dst buffer is
zeroed out.

long bpf_skb_set_tstamp(struct sk_buff *skb, u64 tstamp, u32 tstamp_type)

Description
Change the __sk_buff->tstamp_type to tstamp_type and set tstamp to
the __sk_buff->tstamp together.

If there is no need to change the __sk_buff->tstamp_type, the tstamp
value can be directly written to __sk_buff->tstamp instead.

BPF_SKB_TSTAMP_DELIVERY_MONO is the only tstamp that will

Linux v6.17 2025-06-26 3318

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

be kept during bpf_redirect_*(). A non zero tstamp must be used with
the BPF_SKB_TSTAMP_DELIVERY_MONO tstamp_type.

A BPF_SKB_TSTAMP_UNSPEC tstamp_type can only be used with a
zero tstamp.

Only IPv4 and IPv6 skb->protocol are supported.

This function is most useful when it needs to set a mono delivery time
to __sk_buff->tstamp and then bpf_redirect_*() to the egress of an
iface. For example, changing the (rcv) timestamp in __sk_buff->tstamp
at ingress to a mono delivery time and then bpf_redirect_*() to
<sch_fq@phy-dev> .

Return
0 on success. -EINVAL for invalid input -EOPNOTSUPP for unsup-
ported protocol

long bpf_ima_file_hash(struct file *file, void *dst, u32 size)

Description
Returns a calculated IMA hash of the file. If the hash is larger than size,
then only size bytes will be copied to dst

Return
The hash_algo is returned on success, -EOPNOTSUPP if the hash cal-
culation failed or -EINVAL if invalid arguments are passed.

void *bpf_kptr_xchg(void *dst, void *ptr)

Description
Exchange kptr at pointer dst with ptr, and return the old value. dst can
be map value or local kptr. ptr can be NULL, otherwise it must be a ref-
erenced pointer which will be released when this helper is called.

Return
The old value of kptr (which can be NULL). The returned pointer if not
NULL, is a reference which must be released using its corresponding
release function, or moved into a BPF map before program exit.

void *bpf_map_lookup_percpu_elem(struct bpf_map *map, const void *key, u32
cpu)

Description
Perform a lookup in percpu map for an entry associated to key on cpu.

Return
Map value associated to key on cpu, or NULL if no entry was found or
cpu is invalid.

struct mptcp_sock *bpf_skc_to_mptcp_sock(void *sk)

Linux v6.17 2025-06-26 3319

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Description
Dynamically cast a sk pointer to a mptcp_sock pointer.

Return
sk if casting is valid, or NULL otherwise.

long bpf_dynptr_from_mem(void *data, u32 size, u64 flags, struct bpf_dynptr *ptr)

Description
Get a dynptr to local memory data.

data must be a ptr to a map value. The maximum size supported is
DYNPTR_MAX_SIZE. flags is currently unused.

Return
0 on success, -E2BIG if the size exceeds DYNPTR_MAX_SIZE,
-EINVAL if flags is not 0.

long bpf_ringbuf_reserve_dynptr(void *ringbuf, u32 size, u64 flags, struct
bpf_dynptr *ptr)

Description
Reserve size bytes of payload in a ring buffer ringbuf through the dynptr
interface. flags must be 0.

Please note that a corresponding bpf_ringbuf_submit_dynptr or
bpf_ringbuf_discard_dynptr must be called on ptr, even if the reserva-
tion fails. This is enforced by the verifier.

Return
0 on success, or a negative error in case of failure.

void bpf_ringbuf_submit_dynptr(struct bpf_dynptr *ptr, u64 flags)

Description
Submit reserved ring buffer sample, pointed to by data, through the
dynptr interface. This is a no-op if the dynptr is invalid/null.

For more information on flags, please see 'bpf_ringbuf_submit'.

Return
Nothing. Always succeeds.

void bpf_ringbuf_discard_dynptr(struct bpf_dynptr *ptr, u64 flags)

Description
Discard reserved ring buffer sample through the dynptr interface. This is
a no-op if the dynptr is invalid/null.

For more information on flags, please see 'bpf_ringbuf_discard'.

Return
Nothing. Always succeeds.

Linux v6.17 2025-06-26 3320

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

long bpf_dynptr_read(void *dst, u32 len, const struct bpf_dynptr *src, u32 offset,
u64 flags)

Description
Read len bytes from src into dst, starting from offset into src. flags is
currently unused.

Return
0 on success, -E2BIG if offset + len exceeds the length of src's data,
-EINVAL if src is an invalid dynptr or if flags is not 0.

long bpf_dynptr_write(const struct bpf_dynptr *dst, u32 offset, void *src, u32 len,
u64 flags)

Description
Write len bytes from src into dst, starting from offset into dst.

flags must be 0 except for skb-type dynptrs.

For skb-type dynptrs:

• All data slices of the dynptr are automatically invalidated
after bpf_dynptr_write(). This is because writing may pull
the skb and change the underlying packet buffer.

• For flags, please see the flags accepted by
bpf_skb_store_bytes().

Return
0 on success, -E2BIG if offset + len exceeds the length of dst's data,
-EINVAL if dst is an invalid dynptr or if dst is a read-only dynptr or if
flags is not correct. For skb-type dynptrs, other errors correspond to er-
rors returned by bpf_skb_store_bytes().

void *bpf_dynptr_data(const struct bpf_dynptr *ptr, u32 offset, u32 len)

Description
Get a pointer to the underlying dynptr data.

len must be a statically known value. The returned data slice is invali-
dated whenever the dynptr is invalidated.

skb and xdp type dynptrs may not use bpf_dynptr_data. They should in-
stead use bpf_dynptr_slice and bpf_dynptr_slice_rdwr.

Return
Pointer to the underlying dynptr data, NULL if the dynptr is read-only,
if the dynptr is invalid, or if the offset and length is out of bounds.

s64 bpf_tcp_raw_gen_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th, u32
th_len)

Description
Try to issue a SYN cookie for the packet with corresponding IPv4/TCP
headers, iph and th, without depending on a listening socket.

Linux v6.17 2025-06-26 3321

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

iph points to the IPv4 header.

th points to the start of the TCP header, while th_len contains the length
of the TCP header (at least sizeof(struct tcphdr)).

Return
On success, lower 32 bits hold the generated SYN cookie in followed
by 16 bits which hold the MSS value for that cookie, and the top 16 bits
are unused.

On failure, the returned value is one of the following:

-EINVAL if th_len is invalid.

s64 bpf_tcp_raw_gen_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th, u32
th_len)

Description
Try to issue a SYN cookie for the packet with corresponding IPv6/TCP
headers, iph and th, without depending on a listening socket.

iph points to the IPv6 header.

th points to the start of the TCP header, while th_len contains the length
of the TCP header (at least sizeof(struct tcphdr)).

Return
On success, lower 32 bits hold the generated SYN cookie in followed
by 16 bits which hold the MSS value for that cookie, and the top 16 bits
are unused.

On failure, the returned value is one of the following:

-EINVAL if th_len is invalid.

-EPROTONOSUPPORT if CONFIG_IPV6 is not builtin.

long bpf_tcp_raw_check_syncookie_ipv4(struct iphdr *iph, struct tcphdr *th)

Description
Check whether iph and th contain a valid SYN cookie ACK without de-
pending on a listening socket.

iph points to the IPv4 header.

th points to the TCP header.

Return
0 if iph and th are a valid SYN cookie ACK.

On failure, the returned value is one of the following:

Linux v6.17 2025-06-26 3322

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

-EACCES if the SYN cookie is not valid.

long bpf_tcp_raw_check_syncookie_ipv6(struct ipv6hdr *iph, struct tcphdr *th)

Description
Check whether iph and th contain a valid SYN cookie ACK without de-
pending on a listening socket.

iph points to the IPv6 header.

th points to the TCP header.

Return
0 if iph and th are a valid SYN cookie ACK.

On failure, the returned value is one of the following:

-EACCES if the SYN cookie is not valid.

-EPROTONOSUPPORT if CONFIG_IPV6 is not builtin.

u64 bpf_ktime_get_tai_ns(void)

Description
A nonsettable system-wide clock derived from wall-clock time but ig-
noring leap seconds. This clock does not experience discontinuities and
backwards jumps caused by NTP inserting leap seconds as
CLOCK_REALTIME does.

See: clock_gettime(CLOCK_TAI)

Return
Current ktime.

long bpf_user_ringbuf_drain(struct bpf_map *map, void *callback_fn, void *ctx,
u64 flags)

Description
Drain samples from the specified user ring buffer, and invoke the pro-
vided callback for each such sample:

long (*callback_fn)(const struct bpf_dynptr *dynptr, void *ctx);

If callback_fn returns 0, the helper will continue to try and drain the
next sample, up to a maximum of BPF_MAX_USER_RING-
BUF_SAMPLES samples. If the return value is 1, the helper will skip
the rest of the samples and return. Other return values are not used now,
and will be rejected by the verifier.

Return
The number of drained samples if no error was encountered while drain-
ing samples, or 0 if no samples were present in the ring buffer. If a

Linux v6.17 2025-06-26 3323

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

user-space producer was epoll-waiting on this map, and at least one
sample was drained, they will receive an event notification notifying
them of available space in the ring buffer. If the
BPF_RB_NO_WAKEUP flag is passed to this function, no wakeup no-
tification will be sent. If the BPF_RB_FORCE_WAKEUP flag is
passed, a wakeup notification will be sent even if no sample was
drained.

On failure, the returned value is one of the following:

-EBUSY if the ring buffer is contended, and another calling context
was concurrently draining the ring buffer.

-EINVAL if user-space is not properly tracking the ring buffer due to
the producer position not being aligned to 8 bytes, a sample not being
aligned to 8 bytes, or the producer position not matching the advertised
length of a sample.

-E2BIG if user-space has tried to publish a sample which is larger than
the size of the ring buffer, or which cannot fit within a struct bpf_dynptr.

void *bpf_cgrp_storage_get(struct bpf_map *map, struct cgroup *cgroup, void
*value, u64 flags)

Description
Get a bpf_local_storage from the cgroup.

Logically, it could be thought of as getting the value from a map with
cgroup as the key. From this perspective, the usage is not much differ-
ent from bpf_map_lookup_elem(map, &cgroup) except this helper en-
forces the key must be a cgroup struct and the map must also be a
BPF_MAP_TYPE_CGRP_STORAGE.

In reality, the local-storage value is embedded directly inside of the
cgroup object itself, rather than being located in the
BPF_MAP_TYPE_CGRP_STORAGE map. When the local-storage
value is queried for some map on a cgroup object, the kernel will per-
form an O(n) iteration over all of the live local-storage values for that
cgroup object until the local-storage value for the map is found.

An optional flags (BPF_LOCAL_STORAGE_GET_F_CREATE) can
be used such that a new bpf_local_storage will be created if one does
not exist. value can be used together with BPF_LOCAL_STOR-
AGE_GET_F_CREATE to specify the initial value of a bpf_lo-
cal_storage. If value is NULL, the new bpf_local_storage will be zero
initialized.

Linux v6.17 2025-06-26 3324

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

Return
A bpf_local_storage pointer is returned on success.

NULL if not found or there was an error in adding a new bpf_lo-
cal_storage.

long bpf_cgrp_storage_delete(struct bpf_map *map, struct cgroup *cgroup)

Description
Delete a bpf_local_storage from a cgroup.

Return
0 on success.

-ENOENT if the bpf_local_storage cannot be found.

EXAMPLES
Example usage for most of the eBPF helpers listed in this manual page are available
within the Linux kernel sources, at the following locations:

• samples/bpf/

• tools/testing/selftests/bpf/

LICENSE
eBPF programs can have an associated license, passed along with the bytecode instruc-
tions to the kernel when the programs are loaded. The format for that string is identical
to the one in use for kernel modules (Dual licenses, such as "Dual BSD/GPL", may be
used). Some helper functions are only accessible to programs that are compatible with
the GNU General Public License (GNU GPL).

In order to use such helpers, the eBPF program must be loaded with the correct license
string passed (via attr) to the bpf() system call, and this generally translates into the C
source code of the program containing a line similar to the following:

char ____license[] __attribute__((section("license"), used)) = "GPL";

IMPLEMENTATION
This manual page is an effort to document the existing eBPF helper functions. But as of
this writing, the BPF sub-system is under heavy development. New eBPF program or
map types are added, along with new helper functions. Some helpers are occasionally
made available for additional program types. So in spite of the efforts of the community,
this page might not be up-to-date. If you want to check by yourself what helper func-
tions exist in your kernel, or what types of programs they can support, here are some
files among the kernel tree that you may be interested in:

• include/uapi/linux/bpf.h is the main BPF header. It contains the full list of all helper
functions, as well as many other BPF definitions including most of the flags, structs or
constants used by the helpers.

• net/core/filter.c contains the definition of most network-related helper functions, and
the list of program types from which they can be used.

Linux v6.17 2025-06-26 3325

BPF-HELPERS(7) Miscellaneous Information Manual BPF-HELPERS(7)

• kernel/trace/bpf_trace.c is the equivalent for most tracing program-related helpers.

• kernel/bpf/verifier.c contains the functions used to check that valid types of eBPF
maps are used with a given helper function.

• kernel/bpf/ directory contains other files in which additional helpers are defined (for
cgroups, sockmaps, etc.).

• The bpftool utility can be used to probe the availability of helper functions on the sys-
tem (as well as supported program and map types, and a number of other parameters).
To do so, run bpftool feature probe (see bpftool-feature(8) for details). Add the un-
privileged keyword to list features available to unprivileged users.

Compatibility between helper functions and program types can generally be found in the
files where helper functions are defined. Look for the struct bpf_func_proto objects
and for functions returning them: these functions contain a list of helpers that a given
program type can call. Note that the default: label of the switch ... case used to filter
helpers can call other functions, themselves allowing access to additional helpers. The
requirement for GPL license is also in those struct bpf_func_proto.

Compatibility between helper functions and map types can be found in the
check_map_func_compatibility() function in file kernel/bpf/verifier.c.

Helper functions that invalidate the checks on data and data_end pointers for network
processing are listed in function bpf_helper_changes_pkt_data() in file net/core/fil-
ter.c.

SEE ALSO
bpf(2), bpftool(8), cgroups(7), ip(8), perf_event_open(2), sendmsg(2), socket(7),
tc-bpf(8)

Linux v6.17 2025-06-26 3326

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

NAME
capabilities - overview of Linux capabilities

DESCRIPTION
For the purpose of performing permission checks, traditional UNIX implementations
distinguish two categories of processes: privileged processes (whose effective user ID is
0, referred to as superuser or root), and unprivileged processes (whose effective UID is
nonzero). Privileged processes bypass all kernel permission checks, while unprivileged
processes are subject to full permission checking based on the process’s credentials
(usually: effective UID, effective GID, and supplementary group list).

Starting with Linux 2.2, Linux divides the privileges traditionally associated with supe-
ruser into distinct units, known as capabilities, which can be independently enabled and
disabled. Capabilities are a per-thread attribute.

Capabilities list
The following list shows the capabilities implemented on Linux, and the operations or
behaviors that each capability permits:

CAP_AUDIT_CONTROL (since Linux 2.6.11)
Enable and disable kernel auditing; change auditing filter rules; retrieve auditing
status and filtering rules.

CAP_AUDIT_READ (since Linux 3.16)
Allow reading the audit log via a multicast netlink socket.

CAP_AUDIT_WRITE (since Linux 2.6.11)
Write records to kernel auditing log.

CAP_BLOCK_SUSPEND (since Linux 3.5)
Employ features that can block system suspend (epoll(7) EPOLLWAKEUP,
/proc/sys/wake_lock).

CAP_BPF (since Linux 5.8)
Employ privileged BPF operations; see bpf(2) and bpf-helpers(7).

This capability was added in Linux 5.8 to separate out BPF functionality from
the overloaded CAP_SYS_ADMIN capability.

CAP_CHECKPOINT_RESTORE (since Linux 5.9)
• Update /proc/sys/kernel/ns_last_pid (see pid_namespaces(7));
• employ the set_tid feature of clone3(2);
• read the contents of the symbolic links in /proc/ pid /map_files for other

processes.

This capability was added in Linux 5.9 to separate out checkpoint/restore func-
tionality from the overloaded CAP_SYS_ADMIN capability.

CAP_CHOWN
Make arbitrary changes to file UIDs and GIDs (see chown(2)).

CAP_DAC_OVERRIDE
Bypass file read, write, and execute permission checks. (DAC is an abbreviation
of "discretionary access control".)

Linux man-pages 6.16 2025-10-05 3327

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

CAP_DAC_READ_SEARCH
• Bypass file read permission checks and directory read and execute permis-

sion checks;
• invoke open_by_handle_at(2);
• use the linkat(2) AT_EMPTY_PATH flag to create a link to a file referred to

by a file descriptor.

CAP_FOWNER
• Bypass permission checks on operations that normally require the filesystem

UID of the process to match the UID of the file (e.g., chmod(2), utime(2)),
excluding those operations covered by CAP_DAC_OVERRIDE and
CAP_DAC_READ_SEARCH;

• set inode flags (see FS_IOC_SETFLAGS(2const)) on arbitrary files;
• set Access Control Lists (ACLs) on arbitrary files;
• ignore directory sticky bit on file deletion;
• modify user extended attributes on sticky directory owned by any user;
• specify O_NOATIME for arbitrary files in open(2) and fcntl(2).

CAP_FSETID
• Don’t clear set-user-ID and set-group-ID mode bits when a file is modified;
• set the set-group-ID bit for a file whose GID does not match the filesystem or

any of the supplementary GIDs of the calling process.

CAP_IPC_LOCK
• Lock memory (mlock(2), mlockall(2), mmap(2), shmctl(2));
• Allocate memory using huge pages (memfd_create(2), mmap(2), shmctl(2)).

CAP_IPC_OWNER
Bypass permission checks for operations on System V IPC objects.

CAP_KILL
Bypass permission checks for sending signals (see kill(2)). This includes use of
the ioctl(2) KDSIGACCEPT operation.

CAP_LEASE (since Linux 2.4)
Establish leases on arbitrary files (see fcntl(2)).

CAP_LINUX_IMMUTABLE
Set the FS_APPEND_FL and FS_IMMUTABLE_FL inode flags (see
FS_IOC_SETFLAGS(2const)).

CAP_MAC_ADMIN (since Linux 2.6.25)
Allow MAC configuration or state changes. Implemented for the Smack Linux
Security Module (LSM).

CAP_MAC_OVERRIDE (since Linux 2.6.25)
Override Mandatory Access Control (MAC). Implemented for the Smack LSM.

CAP_MKNOD (since Linux 2.4)
Create special files using mknod(2).

CAP_NET_ADMIN
Perform various network-related operations:

Linux man-pages 6.16 2025-10-05 3328

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

• interface configuration;
• administration of IP firewall, masquerading, and accounting;
• modify routing tables;
• bind to any address for transparent proxying;
• set type-of-service (TOS);
• clear driver statistics;
• set promiscuous mode;
• enabling multicasting;
• use setsockopt(2) to set the following socket options: SO_DEBUG,

SO_MARK, SO_PRIORITY (for a priority outside the range 0 to 6),
SO_RCVBUFFORCE, and SO_SNDBUFFORCE.

CAP_NET_BIND_SERVICE
Bind a socket to Internet domain privileged ports (port numbers less than 1024).

CAP_NET_BROADCAST
(Unused) Make socket broadcasts, and listen to multicasts.

CAP_NET_RAW
• Use RAW and PACKET sockets;
• bind to any address for transparent proxying.

CAP_PERFMON (since Linux 5.8)
Employ various performance-monitoring mechanisms, including:

• call perf_event_open(2);
• employ various BPF operations that have performance implications.

This capability was added in Linux 5.8 to separate out performance monitoring
functionality from the overloaded CAP_SYS_ADMIN capability. See also the
kernel source file Documentation/admin-guide/perf-security.rst.

CAP_SETGID
• Make arbitrary manipulations of process GIDs and supplementary GID list;
• forge GID when passing socket credentials via UNIX domain sockets;
• write a group ID mapping in a user namespace (see user_namespaces(7)).

CAP_SETFCAP (since Linux 2.6.24)
Set arbitrary capabilities on a file.

Since Linux 5.12, this capability is also needed to map user ID 0 in a new user
namespace; see user_namespaces(7) for details.

CAP_SETPCAP
If file capabilities are supported (i.e., since Linux 2.6.24): add any capability
from the calling thread’s bounding set to its inheritable set; drop capabilities
from the bounding set (via prctl(2) PR_CAPBSET_DROP); make changes to
the securebits flags.

If file capabilities are not supported (i.e., before Linux 2.6.24): grant or remove
any capability in the caller’s permitted capability set to or from any other
process. (This property of CAP_SETPCAP is not available when the kernel is
configured to support file capabilities, since CAP_SETPCAP has entirely differ-
ent semantics for such kernels.)

Linux man-pages 6.16 2025-10-05 3329

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

CAP_SETUID
• Make arbitrary manipulations of process UIDs (setuid(2), setreuid(2), setre-

suid(2), setfsuid(2));
• forge UID when passing socket credentials via UNIX domain sockets;
• write a user ID mapping in a user namespace (see user_namespaces(7)).

CAP_SYS_ADMIN
Note: this capability is overloaded; see Notes to kernel developers below.

• Perform a range of system administration operations including: quotactl(2),
mount(2), umount(2), pivot_root(2), swapon(2), swapoff(2), sethostname(2),
and setdomainname(2);

• perform privileged syslog(2) operations (since Linux 2.6.37, CAP_SYSLOG
should be used to permit such operations);

• perform VM86_REQUEST_IRQ vm86(2) command;
• access the same checkpoint/restore functionality that is governed by

CAP_CHECKPOINT_RESTORE (but the latter, weaker capability is pre-
ferred for accessing that functionality).

• perform the same BPF operations as are governed by CAP_BPF (but the lat-
ter, weaker capability is preferred for accessing that functionality).

• employ the same performance monitoring mechanisms as are governed by
CAP_PERFMON (but the latter, weaker capability is preferred for access-
ing that functionality).

• perform IPC_SET and IPC_RMID operations on arbitrary System V IPC
objects;

• override RLIMIT_NPROC resource limit;
• perform operations on trusted and security extended attributes (see xattr(7));
• use lookup_dcookie(2);
• use ioprio_set(2) to assign IOPRIO_CLASS_RT and (before Linux 2.6.25)

IOPRIO_CLASS_IDLE I/O scheduling classes;
• forge PID when passing socket credentials via UNIX domain sockets;
• exceed /proc/sys/fs/file-max, the system-wide limit on the number of open

files, in system calls that open files (e.g., accept(2), execve(2), open(2),
pipe(2));

• employ CLONE_* flags that create new namespaces with clone(2) and un-
share(2) (but, since Linux 3.8, creating user namespaces does not require any
capability);

• access privileged perf event information;
• call setns(2) (requires CAP_SYS_ADMIN in the target namespace);
• call fanotify_init(2);
• perform privileged KEYCTL_CHOWN and KEYCTL_SETPERM

keyctl(2) operations;
• perform madvise(2) MADV_HWPOISON operation;
• employ the TIOCSTI ioctl(2) to insert characters into the input queue of a

terminal other than the caller’s controlling terminal;
• employ the obsolete nfsservctl(2) system call;

Linux man-pages 6.16 2025-10-05 3330

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

• employ the obsolete bdflush(2) system call;
• perform various privileged block-device ioctl(2) operations;
• perform various privileged filesystem ioctl(2) operations;
• perform privileged ioctl(2) operations on the /dev/random device (see ran-

dom(4));
• install a seccomp(2) filter without first having to set the no_new_privs thread

attribute;
• modify allow/deny rules for device control groups;
• employ the ptrace(2) PTRACE_SECCOMP_GET_FILTER operation to

dump tracee’s seccomp filters;
• employ the ptrace(2) PTRACE_SETOPTIONS operation to suspend the

tracee’s seccomp protections (i.e., the PTRACE_O_SUSPEND_SEC-
COMP flag);

• perform administrative operations on many device drivers;
• modify autogroup nice values by writing to /proc/ pid /autogroup (see

sched(7)).

CAP_SYS_BOOT
Use reboot(2) and kexec_load(2).

CAP_SYS_CHROOT
• Use chroot(2);
• change mount namespaces using setns(2).

CAP_SYS_MODULE
• Load and unload kernel modules (see init_module(2) and delete_module(2));
• before Linux 2.6.25: drop capabilities from the system-wide capability

bounding set.

CAP_SYS_NICE
• Lower the process nice value (nice(2), setpriority(2)) and change the nice

value for arbitrary processes;
• set real-time scheduling policies for calling process, and set scheduling poli-

cies and priorities for arbitrary processes (sched_setscheduler(2), sched_set-
param(2), sched_setattr(2));

• set CPU affinity for arbitrary processes (sched_setaffinity(2));
• set I/O scheduling class and priority for arbitrary processes (ioprio_set(2));
• apply migrate_pages(2) to arbitrary processes and allow processes to be mi-

grated to arbitrary nodes;
• apply move_pages(2) to arbitrary processes;
• use the MPOL_MF_MOVE_ALL flag with mbind(2) and move_pages(2).

CAP_SYS_PACCT
Use acct(2).

CAP_SYS_PTRACE
• Trace arbitrary processes using ptrace(2);
• inspect sensitive information of other processes via /proc (e.g., reading

/proc/ pid /maps, /proc/ pid /mem, or reading symbolic links /proc/ pid /exe,
/proc/ pid /fd/*);

Linux man-pages 6.16 2025-10-05 3331

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

• apply get_robust_list(2) to arbitrary processes;
• transfer data to or from the memory of arbitrary processes using

process_vm_readv(2) and process_vm_writev(2);
• inspect processes using kcmp(2);
• perform other privileged process-inspection and debugging operations. (See

uses of the ptrace_may_access() kernel function.)

CAP_SYS_RAWIO
• Perform I/O port operations (iopl(2) and ioperm(2));
• access /proc/kcore;
• employ the FIBMAP ioctl(2) operation;
• open devices for accessing x86 model-specific registers (MSRs, see msr(4));
• update /proc/sys/vm/mmap_min_addr;
• create memory mappings at addresses below the value specified by

/proc/sys/vm/mmap_min_addr;
• map files in /proc/bus/pci;
• open /dev/mem and /dev/kmem;
• perform various SCSI device commands;
• perform certain operations on hpsa(4) and cciss(4) devices;
• perform a range of device-specific operations on other devices.

CAP_SYS_RESOURCE
• Use reserved space on ext2 filesystems;
• make ioctl(2) calls controlling ext3 journaling;
• override disk quota limits;
• increase resource limits (see setrlimit(2));
• override RLIMIT_NPROC resource limit;
• override maximum number of consoles on console allocation;
• override maximum number of keymaps;
• allow more than 64hz interrupts from the real-time clock;
• raise msg_qbytes limit for a System V message queue above the limit in

/proc/sys/kernel/msgmnb (see msgop(2) and msgctl(2));
• allow the RLIMIT_NOFILE resource limit on the number of "in-flight" file

descriptors to be bypassed when passing file descriptors to another process
via a UNIX domain socket (see unix(7));

• override the /proc/sys/fs/pipe-size-max limit when setting the capacity of a
pipe using the F_SETPIPE_SZ fcntl(2) command;

• use F_SETPIPE_SZ to increase the capacity of a pipe above the limit speci-
fied by /proc/sys/fs/pipe-max-size;

• override /proc/sys/fs/mqueue/queues_max, /proc/sys/fs/mqueue/msg_max,
and /proc/sys/fs/mqueue/msgsize_max limits when creating POSIX message
queues (see mq_overview(7));

• employ the prctl(2) PR_SET_MM operation;
• set /proc/ pid /oom_score_adj to a value lower than the value last set by a

process with CAP_SYS_RESOURCE.

CAP_SYS_TIME
Set system clock (settimeofday(2), stime(2), adjtimex(2)); set real-time (hard-
ware) clock.

Linux man-pages 6.16 2025-10-05 3332

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

CAP_SYS_TTY_CONFIG
Use vhangup(2); employ various privileged ioctl(2) operations on virtual termi-
nals.

CAP_SYSLOG (since Linux 2.6.37)
• Perform privileged syslog(2) operations. See syslog(2) for information on

which operations require privilege.
• View kernel addresses exposed via /proc and other interfaces when

/proc/sys/kernel/kptr_restrict has the value 1. (See the discussion of the
kptr_restrict in proc(5).)

CAP_WAKE_ALARM (since Linux 3.0)
Trigger something that will wake up the system (set CLOCK_REAL-
TIME_ALARM and CLOCK_BOOTTIME_ALARM timers).

Past and current implementation
A full implementation of capabilities requires that:

• For all privileged operations, the kernel must check whether the thread has the re-
quired capability in its effective set.

• The kernel must provide system calls allowing a thread’s capability sets to be
changed and retrieved.

• The filesystem must support attaching capabilities to an executable file, so that a
process gains those capabilities when the file is executed.

Before Linux 2.6.24, only the first two of these requirements are met; since Linux
2.6.24, all three requirements are met.

Notes to kernel developers
When adding a new kernel feature that should be governed by a capability, consider the
following points.

• The goal of capabilities is divide the power of superuser into pieces, such that if a
program that has one or more capabilities is compromised, its power to do damage
to the system would be less than the same program running with root privilege.

• You have the choice of either creating a new capability for your new feature, or asso-
ciating the feature with one of the existing capabilities. In order to keep the set of
capabilities to a manageable size, the latter option is preferable, unless there are
compelling reasons to take the former option. (There is also a technical limit: the
size of capability sets is currently limited to 64 bits.)

• To determine which existing capability might best be associated with your new fea-
ture, review the list of capabilities above in order to find a "silo" into which your
new feature best fits. One approach to take is to determine if there are other features
requiring capabilities that will always be used along with the new feature. If the new
feature is useless without these other features, you should use the same capability as
the other features.

• Don’t choose CAP_SYS_ADMIN if you can possibly avoid it! A vast proportion
of existing capability checks are associated with this capability (see the partial list
above). It can plausibly be called "the new root", since on the one hand, it confers a

Linux man-pages 6.16 2025-10-05 3333

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

wide range of powers, and on the other hand, its broad scope means that this is the
capability that is required by many privileged programs. Don’t make the problem
worse. The only new features that should be associated with CAP_SYS_ADMIN
are ones that closely match existing uses in that silo.

• If you have determined that it really is necessary to create a new capability for your
feature, don’t make or name it as a "single-use" capability. Thus, for example, the
addition of the highly specific CAP_SYS_PACCT was probably a mistake. Instead,
try to identify and name your new capability as a broader silo into which other re-
lated future use cases might fit.

Thread capability sets
Each thread has the following capability sets containing zero or more of the above capa-
bilities:

Permitted
This is a limiting superset for the effective capabilities that the thread may as-
sume. It is also a limiting superset for the capabilities that may be added to the
inheritable set by a thread that does not have the CAP_SETPCAP capability in
its effective set.

If a thread drops a capability from its permitted set, it can never reacquire that
capability (unless it execve(2)s either a set-user-ID-root program, or a program
whose associated file capabilities grant that capability).

Inheritable
This is a set of capabilities preserved across an execve(2). Inheritable capabili-
ties remain inheritable when executing any program, and inheritable capabilities
are added to the permitted set when executing a program that has the correspond-
ing bits set in the file inheritable set.

Because inheritable capabilities are not generally preserved across execve(2)
when running as a non-root user, applications that wish to run helper programs
with elevated capabilities should consider using ambient capabilities, described
below.

Effective
This is the set of capabilities used by the kernel to perform permission checks for
the thread.

Bounding (per-thread since Linux 2.6.25)
The capability bounding set is a mechanism that can be used to limit the capabil-
ities that are gained during execve(2).

Since Linux 2.6.25, this is a per-thread capability set. In older kernels, the capa-
bility bounding set was a system wide attribute shared by all threads on the sys-
tem.

For more details, see Capability bounding set below.

Ambient (since Linux 4.3)
This is a set of capabilities that are preserved across an execve(2) of a program
that is not privileged. The ambient capability set obeys the invariant that no ca-
pability can ever be ambient if it is not both permitted and inheritable.

Linux man-pages 6.16 2025-10-05 3334

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

The ambient capability set can be directly modified using prctl(2). Ambient ca-
pabilities are automatically lowered if either of the corresponding permitted or
inheritable capabilities is lowered.

Executing a program that changes UID or GID due to the set-user-ID or set-
group-ID bits or executing a program that has any file capabilities set will clear
the ambient set. Ambient capabilities are added to the permitted set and as-
signed to the effective set when execve(2) is called. If ambient capabilities cause
a process’s permitted and effective capabilities to increase during an execve(2),
this does not trigger the secure-execution mode described in ld.so(8).

A child created via fork(2) inherits copies of its parent’s capability sets. For details on
how execve(2) affects capabilities, see Transformation of capabilities during execve()
below.

Using capset(2), a thread may manipulate its own capability sets; see Programmatically
adjusting capability sets below.

Since Linux 3.2, the file /proc/sys/kernel/cap_last_cap exposes the numerical value of
the highest capability supported by the running kernel; this can be used to determine the
highest bit that may be set in a capability set.

File capabilities
Since Linux 2.6.24, the kernel supports associating capability sets with an executable
file using setcap(8)The file capability sets are stored in an extended attribute (see setx-
attr(2) and xattr(7)) named security.capability. Writing to this extended attribute re-
quires the CAP_SETFCAP capability. The file capability sets, in conjunction with the
capability sets of the thread, determine the capabilities of a thread after an execve(2).

The three file capability sets are:

Permitted (formerly known as forced):
These capabilities are automatically permitted to the thread, regardless of the
thread’s inheritable capabilities.

Inheritable (formerly known as allowed):
This set is ANDed with the thread’s inheritable set to determine which inherita-
ble capabilities are enabled in the permitted set of the thread after the execve(2).

Effective:
This is not a set, but rather just a single bit. If this bit is set, then during an ex-
ecve(2) all of the new permitted capabilities for the thread are also raised in the
effective set. If this bit is not set, then after an execve(2), none of the new per-
mitted capabilities is in the new effective set.

Enabling the file effective capability bit implies that any file permitted or inheri-
table capability that causes a thread to acquire the corresponding permitted capa-
bility during an execve(2) (see Transformation of capabilities during execve() be-
low) will also acquire that capability in its effective set. Therefore, when assign-
ing capabilities to a file (setcap(8), cap_set_file(3), cap_set_fd(3)), if we specify
the effective flag as being enabled for any capability, then the effective flag must
also be specified as enabled for all other capabilities for which the corresponding
permitted or inheritable flag is enabled.

Linux man-pages 6.16 2025-10-05 3335

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

File capability extended attribute versioning
To allow extensibility, the kernel supports a scheme to encode a version number inside
the security.capability extended attribute that is used to implement file capabilities.
These version numbers are internal to the implementation, and not directly visible to
user-space applications. To date, the following versions are supported:

VFS_CAP_REVISION_1
This was the original file capability implementation, which supported 32-bit
masks for file capabilities.

VFS_CAP_REVISION_2 (since Linux 2.6.25)
This version allows for file capability masks that are 64 bits in size, and was nec-
essary as the number of supported capabilities grew beyond 32. The kernel
transparently continues to support the execution of files that have 32-bit version
1 capability masks, but when adding capabilities to files that did not previously
have capabilities, or modifying the capabilities of existing files, it automatically
uses the version 2 scheme (or possibly the version 3 scheme, as described be-
low).

VFS_CAP_REVISION_3 (since Linux 4.14)
Version 3 file capabilities are provided to support namespaced file capabilities
(described below).

As with version 2 file capabilities, version 3 capability masks are 64 bits in size.
But in addition, the root user ID of namespace is encoded in the security.capabil-
ity extended attribute. (A namespace’s root user ID is the value that user ID 0 in-
side that namespace maps to in the initial user namespace.)

Version 3 file capabilities are designed to coexist with version 2 capabilities; that
is, on a modern Linux system, there may be some files with version 2 capabili-
ties while others have version 3 capabilities.

Before Linux 4.14, the only kind of file capability extended attribute that could be at-
tached to a file was a VFS_CAP_REVISION_2 attribute. Since Linux 4.14, the ver-
sion of the security.capability extended attribute that is attached to a file depends on the
circumstances in which the attribute was created.

Starting with Linux 4.14, a security.capability extended attribute is automatically cre-
ated as (or converted to) a version 3 (VFS_CAP_REVISION_3) attribute if both of the
following are true:

• The thread writing the attribute resides in a noninitial user namespace. (More pre-
cisely: the thread resides in a user namespace other than the one from which the un-
derlying filesystem was mounted.)

• The thread has the CAP_SETFCAP capability over the file inode, meaning that (a)
the thread has the CAP_SETFCAP capability in its own user namespace; and (b)
the UID and GID of the file inode have mappings in the writer’s user namespace.

When a VFS_CAP_REVISION_3 security.capability extended attribute is created, the
root user ID of the creating thread’s user namespace is saved in the extended attribute.

By contrast, creating or modifying a security.capability extended attribute from a privi-
leged (CAP_SETFCAP) thread that resides in the namespace where the underlying

Linux man-pages 6.16 2025-10-05 3336

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

filesystem was mounted (this normally means the initial user namespace) automatically
results in the creation of a version 2 (VFS_CAP_REVISION_2) attribute.

Note that the creation of a version 3 security.capability extended attribute is automatic.
That is to say, when a user-space application writes (setxattr(2)) a security.capability
attribute in the version 2 format, the kernel will automatically create a version 3 attribute
if the attribute is created in the circumstances described above. Correspondingly, when
a version 3 security.capability attribute is retrieved (getxattr(2)) by a process that re-
sides inside a user namespace that was created by the root user ID (or a descendant of
that user namespace), the returned attribute is (automatically) simplified to appear as a
version 2 attribute (i.e., the returned value is the size of a version 2 attribute and does not
include the root user ID). These automatic translations mean that no changes are re-
quired to user-space tools (e.g., setcap(1) and getcap(1)) in order for those tools to be
used to create and retrieve version 3 security.capability attributes.

Note that a file can have either a version 2 or a version 3 security.capability extended at-
tribute associated with it, but not both: creation or modification of the security.capability
extended attribute will automatically modify the version according to the circumstances
in which the extended attribute is created or modified.

Transformation of capabilities during execve()
During an execve(2), the kernel calculates the new capabilities of the process using the
following algorithm:

P’(ambient) = (file is privileged) ? 0 : P(ambient)

P’(permitted) = (P(inheritable) & F(inheritable)) |
(F(permitted) & P(bounding)) | P’(ambient)

P’(effective) = F(effective) ? P’(permitted) : P’(ambient)

P’(inheritable) = P(inheritable) [i.e., unchanged]

P’(bounding) = P(bounding) [i.e., unchanged]

where:

P() denotes the value of a thread capability set before the execve(2)

P’() denotes the value of a thread capability set after the execve(2)

F() denotes a file capability set

Note the following details relating to the above capability transformation rules:

• The ambient capability set is present only since Linux 4.3. When determining the
transformation of the ambient set during execve(2), a privileged file is one that has
capabilities or has the set-user-ID or set-group-ID bit set.

• Prior to Linux 2.6.25, the bounding set was a system-wide attribute shared by all
threads. That system-wide value was employed to calculate the new permitted set
during execve(2) in the same manner as shown above for P(bounding).

Note: during the capability transitions described above, file capabilities may be ignored

Linux man-pages 6.16 2025-10-05 3337

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

(treated as empty) for the same reasons that the set-user-ID and set-group-ID bits are ig-
nored; see execve(2). File capabilities are similarly ignored if the kernel was booted
with the no_file_caps option.

Note: according to the rules above, if a process with nonzero user IDs performs an ex-
ecve(2) then any capabilities that are present in its permitted and effective sets will be
cleared. For the treatment of capabilities when a process with a user ID of zero per-
forms an execve(2), see Capabilities and execution of programs by root below.

Safety checking for capability-dumb binaries
A capability-dumb binary is an application that has been marked to have file capabili-
ties, but has not been converted to use the libcap(3) API to manipulate its capabilities.
(In other words, this is a traditional set-user-ID-root program that has been switched to
use file capabilities, but whose code has not been modified to understand capabilities.)
For such applications, the effective capability bit is set on the file, so that the file permit-
ted capabilities are automatically enabled in the process effective set when executing the
file. The kernel recognizes a file which has the effective capability bit set as capability-
dumb for the purpose of the check described here.

When executing a capability-dumb binary, the kernel checks if the process obtained all
permitted capabilities that were specified in the file permitted set, after the capability
transformations described above have been performed. (The typical reason why this
might not occur is that the capability bounding set masked out some of the capabilities
in the file permitted set.) If the process did not obtain the full set of file permitted capa-
bilities, then execve(2) fails with the error EPERM. This prevents possible security
risks that could arise when a capability-dumb application is executed with less privilege
than it needs. Note that, by definition, the application could not itself recognize this
problem, since it does not employ the libcap(3) API.

Capabilities and execution of programs by root
In order to mirror traditional UNIX semantics, the kernel performs special treatment of
file capabilities when a process with UID 0 (root) executes a program and when a set-
user-ID-root program is executed.

After having performed any changes to the process effective ID that were triggered by
the set-user-ID mode bit of the binary—e.g., switching the effective user ID to 0 (root)
because a set-user-ID-root program was executed—the kernel calculates the file capabil-
ity sets as follows:

(1) If the real or effective user ID of the process is 0 (root), then the file inheritable
and permitted sets are ignored; instead they are notionally considered to be all
ones (i.e., all capabilities enabled). (There is one exception to this behavior, de-
scribed in Set-user-ID-root programs that have file capabilities below.)

(2) If the effective user ID of the process is 0 (root) or the file effective bit is in fact
enabled, then the file effective bit is notionally defined to be one (enabled).

These notional values for the file’s capability sets are then used as described above to
calculate the transformation of the process’s capabilities during execve(2).

Thus, when a process with nonzero UIDs execve(2)s a set-user-ID-root program that
does not have capabilities attached, or when a process whose real and effective UIDs are

Linux man-pages 6.16 2025-10-05 3338

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

zero execve(2)s a program, the calculation of the process’s new permitted capabilities
simplifies to:

P’(permitted) = P(inheritable) | P(bounding)

P’(effective) = P’(permitted)

Consequently, the process gains all capabilities in its permitted and effective capability
sets, except those masked out by the capability bounding set. (In the calculation of
P’(permitted), the P’(ambient) term can be simplified away because it is by definition a
proper subset of P(inheritable).)

The special treatments of user ID 0 (root) described in this subsection can be disabled
using the securebits mechanism described below.

Set-user-ID-root programs that have file capabilities
There is one exception to the behavior described in Capabilities and execution of pro-
grams by root above. If (a) the binary that is being executed has capabilities attached
and (b) the real user ID of the process is not 0 (root) and (c) the effective user ID of the
process is 0 (root), then the file capability bits are honored (i.e., they are not notionally
considered to be all ones). The usual way in which this situation can arise is when exe-
cuting a set-UID-root program that also has file capabilities. When such a program is
executed, the process gains just the capabilities granted by the program (i.e., not all ca-
pabilities, as would occur when executing a set-user-ID-root program that does not have
any associated file capabilities).

Note that one can assign empty capability sets to a program file, and thus it is possible to
create a set-user-ID-root program that changes the effective and saved set-user-ID of the
process that executes the program to 0, but confers no capabilities to that process.

Capability bounding set
The capability bounding set is a security mechanism that can be used to limit the capa-
bilities that can be gained during an execve(2). The bounding set is used in the follow-
ing ways:

• During an execve(2), the capability bounding set is ANDed with the file permitted
capability set, and the result of this operation is assigned to the thread’s permitted
capability set. The capability bounding set thus places a limit on the permitted capa-
bilities that may be granted by an executable file.

• (Since Linux 2.6.25) The capability bounding set acts as a limiting superset for the
capabilities that a thread can add to its inheritable set using capset(2). This means
that if a capability is not in the bounding set, then a thread can’t add this capability
to its inheritable set, even if it was in its permitted capabilities, and thereby cannot
have this capability preserved in its permitted set when it execve(2)s a file that has
the capability in its inheritable set.

Note that the bounding set masks the file permitted capabilities, but not the inheritable
capabilities. If a thread maintains a capability in its inheritable set that is not in its
bounding set, then it can still gain that capability in its permitted set by executing a file
that has the capability in its inheritable set.

Depending on the kernel version, the capability bounding set is either a system-wide

Linux man-pages 6.16 2025-10-05 3339

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

attribute, or a per-process attribute.

Capability bounding set from Linux 2.6.25 onward

From Linux 2.6.25, the capability bounding set is a per-thread attribute. (The system-
wide capability bounding set described below no longer exists.)

The bounding set is inherited at fork(2) from the thread’s parent, and is preserved across
an execve(2).

A thread may remove capabilities from its capability bounding set using the prctl(2)
PR_CAPBSET_DROP operation, provided it has the CAP_SETPCAP capability.
Once a capability has been dropped from the bounding set, it cannot be restored to that
set. A thread can determine if a capability is in its bounding set using the prctl(2)
PR_CAPBSET_READ operation.

Removing capabilities from the bounding set is supported only if file capabilities are
compiled into the kernel. Before Linux 2.6.33, file capabilities were an optional feature
configurable via the CONFIG_SECURITY_FILE_CAPABILITIES option. Since
Linux 2.6.33, the configuration option has been removed and file capabilities are always
part of the kernel. When file capabilities are compiled into the kernel, the init process
(the ancestor of all processes) begins with a full bounding set. If file capabilities are not
compiled into the kernel, then init begins with a full bounding set minus CAP_SETP-
CAP, because this capability has a different meaning when there are no file capabilities.

Removing a capability from the bounding set does not remove it from the thread’s inher-
itable set. However it does prevent the capability from being added back into the
thread’s inheritable set in the future.

Capability bounding set prior to Linux 2.6.25

Before Linux 2.6.25, the capability bounding set is a system-wide attribute that affects
all threads on the system. The bounding set is accessible via the file /proc/sys/ker-
nel/cap-bound . (Confusingly, this bit mask parameter is expressed as a signed decimal
number in /proc/sys/kernel/cap-bound .)

Only the init process may set capabilities in the capability bounding set; other than that,
the superuser (more precisely: a process with the CAP_SYS_MODULE capability)
may only clear capabilities from this set.

On a standard system the capability bounding set always masks out the CAP_SETP-
CAP capability. To remove this restriction (dangerous!), modify the definition of
CAP_INIT_EFF_SET in include/linux/capability.h and rebuild the kernel.

The system-wide capability bounding set feature was added to Linux 2.2.11.

Effect of user ID changes on capabilities
To preserve the traditional semantics for transitions between 0 and nonzero user IDs, the
kernel makes the following changes to a thread’s capability sets on changes to the
thread’s real, effective, saved set, and filesystem user IDs (using setuid(2), setresuid(2),
or similar):

• If one or more of the real, effective, or saved set user IDs was previously 0, and as a
result of the UID changes all of these IDs have a nonzero value, then all capabilities
are cleared from the permitted, effective, and ambient capability sets.

Linux man-pages 6.16 2025-10-05 3340

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

• If the effective user ID is changed from 0 to nonzero, then all capabilities are cleared
from the effective set.

• If the effective user ID is changed from nonzero to 0, then the permitted set is copied
to the effective set.

• If the filesystem user ID is changed from 0 to nonzero (see setfsuid(2)), then the fol-
lowing capabilities are cleared from the effective set: CAP_CHOWN,
CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH, CAP_FOWNER,
CAP_FSETID, CAP_LINUX_IMMUTABLE (since Linux 2.6.30),
CAP_MAC_OVERRIDE, and CAP_MKNOD (since Linux 2.6.30). If the filesys-
tem UID is changed from nonzero to 0, then any of these capabilities that are en-
abled in the permitted set are enabled in the effective set.

If a thread that has a 0 value for one or more of its user IDs wants to prevent its permit-
ted capability set being cleared when it resets all of its user IDs to nonzero values, it can
do so using the SECBIT_KEEP_CAPS securebits flag described below.

Programmatically adjusting capability sets
A thread can retrieve and change its permitted, effective, and inheritable capability sets
using the capget(2) and capset(2) system calls. However, the use of cap_get_proc(3)
and cap_set_proc(3), both provided in the libcap package, is preferred for this purpose.
The following rules govern changes to the thread capability sets:

• If the caller does not have the CAP_SETPCAP capability, the new inheritable set
must be a subset of the combination of the existing inheritable and permitted sets.

• (Since Linux 2.6.25) The new inheritable set must be a subset of the combination of
the existing inheritable set and the capability bounding set.

• The new permitted set must be a subset of the existing permitted set (i.e., it is not
possible to acquire permitted capabilities that the thread does not currently have).

• The new effective set must be a subset of the new permitted set.

The securebits flags: establishing a capabilities-only environment
Starting with Linux 2.6.26, and with a kernel in which file capabilities are enabled,
Linux implements a set of per-thread securebits flags that can be used to disable special
handling of capabilities for UID 0 (root). These flags are as follows:

SECBIT_KEEP_CAPS
Setting this flag allows a thread that has one or more 0 UIDs to retain capabilities
in its permitted set when it switches all of its UIDs to nonzero values. If this flag
is not set, then such a UID switch causes the thread to lose all permitted capabili-
ties. This flag is always cleared on an execve(2).

Note that even with the SECBIT_KEEP_CAPS flag set, the effective capabili-
ties of a thread are cleared when it switches its effective UID to a nonzero value.
However, if the thread has set this flag and its effective UID is already nonzero,
and the thread subsequently switches all other UIDs to nonzero values, then the
effective capabilities will not be cleared.

The setting of the SECBIT_KEEP_CAPS flag is ignored if the
SECBIT_NO_SETUID_FIXUP flag is set. (The latter flag provides a superset

Linux man-pages 6.16 2025-10-05 3341

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

of the effect of the former flag.)

This flag provides the same functionality as the older prctl(2) PR_SET_KEEP-
CAPS operation.

SECBIT_NO_SETUID_FIXUP
Setting this flag stops the kernel from adjusting the process’s permitted, effec-
tive, and ambient capability sets when the thread’s effective and filesystem UIDs
are switched between zero and nonzero values. See Effect of user ID changes on
capabilities above.

SECBIT_NOROOT
If this bit is set, then the kernel does not grant capabilities when a set-user-ID-
root program is executed, or when a process with an effective or real UID of 0
calls execve(2). (See Capabilities and execution of programs by root above.)

SECBIT_NO_CAP_AMBIENT_RAISE
Setting this flag disallows raising ambient capabilities via the prctl(2)
PR_CAP_AMBIENT_RAISE operation.

Each of the above "base" flags has a companion "locked" flag. Setting any of the
"locked" flags is irreversible, and has the effect of preventing further changes to the cor-
responding "base" flag. The locked flags are: SECBIT_KEEP_CAPS_LOCKED,
SECBIT_NO_SETUID_FIXUP_LOCKED, SECBIT_NOROOT_LOCKED, and
SECBIT_NO_CAP_AMBIENT_RAISE_LOCKED.

The securebits flags can be modified and retrieved using the prctl(2) PR_SET_SE-
CUREBITS and PR_GET_SECUREBITS operations. The CAP_SETPCAP capabil-
ity is required to modify the flags. Note that the SECBIT_* constants are available only
after including the <linux/securebits.h> header file.

The securebits flags are inherited by child processes. During an execve(2), all of the
flags are preserved, except SECBIT_KEEP_CAPS which is always cleared.

An application can use the following call to lock itself, and all of its descendants, into an
environment where the only way of gaining capabilities is by executing a program with
associated file capabilities:

prctl(PR_SET_SECUREBITS,
/* SECBIT_KEEP_CAPS off */
SECBIT_KEEP_CAPS_LOCKED |
SECBIT_NO_SETUID_FIXUP |
SECBIT_NO_SETUID_FIXUP_LOCKED |
SECBIT_NOROOT |
SECBIT_NOROOT_LOCKED);
/* Setting/locking SECBIT_NO_CAP_AMBIENT_RAISE

is not required */

Per-user-namespace "set-user-ID-root" programs
A set-user-ID program whose UID matches the UID that created a user namespace will
confer capabilities in the process’s permitted and effective sets when executed by any
process inside that namespace or any descendant user namespace.

The rules about the transformation of the process’s capabilities during the execve(2) are

Linux man-pages 6.16 2025-10-05 3342

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

exactly as described in Transformation of capabilities during execve() and Capabilities
and execution of programs by root above, with the difference that, in the latter subsec-
tion, "root" is the UID of the creator of the user namespace.

Namespaced file capabilities
Traditional (i.e., version 2) file capabilities associate only a set of capability masks with
a binary executable file. When a process executes a binary with such capabilities, it
gains the associated capabilities (within its user namespace) as per the rules described in
Transformation of capabilities during execve() above.

Because version 2 file capabilities confer capabilities to the executing process regardless
of which user namespace it resides in, only privileged processes are permitted to asso-
ciate capabilities with a file. Here, "privileged" means a process that has the CAP_SET-
FCAP capability in the user namespace where the filesystem was mounted (normally
the initial user namespace). This limitation renders file capabilities useless for certain
use cases. For example, in user-namespaced containers, it can be desirable to be able to
create a binary that confers capabilities only to processes executed inside that container,
but not to processes that are executed outside the container.

Linux 4.14 added so-called namespaced file capabilities to support such use cases.
Namespaced file capabilities are recorded as version 3 (i.e., VFS_CAP_REVISION_3)
security.capability extended attributes. Such an attribute is automatically created in the
circumstances described in File capability extended attribute versioning above. When a
version 3 security.capability extended attribute is created, the kernel records not just the
capability masks in the extended attribute, but also the namespace root user ID.

As with a binary that has VFS_CAP_REVISION_2 file capabilities, a binary with
VFS_CAP_REVISION_3 file capabilities confers capabilities to a process during ex-
ecve(). However, capabilities are conferred only if the binary is executed by a process
that resides in a user namespace whose UID 0 maps to the root user ID that is saved in
the extended attribute, or when executed by a process that resides in a descendant of
such a namespace.

Interaction with user namespaces
For further information on the interaction of capabilities and user namespaces, see
user_namespaces(7).

STANDARDS
No standards govern capabilities, but the Linux capability implementation is based on
the withdrawn POSIX.1e draft standard 〈https://archive.org/details
/posix_1003.1e-990310〉.

NOTES
When attempting to strace(1) binaries that have capabilities (or set-user-ID-root bina-
ries), you may find the -u <username> option useful. Something like:

$ sudo strace -o trace.log -u ceci ./myprivprog

From Linux 2.5.27 to Linux 2.6.26, capabilities were an optional kernel component, and
could be enabled/disabled via the CONFIG_SECURITY_CAPABILITIES kernel
configuration option.

The /proc/ pid /task/TID/status file can be used to view the capability sets of a thread.

Linux man-pages 6.16 2025-10-05 3343

Capabilities(7) Miscellaneous Information Manual Capabilities(7)

The /proc/ pid /status file shows the capability sets of a process’s main thread. Before
Linux 3.8, nonexistent capabilities were shown as being enabled (1) in these sets. Since
Linux 3.8, all nonexistent capabilities (above CAP_LAST_CAP) are shown as disabled
(0).

The libcap package provides a suite of routines for setting and getting capabilities that is
more comfortable and less likely to change than the interface provided by capset(2) and
capget(2). This package also provides the setcap(8) and getcap(8) programs. It can be
found at
〈https://git.kernel.org/pub/scm/libs/libcap/libcap.git/refs/〉.

Before Linux 2.6.24, and from Linux 2.6.24 to Linux 2.6.32 if file capabilities are not
enabled, a thread with the CAP_SETPCAP capability can manipulate the capabilities
of threads other than itself. However, this is only theoretically possible, since no thread
ever has CAP_SETPCAP in either of these cases:

• In the pre-2.6.25 implementation the system-wide capability bounding set,
/proc/sys/kernel/cap-bound , always masks out the CAP_SETPCAP capability, and
this can not be changed without modifying the kernel source and rebuilding the ker-
nel.

• If file capabilities are disabled (i.e., the kernel CONFIG_SECURITY_FILE_CA-
PABILITIES option is disabled), then init starts out with the CAP_SETPCAP ca-
pability removed from its per-process bounding set, and that bounding set is inher-
ited by all other processes created on the system.

SEE ALSO
capsh(1), setpriv(1), prctl(2), setfsuid(2), cap_clear(3), cap_copy_ext(3),
cap_from_text(3), cap_get_file(3), cap_get_proc(3), cap_init(3), capgetp(3),
capsetp(3), libcap(3), proc(5), credentials(7), pthreads(7), user_namespaces(7),
captest(8), filecap(8), getcap(8), getpcaps(8), netcap(8), pscap(8), setcap(8)

include/linux/capability.h in the Linux kernel source tree

Linux man-pages 6.16 2025-10-05 3344

cgroup_namespaces(7) Miscellaneous Information Manual cgroup_namespaces(7)

NAME
cgroup_namespaces - overview of Linux cgroup namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

Cgroup namespaces virtualize the view of a process’s cgroups (see cgroups(7)) as seen
via /proc/ pid /cgroup and /proc/ pid /mountinfo.

Each cgroup namespace has its own set of cgroup root directories. These root directo-
ries are the base points for the relative locations displayed in the corresponding records
in the /proc/ pid /cgroup file. When a process creates a new cgroup namespace using
clone(2) or unshare(2) with the CLONE_NEWCGROUP flag, its current cgroups di-
rectories become the cgroup root directories of the new namespace. (This applies both
for the cgroups version 1 hierarchies and the cgroups version 2 unified hierarchy.)

When reading the cgroup memberships of a "target" process from /proc/ pid /cgroup, the
pathname shown in the third field of each record will be relative to the reading process’s
root directory for the corresponding cgroup hierarchy. If the cgroup directory of the tar-
get process lies outside the root directory of the reading process’s cgroup namespace,
then the pathname will show ../ entries for each ancestor level in the cgroup hierarchy.

The following shell session demonstrates the effect of creating a new cgroup namespace.

First, (as superuser) in a shell in the initial cgroup namespace, we create a child cgroup
in the freezer hierarchy, and place a process in that cgroup that we will use as part of the
demonstration below:

mkdir -p /sys/fs/cgroup/freezer/sub2;
sleep 10000 & # Create a process that lives for a while
[1] 20124
echo 20124 > /sys/fs/cgroup/freezer/sub2/cgroup.procs;

We then create another child cgroup in the freezer hierarchy and put the shell into that
cgroup:

mkdir -p /sys/fs/cgroup/freezer/sub;
echo $$; # Show PID of this shell
30655
echo 30655 > /sys/fs/cgroup/freezer/sub/cgroup.procs;
cat /proc/self/cgroup | grep freezer;
7:freezer:/sub

Next, we use unshare(1) to create a process running a new shell in new cgroup and
mount namespaces:

PS1=’sh2# ’ unshare -Cm bash;

From the new shell started by unshare(1), we then inspect the /proc/ pid /cgroup files of,
respectively, the new shell, a process that is in the initial cgroup namespace (init, with
PID 1), and the process in the sibling cgroup (sub2):

sh2# cat /proc/self/cgroup | grep freezer;
7:freezer:/
sh2# cat /proc/1/cgroup | grep freezer;

Linux man-pages 6.16 2025-09-21 3345

cgroup_namespaces(7) Miscellaneous Information Manual cgroup_namespaces(7)

7:freezer:/..
sh2# cat /proc/20124/cgroup | grep freezer;
7:freezer:/../sub2

From the output of the first command, we see that the freezer cgroup membership of the
new shell (which is in the same cgroup as the initial shell) is shown defined relative to
the freezer cgroup root directory that was established when the new cgroup namespace
was created. (In absolute terms, the new shell is in the /sub freezer cgroup, and the root
directory of the freezer cgroup hierarchy in the new cgroup namespace is also /sub.
Thus, the new shell’s cgroup membership is displayed as '/'.)

However, when we look in /proc/self/mountinfo we see the following anomaly:

sh2# cat /proc/self/mountinfo | grep freezer;
155 145 0:32 /.. /sys/fs/cgroup/freezer ...

The fourth field of this line (/..) should show the directory in the cgroup filesystem
which forms the root of this mount. Since by the definition of cgroup namespaces, the
process’s current freezer cgroup directory became its root freezer cgroup directory, we
should see '/' in this field. The problem here is that we are seeing a mount entry for the
cgroup filesystem corresponding to the initial cgroup namespace (whose cgroup filesys-
tem is indeed rooted at the parent directory of sub). To fix this problem, we must re-
mount the freezer cgroup filesystem from the new shell (i.e., perform the mount from a
process that is in the new cgroup namespace), after which we see the expected results:

sh2# mount --make-rslave /; # Don't propagate mount events
to other namespaces

sh2# umount /sys/fs/cgroup/freezer;
sh2# mount -t cgroup -o freezer freezer /sys/fs/cgroup/freezer;
sh2# cat /proc/self/mountinfo | grep freezer;
155 145 0:32 / /sys/fs/cgroup/freezer rw,relatime ...

STANDARDS
Linux.

NOTES
Use of cgroup namespaces requires a kernel that is configured with the CON-
FIG_CGROUPS option.

The virtualization provided by cgroup namespaces serves a number of purposes:

• It prevents information leaks whereby cgroup directory paths outside of a container
would otherwise be visible to processes in the container. Such leakages could, for
example, reveal information about the container framework to containerized applica-
tions.

• It eases tasks such as container migration. The virtualization provided by cgroup
namespaces allows containers to be isolated from knowledge of the pathnames of
ancestor cgroups. Without such isolation, the full cgroup pathnames (displayed in
/proc/self/cgroups) would need to be replicated on the target system when migrating
a container; those pathnames would also need to be unique, so that they don’t con-
flict with other pathnames on the target system.

Linux man-pages 6.16 2025-09-21 3346

cgroup_namespaces(7) Miscellaneous Information Manual cgroup_namespaces(7)

• It allows better confinement of containerized processes, because it is possible to
mount the container’s cgroup filesystems such that the container processes can’t gain
access to ancestor cgroup directories. Consider, for example, the following scenario:

• We have a cgroup directory, /cg/1, that is owned by user ID 9000.

• We have a process, X , also owned by user ID 9000, that is namespaced under the
cgroup /cg/1/2 (i.e., X was placed in a new cgroup namespace via clone(2) or
unshare(2) with the CLONE_NEWCGROUP flag).

In the absence of cgroup namespacing, because the cgroup directory /cg/1 is owned
(and writable) by UID 9000 and process X is also owned by user ID 9000, process
X would be able to modify the contents of cgroups files (i.e., change cgroup set-
tings) not only in /cg/1/2 but also in the ancestor cgroup directory /cg/1. Name-
spacing process X under the cgroup directory /cg/1/2, in combination with suitable
mount operations for the cgroup filesystem (as shown above), prevents it modifying
files in /cg/1, since it cannot even see the contents of that directory (or of further re-
moved cgroup ancestor directories). Combined with correct enforcement of hierar-
chical limits, this prevents process X from escaping the limits imposed by ancestor
cgroups.

SEE ALSO
unshare(1), clone(2), setns(2), unshare(2), proc(5), cgroups(7), credentials(7), name-
spaces(7), user_namespaces(7)

Linux man-pages 6.16 2025-09-21 3347

cgroups(7) Miscellaneous Information Manual cgroups(7)

NAME
cgroups - Linux control groups

DESCRIPTION
Control groups, usually referred to as cgroups, are a Linux kernel feature which allow
processes to be organized into hierarchical groups whose usage of various types of re-
sources can then be limited and monitored. The kernel’s cgroup interface is provided
through a pseudo-filesystem called cgroupfs. Grouping is implemented in the core
cgroup kernel code, while resource tracking and limits are implemented in a set of per-
resource-type subsystems (memory, CPU, and so on).

Terminology
A cgroup is a collection of processes that are bound to a set of limits or parameters de-
fined via the cgroup filesystem.

A subsystem is a kernel component that modifies the behavior of the processes in a
cgroup. Various subsystems have been implemented, making it possible to do things
such as limiting the amount of CPU time and memory available to a cgroup, accounting
for the CPU time used by a cgroup, and freezing and resuming execution of the
processes in a cgroup. Subsystems are sometimes also known as resource controllers
(or simply, controllers).

The cgroups for a controller are arranged in a hierarchy. This hierarchy is defined by
creating, removing, and renaming subdirectories within the cgroup filesystem. At each
level of the hierarchy, attributes (e.g., limits) can be defined. The limits, control, and ac-
counting provided by cgroups generally have effect throughout the subhierarchy under-
neath the cgroup where the attributes are defined. Thus, for example, the limits placed
on a cgroup at a higher level in the hierarchy cannot be exceeded by descendant
cgroups.

Cgroups version 1 and version 2
The initial release of the cgroups implementation was in Linux 2.6.24. Over time, vari-
ous cgroup controllers have been added to allow the management of various types of re-
sources. However, the development of these controllers was largely uncoordinated, with
the result that many inconsistencies arose between controllers and management of the
cgroup hierarchies became rather complex. A longer description of these problems can
be found in the kernel source file Documentation/admin-guide/cgroup-v2.rst (or Doc-
umentation/cgroup-v2.txt in Linux 4.17 and earlier).

Because of the problems with the initial cgroups implementation (cgroups version 1),
starting in Linux 3.10, work began on a new, orthogonal implementation to remedy
these problems. Initially marked experimental, and hidden behind the -o __DE-
VEL__sane_behavior mount option, the new version (cgroups version 2) was eventually
made official with the release of Linux 4.5. Differences between the two versions are
described in the text below. The file cgroup.sane_behavior, present in cgroups v1, is a
relic of this mount option. The file always reports "0" and is only retained for backward
compatibility.

Although cgroups v2 is intended as a replacement for cgroups v1, the older system con-
tinues to exist (and for compatibility reasons is unlikely to be removed). Currently,
cgroups v2 implements only a subset of the controllers available in cgroups v1. The two

Linux man-pages 6.16 2025-08-19 3348

cgroups(7) Miscellaneous Information Manual cgroups(7)

systems are implemented so that both v1 controllers and v2 controllers can be mounted
on the same system. Thus, for example, it is possible to use those controllers that are
supported under version 2, while also using version 1 controllers where version 2 does
not yet support those controllers. The only restriction here is that a controller can’t be
simultaneously employed in both a cgroups v1 hierarchy and in the cgroups v2 hierar-
chy.

CGROUPS VERSION 1
Under cgroups v1, each controller may be mounted against a separate cgroup filesystem
that provides its own hierarchical organization of the processes on the system. It is also
possible to comount multiple (or even all) cgroups v1 controllers against the same
cgroup filesystem, meaning that the comounted controllers manage the same hierarchi-
cal organization of processes.

For each mounted hierarchy, the directory tree mirrors the control group hierarchy.
Each control group is represented by a directory, with each of its child control cgroups
represented as a child directory. For instance, /user/joe/1.session represents control
group 1.session, which is a child of cgroup joe, which is a child of /user. Under each
cgroup directory is a set of files which can be read or written to, reflecting resource lim-
its and a few general cgroup properties.

Tasks (threads) versus processes
In cgroups v1, a distinction is drawn between processes and tasks. In this view, a
process can consist of multiple tasks (more commonly called threads, from a user-space
perspective, and called such in the remainder of this man page). In cgroups v1, it is pos-
sible to independently manipulate the cgroup memberships of the threads in a process.

The cgroups v1 ability to split threads across different cgroups caused problems in some
cases. For example, it made no sense for the memory controller, since all of the threads
of a process share a single address space. Because of these problems, the ability to inde-
pendently manipulate the cgroup memberships of the threads in a process was removed
in the initial cgroups v2 implementation, and subsequently restored in a more limited
form (see the discussion of "thread mode" below).

Mounting v1 controllers
The use of cgroups requires a kernel built with the CONFIG_CGROUP option. In ad-
dition, each of the v1 controllers has an associated configuration option that must be set
in order to employ that controller.

In order to use a v1 controller, it must be mounted against a cgroup filesystem. The
usual place for such mounts is under a tmpfs(5) filesystem mounted at /sys/fs/cgroup.
Thus, one might mount the cpu controller as follows:

mount -t cgroup -o cpu none /sys/fs/cgroup/cpu

It is possible to comount multiple controllers against the same hierarchy. For example,
here the cpu and cpuacct controllers are comounted against a single hierarchy:

mount -t cgroup -o cpu,cpuacct none /sys/fs/cgroup/cpu,cpuacct

Comounting controllers has the effect that a process is in the same cgroup for all of the
comounted controllers. Separately mounting controllers allows a process to be in
cgroup /foo1 for one controller while being in /foo2/foo3 for another.

Linux man-pages 6.16 2025-08-19 3349

cgroups(7) Miscellaneous Information Manual cgroups(7)

It is possible to comount all v1 controllers against the same hierarchy:

mount -t cgroup -o all cgroup /sys/fs/cgroup

(One can achieve the same result by omitting -o all, since it is the default if no con-
trollers are explicitly specified.)

It is not possible to mount the same controller against multiple cgroup hierarchies. For
example, it is not possible to mount both the cpu and cpuacct controllers against one hi-
erarchy, and to mount the cpu controller alone against another hierarchy. It is possible
to create multiple mounts with exactly the same set of comounted controllers. However,
in this case all that results is multiple mount points providing a view of the same hierar-
chy.

Note that on many systems, the v1 controllers are automatically mounted under
/sys/fs/cgroup; in particular, systemd(1) automatically creates such mounts.

Unmounting v1 controllers
A mounted cgroup filesystem can be unmounted using the umount(8) command, as in
the following example:

umount /sys/fs/cgroup/pids

But note well: a cgroup filesystem is unmounted only if it is not busy, that is, it has no
child cgroups. If this is not the case, then the only effect of the umount(8) is to make the
mount invisible. Thus, to ensure that the mount is really removed, one must first remove
all child cgroups, which in turn can be done only after all member processes have been
moved from those cgroups to the root cgroup.

Cgroups version 1 controllers
Each of the cgroups version 1 controllers is governed by a kernel configuration option
(listed below). Additionally, the availability of the cgroups feature is governed by the
CONFIG_CGROUPS kernel configuration option.

cpu (since Linux 2.6.24; CONFIG_CGROUP_SCHED)
Cgroups can be guaranteed a minimum number of "CPU shares" when a system
is busy. This does not limit a cgroup’s CPU usage if the CPUs are not busy. For
further information, see Documentation/scheduler/sched-design-CFS.rst (or
Documentation/scheduler/sched-design-CFS.txt in Linux 5.2 and earlier).

In Linux 3.2, this controller was extended to provide CPU "bandwidth" control.
If the kernel is configured with CONFIG_CFS_BANDWIDTH, then within
each scheduling period (defined via a file in the cgroup directory), it is possible
to define an upper limit on the CPU time allocated to the processes in a cgroup.
This upper limit applies even if there is no other competition for the CPU. Fur-
ther information can be found in the kernel source file Documentation/sched-
uler/sched-bwc.rst (or Documentation/scheduler/sched-bwc.txt in Linux 5.2
and earlier).

cpuacct (since Linux 2.6.24; CONFIG_CGROUP_CPUACCT)
This provides accounting for CPU usage by groups of processes.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/cpuacct.rst (or Documentation/cgroup-v1/cpuacct.txt in

Linux man-pages 6.16 2025-08-19 3350

cgroups(7) Miscellaneous Information Manual cgroups(7)

Linux 5.2 and earlier).

cpuset (since Linux 2.6.24; CONFIG_CPUSETS)
This cgroup can be used to bind the processes in a cgroup to a specified set of
CPUs and NUMA nodes.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/cpusets.rst (or Documentation/cgroup-v1/cpusets.txt in
Linux 5.2 and earlier).

memory (since Linux 2.6.25; CONFIG_MEMCG)
The memory controller supports reporting and limiting of process memory, ker-
nel memory, and swap used by cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/memory.rst (or Documentation/cgroup-v1/memory.txt in
Linux 5.2 and earlier).

devices (since Linux 2.6.26; CONFIG_CGROUP_DEVICE)
This supports controlling which processes may create (mknod) devices as well as
open them for reading or writing. The policies may be specified as allow-lists
and deny-lists. Hierarchy is enforced, so new rules must not violate existing
rules for the target or ancestor cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/devices.rst (or Documentation/cgroup-v1/devices.txt in
Linux 5.2 and earlier).

freezer (since Linux 2.6.28; CONFIG_CGROUP_FREEZER)
The freezer cgroup can suspend and restore (resume) all processes in a cgroup.
Freezing a cgroup /A also causes its children, for example, processes in /A/B, to
be frozen.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/freezer-subsystem.rst (or Documenta-
tion/cgroup-v1/freezer-subsystem.txt in Linux 5.2 and earlier).

net_cls (since Linux 2.6.29; CONFIG_CGROUP_NET_CLASSID)
This places a classid, specified for the cgroup, on network packets created by a
cgroup. These classids can then be used in firewall rules, as well as used to
shape traffic using tc(8)This applies only to packets leaving the cgroup, not to
traffic arriving at the cgroup.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/net_cls.rst (or Documentation/cgroup-v1/net_cls.txt in
Linux 5.2 and earlier).

blkio (since Linux 2.6.33; CONFIG_BLK_CGROUP)
The blkio cgroup controls and limits access to specified block devices by apply-
ing IO control in the form of throttling and upper limits against leaf nodes and
intermediate nodes in the storage hierarchy.

Two policies are available. The first is a proportional-weight time-based division
of disk implemented with CFQ. This is in effect for leaf nodes using CFQ. The

Linux man-pages 6.16 2025-08-19 3351

cgroups(7) Miscellaneous Information Manual cgroups(7)

second is a throttling policy which specifies upper I/O rate limits on a device.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/blkio-controller.rst (or Documenta-
tion/cgroup-v1/blkio-controller.txt in Linux 5.2 and earlier).

perf_event (since Linux 2.6.39; CONFIG_CGROUP_PERF)
This controller allows perf monitoring of the set of processes grouped in a
cgroup.

Further information can be found in the kernel source files

net_prio (since Linux 3.3; CONFIG_CGROUP_NET_PRIO)
This allows priorities to be specified, per network interface, for cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/net_prio.rst (or Documentation/cgroup-v1/net_prio.txt
in Linux 5.2 and earlier).

hugetlb (since Linux 3.5; CONFIG_CGROUP_HUGETLB)
This supports limiting the use of huge pages by cgroups.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/hugetlb.rst (or Documentation/cgroup-v1/hugetlb.txt in
Linux 5.2 and earlier).

pids (since Linux 4.3; CONFIG_CGROUP_PIDS)
This controller permits limiting the number of process that may be created in a
cgroup (and its descendants).

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/pids.rst (or Documentation/cgroup-v1/pids.txt in Linux
5.2 and earlier).

rdma (since Linux 4.11; CONFIG_CGROUP_RDMA)
The RDMA controller permits limiting the use of RDMA/IB-specific resources
per cgroup.

Further information can be found in the kernel source file Documentation/ad-
min-guide/cgroup-v1/rdma.rst (or Documentation/cgroup-v1/rdma.txt in
Linux 5.2 and earlier).

Creating cgroups and moving processes
A cgroup filesystem initially contains a single root cgroup, ’/’, which all processes be-
long to. A new cgroup is created by creating a directory in the cgroup filesystem:

mkdir /sys/fs/cgroup/cpu/cg1

This creates a new empty cgroup.

A process may be moved to this cgroup by writing its PID into the cgroup’s
cgroup.procs file:

echo $$ > /sys/fs/cgroup/cpu/cg1/cgroup.procs

Only one PID at a time should be written to this file.

Writing the value 0 to a cgroup.procs file causes the writing process to be moved to the

Linux man-pages 6.16 2025-08-19 3352

cgroups(7) Miscellaneous Information Manual cgroups(7)

corresponding cgroup.

When writing a PID into the cgroup.procs, all threads in the process are moved into the
new cgroup at once.

Within a hierarchy, a process can be a member of exactly one cgroup. Writing a
process’s PID to a cgroup.procs file automatically removes it from the cgroup of which
it was previously a member.

The cgroup.procs file can be read to obtain a list of the processes that are members of a
cgroup. The returned list of PIDs is not guaranteed to be in order. Nor is it guaranteed
to be free of duplicates. (For example, a PID may be recycled while reading from the
list.)

In cgroups v1, an individual thread can be moved to another cgroup by writing its thread
ID (i.e., the kernel thread ID returned by clone(2) and gettid(2)) to the tasks file in a
cgroup directory. This file can be read to discover the set of threads that are members of
the cgroup.

Removing cgroups
To remove a cgroup, it must first have no child cgroups and contain no (nonzombie)
processes. So long as that is the case, one can simply remove the corresponding direc-
tory pathname. Note that files in a cgroup directory cannot and need not be removed.

Cgroups v1 release notification
Two files can be used to determine whether the kernel provides notifications when a
cgroup becomes empty. A cgroup is considered to be empty when it contains no child
cgroups and no member processes.

A special file in the root directory of each cgroup hierarchy, release_agent, can be used
to register the pathname of a program that may be invoked when a cgroup in the hierar-
chy becomes empty. The pathname of the newly empty cgroup (relative to the cgroup
mount point) is provided as the sole command-line argument when the release_agent
program is invoked. The release_agent program might remove the cgroup directory, or
perhaps repopulate it with a process.

The default value of the release_agent file is empty, meaning that no release agent is in-
voked.

The content of the release_agent file can also be specified via a mount option when the
cgroup filesystem is mounted:

mount -o release_agent=pathname ...

Whether or not the release_agent program is invoked when a particular cgroup becomes
empty is determined by the value in the notify_on_release file in the corresponding
cgroup directory. If this file contains the value 0, then the release_agent program is not
invoked. If it contains the value 1, the release_agent program is invoked. The default
value for this file in the root cgroup is 0. At the time when a new cgroup is created, the
value in this file is inherited from the corresponding file in the parent cgroup.

Cgroup v1 named hierarchies
In cgroups v1, it is possible to mount a cgroup hierarchy that has no attached con-
trollers:

Linux man-pages 6.16 2025-08-19 3353

cgroups(7) Miscellaneous Information Manual cgroups(7)

mount -t cgroup -o none,name=somename none /some/mount/point

Multiple instances of such hierarchies can be mounted; each hierarchy must have a
unique name. The only purpose of such hierarchies is to track processes. (See the dis-
cussion of release notification below.) An example of this is the name=systemd cgroup
hierarchy that is used by systemd(1) to track services and user sessions.

Since Linux 5.0, the cgroup_no_v1 kernel boot option (described below) can be used to
disable cgroup v1 named hierarchies, by specifying cgroup_no_v1=named .

CGROUPS VERSION 2
In cgroups v2, all mounted controllers reside in a single unified hierarchy. While (dif-
ferent) controllers may be simultaneously mounted under the v1 and v2 hierarchies, it is
not possible to mount the same controller simultaneously under both the v1 and the v2
hierarchies.

The new behaviors in cgroups v2 are summarized here, and in some cases elaborated in
the following subsections.

• Cgroups v2 provides a unified hierarchy against which all controllers are mounted.

• "Internal" processes are not permitted. With the exception of the root cgroup,
processes may reside only in leaf nodes (cgroups that do not themselves contain
child cgroups). The details are somewhat more subtle than this, and are described
below.

• Active cgroups must be specified via the files cgroup.controllers and cgroup.sub-
tree_control.

• The tasks file has been removed. In addition, the cgroup.clone_children file that is
employed by the cpuset controller has been removed.

• An improved mechanism for notification of empty cgroups is provided by the
cgroup.events file.

For more changes, see the Documentation/admin-guide/cgroup-v2.rst file in the kernel
source (or Documentation/cgroup-v2.txt in Linux 4.17 and earlier).

Some of the new behaviors listed above saw subsequent modification with the addition
in Linux 4.14 of "thread mode" (described below).

Cgroups v2 unified hierarchy
In cgroups v1, the ability to mount different controllers against different hierarchies was
intended to allow great flexibility for application design. In practice, though, the flexi-
bility turned out to be less useful than expected, and in many cases added complexity.
Therefore, in cgroups v2, all available controllers are mounted against a single hierar-
chy. The available controllers are automatically mounted, meaning that it is not neces-
sary (or possible) to specify the controllers when mounting the cgroup v2 filesystem us-
ing a command such as the following:

mount -t cgroup2 none /mnt/cgroup2

A cgroup v2 controller is available only if it is not currently in use via a mount against a
cgroup v1 hierarchy. Or, to put things another way, it is not possible to employ the same
controller against both a v1 hierarchy and the unified v2 hierarchy. This means that it

Linux man-pages 6.16 2025-08-19 3354

cgroups(7) Miscellaneous Information Manual cgroups(7)

may be necessary first to unmount a v1 controller (as described above) before that con-
troller is available in v2. Since systemd(1) makes heavy use of some v1 controllers by
default, it can in some cases be simpler to boot the system with selected v1 controllers
disabled. To do this, specify the cgroup_no_v1=list option on the kernel boot command
line; list is a comma-separated list of the names of the controllers to disable, or the word
all to disable all v1 controllers. (This situation is correctly handled by systemd(1),
which falls back to operating without the specified controllers.)

Note that on many modern systems, systemd(1) automatically mounts the cgroup2
filesystem at /sys/fs/cgroup/unified during the boot process.

Cgroups v2 mount options
The following options (mount -o) can be specified when mounting the group v2 filesys-
tem:

nsdelegate (since Linux 4.15)
Treat cgroup namespaces as delegation boundaries. For details, see below.

memory_localevents (since Linux 5.2)
The memory.events should show statistics only for the cgroup itself, and not for
any descendant cgroups. This was the behavior before Linux 5.2. Since Linux
5.2, the default behavior is to include statistics for descendant cgroups in mem-
ory.events, and this mount option can be used to revert to the legacy behavior.
This option is system wide and can be set on mount or modified through remount
only from the initial mount namespace; it is silently ignored in noninitial name-
spaces.

Cgroups v2 controllers
The following controllers, documented in the kernel source file Documentation/ad-
min-guide/cgroup-v2.rst (or Documentation/cgroup-v2.txt in Linux 4.17 and earlier),
are supported in cgroups version 2:

cpu (since Linux 4.15)
This is the successor to the version 1 cpu and cpuacct controllers.

cpuset (since Linux 5.0)
This is the successor of the version 1 cpuset controller.

freezer (since Linux 5.2)
This is the successor of the version 1 freezer controller.

hugetlb (since Linux 5.6)
This is the successor of the version 1 hugetlb controller.

io (since Linux 4.5)
This is the successor of the version 1 blkio controller.

memory (since Linux 4.5)
This is the successor of the version 1 memory controller.

perf_event (since Linux 4.11)
This is the same as the version 1 perf_event controller.

Linux man-pages 6.16 2025-08-19 3355

cgroups(7) Miscellaneous Information Manual cgroups(7)

pids (since Linux 4.5)
This is the same as the version 1 pids controller.

rdma (since Linux 4.11)
This is the same as the version 1 rdma controller.

There is no direct equivalent of the net_cls and net_prio controllers from cgroups ver-
sion 1. Instead, support has been added to iptables(8) to allow eBPF filters that hook on
cgroup v2 pathnames to make decisions about network traffic on a per-cgroup basis.

The v2 devices controller provides no interface files; instead, device control is gated by
attaching an eBPF (BPF_CGROUP_DEVICE) program to a v2 cgroup.

Cgroups v2 subtree control
Each cgroup in the v2 hierarchy contains the following two files:

cgroup.controllers
This read-only file exposes a list of the controllers that are available in this
cgroup. The contents of this file match the contents of the cgroup.subtree_con-
trol file in the parent cgroup.

cgroup.subtree_control
This is a list of controllers that are active (enabled) in the cgroup. The set of
controllers in this file is a subset of the set in the cgroup.controllers of this
cgroup. The set of active controllers is modified by writing strings to this file
containing space-delimited controller names, each preceded by ’+’ (to enable a
controller) or ’-’ (to disable a controller), as in the following example:

echo '+pids -memory' > x/y/cgroup.subtree_control

An attempt to enable a controller that is not present in cgroup.controllers leads
to an ENOENT error when writing to the cgroup.subtree_control file.

Because the list of controllers in cgroup.subtree_control is a subset of those cgroup.con-
trollers, a controller that has been disabled in one cgroup in the hierarchy can never be
re-enabled in the subtree below that cgroup.

A cgroup’s cgroup.subtree_control file determines the set of controllers that are exer-
cised in the child cgroups. When a controller (e.g., pids) is present in the cgroup.sub-
tree_control file of a parent cgroup, then the corresponding controller-interface files
(e.g., pids.max) are automatically created in the children of that cgroup and can be used
to exert resource control in the child cgroups.

Cgroups v2 "no internal processes" rule
Cgroups v2 enforces a so-called "no internal processes" rule. Roughly speaking, this
rule means that, with the exception of the root cgroup, processes may reside only in leaf
nodes (cgroups that do not themselves contain child cgroups). This avoids the need to
decide how to partition resources between processes which are members of cgroup A
and processes in child cgroups of A.

For instance, if cgroup /cg1/cg2 exists, then a process may reside in /cg1/cg2, but not in
/cg1. This is to avoid an ambiguity in cgroups v1 with respect to the delegation of re-
sources between processes in /cg1 and its child cgroups. The recommended approach in
cgroups v2 is to create a subdirectory called leaf for any nonleaf cgroup which should

Linux man-pages 6.16 2025-08-19 3356

cgroups(7) Miscellaneous Information Manual cgroups(7)

contain processes, but no child cgroups. Thus, processes which previously would have
gone into /cg1 would now go into /cg1/leaf . This has the advantage of making explicit
the relationship between processes in /cg1/leaf and /cg1’s other children.

The "no internal processes" rule is in fact more subtle than stated above. More pre-
cisely, the rule is that a (nonroot) cgroup can’t both (1) have member processes, and (2)
distribute resources into child cgroups—that is, have a nonempty cgroup.subtree_con-
trol file. Thus, it is possible for a cgroup to have both member processes and child
cgroups, but before controllers can be enabled for that cgroup, the member processes
must be moved out of the cgroup (e.g., perhaps into the child cgroups).

With the Linux 4.14 addition of "thread mode" (described below), the "no internal
processes" rule has been relaxed in some cases.

Cgroups v2 cgroup.events file
Each nonroot cgroup in the v2 hierarchy contains a read-only file, cgroup.events, whose
contents are key-value pairs (delimited by newline characters, with the key and value
separated by spaces) providing state information about the cgroup:

$ cat mygrp/cgroup.events
populated 1
frozen 0

The following keys may appear in this file:

populated
The value of this key is either 1, if this cgroup or any of its descendants has
member processes, or otherwise 0.

frozen (since Linux 5.2)
The value of this key is 1 if this cgroup is currently frozen, or 0 if it is not.

The cgroup.events file can be monitored, in order to receive notification when the value
of one of its keys changes. Such monitoring can be done using inotify(7), which notifies
changes as IN_MODIFY events, or poll(2), which notifies changes by returning the
POLLPRI and POLLERR bits in the revents field.

Cgroup v2 release notification
Cgroups v2 provides a new mechanism for obtaining notification when a cgroup be-
comes empty. The cgroups v1 release_agent and notify_on_release files are removed,
and replaced by the populated key in the cgroup.events file. This key either has the
value 0, meaning that the cgroup (and its descendants) contain no (nonzombie) member
processes, or 1, meaning that the cgroup (or one of its descendants) contains member
processes.

The cgroups v2 release-notification mechanism offers the following advantages over the
cgroups v1 release_agent mechanism:

• It allows for cheaper notification, since a single process can monitor multiple
cgroup.events files (using the techniques described earlier). By contrast, the cgroups
v1 mechanism requires the expense of creating a process for each notification.

Linux man-pages 6.16 2025-08-19 3357

cgroups(7) Miscellaneous Information Manual cgroups(7)

• Notification for different cgroup subhierarchies can be delegated to different
processes. By contrast, the cgroups v1 mechanism allows only one release agent for
an entire hierarchy.

Cgroups v2 cgroup.stat file
Each cgroup in the v2 hierarchy contains a read-only cgroup.stat file (first introduced in
Linux 4.14) that consists of lines containing key-value pairs. The following keys cur-
rently appear in this file:

nr_descendants
This is the total number of visible (i.e., living) descendant cgroups underneath
this cgroup.

nr_dying_descendants
This is the total number of dying descendant cgroups underneath this cgroup. A
cgroup enters the dying state after being deleted. It remains in that state for an
undefined period (which will depend on system load) while resources are freed
before the cgroup is destroyed. Note that the presence of some cgroups in the
dying state is normal, and is not indicative of any problem.

A process can’t be made a member of a dying cgroup, and a dying cgroup can’t
be brought back to life.

Limiting the number of descendant cgroups
Each cgroup in the v2 hierarchy contains the following files, which can be used to view
and set limits on the number of descendant cgroups under that cgroup:

cgroup.max.depth (since Linux 4.14)
This file defines a limit on the depth of nesting of descendant cgroups. A value
of 0 in this file means that no descendant cgroups can be created. An attempt to
create a descendant whose nesting level exceeds the limit fails (mkdir(2) fails
with the error EAGAIN).

Writing the string "max" to this file means that no limit is imposed. The default
value in this file is "max".

cgroup.max.descendants (since Linux 4.14)
This file defines a limit on the number of live descendant cgroups that this
cgroup may have. An attempt to create more descendants than allowed by the
limit fails (mkdir(2) fails with the error EAGAIN).

Writing the string "max" to this file means that no limit is imposed. The default
value in this file is "max".

CGROUPS DELEGATION: DELEGATING A HIERARCHY TO A
LESS PRIVILEGED USER
In the context of cgroups, delegation means passing management of some subtree of the
cgroup hierarchy to a nonprivileged user. Cgroups v1 provides support for delegation
based on file permissions in the cgroup hierarchy but with less strict containment rules
than v2 (as noted below). Cgroups v2 supports delegation with containment by explicit
design. The focus of the discussion in this section is on delegation in cgroups v2, with
some differences for cgroups v1 noted along the way.

Some terminology is required in order to describe delegation. A delegater is a

Linux man-pages 6.16 2025-08-19 3358

cgroups(7) Miscellaneous Information Manual cgroups(7)

privileged user (i.e., root) who owns a parent cgroup. A delegatee is a nonprivileged
user who will be granted the permissions needed to manage some subhierarchy under
that parent cgroup, known as the delegated subtree.

To perform delegation, the delegater makes certain directories and files writable by the
delegatee, typically by changing the ownership of the objects to be the user ID of the
delegatee. Assuming that we want to delegate the hierarchy rooted at (say) /dlgt_grp
and that there are not yet any child cgroups under that cgroup, the ownership of the fol-
lowing is changed to the user ID of the delegatee:

/dlgt_grp
Changing the ownership of the root of the subtree means that any new cgroups
created under the subtree (and the files they contain) will also be owned by the
delegatee.

/dlgt_grp/cgroup.procs
Changing the ownership of this file means that the delegatee can move processes
into the root of the delegated subtree.

/dlgt_grp/cgroup.subtree_control (cgroups v2 only)
Changing the ownership of this file means that the delegatee can enable con-
trollers (that are present in /dlgt_grp/cgroup.controllers) in order to further re-
distribute resources at lower levels in the subtree. (As an alternative to changing
the ownership of this file, the delegater might instead add selected controllers to
this file.)

/dlgt_grp/cgroup.threads (cgroups v2 only)
Changing the ownership of this file is necessary if a threaded subtree is being
delegated (see the description of "thread mode", below). This permits the dele-
gatee to write thread IDs to the file. (The ownership of this file can also be
changed when delegating a domain subtree, but currently this serves no purpose,
since, as described below, it is not possible to move a thread between domain
cgroups by writing its thread ID to the cgroup.threads file.)

In cgroups v1, the corresponding file that should instead be delegated is the tasks
file.

The delegater should not change the ownership of any of the controller interfaces files
(e.g., pids.max, memory.high) in dlgt_grp. Those files are used from the next level
above the delegated subtree in order to distribute resources into the subtree, and the del-
egatee should not have permission to change the resources that are distributed into the
delegated subtree.

See also the discussion of the /sys/kernel/cgroup/delegate file in NOTES for information
about further delegatable files in cgroups v2.

After the aforementioned steps have been performed, the delegatee can create child
cgroups within the delegated subtree (the cgroup subdirectories and the files they con-
tain will be owned by the delegatee) and move processes between cgroups in the sub-
tree. If some controllers are present in dlgt_grp/cgroup.subtree_control, or the owner-
ship of that file was passed to the delegatee, the delegatee can also control the further re-
distribution of the corresponding resources into the delegated subtree.

Linux man-pages 6.16 2025-08-19 3359

cgroups(7) Miscellaneous Information Manual cgroups(7)

Cgroups v2 delegation: nsdelegate and cgroup namespaces
Starting with Linux 4.13, there is a second way to perform cgroup delegation in the
cgroups v2 hierarchy. This is done by mounting or remounting the cgroup v2 filesystem
with the nsdelegate mount option. For example, if the cgroup v2 filesystem has already
been mounted, we can remount it with the nsdelegate option as follows:

mount -t cgroup2 -o remount,nsdelegate \
none /sys/fs/cgroup/unified

The effect of this mount option is to cause cgroup namespaces to automatically become
delegation boundaries. More specifically, the following restrictions apply for processes
inside the cgroup namespace:

• Writes to controller interface files in the root directory of the namespace will fail
with the error EPERM. Processes inside the cgroup namespace can still write to
delegatable files in the root directory of the cgroup namespace such as cgroup.procs
and cgroup.subtree_control, and can create subhierarchy underneath the root direc-
tory.

• Attempts to migrate processes across the namespace boundary are denied (with the
error ENOENT). Processes inside the cgroup namespace can still (subject to the
containment rules described below) move processes between cgroups within the sub-
hierarchy under the namespace root.

The ability to define cgroup namespaces as delegation boundaries makes cgroup name-
spaces more useful. To understand why, suppose that we already have one cgroup hier-
archy that has been delegated to a nonprivileged user, cecilia, using the older delegation
technique described above. Suppose further that cecilia wanted to further delegate a
subhierarchy under the existing delegated hierarchy. (For example, the delegated hierar-
chy might be associated with an unprivileged container run by cecilia.) Even if a
cgroup namespace was employed, because both hierarchies are owned by the unprivi-
leged user cecilia, the following illegitimate actions could be performed:

• A process in the inferior hierarchy could change the resource controller settings in
the root directory of that hierarchy. (These resource controller settings are intended
to allow control to be exercised from the parent cgroup; a process inside the child
cgroup should not be allowed to modify them.)

• A process inside the inferior hierarchy could move processes into and out of the in-
ferior hierarchy if the cgroups in the superior hierarchy were somehow visible.

Employing the nsdelegate mount option prevents both of these possibilities.

The nsdelegate mount option only has an effect when performed in the initial mount
namespace; in other mount namespaces, the option is silently ignored.

Note: On some systems, systemd(1) automatically mounts the cgroup v2 filesystem. In
order to experiment with the nsdelegate operation, it may be useful to boot the kernel
with the following command-line options:

cgroup_no_v1=all systemd.legacy_systemd_cgroup_controller

These options cause the kernel to boot with the cgroups v1 controllers disabled (mean-
ing that the controllers are available in the v2 hierarchy), and tells systemd(1) not to

Linux man-pages 6.16 2025-08-19 3360

cgroups(7) Miscellaneous Information Manual cgroups(7)

mount and use the cgroup v2 hierarchy, so that the v2 hierarchy can be manually
mounted with the desired options after boot-up.

Cgroup delegation containment rules
Some delegation containment rules ensure that the delegatee can move processes be-
tween cgroups within the delegated subtree, but can’t move processes from outside the
delegated subtree into the subtree or vice versa. A nonprivileged process (i.e., the dele-
gatee) can write the PID of a "target" process into a cgroup.procs file only if all of the
following are true:

• The writer has write permission on the cgroup.procs file in the destination cgroup.

• The writer has write permission on the cgroup.procs file in the nearest common an-
cestor of the source and destination cgroups. Note that in some cases, the nearest
common ancestor may be the source or destination cgroup itself. This requirement
is not enforced for cgroups v1 hierarchies, with the consequence that containment in
v1 is less strict than in v2. (For example, in cgroups v1 the user that owns two dis-
tinct delegated subhierarchies can move a process between the hierarchies.)

• If the cgroup v2 filesystem was mounted with the nsdelegate option, the writer must
be able to see the source and destination cgroups from its cgroup namespace.

• In cgroups v1: the effective UID of the writer (i.e., the delegatee) matches the real
user ID or the saved set-user-ID of the target process. Before Linux 4.11, this re-
quirement also applied in cgroups v2 (This was a historical requirement inherited
from cgroups v1 that was later deemed unnecessary, since the other rules suffice for
containment in cgroups v2.)

Note: one consequence of these delegation containment rules is that the unprivileged
delegatee can’t place the first process into the delegated subtree; instead, the delegater
must place the first process (a process owned by the delegatee) into the delegated sub-
tree.

CGROUPS VERSION 2 THREAD MODE
Among the restrictions imposed by cgroups v2 that were not present in cgroups v1 are
the following:

• No thread-granularity control: all of the threads of a process must be in the same
cgroup.

• No internal processes: a cgroup can’t both have member processes and exercise con-
trollers on child cgroups.

Both of these restrictions were added because the lack of these restrictions had caused
problems in cgroups v1. In particular, the cgroups v1 ability to allow thread-level gran-
ularity for cgroup membership made no sense for some controllers. (A notable example
was the memory controller: since threads share an address space, it made no sense to
split threads across different memory cgroups.)

Notwithstanding the initial design decision in cgroups v2, there were use cases for cer-
tain controllers, notably the cpu controller, for which thread-level granularity of control
was meaningful and useful. To accommodate such use cases, Linux 4.14 added thread
mode for cgroups v2.

Linux man-pages 6.16 2025-08-19 3361

cgroups(7) Miscellaneous Information Manual cgroups(7)

Thread mode allows the following:

• The creation of threaded subtrees in which the threads of a process may be spread
across cgroups inside the tree. (A threaded subtree may contain multiple multi-
threaded processes.)

• The concept of threaded controllers, which can distribute resources across the
cgroups in a threaded subtree.

• A relaxation of the "no internal processes rule", so that, within a threaded subtree, a
cgroup can both contain member threads and exercise resource control over child
cgroups.

With the addition of thread mode, each nonroot cgroup now contains a new file,
cgroup.type, that exposes, and in some circumstances can be used to change, the "type"
of a cgroup. This file contains one of the following type values:

domain
This is a normal v2 cgroup that provides process-granularity control. If a
process is a member of this cgroup, then all threads of the process are (by defini-
tion) in the same cgroup. This is the default cgroup type, and provides the same
behavior that was provided for cgroups in the initial cgroups v2 implementation.

threaded
This cgroup is a member of a threaded subtree. Threads can be added to this
cgroup, and controllers can be enabled for the cgroup.

domain threaded
This is a domain cgroup that serves as the root of a threaded subtree. This
cgroup type is also known as "threaded root".

domain invalid
This is a cgroup inside a threaded subtree that is in an "invalid" state. Processes
can’t be added to the cgroup, and controllers can’t be enabled for the cgroup.
The only thing that can be done with this cgroup (other than deleting it) is to
convert it to a threaded cgroup by writing the string "threaded" to the
cgroup.type file.

The rationale for the existence of this "interim" type during the creation of a
threaded subtree (rather than the kernel simply immediately converting all
cgroups under the threaded root to the type threaded) is to allow for possible fu-
ture extensions to the thread mode model

Threaded versus domain controllers
With the addition of threads mode, cgroups v2 now distinguishes two types of resource
controllers:

• Threaded controllers: these controllers support thread-granularity for resource con-
trol and can be enabled inside threaded subtrees, with the result that the correspond-
ing controller-interface files appear inside the cgroups in the threaded subtree. As at
Linux 4.19, the following controllers are threaded: cpu, perf_event, and pids.

Linux man-pages 6.16 2025-08-19 3362

cgroups(7) Miscellaneous Information Manual cgroups(7)

• Domain controllers: these controllers support only process granularity for resource
control. From the perspective of a domain controller, all threads of a process are al-
ways in the same cgroup. Domain controllers can’t be enabled inside a threaded
subtree.

Creating a threaded subtree
There are two pathways that lead to the creation of a threaded subtree. The first path-
way proceeds as follows:

(1) We write the string "threaded" to the cgroup.type file of a cgroup y/z that cur-
rently has the type domain. This has the following effects:

• The type of the cgroup y/z becomes threaded .

• The type of the parent cgroup, y, becomes domain threaded . The parent
cgroup is the root of a threaded subtree (also known as the "threaded root").

• All other cgroups under y that were not already of type threaded (because
they were inside already existing threaded subtrees under the new threaded
root) are converted to type domain invalid . Any subsequently created cgroups
under y will also have the type domain invalid .

(2) We write the string "threaded" to each of the domain invalid cgroups under y, in
order to convert them to the type threaded . As a consequence of this step, all
threads under the threaded root now have the type threaded and the threaded sub-
tree is now fully usable. The requirement to write "threaded" to each of these
cgroups is somewhat cumbersome, but allows for possible future extensions to the
thread-mode model.

The second way of creating a threaded subtree is as follows:

(1) In an existing cgroup, z, that currently has the type domain, we (1.1) enable one
or more threaded controllers and (1.2) make a process a member of z. (These two
steps can be done in either order.) This has the following consequences:

• The type of z becomes domain threaded .

• All of the descendant cgroups of z that were not already of type threaded are
converted to type domain invalid .

(2) As before, we make the threaded subtree usable by writing the string "threaded"
to each of the domain invalid cgroups under z, in order to convert them to the type
threaded .

One of the consequences of the above pathways to creating a threaded subtree is that the
threaded root cgroup can be a parent only to threaded (and domain invalid) cgroups.
The threaded root cgroup can’t be a parent of a domain cgroup, and a threaded cgroup
can’t have a sibling that is a domain cgroup.

Using a threaded subtree
Within a threaded subtree, threaded controllers can be enabled in each subgroup whose
type has been changed to threaded; upon doing so, the corresponding controller inter-
face files appear in the children of that cgroup.

A process can be moved into a threaded subtree by writing its PID to the cgroup.procs

Linux man-pages 6.16 2025-08-19 3363

cgroups(7) Miscellaneous Information Manual cgroups(7)

file in one of the cgroups inside the tree. This has the effect of making all of the threads
in the process members of the corresponding cgroup and makes the process a member of
the threaded subtree. The threads of the process can then be spread across the threaded
subtree by writing their thread IDs (see gettid(2)) to the cgroup.threads files in different
cgroups inside the subtree. The threads of a process must all reside in the same threaded
subtree.

As with writing to cgroup.procs, some containment rules apply when writing to the
cgroup.threads file:

• The writer must have write permission on the cgroup.threads file in the destination
cgroup.

• The writer must have write permission on the cgroup.procs file in the common an-
cestor of the source and destination cgroups. (In some cases, the common ancestor
may be the source or destination cgroup itself.)

• The source and destination cgroups must be in the same threaded subtree. (Outside
a threaded subtree, an attempt to move a thread by writing its thread ID to the
cgroup.threads file in a different domain cgroup fails with the error EOPNOT-
SUPP.)

The cgroup.threads file is present in each cgroup (including domain cgroups) and can be
read in order to discover the set of threads that is present in the cgroup. The set of
thread IDs obtained when reading this file is not guaranteed to be ordered or free of du-
plicates.

The cgroup.procs file in the threaded root shows the PIDs of all processes that are mem-
bers of the threaded subtree. The cgroup.procs files in the other cgroups in the subtree
are not readable.

Domain controllers can’t be enabled in a threaded subtree; no controller-interface files
appear inside the cgroups underneath the threaded root. From the point of view of a do-
main controller, threaded subtrees are invisible: a multithreaded process inside a
threaded subtree appears to a domain controller as a process that resides in the threaded
root cgroup.

Within a threaded subtree, the "no internal processes" rule does not apply: a cgroup can
both contain member processes (or thread) and exercise controllers on child cgroups.

Rules for writing to cgroup.type and creating threaded subtrees
A number of rules apply when writing to the cgroup.type file:

• Only the string "threaded" may be written. In other words, the only explicit transi-
tion that is possible is to convert a domain cgroup to type threaded .

• The effect of writing "threaded" depends on the current value in cgroup.type, as fol-
lows:

• domain or domain threaded: start the creation of a threaded subtree (whose root
is the parent of this cgroup) via the first of the pathways described above;

• domain invalid: convert this cgroup (which is inside a threaded subtree) to a us-
able (i.e., threaded) state;

Linux man-pages 6.16 2025-08-19 3364

cgroups(7) Miscellaneous Information Manual cgroups(7)

• threaded: no effect (a "no-op").

• We can’t write to a cgroup.type file if the parent’s type is domain invalid . In other
words, the cgroups of a threaded subtree must be converted to the threaded state in a
top-down manner.

There are also some constraints that must be satisfied in order to create a threaded sub-
tree rooted at the cgroup x:

• There can be no member processes in the descendant cgroups of x. (The cgroup x
can itself have member processes.)

• No domain controllers may be enabled in x’s cgroup.subtree_control file.

If any of the above constraints is violated, then an attempt to write "threaded" to a
cgroup.type file fails with the error ENOTSUP.

The "domain threaded" cgroup type
According to the pathways described above, the type of a cgroup can change to domain
threaded in either of the following cases:

• The string "threaded" is written to a child cgroup.

• A threaded controller is enabled inside the cgroup and a process is made a member
of the cgroup.

A domain threaded cgroup, x, can revert to the type domain if the above conditions no
longer hold true—that is, if all threaded child cgroups of x are removed and either x no
longer has threaded controllers enabled or no longer has member processes.

When a domain threaded cgroup x reverts to the type domain:

• All domain invalid descendants of x that are not in lower-level threaded subtrees re-
vert to the type domain.

• The root cgroups in any lower-level threaded subtrees revert to the type domain
threaded .

Exceptions for the root cgroup
The root cgroup of the v2 hierarchy is treated exceptionally: it can be the parent of both
domain and threaded cgroups. If the string "threaded" is written to the cgroup.type file
of one of the children of the root cgroup, then

• The type of that cgroup becomes threaded .

• The type of any descendants of that cgroup that are not part of lower-level threaded
subtrees changes to domain invalid .

Note that in this case, there is no cgroup whose type becomes domain threaded . (No-
tionally, the root cgroup can be considered as the threaded root for the cgroup whose
type was changed to threaded .)

The aim of this exceptional treatment for the root cgroup is to allow a threaded cgroup
that employs the cpu controller to be placed as high as possible in the hierarchy, so as to
minimize the (small) cost of traversing the cgroup hierarchy.

Linux man-pages 6.16 2025-08-19 3365

cgroups(7) Miscellaneous Information Manual cgroups(7)

The cgroups v2 "cpu" controller and realtime threads
As at Linux 4.19, the cgroups v2 cpu controller does not support control of realtime
threads (specifically threads scheduled under any of the policies SCHED_FIFO,
SCHED_RR, described SCHED_DEADLINE; see sched(7)). Therefore, the cpu con-
troller can be enabled in the root cgroup only if all realtime threads are in the root
cgroup. (If there are realtime threads in nonroot cgroups, then a write(2) of the string
"+cpu" to the cgroup.subtree_control file fails with the error EINVAL.)

On some systems, systemd(1) places certain realtime threads in nonroot cgroups in the
v2 hierarchy. On such systems, these threads must first be moved to the root cgroup be-
fore the cpu controller can be enabled.

ERRORS
The following errors can occur for mount(2):

EBUSY
An attempt to mount a cgroup version 1 filesystem specified neither the name=
option (to mount a named hierarchy) nor a controller name (or all).

NOTES
A child process created via fork(2) inherits its parent’s cgroup memberships. A
process’s cgroup memberships are preserved across execve(2).

The clone3(2) CLONE_INTO_CGROUP flag can be used to create a child process
that begins its life in a different version 2 cgroup from the parent process.

/proc files
/proc/cgroups (since Linux 2.6.24)

This file contains information about the controllers that are compiled into the
kernel. An example of the contents of this file (reformatted for readability) is the
following:

#subsys_name hierarchy num_cgroups enabled
cpuset 4 1 1
cpu 8 1 1
cpuacct 8 1 1
blkio 6 1 1
memory 3 1 1
devices 10 84 1
freezer 7 1 1
net_cls 9 1 1
perf_event 5 1 1
net_prio 9 1 1
hugetlb 0 1 0
pids 2 1 1

The fields in this file are, from left to right:

[1] The name of the controller.

[2] The unique ID of the cgroup hierarchy on which this controller is
mounted. If multiple cgroups v1 controllers are bound to the same hierar-
chy, then each will show the same hierarchy ID in this field. The value in

Linux man-pages 6.16 2025-08-19 3366

cgroups(7) Miscellaneous Information Manual cgroups(7)

this field will be 0 if:

• the controller is not mounted on a cgroups v1 hierarchy;

• the controller is bound to the cgroups v2 single unified hierarchy; or

• the controller is disabled (see below).

[3] The number of control groups in this hierarchy using this controller.

[4] This field contains the value 1 if this controller is enabled, or 0 if it has
been disabled (via the cgroup_disable kernel command-line boot parame-
ter).

/proc/ pid /cgroup (since Linux 2.6.24)
This file describes control groups to which the process with the corresponding
PID belongs. The displayed information differs for cgroups version 1 and ver-
sion 2 hierarchies.

For each cgroup hierarchy of which the process is a member, there is one entry
containing three colon-separated fields:

hierarchy-ID:controller-list:cgroup-path

For example:

5:cpuacct,cpu,cpuset:/daemons

The colon-separated fields are, from left to right:

[1] For cgroups version 1 hierarchies, this field contains a unique hierarchy ID
number that can be matched to a hierarchy ID in /proc/cgroups. For the
cgroups version 2 hierarchy, this field contains the value 0.

[2] For cgroups version 1 hierarchies, this field contains a comma-separated
list of the controllers bound to the hierarchy. For the cgroups version 2 hi-
erarchy, this field is empty.

[3] This field contains the pathname of the control group in the hierarchy to
which the process belongs. This pathname is relative to the mount point of
the hierarchy.

/sys/kernel/cgroup files
/sys/kernel/cgroup/delegate (since Linux 4.15)

This file exports a list of the cgroups v2 files (one per line) that are delegatable
(i.e., whose ownership should be changed to the user ID of the delegatee). In the
future, the set of delegatable files may change or grow, and this file provides a
way for the kernel to inform user-space applications of which files must be dele-
gated. As at Linux 4.15, one sees the following when inspecting this file:

$ cat /sys/kernel/cgroup/delegate
cgroup.procs
cgroup.subtree_control
cgroup.threads

Linux man-pages 6.16 2025-08-19 3367

cgroups(7) Miscellaneous Information Manual cgroups(7)

/sys/kernel/cgroup/features (since Linux 4.15)
Over time, the set of cgroups v2 features that are provided by the kernel may
change or grow, or some features may not be enabled by default. This file pro-
vides a way for user-space applications to discover what features the running
kernel supports and has enabled. Features are listed one per line:

$ cat /sys/kernel/cgroup/features
nsdelegate
memory_localevents

The entries that can appear in this file are:

memory_localevents (since Linux 5.2)
The kernel supports the memory_localevents mount option.

nsdelegate (since Linux 4.15)
The kernel supports the nsdelegate mount option.

memory_recursiveprot (since Linux 5.7)
The kernel supports the memory_recursiveprot mount option.

SEE ALSO
prlimit(1), systemd(1), systemd-cgls(1), systemd-cgtop(1), clone(2), ioprio_set(2),
perf_event_open(2), setrlimit(2), cgroup_namespaces(7), cpuset(7), namespaces(7),
sched(7), user_namespaces(7)

The kernel source file Documentation/admin-guide/cgroup-v2.rst.

Linux man-pages 6.16 2025-08-19 3368

charsets(7) Miscellaneous Information Manual charsets(7)

NAME
charsets - character set standards and internationalization

DESCRIPTION
This manual page gives an overview on different character set standards and how they
were used on Linux before Unicode became ubiquitous. Some of this information is
still helpful for people working with legacy systems and documents.

Standards discussed include such as ASCII, GB 2312, ISO/IEC 8859, JIS, KOI8-R, KS,
and Unicode.

The primary emphasis is on character sets that were actually used by locale character
sets, not the myriad others that could be found in data from other systems.

ASCII
ASCII (American Standard Code For Information Interchange) is the original 7-bit char-
acter set, originally designed for American English. Also known as US-ASCII. It is
currently described by the ISO/IEC 646:1991 IRV (International Reference Version)
standard.

Various ASCII variants replacing the dollar sign with other currency symbols and re-
placing punctuation with non-English alphabetic characters to cover German, French,
Spanish, and others in 7 bits emerged. All are deprecated; glibc does not support locales
whose character sets are not true supersets of ASCII.

As Unicode, when using UTF-8, is ASCII-compatible, plain ASCII text still renders
properly on modern UTF-8 using systems.

ISO/IEC 8859
ISO/IEC 8859 is a series of 15 8-bit character sets, all of which have ASCII in their low
(7-bit) half, invisible control characters in positions 128 to 159, and 96 fixed-width
graphics in positions 160–255.

Of these, the most important is ISO/IEC 8859-1 ("Latin Alphabet No. 1" / Latin-1). It
was widely adopted and supported by different systems, and is gradually being replaced
with Unicode. The ISO/IEC 8859-1 characters are also the first 256 characters of Uni-
code.

Console support for the other ISO/IEC 8859 character sets is available under Linux
through user-mode utilities (such as setfont(8)) that modify keyboard bindings and the
EGA graphics table and employ the "user mapping" font table in the console driver.

Here are brief descriptions of each character set:

ISO/IEC 8859-1 (Latin-1)
Latin-1 covers many European languages such as Albanian, Basque, Danish,
English, Faroese, Galician, Icelandic, Irish, Italian, Norwegian, Portuguese,
Spanish, and Swedish. The lack of the ligatures Dutch IJ/ij, French œ, and „Ger-
man“ quotation marks was considered tolerable.

ISO/IEC 8859-2 (Latin-2)
Latin-2 supports many Latin-written Central and East European languages such
as Bosnian, Croatian, Czech, German, Hungarian, Polish, Slovak, and Slovene.
Replacing Romanian ș/ț with ş/ţ was considered tolerable.

Linux man-pages 6.16 2025-09-21 3369

charsets(7) Miscellaneous Information Manual charsets(7)

ISO/IEC 8859-3 (Latin-3)
Latin-3 was designed to cover of Esperanto, Maltese, and Turkish, but
ISO/IEC 8859-9 later superseded it for Turkish.

ISO/IEC 8859-4 (Latin-4)
Latin-4 introduced letters for North European languages such as Estonian, Lat-
vian, and Lithuanian, but was superseded by ISO/IEC 8859-10 and
ISO/IEC 8859-13.

ISO/IEC 8859-5
Cyrillic letters supporting Bulgarian, Byelorussian, Macedonian, Russian, Ser-
bian, and (almost completely) Ukrainian. It was never widely used, see the dis-
cussion of KOI8-R/KOI8-U below.

ISO/IEC 8859-6
Was created for Arabic. The ISO/IEC 8859-6 glyph table is a fixed font of sepa-
rate letter forms, but a proper display engine should combine these using the
proper initial, medial, and final forms.

ISO/IEC 8859-7
Was created for Modern Greek in 1987, updated in 2003.

ISO/IEC 8859-8
Supports Modern Hebrew without niqud (punctuation signs). Niqud and full-
fledged Biblical Hebrew were outside the scope of this character set.

ISO/IEC 8859-9 (Latin-5)
This is a variant of Latin-1 that replaces Icelandic letters with Turkish ones.

ISO/IEC 8859-10 (Latin-6)
Latin-6 added the Inuit (Greenlandic) and Sami (Lappish) letters that were miss-
ing in Latin-4 to cover the entire Nordic area.

ISO/IEC 8859-11
Supports the Thai alphabet and is nearly identical to the TIS-620 standard.

ISO/IEC 8859-12
This character set does not exist.

ISO/IEC 8859-13 (Latin-7)
Supports the Baltic Rim languages; in particular, it includes Latvian characters
not found in Latin-4.

ISO/IEC 8859-14 (Latin-8)
This is the Celtic character set, covering Old Irish, Manx, Gaelic, Welsh, Cor-
nish, and Breton.

ISO/IEC 8859-15 (Latin-9)
Latin-9 is similar to the widely used Latin-1 but replaces some less common
symbols with the Euro sign and French and Finnish letters that were missing in
Latin-1.

ISO/IEC 8859-16 (Latin-10)
This character set covers many Southeast European languages, and most impor-
tantly supports Romanian more completely than Latin-2.

Linux man-pages 6.16 2025-09-21 3370

charsets(7) Miscellaneous Information Manual charsets(7)

KOI8-R / KOI8-U
KOI8-R is a non-ISO character set popular in Russia before Unicode. The lower half is
ASCII; the upper is a Cyrillic character set somewhat better designed than
ISO/IEC 8859-5. KOI8-U, based on KOI8-R, has better support for Ukrainian. Neither
of these sets are ISO/IEC 2022 compatible, unlike the ISO/IEC 8859 series.

Console support for KOI8-R is available under Linux through user-mode utilities that
modify keyboard bindings and the EGA graphics table, and employ the "user mapping"
font table in the console driver.

GB 2312
GB 2312 is a mainland Chinese national standard character set used to express simpli-
fied Chinese. Just like JIS X 0208, characters are mapped into a 94x94 two-byte matrix
used to construct EUC-CN. EUC-CN is the most important encoding for Linux and in-
cludes ASCII and GB 2312. Note that EUC-CN is often called as GB, GB 2312, or CN-
GB.

Big5
Big5 was a popular character set in Taiwan to express traditional Chinese. (Big5 is both
a character set and an encoding.) It is a superset of ASCII. Non-ASCII characters are
expressed in two bytes. Bytes 0xa1–0xfe are used as leading bytes for two-byte charac-
ters. Big5 and its extension were widely used in Taiwan and Hong Kong. It is not
ISO/IEC 2022 compliant.

JIS X 0208
JIS X 0208 is a Japanese national standard character set. Though there are some more
Japanese national standard character sets (like JIS X 0201, JIS X 0212, and JIS X 0213),
this is the most important one. Characters are mapped into a 94x94 two-byte matrix,
whose each byte is in the range 0x21–0x7e. Note that JIS X 0208 is a character set, not
an encoding. This means that JIS X 0208 itself is not used for expressing text data. JIS
X 0208 is used as a component to construct encodings such as EUC-JP, Shift_JIS, and
ISO/IEC 2022-JP. EUC-JP is the most important encoding for Linux and includes
ASCII and JIS X 0208. In EUC-JP, JIS X 0208 characters are expressed in two bytes,
each of which is the JIS X 0208 code plus 0x80.

KS X 1001
KS X 1001 is a Korean national standard character set. Just as JIS X 0208, characters
are mapped into a 94x94 two-byte matrix. KS X 1001 is used like JIS X 0208, as a
component to construct encodings such as EUC-KR, Johab, and ISO/IEC 2022-KR.
EUC-KR is the most important encoding for Linux and includes ASCII and KS X 1001.
KS C 5601 is an older name for KS X 1001.

ISO/IEC 2022 and ISO/IEC 4873
The ISO/IEC 2022 and ISO/IEC 4873 standards describe a font-control model based on
VT100 practice. This model is (partially) supported by the Linux kernel and by
xterm(1)Several ISO/IEC 2022-based character encodings have been defined, especially
for Japanese.

There are 4 graphic character sets, called G0, G1, G2, and G3, and one of them is the
current character set for codes with high bit zero (initially G0), and one of them is the
current character set for codes with high bit one (initially G1). Each graphic character

Linux man-pages 6.16 2025-09-21 3371

charsets(7) Miscellaneous Information Manual charsets(7)

set has 94 or 96 characters, and is essentially a 7-bit character set. It uses codes either
040–0177 (041–0176) or 0240–0377 (0241–0376). G0 always has size 94 and uses
codes 041–0176.

Switching between character sets is done using the shift functions ^N (SO or LS1), ^O
(SI or LS0), ESC n (LS2), ESC o (LS3), ESC N (SS2), ESC O (SS3), ESC ~ (LS1R),
ESC } (LS2R), ESC | (LS3R). The function LSn makes character set Gn the current
one for codes with high bit zero. The function LSnR makes character set Gn the current
one for codes with high bit one. The function SSn makes character set Gn (n=2 or 3)
the current one for the next character only (regardless of the value of its high order bit).

A 94-character set is designated as Gn character set by an escape sequence ESC (xx
(for G0), ESC) xx (for G1), ESC * xx (for G2), ESC + xx (for G3), where xx is a sym-
bol or a pair of symbols found in the ISO/IEC 2375 International Register of Coded
Character Sets. For example, ESC (@ selects the ISO/IEC 646 character set as G0,
ESC (A selects the UK standard character set (with pound instead of number sign),
ESC (B selects ASCII (with dollar instead of currency sign), ESC (M selects a charac-
ter set for African languages, ESC (! A selects the Cuban character set, and so on.

A 96-character set is designated as Gn character set by an escape sequence ESC - xx
(for G1), ESC . xx (for G2) or ESC / xx (for G3). For example, ESC - G selects the He-
brew alphabet as G1.

A multibyte character set is designated as Gn character set by an escape sequence ESC
$ xx or ESC $ (xx (for G0), ESC $) xx (for G1), ESC $ * xx (for G2), ESC $ + xx (for
G3). For example, ESC $ (C selects the Korean character set for G0. The Japanese
character set selected by ESC $ B has a more recent version selected by ESC & @ ESC
$ B.

ISO/IEC 4873 stipulates a narrower use of character sets, where G0 is fixed (always
ASCII), so that G1, G2, and G3 can be invoked only for codes with the high order bit
set. In particular, ^N and ^O are not used anymore, ESC (xx can be used only with
xx=B, and ESC) xx, ESC * xx, ESC + xx are equivalent to ESC - xx, ESC . xx, ESC /
xx, respectively.

TIS-620
TIS-620 is a Thai national standard character set and a superset of ASCII. In the same
fashion as the ISO/IEC 8859 series, Thai characters are mapped into 0xa1–0xfe.

Unicode
Unicode (ISO/IEC 10646) is a standard which aims to unambiguously represent every
character in every human language. Unicode’s structure permits 20.1 bits to encode
every character. Since most computers don’t include 20.1-bit integers, Unicode is usu-
ally encoded as 32-bit integers internally and either a series of 16-bit integers (UTF-16)
(needing two 16-bit integers only when encoding certain rare characters) or a series of
8-bit bytes (UTF-8).

Linux represents Unicode using the 8-bit Unicode Transformation Format (UTF-8).
UTF-8 is a variable length encoding of Unicode. It uses 1 byte to code 7 bits, 2 bytes
for 11 bits, 3 bytes for 16 bits, 4 bytes for 21 bits, 5 bytes for 26 bits, 6 bytes for 31 bits.

Let 0,1,x stand for a zero, one, or arbitrary bit. A byte 0xxxxxxx stands for the Unicode

Linux man-pages 6.16 2025-09-21 3372

charsets(7) Miscellaneous Information Manual charsets(7)

00000000 0xxxxxxx which codes the same symbol as the ASCII 0xxxxxxx. Thus,
ASCII goes unchanged into UTF-8, and people using only ASCII do not notice any
change: not in code, and not in file size.

A byte 110xxxxx is the start of a 2-byte code, and 110xxxxx 10yyyyyy is assembled
into 00000xxx xxyyyyyy. A byte 1110xxxx is the start of a 3-byte code, and 1110xxxx
10yyyyyy 10zzzzzz is assembled into xxxxyyyy yyzzzzzz. (When UTF-8 is used to
code the 31-bit ISO/IEC 10646 then this progression continues up to 6-byte codes.)

For most texts in ISO/IEC 8859 character sets, this means that the characters outside of
ASCII are now coded with two bytes. This tends to expand ordinary text files by only
one or two percent. For Russian or Greek texts, this expands ordinary text files by
100%, since text in those languages is mostly outside of ASCII. For Japanese users this
means that the 16-bit codes now in common use will take three bytes. While there are
algorithmic conversions from some character sets (especially ISO/IEC 8859-1) to Uni-
code, general conversion requires carrying around conversion tables, which can be quite
large for 16-bit codes.

Note that UTF-8 is self-synchronizing: 10xxxxxx is a tail, any other byte is the head of a
code. Note that the only way ASCII bytes occur in a UTF-8 stream, is as themselves.
In particular, there are no embedded NULs ('\0') or '/'s that form part of some larger
code.

Since ASCII, and, in particular, NUL and '/', are unchanged, the kernel does not notice
that UTF-8 is being used. It does not care at all what the bytes it is handling stand for.

Rendering of Unicode data streams is typically handled through "subfont" tables which
map a subset of Unicode to glyphs. Internally, the kernel uses Unicode to describe the
subfont loaded in video RAM. This means that in the Linux console in UTF-8 mode,
one can use a character set with 512 different symbols. This is not enough for Japanese,
Chinese, and Korean, but it is enough for most other purposes.

SEE ALSO
iconv(1), ascii(7), iso_8859-1(7), unicode(7), utf-8(7)

Linux man-pages 6.16 2025-09-21 3373

complex(7) Miscellaneous Information Manual complex(7)

NAME
complex - basics of complex mathematics

LIBRARY
Math library (libm, -lm)

SYNOPSIS
#include <complex.h>

DESCRIPTION
Complex numbers are numbers of the form z = a+b*i, where a and b are real numbers
and i = sqrt(-1), so that i*i = -1.

There are other ways to represent that number. The pair (a,b) of real numbers may be
viewed as a point in the plane, given by X- and Y-coordinates. This same point may
also be described by giving the pair of real numbers (r,phi), where r is the distance to the
origin O, and phi the angle between the X-axis and the line Oz. Now z = r*exp(i*phi) =
r*(cos(phi)+i*sin(phi)).

The basic operations are defined on z = a+b*i and w = c+d*i as:

addition: z+w = (a+c) + (b+d)*i

multiplication: z*w = (a*c - b*d) + (a*d + b*c)*i

division: z/w = ((a*c + b*d)/(c*c + d*d)) + ((b*c - a*d)/(c*c + d*d))*i

Nearly all math function have a complex counterpart but there are some complex-only
functions.

EXAMPLES
Your C-compiler can work with complex numbers if it supports the C99 standard. The
imaginary unit is represented by I.

/* check that exp(i * pi) == -1 */
#include <math.h> /* for atan */
#include <stdio.h>
#include <complex.h>

int
main(void)
{

double pi = 4 * atan(1.0);
double complex z = cexp(I * pi);
printf("%f + %f * i\n", creal(z), cimag(z));

}

SEE ALSO
cabs(3), cacos(3), cacosh(3), carg(3), casin(3), casinh(3), catan(3), catanh(3), ccos(3),
ccosh(3), cerf (3), cexp(3), cexp2(3), cimag(3), clog(3), clog10(3), clog2(3), conj(3),
cpow(3), cproj(3), creal(3), csin(3), csinh(3), csqrt(3), ctan(3), ctanh(3)

Linux man-pages 6.16 2025-05-17 3374

cp1251(7) Miscellaneous Information Manual cp1251(7)

NAME
cp1251 - CP 1251 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The Windows Code Pages include several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). CP 1251 encodes the characters used in Cyrillic
scripts.

CP 1251 characters
The following table displays the characters in CP 1251 that are printable and unlisted in
the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 Ђ CYRILLIC CAPITAL LETTER DJE
201 129 81 Ѓ CYRILLIC CAPITAL LETTER GJE
202 130 82 ‚ SINGLE LOW-9 QUOTATION MARK
203 131 83 ѓ CYRILLIC SMALL LETTER GJE
204 132 84 „ DOUBLE LOW-9 QUOTATION MARK
205 133 85 … HORIZONTAL ELLIPSIS
206 134 86 † DAGGER
207 135 87 ‡ DOUBLE DAGGER
210 136 88 € EURO SIGN
211 137 89 ‰ PER MILLE SIGN
212 138 8A Љ CYRILLIC CAPITAL LETTER LJE
213 139 8B ‹ SINGLE LEFT-POINTING ANGLE QUOTATION MARK
214 140 8C Њ CYRILLIC CAPITAL LETTER NJE
215 141 8D Ќ CYRILLIC CAPITAL LETTER KJE
216 142 8E Ћ CYRILLIC CAPITAL LETTER TSHE
217 143 8F Џ CYRILLIC CAPITAL LETTER DZHE
220 144 90 ђ CYRILLIC SMALL LETTER DJE
221 145 91 ‘ LEFT SINGLE QUOTATION MARK
222 146 92 ’ RIGHT SINGLE QUOTATION MARK
223 147 93 “ LEFT DOUBLE QUOTATION MARK
224 148 94 ” RIGHT DOUBLE QUOTATION MARK
225 149 95 • BULLET
226 150 96 – EN DASH
227 151 97 — EM DASH
230 152 98 UNDEFINED
231 153 99 ™ TRADE MARK SIGN
232 154 9A љ CYRILLIC SMALL LETTER LJE
233 155 9B › SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
234 156 9C њ CYRILLIC SMALL LETTER NJE
235 157 9D ќ CYRILLIC SMALL LETTER KJE
236 158 9E ћ CYRILLIC SMALL LETTER TSHE
237 159 9F џ CYRILLIC SMALL LETTER DZHE
240 160 A0 NO-BREAK SPACE
241 161 A1 Ў CYRILLIC CAPITAL LETTER SHORT U
242 162 A2 ў CYRILLIC SMALL LETTER SHORT U

Linux man-pages 6.16 2025-05-17 3375

cp1251(7) Miscellaneous Information Manual cp1251(7)

243 163 A3 Ј CYRILLIC CAPITAL LETTER JE
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 Ґ CYRILLIC CAPITAL LETTER GHE WITH UPTURN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 Ё CYRILLIC CAPITAL LETTER IO
251 169 A9 © COPYRIGHT SIGN
252 170 AA Є CYRILLIC CAPITAL LETTER UKRAINIAN IE
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF Ї CYRILLIC CAPITAL LETTER YI
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 І CYRILLIC CAPITAL LETTER

BYELORUSSIAN-UKRAINIAN I
263 179 B3 і CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
264 180 B4 ґ CYRILLIC SMALL LETTER GHE WITH UPTURN
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ё CYRILLIC SMALL LETTER IO
271 185 B9 № NUMERO SIGN
272 186 BA є CYRILLIC SMALL LETTER UKRAINIAN IE
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ј CYRILLIC SMALL LETTER JE
275 189 BD Ѕ CYRILLIC CAPITAL LETTER DZE
276 190 BE ѕ CYRILLIC SMALL LETTER DZE
277 191 BF ї CYRILLIC SMALL LETTER YI
300 192 C0 А CYRILLIC CAPITAL LETTER A
301 193 C1 Б CYRILLIC CAPITAL LETTER BE
302 194 C2 В CYRILLIC CAPITAL LETTER VE
303 195 C3 Г CYRILLIC CAPITAL LETTER GHE
304 196 C4 Д CYRILLIC CAPITAL LETTER DE
305 197 C5 Е CYRILLIC CAPITAL LETTER IE
306 198 C6 Ж CYRILLIC CAPITAL LETTER ZHE
307 199 C7 З CYRILLIC CAPITAL LETTER ZE
310 200 C8 И CYRILLIC CAPITAL LETTER I
311 201 C9 Й CYRILLIC CAPITAL LETTER SHORT I
312 202 CA К CYRILLIC CAPITAL LETTER KA
313 203 CB Л CYRILLIC CAPITAL LETTER EL
314 204 CC М CYRILLIC CAPITAL LETTER EM
315 205 CD Н CYRILLIC CAPITAL LETTER EN
316 206 CE О CYRILLIC CAPITAL LETTER O
317 207 CF П CYRILLIC CAPITAL LETTER PE

Linux man-pages 6.16 2025-05-17 3376

cp1251(7) Miscellaneous Information Manual cp1251(7)

320 208 D0 Р CYRILLIC CAPITAL LETTER ER
321 209 D1 С CYRILLIC CAPITAL LETTER ES
322 210 D2 Т CYRILLIC CAPITAL LETTER TE
323 211 D3 У CYRILLIC CAPITAL LETTER U
324 212 D4 Ф CYRILLIC CAPITAL LETTER EF
325 213 D5 Х CYRILLIC CAPITAL LETTER HA
326 214 D6 Ц CYRILLIC CAPITAL LETTER TSE
327 215 D7 Ч CYRILLIC CAPITAL LETTER CHE
330 216 D8 Ш CYRILLIC CAPITAL LETTER SHA
331 217 D9 Щ CYRILLIC CAPITAL LETTER SHCHA
332 218 DA Ъ CYRILLIC CAPITAL LETTER HARD SIGN
333 219 DB Ы CYRILLIC CAPITAL LETTER YERU
334 220 DC Ь CYRILLIC CAPITAL LETTER SOFT SIGN
335 221 DD Э CYRILLIC CAPITAL LETTER E
336 222 DE Ю CYRILLIC CAPITAL LETTER YU
337 223 DF Я CYRILLIC CAPITAL LETTER YA
340 224 E0 а CYRILLIC SMALL LETTER A
341 225 E1 б CYRILLIC SMALL LETTER BE
342 226 E2 в CYRILLIC SMALL LETTER VE
343 227 E3 г CYRILLIC SMALL LETTER GHE
344 228 E4 д CYRILLIC SMALL LETTER DE
345 229 E5 е CYRILLIC SMALL LETTER IE
346 230 E6 ж CYRILLIC SMALL LETTER ZHE
347 231 E7 з CYRILLIC SMALL LETTER ZE
350 232 E8 и CYRILLIC SMALL LETTER I
351 233 E9 й CYRILLIC SMALL LETTER SHORT I
352 234 EA к CYRILLIC SMALL LETTER KA
353 235 EB л CYRILLIC SMALL LETTER EL
354 236 EC м CYRILLIC SMALL LETTER EM
355 237 ED н CYRILLIC SMALL LETTER EN
356 238 EE о CYRILLIC SMALL LETTER O
357 239 EF п CYRILLIC SMALL LETTER PE
360 240 F0 р CYRILLIC SMALL LETTER ER
361 241 F1 с CYRILLIC SMALL LETTER ES
362 242 F2 т CYRILLIC SMALL LETTER TE
363 243 F3 у CYRILLIC SMALL LETTER U
364 244 F4 ф CYRILLIC SMALL LETTER EF
365 245 F5 х CYRILLIC SMALL LETTER HA
366 246 F6 ц CYRILLIC SMALL LETTER TSE
367 247 F7 ч CYRILLIC SMALL LETTER CHE
370 248 F8 ш CYRILLIC SMALL LETTER SHA
371 249 F9 щ CYRILLIC SMALL LETTER SHCHA
372 250 FA ъ CYRILLIC SMALL LETTER HARD SIGN
373 251 FB ы CYRILLIC SMALL LETTER YERU
374 252 FC ь CYRILLIC SMALL LETTER SOFT SIGN
375 253 FD э CYRILLIC SMALL LETTER E

Linux man-pages 6.16 2025-05-17 3377

cp1251(7) Miscellaneous Information Manual cp1251(7)

376 254 FE ю CYRILLIC SMALL LETTER YU
377 255 FF я CYRILLIC SMALL LETTER YA

NOTES
CP 1251 is also known as Windows Cyrillic.

SEE ALSO
ascii(7), charsets(7), cp1252(7), iso_8859-5(7), koi8-r(7), koi8-u(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3378

cp1252(7) Miscellaneous Information Manual cp1252(7)

NAME
cp1252 - CP 1252 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The Windows Code Pages include several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). CP 1252 encodes the characters used in many West
European languages.

CP 1252 characters
The following table displays the characters in CP 1252 that are printable and unlisted in
the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 € EURO SIGN
202 130 82 ‚ SINGLE LOW-9 QUOTATION MARK
203 131 83 ƒ LATIN SMALL LETTER F WITH HOOK
204 132 84 „ DOUBLE LOW-9 QUOTATION MARK
205 133 85 … HORIZONTAL ELLIPSIS
206 134 86 † DAGGER
207 135 87 ‡ DOUBLE DAGGER
210 136 88 ˆ MODIFIER LETTER CIRCUMFLEX ACCENT
211 137 89 ‰ PER MILLE SIGN
212 138 8A Š LATIN CAPITAL LETTER S WITH CARON
213 139 8B ‹ SINGLE LEFT-POINTING ANGLE QUOTATION MARK
214 140 8C Œ LATIN CAPITAL LIGATURE OE
216 142 8E Ž LATIN CAPITAL LETTER Z WITH CARON
221 145 91 ‘ LEFT SINGLE QUOTATION MARK
222 146 92 ’ RIGHT SINGLE QUOTATION MARK
223 147 93 “ LEFT DOUBLE QUOTATION MARK
224 148 94 ” RIGHT DOUBLE QUOTATION MARK
225 149 95 • BULLET
226 150 96 – EN DASH
227 151 97 — EM DASH
230 152 98 ˜ SMALL TILDE
231 153 99 ™ TRADE MARK SIGN
232 154 9A š LATIN SMALL LETTER S WITH CARON
233 155 9B › SINGLE RIGHT-POINTING ANGLE QUOTATION MARK
234 156 9C œ LATIN SMALL LIGATURE OE
236 158 9E ž LATIN SMALL LETTER Z WITH CARON
237 159 9F Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN

Linux man-pages 6.16 2025-05-17 3379

cp1252(7) Miscellaneous Information Manual cp1252(7)

250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE

Linux man-pages 6.16 2025-05-17 3380

cp1252(7) Miscellaneous Information Manual cp1252(7)

326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
CP 1252 is also known as Windows-1252.

Linux man-pages 6.16 2025-05-17 3381

cp1252(7) Miscellaneous Information Manual cp1252(7)

SEE ALSO
ascii(7), charsets(7), cp1251(7), iso_8859-1(7), iso_8859-15(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3382

cpuset(7) Miscellaneous Information Manual cpuset(7)

NAME
cpuset - confine processes to processor and memory node subsets

DESCRIPTION
The cpuset filesystem is a pseudo-filesystem interface to the kernel cpuset mechanism,
which is used to control the processor placement and memory placement of processes.
It is commonly mounted at /dev/cpuset.

On systems with kernels compiled with built in support for cpusets, all processes are at-
tached to a cpuset, and cpusets are always present. If a system supports cpusets, then it
will have the entry nodev cpuset in the file /proc/filesystems. By mounting the cpuset
filesystem (see the EXAMPLES section below), the administrator can configure the
cpusets on a system to control the processor and memory placement of processes on that
system. By default, if the cpuset configuration on a system is not modified or if the
cpuset filesystem is not even mounted, then the cpuset mechanism, though present, has
no effect on the system’s behavior.

A cpuset defines a list of CPUs and memory nodes.

The CPUs of a system include all the logical processing units on which a process can
execute, including, if present, multiple processor cores within a package and Hyper-
Threads within a processor core. Memory nodes include all distinct banks of main
memory; small and SMP systems typically have just one memory node that contains all
the system’s main memory, while NUMA (non-uniform memory access) systems have
multiple memory nodes.

Cpusets are represented as directories in a hierarchical pseudo-filesystem, where the top
directory in the hierarchy (/dev/cpuset) represents the entire system (all online CPUs
and memory nodes) and any cpuset that is the child (descendant) of another parent
cpuset contains a subset of that parent’s CPUs and memory nodes. The directories and
files representing cpusets have normal filesystem permissions.

Every process in the system belongs to exactly one cpuset. A process is confined to run
only on the CPUs in the cpuset it belongs to, and to allocate memory only on the mem-
ory nodes in that cpuset. When a process fork(2)s, the child process is placed in the
same cpuset as its parent. With sufficient privilege, a process may be moved from one
cpuset to another and the allowed CPUs and memory nodes of an existing cpuset may be
changed.

When the system begins booting, a single cpuset is defined that includes all CPUs and
memory nodes on the system, and all processes are in that cpuset. During the boot
process, or later during normal system operation, other cpusets may be created, as subdi-
rectories of this top cpuset, under the control of the system administrator, and processes
may be placed in these other cpusets.

Cpusets are integrated with the sched_setaffinity(2) scheduling affinity mechanism and
the mbind(2) and set_mempolicy(2) memory-placement mechanisms in the kernel. Nei-
ther of these mechanisms let a process make use of a CPU or memory node that is not
allowed by that process’s cpuset. If changes to a process’s cpuset placement conflict
with these other mechanisms, then cpuset placement is enforced even if it means over-
riding these other mechanisms. The kernel accomplishes this overriding by silently re-
stricting the CPUs and memory nodes requested by these other mechanisms to those

Linux man-pages 6.16 2025-09-21 3383

cpuset(7) Miscellaneous Information Manual cpuset(7)

allowed by the invoking process’s cpuset. This can result in these other calls returning
an error, if for example, such a call ends up requesting an empty set of CPUs or memory
nodes, after that request is restricted to the invoking process’s cpuset.

Typically, a cpuset is used to manage the CPU and memory-node confinement for a set
of cooperating processes, such as a batch scheduler job, and these other mechanisms are
used to manage the placement of individual processes or memory regions within that set
or job.

FILES
Each directory below /dev/cpuset represents a cpuset and contains a fixed set of pseudo-
files describing the state of that cpuset.

New cpusets are created using the mkdir(2) system call or the mkdir(1) command. The
properties of a cpuset, such as its flags, allowed CPUs and memory nodes, and attached
processes, are queried and modified by reading or writing to the appropriate file in that
cpuset’s directory, as listed below.

The pseudo-files in each cpuset directory are automatically created when the cpuset is
created, as a result of the mkdir(2) invocation. It is not possible to directly add or re-
move these pseudo-files.

A cpuset directory that contains no child cpuset directories, and has no attached
processes, can be removed using rmdir(2) or rmdir(1)It is not necessary, or possible, to
remove the pseudo-files inside the directory before removing it.

The pseudo-files in each cpuset directory are small text files that may be read and writ-
ten using traditional shell utilities such as cat(1), and echo(1), or from a program by us-
ing file I/O library functions or system calls, such as open(2), read(2), write(2), and
close(2).

The pseudo-files in a cpuset directory represent internal kernel state and do not have any
persistent image on disk. Each of these per-cpuset files is listed and described below.

tasks List of the process IDs (PIDs) of the processes in that cpuset. The list is format-
ted as a series of ASCII decimal numbers, each followed by a newline. A
process may be added to a cpuset (automatically removing it from the cpuset that
previously contained it) by writing its PID to that cpuset’s tasks file (with or
without a trailing newline).

Warning: only one PID may be written to the tasks file at a time. If a string is
written that contains more than one PID, only the first one will be used.

notify_on_release
Flag (0 or 1). If set (1), that cpuset will receive special handling after it is re-
leased, that is, after all processes cease using it (i.e., terminate or are moved to a
different cpuset) and all child cpuset directories have been removed. See the No-
tify On Release section, below.

cpuset.cpus
List of the physical numbers of the CPUs on which processes in that cpuset are
allowed to execute. See List Format below for a description of the format of
cpus.

Linux man-pages 6.16 2025-09-21 3384

cpuset(7) Miscellaneous Information Manual cpuset(7)

The CPUs allowed to a cpuset may be changed by writing a new list to its cpus
file.

cpuset.cpu_exclusive
Flag (0 or 1). If set (1), the cpuset has exclusive use of its CPUs (no sibling or
cousin cpuset may overlap CPUs). By default, this is off (0). Newly created
cpusets also initially default this to off (0).

Two cpusets are sibling cpusets if they share the same parent cpuset in the
/dev/cpuset hierarchy. Two cpusets are cousin cpusets if neither is the ancestor
of the other. Regardless of the cpu_exclusive setting, if one cpuset is the ances-
tor of another, and if both of these cpusets have nonempty cpus, then their cpus
must overlap, because the cpus of any cpuset are always a subset of the cpus of
its parent cpuset.

cpuset.mems
List of memory nodes on which processes in this cpuset are allowed to allocate
memory. See List Format below for a description of the format of mems.

cpuset.mem_exclusive
Flag (0 or 1). If set (1), the cpuset has exclusive use of its memory nodes (no
sibling or cousin may overlap). Also if set (1), the cpuset is a Hardwall cpuset
(see below). By default, this is off (0). Newly created cpusets also initially de-
fault this to off (0).

Regardless of the mem_exclusive setting, if one cpuset is the ancestor of another,
then their memory nodes must overlap, because the memory nodes of any cpuset
are always a subset of the memory nodes of that cpuset’s parent cpuset.

cpuset.mem_hardwall (since Linux 2.6.26)
Flag (0 or 1). If set (1), the cpuset is a Hardwall cpuset (see below). Unlike
mem_exclusive, there is no constraint on whether cpusets marked mem_hard-
wall may have overlapping memory nodes with sibling or cousin cpusets. By
default, this is off (0). Newly created cpusets also initially default this to off (0).

cpuset.memory_migrate (since Linux 2.6.16)
Flag (0 or 1). If set (1), then memory migration is enabled. By default, this is
off (0). See the Memory Migration section, below.

cpuset.memory_pressure (since Linux 2.6.16)
A measure of how much memory pressure the processes in this cpuset are caus-
ing. See the Memory Pressure section, below. Unless memory_pressure_en-
abled is enabled, always has value zero (0). This file is read-only. See the
WARNINGS section, below.

cpuset.memory_pressure_enabled (since Linux 2.6.16)
Flag (0 or 1). This file is present only in the root cpuset, normally /dev/cpuset.
If set (1), the memory_pressure calculations are enabled for all cpusets in the
system. By default, this is off (0). See the Memory Pressure section, below.

cpuset.memory_spread_page (since Linux 2.6.17)
Flag (0 or 1). If set (1), pages in the kernel page cache (filesystem buffers) are
uniformly spread across the cpuset. By default, this is off (0) in the top cpuset,

Linux man-pages 6.16 2025-09-21 3385

cpuset(7) Miscellaneous Information Manual cpuset(7)

and inherited from the parent cpuset in newly created cpusets. See the Memory
Spread section, below.

cpuset.memory_spread_slab (since Linux 2.6.17)
Flag (0 or 1). If set (1), the kernel slab caches for file I/O (directory and inode
structures) are uniformly spread across the cpuset. By default, this is off (0) in
the top cpuset, and inherited from the parent cpuset in newly created cpusets.
See the Memory Spread section, below.

cpuset.sched_load_balance (since Linux 2.6.24)
Flag (0 or 1). If set (1, the default) the kernel will automatically load balance
processes in that cpuset over the allowed CPUs in that cpuset. If cleared (0), the
kernel will avoid load balancing processes in this cpuset, unless some other
cpuset with overlapping CPUs has its sched_load_balance flag set. See Sched-
uler Load Balancing, below, for further details.

cpuset.sched_relax_domain_level (since Linux 2.6.26)
Integer, between -1 and a small positive value. The sched_relax_domain_level
controls the width of the range of CPUs over which the kernel scheduler per-
forms immediate rebalancing of runnable tasks across CPUs. If sched_load_bal-
ance is disabled, then the setting of sched_relax_domain_level does not matter,
as no such load balancing is done. If sched_load_balance is enabled, then, the
higher the value of the sched_relax_domain_level, the wider the range of CPUs
over which immediate load balancing is attempted. See Scheduler Relax Do-
main Level, below, for further details.

In addition to the above pseudo-files in each directory below /dev/cpuset, each process
has a pseudo-file, /proc/ pid /cpuset, that displays the path of the process’s cpuset direc-
tory relative to the root of the cpuset filesystem.

Also the /proc/ pid /status file for each process has four added lines, displaying the
process’s Cpus_allowed (on which CPUs it may be scheduled) and Mems_allowed (on
which memory nodes it may obtain memory), in the two formats Mask Format and
List Format (see below) as shown in the following example:

Cpus_allowed: ffffffff,ffffffff,ffffffff,ffffffff
Cpus_allowed_list: 0-127
Mems_allowed: ffffffff,ffffffff
Mems_allowed_list: 0-63

The "allowed" fields were added in Linux 2.6.24; the "allowed_list" fields were added in
Linux 2.6.26.

EXTENDED CAPABILITIES
In addition to controlling which cpus and mems a process is allowed to use, cpusets pro-
vide the following extended capabilities.

Exclusive cpusets
If a cpuset is marked cpu_exclusive or mem_exclusive, no other cpuset, other than a di-
rect ancestor or descendant, may share any of the same CPUs or memory nodes.

A cpuset that is mem_exclusive restricts kernel allocations for buffer cache pages and
other internal kernel data pages commonly shared by the kernel across multiple users.

Linux man-pages 6.16 2025-09-21 3386

cpuset(7) Miscellaneous Information Manual cpuset(7)

All cpusets, whether mem_exclusive or not, restrict allocations of memory for user
space. This enables configuring a system so that several independent jobs can share
common kernel data, while isolating each job’s user allocation in its own cpuset. To do
this, construct a large mem_exclusive cpuset to hold all the jobs, and construct child,
non-mem_exclusive cpusets for each individual job. Only a small amount of kernel
memory, such as requests from interrupt handlers, is allowed to be placed on memory
nodes outside even a mem_exclusive cpuset.

Hardwall
A cpuset that has mem_exclusive or mem_hardwall set is a hardwall cpuset. A hard-
wall cpuset restricts kernel allocations for page, buffer, and other data commonly shared
by the kernel across multiple users. All cpusets, whether hardwall or not, restrict allo-
cations of memory for user space.

This enables configuring a system so that several independent jobs can share common
kernel data, such as filesystem pages, while isolating each job’s user allocation in its
own cpuset. To do this, construct a large hardwall cpuset to hold all the jobs, and con-
struct child cpusets for each individual job which are not hardwall cpusets.

Only a small amount of kernel memory, such as requests from interrupt handlers, is al-
lowed to be taken outside even a hardwall cpuset.

Notify on release
If the notify_on_release flag is enabled (1) in a cpuset, then whenever the last process in
the cpuset leaves (exits or attaches to some other cpuset) and the last child cpuset of that
cpuset is removed, the kernel will run the command /sbin/cpuset_release_agent, supply-
ing the pathname (relative to the mount point of the cpuset filesystem) of the abandoned
cpuset. This enables automatic removal of abandoned cpusets.

The default value of notify_on_release in the root cpuset at system boot is disabled (0).
The default value of other cpusets at creation is the current value of their parent’s no-
tify_on_release setting.

The command /sbin/cpuset_release_agent is invoked, with the name (/dev/cpuset rela-
tive path) of the to-be-released cpuset in argv[1].

The usual contents of the command /sbin/cpuset_release_agent is simply the shell
script:

#!/bin/sh
rmdir /dev/cpuset/$1

As with other flag values below, this flag can be changed by writing an ASCII number 0
or 1 (with optional trailing newline) into the file, to clear or set the flag, respectively.

Memory pressure
The memory_pressure of a cpuset provides a simple per-cpuset running average of the
rate that the processes in a cpuset are attempting to free up in-use memory on the nodes
of the cpuset to satisfy additional memory requests.

This enables batch managers that are monitoring jobs running in dedicated cpusets to ef-
ficiently detect what level of memory pressure that job is causing.

This is useful both on tightly managed systems running a wide mix of submitted jobs,

Linux man-pages 6.16 2025-09-21 3387

cpuset(7) Miscellaneous Information Manual cpuset(7)

which may choose to terminate or reprioritize jobs that are trying to use more memory
than allowed on the nodes assigned them, and with tightly coupled, long-running, mas-
sively parallel scientific computing jobs that will dramatically fail to meet required per-
formance goals if they start to use more memory than allowed to them.

This mechanism provides a very economical way for the batch manager to monitor a
cpuset for signs of memory pressure. It’s up to the batch manager or other user code to
decide what action to take if it detects signs of memory pressure.

Unless memory pressure calculation is enabled by setting the pseudo-file
/dev/cpuset/cpuset.memory_pressure_enabled , it is not computed for any cpuset, and
reads from any memory_pressure always return zero, as represented by the ASCII string
"0\n". See the WARNINGS section, below.

A per-cpuset, running average is employed for the following reasons:

• Because this meter is per-cpuset rather than per-process or per virtual memory re-
gion, the system load imposed by a batch scheduler monitoring this metric is sharply
reduced on large systems, because a scan of the tasklist can be avoided on each set
of queries.

• Because this meter is a running average rather than an accumulating counter, a batch
scheduler can detect memory pressure with a single read, instead of having to read
and accumulate results for a period of time.

• Because this meter is per-cpuset rather than per-process, the batch scheduler can ob-
tain the key information—memory pressure in a cpuset—with a single read, rather
than having to query and accumulate results over all the (dynamically changing) set
of processes in the cpuset.

The memory_pressure of a cpuset is calculated using a per-cpuset simple digital filter
that is kept within the kernel. For each cpuset, this filter tracks the recent rate at which
processes attached to that cpuset enter the kernel direct reclaim code.

The kernel direct reclaim code is entered whenever a process has to satisfy a memory
page request by first finding some other page to repurpose, due to lack of any readily
available already free pages. Dirty filesystem pages are repurposed by first writing them
to disk. Unmodified filesystem buffer pages are repurposed by simply dropping them,
though if that page is needed again, it will have to be reread from disk.

The cpuset.memory_pressure file provides an integer number representing the recent
(half-life of 10 seconds) rate of entries to the direct reclaim code caused by any process
in the cpuset, in units of reclaims attempted per second, times 1000.

Memory spread
There are two Boolean flag files per cpuset that control where the kernel allocates pages
for the filesystem buffers and related in-kernel data structures. They are called
cpuset.memory_spread_page and cpuset.memory_spread_slab.

If the per-cpuset Boolean flag file cpuset.memory_spread_page is set, then the kernel
will spread the filesystem buffers (page cache) evenly over all the nodes that the faulting
process is allowed to use, instead of preferring to put those pages on the node where the
process is running.

Linux man-pages 6.16 2025-09-21 3388

cpuset(7) Miscellaneous Information Manual cpuset(7)

If the per-cpuset Boolean flag file cpuset.memory_spread_slab is set, then the kernel
will spread some filesystem-related slab caches, such as those for inodes and directory
entries, evenly over all the nodes that the faulting process is allowed to use, instead of
preferring to put those pages on the node where the process is running.

The setting of these flags does not affect the data segment (see brk(2)) or stack segment
pages of a process.

By default, both kinds of memory spreading are off and the kernel prefers to allocate
memory pages on the node local to where the requesting process is running. If that node
is not allowed by the process’s NUMA memory policy or cpuset configuration or if there
are insufficient free memory pages on that node, then the kernel looks for the nearest
node that is allowed and has sufficient free memory.

When new cpusets are created, they inherit the memory spread settings of their parent.

Setting memory spreading causes allocations for the affected page or slab caches to ig-
nore the process’s NUMA memory policy and be spread instead. However, the effect of
these changes in memory placement caused by cpuset-specified memory spreading is
hidden from the mbind(2) or set_mempolicy(2) calls. These two NUMA memory policy
calls always appear to behave as if no cpuset-specified memory spreading is in effect,
even if it is. If cpuset memory spreading is subsequently turned off, the NUMA mem-
ory policy most recently specified by these calls is automatically reapplied.

Both cpuset.memory_spread_page and cpuset.memory_spread_slab are Boolean flag
files. By default, they contain "0", meaning that the feature is off for that cpuset. If a
"1" is written to that file, that turns the named feature on.

Cpuset-specified memory spreading behaves similarly to what is known (in other con-
texts) as round-robin or interleave memory placement.

Cpuset-specified memory spreading can provide substantial performance improvements
for jobs that:

• need to place thread-local data on memory nodes close to the CPUs which are run-
ning the threads that most frequently access that data; but also

• need to access large filesystem data sets that must to be spread across the several
nodes in the job’s cpuset in order to fit.

Without this policy, the memory allocation across the nodes in the job’s cpuset can be-
come very uneven, especially for jobs that might have just a single thread initializing or
reading in the data set.

Memory migration
Normally, under the default setting (disabled) of cpuset.memory_migrate, once a page is
allocated (given a physical page of main memory), then that page stays on whatever
node it was allocated, so long as it remains allocated, even if the cpuset’s memory-place-
ment policy mems subsequently changes.

When memory migration is enabled in a cpuset, if the mems setting of the cpuset is
changed, then any memory page in use by any process in the cpuset that is on a memory
node that is no longer allowed will be migrated to a memory node that is allowed.

Furthermore, if a process is moved into a cpuset with memory_migrate enabled, any

Linux man-pages 6.16 2025-09-21 3389

cpuset(7) Miscellaneous Information Manual cpuset(7)

memory pages it uses that were on memory nodes allowed in its previous cpuset, but
which are not allowed in its new cpuset, will be migrated to a memory node allowed in
the new cpuset.

The relative placement of a migrated page within the cpuset is preserved during these
migration operations if possible. For example, if the page was on the second valid node
of the prior cpuset, then the page will be placed on the second valid node of the new
cpuset, if possible.

Scheduler load balancing
The kernel scheduler automatically load balances processes. If one CPU is underuti-
lized, the kernel will look for processes on other more overloaded CPUs and move those
processes to the underutilized CPU, within the constraints of such placement mecha-
nisms as cpusets and sched_setaffinity(2).

The algorithmic cost of load balancing and its impact on key shared kernel data struc-
tures such as the process list increases more than linearly with the number of CPUs be-
ing balanced. For example, it costs more to load balance across one large set of CPUs
than it does to balance across two smaller sets of CPUs, each of half the size of the
larger set. (The precise relationship between the number of CPUs being balanced and
the cost of load balancing depends on implementation details of the kernel process
scheduler, which is subject to change over time, as improved kernel scheduler algo-
rithms are implemented.)

The per-cpuset flag sched_load_balance provides a mechanism to suppress this auto-
matic scheduler load balancing in cases where it is not needed and suppressing it would
have worthwhile performance benefits.

By default, load balancing is done across all CPUs, except those marked isolated using
the kernel boot time "isolcpus=" argument. (See Scheduler Relax Domain Level, be-
low, to change this default.)

This default load balancing across all CPUs is not well suited to the following two situa-
tions:

• On large systems, load balancing across many CPUs is expensive. If the system is
managed using cpusets to place independent jobs on separate sets of CPUs, full load
balancing is unnecessary.

• Systems supporting real-time on some CPUs need to minimize system overhead on
those CPUs, including avoiding process load balancing if that is not needed.

When the per-cpuset flag sched_load_balance is enabled (the default setting), it requests
load balancing across all the CPUs in that cpuset’s allowed CPUs, ensuring that load
balancing can move a process (not otherwise pinned, as by sched_setaffinity(2)) from
any CPU in that cpuset to any other.

When the per-cpuset flag sched_load_balance is disabled, then the scheduler will avoid
load balancing across the CPUs in that cpuset, except in so far as is necessary because
some overlapping cpuset has sched_load_balance enabled.

So, for example, if the top cpuset has the flag sched_load_balance enabled, then the
scheduler will load balance across all CPUs, and the setting of the sched_load_balance
flag in other cpusets has no effect, as we’re already fully load balancing.

Linux man-pages 6.16 2025-09-21 3390

cpuset(7) Miscellaneous Information Manual cpuset(7)

Therefore in the above two situations, the flag sched_load_balance should be disabled
in the top cpuset, and only some of the smaller, child cpusets would have this flag en-
abled.

When doing this, you don’t usually want to leave any unpinned processes in the top
cpuset that might use nontrivial amounts of CPU, as such processes may be artificially
constrained to some subset of CPUs, depending on the particulars of this flag setting in
descendant cpusets. Even if such a process could use spare CPU cycles in some other
CPUs, the kernel scheduler might not consider the possibility of load balancing that
process to the underused CPU.

Of course, processes pinned to a particular CPU can be left in a cpuset that disables
sched_load_balance as those processes aren’t going anywhere else anyway.

Scheduler relax domain level
The kernel scheduler performs immediate load balancing whenever a CPU becomes free
or another task becomes runnable. This load balancing works to ensure that as many
CPUs as possible are usefully employed running tasks. The kernel also performs peri-
odic load balancing off the software clock described in time(7). The setting of sched_re-
lax_domain_level applies only to immediate load balancing. Regardless of the
sched_relax_domain_level setting, periodic load balancing is attempted over all CPUs
(unless disabled by turning off sched_load_balance.) In any case, of course, tasks will
be scheduled to run only on CPUs allowed by their cpuset, as modified by
sched_setaffinity(2) system calls.

On small systems, such as those with just a few CPUs, immediate load balancing is use-
ful to improve system interactivity and to minimize wasteful idle CPU cycles. But on
large systems, attempting immediate load balancing across a large number of CPUs can
be more costly than it is worth, depending on the particular performance characteristics
of the job mix and the hardware.

The exact meaning of the small integer values of sched_relax_domain_level will depend
on internal implementation details of the kernel scheduler code and on the non-uniform
architecture of the hardware. Both of these will evolve over time and vary by system ar-
chitecture and kernel version.

As of this writing, when this capability was introduced in Linux 2.6.26, on certain popu-
lar architectures, the positive values of sched_relax_domain_level have the following
meanings.

1 Perform immediate load balancing across Hyper-Thread siblings on the same
core.

2 Perform immediate load balancing across other cores in the same package.
3 Perform immediate load balancing across other CPUs on the same node or blade.
4 Perform immediate load balancing across over several (implementation detail)

nodes [On NUMA systems].
5 Perform immediate load balancing across over all CPUs in system [On NUMA

systems].

The sched_relax_domain_level value of zero (0) always means don’t perform immediate
load balancing, hence that load balancing is done only periodically, not immediately
when a CPU becomes available or another task becomes runnable.

Linux man-pages 6.16 2025-09-21 3391

cpuset(7) Miscellaneous Information Manual cpuset(7)

The sched_relax_domain_level value of minus one (-1) always means use the system
default value. The system default value can vary by architecture and kernel version.
This system default value can be changed by kernel boot-time "relax_domain_level="
argument.

In the case of multiple overlapping cpusets which have conflicting sched_relax_do-
main_level values, then the highest such value applies to all CPUs in any of the overlap-
ping cpusets. In such cases, -1 is the lowest value, overridden by any other value, and 0
is the next lowest value.

FORMATS
The following formats are used to represent sets of CPUs and memory nodes.

Mask format
The Mask Format is used to represent CPU and memory-node bit masks in the
/proc/ pid /status file.

This format displays each 32-bit word in hexadecimal (using ASCII characters "0" - "9"
and "a" - "f"); words are filled with leading zeros, if required. For masks longer than
one word, a comma separator is used between words. Words are displayed in big-endian
order, which has the most significant bit first. The hex digits within a word are also in
big-endian order.

The number of 32-bit words displayed is the minimum number needed to display all bits
of the bit mask, based on the size of the bit mask.

Examples of the Mask Format:

00000001 # just bit 0 set
40000000,00000000,00000000 # just bit 94 set
00000001,00000000,00000000 # just bit 64 set
000000ff,00000000 # bits 32-39 set
00000000,000e3862 # 1,5,6,11-13,17-19 set

A mask with bits 0, 1, 2, 4, 8, 16, 32, and 64 set displays as:

00000001,00000001,00010117

The first "1" is for bit 64, the second for bit 32, the third for bit 16, the fourth for bit 8,
the fifth for bit 4, and the "7" is for bits 2, 1, and 0.

List format
The List Format for cpus and mems is a comma-separated list of CPU or memory-node
numbers and ranges of numbers, in ASCII decimal.

Examples of the List Format:

0-4,9 # bits 0, 1, 2, 3, 4, and 9 set
0-2,7,12-14 # bits 0, 1, 2, 7, 12, 13, and 14 set

RULES
The following rules apply to each cpuset:

• Its CPUs and memory nodes must be a (possibly equal) subset of its parent’s.

Linux man-pages 6.16 2025-09-21 3392

cpuset(7) Miscellaneous Information Manual cpuset(7)

• It can be marked cpu_exclusive only if its parent is.

• It can be marked mem_exclusive only if its parent is.

• If it is cpu_exclusive, its CPUs may not overlap any sibling.

• If it is mem_exclusive, its memory nodes may not overlap any sibling.

PERMISSIONS
The permissions of a cpuset are determined by the permissions of the directories and
pseudo-files in the cpuset filesystem, normally mounted at /dev/cpuset.

For instance, a process can put itself in some other cpuset (than its current one) if it can
write the tasks file for that cpuset. This requires execute permission on the encompass-
ing directories and write permission on the tasks file.

An additional constraint is applied to requests to place some other process in a cpuset.
One process may not attach another to a cpuset unless it would have permission to send
that process a signal (see kill(2)).

A process may create a child cpuset if it can access and write the parent cpuset directory.
It can modify the CPUs or memory nodes in a cpuset if it can access that cpuset’s direc-
tory (execute permissions on the each of the parent directories) and write the corre-
sponding cpus or mems file.

There is one minor difference between the manner in which these permissions are evalu-
ated and the manner in which normal filesystem operation permissions are evaluated.
The kernel interprets relative pathnames starting at a process’s current working direc-
tory. Even if one is operating on a cpuset file, relative pathnames are interpreted relative
to the process’s current working directory, not relative to the process’s current cpuset.
The only ways that cpuset paths relative to a process’s current cpuset can be used are if
either the process’s current working directory is its cpuset (it first did a cd or chdir(2) to
its cpuset directory beneath /dev/cpuset, which is a bit unusual) or if some user code
converts the relative cpuset path to a full filesystem path.

In theory, this means that user code should specify cpusets using absolute pathnames,
which requires knowing the mount point of the cpuset filesystem (usually, but not neces-
sarily, /dev/cpuset). In practice, all user level code that this author is aware of simply
assumes that if the cpuset filesystem is mounted, then it is mounted at /dev/cpuset. Fur-
thermore, it is common practice for carefully written user code to verify the presence of
the pseudo-file /dev/cpuset/tasks in order to verify that the cpuset pseudo-filesystem is
currently mounted.

WARNINGS
Enabling memory_pressure

By default, the per-cpuset file cpuset.memory_pressure always contains zero (0). Unless
this feature is enabled by writing "1" to the pseudo-file /dev/cpuset/cpuset.mem-
ory_pressure_enabled , the kernel does not compute per-cpuset memory_pressure.

Using the echo command
When using the echo command at the shell prompt to change the values of cpuset files,
beware that the built-in echo command in some shells does not display an error message
if the write(2) system call fails. For example, if the command:

Linux man-pages 6.16 2025-09-21 3393

cpuset(7) Miscellaneous Information Manual cpuset(7)

echo 19 > cpuset.mems

failed because memory node 19 was not allowed (perhaps the current system does not
have a memory node 19), then the echo command might not display any error. It is bet-
ter to use the /bin/echo external command to change cpuset file settings, as this com-
mand will display write(2) errors, as in the example:

/bin/echo 19 > cpuset.mems
/bin/echo: write error: Invalid argument

EXCEPTIONS
Memory placement

Not all allocations of system memory are constrained by cpusets, for the following rea-
sons.

If hot-plug functionality is used to remove all the CPUs that are currently assigned to a
cpuset, then the kernel will automatically update the cpus_allowed of all processes at-
tached to CPUs in that cpuset to allow all CPUs. When memory hot-plug functionality
for removing memory nodes is available, a similar exception is expected to apply there
as well. In general, the kernel prefers to violate cpuset placement, rather than starving a
process that has had all its allowed CPUs or memory nodes taken offline. User code
should reconfigure cpusets to refer only to online CPUs and memory nodes when using
hot-plug to add or remove such resources.

A few kernel-critical, internal memory-allocation requests, marked GFP_ATOMIC,
must be satisfied immediately. The kernel may drop some request or malfunction if one
of these allocations fail. If such a request cannot be satisfied within the current
process’s cpuset, then we relax the cpuset, and look for memory anywhere we can find
it. It’s better to violate the cpuset than stress the kernel.

Allocations of memory requested by kernel drivers while processing an interrupt lack
any relevant process context, and are not confined by cpusets.

Renaming cpusets
You can use the rename(2) system call to rename cpusets. Only simple renaming is sup-
ported; that is, changing the name of a cpuset directory is permitted, but moving a direc-
tory into a different directory is not permitted.

ERRORS
The Linux kernel implementation of cpusets sets errno to specify the reason for a failed
system call affecting cpusets.

The possible errno settings and their meaning when set on a failed cpuset call are as
listed below.

E2BIG
Attempted a write(2) on a special cpuset file with a length larger than some ker-
nel-determined upper limit on the length of such writes.

EACCES
Attempted to write(2) the process ID (PID) of a process to a cpuset tasks file
when one lacks permission to move that process.

Linux man-pages 6.16 2025-09-21 3394

cpuset(7) Miscellaneous Information Manual cpuset(7)

EACCES
Attempted to add, using write(2), a CPU or memory node to a cpuset, when that
CPU or memory node was not already in its parent.

EACCES
Attempted to set, using write(2), cpuset.cpu_exclusive or cpuset.mem_exclusive
on a cpuset whose parent lacks the same setting.

EACCES
Attempted to write(2) a cpuset.memory_pressure file.

EACCES
Attempted to create a file in a cpuset directory.

EBUSY
Attempted to remove, using rmdir(2), a cpuset with attached processes.

EBUSY
Attempted to remove, using rmdir(2), a cpuset with child cpusets.

EBUSY
Attempted to remove a CPU or memory node from a cpuset that is also in a child
of that cpuset.

EEXIST
Attempted to create, using mkdir(2), a cpuset that already exists.

EEXIST
Attempted to rename(2) a cpuset to a name that already exists.

EFAULT
Attempted to read(2) or write(2) a cpuset file using a buffer that is outside the
writing processes accessible address space.

EINVAL
Attempted to change a cpuset, using write(2), in a way that would violate a
cpu_exclusive or mem_exclusive attribute of that cpuset or any of its siblings.

EINVAL
Attempted to write(2) an empty cpuset.cpus or cpuset.mems list to a cpuset
which has attached processes or child cpusets.

EINVAL
Attempted to write(2) a cpuset.cpus or cpuset.mems list which included a range
with the second number smaller than the first number.

EINVAL
Attempted to write(2) a cpuset.cpus or cpuset.mems list which included an in-
valid character in the string.

EINVAL
Attempted to write(2) a list to a cpuset.cpus file that did not include any online
CPUs.

Linux man-pages 6.16 2025-09-21 3395

cpuset(7) Miscellaneous Information Manual cpuset(7)

EINVAL
Attempted to write(2) a list to a cpuset.mems file that did not include any online
memory nodes.

EINVAL
Attempted to write(2) a list to a cpuset.mems file that included a node that held
no memory.

EIO Attempted to write(2) a string to a cpuset tasks file that does not begin with an
ASCII decimal integer.

EIO Attempted to rename(2) a cpuset into a different directory.

ENAMETOOLONG
Attempted to read(2) a /proc/ pid /cpuset file for a cpuset path that is longer than
the kernel page size.

ENAMETOOLONG
Attempted to create, using mkdir(2), a cpuset whose base directory name is
longer than 255 characters.

ENAMETOOLONG
Attempted to create, using mkdir(2), a cpuset whose full pathname, including the
mount point (typically "/dev/cpuset/") prefix, is longer than 4095 characters.

ENODEV
The cpuset was removed by another process at the same time as a write(2) was
attempted on one of the pseudo-files in the cpuset directory.

ENOENT
Attempted to create, using mkdir(2), a cpuset in a parent cpuset that doesn’t ex-
ist.

ENOENT
Attempted to access(2) or open(2) a nonexistent file in a cpuset directory.

ENOMEM
Insufficient memory is available within the kernel; can occur on a variety of sys-
tem calls affecting cpusets, but only if the system is extremely short of memory.

ENOSPC
Attempted to write(2) the process ID (PID) of a process to a cpuset tasks file
when the cpuset had an empty cpuset.cpus or empty cpuset.mems setting.

ENOSPC
Attempted to write(2) an empty cpuset.cpus or cpuset.mems setting to a cpuset
that has tasks attached.

ENOTDIR
Attempted to rename(2) a nonexistent cpuset.

EPERM
Attempted to remove a file from a cpuset directory.

Linux man-pages 6.16 2025-09-21 3396

cpuset(7) Miscellaneous Information Manual cpuset(7)

ERANGE
Specified a cpuset.cpus or cpuset.mems list to the kernel which included a num-
ber too large for the kernel to set in its bit masks.

ESRCH
Attempted to write(2) the process ID (PID) of a nonexistent process to a cpuset
tasks file.

VERSIONS
Cpusets appeared in Linux 2.6.12.

NOTES
Despite its name, the pid parameter is actually a thread ID, and each thread in a
threaded group can be attached to a different cpuset. The value returned from a call to
gettid(2) can be passed in the argument pid .

BUGS
cpuset.memory_pressure cpuset files can be opened for writing, creation, or truncation,
but then the write(2) fails with errno set to EACCES, and the creation and truncation
options on open(2) have no effect.

EXAMPLES
The following examples demonstrate querying and setting cpuset options using shell
commands.

Creating and attaching to a cpuset.
To create a new cpuset and attach the current command shell to it, the steps are:

(1) mkdir /dev/cpuset (if not already done)
(2) mount -t cpuset none /dev/cpuset (if not already done)
(3) Create the new cpuset using mkdir(1)
(4) Assign CPUs and memory nodes to the new cpuset.
(5) Attach the shell to the new cpuset.

For example, the following sequence of commands will set up a cpuset named "Charlie",
containing just CPUs 2 and 3, and memory node 1, and then attach the current shell to
that cpuset.

$ mkdir /dev/cpuset
$ mount -t cpuset cpuset /dev/cpuset
$ cd /dev/cpuset
$ mkdir Charlie
$ cd Charlie
$ /bin/echo 2-3 > cpuset.cpus
$ /bin/echo 1 > cpuset.mems
$ /bin/echo $$ > tasks
The current shell is now running in cpuset Charlie
The next line should display '/Charlie'
$ cat /proc/self/cpuset

Migrating a job to different memory nodes.
To migrate a job (the set of processes attached to a cpuset) to different CPUs and mem-
ory nodes in the system, including moving the memory pages currently allocated to that

Linux man-pages 6.16 2025-09-21 3397

cpuset(7) Miscellaneous Information Manual cpuset(7)

job, perform the following steps.

(1) Let’s say we want to move the job in cpuset alpha (CPUs 4–7 and memory nodes
2–3) to a new cpuset beta (CPUs 16–19 and memory nodes 8–9).

(2) First create the new cpuset beta.
(3) Then allow CPUs 16–19 and memory nodes 8–9 in beta.
(4) Then enable memory_migration in beta.
(5) Then move each process from alpha to beta.

The following sequence of commands accomplishes this.

$ cd /dev/cpuset
$ mkdir beta
$ cd beta
$ /bin/echo 16-19 > cpuset.cpus
$ /bin/echo 8-9 > cpuset.mems
$ /bin/echo 1 > cpuset.memory_migrate
$ while read i; do /bin/echo $i; done < ../alpha/tasks > tasks

The above should move any processes in alpha to beta, and any memory held by these
processes on memory nodes 2–3 to memory nodes 8–9, respectively.

Notice that the last step of the above sequence did not do:

$ cp ../alpha/tasks tasks

The while loop, rather than the seemingly easier use of the cp(1) command, was neces-
sary because only one process PID at a time may be written to the tasks file.

The same effect (writing one PID at a time) as the while loop can be accomplished more
efficiently, in fewer keystrokes and in syntax that works on any shell, but alas more ob-
scurely, by using the -u (unbuffered) option of sed(1):

$ sed -un p < ../alpha/tasks > tasks

SEE ALSO
taskset(1), get_mempolicy(2), getcpu(2), mbind(2), sched_getaffinity(2), sched_setaffin-
ity(2), sched_setscheduler(2), set_mempolicy(2), CPU_SET(3), proc(5), cgroups(7),
numa(7), sched(7), migratepages(8), numactl(8)

Documentation/admin-guide/cgroup-v1/cpusets.rst in the Linux kernel source tree (or
Documentation/cgroup-v1/cpusets.txt before Linux 4.18, and Documenta-
tion/cpusets.txt before Linux 2.6.29)

Linux man-pages 6.16 2025-09-21 3398

credentials(7) Miscellaneous Information Manual credentials(7)

NAME
credentials - process identifiers

DESCRIPTION
Process ID (PID)

Each process has a unique nonnegative integer identifier that is assigned when the
process is created using fork(2). A process can obtain its PID using getpid(2). A PID is
represented using the type pid_t (defined in <sys/types.h>).

PIDs are used in a range of system calls to identify the process affected by the call, for
example: kill(2), ptrace(2), setpriority(2), setpgid(2), setsid(2), sigqueue(3), and wait-
pid(2).

A process’s PID is preserved across an execve(2).

Parent process ID (PPID)
A process’s parent process ID identifies the process that created this process using
fork(2). A process can obtain its PPID using getppid(2). A PPID is represented using
the type pid_t.

A process’s PPID is preserved across an execve(2).

Process group ID and session ID
Each process has a session ID and a process group ID, both represented using the type
pid_t. A process can obtain its session ID using getsid(2), and its process group ID us-
ing getpgrp(2).

A child created by fork(2) inherits its parent’s session ID and process group ID. A
process’s session ID and process group ID are preserved across an execve(2).

Sessions and process groups are abstractions devised to support shell job control. A
process group (sometimes called a "job") is a collection of processes that share the same
process group ID; the shell creates a new process group for the process(es) used to exe-
cute single command or pipeline (e.g., the two processes created to execute the com-
mand "ls | wc" are placed in the same process group). A process’s group membership
can be set using setpgid(2). The process whose process ID is the same as its process
group ID is the process group leader for that group.

A session is a collection of processes that share the same session ID. All of the mem-
bers of a process group also have the same session ID (i.e., all of the members of a
process group always belong to the same session, so that sessions and process groups
form a strict two-level hierarchy of processes.) A new session is created when a process
calls setsid(2), which creates a new session whose session ID is the same as the PID of
the process that called setsid(2). The creator of the session is called the session leader.

All of the processes in a session share a controlling terminal. The controlling terminal
is established when the session leader first opens a terminal (unless the O_NOCTTY
flag is specified when calling open(2)). A terminal may be the controlling terminal of at
most one session.

At most one of the jobs in a session may be the foreground job; other jobs in the session
are background jobs. Only the foreground job may read from the terminal; when a
process in the background attempts to read from the terminal, its process group is sent a
SIGTTIN signal, which suspends the job. If the TOSTOP flag has been set for the

Linux man-pages 6.16 2025-09-21 3399

credentials(7) Miscellaneous Information Manual credentials(7)

terminal (see termios(3)), then only the foreground job may write to the terminal; writes
from background jobs cause a SIGTTOU signal to be generated, which suspends the
job. When terminal keys that generate a signal (such as the interrupt key, normally con-
trol-C) are pressed, the signal is sent to the processes in the foreground job.

Various system calls and library functions may operate on all members of a process
group, including kill(2), killpg(3), getpriority(2), setpriority(2), ioprio_get(2), io-
prio_set(2), waitid(2), and waitpid(2). See also the discussion of the F_GETOWN,
F_GETOWN_EX, F_SETOWN, and F_SETOWN_EX operations in fcntl(2).

User and group identifiers
Each process has various associated user and group IDs. These IDs are integers, respec-
tively represented using the types uid_t and gid_t (defined in <sys/types.h>).

On Linux, each process has the following user and group identifiers:

• Real user ID and real group ID. These IDs determine who owns the process. A
process can obtain its real user (group) ID using getuid(2) (getgid(2)).

• Effective user ID and effective group ID. These IDs are used by the kernel to deter-
mine the permissions that the process will have when accessing shared resources
such as message queues, shared memory, and semaphores. On most UNIX systems,
these IDs also determine the permissions when accessing files. However, Linux uses
the filesystem IDs described below for this task. A process can obtain its effective
user (group) ID using geteuid(2) (getegid(2)).

• Saved set-user-ID and saved set-group-ID. These IDs are used in set-user-ID and
set-group-ID programs to save a copy of the corresponding effective IDs that were
set when the program was executed (see execve(2)). A set-user-ID program can as-
sume and drop privileges by switching its effective user ID back and forth between
the values in its real user ID and saved set-user-ID. This switching is done via calls
to seteuid(2), setreuid(2), or setresuid(2). A set-group-ID program performs the
analogous tasks using setegid(2), setregid(2), or setresgid(2). A process can obtain
its saved set-user-ID (set-group-ID) using getresuid(2) (getresgid(2)).

• Filesystem user ID and filesystem group ID (Linux-specific). These IDs, in conjunc-
tion with the supplementary group IDs described below, are used to determine per-
missions for accessing files; see path_resolution(7) for details. Whenever a
process’s effective user (group) ID is changed, the kernel also automatically changes
the filesystem user (group) ID to the same value. Consequently, the filesystem IDs
normally have the same values as the corresponding effective ID, and the semantics
for file-permission checks are thus the same on Linux as on other UNIX systems.
The filesystem IDs can be made to differ from the effective IDs by calling setfsuid(2)
and setfsgid(2).

• Supplementary group IDs. This is a set of additional group IDs that are used for per-
mission checks when accessing files and other shared resources. Before Linux 2.6.4,
a process can be a member of up to 32 supplementary groups; since Linux 2.6.4, a
process can be a member of up to 65536 supplementary groups. The call
sysconf(_SC_NGROUPS_MAX) can be used to determine the number of supplemen-
tary groups of which a process may be a member. A process can obtain its set of
supplementary group IDs using getgroups(2).

Linux man-pages 6.16 2025-09-21 3400

credentials(7) Miscellaneous Information Manual credentials(7)

A child process created by fork(2) inherits copies of its parent’s user and groups IDs.
During an execve(2), a process’s real user and group ID and supplementary group IDs
are preserved; the effective and saved set IDs may be changed, as described in execve(2).

Aside from the purposes noted above, a process’s user IDs are also employed in a num-
ber of other contexts:

• when determining the permissions for sending signals (see kill(2));

• when determining the permissions for setting process-scheduling parameters (nice
value, real time scheduling policy and priority, CPU affinity, I/O priority) using set-
priority(2), sched_setaffinity(2), sched_setscheduler(2), sched_setparam(2),
sched_setattr(2), and ioprio_set(2);

• when checking resource limits (see getrlimit(2));

• when checking the limit on the number of inotify instances that the process may cre-
ate (see inotify(7)).

Modifying process user and group IDs
Subject to rules described in the relevant manual pages, a process can use the following
APIs to modify its user and group IDs:

setuid(2) (setgid(2))
Modify the process’s real (and possibly effective and saved-set) user (group) IDs.

seteuid(2) (setegid(2))
Modify the process’s effective user (group) ID.

setfsuid(2) (setfsgid(2))
Modify the process’s filesystem user (group) ID.

setreuid(2) (setregid(2))
Modify the process’s real and effective (and possibly saved-set) user (group) IDs.

setresuid(2) (setresgid(2))
Modify the process’s real, effective, and saved-set user (group) IDs.

setgroups(2)
Modify the process’s supplementary group list.

Any changes to a process’s effective user (group) ID are automatically carried over to
the process’s filesystem user (group) ID. Changes to a process’s effective user or group
ID can also affect the process "dumpable" attribute, as described in prctl(2).

Changes to process user and group IDs can affect the capabilities of the process, as de-
scribed in capabilities(7).

STANDARDS
Process IDs, parent process IDs, process group IDs, and session IDs are specified in
POSIX.1. The real, effective, and saved set user and groups IDs, and the supplementary
group IDs, are specified in POSIX.1.

The filesystem user and group IDs are a Linux extension.

Linux man-pages 6.16 2025-09-21 3401

credentials(7) Miscellaneous Information Manual credentials(7)

NOTES
Various fields in the /proc/ pid /status file show the process credentials described above.
See proc(5) for further information.

The POSIX threads specification requires that credentials are shared by all of the threads
in a process. However, at the kernel level, Linux maintains separate user and group cre-
dentials for each thread. The NPTL threading implementation does some work to en-
sure that any change to user or group credentials (e.g., calls to setuid(2), setresuid(2)) is
carried through to all of the POSIX threads in a process. See nptl(7) for further details.

SEE ALSO
bash(1), csh(1), groups(1), id(1), newgrp(1), ps(1), runuser(1), setpriv(1), sg(1), su(1),
access(2), execve(2), faccessat(2), fork(2), getgroups(2), getpgrp(2), getpid(2), getp-
pid(2), getsid(2), kill(2), setegid(2), seteuid(2), setfsgid(2), setfsuid(2), setgid(2), set-
groups(2), setpgid(2), setresgid(2), setresuid(2), setsid(2), setuid(2), waitpid(2), euidac-
cess(3), initgroups(3), killpg(3), tcgetpgrp(3), tcgetsid(3), tcsetpgrp(3), group(5),
passwd(5), shadow(5), capabilities(7), namespaces(7), path_resolution(7), pid_name-
spaces(7), pthreads(7), signal(7), system_data_types(7), unix(7), user_namespaces(7),
sudo(8)

Linux man-pages 6.16 2025-09-21 3402

ddp(7) Miscellaneous Information Manual ddp(7)

NAME
ddp - Linux AppleTalk protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netatalk/at.h>

ddp_socket = socket(AF_APPLETALK, SOCK_DGRAM, 0);
raw_socket = socket(AF_APPLETALK, SOCK_RAW, protocol);

DESCRIPTION
Linux implements the AppleTalk protocols described in Inside AppleTalk. Only the
DDP layer and AARP are present in the kernel. They are designed to be used via the
netatalk protocol libraries. This page documents the interface for those who wish or
need to use the DDP layer directly.

The communication between AppleTalk and the user program works using a BSD-com-
patible socket interface. For more information on sockets, see socket(7).

An AppleTalk socket is created by calling the socket(2) function with a AF_AP-
PLETALK socket family argument. Valid socket types are SOCK_DGRAM to open a
ddp socket or SOCK_RAW to open a raw socket. protocol is the AppleTalk protocol
to be received or sent. For SOCK_RAW you must specify ATPROTO_DDP.

Raw sockets may be opened only by a process with effective user ID 0 or when the
process has the CAP_NET_RAW capability.

Address format
An AppleTalk socket address is defined as a combination of a network number, a node
number, and a port number.

struct at_addr {
unsigned short s_net;
unsigned char s_node;

};

struct sockaddr_atalk {
sa_family_t sat_family; /* address family */
unsigned char sat_port; /* port */
struct at_addr sat_addr; /* net/node */

};

sat_family is always set to AF_APPLETALK. sat_port contains the port. The port
numbers below 129 are known as reserved ports. Only processes with the effective user
ID 0 or the CAP_NET_BIND_SERVICE capability may bind(2) to these sockets.
sat_addr is the host address. The net member of struct at_addr contains the host net-
work in network byte order. The value of AT_ANYNET is a wildcard and also implies
“this network.” The node member of struct at_addr contains the host node number.
The value of AT_ANYNODE is a wildcard and also implies “this node.” The value of
ATADDR_BCAST is a link local broadcast address.

Linux man-pages 6.16 2025-09-21 3403

ddp(7) Miscellaneous Information Manual ddp(7)

Socket options
No protocol-specific socket options are supported.

/proc interfaces
IP supports a set of /proc interfaces to configure some global AppleTalk parameters.
The parameters can be accessed by reading or writing files in the directory
/proc/sys/net/atalk/ .

aarp-expiry-time
The time interval (in seconds) before an AARP cache entry expires.

aarp-resolve-time
The time interval (in seconds) before an AARP cache entry is resolved.

aarp-retransmit-limit
The number of retransmissions of an AARP query before the node is declared
dead.

aarp-tick-time
The timer rate (in seconds) for the timer driving AARP.

The default values match the specification and should never need to be changed.

Ioctls
All ioctls described in socket(7) apply to DDP.

ERRORS
EACCES

The user tried to execute an operation without the necessary permissions. These
include sending to a broadcast address without having the broadcast flag set, and
trying to bind to a reserved port without effective user ID 0 or
CAP_NET_BIND_SERVICE.

EADDRINUSE
Tried to bind to an address already in use.

EADDRNOTAVAIL
A nonexistent interface was requested or the requested source address was not
local.

EAGAIN
Operation on a nonblocking socket would block.

EALREADY
A connection operation on a nonblocking socket is already in progress.

ECONNABORTED
A connection was closed during an accept(2).

EHOSTUNREACH
No routing table entry matches the destination address.

EINVAL
Invalid argument passed.

Linux man-pages 6.16 2025-09-21 3404

ddp(7) Miscellaneous Information Manual ddp(7)

EISCONN
connect(2) was called on an already connected socket.

EMSGSIZE
Datagram is bigger than the DDP MTU.

ENODEV
Network device not available or not capable of sending IP.

ENOENT
SIOCGSTAMP was called on a socket where no packet arrived.

ENOMEM
ENOBUFS

Not enough memory available.

ENOPKG
A kernel subsystem was not configured.

ENOPROTOOPT
EOPNOTSUPP

Invalid socket option passed.

ENOTCONN
The operation is defined only on a connected socket, but the socket wasn’t con-
nected.

EPERM
User doesn’t have permission to set high priority, make a configuration change,
or send signals to the requested process or group.

EPIPE
The connection was unexpectedly closed or shut down by the other end.

ESOCKTNOSUPPORT
The socket was unconfigured, or an unknown socket type was requested.

VERSIONS
AppleTalk is supported by Linux 2.0 or higher. The /proc interfaces exist since Linux
2.2.

NOTES
Be very careful with the SO_BROADCAST option; it is not privileged in Linux. It is
easy to overload the network with careless sending to broadcast addresses.

Compatibility
The basic AppleTalk socket interface is compatible with netatalk on BSD-derived sys-
tems. Many BSD systems fail to check SO_BROADCAST when sending broadcast
frames; this can lead to compatibility problems.

The raw socket mode is unique to Linux and exists to support the alternative CAP pack-
age and AppleTalk monitoring tools more easily.

BUGS
There are too many inconsistent error values.

The ioctls used to configure routing tables, devices, AARP tables, and other devices are

Linux man-pages 6.16 2025-09-21 3405

ddp(7) Miscellaneous Information Manual ddp(7)

not yet described.

SEE ALSO
recvmsg(2), sendmsg(2), capabilities(7), socket(7)

Linux man-pages 6.16 2025-09-21 3406

environ(7) Miscellaneous Information Manual environ(7)

NAME
environ - user environment

SYNOPSIS
extern char **environ;

DESCRIPTION
The variable environ points to an array of pointers to strings called the "environment".
The last pointer in this array has the value NULL. This array of strings is made avail-
able to the process by the execve(2) call when a new program is started. When a child
process is created via fork(2), it inherits a copy of its parent’s environment.

By convention, the strings in environ have the form "name=value". The name is case-
sensitive and may not contain the character "=". The value can be anything that can be
represented as a string. The name and the value may not contain an embedded null byte
('\0'), since this is assumed to terminate the string.

Environment variables may be placed in the shell’s environment by the export command
in sh(1), or by the setenv command if you use csh(1)

The initial environment of the shell is populated in various ways, such as definitions
from /etc/environment that are processed by pam_env(8) for all users at login time (on
systems that employ pam(8)). In addition, various shell initialization scripts, such as the
system-wide /etc/profile script and per-user initialization scripts may include commands
that add variables to the shell’s environment; see the manual page of your preferred shell
for details.

Bourne-style shells support the syntax

NAME=value command

to create an environment variable definition only in the scope of the process that exe-
cutes command . Multiple variable definitions, separated by white space, may precede
command .

Arguments may also be placed in the environment at the point of an exec(3). A C pro-
gram can manipulate its environment using the functions getenv(3), putenv(3), setenv(3),
and unsetenv(3).

What follows is a list of environment variables typically seen on a system. This list is
incomplete and includes only common variables seen by average users in their day-to-
day routine. Environment variables specific to a particular program or library function
are documented in the ENVIRONMENT section of the appropriate manual page.

USER
The name of the logged-in user (used by some BSD-derived programs). Set at
login time; see section NOTES below.

LOGNAME
The name of the logged-in user (used by some System-V derived programs). Set
at login time; see section NOTES below.

HOME
A user’s login directory. Set at login time; see section NOTES below.

Linux man-pages 6.16 2025-09-21 3407

environ(7) Miscellaneous Information Manual environ(7)

LANG
The name of a locale to use for locale categories when not overridden by
LC_ALL or more specific environment variables such as LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and
LC_TIME (see locale(7) for further details of the LC_* environment variables).

PATH
The sequence of directory prefixes that sh(1) and many other programs employ
when searching for an executable file that is specified as a simple filename (i.a., a
pathname that contains no slashes). The prefixes are separated by colons (:).
The list of prefixes is searched from beginning to end, by checking the pathname
formed by catenating a prefix, a slash, and the filename, until a file with execute
permission is found.

As a legacy feature, a zero-length prefix (specified as two adjacent colons, or an
initial or terminating colon) is interpreted to mean the current working directory.
However, use of this feature is deprecated, and POSIX notes that a conforming
application shall use an explicit pathname (e.g., .) to specify the current working
directory.

Analogously to PATH, one has CDPATH, used by some shells to find the target
of a change directory command, MANPATH used by man(1) to find manual
pages, and so on.

PWD
Absolute path to the current working directory; required to be partially canonical
(no . or .. components).

SHELL
The absolute pathname of the user’s login shell. Set at login time, see section
NOTES below.

TERM
The terminal type for which output is to be prepared.

PAGER
The user’s preferred utility to display text files. Any string acceptable as a com-
mand-string operand to the sh -c command shall be valid. If PAGER is null or
is not set, then applications that launch a pager will default to a program such as
less(1) or more(1)

EDITOR/VISUAL
The user’s preferred utility to edit text files. Any string acceptable as a com-
mand_string operand to the sh -c command shall be valid.

Note that the behavior of many programs and library routines is influenced by the pres-
ence or value of certain environment variables. Examples include the following:

• The variables LANG, LANGUAGE, NLSPATH, LOCPATH, LC_ALL,
LC_MESSAGES, and so on influence locale handling; see catopen(3), gettext(3),
and locale(7).

Linux man-pages 6.16 2025-09-21 3408

environ(7) Miscellaneous Information Manual environ(7)

• TMPDIR influences the path prefix of names created by tempnam(3) and other rou-
tines, and the temporary directory used by sort(1) and other programs.

• LD_LIBRARY_PATH, LD_PRELOAD, and other LD_* variables influence the
behavior of the dynamic loader/linker. See also ld.so(8).

• POSIXLY_CORRECT makes certain programs and library routines follow the pre-
scriptions of POSIX.

• The behavior of malloc(3) is influenced by MALLOC_* variables.

• The variable HOSTALIASES gives the name of a file containing aliases to be used
with gethostbyname(3).

• TZ and TZDIR give timezone information used by tzset(3) and through that by
functions like ctime(3), localtime(3), mktime(3), strftime(3). See also tzselect(8).

• TERMCAP gives information on how to address a given terminal (or gives the
name of a file containing such information).

• COLUMNS and LINES tell applications about the window size, possibly overrid-
ing the actual size.

• PRINTER or LPDEST may specify the desired printer to use. See lpr(1)

NOTES
Historically and by standard, environ must be declared in the user program. However,
as a (nonstandard) programmer convenience, environ is declared in the header file
<unistd.h> if the _GNU_SOURCE feature test macro is defined (see fea-
ture_test_macros(7)).

The prctl(2) PR_SET_MM_ENV_START and PR_SET_MM_ENV_END operations
can be used to control the location of the process’s environment.

The HOME, LOGNAME, SHELL, and USER variables are set when the user is
changed via a session management interface, typically by a program such as login(1)
from a user database (such as passwd(5)). (Switching to the root user using su(1) may
result in a mixed environment where LOGNAME and USER are retained from old
user; see the su(1) manual page.)

BUGS
Clearly there is a security risk here. Many a system command has been tricked into mis-
chief by a user who specified unusual values for IFS or LD_LIBRARY_PATH.

There is also the risk of name space pollution. Programs like make and autoconf allow
overriding of default utility names from the environment with similarly named variables
in all caps. Thus one uses CC to select the desired C compiler (and similarly MAKE,
AR, AS, FC, LD, LEX, RM, YACC, etc.). However, in some traditional uses, such an
environment variable gives options for the program instead of a pathname. Thus, one
has MORE and LESS. Such usage is considered mistaken, and to be avoided in new
programs.

SEE ALSO
bash(1), csh(1), env(1), login(1), printenv(1), sh(1), su(1), tcsh(1), execve(2),
clearenv(3), exec(3), getenv(3), putenv(3), setenv(3), unsetenv(3), locale(7), ld.so(8),

Linux man-pages 6.16 2025-09-21 3409

environ(7) Miscellaneous Information Manual environ(7)

pam_env(8)

Linux man-pages 6.16 2025-09-21 3410

epoll(7) Miscellaneous Information Manual epoll(7)

NAME
epoll - I/O event notification facility

SYNOPSIS
#include <sys/epoll.h>

DESCRIPTION
The epoll API performs a similar task to poll(2): monitoring multiple file descriptors to
see if I/O is possible on any of them. The epoll API can be used either as an edge-trig-
gered or a level-triggered interface and scales well to large numbers of watched file de-
scriptors.

The central concept of the epoll API is the epoll instance, an in-kernel data structure
which, from a user-space perspective, can be considered as a container for two lists:

• The interest list (sometimes also called the epoll set): the set of file descriptors that
the process has registered an interest in monitoring.

• The ready list: the set of file descriptors that are "ready" for I/O. The ready list is a
subset of (or, more precisely, a set of references to) the file descriptors in the interest
list. The ready list is dynamically populated by the kernel as a result of I/O activity
on those file descriptors.

The following system calls are provided to create and manage an epoll instance:

• epoll_create(2) creates a new epoll instance and returns a file descriptor referring to
that instance. (The more recent epoll_create1(2) extends the functionality of
epoll_create(2).)

• Interest in particular file descriptors is then registered via epoll_ctl(2), which adds
items to the interest list of the epoll instance.

• epoll_wait(2) waits for I/O events, blocking the calling thread if no events are cur-
rently available. (This system call can be thought of as fetching items from the
ready list of the epoll instance.)

Level-triggered and edge-triggered
The epoll event distribution interface is able to behave both as edge-triggered (ET) and
as level-triggered (LT). The difference between the two mechanisms can be described
as follows. Suppose that this scenario happens:

(1) The file descriptor that represents the read side of a pipe (rfd) is registered on the
epoll instance.

(2) A pipe writer writes 2 kB of data on the write side of the pipe.

(3) A call to epoll_wait(2) is done that will return rfd as a ready file descriptor.

(4) The pipe reader reads 1 kB of data from rfd .

(5) A call to epoll_wait(2) is done.

If the rfd file descriptor has been added to the epoll interface using the EPOLLET
(edge-triggered) flag, the call to epoll_wait(2) done in step 5 will probably hang despite
the available data still present in the file input buffer; meanwhile the remote peer might
be expecting a response based on the data it already sent. The reason for this is that
edge-triggered mode delivers events only when changes occur on the monitored file

Linux man-pages 6.16 2025-09-21 3411

epoll(7) Miscellaneous Information Manual epoll(7)

descriptor, that is, an event will be generated upon each receipt of a chunk of data. So,
in step 5 the caller might end up waiting for some data that is already present inside the
input buffer. In the above example, an event on rfd will be generated because of the
write done in 2 and the event is consumed in 3. Since the read operation done in 4 does
not consume the whole buffer data, the call to epoll_wait(2) done in step 5 might block
indefinitely.

An application that employs the EPOLLET flag should use nonblocking file descriptors
to avoid having a blocking read or write starve a task that is handling multiple file de-
scriptors. The suggested way to use epoll as an edge-triggered (EPOLLET) interface is
as follows:

(1) with nonblocking file descriptors; and

(2) by waiting for an event only after read(2) or write(2) return EAGAIN.

By contrast, when used as a level-triggered interface (the default, when EPOLLET is
not specified), epoll is simply a faster poll(2), and can be used wherever the latter is
used since it shares the same semantics.

Since even with edge-triggered epoll, multiple events can be generated upon receipt of
multiple chunks of data, the caller has the option to specify the EPOLLONESHOT
flag, to tell epoll to disable the associated file descriptor after the receipt of an event
with epoll_wait(2). When the EPOLLONESHOT flag is specified, it is the caller’s re-
sponsibility to rearm the file descriptor using epoll_ctl(2) with EPOLL_CTL_MOD.

If multiple threads (or processes, if child processes have inherited the epoll file descrip-
tor across fork(2)) are blocked in epoll_wait(2) waiting on the same epoll file descriptor
and a file descriptor in the interest list that is marked for edge-triggered (EPOLLET)
notification becomes ready, just one of the threads (or processes) is awoken from
epoll_wait(2). This provides a useful optimization for avoiding "thundering herd" wake-
ups in some scenarios.

Interaction with autosleep
If the system is in autosleep mode via /sys/power/autosleep and an event happens
which wakes the device from sleep, the device driver will keep the device awake only
until that event is queued. To keep the device awake until the event has been processed,
it is necessary to use the epoll_ctl(2) EPOLLWAKEUP flag.

When the EPOLLWAKEUP flag is set in the events field for a struct epoll_event, the
system will be kept awake from the moment the event is queued, through the
epoll_wait(2) call which returns the event until the subsequent epoll_wait(2) call. If the
event should keep the system awake beyond that time, then a separate wake_lock should
be taken before the second epoll_wait(2) call.

/proc interfaces
The following interfaces can be used to limit the amount of kernel memory consumed
by epoll:

/proc/sys/fs/epoll/max_user_watches (since Linux 2.6.28)
This specifies a limit on the total number of file descriptors that a user can regis-
ter across all epoll instances on the system. The limit is per real user ID. Each
registered file descriptor costs roughly 90 bytes on a 32-bit kernel, and roughly

Linux man-pages 6.16 2025-09-21 3412

epoll(7) Miscellaneous Information Manual epoll(7)

160 bytes on a 64-bit kernel. Currently, the default value for max_user_watches
is 1/25 (4%) of the available low memory, divided by the registration cost in
bytes.

Example for suggested usage
While the usage of epoll when employed as a level-triggered interface does have the
same semantics as poll(2), the edge-triggered usage requires more clarification to avoid
stalls in the application event loop. In this example, listener is a nonblocking socket on
which listen(2) has been called. The function do_use_fd() uses the new ready file de-
scriptor until EAGAIN is returned by either read(2) or write(2). An event-driven state
machine application should, after having received EAGAIN, record its current state so
that at the next call to do_use_fd() it will continue to read(2) or write(2) from where it
stopped before.

#define MAX_EVENTS 10
struct epoll_event ev, events[MAX_EVENTS];
int listen_sock, conn_sock, nfds, epollfd;

/* Code to set up listening socket, 'listen_sock',
(socket(), bind(), listen()) omitted. */

epollfd = epoll_create1(0);
if (epollfd == -1) {

perror("epoll_create1");
exit(EXIT_FAILURE);

}

ev.events = EPOLLIN;
ev.data.fd = listen_sock;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, listen_sock, &ev) == -1) {

perror("epoll_ctl: listen_sock");
exit(EXIT_FAILURE);

}

for (;;) {
nfds = epoll_wait(epollfd, events, MAX_EVENTS, -1);
if (nfds == -1) {

perror("epoll_wait");
exit(EXIT_FAILURE);

}

for (n = 0; n < nfds; ++n) {
if (events[n].data.fd == listen_sock) {

conn_sock = accept(listen_sock,
(struct sockaddr *) &addr, &addrlen);

if (conn_sock == -1) {
perror("accept");
exit(EXIT_FAILURE);

Linux man-pages 6.16 2025-09-21 3413

epoll(7) Miscellaneous Information Manual epoll(7)

}
setnonblocking(conn_sock);
ev.events = EPOLLIN | EPOLLET;
ev.data.fd = conn_sock;
if (epoll_ctl(epollfd, EPOLL_CTL_ADD, conn_sock,

&ev) == -1) {
perror("epoll_ctl: conn_sock");
exit(EXIT_FAILURE);

}
} else {

do_use_fd(events[n].data.fd);
}

}
}

When used as an edge-triggered interface, for performance reasons, it is possible to add
the file descriptor inside the epoll interface (EPOLL_CTL_ADD) once by specifying
(EPOLLIN|EPOLLOUT). This allows you to avoid continuously switching between
EPOLLIN and EPOLLOUT calling epoll_ctl(2) with EPOLL_CTL_MOD.

Questions and answers
• What is the key used to distinguish the file descriptors registered in an interest list?

The key is the combination of the file descriptor number and the open file descrip-
tion (also known as an "open file handle", the kernel’s internal representation of an
open file).

• What happens if you register the same file descriptor on an epoll instance twice?

You will probably get EEXIST. However, it is possible to add a duplicate (dup(2),
dup2(2), fcntl(2) F_DUPFD) file descriptor to the same epoll instance. This can be
a useful technique for filtering events, if the duplicate file descriptors are registered
with different events masks.

• Can two epoll instances wait for the same file descriptor? If so, are events reported
to both epoll file descriptors?

Yes, and events would be reported to both. However, careful programming may be
needed to do this correctly.

• Is the epoll file descriptor itself poll/epoll/selectable?

Yes. If an epoll file descriptor has events waiting, then it will indicate as being read-
able.

• What happens if one attempts to put an epoll file descriptor into its own file descrip-
tor set?

The epoll_ctl(2) call fails (EINVAL). However, you can add an epoll file descriptor
inside another epoll file descriptor set.

• Can I send an epoll file descriptor over a UNIX domain socket to another process?

Yes, but it does not make sense to do this, since the receiving process would not have
copies of the file descriptors in the interest list.

Linux man-pages 6.16 2025-09-21 3414

epoll(7) Miscellaneous Information Manual epoll(7)

• Will closing a file descriptor cause it to be removed from all epoll interest lists?

Yes, but be aware of the following point. A file descriptor is a reference to an open
file description (see open(2)). Whenever a file descriptor is duplicated via dup(2),
dup2(2), fcntl(2) F_DUPFD, or fork(2), a new file descriptor referring to the same
open file description is created. An open file description continues to exist until all
file descriptors referring to it have been closed.

A file descriptor is removed from an interest list only after all the file descriptors re-
ferring to the underlying open file description have been closed. This means that
even after a file descriptor that is part of an interest list has been closed, events may
be reported for that file descriptor if other file descriptors referring to the same un-
derlying file description remain open. To prevent this happening, the file descriptor
must be explicitly removed from the interest list (using epoll_ctl(2)
EPOLL_CTL_DEL) before it is duplicated. Alternatively, the application must en-
sure that all file descriptors are closed (which may be difficult if file descriptors were
duplicated behind the scenes by library functions that used dup(2) or fork(2)).

• If more than one event occurs between epoll_wait(2) calls, are they combined or re-
ported separately?

They will be combined.

• Does an operation on a file descriptor affect the already collected but not yet re-
ported events?

You can do two operations on an existing file descriptor. Remove would be mean-
ingless for this case. Modify will reread available I/O.

• Do I need to continuously read/write a file descriptor until EAGAIN when using the
EPOLLET flag (edge-triggered behavior)?

Receiving an event from epoll_wait(2) should suggest to you that such file descriptor
is ready for the requested I/O operation. You must consider it ready until the next
(nonblocking) read/write yields EAGAIN. When and how you will use the file de-
scriptor is entirely up to you.

For packet/token-oriented files (e.g., datagram socket, terminal in canonical mode),
the only way to detect the end of the read/write I/O space is to continue to read/write
until EAGAIN.

For stream-oriented files (e.g., pipe, FIFO, stream socket), the condition that the
read/write I/O space is exhausted can also be detected by checking the amount of
data read from / written to the target file descriptor. For example, if you call read(2)
by asking to read a certain amount of data and read(2) returns a lower number of
bytes, you can be sure of having exhausted the read I/O space for the file descriptor.
The same is true when writing using write(2). (Avoid this latter technique if you
cannot guarantee that the monitored file descriptor always refers to a stream-oriented
file.)

Possible pitfalls and ways to avoid them
• Starvation (edge-triggered)

Linux man-pages 6.16 2025-09-21 3415

epoll(7) Miscellaneous Information Manual epoll(7)

If there is a large amount of I/O space, it is possible that by trying to drain it the
other files will not get processed causing starvation. (This problem is not specific to
epoll.)

The solution is to maintain a ready list and mark the file descriptor as ready in its as-
sociated data structure, thereby allowing the application to remember which files
need to be processed but still round robin amongst all the ready files. This also sup-
ports ignoring subsequent events you receive for file descriptors that are already
ready.

• If using an event cache...

If you use an event cache or store all the file descriptors returned from epoll_wait(2),
then make sure to provide a way to mark its closure dynamically (i.e., caused by a
previous event’s processing). Suppose you receive 100 events from epoll_wait(2),
and in event #47 a condition causes event #13 to be closed. If you remove the struc-
ture and close(2) the file descriptor for event #13, then your event cache might still
say there are events waiting for that file descriptor causing confusion.

One solution for this is to call, during the processing of event 47,
epoll_ctl(EPOLL_CTL_DEL) to delete file descriptor 13 and close(2), then mark its
associated data structure as removed and link it to a cleanup list. If you find another
event for file descriptor 13 in your batch processing, you will discover the file de-
scriptor had been previously removed and there will be no confusion.

VERSIONS
Some other systems provide similar mechanisms; for example, FreeBSD has kqueue,
and Solaris has /dev/poll.

STANDARDS
Linux.

HISTORY
Linux 2.5.44. glibc 2.3.2.

NOTES
The set of file descriptors that is being monitored via an epoll file descriptor can be
viewed via the entry for the epoll file descriptor in the process’s /proc/ pid /fdinfo direc-
tory. See proc(5) for further details.

The kcmp(2) KCMP_EPOLL_TFD operation can be used to test whether a file de-
scriptor is present in an epoll instance.

SEE ALSO
epoll_create(2), epoll_create1(2), epoll_ctl(2), epoll_wait(2), ioctl_eventpoll(2), poll(2),
select(2)

Linux man-pages 6.16 2025-09-21 3416

fanotify(7) Miscellaneous Information Manual fanotify(7)

NAME
fanotify - monitoring filesystem events

DESCRIPTION
The fanotify API provides notification and interception of filesystem events. Use cases
include virus scanning and hierarchical storage management. In the original fanotify
API, only a limited set of events was supported. In particular, there was no support for
create, delete, and move events. The support for those events was added in Linux 5.1.
(See inotify(7) for details of an API that did notify those events pre Linux 5.1.)

Additional capabilities compared to the inotify(7) API include the ability to monitor all
of the objects in a mounted filesystem, the ability to make access permission decisions,
and the possibility to read or modify files before access by other applications.

The following system calls are used with this API: fanotify_init(2), fanotify_mark(2),
read(2), write(2), and close(2).

fanotify_init(), fanotify_mark(), and notification groups
The fanotify_init(2) system call creates and initializes an fanotify notification group and
returns a file descriptor referring to it.

An fanotify notification group is a kernel-internal object that holds a list of files, directo-
ries, filesystems, and mounts for which events shall be created.

For each entry in an fanotify notification group, two bit masks exist: the mark mask and
the ignore mask. The mark mask defines file activities for which an event shall be cre-
ated. The ignore mask defines activities for which no event shall be generated. Having
these two types of masks permits a filesystem, mount, or directory to be marked for re-
ceiving events, while at the same time ignoring events for specific objects under a mount
or directory.

The fanotify_mark(2) system call adds a file, directory, filesystem, or mount to a notifi-
cation group and specifies which events shall be reported (or ignored), or removes or
modifies such an entry.

A possible usage of the ignore mask is for a file cache. Events of interest for a file cache
are modification of a file and closing of the same. Hence, the cached directory or mount
is to be marked to receive these events. After receiving the first event informing that a
file has been modified, the corresponding cache entry will be invalidated. No further
modification events for this file are of interest until the file is closed. Hence, the modify
event can be added to the ignore mask. Upon receiving the close event, the modify
event can be removed from the ignore mask and the file cache entry can be updated.

The entries in the fanotify notification groups refer to files and directories via their inode
number and to mounts via their mount ID. If files or directories are renamed or moved
within the same mount, the respective entries survive. If files or directories are deleted
or moved to another mount or if filesystems or mounts are unmounted, the correspond-
ing entries are deleted.

The event queue
As events occur on the filesystem objects monitored by a notification group, the fanotify
system generates events that are collected in a queue. These events can then be read (us-
ing read(2) or similar) from the fanotify file descriptor returned by fanotify_init(2).

Linux man-pages 6.16 2025-09-21 3417

fanotify(7) Miscellaneous Information Manual fanotify(7)

Two types of events are generated: notification events and permission events. Notifica-
tion events are merely informative and require no action to be taken by the receiving ap-
plication with one exception: if a valid file descriptor is provided within a generic event,
the file descriptor must be closed. Permission events are requests to the receiving appli-
cation to decide whether permission for a file access shall be granted. For these events,
the recipient must write a response which decides whether access is granted or not.

An event is removed from the event queue of the fanotify group when it has been read.
Permission events that have been read are kept in an internal list of the fanotify group
until either a permission decision has been taken by writing to the fanotify file descriptor
or the fanotify file descriptor is closed.

Reading fanotify events
Calling read(2) for the file descriptor returned by fanotify_init(2) blocks (if the flag
FAN_NONBLOCK is not specified in the call to fanotify_init(2)) until either a file
event occurs or the call is interrupted by a signal (see signal(7)).

After a successful read(2), the read buffer contains one or more of the following struc-
tures:

struct fanotify_event_metadata {
__u32 event_len;
__u8 vers;
__u8 reserved;
__u16 metadata_len;
__aligned_u64 mask;
__s32 fd;
__s32 pid;

};

Information records are supplemental pieces of information that may be provided along-
side the generic fanotify_event_metadata structure. The flags passed to fanotify_init(2)
have influence over the type of information records that may be returned for an event.
For example, if a notification group is initialized with FAN_REPORT_FID or
FAN_REPORT_DIR_FID, then event listeners should also expect to receive a fan-
otify_event_info_fid structure alongside the fanotify_event_metadata structure, whereby
file handles are used to identify filesystem objects rather than file descriptors. Informa-
tion records may also be stacked, meaning that using the various FAN_REPORT_*
flags in conjunction with one another is supported. In such cases, multiple information
records can be returned for an event alongside the generic fanotify_event_metadata
structure. For example, if a notification group is initialized with FAN_REPORT_TAR-
GET_FID and FAN_REPORT_PIDFD, then an event listener should expect to receive
up to two fanotify_event_info_fid information records and one fan-
otify_event_info_pidfd information record alongside the generic fanotify_event_meta-
data structure. Importantly, fanotify provides no guarantee around the ordering of infor-
mation records when a notification group is initialized with a stacked based configura-
tion. Each information record has a nested structure of type fan-
otify_event_info_header. It is imperative for event listeners to inspect the info_type field
of this structure in order to determine the type of information record that had been re-
ceived for a given event.

Linux man-pages 6.16 2025-09-21 3418

fanotify(7) Miscellaneous Information Manual fanotify(7)

In cases where an fanotify group identifies filesystem objects by file handles, event lis-
teners should also expect to receive one or more of the below information record objects
alongside the generic fanotify_event_metadata structure within the read buffer:

struct fanotify_event_info_fid {
struct fanotify_event_info_header hdr;
__kernel_fsid_t fsid;
unsigned char handle[];

};

In cases where an fanotify group is initialized with FAN_REPORT_PIDFD, event lis-
teners should expect to receive the below information record object alongside the
generic fanotify_event_metadata structure within the read buffer:

struct fanotify_event_info_pidfd {
struct fanotify_event_info_header hdr;
__s32 pidfd;

};

In cases where an fanotify group is initialized with FAN_REPORT_MNT, event listen-
ers should expect to receive the below information record object alongside the generic
fanotify_event_metadata structure within the read buffer. This structure is defined as
follows:

struct fanotify_event_info_mnt {
struct fanotify_event_info_header hdr;
__u64 mnt_id;

};

In case of a FAN_FS_ERROR event, an additional information record describing the
error that occurred is returned alongside the generic fanotify_event_metadata structure
within the read buffer. This structure is defined as follows:

struct fanotify_event_info_error {
struct fanotify_event_info_header hdr;
__s32 error;
__u32 error_count;

};

In case of FAN_PRE_ACCESS events, an additional information record describing the
access range is returned alongside the generic fanotify_event_metadata structure within
the read buffer. This structure is defined as follows:

struct fanotify_event_info_range {
struct fanotify_event_info_header hdr;
__u32 pad;
__u64 offset;
__u64 count;

};

All information records contain a nested structure of type fanotify_event_info_header.
This structure holds meta-information about the information record that may have been
returned alongside the generic fanotify_event_metadata structure. This structure is

Linux man-pages 6.16 2025-09-21 3419

fanotify(7) Miscellaneous Information Manual fanotify(7)

defined as follows:

struct fanotify_event_info_header {
__u8 info_type;
__u8 pad;
__u16 len;

};

For performance reasons, it is recommended to use a large buffer size (for example,
4096 bytes), so that multiple events can be retrieved by a single read(2).

The return value of read(2) is the number of bytes placed in the buffer, or -1 in case of
an error (but see BUGS).

The fields of the fanotify_event_metadata structure are as follows:

event_len
This is the size of the data for the current event and the offset to the next event in
the buffer. Unless the group identifies filesystem objects by file handles, the
value of event_len is always FAN_EVENT_METADATA_LEN. For a group
that identifies filesystem objects by file handles, event_len also includes the vari-
able size file identifier records.

vers This field holds a version number for the structure. It must be compared to
FANOTIFY_METADATA_VERSION to verify that the structures returned at
run time match the structures defined at compile time. In case of a mismatch,
the application should abandon trying to use the fanotify file descriptor.

reserved
This field is not used.

metadata_len
This is the size of the structure. The field was introduced to facilitate the imple-
mentation of optional headers per event type. No such optional headers exist in
the current implementation.

mask This is a bit mask describing the event (see below).

fd This is an open file descriptor for the object being accessed, or FAN_NOFD if a
queue overflow occurred. With an fanotify group that identifies filesystem ob-
jects by file handles, applications should expect this value to be set to
FAN_NOFD for each event that is received. The file descriptor can be used to
access the contents of the monitored file or directory. The reading application is
responsible for closing this file descriptor.

When calling fanotify_init(2), the caller may specify (via the event_f_flags argu-
ment) various file status flags that are to be set on the open file description that
corresponds to this file descriptor. In addition, the (kernel-internal)
FMODE_NONOTIFY file status flag is set on the open file description. This
flag suppresses fanotify event generation. Hence, when the receiver of the fan-
otify event accesses the notified file or directory using this file descriptor, no ad-
ditional events will be created.

Linux man-pages 6.16 2025-09-21 3420

fanotify(7) Miscellaneous Information Manual fanotify(7)

When an fanotify group is initialized using FAN_REPORT_FD_ERROR, this
field will contain a negative error value in case a file descriptor could not be
opened and in case of a queue overflow, the value will be -EBADF.

pid If flag FAN_REPORT_TID was set in fanotify_init(2), this is the TID of the
thread that caused the event. Otherwise, this the PID of the process that caused
the event.

A program listening to fanotify events can compare this PID to the PID returned by get-
pid(2), to determine whether the event is caused by the listener itself, or is due to a file
access by another process.

The bit mask in mask indicates which events have occurred for a single filesystem ob-
ject. Multiple bits may be set in this mask, if more than one event occurred for the mon-
itored filesystem object. In particular, consecutive events for the same filesystem object
and originating from the same process may be merged into a single event, with the ex-
ception that two permission events are never merged into one queue entry.

The bits that may appear in mask are as follows:

FAN_ACCESS
A file or a directory (but see BUGS) was accessed (read).

FAN_OPEN
A file or a directory was opened.

FAN_OPEN_EXEC
A file was opened with the intent to be executed. See NOTES in fan-
otify_mark(2) for additional details.

FAN_ATTRIB
A file or directory metadata was changed.

FAN_CREATE
A child file or directory was created in a watched parent.

FAN_DELETE
A child file or directory was deleted in a watched parent.

FAN_DELETE_SELF
A watched file or directory was deleted.

FAN_RENAME
A file or directory has been moved to or from a watched parent directory.

FAN_MOVED_FROM
A file or directory has been moved from a watched parent directory.

FAN_MOVED_TO
A file or directory has been moved to a watched parent directory.

FAN_MOVE_SELF
A watched file or directory was moved.

FAN_MODIFY
A file was modified.

Linux man-pages 6.16 2025-09-21 3421

fanotify(7) Miscellaneous Information Manual fanotify(7)

FAN_CLOSE_WRITE
A file that was opened for writing (O_WRONLY or O_RDWR) was closed.

FAN_CLOSE_NOWRITE
A file or directory that was opened read-only (O_RDONLY) was closed.

FAN_MNT_ATTACH
A mount was attached to mount namespace.

FAN_MNT_DETACH
A mount was detached from mount namespace.

FAN_FS_ERROR
A filesystem error was detected.

FAN_Q_OVERFLOW
The event queue exceeded the limit on number of events. This limit can be over-
ridden by specifying the FAN_UNLIMITED_QUEUE flag when calling fan-
otify_init(2).

FAN_ACCESS_PERM
An application wants to read a file or directory, for example using read(2) or
readdir(2). The reader must write a response (as described below) that deter-
mines whether the permission to access the filesystem object shall be granted.

FAN_OPEN_PERM
An application wants to open a file or directory. The reader must write a re-
sponse that determines whether the permission to open the filesystem object
shall be granted.

FAN_OPEN_EXEC_PERM
An application wants to open a file for execution. The reader must write a re-
sponse that determines whether the permission to open the filesystem object for
execution shall be granted. See NOTES in fanotify_mark(2) for additional de-
tails.

To check for any close event, the following bit mask may be used:

FAN_CLOSE
A file was closed. This is a synonym for:

FAN_CLOSE_WRITE | FAN_CLOSE_NOWRITE

To check for any move event, the following bit mask may be used:

FAN_MOVE
A file or directory was moved. This is a synonym for:

FAN_MOVED_FROM | FAN_MOVED_TO

The following bits may appear in mask only in conjunction with other event type bits:

FAN_ONDIR
The events described in the mask have occurred on a directory object. Reporting
events on directories requires setting this flag in the mark mask. See fan-
otify_mark(2) for additional details. The FAN_ONDIR flag is reported in an
event mask only if the fanotify group identifies filesystem objects by file handles.

Linux man-pages 6.16 2025-09-21 3422

fanotify(7) Miscellaneous Information Manual fanotify(7)

Information records that are supplied alongside the generic fanotify_event_metadata
structure will always contain a nested structure of type fanotify_event_info_header.
The fields of the fanotify_event_info_header are as follows:

info_type
A unique integer value representing the type of information record object re-
ceived for an event. The value of this field can be set to one of the following.

FAN_EVENT_INFO_TYPE_FID
FAN_EVENT_INFO_TYPE_DFID
FAN_EVENT_INFO_TYPE_DFID_NAME
FAN_EVENT_INFO_TYPE_PIDFD
FAN_EVENT_INFO_TYPE_ERROR
FAN_EVENT_INFO_TYPE_RANGE
FAN_EVENT_INFO_TYPE_MNT

The value set for this field is dependent on the flags that have been supplied to
fanotify_init(2). Refer to the field details of each information record object type
below to understand the different cases in which the info_type values can be set.

pad This field is currently not used by any information record object type and there-
fore is set to zero.

len The value of len is set to the size of the information record object, including the
fanotify_event_info_header. The total size of all additional information records
is not expected to be larger than (event_len - metadata_len).

The fields of the fanotify_event_info_fid structure are as follows:

hdr This is a structure of type fanotify_event_info_header. For example, when an
fanotify file descriptor is created using FAN_REPORT_FID, a single informa-
tion record is expected to be attached to the event with info_type field value of
FAN_EVENT_INFO_TYPE_FID. When an fanotify file descriptor is created
using the combination of FAN_REPORT_FID and FAN_REPORT_DIR_FID,
there may be two information records attached to the event: one with info_type
field value of FAN_EVENT_INFO_TYPE_DFID, identifying a parent direc-
tory object, and one with info_type field value of
FAN_EVENT_INFO_TYPE_FID, identifying a child object. Note that for the
directory entry modification events FAN_CREATE, FAN_DELETE,
FAN_MOVE, and FAN_RENAME, an information record identifying the cre-
ated/deleted/moved child object is reported only if an fanotify group was initial-
ized with the flag FAN_REPORT_TARGET_FID.

fsid This is a unique identifier of the filesystem containing the object associated with
the event. It is a structure of type __kernel_fsid_t and contains the same value as
f_fsid when calling statfs(2). Note that some filesystems (e.g., fuse(4)) report
zero fsid . In these cases, it is not possible to use fsid to associate the event with
a specific filesystem instance, so monitoring different filesystem instances that
report zero fsid with the same fanotify group is not supported.

Linux man-pages 6.16 2025-09-21 3423

fanotify(7) Miscellaneous Information Manual fanotify(7)

handle
This field contains a variable-size structure of type struct file_handle. It is an
opaque handle that corresponds to a specified object on a filesystem as returned
by name_to_handle_at(2). It can be used to uniquely identify a file on a filesys-
tem and can be passed as an argument to open_by_handle_at(2). If the value of
info_type field is FAN_EVENT_INFO_TYPE_DFID_NAME, the file handle
is followed by a null terminated string that identifies the created/deleted/moved
directory entry name. For other events such as FAN_OPEN, FAN_ATTRIB,
FAN_DELETE_SELF, and FAN_MOVE_SELF, if the value of info_type field
is FAN_EVENT_INFO_TYPE_FID, the handle identifies the object correlated
to the event. If the value of info_type field is
FAN_EVENT_INFO_TYPE_DFID, the handle identifies the directory object
correlated to the event or the parent directory of a non-directory object correlated
to the event. If the value of info_type field is
FAN_EVENT_INFO_TYPE_DFID_NAME, the handle identifies the same di-
rectory object that would be reported with FAN_EVENT_INFO_TYPE_DFID
and the file handle is followed by a null terminated string that identifies the name
of a directory entry in that directory, or ’.’ to identify the directory object itself.

The fields of the fanotify_event_info_pidfd structure are as follows:

hdr This is a structure of type fanotify_event_info_header. When an fanotify group
is initialized using FAN_REPORT_PIDFD, the info_type field value of the fan-
otify_event_info_header is set to FAN_EVENT_INFO_TYPE_PIDFD.

pidfd
This is a process file descriptor that refers to the process responsible for generat-
ing the event. The returned process file descriptor is no different from one which
could be obtained manually if pidfd_open(2) were to be called on fan-
otify_event_metadata.pid . In the instance that an error is encountered during
pidfd creation, one of two possible error types represented by a negative integer
value may be returned in this pidfd field. In cases where the process responsible
for generating the event has terminated prior to the event listener being able to
read events from the notification queue, FAN_NOPIDFD is returned. The pidfd
creation for an event is only performed at the time the events are read from the
notification queue. All other possible pidfd creation failures are represented by
FAN_EPIDFD. Once the event listener has dealt with an event and the pidfd is
no longer required, the pidfd should be closed via close(2).

When an fanotify group is initialized using FAN_REPORT_FD_ERROR, this
field will contain a negative error value in case a pidfd creation failure and in
case of a terminated process, the value will be -ESRCH.

The fields of the fanotify_event_info_mnt structure are as follows:

.hdr This is a structure of type fanotify_event_info_header. The .info_type field is
set to FAN_EVENT_INFO_TYPE_MNT.

.mnt_id
Identifies the mount associated with the event. It is a 64-bit unique mount id as
the one returned by statx(2) with the STATX_MNT_ID_UNIQUE flag.

Linux man-pages 6.16 2025-09-21 3424

fanotify(7) Miscellaneous Information Manual fanotify(7)

The fields of the fanotify_event_info_error structure are as follows:

hdr This is a structure of type fanotify_event_info_header. The info_type field is set
to FAN_EVENT_INFO_TYPE_ERROR.

error Identifies the type of error that occurred.

error_count
This is a counter of the number of errors suppressed since the last error was read.

The fields of the fanotify_event_info_range structure are as follows:

hdr This is a structure of type fanotify_event_info_header. The info_type field is set
to FAN_EVENT_INFO_TYPE_RANGE.

count
The number of bytes being read or written to the file.

offset
The offset from which bytes are read or written to the file.

The following macros are provided to iterate over a buffer containing fanotify event
metadata returned by a read(2) from an fanotify file descriptor:

FAN_EVENT_OK(meta, size)
This macro checks the remaining size size of the buffer meta against the size of
the metadata structure and the event_len field of the first metadata structure in
the buffer.

FAN_EVENT_NEXT(meta, size)
This macro uses the size indicated in the event_len field of the metadata structure
pointed to by meta to calculate the address of the next metadata structure that
follows meta. size is the number of bytes of metadata that currently remain in
the buffer. The macro returns a pointer to the next metadata structure that fol-
lows meta, and reduces size by the number of bytes in the metadata structure that
has been skipped over (i.e., it subtracts meta->event_len from size).

In addition, there is:

FAN_EVENT_METADATA_LEN
This macro returns the size (in bytes) of the structure fanotify_event_metadata.
This is the minimum size (and currently the only size) of any event metadata.

Monitoring an fanotify file descriptor for events
When an fanotify event occurs, the fanotify file descriptor indicates as readable when
passed to epoll(7), poll(2), or select(2).

Dealing with permission events
For permission events, the application must write(2) a structure of the following form to
the fanotify file descriptor:

struct fanotify_response {
__s32 fd;
__u32 response;

};

The fields of this structure are as follows:

Linux man-pages 6.16 2025-09-21 3425

fanotify(7) Miscellaneous Information Manual fanotify(7)

fd This is the file descriptor from the structure fanotify_event_metadata.

response
This field indicates whether or not the permission is to be granted. Its value
must contain either the flag FAN_ALLOW to allow the file operation or
FAN_DENY to deny the file operation.

If access is denied, the requesting application call will receive an EPERM error. Since
Linux 6.13, if a notification group is initialized with class FAN_CLASS_PRE_CON-
TENT, the file operation can be denied with errors other than EPERM. For example,
for the requesting application to get the EIO error, the event listener can write the re-
sponse FAN_DENY_ERRNO(EIO)At the time of writing, only the following error values
could be returned to the application with FAN_DENY_ERRNO(e) macro: EPERM,
EIO, EBUSY, ETXTBSY, EAGAIN, ENOSPC, EDQUOT.

Additionally, if the notification group has been created with the FAN_ENABLE_AU-
DIT flag, then the FAN_AUDIT flag can be set in the response field. In that case, the
audit subsystem will log information about the access decision to the audit logs.

Since Linux 6.3, the FAN_INFO flag can be set in the .response field. It indicates that
an extra variable-length response record follows the fanotify_response structure. Extra
response records start with a common header:

struct fanotify_response_info_header {
__u8 type;
__u8 pad;
__u16 len;

};

The value of .type determines the format of the extra response record.

FAN_RESPONSE_INFO_AUDIT_RULE
The following response record is expected with extra details for the audit log:

struct fanotify_response_info_audit_rule {
struct fanotify_response_info_header hdr;
__u32 rule_number;
__u32 subj_trust;
__u32 obj_trust;

};

Monitoring filesystems for errors
A single FAN_FS_ERROR event is stored per filesystem at once. Extra error messages
are suppressed and accounted for in the error_count field of the existing FAN_FS_ER-
ROR event record, but details about the errors are lost.

Errors reported by FAN_FS_ERROR are generic errno values, but not all kinds of error
types are reported by all filesystems.

Errors not directly related to a file (i.e., super block corruption) are reported with an in-
valid handle. For these errors, the handle will have the field handle_type set to
FILEID_INVALID, and the handle buffer size set to 0.

Linux man-pages 6.16 2025-09-21 3426

fanotify(7) Miscellaneous Information Manual fanotify(7)

Closing the fanotify file descriptor
When all file descriptors referring to the fanotify notification group are closed, the fan-
otify group is released and its resources are freed for reuse by the kernel. Upon
close(2), outstanding permission events will be set to allowed.

/proc interfaces
The file /proc/ pid /fdinfo/ fd contains information about fanotify marks for file descrip-
tor fd of process pid . See proc(5) for details.

Since Linux 5.13 (and 5.10.220), the following interfaces can be used to control the
amount of kernel resources consumed by fanotify:

/proc/sys/fs/fanotify/max_queued_events
The value in this file is used when an application calls fanotify_init(2) to set an
upper limit on the number of events that can be queued to the corresponding fan-
otify group. Events in excess of this limit are dropped, but an FAN_Q_OVER-
FLOW event is always generated. Prior to Linux kernel 5.13, the hardcoded
limit was 16384 events.

/proc/sys/fs/fanotify/max_user_group
This specifies an upper limit on the number of fanotify groups that can be cre-
ated per real user ID. Prior to Linux kernel 5.13, the hardcoded limit was 128
groups per user.

/proc/sys/fs/fanotify/max_user_marks
This specifies an upper limit on the number of fanotify marks that can be created
per real user ID. Prior to Linux kernel 5.13, the hardcoded limit was 8192 marks
per group (not per user).

ERRORS
In addition to the usual errors for read(2), the following errors can occur when reading
from the fanotify file descriptor:

EINVAL
The buffer is too small to hold the event.

EMFILE
The per-process limit on the number of open files has been reached. See the de-
scription of RLIMIT_NOFILE in getrlimit(2).

ENFILE
The system-wide limit on the total number of open files has been reached. See
/proc/sys/fs/file-max in proc(5).

ETXTBSY
This error is returned by read(2) if O_RDWR or O_WRONLY was specified in
the event_f_flags argument when calling fanotify_init(2) and an event occurred
for a monitored file that is currently being executed.

In addition to the usual errors for write(2), the following errors can occur when writing
to the fanotify file descriptor:

Linux man-pages 6.16 2025-09-21 3427

fanotify(7) Miscellaneous Information Manual fanotify(7)

EINVAL
Fanotify access permissions are not enabled in the kernel configuration or the
value of response in the response structure is not valid.

ENOENT
The file descriptor fd in the response structure is not valid. This may occur
when a response for the permission event has already been written.

STANDARDS
Linux.

HISTORY
The fanotify API was introduced in Linux 2.6.36 and enabled in Linux 2.6.37. fdinfo
support was added in Linux 3.8.

NOTES
The fanotify API is available only if the kernel was built with the CONFIG_FAN-
OTIFY configuration option enabled. In addition, fanotify permission handling is avail-
able only if the CONFIG_FANOTIFY_ACCESS_PERMISSIONS configuration op-
tion is enabled.

Limitations and caveats
Fanotify reports only events that a user-space program triggers through the filesystem
API. As a result, it does not catch remote events that occur on network filesystems.

The fanotify API does not report file accesses and modifications that may occur because
of mmap(2), msync(2), and munmap(2).

Events for directories are created only if the directory itself is opened, read, and closed.
Adding, removing, or changing children of a marked directory does not create events for
the monitored directory itself.

Fanotify monitoring of directories is not recursive: to monitor subdirectories under a di-
rectory, additional marks must be created. The FAN_CREATE event can be used for
detecting when a subdirectory has been created under a marked directory. An additional
mark must then be set on the newly created subdirectory. This approach is racy, because
it can lose events that occurred inside the newly created subdirectory, before a mark is
added on that subdirectory. Monitoring mounts offers the capability to monitor a whole
directory tree in a race-free manner. Monitoring filesystems offers the capability to
monitor changes made from any mount of a filesystem instance in a race-free manner.

The event queue can overflow. In this case, events are lost.

BUGS
Before Linux 3.19, fallocate(2) did not generate fanotify events. Since Linux 3.19, calls
to fallocate(2) generate FAN_MODIFY events.

As of Linux 3.17, the following bugs exist:

• On Linux, a filesystem object may be accessible through multiple paths, for exam-
ple, a part of a filesystem may be remounted using the --bind option of mount(8)A
listener that marked a mount will be notified only of events that were triggered for a
filesystem object using the same mount. Any other event will pass unnoticed.

Linux man-pages 6.16 2025-09-21 3428

fanotify(7) Miscellaneous Information Manual fanotify(7)

• When an event is generated, no check is made to see whether the user ID of the re-
ceiving process has authorization to read or write the file before passing a file de-
scriptor for that file. This poses a security risk, when the CAP_SYS_ADMIN capa-
bility is set for programs executed by unprivileged users.

• If a call to read(2) processes multiple events from the fanotify queue and an error
occurs, the return value will be the total size of the events successfully copied to the
user-space buffer before the error occurred. The return value will not be -1, and er-
rno will not be set. Thus, the reading application has no way to detect the error.

EXAMPLES
The two example programs below demonstrate the usage of the fanotify API.

Example program: fanotify_example.c
The first program is an example of fanotify being used with its event object information
passed in the form of a file descriptor. The program marks the mount passed as a com-
mand-line argument and waits for events of type FAN_OPEN_PERM and
FAN_CLOSE_WRITE. When a permission event occurs, a FAN_ALLOW response
is given.

The following shell session shows an example of running this program. This session in-
volved editing the file /home/user/temp/notes. Before the file was opened, a
FAN_OPEN_PERM event occurred. After the file was closed, a
FAN_CLOSE_WRITE event occurred. Execution of the program ends when the user
presses the ENTER key.

./fanotify_example /home;
Press enter key to terminate.
Listening for events.
FAN_OPEN_PERM: File /home/user/temp/notes
FAN_CLOSE_WRITE: File /home/user/temp/notes

Listening for events stopped.

Program source: fanotify_example.c

#define _GNU_SOURCE /* Needed to get O_LARGEFILE definition */
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/fanotify.h>
#include <unistd.h>

/* Read all available fanotify events from the file descriptor 'fd'. */

static void
handle_events(int fd)
{

Linux man-pages 6.16 2025-09-21 3429

fanotify(7) Miscellaneous Information Manual fanotify(7)

const struct fanotify_event_metadata *metadata;
struct fanotify_event_metadata buf[200];
ssize_t size;
char path[PATH_MAX];
ssize_t path_len;
char procfd_path[PATH_MAX];
struct fanotify_response response;

/* Loop while events can be read from fanotify file descriptor. */

for (;;) {

/* Read some events. */

size = read(fd, buf, sizeof(buf));
if (size == -1 && errno != EAGAIN) {

perror("read");
exit(EXIT_FAILURE);

}

/* Check if end of available data reached. */

if (size <= 0)
break;

/* Point to the first event in the buffer. */

metadata = buf;

/* Loop over all events in the buffer. */

while (FAN_EVENT_OK(metadata, size)) {

/* Check that run-time and compile-time structures match. */

if (metadata->vers != FANOTIFY_METADATA_VERSION) {
fprintf(stderr,

"Mismatch of fanotify metadata version.\n");
exit(EXIT_FAILURE);

}

/* metadata->fd contains either FAN_NOFD, indicating a
queue overflow, or a file descriptor (a nonnegative
integer). Here, we simply ignore queue overflow. */

if (metadata->fd >= 0) {

Linux man-pages 6.16 2025-09-21 3430

fanotify(7) Miscellaneous Information Manual fanotify(7)

/* Handle open permission event. */

if (metadata->mask & FAN_OPEN_PERM) {
printf("FAN_OPEN_PERM: ");

/* Allow file to be opened. */

response.fd = metadata->fd;
response.response = FAN_ALLOW;
write(fd, &response, sizeof(response));

}

/* Handle closing of writable file event. */

if (metadata->mask & FAN_CLOSE_WRITE)
printf("FAN_CLOSE_WRITE: ");

/* Retrieve and print pathname of the accessed file. */

snprintf(procfd_path, sizeof(procfd_path),
"/proc/self/fd/%d", metadata->fd);

path_len = readlink(procfd_path, path,
sizeof(path) - 1);

if (path_len == -1) {
perror("readlink");
exit(EXIT_FAILURE);

}

path[path_len] = '\0';
printf("File %s\n", path);

/* Close the file descriptor of the event. */

close(metadata->fd);
}

/* Advance to next event. */

metadata = FAN_EVENT_NEXT(metadata, size);
}

}
}

int
main(int argc, char *argv[])
{

char buf;

Linux man-pages 6.16 2025-09-21 3431

fanotify(7) Miscellaneous Information Manual fanotify(7)

int fd, poll_num;
nfds_t nfds;
struct pollfd fds[2];

/* Check mount point is supplied. */

if (argc != 2) {
fprintf(stderr, "Usage: %s MOUNT\n", argv[0]);
exit(EXIT_FAILURE);

}

printf("Press enter key to terminate.\n");

/* Create the file descriptor for accessing the fanotify API. */

fd = fanotify_init(FAN_CLOEXEC | FAN_CLASS_CONTENT | FAN_NONBLOCK,
O_RDONLY | O_LARGEFILE);

if (fd == -1) {
perror("fanotify_init");
exit(EXIT_FAILURE);

}

/* Mark the mount for:
- permission events before opening files
- notification events after closing a write-enabled

file descriptor. */

if (fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_MOUNT,
FAN_OPEN_PERM | FAN_CLOSE_WRITE, AT_FDCWD,
argv[1]) == -1) {

perror("fanotify_mark");
exit(EXIT_FAILURE);

}

/* Prepare for polling. */

nfds = 2;

fds[0].fd = STDIN_FILENO; /* Console input */
fds[0].events = POLLIN;

fds[1].fd = fd; /* Fanotify input */
fds[1].events = POLLIN;

/* This is the loop to wait for incoming events. */

printf("Listening for events.\n");

Linux man-pages 6.16 2025-09-21 3432

fanotify(7) Miscellaneous Information Manual fanotify(7)

while (1) {
poll_num = poll(fds, nfds, -1);
if (poll_num == -1) {

if (errno == EINTR) /* Interrupted by a signal */
continue; /* Restart poll() */

perror("poll"); /* Unexpected error */
exit(EXIT_FAILURE);

}

if (poll_num > 0) {
if (fds[0].revents & POLLIN) {

/* Console input is available: empty stdin and quit. */

while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')
continue;

break;
}

if (fds[1].revents & POLLIN) {

/* Fanotify events are available. */

handle_events(fd);
}

}
}

printf("Listening for events stopped.\n");
exit(EXIT_SUCCESS);

}

Example program: fanotify_fid.c
The second program is an example of fanotify being used with a group that identifies
objects by file handles. The program marks the filesystem object that is passed as a
command-line argument and waits until an event of type FAN_CREATE has occurred.
The event mask indicates which type of filesystem object—either a file or a directory—
was created. Once all events have been read from the buffer and processed accordingly,
the program simply terminates.

The following shell sessions show two different invocations of this program, with differ-
ent actions performed on a watched object.

The first session shows a mark being placed on /home/user. This is followed by the cre-
ation of a regular file, /home/user/testfile.txt. This results in a FAN_CREATE event be-
ing generated and reported against the file’s parent watched directory object and with the
created file name. Program execution ends once all events captured within the buffer

Linux man-pages 6.16 2025-09-21 3433

fanotify(7) Miscellaneous Information Manual fanotify(7)

have been processed.

./fanotify_fid /home/user;
Listening for events.
FAN_CREATE (file created):

Directory /home/user has been modified.
Entry 'testfile.txt' is not a subdirectory.

All events processed successfully. Program exiting.

$ touch /home/user/testfile.txt; # In another terminal

The second session shows a mark being placed on /home/user. This is followed by the
creation of a directory, /home/user/testdir. This specific action results in a FAN_CRE-
ATE event being generated and is reported with the FAN_ONDIR flag set and with the
created directory name.

./fanotify_fid /home/user;
Listening for events.
FAN_CREATE | FAN_ONDIR (subdirectory created):

Directory /home/user has been modified.
Entry 'testdir' is a subdirectory.

All events processed successfully. Program exiting.

$ mkdir -p /home/user/testdir; # In another terminal

Program source: fanotify_fid.c

#define _GNU_SOURCE
#include <errno.h>
#include <fcntl.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/fanotify.h>
#include <unistd.h>

#define BUF_SIZE 256

int
main(int argc, char *argv[])
{

int fd, ret, event_fd, mount_fd;
ssize_t size, path_len;
char path[PATH_MAX];
char procfd_path[PATH_MAX];
char events_buf[BUF_SIZE];
struct file_handle *file_handle;

Linux man-pages 6.16 2025-09-21 3434

fanotify(7) Miscellaneous Information Manual fanotify(7)

struct fanotify_event_metadata *metadata;
struct fanotify_event_info_fid *fid;
const char *file_name;
struct stat sb;

if (argc != 2) {
fprintf(stderr, "Invalid number of command line arguments.\n");
exit(EXIT_FAILURE);

}

mount_fd = open(argv[1], O_DIRECTORY | O_RDONLY);
if (mount_fd == -1) {

perror(argv[1]);
exit(EXIT_FAILURE);

}

/* Create an fanotify file descriptor with FAN_REPORT_DFID_NAME as
a flag so that program can receive fid events with directory
entry name. */

fd = fanotify_init(FAN_CLASS_NOTIF | FAN_REPORT_DFID_NAME, 0);
if (fd == -1) {

perror("fanotify_init");
exit(EXIT_FAILURE);

}

/* Place a mark on the filesystem object supplied in argv[1]. */

ret = fanotify_mark(fd, FAN_MARK_ADD | FAN_MARK_ONLYDIR,
FAN_CREATE | FAN_ONDIR,
AT_FDCWD, argv[1]);

if (ret == -1) {
perror("fanotify_mark");
exit(EXIT_FAILURE);

}

printf("Listening for events.\n");

/* Read events from the event queue into a buffer. */

size = read(fd, events_buf, sizeof(events_buf));
if (size == -1 && errno != EAGAIN) {

perror("read");
exit(EXIT_FAILURE);

}

/* Process all events within the buffer. */

Linux man-pages 6.16 2025-09-21 3435

fanotify(7) Miscellaneous Information Manual fanotify(7)

for (metadata = (struct fanotify_event_metadata *) events_buf;
FAN_EVENT_OK(metadata, size);
metadata = FAN_EVENT_NEXT(metadata, size)) {

fid = (struct fanotify_event_info_fid *) (metadata + 1);
file_handle = (struct file_handle *) fid->handle;

/* Ensure that the event info is of the correct type. */

if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_FID ||
fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID) {
file_name = NULL;

} else if (fid->hdr.info_type == FAN_EVENT_INFO_TYPE_DFID_NAME) {
file_name = file_handle->f_handle +

file_handle->handle_bytes;
} else {

fprintf(stderr, "Received unexpected event info type.\n");
exit(EXIT_FAILURE);

}

if (metadata->mask == FAN_CREATE)
printf("FAN_CREATE (file created):\n");

if (metadata->mask == (FAN_CREATE | FAN_ONDIR))
printf("FAN_CREATE | FAN_ONDIR (subdirectory created):\n");

/* metadata->fd is set to FAN_NOFD when the group identifies
objects by file handles. To obtain a file descriptor for
the file object corresponding to an event you can use the
struct file_handle that's provided within the
fanotify_event_info_fid in conjunction with the
open_by_handle_at(2) system call. A check for ESTALE is
done to accommodate for the situation where the file handle
for the object was deleted prior to this system call. */

event_fd = open_by_handle_at(mount_fd, file_handle, O_RDONLY);
if (event_fd == -1) {

if (errno == ESTALE) {
printf("File handle is no longer valid. "

"File has been deleted\n");
continue;

} else {
perror("open_by_handle_at");
exit(EXIT_FAILURE);

}
}

Linux man-pages 6.16 2025-09-21 3436

fanotify(7) Miscellaneous Information Manual fanotify(7)

snprintf(procfd_path, sizeof(procfd_path), "/proc/self/fd/%d",
event_fd);

/* Retrieve and print the path of the modified dentry. */

path_len = readlink(procfd_path, path, sizeof(path) - 1);
if (path_len == -1) {

perror("readlink");
exit(EXIT_FAILURE);

}

path[path_len] = '\0';
printf("\tDirectory '%s' has been modified.\n", path);

if (file_name) {
ret = fstatat(event_fd, file_name, &sb, 0);
if (ret == -1) {

if (errno != ENOENT) {
perror("fstatat");
exit(EXIT_FAILURE);

}
printf("\tEntry '%s' does not exist.\n", file_name);

} else if ((sb.st_mode & S_IFMT) == S_IFDIR) {
printf("\tEntry '%s' is a subdirectory.\n", file_name);

} else {
printf("\tEntry '%s' is not a subdirectory.\n",

file_name);
}

}

/* Close associated file descriptor for this event. */

close(event_fd);
}

printf("All events processed successfully. Program exiting.\n");
exit(EXIT_SUCCESS);

}

SEE ALSO
fanotify_init(2), fanotify_mark(2), inotify(7)

Linux man-pages 6.16 2025-09-21 3437

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

NAME
feature_test_macros - feature test macros

DESCRIPTION
Feature test macros allow the programmer to control the definitions that are exposed by
system header files when a program is compiled.

NOTE: In order to be effective, a feature test macro must be defined before including
any header files. This can be done either in the compilation command (cc
-DMACRO=value) or by defining the macro within the source code before including
any headers. The requirement that the macro must be defined before including any
header file exists because header files may freely include one another. Thus, for exam-
ple, in the following lines, defining the _GNU_SOURCE macro may have no effect be-
cause the header <abc.h> itself includes <xyz.h> (POSIX explicitly allows this):

#include <abc.h>
#define _GNU_SOURCE
#include <xyz.h>

Some feature test macros are useful for creating portable applications, by preventing
nonstandard definitions from being exposed. Other macros can be used to expose non-
standard definitions that are not exposed by default.

The precise effects of each of the feature test macros described below can be ascertained
by inspecting the <features.h> header file. Note: applications do not need to directly
include <features.h>; indeed, doing so is actively discouraged. See NOTES.

Specification of feature test macro requirements in manual pages
When a function requires that a feature test macro is defined, the manual page SYNOP-
SIS typically includes a note of the following form (this example from the acct(2) man-
ual page):

#include <unistd.h>

int acct(const char * filename);

Feature Test Macro Requirements for glibc (see
feature_test_macros(7)):

acct(): _BSD_SOURCE || (_XOPEN_SOURCE && _XOPEN_SOURCE <
500)

The || means that in order to obtain the declaration of acct(2) from <unistd.h>, either of
the following macro definitions must be made before including any header files:

#define _BSD_SOURCE
#define _XOPEN_SOURCE /* or any value < 500 */

Alternatively, equivalent definitions can be included in the compilation command:

cc -D_BSD_SOURCE
cc -D_XOPEN_SOURCE # Or any value < 500

Note that, as described below, some feature test macros are defined by default, so that
it may not always be necessary to explicitly specify the feature test macro(s) shown in
the SYNOPSIS.

Linux man-pages 6.16 2025-09-21 3438

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

In a few cases, manual pages use a shorthand for expressing the feature test macro re-
quirements (this example from readahead(2)):

#define _GNU_SOURCE
#define _FILE_OFFSET_BITS 64
#include <fcntl.h>

ssize_t readahead(int fd, off_t *offset, size_t count);

This format is employed when the feature test macros ensure that the proper function
declarations are visible, and the macros are not defined by default.

Feature test macros understood by glibc
The paragraphs below explain how feature test macros are handled in glibc 2.x, x > 0.

First, though, a summary of a few details for the impatient:

• The macros that you most likely need to use in modern source code are
_POSIX_C_SOURCE (for definitions from various versions of POSIX.1),
_XOPEN_SOURCE (for definitions from various versions of SUS),
_GNU_SOURCE (for GNU and/or Linux specific stuff), and _DE-
FAULT_SOURCE (to get definitions that would normally be provided by default).

• Certain macros are defined with default values. Thus, although one or more macros
may be indicated as being required in the SYNOPSIS of a man page, it may not be
necessary to define them explicitly. Full details of the defaults are given later in this
man page.

• Defining _XOPEN_SOURCE with a value of 600 or greater produces the same ef-
fects as defining _POSIX_C_SOURCE with a value of 200112L or greater. Where
one sees

_POSIX_C_SOURCE >= 200112L

in the feature test macro requirements in the SYNOPSIS of a man page, it is implicit
that the following has the same effect:

_XOPEN_SOURCE >= 600

• Defining _XOPEN_SOURCE with a value of 700 or greater produces the same ef-
fects as defining _POSIX_C_SOURCE with a value of 200809L or greater. Where
one sees

_POSIX_C_SOURCE >= 200809L

in the feature test macro requirements in the SYNOPSIS of a man page, it is implicit
that the following has the same effect:

_XOPEN_SOURCE >= 700

glibc understands the following feature test macros:

__STRICT_ANSI__
ISO Standard C. This macro is implicitly defined by gcc(1) when invoked with,
for example, the -std=c99 or -ansi flag.

Linux man-pages 6.16 2025-09-21 3439

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_POSIX_C_SOURCE
Defining this macro causes header files to expose definitions as follows:

• The value 1 exposes definitions conforming to POSIX.1-1990 and ISO C
(1990).

• The value 2 or greater additionally exposes definitions for POSIX.2-1992.

• The value 199309L or greater additionally exposes definitions for POSIX.1b
(real-time extensions).

• The value 199506L or greater additionally exposes definitions for POSIX.1c
(threads).

• (Since glibc 2.3.3) The value 200112L or greater additionally exposes defini-
tions corresponding to the POSIX.1-2001 base specification (excluding the
XSI extension). This value also causes C95 (since glibc 2.12) and C99
(since glibc 2.10) features to be exposed (in other words, the equivalent of
defining _ISOC99_SOURCE).

• (Since glibc 2.10) The value 200809L or greater additionally exposes defini-
tions corresponding to the POSIX.1-2008 base specification (excluding the
XSI extension).

_POSIX_SOURCE
Defining this obsolete macro with any value is equivalent to defining
_POSIX_C_SOURCE with the value 1.

Since this macro is obsolete, its usage is generally not documented when dis-
cussing feature test macro requirements in the man pages.

_XOPEN_SOURCE
Defining this macro causes header files to expose definitions as follows:

• Defining with any value exposes definitions conforming to POSIX.1,
POSIX.2, and XPG4.

• The value 500 or greater additionally exposes definitions for SUSv2 (UNIX
98).

• (Since glibc 2.2) The value 600 or greater additionally exposes definitions for
SUSv3 (UNIX 03; i.e., the POSIX.1-2001 base specification plus the XSI ex-
tension) and C99 definitions.

• (Since glibc 2.10) The value 700 or greater additionally exposes definitions
for SUSv4 (i.e., the POSIX.1-2008 base specification plus the XSI exten-
sion).

If __STRICT_ANSI__ is not defined, or _XOPEN_SOURCE is defined with a
value greater than or equal to 500 and neither _POSIX_SOURCE nor
_POSIX_C_SOURCE is explicitly defined, then the following macros are im-
plicitly defined:

• _POSIX_SOURCE is defined with the value 1.

Linux man-pages 6.16 2025-09-21 3440

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

• _POSIX_C_SOURCE is defined, according to the value of
_XOPEN_SOURCE:

_XOPEN_SOURCE < 500
_POSIX_C_SOURCE is defined with the value 2.

500 <= _XOPEN_SOURCE < 600
_POSIX_C_SOURCE is defined with the value 199506L.

600 <= _XOPEN_SOURCE < 700
_POSIX_C_SOURCE is defined with the value 200112L.

700 <= _XOPEN_SOURCE (since glibc 2.10)
_POSIX_C_SOURCE is defined with the value 200809L.

In addition, defining _XOPEN_SOURCE with a value of 500 or greater pro-
duces the same effects as defining _XOPEN_SOURCE_EXTENDED.

_XOPEN_SOURCE_EXTENDED
If this macro is defined, and _XOPEN_SOURCE is defined, then expose defini-
tions corresponding to the XPG4v2 (SUSv1) UNIX extensions (UNIX 95).
Defining _XOPEN_SOURCE with a value of 500 or more also produces the
same effect as defining _XOPEN_SOURCE_EXTENDED. Use of
_XOPEN_SOURCE_EXTENDED in new source code should be avoided.

Since defining _XOPEN_SOURCE with a value of 500 or more has the same
effect as defining _XOPEN_SOURCE_EXTENDED, the latter (obsolete) fea-
ture test macro is generally not described in the SYNOPSIS in man pages.

_ISOC99_SOURCE (since glibc 2.1.3)
Exposes declarations consistent with the ISO C99 standard.

Earlier glibc 2.1.x versions recognized an equivalent macro named
_ISOC9X_SOURCE (because the C99 standard had not then been finalized).
Although the use of this macro is obsolete, glibc continues to recognize it for
backward compatibility.

Defining _ISOC99_SOURCE also exposes ISO C (1990) Amendment 1
("C95") definitions. (The primary change in C95 was support for international
character sets.)

Invoking the C compiler with the option -std=c99 produces the same effects as
defining this macro.

_ISOC11_SOURCE (since glibc 2.16)
Exposes declarations consistent with the ISO C11 standard. Defining this macro
also enables C99 and C95 features (like _ISOC99_SOURCE).

Invoking the C compiler with the option -std=c11 produces the same effects as
defining this macro.

_LARGEFILE64_SOURCE
Expose definitions for the alternative API specified by the LFS (Large File Sum-
mit) as a "transitional extension" to the Single UNIX Specification. (See 〈http:/
/opengroup.org/platform/lfs.html〉.) The alternative API consists of a set of new

Linux man-pages 6.16 2025-09-21 3441

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

objects (i.e., functions and types) whose names are suffixed with "64" (e.g.,
off64_t versus off_t, lseek64() versus lseek(), etc.). New programs should not
employ this macro; instead _FILE_OFFSET_BITS=64 should be employed.

_LARGEFILE_SOURCE
This macro was historically used to expose certain functions (specifically
fseeko(3) and ftello(3)) that address limitations of earlier APIs (fseek(3) and
ftell(3)) that use long for file offsets. This macro is implicitly defined if
_XOPEN_SOURCE is defined with a value greater than or equal to 500. New
programs should not employ this macro; defining _XOPEN_SOURCE as just
described or defining _FILE_OFFSET_BITS with the value 64 is the preferred
mechanism to achieve the same result.

_FILE_OFFSET_BITS
Defining this macro with the value 64 automatically converts references to 32-bit
functions and data types related to file I/O and filesystem operations into refer-
ences to their 64-bit counterparts. This is useful for performing I/O on large files
(> 2 Gigabytes) on 32-bit systems. It is also useful when calling functions like
copy_file_range(2) that were added more recently and that come only in 64-bit
flavors. (Defining this macro permits correctly written programs to use large
files with only a recompilation being required.)

64-bit systems naturally permit file sizes greater than 2 Gigabytes, and on those
systems this macro has no effect.

_TIME_BITS
Defining this macro with the value 64 changes the width of time_t(3type) to
64-bit which allows handling of timestamps beyond 2038. It is closely related to
_FILE_OFFSET_BITS and depending on implementation, may require it set.
This macro is available as of glibc 2.34.

_BSD_SOURCE (deprecated since glibc 2.20)
Defining this macro with any value causes header files to expose BSD-derived
definitions.

In glibc versions up to and including 2.18, defining this macro also causes BSD
definitions to be preferred in some situations where standards conflict, unless one
or more of _SVID_SOURCE, _POSIX_SOURCE, _POSIX_C_SOURCE,
_XOPEN_SOURCE, _XOPEN_SOURCE_EXTENDED, or
_GNU_SOURCE is defined, in which case BSD definitions are disfavored.
Since glibc 2.19, _BSD_SOURCE no longer causes BSD definitions to be pre-
ferred in case of conflicts.

Since glibc 2.20, this macro is deprecated. It now has the same effect as defining
_DEFAULT_SOURCE, but generates a compile-time warning (unless _DE-
FAULT_SOURCE is also defined). Use _DEFAULT_SOURCE instead. To
allow code that requires _BSD_SOURCE in glibc 2.19 and earlier and _DE-
FAULT_SOURCE in glibc 2.20 and later to compile without warnings, define
both _BSD_SOURCE and _DEFAULT_SOURCE.

Linux man-pages 6.16 2025-09-21 3442

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_SVID_SOURCE (deprecated since glibc 2.20)
Defining this macro with any value causes header files to expose System V-de-
rived definitions. (SVID == System V Interface Definition; see standards(7).)

Since glibc 2.20, this macro is deprecated in the same fashion as
_BSD_SOURCE.

_DEFAULT_SOURCE (since glibc 2.19)
This macro can be defined to ensure that the "default" definitions are provided
even when the defaults would otherwise be disabled, as happens when individual
macros are explicitly defined, or the compiler is invoked in one of its "standard"
modes (e.g., cc -std=c99). Defining _DEFAULT_SOURCE without defining
other individual macros or invoking the compiler in one of its "standard" modes
has no effect.

The "default" definitions comprise those required by POSIX.1-2008 and ISO
C99, as well as various definitions originally derived from BSD and System V.
On glibc 2.19 and earlier, these defaults were approximately equivalent to explic-
itly defining the following:

cc -D_BSD_SOURCE -D_SVID_SOURCE -D_POSIX_C_SOURCE=200809

_ATFILE_SOURCE (since glibc 2.4)
Defining this macro with any value causes header files to expose declarations of
a range of functions with the suffix "at"; see openat(2). Since glibc 2.10, this
macro is also implicitly defined if _POSIX_C_SOURCE is defined with a value
greater than or equal to 200809L.

_GNU_SOURCE
Defining this macro (with any value) implicitly defines _ATFILE_SOURCE,
_LARGEFILE64_SOURCE, _ISOC99_SOURCE,
_XOPEN_SOURCE_EXTENDED, _POSIX_SOURCE,
_POSIX_C_SOURCE with the value 200809L (200112L before glibc 2.10;
199506L before glibc 2.5; 199309L before glibc 2.1) and _XOPEN_SOURCE
with the value 700 (600 before glibc 2.10; 500 before glibc 2.2). In addition,
various GNU-specific extensions are also exposed.

Since glibc 2.19, defining _GNU_SOURCE also has the effect of implicitly
defining _DEFAULT_SOURCE. Before glibc 2.20, defining _GNU_SOURCE
also had the effect of implicitly defining _BSD_SOURCE and
_SVID_SOURCE.

_REENTRANT
Historically, on various C libraries it was necessary to define this macro in all
multithreaded code. (Some C libraries may still require this.) In glibc, this
macro also exposed definitions of certain reentrant functions.

However, glibc has been thread-safe by default for many years; since glibc 2.3,
the only effect of defining _REENTRANT has been to enable one or two of the
same declarations that are also enabled by defining _POSIX_C_SOURCE with
a value of 199606L or greater.

Linux man-pages 6.16 2025-09-21 3443

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

_REENTRANT is now obsolete. In glibc 2.25 and later, defining _REEN-
TRANT is equivalent to defining _POSIX_C_SOURCE with the value
199606L. If a higher POSIX conformance level is selected by any other means
(such as _POSIX_C_SOURCE itself, _XOPEN_SOURCE, _DE-
FAULT_SOURCE, or _GNU_SOURCE), then defining _REENTRANT has
no effect.

This macro is automatically defined if one compiles with cc -pthread .

_THREAD_SAFE
Synonym for the (deprecated) _REENTRANT, provided for compatibility with
some other implementations.

_FORTIFY_SOURCE (since glibc 2.3.4)
Defining this macro causes some lightweight checks to be performed to detect
some buffer overflow errors when employing various string and memory manip-
ulation functions (for example, memcpy(3), memset(3), stpcpy(3), strcpy(3),
strncpy(3), strcat(3), strncat(3), sprintf(3), snprintf(3), vsprintf(3), vsnprintf(3),
gets(3), and wide character variants thereof). For some functions, argument con-
sistency is checked; for example, a check is made that open(2) has been supplied
with a mode argument when the specified flags include O_CREAT. Not all
problems are detected, just some common cases.

If _FORTIFY_SOURCE is set to 1, with compiler optimization level 1
(gcc -O1) and above, checks that shouldn’t change the behavior of conforming
programs are performed. With _FORTIFY_SOURCE set to 2, some more
checking is added, but some conforming programs might fail.

Some of the checks can be performed at compile time (via macros logic imple-
mented in header files), and result in compiler warnings; other checks take place
at run time, and result in a run-time error if the check fails.

With _FORTIFY_SOURCE set to 3, additional checking is added to intercept
some function calls used with an argument of variable size where the compiler
can deduce an upper bound for its value. For example, a program where mal-
loc(3)’s size argument is variable can now be fortified.

Use of this macro requires compiler support, available since gcc 4.0 and clang
2.6. Use of _FORTIFY_SOURCE set to 3 requires gcc 12.0 or later, or clang
9.0 or later, in conjunction with glibc 2.33 or later.

Default definitions, implicit definitions, and combining definitions
If no feature test macros are explicitly defined, then the following feature test macros are
defined by default: _BSD_SOURCE (in glibc 2.19 and earlier), _SVID_SOURCE (in
glibc 2.19 and earlier), _DEFAULT_SOURCE (since glibc 2.19), _POSIX_SOURCE,
and _POSIX_C_SOURCE=200809L (200112L before glibc 2.10; 199506L before
glibc 2.4; 199309L before glibc 2.1).

If any of __STRICT_ANSI__, _ISOC99_SOURCE, _ISOC11_SOURCE (since glibc
2.18), _POSIX_SOURCE, _POSIX_C_SOURCE, _XOPEN_SOURCE,
_XOPEN_SOURCE_EXTENDED (in glibc 2.11 and earlier), _BSD_SOURCE (in
glibc 2.19 and earlier), or _SVID_SOURCE (in glibc 2.19 and earlier) is explicitly

Linux man-pages 6.16 2025-09-21 3444

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

defined, then _BSD_SOURCE, _SVID_SOURCE, and _DEFAULT_SOURCE are not
defined by default.

If _POSIX_SOURCE and _POSIX_C_SOURCE are not explicitly defined, and either
__STRICT_ANSI__ is not defined or _XOPEN_SOURCE is defined with a value of
500 or more, then

• _POSIX_SOURCE is defined with the value 1; and

• _POSIX_C_SOURCE is defined with one of the following values:

• 2, if _XOPEN_SOURCE is defined with a value less than 500;

• 199506L, if _XOPEN_SOURCE is defined with a value greater than or equal to
500 and less than 600; or

• (since glibc 2.4) 200112L, if _XOPEN_SOURCE is defined with a value
greater than or equal to 600 and less than 700.

• (Since glibc 2.10) 200809L, if _XOPEN_SOURCE is defined with a value
greater than or equal to 700.

• Older versions of glibc do not know about the values 200112L and 200809L for
_POSIX_C_SOURCE, and the setting of this macro will depend on the glibc
version.

• If _XOPEN_SOURCE is undefined, then the setting of _POSIX_C_SOURCE
depends on the glibc version: 199506L, before glibc 2.4; 200112L, since glibc
2.4 to glibc 2.9; and 200809L, since glibc 2.10.

Multiple macros can be defined; the results are additive.

STANDARDS
POSIX.1 specifies _POSIX_C_SOURCE, _POSIX_SOURCE, and
_XOPEN_SOURCE.

_FILE_OFFSET_BITS is not specified by any standard, but is employed on some
other implementations.

_BSD_SOURCE, _SVID_SOURCE, _DEFAULT_SOURCE, _ATFILE_SOURCE,
_GNU_SOURCE, _FORTIFY_SOURCE, _REENTRANT, and _THREAD_SAFE
are specific to glibc.

HISTORY
_XOPEN_SOURCE_EXTENDED was specified by XPG4v2 (aka SUSv1), but is not
present in SUSv2 and later.

NOTES
<features.h> is a Linux/glibc-specific header file. Other systems have an analogous file,
but typically with a different name. This header file is automatically included by other
header files as required: it is not necessary to explicitly include it in order to employ fea-
ture test macros.

According to which of the above feature test macros are defined, <features.h> internally
defines various other macros that are checked by other glibc header files. These macros
have names prefixed by two underscores (e.g., __USE_MISC). Programs should never
define these macros directly: instead, the appropriate feature test macro(s) from the list

Linux man-pages 6.16 2025-09-21 3445

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

above should be employed.

EXAMPLES
The program below can be used to explore how the various feature test macros are set
depending on the glibc version and what feature test macros are explicitly set. The fol-
lowing shell session, on a system with glibc 2.10, shows some examples of what we
would see:

$ cc ftm.c
$./a.out
_POSIX_SOURCE defined
_POSIX_C_SOURCE defined: 200809L
_BSD_SOURCE defined
_SVID_SOURCE defined
_ATFILE_SOURCE defined
$ cc -D_XOPEN_SOURCE=500 ftm.c
$./a.out
_POSIX_SOURCE defined
_POSIX_C_SOURCE defined: 199506L
_XOPEN_SOURCE defined: 500
$ cc -D_GNU_SOURCE ftm.c
$./a.out
_POSIX_SOURCE defined
_POSIX_C_SOURCE defined: 200809L
_ISOC99_SOURCE defined
_XOPEN_SOURCE defined: 700
_XOPEN_SOURCE_EXTENDED defined
_LARGEFILE64_SOURCE defined
_BSD_SOURCE defined
_SVID_SOURCE defined
_ATFILE_SOURCE defined
_GNU_SOURCE defined

Program source

/* ftm.c */

#include <stdint.h>
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int
main(int argc, char *argv[])
{
#ifdef _POSIX_SOURCE

printf("_POSIX_SOURCE defined\n");
#endif

Linux man-pages 6.16 2025-09-21 3446

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

#ifdef _POSIX_C_SOURCE
printf("_POSIX_C_SOURCE defined: %jdL\n",

(intmax_t) _POSIX_C_SOURCE);
#endif

#ifdef _ISOC99_SOURCE
printf("_ISOC99_SOURCE defined\n");

#endif

#ifdef _ISOC11_SOURCE
printf("_ISOC11_SOURCE defined\n");

#endif

#ifdef _XOPEN_SOURCE
printf("_XOPEN_SOURCE defined: %d\n", _XOPEN_SOURCE);

#endif

#ifdef _XOPEN_SOURCE_EXTENDED
printf("_XOPEN_SOURCE_EXTENDED defined\n");

#endif

#ifdef _LARGEFILE64_SOURCE
printf("_LARGEFILE64_SOURCE defined\n");

#endif

#ifdef _FILE_OFFSET_BITS
printf("_FILE_OFFSET_BITS defined: %d\n", _FILE_OFFSET_BITS);

#endif

#ifdef _TIME_BITS
printf("_TIME_BITS defined: %d\n", _TIME_BITS);

#endif

#ifdef _BSD_SOURCE
printf("_BSD_SOURCE defined\n");

#endif

#ifdef _SVID_SOURCE
printf("_SVID_SOURCE defined\n");

#endif

#ifdef _DEFAULT_SOURCE
printf("_DEFAULT_SOURCE defined\n");

#endif

#ifdef _ATFILE_SOURCE
printf("_ATFILE_SOURCE defined\n");

Linux man-pages 6.16 2025-09-21 3447

feature_test_macros(7) Miscellaneous Information Manual feature_test_macros(7)

#endif

#ifdef _GNU_SOURCE
printf("_GNU_SOURCE defined\n");

#endif

#ifdef _REENTRANT
printf("_REENTRANT defined\n");

#endif

#ifdef _THREAD_SAFE
printf("_THREAD_SAFE defined\n");

#endif

#ifdef _FORTIFY_SOURCE
printf("_FORTIFY_SOURCE defined\n");

#endif

exit(EXIT_SUCCESS);
}

SEE ALSO
libc(7), standards(7), system_data_types(7)

The section "Feature Test Macros" under info libc.

/usr/include/features.h

Linux man-pages 6.16 2025-09-21 3448

fifo(7) Miscellaneous Information Manual fifo(7)

NAME
fifo - first-in first-out special file, named pipe

DESCRIPTION
A FIFO special file (a named pipe) is similar to a pipe, except that it is accessed as part
of the filesystem. It can be opened by multiple processes for reading or writing. When
processes are exchanging data via the FIFO, the kernel passes all data internally without
writing it to the filesystem. Thus, the FIFO special file has no contents on the filesys-
tem; the filesystem entry merely serves as a reference point so that processes can access
the pipe using a name in the filesystem.

The kernel maintains exactly one pipe object for each FIFO special file that is opened by
at least one process. The FIFO must be opened on both ends (reading and writing) be-
fore data can be passed. Normally, opening the FIFO blocks until the other end is
opened also.

A process can open a FIFO in nonblocking mode. In this case, opening for read-only
succeeds even if no one has opened on the write side yet and opening for write-only fails
with ENXIO (no such device or address) unless the other end has already been opened.

Under Linux, opening a FIFO for read and write will succeed both in blocking and non-
blocking mode. POSIX leaves this behavior undefined. This can be used to open a
FIFO for writing while there are no readers available. A process that uses both ends of
the connection in order to communicate with itself should be very careful to avoid dead-
locks.

NOTES
For details of the semantics of I/O on FIFOs, see pipe(7).

When a process tries to write to a FIFO that is not opened for read on the other side, the
process is sent a SIGPIPE signal.

FIFO special files can be created by mkfifo(3), and are indicated by ls -l with the file
type 'p'.

SEE ALSO
mkfifo(1), open(2), pipe(2), sigaction(2), signal(2), socketpair(2), mkfifo(3), pipe(7)

Linux man-pages 6.16 2025-09-21 3449

futex(7) Miscellaneous Information Manual futex(7)

NAME
futex - fast user-space locking

SYNOPSIS
#include <linux/futex.h>

DESCRIPTION
The Linux kernel provides futexes ("Fast user-space mutexes") as a building block for
fast user-space locking and semaphores. Futexes are very basic and lend themselves
well for building higher-level locking abstractions such as mutexes, condition variables,
read-write locks, barriers, and semaphores.

Most programmers will in fact not be using futexes directly but will instead rely on sys-
tem libraries built on them, such as the Native POSIX Thread Library (NPTL) (see
pthreads(7)).

A futex is identified by a piece of memory which can be shared between processes or
threads. In these different processes, the futex need not have identical addresses. In its
bare form, a futex has semaphore semantics; it is a counter that can be incremented and
decremented atomically; processes can wait for the value to become positive.

Futex operation occurs entirely in user space for the noncontended case. The kernel is
involved only to arbitrate the contended case. As any sane design will strive for noncon-
tention, futexes are also optimized for this situation.

In its bare form, a futex is an aligned integer which is touched only by atomic assembler
instructions. This integer is four bytes long on all platforms. Processes can share this
integer using mmap(2), via shared memory segments, or because they share memory
space, in which case the application is commonly called multithreaded.

Semantics
Any futex operation starts in user space, but it may be necessary to communicate with
the kernel using the futex(2) system call.

To "up" a futex, execute the proper assembler instructions that will cause the host CPU
to atomically increment the integer. Afterward, check if it has in fact changed from 0 to
1, in which case there were no waiters and the operation is done. This is the noncon-
tended case which is fast and should be common.

In the contended case, the atomic increment changed the counter from -1 (or some
other negative number). If this is detected, there are waiters. User space should now set
the counter to 1 and instruct the kernel to wake up any waiters using the FU-
TEX_WAKE operation.

Waiting on a futex, to "down" it, is the reverse operation. Atomically decrement the
counter and check if it changed to 0, in which case the operation is done and the futex
was uncontended. In all other circumstances, the process should set the counter to -1
and request that the kernel wait for another process to up the futex. This is done using
the FUTEX_WAIT operation.

The futex(2) system call can optionally be passed a timeout specifying how long the ker-
nel should wait for the futex to be upped. In this case, semantics are more complex and
the programmer is referred to futex(2) for more details. The same holds for asynchro-
nous futex waiting.

Linux man-pages 6.16 2025-09-21 3450

futex(7) Miscellaneous Information Manual futex(7)

VERSIONS
Initial futex support was merged in Linux 2.5.7 but with different semantics from those
described above. Current semantics are available from Linux 2.5.40 onward.

NOTES
To reiterate, bare futexes are not intended as an easy-to-use abstraction for end users.
Implementors are expected to be assembly-literate and to have read the sources of the
futex user-space library referenced below.

This manual page illustrates the most common use of the futex(2) primitives; it is by no
means the only one.

SEE ALSO
clone(2), futex(2), get_robust_list(2), set_robust_list(2), set_tid_address(2), pthreads(7)

Fuss, Futexes and Furwocks: Fast Userlevel Locking in Linux (proceedings of the Ot-
tawa Linux Symposium 2002), futex example library, futex-*.tar.bz2
〈https://mirrors.kernel.org/pub/linux/kernel/people/rusty/〉.

Linux man-pages 6.16 2025-09-21 3451

glob(7) Miscellaneous Information Manual glob(7)

NAME
glob - globbing pathnames

DESCRIPTION
Long ago, in UNIX V6, there was a program /etc/glob that would expand wildcard pat-
terns. Soon afterward this became a shell built-in.

These days there is also a library routine glob(3) that will perform this function for a
user program.

The rules are as follows (POSIX.2, 3.13).

Wildcard matching
A string is a wildcard pattern if it contains one of the characters '?', '*', or '['. Globbing
is the operation that expands a wildcard pattern into the list of pathnames matching the
pattern. Matching is defined by:

A '?' (not between brackets) matches any single character.

A '*' (not between brackets) matches any string, including the empty string.

Character classes

An expression "[...]" where the first character after the leading '[' is not an '!' matches a
single character, namely any of the characters enclosed by the brackets. The string en-
closed by the brackets cannot be empty; therefore ']' can be allowed between the brack-
ets, provided that it is the first character. (Thus, "[][!]" matches the three characters '[',
']', and '!'.)

Ranges

There is one special convention: two characters separated by '-' denote a range. (Thus,
"[A-Fa-f0-9]" is equivalent to "[ABCDEFabcdef0123456789]".) One may include '-'
in its literal meaning by making it the first or last character between the brackets. (Thus,
"[]-]" matches just the two characters ']' and '-', and "[--0]" matches the three charac-
ters '-', '.', and '0', since '/' cannot be matched.)

Complementation

An expression "[!...]" matches a single character, namely any character that is not
matched by the expression obtained by removing the first '!' from it. (Thus, "[!]a-]"
matches any single character except ']', 'a', and '-'.)

One can remove the special meaning of '?', '*', and '[' by preceding them by a backslash,
or, in case this is part of a shell command line, enclosing them in quotes. Between
brackets these characters stand for themselves. Thus, "[[?*\]" matches the four charac-
ters '[', '?', '*', and '\'.

Pathnames
Globbing is applied on each of the components of a pathname separately. A '/' in a path-
name cannot be matched by a '?' or '*' wildcard, or by a range like "[.-0]". A range
containing an explicit '/' character is syntactically incorrect. (POSIX requires that syn-
tactically incorrect patterns are left unchanged.)

If a filename starts with a '.', this character must be matched explicitly. (Thus, rm * will
not remove .profile, and tar c * will not archive all your files; tar c . is better.)

Linux man-pages 6.16 2025-05-17 3452

glob(7) Miscellaneous Information Manual glob(7)

Empty lists
The nice and simple rule given above: "expand a wildcard pattern into the list of match-
ing pathnames" was the original UNIX definition. It allowed one to have patterns that
expand into an empty list, as in

xv -wait 0 *.gif *.jpg

where perhaps no *.gif files are present (and this is not an error). However, POSIX re-
quires that a wildcard pattern is left unchanged when it is syntactically incorrect, or the
list of matching pathnames is empty. With bash one can force the classical behavior us-
ing this command:

shopt -s nullglob

(Similar problems occur elsewhere. For example, where old scripts have

rm `find . -name "*~"`

new scripts require

rm -f nosuchfile `find . -name "*~"`

to avoid error messages from rm called with an empty argument list.)

NOTES
Regular expressions

Note that wildcard patterns are not regular expressions, although they are a bit similar.
First of all, they match filenames, rather than text, and secondly, the conventions are not
the same: for example, in a regular expression '*' means zero or more copies of the pre-
ceding thing.

Now that regular expressions have bracket expressions where the negation is indicated
by a '^', POSIX has declared the effect of a wildcard pattern "[^...]" to be undefined.

Character classes and internationalization
Of course ranges were originally meant to be ASCII ranges, so that "[-%]" stands for
"[!"#$%]" and "[a-z]" stands for "any lowercase letter". Some UNIX implementa-
tions generalized this so that a range X-Y stands for the set of characters with code be-
tween the codes for X and for Y. However, this requires the user to know the character
coding in use on the local system, and moreover, is not convenient if the collating se-
quence for the local alphabet differs from the ordering of the character codes. There-
fore, POSIX extended the bracket notation greatly, both for wildcard patterns and for
regular expressions. In the above we saw three types of items that can occur in a bracket
expression: namely (i) the negation, (ii) explicit single characters, and (iii) ranges.
POSIX specifies ranges in an internationally more useful way and adds three more
types:

(iii) Ranges X-Y comprise all characters that fall between X and Y (inclusive) in the
current collating sequence as defined by the LC_COLLATE category in the current lo-
cale.

(iv) Named character classes, like

[:alnum:] [:alpha:] [:blank:] [:cntrl:]
[:digit:] [:graph:] [:lower:] [:print:]

Linux man-pages 6.16 2025-05-17 3453

glob(7) Miscellaneous Information Manual glob(7)

[:punct:] [:space:] [:upper:] [:xdigit:]

so that one can say "[[:lower:]]" instead of "[a-z]", and have things work in Denmark,
too, where there are three letters past 'z' in the alphabet. These character classes are de-
fined by the LC_CTYPE category in the current locale.

(v) Collating symbols, like "[.ch.]" or "[.a-acute.]", where the string between "[." and
".]" is a collating element defined for the current locale. Note that this may be a multi-
character element.

(vi) Equivalence class expressions, like "[=a=]", where the string between "[=" and
"=]" is any collating element from its equivalence class, as defined for the current lo-
cale. For example, "[[=a=]]" might be equivalent to "[aáàäâ]", that is, to "[a[.a-
acute.][.a-grave.][.a-umlaut.][.a-circumflex.]]".

SEE ALSO
sh(1), fnmatch(3), glob(3), locale(7), regex(7)

Linux man-pages 6.16 2025-05-17 3454

hier(7) Miscellaneous Information Manual hier(7)

NAME
hier - description of the filesystem hierarchy

DESCRIPTION
A typical Linux system has, among others, the following directories:

/ This is the root directory. This is where the whole tree starts.

/bin This directory contains executable programs which are needed in single user
mode and to bring the system up or repair it.

/boot
Contains static files for the boot loader. This directory holds only the files which
are needed during the boot process. The map installer and configuration files
should go to /sbin and /etc. The operating system kernel (initrd for example)
must be located in either / or /boot.

/dev Special or device files, which refer to physical devices. See mknod(1)

/etc Contains configuration files which are local to the machine. Some larger soft-
ware packages, like X11, can have their own subdirectories below /etc. Site-
wide configuration files may be placed here or in /usr/etc. Nevertheless, pro-
grams should always look for these files in /etc and you may have links for these
files to /usr/etc.

/etc/opt
Host-specific configuration files for add-on applications installed in /opt.

/etc/sgml
This directory contains the configuration files for SGML (optional).

/etc/skel
When a new user account is created, files from this directory are usually copied
into the user’s home directory.

/etc/X11
Configuration files for the X11 window system (optional).

/etc/xml
This directory contains the configuration files for XML (optional).

/home
On machines with home directories for users, these are usually beneath this di-
rectory, directly or not. The structure of this directory depends on local adminis-
tration decisions (optional).

/lib This directory should hold those shared libraries that are necessary to boot the
system and to run the commands in the root filesystem.

/lib<qual>
These directories are variants of /lib on system which support more than one bi-
nary format requiring separate libraries (optional).

/lib/modules
Loadable kernel modules (optional).

Linux man-pages 6.16 2025-09-21 3455

hier(7) Miscellaneous Information Manual hier(7)

/lost+found
This directory contains items lost in the filesystem. These items are usually
chunks of files mangled as a consequence of a faulty disk or a system crash.

/media
This directory contains mount points for removable media, such as CD and DVD
disks or USB sticks. On systems where more than one device exists for mount-
ing a certain type of media, mount directories can be created by appending a
digit to the name of those available above starting with ’0’, but the unqualified
name must also exist.

/media/floppy[1-9]
Floppy drive (optional).

/media/cdrom[1-9]
CD-ROM drive (optional).

/media/cdrecorder[1-9]
CD writer (optional).

/media/zip[1-9]
Zip drive (optional).

/media/usb[1-9]
USB drive (optional).

/mnt This directory is a mount point for a temporarily mounted filesystem. In some
distributions, /mnt contains subdirectories intended to be used as mount points
for several temporary filesystems.

/opt This directory should contain add-on packages that contain static files.

/proc
This is a mount point for the proc filesystem, which provides information about
running processes and the kernel. This pseudo-filesystem is described in more
detail in proc(5).

/root This directory is usually the home directory for the root user (optional).

/run This directory contains information which describes the system since it was
booted. Once this purpose was served by /var/run and programs may continue
to use it.

/sbin Like /bin, this directory holds commands needed to boot the system, but which
are usually not executed by normal users.

/srv This directory contains site-specific data that is served by this system.

/sys This is a mount point for the sysfs filesystem, which provides information about
the kernel like /proc, but better structured, following the formalism of kobject in-
frastructure.

/tmp This directory contains temporary files which may be deleted with no notice,
such as by a regular job or at system boot up.

Linux man-pages 6.16 2025-09-21 3456

hier(7) Miscellaneous Information Manual hier(7)

/usr This directory is usually mounted from a separate partition. It should hold only
shareable, read-only data, so that it can be mounted by various machines running
Linux.

/usr/X11R6
The X-Window system, version 11 release 6 (present in FHS 2.3, removed in
FHS 3.0).

/usr/X11R6/bin
Binaries which belong to the X-Window system; often, there is a symbolic link
from the more traditional /usr/bin/X11 to here.

/usr/X11R6/lib
Data files associated with the X-Window system.

/usr/X11R6/lib/X11
These contain miscellaneous files needed to run X. Often, there is a symbolic
link from /usr/lib/X11 to this directory.

/usr/X11R6/include/X11
Contains header files needed for compiling programs using the X11 window sys-
tem. Often, there is a symbolic link from /usr/include/X11 to this directory.

/usr/bin
This is the primary directory for executable programs. Most programs executed
by normal users which are not needed for booting or for repairing the system and
which are not installed locally should be placed in this directory.

/usr/bin/mh
Commands for the MH mail handling system (optional).

/usr/bin/X11
This is the traditional place to look for X11 executables; on Linux, it usually is a
symbolic link to /usr/X11R6/bin.

/usr/dict
Replaced by /usr/share/dict.

/usr/doc
Replaced by /usr/share/doc.

/usr/etc
Site-wide configuration files to be shared between several machines may be
stored in this directory. However, commands should always reference those files
using the /etc directory. Links from files in /etc should point to the appropriate
files in /usr/etc.

/usr/games
Binaries for games and educational programs (optional).

/usr/include
Include files for the C compiler.

Linux man-pages 6.16 2025-09-21 3457

hier(7) Miscellaneous Information Manual hier(7)

/usr/include/bsd
BSD compatibility include files (optional).

/usr/include/X11
Include files for the C compiler and the X-Window system. This is usually a
symbolic link to /usr/X11R6/include/X11.

/usr/include/asm
Include files which declare some assembler functions. This used to be a sym-
bolic link to /usr/src/linux/include/asm.

/usr/include/linux
This contains information which may change from system release to system re-
lease and used to be a symbolic link to /usr/src/linux/include/linux to get at oper-
ating-system-specific information.

(Note that one should have include files there that work correctly with the cur-
rent libc and in user space. However, Linux kernel source is not designed to be
used with user programs and does not know anything about the libc you are us-
ing. It is very likely that things will break if you let /usr/include/asm and
/usr/include/linux point at a random kernel tree. Debian systems don’t do this
and use headers from a known good kernel version, provided in the libc*-dev
package.)

/usr/include/g++
Include files to use with the GNU C++ compiler.

/usr/lib
Object libraries, including dynamic libraries, plus some executables which usu-
ally are not invoked directly. More complicated programs may have whole sub-
directories there.

/usr/libexec
Directory contains binaries for internal use only and they are not meant to be ex-
ecuted directly by users shell or scripts.

/usr/lib<qual>
These directories are variants of /usr/lib on system which support more than one
binary format requiring separate libraries, except that the symbolic link
/usr/libqual /X11 is not required (optional).

/usr/lib/X11
The usual place for data files associated with X programs, and configuration files
for the X system itself. On Linux, it usually is a symbolic link to
/usr/X11R6/lib/X11.

/usr/lib/gcc-lib
contains executables and include files for the GNU C compiler, gcc(1)

/usr/lib/groff
Files for the GNU groff document formatting system.

Linux man-pages 6.16 2025-09-21 3458

hier(7) Miscellaneous Information Manual hier(7)

/usr/lib/uucp
Files for uucp(1)

/usr/local
This is where programs which are local to the site typically go.

/usr/local/bin
Binaries for programs local to the site.

/usr/local/doc
Local documentation.

/usr/local/etc
Configuration files associated with locally installed programs.

/usr/local/games
Binaries for locally installed games.

/usr/local/lib
Files associated with locally installed programs.

/usr/local/lib<qual>
These directories are variants of /usr/local/lib on system which support more
than one binary format requiring separate libraries (optional).

/usr/local/include
Header files for the local C compiler.

/usr/local/info
Info pages associated with locally installed programs.

/usr/local/man
Man pages associated with locally installed programs.

/usr/local/sbin
Locally installed programs for system administration.

/usr/local/share
Local application data that can be shared among different architectures of the
same OS.

/usr/local/src
Source code for locally installed software.

/usr/man
Replaced by /usr/share/man.

/usr/sbin
This directory contains program binaries for system administration which are not
essential for the boot process, for mounting /usr, or for system repair.

/usr/share
This directory contains subdirectories with specific application data, that can be
shared among different architectures of the same OS. Often one finds stuff here
that used to live in /usr/doc or /usr/lib or /usr/man.

Linux man-pages 6.16 2025-09-21 3459

hier(7) Miscellaneous Information Manual hier(7)

/usr/share/color
Contains color management information, like International Color Consortium
(ICC) Color profiles (optional).

/usr/share/dict
Contains the word lists used by spell checkers (optional).

/usr/share/dict/words
List of English words (optional).

/usr/share/doc
Documentation about installed programs (optional).

/usr/share/games
Static data files for games in /usr/games (optional).

/usr/share/info
Info pages go here (optional).

/usr/share/locale
Locale information goes here (optional).

/usr/share/man
Manual pages go here in subdirectories according to the man page sections.

/usr/share/man/ locale /man[1-9]
These directories contain manual pages for the specific locale in source code
form. Systems which use a unique language and code set for all manual pages
may omit the <locale> substring.

/usr/share/misc
Miscellaneous data that can be shared among different architectures of the same
OS.

/usr/share/nls
The message catalogs for native language support go here (optional).

/usr/share/ppd
Postscript Printer Definition (PPD) files (optional).

/usr/share/sgml
Files for SGML (optional).

/usr/share/sgml/docbook
DocBook DTD (optional).

/usr/share/sgml/tei
TEI DTD (optional).

/usr/share/sgml/html
HTML DTD (optional).

/usr/share/sgml/mathml
MathML DTD (optional).

Linux man-pages 6.16 2025-09-21 3460

hier(7) Miscellaneous Information Manual hier(7)

/usr/share/terminfo
The database for terminfo (optional).

/usr/share/tmac
Troff macros that are not distributed with groff (optional).

/usr/share/xml
Files for XML (optional).

/usr/share/xml/docbook
DocBook DTD (optional).

/usr/share/xml/xhtml
XHTML DTD (optional).

/usr/share/xml/mathml
MathML DTD (optional).

/usr/share/zoneinfo
Files for timezone information (optional).

/usr/src
Source files for different parts of the system, included with some packages for
reference purposes. Don’t work here with your own projects, as files below /usr
should be read-only except when installing software (optional).

/usr/src/linux
This was the traditional place for the kernel source. Some distributions put here
the source for the default kernel they ship. You should probably use another di-
rectory when building your own kernel.

/usr/tmp
Obsolete. This should be a link to /var/tmp. This link is present only for com-
patibility reasons and shouldn’t be used.

/var This directory contains files which may change in size, such as spool and log
files.

/var/account
Process accounting logs (optional).

/var/adm
This directory is superseded by /var/log and should be a symbolic link to
/var/log.

/var/backups
Reserved for historical reasons.

/var/cache
Data cached for programs.

/var/cache/fonts
Locally generated fonts (optional).

/var/cache/man
Locally formatted man pages (optional).

Linux man-pages 6.16 2025-09-21 3461

hier(7) Miscellaneous Information Manual hier(7)

/var/cache/www
WWW proxy or cache data (optional).

/var/cache/<package>
Package specific cache data (optional).

/var/catman/cat[1-9] or /var/cache/man/cat[1-9]
These directories contain preformatted manual pages according to their man
page section. (The use of preformatted manual pages is deprecated.)

/var/crash
System crash dumps (optional).

/var/cron
Reserved for historical reasons.

/var/games
Variable game data (optional).

/var/lib
Variable state information for programs.

/var/lib/color
Variable files containing color management information (optional).

/var/lib/hwclock
State directory for hwclock (optional).

/var/lib/misc
Miscellaneous state data.

/var/lib/xdm
X display manager variable data (optional).

/var/lib/<editor>
Editor backup files and state (optional).

/var/lib/<name>
These directories must be used for all distribution packaging support.

/var/lib/<package>
State data for packages and subsystems (optional).

/var/lib/<pkgtool>
Packaging support files (optional).

/var/local
Variable data for /usr/local.

/var/lock
Lock files are placed in this directory. The naming convention for device lock
files is LCK..<device> where <device> is the device’s name in the filesystem.
The format used is that of HDU UUCP lock files, that is, lock files contain a PID
as a 10-byte ASCII decimal number, followed by a newline character.

Linux man-pages 6.16 2025-09-21 3462

hier(7) Miscellaneous Information Manual hier(7)

/var/log
Miscellaneous log files.

/var/opt
Variable data for /opt.

/var/mail
Users’ mailboxes. Replaces /var/spool/mail.

/var/msgs
Reserved for historical reasons.

/var/preserve
Reserved for historical reasons.

/var/run
Run-time variable files, like files holding process identifiers (PIDs) and logged
user information (utmp). Files in this directory are usually cleared when the sys-
tem boots.

/var/spool
Spooled (or queued) files for various programs.

/var/spool/at
Spooled jobs for at(1)

/var/spool/cron
Spooled jobs for cron(8)

/var/spool/lpd
Spooled files for printing (optional).

/var/spool/lpd/printer
Spools for a specific printer (optional).

/var/spool/mail
Replaced by /var/mail.

/var/spool/mqueue
Queued outgoing mail (optional).

/var/spool/news
Spool directory for news (optional).

/var/spool/rwho
Spooled files for rwhod(8) (optional).

/var/spool/smail
Spooled files for the smail(1) mail delivery program.

/var/spool/uucp
Spooled files for uucp(1) (optional).

/var/tmp
Like /tmp, this directory holds temporary files stored for an unspecified duration.

Linux man-pages 6.16 2025-09-21 3463

hier(7) Miscellaneous Information Manual hier(7)

/var/yp
Database files for NIS, formerly known as the Sun Yellow Pages (YP).

STANDARDS
The Filesystem Hierarchy Standard (FHS), Version 3.0
〈https://refspecs.linuxfoundation.org/fhs.shtml〉 , published March 19, 2015

BUGS
This list is not exhaustive; different distributions and systems may be configured differ-
ently.

SEE ALSO
find(1), ln(1), proc(5), file-hierarchy(7), mount(8)

The Filesystem Hierarchy Standard

Linux man-pages 6.16 2025-09-21 3464

hostname(7) Miscellaneous Information Manual hostname(7)

NAME
hostname - hostname resolution description

DESCRIPTION
Hostnames are domains, where a domain is a hierarchical dot-separated list of subdo-
mains; for example, the machine "monet", in the "example" subdomain of the "com" do-
main, would be represented as "monet.example.com".

Each element of the hostname must be from 1 to 63 characters long and the entire host-
name, including the dots, can be at most 253 characters long. Valid characters for host-
names are ASCII (7) letters from a to z, the digits from 0 to 9, and the hyphen (-). A
hostname may not start with a hyphen.

Hostnames are often used with network client and server programs, which must gener-
ally translate the name to an address for use. (This task is generally performed by either
getaddrinfo(3) or the obsolete gethostbyname(3).)

Hostnames are resolved by the NSS framework in glibc according to the hosts configu-
ration in nsswitch.conf(5). The DNS-based name resolver (in the dns NSS service mod-
ule) resolves them in the following fashion.

If the name consists of a single component (that is, contains no dot), and if the environ-
ment variable HOSTALIASES is set to the name of a file, that file is searched for any
string matching the input hostname. The file should consist of lines made up of two
white-space separated strings, the first of which is the hostname alias, and the second of
which is the complete hostname to be substituted for that alias. If a case-insensitive
match is found between the hostname to be resolved and the first field of a line in the
file, the substituted name is looked up with no further processing.

If the input name ends with a trailing dot, the trailing dot is removed, and the remaining
name is looked up with no further processing.

If the input name does not end with a trailing dot, it is looked up by searching through a
list of domains until a match is found. The default search list includes first the local do-
main, then its parent domains with at least 2 name components (longest first). For ex-
ample, in the domain cs.example.com, the name lithium.cchem will be checked first as
lithium.cchem.cs.example and then as lithium.cchem.example.com. lithium.cchem.com
will not be tried, as there is only one component remaining from the local domain. The
search path can be changed from the default by a system-wide configuration file (see re-
solver(5)).

SEE ALSO
getaddrinfo(3), gethostbyname(3), nsswitch.conf(5), resolver(5), mailaddr(7), named(8)

IETF RFC 1123 〈http://www.ietf.org/rfc/rfc1123.txt〉

IETF RFC 1178 〈http://www.ietf.org/rfc/rfc1178.txt〉

Linux man-pages 6.16 2025-09-21 3465

icmp(7) Miscellaneous Information Manual icmp(7)

NAME
icmp - Linux IPv4 ICMP kernel module.

DESCRIPTION
This kernel protocol module implements the Internet Control Message Protocol defined
in RFC 792. It is used to signal error conditions and for diagnosis. The user doesn’t in-
teract directly with this module; instead it communicates with the other protocols in the
kernel and these pass the ICMP errors to the application layers. The kernel ICMP mod-
ule also answers ICMP requests.

A user protocol may receive ICMP packets for all local sockets by opening a raw socket
with the protocol IPPROTO_ICMP. See raw(7) for more information. The types of
ICMP packets passed to the socket can be filtered using the ICMP_FILTER socket op-
tion. ICMP packets are always processed by the kernel too, even when passed to a user
socket.

Linux limits the rate of ICMP error packets to each destination. ICMP_REDIRECT
and ICMP_DEST_UNREACH are also limited by the destination route of the incom-
ing packets.

/proc interfaces
ICMP supports a set of /proc interfaces to configure some global IP parameters. The
parameters can be accessed by reading or writing files in the directory
/proc/sys/net/ipv4/ . Most of these parameters are rate limitations for specific ICMP
types. Linux 2.2 uses a token bucket filter to limit ICMPs. The value is the timeout in
jiffies until the token bucket filter is cleared after a burst. A jiffy is a system dependent
unit, usually 10ms on i386 and about 1ms on alpha and ia64.

icmp_destunreach_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate to send ICMP Destination Unreachable packets. This limits the
rate at which packets are sent to any individual route or destination. The limit
does not affect sending of ICMP_FRAG_NEEDED packets needed for path
MTU discovery.

icmp_echo_ignore_all (since Linux 2.2)
If this value is nonzero, Linux will ignore all ICMP_ECHO requests.

icmp_echo_ignore_broadcasts (since Linux 2.2)
If this value is nonzero, Linux will ignore all ICMP_ECHO packets sent to
broadcast addresses.

icmp_echoreply_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate for sending ICMP_ECHOREPLY packets in response to
ICMP_ECHOREQUEST packets.

icmp_errors_use_inbound_ifaddr (Boolean; default: disabled; since Linux 2.6.12)
If disabled, ICMP error messages are sent with the primary address of the exiting
interface.

If enabled, the message will be sent with the primary address of the interface that
received the packet that caused the ICMP error. This is the behavior that many
network administrators will expect from a router. And it can make debugging
complicated network layouts much easier.

Linux man-pages 6.16 2025-05-17 3466

icmp(7) Miscellaneous Information Manual icmp(7)

Note that if no primary address exists for the interface selected, then the primary
address of the first non-loopback interface that has one will be used regardless of
this setting.

icmp_ignore_bogus_error_responses (Boolean; default: disabled; since Linux 2.2)
Some routers violate RFC1122 by sending bogus responses to broadcast frames.
Such violations are normally logged via a kernel warning. If this parameter is
enabled, the kernel will not give such warnings, which will avoid log file clutter.

icmp_paramprob_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate for sending ICMP_PARAMETERPROB packets. These pack-
ets are sent when a packet arrives with an invalid IP header.

icmp_ratelimit (integer; default: 1000; since Linux 2.4.10)
Limit the maximum rates for sending ICMP packets whose type matches
icmp_ratemask (see below) to specific targets. 0 to disable any limiting, other-
wise the minimum space between responses in milliseconds.

icmp_ratemask (integer; default: see below; since Linux 2.4.10)
Mask made of ICMP types for which rates are being limited.

Significant bits: IHGFEDCBA9876543210
Default mask: 0000001100000011000 (0x1818)

Bit definitions (see the Linux kernel source file include/linux/icmp.h):
0 Echo Reply
3 Destination Unreachable *
4 Source Quench *
5 Redirect
8 Echo Request
B Time Exceeded *
C Parameter Problem *
D Timestamp Request
E Timestamp Reply
F Info Request
G Info Reply
H Address Mask Request
I Address Mask Reply

The bits marked with an asterisk are rate limited by default (see the default mask above).

icmp_timeexceed_rate (Linux 2.2 to Linux 2.4.9)
Maximum rate for sending ICMP_TIME_EXCEEDED packets. These packets
are sent to prevent loops when a packet has crossed too many hops.

ping_group_range (two integers; default: see below; since Linux 2.6.39)
Range of the group IDs (minimum and maximum group IDs, inclusive) that are
allowed to create ICMP Echo sockets. The default is "1 0", which means no
group is allowed to create ICMP Echo sockets.

VERSIONS
Support for the ICMP_ADDRESS request was removed in Linux 2.2.

Support for ICMP_SOURCE_QUENCH was removed in Linux 2.2.

Linux man-pages 6.16 2025-05-17 3467

icmp(7) Miscellaneous Information Manual icmp(7)

NOTES
As many other implementations don’t support IPPROTO_ICMP raw sockets, this fea-
ture should not be relied on in portable programs.

ICMP_REDIRECT packets are not sent when Linux is not acting as a router. They are
also accepted only from the old gateway defined in the routing table and the redirect
routes are expired after some time.

The 64-bit timestamp returned by ICMP_TIMESTAMP is in milliseconds since the
Epoch, 1970-01-01 00:00:00 +0000 (UTC).

Linux ICMP internally uses a raw socket to send ICMPs. This raw socket may appear
in netstat(8) output with a zero inode.

SEE ALSO
ip(7), rdisc(8)

RFC 792 for a description of the ICMP protocol.

Linux man-pages 6.16 2025-05-17 3468

inode(7) Miscellaneous Information Manual inode(7)

NAME
inode - file inode information

DESCRIPTION
Each file has an inode containing metadata about the file. An application can retrieve
this metadata using stat(2) (or related calls), which returns a stat structure, or statx(2),
which returns a statx structure.

The following is a list of the information typically found in, or associated with, the file
inode, with the names of the corresponding structure fields returned by stat(2) and
statx(2):

Device where inode resides
stat.st_dev; statx.stx_dev_minor and statx.stx_dev_major

Each inode (as well as the associated file) resides in a filesystem that is hosted on
a device. That device is identified by the combination of its major ID (which
identifies the general class of device) and minor ID (which identifies a specific
instance in the general class).

Inode number
stat.st_ino; statx.stx_ino

Each file in a filesystem has a unique inode number. Inode numbers are guaran-
teed to be unique only within a filesystem (i.e., the same inode numbers may be
used by different filesystems, which is the reason that hard links may not cross
filesystem boundaries). This field contains the file’s inode number.

File type and mode
stat.st_mode; statx.stx_mode

See the discussion of file type and mode, below.

Link count
stat.st_nlink; statx.stx_nlink

This field contains the number of hard links to the file. Additional links to an ex-
isting file are created using link(2).

User ID
stat.st_uid; statx.stx_uid

This field records the user ID of the owner of the file. For newly created files,
the file user ID is the effective user ID of the creating process. The user ID of a
file can be changed using chown(2).

Group ID
stat.st_gid; statx.stx_gid

The inode records the ID of the group owner of the file. For newly created files,
the file group ID is either the group ID of the parent directory or the effective
group ID of the creating process, depending on whether or not the set-group-ID
bit is set on the parent directory (see below). The group ID of a file can be
changed using chown(2).

Linux man-pages 6.16 2025-09-21 3469

inode(7) Miscellaneous Information Manual inode(7)

Device represented by this inode
stat.st_rdev; statx.stx_rdev_minor and statx.stx_rdev_major

If this file (inode) represents a device, then the inode records the major and mi-
nor ID of that device.

File size
stat.st_size; statx.stx_size

This field gives the size of the file (if it is a regular file or a symbolic link) in
bytes. The size of a symbolic link is the length of the pathname it contains,
without a terminating null byte.

Preferred block size for I/O
stat.st_blksize; statx.stx_blksize

This field gives the "preferred" blocksize for efficient filesystem I/O. (Writing to
a file in smaller chunks may cause an inefficient read-modify-rewrite.)

Number of blocks allocated to the file
stat.st_blocks; statx.stx_blocks

This field indicates the number of blocks allocated to the file, 512-byte units,
(This may be smaller than st_size/512 when the file has holes.)

The POSIX.1 standard notes that the unit for the st_blocks member of the stat
structure is not defined by the standard. On many implementations it is 512
bytes; on a few systems, a different unit is used, such as 1024. Furthermore, the
unit may differ on a per-filesystem basis.

Last access timestamp (atime)
stat.st_atime; statx.stx_atime

This is the file’s last access timestamp. It is changed by file accesses, for exam-
ple, by execve(2), mknod(2), pipe(2), utime(2), and read(2) (of more than zero
bytes). Other interfaces, such as mmap(2), may or may not update the atime
timestamp

Some filesystem types allow mounting in such a way that file and/or directory
accesses do not cause an update of the atime timestamp. (See noatime, nodira-
time, and relatime in mount(8), and related information in mount(2).) In addi-
tion, the atime timestamp is not updated if a file is opened with the O_NOAT-
IME flag; see open(2).

File creation (birth) timestamp (btime)
(not returned in the stat structure); statx.stx_btime

The file’s creation timestamp. This is set on file creation and not changed subse-
quently.

The btime timestamp was not historically present on UNIX systems and is not
currently supported by most Linux filesystems.

Last modification timestamp (mtime)
stat.st_mtime; statx.stx_mtime

Linux man-pages 6.16 2025-09-21 3470

inode(7) Miscellaneous Information Manual inode(7)

This is the file’s last modification timestamp. It is changed by file modifications,
for example, by mknod(2), truncate(2), utime(2), and write(2) (of more than zero
bytes). Moreover, the mtime timestamp of a directory is changed by the creation
or deletion of files in that directory. The mtime timestamp is not changed for
changes in owner, group, hard link count, or mode.

Last status change timestamp (ctime)
stat.st_ctime; statx.stx_ctime

This is the file’s last status change timestamp. It is changed by writing or by set-
ting inode information (i.e., owner, group, link count, mode, etc.).

The timestamp fields report time measured with a zero point at the Epoch, 1970-01-01
00:00:00 +0000, UTC (see time(7)).

Nanosecond timestamps are supported on XFS, JFS, Btrfs, and ext4 (since Linux
2.6.23). Nanosecond timestamps are not supported in ext2, ext3, and Reiserfs. In order
to return timestamps with nanosecond precision, the timestamp fields in the stat and
statx structures are defined as structures that include a nanosecond component. See
stat(2) and statx(2) for details. On filesystems that do not support subsecond time-
stamps, the nanosecond fields in the stat and statx structures are returned with the value
0.

The file type and mode
The stat.st_mode field (for statx(2), the statx.stx_mode field) contains the file type and
mode.

POSIX refers to the stat.st_mode bits corresponding to the mask S_IFMT (see below)
as the file type, the 12 bits corresponding to the mask 07777 as the file mode bits and
the least significant 9 bits (0777) as the file permission bits.

The following mask values are defined for the file type:
S_IFMT 0170000 bit mask for the file type bit field

S_IFSOCK 0140000 socket
S_IFLNK 0120000 symbolic link
S_IFREG 0100000 regular file
S_IFBLK 0060000 block device
S_IFDIR 0040000 directory
S_IFCHR 0020000 character device
S_IFIFO 0010000 FIFO

Thus, to test for a regular file (for example), one could write:

stat(pathname, &sb);
if ((sb.st_mode & S_IFMT) == S_IFREG) {

/* Handle regular file */
}

Because tests of the above form are common, additional macros are defined by POSIX
to allow the test of the file type in st_mode to be written more concisely:

Linux man-pages 6.16 2025-09-21 3471

inode(7) Miscellaneous Information Manual inode(7)

S_ISREG(m) is it a regular file?

S_ISDIR(m) directory?

S_ISCHR(m) character device?

S_ISBLK (m) block device?

S_ISFIFO(m) FIFO (named pipe)?

S_ISLNK (m) symbolic link? (Not in POSIX.1-1996.)

S_ISSOCK (m) socket? (Not in POSIX.1-1996.)

The preceding code snippet could thus be rewritten as:

stat(pathname, &sb);
if (S_ISREG(sb.st_mode)) {

/* Handle regular file */
}

The definitions of most of the above file type test macros are provided if any of the fol-
lowing feature test macros is defined: _BSD_SOURCE (in glibc 2.19 and earlier),
_SVID_SOURCE (in glibc 2.19 and earlier), or _DEFAULT_SOURCE (in glibc 2.20
and later). In addition, definitions of all of the above macros except S_IFSOCK and
S_ISSOCK() are provided if _XOPEN_SOURCE is defined.

The definition of S_IFSOCK can also be exposed either by defining
_XOPEN_SOURCE with a value of 500 or greater or (since glibc 2.24) by defining
both _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED.

The definition of S_ISSOCK() is exposed if any of the following feature test macros is
defined: _BSD_SOURCE (in glibc 2.19 and earlier), _DEFAULT_SOURCE (in glibc
2.20 and later), _XOPEN_SOURCE with a value of 500 or greater,
_POSIX_C_SOURCE with a value of 200112L or greater, or (since glibc 2.24) by
defining both _XOPEN_SOURCE and _XOPEN_SOURCE_EXTENDED.

The following mask values are defined for the file mode component of the st_mode
field:

S_ISUID 04000 set-user-ID bit (see execve(2))
S_ISGID 02000 set-group-ID bit (see below)
S_ISVTX 01000 sticky bit (see below)

S_IRWXU 00700 owner has read, write, and execute permission
S_IRUSR 00400 owner has read permission
S_IWUSR 00200 owner has write permission
S_IXUSR 00100 owner has execute permission

S_IRWXG 00070 group has read, write, and execute permission
S_IRGRP 00040 group has read permission
S_IWGRP 00020 group has write permission
S_IXGRP 00010 group has execute permission

Linux man-pages 6.16 2025-09-21 3472

inode(7) Miscellaneous Information Manual inode(7)

S_IRWXO 00007 others (not in group) have read, write, and execute per-
mission

S_IROTH 00004 others have read permission
S_IWOTH 00002 others have write permission
S_IXOTH 00001 others have execute permission

The set-group-ID bit (S_ISGID) has several special uses. For a directory, it indicates
that BSD semantics are to be used for that directory: files created there inherit their
group ID from the directory, not from the effective group ID of the creating process, and
directories created there will also get the S_ISGID bit set. For an executable file, the
set-group-ID bit causes the effective group ID of a process that executes the file to
change as described in execve(2). For a file that does not have the group execution bit
(S_IXGRP) set, the set-group-ID bit indicates mandatory file/record locking.

The sticky bit (S_ISVTX) on a directory means that a file in that directory can be re-
named or deleted only by the owner of the file, by the owner of the directory, and by a
privileged process.

STANDARDS
POSIX.1-2008.

HISTORY
POSIX.1-2001.

POSIX.1-1990 did not describe the S_IFMT, S_IFSOCK, S_IFLNK, S_IFREG,
S_IFBLK, S_IFDIR, S_IFCHR, S_IFIFO, and S_ISVTX constants, but instead speci-
fied the use of the macros S_ISDIR() and so on.

The S_ISLNK() and S_ISSOCK() macros were not in POSIX.1-1996; the former is
from SVID 4, the latter from SUSv2.

UNIX V7 (and later systems) had S_IREAD, S_IWRITE, S_IEXEC, and where
POSIX prescribes the synonyms S_IRUSR, S_IWUSR, and S_IXUSR.

NOTES
For pseudofiles that are autogenerated by the kernel, the file size (stat.st_size;
statx.stx_size) reported by the kernel is not accurate. For example, the value 0 is re-
turned for many files under the /proc directory, while various files under /sys report a
size of 4096 bytes, even though the file content is smaller. For such files, one should
simply try to read as many bytes as possible (and append '\0' to the returned buffer if it is
to be interpreted as a string).

SEE ALSO
stat(1), stat(2), statx(2), symlink(7)

Linux man-pages 6.16 2025-09-21 3473

inotify(7) Miscellaneous Information Manual inotify(7)

NAME
inotify - monitoring filesystem events

DESCRIPTION
The inotify API provides a mechanism for monitoring filesystem events. Inotify can be
used to monitor individual files, or to monitor directories. When a directory is moni-
tored, inotify will return events for the directory itself, and for files inside the directory.

The following system calls are used with this API:

• inotify_init(2) creates an inotify instance and returns a file descriptor referring to the
inotify instance. The more recent inotify_init1(2) is like inotify_init(2), but has a
flags argument that provides access to some extra functionality.

• inotify_add_watch(2) manipulates the "watch list" associated with an inotify in-
stance. Each item ("watch") in the watch list specifies the pathname of a file or di-
rectory, along with some set of events that the kernel should monitor for the file re-
ferred to by that pathname. inotify_add_watch(2) either creates a new watch item,
or modifies an existing watch. Each watch has a unique "watch descriptor", an inte-
ger returned by inotify_add_watch(2) when the watch is created.

• When events occur for monitored files and directories, those events are made avail-
able to the application as structured data that can be read from the inotify file de-
scriptor using read(2) (see below).

• inotify_rm_watch(2) removes an item from an inotify watch list.

• When all file descriptors referring to an inotify instance have been closed (using
close(2)), the underlying object and its resources are freed for reuse by the kernel; all
associated watches are automatically freed.

With careful programming, an application can use inotify to efficiently monitor and
cache the state of a set of filesystem objects. However, robust applications should allow
for the fact that bugs in the monitoring logic or races of the kind described below may
leave the cache inconsistent with the filesystem state. It is probably wise to do some
consistency checking, and rebuild the cache when inconsistencies are detected.

Reading events from an inotify file descriptor
To determine what events have occurred, an application read(2)s from the inotify file de-
scriptor. If no events have so far occurred, then, assuming a blocking file descriptor,
read(2) will block until at least one event occurs (unless interrupted by a signal, in
which case the call fails with the error EINTR; see signal(7)).

Each successful read(2) returns a buffer containing one or more of the following struc-
tures:

struct inotify_event {
int wd; /* Watch descriptor */
uint32_t mask; /* Mask describing event */
uint32_t cookie; /* Unique cookie associating related

events (for rename(2)) */
uint32_t len; /* Size of name field */
char name[]; /* Optional null-terminated name */

};

Linux man-pages 6.16 2025-09-21 3474

inotify(7) Miscellaneous Information Manual inotify(7)

wd identifies the watch for which this event occurs. It is one of the watch descriptors re-
turned by a previous call to inotify_add_watch(2).

mask contains bits that describe the event that occurred (see below).

cookie is a unique integer that connects related events. Currently, this is used only for
rename events, and allows the resulting pair of IN_MOVED_FROM and
IN_MOVED_TO events to be connected by the application. For all other event types,
cookie is set to 0.

The name field is present only when an event is returned for a file inside a watched di-
rectory; it identifies the filename within the watched directory. This filename is null-ter-
minated, and may include further null bytes ('\0') to align subsequent reads to a suitable
address boundary.

The len field counts all of the bytes in name, including the null bytes; the size of each
inotify_event structure is thus sizeof(struct inotify_event)+size.

The behavior when the buffer given to read(2) is too small to return information about
the next event depends on the kernel version: before Linux 2.6.21, read(2) returns 0;
since Linux 2.6.21, read(2) fails with the error EINVAL. Specifying a buffer of size

sizeof(struct inotify_event) + NAME_MAX + 1

will be sufficient to read at least one event.

inotify events
The inotify_add_watch(2) mask argument and the mask field of the inotify_event struc-
ture returned when read(2)ing an inotify file descriptor are both bit masks identifying in-
otify events. The following bits can be specified in mask when calling ino-
tify_add_watch(2) and may be returned in the mask field returned by read(2):

IN_ACCESS (+)
File was accessed (e.g., read(2), execve(2)).

IN_ATTRIB (*)
Metadata changed—for example, permissions (e.g., chmod(2)), timestamps
(e.g., utimensat(2)), extended attributes (setxattr(2)), link count (since
Linux 2.6.25; e.g., for the target of link(2) and for unlink(2)), and
user/group ID (e.g., chown(2)).

IN_CLOSE_WRITE (+)
File opened for writing was closed.

IN_CLOSE_NOWRITE (*)
File or directory not opened for writing was closed.

IN_CREATE (+)
File/directory created in watched directory (e.g., open(2) O_CREAT,
mkdir(2), link(2), symlink(2), bind(2) on a UNIX domain socket).

IN_DELETE (+)
File/directory deleted from watched directory.

Linux man-pages 6.16 2025-09-21 3475

inotify(7) Miscellaneous Information Manual inotify(7)

IN_DELETE_SELF
Watched file/directory was itself deleted. (This event also occurs if an ob-
ject is moved to another filesystem, since mv(1) in effect copies the file to
the other filesystem and then deletes it from the original filesystem.) In ad-
dition, an IN_IGNORED event will subsequently be generated for the
watch descriptor.

IN_MODIFY (+)
File was modified (e.g., write(2), truncate(2)).

IN_MOVE_SELF
Watched file/directory was itself moved.

IN_MOVED_FROM (+)
Generated for the directory containing the old filename when a file is re-
named.

IN_MOVED_TO (+)
Generated for the directory containing the new filename when a file is re-
named.

IN_OPEN (*)
File or directory was opened.

Inotify monitoring is inode-based: when monitoring a file (but not when monitoring the
directory containing a file), an event can be generated for activity on any link to the file
(in the same or a different directory).

When monitoring a directory:

• the events marked above with an asterisk (*) can occur both for the directory itself
and for objects inside the directory; and

• the events marked with a plus sign (+) occur only for objects inside the directory
(not for the directory itself).

Note: when monitoring a directory, events are not generated for the files inside the direc-
tory when the events are performed via a pathname (i.e., a link) that lies outside the
monitored directory.

When events are generated for objects inside a watched directory, the name field in the
returned inotify_event structure identifies the name of the file within the directory.

The IN_ALL_EVENTS macro is defined as a bit mask of all of the above events. This
macro can be used as the mask argument when calling inotify_add_watch(2).

Two additional convenience macros are defined:

IN_MOVE
Equates to IN_MOVED_FROM | IN_MOVED_TO.

IN_CLOSE
Equates to IN_CLOSE_WRITE | IN_CLOSE_NOWRITE.

The following further bits can be specified in mask when calling inotify_add_watch(2):

Linux man-pages 6.16 2025-09-21 3476

inotify(7) Miscellaneous Information Manual inotify(7)

IN_DONT_FOLLOW (since Linux 2.6.15)
Don’t dereference pathname if it is a symbolic link.

IN_EXCL_UNLINK (since Linux 2.6.36)
By default, when watching events on the children of a directory, events are
generated for children even after they have been unlinked from the direc-
tory. This can result in large numbers of uninteresting events for some ap-
plications (e.g., if watching /tmp, in which many applications create tempo-
rary files whose names are immediately unlinked). Specifying
IN_EXCL_UNLINK changes the default behavior, so that events are not
generated for children after they have been unlinked from the watched di-
rectory.

IN_MASK_ADD
If a watch instance already exists for the filesystem object corresponding to
pathname, add (OR) the events in mask to the watch mask (instead of re-
placing the mask); the error EINVAL results if IN_MASK_CREATE is
also specified.

IN_ONESHOT
Monitor the filesystem object corresponding to pathname for one event,
then remove from watch list.

IN_ONLYDIR (since Linux 2.6.15)
Watch pathname only if it is a directory; the error ENOTDIR results if
pathname is not a directory. Using this flag provides an application with a
race-free way of ensuring that the monitored object is a directory.

IN_MASK_CREATE (since Linux 4.18)
Watch pathname only if it does not already have a watch associated with it;
the error EEXIST results if pathname is already being watched.

Using this flag provides an application with a way of ensuring that new
watches do not modify existing ones. This is useful because multiple paths
may refer to the same inode, and multiple calls to inotify_add_watch(2)
without this flag may clobber existing watch masks.

The following bits may be set in the mask field returned by read(2):

IN_IGNORED
Watch was removed explicitly (inotify_rm_watch(2)) or automatically (file
was deleted, or filesystem was unmounted). See also BUGS.

IN_ISDIR
Subject of this event is a directory.

IN_Q_OVERFLOW
Event queue overflowed (wd is -1 for this event).

IN_UNMOUNT
Filesystem containing watched object was unmounted. In addition, an
IN_IGNORED event will subsequently be generated for the watch descrip-
tor.

Linux man-pages 6.16 2025-09-21 3477

inotify(7) Miscellaneous Information Manual inotify(7)

Examples
Suppose an application is watching the directory dir and the file dir/myfile for all events.
The examples below show some events that will be generated for these two objects.

fd = open("dir/myfile", O_RDWR);
Generates IN_OPEN events for both dir and dir/myfile.

read(fd, buf, count);
Generates IN_ACCESS events for both dir and dir/myfile.

write(fd, buf, count);
Generates IN_MODIFY events for both dir and dir/myfile.

fchmod(fd, mode);
Generates IN_ATTRIB events for both dir and dir/myfile.

close(fd);
Generates IN_CLOSE_WRITE events for both dir and dir/myfile.

Suppose an application is watching the directories dir1 and dir2, and the file dir1/myfile.
The following examples show some events that may be generated.

link("dir1/myfile", "dir2/new");
Generates an IN_ATTRIB event for myfile and an IN_CREATE event for
dir2.

rename("dir1/myfile", "dir2/myfile");
Generates an IN_MOVED_FROM event for dir1, an IN_MOVED_TO
event for dir2, and an IN_MOVE_SELF event for myfile. The
IN_MOVED_FROM and IN_MOVED_TO events will have the same
cookie value.

Suppose that dir1/xx and dir2/yy are (the only) links to the same file, and an application
is watching dir1, dir2, dir1/xx, and dir2/yy. Executing the following calls in the order
given below will generate the following events:

unlink("dir2/yy");
Generates an IN_ATTRIB event for xx (because its link count changes)
and an IN_DELETE event for dir2.

unlink("dir1/xx");
Generates IN_ATTRIB, IN_DELETE_SELF, and IN_IGNORED events
for xx, and an IN_DELETE event for dir1.

Suppose an application is watching the directory dir and (the empty) directory dir/sub-
dir. The following examples show some events that may be generated.

mkdir("dir/new", mode);
Generates an IN_CREATE | IN_ISDIR event for dir.

rmdir("dir/subdir");
Generates IN_DELETE_SELF and IN_IGNORED events for subdir, and
an IN_DELETE | IN_ISDIR event for dir.

Linux man-pages 6.16 2025-09-21 3478

inotify(7) Miscellaneous Information Manual inotify(7)

/proc interfaces
The following interfaces can be used to limit the amount of kernel memory consumed
by inotify:

/proc/sys/fs/inotify/max_queued_events
The value in this file is used when an application calls inotify_init(2) to set an
upper limit on the number of events that can be queued to the corresponding ino-
tify instance. Events in excess of this limit are dropped, but an IN_Q_OVER-
FLOW event is always generated.

/proc/sys/fs/inotify/max_user_instances
This specifies an upper limit on the number of inotify instances that can be cre-
ated per real user ID.

/proc/sys/fs/inotify/max_user_watches
This specifies an upper limit on the number of watches that can be created per
real user ID.

STANDARDS
Linux.

HISTORY
Inotify was merged into Linux 2.6.13. The required library interfaces were added in
glibc 2.4. (IN_DONT_FOLLOW, IN_MASK_ADD, and IN_ONLYDIR were added
in glibc 2.5.)

NOTES
Inotify file descriptors can be monitored using select(2), poll(2), and epoll(7). When an
event is available, the file descriptor indicates as readable.

Since Linux 2.6.25, signal-driven I/O notification is available for inotify file descriptors;
see the discussion of F_SETFL (for setting the O_ASYNC flag), F_SETOWN, and
F_SETSIG in fcntl(2). The siginfo_t structure (described in sigaction(2)) that is passed
to the signal handler has the following fields set: si_fd is set to the inotify file descriptor
number; si_signo is set to the signal number; si_code is set to POLL_IN; and POLLIN
is set in si_band .

If successive output inotify events produced on the inotify file descriptor are identical
(same wd , mask, cookie, and name), then they are coalesced into a single event if the
older event has not yet been read (but see BUGS). This reduces the amount of kernel
memory required for the event queue, but also means that an application can’t use ino-
tify to reliably count file events.

The events returned by reading from an inotify file descriptor form an ordered queue.
Thus, for example, it is guaranteed that when renaming from one directory to another,
events will be produced in the correct order on the inotify file descriptor.

The set of watch descriptors that is being monitored via an inotify file descriptor can be
viewed via the entry for the inotify file descriptor in the process’s /proc/ pid /fdinfo di-
rectory. See proc(5) for further details. The FIONREAD ioctl(2) returns the number of
bytes available to read from an inotify file descriptor.

Linux man-pages 6.16 2025-09-21 3479

inotify(7) Miscellaneous Information Manual inotify(7)

Limitations and caveats
The inotify API provides no information about the user or process that triggered the ino-
tify event. In particular, there is no easy way for a process that is monitoring events via
inotify to distinguish events that it triggers itself from those that are triggered by other
processes.

Inotify reports only events that a user-space program triggers through the filesystem
API. As a result, it does not catch remote events that occur on network filesystems.
(Applications must fall back to polling the filesystem to catch such events.) Further-
more, various pseudo-filesystems such as /proc, /sys, and /dev/pts are not monitorable
with inotify.

The inotify API does not report file accesses and modifications that may occur because
of mmap(2), msync(2), and munmap(2).

The inotify API identifies affected files by filename. However, by the time an applica-
tion processes an inotify event, the filename may already have been deleted or renamed.

The inotify API identifies events via watch descriptors. It is the application’s responsi-
bility to cache a mapping (if one is needed) between watch descriptors and pathnames.
Be aware that directory renamings may affect multiple cached pathnames.

Inotify monitoring of directories is not recursive: to monitor subdirectories under a di-
rectory, additional watches must be created. This can take a significant amount time for
large directory trees.

If monitoring an entire directory subtree, and a new subdirectory is created in that tree or
an existing directory is renamed into that tree, be aware that by the time you create a
watch for the new subdirectory, new files (and subdirectories) may already exist inside
the subdirectory. Therefore, you may want to scan the contents of the subdirectory im-
mediately after adding the watch (and, if desired, recursively add watches for any subdi-
rectories that it contains).

Note that the event queue can overflow. In this case, events are lost. Robust applica-
tions should handle the possibility of lost events gracefully. For example, it may be nec-
essary to rebuild part or all of the application cache. (One simple, but possibly expen-
sive, approach is to close the inotify file descriptor, empty the cache, create a new inotify
file descriptor, and then re-create watches and cache entries for the objects to be moni-
tored.)

If a filesystem is mounted on top of a monitored directory, no event is generated, and no
events are generated for objects immediately under the new mount point. If the filesys-
tem is subsequently unmounted, events will subsequently be generated for the directory
and the objects it contains.

Dealing with rename() events
As noted above, the IN_MOVED_FROM and IN_MOVED_TO event pair that is gen-
erated by rename(2) can be matched up via their shared cookie value. However, the task
of matching has some challenges.

These two events are usually consecutive in the event stream available when reading
from the inotify file descriptor. However, this is not guaranteed. If multiple processes
are triggering events for monitored objects, then (on rare occasions) an arbitrary number

Linux man-pages 6.16 2025-09-21 3480

inotify(7) Miscellaneous Information Manual inotify(7)

of other events may appear between the IN_MOVED_FROM and IN_MOVED_TO
events. Furthermore, it is not guaranteed that the event pair is atomically inserted into
the queue: there may be a brief interval where the IN_MOVED_FROM has appeared,
but the IN_MOVED_TO has not.

Matching up the IN_MOVED_FROM and IN_MOVED_TO event pair generated by
rename(2) is thus inherently racy. (Don’t forget that if an object is renamed outside of a
monitored directory, there may not even be an IN_MOVED_TO event.) Heuristic ap-
proaches (e.g., assume the events are always consecutive) can be used to ensure a match
in most cases, but will inevitably miss some cases, causing the application to perceive
the IN_MOVED_FROM and IN_MOVED_TO events as being unrelated. If watch de-
scriptors are destroyed and re-created as a result, then those watch descriptors will be in-
consistent with the watch descriptors in any pending events. (Re-creating the inotify file
descriptor and rebuilding the cache may be useful to deal with this scenario.)

Applications should also allow for the possibility that the IN_MOVED_FROM event
was the last event that could fit in the buffer returned by the current call to read(2), and
the accompanying IN_MOVED_TO event might be fetched only on the next read(2),
which should be done with a (small) timeout to allow for the fact that insertion of the
IN_MOVED_FROM+IN_MOVED_TO event pair is not atomic, and also the possibil-
ity that there may not be any IN_MOVED_TO event.

BUGS
Before Linux 3.19, fallocate(2) did not create any inotify events. Since Linux 3.19,
calls to fallocate(2) generate IN_MODIFY events.

Before Linux 2.6.16, the IN_ONESHOT mask flag does not work.

As originally designed and implemented, the IN_ONESHOT flag did not cause an
IN_IGNORED event to be generated when the watch was dropped after one event.
However, as an unintended effect of other changes, since Linux 2.6.36, an IN_IG-
NORED event is generated in this case.

Before Linux 2.6.25, the kernel code that was intended to coalesce successive identical
events (i.e., the two most recent events could potentially be coalesced if the older had
not yet been read) instead checked if the most recent event could be coalesced with the
oldest unread event.

When a watch descriptor is removed by calling inotify_rm_watch(2) (or because a watch
file is deleted or the filesystem that contains it is unmounted), any pending unread events
for that watch descriptor remain available to read. As watch descriptors are subse-
quently allocated with inotify_add_watch(2), the kernel cycles through the range of pos-
sible watch descriptors (1 to INT_MAX) incrementally. When allocating a free watch
descriptor, no check is made to see whether that watch descriptor number has any pend-
ing unread events in the inotify queue. Thus, it can happen that a watch descriptor is re-
allocated even when pending unread events exist for a previous incarnation of that watch
descriptor number, with the result that the application might then read those events and
interpret them as belonging to the file associated with the newly recycled watch descrip-
tor. In practice, the likelihood of hitting this bug may be extremely low, since it requires
that an application cycle through INT_MAX watch descriptors, release a watch descrip-
tor while leaving unread events for that watch descriptor in the queue, and then recycle

Linux man-pages 6.16 2025-09-21 3481

inotify(7) Miscellaneous Information Manual inotify(7)

that watch descriptor. For this reason, and because there have been no reports of the bug
occurring in real-world applications, as of Linux 3.15, no kernel changes have yet been
made to eliminate this possible bug.

EXAMPLES
The following program demonstrates the usage of the inotify API. It marks the directo-
ries passed as a command-line arguments and waits for events of type IN_OPEN,
IN_CLOSE_NOWRITE, and IN_CLOSE_WRITE.

The following output was recorded while editing the file /home/user/temp/foo and list-
ing directory /tmp. Before the file and the directory were opened, IN_OPEN events oc-
curred. After the file was closed, an IN_CLOSE_WRITE event occurred. After the di-
rectory was closed, an IN_CLOSE_NOWRITE event occurred. Execution of the pro-
gram ended when the user pressed the ENTER key.

Example output
$./a.out /tmp /home/user/temp;
Press enter key to terminate.
Listening for events.
IN_OPEN: /home/user/temp/foo [file]
IN_CLOSE_WRITE: /home/user/temp/foo [file]
IN_OPEN: /tmp/ [directory]
IN_CLOSE_NOWRITE: /tmp/ [directory]

Listening for events stopped.

Program source

#include <errno.h>
#include <poll.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/inotify.h>
#include <unistd.h>
#include <string.h>

/* Read all available inotify events from the file descriptor 'fd'.
wd is the table of watch descriptors for the directories in argv.
argc is the size of wd and argv.
argv is the list of watched directories.
Entry 0 of wd and argv is unused. */

static void
handle_events(int fd, int *wd, int argc, char* argv[])
{

/* Some systems cannot read integer variables if they are not
properly aligned. On other systems, incorrect alignment may
decrease performance. Hence, the buffer used for reading from
the inotify file descriptor should have the same alignment as

Linux man-pages 6.16 2025-09-21 3482

inotify(7) Miscellaneous Information Manual inotify(7)

struct inotify_event. */

char buf[4096]
__attribute__ ((aligned(__alignof__(struct inotify_event))));

const struct inotify_event *event;
ssize_t size;

/* Loop while events can be read from inotify file descriptor. */

for (;;) {

/* Read some events. */

size = read(fd, buf, sizeof(buf));
if (size == -1 && errno != EAGAIN) {

perror("read");
exit(EXIT_FAILURE);

}

/* If the nonblocking read() found no events to read, then
it returns -1 with errno set to EAGAIN. In that case,
we exit the loop. */

if (size <= 0)
break;

/* Loop over all events in the buffer. */

for (char *ptr = buf; ptr < buf + size;
ptr += sizeof(struct inotify_event) + event->len) {

event = (const struct inotify_event *) ptr;

/* Print event type. */

if (event->mask & IN_OPEN)
printf("IN_OPEN: ");

if (event->mask & IN_CLOSE_NOWRITE)
printf("IN_CLOSE_NOWRITE: ");

if (event->mask & IN_CLOSE_WRITE)
printf("IN_CLOSE_WRITE: ");

/* Print the name of the watched directory. */

for (size_t i = 1; i < argc; ++i) {
if (wd[i] == event->wd) {

printf("%s/", argv[i]);

Linux man-pages 6.16 2025-09-21 3483

inotify(7) Miscellaneous Information Manual inotify(7)

break;
}

}

/* Print the name of the file. */

if (event->len)
printf("%s", event->name);

/* Print type of filesystem object. */

if (event->mask & IN_ISDIR)
printf(" [directory]\n");

else
printf(" [file]\n");

}
}

}

int
main(int argc, char* argv[])
{

char buf;
int fd, i, poll_num;
int *wd;
nfds_t nfds;
struct pollfd fds[2];

if (argc < 2) {
printf("Usage: %s PATH [PATH ...]\n", argv[0]);
exit(EXIT_FAILURE);

}

printf("Press ENTER key to terminate.\n");

/* Create the file descriptor for accessing the inotify API. */

fd = inotify_init1(IN_NONBLOCK);
if (fd == -1) {

perror("inotify_init1");
exit(EXIT_FAILURE);

}

/* Allocate memory for watch descriptors. */

wd = calloc(argc, sizeof(int));
if (wd == NULL) {

Linux man-pages 6.16 2025-09-21 3484

inotify(7) Miscellaneous Information Manual inotify(7)

perror("calloc");
exit(EXIT_FAILURE);

}

/* Mark directories for events
- file was opened
- file was closed */

for (i = 1; i < argc; i++) {
wd[i] = inotify_add_watch(fd, argv[i],

IN_OPEN | IN_CLOSE);
if (wd[i] == -1) {

fprintf(stderr, "Cannot watch '%s': %s\n",
argv[i], strerror(errno));

exit(EXIT_FAILURE);
}

}

/* Prepare for polling. */

nfds = 2;

fds[0].fd = STDIN_FILENO; /* Console input */
fds[0].events = POLLIN;

fds[1].fd = fd; /* Inotify input */
fds[1].events = POLLIN;

/* Wait for events and/or terminal input. */

printf("Listening for events.\n");
while (1) {

poll_num = poll(fds, nfds, -1);
if (poll_num == -1) {

if (errno == EINTR)
continue;

perror("poll");
exit(EXIT_FAILURE);

}

if (poll_num > 0) {

if (fds[0].revents & POLLIN) {

/* Console input is available. Empty stdin and quit. */

while (read(STDIN_FILENO, &buf, 1) > 0 && buf != '\n')

Linux man-pages 6.16 2025-09-21 3485

inotify(7) Miscellaneous Information Manual inotify(7)

continue;
break;

}

if (fds[1].revents & POLLIN) {

/* Inotify events are available. */

handle_events(fd, wd, argc, argv);
}

}
}

printf("Listening for events stopped.\n");

/* Close inotify file descriptor. */

close(fd);

free(wd);
exit(EXIT_SUCCESS);

}

SEE ALSO
inotifywait(1), inotifywatch(1), inotify_add_watch(2), inotify_init(2), inotify_init1(2), in-
otify_rm_watch(2), read(2), stat(2), fanotify(7)

Documentation/filesystems/inotify.txt in the Linux kernel source tree

Linux man-pages 6.16 2025-09-21 3486

ip(7) Miscellaneous Information Manual ip(7)

NAME
ip - Linux IPv4 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip.h> /* superset of previous */

tcp_socket = socket(AF_INET, SOCK_STREAM, 0);
udp_socket = socket(AF_INET, SOCK_DGRAM, 0);
raw_socket = socket(AF_INET, SOCK_RAW, protocol);

DESCRIPTION
Linux implements the Internet Protocol, version 4, described in RFC 791 and
RFC 1122. ip contains a level 2 multicasting implementation conforming to RFC 1112.
It also contains an IP router including a packet filter.

The programming interface is BSD-sockets compatible. For more information on sock-
ets, see socket(7).

An IP socket is created using socket(2):

socket(AF_INET, socket_type, protocol);

Valid socket types include SOCK_STREAM to open a stream socket,
SOCK_DGRAM to open a datagram socket, and SOCK_RAW to open a raw(7) socket
to access the IP protocol directly.

protocol is the IP protocol in the IP header to be received or sent. Valid values for pro-
tocol include:

• 0 and IPPROTO_TCP for tcp(7) stream sockets;

• 0 and IPPROTO_UDP for udp(7) datagram sockets;

• IPPROTO_SCTP for sctp(7) stream sockets; and

• IPPROTO_UDPLITE for udplite(7) datagram sockets.

For SOCK_RAW you may specify a valid IANA IP protocol defined in RFC 1700 as-
signed numbers.

When a process wants to receive new incoming packets or connections, it should bind a
socket to a local interface address using bind(2). In this case, only one IP socket may be
bound to any given local (address, port) pair. When INADDR_ANY is specified in the
bind call, the socket will be bound to all local interfaces. When listen(2) is called on an
unbound socket, the socket is automatically bound to a random free port with the local
address set to INADDR_ANY. When connect(2) is called on an unbound socket, the
socket is automatically bound to a random free port or to a usable shared port with the
local address set to INADDR_ANY.

A TCP local socket address that has been bound is unavailable for some time after clos-
ing, unless the SO_REUSEADDR flag has been set. Care should be taken when using
this flag as it makes TCP less reliable.

Linux man-pages 6.16 2025-10-05 3487

ip(7) Miscellaneous Information Manual ip(7)

Address format
An IP socket address is defined as a combination of an IP interface address and a 16-bit
port number. The basic IP protocol does not supply port numbers, they are implemented
by higher level protocols like udp(7) and tcp(7). On raw sockets sin_port is set to the IP
protocol.

struct sockaddr_in {
sa_family_t sin_family; /* address family: AF_INET */
in_port_t sin_port; /* port in network byte order */
struct in_addr sin_addr; /* internet address */

};

/* Internet address */
struct in_addr {

uint32_t s_addr; /* address in network byte order */
};

sin_family is always set to AF_INET. This is required; in Linux 2.2 most networking
functions return EINVAL when this setting is missing. sin_port contains the port in
network byte order. The port numbers below 1024 are called privileged ports (or some-
times: reserved ports). Only a privileged process (on Linux: a process that has the
CAP_NET_BIND_SERVICE capability in the user namespace governing its network
namespace) may bind(2) to these sockets. Note that the raw IPv4 protocol as such has
no concept of a port, they are implemented only by higher protocols like tcp(7) and
udp(7).

sin_addr is the IP host address. The s_addr member of struct in_addr contains the host
interface address in network byte order. in_addr should be assigned one of the IN-
ADDR_* values (e.g., INADDR_LOOPBACK) using htonl(3) or set using the
inet_aton(3), inet_addr(3), inet_makeaddr(3) library functions or directly with the name
resolver (see gethostbyname(3)).

IPv4 addresses are divided into unicast, broadcast, and multicast addresses. Unicast ad-
dresses specify a single interface of a host, broadcast addresses specify all hosts on a
network, and multicast addresses address all hosts in a multicast group. Datagrams to
broadcast addresses can be sent or received only when the SO_BROADCAST socket
flag is set. In the current implementation, connection-oriented sockets are allowed to
use only unicast addresses.

Note that the address and the port are always stored in network byte order. In particular,
this means that you need to call htons(3) on the number that is assigned to a port. All
address/port manipulation functions in the standard library work in network byte order.

Special and reserved addresses
There are several special addresses:

INADDR_LOOPBACK (127.0.0.1)
always refers to the local host via the loopback device;

INADDR_ANY (0.0.0.0)
means any address for socket binding;

Linux man-pages 6.16 2025-10-05 3488

ip(7) Miscellaneous Information Manual ip(7)

INADDR_BROADCAST (255.255.255.255)
has the same effect on bind(2) as INADDR_ANY for historical reasons. A
packet addressed to INADDR_BROADCAST through a socket which has
SO_BROADCAST set will be broadcast to all hosts on the local network seg-
ment, as long as the link is broadcast-capable.

Highest-numbered address
Lowest-numbered address

On any locally-attached non-point-to-point IP subnet with a link type that sup-
ports broadcasts, the highest-numbered address (e.g., the .255 address on a sub-
net with netmask 255.255.255.0) is designated as a broadcast address. It cannot
usefully be assigned to an individual interface, and can only be addressed with a
socket on which the SO_BROADCAST option has been set. Internet standards
have historically also reserved the lowest-numbered address (e.g., the .0 address
on a subnet with netmask 255.255.255.0) for broadcast, though they call it "ob-
solete" for this purpose. (Some sources also refer to this as the "network ad-
dress.") Since Linux 5.14, it is treated as an ordinary unicast address and can be
assigned to an interface.

Internet standards have traditionally also reserved various addresses for particular uses,
though Linux no longer treats some of these specially.

[0.0.0.1, 0.255.255.255]
[240.0.0.0, 255.255.255.254]

Addresses in these ranges (0/8 and 240/4) are reserved globally. Since Linux 5.3
and Linux 2.6.25, respectively, the 0/8 and 240/4 addresses, other than IN-
ADDR_ANY and INADDR_BROADCAST, are treated as ordinary unicast ad-
dresses. Systems that follow the traditional behaviors may not interoperate with
these historically reserved addresses.

[127.0.0.1, 127.255.255.254]
Addresses in this range (127/8) are treated as loopback addresses akin to the
standardized local loopback address INADDR_LOOPBACK (127.0.0.1);

[224.0.0.0, 239.255.255.255]
Addresses in this range (224/4) are dedicated to multicast use.

Socket options
IP supports some protocol-specific socket options that can be set with setsockopt(2) and
read with getsockopt(2). The socket option level for IP is IPPROTO_IP. A boolean in-
teger flag is zero when it is false, otherwise true.

When an invalid socket option is specified, getsockopt(2) and setsockopt(2) fail with the
error ENOPROTOOPT.

IP_ADD_MEMBERSHIP (since Linux 1.2)
Join a multicast group. Argument is an ip_mreqn structure.

struct ip_mreqn {
struct in_addr imr_multiaddr; /* IP multicast group

address */
struct in_addr imr_address; /* IP address of local

Linux man-pages 6.16 2025-10-05 3489

ip(7) Miscellaneous Information Manual ip(7)

interface */
int imr_ifindex; /* interface index */

};

imr_multiaddr contains the address of the multicast group the application wants
to join or leave. It must be a valid multicast address (or setsockopt(2) fails with
the error EINVAL). imr_address is the address of the local interface with which
the system should join the multicast group; if it is equal to INADDR_ANY, an
appropriate interface is chosen by the system. imr_ifindex is the interface index
of the interface that should join/leave the imr_multiaddr group, or 0 to indicate
any interface.

The ip_mreqn structure is available only since Linux 2.2. For compatibility, the
old ip_mreq structure (present since Linux 1.2) is still supported; it differs from
ip_mreqn only by not including the imr_ifindex field. (The kernel determines
which structure is being passed based on the size passed in optlen.)

IP_ADD_MEMBERSHIP is valid only for setsockopt(2).

IP_ADD_SOURCE_MEMBERSHIP (since Linux 2.4.22 / Linux 2.5.68)
Join a multicast group and allow receiving data only from a specified source.
Argument is an ip_mreq_source structure.

struct ip_mreq_source {
struct in_addr imr_multiaddr; /* IP multicast group

address */
struct in_addr imr_interface; /* IP address of local

interface */
struct in_addr imr_sourceaddr; /* IP address of

multicast source */
};

The ip_mreq_source structure is similar to ip_mreqn described under
IP_ADD_MEMBERSHIP. The imr_multiaddr field contains the address of the
multicast group the application wants to join or leave. The imr_interface field is
the address of the local interface with which the system should join the multicast
group. Finally, the imr_sourceaddr field contains the address of the source the
application wants to receive data from.

This option can be used multiple times to allow receiving data from more than
one source.

IP_BIND_ADDRESS_NO_PORT (since Linux 4.2)
Inform the kernel to not reserve an ephemeral port when using bind(2) with a
port number of 0. The port will later be automatically chosen at connect(2) time,
in a way that allows sharing a source port as long as the 4-tuple is unique.

IP_BLOCK_SOURCE (since Linux 2.4.22 / 2.5.68)
Stop receiving multicast data from a specific source in a given group. This is
valid only after the application has subscribed to the multicast group using either
IP_ADD_MEMBERSHIP or IP_ADD_SOURCE_MEMBERSHIP.

Linux man-pages 6.16 2025-10-05 3490

ip(7) Miscellaneous Information Manual ip(7)

Argument is an ip_mreq_source structure as described under
IP_ADD_SOURCE_MEMBERSHIP.

IP_DROP_MEMBERSHIP (since Linux 1.2)
Leave a multicast group. Argument is an ip_mreqn or ip_mreq structure similar
to IP_ADD_MEMBERSHIP.

IP_DROP_SOURCE_MEMBERSHIP (since Linux 2.4.22 / 2.5.68)
Leave a source-specific group—that is, stop receiving data from a given multi-
cast group that come from a given source. If the application has subscribed to
multiple sources within the same group, data from the remaining sources will
still be delivered. To stop receiving data from all sources at once, use
IP_DROP_MEMBERSHIP.

Argument is an ip_mreq_source structure as described under
IP_ADD_SOURCE_MEMBERSHIP.

IP_FREEBIND (since Linux 2.4)
If enabled, this boolean option allows binding to an IP address that is nonlocal or
does not (yet) exist. This permits listening on a socket, without requiring the un-
derlying network interface or the specified dynamic IP address to be up at the
time that the application is trying to bind to it. This option is the per-socket
equivalent of the ip_nonlocal_bind /proc interface described below.

IP_HDRINCL (since Linux 2.0)
If enabled, the user supplies an IP header in front of the user data. Valid only for
SOCK_RAW sockets; see raw(7) for more information. When this flag is en-
abled, the values set by IP_OPTIONS, IP_TTL, and IP_TOS are ignored.

IP_LOCAL_PORT_RANGE (since Linux 6.3)
Set or get the per-socket default local port range. This option can be used to
clamp down the global local port range, defined by the ip_local_port_range
/proc interface described below, for a given socket.

The option takes an uint32_t value with the high 16 bits set to the upper range
bound, and the low 16 bits set to the lower range bound. Range bounds are in-
clusive. The 16-bit values should be in host byte order.

The lower bound has to be less than the upper bound when both bounds are not
zero. Otherwise, setting the option fails with EINVAL.

If either bound is outside of the global local port range, or is zero, then that
bound has no effect.

To reset the setting, pass zero as both the upper and the lower bound.

IP_MSFILTER (since Linux 2.4.22 / 2.5.68)
This option provides access to the advanced full-state filtering API. Argument is
an ip_msfilter structure.

struct ip_msfilter {
struct in_addr imsf_multiaddr; /* IP multicast group

address */
struct in_addr imsf_interface; /* IP address of local

Linux man-pages 6.16 2025-10-05 3491

ip(7) Miscellaneous Information Manual ip(7)

interface */
uint32_t imsf_fmode; /* Filter-mode */

uint32_t imsf_numsrc; /* Number of sources in
the following array */

struct in_addr imsf_slist[1]; /* Array of source
addresses */

};

There are two macros, MCAST_INCLUDE and MCAST_EXCLUDE, which
can be used to specify the filtering mode. Additionally, the IP_MSFIL-
TER_SIZE(n) macro exists to determine how much memory is needed to store
ip_msfilter structure with n sources in the source list.

For the full description of multicast source filtering refer to RFC 3376.

IP_MTU (since Linux 2.2)
Retrieve the current known path MTU of the current socket. Returns an integer.

IP_MTU is valid only for getsockopt(2) and can be employed only when the
socket has been connected.

IP_MTU_DISCOVER (since Linux 2.2)
Set or receive the Path MTU Discovery setting for a socket. When enabled,
Linux will perform Path MTU Discovery as defined in RFC 1191 on
SOCK_STREAM sockets. For non-SOCK_STREAM sockets, IP_PMTUD-
ISC_DO forces the don’t-fragment flag to be set on all outgoing packets. It is
the user’s responsibility to packetize the data in MTU-sized chunks and to do the
retransmits if necessary. The kernel will reject (with EMSGSIZE) datagrams
that are bigger than the known path MTU. IP_PMTUDISC_WANT will frag-
ment a datagram if needed according to the path MTU, or will set the don’t-frag-
ment flag otherwise.

The system-wide default can be toggled between IP_PMTUDISC_WANT and
IP_PMTUDISC_DONT by writing (respectively, zero and nonzero values) to
the /proc/sys/net/ipv4/ip_no_pmtu_disc file.
Path MTU discovery value Meaning
IP_PMTUDISC_WANT Use per-route settings.
IP_PMTUDISC_DONT Never do Path MTU Discovery.
IP_PMTUDISC_DO Always do Path MTU Discovery.
IP_PMTUDISC_PROBE Set DF but ignore Path MTU.

When PMTU discovery is enabled, the kernel automatically keeps track of the
path MTU per destination host. When it is connected to a specific peer with con-
nect(2), the currently known path MTU can be retrieved conveniently using the
IP_MTU socket option (e.g., after an EMSGSIZE error occurred). The path
MTU may change over time. For connectionless sockets with many destinations,
the new MTU for a given destination can also be accessed using the error queue
(see IP_RECVERR). A new error will be queued for every incoming MTU up-
date.

Linux man-pages 6.16 2025-10-05 3492

ip(7) Miscellaneous Information Manual ip(7)

While MTU discovery is in progress, initial packets from datagram sockets may
be dropped. Applications using UDP should be aware of this and not take it into
account for their packet retransmit strategy.

To bootstrap the path MTU discovery process on unconnected sockets, it is pos-
sible to start with a big datagram size (headers up to 64 kilobytes long) and let it
shrink by updates of the path MTU.

To get an initial estimate of the path MTU, connect a datagram socket to the des-
tination address using connect(2) and retrieve the MTU by calling getsockopt(2)
with the IP_MTU option.

It is possible to implement RFC 4821 MTU probing with SOCK_DGRAM or
SOCK_RAW sockets by setting a value of IP_PMTUDISC_PROBE (available
since Linux 2.6.22). This is also particularly useful for diagnostic tools such as
tracepath(8) that wish to deliberately send probe packets larger than the ob-
served Path MTU.

IP_MULTICAST_ALL (since Linux 2.6.31)
This option can be used to modify the delivery policy of multicast messages.
The argument is a boolean integer (defaults to 1). If set to 1, the socket will re-
ceive messages from all the groups that have been joined globally on the whole
system. Otherwise, it will deliver messages only from the groups that have been
explicitly joined (for example via the IP_ADD_MEMBERSHIP option) on this
particular socket.

IP_MULTICAST_IF (since Linux 1.2)
Set the local device for a multicast socket. The argument for setsockopt(2) is an
ip_mreqn or (since Linux 3.5) ip_mreq structure similar to IP_ADD_MEM-
BERSHIP, or an in_addr structure. (The kernel determines which structure is
being passed based on the size passed in optlen.) For getsockopt(2), the argu-
ment is an in_addr structure.

IP_MULTICAST_LOOP (since Linux 1.2)
Set or read a boolean integer argument that determines whether sent multicast
packets should be looped back to the local sockets.

IP_MULTICAST_TTL (since Linux 1.2)
Set or read the time-to-live value of outgoing multicast packets for this socket. It
is very important for multicast packets to set the smallest TTL possible. The de-
fault is 1 which means that multicast packets don’t leave the local network unless
the user program explicitly requests it. Argument is an integer.

IP_NODEFRAG (since Linux 2.6.36)
If enabled (argument is nonzero), the reassembly of outgoing packets is disabled
in the netfilter layer. The argument is an integer.

This option is valid only for SOCK_RAW sockets.

IP_OPTIONS (since Linux 2.0)
Set or get the IP options to be sent with every packet from this socket. The argu-
ments are a pointer to a memory buffer containing the options and the option
length. The setsockopt(2) call sets the IP options associated with a socket. The

Linux man-pages 6.16 2025-10-05 3493

ip(7) Miscellaneous Information Manual ip(7)

maximum option size for IPv4 is 40 bytes. See RFC 791 for the allowed op-
tions. When the initial connection request packet for a SOCK_STREAM
socket contains IP options, the IP options will be set automatically to the options
from the initial packet with routing headers reversed. Incoming packets are not
allowed to change options after the connection is established. The processing of
all incoming source routing options is disabled by default and can be enabled by
using the accept_source_route /proc interface. Other options like timestamps
are still handled. For datagram sockets, IP options can be set only by the local
user. Calling getsockopt(2) with IP_OPTIONS puts the current IP options used
for sending into the supplied buffer.

IP_PASSSEC (since Linux 2.6.17)
If labeled IPSEC or NetLabel is configured on the sending and receiving hosts,
this option enables receiving of the security context of the peer socket in an an-
cillary message of type SCM_SECURITY retrieved using recvmsg(2). This op-
tion is supported only for UDP sockets; for TCP or SCTP sockets, see the de-
scription of the SO_PEERSEC option below.

The value given as an argument to setsockopt(2) and returned as the result of get-
sockopt(2) is an integer boolean flag.

The security context returned in the SCM_SECURITY ancillary message is of
the same format as the one described under the SO_PEERSEC option below.

Note: the reuse of the SCM_SECURITY message type for the IP_PASSSEC
socket option was likely a mistake, since other IP control messages use their own
numbering scheme in the IP namespace and often use the socket option value as
the message type. There is no conflict currently since the IP option with the
same value as SCM_SECURITY is IP_HDRINCL and this is never used for a
control message type.

IP_PKTINFO (since Linux 2.2)
Pass an IP_PKTINFO ancillary message that contains a pktinfo structure that
supplies some information about the incoming packet. This works only for data-
gram oriented sockets. The argument is a flag that tells the socket whether the
IP_PKTINFO message should be passed or not. The message itself can be
sent/retrieved only as a control message with a packet using recvmsg(2) or
sendmsg(2).

struct in_pktinfo {
unsigned int ipi_ifindex; /* Interface index */
struct in_addr ipi_spec_dst; /* Local address */
struct in_addr ipi_addr; /* Header Destination

address */
};

ipi_ifindex is the unique index of the interface the packet was received on.
ipi_spec_dst is the local address of the packet and ipi_addr is the destination ad-
dress in the packet header. If IP_PKTINFO is passed to sendmsg(2) and
ipi_spec_dst is not zero, then it is used as the local source address for the routing
table lookup and for setting up IP source route options. When ipi_ifindex is not

Linux man-pages 6.16 2025-10-05 3494

ip(7) Miscellaneous Information Manual ip(7)

zero, the primary local address of the interface specified by the index overwrites
ipi_spec_dst for the routing table lookup.

Not supported for SOCK_STREAM sockets.

IP_RECVERR (since Linux 2.2)
Enable extended reliable error message passing. When enabled on a datagram
socket, all generated errors will be queued in a per-socket error queue. When the
user receives an error from a socket operation, the errors can be received by call-
ing recvmsg(2) with the MSG_ERRQUEUE flag set. The sock_extended_err
structure describing the error will be passed in an ancillary message with the
type IP_RECVERR and the level IPPROTO_IP. This is useful for reliable er-
ror handling on unconnected sockets. The received data portion of the error
queue contains the error packet.

The IP_RECVERR control message contains a sock_extended_err structure:

#define SO_EE_ORIGIN_NONE 0
#define SO_EE_ORIGIN_LOCAL 1
#define SO_EE_ORIGIN_ICMP 2
#define SO_EE_ORIGIN_ICMP6 3

struct sock_extended_err {
uint32_t ee_errno; /* error number */
uint8_t ee_origin; /* where the error originated */
uint8_t ee_type; /* type */
uint8_t ee_code; /* code */
uint8_t ee_pad;
uint32_t ee_info; /* additional information */
uint32_t ee_data; /* other data */
/* More data may follow */

};

struct sockaddr *SO_EE_OFFENDER(struct sock_extended_err *);

ee_errno contains the errno number of the queued error. ee_origin is the origin
code of where the error originated. The other fields are protocol-specific. The
macro SO_EE_OFFENDER returns a pointer to the address of the network ob-
ject where the error originated from given a pointer to the ancillary message. If
this address is not known, the sa_family member of the sockaddr contains
AF_UNSPEC and the other fields of the sockaddr are undefined.

IP uses the sock_extended_err structure as follows: ee_origin is set to
SO_EE_ORIGIN_ICMP for errors received as an ICMP packet, or
SO_EE_ORIGIN_LOCAL for locally generated errors. Unknown values
should be ignored. ee_type and ee_code are set from the type and code fields of
the ICMP header. ee_info contains the discovered MTU for EMSGSIZE errors.
The message also contains the sockaddr_in of the node caused the error, which
can be accessed with the SO_EE_OFFENDER macro. The sin_family field of
the SO_EE_OFFENDER address is AF_UNSPEC when the source was un-
known. When the error originated from the network, all IP options

Linux man-pages 6.16 2025-10-05 3495

ip(7) Miscellaneous Information Manual ip(7)

(IP_OPTIONS, IP_TTL, etc.) enabled on the socket and contained in the error
packet are passed as control messages. The payload of the packet causing the er-
ror is returned as normal payload. Note that TCP has no error queue; MSG_ER-
RQUEUE is not permitted on SOCK_STREAM sockets. IP_RECVERR is
valid for TCP, but all errors are returned by socket function return or SO_ER-
ROR only.

For raw sockets, IP_RECVERR enables passing of all received ICMP errors to
the application, otherwise errors are reported only on connected sockets

It sets or retrieves an integer boolean flag. IP_RECVERR defaults to off.

IP_RECVOPTS (since Linux 2.2)
Pass all incoming IP options to the user in a IP_OPTIONS control message.
The routing header and other options are already filled in for the local host. Not
supported for SOCK_STREAM sockets.

IP_RECVORIGDSTADDR (since Linux 2.6.29)
This boolean option enables the IP_ORIGDSTADDR ancillary message in
recvmsg(2), in which the kernel returns the original destination address of the
datagram being received. The ancillary message contains a struct sockaddr_in.
Not supported for SOCK_STREAM sockets.

IP_RECVTOS (since Linux 2.2)
If enabled, the IP_TOS ancillary message is passed with incoming packets. It
contains a byte which specifies the Type of Service/Precedence field of the
packet header. Expects a boolean integer flag. Not supported for
SOCK_STREAM sockets.

IP_RECVTTL (since Linux 2.2)
When this flag is set, pass a IP_TTL control message with the time-to-live field
of the received packet as a 32 bit integer. Not supported for SOCK_STREAM
sockets.

IP_RETOPTS (since Linux 2.2)
Identical to IP_RECVOPTS, but returns raw unprocessed options with time-
stamp and route record options not filled in for this hop. Not supported for
SOCK_STREAM sockets.

IP_ROUTER_ALERT (since Linux 2.2)
Pass all to-be forwarded packets with the IP Router Alert option set to this
socket. Valid only for raw sockets. This is useful, for instance, for user-space
RSVP daemons. The tapped packets are not forwarded by the kernel; it is the
user’s responsibility to send them out again. Socket binding is ignored, such
packets are filtered only by protocol. Expects an integer flag.

IP_TOS (since Linux 1.0)
Set or receive the Type-Of-Service (TOS) field that is sent with every IP packet
originating from this socket. It is used to prioritize packets on the network. TOS
is a byte. There are some standard TOS flags defined: IPTOS_LOWDELAY to
minimize delays for interactive traffic, IPTOS_THROUGHPUT to optimize
throughput, IPTOS_RELIABILITY to optimize for reliability,

Linux man-pages 6.16 2025-10-05 3496

ip(7) Miscellaneous Information Manual ip(7)

IPTOS_MINCOST should be used for "filler data" where slow transmission
doesn’t matter. At most one of these TOS values can be specified. Other bits are
invalid and shall be cleared. Linux sends IPTOS_LOWDELAY datagrams first
by default, but the exact behavior depends on the configured queueing discipline.
Some high-priority levels may require superuser privileges (the CAP_NET_AD-
MIN capability).

IP_TRANSPARENT (since Linux 2.6.24)
Setting this boolean option enables transparent proxying on this socket. This
socket option allows the calling application to bind to a nonlocal IP address and
operate both as a client and a server with the foreign address as the local end-
point. NOTE: this requires that routing be set up in a way that packets going to
the foreign address are routed through the TProxy box (i.e., the system hosting
the application that employs the IP_TRANSPARENT socket option). Enabling
this socket option requires superuser privileges (the CAP_NET_ADMIN or
CAP_NET_RAW capability).

TProxy redirection with the iptables TPROXY target also requires that this op-
tion be set on the redirected socket.

IP_TTL (since Linux 1.0)
Set or retrieve the current time-to-live field that is used in every packet sent from
this socket.

IP_UNBLOCK_SOURCE (since Linux 2.4.22 / 2.5.68)
Unblock previously blocked multicast source. Returns EADDRNOTAVAIL
when given source is not being blocked.

Argument is an ip_mreq_source structure as described under
IP_ADD_SOURCE_MEMBERSHIP.

SO_PEERSEC (since Linux 2.6.17)
If labeled IPSEC or NetLabel is configured on both the sending and receiving
hosts, this read-only socket option returns the security context of the peer socket
connected to this socket. By default, this will be the same as the security context
of the process that created the peer socket unless overridden by the policy or by a
process with the required permissions.

The argument to getsockopt(2) is a pointer to a buffer of the specified length in
bytes into which the security context string will be copied. If the buffer length is
less than the length of the security context string, then getsockopt(2) returns -1,
sets errno to ERANGE, and returns the required length via optlen. The caller
should allocate at least NAME_MAX bytes for the buffer initially, although this
is not guaranteed to be sufficient. Resizing the buffer to the returned length and
retrying may be necessary.

The security context string may include a terminating null character in the re-
turned length, but is not guaranteed to do so: a security context "foo" might be
represented as either {’f’,’o’,’o’} of length 3 or {’f’,’o’,’o’,’\0’} of length 4,
which are considered to be interchangeable. The string is printable, does not
contain non-terminating null characters, and is in an unspecified encoding (in
particular, it is not guaranteed to be ASCII or UTF-8).

Linux man-pages 6.16 2025-10-05 3497

ip(7) Miscellaneous Information Manual ip(7)

The use of this option for sockets in the AF_INET address family is supported
since Linux 2.6.17 for TCP sockets, and since Linux 4.17 for SCTP sockets.

For SELinux, NetLabel conveys only the MLS portion of the security context of
the peer across the wire, defaulting the rest of the security context to the values
defined in the policy for the netmsg initial security identifier (SID). However,
NetLabel can be configured to pass full security contexts over loopback. La-
beled IPSEC always passes full security contexts as part of establishing the secu-
rity association (SA) and looks them up based on the association for each packet.

/proc interfaces
The IP protocol supports a set of /proc interfaces to configure some global parameters.
The parameters can be accessed by reading or writing files in the directory
/proc/sys/net/ipv4/ . Interfaces described as Boolean take an integer value, with a
nonzero value ("true") meaning that the corresponding option is enabled, and a zero
value ("false") meaning that the option is disabled.

ip_always_defrag (Boolean; since Linux 2.2.13)
[New with Linux 2.2.13; in earlier kernel versions this feature was controlled at
compile time by the CONFIG_IP_ALWAYS_DEFRAG option; this option is
not present in Linux 2.4.x and later]

When this boolean flag is enabled (not equal 0), incoming fragments (parts of IP
packets that arose when some host between origin and destination decided that
the packets were too large and cut them into pieces) will be reassembled (defrag-
mented) before being processed, even if they are about to be forwarded.

Enable only if running either a firewall that is the sole link to your network or a
transparent proxy; never ever use it for a normal router or host. Otherwise, frag-
mented communication can be disturbed if the fragments travel over different
links. Defragmentation also has a large memory and CPU time cost.

This is automagically turned on when masquerading or transparent proxying are
configured.

ip_autoconfig (since Linux 2.2 to Linux 2.6.17)
Not documented.

ip_default_ttl (integer; default: 64; since Linux 2.2)
Set the default time-to-live value of outgoing packets. This can be changed per
socket with the IP_TTL option.

ip_dynaddr (Boolean; default: disabled; since Linux 2.0.31)
Enable dynamic socket address and masquerading entry rewriting on interface
address change. This is useful for dialup interface with changing IP addresses.
0 means no rewriting, 1 turns it on and 2 enables verbose mode.

ip_forward (Boolean; default: disabled; since Linux 1.2)
Enable IP forwarding with a boolean flag. IP forwarding can be also set on a
per-interface basis.

ip_local_port_range (since Linux 2.2)
This file contains two integers that define the default local port range allocated to
sockets that are not explicitly bound to a port number—that is, the range used for

Linux man-pages 6.16 2025-10-05 3498

ip(7) Miscellaneous Information Manual ip(7)

ephemeral ports. An ephemeral port is allocated to a socket in the following cir-
cumstances:

• the port number in a socket address is specified as 0 when calling bind(2);

• listen(2) is called on a stream socket that was not previously bound;

• connect(2) was called on a socket that was not previously bound;

• sendto(2) is called on a datagram socket that was not previously bound.

Allocation of ephemeral ports starts with the first number in ip_local_port_range
and ends with the second number. If the range of ephemeral ports is exhausted,
then the relevant system call returns an error (but see BUGS).

Note that the port range in ip_local_port_range should not conflict with the ports
used by masquerading (although the case is handled). Also, arbitrary choices
may cause problems with some firewall packet filters that make assumptions
about the local ports in use. The first number should be at least greater than
1024, or better, greater than 4096, to avoid clashes with well known ports and to
minimize firewall problems.

ip_no_pmtu_disc (Boolean; default: disabled; since Linux 2.2)
If enabled, don’t do Path MTU Discovery for TCP sockets by default. Path
MTU discovery may fail if misconfigured firewalls (that drop all ICMP packets)
or misconfigured interfaces (e.g., a point-to-point link where the both ends don’t
agree on the MTU) are on the path. It is better to fix the broken routers on the
path than to turn off Path MTU Discovery globally, because not doing it incurs a
high cost to the network.

ip_nonlocal_bind (Boolean; default: disabled; since Linux 2.4)
If set, allows processes to bind(2) to nonlocal IP addresses, which can be quite
useful, but may break some applications.

ip6frag_time (integer; default: 30)
Time in seconds to keep an IPv6 fragment in memory.

ip6frag_secret_interval (integer; default: 600)
Regeneration interval (in seconds) of the hash secret (or lifetime for the hash se-
cret) for IPv6 fragments.

ipfrag_high_thresh (integer)
ipfrag_low_thresh (integer)

If the amount of queued IP fragments reaches ipfrag_high_thresh, the queue is
pruned down to ipfrag_low_thresh. Contains an integer with the number of
bytes.

neigh/*
See arp(7).

Ioctls
All ioctls described in socket(7) apply to ip.

Ioctls to configure generic device parameters are described in netdevice(7).

Linux man-pages 6.16 2025-10-05 3499

ip(7) Miscellaneous Information Manual ip(7)

ERRORS
EACCES

The user tried to execute an operation without the necessary permissions. These
include: sending a packet to a broadcast address without having the
SO_BROADCAST flag set; sending a packet via a prohibit route; modifying
firewall settings without superuser privileges (the CAP_NET_ADMIN capabil-
ity); binding to a privileged port without superuser privileges (the
CAP_NET_BIND_SERVICE capability).

EADDRINUSE
Tried to bind to an address already in use.

EADDRNOTAVAIL
A nonexistent interface was requested or the requested source address was not
local.

EAGAIN
Operation on a nonblocking socket would block.

EALREADY
A connection operation on a nonblocking socket is already in progress.

ECONNABORTED
A connection was closed during an accept(2).

EHOSTUNREACH
No valid routing table entry matches the destination address. This error can be
caused by an ICMP message from a remote router or for the local routing table.

EINVAL
Invalid argument passed. For send operations this can be caused by sending to a
blackhole route.

EISCONN
connect(2) was called on an already connected socket.

EMSGSIZE
Datagram is bigger than an MTU on the path and it cannot be fragmented.

ENOBUFS
ENOMEM

Not enough free memory. This often means that the memory allocation is lim-
ited by the socket buffer limits, not by the system memory, but this is not 100%
consistent.

ENOENT
SIOCGSTAMP was called on a socket where no packet arrived.

ENOPKG
A kernel subsystem was not configured.

ENOPROTOOPT
EOPNOTSUPP

Invalid socket option passed.

Linux man-pages 6.16 2025-10-05 3500

ip(7) Miscellaneous Information Manual ip(7)

ENOTCONN
The operation is defined only on a connected socket, but the socket wasn’t con-
nected.

EPERM
User doesn’t have permission to set high priority, change configuration, or send
signals to the requested process or group.

EPIPE
The connection was unexpectedly closed or shut down by the other end.

ESOCKTNOSUPPORT
The socket is not configured or an unknown socket type was requested.

Other errors may be generated by the overlaying protocols; see tcp(7), raw(7), udp(7),
and socket(7).

NOTES
IP_FREEBIND, IP_MSFILTER, IP_MTU, IP_MTU_DISCOVER,
IP_RECVORIGDSTADDR, IP_PASSSEC, IP_PKTINFO, IP_RECVERR,
IP_ROUTER_ALERT, and IP_TRANSPARENT are Linux-specific.

Be very careful with the SO_BROADCAST option - it is not privileged in Linux. It is
easy to overload the network with careless broadcasts. For new application protocols it
is better to use a multicast group instead of broadcasting. Broadcasting is discouraged.
See RFC 6762 for an example of a protocol (mDNS) using the more modern multicast
approach to communicating with an open-ended group of hosts on the local network.

Some other BSD sockets implementations provide IP_RCVDSTADDR and
IP_RECVIF socket options to get the destination address and the interface of received
datagrams. Linux has the more general IP_PKTINFO for the same task.

Some BSD sockets implementations also provide an IP_RECVTTL option, but an an-
cillary message with type IP_RECVTTL is passed with the incoming packet. This is
different from the IP_TTL option used in Linux.

Using the SOL_IP socket options level isn’t portable; BSD-based stacks use the IP-
PROTO_IP level.

INADDR_ANY (0.0.0.0) and INADDR_BROADCAST (255.255.255.255) are byte-
order-neutral. This means htonl(3) has no effect on them.

Compatibility
For compatibility with Linux 2.0, the obsolete socket(AF_INET, SOCK_PACKET,
protocol) syntax is still supported to open a packet(7) socket. This is deprecated and
should be replaced by socket(AF_PACKET, SOCK_RAW, protocol) instead. The
main difference is the new sockaddr_ll address structure for generic link layer informa-
tion instead of the old sockaddr_pkt.

BUGS
There are too many inconsistent error values.

The error used to diagnose exhaustion of the ephemeral port range differs across the var-
ious system calls (connect(2), bind(2), listen(2), sendto(2)) that can assign ephemeral
ports.

Linux man-pages 6.16 2025-10-05 3501

ip(7) Miscellaneous Information Manual ip(7)

The ioctls to configure IP-specific interface options and ARP tables are not described.

Receiving the original destination address with MSG_ERRQUEUE in msg_name by
recvmsg(2) does not work in some Linux 2.2 kernels.

SEE ALSO
recvmsg(2), sendmsg(2), byteorder(3), capabilities(7), icmp(7), ipv6(7), netdevice(7),
netlink(7), raw(7), socket(7), tcp(7), udp(7), ip(8)

The kernel source file Documentation/networking/ip-sysctl.txt.

RFC 791 for the original IP specification. RFC 1122 for the IPv4 host requirements.
RFC 1812 for the IPv4 router requirements.

Linux man-pages 6.16 2025-10-05 3502

ipc_namespaces(7) Miscellaneous Information Manual ipc_namespaces(7)

NAME
ipc_namespaces - overview of Linux IPC namespaces

DESCRIPTION
IPC namespaces isolate certain IPC resources, namely, System V IPC objects (see
sysvipc(7)) and (since Linux 2.6.30) POSIX message queues (see mq_overview(7)). The
common characteristic of these IPC mechanisms is that IPC objects are identified by
mechanisms other than filesystem pathnames.

Each IPC namespace has its own set of System V IPC identifiers and its own POSIX
message queue filesystem. Objects created in an IPC namespace are visible to all other
processes that are members of that namespace, but are not visible to processes in other
IPC namespaces.

The following /proc interfaces are distinct in each IPC namespace:

• The POSIX message queue interfaces in /proc/sys/fs/mqueue.

• The System V IPC interfaces in /proc/sys/kernel, namely: msgmax, msgmnb, ms-
gmni, sem, shmall, shmmax, shmmni, and shm_rmid_forced .

• The System V IPC interfaces in /proc/sysvipc.

When an IPC namespace is destroyed (i.e., when the last process that is a member of the
namespace terminates), all IPC objects in the namespace are automatically destroyed.

Use of IPC namespaces requires a kernel that is configured with the CONFIG_IPC_NS
option.

SEE ALSO
nsenter(1), unshare(1), clone(2), setns(2), unshare(2), mq_overview(7), namespaces(7),
sysvipc(7)

Linux man-pages 6.16 2025-05-17 3503

ipv6(7) Miscellaneous Information Manual ipv6(7)

NAME
ipv6 - Linux IPv6 protocol implementation

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>

tcp6_socket = socket(AF_INET6, SOCK_STREAM, 0);
raw6_socket = socket(AF_INET6, SOCK_RAW, protocol);
udp6_socket = socket(AF_INET6, SOCK_DGRAM, protocol);

DESCRIPTION
Linux 2.2 optionally implements the Internet Protocol, version 6. This man page con-
tains a description of the IPv6 basic API as implemented by the Linux kernel and glibc
2.1. The interface is based on the BSD sockets interface; see socket(7).

The IPv6 API aims to be mostly compatible with the IPv4 API (see ip(7)). Only differ-
ences are described in this man page.

To bind an AF_INET6 socket to any process, the local address should be copied from
the in6addr_any variable which has in6_addr type. In static initializations,
IN6ADDR_ANY_INIT may also be used, which expands to a constant expression.
Both of them are in network byte order.

The IPv6 loopback address (::1) is available in the global in6addr_loopback variable.
For initializations, IN6ADDR_LOOPBACK_INIT should be used.

IPv4 connections can be handled with the v6 API by using the v4-mapped-on-v6 ad-
dress type; thus a program needs to support only this API type to support both protocols.
This is handled transparently by the address handling functions in the C library.

IPv4 and IPv6 share the local port space. When you get an IPv4 connection or packet to
an IPv6 socket, its source address will be mapped to v6.

Address format
struct sockaddr_in6 {

sa_family_t sin6_family; /* AF_INET6 */
in_port_t sin6_port; /* port number */
uint32_t sin6_flowinfo; /* IPv6 flow information */
struct in6_addr sin6_addr; /* IPv6 address */
uint32_t sin6_scope_id; /* Scope ID (new in Linux 2.4) */

};

struct in6_addr {
unsigned char s6_addr[16]; /* IPv6 address */

};

sin6_family is always set to AF_INET6; sin6_port is the protocol port (see sin_port in
ip(7)); sin6_flowinfo is the IPv6 flow identifier; sin6_addr is the 128-bit IPv6 address.
sin6_scope_id is an ID depending on the scope of the address. It is new in Linux 2.4.
Linux supports it only for link-local addresses, in that case sin6_scope_id contains the
interface index (see netdevice(7))

IPv6 supports several address types: unicast to address a single host, multicast to address

Linux man-pages 6.16 2025-09-21 3504

ipv6(7) Miscellaneous Information Manual ipv6(7)

a group of hosts, anycast to address the nearest member of a group of hosts (not imple-
mented in Linux), IPv4-on-IPv6 to address an IPv4 host, and other reserved address
types.

The address notation for IPv6 is a group of 8 4-digit hexadecimal numbers, separated
with a ':'. "::" stands for a string of 0 bits. Special addresses are ::1 for loopback and
::FFFF:<IPv4 address> for IPv4-mapped-on-IPv6.

The port space of IPv6 is shared with IPv4.

Socket options
IPv6 supports some protocol-specific socket options that can be set with setsockopt(2)
and read with getsockopt(2). The socket option level for IPv6 is IPPROTO_IPV6. A
boolean integer flag is zero when it is false, otherwise true.

IPV6_ADDRFORM
Turn an AF_INET6 socket into a socket of a different address family. Only
AF_INET is currently supported for that. It is allowed only for IPv6 sockets
that are connected and bound to a v4-mapped-on-v6 address. The argument is a
pointer to an integer containing AF_INET. This is useful to pass v4-mapped
sockets as file descriptors to programs that don’t know how to deal with the IPv6
API.

IPV6_ADD_MEMBERSHIP, IPV6_DROP_MEMBERSHIP
Control membership in multicast groups. Argument is a pointer to a struct
ipv6_mreq.

IPV6_MTU
getsockopt(): Retrieve the current known path MTU of the current socket. Valid
only when the socket has been connected. Returns an integer.

setsockopt(): Set the MTU to be used for the socket. The MTU is limited by the
device MTU or the path MTU when path MTU discovery is enabled. Argument
is a pointer to integer.

IPV6_MTU_DISCOVER
Control path-MTU discovery on the socket. See IP_MTU_DISCOVER in ip(7)
for details.

IPV6_MULTICAST_HOPS
Set the multicast hop limit for the socket. Argument is a pointer to an integer.
-1 in the value means use the route default, otherwise it should be between 0 and
255.

IPV6_MULTICAST_IF
Set the device for outgoing multicast packets on the socket. This is allowed only
for SOCK_DGRAM and SOCK_RAW socket. The argument is a pointer to an
interface index (see netdevice(7)) in an integer.

IPV6_MULTICAST_LOOP
Control whether the socket sees multicast packets that it has send itself. Argu-
ment is a pointer to boolean.

Linux man-pages 6.16 2025-09-21 3505

ipv6(7) Miscellaneous Information Manual ipv6(7)

IPV6_RECVPKTINFO (since Linux 2.6.14)
Set delivery of the IPV6_PKTINFO control message on incoming datagrams.
Such control messages contain a struct in6_pktinfo, as per RFC 3542. Allowed
only for SOCK_DGRAM or SOCK_RAW sockets. Argument is a pointer to a
boolean value in an integer.

IPV6_RTHDR, IPV6_AUTHHDR, IPV6_DSTOPTS, IPV6_HOPOPTS,
IPV6_FLOWINFO, IPV6_HOPLIMIT

Set delivery of control messages for incoming datagrams containing extension
headers from the received packet. IPV6_RTHDR delivers the routing header,
IPV6_AUTHHDR delivers the authentication header, IPV6_DSTOPTS deliv-
ers the destination options, IPV6_HOPOPTS delivers the hop options,
IPV6_FLOWINFO delivers an integer containing the flow ID, IPV6_HO-
PLIMIT delivers an integer containing the hop count of the packet. The control
messages have the same type as the socket option. All these header options can
also be set for outgoing packets by putting the appropriate control message into
the control buffer of sendmsg(2). Allowed only for SOCK_DGRAM or
SOCK_RAW sockets. Argument is a pointer to a boolean value.

IPV6_RECVERR
Control receiving of asynchronous error options. See IP_RECVERR in ip(7)
for details. Argument is a pointer to boolean.

IPV6_ROUTER_ALERT
Pass forwarded packets containing a router alert hop-by-hop option to this
socket. Allowed only for SOCK_RAW sockets. The tapped packets are not for-
warded by the kernel, it is the user’s responsibility to send them out again. Ar-
gument is a pointer to an integer. A positive integer indicates a router alert op-
tion value to intercept. Packets carrying a router alert option with a value field
containing this integer will be delivered to the socket. A negative integer dis-
ables delivery of packets with router alert options to this socket.

IPV6_UNICAST_HOPS
Set the unicast hop limit for the socket. Argument is a pointer to an integer. -1
in the value means use the route default, otherwise it should be between 0 and
255.

IPV6_V6ONLY (since Linux 2.4.21 and 2.6)
If this flag is set to true (nonzero), then the socket is restricted to sending and re-
ceiving IPv6 packets only. In this case, an IPv4 and an IPv6 application can bind
to a single port at the same time.

If this flag is set to false (zero), then the socket can be used to send and receive
packets to and from an IPv6 address or an IPv4-mapped IPv6 address.

The argument is a pointer to a boolean value in an integer.

The default value for this flag is defined by the contents of the file
/proc/sys/net/ipv6/bindv6only. The default value for that file is 0 (false).

Linux man-pages 6.16 2025-09-21 3506

ipv6(7) Miscellaneous Information Manual ipv6(7)

ERRORS
ENODEV

The user tried to bind(2) to a link-local IPv6 address, but the sin6_scope_id in
the supplied sockaddr_in6 structure is not a valid interface index.

VERSIONS
Linux 2.4 will break binary compatibility for the sockaddr_in6 for 64-bit hosts by
changing the alignment of in6_addr and adding an additional sin6_scope_id field. The
kernel interfaces stay compatible, but a program including sockaddr_in6 or in6_addr
into other structures may not be. This is not a problem for 32-bit hosts like i386.

The sin6_flowinfo field is new in Linux 2.4. It is transparently passed/read by the kernel
when the passed address length contains it. Some programs that pass a longer address
buffer and then check the outgoing address length may break.

NOTES
The sockaddr_in6 structure is bigger than the generic sockaddr. Programs that assume
that all address types can be stored safely in a struct sockaddr need to be changed to use
struct sockaddr_storage for that instead.

SOL_IP, SOL_IPV6, SOL_ICMPV6, and other SOL_* socket options are non-
portable variants of IPPROTO_*. See also ip(7).

BUGS
The IPv6 extended API as in RFC 2292 is currently only partly implemented; although
the 2.2 kernel has near complete support for receiving options, the macros for generating
IPv6 options are missing in glibc 2.1.

IPSec support for EH and AH headers is missing.

Flow label management is not complete and not documented here.

This man page is not complete.

SEE ALSO
cmsg(3), ip(7)

RFC 2553: IPv6 BASIC API; Linux tries to be compliant to this. RFC 2460: IPv6 spec-
ification.

Linux man-pages 6.16 2025-09-21 3507

ipv6(7) Miscellaneous Information Manual ipv6(7)

Linux man-pages 6.16 2025-09-21 3508

ISO_8859-1(7) Miscellaneous Information Manual ISO_8859-1(7)

NAME
iso_8859-1 - ISO/IEC 8859-1 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-1 encodes the characters used in
many West European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-1 characters
The following table displays the characters in ISO/IEC 8859-1 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN

Linux man-pages 6.16 2025-05-17 3509

ISO_8859-1(7) Miscellaneous Information Manual ISO_8859-1(7)

262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN
337 223 DF ß LATIN SMALL LETTER SHARP S

Linux man-pages 6.16 2025-05-17 3510

ISO_8859-1(7) Miscellaneous Information Manual ISO_8859-1(7)

340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-1 is also known as Latin-1.

SEE ALSO
ascii(7), charsets(7), cp1252(7), iso_8859-15(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3511

ISO_8859-2(7) Miscellaneous Information Manual ISO_8859-2(7)

NAME
iso_8859-2 - ISO/IEC 8859-2 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-2 encodes the Latin characters used
in many Central and East European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-2 characters
The following table displays the characters in ISO/IEC 8859-2 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 ˘ BREVE
243 163 A3 Ł LATIN CAPITAL LETTER L WITH STROKE
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 Ľ LATIN CAPITAL LETTER L WITH CARON
246 166 A6 Ś LATIN CAPITAL LETTER S WITH ACUTE
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 Š LATIN CAPITAL LETTER S WITH CARON
252 170 AA Ş LATIN CAPITAL LETTER S WITH CEDILLA
253 171 AB Ť LATIN CAPITAL LETTER T WITH CARON
254 172 AC Ź LATIN CAPITAL LETTER Z WITH ACUTE
255 173 AD SOFT HYPHEN
256 174 AE Ž LATIN CAPITAL LETTER Z WITH CARON
257 175 AF Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
260 176 B0 ° DEGREE SIGN
261 177 B1 ą LATIN SMALL LETTER A WITH OGONEK

Linux man-pages 6.16 2025-05-17 3512

ISO_8859-2(7) Miscellaneous Information Manual ISO_8859-2(7)

262 178 B2 ˛ OGONEK
263 179 B3 ł LATIN SMALL LETTER L WITH STROKE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 ľ LATIN SMALL LETTER L WITH CARON
266 182 B6 ś LATIN SMALL LETTER S WITH ACUTE
267 183 B7 ˇ CARON
270 184 B8 ¸ CEDILLA
271 185 B9 š LATIN SMALL LETTER S WITH CARON
272 186 BA ş LATIN SMALL LETTER S WITH CEDILLA
273 187 BB ť LATIN SMALL LETTER T WITH CARON
274 188 BC ź LATIN SMALL LETTER Z WITH ACUTE
275 189 BD ˝ DOUBLE ACUTE ACCENT
276 190 BE ž LATIN SMALL LETTER Z WITH CARON
277 191 BF ż LATIN SMALL LETTER Z WITH DOT ABOVE
300 192 C0 Ŕ LATIN CAPITAL LETTER R WITH ACUTE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ă LATIN CAPITAL LETTER A WITH BREVE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Ĺ LATIN CAPITAL LETTER L WITH ACUTE
306 198 C6 Ć LATIN CAPITAL LETTER C WITH ACUTE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ę LATIN CAPITAL LETTER E WITH OGONEK
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ě LATIN CAPITAL LETTER E WITH CARON
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ď LATIN CAPITAL LETTER D WITH CARON
320 208 D0 -D LATIN CAPITAL LETTER D WITH STROKE
321 209 D1 Ń LATIN CAPITAL LETTER N WITH ACUTE
322 210 D2 Ň LATIN CAPITAL LETTER N WITH CARON
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Ő LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ř LATIN CAPITAL LETTER R WITH CARON
331 217 D9 Ů LATIN CAPITAL LETTER U WITH RING ABOVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Ű LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Ţ LATIN CAPITAL LETTER T WITH CEDILLA
337 223 DF ß LATIN SMALL LETTER SHARP S

Linux man-pages 6.16 2025-05-17 3513

ISO_8859-2(7) Miscellaneous Information Manual ISO_8859-2(7)

340 224 E0 ŕ LATIN SMALL LETTER R WITH ACUTE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ă LATIN SMALL LETTER A WITH BREVE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 ĺ LATIN SMALL LETTER L WITH ACUTE
346 230 E6 ć LATIN SMALL LETTER C WITH ACUTE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ę LATIN SMALL LETTER E WITH OGONEK
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ě LATIN SMALL LETTER E WITH CARON
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ď LATIN SMALL LETTER D WITH CARON
360 240 F0 -d LATIN SMALL LETTER D WITH STROKE
361 241 F1 ń LATIN SMALL LETTER N WITH ACUTE
362 242 F2 ň LATIN SMALL LETTER N WITH CARON
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 ő LATIN SMALL LETTER O WITH DOUBLE ACUTE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ř LATIN SMALL LETTER R WITH CARON
371 249 F9 ů LATIN SMALL LETTER U WITH RING ABOVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB ű LATIN SMALL LETTER U WITH DOUBLE ACUTE
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE ţ LATIN SMALL LETTER T WITH CEDILLA
377 255 FF ˙ DOT ABOVE

NOTES
ISO/IEC 8859-2 is also known as Latin-2.

SEE ALSO
ascii(7), charsets(7), iso_8859-1(7), iso_8859-16(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3514

ISO_8859-3(7) Miscellaneous Information Manual ISO_8859-3(7)

NAME
iso_8859-3 - ISO/IEC 8859-3 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-3 encodes the characters used in cer-
tain Southeast European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-3 characters
The following table displays the characters in ISO/IEC 8859-3 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ħ LATIN CAPITAL LETTER H WITH STROKE
242 162 A2 ˘ BREVE
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
246 166 A6 Ĥ LATIN CAPITAL LETTER H WITH CIRCUMFLEX
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 İ LATIN CAPITAL LETTER I WITH DOT ABOVE
252 170 AA Ş LATIN CAPITAL LETTER S WITH CEDILLA
253 171 AB Ğ LATIN CAPITAL LETTER G WITH BREVE
254 172 AC Ĵ LATIN CAPITAL LETTER J WITH CIRCUMFLEX
255 173 AD SOFT HYPHEN
257 175 AF Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
260 176 B0 ° DEGREE SIGN
261 177 B1 ħ LATIN SMALL LETTER H WITH STROKE
262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE

Linux man-pages 6.16 2025-05-17 3515

ISO_8859-3(7) Miscellaneous Information Manual ISO_8859-3(7)

264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ĥ LATIN SMALL LETTER H WITH CIRCUMFLEX
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ı LATIN SMALL LETTER DOTLESS I
272 186 BA ş LATIN SMALL LETTER S WITH CEDILLA
273 187 BB ğ LATIN SMALL LETTER G WITH BREVE
274 188 BC ĵ LATIN SMALL LETTER J WITH CIRCUMFLEX
275 189 BD ½ VULGAR FRACTION ONE HALF
277 191 BF ż LATIN SMALL LETTER Z WITH DOT ABOVE
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Ċ LATIN CAPITAL LETTER C WITH DOT ABOVE
306 198 C6 Ĉ LATIN CAPITAL LETTER C WITH CIRCUMFLEX
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Ġ LATIN CAPITAL LETTER G WITH DOT ABOVE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ĝ LATIN CAPITAL LETTER G WITH CIRCUMFLEX
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ŭ LATIN CAPITAL LETTER U WITH BREVE
336 222 DE Ŝ LATIN CAPITAL LETTER S WITH CIRCUMFLEX
337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 ċ LATIN SMALL LETTER C WITH DOT ABOVE

Linux man-pages 6.16 2025-05-17 3516

ISO_8859-3(7) Miscellaneous Information Manual ISO_8859-3(7)

346 230 E6 ĉ LATIN SMALL LETTER C WITH CIRCUMFLEX
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 ġ LATIN SMALL LETTER G WITH DOT ABOVE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ĝ LATIN SMALL LETTER G WITH CIRCUMFLEX
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ŭ LATIN SMALL LETTER U WITH BREVE
376 254 FE ŝ LATIN SMALL LETTER S WITH CIRCUMFLEX
377 255 FF ˙ DOT ABOVE

NOTES
ISO/IEC 8859-3 is also known as Latin-3.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3517

ISO_8859-4(7) Miscellaneous Information Manual ISO_8859-4(7)

NAME
iso_8859-4 - ISO/IEC 8859-4 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-4 encodes the characters used in
Scandinavian and Baltic languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-4 characters
The following table displays the characters in ISO/IEC 8859-4 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 ĸ LATIN SMALL LETTER KRA (Greenlandic)
243 163 A3 Ŗ LATIN CAPITAL LETTER R WITH CEDILLA
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 Ĩ LATIN CAPITAL LETTER I WITH TILDE
246 166 A6 Ļ LATIN CAPITAL LETTER L WITH CEDILLA
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 Š LATIN CAPITAL LETTER S WITH CARON
252 170 AA Ē LATIN CAPITAL LETTER E WITH MACRON
253 171 AB Ģ LATIN CAPITAL LETTER G WITH CEDILLA
254 172 AC Ŧ LATIN CAPITAL LETTER T WITH STROKE
255 173 AD SOFT HYPHEN
256 174 AE Ž LATIN CAPITAL LETTER Z WITH CARON
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ą LATIN SMALL LETTER A WITH OGONEK

Linux man-pages 6.16 2025-05-17 3518

ISO_8859-4(7) Miscellaneous Information Manual ISO_8859-4(7)

262 178 B2 ˛ OGONEK
263 179 B3 ŗ LATIN SMALL LETTER R WITH CEDILLA
264 180 B4 ´ ACUTE ACCENT
265 181 B5 ĩ LATIN SMALL LETTER I WITH TILDE
266 182 B6 ļ LATIN SMALL LETTER L WITH CEDILLA
267 183 B7 ˇ CARON
270 184 B8 ¸ CEDILLA
271 185 B9 š LATIN SMALL LETTER S WITH CARON
272 186 BA ē LATIN SMALL LETTER E WITH MACRON
273 187 BB ģ LATIN SMALL LETTER G WITH CEDILLA
274 188 BC ŧ LATIN SMALL LETTER T WITH STROKE
275 189 BD Ŋ LATIN CAPITAL LETTER ENG
276 190 BE ž LATIN SMALL LETTER Z WITH CARON
277 191 BF ŋ LATIN SMALL LETTER ENG
300 192 C0 Ā LATIN CAPITAL LETTER A WITH MACRON
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Į LATIN CAPITAL LETTER I WITH OGONEK
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ę LATIN CAPITAL LETTER E WITH OGONEK
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ė LATIN CAPITAL LETTER E WITH DOT ABOVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ī LATIN CAPITAL LETTER I WITH MACRON
320 208 D0 -D LATIN CAPITAL LETTER D WITH STROKE
321 209 D1 Ņ LATIN CAPITAL LETTER N WITH CEDILLA
322 210 D2 Ō LATIN CAPITAL LETTER O WITH MACRON
323 211 D3 Ķ LATIN CAPITAL LETTER K WITH CEDILLA
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ų LATIN CAPITAL LETTER U WITH OGONEK
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ũ LATIN CAPITAL LETTER U WITH TILDE
336 222 DE Ū LATIN CAPITAL LETTER U WITH MACRON
337 223 DF ß LATIN SMALL LETTER SHARP S

Linux man-pages 6.16 2025-05-17 3519

ISO_8859-4(7) Miscellaneous Information Manual ISO_8859-4(7)

340 224 E0 ā LATIN SMALL LETTER A WITH MACRON
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 į LATIN SMALL LETTER I WITH OGONEK
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ę LATIN SMALL LETTER E WITH OGONEK
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ė LATIN SMALL LETTER E WITH DOT ABOVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ī LATIN SMALL LETTER I WITH MACRON
360 240 F0 -d LATIN SMALL LETTER D WITH STROKE
361 241 F1 ņ LATIN SMALL LETTER N WITH CEDILLA
362 242 F2 ō LATIN SMALL LETTER O WITH MACRON
363 243 F3 ķ LATIN SMALL LETTER K WITH CEDILLA
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ų LATIN SMALL LETTER U WITH OGONEK
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ũ LATIN SMALL LETTER U WITH TILDE
376 254 FE ū LATIN SMALL LETTER U WITH MACRON
377 255 FF ˙ DOT ABOVE

NOTES
ISO/IEC 8859-4 is also known as Latin-4.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3520

ISO_8859-5(7) Miscellaneous Information Manual ISO_8859-5(7)

NAME
iso_8859-5 - ISO/IEC 8859-5 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-5 encodes the Cyrillic characters
used in many East European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-5 characters
The following table displays the characters in ISO/IEC 8859-5 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ё CYRILLIC CAPITAL LETTER IO
242 162 A2 Ђ CYRILLIC CAPITAL LETTER DJE
243 163 A3 Ѓ CYRILLIC CAPITAL LETTER GJE
244 164 A4 Є CYRILLIC CAPITAL LETTER UKRAINIAN IE
245 165 A5 Ѕ CYRILLIC CAPITAL LETTER DZE
246 166 A6 І CYRILLIC CAPITAL LETTER

BYELORUSSIAN-UKRAINIAN I
247 167 A7 Ї CYRILLIC CAPITAL LETTER YI
250 168 A8 Ј CYRILLIC CAPITAL LETTER JE
251 169 A9 Љ CYRILLIC CAPITAL LETTER LJE
252 170 AA Њ CYRILLIC CAPITAL LETTER NJE
253 171 AB Ћ CYRILLIC CAPITAL LETTER TSHE
254 172 AC Ќ CYRILLIC CAPITAL LETTER KJE
255 173 AD SOFT HYPHEN
256 174 AE Ў CYRILLIC CAPITAL LETTER SHORT U
257 175 AF Џ CYRILLIC CAPITAL LETTER DZHE
260 176 B0 А CYRILLIC CAPITAL LETTER A

Linux man-pages 6.16 2025-05-17 3521

ISO_8859-5(7) Miscellaneous Information Manual ISO_8859-5(7)

261 177 B1 Б CYRILLIC CAPITAL LETTER BE
262 178 B2 В CYRILLIC CAPITAL LETTER VE
263 179 B3 Г CYRILLIC CAPITAL LETTER GHE
264 180 B4 Д CYRILLIC CAPITAL LETTER DE
265 181 B5 Е CYRILLIC CAPITAL LETTER IE
266 182 B6 Ж CYRILLIC CAPITAL LETTER ZHE
267 183 B7 З CYRILLIC CAPITAL LETTER ZE
270 184 B8 И CYRILLIC CAPITAL LETTER I
271 185 B9 Й CYRILLIC CAPITAL LETTER SHORT I
272 186 BA К CYRILLIC CAPITAL LETTER KA
273 187 BB Л CYRILLIC CAPITAL LETTER EL
274 188 BC М CYRILLIC CAPITAL LETTER EM
275 189 BD Н CYRILLIC CAPITAL LETTER EN
276 190 BE О CYRILLIC CAPITAL LETTER O
277 191 BF П CYRILLIC CAPITAL LETTER PE
300 192 C0 Р CYRILLIC CAPITAL LETTER ER
301 193 C1 С CYRILLIC CAPITAL LETTER ES
302 194 C2 Т CYRILLIC CAPITAL LETTER TE
303 195 C3 У CYRILLIC CAPITAL LETTER U
304 196 C4 Ф CYRILLIC CAPITAL LETTER EF
305 197 C5 Х CYRILLIC CAPITAL LETTER HA
306 198 C6 Ц CYRILLIC CAPITAL LETTER TSE
307 199 C7 Ч CYRILLIC CAPITAL LETTER CHE
310 200 C8 Ш CYRILLIC CAPITAL LETTER SHA
311 201 C9 Щ CYRILLIC CAPITAL LETTER SHCHA
312 202 CA Ъ CYRILLIC CAPITAL LETTER HARD SIGN
313 203 CB Ы CYRILLIC CAPITAL LETTER YERU
314 204 CC Ь CYRILLIC CAPITAL LETTER SOFT SIGN
315 205 CD Э CYRILLIC CAPITAL LETTER E
316 206 CE Ю CYRILLIC CAPITAL LETTER YU
317 207 CF Я CYRILLIC CAPITAL LETTER YA
320 208 D0 а CYRILLIC SMALL LETTER A
321 209 D1 б CYRILLIC SMALL LETTER BE
322 210 D2 в CYRILLIC SMALL LETTER VE
323 211 D3 г CYRILLIC SMALL LETTER GHE
324 212 D4 д CYRILLIC SMALL LETTER DE
325 213 D5 е CYRILLIC SMALL LETTER IE
326 214 D6 ж CYRILLIC SMALL LETTER ZHE
327 215 D7 з CYRILLIC SMALL LETTER ZE
330 216 D8 и CYRILLIC SMALL LETTER I
331 217 D9 й CYRILLIC SMALL LETTER SHORT I
332 218 DA к CYRILLIC SMALL LETTER KA
333 219 DB л CYRILLIC SMALL LETTER EL
334 220 DC м CYRILLIC SMALL LETTER EM
335 221 DD н CYRILLIC SMALL LETTER EN
336 222 DE о CYRILLIC SMALL LETTER O

Linux man-pages 6.16 2025-05-17 3522

ISO_8859-5(7) Miscellaneous Information Manual ISO_8859-5(7)

337 223 DF п CYRILLIC SMALL LETTER PE
340 224 E0 р CYRILLIC SMALL LETTER ER
341 225 E1 с CYRILLIC SMALL LETTER ES
342 226 E2 т CYRILLIC SMALL LETTER TE
343 227 E3 у CYRILLIC SMALL LETTER U
344 228 E4 ф CYRILLIC SMALL LETTER EF
345 229 E5 х CYRILLIC SMALL LETTER HA
346 230 E6 ц CYRILLIC SMALL LETTER TSE
347 231 E7 ч CYRILLIC SMALL LETTER CHE
350 232 E8 ш CYRILLIC SMALL LETTER SHA
351 233 E9 щ CYRILLIC SMALL LETTER SHCHA
352 234 EA ъ CYRILLIC SMALL LETTER HARD SIGN
353 235 EB ы CYRILLIC SMALL LETTER YERU
354 236 EC ь CYRILLIC SMALL LETTER SOFT SIGN
355 237 ED э CYRILLIC SMALL LETTER E
356 238 EE ю CYRILLIC SMALL LETTER YU
357 239 EF я CYRILLIC SMALL LETTER YA
360 240 F0 № NUMERO SIGN
361 241 F1 ё CYRILLIC SMALL LETTER IO
362 242 F2 ђ CYRILLIC SMALL LETTER DJE
363 243 F3 ѓ CYRILLIC SMALL LETTER GJE
364 244 F4 є CYRILLIC SMALL LETTER UKRAINIAN IE
365 245 F5 ѕ CYRILLIC SMALL LETTER DZE
366 246 F6 і CYRILLIC SMALL LETTER BYELORUSSIAN-UKRAINIAN I
367 247 F7 ї CYRILLIC SMALL LETTER YI
370 248 F8 ј CYRILLIC SMALL LETTER JE
371 249 F9 љ CYRILLIC SMALL LETTER LJE
372 250 FA њ CYRILLIC SMALL LETTER NJE
373 251 FB ј CYRILLIC SMALL LETTER TSHE
374 252 FC ќ CYRILLIC SMALL LETTER KJE
375 253 FD § SECTION SIGN
376 254 FE ў CYRILLIC SMALL LETTER SHORT U
377 255 FF џ CYRILLIC SMALL LETTER DZHE

SEE ALSO
ascii(7), charsets(7), cp1251(7), koi8-r(7), koi8-u(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3523

ISO_8859-6(7) Miscellaneous Information Manual ISO_8859-6(7)

NAME
iso_8859-6 - ISO/IEC 8859-6 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-6 encodes the characters used in the
Arabic language.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-6 characters
The following table displays the characters in ISO/IEC 8859-6 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
244 164 A4 ¤ CURRENCY SIGN
254 172 AC ARABIC COMMA
255 173 AD SOFT HYPHEN
273 187 BB ARABIC SEMICOLON
277 191 BF ARABIC QUESTION MARK
301 193 C1 ARABIC LETTER HAMZA
302 194 C2 ARABIC LETTER ALEF WITH MADDA ABOVE
303 195 C3 ARABIC LETTER ALEF WITH HAMZA ABOVE
304 196 C4 ARABIC LETTER WAW WITH HAMZA ABOVE
305 197 C5 ARABIC LETTER ALEF WITH HAMZA BELOW
306 198 C6 ARABIC LETTER YEH WITH HAMZA ABOVE
307 199 C7 ARABIC LETTER ALEF
310 200 C8 ARABIC LETTER BEH
311 201 C9 ARABIC LETTER TEH MARBUTA
312 202 CA ARABIC LETTER TEH
313 203 CB ARABIC LETTER THEH
314 204 CC ARABIC LETTER JEEM

Linux man-pages 6.16 2025-05-17 3524

ISO_8859-6(7) Miscellaneous Information Manual ISO_8859-6(7)

315 205 CD ARABIC LETTER HAH
316 206 CE ARABIC LETTER KHAH
317 207 CF ARABIC LETTER DAL
320 208 D0 ARABIC LETTER THAL
321 209 D1 ARABIC LETTER REH
322 210 D2 ARABIC LETTER ZAIN
323 211 D3 ARABIC LETTER SEEN
324 212 D4 ARABIC LETTER SHEEN
325 213 D5 ARABIC LETTER SAD
326 214 D6 ARABIC LETTER DAD
327 215 D7 ARABIC LETTER TAH
330 216 D8 ARABIC LETTER ZAH
331 217 D9 ARABIC LETTER AIN
332 218 DA ARABIC LETTER GHAIN
340 224 E0 ARABIC TATWEEL
341 225 E1 ARABIC LETTER FEH
342 226 E2 ARABIC LETTER QAF
343 227 E3 ARABIC LETTER KAF
344 228 E4 ARABIC LETTER LAM
345 229 E5 ARABIC LETTER MEEM
346 230 E6 ARABIC LETTER NOON
347 231 E7 ARABIC LETTER HEH
350 232 E8 ARABIC LETTER WAW
351 233 E9 ARABIC LETTER ALEF MAKSURA
352 234 EA ARABIC LETTER YEH
353 235 EB ARABIC FATHATAN
354 236 EC ARABIC DAMMATAN
355 237 ED ARABIC KASRATAN
356 238 EE ARABIC FATHA
357 239 EF ARABIC DAMMA
360 240 F0 ARABIC KASRA
361 241 F1 ARABIC SHADDA
362 242 F2 ARABIC SUKUN

NOTES
ISO/IEC 8859-6 lacks the glyphs required for many related languages, such as Urdu and
Persian (Farsi).

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3525

ISO_8859-7(7) Miscellaneous Information Manual ISO_8859-7(7)

NAME
iso_8859-7 - ISO/IEC 8859-7 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-7 encodes the characters used in
modern monotonic Greek.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-7 characters
The following table displays the characters in ISO/IEC 8859-7 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ‘ LEFT SINGLE QUOTATION MARK
242 162 A2 ’ RIGHT SINGLE QUOTATION MARK
243 163 A3 £ POUND SIGN
244 164 A4 € EURO SIGN
245 165 A5 ₯ DRACHMA SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA ͺ GREEK YPOGEGRAMMENI
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
257 175 AF — HORIZONTAL BAR
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO

Linux man-pages 6.16 2025-05-17 3526

ISO_8859-7(7) Miscellaneous Information Manual ISO_8859-7(7)

263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ΄ GREEK TONOS
265 181 B5 ΅ GREEK DIALYTIKA TONOS
266 182 B6 Ά GREEK CAPITAL LETTER ALPHA WITH TONOS
267 183 B7 · MIDDLE DOT
270 184 B8 Έ GREEK CAPITAL LETTER EPSILON WITH TONOS
271 185 B9 Ή GREEK CAPITAL LETTER ETA WITH TONOS
272 186 BA Ί GREEK CAPITAL LETTER IOTA WITH TONOS
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC Ό GREEK CAPITAL LETTER OMICRON WITH TONOS
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE Ύ GREEK CAPITAL LETTER UPSILON WITH TONOS
277 191 BF Ώ GREEK CAPITAL LETTER OMEGA WITH TONOS
300 192 C0 ΐ GREEK SMALL LETTER IOTA WITH

DIALYTIKA AND TONOS
301 193 C1 Α GREEK CAPITAL LETTER ALPHA
302 194 C2 Β GREEK CAPITAL LETTER BETA
303 195 C3 Γ GREEK CAPITAL LETTER GAMMA
304 196 C4 ∆ GREEK CAPITAL LETTER DELTA
305 197 C5 Ε GREEK CAPITAL LETTER EPSILON
306 198 C6 Ζ GREEK CAPITAL LETTER ZETA
307 199 C7 Η GREEK CAPITAL LETTER ETA
310 200 C8 Θ GREEK CAPITAL LETTER THETA
311 201 C9 Ι GREEK CAPITAL LETTER IOTA
312 202 CA Κ GREEK CAPITAL LETTER KAPPA
313 203 CB Λ GREEK CAPITAL LETTER LAMBDA
314 204 CC Μ GREEK CAPITAL LETTER MU
315 205 CD Ν GREEK CAPITAL LETTER NU
316 206 CE Ξ GREEK CAPITAL LETTER XI
317 207 CF Ο GREEK CAPITAL LETTER OMICRON
320 208 D0 Π GREEK CAPITAL LETTER PI
321 209 D1 Ρ GREEK CAPITAL LETTER RHO
323 211 D3 Σ GREEK CAPITAL LETTER SIGMA
324 212 D4 Τ GREEK CAPITAL LETTER TAU
325 213 D5 Υ GREEK CAPITAL LETTER UPSILON
326 214 D6 Φ GREEK CAPITAL LETTER PHI
327 215 D7 Χ GREEK CAPITAL LETTER CHI
330 216 D8 Ψ GREEK CAPITAL LETTER PSI
331 217 D9 Ω GREEK CAPITAL LETTER OMEGA
332 218 DA Ϊ GREEK CAPITAL LETTER IOTA WITH DIALYTIKA
333 219 DB Ϋ GREEK CAPITAL LETTER UPSILON WITH DIALYTIKA
334 220 DC ά GREEK SMALL LETTER ALPHA WITH TONOS
335 221 DD έ GREEK SMALL LETTER EPSILON WITH TONOS
336 222 DE ή GREEK SMALL LETTER ETA WITH TONOS
337 223 DF ί GREEK SMALL LETTER IOTA WITH TONOS

Linux man-pages 6.16 2025-05-17 3527

ISO_8859-7(7) Miscellaneous Information Manual ISO_8859-7(7)

340 224 E0 ΰ GREEK SMALL LETTER UPSILON WITH DIALYTIKA
AND TONOS

341 225 E1 α GREEK SMALL LETTER ALPHA
342 226 E2 β GREEK SMALL LETTER BETA
343 227 E3 γ GREEK SMALL LETTER GAMMA
344 228 E4 δ GREEK SMALL LETTER DELTA
345 229 E5 ε GREEK SMALL LETTER EPSILON
346 230 E6 ζ GREEK SMALL LETTER ZETA
347 231 E7 η GREEK SMALL LETTER ETA
350 232 E8 θ GREEK SMALL LETTER THETA
351 233 E9 ι GREEK SMALL LETTER IOTA
352 234 EA κ GREEK SMALL LETTER KAPPA
353 235 EB λ GREEK SMALL LETTER LAMBDA
354 236 EC µ GREEK SMALL LETTER MU
355 237 ED ν GREEK SMALL LETTER NU
356 238 EE ξ GREEK SMALL LETTER XI
357 239 EF ο GREEK SMALL LETTER OMICRON
360 240 F0 π GREEK SMALL LETTER PI
361 241 F1 ρ GREEK SMALL LETTER RHO
362 242 F2 ς GREEK SMALL LETTER FINAL SIGMA
363 243 F3 σ GREEK SMALL LETTER SIGMA
364 244 F4 τ GREEK SMALL LETTER TAU
365 245 F5 υ GREEK SMALL LETTER UPSILON
366 246 F6 ϕ GREEK SMALL LETTER PHI
367 247 F7 χ GREEK SMALL LETTER CHI
370 248 F8 ψ GREEK SMALL LETTER PSI
371 249 F9 ω GREEK SMALL LETTER OMEGA
372 250 FA ϊ GREEK SMALL LETTER IOTA WITH DIALYTIKA
373 251 FB ϋ GREEK SMALL LETTER UPSILON WITH DIALYTIKA
374 252 FC ό GREEK SMALL LETTER OMICRON WITH TONOS
375 253 FD ύ GREEK SMALL LETTER UPSILON WITH TONOS
376 254 FE ώ GREEK SMALL LETTER OMEGA WITH TONOS

NOTES
ISO/IEC 8859-7 was formerly known as ELOT-928 or ECMA-118:1986.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3528

ISO_8859-8(7) Miscellaneous Information Manual ISO_8859-8(7)

NAME
iso_8859-8 - ISO/IEC 8859-8 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-8 encodes the characters used in
Modern Hebrew.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-8 characters
The following table displays the characters in ISO/IEC 8859-8 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA × MULTIPLICATION SIGN
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO

Linux man-pages 6.16 2025-05-17 3529

ISO_8859-8(7) Miscellaneous Information Manual ISO_8859-8(7)

263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA ÷ DIVISION SIGN
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
337 223 DF DOUBLE LOW LINE
340 224 E0 א HEBREW LETTER ALEF
341 225 E1 ב HEBREW LETTER BET
342 226 E2 ג HEBREW LETTER GIMEL
343 227 E3 ד HEBREW LETTER DALET
344 228 E4 ה HEBREW LETTER HE
345 229 E5 ו HEBREW LETTER VAV
346 230 E6 ז HEBREW LETTER ZAYIN
347 231 E7 ח HEBREW LETTER HET
350 232 E8 ט HEBREW LETTER TET
351 233 E9 י HEBREW LETTER YOD
352 234 EA ך HEBREW LETTER FINAL KAF
353 235 EB כ HEBREW LETTER KAF
354 236 EC ל HEBREW LETTER LAMED
355 237 ED ם HEBREW LETTER FINAL MEM
356 238 EE מ HEBREW LETTER MEM
357 239 EF ן HEBREW LETTER FINAL NUN
360 240 F0 נ HEBREW LETTER NUN
361 241 F1 ס HEBREW LETTER SAMEKH
362 242 F2 ע HEBREW LETTER AYIN
363 243 F3 ף HEBREW LETTER FINAL PE
364 244 F4 פ HEBREW LETTER PE
365 245 F5 ץ HEBREW LETTER FINAL TSADI
366 246 F6 צ HEBREW LETTER TSADI
367 247 F7 ק HEBREW LETTER QOF
370 248 F8 ר HEBREW LETTER RESH
371 249 F9 ש HEBREW LETTER SHIN
372 250 FA ת HEBREW LETTER TAV
375 253 FD ‎ LEFT-TO-RIGHT MARK
376 254 FE ‏ RIGHT-TO-LEFT MARK

NOTES
ISO/IEC 8859-8 was also known as ISO-IR-138. ISO/IEC 8859-8 includes neither short
vowels nor diacritical marks, and Yiddish is not provided for.

Linux man-pages 6.16 2025-05-17 3530

ISO_8859-8(7) Miscellaneous Information Manual ISO_8859-8(7)

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3531

ISO_8859-9(7) Miscellaneous Information Manual ISO_8859-9(7)

NAME
iso_8859-9 - ISO/IEC 8859-9 character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-9 encodes the characters used in
Turkish.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-9 characters
The following table displays the characters in ISO/IEC 8859-9 that are printable and un-
listed in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 ¨ DIAERESIS
251 169 A9 © COPYRIGHT SIGN
252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN
261 177 B1 ± PLUS-MINUS SIGN

Linux man-pages 6.16 2025-05-17 3532

ISO_8859-9(7) Miscellaneous Information Manual ISO_8859-9(7)

262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 ´ ACUTE ACCENT
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ¸ CEDILLA
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ğ LATIN CAPITAL LETTER G WITH BREVE
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD İ LATIN CAPITAL LETTER I WITH DOT ABOVE
336 222 DE Ş LATIN CAPITAL LETTER S WITH CEDILLA
337 223 DF ß LATIN SMALL LETTER SHARP S

Linux man-pages 6.16 2025-05-17 3533

ISO_8859-9(7) Miscellaneous Information Manual ISO_8859-9(7)

340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ğ LATIN SMALL LETTER G WITH BREVE
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ı LATIN SMALL LETTER DOTLESS I
376 254 FE ş LATIN SMALL LETTER S WITH CEDILLA
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-9 is also known as Latin-5.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3534

ISO_8859-10(7) Miscellaneous Information Manual ISO_8859-10(7)

NAME
iso_8859-10 - ISO/IEC 8859-10 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-10 encodes the characters used in
Nordic languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-10 characters
The following table displays the characters in ISO/IEC 8859-10 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 Ē LATIN CAPITAL LETTER E WITH MACRON
243 163 A3 Ģ LATIN CAPITAL LETTER G WITH CEDILLA
244 164 A4 Ī LATIN CAPITAL LETTER I WITH MACRON
245 165 A5 Ĩ LATIN CAPITAL LETTER I WITH TILDE
246 166 A6 Ķ LATIN CAPITAL LETTER K WITH CEDILLA
247 167 A7 § SECTION SIGN
250 168 A8 Ļ LATIN CAPITAL LETTER L WITH CEDILLA
251 169 A9 -D LATIN CAPITAL LETTER D WITH STROKE
252 170 AA Š LATIN CAPITAL LETTER S WITH CARON
253 171 AB Ŧ LATIN CAPITAL LETTER T WITH STROKE
254 172 AC Ž LATIN CAPITAL LETTER Z WITH CARON
255 173 AD SOFT HYPHEN
256 174 AE Ū LATIN CAPITAL LETTER U WITH MACRON
257 175 AF Ŋ LATIN CAPITAL LETTER ENG
260 176 B0 ° DEGREE SIGN

Linux man-pages 6.16 2025-05-17 3535

ISO_8859-10(7) Miscellaneous Information Manual ISO_8859-10(7)

261 177 B1 ą LATIN SMALL LETTER A WITH OGONEK
262 178 B2 ē LATIN SMALL LETTER E WITH MACRON
263 179 B3 ģ LATIN SMALL LETTER G WITH CEDILLA
264 180 B4 ī LATIN SMALL LETTER I WITH MACRON
265 181 B5 ĩ LATIN SMALL LETTER I WITH TILDE
266 182 B6 ķ LATIN SMALL LETTER K WITH CEDILLA
267 183 B7 · MIDDLE DOT
270 184 B8 ļ LATIN SMALL LETTER L WITH CEDILLA
271 185 B9 -d LATIN SMALL LETTER D WITH STROKE
272 186 BA š LATIN SMALL LETTER S WITH CARON
273 187 BB ŧ LATIN SMALL LETTER T WITH STROKE
274 188 BC ž LATIN SMALL LETTER Z WITH CARON
275 189 BD — HORIZONTAL BAR
276 190 BE ū LATIN SMALL LETTER U WITH MACRON
277 191 BF ŋ LATIN SMALL LETTER ENG
300 192 C0 Ā LATIN CAPITAL LETTER A WITH MACRON
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Į LATIN CAPITAL LETTER I WITH OGONEK
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ę LATIN CAPITAL LETTER E WITH OGONEK
312 202 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ė LATIN CAPITAL LETTER E WITH DOT ABOVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ņ LATIN CAPITAL LETTER N WITH CEDILLA
322 210 D2 Ō LATIN CAPITAL LETTER O WITH MACRON
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 Ũ LATIN CAPITAL LETTER U WITH TILDE
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ų LATIN CAPITAL LETTER U WITH OGONEK
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN

Linux man-pages 6.16 2025-05-17 3536

ISO_8859-10(7) Miscellaneous Information Manual ISO_8859-10(7)

337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 ā LATIN SMALL LETTER A WITH MACRON
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 į LATIN SMALL LETTER I WITH OGONEK
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ę LATIN SMALL LETTER E WITH OGONEK
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ė LATIN SMALL LETTER E WITH DOT ABOVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 ņ LATIN SMALL LETTER N WITH CEDILLA
362 242 F2 ō LATIN SMALL LETTER O WITH MACRON
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ũ LATIN SMALL LETTER U WITH TILDE
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ų LATIN SMALL LETTER U WITH OGONEK
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ĸ LATIN SMALL LETTER KRA

NOTES
ISO/IEC 8859-10 is also known as Latin-6.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3537

ISO_8859-11(7) Miscellaneous Information Manual ISO_8859-11(7)

NAME
iso_8859-11 - ISO/IEC 8859-11 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-11 encodes the characters used in the
Thai language.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-11 characters
The following table displays the characters in ISO/IEC 8859-11 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 THAI CHARACTER KO KAI
242 162 A2 THAI CHARACTER KHO KHAI
243 163 A3 THAI CHARACTER KHO KHUAT
244 164 A4 THAI CHARACTER KHO KHWAI
245 165 A5 THAI CHARACTER KHO KHON
246 166 A6 THAI CHARACTER KHO RAKHANG
247 167 A7 THAI CHARACTER NGO NGU
250 168 A8 THAI CHARACTER CHO CHAN
251 169 A9 THAI CHARACTER CHO CHING
252 170 AA THAI CHARACTER CHO CHANG
253 171 AB THAI CHARACTER SO SO
254 172 AC THAI CHARACTER CHO CHOE
255 173 AD THAI CHARACTER YO YING
256 174 AE THAI CHARACTER DO CHADA
257 175 AF THAI CHARACTER TO PATAK
260 176 B0 THAI CHARACTER THO THAN

Linux man-pages 6.16 2025-05-17 3538

ISO_8859-11(7) Miscellaneous Information Manual ISO_8859-11(7)

261 177 B1 THAI CHARACTER THO NANGMONTHO
262 178 B2 THAI CHARACTER THO PHUTHAO
263 179 B3 THAI CHARACTER NO NEN
264 180 B4 THAI CHARACTER DO DEK
265 181 B5 THAI CHARACTER TO TAO
266 182 B6 THAI CHARACTER THO THUNG
267 183 B7 THAI CHARACTER THO THAHAN
270 184 B8 THAI CHARACTER THO THONG
271 185 B9 THAI CHARACTER NO NU
272 186 BA THAI CHARACTER BO BAIMAI
273 187 BB THAI CHARACTER PO PLA
274 188 BC THAI CHARACTER PHO PHUNG
275 189 BD THAI CHARACTER FO FA
276 190 BE THAI CHARACTER PHO PHAN
277 191 BF THAI CHARACTER FO FAN
300 192 C0 THAI CHARACTER PHO SAMPHAO
301 193 C1 THAI CHARACTER MO MA
302 194 C2 THAI CHARACTER YO YAK
303 195 C3 THAI CHARACTER RO RUA
304 196 C4 THAI CHARACTER RU
305 197 C5 THAI CHARACTER LO LING
306 198 C6 THAI CHARACTER LU
307 199 C7 THAI CHARACTER WO WAEN
310 200 C8 THAI CHARACTER SO SALA
311 201 C9 THAI CHARACTER SO RUSI
312 202 CA THAI CHARACTER SO SUA
313 203 CB THAI CHARACTER HO HIP
314 204 CC THAI CHARACTER LO CHULA
315 205 CD THAI CHARACTER O ANG
316 206 CE THAI CHARACTER HO NOKHUK
317 207 CF THAI CHARACTER PAIYANNOI
320 208 D0 THAI CHARACTER SARA A
321 209 D1 THAI CHARACTER MAI HAN-AKAT
322 210 D2 THAI CHARACTER SARA AA
323 211 D3 THAI CHARACTER SARA AM
324 212 D4 THAI CHARACTER SARA I
325 213 D5 THAI CHARACTER SARA II
326 214 D6 THAI CHARACTER SARA UE
327 215 D7 THAI CHARACTER SARA UEE
330 216 D8 THAI CHARACTER SARA U
331 217 D9 THAI CHARACTER SARA UU
332 218 DA THAI CHARACTER PHINTHU
337 223 DF THAI CURRENCY SYMBOL BAHT
340 224 E0 THAI CHARACTER SARA E
341 225 E1 THAI CHARACTER SARA AE
342 226 E2 THAI CHARACTER SARA O

Linux man-pages 6.16 2025-05-17 3539

ISO_8859-11(7) Miscellaneous Information Manual ISO_8859-11(7)

343 227 E3 THAI CHARACTER SARA AI MAIMUAN
344 228 E4 THAI CHARACTER SARA AI MAIMALAI
345 229 E5 THAI CHARACTER LAKKHANGYAO
346 230 E6 THAI CHARACTER MAIYAMOK
347 231 E7 THAI CHARACTER MAITAIKHU
350 232 E8 THAI CHARACTER MAI EK
351 233 E9 THAI CHARACTER MAI THO
352 234 EA THAI CHARACTER MAI TRI
353 235 EB THAI CHARACTER MAI CHATTAWA
354 236 EC THAI CHARACTER THANTHAKHAT
355 237 ED THAI CHARACTER NIKHAHIT
356 238 EE THAI CHARACTER YAMAKKAN
357 239 EF THAI CHARACTER FONGMAN
360 240 F0 THAI DIGIT ZERO
361 241 F1 THAI DIGIT ONE
362 242 F2 THAI DIGIT TWO
363 243 F3 THAI DIGIT THREE
364 244 F4 THAI DIGIT FOUR
365 245 F5 THAI DIGIT FIVE
366 246 F6 THAI DIGIT SIX
367 247 F7 THAI DIGIT SEVEN
370 248 F8 THAI DIGIT EIGHT
371 249 F9 THAI DIGIT NINE
372 250 FA THAI CHARACTER ANGKHANKHU
373 251 FB THAI CHARACTER KHOMUT

NOTES
ISO/IEC 8859-11 is the same as TIS (Thai Industrial Standard) 620-2253, commonly
known as TIS-620, except for the character in position A0: ISO/IEC 8859-11 defines
this as NO-BREAK SPACE, while TIS-620 leaves it undefined.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3540

ISO_8859-13(7) Miscellaneous Information Manual ISO_8859-13(7)

NAME
iso_8859-13 - ISO/IEC 8859-13 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-13 encodes the characters used in
Baltic Rim languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-13 characters
The following table displays the characters in ISO/IEC 8859-13 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ” RIGHT DOUBLE QUOTATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 ¤ CURRENCY SIGN
245 165 A5 „ DOUBLE LOW-9 QUOTATION MARK
246 166 A6 ¦ BROKEN BAR
247 167 A7 § SECTION SIGN
250 168 A8 Ø LATIN CAPITAL LETTER O WITH STROKE
251 169 A9 © COPYRIGHT SIGN
252 170 AA Ŗ LATIN CAPITAL LETTER R WITH CEDILLA
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF Æ LATIN CAPITAL LETTER AE
260 176 B0 ° DEGREE SIGN

Linux man-pages 6.16 2025-05-17 3541

ISO_8859-13(7) Miscellaneous Information Manual ISO_8859-13(7)

261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 “ LEFT DOUBLE QUOTATION MARK
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ø LATIN SMALL LETTER O WITH STROKE
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA ŗ LATIN SMALL LETTER R WITH CEDILLA
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC ¼ VULGAR FRACTION ONE QUARTER
275 189 BD ½ VULGAR FRACTION ONE HALF
276 190 BE ¾ VULGAR FRACTION THREE QUARTERS
277 191 BF æ LATIN SMALL LETTER AE
300 192 C0 Ą LATIN CAPITAL LETTER A WITH OGONEK
301 193 C1 Į LATIN CAPITAL LETTER I WITH OGONEK
302 194 C2 Ā LATIN CAPITAL LETTER A WITH MACRON
303 195 C3 Ć LATIN CAPITAL LETTER C WITH ACUTE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Ę LATIN CAPITAL LETTER E WITH OGONEK
307 199 C7 Ē LATIN CAPITAL LETTER E WITH MACRON
310 200 C8 Č LATIN CAPITAL LETTER C WITH CARON
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ź LATIN CAPITAL LETTER Z WITH ACUTE
313 203 CB Ė LATIN CAPITAL LETTER E WITH DOT ABOVE
314 204 CC Ģ LATIN CAPITAL LETTER G WITH CEDILLA
315 205 CD Ķ LATIN CAPITAL LETTER K WITH CEDILLA
316 206 CE Ī LATIN CAPITAL LETTER I WITH MACRON
317 207 CF Ļ LATIN CAPITAL LETTER L WITH CEDILLA
320 208 D0 Š LATIN CAPITAL LETTER S WITH CARON
321 209 D1 Ń LATIN CAPITAL LETTER N WITH ACUTE
322 210 D2 Ņ LATIN CAPITAL LETTER N WITH CEDILLA
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ō LATIN CAPITAL LETTER O WITH MACRON
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ų LATIN CAPITAL LETTER U WITH OGONEK
331 217 D9 Ł LATIN CAPITAL LETTER L WITH STROKE
332 218 DA Ś LATIN CAPITAL LETTER S WITH ACUTE
333 219 DB Ū LATIN CAPITAL LETTER U WITH MACRON
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
336 222 DE Ž LATIN CAPITAL LETTER Z WITH CARON

Linux man-pages 6.16 2025-05-17 3542

ISO_8859-13(7) Miscellaneous Information Manual ISO_8859-13(7)

337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 ą LATIN SMALL LETTER A WITH OGONEK
341 225 E1 į LATIN SMALL LETTER I WITH OGONEK
342 226 E2 ā LATIN SMALL LETTER A WITH MACRON
343 227 E3 ć LATIN SMALL LETTER C WITH ACUTE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 ę LATIN SMALL LETTER E WITH OGONEK
347 231 E7 ē LATIN SMALL LETTER E WITH MACRON
350 232 E8 č LATIN SMALL LETTER C WITH CARON
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ź LATIN SMALL LETTER Z WITH ACUTE
353 235 EB ė LATIN SMALL LETTER E WITH DOT ABOVE
354 236 EC ģ LATIN SMALL LETTER G WITH CEDILLA
355 237 ED ķ LATIN SMALL LETTER K WITH CEDILLA
356 238 EE ī LATIN SMALL LETTER I WITH MACRON
357 239 EF ļ LATIN SMALL LETTER L WITH CEDILLA
360 240 F0 š LATIN SMALL LETTER S WITH CARON
361 241 F1 ń LATIN SMALL LETTER N WITH ACUTE
362 242 F2 ņ LATIN SMALL LETTER N WITH CEDILLA
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ō LATIN SMALL LETTER O WITH MACRON
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ų LATIN SMALL LETTER U WITH OGONEK
371 249 F9 ł LATIN SMALL LETTER L WITH STROKE
372 250 FA ś LATIN SMALL LETTER S WITH ACUTE
373 251 FB ū LATIN SMALL LETTER U WITH MACRON
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ż LATIN SMALL LETTER Z WITH DOT ABOVE
376 254 FE ž LATIN SMALL LETTER Z WITH CARON
377 255 FF ’ RIGHT SINGLE QUOTATION MARK

NOTES
ISO/IEC 8859-13 is also known as Latin-7.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3543

ISO_8859-14(7) Miscellaneous Information Manual ISO_8859-14(7)

NAME
iso_8859-14 - ISO/IEC 8859-14 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-14 encodes the characters used in
Celtic languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-14 characters
The following table displays the characters in ISO/IEC 8859-14 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ḃ LATIN CAPITAL LETTER B WITH DOT ABOVE
242 162 A2 ḃ LATIN SMALL LETTER B WITH DOT ABOVE
243 163 A3 £ POUND SIGN
244 164 A4 Ċ LATIN CAPITAL LETTER C WITH DOT ABOVE
245 165 A5 ċ LATIN SMALL LETTER C WITH DOT ABOVE
246 166 A6 Ḋ LATIN CAPITAL LETTER D WITH DOT ABOVE
247 167 A7 § SECTION SIGN
250 168 A8 Ẁ LATIN CAPITAL LETTER W WITH GRAVE
251 169 A9 © COPYRIGHT SIGN
252 170 AA Ẃ LATIN CAPITAL LETTER W WITH ACUTE
253 171 AB ḋ LATIN SMALL LETTER D WITH DOT ABOVE
254 172 AC Ỳ LATIN CAPITAL LETTER Y WITH GRAVE
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
260 176 B0 Ḟ LATIN CAPITAL LETTER F WITH DOT ABOVE

Linux man-pages 6.16 2025-05-17 3544

ISO_8859-14(7) Miscellaneous Information Manual ISO_8859-14(7)

261 177 B1 ḟ LATIN SMALL LETTER F WITH DOT ABOVE
262 178 B2 Ġ LATIN CAPITAL LETTER G WITH DOT ABOVE
263 179 B3 ġ LATIN SMALL LETTER G WITH DOT ABOVE
264 180 B4 Ṁ LATIN CAPITAL LETTER M WITH DOT ABOVE
265 181 B5 ṁ LATIN SMALL LETTER M WITH DOT ABOVE
266 182 B6 ¶ PILCROW SIGN
267 183 B7 Ṗ LATIN CAPITAL LETTER P WITH DOT ABOVE
270 184 B8 ẁ LATIN SMALL LETTER W WITH GRAVE
271 185 B9 ṗ LATIN SMALL LETTER P WITH DOT ABOVE
272 186 BA ẃ LATIN SMALL LETTER W WITH ACUTE
273 187 BB Ṡ LATIN CAPITAL LETTER S WITH DOT ABOVE
274 188 BC ỳ LATIN SMALL LETTER Y WITH GRAVE
275 189 BD Ẅ LATIN CAPITAL LETTER W WITH DIAERESIS
276 190 BE ẅ LATIN SMALL LETTER W WITH DIAERESIS
277 191 BF ṡ LATIN SMALL LETTER S WITH DOT ABOVE
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ŵ LATIN CAPITAL LETTER W WITH CIRCUMFLEX
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 Ṫ LATIN CAPITAL LETTER T WITH DOT ABOVE
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Ŷ LATIN CAPITAL LETTER Y WITH CIRCUMFLEX

Linux man-pages 6.16 2025-05-17 3545

ISO_8859-14(7) Miscellaneous Information Manual ISO_8859-14(7)

337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ŵ LATIN SMALL LETTER W WITH CIRCUMFLEX
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ṫ LATIN SMALL LETTER T WITH DOT ABOVE
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE ŷ LATIN SMALL LETTER Y WITH CIRCUMFLEX
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-14 is also known as Latin-8.

SEE ALSO
ascii(7), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3546

ISO_8859-15(7) Miscellaneous Information Manual ISO_8859-15(7)

NAME
iso_8859-15 - ISO/IEC 8859-15 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-15 encodes the characters used in
many West European languages and adds the Euro sign.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-15 characters
The following table displays the characters in ISO/IEC 8859-15 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 ¡ INVERTED EXCLAMATION MARK
242 162 A2 ¢ CENT SIGN
243 163 A3 £ POUND SIGN
244 164 A4 € EURO SIGN
245 165 A5 ¥ YEN SIGN
246 166 A6 Š LATIN CAPITAL LETTER S WITH CARON
247 167 A7 § SECTION SIGN
250 168 A8 š LATIN SMALL LETTER S WITH CARON
251 169 A9 © COPYRIGHT SIGN
252 170 AA ª FEMININE ORDINAL INDICATOR
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC ¬ NOT SIGN
255 173 AD SOFT HYPHEN
256 174 AE ® REGISTERED SIGN
257 175 AF ¯ MACRON
260 176 B0 ° DEGREE SIGN

Linux man-pages 6.16 2025-05-17 3547

ISO_8859-15(7) Miscellaneous Information Manual ISO_8859-15(7)

261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 ² SUPERSCRIPT TWO
263 179 B3 ³ SUPERSCRIPT THREE
264 180 B4 Ž LATIN CAPITAL LETTER Z WITH CARON
265 181 B5 µ MICRO SIGN
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ž LATIN SMALL LETTER Z WITH CARON
271 185 B9 ¹ SUPERSCRIPT ONE
272 186 BA º MASCULINE ORDINAL INDICATOR
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC Œ LATIN CAPITAL LIGATURE OE
275 189 BD œ LATIN SMALL LIGATURE OE
276 190 BE Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
277 191 BF ¿ INVERTED QUESTION MARK
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ã LATIN CAPITAL LETTER A WITH TILDE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Å LATIN CAPITAL LETTER A WITH RING ABOVE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 Ð LATIN CAPITAL LETTER ETH
321 209 D1 Ñ LATIN CAPITAL LETTER N WITH TILDE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Õ LATIN CAPITAL LETTER O WITH TILDE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 × MULTIPLICATION SIGN
330 216 D8 Ø LATIN CAPITAL LETTER O WITH STROKE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ý LATIN CAPITAL LETTER Y WITH ACUTE
336 222 DE Þ LATIN CAPITAL LETTER THORN

Linux man-pages 6.16 2025-05-17 3548

ISO_8859-15(7) Miscellaneous Information Manual ISO_8859-15(7)

337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ã LATIN SMALL LETTER A WITH TILDE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 å LATIN SMALL LETTER A WITH RING ABOVE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 ð LATIN SMALL LETTER ETH
361 241 F1 ñ LATIN SMALL LETTER N WITH TILDE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 õ LATIN SMALL LETTER O WITH TILDE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ÷ DIVISION SIGN
370 248 F8 ø LATIN SMALL LETTER O WITH STROKE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ý LATIN SMALL LETTER Y WITH ACUTE
376 254 FE þ LATIN SMALL LETTER THORN
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-15 is also known as Latin-9 (or sometimes as Latin-0).

SEE ALSO
ascii(7), charsets(7), cp1252(7), iso_8859-1(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3549

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

NAME
iso_8859-16 - ISO/IEC 8859-16 character set encoded in octal, decimal, and hexadeci-
mal

DESCRIPTION
The ISO/IEC 8859 standard includes several 8-bit extensions to the ASCII character set
(also known as ISO/IEC 646-IRV). ISO/IEC 8859-16 encodes the Latin characters used
in Southeast European languages.

ISO/IEC 8859 alphabets
The full set of ISO/IEC 8859 alphabets includes:
ISO/IEC 8859-1 West European languages (Latin-1)
ISO/IEC 8859-2 Central and East European languages (Latin-2)
ISO/IEC 8859-3 Southeast European and miscellaneous languages (Latin-3)
ISO/IEC 8859-4 Scandinavian/Baltic languages (Latin-4)
ISO/IEC 8859-5 Latin/Cyrillic
ISO/IEC 8859-6 Latin/Arabic
ISO/IEC 8859-7 Latin/Greek
ISO/IEC 8859-8 Latin/Hebrew
ISO/IEC 8859-9 Latin-1 modification for Turkish (Latin-5)
ISO/IEC 8859-10 Lappish/Nordic/Eskimo languages (Latin-6)
ISO/IEC 8859-11 Latin/Thai
ISO/IEC 8859-13 Baltic Rim languages (Latin-7)
ISO/IEC 8859-14 Celtic (Latin-8)
ISO/IEC 8859-15 West European languages (Latin-9)
ISO/IEC 8859-16 Romanian (Latin-10)

ISO/IEC 8859-16 characters
The following table displays the characters in ISO/IEC 8859-16 that are printable and
unlisted in the ascii(7) manual page.
Oct Dec Hex Char Description

240 160 A0 NO-BREAK SPACE
241 161 A1 Ą LATIN CAPITAL LETTER A WITH OGONEK
242 162 A2 ą LATIN SMALL LETTER A WITH OGONEK
243 163 A3 Ł LATIN CAPITAL LETTER L WITH STROKE
244 164 A4 € EURO SIGN
245 165 A5 „ DOUBLE LOW-9 QUOTATION MARK
246 166 A6 Š LATIN CAPITAL LETTER S WITH CARON
247 167 A7 § SECTION SIGN
250 168 A8 š LATIN SMALL LETTER S WITH CARON
251 169 A9 © COPYRIGHT SIGN
252 170 AA Ș LATIN CAPITAL LETTER S WITH COMMA BELOW
253 171 AB « LEFT-POINTING DOUBLE ANGLE QUOTATION MARK
254 172 AC Ź LATIN CAPITAL LETTER Z WITH ACUTE
255 173 AD SOFT HYPHEN
256 174 AE ź LATIN SMALL LETTER Z WITH ACUTE
257 175 AF Ż LATIN CAPITAL LETTER Z WITH DOT ABOVE
260 176 B0 ° DEGREE SIGN

Linux man-pages 6.16 2025-05-17 3550

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

261 177 B1 ± PLUS-MINUS SIGN
262 178 B2 Č LATIN CAPITAL LETTER C WITH CARON
263 179 B3 ł LATIN SMALL LETTER L WITH STROKE
264 180 B4 Ž LATIN CAPITAL LETTER Z WITH CARON
265 181 B5 ” LEFT DOUBLE QUOTATION MARK
266 182 B6 ¶ PILCROW SIGN
267 183 B7 · MIDDLE DOT
270 184 B8 ž LATIN SMALL LETTER Z WITH CARON
271 185 B9 č LATIN SMALL LETTER C WITH CARON
272 186 BA ș LATIN SMALL LETTER S WITH COMMA BELOW
273 187 BB » RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
274 188 BC Œ LATIN CAPITAL LIGATURE OE
275 189 BD œ LATIN SMALL LIGATURE OE
276 190 BE Ÿ LATIN CAPITAL LETTER Y WITH DIAERESIS
277 191 BF ż LATIN SMALL LETTER Z WITH DOT ABOVE
300 192 C0 À LATIN CAPITAL LETTER A WITH GRAVE
301 193 C1 Á LATIN CAPITAL LETTER A WITH ACUTE
302 194 C2 Â LATIN CAPITAL LETTER A WITH CIRCUMFLEX
303 195 C3 Ă LATIN CAPITAL LETTER A WITH BREVE
304 196 C4 Ä LATIN CAPITAL LETTER A WITH DIAERESIS
305 197 C5 Ć LATIN CAPITAL LETTER C WITH ACUTE
306 198 C6 Æ LATIN CAPITAL LETTER AE
307 199 C7 Ç LATIN CAPITAL LETTER C WITH CEDILLA
310 200 C8 È LATIN CAPITAL LETTER E WITH GRAVE
311 201 C9 É LATIN CAPITAL LETTER E WITH ACUTE
312 202 CA Ê LATIN CAPITAL LETTER E WITH CIRCUMFLEX
313 203 CB Ë LATIN CAPITAL LETTER E WITH DIAERESIS
314 204 CC Ì LATIN CAPITAL LETTER I WITH GRAVE
315 205 CD Í LATIN CAPITAL LETTER I WITH ACUTE
316 206 CE Î LATIN CAPITAL LETTER I WITH CIRCUMFLEX
317 207 CF Ï LATIN CAPITAL LETTER I WITH DIAERESIS
320 208 D0 -D LATIN CAPITAL LETTER D WITH STROKE
321 209 D1 Ń LATIN CAPITAL LETTER N WITH ACUTE
322 210 D2 Ò LATIN CAPITAL LETTER O WITH GRAVE
323 211 D3 Ó LATIN CAPITAL LETTER O WITH ACUTE
324 212 D4 Ô LATIN CAPITAL LETTER O WITH CIRCUMFLEX
325 213 D5 Ő LATIN CAPITAL LETTER O WITH DOUBLE ACUTE
326 214 D6 Ö LATIN CAPITAL LETTER O WITH DIAERESIS
327 215 D7 Ś LATIN CAPITAL LETTER S WITH ACUTE
330 216 D8 Ű LATIN CAPITAL LETTER U WITH DOUBLE ACUTE
331 217 D9 Ù LATIN CAPITAL LETTER U WITH GRAVE
332 218 DA Ú LATIN CAPITAL LETTER U WITH ACUTE
333 219 DB Û LATIN CAPITAL LETTER U WITH CIRCUMFLEX
334 220 DC Ü LATIN CAPITAL LETTER U WITH DIAERESIS
335 221 DD Ę LATIN CAPITAL LETTER E WITH OGONEK
336 222 DE Ț LATIN CAPITAL LETTER T WITH COMMA BELOW

Linux man-pages 6.16 2025-05-17 3551

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

337 223 DF ß LATIN SMALL LETTER SHARP S
340 224 E0 à LATIN SMALL LETTER A WITH GRAVE
341 225 E1 á LATIN SMALL LETTER A WITH ACUTE
342 226 E2 â LATIN SMALL LETTER A WITH CIRCUMFLEX
343 227 E3 ă LATIN SMALL LETTER A WITH BREVE
344 228 E4 ä LATIN SMALL LETTER A WITH DIAERESIS
345 229 E5 ć LATIN SMALL LETTER C WITH ACUTE
346 230 E6 æ LATIN SMALL LETTER AE
347 231 E7 ç LATIN SMALL LETTER C WITH CEDILLA
350 232 E8 è LATIN SMALL LETTER E WITH GRAVE
351 233 E9 é LATIN SMALL LETTER E WITH ACUTE
352 234 EA ê LATIN SMALL LETTER E WITH CIRCUMFLEX
353 235 EB ë LATIN SMALL LETTER E WITH DIAERESIS
354 236 EC ì LATIN SMALL LETTER I WITH GRAVE
355 237 ED í LATIN SMALL LETTER I WITH ACUTE
356 238 EE î LATIN SMALL LETTER I WITH CIRCUMFLEX
357 239 EF ï LATIN SMALL LETTER I WITH DIAERESIS
360 240 F0 -d LATIN SMALL LETTER D WITH STROKE
361 241 F1 ń LATIN SMALL LETTER N WITH ACUTE
362 242 F2 ò LATIN SMALL LETTER O WITH GRAVE
363 243 F3 ó LATIN SMALL LETTER O WITH ACUTE
364 244 F4 ô LATIN SMALL LETTER O WITH CIRCUMFLEX
365 245 F5 ő LATIN SMALL LETTER O WITH DOUBLE ACUTE
366 246 F6 ö LATIN SMALL LETTER O WITH DIAERESIS
367 247 F7 ś LATIN SMALL LETTER S WITH ACUTE
370 248 F8 ű LATIN SMALL LETTER U WITH DOUBLE ACUTE
371 249 F9 ù LATIN SMALL LETTER U WITH GRAVE
372 250 FA ú LATIN SMALL LETTER U WITH ACUTE
373 251 FB û LATIN SMALL LETTER U WITH CIRCUMFLEX
374 252 FC ü LATIN SMALL LETTER U WITH DIAERESIS
375 253 FD ę LATIN SMALL LETTER E WITH OGONEK
376 254 FE ț LATIN SMALL LETTER T WITH COMMA BELOW
377 255 FF ÿ LATIN SMALL LETTER Y WITH DIAERESIS

NOTES
ISO/IEC 8859-16 is also known as Latin-10.

SEE ALSO
ascii(7), charsets(7), iso_8859-3(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3552

ISO_8859-16(7) Miscellaneous Information Manual ISO_8859-16(7)

Linux man-pages 6.16 2025-05-17 3553

kernel_lockdown(7) Miscellaneous Information Manual kernel_lockdown(7)

NAME
kernel_lockdown - kernel image access prevention feature

DESCRIPTION
The Kernel Lockdown feature is designed to prevent both direct and indirect access to a
running kernel image, attempting to protect against unauthorized modification of the
kernel image and to prevent access to security and cryptographic data located in kernel
memory, whilst still permitting driver modules to be loaded.

If a prohibited or restricted feature is accessed or used, the kernel will emit a message
that looks like:

Lockdown: X: Y is restricted, see man kernel_lockdown.7

where X indicates the process name and Y indicates what is restricted.

On an EFI-enabled x86 or arm64 machine, lockdown will be automatically enabled if
the system boots in EFI Secure Boot mode.

Coverage
When lockdown is in effect, a number of features are disabled or have their use re-
stricted. This includes special device files and kernel services that allow direct access of
the kernel image:

/dev/mem
/dev/kmem
/dev/kcore
/dev/ioports
BPF
kprobes

and the ability to directly configure and control devices, so as to prevent the use of a de-
vice to access or modify a kernel image:

• The use of module parameters that directly specify hardware parameters to drivers
through the kernel command line or when loading a module.

• The use of direct PCI BAR access.

• The use of the ioperm and iopl instructions on x86.

• The use of the KD*IO console ioctls.

• The use of the TIOCSSERIAL serial ioctl.

• The alteration of MSR registers on x86.

• The replacement of the PCMCIA CIS.

• The overriding of ACPI tables.

• The use of ACPI error injection.

• The specification of the ACPI RDSP address.

• The use of ACPI custom methods.

Certain facilities are restricted:

Linux man-pages 6.16 2025-05-17 3554

kernel_lockdown(7) Miscellaneous Information Manual kernel_lockdown(7)

• Only validly signed modules may be loaded (waived if the module file being loaded
is vouched for by IMA appraisal).

• Only validly signed binaries may be kexec’d (waived if the binary image file to be
executed is vouched for by IMA appraisal).

• Unencrypted hibernation/suspend to swap are disallowed as the kernel image is
saved to a medium that can then be accessed.

• Use of debugfs is not permitted as this allows a whole range of actions including di-
rect configuration of, access to and driving of hardware.

• IMA requires the addition of the "secure_boot" rules to the policy, whether or not
they are specified on the command line, for both the built-in and custom policies in
secure boot lockdown mode.

VERSIONS
The Kernel Lockdown feature was added in Linux 5.4.

NOTES
The Kernel Lockdown feature is enabled by CONFIG_SECURITY_LOCK-
DOWN_LSM. The lsm=lsm1,...,lsmN command line parameter controls the sequence
of the initialization of Linux Security Modules. It must contain the string lockdown to
enable the Kernel Lockdown feature. If the command line parameter is not specified,
the initialization falls back to the value of the deprecated security= command line para-
meter and further to the value of CONFIG_LSM.

Linux man-pages 6.16 2025-05-17 3555

keyrings(7) Miscellaneous Information Manual keyrings(7)

NAME
keyrings - in-kernel key management and retention facility

DESCRIPTION
The Linux key-management facility is primarily a way for various kernel components to
retain or cache security data, authentication keys, encryption keys, and other data in the
kernel.

System call interfaces are provided so that user-space programs can manage those ob-
jects and also use the facility for their own purposes; see add_key(2), request_key(2),
and keyctl(2).

A library and some user-space utilities are provided to allow access to the facility. See
keyctl(1), keyctl(3), and keyutils(7) for more information.

Keys
A key has the following attributes:

Serial number (ID)
This is a unique integer handle by which a key is referred to in system calls. The
serial number is sometimes synonymously referred as the key ID. Programmati-
cally, key serial numbers are represented using the type key_serial_t.

Type A key’s type defines what sort of data can be held in the key, how the proposed
content of the key will be parsed, and how the payload will be used.

There are a number of general-purpose types available, plus some specialist
types defined by specific kernel components.

Description (name)
The key description is a printable string that is used as the search term for the
key (in conjunction with the key type) as well as a display name. During
searches, the description may be partially matched or exactly matched.

Payload (data)
The payload is the actual content of a key. This is usually set when a key is cre-
ated, but it is possible for the kernel to upcall to user space to finish the instantia-
tion of a key if that key wasn’t already known to the kernel when it was re-
quested. For further details, see request_key(2).

A key’s payload can be read and updated if the key type supports it and if suit-
able permission is granted to the caller.

Access rights
Much as files do, each key has an owning user ID, an owning group ID, and a se-
curity label. Each key also has a set of permissions, though there are more than
for a normal UNIX file, and there is an additional category (possessor) beyond
the usual user, group, and other (see Possession, below).

Note that keys are quota controlled, since they require unswappable kernel mem-
ory. The owning user ID specifies whose quota is to be debited.

Expiration time
Each key can have an expiration time set. When that time is reached, the key is
marked as being expired and accesses to it fail with the error EKEYEXPIRED.

Linux man-pages 6.16 2025-09-21 3556

keyrings(7) Miscellaneous Information Manual keyrings(7)

If not deleted, updated, or replaced, then, after a set amount of time, an expired
key is automatically removed (garbage collected) along with all links to it, and
attempts to access the key fail with the error ENOKEY.

Reference count
Each key has a reference count. Keys are referenced by keyrings, by currently
active users, and by a process’s credentials. When the reference count reaches
zero, the key is scheduled for garbage collection.

Key types
The kernel provides several basic types of key:

"keyring"
Keyrings are special keys which store a set of links to other keys (including other
keyrings), analogous to a directory holding links to files. The main purpose of a
keyring is to prevent other keys from being garbage collected because nothing
refers to them.

Keyrings with descriptions (names) that begin with a period ('.') are reserved to
the implementation.

"user"
This is a general-purpose key type. The key is kept entirely within kernel mem-
ory. The payload may be read and updated by user-space applications.

The payload for keys of this type is a blob of arbitrary data of up to 32,767 bytes.

The description may be any valid string, though it is preferred that it start with a
colon-delimited prefix representing the service to which the key is of interest (for
instance "afs:mykey").

"logon" (since Linux 3.3)
This key type is essentially the same as "user" , but it does not provide reading
(i.e., the keyctl(2) KEYCTL_READ operation), meaning that the key payload is
never visible from user space. This is suitable for storing username-password
pairs that should not be readable from user space.

The description of a "logon" key must start with a non-empty colon-delimited
prefix whose purpose is to identify the service to which the key belongs. (Note
that this differs from keys of the "user" type, where the inclusion of a prefix is
recommended but is not enforced.)

"big_key" (since Linux 3.13)
This key type is similar to the "user" key type, but it may hold a payload of up to
1 MiB in size. This key type is useful for purposes such as holding Kerberos
ticket caches.

The payload data may be stored in a tmpfs filesystem, rather than in kernel mem-
ory, if the data size exceeds the overhead of storing the data in the filesystem.
(Storing the data in a filesystem requires filesystem structures to be allocated in
the kernel. The size of these structures determines the size threshold above
which the tmpfs storage method is used.) Since Linux 4.8, the payload data is
encrypted when stored in tmpfs, thereby preventing it from being written unen-
crypted into swap space.

Linux man-pages 6.16 2025-09-21 3557

keyrings(7) Miscellaneous Information Manual keyrings(7)

There are more specialized key types available also, but they aren’t discussed here be-
cause they aren’t intended for normal user-space use.

Key type names that begin with a period ('.') are reserved to the implementation.

Keyrings
As previously mentioned, keyrings are a special type of key that contain links to other
keys (which may include other keyrings). Keys may be linked to by multiple keyrings.
Keyrings may be considered as analogous to UNIX directories where each directory
contains a set of hard links to files.

Various operations (system calls) may be applied only to keyrings:

Adding
A key may be added to a keyring by system calls that create keys. This prevents
the new key from being immediately deleted when the system call releases its
last reference to the key.

Linking
A link may be added to a keyring pointing to a key that is already known, pro-
vided this does not create a self-referential cycle.

Unlinking
A link may be removed from a keyring. When the last link to a key is removed,
that key will be scheduled for deletion by the garbage collector.

Clearing
All the links may be removed from a keyring.

Searching
A keyring may be considered the root of a tree or subtree in which keyrings form
the branches and non-keyrings the leaves. This tree may be searched for a key
matching a particular type and description.

See keyctl_clear(3), keyctl_link(3), keyctl_search(3), and keyctl_unlink(3) for more in-
formation.

Anchoring keys
To prevent a key from being garbage collected, it must be anchored to keep its reference
count elevated when it is not in active use by the kernel.

Keyrings are used to anchor other keys: each link is a reference on a key. Note that
keyrings themselves are just keys and are also subject to the same anchoring require-
ment to prevent them being garbage collected.

The kernel makes available a number of anchor keyrings. Note that some of these
keyrings will be created only when first accessed.

Process keyrings
Process credentials themselves reference keyrings with specific semantics.
These keyrings are pinned as long as the set of credentials exists, which is usu-
ally as long as the process exists.

There are three keyrings with different inheritance/sharing rules: the session-
keyring(7) (inherited and shared by all child processes), the process-keyring(7)

Linux man-pages 6.16 2025-09-21 3558

keyrings(7) Miscellaneous Information Manual keyrings(7)

(shared by all threads in a process) and the thread-keyring(7) (specific to a par-
ticular thread).

As an alternative to using the actual keyring IDs, in calls to add_key(2),
keyctl(2), and request_key(2), the special keyring values KEY_SPEC_SES-
SION_KEYRING, KEY_SPEC_PROCESS_KEYRING, and
KEY_SPEC_THREAD_KEYRING can be used to refer to the caller’s own in-
stances of these keyrings.

User keyrings
Each UID known to the kernel has a record that contains two keyrings: the user-
keyring(7) and the user-session-keyring(7). These exist for as long as the UID
record in the kernel exists.

As an alternative to using the actual keyring IDs, in calls to add_key(2),
keyctl(2), and request_key(2), the special keyring values
KEY_SPEC_USER_KEYRING and KEY_SPEC_USER_SES-
SION_KEYRING can be used to refer to the caller’s own instances of these
keyrings.

A link to the user keyring is placed in a new session keyring by pam_keyinit(8)
when a new login session is initiated.

Persistent keyrings
There is a persistent-keyring(7) available to each UID known to the system. It
may persist beyond the life of the UID record previously mentioned, but has an
expiration time set such that it is automatically cleaned up after a set time. The
persistent keyring permits, for example, cron(8) scripts to use credentials that are
left in the persistent keyring after the user logs out.

Note that the expiration time of the persistent keyring is reset every time the per-
sistent key is requested.

Special keyrings
There are special keyrings owned by the kernel that can anchor keys for special
purposes. An example of this is the system keyring used for holding encryption
keys for module signature verification.

These special keyrings are usually closed to direct alteration by user space.

An originally planned "group keyring", for storing keys associated with each GID
known to the kernel, is not so far implemented, is unlikely to be implemented. Never-
theless, the constant KEY_SPEC_GROUP_KEYRING has been defined for this
keyring.

Possession
The concept of possession is important to understanding the keyrings security model.
Whether a thread possesses a key is determined by the following rules:

(1) Any key or keyring that does not grant search permission to the caller is ignored
in all the following rules.

Linux man-pages 6.16 2025-09-21 3559

keyrings(7) Miscellaneous Information Manual keyrings(7)

(2) A thread possesses its session-keyring(7), process-keyring(7), and thread-
keyring(7) directly because those keyrings are referred to by its credentials.

(3) If a keyring is possessed, then any key it links to is also possessed.

(4) If any key a keyring links to is itself a keyring, then rule (3) applies recursively.

(5) If a process is upcalled from the kernel to instantiate a key (see request_key(2)),
then it also possesses the requester’s keyrings as in rule (1) as if it were the re-
quester.

Note that possession is not a fundamental property of a key, but must rather be calcu-
lated each time the key is needed.

Possession is designed to allow set-user-ID programs run from, say a user’s shell to ac-
cess the user’s keys. Granting permissions to the key possessor while denying them to
the key owner and group allows the prevention of access to keys on the basis of UID and
GID matches.

When it creates the session keyring, pam_keyinit(8) adds a link to the user-keyring(7),
thus making the user keyring and anything it contains possessed by default.

Access rights
Each key has the following security-related attributes:

• The owning user ID

• The ID of a group that is permitted to access the key

• A security label

• A permissions mask

The permissions mask contains four sets of rights. The first three sets are mutually ex-
clusive. One and only one will be in force for a particular access check. In order of de-
scending priority, these three sets are:

user The set specifies the rights granted if the key’s user ID matches the caller’s
filesystem user ID.

group
The set specifies the rights granted if the user ID didn’t match and the key’s
group ID matches the caller’s filesystem GID or one of the caller’s supplemen-
tary group IDs.

other
The set specifies the rights granted if neither the key’s user ID nor group ID
matched.

The fourth set of rights is:

possessor
The set specifies the rights granted if a key is determined to be possessed by the
caller.

The complete set of rights for a key is the union of whichever of the first three sets is ap-
plicable plus the fourth set if the key is possessed.

Linux man-pages 6.16 2025-09-21 3560

keyrings(7) Miscellaneous Information Manual keyrings(7)

The set of rights that may be granted in each of the four masks is as follows:

view The attributes of the key may be read. This includes the type, description, and
access rights (excluding the security label).

read For a key: the payload of the key may be read. For a keyring: the list of serial
numbers (keys) to which the keyring has links may be read.

write The payload of the key may be updated and the key may be revoked. For a
keyring, links may be added to or removed from the keyring, and the keyring
may be cleared completely (all links are removed),

search
For a key (or a keyring): the key may be found by a search. For a keyring: keys
and keyrings that are linked to by the keyring may be searched.

link Links may be created from keyrings to the key. The initial link to a key that is
established when the key is created doesn’t require this permission.

setattr
The ownership details and security label of the key may be changed, the key’s
expiration time may be set, and the key may be revoked.

In addition to access rights, any active Linux Security Module (LSM) may prevent ac-
cess to a key if its policy so dictates. A key may be given a security label or other at-
tribute by the LSM; this label is retrievable via keyctl_get_security(3)

See keyctl_chown(3), keyctl_describe(3), keyctl_get_security(3), keyctl_setperm(3), and
selinux(8) for more information.

Searching for keys
One of the key features of the Linux key-management facility is the ability to find a key
that a process is retaining. The request_key(2) system call is the primary point of access
for user-space applications to find a key. (Internally, the kernel has something similar
available for use by internal components that make use of keys.)

The search algorithm works as follows:

(1) The process keyrings are searched in the following order: the thread-keyring(7) if
it exists, the process-keyring(7) if it exists, and then either the session-keyring(7)
if it exists or the user-session-keyring(7) if that exists.

(2) If the caller was a process that was invoked by the request_key(2) upcall mecha-
nism, then the keyrings of the original caller of request_key(2) will be searched as
well.

(3) The search of a keyring tree is in breadth-first order: each keyring is searched first
for a match, then the keyrings referred to by that keyring are searched.

(4) If a matching key is found that is valid, then the search terminates and that key is
returned.

(5) If a matching key is found that has an error state attached, that error state is noted
and the search continues.

Linux man-pages 6.16 2025-09-21 3561

keyrings(7) Miscellaneous Information Manual keyrings(7)

(6) If no valid matching key is found, then the first noted error state is returned; other-
wise, an ENOKEY error is returned.

It is also possible to search a specific keyring, in which case only steps (3) to (6) apply.

See request_key(2) and keyctl_search(3) for more information.

On-demand key creation
If a key cannot be found, request_key(2) will, if given a callout_info argument, create a
new key and then upcall to user space to instantiate the key. This allows keys to be cre-
ated on an as-needed basis.

Typically, this will involve the kernel creating a new process that executes the request-
key(8) program, which will then execute the appropriate handler based on its configura-
tion.

The handler is passed a special authorization key that allows it and only it to instantiate
the new key. This is also used to permit searches performed by the handler program to
also search the requester’s keyrings.

See request_key(2), keyctl_assume_authority(3), keyctl_instantiate(3), keyctl_negate(3),
keyctl_reject(3), request-key(8), and request-key.conf (5) for more information.

Users
The Linux key-management facility has a number of users and usages, but is not limited
to those that already exist.

In-kernel users of this facility include:

Network filesystems - DNS
The kernel uses the upcall mechanism provided by the keys to upcall to user
space to do DNS lookups and then to cache the results.

AF_RXRPC and kAFS - Authentication
The AF_RXRPC network protocol and the in-kernel AFS filesystem use keys to
store the ticket needed to do secured or encrypted traffic. These are then looked
up by network operations on AF_RXRPC and filesystem operations on kAFS.

NFS - User ID mapping
The NFS filesystem uses keys to store mappings of foreign user IDs to local user
IDs.

CIFS - Password
The CIFS filesystem uses keys to store passwords for accessing remote shares.

Module verification
The kernel build process can be made to cryptographically sign modules. That
signature is then checked when a module is loaded.

User-space users of this facility include:

Kerberos key storage
The MIT Kerberos 5 facility (libkrb5) can use keys to store authentication tokens
which can be made to be automatically cleaned up a set time after the user last
uses them, but until then permits them to hang around after the user has logged
out so that cron(8) scripts can use them.

Linux man-pages 6.16 2025-09-21 3562

keyrings(7) Miscellaneous Information Manual keyrings(7)

FILES
The kernel provides various /proc files that expose information about keys or define lim-
its on key usage.

/proc/keys (since Linux 2.6.10)
This file exposes a list of the keys for which the reading thread has view permis-
sion, providing various information about each key. The thread need not possess
the key for it to be visible in this file.

The only keys included in the list are those that grant view permission to the
reading process (regardless of whether or not it possesses them). LSM security
checks are still performed, and may filter out further keys that the process is not
authorized to view.

An example of the data that one might see in this file (with the columns num-
bered for easy reference below) is the following:

(1) (2) (3)(4) (5) (6) (7) (8) (9)
009a2028 I--Q--- 1 perm 3f010000 1000 1000 user krb_ccache:primary: 12
1806c4ba I--Q--- 1 perm 3f010000 1000 1000 keyring _pid: 2
25d3a08f I--Q--- 1 perm 1f3f0000 1000 65534 keyring _uid_ses.1000: 1
28576bd8 I--Q--- 3 perm 3f010000 1000 1000 keyring _krb: 1
2c546d21 I--Q--- 190 perm 3f030000 1000 1000 keyring _ses: 2
30a4e0be I------ 4 2d 1f030000 1000 65534 keyring _persistent.1000: 1
32100fab I--Q--- 4 perm 1f3f0000 1000 65534 keyring _uid.1000: 2
32a387ea I--Q--- 1 perm 3f010000 1000 1000 keyring _pid: 2
3ce56aea I--Q--- 5 perm 3f030000 1000 1000 keyring _ses: 1

The fields shown in each line of this file are as follows:

ID (1)
The ID (serial number) of the key, expressed in hexadecimal.

Flags (2)
A set of flags describing the state of the key:

I The key has been instantiated.

R The key has been revoked.

D The key is dead (i.e., the key type has been unregistered). (A key
may be briefly in this state during garbage collection.)

Q The key contributes to the user’s quota.

U The key is under construction via a callback to user space; see
request-key(2)

N The key is negatively instantiated.

i The key has been invalidated.

Usage (3)
This is a count of the number of kernel credential structures that are pin-
ning the key (approximately: the number of threads and open file refer-
ences that refer to this key).

Linux man-pages 6.16 2025-09-21 3563

keyrings(7) Miscellaneous Information Manual keyrings(7)

Timeout (4)
The amount of time until the key will expire, expressed in human-read-
able form (weeks, days, hours, minutes, and seconds). The string perm
here means that the key is permanent (no timeout). The string expd
means that the key has already expired, but has not yet been garbage col-
lected.

Permissions (5)
The key permissions, expressed as four hexadecimal bytes containing,
from left to right, the possessor, user, group, and other permissions.
Within each byte, the permission bits are as follows:

0x01 view
0x02 read
0x04 write
0x08 search
0x10 link
0x20 setattr

UID (6)
The user ID of the key owner.

GID (7)
The group ID of the key. The value -1 here means that the key has no
group ID; this can occur in certain circumstances for keys created by the
kernel.

Type (8)
The key type (user, keyring, etc.)

Description (9)
The key description (name). This field contains descriptive information
about the key. For most key types, it has the form

name[: extra-info]

The name subfield is the key’s description (name). The optional
extra-info field provides some further information about the key. The in-
formation that appears here depends on the key type, as follows:

"user"
"logon"

The size in bytes of the key payload (expressed in decimal).

"keyring"
The number of keys linked to the keyring, or the string empty if
there are no keys linked to the keyring.

"big_key"
The payload size in bytes, followed either by the string [file], if
the key payload exceeds the threshold that means that the payload
is stored in a (swappable) tmpfs(5) filesystem, or otherwise the
string [buff], indicating that the key is small enough to reside in
kernel memory.

Linux man-pages 6.16 2025-09-21 3564

keyrings(7) Miscellaneous Information Manual keyrings(7)

For the ".request_key_auth" key type (authorization key; see re-
quest_key(2)), the description field has the form shown in the following
example:

key:c9a9b19 pid:28880 ci:10

The three subfields are as follows:

key The hexadecimal ID of the key being instantiated in the request-
ing program.

pid The PID of the requesting program.

ci The length of the callout data with which the requested key
should be instantiated (i.e., the length of the payload associated
with the authorization key).

/proc/key-users (since Linux 2.6.10)
This file lists various information for each user ID that has at least one key on the
system. An example of the data that one might see in this file is the following:

0: 10 9/9 2/1000000 22/25000000
42: 9 9/9 8/200 106/20000

1000: 11 11/11 10/200 271/20000

The fields shown in each line are as follows:

uid The user ID.

usage
This is a kernel-internal usage count for the kernel structure used to
record key users.

nkeys/nikeys
The total number of keys owned by the user, and the number of those
keys that have been instantiated.

qnkeys/maxkeys
The number of keys owned by the user, and the maximum number of
keys that the user may own.

qnbytes/maxbytes
The number of bytes consumed in payloads of the keys owned by this
user, and the upper limit on the number of bytes in key payloads for that
user.

/proc/sys/kernel/keys/gc_delay (since Linux 2.6.32)
The value in this file specifies the interval, in seconds, after which revoked and
expired keys will be garbage collected. The purpose of having such an interval
is so that there is a window of time where user space can see an error (respec-
tively EKEYREVOKED and EKEYEXPIRED) that indicates what happened
to the key.

The default value in this file is 300 (i.e., 5 minutes).

Linux man-pages 6.16 2025-09-21 3565

keyrings(7) Miscellaneous Information Manual keyrings(7)

/proc/sys/kernel/keys/persistent_keyring_expiry (since Linux 3.13)
This file defines an interval, in seconds, to which the persistent keyring’s expira-
tion timer is reset each time the keyring is accessed (via keyctl_get_persistent(3)
or the keyctl(2) KEYCTL_GET_PERSISTENT operation.)

The default value in this file is 259200 (i.e., 3 days).

The following files (which are writable by privileged processes) are used to enforce quo-
tas on the number of keys and number of bytes of data that can be stored in key pay-
loads:

/proc/sys/kernel/keys/maxbytes (since Linux 2.6.26)
This is the maximum number of bytes of data that a nonroot user can hold in the
payloads of the keys owned by the user.

The default value in this file is 20,000.

/proc/sys/kernel/keys/maxkeys (since Linux 2.6.26)
This is the maximum number of keys that a nonroot user may own.

The default value in this file is 200.

/proc/sys/kernel/keys/root_maxbytes (since Linux 2.6.26)
This is the maximum number of bytes of data that the root user (UID 0 in the
root user namespace) can hold in the payloads of the keys owned by root.

The default value in this file is 25,000,000 (20,000 before Linux 3.17).

/proc/sys/kernel/keys/root_maxkeys (since Linux 2.6.26)
This is the maximum number of keys that the root user (UID 0 in the root user
namespace) may own.

The default value in this file is 1,000,000 (200 before Linux 3.17).

With respect to keyrings, note that each link in a keyring consumes 4 bytes of the
keyring payload.

SEE ALSO
keyctl(1), add_key(2), keyctl(2), request_key(2), keyctl(3), keyutils(7), persistent-
keyring(7), process-keyring(7), session-keyring(7), thread-keyring(7), user-keyring(7),
user-session-keyring(7), pam_keyinit(8), request-key(8)

linux.git/Documentation/crypto/asymmetric-keys.txt
linux.git/Documentation/security/keys/

Linux man-pages 6.16 2025-09-21 3566

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

NAME
koi8-r - Russian character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
RFC 1489 defines an 8-bit character set, KOI8-R. KOI8-R encodes the characters used
in Russian.

KOI8-R characters
The following table displays the characters in KOI8-R that are printable and unlisted in
the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 ─ BOX DRAWINGS LIGHT HORIZONTAL
201 129 81 BOX DRAWINGS LIGHT VERTICAL
202 130 82 ┌ BOX DRAWINGS LIGHT DOWN AND RIGHT
203 131 83 ┐ BOX DRAWINGS LIGHT DOWN AND LEFT
204 132 84 └ BOX DRAWINGS LIGHT UP AND RIGHT
205 133 85 ┘ BOX DRAWINGS LIGHT UP AND LEFT
206 134 86 ├ BOX DRAWINGS LIGHT VERTICAL AND RIGHT
207 135 87 ┤ BOX DRAWINGS LIGHT VERTICAL AND LEFT
210 136 88 ┬ BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
211 137 89 ┴ BOX DRAWINGS LIGHT UP AND HORIZONTAL
212 138 8A ┼ BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
213 139 8B ▀ UPPER HALF BLOCK
214 140 8C ▄ LOWER HALF BLOCK
215 141 8D █ FULL BLOCK
216 142 8E ▌ LEFT HALF BLOCK
217 143 8F ▐ RIGHT HALF BLOCK
220 144 90 ░ LIGHT SHADE
221 145 91 ▒ MEDIUM SHADE
222 146 92 ▓ DARK SHADE
223 147 93 ⌠ TOP HALF INTEGRAL
224 148 94 ■ BLACK SQUARE
225 149 95 BULLET OPERATOR
226 150 96 √ SQUARE ROOT
227 151 97 ≈ ALMOST EQUAL TO
230 152 98 ≤ LESS-THAN OR EQUAL TO
231 153 99 ≥ GREATER-THAN OR EQUAL TO
232 154 9A NO-BREAK SPACE
233 155 9B ⌡ BOTTOM HALF INTEGRAL
234 156 9C ° DEGREE SIGN
235 157 9D ² SUPERSCRIPT TWO
236 158 9E · MIDDLE DOT
237 159 9F ÷ DIVISION SIGN
240 160 A0 ═ BOX DRAWINGS DOUBLE HORIZONTAL
241 161 A1 ║ BOX DRAWINGS DOUBLE VERTICAL
242 162 A2 ╒ BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
243 163 A3 ё CYRILLIC SMALL LETTER IO

Linux man-pages 6.16 2025-05-17 3567

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

244 164 A4 ╓ BOX DRAWINGS DOWN DOUBLE AND RIGHT SINGLE
245 165 A5 ╔ BOX DRAWINGS DOUBLE DOWN AND RIGHT
246 166 A6 ╕ BOX DRAWINGS DOWN SINGLE AND LEFT DOUBLE
247 167 A7 ╖ BOX DRAWINGS DOWN DOUBLE AND LEFT SINGLE
250 168 A8 ╗ BOX DRAWINGS DOUBLE DOWN AND LEFT
251 169 A9 ╘ BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
252 170 AA ╙ BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
253 171 AB ╚ BOX DRAWINGS DOUBLE UP AND RIGHT
254 172 AC ╛ BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
255 173 AD ╜ BOX DRAWINGS UP DOUBLE AND LEFT SINGLE
256 174 AE ╝ BOX DRAWINGS DOUBLE UP AND LEFT
257 175 AF ╞ BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
260 176 B0 ╟ BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
261 177 B1 ╠ BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
262 178 B2 ╡ BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
263 179 B3 Ё CYRILLIC CAPITAL LETTER IO
264 180 B4 ╢ BOX DRAWINGS VERTICAL DOUBLE AND LEFT SINGLE
265 181 B5 ╣ BOX DRAWINGS DOUBLE VERTICAL AND LEFT
266 182 B6 ╤ BOX DRAWINGS DOWN SINGLE AND HORIZONTAL DOUBLE
267 183 B7 ╥ BOX DRAWINGS DOWN DOUBLE AND HORIZONTAL SINGLE
270 184 B8 ╦ BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
271 185 B9 ╧ BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
272 186 BA ╨ BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
273 187 BB ╩ BOX DRAWINGS DOUBLE UP AND HORIZONTAL
274 188 BC ╪ BOX DRAWINGS VERTICAL SINGLE

AND HORIZONTAL DOUBLE
275 189 BD ╫ BOX DRAWINGS VERTICAL DOUBLE

AND HORIZONTAL SINGLE
276 190 BE ╬ BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
277 191 BF © COPYRIGHT SIGN
300 192 C0 ю CYRILLIC SMALL LETTER YU
301 193 C1 а CYRILLIC SMALL LETTER A
302 194 C2 б CYRILLIC SMALL LETTER BE
303 195 C3 ц CYRILLIC SMALL LETTER TSE
304 196 C4 д CYRILLIC SMALL LETTER DE
305 197 C5 е CYRILLIC SMALL LETTER IE
306 198 C6 ф CYRILLIC SMALL LETTER EF
307 199 C7 г CYRILLIC SMALL LETTER GHE
310 200 C8 х CYRILLIC SMALL LETTER HA
311 201 C9 и CYRILLIC SMALL LETTER I
312 202 CA й CYRILLIC SMALL LETTER SHORT I
313 203 CB к CYRILLIC SMALL LETTER KA
314 204 CC л CYRILLIC SMALL LETTER EL
315 205 CD м CYRILLIC SMALL LETTER EM
316 206 CE н CYRILLIC SMALL LETTER EN
317 207 CF о CYRILLIC SMALL LETTER O

Linux man-pages 6.16 2025-05-17 3568

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

320 208 D0 п CYRILLIC SMALL LETTER PE
321 209 D1 я CYRILLIC SMALL LETTER YA
322 210 D2 р CYRILLIC SMALL LETTER ER
323 211 D3 с CYRILLIC SMALL LETTER ES
324 212 D4 т CYRILLIC SMALL LETTER TE
325 213 D5 у CYRILLIC SMALL LETTER U
326 214 D6 ж CYRILLIC SMALL LETTER ZHE
327 215 D7 в CYRILLIC SMALL LETTER VE
330 216 D8 ь CYRILLIC SMALL LETTER SOFT SIGN
331 217 D9 ы CYRILLIC SMALL LETTER YERU
332 218 DA з CYRILLIC SMALL LETTER ZE
333 219 DB ш CYRILLIC SMALL LETTER SHA
334 220 DC э CYRILLIC SMALL LETTER E
335 221 DD щ CYRILLIC SMALL LETTER SHCHA
336 222 DE ч CYRILLIC SMALL LETTER CHE
337 223 DF ъ CYRILLIC SMALL LETTER HARD SIGN
340 224 E0 Ю CYRILLIC CAPITAL LETTER YU
341 225 E1 А CYRILLIC CAPITAL LETTER A
342 226 E2 Б CYRILLIC CAPITAL LETTER BE
343 227 E3 Ц CYRILLIC CAPITAL LETTER TSE
344 228 E4 Д CYRILLIC CAPITAL LETTER DE
345 229 E5 Е CYRILLIC CAPITAL LETTER IE
346 230 E6 Ф CYRILLIC CAPITAL LETTER EF
347 231 E7 Г CYRILLIC CAPITAL LETTER GHE
350 232 E8 Х CYRILLIC CAPITAL LETTER HA
351 233 E9 И CYRILLIC CAPITAL LETTER I
352 234 EA Й CYRILLIC CAPITAL LETTER SHORT I
353 235 EB К CYRILLIC CAPITAL LETTER KA
354 236 EC Л CYRILLIC CAPITAL LETTER EL
355 237 ED М CYRILLIC CAPITAL LETTER EM
356 238 EE Н CYRILLIC CAPITAL LETTER EN
357 239 EF О CYRILLIC CAPITAL LETTER O
360 240 F0 П CYRILLIC CAPITAL LETTER PE
361 241 F1 Я CYRILLIC CAPITAL LETTER YA
362 242 F2 Р CYRILLIC CAPITAL LETTER ER
363 243 F3 С CYRILLIC CAPITAL LETTER ES
364 244 F4 Т CYRILLIC CAPITAL LETTER TE
365 245 F5 У CYRILLIC CAPITAL LETTER U
366 246 F6 Ж CYRILLIC CAPITAL LETTER ZHE
367 247 F7 В CYRILLIC CAPITAL LETTER VE
370 248 F8 Ь CYRILLIC CAPITAL LETTER SOFT SIGN
371 249 F9 Ы CYRILLIC CAPITAL LETTER YERU
372 250 FA З CYRILLIC CAPITAL LETTER ZE
373 251 FB Ш CYRILLIC CAPITAL LETTER SHA
374 252 FC Э CYRILLIC CAPITAL LETTER E
375 253 FD Щ CYRILLIC CAPITAL LETTER SHCHA

Linux man-pages 6.16 2025-05-17 3569

KOI8-R(7) Miscellaneous Information Manual KOI8-R(7)

376 254 FE Ч CYRILLIC CAPITAL LETTER CHE
377 255 FF Ъ CYRILLIC CAPITAL LETTER HARD SIGN

NOTES
The differences with KOI8-U are in the hex positions A4, A6, A7, AD, B4, B6, B7, and
BD.

SEE ALSO
ascii(7), charsets(7), cp1251(7), iso_8859-5(7), koi8-u(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3570

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

NAME
koi8-u - Ukrainian character set encoded in octal, decimal, and hexadecimal

DESCRIPTION
RFC 2310 defines an 8-bit character set, KOI8-U. KOI8-U encodes the characters used
in Ukrainian and Byelorussian.

KOI8-U characters
The following table displays the characters in KOI8-U that are printable and unlisted in
the ascii(7) manual page.
Oct Dec Hex Char Description

200 128 80 ─ BOX DRAWINGS LIGHT HORIZONTAL
201 129 81 BOX DRAWINGS LIGHT VERTICAL
202 130 82 ┌ BOX DRAWINGS LIGHT DOWN AND RIGHT
203 131 83 ┐ BOX DRAWINGS LIGHT DOWN AND LEFT
204 132 84 └ BOX DRAWINGS LIGHT UP AND RIGHT
205 133 85 ┘ BOX DRAWINGS LIGHT UP AND LEFT
206 134 86 ├ BOX DRAWINGS LIGHT VERTICAL AND RIGHT
207 135 87 ┤ BOX DRAWINGS LIGHT VERTICAL AND LEFT
210 136 88 ┬ BOX DRAWINGS LIGHT DOWN AND HORIZONTAL
211 137 89 ┴ BOX DRAWINGS LIGHT UP AND HORIZONTAL
212 138 8A ┼ BOX DRAWINGS LIGHT VERTICAL AND HORIZONTAL
213 139 8B ▀ UPPER HALF BLOCK
214 140 8C ▄ LOWER HALF BLOCK
215 141 8D █ FULL BLOCK
216 142 8E ▌ LEFT HALF BLOCK
217 143 8F ▐ RIGHT HALF BLOCK
220 144 90 ░ LIGHT SHADE
221 145 91 ▒ MEDIUM SHADE
222 146 92 ▓ DARK SHADE
223 147 93 ⌠ TOP HALF INTEGRAL
224 148 94 ■ BLACK SQUARE
225 149 95 BULLET OPERATOR
226 150 96 √ SQUARE ROOT
227 151 97 ≈ ALMOST EQUAL TO
230 152 98 ≤ LESS-THAN OR EQUAL TO
231 153 99 ≥ GREATER-THAN OR EQUAL TO
232 154 9A NO-BREAK SPACE
233 155 9B ⌡ BOTTOM HALF INTEGRAL
234 156 9C ° DEGREE SIGN
235 157 9D ² SUPERSCRIPT TWO
236 158 9E · MIDDLE DOT
237 159 9F ÷ DIVISION SIGN
240 160 A0 ═ BOX DRAWINGS DOUBLE HORIZONTAL
241 161 A1 ║ BOX DRAWINGS DOUBLE VERTICAL
242 162 A2 ╒ BOX DRAWINGS DOWN SINGLE AND RIGHT DOUBLE
243 163 A3 ё CYRILLIC SMALL LETTER IO

Linux man-pages 6.16 2025-05-17 3571

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

244 164 A4 є CYRILLIC SMALL LETTER UKRAINIAN IE
245 165 A5 ╔ BOX DRAWINGS DOUBLE DOWN AND RIGHT
246 166 A6 і CYRILLIC SMALL LETTER

BYELORUSSIAN-UKRAINIAN I
247 167 A7 ї CYRILLIC SMALL LETTER YI (Ukrainian)
250 168 A8 ╗ BOX DRAWINGS DOUBLE DOWN AND LEFT
251 169 A9 ╘ BOX DRAWINGS UP SINGLE AND RIGHT DOUBLE
252 170 AA ╙ BOX DRAWINGS UP DOUBLE AND RIGHT SINGLE
253 171 AB ╚ BOX DRAWINGS DOUBLE UP AND RIGHT
254 172 AC ╛ BOX DRAWINGS UP SINGLE AND LEFT DOUBLE
255 173 AD ґ CYRILLIC SMALL LETTER GHE WITH UPTURN
256 174 AE ╝ BOX DRAWINGS DOUBLE UP AND LEFT
257 175 AF ╞ BOX DRAWINGS VERTICAL SINGLE AND RIGHT DOUBLE
260 176 B0 ╟ BOX DRAWINGS VERTICAL DOUBLE AND RIGHT SINGLE
261 177 B1 ╠ BOX DRAWINGS DOUBLE VERTICAL AND RIGHT
262 178 B2 ╡ BOX DRAWINGS VERTICAL SINGLE AND LEFT DOUBLE
263 179 B3 Ё CYRILLIC CAPITAL LETTER IO
264 180 B4 Є CYRILLIC CAPITAL LETTER UKRAINIAN IE
265 181 B5 ╣ BOX DRAWINGS DOUBLE VERTICAL AND LEFT
266 182 B6 І CYRILLIC CAPITAL LETTER

BYELORUSSIAN-UKRAINIAN I
267 183 B7 Ї CYRILLIC CAPITAL LETTER YI (Ukrainian)
270 184 B8 ╦ BOX DRAWINGS DOUBLE DOWN AND HORIZONTAL
271 185 B9 ╧ BOX DRAWINGS UP SINGLE AND HORIZONTAL DOUBLE
272 186 BA ╨ BOX DRAWINGS UP DOUBLE AND HORIZONTAL SINGLE
273 187 BB ╩ BOX DRAWINGS DOUBLE UP AND HORIZONTAL
274 188 BC ╪ BOX DRAWINGS VERTICAL SINGLE

AND HORIZONTAL DOUBLE
275 189 BD Ґ CYRILLIC CAPITAL LETTER GHE WITH UPTURN
276 190 BE ╬ BOX DRAWINGS DOUBLE VERTICAL AND HORIZONTAL
277 191 BF © COPYRIGHT SIGN
300 192 C0 ю CYRILLIC SMALL LETTER YU
301 193 C1 а CYRILLIC SMALL LETTER A
302 194 C2 б CYRILLIC SMALL LETTER BE
303 195 C3 ц CYRILLIC SMALL LETTER TSE
304 196 C4 д CYRILLIC SMALL LETTER DE
305 197 C5 е CYRILLIC SMALL LETTER IE
306 198 C6 ф CYRILLIC SMALL LETTER EF
307 199 C7 г CYRILLIC SMALL LETTER GHE
310 200 C8 х CYRILLIC SMALL LETTER HA
311 201 C9 и CYRILLIC SMALL LETTER I
312 202 CA й CYRILLIC SMALL LETTER SHORT I
313 203 CB к CYRILLIC SMALL LETTER KA
314 204 CC л CYRILLIC SMALL LETTER EL
315 205 CD м CYRILLIC SMALL LETTER EM
316 206 CE н CYRILLIC SMALL LETTER EN

Linux man-pages 6.16 2025-05-17 3572

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

317 207 CF о CYRILLIC SMALL LETTER O
320 208 D0 п CYRILLIC SMALL LETTER PE
321 209 D1 я CYRILLIC SMALL LETTER YA
322 210 D2 р CYRILLIC SMALL LETTER ER
323 211 D3 с CYRILLIC SMALL LETTER ES
324 212 D4 т CYRILLIC SMALL LETTER TE
325 213 D5 у CYRILLIC SMALL LETTER U
326 214 D6 ж CYRILLIC SMALL LETTER ZHE
327 215 D7 в CYRILLIC SMALL LETTER VE
330 216 D8 ь CYRILLIC SMALL LETTER SOFT SIGN
331 217 D9 ы CYRILLIC SMALL LETTER YERU
332 218 DA з CYRILLIC SMALL LETTER ZE
333 219 DB ш CYRILLIC SMALL LETTER SHA
334 220 DC э CYRILLIC SMALL LETTER E
335 221 DD щ CYRILLIC SMALL LETTER SHCHA
336 222 DE ч CYRILLIC SMALL LETTER CHE
337 223 DF ъ CYRILLIC SMALL LETTER HARD SIGN
340 224 E0 Ю CYRILLIC CAPITAL LETTER YU
341 225 E1 А CYRILLIC CAPITAL LETTER A
342 226 E2 Б CYRILLIC CAPITAL LETTER BE
343 227 E3 Ц CYRILLIC CAPITAL LETTER TSE
344 228 E4 Д CYRILLIC CAPITAL LETTER DE
345 229 E5 Е CYRILLIC CAPITAL LETTER IE
346 230 E6 Ф CYRILLIC CAPITAL LETTER EF
347 231 E7 Г CYRILLIC CAPITAL LETTER GHE
350 232 E8 Х CYRILLIC CAPITAL LETTER HA
351 233 E9 И CYRILLIC CAPITAL LETTER I
352 234 EA Й CYRILLIC CAPITAL LETTER SHORT I
353 235 EB К CYRILLIC CAPITAL LETTER KA
354 236 EC Л CYRILLIC CAPITAL LETTER EL
355 237 ED М CYRILLIC CAPITAL LETTER EM
356 238 EE Н CYRILLIC CAPITAL LETTER EN
357 239 EF О CYRILLIC CAPITAL LETTER O
360 240 F0 П CYRILLIC CAPITAL LETTER PE
361 241 F1 Я CYRILLIC CAPITAL LETTER YA
362 242 F2 Р CYRILLIC CAPITAL LETTER ER
363 243 F3 С CYRILLIC CAPITAL LETTER ES
364 244 F4 Т CYRILLIC CAPITAL LETTER TE
365 245 F5 У CYRILLIC CAPITAL LETTER U
366 246 F6 Ж CYRILLIC CAPITAL LETTER ZHE
367 247 F7 В CYRILLIC CAPITAL LETTER VE
370 248 F8 Ь CYRILLIC CAPITAL LETTER SOFT SIGN
371 249 F9 Ы CYRILLIC CAPITAL LETTER YERU
372 250 FA З CYRILLIC CAPITAL LETTER ZE
373 251 FB Ш CYRILLIC CAPITAL LETTER SHA
374 252 FC Э CYRILLIC CAPITAL LETTER E

Linux man-pages 6.16 2025-05-17 3573

KOI8-U(7) Miscellaneous Information Manual KOI8-U(7)

375 253 FD Щ CYRILLIC CAPITAL LETTER SHCHA
376 254 FE Ч CYRILLIC CAPITAL LETTER CHE
377 255 FF Ъ CYRILLIC CAPITAL LETTER HARD SIGN

NOTES
The differences from KOI8-R are in the hex positions A4, A6, A7, AD, B4, B6, B7, and
BD.

SEE ALSO
ascii(7), charsets(7), cp1251(7), iso_8859-5(7), koi8-r(7), utf-8(7)

Linux man-pages 6.16 2025-05-17 3574

Landlock(7) Miscellaneous Information Manual Landlock(7)

NAME
Landlock - unprivileged access-control

DESCRIPTION
Landlock is an access-control system that enables any processes to securely restrict
themselves and their future children. Because Landlock is a stackable Linux Security
Module (LSM), it makes it possible to create safe security sandboxes as new security
layers in addition to the existing system-wide access-controls. This kind of sandbox is
expected to help mitigate the security impact of bugs, and unexpected or malicious be-
haviors in applications.

A Landlock security policy is a set of access rights (e.g., open a file in read-only, make a
directory, etc.) tied to a file hierarchy. Such policy can be configured and enforced by
processes for themselves using three system calls:

• landlock_create_ruleset(2) creates a new ruleset;

• landlock_add_rule(2) adds a new rule to a ruleset;

• landlock_restrict_self(2) enforces a ruleset on the calling thread.

To be able to use these system calls, the running kernel must support Landlock and it
must be enabled at boot time.

Landlock rules
A Landlock rule describes an action on an object which the process intends to perform.
A set of rules is aggregated in a ruleset, which can then restrict the thread enforcing it,
and its future children.

The two existing types of rules are:

Filesystem rules
For these rules, the object is a file hierarchy, and the related filesystem actions
are defined with filesystem access rights.

Network rules (since ABI v4)
For these rules, the object is a TCP port, and the related actions are defined with
network access rights.

Filesystem actions
These flags enable to restrict a sandboxed process to a set of actions on files and directo-
ries. Files or directories opened before the sandboxing are not subject to these restric-
tions. See landlock_add_rule(2) and landlock_create_ruleset(2) for more context.

The following access rights apply only to files:

LANDLOCK_ACCESS_FS_EXECUTE
Execute a file.

LANDLOCK_ACCESS_FS_WRITE_FILE
Open a file with write access.

When opening files for writing, you will often additionally need the LAND-
LOCK_ACCESS_FS_TRUNCATE right. In many cases, these system calls
truncate existing files when overwriting them (e.g., creat(2)).

Linux man-pages 6.16 2025-09-21 3575

Landlock(7) Miscellaneous Information Manual Landlock(7)

LANDLOCK_ACCESS_FS_READ_FILE
Open a file with read access.

LANDLOCK_ACCESS_FS_TRUNCATE
Truncate a file with truncate(2), ftruncate(2), creat(2), or open(2) with
O_TRUNC.

This access right is available since the third version of the Landlock ABI.

Whether an opened file can be truncated with ftruncate(2) or used with ioctl(2) is deter-
mined during open(2), in the same way as read and write permissions are checked dur-
ing open(2) using LANDLOCK_ACCESS_FS_READ_FILE and LANDLOCK_AC-
CESS_FS_WRITE_FILE.

A directory can receive access rights related to files or directories. The following access
right is applied to the directory itself, and the directories beneath it:

LANDLOCK_ACCESS_FS_READ_DIR
Open a directory or list its content.

However, the following access rights only apply to the content of a directory, not the di-
rectory itself:

LANDLOCK_ACCESS_FS_REMOVE_DIR
Remove an empty directory or rename one.

LANDLOCK_ACCESS_FS_REMOVE_FILE
Unlink (or rename) a file.

LANDLOCK_ACCESS_FS_MAKE_CHAR
Create (or rename or link) a character device.

LANDLOCK_ACCESS_FS_MAKE_DIR
Create (or rename) a directory.

LANDLOCK_ACCESS_FS_MAKE_REG
Create (or rename or link) a regular file.

LANDLOCK_ACCESS_FS_MAKE_SOCK
Create (or rename or link) a UNIX domain socket.

LANDLOCK_ACCESS_FS_MAKE_FIFO
Create (or rename or link) a named pipe.

LANDLOCK_ACCESS_FS_MAKE_BLOCK
Create (or rename or link) a block device.

LANDLOCK_ACCESS_FS_MAKE_SYM
Create (or rename or link) a symbolic link.

LANDLOCK_ACCESS_FS_REFER
Link or rename a file from or to a different directory (i.e., reparent a file hierar-
chy).

This access right is available since the second version of the Landlock ABI.

This is the only access right which is denied by default by any ruleset, even if the
right is not specified as handled at ruleset creation time. The only way to make a

Linux man-pages 6.16 2025-09-21 3576

Landlock(7) Miscellaneous Information Manual Landlock(7)

ruleset grant this right is to explicitly allow it for a specific directory by adding a
matching rule to the ruleset.

In particular, when using the first Landlock ABI version, Landlock will always
deny attempts to reparent files between different directories.

In addition to the source and destination directories having the LAND-
LOCK_ACCESS_FS_REFER access right, the attempted link or rename oper-
ation must meet the following constraints:

• The reparented file may not gain more access rights in the destination direc-
tory than it previously had in the source directory. If this is attempted, the
operation results in an EXDEV error.

• When linking or renaming, the LANDLOCK_ACCESS_FS_MAKE_*
right for the respective file type must be granted for the destination directory.
Otherwise, the operation results in an EACCES error.

• When renaming, the LANDLOCK_ACCESS_FS_REMOVE_* right for
the respective file type must be granted for the source directory. Otherwise,
the operation results in an EACCES error.

If multiple requirements are not met, the EACCES error code takes precedence
over EXDEV.

The following access right applies to both files and directories:

LANDLOCK_ACCESS_FS_IOCTL_DEV
Invoke ioctl(2) commands on an opened character or block device.

This access right applies to all ioctl(2) commands implemented by device dri-
vers. However, the following common IOCTL commands continue to be invok-
able independent of the LANDLOCK_ACCESS_FS_IOCTL_DEV right:

• IOCTL commands targeting file descriptors (FIOCLEX, FIONCLEX),

• IOCTL commands targeting file descriptions (FIONBIO, FIOASYNC),

• IOCTL commands targeting file systems (FIFREEZE, FITHAW,
FIGETBSZ, FS_IOC_GETFSUUID, FS_IOC_GETFSSYSFSPATH)

• Some IOCTL commands which do not make sense when used with devices,
but whose implementations are safe and return the right error codes
(FS_IOC_FIEMAP, FICLONE, FICLONERANGE, FID-
EDUPERANGE)

This access right is available since the fifth version of the Landlock ABI.

Network flags
These flags enable to restrict a sandboxed process to a set of network actions.

This is supported since Landlock ABI version 4.

The following access rights apply to TCP port numbers:

LANDLOCK_ACCESS_NET_BIND_TCP
Bind a TCP socket to a local port.

Linux man-pages 6.16 2025-09-21 3577

Landlock(7) Miscellaneous Information Manual Landlock(7)

LANDLOCK_ACCESS_NET_CONNECT_TCP
Connect an active TCP socket to a remote port.

Scope flags
These flags enable isolating a sandboxed process from a set of IPC actions. Setting a
flag for a ruleset will isolate the Landlock domain to forbid connections to resources
outside the domain.

This is supported since Landlock ABI version 6.

The following scopes exist:

LANDLOCK_SCOPE_ABSTRACT_UNIX_SOCKET
Restrict a sandboxed process from connecting to an abstract UNIX socket cre-
ated by a process outside the related Landlock domain (e.g., a parent domain or a
non-sandboxed process).

LANDLOCK_SCOPE_SIGNAL
Restrict a sandboxed process from sending a signal to another process outside
the domain.

Layers of file path access rights
Each time a thread enforces a ruleset on itself, it updates its Landlock domain with a
new layer of policy. Indeed, this complementary policy is composed with the potentially
other rulesets already restricting this thread. A sandboxed thread can then safely add
more constraints to itself with a new enforced ruleset.

One policy layer grants access to a file path if at least one of its rules encountered on the
path grants the access. A sandboxed thread can only access a file path if all its enforced
policy layers grant the access as well as all the other system access controls (e.g.,
filesystem DAC, other LSM policies, etc.).

Bind mounts and OverlayFS
Landlock enables restricting access to file hierarchies, which means that these access
rights can be propagated with bind mounts (cf. mount_namespaces(7)) but not with
OverlayFS.

A bind mount mirrors a source file hierarchy to a destination. The destination hierarchy
is then composed of the exact same files, on which Landlock rules can be tied, either via
the source or the destination path. These rules restrict access when they are encountered
on a path, which means that they can restrict access to multiple file hierarchies at the
same time, whether these hierarchies are the result of bind mounts or not.

An OverlayFS mount point consists of upper and lower layers. These layers are com-
bined in a merge directory, result of the mount point. This merge hierarchy may include
files from the upper and lower layers, but modifications performed on the merge hierar-
chy only reflect on the upper layer. From a Landlock policy point of view, each of the
OverlayFS layers and merge hierarchies is standalone and contains its own set of files
and directories, which is different from a bind mount. A policy restricting an OverlayFS
layer will not restrict the resulted merged hierarchy, and vice versa. Landlock users
should then only think about file hierarchies they want to allow access to, regardless of
the underlying filesystem.

Linux man-pages 6.16 2025-09-21 3578

Landlock(7) Miscellaneous Information Manual Landlock(7)

Inheritance
Every new thread resulting from a clone(2) inherits Landlock domain restrictions from
its parent. This is similar to the seccomp(2) inheritance or any other LSM dealing with
tasks’ credentials(7). For instance, one process’s thread may apply Landlock rules to it-
self, but they will not be automatically applied to other sibling threads (unlike POSIX
thread credential changes, cf. nptl(7)).

When a thread sandboxes itself, we have the guarantee that the related security policy
will stay enforced on all this thread’s descendants. This allows creating standalone and
modular security policies per application, which will automatically be composed be-
tween themselves according to their run-time parent policies.

Ptrace restrictions
A sandboxed process has less privileges than a non-sandboxed process and must then be
subject to additional restrictions when manipulating another process. To be allowed to
use ptrace(2) and related syscalls on a target process, a sandboxed process should have a
subset of the target process rules, which means the tracee must be in a sub-domain of the
tracer.

IPC scoping
Similar to the implicit Ptrace restrictions, we may want to further restrict interactions
between sandboxes. Therefore, at ruleset creation time, each Landlock domain can re-
strict the scope for certain operations, so that these operations can only reach out to
processes within the same Landlock domain or in a nested Landlock domain (the
"scope").

The operations which can be scoped are:

LANDLOCK_SCOPE_SIGNAL
This limits the sending of signals to target processes which run within the same
or a nested Landlock domain.

LANDLOCK_SCOPE_ABSTRACT_UNIX_SOCKET
This limits the set of abstract unix(7) sockets to which we can connect(2) to
socket addresses which were created by a process in the same or a nested Land-
lock domain.

A sendto(2) on a non-connected datagram socket is treated as if it were doing an
implicit connect(2) and will be blocked if the remote end does not stem from the
same or a nested Landlock domain.

A sendto(2) on a socket which was previously connected will not be restricted.
This works for both datagram and stream sockets.

IPC scoping does not support exceptions via landlock_add_rule(2). If an operation is
scoped within a domain, no rules can be added to allow access to resources or processes
outside of the scope.

Truncating files
The operations covered by LANDLOCK_ACCESS_FS_WRITE_FILE and LAND-
LOCK_ACCESS_FS_TRUNCATE both change the contents of a file and sometimes
overlap in non-intuitive ways. It is recommended to always specify both of these to-
gether.

Linux man-pages 6.16 2025-09-21 3579

Landlock(7) Miscellaneous Information Manual Landlock(7)

A particularly surprising example is creat(2). The name suggests that this system call
requires the rights to create and write files. However, it also requires the truncate right if
an existing file under the same name is already present.

It should also be noted that truncating files does not require the LANDLOCK_AC-
CESS_FS_WRITE_FILE right. Apart from the truncate(2) system call, this can also
be done through open(2) with the flags O_RDONLY | O_TRUNC.

When opening a file, the availability of the LANDLOCK_ACCESS_FS_TRUNCATE
right is associated with the newly created file descriptor and will be used for subsequent
truncation attempts using ftruncate(2). The behavior is similar to opening a file for
reading or writing, where permissions are checked during open(2), but not during the
subsequent read(2) and write(2) calls.

As a consequence, it is possible to have multiple open file descriptors for the same file,
where one grants the right to truncate the file and the other does not. It is also possible
to pass such file descriptors between processes, keeping their Landlock properties, even
when these processes do not have an enforced Landlock ruleset.

VERSIONS
Landlock was introduced in Linux 5.13.

To determine which Landlock features are available, users should query the Landlock
ABI version:
ABI Kernel Newly introduced access rights

LANDLOCK_ACCESS_FS_EXECUTE
LANDLOCK_ACCESS_FS_WRITE_FILE
LANDLOCK_ACCESS_FS_READ_FILE
LANDLOCK_ACCESS_FS_READ_DIR
LANDLOCK_ACCESS_FS_REMOVE_DIR
LANDLOCK_ACCESS_FS_REMOVE_FILE
LANDLOCK_ACCESS_FS_MAKE_CHAR
LANDLOCK_ACCESS_FS_MAKE_DIR
LANDLOCK_ACCESS_FS_MAKE_REG
LANDLOCK_ACCESS_FS_MAKE_SOCK
LANDLOCK_ACCESS_FS_MAKE_FIFO
LANDLOCK_ACCESS_FS_MAKE_BLOCK
LANDLOCK_ACCESS_FS_MAKE_SYM

1 5.13

2 5.19 LANDLOCK_ACCESS_FS_REFER
3 6.2 LANDLOCK_ACCESS_FS_TRUNCATE

LANDLOCK_ACCESS_NET_BIND_TCP
LANDLOCK_ACCESS_NET_CONNECT_TCP

4 6.7

5 6.10 LANDLOCK_ACCESS_FS_IOCTL_DEV
LANDLOCK_SCOPE_ABSTRACT_UNIX_SOCKET
LANDLOCK_SCOPE_SIGNAL

6 6.12

Users should use the Landlock ABI version rather than the kernel version to determine
which features are available. The mainline kernel versions listed here are only included
for orientation. Kernels from other sources may contain backported features, and their
version numbers may not match.

Linux man-pages 6.16 2025-09-21 3580

Landlock(7) Miscellaneous Information Manual Landlock(7)

To query the running kernel’s Landlock ABI version, programs may pass the LAND-
LOCK_CREATE_RULESET_VERSION flag to landlock_create_ruleset(2).

When building fallback mechanisms for compatibility with older kernels, users are ad-
vised to consider the special semantics of the LANDLOCK_ACCESS_FS_REFER ac-
cess right: In ABI v1, linking and moving of files between different directories is always
forbidden, so programs relying on such operations are only compatible with Landlock
ABI v2 and higher.

NOTES
Landlock is enabled by CONFIG_SECURITY_LANDLOCK. The lsm=lsm1,...,lsmN
command line parameter controls the sequence of the initialization of Linux Security
Modules. It must contain the string landlock to enable Landlock. If the command line
parameter is not specified, the initialization falls back to the value of the deprecated se-
curity= command line parameter and further to the value of CONFIG_LSM. We can
check that Landlock is enabled by looking for landlock: Up and running. in kernel logs.

CAVEATS
It is currently not possible to restrict some file-related actions accessible through these
system call families: chdir(2), stat(2), flock(2), chmod(2), chown(2), setxattr(2),
utime(2), fcntl(2), access(2). Future Landlock evolutions will enable to restrict them.

EXAMPLES
We first need to create the ruleset that will contain our rules.

For this example, the ruleset will contain rules that only allow read actions, but write ac-
tions will be denied. The ruleset then needs to handle both of these kinds of actions.
See the DESCRIPTION section for the description of filesystem actions.

struct landlock_ruleset_attr attr = {0};
int ruleset_fd;

attr.handled_access_fs =
LANDLOCK_ACCESS_FS_EXECUTE |
LANDLOCK_ACCESS_FS_WRITE_FILE |
LANDLOCK_ACCESS_FS_READ_FILE |
LANDLOCK_ACCESS_FS_READ_DIR |
LANDLOCK_ACCESS_FS_REMOVE_DIR |
LANDLOCK_ACCESS_FS_REMOVE_FILE |
LANDLOCK_ACCESS_FS_MAKE_CHAR |
LANDLOCK_ACCESS_FS_MAKE_DIR |
LANDLOCK_ACCESS_FS_MAKE_REG |
LANDLOCK_ACCESS_FS_MAKE_SOCK |
LANDLOCK_ACCESS_FS_MAKE_FIFO |
LANDLOCK_ACCESS_FS_MAKE_BLOCK |
LANDLOCK_ACCESS_FS_MAKE_SYM |
LANDLOCK_ACCESS_FS_REFER |
LANDLOCK_ACCESS_FS_TRUNCATE |
LANDLOCK_ACCESS_FS_IOCTL_DEV;

To be compatible with older Linux versions, we detect the available Landlock ABI

Linux man-pages 6.16 2025-09-21 3581

Landlock(7) Miscellaneous Information Manual Landlock(7)

version, and only use the available subset of access rights:

/*
* Table of available file system access rights by ABI version,
* numbers hardcoded to keep the example short.
*/

__u64 landlock_fs_access_rights[] = {
(LANDLOCK_ACCESS_FS_MAKE_SYM << 1) - 1, /* v1 */
(LANDLOCK_ACCESS_FS_REFER << 1) - 1, /* v2: add "refer" */
(LANDLOCK_ACCESS_FS_TRUNCATE << 1) - 1, /* v3: add "truncate" */
(LANDLOCK_ACCESS_FS_TRUNCATE << 1) - 1, /* v4: TCP support */
(LANDLOCK_ACCESS_FS_IOCTL_DEV << 1) - 1, /* v5: add "ioctl_dev" */

};

int abi = landlock_create_ruleset(NULL, 0,
LANDLOCK_CREATE_RULESET_VERSION);

if (abi == -1) {
/*

* Kernel too old, not compiled with Landlock,
* or Landlock was not enabled at boot time.
*/

perror("Unable to use Landlock");
return; /* Graceful fallback: Do nothing. */

}
abi = MIN(abi, 3);

/* Only use the available rights in the ruleset. */
attr.handled_access_fs &= landlock_fs_access_rights[abi - 1];

The available access rights for each ABI version are listed in the VERSIONS section.

If our program needed to create hard links or rename files between different directories
(LANDLOCK_ACCESS_FS_REFER), we would require the following change to the
backwards compatibility logic: Directory reparenting is not possible in a process re-
stricted with Landlock ABI version 1. Therefore, if the program needed to do file repar-
enting, and if only Landlock ABI version 1 was available, we could not restrict the
process.

Now that the ruleset attributes are determined, we create the Landlock ruleset and ac-
quire a file descriptor as a handle to it, using landlock_create_ruleset(2):

ruleset_fd = landlock_create_ruleset(&attr, sizeof(attr), 0);
if (ruleset_fd == -1) {

perror("Failed to create a ruleset");
exit(EXIT_FAILURE);

}

We can now add a new rule to the ruleset through the ruleset’s file descriptor. The re-
quested access rights must be a subset of the access rights which were specified in
attr.handled_access_fs at ruleset creation time.

Linux man-pages 6.16 2025-09-21 3582

Landlock(7) Miscellaneous Information Manual Landlock(7)

In this example, the rule will only allow reading the file hierarchy /usr. Without another
rule, write actions would then be denied by the ruleset. To add /usr to the ruleset, we
open it with the O_PATH flag and fill the struct landlock_path_beneath_attr with this
file descriptor.

struct landlock_path_beneath_attr path_beneath = {0};
int err;

path_beneath.allowed_access =
LANDLOCK_ACCESS_FS_EXECUTE |
LANDLOCK_ACCESS_FS_READ_FILE |
LANDLOCK_ACCESS_FS_READ_DIR;

path_beneath.parent_fd = open("/usr", O_PATH | O_CLOEXEC);
if (path_beneath.parent_fd == -1) {

perror("Failed to open file");
close(ruleset_fd);
exit(EXIT_FAILURE);

}
err = landlock_add_rule(ruleset_fd, LANDLOCK_RULE_PATH_BENEATH,

&path_beneath, 0);
close(path_beneath.parent_fd);
if (err) {

perror("Failed to update ruleset");
close(ruleset_fd);
exit(EXIT_FAILURE);

}

We now have a ruleset with one rule allowing read access to /usr while denying all other
handled accesses for the filesystem. The next step is to restrict the current thread from
gaining more privileges (e.g., thanks to a set-user-ID binary).

if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) {
perror("Failed to restrict privileges");
close(ruleset_fd);
exit(EXIT_FAILURE);

}

The current thread is now ready to sandbox itself with the ruleset.

if (landlock_restrict_self(ruleset_fd, 0)) {
perror("Failed to enforce ruleset");
close(ruleset_fd);
exit(EXIT_FAILURE);

}
close(ruleset_fd);

If the landlock_restrict_self(2) system call succeeds, the current thread is now restricted
and this policy will be enforced on all its subsequently created children as well. Once a
thread is landlocked, there is no way to remove its security policy; only adding more re-
strictions is allowed. These threads are now in a new Landlock domain, merge of their

Linux man-pages 6.16 2025-09-21 3583

Landlock(7) Miscellaneous Information Manual Landlock(7)

parent one (if any) with the new ruleset.

Full working code can be found in 〈https://git.kernel.org/pub/scm/linux/kernel/git/stable/
linux.git/tree/samples/landlock/sandboxer.c〉

SEE ALSO
landlock_create_ruleset(2), landlock_add_rule(2), landlock_restrict_self(2)

〈https://landlock.io/〉

Linux man-pages 6.16 2025-09-21 3584

libc(7) Miscellaneous Information Manual libc(7)

NAME
libc - overview of standard C libraries on Linux

DESCRIPTION
The term “libc” is commonly used as a shorthand for the “standard C library” a library
of standard functions that can be used by all C programs (and sometimes by programs in
other languages). Because of some history (see below), use of the term “libc” to refer to
the standard C library is somewhat ambiguous on Linux.

glibc
By far the most widely used C library on Linux is the GNU C Library
〈http://www.gnu.org/software/libc/〉 , often referred to as glibc. This is the C library that
is nowadays used in all major Linux distributions. It is also the C library whose details
are documented in the relevant pages of the man-pages project (primarily in Section 3 of
the manual). Documentation of glibc is also available in the glibc manual, available via
the command info libc. Release 1.0 of glibc was made in September 1992. (There were
earlier 0.x releases.) The next major release of glibc was 2.0, at the beginning of 1997.

The pathname /lib/libc.so.6 (or something similar) is normally a symbolic link that
points to the location of the glibc library, and executing this pathname will cause glibc to
display various information about the version installed on your system.

Linux libc
In the early to mid 1990s, there was for a while Linux libc, a fork of glibc 1.x created by
Linux developers who felt that glibc development at the time was not sufficing for the
needs of Linux. Often, this library was referred to (ambiguously) as just “libc”. Linux
libc released major versions 2, 3, 4, and 5, as well as many minor versions of those re-
leases. Linux libc4 was the last version to use the a.out binary format, and the first ver-
sion to provide (primitive) shared library support. Linux libc 5 was the first version to
support the ELF binary format; this version used the shared library soname libc.so.5.
For a while, Linux libc was the standard C library in many Linux distributions.

However, notwithstanding the original motivations of the Linux libc effort, by the time
glibc 2.0 was released (in 1997), it was clearly superior to Linux libc, and all major
Linux distributions that had been using Linux libc soon switched back to glibc. To
avoid any confusion with Linux libc versions, glibc 2.0 and later used the shared library
soname libc.so.6.

Since the switch from Linux libc to glibc 2.0 occurred long ago, man-pages no longer
takes care to document Linux libc details. Nevertheless, the history is visible in vestiges
of information about Linux libc that remain in a few manual pages, in particular, refer-
ences to libc4 and libc5.

Other C libraries
There are various other less widely used C libraries for Linux. These libraries are gener-
ally smaller than glibc, both in terms of features and memory footprint, and often in-
tended for building small binaries, perhaps targeted at development for embedded Linux
systems. Among such libraries are uClibc 〈http://www.uclibc.org/〉, dietlibc
〈http://www.fefe.de/dietlibc/〉, and musl libc 〈http://www.musl-libc.org/〉. Details of
these libraries are covered by the man-pages project, where they are known.

Linux man-pages 6.16 2025-05-17 3585

libc(7) Miscellaneous Information Manual libc(7)

SEE ALSO
syscalls(2), getauxval(3), proc(5), feature_test_macros(7), man-pages(7), standards(7),
vdso(7)

Linux man-pages 6.16 2025-05-17 3586

locale(7) Miscellaneous Information Manual locale(7)

NAME
locale - description of multilanguage support

SYNOPSIS
#include <locale.h>

DESCRIPTION
A locale is a set of language and cultural rules. These cover aspects such as language
for messages, different character sets, lexicographic conventions, and so on. A program
needs to be able to determine its locale and act accordingly to be portable to different
cultures.

The header <locale.h> declares data types, functions, and macros which are useful in
this task.

The functions it declares are setlocale(3) to set the current locale, and localeconv(3) to
get information about number formatting.

There are different categories for locale information a program might need; they are de-
clared as macros. Using them as the first argument to setlocale(3), it is possible to set
one of these to the desired locale:

LC_ADDRESS (GNU extension, since glibc 2.2)
Change settings that describe the formats (e.g., postal addresses) used to describe
locations and geography-related items. Applications that need this information
can use nl_langinfo(3) to retrieve nonstandard elements, such as _NL_AD-
DRESS_COUNTRY_NAME (country name, in the language of the locale) and
_NL_ADDRESS_LANG_NAME (language name, in the language of the lo-
cale), which return strings such as "Deutschland" and "Deutsch" (for German-
language locales). (Other element names are listed in <langinfo.h>.)

LC_COLLATE
This category governs the collation rules used for sorting and regular expres-
sions, including character equivalence classes and multicharacter collating ele-
ments. This locale category changes the behavior of the functions strcoll(3) and
strxfrm(3), which are used to compare strings in the local alphabet. For example,
the German sharp s is sorted as "ss".

LC_CTYPE
This category determines the interpretation of byte sequences as characters (e.g.,
single versus multibyte characters), character classifications (e.g., alphabetic or
digit), and the behavior of character classes. On glibc systems, this category also
determines the character transliteration rules for iconv(1) and iconv(3). It
changes the behavior of the character handling and classification functions, such
as isupper(3) and toupper(3), and the multibyte character functions such as
mblen(3) or wctomb(3).

LC_IDENTIFICATION (GNU extension, since glibc 2.2)
Change settings that relate to the metadata for the locale. Applications that need
this information can use nl_langinfo(3) to retrieve nonstandard elements, such as
_NL_IDENTIFICATION_TITLE (title of this locale document) and
_NL_IDENTIFICATION_TERRITORY (geographical territory to which this

Linux man-pages 6.16 2025-09-21 3587

locale(7) Miscellaneous Information Manual locale(7)

locale document applies), which might return strings such as "English locale for
the USA" and "USA". (Other element names are listed in <langinfo.h>.)

LC_MONETARY
This category determines the formatting used for monetary-related numeric val-
ues. This changes the information returned by localeconv(3), which describes
the way numbers are usually printed, with details such as decimal point versus
decimal comma. This information is internally used by the function strfmon(3).

LC_MESSAGES
This category affects the language in which messages are displayed and what an
affirmative or negative answer looks like. The GNU C library contains the get-
text(3), ngettext(3), and rpmatch(3) functions to ease the use of this information.
The GNU gettext family of functions also obey the environment variable LAN-
GUAGE (containing a colon-separated list of locales) if the category is set to a
valid locale other than "C". This category also affects the behavior of
catopen(3).

LC_MEASUREMENT (GNU extension, since glibc 2.2)
Change the settings relating to the measurement system in the locale (i.e., metric
versus US customary units). Applications can use nl_langinfo(3) to retrieve the
nonstandard _NL_MEASUREMENT_MEASUREMENT element, which re-
turns a pointer to a character that has the value 1 (metric) or 2 (US customary
units).

LC_NAME (GNU extension, since glibc 2.2)
Change settings that describe the formats used to address persons. Applications
that need this information can use nl_langinfo(3) to retrieve nonstandard ele-
ments, such as _NL_NAME_NAME_MR (general salutation for men) and
_NL_NAME_NAME_MS (general salutation for women) elements, which re-
turn strings such as "Herr" and "Frau" (for German-language locales). (Other el-
ement names are listed in <langinfo.h>.)

LC_NUMERIC
This category determines the formatting rules used for nonmonetary numeric
values—for example, the thousands separator and the radix character (a period in
most English-speaking countries, but a comma in many other regions). It affects
functions such as printf(3), scanf(3), and strtod(3). This information can also be
read with the localeconv(3) function.

LC_PAPER (GNU extension, since glibc 2.2)
Change the settings relating to the dimensions of the standard paper size (e.g.,
US letter versus A4). Applications that need the dimensions can obtain them by
using nl_langinfo(3) to retrieve the nonstandard _NL_PAPER_WIDTH and
_NL_PAPER_HEIGHT elements, which return int values specifying the di-
mensions in millimeters.

LC_TELEPHONE (GNU extension, since glibc 2.2)
Change settings that describe the formats to be used with telephone services.
Applications that need this information can use nl_langinfo(3) to retrieve non-
standard elements, such as _NL_TELEPHONE_INT_PREFIX (international

Linux man-pages 6.16 2025-09-21 3588

locale(7) Miscellaneous Information Manual locale(7)

prefix used to call numbers in this locale), which returns a string such as "49"
(for Germany). (Other element names are listed in <langinfo.h>.)

LC_TIME
This category governs the formatting used for date and time values. For exam-
ple, most of Europe uses a 24-hour clock versus the 12-hour clock used in the
United States. The setting of this category affects the behavior of functions such
as strftime(3) and strptime(3).

LC_ALL
All of the above.

If the second argument to setlocale(3) is an empty string, "" , for the default locale, it is
determined using the following steps:

(1) If there is a non-null environment variable LC_ALL, the value of LC_ALL is
used.

(2) If an environment variable with the same name as one of the categories above ex-
ists and is non-null, its value is used for that category.

(3) If there is a non-null environment variable LANG, the value of LANG is used.

Values about local numeric formatting is made available in a struct lconv returned by the
localeconv(3) function, which has the following declaration:

struct lconv {

/* Numeric (nonmonetary) information */

char *decimal_point; /* Radix character */
char *thousands_sep; /* Separator for digit groups to left

of radix character */
char *grouping; /* Each element is the number of digits in

a group; elements with higher indices
are further left. An element with value
CHAR_MAX means that no further grouping
is done. An element with value 0 means
that the previous element is used for
all groups further left. */

/* Remaining fields are for monetary information */

char *int_curr_symbol; /* First three chars are a currency
symbol from ISO 4217. Fourth char
is the separator. Fifth char
is '\0'. */

char *currency_symbol; /* Local currency symbol */
char *mon_decimal_point; /* Radix character */
char *mon_thousands_sep; /* Like thousands_sep above */
char *mon_grouping; /* Like grouping above */
char *positive_sign; /* Sign for positive values */

Linux man-pages 6.16 2025-09-21 3589

locale(7) Miscellaneous Information Manual locale(7)

char *negative_sign; /* Sign for negative values */
char int_frac_digits; /* International fractional digits */
char frac_digits; /* Local fractional digits */
char p_cs_precedes; /* 1 if currency_symbol precedes a

positive value, 0 if succeeds */
char p_sep_by_space; /* 1 if a space separates

currency_symbol from a positive
value */

char n_cs_precedes; /* 1 if currency_symbol precedes a
negative value, 0 if succeeds */

char n_sep_by_space; /* 1 if a space separates
currency_symbol from a negative
value */

/* Positive and negative sign positions:
0 Parentheses surround the quantity and currency_symbol.
1 The sign string precedes the quantity and currency_symbol.
2 The sign string succeeds the quantity and currency_symbol.
3 The sign string immediately precedes the currency_symbol.
4 The sign string immediately succeeds the currency_symbol. */

char p_sign_posn;
char n_sign_posn;

};

POSIX.1-2008 extensions to the locale API
POSIX.1-2008 standardized a number of extensions to the locale API, based on imple-
mentations that first appeared in glibc 2.3. These extensions are designed to address the
problem that the traditional locale APIs do not mix well with multithreaded applications
and with applications that must deal with multiple locales.

The extensions take the form of new functions for creating and manipulating locale ob-
jects (newlocale(3), freelocale(3), duplocale(3), and uselocale(3)) and various new li-
brary functions with the suffix "_l" (e.g., toupper_l(3)) that extend the traditional locale-
dependent APIs (e.g., toupper(3)) to allow the specification of a locale object that
should apply when executing the function.

ENVIRONMENT
The following environment variable is used by newlocale(3) and setlocale(3), and thus
affects all unprivileged localized programs:

LOCPATH
A list of pathnames, separated by colons (':'), that should be used to find locale
data. If this variable is set, only the individual compiled locale data files from
LOCPATH and the system default locale data path are used; any available locale
archives are not used (see localedef(1)). The individual compiled locale data
files are searched for under subdirectories which depend on the currently used
locale. For example, when en_GB.UTF-8 is used for a category, the following
subdirectories are searched for, in this order: en_GB.UTF-8, en_GB.utf8,
en_GB, en.UTF-8, en.utf8, and en.

Linux man-pages 6.16 2025-09-21 3590

locale(7) Miscellaneous Information Manual locale(7)

FILES
/usr/lib/locale/locale-archive

Usual default locale archive location.

/usr/lib/locale
Usual default path for compiled individual locale files.

STANDARDS
POSIX.1-2001.

SEE ALSO
iconv(1), locale(1), localedef(1), catopen(3), gettext(3), iconv(3), localeconv(3), mb-
stowcs(3), newlocale(3), ngettext(3), nl_langinfo(3), rpmatch(3), setlocale(3), strcoll(3),
strfmon(3), strftime(3), strxfrm(3), uselocale(3), wcstombs(3), locale(5), charsets(7),
unicode(7), utf-8(7)

Linux man-pages 6.16 2025-09-21 3591

mailaddr(7) Miscellaneous Information Manual mailaddr(7)

NAME
mailaddr - mail addressing description

DESCRIPTION
This manual page gives a brief introduction to SMTP mail addresses, as used on the
Internet. These addresses are in the general format

user@domain

where a domain is a hierarchical dot-separated list of subdomains. These examples are
valid forms of the same address:

john.doe@monet.example.com
John Doe <john.doe@monet.example.com>
john.doe@monet.example.com (John Doe)

The domain part ("monet.example.com") is a mail-accepting domain. It can be a host
and in the past it usually was, but it doesn’t have to be. The domain part is not case
sensitive.

The local part ("john.doe") is often a username, but its meaning is defined by the local
software. Sometimes it is case sensitive, although that is unusual. If you see a local-
part that looks like garbage, it is usually because of a gateway between an internal e-
mail system and the net, here are some examples:

"surname/admd=telemail/c=us/o=hp/prmd=hp"@some.where
USER%SOMETHING@some.where
machine!machine!name@some.where
I2461572@some.where

(These are, respectively, an X.400 gateway, a gateway to an arbitrary internal mail
system that lacks proper internet support, an UUCP gateway, and the last one is just
boring username policy.)

The real-name part ("John Doe") can either be placed before <>, or in () at the end.
(Strictly speaking the two aren’t the same, but the difference is beyond the scope of this
page.) The name may have to be quoted using "", for example, if it contains ".":

"John Q. Doe" <john.doe@monet.example.com>

Abbreviation
Some mail systems let users abbreviate the domain name. For instance, users at
example.com may get away with "john.doe@monet" to send mail to John Doe. This
behavior is deprecated. Sometimes it works, but you should not depend on it.

Route-addrs
In the past, sometimes one had to route a message through several hosts to get it to its
final destination. Addresses which show these relays are termed "route-addrs". These
use the syntax:

<@hosta,@hostb:user@hostc>

This specifies that the message should be sent to hosta, from there to hostb, and finally
to hostc. Many hosts disregard route-addrs and send directly to hostc.

Route-addrs are very unusual now. They occur sometimes in old mail archives. It is

4.2 Berkeley Distribution 2025-05-17 3592

mailaddr(7) Miscellaneous Information Manual mailaddr(7)

generally possible to ignore all but the "user@hostc" part of the address to determine the
actual address.

Postmaster
Every site is required to have a user or user alias designated "postmaster" to which
problems with the mail system may be addressed. The "postmaster" address is not case
sensitive.

FILES
/etc/aliases
~/.forward

SEE ALSO
mail(1), aliases(5), forward(5), sendmail(8)

IETF RFC 5322 〈http://www.ietf.org/rfc/rfc5322.txt〉

4.2 Berkeley Distribution 2025-05-17 3593

man-pages(7) Miscellaneous Information Manual man-pages(7)

NAME
man-pages - conventions for writing Linux man pages

SYNOPSIS
man [section] title

DESCRIPTION
This page describes the conventions that should be employed when writing man pages
for the Linux man-pages project, which documents the user-space API provided by the
Linux kernel and the GNU C library. The project thus provides most of the pages in
Section 2, many of the pages that appear in Sections 3, 4, and 7, and a few of the pages
that appear in Sections 1, 5, and 8 of the man pages on a Linux system. The conven-
tions described on this page may also be useful for authors writing man pages for other
projects.

Sections of the manual pages
The manual Sections are traditionally defined as follows:

1 User commands (Programs)
Commands that can be executed by the user from within a shell.

2 System calls
Functions which wrap operations performed by the kernel.

3 Library calls
All library functions excluding the system call wrappers (Most of the libc func-
tions).

4 Special files (devices)
Files found in /dev which allow to access to devices through the kernel.

5 File formats and configuration files
Describes various human-readable file formats and configuration files.

6 Games
Games and funny little programs available on the system.

7 Overview, conventions, and miscellaneous
Overviews or descriptions of various topics, conventions, and protocols, charac-
ter set standards, the standard filesystem layout, and miscellaneous other things.

8 System management commands
Commands like mount(8), many of which only root can execute.

Macro package
New manual pages should be marked up using the groff an.tmac package described in
man(7). This choice is mainly for consistency: the vast majority of existing Linux man-
ual pages are marked up using these macros.

Conventions for source file layout
Please limit source code line length to no more than about 75 characters wherever possi-
ble. This helps avoid line-wrapping in some mail clients when patches are submitted in-
line.

Linux man-pages 6.16 2025-09-25 3594

man-pages(7) Miscellaneous Information Manual man-pages(7)

Title line
The first command in a man page should be a TH command:

.TH title section date source manual-section

The arguments of the command are as follows:

title The title of the man page.

section
The section number in which the man page should be placed (e.g., 7).

date The date of the last nontrivial change that was made to the man page. (Within
the man-pages project, the necessary updates to these timestamps are handled
automatically by scripts, so there is no need to manually update them as part of a
patch.) Dates should be written in the form YYYY-MM-DD.

source
The name and version of the project that provides the manual page (not necessar-
ily the package that provides the functionality).

manual-section
Normally, this should be empty, since the default value will be good.

Sections within a manual page
The list below shows conventional or suggested sections. Most manual pages should in-
clude at least the highlighted sections. Arrange a new manual page so that sections are
placed in the order shown in the list.

NAME
LIBRARY [Normally only in Sections 2, 3]
SYNOPSIS
CONFIGURATION [Normally only in Section 4]
DESCRIPTION
OPTIONS [Normally only in Sections 1, 8]
EXIT STATUS [Normally only in Sections 1, 8]
RETURN VALUE [Normally only in Sections 2, 3]
ERRORS [Typically only in Sections 2, 3]
ENVIRONMENT
FILES
ATTRIBUTES [Normally only in Sections 2, 3]
VERSIONS [Normally only in Sections 2, 3]
STANDARDS
HISTORY
NOTES
CAVEATS
BUGS
EXAMPLES
AUTHORS [Discouraged]
REPORTING BUGS [Not used in man-pages]
COPYRIGHT [Not used in man-pages]

Linux man-pages 6.16 2025-09-25 3595

man-pages(7) Miscellaneous Information Manual man-pages(7)

SEE ALSO

Where a traditional heading would apply, please use it; this kind of consistency can
make the information easier to understand. If you must, you can create your own head-
ings if they make things easier to understand (this can be especially useful for pages in
Sections 4 and 5). However, before doing this, consider whether you could use the tra-
ditional headings, with some subsections (.SS) within those sections.

The following list elaborates on the contents of each of the above sections.

NAME
The name of this manual page.

See man(7) for important details of the line(s) that should follow the .SH NAME
command. All words in this line (including the word immediately following the
"\-") should be in lowercase, except where English or technical terminological
convention dictates otherwise.

LIBRARY
The library providing a symbol.

It shows the common name of the library, and in parentheses, the name of the li-
brary file and, if needed, the linker flag needed to link a program against it: (lib-
foo[, -lfoo]).

SYNOPSIS
A brief summary of the command or function’s interface.

For commands, this shows the syntax of the command and its arguments (includ-
ing options); boldface is used for as-is text and italics are used to indicate re-
placeable arguments. Brackets ([]) surround optional arguments, vertical bars (|)
separate choices, and ellipses (...) can be repeated. For functions, it shows any
required data declarations or #include directives, followed by the function decla-
ration.

Where a feature test macro must be defined in order to obtain the declaration of a
function (or a variable) from a header file, then the SYNOPSIS should indicate
this, as described in feature_test_macros(7).

CONFIGURATION
Configuration details for a device.

This section normally appears only in Section 4 pages.

DESCRIPTION
An explanation of what the program, function, or format does.

Discuss how it interacts with files and standard input, and what it produces on
standard output or standard error. Omit internals and implementation details un-
less they’re critical for understanding the interface. Describe the usual case; for
information on command-line options of a program use the OPTIONS section.

When describing new behavior or new flags for a system call or library function,
be careful to note the kernel or C library version that introduced the change. The
preferred method of noting this information for flags is as part of a .TP list, in

Linux man-pages 6.16 2025-09-25 3596

man-pages(7) Miscellaneous Information Manual man-pages(7)

the following form (here, for a new system call flag):

XYZ_FLAG (since Linux 3.7)
Description of flag...

Including version information is especially useful to users who are constrained to
using older kernel or C library versions (which is typical in embedded systems,
for example).

OPTIONS
A description of the command-line options accepted by a program and how they
change its behavior.

This section should appear only for Section 1 and 8 manual pages.

EXIT STATUS
A list of the possible exit status values of a program and the conditions that
cause these values to be returned.

This section should appear only for Section 1 and 8 manual pages.

RETURN VALUE
For Section 2 and 3 pages, this section gives a list of the values the library rou-
tine will return to the caller and the conditions that cause these values to be re-
turned.

ERRORS
For Section 2 and 3 manual pages, this is a list of the values that may be placed
in errno in the event of an error, along with information about the cause of the
errors.

Where several different conditions produce the same error, the preferred ap-
proach is to create separate list entries (with duplicate error names) for each of
the conditions. This makes the separate conditions clear, may make the list eas-
ier to read, and allows metainformation (e.g., kernel version number where the
condition first became applicable) to be more easily marked for each condition.

The error list should be in alphabetical order.

ENVIRONMENT
A list of all environment variables that affect the program or function and how
they affect it.

FILES
A list of the files the program or function uses, such as configuration files,
startup files, and files the program directly operates on.

Give the full pathname of these files, and use the installation process to modify
the directory part to match user preferences. For many programs, the default in-
stallation location is in /usr/local, so your base manual page should use /usr/lo-
cal as the base.

ATTRIBUTES
A summary of various attributes of the function(s) documented on this page. See
attributes(7) for further details.

Linux man-pages 6.16 2025-09-25 3597

man-pages(7) Miscellaneous Information Manual man-pages(7)

VERSIONS
A summary of systems where the API performs differently, or where there’s a
similar API.

STANDARDS
A description of any standards or conventions that relate to the function or com-
mand described by the manual page.

The preferred terms to use for the various standards are listed as headings in
standards(7).

This section should note the current standards to which the API conforms to.

If the API is not governed by any standards but commonly exists on other sys-
tems, note them. If the call is Linux-specific or GNU-specific, note this. If it’s
available in the BSDs, note that.

If this section consists of just a list of standards (which it commonly does), ter-
minate the list with a period ('.').

HISTORY
A brief summary of the Linux kernel or glibc versions where a system call or li-
brary function appeared, or changed significantly in its operation.

As a general rule, every new interface should include a HISTORY section in its
manual page. Unfortunately, many existing manual pages don’t include this in-
formation (since there was no policy to do so when they were written). Patches
to remedy this are welcome, but, from the perspective of programmers writing
new code, this information probably matters only in the case of kernel interfaces
that have been added in Linux 2.4 or later (i.e., changes since Linux 2.2), and li-
brary functions that have been added to glibc since glibc 2.1 (i.e., changes since
glibc 2.0).

The syscalls(2) manual page also provides information about kernel versions in
which various system calls first appeared.

Old versions of standards should be mentioned here, rather than in STANDARDS, for
example, SUS, SUSv2, and XPG, or the SVr4 and 4.xBSD implementation standards.

NOTES
Miscellaneous notes.

For Section 2 and 3 man pages you may find it useful to include subsections (SS)
named Linux Notes and glibc Notes.

In Section 2, use the heading C library/kernel differences to mark off notes that
describe the differences (if any) between the C library wrapper function for a
system call and the raw system call interface provided by the kernel.

CAVEATS
Warnings about typical user misuse of an API, that don’t constitute an API bug
or design defect.

Linux man-pages 6.16 2025-09-25 3598

man-pages(7) Miscellaneous Information Manual man-pages(7)

BUGS
A list of limitations, known defects or inconveniences, and other questionable
activities.

EXAMPLES
One or more examples demonstrating how this function, file, or command is
used.

For details on writing example programs, see Example programs below.

AUTHORS
A list of authors of the documentation or program.

Use of an AUTHORS section is strongly discouraged . Generally, it is better
not to clutter every page with a list of (over time potentially numerous) authors;
if you write or significantly amend a page, add a copyright notice as a comment
in the source file. If you are the author of a device driver and want to include an
address for reporting bugs, place this under the BUGS section.

REPORTING BUGS
The man-pages project doesn’t use a REPORTING BUGS section in manual
pages. Information on reporting bugs is instead supplied in the script-generated
COLOPHON section. However, various projects do use a REPORTING BUGS
section. It is recommended to place it near the foot of the page.

COPYRIGHT
The man-pages project doesn’t use a COPYRIGHT section in manual pages.
Copyright information is instead maintained in the page source. In pages where
this section is present, it is recommended to place it near the foot of the page,
just above SEE ALSO.

SEE ALSO
A comma-separated list of related man pages, possibly followed by other related
pages or documents.

The list should be ordered by section number and then alphabetically by name.
Do not terminate this list with a period.

Where the SEE ALSO list contains many long manual page names, to improve
the visual result of the output, it may be useful to employ the .ad l (don’t right
justify) and .nh (don’t hyphenate) directives. Hyphenation of individual page
names can be prevented by preceding words with the string "\%".

Given the distributed, autonomous nature of FOSS projects and their documenta-
tion, it is sometimes necessary—and in many cases desirable—that the SEE
ALSO section includes references to manual pages provided by other projects.

FORMATTING AND WORDING CONVENTIONS
The following subsections note some details for preferred formatting and wording con-
ventions in various sections of the pages in the man-pages project.

SYNOPSIS
Wrap the function prototype(s) in a .nf /.fi pair to prevent filling.

Forward declarations of parameters in functions should not use bold nor italics; this

Linux man-pages 6.16 2025-09-25 3599

man-pages(7) Miscellaneous Information Manual man-pages(7)

helps distinguish them visually from actual parameters. As an example:

int snprintf(size_t size;
char str[restrict size], size_t size,
const char *restrict format, ...);

In general, where more than one function prototype is shown in the SYNOPSIS, the pro-
totypes should not be separated by blank lines. However, blank lines (achieved using
.P) may be added in the following cases:

• to separate long lists of function prototypes into related groups (see for example
list(3));

• in other cases that may improve readability.

In the SYNOPSIS, a long function prototype may need to be continued over to the next
line. The continuation line is indented according to the following rules:

(1) If there is a single such prototype that needs to be continued, then align the con-
tinuation line so that when the page is rendered on a fixed-width font device (e.g.,
on an xterm) the continuation line starts just below the start of the argument list in
the line above. (Exception: the indentation may be adjusted if necessary to pre-
vent a very long continuation line or a further continuation line where the function
prototype is very long.) As an example:

int tcsetattr(int fd , int optional_actions,
const struct termios *termios_p);

(2) But, where multiple functions in the SYNOPSIS require continuation lines, and
the function names have different lengths, then align all continuation lines to start
in the same column. This provides a nicer rendering in PDF output (because the
SYNOPSIS uses a variable width font where spaces render narrower than most
characters). As an example:

int getopt(int argc, char * const argv[],
const char *optstring);

int getopt_long(int argc, char * const argv[],
const char *optstring,
const struct option *longopts, int *longindex);

RETURN VALUE
The preferred wording to describe how errno is set is "errno is set to indicate the error"
or similar. This wording is consistent with the wording used in both POSIX.1 and
FreeBSD.

ATTRIBUTES
Note the following:

• Wrap the table in this section in a .ad l/.ad pair to disable text filling and a .nh/.hy
pair to disable hyphenation.

• Ensure that the table occupies the full page width through the use of an lbx descrip-
tion for one of the columns (usually the first column, though in some cases the last
column if it contains a lot of text).

Linux man-pages 6.16 2025-09-25 3600

man-pages(7) Miscellaneous Information Manual man-pages(7)

• Make free use of T{/T} macro pairs to allow table cells to be broken over multiple
lines (also bearing in mind that pages may sometimes be rendered to a width of less
than 80 columns).

For examples of all of the above, see the source code of various pages.

STYLE GUIDE
The following subsections describe the preferred style for the man-pages project. For
details not covered below, the Chicago Manual of Style is usually a good source; try also
grepping for preexisting usage in the project source tree.

UNIX for Beginners [2nd ed., Brian W. Kernighan] 〈https://www.ualberta.ca/
computing-science/media-library/docs/unix-beginners.pdf〉 also contains a noteworthy
section, “Hints for Preparing Documents”.

Use of gender-neutral language
As far as possible, use gender-neutral language in the text of man pages. Use of "they"
("them", "themself", "their") as a gender-neutral singular pronoun is acceptable.

Formatting conventions for manual pages describing commands
For manual pages that describe a command (typically in Sections 1 and 8), the argu-
ments are always specified using italics, even in the SYNOPSIS section.

The name of the command, and its options, should always be formatted in bold.

Formatting conventions for manual pages describing functions
For manual pages that describe functions (typically in Sections 2 and 3), the arguments
are always specified using italics, even in the SYNOPSIS section, where the rest of the
function is specified in bold:

int myfunction(int argc, char **argv);

Variable names should, like argument names, be specified in italics.

Any reference to the subject of the current manual page should be written with the name
in bold followed by a pair of parentheses in Roman (normal) font. For example, in the
fcntl(2) man page, references to the subject of the page would be written as: fcntl(). The
preferred way to write this in the source file is:

.BR fcntl ()

(Using this format, rather than the use of "\fB...\fP()" makes it easier to write tools that
parse man page source files.)

Use semantic newlines
In the source of a manual page, new sentences should be started on new lines, long sen-
tences should be split into lines at clause breaks (commas, semicolons, colons, and so
on), and long clauses should be split at phrase boundaries. This convention, sometimes
known as "semantic newlines", makes it easier to see the effect of patches, which often
operate at the level of individual sentences, clauses, or phrases.

Lists
There are different kinds of lists:

Linux man-pages 6.16 2025-09-25 3601

man-pages(7) Miscellaneous Information Manual man-pages(7)

Tagged paragraphs
These are used for a list of tags and their descriptions. When the tags are con-
stants (either macros or numbers) they are in bold. Use the .TP macro.

An example is this "Tagged paragraphs" subsection is itself.

Ordered lists
Elements are preceded by a number in parentheses (1), (2). These represent a set
of steps that have an order.

When there are substeps, they will be numbered like (4.2).

Positional lists
Elements are preceded by a number (index) in square brackets [4], [5]. These
represent fields in a set. The first index will be:

0 When it represents fields of a C data structure, to be consistent with ar-
rays.

1 When it represents fields of a file, to be consistent with tools like cut(1)

Alternatives list
Elements are preceded by a letter in parentheses (a), (b). These represent a set of
(normally) exclusive alternatives.

Bullet lists
Elements are preceded by bullet symbols (\[bu]). Anything that doesn’t fit else-
where is usually covered by this type of list.

Numbered notes
Not really a list, but the syntax is identical to "positional lists".

There should always be exactly 2 spaces between the list symbol and the elements. This
doesn’t apply to "tagged paragraphs", which use the default indentation rules.

Formatting conventions (general)
Paragraphs should be separated by suitable markers (usually either .P or .IP). Do not
separate paragraphs using blank lines, as this results in poor rendering in some output
formats (such as PostScript and PDF).

Filenames (whether pathnames, or references to header files) are always in italics (e.g.,
<stdio.h>), except in the SYNOPSIS section, where included files are in bold (e.g., #in-
clude <stdio.h>). When referring to a standard header file include, specify the header
file surrounded by angle brackets, in the usual C way (e.g., <stdio.h>).

Special macros, which are usually in uppercase, are in bold (e.g., MAXINT). Excep-
tion: don’t boldface NULL.

When enumerating a list of error codes, the codes are in bold (this list usually uses the
.TP macro).

Complete commands should, if long, be written as an indented line on their own, with a
blank line before and after the command, for example

man 7 man-pages

If the command is short, then it can be included inline in the text, in italic format, for ex-
ample, man 7 man-pages. In this case, it may be worth using nonbreaking spaces (\~) at

Linux man-pages 6.16 2025-09-25 3602

man-pages(7) Miscellaneous Information Manual man-pages(7)

suitable places in the command. Command options should be written in italics (e.g., -l).

Expressions, if not written on a separate indented line, should be specified in italics.
Again, the use of nonbreaking spaces may be appropriate if the expression is inlined
with normal text.

When showing example shell sessions, user input should be formatted in bold, for exam-
ple

$ date;
Thu Jul 7 13:01:27 CEST 2016

Any reference to another man page should be written with the name in bold, always fol-
lowed by the section number, formatted in Roman (normal) font, without any separating
spaces (e.g., intro(2)). The preferred way to write this in the source file is:

.BR intro (2)

(Including the section number in cross references lets tools like man2html(1) create
properly hyperlinked pages.)

Control characters should be written in bold face, with no quotes; for example, ^X.

Spelling
Starting with release 2.59, man-pages follows American spelling conventions (previ-
ously, there was a random mix of British and American spellings); please write all new
pages and patches according to these conventions.

Aside from the well-known spelling differences, there are a few other subtleties to watch
for:

• American English tends to use the forms "backward", "upward", "toward", and so on
rather than the British forms "backwards", "upwards", "towards", and so on.

• Opinions are divided on "acknowledgement" vs "acknowledgment". The latter is
predominant, but not universal usage in American English. POSIX and the BSD li-
cense use the former spelling. In the Linux man-pages project, we use "acknowl-
edgement".

BSD version numbers
The classical scheme for writing BSD version numbers is x.yBSD, where x.y is the ver-
sion number (e.g., 4.2BSD). Avoid forms such as BSD 4.3.

Capitalization
In subsection ("SS") headings, capitalize the first word in the heading, but otherwise use
lowercase, except where English usage (e.g., proper nouns) or programming language
requirements (e.g., identifier names) dictate otherwise. For example:

.SS Unicode under Linux

Indentation of structure definitions, shell session logs, and so on
When structure definitions, shell session logs, and so on are included in running text, in-
dent them by 4 spaces (i.e., a block enclosed by .in +4n and .in), format them using the
.EX and .EE macros, and surround them with suitable paragraph markers (either .P or
.IP). For example:

.P

Linux man-pages 6.16 2025-09-25 3603

man-pages(7) Miscellaneous Information Manual man-pages(7)

.in +4n

.EX
int
main(int argc, char *argv[])
{

return 0;
}
.EE
.in
.P

Preferred terms
The following table lists some preferred terms to use in man pages, mainly to ensure
consistency across pages.
Term Avoid using Notes
bit mask bitmask
built-in builtin
Epoch epoch For the UNIX Epoch

(00:00:00, 1 Jan 1970
UTC)

filename file name
filesystem file system
hostname host name
inode i-node
lowercase lower case, lower-case
nonzero non-zero
pathname path name
pseudoterminal pseudo-terminal
privileged port reserved port, system

port
real-time realtime, real time
run time runtime
saved set-group-ID saved group ID, saved

set-GID
saved set-user-ID saved user ID, saved

set-UID
set-group-ID set-GID, setgid
set-user-ID set-UID, setuid
superuser super user, super-user
superblock super block, super-

block
symbolic link symlink
timestamp time stamp
timezone time zone
uppercase upper case, upper-case
usable useable
user space userspace

Linux man-pages 6.16 2025-09-25 3604

man-pages(7) Miscellaneous Information Manual man-pages(7)

username user name
x86-64 x86_64 Except if referring to

result of uname -m or
similar

zeros zeroes

See also the discussion Hyphenation of attributive compounds below.

Terms to avoid
The following table lists some terms to avoid using in man pages, along with some sug-
gested alternatives, mainly to ensure consistency across pages.
Avoid Use instead Notes
32bit 32-bit same for 8-bit, 16-bit,

etc.
current process calling process A common mistake

made by kernel pro-
grammers when writ-
ing man pages

manpage man page, manual
page

minus infinity negative infinity
non-root unprivileged user
non-superuser unprivileged user
nonprivileged unprivileged
OS operating system
plus infinity positive infinity
pty pseudoterminal
tty terminal
Unices UNIX systems
Unixes UNIX systems

Trademarks
Use the correct spelling and case for trademarks. The following is a list of the correct
spellings of various relevant trademarks that are sometimes misspelled:

DG/UX
HP-UX
UNIX
UnixWare

NULL, NUL, null pointer, and null byte
A null pointer is a pointer that points to nothing, and is normally indicated by the con-
stant NULL. On the other hand, NUL is the null byte, a byte with the value 0, repre-
sented in C via the character constant '\0' .

The preferred term for the pointer is "null pointer" or simply "NULL"; avoid writing
"NULL pointer".

The preferred term for the byte is "null byte". Avoid writing "NUL", since it is too eas-
ily confused with "NULL". Avoid also the terms "zero byte" and "null character". The
byte that terminates a C string should be described as "the terminating null byte"; strings

Linux man-pages 6.16 2025-09-25 3605

man-pages(7) Miscellaneous Information Manual man-pages(7)

may be described as "null-terminated", but avoid the use of "NUL-terminated".

Hyperlinks
For hyperlinks, use the .UR/.UE macro pair (see groff_man(7)). This produces proper
hyperlinks that can be used in a web browser, when rendering a page with, say:

BROWSER=firefox man -H pagename

Use of e.g., i.e., etc., a.k.a., and similar
In general, the use of abbreviations such as "e.g.", "i.e.", "etc.", "cf.", and "a.k.a." should
be avoided, in favor of suitable full wordings ("for example", "that is", "and so on",
"compare to", "also known as").

The only place where such abbreviations may be acceptable is in short parenthetical
asides (e.g., like this one).

Always include periods in such abbreviations, as shown here. In addition, "e.g." and
"i.e." should always be followed by a comma.

Em-dashes
The way to write an em-dash—the glyph that appears at either end of this subphrase—in
*roff is with the macro "\[em]". (On an ASCII terminal, an em-dash typically renders as
two hyphens, but in other typographical contexts it renders as a long dash.) Em-dashes
should be written without surrounding spaces.

Hyphenation of attributive compounds
Compound terms should be hyphenated when used attributively (i.e., to qualify a follow-
ing noun). Some examples:

32-bit value
command-line argument
floating-point number
run-time check
user-space function
wide-character string

Hyphenation with multi, non, pre, re, sub, and so on
The general tendency in modern English is not to hyphenate after prefixes such as
"multi", "non", "pre", "re", "sub", and so on. Manual pages should generally follow this
rule when these prefixes are used in natural English constructions with simple suffixes.
The following list gives some examples of the preferred forms:

interprocess
multithreaded
multiprocess
nonblocking
nondefault
nonempty
noninteractive
nonnegative
nonportable
nonzero

Linux man-pages 6.16 2025-09-25 3606

man-pages(7) Miscellaneous Information Manual man-pages(7)

preallocated
precreate
prerecorded
reestablished
reinitialize
rearm
reread
subcomponent
subdirectory
subsystem

Hyphens should be retained when the prefixes are used in nonstandard English words,
with trademarks, proper nouns, acronyms, or compound terms. Some examples:

non-ASCII
non-English
non-NULL
non-real-time

Finally, note that "re-create" and "recreate" are two different verbs, and the former is
probably what you want.

Generating optimal glyphs
Where a real minus character is required (e.g., for numbers such as -1, for man page
cross references such as utf-8(7), or when writing options that have a leading dash, such
as in ls -l), use the following form in the man page source:

\-

This guideline applies also to code examples.

The use of real minus signs serves the following purposes:

• To provide better renderings on various targets other than ASCII terminals, notably
in PDF and on Unicode/UTF-8-capable terminals.

• To generate glyphs that when copied from rendered pages will produce real minus
signs when pasted into a terminal.

To produce unslanted single quotes that render well in ASCII, UTF-8, and PDF, use
"\[aq]" ("apostrophe quote"); for example

\[aq]C\[aq]

where C is the quoted character. This guideline applies also to character constants used
in code examples.

Where a proper caret (^) that renders well in both a terminal and PDF is required, use
"\[ha]". This is especially necessary in code samples, to get a nicely rendered caret
when rendering to PDF.

Using a naked "~" character results in a poor rendering in PDF. Instead use "\[ti]". This
is especially necessary in code samples, to get a nicely rendered tilde when rendering to
PDF.

Linux man-pages 6.16 2025-09-25 3607

man-pages(7) Miscellaneous Information Manual man-pages(7)

Example programs and shell sessions
Manual pages may include example programs demonstrating how to use a system call or
library function. However, note the following:

• Example programs should be written in C.

• An example program is necessary and useful only if it demonstrates something be-
yond what can easily be provided in a textual description of the interface. An exam-
ple program that does nothing other than call an interface usually serves little pur-
pose.

• Example programs should ideally be short (e.g., a good example can often be pro-
vided in less than 100 lines of code), though in some cases longer programs may be
necessary to properly illustrate the use of an API.

• Expressive code is appreciated.

• Comments should included where helpful. Complete sentences in free-standing
comments should be terminated by a period. Periods should generally be omitted in
"tag" comments (i.e., comments that are placed on the same line of code); such com-
ments are in any case typically brief phrases rather than complete sentences.

• Example programs should do error checking after system calls and library function
calls.

• Example programs should be complete, and compile without warnings when com-
piled with cc -Wall.

• Where possible and appropriate, example programs should allow experimentation,
by varying their behavior based on inputs (ideally from command-line arguments, or
alternatively, via input read by the program).

• Example programs should be laid out according to Kernighan and Ritchie style, with
4-space indents. (Avoid the use of TAB characters in source code!) The following
command can be used to format your source code to something close to the pre-
ferred style:

indent -npro -kr -i4 -ts4 -sob -l72 -ss -nut -psl prog.c

• For consistency, all example programs should terminate using either of:

exit(EXIT_SUCCESS);
exit(EXIT_FAILURE);

Avoid using the following forms to terminate a program:

exit(0);
exit(1);
return n;

• If there is extensive explanatory text before the program source code, mark off the
source code with a subsection heading Program source, as in:

.SS Program source

Always do this if the explanatory text includes a shell session log.

If you include a shell session log demonstrating the use of a program or other system

Linux man-pages 6.16 2025-09-25 3608

man-pages(7) Miscellaneous Information Manual man-pages(7)

feature:

• Place the session log above the source code listing.

• Indent the session log by four spaces.

• Boldface the user input text, to distinguish it from output produced by the system.

For some examples of what example programs should look like, see wait(2) and pipe(2).

EXAMPLES
For canonical examples of how man pages in the man-pages package should look, see
pipe(2) and fcntl(2).

SEE ALSO
man(1), man2html(1), attributes(7), groff (7), groff_man(7), man(7), mdoc(7)

Linux man-pages 6.16 2025-09-25 3609

math_error(7) Miscellaneous Information Manual math_error(7)

NAME
math_error - detecting errors from mathematical functions

SYNOPSIS
#include <math.h>
#include <errno.h>
#include <fenv.h>

DESCRIPTION
When an error occurs, most library functions indicate this fact by returning a special
value (e.g., -1 or NULL). Because they typically return a floating-point number, the
mathematical functions declared in <math.h> indicate an error using other mechanisms.
There are two error-reporting mechanisms: the older one sets errno; the newer one uses
the floating-point exception mechanism (the use of feclearexcept(3) and fetestexcept(3),
as outlined below) described in fenv(3).

A portable program that needs to check for an error from a mathematical function
should set errno to zero, and make the following call

feclearexcept(FE_ALL_EXCEPT);

before calling a mathematical function.

Upon return from the mathematical function, if errno is nonzero, or the following call
(see fenv(3)) returns nonzero

fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW);

then an error occurred in the mathematical function.

The error conditions that can occur for mathematical functions are described below.

Domain error
A domain error occurs when a mathematical function is supplied with an argument
whose value falls outside the domain for which the function is defined (e.g., giving a
negative argument to log(3)). When a domain error occurs, math functions commonly
return a NaN (though some functions return a different value in this case); errno is set to
EDOM, and an "invalid" (FE_INVALID) floating-point exception is raised.

Pole error
A pole error occurs when the mathematical result of a function is an exact infinity (e.g.,
the logarithm of 0 is negative infinity). When a pole error occurs, the function returns
the (signed) value HUGE_VAL, HUGE_VALF, or HUGE_VALL, depending on
whether the function result type is double, float, or long double. The sign of the result
is that which is mathematically correct for the function. errno is set to ERANGE, and a
"divide-by-zero" (FE_DIVBYZERO) floating-point exception is raised.

Range error
A range error occurs when the magnitude of the function result means that it cannot be
represented in the result type of the function. The return value of the function depends
on whether the range error was an overflow or an underflow.

A floating result overflows if the result is finite, but is too large to represented in the re-
sult type. When an overflow occurs, the function returns the value HUGE_VAL,

Linux man-pages 6.16 2025-05-17 3610

math_error(7) Miscellaneous Information Manual math_error(7)

HUGE_VALF, or HUGE_VALL, depending on whether the function result type is
double, float, or long double. errno is set to ERANGE, and an "overflow"
(FE_OVERFLOW) floating-point exception is raised.

A floating result underflows if the result is too small to be represented in the result type.
If an underflow occurs, a mathematical function typically returns 0.0 (C99 says a func-
tion shall return "an implementation-defined value whose magnitude is no greater than
the smallest normalized positive number in the specified type"). errno may be set to
ERANGE, and an "underflow" (FE_UNDERFLOW) floating-point exception may be
raised.

Some functions deliver a range error if the supplied argument value, or the correct func-
tion result, would be subnormal. A subnormal value is one that is nonzero, but with a
magnitude that is so small that it can’t be presented in normalized form (i.e., with a 1 in
the most significant bit of the significand). The representation of a subnormal number
will contain one or more leading zeros in the significand.

NOTES
The math_errhandling identifier specified by C99 and POSIX.1 is not supported by
glibc. This identifier is supposed to indicate which of the two error-notification mecha-
nisms (errno, exceptions retrievable via fetestexcept(3)) is in use. The standards require
that at least one be in use, but permit both to be available. The current (glibc 2.8) situa-
tion under glibc is messy. Most (but not all) functions raise exceptions on errors. Some
also set errno. A few functions set errno, but don’t raise an exception. A very few
functions do neither. See the individual manual pages for details.

To avoid the complexities of using errno and fetestexcept(3) for error checking, it is of-
ten advised that one should instead check for bad argument values before each call. For
example, the following code ensures that log(3)’s argument is not a NaN and is not zero
(a pole error) or less than zero (a domain error):

double x, r;

if (isnan(x) || islessequal(x, 0)) {
/* Deal with NaN / pole error / domain error */

}

r = log(x);

The discussion on this page does not apply to the complex mathematical functions (i.e.,
those declared by <complex.h>), which in general are not required to return errors by
C99 and POSIX.1.

The gcc(1) -fno-math-errno option causes the executable to employ implementations
of some mathematical functions that are faster than the standard implementations, but do
not set errno on error. (The gcc(1) -ffast-math option also enables -fno-math-errno.)
An error can still be tested for using fetestexcept(3).

SEE ALSO
gcc(1), errno(3), fenv(3), fpclassify(3), INFINITY(3), isgreater(3), matherr(3), nan(3)

info libc

Linux man-pages 6.16 2025-05-17 3611

mctp(7) Miscellaneous Information Manual mctp(7)

NAME
mctp - Management Component Transport Protocol

SYNOPSIS
#include <linux/mctp.h> /* MCTP address type and protocol constants */
#include <sys/socket.h>

mctp_socket = socket(AF_MCTP, SOCK_DGRAM, 0);

DESCRIPTION
Linux implements the Management Component Transport Protocol (MCTP), specified
by DMTF spec DSP0236, currently at version 1. This is a connectionless protocol, typi-
cally used between devices within a server system. Message reliability and ordering are
not guaranteed, but message boundaries are preserved.

The API for MCTP messaging uses a standard sockets interface, using the sendto(2) and
recvfrom(2) classes of system calls to transfer messages. Messages may be fragmented
into packets before transmission, and reassembled at the remote endpoint. This frag-
mentation and reassembly is transparent to user space.

Address format
MCTP addresses (also referred to as EIDs, or Endpoint Identifiers) are single-byte val-
ues, typed as mctp_eid_t. Packets between a local and remote endpoint are identified by
the source and destination EIDs, plus a three-bit tag value.

Addressing data is passed in socket system calls through a sockaddr_mctp structure, de-
fined as:

typedef uint8_t mctp_eid_t;

struct mctp_addr {
mctp_eid_t s_addr;

};

struct sockaddr_mctp {
unsigned short smctp_family; /* = AF_MCTP */
uint16_t __smctp_pad0;
int smctp_network; /* local network identifier */
struct mctp_addr smctp_addr; /* EID */
uint8_t smctp_type; /* message type byte */
uint8_t smctp_tag; /* tag value & owner */
uint8_t __smctp_pad1;

};

Sending messages
Messages can be transmitted using the sendto(2) and sendmsg(2) system calls, by pro-
viding a sockaddr_mctp structure describing the addressing parameters.

ssize_t n;
const char *buf;
struct sockaddr_mctp addr;

Linux man-pages 6.16 2025-09-21 3612

mctp(7) Miscellaneous Information Manual mctp(7)

/* unused fields must be zero */
memset(&addr, 0, sizeof(addr));

/* set message destination */
addr.smctp_family = AF_MCTP;
addr.smctp_network = 0;
addr.smctp_addr.s_addr = 8; /* remote EID */
addr.smctp_tag = MCTP_TAG_OWNER;
addr.smctp_type = MYPROGRAM_MCTP_TYPE_ECHO; /* example type */

buf = "hello, world!"

n = sendto(sd, buf, 13, 0,
(struct sockaddr *) &addr, sizeof(addr));

Here, the sender owns the message tag; so MCTP_TAG_OWNER is used as the tag
data. The kernel will allocate a specific tag value for this message. If no tag is avail-
able, sendto(2) will return an error, with errno set to EBUSY. This allocated tag re-
mains associated with the socket, so that any replies to the sent message will be received
by the same socket.

Sending a MCTP message requires the CAP_NET_RAW capability.

Receiving messages
Messages can be received using the recvfrom(2) and recvmsg(2) system calls.

char buf[13];
socklen_t addrlen;
struct sockaddr_mctp addr;

addrlen = sizeof(addr);

n = recvfrom(sd, buf, sizeof(buf), 0,
(struct sockaddr *) &addr, &addrlen);

In order to receive an incoming message, the receiver will need to either have previously
sent a message to the same endpoint, or performed a bind(2) to receive all messages of a
certain type:

struct sockaddr_mctp addr;

addr.smctp_family = AF_MCTP;
addr.smctp_network = MCTP_NET_ANY;
addr.smctp_addr.s_addr = MCTP_ADDR_ANY;
addr.smctp_type = MYPROGRAM_MCTP_TYPE_ECHO; /* our ’echo’ type */

int rc = bind(sd, (struct sockaddr *) &addr, sizeof(addr));

This call requires the CAP_NET_BIND_SERVICE capability, and will result in the
socket receiving all messages sent to locally-assigned EIDs, for the specified message
type.

Linux man-pages 6.16 2025-09-21 3613

mctp(7) Miscellaneous Information Manual mctp(7)

After a recvfrom(2) or recvmsg(2) returns a success condition, the provided address ar-
gument will be populated with the sender’s network and EID, as well as the tag value
used for the message. Any reply to this message should pass the same address and tag
value (with the TO bit cleared) to indicate that is is directed to the same remote end-
point.

SEE ALSO
socket(7)

linux.git/Documentation/networking/mctp.rst

The DSP0236 specification 〈https://www.dmtf.org/standards/pmci〉.

Linux man-pages 6.16 2025-09-21 3614

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

NAME
mount_namespaces - overview of Linux mount namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

Mount namespaces provide isolation of the list of mounts seen by the processes in each
namespace instance. Thus, the processes in each of the mount namespace instances will
see distinct single-directory hierarchies.

The views provided by the /proc/ pid /mounts, /proc/ pid /mountinfo, and
/proc/ pid /mountstats files (all described in proc(5)) correspond to the mount namespace
in which the process with the PID pid resides. (All of the processes that reside in the
same mount namespace will see the same view in these files.)

A new mount namespace is created using either clone(2) or unshare(2) with the
CLONE_NEWNS flag. When a new mount namespace is created, its mount list is ini-
tialized as follows:

• If the namespace is created using clone(2), the mount list of the child’s namespace is
a copy of the mount list in the parent process’s mount namespace.

• If the namespace is created using unshare(2), the mount list of the new namespace is
a copy of the mount list in the caller’s previous mount namespace.

Subsequent modifications to the mount list (mount(2) and umount(2)) in either mount
namespace will not (by default) affect the mount list seen in the other namespace (but
see the following discussion of shared subtrees).

SHARED SUBTREES
After the implementation of mount namespaces was completed, experience showed that
the isolation that they provided was, in some cases, too great. For example, in order to
make a newly loaded optical disk available in all mount namespaces, a mount operation
was required in each namespace. For this use case, and others, the shared subtree fea-
ture was introduced in Linux 2.6.15. This feature allows for automatic, controlled prop-
agation of mount(2) and umount(2) events between namespaces (or, more precisely, be-
tween the mounts that are members of a peer group that are propagating events to one
another).

Each mount is marked (via mount(2)) as having one of the following propagation types:

MS_SHARED
This mount shares events with members of a peer group. mount(2) and
umount(2) events immediately under this mount will propagate to the other
mounts that are members of the peer group. Propagation here means that the
same mount(2) or umount(2) will automatically occur under all of the other
mounts in the peer group. Conversely, mount(2) and umount(2) events that take
place under peer mounts will propagate to this mount.

MS_PRIVATE
This mount is private; it does not have a peer group. mount(2) and umount(2)
events do not propagate into or out of this mount.

Linux man-pages 6.16 2025-09-21 3615

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

MS_SLAVE
mount(2) and umount(2) events propagate into this mount from a (master) shared
peer group. mount(2) and umount(2) events under this mount do not propagate
to any peer.

Note that a mount can be the slave of another peer group while at the same time
sharing mount(2) and umount(2) events with a peer group of which it is a mem-
ber. (More precisely, one peer group can be the slave of another peer group.)

MS_UNBINDABLE
This is like a private mount, and in addition this mount can’t be bind mounted.
Attempts to bind mount this mount (mount(2) with the MS_BIND flag) will fail.

When a recursive bind mount (mount(2) with the MS_BIND and MS_REC
flags) is performed on a directory subtree, any bind mounts within the subtree
are automatically pruned (i.e., not replicated) when replicating that subtree to
produce the target subtree.

For a discussion of the propagation type assigned to a new mount, see NOTES.

The propagation type is a per-mount-point setting; some mounts may be marked as
shared (with each shared mount being a member of a distinct peer group), while others
are private (or slaved or unbindable).

Note that a mount’s propagation type determines whether mount(2) and umount(2) of
mounts immediately under the mount are propagated. Thus, the propagation type does
not affect propagation of events for grandchildren and further removed descendant
mounts. What happens if the mount itself is unmounted is determined by the propaga-
tion type that is in effect for the parent of the mount.

Members are added to a peer group when a mount is marked as shared and either:

(a) the mount is replicated during the creation of a new mount namespace; or

(b) a new bind mount is created from the mount.

In both of these cases, the new mount joins the peer group of which the existing mount
is a member.

A new peer group is also created when a child mount is created under an existing mount
that is marked as shared. In this case, the new child mount is also marked as shared and
the resulting peer group consists of all the mounts that are replicated under the peers of
parent mounts.

A mount ceases to be a member of a peer group when either the mount is explicitly un-
mounted, or when the mount is implicitly unmounted because a mount namespace is re-
moved (because it has no more member processes).

The propagation type of the mounts in a mount namespace can be discovered via the
"optional fields" exposed in /proc/ pid /mountinfo. (See proc(5) for details of this file.)
The following tags can appear in the optional fields for a record in that file:

shared:X
This mount is shared in peer group X . Each peer group has a unique ID that is
automatically generated by the kernel, and all mounts in the same peer group

Linux man-pages 6.16 2025-09-21 3616

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

will show the same ID. (These IDs are assigned starting from the value 1, and
may be recycled when a peer group ceases to have any members.)

master:X
This mount is a slave to shared peer group X .

propagate_from:X (since Linux 2.6.26)
This mount is a slave and receives propagation from shared peer group X . This
tag will always appear in conjunction with a master:X tag. Here, X is the clos-
est dominant peer group under the process’s root directory. If X is the immedi-
ate master of the mount, or if there is no dominant peer group under the same
root, then only the master:X field is present and not the propagate_from:X field.
For further details, see below.

unbindable
This is an unbindable mount.

If none of the above tags is present, then this is a private mount.

MS_SHARED and MS_PRIVATE example
Suppose that on a terminal in the initial mount namespace, we mark one mount as
shared and another as private, and then view the mounts in /proc/self/mountinfo:

sh1# mount --make-shared /mntS
sh1# mount --make-private /mntP
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
77 61 8:17 / /mntS rw,relatime shared:1
83 61 8:15 / /mntP rw,relatime

From the /proc/self/mountinfo output, we see that /mntS is a shared mount in peer group
1, and that /mntP has no optional tags, indicating that it is a private mount. The first two
fields in each record in this file are the unique ID for this mount, and the mount ID of
the parent mount. We can further inspect this file to see that the parent mount of /mntS
and /mntP is the root directory, / , which is mounted as private:

sh1# cat /proc/self/mountinfo | awk '$1 == 61' | sed 's/ - .*//'
61 0 8:2 / / rw,relatime

On a second terminal, we create a new mount namespace where we run a second shell
and inspect the mounts:

$ PS1='sh2# ' sudo unshare -m --propagation unchanged sh
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
222 145 8:17 / /mntS rw,relatime shared:1
225 145 8:15 / /mntP rw,relatime

The new mount namespace received a copy of the initial mount namespace’s mounts.
These new mounts maintain the same propagation types, but have unique mount IDs.
(The --propagation unchanged option prevents unshare(1) from marking all mounts as
private when creating a new mount namespace, which it does by default.)

In the second terminal, we then create submounts under each of /mntS and /mntP and
inspect the set-up:

sh2# mkdir /mntS/a

Linux man-pages 6.16 2025-09-21 3617

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

sh2# mount /dev/sdb6 /mntS/a
sh2# mkdir /mntP/b
sh2# mount /dev/sdb7 /mntP/b
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
222 145 8:17 / /mntS rw,relatime shared:1
225 145 8:15 / /mntP rw,relatime
178 222 8:22 / /mntS/a rw,relatime shared:2
230 225 8:23 / /mntP/b rw,relatime

From the above, it can be seen that /mntS/a was created as shared (inheriting this setting
from its parent mount) and /mntP/b was created as a private mount.

Returning to the first terminal and inspecting the set-up, we see that the new mount cre-
ated under the shared mount /mntS propagated to its peer mount (in the initial mount
namespace), but the new mount created under the private mount /mntP did not propa-
gate:

sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
77 61 8:17 / /mntS rw,relatime shared:1
83 61 8:15 / /mntP rw,relatime
179 77 8:22 / /mntS/a rw,relatime shared:2

MS_SLAVE example
Making a mount a slave allows it to receive propagated mount(2) and umount(2) events
from a master shared peer group, while preventing it from propagating events to that
master. This is useful if we want to (say) receive a mount event when an optical disk is
mounted in the master shared peer group (in another mount namespace), but want to
prevent mount(2) and umount(2) events under the slave mount from having side effects
in other namespaces.

We can demonstrate the effect of slaving by first marking two mounts as shared in the
initial mount namespace:

sh1# mount --make-shared /mntX
sh1# mount --make-shared /mntY
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2

On a second terminal, we create a new mount namespace and inspect the mounts:

sh2# unshare -m --propagation unchanged sh
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime shared:2

In the new mount namespace, we then mark one of the mounts as a slave:

sh2# mount --make-slave /mntY
sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2

From the above output, we see that /mntY is now a slave mount that is receiving

Linux man-pages 6.16 2025-09-21 3618

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

propagation events from the shared peer group with the ID 2.

Continuing in the new namespace, we create submounts under each of /mntX and
/mntY :

sh2# mkdir /mntX/a
sh2# mount /dev/sda3 /mntX/a
sh2# mkdir /mntY/b
sh2# mount /dev/sda5 /mntY/b

When we inspect the state of the mounts in the new mount namespace, we see that
/mntX/a was created as a new shared mount (inheriting the "shared" setting from its par-
ent mount) and /mntY/b was created as a private mount:

sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2
173 168 8:3 / /mntX/a rw,relatime shared:3
175 169 8:5 / /mntY/b rw,relatime

Returning to the first terminal (in the initial mount namespace), we see that the mount
/mntX/a propagated to the peer (the shared /mntX), but the mount /mntY/b was not
propagated:

sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2
174 132 8:3 / /mntX/a rw,relatime shared:3

Now we create a new mount under /mntY in the first shell:

sh1# mkdir /mntY/c
sh1# mount /dev/sda1 /mntY/c
sh1# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
132 83 8:23 / /mntX rw,relatime shared:1
133 83 8:22 / /mntY rw,relatime shared:2
174 132 8:3 / /mntX/a rw,relatime shared:3
178 133 8:1 / /mntY/c rw,relatime shared:4

When we examine the mounts in the second mount namespace, we see that in this case
the new mount has been propagated to the slave mount, and that the new mount is itself
a slave mount (to peer group 4):

sh2# cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'
168 167 8:23 / /mntX rw,relatime shared:1
169 167 8:22 / /mntY rw,relatime master:2
173 168 8:3 / /mntX/a rw,relatime shared:3
175 169 8:5 / /mntY/b rw,relatime
179 169 8:1 / /mntY/c rw,relatime master:4

MS_UNBINDABLE example
One of the primary purposes of unbindable mounts is to avoid the "mount explosion"
problem when repeatedly performing bind mounts of a higher-level subtree at a lower-
level mount. The problem is illustrated by the following shell session.

Linux man-pages 6.16 2025-09-21 3619

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

Suppose we have a system with the following mounts:

mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY

Suppose furthermore that we wish to recursively bind mount the root directory under
several users’ home directories. We do this for the first user, and inspect the mounts:

mount --rbind / /home/cecilia/
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY

When we repeat this operation for the second user, we start to see the explosion prob-
lem:

mount --rbind / /home/henry
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/henry/home/cecilia
/dev/sdb6 on /home/henry/home/cecilia/mntX
/dev/sdb7 on /home/henry/home/cecilia/mntY

Under /home/henry, we have not only recursively added the /mntX and /mntY mounts,
but also the recursive mounts of those directories under /home/cecilia that were created
in the previous step. Upon repeating the step for a third user, it becomes obvious that
the explosion is exponential in nature:

mount --rbind / /home/otto
mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry

Linux man-pages 6.16 2025-09-21 3620

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

/dev/sdb6 on /home/henry/mntX
/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/henry/home/cecilia
/dev/sdb6 on /home/henry/home/cecilia/mntX
/dev/sdb7 on /home/henry/home/cecilia/mntY
/dev/sda1 on /home/otto
/dev/sdb6 on /home/otto/mntX
/dev/sdb7 on /home/otto/mntY
/dev/sda1 on /home/otto/home/cecilia
/dev/sdb6 on /home/otto/home/cecilia/mntX
/dev/sdb7 on /home/otto/home/cecilia/mntY
/dev/sda1 on /home/otto/home/henry
/dev/sdb6 on /home/otto/home/henry/mntX
/dev/sdb7 on /home/otto/home/henry/mntY
/dev/sda1 on /home/otto/home/henry/home/cecilia
/dev/sdb6 on /home/otto/home/henry/home/cecilia/mntX
/dev/sdb7 on /home/otto/home/henry/home/cecilia/mntY

The mount explosion problem in the above scenario can be avoided by making each of
the new mounts unbindable. The effect of doing this is that recursive mounts of the root
directory will not replicate the unbindable mounts. We make such a mount for the first
user:

mount --rbind --make-unbindable / /home/cecilia

Before going further, we show that unbindable mounts are indeed unbindable:

mkdir /mntZ
mount --bind /home/cecilia /mntZ
mount: wrong fs type, bad option, bad superblock on /home/cecilia,

missing codepage or helper program, or other error

In some cases useful info is found in syslog - try
dmesg | tail or so.

Now we create unbindable recursive bind mounts for the other two users:

mount --rbind --make-unbindable / /home/henry
mount --rbind --make-unbindable / /home/otto

Upon examining the list of mounts, we see there has been no explosion of mounts, be-
cause the unbindable mounts were not replicated under each user’s directory:

mount | awk '{print $1, $2, $3}'
/dev/sda1 on /
/dev/sdb6 on /mntX
/dev/sdb7 on /mntY
/dev/sda1 on /home/cecilia
/dev/sdb6 on /home/cecilia/mntX
/dev/sdb7 on /home/cecilia/mntY
/dev/sda1 on /home/henry
/dev/sdb6 on /home/henry/mntX

Linux man-pages 6.16 2025-09-21 3621

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

/dev/sdb7 on /home/henry/mntY
/dev/sda1 on /home/otto
/dev/sdb6 on /home/otto/mntX
/dev/sdb7 on /home/otto/mntY

Propagation type transitions
The following table shows the effect that applying a new propagation type (i.e.,
mount --make-xxxx) has on the existing propagation type of a mount. The rows corre-
spond to existing propagation types, and the columns are the new propagation settings.
For reasons of space, "private" is abbreviated as "priv" and "unbindable" as "unbind".

make-shared make-slave make-priv make-unbind
shared shared slave/priv [1] priv unbind
slave slave+shared slave [2] priv unbind
slave+shared slave+shared slave priv unbind
private shared priv [2] priv unbind
unbindable shared unbind [2] priv unbind

Note the following details to the table:

[1] If a shared mount is the only mount in its peer group, making it a slave automati-
cally makes it private.

[2] Slaving a nonshared mount has no effect on the mount.

Bind (MS_BIND) semantics
Suppose that the following command is performed:

mount --bind A/a B/b

Here, A is the source mount, B is the destination mount, a is a subdirectory path under
the mount point A, and b is a subdirectory path under the mount point B. The propaga-
tion type of the resulting mount, B/b, depends on the propagation types of the mounts A
and B, and is summarized in the following table.

source(A)
shared private slave unbind

dest(B) shared shared shared slave+shared invalid
nonshared shared private slave invalid

Note that a recursive bind of a subtree follows the same semantics as for a bind opera-
tion on each mount in the subtree. (Unbindable mounts are automatically pruned at the
target mount point.)

For further details, see Documentation/filesystems/sharedsubtree.rst in the kernel source
tree.

Move (MS_MOVE) semantics
Suppose that the following command is performed:

mount --move A B/b

Here, A is the source mount, B is the destination mount, and b is a subdirectory path un-
der the mount point B. The propagation type of the resulting mount, B/b, depends on
the propagation types of the mounts A and B, and is summarized in the following table.

Linux man-pages 6.16 2025-09-21 3622

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

source(A)
shared private slave unbind

dest(B) shared shared shared slave+shared invalid
nonshared shared private slave unbindable

Note: moving a mount that resides under a shared mount is invalid.

For further details, see Documentation/filesystems/sharedsubtree.rst in the kernel source
tree.

Mount semantics
Suppose that we use the following command to create a mount:

mount device B/b

Here, B is the destination mount, and b is a subdirectory path under the mount point B.
The propagation type of the resulting mount, B/b, follows the same rules as for a bind
mount, where the propagation type of the source mount is considered always to be pri-
vate.

Unmount semantics
Suppose that we use the following command to tear down a mount:

umount A

Here, A is a mount on B/b, where B is the parent mount and b is a subdirectory path un-
der the mount point B. If B is shared, then all most-recently-mounted mounts at b on
mounts that receive propagation from mount B and do not have submounts under them
are unmounted.

The /proc/ pid /mountinfo propagate_from tag
The propagate_from:X tag is shown in the optional fields of a /proc/ pid /mountinfo
record in cases where a process can’t see a slave’s immediate master (i.e., the pathname
of the master is not reachable from the filesystem root directory) and so cannot deter-
mine the chain of propagation between the mounts it can see.

In the following example, we first create a two-link master-slave chain between the
mounts /mnt, /tmp/etc, and /mnt/tmp/etc. Then the chroot(1) command is used to make
the /tmp/etc mount point unreachable from the root directory, creating a situation where
the master of /mnt/tmp/etc is not reachable from the (new) root directory of the process.

First, we bind mount the root directory onto /mnt and then bind mount /proc at
/mnt/proc so that after the later chroot(1) the proc(5) filesystem remains visible at the
correct location in the chroot-ed environment.

mkdir -p /mnt/proc
mount --bind / /mnt
mount --bind /proc /mnt/proc

Next, we ensure that the /mnt mount is a shared mount in a new peer group (with no
peers):

mount --make-private /mnt # Isolate from any previous peer group
mount --make-shared /mnt
cat /proc/self/mountinfo | grep '/mnt' | sed 's/ - .*//'

Linux man-pages 6.16 2025-09-21 3623

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5

Next, we bind mount /mnt/etc onto /tmp/etc:

mkdir -p /tmp/etc
mount --bind /mnt/etc /tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:102

Initially, these two mounts are in the same peer group, but we then make the /tmp/etc a
slave of /mnt/etc, and then make /tmp/etc shared as well, so that it can propagate events
to the next slave in the chain:

mount --make-slave /tmp/etc
mount --make-shared /tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:105 master:102

Then we bind mount /tmp/etc onto /mnt/tmp/etc. Again, the two mounts are initially in
the same peer group, but we then make /mnt/tmp/etc a slave of /tmp/etc:

mkdir -p /mnt/tmp/etc
mount --bind /tmp/etc /mnt/tmp/etc
mount --make-slave /mnt/tmp/etc
cat /proc/self/mountinfo | egrep '/mnt|/tmp/' | sed 's/ - .*//'
239 61 8:2 / /mnt ... shared:102
248 239 0:4 / /mnt/proc ... shared:5
267 40 8:2 /etc /tmp/etc ... shared:105 master:102
273 239 8:2 /etc /mnt/tmp/etc ... master:105

From the above, we see that /mnt is the master of the slave /tmp/etc, which in turn is the
master of the slave /mnt/tmp/etc.

We then chroot(1) to the /mnt directory, which renders the mount with ID 267 unreach-
able from the (new) root directory:

chroot /mnt

When we examine the state of the mounts inside the chroot-ed environment, we see the
following:

cat /proc/self/mountinfo | sed 's/ - .*//'
239 61 8:2 / / ... shared:102
248 239 0:4 / /proc ... shared:5
273 239 8:2 /etc /tmp/etc ... master:105 propagate_from:102

Above, we see that the mount with ID 273 is a slave whose master is the peer group 105.
The mount point for that master is unreachable, and so a propagate_from tag is dis-
played, indicating that the closest dominant peer group (i.e., the nearest reachable mount

Linux man-pages 6.16 2025-09-21 3624

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

in the slave chain) is the peer group with the ID 102 (corresponding to the /mnt mount
point before the chroot(1) was performed).

STANDARDS
Linux.

HISTORY
Linux 2.4.19.

NOTES
The propagation type assigned to a new mount depends on the propagation type of the
parent mount. If the mount has a parent (i.e., it is a non-root mount) and the propagation
type of the parent is MS_SHARED, then the propagation type of the new mount is also
MS_SHARED. Otherwise, the propagation type of the new mount is MS_PRIVATE.

Notwithstanding the fact that the default propagation type for new mount is in many
cases MS_PRIVATE, MS_SHARED is typically more useful. For this reason, sys-
temd(1) automatically remounts all mounts as MS_SHARED on system startup. Thus,
on most modern systems, the default propagation type is in practice MS_SHARED.

Since, when one uses unshare(1) to create a mount namespace, the goal is commonly to
provide full isolation of the mounts in the new namespace, unshare(1) (since util-linux
2.27) in turn reverses the step performed by systemd(1), by making all mounts private in
the new namespace. That is, unshare(1) performs the equivalent of the following in the
new mount namespace:

mount --make-rprivate /

To prevent this, one can use the --propagation unchanged option to unshare(1)

An application that creates a new mount namespace directly using clone(2) or un-
share(2) may desire to prevent propagation of mount events to other mount namespaces
(as is done by unshare(1)). This can be done by changing the propagation type of
mounts in the new namespace to either MS_SLAVE or MS_PRIVATE, using a call
such as the following:

mount(NULL, "/", MS_SLAVE | MS_REC, NULL);

For a discussion of propagation types when moving mounts (MS_MOVE) and creating
bind mounts (MS_BIND), see Documentation/filesystems/sharedsubtree.rst.

Restrictions on mount namespaces
Note the following points with respect to mount namespaces:

[1] Each mount namespace has an owner user namespace. As explained above, when
a new mount namespace is created, its mount list is initialized as a copy of the
mount list of another mount namespace. If the new namespace and the name-
space from which the mount list was copied are owned by different user name-
spaces, then the new mount namespace is considered less privileged .

[2] When creating a less privileged mount namespace, shared mounts are reduced to
slave mounts. This ensures that mappings performed in less privileged mount
namespaces will not propagate to more privileged mount namespaces.

Linux man-pages 6.16 2025-09-21 3625

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

[3] Mounts that come as a single unit from a more privileged mount namespace are
locked together and may not be separated in a less privileged mount namespace.
(The unshare(2) CLONE_NEWNS operation brings across all of the mounts
from the original mount namespace as a single unit, and recursive mounts that
propagate between mount namespaces propagate as a single unit.)

In this context, "may not be separated" means that the mounts are locked so that
they may not be individually unmounted. Consider the following example:

$ sudo sh
mount --bind /dev/null /etc/shadow
cat /etc/shadow # Produces no output

The above steps, performed in a more privileged mount namespace, have created a
bind mount that obscures the contents of the shadow password file, /etc/shadow.
For security reasons, it should not be possible to umount(2) that mount in a less
privileged mount namespace, since that would reveal the contents of /etc/shadow.

Suppose we now create a new mount namespace owned by a new user namespace.
The new mount namespace will inherit copies of all of the mounts from the previ-
ous mount namespace. However, those mounts will be locked because the new
mount namespace is less privileged. Consequently, an attempt to umount(2) the
mount fails as show in the following step:

unshare --user --map-root-user --mount \
strace -o /tmp/log \
umount /etc/shadow

umount: /etc/shadow: not mounted.
grep '^umount' /tmp/log
umount2("/etc/shadow", 0) = -1 EINVAL (Invalid argument)

The error message from mount(8) is a little confusing, but the strace(1) output re-
veals that the underlying umount2(2) system call failed with the error EINVAL,
which is the error that the kernel returns to indicate that the mount is locked.

Note, however, that it is possible to stack (and unstack) a mount on top of one of
the inherited locked mounts in a less privileged mount namespace:

echo 'aaaaa' > /tmp/a # File to mount onto /etc/shadow
unshare --user --map-root-user --mount \

sh -c 'mount --bind /tmp/a /etc/shadow; cat /etc/shadow'
aaaaa
umount /etc/shadow

The final umount(8) command above, which is performed in the initial mount
namespace, makes the original /etc/shadow file once more visible in that name-
space.

[4] Following on from point [3], note that it is possible to umount(2) an entire subtree
of mounts that propagated as a unit into a less privileged mount namespace, as il-
lustrated in the following example.

First, we create new user and mount namespaces using unshare(1)In the new
mount namespace, the propagation type of all mounts is set to private. We then

Linux man-pages 6.16 2025-09-21 3626

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

create a shared bind mount at /mnt, and a small hierarchy of mounts underneath
that mount.

$ PS1='ns1# ' sudo unshare --user --map-root-user \
--mount --propagation private bash

ns1# echo $$ # We need the PID of this shell later
778501
ns1# mount --make-shared --bind /mnt /mnt
ns1# mkdir /mnt/x
ns1# mount --make-private -t tmpfs none /mnt/x
ns1# mkdir /mnt/x/y
ns1# mount --make-private -t tmpfs none /mnt/x/y
ns1# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
986 83 8:5 /mnt /mnt rw,relatime shared:344
989 986 0:56 / /mnt/x rw,relatime
990 989 0:57 / /mnt/x/y rw,relatime

Continuing in the same shell session, we then create a second shell in a new user
namespace and a new (less privileged) mount namespace and check the state of
the propagated mounts rooted at /mnt.

ns1# PS1='ns2# ' unshare --user --map-root-user \
--mount --propagation unchanged bash

ns2# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
1239 1204 8:5 /mnt /mnt rw,relatime master:344
1240 1239 0:56 / /mnt/x rw,relatime
1241 1240 0:57 / /mnt/x/y rw,relatime

Of note in the above output is that the propagation type of the mount /mnt has
been reduced to slave, as explained in point [2]. This means that submount events
will propagate from the master /mnt in "ns1", but propagation will not occur in
the opposite direction.

From a separate terminal window, we then use nsenter(1) to enter the mount and
user namespaces corresponding to "ns1". In that terminal window, we then recur-
sively bind mount /mnt/x at the location /mnt/ppp.

$ PS1='ns3# ' sudo nsenter -t 778501 --user --mount
ns3# mount --rbind --make-private /mnt/x /mnt/ppp
ns3# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
986 83 8:5 /mnt /mnt rw,relatime shared:344
989 986 0:56 / /mnt/x rw,relatime
990 989 0:57 / /mnt/x/y rw,relatime
1242 986 0:56 / /mnt/ppp rw,relatime
1243 1242 0:57 / /mnt/ppp/y rw,relatime shared:518

Because the propagation type of the parent mount, /mnt, was shared, the recursive
bind mount propagated a small subtree of mounts under the slave mount /mnt into
"ns2", as can be verified by executing the following command in that shell ses-
sion:

Linux man-pages 6.16 2025-09-21 3627

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

ns2# grep /mnt /proc/self/mountinfo | sed 's/ - .*//'
1239 1204 8:5 /mnt /mnt rw,relatime master:344
1240 1239 0:56 / /mnt/x rw,relatime
1241 1240 0:57 / /mnt/x/y rw,relatime
1244 1239 0:56 / /mnt/ppp rw,relatime
1245 1244 0:57 / /mnt/ppp/y rw,relatime master:518

While it is not possible to umount(2) a part of the propagated subtree (/mnt/ppp/y)
in "ns2", it is possible to umount(2) the entire subtree, as shown by the following
commands:

ns2# umount /mnt/ppp/y
umount: /mnt/ppp/y: not mounted.
ns2# umount -l /mnt/ppp | sed 's/ - .*//' # Succeeds...
ns2# grep /mnt /proc/self/mountinfo
1239 1204 8:5 /mnt /mnt rw,relatime master:344
1240 1239 0:56 / /mnt/x rw,relatime
1241 1240 0:57 / /mnt/x/y rw,relatime

[5] The mount(2) flags MS_RDONLY, MS_NOSUID, MS_NOEXEC, and the
"atime" flags (MS_NOATIME, MS_NODIRATIME, MS_RELATIME) set-
tings become locked when propagated from a more privileged to a less privileged
mount namespace, and may not be changed in the less privileged mount name-
space.

This point is illustrated in the following example where, in a more privileged
mount namespace, we create a bind mount that is marked as read-only. For secu-
rity reasons, it should not be possible to make the mount writable in a less privi-
leged mount namespace, and indeed the kernel prevents this:

$ sudo mkdir /mnt/dir
$ sudo mount --bind -o ro /some/path /mnt/dir
$ sudo unshare --user --map-root-user --mount \

mount -o remount,rw /mnt/dir
mount: /mnt/dir: permission denied.

[6] A file or directory that is a mount point in one namespace that is not a mount
point in another namespace, may be renamed, unlinked, or removed (rmdir(2)) in
the mount namespace in which it is not a mount point (subject to the usual per-
mission checks). Consequently, the mount point is removed in the mount name-
space where it was a mount point.

Previously (before Linux 3.18), attempting to unlink, rename, or remove a file or
directory that was a mount point in another mount namespace would result in the
error EBUSY. That behavior had technical problems of enforcement (e.g., for
NFS) and permitted denial-of-service attacks against more privileged users (i.e.,
preventing individual files from being updated by bind mounting on top of them).

EXAMPLES
See pivot_root(2).

Linux man-pages 6.16 2025-09-21 3628

mount_namespaces(7) Miscellaneous Information Manual mount_namespaces(7)

SEE ALSO
unshare(1), clone(2), mount(2), mount_setattr(2), pivot_root(2), setns(2), umount(2),
unshare(2), proc(5), namespaces(7), user_namespaces(7), findmnt(8), mount(8),
pam_namespace(8), pivot_root(8), umount(8)

Documentation/filesystems/sharedsubtree.rst in the kernel source tree.

Linux man-pages 6.16 2025-09-21 3629

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

NAME
mq_overview - overview of POSIX message queues

DESCRIPTION
POSIX message queues allow processes to exchange data in the form of messages. This
API is distinct from that provided by System V message queues (msgget(2), msgsnd(2),
msgrcv(2), etc.), but provides similar functionality.

Message queues are created and opened using mq_open(3); this function returns a mes-
sage queue descriptor (mqd_t), which is used to refer to the open message queue in
later calls. Each message queue is identified by a name of the form /somename; that is,
a null-terminated string of up to NAME_MAX (i.e., 255) characters consisting of an
initial slash, followed by one or more characters, none of which are slashes. Two
processes can operate on the same queue by passing the same name to mq_open(3).

Messages are transferred to and from a queue using mq_send(3) and mq_receive(3).
When a process has finished using the queue, it closes it using mq_close(3), and when
the queue is no longer required, it can be deleted using mq_unlink(3). Queue attributes
can be retrieved and (in some cases) modified using mq_getattr(3) and mq_setattr(3). A
process can request asynchronous notification of the arrival of a message on a previously
empty queue using mq_notify(3).

A message queue descriptor is a reference to an open message queue description (see
open(2)). After a fork(2), a child inherits copies of its parent’s message queue descrip-
tors, and these descriptors refer to the same open message queue descriptions as the cor-
responding message queue descriptors in the parent. Corresponding message queue de-
scriptors in the two processes share the flags (mq_flags) that are associated with the
open message queue description.

Each message has an associated priority, and messages are always delivered to the re-
ceiving process highest priority first. Message priorities range from 0 (low) to
sysconf(_SC_MQ_PRIO_MAX) - 1 (high). On Linux, sysconf(_SC_MQ_PRIO_MAX)
returns 32768, but POSIX.1 requires only that an implementation support at least priori-
ties in the range 0 to 31; some implementations provide only this range.

The remainder of this section describes some specific details of the Linux implementa-
tion of POSIX message queues.

Library interfaces and system calls
In most cases the mq_*() library interfaces listed above are implemented on top of un-
derlying system calls of the same name. Deviations from this scheme are indicated in
the following table:

Library interface System call
mq_close(3) close(2)
mq_getattr(3) mq_getsetattr(2)
mq_notify(3) mq_notify(2)
mq_open(3) mq_open(2)
mq_receive(3) mq_timedreceive(2)
mq_send(3) mq_timedsend(2)
mq_setattr(3) mq_getsetattr(2)

Linux man-pages 6.16 2025-09-21 3630

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

mq_timedreceive(3) mq_timedreceive(2)
mq_timedsend(3) mq_timedsend(2)
mq_unlink(3) mq_unlink(2)

Versions
POSIX message queues have been supported since Linux 2.6.6. glibc support has been
provided since glibc 2.3.4.

Kernel configuration
Support for POSIX message queues is configurable via the CON-
FIG_POSIX_MQUEUE kernel configuration option. This option is enabled by de-
fault.

Persistence
POSIX message queues have kernel persistence: if not removed by mq_unlink(3), a mes-
sage queue will exist until the system is shut down.

Linking
Programs using the POSIX message queue API must be compiled with cc -lrt to link
against the real-time library, librt.

/proc interfaces
The following interfaces can be used to limit the amount of kernel memory consumed
by POSIX message queues and to set the default attributes for new message queues:

/proc/sys/fs/mqueue/msg_default (since Linux 3.5)
This file defines the value used for a new queue’s mq_maxmsg setting when the
queue is created with a call to mq_open(3) where attr is specified as NULL. The
default value for this file is 10. The minimum and maximum are as for
/proc/sys/fs/mqueue/msg_max. A new queue’s default mq_maxmsg value will be
the smaller of msg_default and msg_max. Before Linux 2.6.28, the default
mq_maxmsg was 10; from Linux 2.6.28 to Linux 3.4, the default was the value
defined for the msg_max limit.

/proc/sys/fs/mqueue/msg_max
This file can be used to view and change the ceiling value for the maximum
number of messages in a queue. This value acts as a ceiling on the
attr->mq_maxmsg argument given to mq_open(3). The default value for
msg_max is 10. The minimum value is 1 (10 before Linux 2.6.28). The upper
limit is HARD_MSGMAX. The msg_max limit is ignored for privileged
processes (CAP_SYS_RESOURCE), but the HARD_MSGMAX ceiling is
nevertheless imposed.

The definition of HARD_MSGMAX has changed across kernel versions:

• Up to Linux 2.6.32: 131072 / sizeof(void *)

• Linux 2.6.33 to Linux 3.4: (32768 * sizeof(void *) / 4)

• Since Linux 3.5: 65,536

/proc/sys/fs/mqueue/msgsize_default (since Linux 3.5)
This file defines the value used for a new queue’s mq_msgsize setting when the
queue is created with a call to mq_open(3) where attr is specified as NULL. The

Linux man-pages 6.16 2025-09-21 3631

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

default value for this file is 8192 (bytes). The minimum and maximum are as for
/proc/sys/fs/mqueue/msgsize_max. If msgsize_default exceeds msgsize_max, a
new queue’s default mq_msgsize value is capped to the msgsize_max limit. Be-
fore Linux 2.6.28, the default mq_msgsize was 8192; from Linux 2.6.28 to Linux
3.4, the default was the value defined for the msgsize_max limit.

/proc/sys/fs/mqueue/msgsize_max
This file can be used to view and change the ceiling on the maximum message
size. This value acts as a ceiling on the attr->mq_msgsize argument given to
mq_open(3). The default value for msgsize_max is 8192 bytes. The minimum
value is 128 (8192 before Linux 2.6.28). The upper limit for msgsize_max has
varied across kernel versions:

• Before Linux 2.6.28, the upper limit is INT_MAX.

• From Linux 2.6.28 to Linux 3.4, the limit is 1,048,576.

• Since Linux 3.5, the limit is 16,777,216 (HARD_MSGSIZEMAX).

The msgsize_max limit is ignored for privileged process (CAP_SYS_RE-
SOURCE), but, since Linux 3.5, the HARD_MSGSIZEMAX ceiling is en-
forced for privileged processes.

/proc/sys/fs/mqueue/queues_max
This file can be used to view and change the system-wide limit on the number of
message queues that can be created. The default value for queues_max is 256.
No ceiling is imposed on the queues_max limit; privileged processes
(CAP_SYS_RESOURCE) can exceed the limit (but see BUGS).

Resource limit
The RLIMIT_MSGQUEUE resource limit, which places a limit on the amount of
space that can be consumed by all of the message queues belonging to a process’s real
user ID, is described in getrlimit(2).

Mounting the message queue filesystem
On Linux, message queues are created in a virtual filesystem. (Other implementations
may also provide such a feature, but the details are likely to differ.) This filesystem can
be mounted (by the superuser) using the following commands:

mkdir /dev/mqueue
mount -t mqueue none /dev/mqueue

The sticky bit is automatically enabled on the mount directory.

After the filesystem has been mounted, the message queues on the system can be viewed
and manipulated using the commands usually used for files (e.g., ls(1) and rm(1)).

The contents of each file in the directory consist of a single line containing information
about the queue:

$ cat /dev/mqueue/mymq
QSIZE:129 NOTIFY:2 SIGNO:0 NOTIFY_PID:8260

These fields are as follows:

Linux man-pages 6.16 2025-09-21 3632

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

QSIZE
Number of bytes of data in all messages in the queue (but see BUGS).

NOTIFY_PID
If this is nonzero, then the process with this PID has used mq_notify(3) to regis-
ter for asynchronous message notification, and the remaining fields describe how
notification occurs.

NOTIFY
Notification method: 0 is SIGEV_SIGNAL; 1 is SIGEV_NONE; and 2 is
SIGEV_THREAD.

SIGNO
Signal number to be used for SIGEV_SIGNAL.

Linux implementation of message queue descriptors
On Linux, a message queue descriptor is actually a file descriptor. (POSIX does not re-
quire such an implementation.) This means that a message queue descriptor can be
monitored using select(2), poll(2), or epoll(7). This is not portable.

The close-on-exec flag (see open(2)) is automatically set on the file descriptor returned
by mq_open(2).

IPC namespaces
For a discussion of the interaction of POSIX message queue objects and IPC name-
spaces, see ipc_namespaces(7).

NOTES
System V message queues (msgget(2), msgsnd(2), msgrcv(2), etc.) are an older API for
exchanging messages between processes. POSIX message queues provide a better de-
signed interface than System V message queues; on the other hand POSIX message
queues are less widely available (especially on older systems) than System V message
queues.

Linux does not currently (Linux 2.6.26) support the use of access control lists (ACLs)
for POSIX message queues.

BUGS
Since Linux 3.5 to Linux 3.14, the kernel imposed a ceiling of 1024
(HARD_QUEUESMAX) on the value to which the queues_max limit could be raised,
and the ceiling was enforced even for privileged processes. This ceiling value was re-
moved in Linux 3.14, and patches to stable Linux 3.5.x to Linux 3.13.x also removed the
ceiling.

As originally implemented (and documented), the QSIZE field displayed the total num-
ber of (user-supplied) bytes in all messages in the message queue. Some changes in
Linux 3.5 inadvertently changed the behavior, so that this field also included a count of
kernel overhead bytes used to store the messages in the queue. This behavioral regres-
sion was rectified in Linux 4.2 (and earlier stable kernel series), so that the count once
more included just the bytes of user data in messages in the queue.

EXAMPLES
An example of the use of various message queue functions is shown in mq_notify(3).

Linux man-pages 6.16 2025-09-21 3633

mq_overview(7) Miscellaneous Information Manual mq_overview(7)

SEE ALSO
getrlimit(2), mq_getsetattr(2), poll(2), select(2), mq_close(3), mq_getattr(3), mq_no-
tify(3), mq_open(3), mq_receive(3), mq_send(3), mq_unlink(3), epoll(7), namespaces(7)

Linux man-pages 6.16 2025-09-21 3634

namespaces(7) Miscellaneous Information Manual namespaces(7)

NAME
namespaces - overview of Linux namespaces

DESCRIPTION
A namespace wraps a global system resource in an abstraction that makes it appear to
the processes within the namespace that they have their own isolated instance of the
global resource. Changes to the global resource are visible to other processes that are
members of the namespace, but are invisible to other processes. One use of namespaces
is to implement containers.

This page provides pointers to information on the various namespace types, describes
the associated /proc files, and summarizes the APIs for working with namespaces.

Namespace types
The following table shows the namespace types available on Linux. The second column
of the table shows the flag value that is used to specify the namespace type in various
APIs. The third column identifies the manual page that provides details on the name-
space type. The last column is a summary of the resources that are isolated by the
namespace type.

Namespace Flag Page Isolates
Cgroup CLONE_NEWCGROUP cgroup_namespaces(7) Cgroup root

directory
IPC CLONE_NEWIPC ipc_namespaces(7) System V

IPC, POSIX
message
queues

Network CLONE_NEWNET network_namespaces(7) Network
devices,
stacks, ports,
etc.

Mount CLONE_NEWNS mount_namespaces(7) Mount points
PID CLONE_NEWPID pid_namespaces(7) Process IDs
Time CLONE_NEWTIME time_namespaces(7) Boot and

monotonic
clocks

User CLONE_NEWUSER user_namespaces(7) User and
group IDs

UTS CLONE_NEWUTS uts_namespaces(7) Hostname
and NIS
domain
name

The namespaces API
As well as various /proc files described below, the namespaces API includes the follow-
ing system calls:

clone(2)
The clone(2) system call creates a new process. If the flags argument of the call
specifies one or more of the CLONE_NEW* flags listed above, then new name-
spaces are created for each flag, and the child process is made a member of those

Linux man-pages 6.16 2025-09-21 3635

namespaces(7) Miscellaneous Information Manual namespaces(7)

namespaces. (This system call also implements a number of features unrelated
to namespaces.)

setns(2)
The setns(2) system call allows the calling process to join an existing name-
space. The namespace to join is specified via a file descriptor that refers to one
of the /proc/ pid /ns files described below.

unshare(2)
The unshare(2) system call moves the calling process to a new namespace. If
the flags argument of the call specifies one or more of the CLONE_NEW* flags
listed above, then new namespaces are created for each flag, and the calling
process is made a member of those namespaces. (This system call also imple-
ments a number of features unrelated to namespaces.)

ioctl(2)
Various ioctl(2) operations can be used to discover information about name-
spaces. These operations are described in ioctl_nsfs(2).

Creation of new namespaces using clone(2) and unshare(2) in most cases requires the
CAP_SYS_ADMIN capability, since, in the new namespace, the creator will have the
power to change global resources that are visible to other processes that are subse-
quently created in, or join the namespace. User namespaces are the exception: since
Linux 3.8, no privilege is required to create a user namespace.

The /proc/pid/ns/ directory
Each process has a /proc/ pid /ns/ subdirectory containing one entry for each namespace
that supports being manipulated by setns(2):

$ ls -l /proc/$$/ns | awk '{print $1, $9, $10, $11}'
total 0
lrwxrwxrwx. cgroup -> cgroup:[4026531835]
lrwxrwxrwx. ipc -> ipc:[4026531839]
lrwxrwxrwx. mnt -> mnt:[4026531840]
lrwxrwxrwx. net -> net:[4026531969]
lrwxrwxrwx. pid -> pid:[4026531836]
lrwxrwxrwx. pid_for_children -> pid:[4026531834]
lrwxrwxrwx. time -> time:[4026531834]
lrwxrwxrwx. time_for_children -> time:[4026531834]
lrwxrwxrwx. user -> user:[4026531837]
lrwxrwxrwx. uts -> uts:[4026531838]

Bind mounting (see mount(2)) one of the files in this directory to somewhere else in the
filesystem keeps the corresponding namespace of the process specified by pid alive even
if all processes currently in the namespace terminate.

Opening one of the files in this directory (or a file that is bind mounted to one of these
files) returns a file handle for the corresponding namespace of the process specified by
pid . As long as this file descriptor remains open, the namespace will remain alive, even
if all processes in the namespace terminate. The file descriptor can be passed to
setns(2).

Linux man-pages 6.16 2025-09-21 3636

namespaces(7) Miscellaneous Information Manual namespaces(7)

In Linux 3.7 and earlier, these files were visible as hard links. Since Linux 3.8, they ap-
pear as symbolic links. If two processes are in the same namespace, then the device IDs
and inode numbers of their /proc/ pid /ns/ xxx symbolic links will be the same; an appli-
cation can check this using the stat.st_dev and stat.st_ino fields returned by stat(2). The
content of this symbolic link is a string containing the namespace type and inode num-
ber as in the following example:

$ readlink /proc/$$/ns/uts
uts:[4026531838]

The symbolic links in this subdirectory are as follows:

/proc/ pid /ns/cgroup (since Linux 4.6)
This file is a handle for the cgroup namespace of the process.

/proc/ pid /ns/ipc (since Linux 3.0)
This file is a handle for the IPC namespace of the process.

/proc/ pid /ns/mnt (since Linux 3.8)
This file is a handle for the mount namespace of the process.

/proc/ pid /ns/net (since Linux 3.0)
This file is a handle for the network namespace of the process.

/proc/ pid /ns/pid (since Linux 3.8)
This file is a handle for the PID namespace of the process. This handle is perma-
nent for the lifetime of the process (i.e., a process’s PID namespace membership
never changes).

/proc/ pid /ns/pid_for_children (since Linux 4.12)
This file is a handle for the PID namespace of child processes created by this
process. This can change as a consequence of calls to unshare(2) and setns(2)
(see pid_namespaces(7)), so the file may differ from /proc/ pid /ns/pid . The
symbolic link gains a value only after the first child process is created in the
namespace. (Beforehand, readlink(2) of the symbolic link will return an empty
buffer.)

/proc/ pid /ns/time (since Linux 5.6)
This file is a handle for the time namespace of the process.

/proc/ pid /ns/time_for_children (since Linux 5.6)
This file is a handle for the time namespace of child processes created by this
process. This can change as a consequence of calls to unshare(2) and setns(2)
(see time_namespaces(7)), so the file may differ from /proc/ pid /ns/time.

/proc/ pid /ns/user (since Linux 3.8)
This file is a handle for the user namespace of the process.

/proc/ pid /ns/uts (since Linux 3.0)
This file is a handle for the UTS namespace of the process.

Permission to dereference or read (readlink(2)) these symbolic links is governed by a
ptrace access mode PTRACE_MODE_READ_FSCREDS check; see ptrace(2).

Linux man-pages 6.16 2025-09-21 3637

namespaces(7) Miscellaneous Information Manual namespaces(7)

The /proc/sys/user directory
The files in the /proc/sys/user directory (which is present since Linux 4.9) expose limits
on the number of namespaces of various types that can be created. The files are as fol-
lows:

max_cgroup_namespaces
The value in this file defines a per-user limit on the number of cgroup name-
spaces that may be created in the user namespace.

max_ipc_namespaces
The value in this file defines a per-user limit on the number of ipc namespaces
that may be created in the user namespace.

max_mnt_namespaces
The value in this file defines a per-user limit on the number of mount name-
spaces that may be created in the user namespace.

max_net_namespaces
The value in this file defines a per-user limit on the number of network name-
spaces that may be created in the user namespace.

max_pid_namespaces
The value in this file defines a per-user limit on the number of PID namespaces
that may be created in the user namespace.

max_time_namespaces (since Linux 5.7)
The value in this file defines a per-user limit on the number of time namespaces
that may be created in the user namespace.

max_user_namespaces
The value in this file defines a per-user limit on the number of user namespaces
that may be created in the user namespace.

max_uts_namespaces
The value in this file defines a per-user limit on the number of uts namespaces
that may be created in the user namespace.

Note the following details about these files:

• The values in these files are modifiable by privileged processes.

• The values exposed by these files are the limits for the user namespace in which the
opening process resides.

• The limits are per-user. Each user in the same user namespace can create name-
spaces up to the defined limit.

• The limits apply to all users, including UID 0.

• These limits apply in addition to any other per-namespace limits (such as those for
PID and user namespaces) that may be enforced.

• Upon encountering these limits, clone(2) and unshare(2) fail with the error
ENOSPC.

Linux man-pages 6.16 2025-09-21 3638

namespaces(7) Miscellaneous Information Manual namespaces(7)

• For the initial user namespace, the default value in each of these files is half the limit
on the number of threads that may be created (/proc/sys/kernel/threads-max). In all
descendant user namespaces, the default value in each file is MAXINT.

• When a namespace is created, the object is also accounted against ancestor name-
spaces. More precisely:

• Each user namespace has a creator UID.

• When a namespace is created, it is accounted against the creator UIDs in each of
the ancestor user namespaces, and the kernel ensures that the corresponding
namespace limit for the creator UID in the ancestor namespace is not exceeded.

• The aforementioned point ensures that creating a new user namespace cannot be
used as a means to escape the limits in force in the current user namespace.

Namespace lifetime
Absent any other factors, a namespace is automatically torn down when the last process
in the namespace terminates or leaves the namespace. However, there are a number of
other factors that may pin a namespace into existence even though it has no member
processes. These factors include the following:

• An open file descriptor or a bind mount exists for the corresponding /proc/ pid /ns/*
file.

• The namespace is hierarchical (i.e., a PID or user namespace), and has a child name-
space.

• It is a user namespace that owns one or more nonuser namespaces.

• It is a PID namespace, and there is a process that refers to the namespace via a
/proc/ pid /ns/pid_for_children symbolic link.

• It is a time namespace, and there is a process that refers to the namespace via a
/proc/ pid /ns/time_for_children symbolic link.

• It is an IPC namespace, and a corresponding mount of an mqueue filesystem (see
mq_overview(7)) refers to this namespace.

• It is a PID namespace, and a corresponding mount of a proc(5) filesystem refers to
this namespace.

EXAMPLES
See clone(2) and user_namespaces(7).

SEE ALSO
nsenter(1), readlink(1), unshare(1), clone(2), ioctl_nsfs(2), setns(2), unshare(2),
proc(5), capabilities(7), cgroup_namespaces(7), cgroups(7), credentials(7), ipc_name-
spaces(7), network_namespaces(7), pid_namespaces(7), user_namespaces(7),
uts_namespaces(7), lsns(8), switch_root(8)

Linux man-pages 6.16 2025-09-21 3639

netdevice(7) Miscellaneous Information Manual netdevice(7)

NAME
netdevice - low-level access to Linux network devices

SYNOPSIS
#include <sys/ioctl.h>
#include <net/if.h>

DESCRIPTION
This man page describes the sockets interface which is used to configure network de-
vices.

Linux supports some standard ioctls to configure network devices. They can be used on
any socket’s file descriptor regardless of the family or type. Most of them pass an ifreq
structure:

struct ifreq {
char ifr_name[IFNAMSIZ]; /* Interface name */
union {

struct sockaddr ifr_addr;
struct sockaddr ifr_dstaddr;
struct sockaddr ifr_broadaddr;
struct sockaddr ifr_netmask;
struct sockaddr ifr_hwaddr;
short ifr_flags;
int ifr_ifindex;
int ifr_metric;
int ifr_mtu;
struct ifmap ifr_map;
char ifr_slave[IFNAMSIZ];
char ifr_newname[IFNAMSIZ];
char *ifr_data;

};
};

AF_INET6 is an exception. It passes an in6_ifreq structure:

struct in6_ifreq {
struct in6_addr ifr6_addr;
u32 ifr6_prefixlen;
int ifr6_ifindex; /* Interface index */

};

Normally, the user specifies which device to affect by setting ifr_name to the name of
the interface or ifr6_ifindex to the index of the interface. All other members of the struc-
ture may share memory.

Ioctls
If an ioctl is marked as privileged, then using it requires an effective user ID of 0 or the
CAP_NET_ADMIN capability. If this is not the case, EPERM will be returned.

Linux man-pages 6.16 2025-09-21 3640

netdevice(7) Miscellaneous Information Manual netdevice(7)

SIOCGIFNAME
Given the ifr_ifindex, return the name of the interface in ifr_name. This is the
only ioctl which returns its result in ifr_name.

SIOCGIFINDEX
Retrieve the interface index of the interface into ifr_ifindex.

SIOCGIFFLAGS
SIOCSIFFLAGS

Get or set the active flag word of the device. ifr_flags contains a bit mask of the
following values:

Device flags
IFF_UP Interface is running.
IFF_BROADCAST Valid broadcast address set.
IFF_DEBUG Internal debugging flag.
IFF_LOOPBACK Interface is a loopback interface.
IFF_POINTOPOINT Interface is a point-to-point link.
IFF_RUNNING Resources allocated.
IFF_NOARP No arp protocol, L2 destination address not

set.
IFF_PROMISC Interface is in promiscuous mode.
IFF_NOTRAILERS Avoid use of trailers.
IFF_ALLMULTI Receive all multicast packets.
IFF_MASTER Master of a load balancing bundle.
IFF_SLAVE Slave of a load balancing bundle.
IFF_MULTICAST Supports multicast
IFF_PORTSEL Is able to select media type via ifmap.
IFF_AUTOMEDIA Auto media selection active.
IFF_DYNAMIC The addresses are lost when the interface

goes down.
IFF_LOWER_UP Driver signals L1 up (since Linux 2.6.17)
IFF_DORMANT Driver signals dormant (since Linux 2.6.17)
IFF_ECHO Echo sent packets (since Linux 2.6.25)

Setting the active flag word is a privileged operation, but any process may read it.

SIOCGIFPFLAGS
SIOCSIFPFLAGS

Get or set extended (private) flags for the device. ifr_flags contains a bit mask of
the following values:

Private flags
IFF_802_1Q_VLAN Interface is 802.1Q VLAN device.
IFF_EBRIDGE Interface is Ethernet bridging device.
IFF_SLAVE_INACTIVE Interface is inactive bonding slave.
IFF_MASTER_8023AD Interface is 802.3ad bonding master.
IFF_MASTER_ALB Interface is balanced-alb bonding master.
IFF_BONDING Interface is a bonding master or slave.
IFF_SLAVE_NEEDARP Interface needs ARPs for validation.

Linux man-pages 6.16 2025-09-21 3641

netdevice(7) Miscellaneous Information Manual netdevice(7)

IFF_ISATAP Interface is RFC4214 ISATAP interface.

Setting the extended (private) interface flags is a privileged operation.

SIOCGIFADDR
SIOCSIFADDR
SIOCDIFADDR

Get, set, or delete the address of the device using ifr_addr, or ifr6_addr with
ifr6_prefixlen. Setting or deleting the interface address is a privileged operation.
For compatibility, SIOCGIFADDR returns only AF_INET addresses, SIOCSI-
FADDR accepts AF_INET and AF_INET6 addresses, and SIOCDIFADDR
deletes only AF_INET6 addresses. A AF_INET address can be deleted by set-
ting it to zero via SIOCSIFADDR.

SIOCGIFDSTADDR
SIOCSIFDSTADDR

Get or set the destination address of a point-to-point device using ifr_dstaddr.
For compatibility, only AF_INET addresses are accepted or returned. Setting
the destination address is a privileged operation.

SIOCGIFBRDADDR
SIOCSIFBRDADDR

Get or set the broadcast address for a device using ifr_brdaddr. For compatibil-
ity, only AF_INET addresses are accepted or returned. Setting the broadcast ad-
dress is a privileged operation.

SIOCGIFNETMASK
SIOCSIFNETMASK

Get or set the network mask for a device using ifr_netmask. For compatibility,
only AF_INET addresses are accepted or returned. Setting the network mask is
a privileged operation.

SIOCGIFMETRIC
SIOCSIFMETRIC

Get or set the metric of the device using ifr_metric. This is currently not imple-
mented; it sets ifr_metric to 0 if you attempt to read it and returns EOPNOT-
SUPP if you attempt to set it.

SIOCGIFMTU
SIOCSIFMTU

Get or set the MTU (Maximum Transfer Unit) of a device using ifr_mtu. Setting
the MTU is a privileged operation. Setting the MTU to too small values may
cause kernel crashes.

SIOCGIFHWADDR
SIOCSIFHWADDR

Get or set the hardware address of a device using ifr_hwaddr. The hardware ad-
dress is specified in a struct sockaddr. sa_family contains the ARPHRD_* de-
vice type, sa_data the L2 hardware address starting from byte 0. Setting the
hardware address is a privileged operation.

Linux man-pages 6.16 2025-09-21 3642

netdevice(7) Miscellaneous Information Manual netdevice(7)

SIOCSIFHWBROADCAST
Set the hardware broadcast address of a device from ifr_hwaddr. This is a privi-
leged operation.

SIOCGIFMAP
SIOCSIFMAP

Get or set the interface’s hardware parameters using ifr_map. Setting the para-
meters is a privileged operation.

struct ifmap {
unsigned long mem_start;
unsigned long mem_end;
unsigned short base_addr;
unsigned char irq;
unsigned char dma;
unsigned char port;

};

The interpretation of the ifmap structure depends on the device driver and the ar-
chitecture.

SIOCADDMULTI
SIOCDELMULTI

Add an address to or delete an address from the device’s link layer multicast fil-
ters using ifr_hwaddr. These are privileged operations. See also packet(7) for
an alternative.

SIOCGIFTXQLEN
SIOCSIFTXQLEN

Get or set the transmit queue length of a device using ifr_qlen. Setting the trans-
mit queue length is a privileged operation.

SIOCSIFNAME
Changes the name of the interface specified in ifr_name to ifr_newname. This is
a privileged operation. It is allowed only when the interface is not up.

SIOCGIFCONF
Return a list of interface (network layer) addresses. This currently means only
addresses of the AF_INET (IPv4) family for compatibility. Unlike the others,
this ioctl passes an ifconf structure:

struct ifconf {
int ifc_len; /* size of buffer */
union {

char *ifc_buf; /* buffer address */
struct ifreq *ifc_req; /* array of structures */

};
};

If ifc_req is NULL, SIOCGIFCONF returns the necessary buffer size in bytes
for receiving all available addresses in ifc_len. Otherwise, ifc_req contains a
pointer to an array of ifreq structures to be filled with all currently active L3

Linux man-pages 6.16 2025-09-21 3643

netdevice(7) Miscellaneous Information Manual netdevice(7)

interface addresses. ifc_len contains the size of the array in bytes. Within each
ifreq structure, ifr_name will receive the interface name, and ifr_addr the ad-
dress. The actual number of bytes transferred is returned in ifc_len.

If the size specified by ifc_len is insufficient to store all the addresses, the kernel
will skip the exceeding ones and return success. There is no reliable way of de-
tecting this condition once it has occurred. It is therefore recommended to either
determine the necessary buffer size beforehand by calling SIOCGIFCONF with
ifc_req set to NULL, or to retry the call with a bigger buffer whenever ifc_len
upon return differs by less than sizeof(struct ifreq) from its original value.

If an error occurs accessing the ifconf or ifreq structures, EFAULT will be re-
turned.

Most protocols support their own ioctls to configure protocol-specific interface options.
See the protocol man pages for a description. For configuring IP addresses, see ip(7).

In addition, some devices support private ioctls. These are not described here.

NOTES
SIOCGIFCONF and the other ioctls that accept or return only AF_INET socket ad-
dresses are IP-specific and perhaps should rather be documented in ip(7).

The names of interfaces with no addresses or that don’t have the IFF_RUNNING flag
set can be found via /proc/net/dev.

AF_INET6 IPv6 addresses can be read from /proc/net/if_inet6 or via rtnetlink(7).
Adding a new IPv6 address and deleting an existing IPv6 address can be done via
SIOCSIFADDR and SIOCDIFADDR or via rtnetlink(7). Retrieving or changing desti-
nation IPv6 addresses of a point-to-point interface is possible only via rtnetlink(7).

BUGS
glibc 2.1 is missing the ifr_newname macro in <net/if.h>. Add the following to your
program as a workaround:

#ifndef ifr_newname
#define ifr_newname ifr_ifru.ifru_slave
#endif

SEE ALSO
proc(5), capabilities(7), ip(7), rtnetlink(7)

Linux man-pages 6.16 2025-09-21 3644

netlink(7) Miscellaneous Information Manual netlink(7)

NAME
netlink - communication between kernel and user space (AF_NETLINK)

SYNOPSIS
#include <asm/types.h>
#include <sys/socket.h>
#include <linux/netlink.h>

netlink_socket = socket(AF_NETLINK, socket_type, netlink_family);

DESCRIPTION
Netlink is used to transfer information between the kernel and user-space processes. It
consists of a standard sockets-based interface for user space processes and an internal
kernel API for kernel modules. The internal kernel interface is not documented in this
manual page. There is also an obsolete netlink interface via netlink character devices;
this interface is not documented here, and is provided only for backward compatibility.

Netlink is a datagram-oriented service. Both SOCK_RAW and SOCK_DGRAM are
valid values for socket_type. However, the netlink protocol does not distinguish be-
tween datagram and raw sockets.

netlink_family selects the kernel module or netlink group to communicate with. The
currently assigned netlink families are:

NETLINK_ROUTE
Receives routing and link updates and may be used to modify the routing tables
(both IPv4 and IPv6), IP addresses, link parameters, neighbor setups, queueing
disciplines, traffic classes, and packet classifiers (see rtnetlink(7)).

NETLINK_W1 (Linux 2.6.13 to Linux 2.16.17)
Messages from 1-wire subsystem.

NETLINK_USERSOCK
Reserved for user-mode socket protocols.

NETLINK_FIREWALL (up to and including Linux 3.4)
Transport IPv4 packets from netfilter to user space. Used by ip_queue kernel
module. After a long period of being declared obsolete (in favor of the more ad-
vanced nfnetlink_queue feature), NETLINK_FIREWALL was removed in
Linux 3.5.

NETLINK_SOCK_DIAG (since Linux 3.3)
Query information about sockets of various protocol families from the kernel
(see sock_diag(7)).

NETLINK_INET_DIAG (since Linux 2.6.14)
An obsolete synonym for NETLINK_SOCK_DIAG.

NETLINK_NFLOG (up to and including Linux 3.16)
Netfilter/iptables ULOG.

NETLINK_XFRM
IPsec.

Linux man-pages 6.16 2025-09-21 3645

netlink(7) Miscellaneous Information Manual netlink(7)

NETLINK_SELINUX (since Linux 2.6.4)
SELinux event notifications.

NETLINK_ISCSI (since Linux 2.6.15)
Open-iSCSI.

NETLINK_AUDIT (since Linux 2.6.6)
Auditing.

NETLINK_FIB_LOOKUP (since Linux 2.6.13)
Access to FIB lookup from user space.

NETLINK_CONNECTOR (since Linux 2.6.14)
Kernel connector. See Documentation/driver-api/connector.rst (or /Documen-
tation/connector/connector.* in Linux 5.2 and earlier) in the Linux kernel
source tree for further information.

NETLINK_NETFILTER (since Linux 2.6.14)
Netfilter subsystem.

NETLINK_SCSITRANSPORT (since Linux 2.6.19)
SCSI Transports.

NETLINK_RDMA (since Linux 3.0)
Infiniband RDMA.

NETLINK_IP6_FW (up to and including Linux 3.4)
Transport IPv6 packets from netfilter to user space. Used by ip6_queue kernel
module.

NETLINK_DNRTMSG
DECnet routing messages.

NETLINK_KOBJECT_UEVENT (since Linux 2.6.10)
Kernel messages to user space.

NETLINK_GENERIC (since Linux 2.6.15)
Generic netlink family for simplified netlink usage.

NETLINK_CRYPTO (since Linux 3.2)
Netlink interface to request information about ciphers registered with the kernel
crypto API as well as allow configuration of the kernel crypto API.

Netlink messages consist of a byte stream with one or multiple nlmsghdr headers and
associated payload. The byte stream should be accessed only with the standard
NLMSG_* macros. See netlink(3) for further information.

In multipart messages (multiple nlmsghdr headers with associated payload in one byte
stream) the first and all following headers have the NLM_F_MULTI flag set, except for
the last header which has the type NLMSG_DONE.

After each nlmsghdr the payload follows.

struct nlmsghdr {
__u32 nlmsg_len; /* Size of message including header */
__u16 nlmsg_type; /* Type of message content */
__u16 nlmsg_flags; /* Additional flags */

Linux man-pages 6.16 2025-09-21 3646

netlink(7) Miscellaneous Information Manual netlink(7)

__u32 nlmsg_seq; /* Sequence number */
__u32 nlmsg_pid; /* Sender port ID */

};

nlmsg_type can be one of the standard message types: NLMSG_NOOP message is to
be ignored, NLMSG_ERROR message signals an error and the payload contains an
nlmsgerr structure, NLMSG_DONE message terminates a multipart message. Error
messages get the original request appended, unless the user requests to cap the error
message, and get extra error data if requested.

struct nlmsgerr {
int error; /* Negative errno or 0 for acknowledgements */
struct nlmsghdr msg; /* Message header that caused the error */
/*

* followed by the message contents
* unless NETLINK_CAP_ACK was set
* or the ACK indicates success (error == 0).
* For example Generic Netlink message with attributes.
* message size is aligned with NLMSG_ALIGN()
*/

/*
* followed by TLVs defined in enum nlmsgerr_attrs
* if NETLINK_EXT_ACK was set
*/

};

A netlink family usually specifies more message types, see the appropriate manual pages
for that, for example, rtnetlink(7) for NETLINK_ROUTE.
Standard flag bits in nlmsg_flags
NLM_F_REQUEST Must be set on all request messages.
NLM_F_MULTI The message is part of a multipart message terminated by

NLMSG_DONE.
NLM_F_ACK Request for an acknowledgement on success.
NLM_F_ECHO Echo this request.
Additional flag bits for GET requests
NLM_F_ROOT Return the complete table instead of a single entry.
NLM_F_MATCH Return all entries matching criteria passed in message

content. Not implemented yet.
NLM_F_ATOMIC Return an atomic snapshot of the table.
NLM_F_DUMP Convenience macro; equivalent to

(NLM_F_ROOT|NLM_F_MATCH).

Note that NLM_F_ATOMIC requires the CAP_NET_ADMIN capability or an effec-
tive UID of 0.
Additional flag bits for NEW requests
NLM_F_REPLACE Replace existing matching object.
NLM_F_EXCL Don’t replace if the object already exists.
NLM_F_CREATE Create object if it doesn’t already exist.

Linux man-pages 6.16 2025-09-21 3647

netlink(7) Miscellaneous Information Manual netlink(7)

NLM_F_APPEND Add to the end of the object list.

nlmsg_seq and nlmsg_pid are used to track messages. nlmsg_pid shows the origin of
the message. Note that there isn’t a 1:1 relationship between nlmsg_pid and the PID of
the process if the message originated from a netlink socket. See the ADDRESS FOR-
MATS section for further information.

Both nlmsg_seq and nlmsg_pid are opaque to netlink core.

Netlink is not a reliable protocol. It tries its best to deliver a message to its destina-
tion(s), but may drop messages when an out-of-memory condition or other error occurs.
For reliable transfer the sender can request an acknowledgement from the receiver by
setting the NLM_F_ACK flag. An acknowledgement is an NLMSG_ERROR packet
with the error field set to 0. The application must generate acknowledgements for re-
ceived messages itself. The kernel tries to send an NLMSG_ERROR message for
every failed packet. A user process should follow this convention too.

However, reliable transmissions from kernel to user are impossible in any case. The ker-
nel can’t send a netlink message if the socket buffer is full: the message will be dropped
and the kernel and the user-space process will no longer have the same view of kernel
state. It is up to the application to detect when this happens (via the ENOBUFS error
returned by recvmsg(2)) and resynchronize.

Address formats
The sockaddr_nl structure describes a netlink client in user space or in the kernel. A
sockaddr_nl can be either unicast (only sent to one peer) or sent to netlink multicast
groups (nl_groups not equal 0).

struct sockaddr_nl {
sa_family_t nl_family; /* AF_NETLINK */
unsigned short nl_pad; /* Zero */
pid_t nl_pid; /* Port ID */
__u32 nl_groups; /* Multicast groups mask */

};

nl_pid is the unicast address of netlink socket. It’s always 0 if the destination is in the
kernel. For a user-space process, nl_pid is usually the PID of the process owning the
destination socket. However, nl_pid identifies a netlink socket, not a process. If a
process owns several netlink sockets, then nl_pid can be equal to the process ID only for
at most one socket. There are two ways to assign nl_pid to a netlink socket. If the ap-
plication sets nl_pid before calling bind(2), then it is up to the application to make sure
that nl_pid is unique. If the application sets it to 0, the kernel takes care of assigning it.
The kernel assigns the process ID to the first netlink socket the process opens and as-
signs a unique nl_pid to every netlink socket that the process subsequently creates.

nl_groups is a bit mask with every bit representing a netlink group number. Each
netlink family has a set of 32 multicast groups. When bind(2) is called on the socket,
the nl_groups field in the sockaddr_nl should be set to a bit mask of the groups which it
wishes to listen to. The default value for this field is zero which means that no multi-
casts will be received. A socket may multicast messages to any of the multicast groups
by setting nl_groups to a bit mask of the groups it wishes to send to when it calls
sendmsg(2) or does a connect(2). Only processes with an effective UID of 0 or the

Linux man-pages 6.16 2025-09-21 3648

netlink(7) Miscellaneous Information Manual netlink(7)

CAP_NET_ADMIN capability may send or listen to a netlink multicast group. Since
Linux 2.6.13, messages can’t be broadcast to multiple groups. Any replies to a message
received for a multicast group should be sent back to the sending PID and the multicast
group. Some Linux kernel subsystems may additionally allow other users to send and/or
receive messages. As at Linux 3.0, the NETLINK_KOBJECT_UEVENT,
NETLINK_GENERIC, NETLINK_ROUTE, and NETLINK_SELINUX groups al-
low other users to receive messages. No groups allow other users to send messages.

Socket options
To set or get a netlink socket option, call getsockopt(2) to read or setsockopt(2) to write
the option with the option level argument set to SOL_NETLINK. Unless otherwise
noted, optval is a pointer to an int.

NETLINK_PKTINFO (since Linux 2.6.14)
Enable nl_pktinfo control messages for received packets to get the extended
destination group number.

NETLINK_ADD_MEMBERSHIP
NETLINK_DROP_MEMBERSHIP (since Linux 2.6.14)

Join/leave a group specified by optval.

NETLINK_LIST_MEMBERSHIPS (since Linux 4.2)
Retrieve all groups a socket is a member of. optval is a pointer to __u32 and
optlen is the size of the array. The array is filled with the full membership set of
the socket, and the required array size is returned in optlen.

NETLINK_BROADCAST_ERROR (since Linux 2.6.30)
When not set, netlink_broadcast() only reports ESRCH errors and silently ig-
nore ENOBUFS errors.

NETLINK_NO_ENOBUFS (since Linux 2.6.30)
This flag can be used by unicast and broadcast listeners to avoid receiving
ENOBUFS errors.

NETLINK_LISTEN_ALL_NSID (since Linux 4.2)
When set, this socket will receive netlink notifications from all network name-
spaces that have an nsid assigned into the network namespace where the socket
has been opened. The nsid is sent to user space via an ancillary data.

NETLINK_CAP_ACK (since Linux 4.3)
The kernel may fail to allocate the necessary room for the acknowledgement
message back to user space. This option trims off the payload of the original
netlink message. The netlink message header is still included, so the user can
guess from the sequence number which message triggered the acknowledge-
ment.

VERSIONS
The socket interface to netlink first appeared Linux 2.2.

Linux 2.0 supported a more primitive device-based netlink interface (which is still avail-
able as a compatibility option). This obsolete interface is not described here.

Linux man-pages 6.16 2025-09-21 3649

netlink(7) Miscellaneous Information Manual netlink(7)

NOTES
It is often better to use netlink via libnetlink or libnl than via the low-level kernel inter-
face.

BUGS
This manual page is not complete.

EXAMPLES
The following example creates a NETLINK_ROUTE netlink socket which will listen
to the RTMGRP_LINK (network interface create/delete/up/down events) and RTM-
GRP_IPV4_IFADDR (IPv4 addresses add/delete events) multicast groups.

struct sockaddr_nl sa;

memset(&sa, 0, sizeof(sa));
sa.nl_family = AF_NETLINK;
sa.nl_groups = RTMGRP_LINK | RTMGRP_IPV4_IFADDR;

fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_ROUTE);
bind(fd, (struct sockaddr *) &sa, sizeof(sa));

The next example demonstrates how to send a netlink message to the kernel (pid 0).
Note that the application must take care of message sequence numbers in order to reli-
ably track acknowledgements.

struct nlmsghdr *nh; /* The nlmsghdr with payload to send */
struct sockaddr_nl sa;
struct iovec iov = { nh, nh->nlmsg_len };
struct msghdr msg;

msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };
memset(&sa, 0, sizeof(sa));
sa.nl_family = AF_NETLINK;
nh->nlmsg_pid = 0;
nh->nlmsg_seq = ++sequence_number;
/* Request an ack from kernel by setting NLM_F_ACK */
nh->nlmsg_flags |= NLM_F_ACK;

sendmsg(fd, &msg, 0);

And the last example is about reading netlink message.

int size;
/* 8192 to avoid message truncation on platforms with

page size > 4096 */
struct nlmsghdr buf[8192/sizeof(struct nlmsghdr)];
struct iovec iov = { buf, sizeof(buf) };
struct sockaddr_nl sa;
struct msghdr msg;
struct nlmsghdr *nh;

Linux man-pages 6.16 2025-09-21 3650

netlink(7) Miscellaneous Information Manual netlink(7)

msg = { &sa, sizeof(sa), &iov, 1, NULL, 0, 0 };
size = recvmsg(fd, &msg, 0);

for (nh = (struct nlmsghdr *) buf; NLMSG_OK (nh, size);
nh = NLMSG_NEXT (nh, size)) {

/* The end of multipart message */
if (nh->nlmsg_type == NLMSG_DONE)

return;

if (nh->nlmsg_type == NLMSG_ERROR)
/* Do some error handling */

...

/* Continue with parsing payload */
...

}

SEE ALSO
cmsg(3), netlink(3), capabilities(7), rtnetlink(7), sock_diag(7)

information about libnetlink 〈ftp://ftp.inr.ac.ru/ip-routing/iproute2*〉

information about libnl 〈http://www.infradead.org/~tgr/libnl/〉

RFC 3549 "Linux Netlink as an IP Services Protocol"

Linux man-pages 6.16 2025-09-21 3651

network_namespaces(7) Miscellaneous Information Manual network_namespaces(7)

NAME
network_namespaces - overview of Linux network namespaces

DESCRIPTION
Network namespaces provide isolation of the system resources associated with network-
ing: network devices, IPv4 and IPv6 protocol stacks, IP routing tables, firewall rules, the
/proc/net directory (which is a symbolic link to /proc/ pid /net), the /sys/class/net direc-
tory, various files under /proc/sys/net, port numbers (sockets), and so on. In addition,
network namespaces isolate the UNIX domain abstract socket namespace (see unix(7)).

A physical network device can live in exactly one network namespace. When a network
namespace is freed (i.e., when the last process in the namespace terminates), its physical
network devices are moved back to the initial network namespace (not to the namespace
of the parent of the process).

A virtual network (veth(4)) device pair provides a pipe-like abstraction that can be used
to create tunnels between network namespaces, and can be used to create a bridge to a
physical network device in another namespace. When a namespace is freed, the veth(4)
devices that it contains are destroyed.

Use of network namespaces requires a kernel that is configured with the CON-
FIG_NET_NS option.

SEE ALSO
nsenter(1), unshare(1), clone(2), veth(4), proc(5), sysfs(5), namespaces(7), user_name-
spaces(7), brctl(8), ip(8), ip-address(8), ip-link(8), ip-netns(8), iptables(8), ovs-vsctl(8)

Linux man-pages 6.16 2025-05-17 3652

nptl(7) Miscellaneous Information Manual nptl(7)

NAME
nptl - Native POSIX Threads Library

DESCRIPTION
NPTL (Native POSIX Threads Library) is the GNU C library POSIX threads implemen-
tation that is used on modern Linux systems.

NPTL and signals
NPTL makes internal use of the first two real-time signals (signal numbers 32 and 33).
One of these signals is used to support thread cancelation and POSIX timers (see
timer_create(2)); the other is used as part of a mechanism that ensures all threads in a
process always have the same UIDs and GIDs, as required by POSIX. These signals
cannot be used in applications.

To prevent accidental use of these signals in applications, which might interfere with the
operation of the NPTL implementation, various glibc library functions and system call
wrapper functions attempt to hide these signals from applications, as follows:

• SIGRTMIN is defined with the value 34 (rather than 32).

• The sigwaitinfo(2), sigtimedwait(2), and sigwait(3) interfaces silently ignore re-
quests to wait for these two signals if they are specified in the signal set argument of
these calls.

• The sigprocmask(2) and pthread_sigmask(3) interfaces silently ignore attempts to
block these two signals.

• The sigaction(2), pthread_kill(3), and pthread_sigqueue(3) interfaces fail with the
error EINVAL (indicating an invalid signal number) if these signals are specified.

• sigfillset(3) does not include these two signals when it creates a full signal set.

NPTL and process credential changes
At the Linux kernel level, credentials (user and group IDs) are a per-thread attribute.
However, POSIX requires that all of the POSIX threads in a process have the same cre-
dentials. To accommodate this requirement, the NPTL implementation wraps all of the
system calls that change process credentials with functions that, in addition to invoking
the underlying system call, arrange for all other threads in the process to also change
their credentials.

The implementation of each of these system calls involves the use of a real-time signal
that is sent (using tgkill(2)) to each of the other threads that must change its credentials.
Before sending these signals, the thread that is changing credentials saves the new cre-
dential(s) and records the system call being employed in a global buffer. A signal han-
dler in the receiving thread(s) fetches this information and then uses the same system
call to change its credentials.

Wrapper functions employing this technique are provided for setgid(2), setuid(2), sete-
gid(2), seteuid(2), setregid(2), setreuid(2), setresgid(2), setresuid(2), and setgroups(2).

STANDARDS
For details of the conformance of NPTL to the POSIX standard, see pthreads(7).

Linux man-pages 6.16 2025-05-17 3653

nptl(7) Miscellaneous Information Manual nptl(7)

NOTES
POSIX says that any thread in any process with access to the memory containing a
process-shared (PTHREAD_PROCESS_SHARED) mutex can operate on that mutex.
However, on 64-bit x86 systems, the mutex definition for x86-64 is incompatible with
the mutex definition for i386, meaning that 32-bit and 64-bit binaries can’t share mu-
texes on x86-64 systems.

SEE ALSO
credentials(7), pthreads(7), signal(7), standards(7)

Linux man-pages 6.16 2025-05-17 3654

numa(7) Miscellaneous Information Manual numa(7)

NAME
numa - overview of Non-Uniform Memory Architecture

DESCRIPTION
Non-Uniform Memory Access (NUMA) refers to multiprocessor systems whose mem-
ory is divided into multiple memory nodes. The access time of a memory node depends
on the relative locations of the accessing CPU and the accessed node. (This contrasts
with a symmetric multiprocessor system, where the access time for all of the memory is
the same for all CPUs.) Normally, each CPU on a NUMA system has a local memory
node whose contents can be accessed faster than the memory in the node local to an-
other CPU or the memory on a bus shared by all CPUs.

NUMA system calls
The Linux kernel implements the following NUMA-related system calls: get_mempol-
icy(2), mbind(2), migrate_pages(2), move_pages(2), and set_mempolicy(2). However,
applications should normally use the interface provided by libnuma; see "Library Sup-
port" below.

/proc/pid/numa_maps (since Linux 2.6.14)
This file displays information about a process’s NUMA memory policy and allocation.

Each line contains information about a memory range used by the process, displaying—
among other information—the effective memory policy for that memory range and on
which nodes the pages have been allocated.

numa_maps is a read-only file. When /proc/ pid /numa_maps is read, the kernel will
scan the virtual address space of the process and report how memory is used. One line
is displayed for each unique memory range of the process.

The first field of each line shows the starting address of the memory range. This field al-
lows a correlation with the contents of the /proc/ pid /maps file, which contains the end
address of the range and other information, such as the access permissions and sharing.

The second field shows the memory policy currently in effect for the memory range.
Note that the effective policy is not necessarily the policy installed by the process for
that memory range. Specifically, if the process installed a "default" policy for that
range, the effective policy for that range will be the process policy, which may or may
not be "default".

The rest of the line contains information about the pages allocated in the memory range,
as follows:

N<node>=<nr_pages>
The number of pages allocated on <node>. <nr_pages> includes only pages
currently mapped by the process. Page migration and memory reclaim may have
temporarily unmapped pages associated with this memory range. These pages
may show up again only after the process has attempted to reference them. If the
memory range represents a shared memory area or file mapping, other processes
may currently have additional pages mapped in a corresponding memory range.

file=<filename>
The file backing the memory range. If the file is mapped as private, write ac-
cesses may have generated COW (Copy-On-Write) pages in this memory range.

Linux man-pages 6.16 2025-05-17 3655

numa(7) Miscellaneous Information Manual numa(7)

These pages are displayed as anonymous pages.

heap Memory range is used for the heap.

stack Memory range is used for the stack.

huge Huge memory range. The page counts shown are huge pages and not regular
sized pages.

anon=<pages>
The number of anonymous page in the range.

dirty=<pages>
Number of dirty pages.

mapped=<pages>
Total number of mapped pages, if different from dirty and anon pages.

mapmax=<count>
Maximum mapcount (number of processes mapping a single page) encountered
during the scan. This may be used as an indicator of the degree of sharing occur-
ring in a given memory range.

swapcache=<count>
Number of pages that have an associated entry on a swap device.

active=<pages>
The number of pages on the active list. This field is shown only if different from
the number of pages in this range. This means that some inactive pages exist in
the memory range that may be removed from memory by the swapper soon.

writeback=<pages>
Number of pages that are currently being written out to disk.

STANDARDS
None.

NOTES
The Linux NUMA system calls and /proc interface are available only if the kernel was
configured and built with the CONFIG_NUMA option.

Library support
Link with -lnuma to get the system call definitions. libnuma and the required <nu-
maif.h> header are available in the numactl package.

However, applications should not use these system calls directly. Instead, the higher
level interface provided by the numa(3) functions in the numactl package is recom-
mended. The numactl package is available at 〈ftp://oss.sgi.com/www/projects/libnuma
/download/〉. The package is also included in some Linux distributions. Some distribu-
tions include the development library and header in the separate numactl-devel pack-
age.

SEE ALSO
get_mempolicy(2), mbind(2), move_pages(2), set_mempolicy(2), numa(3), cpuset(7),
numactl(8)

Linux man-pages 6.16 2025-05-17 3656

operator(7) Miscellaneous Information Manual operator(7)

NAME
operator - C operator precedence and order of evaluation

DESCRIPTION
This manual page lists C operators and their precedence in evaluation.

Operator Associativity Notes
() _Generic() - [1]
[] () . -> ++ -- (type){} left to right [2] [3]
++ -- & * + - ~ ! _Countof sizeof alignof right to left [4]
(type) right to left
* / % left to right
+ - left to right
<< >> left to right
< > <= >= left to right
== != left to right
& left to right
^ left to right
| left to right
&& left to right
|| left to right
?: right to left
= *= /= %= += -= <<= >>= &= ^= |= right to left
, left to right

The following notes provide further information to the above table:

[1] The () at this precedence is the parenthesized expression.
[2] The () at this precedence is the function call operator.
[3] The ++ and -- operators at this precedence level are the postfix flavors of the op-

erators.
[4] The ++ and -- operators at this precedence level are the prefix flavors of the oper-

ators.

Linux man-pages 6.16 2025-08-19 3657

packet(7) Miscellaneous Information Manual packet(7)

NAME
packet - packet interface on device level

SYNOPSIS
#include <sys/socket.h>
#include <linux/if_packet.h>
#include <net/ethernet.h> /* the L2 protocols */

packet_socket = socket(AF_PACKET, int socket_type, int protocol);

DESCRIPTION
Packet sockets are used to receive or send raw packets at the device driver (OSI Layer 2)
level. They allow the user to implement protocol modules in user space on top of the
physical layer.

The socket_type is either SOCK_RAW for raw packets including the link-level header
or SOCK_DGRAM for cooked packets with the link-level header removed. The link-
level header information is available in a common format in a sockaddr_ll structure.
protocol is the IEEE 802.3 protocol number in network byte order. See the
<linux/if_ether.h> include file for a list of allowed protocols. When protocol is set to
htons(ETH_P_ALL), then all protocols are received. All incoming packets of that pro-
tocol type will be passed to the packet socket before they are passed to the protocols im-
plemented in the kernel. If protocol is set to zero, no packets are received. bind(2) can
optionally be called with a nonzero sll_protocol to start receiving packets for the proto-
cols specified.

In order to create a packet socket, a process must have the CAP_NET_RAW capability
in the user namespace that governs its network namespace.

SOCK_RAW packets are passed to and from the device driver without any changes in
the packet data. When receiving a packet, the address is still parsed and passed in a
standard sockaddr_ll address structure. When transmitting a packet, the user-supplied
buffer should contain the physical-layer header. That packet is then queued unmodified
to the network driver of the interface defined by the destination address. Some device
drivers always add other headers. SOCK_RAW is similar to but not compatible with
the obsolete AF_INET/SOCK_PACKET of Linux 2.0.

SOCK_DGRAM operates on a slightly higher level. The physical header is removed
before the packet is passed to the user. Packets sent through a SOCK_DGRAM packet
socket get a suitable physical-layer header based on the information in the sockaddr_ll
destination address before they are queued.

By default, all packets of the specified protocol type are passed to a packet socket. To
get packets only from a specific interface use bind(2) specifying an address in a struct
sockaddr_ll to bind the packet socket to an interface. Fields used for binding are
sll_family (should be AF_PACKET), sll_protocol, and sll_ifindex.

The connect(2) operation is not supported on packet sockets.

When the MSG_TRUNC flag is passed to recvmsg(2), recv(2), or recvfrom(2), the real
size of the packet on the wire is always returned, even when it is longer than the buffer.

Linux man-pages 6.16 2025-09-21 3658

packet(7) Miscellaneous Information Manual packet(7)

Address types
The sockaddr_ll structure is a device-independent physical-layer address.

struct sockaddr_ll {
unsigned short sll_family; /* Always AF_PACKET */
unsigned short sll_protocol; /* Physical-layer protocol */
int sll_ifindex; /* Interface number */
unsigned short sll_hatype; /* ARP hardware type */
unsigned char sll_pkttype; /* Packet type */
unsigned char sll_halen; /* Size of address */
unsigned char sll_addr[8]; /* Physical-layer address */

};

The fields of this structure are as follows:

sll_protocol
is the standard ethernet protocol type in network byte order as defined in the
<linux/if_ether.h> include file. It defaults to the socket’s protocol.

sll_ifindex
is the interface index of the interface (see netdevice(7)); 0 matches any interface
(only permitted for binding). sll_hatype is an ARP type as defined in the
<linux/if_arp.h> include file.

sll_pkttype
contains the packet type. Valid types are PACKET_HOST for a packet ad-
dressed to the local host, PACKET_BROADCAST for a physical-layer broad-
cast packet, PACKET_MULTICAST for a packet sent to a physical-layer mul-
ticast address, PACKET_OTHERHOST for a packet to some other host that
has been caught by a device driver in promiscuous mode, and PACKET_OUT-
GOING for a packet originating from the local host that is looped back to a
packet socket. These types make sense only for receiving.

sll_addr
sll_halen

contain the physical-layer (e.g., IEEE 802.3) address and its size. The exact in-
terpretation depends on the device.

When you send packets, it is enough to specify sll_family, sll_addr, sll_halen,
sll_ifindex, and sll_protocol. The other fields should be 0. sll_hatype and sll_pkttype
are set on received packets for your information.

Socket options
Packet socket options are configured by calling setsockopt(2) with level
SOL_PACKET.

PACKET_ADD_MEMBERSHIP
PACKET_DROP_MEMBERSHIP

Packet sockets can be used to configure physical-layer multicasting and promis-
cuous mode. PACKET_ADD_MEMBERSHIP adds a binding and
PACKET_DROP_MEMBERSHIP drops it. They both expect a packet_mreq
structure as argument:

Linux man-pages 6.16 2025-09-21 3659

packet(7) Miscellaneous Information Manual packet(7)

struct packet_mreq {
int mr_ifindex; /* interface index */
unsigned short mr_type; /* action */
unsigned short mr_alen; /* address size */
unsigned char mr_address[8]; /* physical-layer address */

};

mr_ifindex contains the interface index for the interface whose status should be
changed. The mr_type field specifies which action to perform.
PACKET_MR_PROMISC enables receiving all packets on a shared medium
(often known as "promiscuous mode"), PACKET_MR_MULTICAST binds the
socket to the physical-layer multicast group specified in mr_address and
mr_alen, and PACKET_MR_ALLMULTI sets the socket up to receive all mul-
ticast packets arriving at the interface.

In addition, the traditional ioctls SIOCSIFFLAGS, SIOCADDMULTI,
SIOCDELMULTI can be used for the same purpose.

PACKET_AUXDATA (since Linux 2.6.21)
If this binary option is enabled, the packet socket passes a metadata structure
along with each packet in the recvmsg(2) control field. The structure can be read
with cmsg(3). It is defined as

struct tpacket_auxdata {
__u32 tp_status;
__u32 tp_len; /* packet size */
__u32 tp_snaplen; /* captured size */
__u16 tp_mac;
__u16 tp_net;
__u16 tp_vlan_tci;
__u16 tp_vlan_tpid; /* Since Linux 3.14; earlier, these

were unused padding bytes */
};

PACKET_FANOUT (since Linux 3.1)
To scale processing across threads, packet sockets can form a fanout group. In
this mode, each matching packet is enqueued onto only one socket in the group.
A socket joins a fanout group by calling setsockopt(2) with level
SOL_PACKET and option PACKET_FANOUT. Each network namespace can
have up to 65536 independent groups. A socket selects a group by encoding the
ID in the first 16 bits of the integer option value. The first packet socket to join a
group implicitly creates it. To successfully join an existing group, subsequent
packet sockets must have the same protocol, device settings, fanout mode, and
flags (see below). Packet sockets can leave a fanout group only by closing the
socket. The group is deleted when the last socket is closed.

Fanout supports multiple algorithms to spread traffic between sockets, as fol-
lows:

Linux man-pages 6.16 2025-09-21 3660

packet(7) Miscellaneous Information Manual packet(7)

• The default mode, PACKET_FANOUT_HASH, sends packets from the
same flow to the same socket to maintain per-flow ordering. For each packet,
it chooses a socket by taking the packet flow hash modulo the number of
sockets in the group, where a flow hash is a hash over network-layer address
and optional transport-layer port fields.

• The load-balance mode PACKET_FANOUT_LB implements a round-robin
algorithm.

• PACKET_FANOUT_CPU selects the socket based on the CPU that the
packet arrived on.

• PACKET_FANOUT_ROLLOVER processes all data on a single socket,
moving to the next when one becomes backlogged.

• PACKET_FANOUT_RND selects the socket using a pseudo-random num-
ber generator.

• PACKET_FANOUT_QM (available since Linux 3.14) selects the socket us-
ing the recorded queue_mapping of the received skb.

Fanout modes can take additional options. IP fragmentation causes packets from
the same flow to have different flow hashes. The flag
PACKET_FANOUT_FLAG_DEFRAG, if set, causes packets to be defrag-
mented before fanout is applied, to preserve order even in this case. Fanout
mode and options are communicated in the second 16 bits of the integer option
value. The flag PACKET_FANOUT_FLAG_ROLLOVER enables the roll
over mechanism as a backup strategy: if the original fanout algorithm selects a
backlogged socket, the packet rolls over to the next available one.

PACKET_LOSS (with PACKET_TX_RING)
When a malformed packet is encountered on a transmit ring, the default is to re-
set its tp_status to TP_STATUS_WRONG_FORMAT and abort the transmis-
sion immediately. The malformed packet blocks itself and subsequently en-
queued packets from being sent. The format error must be fixed, the associated
tp_status reset to TP_STATUS_SEND_REQUEST, and the transmission
process restarted via send(2). However, if PACKET_LOSS is set, any mal-
formed packet will be skipped, its tp_status reset to TP_STATUS_AVAIL-
ABLE, and the transmission process continued.

PACKET_RESERVE (with PACKET_RX_RING)
By default, a packet receive ring writes packets immediately following the meta-
data structure and alignment padding. This integer option reserves additional
headroom.

PACKET_RX_RING
Create a memory-mapped ring buffer for asynchronous packet reception. The
packet socket reserves a contiguous region of application address space, lays it
out into an array of packet slots and copies packets (up to tp_snaplen) into sub-
sequent slots. Each packet is preceded by a metadata structure similar to
tpacket_auxdata. The protocol fields encode the offset to the data from the start
of the metadata header. tp_net stores the offset to the network layer. If the

Linux man-pages 6.16 2025-09-21 3661

packet(7) Miscellaneous Information Manual packet(7)

packet socket is of type SOCK_DGRAM, then tp_mac is the same. If it is of
type SOCK_RAW, then that field stores the offset to the link-layer frame.
Packet socket and application communicate the head and tail of the ring through
the tp_status field. The packet socket owns all slots with tp_status equal to
TP_STATUS_KERNEL. After filling a slot, it changes the status of the slot to
transfer ownership to the application. During normal operation, the new tp_sta-
tus value has at least the TP_STATUS_USER bit set to signal that a received
packet has been stored. When the application has finished processing a packet, it
transfers ownership of the slot back to the socket by setting tp_status equal to
TP_STATUS_KERNEL.

Packet sockets implement multiple variants of the packet ring. The implementa-
tion details are described in Documentation/networking/packet_mmap.rst in the
Linux kernel source tree.

PACKET_STATISTICS
Retrieve packet socket statistics in the form of a structure

struct tpacket_stats {
unsigned int tp_packets; /* Total packet count */
unsigned int tp_drops; /* Dropped packet count */

};

Receiving statistics resets the internal counters. The statistics structure differs
when using a ring of variant TPACKET_V3.

PACKET_TIMESTAMP (with PACKET_RX_RING; since Linux 2.6.36)
The packet receive ring always stores a timestamp in the metadata header. By
default, this is a software generated timestamp generated when the packet is
copied into the ring. This integer option selects the type of timestamp. Besides
the default, it support the two hardware formats described in Documentation/net-
working/timestamping.rst in the Linux kernel source tree.

PACKET_TX_RING (since Linux 2.6.31)
Create a memory-mapped ring buffer for packet transmission. This option is
similar to PACKET_RX_RING and takes the same arguments. The application
writes packets into slots with tp_status equal to TP_STATUS_AVAILABLE
and schedules them for transmission by changing tp_status to TP_STA-
TUS_SEND_REQUEST. When packets are ready to be transmitted, the appli-
cation calls send(2) or a variant thereof. The buf and len fields of this call are
ignored. If an address is passed using sendto(2) or sendmsg(2), then that over-
rides the socket default. On successful transmission, the socket resets tp_status
to TP_STATUS_AVAILABLE. It immediately aborts the transmission on error
unless PACKET_LOSS is set.

PACKET_VERSION (with PACKET_RX_RING; since Linux 2.6.27)
By default, PACKET_RX_RING creates a packet receive ring of variant
TPACKET_V1. To create another variant, configure the desired variant by set-
ting this integer option before creating the ring.

Linux man-pages 6.16 2025-09-21 3662

packet(7) Miscellaneous Information Manual packet(7)

PACKET_QDISC_BYPASS (since Linux 3.14)
By default, packets sent through packet sockets pass through the kernel’s qdisc
(traffic control) layer, which is fine for the vast majority of use cases. For traffic
generator appliances using packet sockets that intend to brute-force flood the net-
work—for example, to test devices under load in a similar fashion to pktgen—
this layer can be bypassed by setting this integer option to 1. A side effect is that
packet buffering in the qdisc layer is avoided, which will lead to increased drops
when network device transmit queues are busy; therefore, use at your own risk.

Ioctls
SIOCGSTAMP can be used to receive the timestamp of the last received packet. Argu-
ment is a struct timeval variable.

In addition, all standard ioctls defined in netdevice(7) and socket(7) are valid on packet
sockets.

Error handling
Packet sockets do no error handling other than errors occurred while passing the packet
to the device driver. They don’t have the concept of a pending error.

ERRORS
EADDRNOTAVAIL

Unknown multicast group address passed.

EFAULT
User passed invalid memory address.

EINVAL
Invalid argument.

EMSGSIZE
Packet is bigger than interface MTU.

ENETDOWN
Interface is not up.

ENOBUFS
Not enough memory to allocate the packet.

ENODEV
Unknown device name or interface index specified in interface address.

ENOENT
No packet received.

ENOTCONN
No interface address passed.

ENXIO
Interface address contained an invalid interface index.

EPERM
User has insufficient privileges to carry out this operation.

In addition, other errors may be generated by the low-level driver.

Linux man-pages 6.16 2025-09-21 3663

packet(7) Miscellaneous Information Manual packet(7)

VERSIONS
AF_PACKET is a new feature in Linux 2.2. Earlier Linux versions supported only
SOCK_PACKET.

NOTES
For portable programs it is suggested to use AF_PACKET via pcap(3); although this
covers only a subset of the AF_PACKET features.

The SOCK_DGRAM packet sockets make no attempt to create or parse the IEEE 802.2
LLC header for a IEEE 802.3 frame. When ETH_P_802_3 is specified as protocol for
sending the kernel creates the 802.3 frame and fills out the size field; the user has to sup-
ply the LLC header to get a fully conforming packet. Incoming 802.3 packets are not
multiplexed on the DSAP/SSAP protocol fields; instead they are supplied to the user as
protocol ETH_P_802_2 with the LLC header prefixed. It is thus not possible to bind to
ETH_P_802_3; bind to ETH_P_802_2 instead and do the protocol multiplex yourself.
The default for sending is the standard Ethernet DIX encapsulation with the protocol
filled in.

Packet sockets are not subject to the input or output firewall chains.

Compatibility
In Linux 2.0, the only way to get a packet socket was with the call:

socket(AF_INET, SOCK_PACKET, protocol)

This is still supported, but deprecated and strongly discouraged. The main difference
between the two methods is that SOCK_PACKET uses the old struct sockaddr_pkt to
specify an interface, which doesn’t provide physical-layer independence.

struct sockaddr_pkt {
unsigned short spkt_family;
unsigned char spkt_device[14];
unsigned short spkt_protocol;

};

spkt_family contains the device type, spkt_protocol is the IEEE 802.3 protocol type as
defined in <sys/if_ether.h> and spkt_device is the device name as a null-terminated
string, for example, eth0.

This structure is obsolete and should not be used in new code.

BUGS
LLC header handling

The IEEE 802.2/803.3 LLC handling could be considered as a bug.

MSG_TRUNC issues
The MSG_TRUNC recvmsg(2) extension is an ugly hack and should be replaced by a
control message. There is currently no way to get the original destination address of
packets via SOCK_DGRAM.

spkt_device device name truncation
The spkt_device field of sockaddr_pkt has a size of 14 bytes, which is less than the con-
stant IFNAMSIZ defined in <net/if.h> which is 16 bytes and describes the system limit
for a network interface name. This means the names of network devices longer than 14

Linux man-pages 6.16 2025-09-21 3664

packet(7) Miscellaneous Information Manual packet(7)

bytes will be truncated to fit into spkt_device. All these sizes include the terminating
null byte ('\0')).

Issues from this with old code typically show up with very long interface names used by
the Predictable Network Interface Names feature enabled by default in many modern
Linux distributions.

The preferred solution is to rewrite code to avoid SOCK_PACKET. Possible user solu-
tions are to disable Predictable Network Interface Names or to rename the interface to
a name of at most 13 bytes, for example using the ip(8) tool.

Documentation issues
Socket filters are not documented.

SEE ALSO
socket(2), pcap(3), capabilities(7), ip(7), raw(7), socket(7), ip(8),

RFC 894 for the standard IP Ethernet encapsulation. RFC 1700 for the IEEE 802.3 IP
encapsulation.

The <linux/if_ether.h> include file for physical-layer protocols.

The Linux kernel source tree. Documentation/networking/filter.rst describes how to ap-
ply Berkeley Packet Filters to packet sockets. tools/testing/selftests/net/psock_tpacket.c
contains example source code for all available versions of PACKET_RX_RING and
PACKET_TX_RING.

Linux man-pages 6.16 2025-09-21 3665

path_resolution(7) Miscellaneous Information Manual path_resolution(7)

NAME
path_resolution - how a pathname is resolved to a file

DESCRIPTION
Some UNIX/Linux system calls have as parameter one or more filenames. A filename
(or pathname) is resolved as follows.

Step 1: start of the resolution process
If the pathname starts with the '/' character, the starting lookup directory is the root di-
rectory of the calling process. A process inherits its root directory from its parent. Usu-
ally this will be the root directory of the file hierarchy. A process may get a different
root directory by use of the chroot(2) system call, or may temporarily use a different
root directory by using openat2(2) with the RESOLVE_IN_ROOT flag set.

A process may get an entirely private mount namespace in case it—or one of its ances-
tors—was started by an invocation of the clone(2) system call that had the
CLONE_NEWNS flag set. This handles the '/' part of the pathname.

If the pathname does not start with the '/' character, the starting lookup directory of the
resolution process is the current working directory of the process — or in the case of
openat(2)-style system calls, the dfd argument (or the current working directory if
AT_FDCWD is passed as the dfd argument). The current working directory is inherited
from the parent, and can be changed by use of the chdir(2) system call.

Pathnames starting with a '/' character are called absolute pathnames. Pathnames not
starting with a '/' are called relative pathnames.

Step 2: walk along the path
Set the current lookup directory to the starting lookup directory. Now, for each nonfinal
component of the pathname, where a component is a substring delimited by '/' charac-
ters, this component is looked up in the current lookup directory.

If the process does not have search permission on the current lookup directory, an EAC-
CES error is returned ("Permission denied").

If the component is not found, an ENOENT error is returned ("No such file or direc-
tory").

If the component is found, but is neither a directory nor a symbolic link, an ENOTDIR
error is returned ("Not a directory").

If the component is found and is a directory, we set the current lookup directory to that
directory, and go to the next component.

If the component is found and is a symbolic link, we first resolve this symbolic link
(with the current lookup directory as starting lookup directory). Upon error, that error is
returned. If the result is not a directory, an ENOTDIR error is returned. If the resolu-
tion of the symbolic link is successful and returns a directory, we set the current lookup
directory to that directory, and go to the next component. Note that the resolution
process here can involve recursion if the prefix (’dirname’) component of a pathname
contains a filename that is a symbolic link that resolves to a directory (where the prefix
component of that directory may contain a symbolic link, and so on). In order to protect
the kernel against stack overflow, and also to protect against denial of service, there are
limits on the maximum recursion depth, and on the maximum number of symbolic links

Linux man-pages 6.16 2025-09-21 3666

path_resolution(7) Miscellaneous Information Manual path_resolution(7)

followed. An ELOOP error is returned when the maximum is exceeded ("Too many
levels of symbolic links").

As currently implemented on Linux, the maximum number of symbolic links that will
be followed while resolving a pathname is 40. Before Linux 2.6.18, the limit on the re-
cursion depth was 5. Starting with Linux 2.6.18, this limit was raised to 8. In Linux
4.2, the kernel’s pathname-resolution code was reworked to eliminate the use of recur-
sion, so that the only limit that remains is the maximum of 40 resolutions for the entire
pathname.

The resolution of symbolic links during this stage can be blocked by using openat2(2),
with the RESOLVE_NO_SYMLINKS flag set.

Step 3: find the final entry
The lookup of the final component of the pathname goes just like that of all other com-
ponents, as described in the previous step, with two differences: (i) the final component
need not be a directory (at least as far as the path resolution process is concerned—it
may have to be a directory, or a nondirectory, because of the requirements of the specific
system call), and (ii) it is not necessarily an error if the component is not found—maybe
we are just creating it. The details on the treatment of the final entry are described in the
manual pages of the specific system calls.

. and ..
By convention, every directory has the entries "." and "..", which refer to the directory it-
self and to its parent directory, respectively.

The path resolution process will assume that these entries have their conventional mean-
ings, regardless of whether they are actually present in the physical filesystem.

One cannot walk up past the root: "/.." is the same as "/".

Mount points
After a mount dev path command, the pathname "path" refers to the root of the filesys-
tem hierarchy on the device "dev", and no longer to whatever it referred to earlier.

One can walk out of a mounted filesystem: "path/.." refers to the parent directory of
"path", outside of the filesystem hierarchy on "dev".

Traversal of mount points can be blocked by using openat2(2), with the RE-
SOLVE_NO_XDEV flag set (though note that this also restricts bind mount traversal).

Trailing slashes
If a pathname ends in a '/', that forces resolution of the preceding component as in Step
2: the component preceding the slash either exists and resolves to a directory or it names
a directory that is to be created immediately after the pathname is resolved. Otherwise,
a trailing '/' is ignored.

Final symbolic link
If the last component of a pathname is a symbolic link, then it depends on the system
call whether the file referred to will be the symbolic link or the result of path resolution
on its contents. For example, the system call lstat(2) will operate on the symbolic link,
while stat(2) operates on the file pointed to by the symbolic link.

Linux man-pages 6.16 2025-09-21 3667

path_resolution(7) Miscellaneous Information Manual path_resolution(7)

Length limit
There is a maximum length for pathnames. If the pathname (or some intermediate path-
name obtained while resolving symbolic links) is too long, an ENAMETOOLONG er-
ror is returned ("Filename too long").

Empty pathname
In the original UNIX, the empty pathname referred to the current directory. Nowadays
POSIX decrees that an empty pathname must not be resolved successfully. Linux re-
turns ENOENT in this case.

Permissions
The permission bits of a file consist of three groups of three bits; see chmod(1) and
stat(2). The first group of three is used when the effective user ID of the calling process
equals the owner ID of the file. The second group of three is used when the group ID of
the file either equals the effective group ID of the calling process, or is one of the sup-
plementary group IDs of the calling process (as set by setgroups(2)). When neither
holds, the third group is used.

Of the three bits used, the first bit determines read permission, the second write permis-
sion, and the last execute permission in case of ordinary files, or search permission in
case of directories.

Linux uses the fsuid instead of the effective user ID in permission checks. Ordinarily
the fsuid will equal the effective user ID, but the fsuid can be changed by the system call
setfsuid(2).

(Here "fsuid" stands for something like "filesystem user ID". The concept was required
for the implementation of a user space NFS server at a time when processes could send
a signal to a process with the same effective user ID. It is obsolete now. Nobody should
use setfsuid(2).)

Similarly, Linux uses the fsgid ("filesystem group ID") instead of the effective group ID.
See setfsgid(2).

Bypassing permission checks: superuser and capabilities
On a traditional UNIX system, the superuser (root, user ID 0) is all-powerful, and by-
passes all permissions restrictions when accessing files.

On Linux, superuser privileges are divided into capabilities (see capabilities(7)). Two
capabilities are relevant for file permissions checks: CAP_DAC_OVERRIDE and
CAP_DAC_READ_SEARCH. (A process has these capabilities if its fsuid is 0.)

The CAP_DAC_OVERRIDE capability overrides all permission checking, but grants
execute permission only when at least one of the file’s three execute permission bits is
set.

The CAP_DAC_READ_SEARCH capability grants read and search permission on di-
rectories, and read permission on ordinary files.

SEE ALSO
readlink(2), capabilities(7), credentials(7), symlink(7)

Linux man-pages 6.16 2025-09-21 3668

pathname(7) Miscellaneous Information Manual pathname(7)

NAME
pathname, filename - how pathnames are encoded and interpreted

DESCRIPTION
Some system calls allow you to pass a pathname as a parameter. When writing code
that deals with pathnames, there are kernel-space requirements that you must comply
with, and user-space requirements that you should comply with.

The kernel stores pathnames as C strings, that is, sequences of non-null bytes terminated
by a null byte. There are a few general rules that apply to all pathnames:

• The last byte in the sequence needs to be a null byte.

• Any other bytes in the sequence need to be non-null bytes.

• A 0x2F byte ('/') is always interpreted as a directory separator, and cannot be part of
a filename.

• A pathname can be at most PATH_MAX bytes long (see limits.h(0p)). A pathname
that’s longer than PATH_MAX bytes can be split into multiple smaller pathnames
and opened piecewise using openat(2).

• A filename can be at most a certain number of bytes long. The number is filesys-
tem-specific (see _PC_NAME_MAX in fpathconf(3)). For maximum portability,
programs should be able to handle filenames that are as long as the relevant filesys-
tems will allow. For maximum portability, programs and users should limit the
length of their own pathnames to NAME_MAX bytes (see limits.h(0p)).

Some filesystems or APIs may apply further restrictions, such as requiring shorter file-
names, or restricting the allowed bytes in a filename.

For maximum interoperability, programs and users should also limit the characters that
they use for their own pathnames to characters in the POSIX Portable Filename Charac-
ter Set 〈https://pubs.opengroup.org/onlinepubs/9799919799/basedefs/
V1_chap03.html#tag_03_265〉.

VERSIONS
POSIX.1-2024 encourages implementations to disallow creation of filenames containing
new-line characters. Linux doesn’t follow this, and allows using new-line characters.

SEE ALSO
limits.h(0p), open(2), fpathconf(3), path_resolution(7), mount(8)

Linux man-pages 6.16 2025-10-29 3669

persistent-keyring(7) Miscellaneous Information Manual persistent-keyring(7)

NAME
persistent-keyring - per-user persistent keyring

DESCRIPTION
The persistent keyring is a keyring used to anchor keys on behalf of a user. Each UID
the kernel deals with has its own persistent keyring that is shared between all threads
owned by that UID. The persistent keyring has a name (description) of the form _per-
sistent.<UID> where <UID> is the user ID of the corresponding user.

The persistent keyring may not be accessed directly, even by processes with the appro-
priate UID. Instead, it must first be linked to one of a process’s keyrings, before that
keyring can access the persistent keyring by virtue of its possessor permits. This linking
is done with the keyctl_get_persistent(3) function.

If a persistent keyring does not exist when it is accessed by the keyctl_get_persistent(3)
operation, it will be automatically created.

Each time the keyctl_get_persistent(3) operation is performed, the persistent keyring’s
expiration timer is reset to the value in:

/proc/sys/kernel/keys/persistent_keyring_expiry

Should the timeout be reached, the persistent keyring will be removed and everything it
pins can then be garbage collected. The keyring will then be re-created on a subsequent
call to keyctl_get_persistent(3)

The persistent keyring is not directly searched by request_key(2); it is searched only if it
is linked into one of the keyrings that is searched by request_key(2).

The persistent keyring is independent of clone(2), fork(2), vfork(2), execve(2), and
_exit(2). It persists until its expiration timer triggers, at which point it is garbage col-
lected. This allows the persistent keyring to carry keys beyond the life of the kernel’s
record of the corresponding UID (the destruction of which results in the destruction of
the user-keyring(7) and the user-session-keyring(7)). The persistent keyring can thus be
used to hold authentication tokens for processes that run without user interaction, such
as programs started by cron(8)

The persistent keyring is used to store UID-specific objects that themselves have limited
lifetimes (e.g., kerberos tokens). If those tokens cease to be used (i.e., the persistent
keyring is not accessed), then the timeout of the persistent keyring ensures that the cor-
responding objects are automatically discarded.

Special operations
The keyutils library provides the keyctl_get_persistent(3) function for manipulating per-
sistent keyrings. (This function is an interface to the keyctl(2) KEYCTL_GET_PER-
SISTENT operation.) This operation allows the calling thread to get the persistent
keyring corresponding to its own UID or, if the thread has the CAP_SETUID capabil-
ity, the persistent keyring corresponding to some other UID in the same user namespace.

NOTES
Each user namespace owns a keyring called .persistent_register that contains links to all
of the persistent keys in that namespace. (The .persistent_register keyring can be seen
when reading the contents of the /proc/keys file for the UID 0 in the namespace.) The
keyctl_get_persistent(3) operation looks for a key with a name of the form

Linux man-pages 6.16 2025-09-21 3670

persistent-keyring(7) Miscellaneous Information Manual persistent-keyring(7)

_persistent.UID in that keyring, creates the key if it does not exist, and links it into the
keyring.

SEE ALSO
keyctl(1), keyctl(3), keyctl_get_persistent(3), keyrings(7), process-keyring(7), session-
keyring(7), thread-keyring(7), user-keyring(7), user-session-keyring(7)

Linux man-pages 6.16 2025-09-21 3671

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

NAME
pid_namespaces - overview of Linux PID namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

PID namespaces isolate the process ID number space, meaning that processes in differ-
ent PID namespaces can have the same PID. PID namespaces allow containers to pro-
vide functionality such as suspending/resuming the set of processes in the container and
migrating the container to a new host while the processes inside the container maintain
the same PIDs.

PIDs in a new PID namespace start at 1, somewhat like a standalone system, and calls to
fork(2), vfork(2), or clone(2) will produce processes with PIDs that are unique within the
namespace.

Use of PID namespaces requires a kernel that is configured with the CONFIG_PID_NS
option.

The namespace init process
The first process created in a new namespace (i.e., the process created using clone(2)
with the CLONE_NEWPID flag, or the first child created by a process after a call to
unshare(2) using the CLONE_NEWPID flag) has the PID 1, and is the "init" process
for the namespace (see init(1)). This process becomes the parent of any child processes
that are orphaned because a process that resides in this PID namespace terminated (see
below for further details).

If the "init" process of a PID namespace terminates, the kernel terminates all of the
processes in the namespace via a SIGKILL signal. This behavior reflects the fact that
the "init" process is essential for the correct operation of a PID namespace. In this case,
a subsequent fork(2) into this PID namespace fail with the error ENOMEM; it is not
possible to create a new process in a PID namespace whose "init" process has termi-
nated. Such scenarios can occur when, for example, a process uses an open file descrip-
tor for a /proc/ pid /ns/pid file corresponding to a process that was in a namespace to
setns(2) into that namespace after the "init" process has terminated. Another possible
scenario can occur after a call to unshare(2): if the first child subsequently created by a
fork(2) terminates, then subsequent calls to fork(2) fail with ENOMEM.

Only signals for which the "init" process has established a signal handler can be sent to
the "init" process by other members of the PID namespace. This restriction applies even
to privileged processes, and prevents other members of the PID namespace from acci-
dentally killing the "init" process.

Likewise, a process in an ancestor namespace can—subject to the usual permission
checks described in kill(2)—send signals to the "init" process of a child PID namespace
only if the "init" process has established a handler for that signal. (Within the handler,
the siginfo_t si_pid field described in sigaction(2) will be zero.) SIGKILL or
SIGSTOP are treated exceptionally: these signals are forcibly delivered when sent from
an ancestor PID namespace. Neither of these signals can be caught by the "init"
process, and so will result in the usual actions associated with those signals (respec-
tively, terminating and stopping the process).

Linux man-pages 6.16 2025-09-21 3672

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

Starting with Linux 3.4, the reboot(2) system call causes a signal to be sent to the name-
space "init" process. See reboot(2) for more details.

Nesting PID namespaces
PID namespaces can be nested: each PID namespace has a parent, except for the initial
("root") PID namespace. The parent of a PID namespace is the PID namespace of the
process that created the namespace using clone(2) or unshare(2). PID namespaces thus
form a tree, with all namespaces ultimately tracing their ancestry to the root namespace.
Since Linux 3.7, the kernel limits the maximum nesting depth for PID namespaces to
32.

A process is visible to other processes in its PID namespace, and to the processes in
each direct ancestor PID namespace going back to the root PID namespace. In this con-
text, "visible" means that one process can be the target of operations by another process
using system calls that specify a process ID. Conversely, the processes in a child PID
namespace can’t see processes in the parent and further removed ancestor namespaces.
More succinctly: a process can see (e.g., send signals with kill(2), set nice values with
setpriority(2), etc.) only processes contained in its own PID namespace and in descen-
dants of that namespace.

A process has one process ID in each of the layers of the PID namespace hierarchy in
which is visible, and walking back though each direct ancestor namespace through to
the root PID namespace. System calls that operate on process IDs always operate using
the process ID that is visible in the PID namespace of the caller. A call to getpid(2) al-
ways returns the PID associated with the namespace in which the process was created.

Some processes in a PID namespace may have parents that are outside of the name-
space. For example, the parent of the initial process in the namespace (i.e., the init(1)
process with PID 1) is necessarily in another namespace. Likewise, the direct children
of a process that uses setns(2) to cause its children to join a PID namespace are in a dif-
ferent PID namespace from the caller of setns(2). Calls to getppid(2) for such processes
return 0.

While processes may freely descend into child PID namespaces (e.g., using setns(2)
with a PID namespace file descriptor), they may not move in the other direction. That is
to say, processes may not enter any ancestor namespaces (parent, grandparent, etc.).
Changing PID namespaces is a one-way operation.

The NS_GET_PARENT ioctl(2) operation can be used to discover the parental rela-
tionship between PID namespaces; see ioctl_nsfs(2).

setns(2) and unshare(2) semantics
Calls to setns(2) that specify a PID namespace file descriptor and calls to unshare(2)
with the CLONE_NEWPID flag cause children subsequently created by the caller to be
placed in a different PID namespace from the caller. (Since Linux 4.12, that PID name-
space is shown via the /proc/ pid /ns/pid_for_children file, as described in name-
spaces(7).) These calls do not, however, change the PID namespace of the calling
process, because doing so would change the caller’s idea of its own PID (as reported by
getpid()), which would break many applications and libraries.

To put things another way: a process’s PID namespace membership is determined when
the process is created and cannot be changed thereafter. Among other things, this means

Linux man-pages 6.16 2025-09-21 3673

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

that the parental relationship between processes mirrors the parental relationship be-
tween PID namespaces: the parent of a process is either in the same namespace or re-
sides in the immediate parent PID namespace.

A process may call unshare(2) with the CLONE_NEWPID flag only once. After it has
performed this operation, its /proc/ pid /ns/pid_for_children symbolic link will be empty
until the first child is created in the namespace.

Adoption of orphaned children
When a child process becomes orphaned, it is reparented to the "init" process in the PID
namespace of its parent (unless one of the nearer ancestors of the parent employed the
prctl(2) PR_SET_CHILD_SUBREAPER command to mark itself as the reaper of or-
phaned descendant processes). Note that because of the setns(2) and unshare(2) seman-
tics described above, this may be the "init" process in the PID namespace that is the
parent of the child’s PID namespace, rather than the "init" process in the child’s own
PID namespace.

Compatibility of CLONE_NEWPID with other CLONE_* flags
In current versions of Linux, CLONE_NEWPID can’t be combined with
CLONE_THREAD. Threads are required to be in the same PID namespace such that
the threads in a process can send signals to each other. Similarly, it must be possible to
see all of the threads of a process in the proc(5) filesystem. Additionally, if two threads
were in different PID namespaces, the process ID of the process sending a signal could
not be meaningfully encoded when a signal is sent (see the description of the siginfo_t
type in sigaction(2)). Since this is computed when a signal is enqueued, a signal queue
shared by processes in multiple PID namespaces would defeat that.

In earlier versions of Linux, CLONE_NEWPID was additionally disallowed (failing
with the error EINVAL) in combination with CLONE_SIGHAND (before Linux 4.3)
as well as CLONE_VM (before Linux 3.12). The changes that lifted these restrictions
have also been ported to earlier stable kernels.

/proc and PID namespaces
A /proc filesystem shows (in the /proc/ pid directories) only processes visible in the PID
namespace of the process that performed the mount, even if the /proc filesystem is
viewed from processes in other namespaces.

After creating a new PID namespace, it is useful for the child to change its root directory
and mount a new procfs instance at /proc so that tools such as ps(1) work correctly. If a
new mount namespace is simultaneously created by including CLONE_NEWNS in the
flags argument of clone(2) or unshare(2), then it isn’t necessary to change the root di-
rectory: a new procfs instance can be mounted directly over /proc.

From a shell, the command to mount /proc is:

$ mount -t proc proc /proc

Calling readlink(2) on the path /proc/self yields the process ID of the caller in the PID
namespace of the procfs mount (i.e., the PID namespace of the process that mounted the
procfs). This can be useful for introspection purposes, when a process wants to discover
its PID in other namespaces.

Linux man-pages 6.16 2025-09-21 3674

pid_namespaces(7) Miscellaneous Information Manual pid_namespaces(7)

/proc files
/proc/sys/kernel/ns_last_pid (since Linux 3.3)

This file (which is virtualized per PID namespace) displays the last PID that was
allocated in this PID namespace. When the next PID is allocated, the kernel will
search for the lowest unallocated PID that is greater than this value, and when
this file is subsequently read it will show that PID.

This file is writable by a process that has the CAP_SYS_ADMIN or (since
Linux 5.9) CAP_CHECKPOINT_RESTORE capability inside the user name-
space that owns the PID namespace. This makes it possible to determine the
PID that is allocated to the next process that is created inside this PID name-
space.

Miscellaneous
When a process ID is passed over a UNIX domain socket to a process in a different PID
namespace (see the description of SCM_CREDENTIALS in unix(7)), it is translated
into the corresponding PID value in the receiving process’s PID namespace.

STANDARDS
Linux.

EXAMPLES
See user_namespaces(7).

SEE ALSO
clone(2), reboot(2), setns(2), unshare(2), proc(5), capabilities(7), credentials(7),
mount_namespaces(7), namespaces(7), user_namespaces(7), switch_root(8)

Linux man-pages 6.16 2025-09-21 3675

pipe(7) Miscellaneous Information Manual pipe(7)

NAME
pipe - overview of pipes and FIFOs

DESCRIPTION
Pipes and FIFOs (also known as named pipes) provide a unidirectional interprocess
communication channel. A pipe has a read end and a write end . Data written to the
write end of a pipe can be read from the read end of the pipe.

A pipe is created using pipe(2), which creates a new pipe and returns two file descrip-
tors, one referring to the read end of the pipe, the other referring to the write end. Pipes
can be used to create a communication channel between related processes; see pipe(2)
for an example.

A FIFO (short for First In First Out) has a name within the filesystem (created using mk-
fifo(3)), and is opened using open(2). Any process may open a FIFO, assuming the file
permissions allow it. The read end is opened using the O_RDONLY flag; the write end
is opened using the O_WRONLY flag. See fifo(7) for further details. Note: although
FIFOs have a pathname in the filesystem, I/O on FIFOs does not involve operations on
the underlying device (if there is one).

I/O on pipes and FIFOs
The only difference between pipes and FIFOs is the manner in which they are created
and opened. Once these tasks have been accomplished, I/O on pipes and FIFOs has ex-
actly the same semantics.

If a process attempts to read from an empty pipe, then read(2) will block until data is
available. If a process attempts to write to a full pipe (see below), then write(2) blocks
until sufficient data has been read from the pipe to allow the write to complete.

Nonblocking I/O is possible by using the fcntl(2) F_SETFL operation to enable the
O_NONBLOCK open file status flag or by opening a fifo(7) with O_NONBLOCK. If
any process has the pipe open for writing, reads fail with EAGAIN; otherwise—with no
potential writers—reads succeed and return empty.

The communication channel provided by a pipe is a byte stream: there is no concept of
message boundaries.

If all file descriptors referring to the write end of a pipe have been closed, then an at-
tempt to read(2) from the pipe will see end-of-file (read(2) will return 0). If all file de-
scriptors referring to the read end of a pipe have been closed, then a write(2) will cause a
SIGPIPE signal to be generated for the calling process. If the calling process is ignor-
ing this signal, then write(2) fails with the error EPIPE. An application that uses
pipe(2) and fork(2) should use suitable close(2) calls to close unnecessary duplicate file
descriptors; this ensures that end-of-file and SIGPIPE/EPIPE are delivered when ap-
propriate.

It is not possible to apply lseek(2) to a pipe.

Pipe capacity
A pipe has a limited capacity. If the pipe is full, then a write(2) will block or fail, de-
pending on whether the O_NONBLOCK flag is set (see below). Different implementa-
tions have different limits for the pipe capacity. Applications should not rely on a par-
ticular capacity: an application should be designed so that a reading process consumes

Linux man-pages 6.16 2025-09-21 3676

pipe(7) Miscellaneous Information Manual pipe(7)

data as soon as it is available, so that a writing process does not remain blocked.

Before Linux 2.6.11, the capacity of a pipe was the same as the system page size (e.g.,
4096 bytes on i386). Since Linux 2.6.11, the pipe capacity is 16 pages (i.e., 65,536
bytes in a system with a page size of 4096 bytes). Since Linux 2.6.35, the default pipe
capacity is 16 pages, but the capacity can be queried and set using the fcntl(2) F_GET-
PIPE_SZ and F_SETPIPE_SZ operations. See fcntl(2) for more information. Since
Linux 4.5, the default pipe capacity is lower than 16 pages when the
pipe-user-pages-soft limit is exceeded.

The following ioctl(2) operation, which can be applied to a file descriptor that refers to
either end of a pipe, places a count of the number of unread bytes in the pipe in the int
buffer pointed to by the final argument of the call:

ioctl(fd, FIONREAD, &nbytes);

The FIONREAD operation is not specified in any standard, but is provided on many
implementations.

/proc files
On Linux, the following files control how much memory can be used for pipes:

/proc/sys/fs/pipe-max-pages (only in Linux 2.6.34)
An upper limit, in pages, on the capacity that an unprivileged user (one without
the CAP_SYS_RESOURCE capability) can set for a pipe.

The default value for this limit is 16 times the default pipe capacity (see above);
the lower limit is two pages.

This interface was removed in Linux 2.6.35, in favor of /proc/sys/fs/pipe-max-
size.

/proc/sys/fs/pipe-max-size (since Linux 2.6.35)
The maximum size (in bytes) of individual pipes that can be set by users without
the CAP_SYS_RESOURCE capability. The value assigned to this file may be
rounded upward, to reflect the value actually employed for a convenient imple-
mentation. To determine the rounded-up value, display the contents of this file
after assigning a value to it.

The default value for this file is 1048576 (1 MiB). The minimum value that can
be assigned to this file is the system page size. Attempts to set a limit less than
the page size cause write(2) to fail with the error EINVAL.

Since Linux 4.9, the value on this file also acts as a ceiling on the default capac-
ity of a new pipe or newly opened FIFO.

/proc/sys/fs/pipe-user-pages-hard (since Linux 4.5)
The hard limit on the total size (in pages) of all pipes created or set by a single
unprivileged user (i.e., one with neither the CAP_SYS_RESOURCE nor the
CAP_SYS_ADMIN capability). So long as the total number of pages allocated
to pipe buffers for this user is at this limit, attempts to create new pipes will be
denied, and attempts to increase a pipe’s capacity will be denied.

When the value of this limit is zero (which is the default), no hard limit is ap-
plied.

Linux man-pages 6.16 2025-09-21 3677

pipe(7) Miscellaneous Information Manual pipe(7)

/proc/sys/fs/pipe-user-pages-soft (since Linux 4.5)
The soft limit on the total size (in pages) of all pipes created or set by a single
unprivileged user (i.e., one with neither the CAP_SYS_RESOURCE nor the
CAP_SYS_ADMIN capability). So long as the total number of pages allocated
to pipe buffers for this user is at this limit, individual pipes created by a user will
be limited to two pages (one page before Linux 5.14), and attempts to increase a
pipe’s capacity will be denied.

When the value of this limit is zero, no soft limit is applied. The default value
for this file is 16384, which permits creating up to 1024 pipes with the default
capacity.

Before Linux 4.9, some bugs affected the handling of the pipe-user-pages-soft and
pipe-user-pages-hard limits; see BUGS.

PIPE_BUF
POSIX.1 says that writes of less than PIPE_BUF bytes must be atomic: the output data
is written to the pipe as a contiguous sequence. Writes of more than PIPE_BUF bytes
may be nonatomic: the kernel may interleave the data with data written by other
processes. POSIX.1 requires PIPE_BUF to be at least 512 bytes. (On Linux,
PIPE_BUF is 4096 bytes.) The precise semantics depend on whether the file descriptor
is nonblocking (O_NONBLOCK), whether there are multiple writers to the pipe, and
on n, the number of bytes to be written:

O_NONBLOCK disabled, n <= PIPE_BUF
All n bytes are written atomically; write(2) may block if there is not room for n
bytes to be written immediately

O_NONBLOCK enabled, n <= PIPE_BUF
If there is room to write n bytes to the pipe, then write(2) succeeds immediately,
writing all n bytes; otherwise write(2) fails, with errno set to EAGAIN.

O_NONBLOCK disabled, n > PIPE_BUF
The write is nonatomic: the data given to write(2) may be interleaved with
write(2)s by other process; the write(2) blocks until n bytes have been written.

O_NONBLOCK enabled, n > PIPE_BUF
If the pipe is full, then write(2) fails, with errno set to EAGAIN. Otherwise,
from 1 to n bytes may be written (i.e., a "partial write" may occur; the caller
should check the return value from write(2) to see how many bytes were actually
written), and these bytes may be interleaved with writes by other processes.

Open file status flags
The only open file status flags that can be meaningfully applied to a pipe or FIFO are
O_NONBLOCK and O_ASYNC.

Setting the O_ASYNC flag for the read end of a pipe causes a signal (SIGIO by de-
fault) to be generated when new input becomes available on the pipe. The target for de-
livery of signals must be set using the fcntl(2) F_SETOWN command. On Linux,
O_ASYNC is supported for pipes and FIFOs only since Linux 2.6.

Linux man-pages 6.16 2025-09-21 3678

pipe(7) Miscellaneous Information Manual pipe(7)

Portability notes
On some systems (but not Linux), pipes are bidirectional: data can be transmitted in
both directions between the pipe ends. POSIX.1 requires only unidirectional pipes.
Portable applications should avoid reliance on bidirectional pipe semantics.

BUGS
Before Linux 4.9, some bugs affected the handling of the pipe-user-pages-soft and
pipe-user-pages-hard limits when using the fcntl(2) F_SETPIPE_SZ operation to
change a pipe’s capacity:

(a) When increasing the pipe capacity, the checks against the soft and hard limits
were made against existing consumption, and excluded the memory required for
the increased pipe capacity. The new increase in pipe capacity could then push
the total memory used by the user for pipes (possibly far) over a limit. (This
could also trigger the problem described next.)

Starting with Linux 4.9, the limit checking includes the memory required for the
new pipe capacity.

(b) The limit checks were performed even when the new pipe capacity was less than
the existing pipe capacity. This could lead to problems if a user set a large pipe
capacity, and then the limits were lowered, with the result that the user could no
longer decrease the pipe capacity.

Starting with Linux 4.9, checks against the limits are performed only when in-
creasing a pipe’s capacity; an unprivileged user can always decrease a pipe’s ca-
pacity.

(c) The accounting and checking against the limits were done as follows:

(1) Test whether the user has exceeded the limit.
(2) Make the new pipe buffer allocation.
(3) Account new allocation against the limits.

This was racey. Multiple processes could pass point (1) simultaneously, and then
allocate pipe buffers that were accounted for only in step (3), with the result that
the user’s pipe buffer allocation could be pushed over the limit.

Starting with Linux 4.9, the accounting step is performed before doing the alloca-
tion, and the operation fails if the limit would be exceeded.

Before Linux 4.9, bugs similar to points (a) and (c) could also occur when the kernel al-
located memory for a new pipe buffer; that is, when calling pipe(2) and when opening a
previously unopened FIFO.

SEE ALSO
mkfifo(1), dup(2), fcntl(2), open(2), pipe(2), poll(2), select(2), socketpair(2), splice(2),
stat(2), tee(2), vmsplice(2), mkfifo(3), epoll(7), fifo(7)

Linux man-pages 6.16 2025-09-21 3679

pkeys(7) Miscellaneous Information Manual pkeys(7)

NAME
pkeys - overview of Memory Protection Keys

DESCRIPTION
Memory Protection Keys (pkeys) are an extension to existing page-based memory per-
missions. Normal page permissions using page tables require expensive system calls
and TLB invalidations when changing permissions. Memory Protection Keys provide a
mechanism for changing protections without requiring modification of the page tables
on every permission change.

To use pkeys, software must first "tag" a page in the page tables with a pkey. After this
tag is in place, an application only has to change the contents of a register in order to re-
move write access, or all access to a tagged page.

Protection keys work in conjunction with the existing PROT_READ, PROT_WRITE,
and PROT_EXEC permissions passed to system calls such as mprotect(2) and
mmap(2), but always act to further restrict these traditional permission mechanisms.

If a process performs an access that violates pkey restrictions, it receives a SIGSEGV
signal. See sigaction(2) for details of the information available with that signal.

To use the pkeys feature, the processor must support it, and the kernel must contain sup-
port for the feature on a given processor. As of early 2016 only future Intel x86 proces-
sors are supported, and this hardware supports 16 protection keys in each process. How-
ever, pkey 0 is used as the default key, so a maximum of 15 are available for actual ap-
plication use. The default key is assigned to any memory region for which a pkey has
not been explicitly assigned via pkey_mprotect(2).

Protection keys have the potential to add a layer of security and reliability to applica-
tions. But they have not been primarily designed as a security feature. For instance,
WRPKRU is a completely unprivileged instruction, so pkeys are useless in any case that
an attacker controls the PKRU register or can execute arbitrary instructions.

Applications should be very careful to ensure that they do not "leak" protection keys.
For instance, before calling pkey_free(2), the application should be sure that no memory
has that pkey assigned. If the application left the freed pkey assigned, a future user of
that pkey might inadvertently change the permissions of an unrelated data structure,
which could impact security or stability. The kernel currently allows in-use pkeys to
have pkey_free(2) called on them because it would have processor or memory perfor-
mance implications to perform the additional checks needed to disallow it. Implementa-
tion of the necessary checks is left up to applications. Applications may implement
these checks by searching the /proc/ pid /smaps file for memory regions with the pkey
assigned. Further details can be found in proc(5).

Any application wanting to use protection keys needs to be able to function without
them. They might be unavailable because the hardware that the application runs on does
not support them, the kernel code does not contain support, the kernel support has been
disabled, or because the keys have all been allocated, perhaps by a library the applica-
tion is using. It is recommended that applications wanting to use protection keys should
simply call pkey_alloc(2) and test whether the call succeeds, instead of attempting to de-
tect support for the feature in any other way.

Linux man-pages 6.16 2025-05-17 3680

pkeys(7) Miscellaneous Information Manual pkeys(7)

Although unnecessary, hardware support for protection keys may be enumerated with
the cpuid instruction. Details of how to do this can be found in the Intel Software De-
velopers Manual. The kernel performs this enumeration and exposes the information in
/proc/cpuinfo under the "flags" field. The string "pku" in this field indicates hardware
support for protection keys and the string "ospke" indicates that the kernel contains and
has enabled protection keys support.

Applications using threads and protection keys should be especially careful. Threads in-
herit the protection key rights of the parent at the time of the clone(2), system call. Ap-
plications should either ensure that their own permissions are appropriate for child
threads at the time when clone(2) is called, or ensure that each child thread can perform
its own initialization of protection key rights.

Signal Handler Behavior
Each time a signal handler is invoked (including nested signals), the thread is temporar-
ily given a new, default set of protection key rights that override the rights from the in-
terrupted context. This means that applications must re-establish their desired protec-
tion key rights upon entering a signal handler if the desired rights differ from the de-
faults. The rights of any interrupted context are restored when the signal handler re-
turns.

This signal behavior is unusual and is due to the fact that the x86 PKRU register (which
stores protection key access rights) is managed with the same hardware mechanism
(XSAVE) that manages floating-point registers. The signal behavior is the same as that
of floating-point registers.

Protection Keys system calls
The Linux kernel implements the following pkey-related system calls: pkey_mprotect(2),
pkey_alloc(2), and pkey_free(2).

The Linux pkey system calls are available only if the kernel was configured and built
with the CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS option.

EXAMPLES
The program below allocates a page of memory with read and write permissions. It then
writes some data to the memory and successfully reads it back. After that, it attempts to
allocate a protection key and disallows access to the page by using the WRPKRU in-
struction. It then tries to access the page, which we now expect to cause a fatal signal to
the application.

$./a.out
buffer contains: 73
about to read buffer again...
Segmentation fault (core dumped)

Program source

#define _GNU_SOURCE
#include <err.h>
#include <unistd.h>
#include <stdio.h>
#include <stdlib.h>

Linux man-pages 6.16 2025-05-17 3681

pkeys(7) Miscellaneous Information Manual pkeys(7)

#include <sys/mman.h>

int
main(void)
{

int status;
int pkey;
int *buffer;

/*
* Allocate one page of memory.
*/

buffer = mmap(NULL, getpagesize(), PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);

if (buffer == MAP_FAILED)
err(EXIT_FAILURE, "mmap");

/*
* Put some random data into the page (still OK to touch).
*/

*buffer = __LINE__;
printf("buffer contains: %d\n", *buffer);

/*
* Allocate a protection key:
*/

pkey = pkey_alloc(0, 0);
if (pkey == -1)

err(EXIT_FAILURE, "pkey_alloc");

/*
* Disable access to any memory with "pkey" set,
* even though there is none right now.
*/

status = pkey_set(pkey, PKEY_DISABLE_ACCESS);
if (status)

err(EXIT_FAILURE, "pkey_set");

/*
* Set the protection key on "buffer".
* Note that it is still read/write as far as mprotect() is
* concerned and the previous pkey_set() overrides it.
*/

status = pkey_mprotect(buffer, getpagesize(),
PROT_READ | PROT_WRITE, pkey);

if (status == -1)
err(EXIT_FAILURE, "pkey_mprotect");

Linux man-pages 6.16 2025-05-17 3682

pkeys(7) Miscellaneous Information Manual pkeys(7)

printf("about to read buffer again...\n");

/*
* This will crash, because we have disallowed access.
*/

printf("buffer contains: %d\n", *buffer);

status = pkey_free(pkey);
if (status == -1)

err(EXIT_FAILURE, "pkey_free");

exit(EXIT_SUCCESS);
}

SEE ALSO
pkey_alloc(2), pkey_free(2), pkey_mprotect(2), sigaction(2)

Linux man-pages 6.16 2025-05-17 3683

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

NAME
posixoptions - optional parts of the POSIX standard

DESCRIPTION
The POSIX standard (the information below is from POSIX.1-2001) describes a set of
behaviors and interfaces for a compliant system. However, many interfaces are optional
and there are feature test macros to test the availability of interfaces at compile time, and
functions sysconf(3), fpathconf(3), pathconf(3), confstr(3) to do this at run time. From
shell scripts one can use getconf (1)For more detail, see sysconf(3).

We give the name of the POSIX abbreviation, the option, the name of the sysconf(3) pa-
rameter used to inquire about the option, and possibly a very short description. Much
more precise detail can be found in the POSIX standard itself, versions of which can
nowadays be accessed freely on the web.

ADV - _POSIX_ADVISORY_INFO - _SC_ADVISORY_INFO
The following advisory functions are present:

posix_fadvise()
posix_fallocate()
posix_memalign()
posix_madvise()

AIO - _POSIX_ASYNCHRONOUS_IO - _SC_ASYNCHRONOUS_IO
The header <aio.h> is present. The following functions are present:

aio_cancel()
aio_error()
aio_fsync()
aio_read()
aio_return()
aio_suspend()
aio_write()
lio_listio()

BAR - _POSIX_BARRIERS - _SC_BARRIERS
This option implies the _POSIX_THREADS and _POSIX_THREAD_SAFE_FUNC-
TIONS options. The following functions are present:

pthread_barrier_destroy()
pthread_barrier_init()
pthread_barrier_wait()
pthread_barrierattr_destroy()
pthread_barrierattr_init()

--- - POSIX_CHOWN_RESTRICTED
If this option is in effect (as it always is under POSIX.1-2001), then only root may
change the owner of a file, and nonroot can set the group of a file only to one of the
groups it belongs to. This affects the following functions:

chown()
fchown()

Linux man-pages 6.16 2025-05-17 3684

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

CS - _POSIX_CLOCK_SELECTION - _SC_CLOCK_SELECTION
This option implies the _POSIX_TIMERS option. The following functions are
present:

pthread_condattr_getclock()
pthread_condattr_setclock()
clock_nanosleep()

If CLOCK_REALTIME is changed by the function clock_settime(), then this affects
all timers set for an absolute time.

CPT - _POSIX_CPUTIME - _SC_CPUTIME
The CLOCK_PROCESS_CPUTIME_ID clock ID is supported. The initial value of
this clock is 0 for each process. This option implies the _POSIX_TIMERS option.
The function clock_getcpuclockid() is present.

--- - _POSIX_FILE_LOCKING - _SC_FILE_LOCKING
This option has been deleted. Not in final XPG6.

FSC - _POSIX_FSYNC - _SC_FSYNC
The function fsync() is present.

IP6 - _POSIX_IPV6 - _SC_IPV6
Internet Protocol Version 6 is supported.

--- - _POSIX_JOB_CONTROL - _SC_JOB_CONTROL
If this option is in effect (as it always is under POSIX.1-2001), then the system imple-
ments POSIX-style job control, and the following functions are present:

setpgid()
tcdrain()
tcflush()
tcgetpgrp()
tcsendbreak()
tcsetattr()
tcsetpgrp()

MF - _POSIX_MAPPED_FILES - _SC_MAPPED_FILES
Shared memory is supported. The include file <sys/mman.h> is present. The following
functions are present:

mmap()
msync()
munmap()

ML - _POSIX_MEMLOCK - _SC_MEMLOCK
Shared memory can be locked into core. The following functions are present:

mlockall()
munlockall()

MR/MLR - _POSIX_MEMLOCK_RANGE - _SC_MEMLOCK_RANGE
More precisely, ranges can be locked into core. The following functions are present:

mlock()

Linux man-pages 6.16 2025-05-17 3685

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

munlock()

MPR - _POSIX_MEMORY_PROTECTION - _SC_MEMORY_PROTECTION
The function mprotect() is present.

MSG - _POSIX_MESSAGE_PASSING - _SC_MESSAGE_PASSING
The include file <mqueue.h> is present. The following functions are present:

mq_close()
mq_getattr()
mq_notify()
mq_open()
mq_receive()
mq_send()
mq_setattr()
mq_unlink()

MON - _POSIX_MONOTONIC_CLOCK - _SC_MONOTONIC_CLOCK
CLOCK_MONOTONIC is supported. This option implies the _POSIX_TIMERS
option. The following functions are affected:

aio_suspend()
clock_getres()
clock_gettime()
clock_settime()
timer_create()

--- - _POSIX_MULTI_PROCESS - _SC_MULTI_PROCESS
This option has been deleted. Not in final XPG6.

--- - _POSIX_NO_TRUNC
If this option is in effect (as it always is under POSIX.1-2001), then pathname compo-
nents longer than NAME_MAX are not truncated, but give an error. This property may
be dependent on the path prefix of the component.

PIO - _POSIX_PRIORITIZED_IO - _SC_PRIORITIZED_IO
This option says that one can specify priorities for asynchronous I/O. This affects the
functions

aio_read()
aio_write()

PS - _POSIX_PRIORITY_SCHEDULING - _SC_PRIORITY_SCHEDULING
The include file <sched.h> is present. The following functions are present:

sched_get_priority_max()
sched_get_priority_min()
sched_getparam()
sched_getscheduler()
sched_rr_get_interval()
sched_setparam()
sched_setscheduler()
sched_yield()

Linux man-pages 6.16 2025-05-17 3686

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

If also _POSIX_SPAWN is in effect, then the following functions are present:

posix_spawnattr_getschedparam()
posix_spawnattr_getschedpolicy()
posix_spawnattr_setschedparam()
posix_spawnattr_setschedpolicy()

RS - _POSIX_RAW_SOCKETS
Raw sockets are supported. The following functions are affected:

getsockopt()
setsockopt()

--- - _POSIX_READER_WRITER_LOCKS - _SC_READER_WRITER_LOCKS
This option implies the _POSIX_THREADS option. Conversely, under POSIX.1-2001
the _POSIX_THREADS option implies this option.

The following functions are present:

pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_init()

RTS - _POSIX_REALTIME_SIGNALS - _SC_REALTIME_SIGNALS
Realtime signals are supported. The following functions are present:

sigqueue()
sigtimedwait()
sigwaitinfo()

--- - _POSIX_REGEXP - _SC_REGEXP
If this option is in effect (as it always is under POSIX.1-2001), then POSIX regular ex-
pressions are supported and the following functions are present:

regcomp()
regerror()
regexec()
regfree()

--- - _POSIX_SAVED_IDS - _SC_SAVED_IDS
If this option is in effect (as it always is under POSIX.1-2001), then a process has a
saved set-user-ID and a saved set-group-ID. The following functions are affected:

exec()
kill()
seteuid()
setegid()
setgid()

Linux man-pages 6.16 2025-05-17 3687

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

setuid()

SEM - _POSIX_SEMAPHORES - _SC_SEMAPHORES
The include file <semaphore.h> is present. The following functions are present:

sem_close()
sem_destroy()
sem_getvalue()
sem_init()
sem_open()
sem_post()
sem_trywait()
sem_unlink()
sem_wait()

SHM - _POSIX_SHARED_MEMORY_OBJECTS - _SC_SHARED_MEM-
ORY_OBJECTS
The following functions are present:

mmap()
munmap()
shm_open()
shm_unlink()

--- - _POSIX_SHELL - _SC_SHELL
If this option is in effect (as it always is under POSIX.1-2001), the function system() is
present.

SPN - _POSIX_SPAWN - _SC_SPAWN
This option describes support for process creation in a context where it is difficult or im-
possible to use fork(), for example, because no MMU is present.

If _POSIX_SPAWN is in effect, then the include file <spawn.h> and the following
functions are present:

posix_spawn()
posix_spawn_file_actions_addclose()
posix_spawn_file_actions_adddup2()
posix_spawn_file_actions_addopen()
posix_spawn_file_actions_destroy()
posix_spawn_file_actions_init()
posix_spawnattr_destroy()
posix_spawnattr_getsigdefault()
posix_spawnattr_getflags()
posix_spawnattr_getpgroup()
posix_spawnattr_getsigmask()
posix_spawnattr_init()
posix_spawnattr_setsigdefault()
posix_spawnattr_setflags()
posix_spawnattr_setpgroup()
posix_spawnattr_setsigmask()
posix_spawnp()

Linux man-pages 6.16 2025-05-17 3688

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

If also _POSIX_PRIORITY_SCHEDULING is in effect, then the following functions
are present:

posix_spawnattr_getschedparam()
posix_spawnattr_getschedpolicy()
posix_spawnattr_setschedparam()
posix_spawnattr_setschedpolicy()

SPI - _POSIX_SPIN_LOCKS - _SC_SPIN_LOCKS
This option implies the _POSIX_THREADS and _POSIX_THREAD_SAFE_FUNC-
TIONS options. The following functions are present:

pthread_spin_destroy()
pthread_spin_init()
pthread_spin_lock()
pthread_spin_trylock()
pthread_spin_unlock()

SS - _POSIX_SPORADIC_SERVER - _SC_SPORADIC_SERVER
The scheduling policy SCHED_SPORADIC is supported. This option implies the
_POSIX_PRIORITY_SCHEDULING option. The following functions are affected:

sched_setparam()
sched_setscheduler()

SIO - _POSIX_SYNCHRONIZED_IO - _SC_SYNCHRONIZED_IO
The following functions are affected:

open()
msync()
fsync()
fdatasync()

TSA - _POSIX_THREAD_ATTR_STACKADDR - _SC_THREAD_ATTR_STACK-
ADDR
The following functions are affected:

pthread_attr_getstack()
pthread_attr_getstackaddr()
pthread_attr_setstack()
pthread_attr_setstackaddr()

TSS - _POSIX_THREAD_ATTR_STACKSIZE - _SC_THREAD_ATTR_STACK-
SIZE
The following functions are affected:

pthread_attr_getstack()
pthread_attr_getstacksize()
pthread_attr_setstack()
pthread_attr_setstacksize()

TCT - _POSIX_THREAD_CPUTIME - _SC_THREAD_CPUTIME
The clockID CLOCK_THREAD_CPUTIME_ID is supported. This option implies the
_POSIX_TIMERS option. The following functions are affected:

Linux man-pages 6.16 2025-05-17 3689

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

pthread_getcpuclockid()
clock_getres()
clock_gettime()
clock_settime()
timer_create()

TPI - _POSIX_THREAD_PRIO_INHERIT - _SC_THREAD_PRIO_INHERIT
The following functions are affected:

pthread_mutexattr_getprotocol()
pthread_mutexattr_setprotocol()

TPP - _POSIX_THREAD_PRIO_PROTECT - _SC_THREAD_PRIO_PROTECT
The following functions are affected:

pthread_mutex_getprioceiling()
pthread_mutex_setprioceiling()
pthread_mutexattr_getprioceiling()
pthread_mutexattr_getprotocol()
pthread_mutexattr_setprioceiling()
pthread_mutexattr_setprotocol()

TPS - _POSIX_THREAD_PRIORITY_SCHEDULING - _SC_THREAD_PRIOR-
ITY_SCHEDULING
If this option is in effect, the different threads inside a process can run with different pri-
orities and/or different schedulers. The following functions are affected:

pthread_attr_getinheritsched()
pthread_attr_getschedpolicy()
pthread_attr_getscope()
pthread_attr_setinheritsched()
pthread_attr_setschedpolicy()
pthread_attr_setscope()
pthread_getschedparam()
pthread_setschedparam()
pthread_setschedprio()

TSH - _POSIX_THREAD_PROCESS_SHARED -
_SC_THREAD_PROCESS_SHARED
The following functions are affected:

pthread_barrierattr_getpshared()
pthread_barrierattr_setpshared()
pthread_condattr_getpshared()
pthread_condattr_setpshared()
pthread_mutexattr_getpshared()
pthread_mutexattr_setpshared()
pthread_rwlockattr_getpshared()
pthread_rwlockattr_setpshared()

Linux man-pages 6.16 2025-05-17 3690

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

TSF - _POSIX_THREAD_SAFE_FUNCTIONS - _SC_THREAD_SAFE_FUNC-
TIONS
The following functions are affected:

readdir_r()
getgrgid_r()
getgrnam_r()
getpwnam_r()
getpwuid_r()
flockfile()
ftrylockfile()
funlockfile()
getc_unlocked()
getchar_unlocked()
putc_unlocked()
putchar_unlocked()
rand_r()
strerror_r()
strtok_r()
asctime_r()
ctime_r()
gmtime_r()
localtime_r()

TSP - _POSIX_THREAD_SPORADIC_SERVER - _SC_THREAD_SPO-
RADIC_SERVER
This option implies the _POSIX_THREAD_PRIORITY_SCHEDULING option.
The following functions are affected:

sched_getparam()
sched_setparam()
sched_setscheduler()

THR - _POSIX_THREADS - _SC_THREADS
Basic support for POSIX threads is available. The following functions are present:

pthread_atfork()
pthread_attr_destroy()
pthread_attr_getdetachstate()
pthread_attr_getschedparam()
pthread_attr_init()
pthread_attr_setdetachstate()
pthread_attr_setschedparam()
pthread_cancel()
pthread_cleanup_push()
pthread_cleanup_pop()
pthread_cond_broadcast()
pthread_cond_destroy()
pthread_cond_init()
pthread_cond_signal()

Linux man-pages 6.16 2025-05-17 3691

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

pthread_cond_timedwait()
pthread_cond_wait()
pthread_condattr_destroy()
pthread_condattr_init()
pthread_create()
pthread_detach()
pthread_equal()
pthread_exit()
pthread_getspecific()
pthread_join()
pthread_key_create()
pthread_key_delete()
pthread_mutex_destroy()
pthread_mutex_init()
pthread_mutex_lock()
pthread_mutex_trylock()
pthread_mutex_unlock()
pthread_mutexattr_destroy()
pthread_mutexattr_init()
pthread_once()
pthread_rwlock_destroy()
pthread_rwlock_init()
pthread_rwlock_rdlock()
pthread_rwlock_tryrdlock()
pthread_rwlock_trywrlock()
pthread_rwlock_unlock()
pthread_rwlock_wrlock()
pthread_rwlockattr_destroy()
pthread_rwlockattr_init()
pthread_self ()
pthread_setcancelstate()
pthread_setcanceltype()
pthread_setspecific()
pthread_testcancel()

TMO - _POSIX_TIMEOUTS - _SC_TIMEOUTS
The following functions are present:

mq_timedreceive()
mq_timedsend()
pthread_mutex_timedlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
sem_timedwait()
posix_trace_timedgetnext_event()

TMR - _POSIX_TIMERS - _SC_TIMERS
The following functions are present:

Linux man-pages 6.16 2025-05-17 3692

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

clock_getres()
clock_gettime()
clock_settime()
nanosleep()
timer_create()
timer_delete()
timer_gettime()
timer_getoverrun()
timer_settime()

TRC - _POSIX_TRACE - _SC_TRACE
POSIX tracing is available. The following functions are present:

posix_trace_attr_destroy()
posix_trace_attr_getclockres()
posix_trace_attr_getcreatetime()
posix_trace_attr_getgenversion()
posix_trace_attr_getmaxdatasize()
posix_trace_attr_getmaxsystemeventsize()
posix_trace_attr_getmaxusereventsize()
posix_trace_attr_getname()
posix_trace_attr_getstreamfullpolicy()
posix_trace_attr_getstreamsize()
posix_trace_attr_init()
posix_trace_attr_setmaxdatasize()
posix_trace_attr_setname()
posix_trace_attr_setstreamsize()
posix_trace_attr_setstreamfullpolicy()
posix_trace_clear()
posix_trace_create()
posix_trace_event()
posix_trace_eventid_equal()
posix_trace_eventid_get_name()
posix_trace_eventid_open()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_shutdown()
posix_trace_start()
posix_trace_stop()
posix_trace_trygetnext_event()

TEF - _POSIX_TRACE_EVENT_FILTER - _SC_TRACE_EVENT_FILTER
This option implies the _POSIX_TRACE option. The following functions are present:

posix_trace_eventset_add()

Linux man-pages 6.16 2025-05-17 3693

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

posix_trace_eventset_del()
posix_trace_eventset_empty()
posix_trace_eventset_fill()
posix_trace_eventset_ismember()
posix_trace_get_filter()
posix_trace_set_filter()
posix_trace_trid_eventid_open()

TRI - _POSIX_TRACE_INHERIT - _SC_TRACE_INHERIT
Tracing children of the traced process is supported. This option implies the
_POSIX_TRACE option. The following functions are present:

posix_trace_attr_getinherited()
posix_trace_attr_setinherited()

TRL - _POSIX_TRACE_LOG - _SC_TRACE_LOG
This option implies the _POSIX_TRACE option. The following functions are present:

posix_trace_attr_getlogfullpolicy()
posix_trace_attr_getlogsize()
posix_trace_attr_setlogfullpolicy()
posix_trace_attr_setlogsize()
posix_trace_close()
posix_trace_create_withlog()
posix_trace_open()
posix_trace_rewind()

TYM - _POSIX_TYPED_MEMORY_OBJECTS - _SC_TYPED_MEMORY_OB-
JECT
The following functions are present:

posix_mem_offset()
posix_typed_mem_get_info()
posix_typed_mem_open()

--- - _POSIX_VDISABLE
Always present (probably 0). Value to set a changeable special control character to indi-
cate that it is disabled.

X/OPEN SYSTEM INTERFACE EXTENSIONS
XSI - _XOPEN_CRYPT - _SC_XOPEN_CRYPT

The following functions are present:

crypt()
encrypt()
setkey()

XSI - _XOPEN_REALTIME - _SC_XOPEN_REALTIME
This option implies the following options:

_POSIX_ASYNCHRONOUS_IO==200112L
_POSIX_FSYNC

Linux man-pages 6.16 2025-05-17 3694

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

_POSIX_MAPPED_FILES
_POSIX_MEMLOCK==200112L
_POSIX_MEMLOCK_RANGE==200112L
_POSIX_MEMORY_PROTECTION
_POSIX_MESSAGE_PASSING==200112L
_POSIX_PRIORITIZED_IO
_POSIX_PRIORITY_SCHEDULING==200112L
_POSIX_REALTIME_SIGNALS==200112L
_POSIX_SEMAPHORES==200112L
_POSIX_SHARED_MEMORY_OBJECTS==200112L
_POSIX_SYNCHRONIZED_IO==200112L
_POSIX_TIMERS==200112L

ADV - --- - ---
The Advanced Realtime option group implies that the following options are all defined
to 200112L:

_POSIX_ADVISORY_INFO
_POSIX_CLOCK_SELECTION

(implies _POSIX_TIMERS)
_POSIX_CPUTIME

(implies _POSIX_TIMERS)
_POSIX_MONOTONIC_CLOCK

(implies _POSIX_TIMERS)
_POSIX_SPAWN
_POSIX_SPORADIC_SERVER

(implies _POSIX_PRIORITY_SCHEDULING)
_POSIX_TIMEOUTS
_POSIX_TYPED_MEMORY_OBJECTS

XSI - _XOPEN_REALTIME_THREADS - _SC_XOPEN_REALTIME_THREADS
This option implies that the following options are all defined to 200112L:

_POSIX_THREAD_PRIO_INHERIT
_POSIX_THREAD_PRIO_PROTECT
_POSIX_THREAD_PRIORITY_SCHEDULING

ADVANCED REALTIME THREADS - --- - ---
This option implies that the following options are all defined to 200112L:

_POSIX_BARRIERS
(implies _POSIX_THREADS, _POSIX_THREAD_SAFE_FUNCTIONS)

_POSIX_SPIN_LOCKS
(implies _POSIX_THREADS, _POSIX_THREAD_SAFE_FUNCTIONS)

_POSIX_THREAD_CPUTIME
(implies _POSIX_TIMERS)

_POSIX_THREAD_SPORADIC_SERVER
(implies _POSIX_THREAD_PRIORITY_SCHEDULING)

Linux man-pages 6.16 2025-05-17 3695

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

TRACING - --- - ---
This option implies that the following options are all defined to 200112L:

_POSIX_TRACE
_POSIX_TRACE_EVENT_FILTER
_POSIX_TRACE_LOG
_POSIX_TRACE_INHERIT

STREAMS - _XOPEN_STREAMS - _SC_XOPEN_STREAMS
The following functions are present:

fattach()
fdetach()
getmsg()
getpmsg()
ioctl()
isastream()
putmsg()
putpmsg()

XSI - _XOPEN_LEGACY - _SC_XOPEN_LEGACY
Functions included in the legacy option group were previously mandatory, but are now
optional in this version. The following functions are present:

bcmp()
bcopy()
bzero()
ecvt()
fcvt()
ftime()
gcvt()
getwd()
index()
mktemp()
rindex()
utimes()
wcswcs()

XSI - _XOPEN_UNIX - _SC_XOPEN_UNIX
The following functions are present:

mmap()
munmap()
msync()

This option implies the following options:

_POSIX_FSYNC
_POSIX_MAPPED_FILES
_POSIX_MEMORY_PROTECTION

Linux man-pages 6.16 2025-05-17 3696

posixoptions(7) Miscellaneous Information Manual posixoptions(7)

_POSIX_THREAD_ATTR_STACKADDR
_POSIX_THREAD_ATTR_STACKSIZE
_POSIX_THREAD_PROCESS_SHARED
_POSIX_THREAD_SAFE_FUNCTIONS
_POSIX_THREADS

This option may imply the following options from the XSI option groups:

Encryption (_XOPEN_CRYPT)
Realtime (_XOPEN_REALTIME)
Advanced Realtime (ADB)
Realtime Threads (_XOPEN_REALTIME_THREADS)
Advanced Realtime Threads (ADVANCED REALTIME THREADS)
Tracing (TRACING)
XSI Streams (STREAMS)
Legacy (_XOPEN_LEGACY)

SEE ALSO
sysconf(3), standards(7)

Linux man-pages 6.16 2025-05-17 3697

process-keyring(7) Miscellaneous Information Manual process-keyring(7)

NAME
process-keyring - per-process shared keyring

DESCRIPTION
The process keyring is a keyring used to anchor keys on behalf of a process. It is cre-
ated only when a process requests it. The process keyring has the name (description)
_pid .

A special serial number value, KEY_SPEC_PROCESS_KEYRING, is defined that
can be used in lieu of the actual serial number of the calling process’s process keyring.

From the keyctl(1) utility, ’@p’ can be used instead of a numeric key ID in much the
same way, but since keyctl(1) is a program run after forking, this is of no utility.

A thread created using the clone(2) CLONE_THREAD flag has the same process
keyring as the caller of clone(2). When a new process is created using fork() it initially
has no process keyring. A process’s process keyring is cleared on execve(2). The
process keyring is destroyed when the last thread that refers to it terminates.

If a process doesn’t have a process keyring when it is accessed, then the process keyring
will be created if the keyring is to be modified; otherwise, the error ENOKEY results.

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), session-keyring(7), thread-
keyring(7), user-keyring(7), user-session-keyring(7)

Linux man-pages 6.16 2025-05-17 3698

pthreads(7) Miscellaneous Information Manual pthreads(7)

NAME
pthreads - POSIX threads

DESCRIPTION
POSIX.1 specifies a set of interfaces (functions, header files) for threaded programming
commonly known as POSIX threads, or Pthreads. A single process can contain multiple
threads, all of which are executing the same program. These threads share the same
global memory (data and heap segments), but each thread has its own stack (automatic
variables).

POSIX.1 also requires that threads share a range of other attributes (i.e., these attributes
are process-wide rather than per-thread):

• process ID

• parent process ID

• process group ID and session ID

• controlling terminal

• user and group IDs

• open file descriptors

• record locks (see fcntl(2))

• signal dispositions

• file mode creation mask (umask(2))

• current directory (chdir(2)) and root directory (chroot(2))

• interval timers (setitimer(2)) and POSIX timers (timer_create(2))

• nice value (setpriority(2))

• resource limits (setrlimit(2))

• measurements of the consumption of CPU time (times(2)) and resources
(getrusage(2))

As well as the stack, POSIX.1 specifies that various other attributes are distinct for each
thread, including:

• thread ID (the pthread_t data type)

• signal mask (pthread_sigmask(3))

• the errno variable

• alternate signal stack (sigaltstack(2))

• real-time scheduling policy and priority (sched(7))

The following Linux-specific features are also per-thread:

• capabilities (see capabilities(7))

• CPU affinity (sched_setaffinity(2))

Linux man-pages 6.16 2025-09-21 3699

pthreads(7) Miscellaneous Information Manual pthreads(7)

Pthreads function return values
Most pthreads functions return 0 on success, and an error number on failure. The error
numbers that can be returned have the same meaning as the error numbers returned in
errno by conventional system calls and C library functions. Note that the pthreads func-
tions do not set errno. For each of the pthreads functions that can return an error,
POSIX.1-2001 specifies that the function can never fail with the error EINTR.

Thread IDs
Each of the threads in a process has a unique thread identifier (stored in the type
pthread_t). This identifier is returned to the caller of pthread_create(3), and a thread
can obtain its own thread identifier using pthread_self(3).

Thread IDs are guaranteed to be unique only within a process. (In all pthreads functions
that accept a thread ID as an argument, that ID by definition refers to a thread in the
same process as the caller.)

The system may reuse a thread ID after a terminated thread has been joined, or a de-
tached thread has terminated. POSIX says: "If an application attempts to use a thread
ID whose lifetime has ended, the behavior is undefined."

Thread-safe functions
A thread-safe function is one that can be safely (i.e., it will deliver the same results re-
gardless of whether it is) called from multiple threads at the same time.

POSIX.1-2001 and POSIX.1-2008 require that all functions specified in the standard
shall be thread-safe, except for the following functions:

asctime()
basename()
catgets()
crypt()
ctermid() if passed a non-NULL argument
ctime()
dbm_clearerr()
dbm_close()
dbm_delete()
dbm_error()
dbm_fetch()
dbm_firstkey()
dbm_nextkey()
dbm_open()
dbm_store()
dirname()
dlerror()
drand48()
ecvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
encrypt()
endgrent()
endpwent()
endutxent()
fcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]

Linux man-pages 6.16 2025-09-21 3700

pthreads(7) Miscellaneous Information Manual pthreads(7)

ftw()
gcvt() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
getc_unlocked()
getchar_unlocked()
getdate()
getenv()
getgrent()
getgrgid()
getgrnam()
gethostbyaddr() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostbyname() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostent()
getlogin()
getnetbyaddr()
getnetbyname()
getnetent()
getopt()
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwuid()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
gmtime()
hcreate()
hdestroy()
hsearch()
inet_ntoa()
l64a()
lgamma()
lgammaf()
lgammal()
localeconv()
localtime()
lrand48()
mrand48()
nftw()
nl_langinfo()
ptsname()

Linux man-pages 6.16 2025-09-21 3701

pthreads(7) Miscellaneous Information Manual pthreads(7)

putc_unlocked()
putchar_unlocked()
putenv()
pututxline()
rand()
readdir()
setenv()
setgrent()
setkey()
setpwent()
setutxent()
strerror()
strsignal() [Added in POSIX.1-2008]
strtok()
system() [Added in POSIX.1-2008]
tmpnam() if passed a non-NULL argument
ttyname()
unsetenv()
wcrtomb() if its final argument is NULL
wcsrtombs() if its final argument is NULL
wcstombs()
wctomb()

Async-cancel-safe functions
An async-cancel-safe function is one that can be safely called in an application where
asynchronous cancelability is enabled (see pthread_setcancelstate(3)).

Only the following functions are required to be async-cancel-safe by POSIX.1-2001 and
POSIX.1-2008:

pthread_cancel()
pthread_setcancelstate()
pthread_setcanceltype()

Cancelation points
POSIX.1 specifies that certain functions must, and certain other functions may, be can-
celation points. If a thread is cancelable, its cancelability type is deferred, and a cance-
lation request is pending for the thread, then the thread is canceled when it calls a func-
tion that is a cancelation point.

The following functions are required to be cancelation points by POSIX.1-2001 and/or
POSIX.1-2008:

accept()
aio_suspend()
clock_nanosleep()
close()
connect()
creat()
fcntl() F_SETLKW
fdatasync()

Linux man-pages 6.16 2025-09-21 3702

pthreads(7) Miscellaneous Information Manual pthreads(7)

fsync()
getmsg()
getpmsg()
lockf() F_LOCK
mq_receive()
mq_send()
mq_timedreceive()
mq_timedsend()
msgrcv()
msgsnd()
msync()
nanosleep()
open()
openat() [Added in POSIX.1-2008]
pause()
poll()
pread()
pselect()
pthread_cond_timedwait()
pthread_cond_wait()
pthread_join()
pthread_testcancel()
putmsg()
putpmsg()
pwrite()
read()
readv()
recv()
recvfrom()
recvmsg()
select()
sem_timedwait()
sem_wait()
send()
sendmsg()
sendto()
sigpause() [POSIX.1-2001 only (moves to "may" list in POSIX.1-2008)]
sigsuspend()
sigtimedwait()
sigwait()
sigwaitinfo()
sleep()
system()
tcdrain()
usleep() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
wait()
waitid()

Linux man-pages 6.16 2025-09-21 3703

pthreads(7) Miscellaneous Information Manual pthreads(7)

waitpid()
write()
writev()

The following functions may be cancelation points according to POSIX.1-2001 and/or
POSIX.1-2008:

access()
asctime()
asctime_r()
catclose()
catgets()
catopen()
chmod() [Added in POSIX.1-2008]
chown() [Added in POSIX.1-2008]
closedir()
closelog()
ctermid()
ctime()
ctime_r()
dbm_close()
dbm_delete()
dbm_fetch()
dbm_nextkey()
dbm_open()
dbm_store()
dlclose()
dlopen()
dprintf() [Added in POSIX.1-2008]
endgrent()
endhostent()
endnetent()
endprotoent()
endpwent()
endservent()
endutxent()
faccessat() [Added in POSIX.1-2008]
fchmod() [Added in POSIX.1-2008]
fchmodat() [Added in POSIX.1-2008]
fchown() [Added in POSIX.1-2008]
fchownat() [Added in POSIX.1-2008]
fclose()
fcntl() (for any value of cmd argument)
fflush()
fgetc()
fgetpos()
fgets()
fgetwc()

Linux man-pages 6.16 2025-09-21 3704

pthreads(7) Miscellaneous Information Manual pthreads(7)

fgetws()
fmtmsg()
fopen()
fpathconf()
fprintf()
fputc()
fputs()
fputwc()
fputws()
fread()
freopen()
fscanf()
fseek()
fseeko()
fsetpos()
fstat()
fstatat() [Added in POSIX.1-2008]
ftell()
ftello()
ftw()
futimens() [Added in POSIX.1-2008]
fwprintf()
fwrite()
fwscanf()
getaddrinfo()
getc()
getc_unlocked()
getchar()
getchar_unlocked()
getcwd()
getdate()
getdelim() [Added in POSIX.1-2008]
getgrent()
getgrgid()
getgrgid_r()
getgrnam()
getgrnam_r()
gethostbyaddr() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostbyname() [POSIX.1-2001 only (function removed in

POSIX.1-2008)]
gethostent()
gethostid()
gethostname()
getline() [Added in POSIX.1-2008]
getlogin()
getlogin_r()

Linux man-pages 6.16 2025-09-21 3705

pthreads(7) Miscellaneous Information Manual pthreads(7)

getnameinfo()
getnetbyaddr()
getnetbyname()
getnetent()
getopt() (if opterr is nonzero)
getprotobyname()
getprotobynumber()
getprotoent()
getpwent()
getpwnam()
getpwnam_r()
getpwuid()
getpwuid_r()
gets()
getservbyname()
getservbyport()
getservent()
getutxent()
getutxid()
getutxline()
getwc()
getwchar()
getwd() [POSIX.1-2001 only (function removed in POSIX.1-2008)]
glob()
iconv_close()
iconv_open()
ioctl()
link()
linkat() [Added in POSIX.1-2008]
lio_listio() [Added in POSIX.1-2008]
localtime()
localtime_r()
lockf() [Added in POSIX.1-2008]
lseek()
lstat()
mkdir() [Added in POSIX.1-2008]
mkdirat() [Added in POSIX.1-2008]
mkdtemp() [Added in POSIX.1-2008]
mkfifo() [Added in POSIX.1-2008]
mkfifoat() [Added in POSIX.1-2008]
mknod() [Added in POSIX.1-2008]
mknodat() [Added in POSIX.1-2008]
mkstemp()
mktime()
nftw()
opendir()
openlog()

Linux man-pages 6.16 2025-09-21 3706

pthreads(7) Miscellaneous Information Manual pthreads(7)

pathconf()
pclose()
perror()
popen()
posix_fadvise()
posix_fallocate()
posix_madvise()
posix_openpt()
posix_spawn()
posix_spawnp()
posix_trace_clear()
posix_trace_close()
posix_trace_create()
posix_trace_create_withlog()
posix_trace_eventtypelist_getnext_id()
posix_trace_eventtypelist_rewind()
posix_trace_flush()
posix_trace_get_attr()
posix_trace_get_filter()
posix_trace_get_status()
posix_trace_getnext_event()
posix_trace_open()
posix_trace_rewind()
posix_trace_set_filter()
posix_trace_shutdown()
posix_trace_timedgetnext_event()
posix_typed_mem_open()
printf()
psiginfo() [Added in POSIX.1-2008]
psignal() [Added in POSIX.1-2008]
pthread_rwlock_rdlock()
pthread_rwlock_timedrdlock()
pthread_rwlock_timedwrlock()
pthread_rwlock_wrlock()
putc()
putc_unlocked()
putchar()
putchar_unlocked()
puts()
pututxline()
putwc()
putwchar()
readdir()
readdir_r()
readlink() [Added in POSIX.1-2008]
readlinkat() [Added in POSIX.1-2008]
remove()

Linux man-pages 6.16 2025-09-21 3707

pthreads(7) Miscellaneous Information Manual pthreads(7)

rename()
renameat() [Added in POSIX.1-2008]
rewind()
rewinddir()
scandir() [Added in POSIX.1-2008]
scanf()
seekdir()
semop()
setgrent()
sethostent()
setnetent()
setprotoent()
setpwent()
setservent()
setutxent()
sigpause() [Added in POSIX.1-2008]
stat()
strerror()
strerror_r()
strftime()
symlink()
symlinkat() [Added in POSIX.1-2008]
sync()
syslog()
tmpfile()
tmpnam()
ttyname()
ttyname_r()
tzset()
ungetc()
ungetwc()
unlink()
unlinkat() [Added in POSIX.1-2008]
utime() [Added in POSIX.1-2008]
utimensat() [Added in POSIX.1-2008]
utimes() [Added in POSIX.1-2008]
vdprintf() [Added in POSIX.1-2008]
vfprintf()
vfwprintf()
vprintf()
vwprintf()
wcsftime()
wordexp()
wprintf()
wscanf()

An implementation may also mark other functions not specified in the standard as can-
celation points. In particular, an implementation is likely to mark any nonstandard

Linux man-pages 6.16 2025-09-21 3708

pthreads(7) Miscellaneous Information Manual pthreads(7)

function that may block as a cancelation point. (This includes most functions that can
touch files.)

It should be noted that even if an application is not using asynchronous cancelation, that
calling a function from the above list from an asynchronous signal handler may cause
the equivalent of asynchronous cancelation. The underlying user code may not expect
asynchronous cancelation and the state of the user data may become inconsistent.
Therefore signals should be used with caution when entering a region of deferred cance-
lation.

Compiling on Linux
On Linux, programs that use the Pthreads API should be compiled using cc -pthread .

Linux implementations of POSIX threads
Over time, two threading implementations have been provided by the GNU C library on
Linux:

LinuxThreads
This is the original Pthreads implementation. Since glibc 2.4, this implementa-
tion is no longer supported.

NPTL (Native POSIX Threads Library)
This is the modern Pthreads implementation. By comparison with Linux-
Threads, NPTL provides closer conformance to the requirements of the POSIX.1
specification and better performance when creating large numbers of threads.
NPTL is available since glibc 2.3.2, and requires features that are present in the
Linux 2.6 kernel.

Both of these are so-called 1:1 implementations, meaning that each thread maps to a
kernel scheduling entity. Both threading implementations employ the Linux clone(2)
system call. In NPTL, thread synchronization primitives (mutexes, thread joining, and
so on) are implemented using the Linux futex(2) system call.

LinuxThreads
The notable features of this implementation are the following:

• In addition to the main (initial) thread, and the threads that the program creates using
pthread_create(3), the implementation creates a "manager" thread. This thread han-
dles thread creation and termination. (Problems can result if this thread is inadver-
tently killed.)

• Signals are used internally by the implementation. On Linux 2.2 and later, the first
three real-time signals are used (see also signal(7)). On older Linux kernels, SI-
GUSR1 and SIGUSR2 are used. Applications must avoid the use of whichever set
of signals is employed by the implementation.

• Threads do not share process IDs. (In effect, LinuxThreads threads are implemented
as processes which share more information than usual, but which do not share a
common process ID.) LinuxThreads threads (including the manager thread) are visi-
ble as separate processes using ps(1)

The LinuxThreads implementation deviates from the POSIX.1 specification in a number
of ways, including the following:

Linux man-pages 6.16 2025-09-21 3709

pthreads(7) Miscellaneous Information Manual pthreads(7)

• Calls to getpid(2) return a different value in each thread.

• Calls to getppid(2) in threads other than the main thread return the process ID of the
manager thread; instead getppid(2) in these threads should return the same value as
getppid(2) in the main thread.

• When one thread creates a new child process using fork(2), any thread should be
able to wait(2) on the child. However, the implementation allows only the thread
that created the child to wait(2) on it.

• When a thread calls execve(2), all other threads are terminated (as required by
POSIX.1). However, the resulting process has the same PID as the thread that called
execve(2): it should have the same PID as the main thread.

• Threads do not share user and group IDs. This can cause complications with set-
user-ID programs and can cause failures in Pthreads functions if an application
changes its credentials using seteuid(2) or similar.

• Threads do not share a common session ID and process group ID.

• Threads do not share record locks created using fcntl(2).

• The information returned by times(2) and getrusage(2) is per-thread rather than
process-wide.

• Threads do not share semaphore undo values (see semop(2)).

• Threads do not share interval timers.

• Threads do not share a common nice value.

• POSIX.1 distinguishes the notions of signals that are directed to the process as a
whole and signals that are directed to individual threads. According to POSIX.1, a
process-directed signal (sent using kill(2), for example) should be handled by a sin-
gle, arbitrarily selected thread within the process. LinuxThreads does not support
the notion of process-directed signals: signals may be sent only to specific threads.

• Threads have distinct alternate signal stack settings. However, a new thread’s alter-
nate signal stack settings are copied from the thread that created it, so that the
threads initially share an alternate signal stack. (A new thread should start with no
alternate signal stack defined. If two threads handle signals on their shared alternate
signal stack at the same time, unpredictable program failures are likely to occur.)

NPTL
With NPTL, all of the threads in a process are placed in the same thread group; all mem-
bers of a thread group share the same PID. NPTL does not employ a manager thread.

NPTL makes internal use of the first two real-time signals; these signals cannot be used
in applications. See nptl(7) for further details.

NPTL still has at least one nonconformance with POSIX.1:

• Threads do not share a common nice value.

Some NPTL nonconformances occur only with older kernels:

Linux man-pages 6.16 2025-09-21 3710

pthreads(7) Miscellaneous Information Manual pthreads(7)

• The information returned by times(2) and getrusage(2) is per-thread rather than
process-wide (fixed in Linux 2.6.9).

• Threads do not share resource limits (fixed in Linux 2.6.10).

• Threads do not share interval timers (fixed in Linux 2.6.12).

• Only the main thread is permitted to start a new session using setsid(2) (fixed in
Linux 2.6.16).

• Only the main thread is permitted to make the process into a process group leader
using setpgid(2) (fixed in Linux 2.6.16).

• Threads have distinct alternate signal stack settings. However, a new thread’s alter-
nate signal stack settings are copied from the thread that created it, so that the
threads initially share an alternate signal stack (fixed in Linux 2.6.16).

Note the following further points about the NPTL implementation:

• If the stack size soft resource limit (see the description of RLIMIT_STACK in setr-
limit(2)) is set to a value other than unlimited , then this value defines the default
stack size for new threads. To be effective, this limit must be set before the program
is executed, perhaps using the ulimit -s shell built-in command (limit stacksize in
the C shell).

Determining the threading implementation
Since glibc 2.3.2, the getconf (1) command can be used to determine the system’s
threading implementation, for example:

bash$ getconf GNU_LIBPTHREAD_VERSION
NPTL 2.3.4

With older glibc versions, a command such as the following should be sufficient to de-
termine the default threading implementation:

bash$ $(ldd /bin/ls | grep libc.so | awk '{print $3}') | \
egrep -i 'threads|nptl'

Native POSIX Threads Library by Ulrich Drepper et al

Selecting the threading implementation: LD_ASSUME_KERNEL
On systems with a glibc that supports both LinuxThreads and NPTL (i.e., glibc 2.3.*),
the LD_ASSUME_KERNEL environment variable can be used to override the dy-
namic linker’s default choice of threading implementation. This variable tells the dy-
namic linker to assume that it is running on top of a particular kernel version. By speci-
fying a kernel version that does not provide the support required by NPTL, we can force
the use of LinuxThreads. (The most likely reason for doing this is to run a (broken) ap-
plication that depends on some nonconformant behavior in LinuxThreads.) For exam-
ple:

bash$ $(LD_ASSUME_KERNEL=2.2.5 ldd /bin/ls | grep libc.so | \
awk '{print $3}') | egrep -i 'threads|nptl'

linuxthreads-0.10 by Xavier Leroy

Linux man-pages 6.16 2025-09-21 3711

pthreads(7) Miscellaneous Information Manual pthreads(7)

SEE ALSO
clone(2), fork(2), futex(2), gettid(2), proc(5), attributes(7), futex(7), nptl(7),
sigevent(3type), signal(7)

Various Pthreads manual pages, for example: pthread_atfork(3), pthread_attr_init(3),
pthread_cancel(3), pthread_cleanup_push(3), pthread_cond_signal(3),
pthread_cond_wait(3), pthread_create(3), pthread_detach(3), pthread_equal(3),
pthread_exit(3), pthread_key_create(3), pthread_kill(3), pthread_mutex_lock(3),
pthread_mutex_unlock(3), pthread_mutexattr_destroy(3), pthread_mutexattr_init(3),
pthread_once(3), pthread_spin_init(3), pthread_spin_lock(3),
pthread_rwlockattr_setkind_np(3), pthread_setcancelstate(3), pthread_setcanceltype(3),
pthread_setspecific(3), pthread_sigmask(3), pthread_sigqueue(3), and
pthread_testcancel(3)

Linux man-pages 6.16 2025-09-21 3712

pty(7) Miscellaneous Information Manual pty(7)

NAME
pty - pseudoterminal interfaces

DESCRIPTION
A pseudoterminal (sometimes abbreviated "pty") is a pair of virtual character devices
that provide a bidirectional communication channel. One end of the channel is called
the master; the other end is called the slave.

The slave end of the pseudoterminal provides an interface that behaves exactly like a
classical terminal. A process that expects to be connected to a terminal, can open the
slave end of a pseudoterminal and then be driven by a program that has opened the mas-
ter end. Anything that is written on the master end is provided to the process on the
slave end as though it was input typed on a terminal. For example, writing the interrupt
character (usually control-C) to the master device would cause an interrupt signal (SIG-
INT) to be generated for the foreground process group that is connected to the slave.
Conversely, anything that is written to the slave end of the pseudoterminal can be read
by the process that is connected to the master end.

Data flow between master and slave is handled asynchronously, much like data flow
with a physical terminal. Data written to the slave will be available at the master
promptly, but may not be available immediately. Similarly, there may be a small pro-
cessing delay between a write to the master, and the effect being visible at the slave.

Historically, two pseudoterminal APIs have evolved: BSD and System V. SUSv1 stan-
dardized a pseudoterminal API based on the System V API, and this API should be em-
ployed in all new programs that use pseudoterminals.

Linux provides both BSD-style and (standardized) System V-style pseudoterminals.
System V-style terminals are commonly called UNIX 98 pseudoterminals on Linux sys-
tems.

Since Linux 2.6.4, BSD-style pseudoterminals are considered deprecated: support can
be disabled when building the kernel by disabling the CONFIG_LEGACY_PTYS op-
tion. (Starting with Linux 2.6.30, that option is disabled by default in the mainline ker-
nel.) UNIX 98 pseudoterminals should be used in new applications.

UNIX 98 pseudoterminals
An unused UNIX 98 pseudoterminal master is opened by calling posix_openpt(3).
(This function opens the master clone device, /dev/ptmx; see pts(4).) After performing
any program-specific initializations, changing the ownership and permissions of the
slave device using grantpt(3), and unlocking the slave using unlockpt(3)), the corre-
sponding slave device can be opened by passing the name returned by ptsname(3) in a
call to open(2).

The Linux kernel imposes a limit on the number of available UNIX 98 pseudoterminals.
Up to and including Linux 2.6.3, this limit is configured at kernel compilation time
(CONFIG_UNIX98_PTYS), and the permitted number of pseudoterminals can be up
to 2048, with a default setting of 256. Since Linux 2.6.4, the limit is dynamically ad-
justable via /proc/sys/kernel/pty/max, and a corresponding file, /proc/sys/kernel/pty/nr,
indicates how many pseudoterminals are currently in use. For further details on these
two files, see proc(5).

Linux man-pages 6.16 2025-05-17 3713

pty(7) Miscellaneous Information Manual pty(7)

BSD pseudoterminals
BSD-style pseudoterminals are provided as precreated pairs, with names of the form
/dev/ptyXY (master) and /dev/ttyXY (slave), where X is a letter from the 16-character set
[p-za-e], and Y is a letter from the 16-character set [0-9a-f]. (The precise range of let-
ters in these two sets varies across UNIX implementations.) For example, /dev/ptyp1
and /dev/ttyp1 constitute a BSD pseudoterminal pair. A process finds an unused
pseudoterminal pair by trying to open(2) each pseudoterminal master until an open suc-
ceeds. The corresponding pseudoterminal slave (substitute "tty" for "pty" in the name of
the master) can then be opened.

FILES
/dev/ptmx

UNIX 98 master clone device

/dev/pts/*
UNIX 98 slave devices

/dev/pty[p-za-e][0-9a-f]
BSD master devices

/dev/tty[p-za-e][0-9a-f]
BSD slave devices

NOTES
Pseudoterminals are used by applications such as network login services (ssh(1),
rlogin(1), telnet(1)), terminal emulators such as xterm(1), script(1), screen(1), tmux(1),
unbuffer(1), and expect(1)

A description of the TIOCPKT ioctl(2), which controls packet mode operation, can be
found in ioctl_tty(2).

The BSD ioctl(2) operations TIOCSTOP, TIOCSTART, TIOCUCNTL, and TI-
OCREMOTE have not been implemented under Linux.

SEE ALSO
ioctl_tty(2), select(2), setsid(2), forkpty(3), openpty(3), termios(3), pts(4), tty(4)

Linux man-pages 6.16 2025-05-17 3714

queue(7) Miscellaneous Information Manual queue(7)

NAME
queue - implementations of linked lists and queues

DESCRIPTION
The <sys/queue.h> header file provides a set of macros that define and operate on the
following data structures:

SLIST
singly linked lists

LIST doubly linked lists

STAILQ
singly linked tail queues

TAILQ
doubly linked tail queues

CIRCLEQ
doubly linked circular queues

All structures support the following functionality:

• Insertion of a new entry at the head of the list.

• Insertion of a new entry after any element in the list.

• O(1) removal of an entry from the head of the list.

• Forward traversal through the list.

Code size and execution time depend on the complexity of the data structure being used,
so programmers should take care to choose the appropriate one.

Singly linked lists (SLIST)
Singly linked lists are the simplest and support only the above functionality. Singly
linked lists are ideal for applications with large datasets and few or no removals, or for
implementing a LIFO queue. Singly linked lists add the following functionality:

• O(n) removal of any entry in the list.

Singly linked tail queues (STAILQ)
Singly linked tail queues add the following functionality:

• Entries can be added at the end of a list.

• O(n) removal of any entry in the list.

• They may be concatenated.

However:

• All list insertions must specify the head of the list.

• Each head entry requires two pointers rather than one.

Singly linked tail queues are ideal for applications with large datasets and few or no re-
movals, or for implementing a FIFO queue.

Linux man-pages 6.16 2025-05-17 3715

queue(7) Miscellaneous Information Manual queue(7)

Doubly linked data structures
All doubly linked types of data structures (lists and tail queues) additionally allow:

• Insertion of a new entry before any element in the list.

• O(1) removal of any entry in the list.

However:

• Each element requires two pointers rather than one.

Doubly linked lists (LIST)
Linked lists are the simplest of the doubly linked data structures. They add the follow-
ing functionality over the above:

• They may be traversed backwards.

However:

• To traverse backwards, an entry to begin the traversal and the list in which it is con-
tained must be specified.

Doubly linked tail queues (TAILQ)
Tail queues add the following functionality:

• Entries can be added at the end of a list.

• They may be traversed backwards, from tail to head.

• They may be concatenated.

However:

• All list insertions and removals must specify the head of the list.

• Each head entry requires two pointers rather than one.

Doubly linked circular queues (CIRCLEQ)
Circular queues add the following functionality over the above:

• The first and last entries are connected.

However:

• The termination condition for traversal is more complex.

STANDARDS
BSD.

HISTORY
<sys/queue.h> macros first appeared in 4.4BSD.

NOTES
Some BSDs provide SIMPLEQ instead of STAILQ. They are identical, but for histori-
cal reasons they were named differently on different BSDs. STAILQ originated on
FreeBSD, and SIMPLEQ originated on NetBSD. For compatibility reasons, some sys-
tems provide both sets of macros. glibc provides both STAILQ and SIMPLEQ, which
are identical except for a missing SIMPLEQ equivalent to STAILQ_CONCAT().

Linux man-pages 6.16 2025-05-17 3716

queue(7) Miscellaneous Information Manual queue(7)

SEE ALSO
circleq(3), insque(3), list(3), slist(3), stailq(3), tailq(3)

Linux man-pages 6.16 2025-05-17 3717

random(7) Miscellaneous Information Manual random(7)

NAME
random - overview of interfaces for obtaining randomness

DESCRIPTION
The kernel random-number generator relies on entropy gathered from device drivers and
other sources of environmental noise to seed a cryptographically secure pseudorandom
number generator (CSPRNG). It is designed for security, rather than speed.

The following interfaces provide access to output from the kernel CSPRNG:

• The /dev/urandom and /dev/random devices, both described in random(4). These
devices have been present on Linux since early times, and are also available on many
other systems.

• The Linux-specific getrandom(2) system call, available since Linux 3.17. This sys-
tem call provides access either to the same source as /dev/urandom (called the uran-
dom source in this page) or to the same source as /dev/random (called the random
source in this page). The default is the urandom source; the random source is se-
lected by specifying the GRND_RANDOM flag to the system call. (The geten-
tropy(3) function provides a slightly more portable interface on top of
getrandom(2).)

Initialization of the entropy pool
The kernel collects bits of entropy from the environment. When a sufficient number of
random bits has been collected, the entropy pool is considered to be initialized.

Choice of random source
Unless you are doing long-term key generation (and most likely not even then), you
probably shouldn’t be reading from the /dev/random device or employing getrandom(2)
with the GRND_RANDOM flag. Instead, either read from the /dev/urandom device or
employ getrandom(2) without the GRND_RANDOM flag. The cryptographic algo-
rithms used for the urandom source are quite conservative, and so should be sufficient
for all purposes.

The disadvantage of GRND_RANDOM and reads from /dev/random is that the opera-
tion can block for an indefinite period of time. Furthermore, dealing with the partially
fulfilled requests that can occur when using GRND_RANDOM or when reading from
/dev/random increases code complexity.

Monte Carlo and other probabilistic sampling applications
Using these interfaces to provide large quantities of data for Monte Carlo simulations or
other programs/algorithms which are doing probabilistic sampling will be slow. Fur-
thermore, it is unnecessary, because such applications do not need cryptographically se-
cure random numbers. Instead, use the interfaces described in this page to obtain a
small amount of data to seed a user-space pseudorandom number generator for use by
such applications.

Comparison between getrandom, /dev/urandom, and /dev/random
The following table summarizes the behavior of the various interfaces that can be used
to obtain randomness. GRND_NONBLOCK is a flag that can be used to control the
blocking behavior of getrandom(2). The final column of the table considers the case
that can occur in early boot time when the entropy pool is not yet initialized.

Linux man-pages 6.16 2025-09-21 3718

random(7) Miscellaneous Information Manual random(7)

Interface Pool Blocking
behavior

Behavior when pool
is not yet ready

/dev/random Blocking pool If entropy too
low, blocks until
there is enough
entropy again

Blocks until enough
entropy gathered

/dev/urandom CSPRNG out-
put

Never blocks Returns output from
uninitialized
CSPRNG (may be
low entropy and un-
suitable for cryptogra-
phy)

getrandom() Same as
/dev/urandom

Does not block
once pool is
ready

Blocks until pool
ready

getrandom()
GRND_RAN-
DOM

Same as
/dev/random

If entropy too
low, blocks until
there is enough
entropy again

Blocks until pool
ready

getrandom()
GRND_NON-
BLOCK

Same as
/dev/urandom

Does not block
once pool is
ready

EAGAIN

getrandom()
GRND_RAN-
DOM +
GRND_NON-
BLOCK

Same as
/dev/random

EAGAIN if not
enough entropy
available

EAGAIN

Generating cryptographic keys
The amount of seed material required to generate a cryptographic key equals the effec-
tive key size of the key. For example, a 3072-bit RSA or Diffie-Hellman private key has
an effective key size of 128 bits (it requires about 2^128 operations to break) so a key
generator needs only 128 bits (16 bytes) of seed material from /dev/random.

While some safety margin above that minimum is reasonable, as a guard against flaws in
the CSPRNG algorithm, no cryptographic primitive available today can hope to promise
more than 256 bits of security, so if any program reads more than 256 bits (32 bytes)
from the kernel random pool per invocation, or per reasonable reseed interval (not less
than one minute), that should be taken as a sign that its cryptography is not skillfully
implemented.

SEE ALSO
getrandom(2), getauxval(3), getentropy(3), random(4), urandom(4), signal(7)

〈http://www.2uo.de/myths-about-urandom/〉

Linux man-pages 6.16 2025-09-21 3719

raw(7) Miscellaneous Information Manual raw(7)

NAME
raw - Linux IPv4 raw sockets

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
raw_socket = socket(AF_INET, SOCK_RAW, int protocol);

DESCRIPTION
Raw sockets allow new IPv4 protocols to be implemented in user space. A raw socket
receives or sends the raw datagram not including link level headers.

The IPv4 layer generates an IP header when sending a packet unless the IP_HDRINCL
socket option is enabled on the socket. When it is enabled, the packet must contain an
IP header. For receiving, the IP header is always included in the packet.

In order to create a raw socket, a process must have the CAP_NET_RAW capability in
the user namespace that governs its network namespace.

All packets or errors matching the protocol number specified for the raw socket are
passed to this socket. For a list of the allowed protocols, see the IANA list of assigned
protocol numbers at 〈http://www.iana.org/assignments/protocol-numbers/〉 and getpro-
tobyname(3).

A protocol of IPPROTO_RAW implies enabled IP_HDRINCL and is able to send any
IP protocol that is specified in the passed header. Receiving of all IP protocols via IP-
PROTO_RAW is not possible using raw sockets.

IP Header fields modified on sending by IP_HDRINCL
IP Checksum Always filled in
Source Address Filled in when zero
Packet ID Filled in when zero
Total Length Always filled in

If IP_HDRINCL is specified and the IP header has a nonzero destination address, then
the destination address of the socket is used to route the packet. When MSG_DON-
TROUTE is specified, the destination address should refer to a local interface, other-
wise a routing table lookup is done anyway but gatewayed routes are ignored.

If IP_HDRINCL isn’t set, then IP header options can be set on raw sockets with set-
sockopt(2); see ip(7) for more information.

Starting with Linux 2.2, all IP header fields and options can be set using IP socket op-
tions. This means raw sockets are usually needed only for new protocols or protocols
with no user interface (like ICMP).

When a packet is received, it is passed to any raw sockets which have been bound to its
protocol before it is passed to other protocol handlers (e.g., kernel protocol modules).

Address format
For sending and receiving datagrams (sendto(2), recvfrom(2), and similar), raw sockets
use the standard sockaddr_in address structure defined in ip(7). The sin_port field
could be used to specify the IP protocol number, but it is ignored for sending in Linux
2.2 and later, and should be always set to 0 (see BUGS). For incoming packets,

Linux man-pages 6.16 2025-09-21 3720

raw(7) Miscellaneous Information Manual raw(7)

sin_port is set to zero.

Socket options
Raw socket options can be set with setsockopt(2) and read with getsockopt(2) by passing
the IPPROTO_RAW family flag.

ICMP_FILTER
Enable a special filter for raw sockets bound to the IPPROTO_ICMP protocol.
The value has a bit set for each ICMP message type which should be filtered out.
The default is to filter no ICMP messages.

In addition, all ip(7) IPPROTO_IP socket options valid for datagram sockets are sup-
ported.

Error handling
Errors originating from the network are passed to the user only when the socket is con-
nected or the IP_RECVERR flag is enabled. For connected sockets, only EMSGSIZE
and EPROTO are passed for compatibility. With IP_RECVERR, all network errors
are saved in the error queue.

ERRORS
EACCES

User tried to send to a broadcast address without having the broadcast flag set on
the socket.

EFAULT
An invalid memory address was supplied.

EINVAL
Invalid argument.

EMSGSIZE
Packet too big. Either Path MTU Discovery is enabled (the IP_MTU_DIS-
COVER socket flag) or the packet size exceeds the maximum allowed IPv4
packet size of 64 kB.

EOPNOTSUPP
Invalid flag has been passed to a socket call (like MSG_OOB).

EPERM
The user doesn’t have permission to open raw sockets. Only processes with an
effective user ID of 0 or the CAP_NET_RAW attribute may do that.

EPROTO
An ICMP error has arrived reporting a parameter problem.

VERSIONS
IP_RECVERR and ICMP_FILTER are new in Linux 2.2. They are Linux extensions
and should not be used in portable programs.

Linux 2.0 enabled some bug-to-bug compatibility with BSD in the raw socket code
when the SO_BSDCOMPAT socket option was set; since Linux 2.2, this option no
longer has that effect.

Linux man-pages 6.16 2025-09-21 3721

raw(7) Miscellaneous Information Manual raw(7)

NOTES
By default, raw sockets do path MTU (Maximum Transmission Unit) discovery. This
means the kernel will keep track of the MTU to a specific target IP address and return
EMSGSIZE when a raw packet write exceeds it. When this happens, the application
should decrease the packet size. Path MTU discovery can be also turned off using the
IP_MTU_DISCOVER socket option or the /proc/sys/net/ipv4/ip_no_pmtu_disc file,
see ip(7) for details. When turned off, raw sockets will fragment outgoing packets that
exceed the interface MTU. However, disabling it is not recommended for performance
and reliability reasons.

A raw socket can be bound to a specific local address using the bind(2) call. If it isn’t
bound, all packets with the specified IP protocol are received. In addition, a raw socket
can be bound to a specific network device using SO_BINDTODEVICE; see socket(7).

An IPPROTO_RAW socket is send only. If you really want to receive all IP packets,
use a packet(7) socket with the ETH_P_IP protocol. Note that packet sockets don’t re-
assemble IP fragments, unlike raw sockets.

If you want to receive all ICMP packets for a datagram socket, it is often better to use
IP_RECVERR on that particular socket; see ip(7).

Raw sockets may tap all IP protocols in Linux, even protocols like ICMP or TCP which
have a protocol module in the kernel. In this case, the packets are passed to both the
kernel module and the raw socket(s). This should not be relied upon in portable pro-
grams, many other BSD socket implementation have limitations here.

Linux never changes headers passed from the user (except for filling in some zeroed
fields as described for IP_HDRINCL). This differs from many other implementations
of raw sockets.

Raw sockets are generally rather unportable and should be avoided in programs intended
to be portable.

Sending on raw sockets should take the IP protocol from sin_port; this ability was lost
in Linux 2.2. The workaround is to use IP_HDRINCL.

BUGS
Transparent proxy extensions are not described.

When the IP_HDRINCL option is set, datagrams will not be fragmented and are lim-
ited to the interface MTU.

Setting the IP protocol for sending in sin_port got lost in Linux 2.2. The protocol that
the socket was bound to or that was specified in the initial socket(2) call is always used.

SEE ALSO
recvmsg(2), sendmsg(2), capabilities(7), ip(7), socket(7)

RFC 1191 for path MTU discovery. RFC 791 and the <linux/ip.h> header file for the
IP protocol.

Linux man-pages 6.16 2025-09-21 3722

regex(7) Miscellaneous Information Manual regex(7)

NAME
regex - POSIX.2 regular expressions

DESCRIPTION
Regular expressions ("RE"s), as defined in POSIX.2, come in two forms: modern REs
(roughly those of egrep(1); POSIX.2 calls these "extended" REs) and obsolete REs
(roughly those of ed(1); POSIX.2 "basic" REs). Obsolete REs mostly exist for back-
ward compatibility in some old programs; they will be discussed at the end. POSIX.2
leaves some aspects of RE syntax and semantics open; "†" marks decisions on these as-
pects that may not be fully portable to other POSIX.2 implementations.

A (modern) RE is one† or more nonempty† branches, separated by '|'. It matches any-
thing that matches one of the branches.

A branch is one† or more pieces, concatenated. It matches a match for the first, fol-
lowed by a match for the second, and so on.

A piece is an atom possibly followed by a single† '*', '+', '?', or bound . An atom fol-
lowed by '*' matches a sequence of 0 or more matches of the atom. An atom followed
by '+' matches a sequence of 1 or more matches of the atom. An atom followed by '?'
matches a sequence of 0 or 1 matches of the atom.

A bound is '{' followed by an unsigned decimal integer, possibly followed by ',' possibly
followed by another unsigned decimal integer, always followed by '}'. The integers
must lie between 0 and RE_DUP_MAX (255†) inclusive, and if there are two of them,
the first may not exceed the second. An atom followed by a bound containing one inte-
ger i and no comma matches a sequence of exactly i matches of the atom. An atom fol-
lowed by a bound containing one integer i and a comma matches a sequence of i or
more matches of the atom. An atom followed by a bound containing two integers i and
j matches a sequence of i through j (inclusive) matches of the atom.

An atom is a regular expression enclosed in "()" (matching a match for the regular ex-
pression), an empty set of "()" (matching the null string)†, a bracket expression (see be-
low), '.' (matching any single character), '^' (matching the null string at the beginning of
a line), '$' (matching the null string at the end of a line), a '\' followed by one of the char-
acters "^.[$()|*+?{\" (matching that character taken as an ordinary character), a '\' fol-
lowed by any other character† (matching that character taken as an ordinary character,
as if the '\' had not been present†), or a single character with no other significance
(matching that character). A '{' followed by a character other than a digit is an ordinary
character, not the beginning of a bound†. It is illegal to end an RE with '\'.

A bracket expression is a list of characters enclosed in "[]". It normally matches any
single character from the list (but see below). If the list begins with '^', it matches any
single character (but see below) not from the rest of the list. If two characters in the list
are separated by '-', this is shorthand for the full range of characters between those two
(inclusive) in the collating sequence, for example, "[0-9]" in ASCII matches any deci-
mal digit. It is illegal† for two ranges to share an endpoint, for example, "a-c-e".
Ranges are very collating-sequence-dependent, and portable programs should avoid re-
lying on them.

To include a literal ']' in the list, make it the first character (following a possible '^'). To
include a literal '-', make it the first or last character, or the second endpoint of a range.

Linux man-pages 6.16 2025-09-21 3723

regex(7) Miscellaneous Information Manual regex(7)

To use a literal '-' as the first endpoint of a range, enclose it in "[." and ".]" to make it a
collating element (see below). With the exception of these and some combinations us-
ing '[' (see next paragraphs), all other special characters, including '\', lose their special
significance within a bracket expression.

Within a bracket expression, a collating element (a character, a multicharacter sequence
that collates as if it were a single character, or a collating-sequence name for either) en-
closed in "[." and ".]" stands for the sequence of characters of that collating element.
The sequence is a single element of the bracket expression’s list. A bracket expression
containing a multicharacter collating element can thus match more than one character,
for example, if the collating sequence includes a "ch" collating element, then the RE
"[[.ch.]]*c" matches the first five characters of "chchcc".

Within a bracket expression, a collating element enclosed in "[=" and "=]" is an equiva-
lence class, standing for the sequences of characters of all collating elements equivalent
to that one, including itself. (If there are no other equivalent collating elements, the
treatment is as if the enclosing delimiters were "[." and ".]".) For example, if o and ô
are the members of an equivalence class, then "[[=o=]]", "[[=ô=]]", and "[oô]" are all
synonymous. An equivalence class may not† be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in "[:" and ":]"
stands for the list of all characters belonging to that class. Standard character class
names are:

alnum digit punct
alpha graph space
blank lower upper
cntrl print xdigit

These stand for the character classes defined in wctype(3). A locale may provide others.
A character class may not be used as an endpoint of a range.

In the event that an RE could match more than one substring of a given string, the RE
matches the one starting earliest in the string. If the RE could match more than one sub-
string starting at that point, it matches the longest. Subexpressions also match the
longest possible substrings, subject to the constraint that the whole match be as long as
possible, with subexpressions starting earlier in the RE taking priority over ones starting
later. Note that higher-level subexpressions thus take priority over their lower-level
component subexpressions.

Match lengths are measured in characters, not collating elements. A null string is con-
sidered longer than no match at all. For example, "bb*" matches the three middle char-
acters of "abbbc", "(wee|week)(knights|nights)" matches all ten characters of "week-
nights", when "(.*).*" is matched against "abc" the parenthesized subexpression
matches all three characters, and when "(a*)*" is matched against "bc" both the whole
RE and the parenthesized subexpression match the null string.

If case-independent matching is specified, the effect is much as if all case distinctions
had vanished from the alphabet. When an alphabetic that exists in multiple cases ap-
pears as an ordinary character outside a bracket expression, it is effectively transformed
into a bracket expression containing both cases, for example, 'x' becomes "[xX]". When
it appears inside a bracket expression, all case counterparts of it are added to the bracket

Linux man-pages 6.16 2025-09-21 3724

regex(7) Miscellaneous Information Manual regex(7)

expression, so that, for example, "[x]" becomes "[xX]" and "[^x]" becomes "[^xX]".

No particular limit is imposed on the length of REs†. Programs intended to be portable
should not employ REs longer than 256 bytes, as an implementation can refuse to accept
such REs and remain POSIX-compliant.

Obsolete ("basic") regular expressions differ in several respects. '|', '+', and '?' are ordi-
nary characters and there is no equivalent for their functionality. The delimiters for
bounds are " \{" and " \}", with '{' and '}' by themselves ordinary characters. The paren-
theses for nested subexpressions are " \(" and " \)", with '(' and ')' by themselves ordinary
characters. '^' is an ordinary character except at the beginning of the RE or† the begin-
ning of a parenthesized subexpression, '$' is an ordinary character except at the end of
the RE or† the end of a parenthesized subexpression, and '*' is an ordinary character if it
appears at the beginning of the RE or the beginning of a parenthesized subexpression
(after a possible leading '^').

Finally, there is one new type of atom, a back reference: '\' followed by a nonzero deci-
mal digit d matches the same sequence of characters matched by the dth parenthesized
subexpression (numbering subexpressions by the positions of their opening parentheses,
left to right), so that, for example, " \([bc]\)\1" matches "bb" or "cc" but not "bc".

BUGS
Having two kinds of REs is a botch.

The current POSIX.2 spec says that ')' is an ordinary character in the absence of an un-
matched '('; this was an unintentional result of a wording error, and change is likely.
Avoid relying on it.

Back references are a dreadful botch, posing major problems for efficient implementa-
tions. They are also somewhat vaguely defined (does "a\(\(b\)*\2\)*d" match "abbbd"?).
Avoid using them.

POSIX.2’s specification of case-independent matching is vague. The "one case implies
all cases" definition given above is current consensus among implementors as to the
right interpretation.

AUTHOR
This page was taken from Henry Spencer’s regex package.

SEE ALSO
grep(1), regex(3)

POSIX.2, section 2.8 (Regular Expression Notation).

Linux man-pages 6.16 2025-09-21 3725

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

NAME
rtld-audit - auditing API for the dynamic linker

SYNOPSIS
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <link.h>

DESCRIPTION
The GNU dynamic linker (run-time linker) provides an auditing API that allows an ap-
plication to be notified when various dynamic linking events occur. This API is very
similar to the auditing interface provided by the Solaris run-time linker. The necessary
constants and prototypes are defined by including <link.h>.

To use this interface, the programmer creates a shared library that implements a standard
set of function names. Not all of the functions need to be implemented: in most cases, if
the programmer is not interested in a particular class of auditing event, then no imple-
mentation needs to be provided for the corresponding auditing function.

To employ the auditing interface, the environment variable LD_AUDIT must be defined
to contain a colon-separated list of shared libraries, each of which can implement (parts
of) the auditing API. When an auditable event occurs, the corresponding function is in-
voked in each library, in the order that the libraries are listed.

la_version()

unsigned int la_version(unsigned int version);

This is the only function that must be defined by an auditing library: it performs the ini-
tial handshake between the dynamic linker and the auditing library. When invoking this
function, the dynamic linker passes, in version, the highest version of the auditing inter-
face that the linker supports.

A typical implementation of this function simply returns the constant LAV_CUR-
RENT, which indicates the version of <link.h> that was used to build the audit module.
If the dynamic linker does not support this version of the audit interface, it will refuse to
activate this audit module. If the function returns zero, the dynamic linker also does not
activate this audit module.

In order to enable backwards compatibility with older dynamic linkers, an audit module
can examine the version argument and return an earlier version than LAV_CURRENT,
assuming the module can adjust its implementation to match the requirements of the
previous version of the audit interface. The la_version function should not return the
value of version without further checks because it could correspond to an interface that
does not match the <link.h> definitions used to build the audit module.

la_objsearch()

char *la_objsearch(const char *name, uintptr_t *cookie,
unsigned int flag);

The dynamic linker invokes this function to inform the auditing library that it is about to
search for a shared object. The name argument is the filename or pathname that is to be
searched for. cookie identifies the shared object that initiated the search. flag is set to

Linux man-pages 6.16 2025-05-17 3726

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

one of the following values:

LA_SER_ORIG This is the original name that is being searched for. Typically, this
name comes from an ELF DT_NEEDED entry, or is the filename
argument given to dlopen(3).

LA_SER_LIBPATH
name was created using a directory specified in LD_LI-
BRARY_PATH.

LA_SER_RUNPATH
name was created using a directory specified in an ELF
DT_RPATH or DT_RUNPATH list.

LA_SER_CONFIG
name was found via the ldconfig(8) cache (/etc/ld.so.cache).

LA_SER_DEFAULT
name was found via a search of one of the default directories.

LA_SER_SECURE
name is specific to a secure object (unused on Linux).

As its function result, la_objsearch() returns the pathname that the dynamic linker
should use for further processing. If NULL is returned, then this pathname is ignored
for further processing. If this audit library simply intends to monitor search paths, then
name should be returned.

la_activity()

void la_activity(uintptr_t *cookie, unsigned int flag);

The dynamic linker calls this function to inform the auditing library that link-map activ-
ity is occurring. cookie identifies the object at the head of the link map. When the dy-
namic linker invokes this function, flag is set to one of the following values:

LA_ACT_ADD New objects are being added to the link map.

LA_ACT_DELETE Objects are being removed from the link map.

LA_ACT_CONSISTENT
Link-map activity has been completed: the map is once again
consistent.

la_objopen()

unsigned int la_objopen(struct link_map *map, Lmid_t lmid ,
uintptr_t *cookie);

The dynamic linker calls this function when a new shared object is loaded. The map ar-
gument is a pointer to a link-map structure that describes the object. The lmid field has
one of the following values

LM_ID_BASE Link map is part of the initial namespace.

Linux man-pages 6.16 2025-05-17 3727

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

LM_ID_NEWLM
Link map is part of a new namespace requested via dlmopen(3).

cookie is a pointer to an identifier for this object. The identifier is provided to later calls
to functions in the auditing library in order to identify this object. This identifier is ini-
tialized to point to object’s link map, but the audit library can change the identifier to
some other value that it may prefer to use to identify the object.

As its return value, la_objopen() returns a bit mask created by ORing zero or more of
the following constants, which allow the auditing library to select the objects to be mon-
itored by la_symbind*():

LA_FLG_BINDTO
Audit symbol bindings to this object.

LA_FLG_BINDFROM
Audit symbol bindings from this object.

A return value of 0 from la_objopen() indicates that no symbol bindings should be au-
dited for this object.

la_objclose()

unsigned int la_objclose(uintptr_t *cookie);

The dynamic linker invokes this function after any finalization code for the object has
been executed, before the object is unloaded. The cookie argument is the identifier ob-
tained from a previous invocation of la_objopen().

In the current implementation, the value returned by la_objclose() is ignored.

la_preinit()

void la_preinit(uintptr_t *cookie);

The dynamic linker invokes this function after all shared objects have been loaded, be-
fore control is passed to the application (i.e., before calling main())Note that main() may
still later dynamically load objects using dlopen(3).

la_symbind*()

uintptr_t la_symbind32(Elf32_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
unsigned int * flags, const char *symname);

uintptr_t la_symbind64(Elf64_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
unsigned int * flags, const char *symname);

The dynamic linker invokes one of these functions when a symbol binding occurs be-
tween two shared objects that have been marked for auditing notification by la_ob-
jopen(). The la_symbind32() function is employed on 32-bit platforms; the la_sym-
bind64() function is employed on 64-bit platforms.

The sym argument is a pointer to a structure that provides information about the symbol
being bound. The structure definition is shown in <elf.h>. Among the fields of this

Linux man-pages 6.16 2025-05-17 3728

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

structure, st_value indicates the address to which the symbol is bound.

The ndx argument gives the index of the symbol in the symbol table of the bound shared
object.

The refcook argument identifies the shared object that is making the symbol reference;
this is the same identifier that is provided to the la_objopen() function that returned
LA_FLG_BINDFROM. The defcook argument identifies the shared object that defines
the referenced symbol; this is the same identifier that is provided to the la_objopen()
function that returned LA_FLG_BINDTO.

The symname argument points a string containing the name of the symbol.

The flags argument is a bit mask that both provides information about the symbol and
can be used to modify further auditing of this PLT (Procedure Linkage Table) entry.
The dynamic linker may supply the following bit values in this argument:

LA_SYMB_DLSYM The binding resulted from a call to dlsym(3).

LA_SYMB_ALTVALUE
A previous la_symbind*() call returned an alternate value
for this symbol.

By default, if the auditing library implements la_pltenter() and la_pltexit() functions
(see below), then these functions are invoked, after la_symbind(), for PLT entries, each
time the symbol is referenced. The following flags can be ORed into *flags to change
this default behavior:

LA_SYMB_NOPLTENTER
Don’t call la_pltenter() for this symbol.

LA_SYMB_NOPLTEXIT
Don’t call la_pltexit() for this symbol.

The return value of la_symbind32() and la_symbind64() is the address to which con-
trol should be passed after the function returns. If the auditing library is simply moni-
toring symbol bindings, then it should return sym->st_value. A different value may be
returned if the library wishes to direct control to an alternate location.

la_pltenter()
The precise name and argument types for this function depend on the hardware plat-
form. (The appropriate definition is supplied by <link.h>.) Here is the definition for
x86-32:

Elf32_Addr la_i86_gnu_pltenter(Elf32_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
La_i86_regs *regs, unsigned int * flags,
const char *symname, long * framesizep);

This function is invoked just before a PLT entry is called, between two shared objects
that have been marked for binding notification.

The sym, ndx, refcook, defcook, and symname are as for la_symbind*().

The regs argument points to a structure (defined in <link.h>) containing the values of
registers to be used for the call to this PLT entry.

Linux man-pages 6.16 2025-05-17 3729

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

The flags argument points to a bit mask that conveys information about, and can be used
to modify subsequent auditing of, this PLT entry, as for la_symbind*().

The framesizep argument points to a long int buffer that can be used to explicitly set the
frame size used for the call to this PLT entry. If different la_pltenter() invocations for
this symbol return different values, then the maximum returned value is used. The
la_pltexit() function is called only if this buffer is explicitly set to a suitable value.

The return value of la_pltenter() is as for la_symbind*().

la_pltexit()
The precise name and argument types for this function depend on the hardware plat-
form. (The appropriate definition is supplied by <link.h>.) Here is the definition for
x86-32:

unsigned int la_i86_gnu_pltexit(Elf32_Sym *sym, unsigned int ndx,
uintptr_t *refcook, uintptr_t *defcook,
const La_i86_regs *inregs, La_i86_retval *outregs,
const char *symname);

This function is called when a PLT entry, made between two shared objects that have
been marked for binding notification, returns. The function is called just before control
returns to the caller of the PLT entry.

The sym, ndx, refcook, defcook, and symname are as for la_symbind*().

The inregs argument points to a structure (defined in <link.h>) containing the values of
registers used for the call to this PLT entry. The outregs argument points to a structure
(defined in <link.h>) containing return values for the call to this PLT entry. These val-
ues can be modified by the caller, and the changes will be visible to the caller of the PLT
entry.

In the current GNU implementation, the return value of la_pltexit() is ignored.

VERSIONS
This API is very similar to the Solaris API described in the Solaris Linker and Libraries
Guide, in the chapter Runtime Linker Auditing Interface.

STANDARDS
None.

NOTES
Note the following differences from the Solaris dynamic linker auditing API:

• The Solaris la_objfilter() interface is not supported by the GNU implementation.

• The Solaris la_symbind32() and la_pltexit() functions do not provide a symname
argument.

• The Solaris la_pltexit() function does not provide inregs and outregs arguments (but
does provide a retval argument with the function return value).

BUGS
In glibc versions up to and include 2.9, specifying more than one audit library in
LD_AUDIT results in a run-time crash. This is reportedly fixed in glibc 2.10.

Linux man-pages 6.16 2025-05-17 3730

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

EXAMPLES
#include <link.h>
#include <stdio.h>

unsigned int
la_version(unsigned int version)
{

printf("la_version(): version = %u; LAV_CURRENT = %u\n",
version, LAV_CURRENT);

return LAV_CURRENT;
}

char *
la_objsearch(const char *name, uintptr_t *cookie, unsigned int flag)
{

printf("la_objsearch(): name = %s; cookie = %p", name, cookie);
printf("; flag = %s\n",

(flag == LA_SER_ORIG) ? "LA_SER_ORIG" :
(flag == LA_SER_LIBPATH) ? "LA_SER_LIBPATH" :
(flag == LA_SER_RUNPATH) ? "LA_SER_RUNPATH" :
(flag == LA_SER_DEFAULT) ? "LA_SER_DEFAULT" :
(flag == LA_SER_CONFIG) ? "LA_SER_CONFIG" :
(flag == LA_SER_SECURE) ? "LA_SER_SECURE" :
"???");

return name;
}

void
la_activity (uintptr_t *cookie, unsigned int flag)
{

printf("la_activity(): cookie = %p; flag = %s\n", cookie,
(flag == LA_ACT_CONSISTENT) ? "LA_ACT_CONSISTENT" :
(flag == LA_ACT_ADD) ? "LA_ACT_ADD" :
(flag == LA_ACT_DELETE) ? "LA_ACT_DELETE" :
"???");

}

unsigned int
la_objopen(struct link_map *map, Lmid_t lmid, uintptr_t *cookie)
{

printf("la_objopen(): loading \"%s\"; lmid = %s; cookie=%p\n",
map->l_name,
(lmid == LM_ID_BASE) ? "LM_ID_BASE" :
(lmid == LM_ID_NEWLM) ? "LM_ID_NEWLM" :
"???",

Linux man-pages 6.16 2025-05-17 3731

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

cookie);

return LA_FLG_BINDTO | LA_FLG_BINDFROM;
}

unsigned int
la_objclose (uintptr_t *cookie)
{

printf("la_objclose(): %p\n", cookie);

return 0;
}

void
la_preinit(uintptr_t *cookie)
{

printf("la_preinit(): %p\n", cookie);
}

uintptr_t
la_symbind32(Elf32_Sym *sym, unsigned int ndx, uintptr_t *refcook,

uintptr_t *defcook, unsigned int *flags, const char *symname)
{

printf("la_symbind32(): symname = %s; sym->st_value = %p\n",
symname, sym->st_value);

printf(" ndx = %u; flags = %#x", ndx, *flags);
printf("; refcook = %p; defcook = %p\n", refcook, defcook);

return sym->st_value;
}

uintptr_t
la_symbind64(Elf64_Sym *sym, unsigned int ndx, uintptr_t *refcook,

uintptr_t *defcook, unsigned int *flags, const char *symname)
{

printf("la_symbind64(): symname = %s; sym->st_value = %p\n",
symname, sym->st_value);

printf(" ndx = %u; flags = %#x", ndx, *flags);
printf("; refcook = %p; defcook = %p\n", refcook, defcook);

return sym->st_value;
}

Elf32_Addr
la_i86_gnu_pltenter(Elf32_Sym *sym, unsigned int ndx,

uintptr_t *refcook, uintptr_t *defcook, La_i86_regs *regs,
unsigned int *flags, const char *symname, long *framesizep)

Linux man-pages 6.16 2025-05-17 3732

RTLD-AUDIT (7) Miscellaneous Information Manual RTLD-AUDIT (7)

{
printf("la_i86_gnu_pltenter(): %s (%p)\n", symname, sym->st_value);

return sym->st_value;
}

SEE ALSO
ldd(1), dlopen(3), ld.so(8), ldconfig(8)

Linux man-pages 6.16 2025-05-17 3733

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

NAME
rtnetlink - Linux routing socket

SYNOPSIS
#include <asm/types.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>
#include <sys/socket.h>

rtnetlink_socket = socket(AF_NETLINK, int socket_type, NETLINK_ROUTE);

DESCRIPTION
Rtnetlink allows the kernel’s routing tables to be read and altered. It is used within the
kernel to communicate between various subsystems, though this usage is not docu-
mented here, and for communication with user-space programs. Network routes, IP ad-
dresses, link parameters, neighbor setups, queueing disciplines, traffic classes and packet
classifiers may all be controlled through NETLINK_ROUTE sockets. It is based on
netlink messages; see netlink(7) for more information.

Routing attributes
Some rtnetlink messages have optional attributes after the initial header:

struct rtattr {
unsigned short rta_len; /* Length of option */
unsigned short rta_type; /* Type of option */
/* Data follows */

};

These attributes should be manipulated using only the RTA_* macros or libnetlink, see
rtnetlink(3).

Messages
Rtnetlink consists of these message types (in addition to standard netlink messages):

RTM_NEWLINK
RTM_DELLINK
RTM_GETLINK

Create, remove, or get information about a specific network interface. These
messages contain an ifinfomsg structure followed by a series of rtattr structures.

struct ifinfomsg {
unsigned char ifi_family; /* AF_UNSPEC */
unsigned short ifi_type; /* Device type */
int ifi_index; /* Interface index */
unsigned int ifi_flags; /* Device flags */
unsigned int ifi_change; /* change mask */

};

ifi_flags contains the device flags, see netdevice(7); ifi_index is the unique inter-
face index (since Linux 3.7, it is possible to feed a nonzero value with the
RTM_NEWLINK message, thus creating a link with the given ifindex);
ifi_change is reserved for future use and should be always set to 0xFFFFFFFF.

Linux man-pages 6.16 2025-10-12 3734

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

Routing attributes
rta_type Value type Description
IFLA_UNSPEC - unspecified
IFLA_ADDRESS hardware address interface L2 address
IFLA_BROADCAST hardware address L2 broadcast address
IFLA_IFNAME asciiz string Device name
IFLA_MTU unsigned int MTU of the device
IFLA_LINK int Link type
IFLA_QDISC asciiz string Queueing discipline
IFLA_STATS Interface Statisticssee below
IFLA_PERM_ADDRESS hardware address hardware address pro-

vided by device (since
Linux 5.5)

The value type for IFLA_STATS is struct rtnl_link_stats (struct net_de-
vice_stats in Linux 2.4 and earlier).

RTM_NEWADDR
RTM_DELADDR
RTM_GETADDR

Add, remove, or receive information about an IP address associated with an in-
terface. In Linux 2.2, an interface can carry multiple IP addresses, this replaces
the alias device concept in Linux 2.0. In Linux 2.2, these messages support IPv4
and IPv6 addresses. They contain an ifaddrmsg structure, optionally followed by
rtattr routing attributes.

struct ifaddrmsg {
unsigned char ifa_family; /* Address type */
unsigned char ifa_prefixlen; /* Prefixlength of address */
unsigned char ifa_flags; /* Address flags */
unsigned char ifa_scope; /* Address scope */
unsigned int ifa_index; /* Interface index */

};

ifa_family is the address family type (currently AF_INET or AF_INET6),
ifa_prefixlen is the length of the address mask of the address if defined for the
family (like for IPv4), ifa_scope is the address scope, ifa_index is the interface
index of the interface the address is associated with. ifa_flags is a flag word of
IFA_F_SECONDARY for secondary address (old alias interface),
IFA_F_PERMANENT for a permanent address set by the user and other un-
documented flags.

Attributes
rta_type Value type Description
IFA_UNSPEC - unspecified
IFA_ADDRESS raw protocol address interface address
IFA_LOCAL raw protocol address local address
IFA_LABEL asciiz string name of the interface
IFA_BROADCAST raw protocol address broadcast address

Linux man-pages 6.16 2025-10-12 3735

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

IFA_ANYCAST raw protocol address anycast address
IFA_CACHEINFO struct ifa_cacheinfo Address information

struct ifa_cacheinfo {
__u32 ifa_prefered; // Preferred lifetime remaining, in seconds
__u32 ifa_valid; // Valid lifetime remaining, in seconds
__u32 cstamp; // Creation timestamp, in centiseconds
__u32 tstamp; // Update timestamp, in centiseconds

};

ifa_valid cannot be zero, and ifa_prefered cannot be greater than ifa_valid . A
value of UINT32_MAX represents an infinite lifetime.

RTM_NEWROUTE
RTM_DELROUTE
RTM_GETROUTE

Create, remove, or receive information about a network route. These messages
contain an rtmsg structure with an optional sequence of rtattr structures follow-
ing. For RTM_GETROUTE, setting rtm_dst_len and rtm_src_len to 0 means
you get all entries for the specified routing table. For the other fields, except
rtm_table and rtm_protocol, 0 is the wildcard.

struct rtmsg {
unsigned char rtm_family; /* Address family of route */
unsigned char rtm_dst_len; /* Length of destination */
unsigned char rtm_src_len; /* Length of source */
unsigned char rtm_tos; /* TOS filter */
unsigned char rtm_table; /* Routing table ID;

see RTA_TABLE below */
unsigned char rtm_protocol; /* Routing protocol; see below */
unsigned char rtm_scope; /* See below */
unsigned char rtm_type; /* See below */

unsigned int rtm_flags;
};
rtm_type Route type
RTN_UNSPEC unknown route
RTN_UNICAST a gateway or direct route
RTN_LOCAL a local interface route
RTN_BROADCAST a local broadcast route (sent as a broad-

cast)
RTN_ANYCAST a local broadcast route (sent as a uni-

cast)
RTN_MULTICAST a multicast route
RTN_BLACKHOLE a packet dropping route
RTN_UNREACHABLE an unreachable destination
RTN_PROHIBIT a packet rejection route
RTN_THROW continue routing lookup in another table

Linux man-pages 6.16 2025-10-12 3736

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

RTN_NAT a network address translation rule
RTN_XRESOLVE refer to an external resolver (not imple-

mented)
rtm_protocol Route origin
RTPROT_UNSPEC unknown
RTPROT_REDIRECT by an ICMP redirect (currently

unused)
RTPROT_KERNEL by the kernel
RTPROT_BOOT during boot
RTPROT_STATIC by the administrator

Values larger than RTPROT_STATIC are not interpreted by the kernel, they are
just for user information. They may be used to tag the source of a routing infor-
mation or to distinguish between multiple routing daemons. See <linux/rt-
netlink.h> for the routing daemon identifiers which are already assigned.

rtm_scope is the distance to the destination:
RT_SCOPE_UNIVERSE global route
RT_SCOPE_SITE interior route in the local au-

tonomous system
RT_SCOPE_LINK route on this link
RT_SCOPE_HOST route on the local host
RT_SCOPE_NOWHERE destination doesn’t exist

The values between RT_SCOPE_UNIVERSE and RT_SCOPE_SITE are
available to the user.

The rtm_flags have the following meanings:
RTM_F_NOTIFY if the route changes, notify the user via rt-

netlink
RTM_F_CLONED route is cloned from another route
RTM_F_EQUALIZE a multipath equalizer (not yet implemented)

rtm_table specifies the routing table
RT_TABLE_UNSPEC an unspecified routing table
RT_TABLE_DEFAULT the default table
RT_TABLE_MAIN the main table
RT_TABLE_LOCAL the local table

The user may assign arbitrary values between RT_TABLE_UNSPEC and
RT_TABLE_DEFAULT.

Linux man-pages 6.16 2025-10-12 3737

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

Attributes
rta_type Value type Description
RTA_UNSPEC - ignored
RTA_DST protocol address Route destination address
RTA_SRC protocol address Route source address
RTA_IIF int Input interface index
RTA_OIF int Output interface index
RTA_GATEWAY protocol address The gateway of the route
RTA_PRIORITY int Priority of route
RTA_PREFSRC protocol address Preferred source address
RTA_METRICS Route metrics

(see below).
RTA_MULTIPATH Multipath nexthop data

(see below).
RTA_PROTOINFO No longer used
RTA_FLOW int Route realm
RTA_CACHEINFO struct rta_cacheinfo (see linux/rtnetlink.h)
RTA_SESSION No longer used
RTA_MP_ALGO No longer used
RTA_TABLE int Routing table ID; if set,

rtm_table is ignored
RTA_MARK int
RTA_MFC_STATS struct rta_mfc_stats (see linux/rtnetlink.h)
RTA_VIA struct rtvia Gateway in different AF (see be-

low)
RTA_NEWDST protocol address Change packet destination ad-

dress
RTA_PREF char RFC4191 IPv6 router preference

(see below)
RTA_ENCAP_TYPE short Encapsulation type for

lwtunnels (see below)
RTA_ENCAP Defined by RTA_ENCAP_TYPE
RTA_EXPIRES int Expire time for IPv6 routes (in

seconds)

RTA_METRICS contains an array of struct rtattr with their corresponding at-
tributes:

Attributes
rta_type Value type Description
RTAX_UNSPEC - unspecified
RTAX_LOCK __u32 Bit field indicat-

ing which
RTAX_* attrib-
utes are locked.

Linux man-pages 6.16 2025-10-12 3738

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

RTAX_MTU __u32 Maximum
Transmission
Unit for this
route.

RTAX_WINDOW __u32 Maximum size
of the receive
window for this
route.

RTAX_RTT __u32 Estimated
round-trip time
for this route.

RTAX_RTTVAR __u32 Estimated
round-trip time
variation for this
route.

RTAX_SSTHRESH __u32 Slow start
threshold to use
for this route.

RTAX_CWND __u32 Maximum size
of the conges-
tion window for
this route.

RTAX_ADVMSS __u32 Maximum Seg-
ment Size to ad-
vertise for this
route.

RTAX_REORDERING __u32 Initial reorder-
ing level of
packets for this
route.

RTAX_HOPLIMIT __u32 Hop limit (TTL)
to use for this
route.

RTAX_INITCWND __u32 Initial conges-
tion window to
use for this
route.

RTAX_FEATURES __u32 Features to en-
able for this
route specifi-
cally.

RTAX_RTO_MIN __u32 Minimum Re-
transmission
TimeOut to use
for this route.

Linux man-pages 6.16 2025-10-12 3739

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

RTAX_INITRWND __u32 Initial size of
the receive win-
dow for this
route.

RTAX_QUICKACK __u32 Use quick ack
for this route.

RTAX_CC_ALGO asciiz string Congestion
Control algo-
rithm to use for
this route.

RTAX_FASTOPEN_NO_COOKIE __u32 Allow TCP Fast
Open without
cookie.

Metrics that are locked with RTAX_LOCK take precedence over the values nor-
mally used by the kernel (computed or assigned by a sysctl or setsockopt(2)).
Therefore, some metrics, like RTAX_RTO_MIN, have no effect unless their bit
is set in RTAX_LOCK.

RTA_MULTIPATH contains several packed instances of struct rtnexthop to-
gether with nested RTAs (RTA_GATEWAY):

struct rtnexthop {
unsigned short rtnh_len; /* Length of struct + length

of RTAs */
unsigned char rtnh_flags; /* Flags (see

linux/rtnetlink.h) */
unsigned char rtnh_hops; /* Nexthop priority */
int rtnh_ifindex; /* Interface index for this

nexthop */
}

There exist a bunch of RTNH_* macros similar to RTA_* and NLHDR_*
macros useful to handle these structures.

struct rtvia {
unsigned short rtvia_family;
unsigned char rtvia_addr[0];

};

rtvia_addr is the address, rtvia_family is its family type.

RTA_PREF may contain values ICMPV6_ROUTER_PREF_LOW,
ICMPV6_ROUTER_PREF_MEDIUM, and
ICMPV6_ROUTER_PREF_HIGH defined incw <linux/icmpv6.h>.

RTA_ENCAP_TYPE may contain values LWTUNNEL_ENCAP_MPLS,
LWTUNNEL_ENCAP_IP, LWTUNNEL_ENCAP_ILA, or LWTUN-
NEL_ENCAP_IP6 defined in <linux/lwtunnel.h>.

Fill these values in!

Linux man-pages 6.16 2025-10-12 3740

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

RTM_NEWNEIGH
RTM_DELNEIGH
RTM_GETNEIGH

Add, remove, or receive information about a neighbor table entry (e.g., an ARP
entry). The message contains an ndmsg structure.

struct ndmsg {
unsigned char ndm_family;
int ndm_ifindex; /* Interface index */
__u16 ndm_state; /* State */
__u8 ndm_flags; /* Flags */
__u8 ndm_type;

};

struct nda_cacheinfo {
__u32 ndm_confirmed;
__u32 ndm_used;
__u32 ndm_updated;
__u32 ndm_refcnt;

};

ndm_state is a bit mask of the following states:
NUD_INCOMPLETE a currently resolving cache entry
NUD_REACHABLE a confirmed working cache entry
NUD_STALE an expired cache entry
NUD_DELAY an entry waiting for a timer
NUD_PROBE a cache entry that is currently reprobed
NUD_FAILED an invalid cache entry
NUD_NOARP a device with no destination cache
NUD_PERMANENT a static entry

Valid ndm_flags are:
NTF_PROXY a proxy arp entry
NTF_ROUTER an IPv6 router

The rtattr struct has the following meanings for the rta_type field:
NDA_UNSPEC unknown type
NDA_DST a neighbor cache n/w layer destination address
NDA_LLADDR a neighbor cache link layer address
NDA_CACHEINFO cache statistics

If the rta_type field is NDA_CACHEINFO, then a struct nda_cacheinfo header
follows.

RTM_NEWRULE
RTM_DELRULE
RTM_GETRULE

Add, delete, or retrieve a routing rule. Carries a struct rtmsg

Linux man-pages 6.16 2025-10-12 3741

rtnetlink(7) Miscellaneous Information Manual rtnetlink(7)

RTM_NEWQDISC
RTM_DELQDISC
RTM_GETQDISC

Add, remove, or get a queueing discipline. The message contains a struct tcmsg
and may be followed by a series of attributes.

struct tcmsg {
unsigned char tcm_family;
int tcm_ifindex; /* interface index */
__u32 tcm_handle; /* Qdisc handle */
__u32 tcm_parent; /* Parent qdisc */
__u32 tcm_info;

};
Attributes

rta_type Value type Description
TCA_UNSPEC - unspecified
TCA_KIND asciiz string Name of queueing discipline
TCA_OPTIONS byte sequence Qdisc-specific options follow
TCA_STATS struct tc_stats Qdisc statistics
TCA_XSTATS qdisc-specific Module-specific statistics
TCA_RATE struct tc_estimator Rate limit

In addition, various other qdisc-module-specific attributes are allowed. For more
information see the appropriate include files.

RTM_NEWTCLASS
RTM_DELTCLASS
RTM_GETTCLASS

Add, remove, or get a traffic class. These messages contain a struct tcmsg as de-
scribed above.

RTM_NEWTFILTER
RTM_DELTFILTER
RTM_GETTFILTER

Add, remove, or receive information about a traffic filter. These messages con-
tain a struct tcmsg as described above.

VERSIONS
rtnetlink is a new feature of Linux 2.2.

BUGS
This manual page is incomplete.

SEE ALSO
cmsg(3), rtnetlink(3), ip(7), netlink(7)

Linux man-pages 6.16 2025-10-12 3742

sched(7) Miscellaneous Information Manual sched(7)

NAME
sched - overview of CPU scheduling

DESCRIPTION
Since Linux 2.6.23, the default scheduler is CFS, the "Completely Fair Scheduler". The
CFS scheduler replaced the earlier "O(1)" scheduler.

API summary
Linux provides the following system calls for controlling the CPU scheduling behavior,
policy, and priority of processes (or, more precisely, threads).

nice(2)
Set a new nice value for the calling thread, and return the new nice value.

getpriority(2)
Return the nice value of a thread, a process group, or the set of threads owned by
a specified user.

setpriority(2)
Set the nice value of a thread, a process group, or the set of threads owned by a
specified user.

sched_setscheduler(2)
Set the scheduling policy and parameters of a specified thread.

sched_getscheduler(2)
Return the scheduling policy of a specified thread.

sched_setparam(2)
Set the scheduling parameters of a specified thread.

sched_getparam(2)
Fetch the scheduling parameters of a specified thread.

sched_get_priority_max(2)
Return the maximum priority available in a specified scheduling policy.

sched_get_priority_min(2)
Return the minimum priority available in a specified scheduling policy.

sched_rr_get_interval(2)
Fetch the quantum used for threads that are scheduled under the "round-robin"
scheduling policy.

sched_yield(2)
Cause the caller to relinquish the CPU, so that some other thread be executed.

sched_setaffinity(2)
(Linux-specific) Set the CPU affinity of a specified thread.

sched_getaffinity(2)
(Linux-specific) Get the CPU affinity of a specified thread.

sched_setattr(2)
Set the scheduling policy and parameters of a specified thread. This (Linux-spe-
cific) system call provides a superset of the functionality of sched_setsched-
uler(2) and sched_setparam(2).

Linux man-pages 6.16 2025-10-15 3743

sched(7) Miscellaneous Information Manual sched(7)

sched_getattr(2)
Fetch the scheduling policy and parameters of a specified thread. This (Linux-
specific) system call provides a superset of the functionality of sched_getsched-
uler(2) and sched_getparam(2).

Scheduling policies
The scheduler is the kernel component that decides which runnable thread will be exe-
cuted by the CPU next. Each thread has an associated scheduling policy and a static
scheduling priority, sched_priority. The scheduler makes its decisions based on knowl-
edge of the scheduling policy and static priority of all threads on the system.

For threads scheduled under one of the normal scheduling policies (SCHED_OTHER,
SCHED_IDLE, SCHED_BATCH), sched_priority is not used in scheduling decisions
(it must be specified as 0).

Processes scheduled under one of the real-time policies (SCHED_FIFO, SCHED_RR)
have a sched_priority value in the range 1 (low) to 99 (high). (As the numbers imply,
real-time threads always have higher priority than normal threads.) Note well: POSIX.1
requires an implementation to support only a minimum 32 distinct priority levels for the
real-time policies, and some systems supply just this minimum. Portable programs
should use sched_get_priority_min(2) and sched_get_priority_max(2) to find the range
of priorities supported for a particular policy.

Conceptually, the scheduler maintains a list of runnable threads for each possible
sched_priority value. In order to determine which thread runs next, the scheduler looks
for the nonempty list with the highest static priority and selects the thread at the head of
this list.

A thread’s scheduling policy determines where it will be inserted into the list of threads
with equal static priority and how it will move inside this list.

All scheduling is preemptive: if a thread with a higher static priority becomes ready to
run, the currently running thread will be preempted and returned to the wait list for its
static priority level. The scheduling policy determines the ordering only within the list
of runnable threads with equal static priority.

SCHED_FIFO: First in-first out scheduling
SCHED_FIFO can be used only with static priorities higher than 0, which means that
when a SCHED_FIFO thread becomes runnable, it will always immediately preempt
any currently running SCHED_OTHER, SCHED_BATCH, or SCHED_IDLE thread.
SCHED_FIFO is a simple scheduling algorithm without time slicing. For threads
scheduled under the SCHED_FIFO policy, the following rules apply:

• A running SCHED_FIFO thread that has been preempted by another thread of
higher priority will stay at the head of the list for its priority and will resume execu-
tion as soon as all threads of higher priority are blocked again.

• When a blocked SCHED_FIFO thread becomes runnable, it will be inserted at the
end of the list for its priority.

• If a call to sched_setscheduler(2), sched_setparam(2), sched_setattr(2),
pthread_setschedparam(3), or pthread_setschedprio(3) changes the priority of the
running or runnable SCHED_FIFO thread identified by pid the effect on the

Linux man-pages 6.16 2025-10-15 3744

sched(7) Miscellaneous Information Manual sched(7)

thread’s position in the list depends on the direction of the change to the thread’s pri-
ority:

(a) If the thread’s priority is raised, it is placed at the end of the list for its new
priority. As a consequence, it may preempt a currently running thread with
the same priority.

(b) If the thread’s priority is unchanged, its position in the run list is unchanged.

(c) If the thread’s priority is lowered, it is placed at the front of the list for its new
priority.

According to POSIX.1-2008, changes to a thread’s priority (or policy) using any
mechanism other than pthread_setschedprio(3) should result in the thread being
placed at the end of the list for its priority.

• A thread calling sched_yield(2) will be put at the end of the list.

No other events will move a thread scheduled under the SCHED_FIFO policy in the
wait list of runnable threads with equal static priority.

A SCHED_FIFO thread runs until either it is blocked by an I/O request, it is preempted
by a higher priority thread, or it calls sched_yield(2).

SCHED_RR: Round-robin scheduling
SCHED_RR is a simple enhancement of SCHED_FIFO. Everything described above
for SCHED_FIFO also applies to SCHED_RR, except that each thread is allowed to
run only for a maximum time quantum. If a SCHED_RR thread has been running for a
time period equal to or longer than the time quantum, it will be put at the end of the list
for its priority. A SCHED_RR thread that has been preempted by a higher priority
thread and subsequently resumes execution as a running thread will complete the unex-
pired portion of its round-robin time quantum. The length of the time quantum can be
retrieved using sched_rr_get_interval(2).

SCHED_DEADLINE: Sporadic task model deadline scheduling
Since Linux 3.14, Linux provides a deadline scheduling policy (SCHED_DEADLINE).
This policy is currently implemented using GEDF (Global Earliest Deadline First) in
conjunction with CBS (Constant Bandwidth Server). To set and fetch this policy and as-
sociated attributes, one must use the Linux-specific sched_setattr(2) and
sched_getattr(2) system calls.

A sporadic task is one that has a sequence of jobs, where each job is activated at most
once per period. Each job also has a relative deadline, before which it should finish exe-
cution, and a computation time, which is the CPU time necessary for executing the job.
The moment when a task wakes up because a new job has to be executed is called the
arrival time (also referred to as the request time or release time). The start time is the
time at which a task starts its execution. The absolute deadline is thus obtained by
adding the relative deadline to the arrival time.

The following diagram clarifies these terms:

arrival/wakeup absolute deadline
| start time |
| | |

Linux man-pages 6.16 2025-10-15 3745

sched(7) Miscellaneous Information Manual sched(7)

v v v
-----x--------xooooooooooooooooo--------x--------x---

|<- comp. time ->|
|<------- relative deadline ------>|
|<-------------- period ------------------->|

When setting a SCHED_DEADLINE policy for a thread using sched_setattr(2), one
can specify three parameters: Runtime, Deadline, and Period . These parameters do not
necessarily correspond to the aforementioned terms: usual practice is to set Runtime to
something bigger than the average computation time (or worst-case execution time for
hard real-time tasks), Deadline to the relative deadline, and Period to the period of the
task. Thus, for SCHED_DEADLINE scheduling, we have:

arrival/wakeup absolute deadline
| start time |
| | |
v v v

-----x--------xooooooooooooooooo--------x--------x---
|<-- Runtime ------->|

|<----------- Deadline ----------->|
|<-------------- Period ------------------->|

The three deadline-scheduling parameters correspond to the sched_runtime,
sched_deadline, and sched_period fields of the sched_attr structure; see sched_se-
tattr(2). These fields express values in nanoseconds. If sched_period is specified as 0,
then it is made the same as sched_deadline.

The kernel requires that:

sched_runtime <= sched_deadline <= sched_period

In addition, under the current implementation, all of the parameter values must be at
least 1024 (i.e., just over one microsecond, which is the resolution of the implementa-
tion), and less than 2^63. If any of these checks fails, sched_setattr(2) fails with the er-
ror EINVAL.

The CBS guarantees non-interference between tasks, by throttling threads that attempt
to over-run their specified Runtime.

To ensure deadline scheduling guarantees, the kernel must prevent situations where the
set of SCHED_DEADLINE threads is not feasible (schedulable) within the given con-
straints. The kernel thus performs an admittance test when setting or changing
SCHED_DEADLINE policy and attributes. This admission test calculates whether the
change is feasible; if it is not, sched_setattr(2) fails with the error EBUSY.

For example, it is required (but not necessarily sufficient) for the total utilization to be
less than or equal to the total number of CPUs available, where, since each thread can
maximally run for Runtime per Period, that thread’s utilization is its Runtime divided by
its Period.

In order to fulfill the guarantees that are made when a thread is admitted to the
SCHED_DEADLINE policy, SCHED_DEADLINE threads are the highest priority
(user controllable) threads in the system; if any SCHED_DEADLINE thread is

Linux man-pages 6.16 2025-10-15 3746

sched(7) Miscellaneous Information Manual sched(7)

runnable, it will preempt any thread scheduled under one of the other policies.

A call to fork(2) by a thread scheduled under the SCHED_DEADLINE policy fails
with the error EAGAIN, unless the thread has its reset-on-fork flag set (see below).

A SCHED_DEADLINE thread that calls sched_yield(2) will yield the current job and
wait for a new period to begin.

SCHED_OTHER: Default Linux time-sharing scheduling
SCHED_OTHER can be used at only static priority 0 (i.e., threads under real-time poli-
cies always have priority over SCHED_OTHER processes). SCHED_OTHER is the
standard Linux time-sharing scheduler that is intended for all threads that do not require
the special real-time mechanisms.

The thread to run is chosen from the static priority 0 list based on a dynamic priority
that is determined only inside this list. The dynamic priority is based on the nice value
(see below) and is increased for each time quantum the thread is ready to run, but denied
to run by the scheduler. This ensures fair progress among all SCHED_OTHER
threads.

In the Linux kernel source code, the SCHED_OTHER policy is actually named
SCHED_NORMAL.

The nice value
The nice value is an attribute that can be used to influence the CPU scheduler to favor or
disfavor a process in scheduling decisions. It affects the scheduling of
SCHED_OTHER and SCHED_BATCH (see below) processes. The nice value can be
modified using nice(2), setpriority(2), or sched_setattr(2).

According to POSIX.1, the nice value is a per-process attribute; that is, the threads in a
process should share a nice value. However, on Linux, the nice value is a per-thread at-
tribute: different threads in the same process may have different nice values.

The range of the nice value varies across UNIX systems. On modern Linux, the range is
-20 (high priority) to +19 (low priority). On some other systems, the range is -20..20.
Very early Linux kernels (before Linux 2.0) had the range -infinity..15.

The degree to which the nice value affects the relative scheduling of SCHED_OTHER
processes likewise varies across UNIX systems and across Linux kernel versions.

With the advent of the CFS scheduler in Linux 2.6.23, Linux adopted an algorithm that
causes relative differences in nice values to have a much stronger effect. In the current
implementation, each unit of difference in the nice values of two processes results in a
factor of 1.25 in the degree to which the scheduler favors the higher priority process.
This causes very low nice values (+19) to truly provide little CPU to a process whenever
there is any other higher priority load on the system, and makes high nice values (-20)
deliver most of the CPU to applications that require it (e.g., some audio applications).

On Linux, the RLIMIT_NICE resource limit can be used to define a limit to which an
unprivileged process’s nice value can be raised; see setrlimit(2) for details.

For further details on the nice value, see the subsections on the autogroup feature and
group scheduling, below.

Linux man-pages 6.16 2025-10-15 3747

sched(7) Miscellaneous Information Manual sched(7)

SCHED_BATCH: Scheduling batch processes
(Since Linux 2.6.16.) SCHED_BATCH can be used only at static priority 0. This pol-
icy is similar to SCHED_OTHER in that it schedules the thread according to its dy-
namic priority (based on the nice value). The difference is that this policy will cause the
scheduler to always assume that the thread is CPU-intensive. Consequently, the sched-
uler will apply a small scheduling penalty with respect to wakeup behavior, so that this
thread is mildly disfavored in scheduling decisions.

This policy is useful for workloads that are noninteractive, but do not want to lower their
nice value, and for workloads that want a deterministic scheduling policy without inter-
activity causing extra preemptions (between the workload’s tasks).

SCHED_IDLE: Scheduling very low priority jobs
(Since Linux 2.6.23.) SCHED_IDLE can be used only at static priority 0; the process
nice value has no influence for this policy.

This policy is intended for running jobs at extremely low priority (lower even than a +19
nice value with the SCHED_OTHER or SCHED_BATCH policies).

Resetting scheduling policy for child processes
Each thread has a reset-on-fork scheduling flag. When this flag is set, children created
by fork(2) do not inherit privileged scheduling policies. The reset-on-fork flag can be
set by either:

• ORing the SCHED_RESET_ON_FORK flag into the policy argument when call-
ing sched_setscheduler(2) (since Linux 2.6.32); or

• specifying the SCHED_FLAG_RESET_ON_FORK flag in attr.sched_flags when
calling sched_setattr(2).

Note that the constants used with these two APIs have different names. The state of the
reset-on-fork flag can analogously be retrieved using sched_getscheduler(2) and
sched_getattr(2).

The reset-on-fork feature is intended for media-playback applications, and can be used
to prevent applications evading the RLIMIT_RTTIME resource limit (see getrlimit(2))
by creating multiple child processes.

More precisely, if the reset-on-fork flag is set, the following rules apply for subsequently
created children:

• If the calling thread has a scheduling policy of SCHED_FIFO or SCHED_RR, the
policy is reset to SCHED_OTHER in child processes.

• If the calling process has a negative nice value, the nice value is reset to zero in child
processes.

After the reset-on-fork flag has been enabled, it can be reset only if the thread has the
CAP_SYS_NICE capability. This flag is disabled in child processes created by fork(2).

Privileges and resource limits
Before Linux 2.6.12, only privileged (CAP_SYS_NICE) threads can set a nonzero sta-
tic priority (i.e., set a real-time scheduling policy). The only change that an unprivileged
thread can make is to set the SCHED_OTHER policy, and this can be done only if the
effective user ID of the caller matches the real or effective user ID of the target thread

Linux man-pages 6.16 2025-10-15 3748

sched(7) Miscellaneous Information Manual sched(7)

(i.e., the thread specified by pid) whose policy is being changed.

A thread must be privileged (CAP_SYS_NICE) in order to set or modify a
SCHED_DEADLINE policy.

Since Linux 2.6.12, the RLIMIT_RTPRIO resource limit defines a ceiling on an un-
privileged thread’s static priority for the SCHED_RR and SCHED_FIFO policies. The
rules for changing scheduling policy and priority are as follows:

• If an unprivileged thread has a nonzero RLIMIT_RTPRIO soft limit, then it can
change its scheduling policy and priority, subject to the restriction that the priority
cannot be set to a value higher than the maximum of its current priority and its
RLIMIT_RTPRIO soft limit.

• If the RLIMIT_RTPRIO soft limit is 0, then the only permitted changes are to
lower the priority, or to switch to a non-real-time policy.

• Subject to the same rules, another unprivileged thread can also make these changes,
as long as the effective user ID of the thread making the change matches the real or
effective user ID of the target thread.

• Special rules apply for the SCHED_IDLE policy. Before Linux 2.6.39, an unprivi-
leged thread operating under this policy cannot change its policy, regardless of the
value of its RLIMIT_RTPRIO resource limit. Since Linux 2.6.39, an unprivileged
thread can switch to either the SCHED_BATCH or the SCHED_OTHER policy so
long as its nice value falls within the range permitted by its RLIMIT_NICE re-
source limit (see getrlimit(2)).

Privileged (CAP_SYS_NICE) threads ignore the RLIMIT_RTPRIO limit; as with
older kernels, they can make arbitrary changes to scheduling policy and priority. See
getrlimit(2) for further information on RLIMIT_RTPRIO.

Limiting the CPU usage of real-time and deadline processes
A nonblocking infinite loop in a thread scheduled under the SCHED_FIFO,
SCHED_RR, or SCHED_DEADLINE policy can potentially block all other threads
from accessing the CPU forever. Before Linux 2.6.25, the only way of preventing a run-
away real-time process from freezing the system was to run (at the console) a shell
scheduled under a higher static priority than the tested application. This allows an emer-
gency kill of tested real-time applications that do not block or terminate as expected.

Since Linux 2.6.25, there are other techniques for dealing with runaway real-time and
deadline processes. One of these is to use the RLIMIT_RTTIME resource limit to set
a ceiling on the CPU time that a real-time process may consume. See getrlimit(2) for
details.

Since Linux 2.6.25, Linux also provides two /proc files that can be used to reserve a cer-
tain amount of CPU time to be used by non-real-time processes. Reserving CPU time in
this fashion allows some CPU time to be allocated to (say) a root shell that can be used
to kill a runaway process. Both of these files specify time values in microseconds:

/proc/sys/kernel/sched_rt_period_us
This file specifies a scheduling period that is equivalent to 100% CPU band-
width. The value in this file can range from 1 to INT_MAX, giving an operating
range of 1 microsecond to around 35 minutes. The default value in this file is

Linux man-pages 6.16 2025-10-15 3749

sched(7) Miscellaneous Information Manual sched(7)

1,000,000 (1 second).

/proc/sys/kernel/sched_rt_runtime_us
The value in this file specifies how much of the "period" time can be used by all
real-time and deadline scheduled processes on the system. The value in this file
can range from -1 to INT_MAX-1. Specifying -1 makes the run time the same
as the period; that is, no CPU time is set aside for non-real-time processes
(which was the behavior before Linux 2.6.25). The default value in this file is
950,000 (0.95 seconds), meaning that 5% of the CPU time is reserved for
processes that don’t run under a real-time or deadline scheduling policy.

Response time
A blocked high priority thread waiting for I/O has a certain response time before it is
scheduled again. The device driver writer can greatly reduce this response time by using
a "slow interrupt" interrupt handler.

Miscellaneous
Child processes inherit the scheduling policy and parameters across a fork(2). The
scheduling policy and parameters are preserved across execve(2).

Memory locking is usually needed for real-time processes to avoid paging delays; this
can be done with mlock(2) or mlockall(2).

The autogroup feature
Since Linux 2.6.38, the kernel provides a feature known as autogrouping to improve in-
teractive desktop performance in the face of multiprocess CPU-intensive workloads such
as building the Linux kernel with large numbers of parallel build processes (i.e., the
make(1) -j flag).

This feature operates in conjunction with the CFS scheduler and requires a kernel that is
configured with CONFIG_SCHED_AUTOGROUP. On a running system, this feature
is enabled or disabled via the file /proc/sys/kernel/sched_autogroup_enabled; a value of
0 disables the feature, while a value of 1 enables it. The default value in this file is 1,
unless the kernel was booted with the noautogroup parameter.

A new autogroup is created when a new session is created via setsid(2); this happens, for
example, when a new terminal window is started. A new process created by fork(2) in-
herits its parent’s autogroup membership. Thus, all of the processes in a session are
members of the same autogroup. An autogroup is automatically destroyed when the last
process in the group terminates.

When autogrouping is enabled, all of the members of an autogroup are placed in the
same kernel scheduler "task group". When disabled, the group creation happens as
above, and autogroup membership is still visible in /proc, but the autogroups are not
used. The CFS scheduler employs an algorithm that equalizes the distribution of CPU
cycles across task groups. The benefits of this for interactive desktop performance can
be described via the following example.

Suppose that there are two autogroups competing for the same CPU (i.e., presume either
a single CPU system or the use of taskset(1) to confine all the processes to the same
CPU on an SMP system). The first group contains ten CPU-bound processes from a
kernel build started with make -j10. The other contains a single CPU-bound process: a

Linux man-pages 6.16 2025-10-15 3750

sched(7) Miscellaneous Information Manual sched(7)

video player. The effect of autogrouping is that the two groups will each receive half of
the CPU cycles. That is, the video player will receive 50% of the CPU cycles, rather
than just 9% of the cycles, which would likely lead to degraded video playback. The sit-
uation on an SMP system is more complex, but the general effect is the same: the sched-
uler distributes CPU cycles across task groups such that an autogroup that contains a
large number of CPU-bound processes does not end up hogging CPU cycles at the ex-
pense of the other jobs on the system.

A process’s autogroup (task group) membership can be viewed via the file
/proc/ pid /autogroup:

$ cat /proc/1/autogroup
/autogroup-1 nice 0

This file can also be used to modify the CPU bandwidth allocated to an autogroup. This
is done by writing a number in the "nice" range to the file to set the autogroup’s nice
value. The allowed range is from +19 (low priority) to -20 (high priority). (Writing
values outside of this range causes write(2) to fail with the error EINVAL.)

The autogroup nice setting has the same meaning as the process nice value, but applies
to distribution of CPU cycles to the autogroup as a whole, based on the relative nice val-
ues of other autogroups. For a process inside an autogroup, the CPU cycles that it re-
ceives will be a product of the autogroup’s nice value (compared to other autogroups)
and the process’s nice value (compared to other processes in the same autogroup.

The use of the cgroups(7) CPU controller to place processes in cgroups other than the
root CPU cgroup overrides the effect of autogrouping.

The autogroup feature groups only processes scheduled under non-real-time policies
(SCHED_OTHER, SCHED_BATCH, and SCHED_IDLE). It does not group
processes scheduled under real-time and deadline policies. Those processes are sched-
uled according to the rules described earlier.

The nice value and group scheduling
When scheduling non-real-time processes (i.e., those scheduled under the
SCHED_OTHER, SCHED_BATCH, and SCHED_IDLE policies), the CFS scheduler
employs a technique known as "group scheduling", if the kernel was configured with the
CONFIG_FAIR_GROUP_SCHED option (which is typical).

Under group scheduling, threads are scheduled in "task groups". Task groups have a hi-
erarchical relationship, rooted under the initial task group on the system, known as the
"root task group". Task groups are formed in the following circumstances:

• All of the threads in a CPU cgroup form a task group. The parent of this task group
is the task group of the corresponding parent cgroup.

• If autogrouping is enabled, then all of the threads that are (implicitly) placed in an
autogroup (i.e., the same session, as created by setsid(2)) form a task group. Each
new autogroup is thus a separate task group. The root task group is the parent of all
such autogroups.

• If autogrouping is enabled, then the root task group consists of all processes in the
root CPU cgroup that were not otherwise implicitly placed into a new autogroup.

Linux man-pages 6.16 2025-10-15 3751

sched(7) Miscellaneous Information Manual sched(7)

• If autogrouping is disabled, then the root task group consists of all processes in the
root CPU cgroup.

• If group scheduling was disabled (i.e., the kernel was configured without CON-
FIG_FAIR_GROUP_SCHED), then all of the processes on the system are notion-
ally placed in a single task group.

Under group scheduling, a thread’s nice value has an effect for scheduling decisions
only relative to other threads in the same task group. This has some surprising conse-
quences in terms of the traditional semantics of the nice value on UNIX systems. In
particular, if autogrouping is enabled (which is the default in various distributions), then
employing setpriority(2) or nice(1) on a process has an effect only for scheduling rela-
tive to other processes executed in the same session (typically: the same terminal win-
dow).

Conversely, for two processes that are (for example) the sole CPU-bound processes in
different sessions (e.g., different terminal windows, each of whose jobs are tied to differ-
ent autogroups), modifying the nice value of the process in one of the sessions has no ef-
fect in terms of the scheduler’s decisions relative to the process in the other session. A
possibly useful workaround here is to use a command such as the following to modify
the autogroup nice value for all of the processes in a terminal session:

$ echo 10 > /proc/self/autogroup

Real-time features in the mainline Linux kernel
Since Linux 2.6.18, Linux is gradually becoming equipped with real-time capabilities,
most of which are derived from the former realtime-preempt patch set. These patches
are named:

patch-kernelversion-rtpatchversion

and can be downloaded from 〈http://www.kernel.org/pub/linux/kernel/projects/rt/〉 or
cloned from a git tree 〈https://git.kernel.org/pub/scm/linux/kernel/git/rt/linux-stable-
rt.git〉. The individual releases are maintained as long as the matching LTS kernel is
maintained.

Since Linux 6.12 it possible to enable the real-time preemption without the need for any
patches. The realtime-patch continues to exist and contains support for not-yet-inte-
grated architectures, drivers, and features that are in development.

Since Linux 6.13 real-time became an option and not a preemption model. With this
change, the following preemption models are available: CONFIG_PREEMPT_NONE,
CONFIG_PREEMPT_VOLUNTARY, CONFIG_PREEMPT, and CONFIG_PRE-
EMPT_LAZY. The real-time capabilities can be enabled with the option CON-
FIG_PREEMPT_RT and the preemption model can be set to either CONFIG_PRE-
EMPT or CONFIG_PREEMPT_LAZY. The latter model is less eager to preempt
SCHED_NORMAL tasks in an attempt to reduce lock-holder preemption. It does not
affect real-time tasks.

With CONFIG_PREEMPT_RT enabled, Linux is transformed into a regular real-time
operating system. The SCHED_FIFO, SCHED_RR, and SCHED_DEADLINE
scheduling policies are then used to run a thread with true real-time priority and a mini-
mum worst-case scheduling latency.

Linux man-pages 6.16 2025-10-15 3752

sched(7) Miscellaneous Information Manual sched(7)

NOTES
The cgroups(7) CPU controller can be used to limit the CPU consumption of groups of
processes.

Originally, Standard Linux was intended as a general-purpose operating system being
able to handle background processes, interactive applications, and less demanding real-
time applications (applications that need to usually meet timing deadlines). Although
the Linux 2.6 allowed for kernel preemption and the newly introduced O(1) scheduler
ensures that the time needed to schedule is fixed and deterministic irrespective of the
number of active tasks, true real-time computing was not possible up to Linux 2.6.17.

SEE ALSO
chcpu(1), chrt(1), lscpu(1), ps(1), taskset(1), top(1), getpriority(2), mlock(2),
mlockall(2), munlock(2), munlockall(2), nice(2), sched_get_priority_max(2),
sched_get_priority_min(2), sched_getaffinity(2), sched_getparam(2),
sched_getscheduler(2), sched_rr_get_interval(2), sched_setaffinity(2),
sched_setparam(2), sched_setscheduler(2), sched_yield(2), setpriority(2),
pthread_getaffinity_np(3), pthread_getschedparam(3), pthread_setaffinity_np(3),
sched_getcpu(3), capabilities(7), cpuset(7)

Programming for the real world - POSIX.4 by Bill O. Gallmeister, O’Reilly &
Associates, Inc., ISBN 1-56592-074-0.

The Linux kernel documentation for the scheduler 〈https://docs.kernel.org/scheduler〉.

Worth looking at: 〈https://wiki.linuxfoundation.org/realtime/start〉

Linux man-pages 6.16 2025-10-15 3753

sem_overview(7) Miscellaneous Information Manual sem_overview(7)

NAME
sem_overview - overview of POSIX semaphores

DESCRIPTION
POSIX semaphores allow processes and threads to synchronize their actions.

A semaphore is an integer whose value is never allowed to fall below zero. Two opera-
tions can be performed on semaphores: increment the semaphore value by one
(sem_post(3)); and decrement the semaphore value by one (sem_wait(3)). If the value
of a semaphore is currently zero, then a sem_wait(3) operation will block until the value
becomes greater than zero.

POSIX semaphores come in two forms: named semaphores and unnamed semaphores.

Named semaphores
A named semaphore is identified by a name of the form /somename; that is, a
null-terminated string of up to NAME_MAX-4 (i.e., 251) characters consisting
of an initial slash, followed by one or more characters, none of which are
slashes. Two processes can operate on the same named semaphore by passing
the same name to sem_open(3).

The sem_open(3) function creates a new named semaphore or opens an existing
named semaphore. After the semaphore has been opened, it can be operated on
using sem_post(3) and sem_wait(3). When a process has finished using the sem-
aphore, it can use sem_close(3) to close the semaphore. When all processes have
finished using the semaphore, it can be removed from the system using sem_un-
link(3).

Unnamed semaphores (memory-based semaphores)
An unnamed semaphore does not have a name. Instead the semaphore is placed
in a region of memory that is shared between multiple threads (a thread-shared
semaphore) or processes (a process-shared semaphore). A thread-shared sema-
phore is placed in an area of memory shared between the threads of a process,
for example, a global variable. A process-shared semaphore must be placed in a
shared memory region (e.g., a System V shared memory segment created using
shmget(2), or a POSIX shared memory object built created using shm_open(3)).

Before being used, an unnamed semaphore must be initialized using sem_init(3).
It can then be operated on using sem_post(3) and sem_wait(3). When the sema-
phore is no longer required, and before the memory in which it is located is deal-
located, the semaphore should be destroyed using sem_destroy(3).

The remainder of this section describes some specific details of the Linux implementa-
tion of POSIX semaphores.

Versions
Before Linux 2.6, Linux supported only unnamed, thread-shared semaphores. On a sys-
tem with Linux 2.6 and a glibc that provides the NPTL threading implementation, a
complete implementation of POSIX semaphores is provided.

Persistence
POSIX named semaphores have kernel persistence: if not removed by sem_unlink(3), a
semaphore will exist until the system is shut down.

Linux man-pages 6.16 2025-05-17 3754

sem_overview(7) Miscellaneous Information Manual sem_overview(7)

Linking
Programs using the POSIX semaphores API must be compiled with cc -pthread to link
against the real-time library, librt.

Accessing named semaphores via the filesystem
On Linux, named semaphores are created in a virtual filesystem, normally mounted un-
der /dev/shm, with names of the form sem.somename. (This is the reason that sema-
phore names are limited to NAME_MAX-4 rather than NAME_MAX characters.)

Since Linux 2.6.19, ACLs can be placed on files under this directory, to control object
permissions on a per-user and per-group basis.

NOTES
System V semaphores (semget(2), semop(2), etc.) are an older semaphore API. POSIX
semaphores provide a simpler, and better designed interface than System V semaphores;
on the other hand POSIX semaphores are less widely available (especially on older sys-
tems) than System V semaphores.

EXAMPLES
An example of the use of various POSIX semaphore functions is shown in sem_wait(3).

SEE ALSO
sem_close(3), sem_destroy(3), sem_getvalue(3), sem_init(3), sem_open(3), sem_post(3),
sem_unlink(3), sem_wait(3), pthreads(7), shm_overview(7)

Linux man-pages 6.16 2025-05-17 3755

session-keyring(7) Miscellaneous Information Manual session-keyring(7)

NAME
session-keyring - session shared process keyring

DESCRIPTION
The session keyring is a keyring used to anchor keys on behalf of a process. It is typi-
cally created by pam_keyinit(8) when a user logs in and a link will be added that refers
to the user-keyring(7). Optionally, PAM(7) may revoke the session keyring on logout.
(In typical configurations, PAM does do this revocation.) The session keyring has the
name (description) _ses.

A special serial number value, KEY_SPEC_SESSION_KEYRING, is defined that can
be used in lieu of the actual serial number of the calling process’s session keyring.

From the keyctl(1) utility, ’@s’ can be used instead of a numeric key ID in much the
same way.

A process’s session keyring is inherited across clone(2), fork(2), and vfork(2). The ses-
sion keyring is preserved across execve(2), even when the executable is set-user-ID or
set-group-ID or has capabilities. The session keyring is destroyed when the last process
that refers to it exits.

If a process doesn’t have a session keyring when it is accessed, then, under certain cir-
cumstances, the user-session-keyring(7) will be attached as the session keyring and un-
der others a new session keyring will be created. (See user-session-keyring(7) for fur-
ther details.)

Special operations
The keyutils library provides the following special operations for manipulating session
keyrings:

keyctl_join_session_keyring(3)
This operation allows the caller to change the session keyring that it subscribes
to. The caller can join an existing keyring with a specified name (description),
create a new keyring with a given name, or ask the kernel to create a new
"anonymous" session keyring with the name "_ses". (This function is an inter-
face to the keyctl(2) KEYCTL_JOIN_SESSION_KEYRING operation.)

keyctl_session_to_parent(3)
This operation allows the caller to make the parent process’s session keyring to
the same as its own. For this to succeed, the parent process must have identical
security attributes and must be single threaded. (This function is an interface to
the keyctl(2) KEYCTL_SESSION_TO_PARENT operation.)

These operations are also exposed through the keyctl(1) utility as:

keyctl session
keyctl session - [<prog> <arg1> <arg2> ...]
keyctl session <name> [<prog> <arg1> <arg2> ...]

and:

keyctl new_session

Linux man-pages 6.16 2025-05-17 3756

session-keyring(7) Miscellaneous Information Manual session-keyring(7)

SEE ALSO
keyctl(1), keyctl(3), keyctl_join_session_keyring(3), keyctl_session_to_parent(3),
keyrings(7), PAM(7), persistent-keyring(7), process-keyring(7), thread-keyring(7), user-
keyring(7), user-session-keyring(7), pam_keyinit(8)

Linux man-pages 6.16 2025-05-17 3757

shm_overview(7) Miscellaneous Information Manual shm_overview(7)

NAME
shm_overview - overview of POSIX shared memory

DESCRIPTION
The POSIX shared memory API allows processes to communicate information by shar-
ing a region of memory.

The interfaces employed in the API are:

shm_open(3) Create and open a new object, or open an existing object. This is
analogous to open(2). The call returns a file descriptor for use by the
other interfaces listed below.

ftruncate(2) Set the size of the shared memory object. (A newly created shared
memory object has a length of zero.)

mmap(2) Map the shared memory object into the virtual address space of the
calling process.

munmap(2) Unmap the shared memory object from the virtual address space of
the calling process.

shm_unlink(3) Remove a shared memory object name.

close(2) Close the file descriptor allocated by shm_open(3) when it is no
longer needed.

fstat(2) Obtain a stat structure that describes the shared memory object.
Among the information returned by this call are the object’s size
(st_size), permissions (st_mode), owner (st_uid), and group (st_gid).

fchown(2) To change the ownership of a shared memory object.

fchmod(2) To change the permissions of a shared memory object.

Versions
POSIX shared memory is supported since Linux 2.4 and glibc 2.2.

Persistence
POSIX shared memory objects have kernel persistence: a shared memory object will ex-
ist until the system is shut down, or until all processes have unmapped the object and it
has been deleted with shm_unlink(3)

Linking
Programs using the POSIX shared memory API must be compiled with cc -lrt to link
against the real-time library, librt.

Accessing shared memory objects via the filesystem
On Linux, shared memory objects are created in a (tmpfs(5)) virtual filesystem, nor-
mally mounted under /dev/shm. Since Linux 2.6.19, Linux supports the use of access
control lists (ACLs) to control the permissions of objects in the virtual filesystem.

NOTES
Typically, processes must synchronize their access to a shared memory object, using, for
example, POSIX semaphores.

System V shared memory (shmget(2), shmop(2), etc.) is an older shared memory API.

Linux man-pages 6.16 2025-05-17 3758

shm_overview(7) Miscellaneous Information Manual shm_overview(7)

POSIX shared memory provides a simpler, and better designed interface; on the other
hand POSIX shared memory is somewhat less widely available (especially on older sys-
tems) than System V shared memory.

SEE ALSO
fchmod(2), fchown(2), fstat(2), ftruncate(2), memfd_create(2), mmap(2), mprotect(2),
munmap(2), shmget(2), shmop(2), shm_open(3), shm_unlink(3), sem_overview(7)

Linux man-pages 6.16 2025-05-17 3759

signal(7) Miscellaneous Information Manual signal(7)

NAME
signal - overview of signals

DESCRIPTION
Linux supports both POSIX reliable signals (hereinafter "standard signals") and POSIX
real-time signals.

Signal dispositions
Each signal has a current disposition, which determines how the process behaves when
it is delivered the signal.

The entries in the "Action" column of the table below specify the default disposition for
each signal, as follows:

Term Default action is to terminate the process.

Ign Default action is to ignore the signal.

Core Default action is to terminate the process and dump core (see core(5)).

Stop Default action is to stop the process.

Cont Default action is to continue the process if it is currently stopped.

A process can change the disposition of a signal using sigaction(2) or signal(2). (The
latter is less portable when establishing a signal handler; see signal(2) for details.) Us-
ing these system calls, a process can elect one of the following behaviors to occur on de-
livery of the signal: perform the default action; ignore the signal; or catch the signal with
a signal handler, a programmer-defined function that is automatically invoked when the
signal is delivered.

By default, a signal handler is invoked on the normal process stack. It is possible to
arrange that the signal handler uses an alternate stack; see sigaltstack(2) for a discussion
of how to do this and when it might be useful.

The signal disposition is a per-process attribute: in a multithreaded application, the dis-
position of a particular signal is the same for all threads.

A child created via fork(2) inherits a copy of its parent’s signal dispositions. During an
execve(2), the dispositions of handled signals are reset to the default; the dispositions of
ignored signals are left unchanged.

Sending a signal
The following system calls and library functions allow the caller to send a signal:

raise(3)
Sends a signal to the calling thread.

kill(2)
Sends a signal to a specified process, to all members of a specified process
group, or to all processes on the system.

pidfd_send_signal(2)
Sends a signal to a process identified by a PID file descriptor.

Linux man-pages 6.16 2025-10-29 3760

signal(7) Miscellaneous Information Manual signal(7)

killpg(3)
Sends a signal to all of the members of a specified process group.

pthread_kill(3)
Sends a signal to a specified POSIX thread in the same process as the caller.

tgkill(2)
Sends a signal to a specified thread within a specific process. (This is the system
call used to implement pthread_kill(3).)

sigqueue(3)
Sends a real-time signal with accompanying data to a specified process.

Waiting for a signal to be caught
The following system calls suspend execution of the calling thread until a signal is
caught (or an unhandled signal terminates the process):

pause(2)
Suspends execution until any signal is caught.

sigsuspend(2)
Temporarily changes the signal mask (see below) and suspends execution until
one of the unmasked signals is caught.

Synchronously accepting a signal
Rather than asynchronously catching a signal via a signal handler, it is possible to syn-
chronously accept the signal, that is, to block execution until the signal is delivered, at
which point the kernel returns information about the signal to the caller. There are two
general ways to do this:

• sigwaitinfo(2), sigtimedwait(2), and sigwait(3) suspend execution until one of the
signals in a specified set is delivered. Each of these calls returns information about
the delivered signal.

• signalfd(2) returns a file descriptor that can be used to read information about sig-
nals that are delivered to the caller. Each read(2) from this file descriptor blocks un-
til one of the signals in the set specified in the signalfd(2) call is delivered to the
caller. The buffer returned by read(2) contains a structure describing the signal.

Signal mask and pending signals
A signal may be blocked , which means that it will not be delivered until it is later un-
blocked. Between the time when it is generated and when it is delivered a signal is said
to be pending.

Each thread in a process has an independent signal mask, which indicates the set of sig-
nals that the thread is currently blocking. A thread can manipulate its signal mask using
pthread_sigmask(3). In a traditional single-threaded application, sigprocmask(2) can be
used to manipulate the signal mask.

A child created via fork(2) inherits a copy of its parent’s signal mask; the signal mask is
preserved across execve(2).

A signal may be process-directed or thread-directed. A process-directed signal is one
that is targeted at (and thus pending for) the process as a whole. A signal may be
process-directed because it was generated by the kernel for reasons other than a

Linux man-pages 6.16 2025-10-29 3761

signal(7) Miscellaneous Information Manual signal(7)

hardware exception, or because it was sent using kill(2) or sigqueue(3). A thread-di-
rected signal is one that is targeted at a specific thread. A signal may be thread-directed
because it was generated as a consequence of executing a specific machine-language in-
struction that triggered a hardware exception (e.g., SIGSEGV for an invalid memory ac-
cess, or SIGFPE for a math error), or because it was targeted at a specific thread using
interfaces such as tgkill(2) or pthread_kill(3).

A process-directed signal may be delivered to any one of the threads that does not cur-
rently have the signal blocked. If more than one of the threads has the signal unblocked,
then the kernel chooses an arbitrary thread to which to deliver the signal.

A thread can obtain the set of signals that it currently has pending using sigpending(2).
This set will consist of the union of the set of pending process-directed signals and the
set of signals pending for the calling thread.

A child created via fork(2) initially has an empty pending signal set; the pending signal
set is preserved across an execve(2).

Execution of signal handlers
Whenever there is a transition from kernel-mode to user-mode execution (e.g., on return
from a system call or scheduling of a thread onto the CPU), the kernel checks whether
there is a pending unblocked signal for which the process has established a signal han-
dler. If there is such a pending signal, the following steps occur:

(1) The kernel performs the necessary preparatory steps for execution of the signal
handler:

(1.1) The signal is removed from the set of pending signals.

(1.2) If the signal handler was installed by a call to sigaction(2) that specified
the SA_ONSTACK flag and the thread has defined an alternate signal
stack (using sigaltstack(2)), then that stack is installed.

(1.3) Various pieces of signal-related context are saved into a special frame
that is created on the stack. The saved information includes:

• the program counter register (i.e., the address of the next instruction
in the main program that should be executed when the signal handler
returns);

• architecture-specific register state required for resuming the inter-
rupted program;

• the thread’s current signal mask;

• the thread’s alternate signal stack settings.

If the signal handler was installed using the sigaction(2) SA_SIGINFO
flag, then the above information is accessible via the ucontext_t object
that is pointed to by the third argument of the signal handler. This object
reflects the state at which the signal is delivered, rather than in the han-
dler; for example, the mask of blocked signals stored in this object will
not contain the mask of new signals blocked through sigaction(2).

Linux man-pages 6.16 2025-10-29 3762

signal(7) Miscellaneous Information Manual signal(7)

(1.4) Any signals specified in act->sa_mask when registering the handler
with sigaction(2) are added to the thread’s signal mask. The signal being
delivered is also added to the signal mask, unless SA_NODEFER was
specified when registering the handler. These signals are thus blocked
while the handler executes.

(2) The kernel constructs a frame for the signal handler on the stack. The kernel sets
the program counter for the thread to point to the first instruction of the signal
handler function, and configures the return address for that function to point to a
piece of user-space code known as the signal trampoline (described in
sigreturn(2)).

(3) The kernel passes control back to user-space, where execution commences at the
start of the signal handler function.

(4) When the signal handler returns, control passes to the signal trampoline code.

(5) The signal trampoline calls sigreturn(2), a system call that uses the information in
the stack frame created in step 1 to restore the thread to its state before the signal
handler was called. The thread’s signal mask and alternate signal stack settings
are restored as part of this procedure. Upon completion of the call to sigreturn(2),
the kernel transfers control back to user space, and the thread recommences exe-
cution at the point where it was interrupted by the signal handler.

Note that if the signal handler does not return (e.g., control is transferred out of the han-
dler using siglongjmp(3), or the handler executes a new program with execve(2)), then
the final step is not performed. In particular, in such scenarios it is the programmer’s re-
sponsibility to restore the state of the signal mask (using sigprocmask(2)), if it is desired
to unblock the signals that were blocked on entry to the signal handler. (Note that sig-
longjmp(3) may or may not restore the signal mask, depending on the savesigs value
that was specified in the corresponding call to sigsetjmp(3).)

From the kernel’s point of view, execution of the signal handler code is exactly the same
as the execution of any other user-space code. That is to say, the kernel does not record
any special state information indicating that the thread is currently executing inside a
signal handler. All necessary state information is maintained in user-space registers and
the user-space stack. The depth to which nested signal handlers may be invoked is thus
limited only by the user-space stack (and sensible software design!).

Standard signals
Linux supports the standard signals listed below. The second column of the table indi-
cates which standard (if any) specified the signal: "P1990" indicates that the signal is de-
scribed in the original POSIX.1-1990 standard; "P2001" indicates that the signal was
added or its definition changed in SUSv2 and POSIX.1-2001. "P2024" indicates that the
signal was added or its definition changed in POSIX.1-2024.
Signal Standard Action Comment
SIGABRT P1990 Core Abort signal from abort(3)
SIGALRM P1990 Term Timer signal from alarm(2)
SIGBUS P2001 Core Bus error (bad memory access)
SIGCHLD P2001 Ign Child stopped, terminated, or continued

Linux man-pages 6.16 2025-10-29 3763

signal(7) Miscellaneous Information Manual signal(7)

SIGCLD - Ign A synonym for SIGCHLD
SIGCONT P1990 Cont Continue if stopped
SIGEMT - Term Emulator trap
SIGFPE P1990 Core Erroneous arithmetic operation
SIGHUP P1990 Term Hangup detected on controlling terminal

or death of controlling process
SIGILL P1990 Core Illegal Instruction
SIGINFO - A synonym for SIGPWR
SIGINT P1990 Term Interrupt from keyboard
SIGIO - Term I/O now possible (4.2BSD)
SIGIOT - Core IOT trap. A synonym for SIGABRT
SIGKILL P1990 Term Kill signal
SIGLOST - Term File lock lost (unused)
SIGPIPE P1990 Term Broken pipe: write to pipe with no

readers; see pipe(7)
SIGPOLL P2001 Term Pollable event (Sys V);

synonym for SIGIO
SIGPROF P2001 Term Profiling timer expired
SIGPWR - Term Power failure (System V)
SIGQUIT P1990 Core Quit from keyboard
SIGSEGV P1990 Core Invalid memory reference
SIGSTKFLT - Term Stack fault on coprocessor (unused)
SIGSTOP P1990 Stop Stop process
SIGTSTP P1990 Stop Stop typed at terminal
SIGSYS P2001 Core Bad system call (SVr4);

see also seccomp(2)
SIGTERM P1990 Term Termination signal
SIGTRAP P2001 Core Trace/breakpoint trap
SIGTTIN P1990 Stop Terminal input for background process
SIGTTOU P1990 Stop Terminal output for background process
SIGUNUSED - Core Synonymous with SIGSYS
SIGURG P2001 Ign Urgent condition on socket (4.2BSD)
SIGUSR1 P1990 Term User-defined signal 1
SIGUSR2 P1990 Term User-defined signal 2
SIGVTALRM P2001 Term Virtual alarm clock (4.2BSD)
SIGXCPU P2001 Core CPU time limit exceeded (4.2BSD);

see setrlimit(2)
SIGXFSZ P2001 Core File size limit exceeded (4.2BSD);

see setrlimit(2)
SIGWINCH P2024 Ign Window resize signal (4.3BSD, Sun)

The signals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.

Up to and including Linux 2.2, the default behavior for SIGSYS, SIGXCPU,
SIGXFSZ, and (on architectures other than SPARC and MIPS) SIGBUS was to termi-
nate the process (without a core dump). (On some other UNIX systems the default ac-
tion for SIGXCPU and SIGXFSZ is to terminate the process without a core dump.)
Linux 2.4 conforms to the POSIX.1-2001 requirements for these signals, terminating the

Linux man-pages 6.16 2025-10-29 3764

signal(7) Miscellaneous Information Manual signal(7)

process with a core dump.

SIGEMT is not specified in POSIX.1-2001, but nevertheless appears on most other
UNIX systems, where its default action is typically to terminate the process with a core
dump.

SIGPWR (which is not specified in POSIX.1-2001) is typically ignored by default on
those other UNIX systems where it appears.

SIGIO (which is not specified in POSIX.1-2001) is ignored by default on several other
UNIX systems.

Queueing and delivery semantics for standard signals
If multiple standard signals are pending for a process, the order in which the signals are
delivered is unspecified.

Standard signals do not queue. If multiple instances of a standard signal are generated
while that signal is blocked, then only one instance of the signal is marked as pending
(and the signal will be delivered just once when it is unblocked). In the case where a
standard signal is already pending, the siginfo_t structure (see sigaction(2)) associated
with that signal is not overwritten on arrival of subsequent instances of the same signal.
Thus, the process will receive the information associated with the first instance of the
signal.

Signal numbering for standard signals
The numeric value for each signal is given in the table below. As shown in the table,
many signals have different numeric values on different architectures. The first numeric
value in each table row shows the signal number on x86, ARM, and most other architec-
tures; the second value is for Alpha and SPARC; the third is for MIPS; and the last is for
PARISC. A dash (-) denotes that a signal is absent on the corresponding architecture.
Signal x86/ARM Alpha/ MIPS PARISC Notes

most others SPARC
SIGHUP 1 1 1 1
SIGINT 2 2 2 2
SIGQUIT 3 3 3 3
SIGILL 4 4 4 4
SIGTRAP 5 5 5 5
SIGABRT 6 6 6 6
SIGIOT 6 6 6 6
SIGBUS 7 10 10 10
SIGEMT - 7 7 -
SIGFPE 8 8 8 8
SIGKILL 9 9 9 9
SIGUSR1 10 30 16 16
SIGSEGV 11 11 11 11
SIGUSR2 12 31 17 17
SIGPIPE 13 13 13 13
SIGALRM 14 14 14 14
SIGTERM 15 15 15 15
SIGSTKFLT 16 - - 7

Linux man-pages 6.16 2025-10-29 3765

signal(7) Miscellaneous Information Manual signal(7)

SIGCHLD 17 20 18 18
SIGCLD - - 18 -
SIGCONT 18 19 25 26
SIGSTOP 19 17 23 24
SIGTSTP 20 18 24 25
SIGTTIN 21 21 26 27
SIGTTOU 22 22 27 28
SIGURG 23 16 21 29
SIGXCPU 24 24 30 12
SIGXFSZ 25 25 31 30
SIGVTALRM 26 26 28 20
SIGPROF 27 27 29 21
SIGWINCH 28 28 20 23
SIGIO 29 23 22 22
SIGPOLL Same as SIGIO
SIGPWR 30 29/- 19 19
SIGINFO - 29/- - -
SIGLOST - -/29 - -
SIGSYS 31 12 12 31
SIGUNUSED 31 - - 31

Note the following:

• Where defined, SIGUNUSED is synonymous with SIGSYS. Since glibc 2.26, SI-
GUNUSED is no longer defined on any architecture.

• Signal 29 is SIGINFO/SIGPWR (synonyms for the same value) on Alpha but
SIGLOST on SPARC.

Real-time signals
Starting with Linux 2.2, Linux supports real-time signals as originally defined in the
POSIX.1b real-time extensions (and now included in POSIX.1-2001). The range of
supported real-time signals is defined by the macros SIGRTMIN and SIGRTMAX.
POSIX.1-2001 requires that an implementation support at least _POSIX_RTSIG_MAX
(8) real-time signals.

The Linux kernel supports a range of 33 different real-time signals, numbered 32 to 64.
However, the glibc POSIX threads implementation internally uses two (for NPTL) or
three (for LinuxThreads) real-time signals (see pthreads(7)), and adjusts the value of
SIGRTMIN suitably (to 34 or 35). Because the range of available real-time signals
varies according to the glibc threading implementation (and this variation can occur at
run time according to the available kernel and glibc), and indeed the range of real-time
signals varies across UNIX systems, programs should never refer to real-time signals
using hard-coded numbers, but instead should always refer to real-time signals using the
notation SIGRTMIN+n, and include suitable (run-time) checks that SIGRTMIN+n
does not exceed SIGRTMAX.

Unlike standard signals, real-time signals have no predefined meanings: the entire set of
real-time signals can be used for application-defined purposes.

The default action for an unhandled real-time signal is to terminate the receiving

Linux man-pages 6.16 2025-10-29 3766

signal(7) Miscellaneous Information Manual signal(7)

process.

Real-time signals are distinguished by the following:

• Multiple instances of real-time signals can be queued. By contrast, if multiple in-
stances of a standard signal are delivered while that signal is currently blocked, then
only one instance is queued.

• If the signal is sent using sigqueue(3), an accompanying value (either an integer or a
pointer) can be sent with the signal. If the receiving process establishes a handler
for this signal using the SA_SIGINFO flag to sigaction(2), then it can obtain this
data via the si_value field of the siginfo_t structure passed as the second argument to
the handler. Furthermore, the si_pid and si_uid fields of this structure can be used
to obtain the PID and real user ID of the process sending the signal.

• Real-time signals are delivered in a guaranteed order. Multiple real-time signals of
the same type are delivered in the order they were sent. If different real-time signals
are sent to a process, they are delivered starting with the lowest-numbered signal.
(I.e., low-numbered signals have highest priority.) By contrast, if multiple standard
signals are pending for a process, the order in which they are delivered is unspeci-
fied.

If both standard and real-time signals are pending for a process, POSIX leaves it unspec-
ified which is delivered first. Linux, like many other implementations, gives priority to
standard signals in this case.

According to POSIX, an implementation should permit at least
_POSIX_SIGQUEUE_MAX (32) real-time signals to be queued to a process. How-
ever, Linux does things differently. Up to and including Linux 2.6.7, Linux imposes a
system-wide limit on the number of queued real-time signals for all processes. This
limit can be viewed and (with privilege) changed via the /proc/sys/kernel/rtsig-max file.
A related file, /proc/sys/kernel/rtsig-nr, can be used to find out how many real-time sig-
nals are currently queued. In Linux 2.6.8, these /proc interfaces were replaced by the
RLIMIT_SIGPENDING resource limit, which specifies a per-user limit for queued
signals; see setrlimit(2) for further details.

The addition of real-time signals required the widening of the signal set structure
(sigset_t) from 32 to 64 bits. Consequently, various system calls were superseded by
new system calls that supported the larger signal sets. The old and new system calls are
as follows:
Linux 2.0 and earlier Linux 2.2 and later
sigaction(2) rt_sigaction(2)
sigpending(2) rt_sigpending(2)
sigprocmask(2) rt_sigprocmask(2)
sigreturn(2) rt_sigreturn(2)
sigsuspend(2) rt_sigsuspend(2)
sigtimedwait(2) rt_sigtimedwait(2)

Interruption of system calls and library functions by signal handlers
If a signal handler is invoked while a system call or library function call is blocked, then
either:

Linux man-pages 6.16 2025-10-29 3767

signal(7) Miscellaneous Information Manual signal(7)

• the call is automatically restarted after the signal handler returns; or

• the call fails with the error EINTR.

Which of these two behaviors occurs depends on the interface and whether or not the
signal handler was established using the SA_RESTART flag (see sigaction(2)). The de-
tails vary across UNIX systems; below, the details for Linux.

If a blocked call to one of the following interfaces is interrupted by a signal handler,
then the call is automatically restarted after the signal handler returns if the
SA_RESTART flag was used; otherwise the call fails with the error EINTR:

• read(2), readv(2), write(2), writev(2), and ioctl(2) calls on "slow" devices. A "slow"
device is one where the I/O call may block for an indefinite time, for example, a ter-
minal, pipe, or socket. If an I/O call on a slow device has already transferred some
data by the time it is interrupted by a signal handler, then the call will return a suc-
cess status (normally, the number of bytes transferred). Note that a (local) disk is
not a slow device according to this definition; I/O operations on disk devices are not
interrupted by signals.

• open(2), if it can block (e.g., when opening a FIFO; see fifo(7)).

• wait(2), wait3(2), wait4(2), waitid(2), and waitpid(2).

• Socket interfaces: accept(2), connect(2), recv(2), recvfrom(2), recvmmsg(2),
recvmsg(2), send(2), sendto(2), and sendmsg(2), unless a timeout has been set on the
socket (see below).

• File locking interfaces: flock(2) and the F_SETLKW and F_OFD_SETLKW oper-
ations of fcntl(2)

• POSIX message queue interfaces: mq_receive(3), mq_timedreceive(3), mq_send(3),
and mq_timedsend(3).

• futex(2) FUTEX_WAIT (since Linux 2.6.22; beforehand, always failed with
EINTR).

• getrandom(2).

• futex(2) FUTEX_WAIT_BITSET.

• POSIX semaphore interfaces: sem_wait(3) and sem_timedwait(3) (since Linux
2.6.22; beforehand, always failed with EINTR).

• read(2) from an inotify(7) file descriptor (since Linux 3.8; beforehand, always failed
with EINTR).

The following interfaces are never restarted after being interrupted by a signal handler,
regardless of the use of SA_RESTART; they always fail with the error EINTR when
interrupted by a signal handler:

• "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the
socket using setsockopt(2): accept(2), recv(2), recvfrom(2), recvmmsg(2) (also with a
non-NULL timeout argument), and recvmsg(2).

Linux man-pages 6.16 2025-10-29 3768

signal(7) Miscellaneous Information Manual signal(7)

• "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the
socket using setsockopt(2): connect(2), send(2), sendto(2), and sendmsg(2).

• Interfaces used to wait for signals: pause(2), sigsuspend(2), sigtimedwait(2), and sig-
waitinfo(2).

• File descriptor multiplexing interfaces: epoll_wait(2), epoll_pwait(2), poll(2),
ppoll(2), select(2), and pselect(2).

• System V IPC interfaces: msgrcv(2), msgsnd(2), semop(2), and semtimedop(2).

• Sleep interfaces: clock_nanosleep(2), nanosleep(2), and usleep(3).

• io_getevents(2).

The sleep(3) function is also never restarted if interrupted by a handler, but gives a suc-
cess return: the number of seconds remaining to sleep.

In certain circumstances, the seccomp(2) user-space notification feature can lead to
restarting of system calls that would otherwise never be restarted by SA_RESTART; for
details, see seccomp_unotify(2).

Interruption of system calls and library functions by stop signals
On Linux, even in the absence of signal handlers, certain blocking interfaces can fail
with the error EINTR after the process is stopped by one of the stop signals and then re-
sumed via SIGCONT. This behavior is not sanctioned by POSIX.1, and doesn’t occur
on other systems.

The Linux interfaces that display this behavior are:

• "Input" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the
socket using setsockopt(2): accept(2), recv(2), recvfrom(2), recvmmsg(2) (also with a
non-NULL timeout argument), and recvmsg(2).

• "Output" socket interfaces, when a timeout (SO_RCVTIMEO) has been set on the
socket using setsockopt(2): connect(2), send(2), sendto(2), and sendmsg(2), if a send
timeout (SO_SNDTIMEO) has been set.

• epoll_wait(2), epoll_pwait(2).

• semop(2), semtimedop(2).

• sigtimedwait(2), sigwaitinfo(2).

• Linux 3.7 and earlier: read(2) from an inotify(7) file descriptor

• Linux 2.6.21 and earlier: futex(2) FUTEX_WAIT, sem_timedwait(3), sem_wait(3).

• Linux 2.6.8 and earlier: msgrcv(2), msgsnd(2).

• Linux 2.4 and earlier: nanosleep(2).

STANDARDS
POSIX.1, except as noted.

NOTES
For a discussion of async-signal-safe functions, see signal-safety(7).

The /proc/ pid /task/ tid /status file contains various fields that show the signals that a
thread is blocking (SigBlk), catching (SigCgt), or ignoring (SigIgn). (The set of signals

Linux man-pages 6.16 2025-10-29 3769

signal(7) Miscellaneous Information Manual signal(7)

that are caught or ignored will be the same across all threads in a process.) Other fields
show the set of pending signals that are directed to the thread (SigPnd) as well as the set
of pending signals that are directed to the process as a whole (ShdPnd). The corre-
sponding fields in /proc/ pid /status show the information for the main thread. See
proc(5) for further details.

BUGS
There are six signals that can be delivered as a consequence of a hardware exception:
SIGBUS, SIGEMT, SIGFPE, SIGILL, SIGSEGV, and SIGTRAP. Which of these
signals is delivered, for any given hardware exception, is not documented and does not
always make sense.

For example, an invalid memory access that causes delivery of SIGSEGV on one CPU
architecture may cause delivery of SIGBUS on another architecture, or vice versa.

For another example, using the x86 int instruction with a forbidden argument (any num-
ber other than 3 or 128) causes delivery of SIGSEGV, even though SIGILL would
make more sense, because of how the CPU reports the forbidden operation to the kernel.

SEE ALSO
kill(1), clone(2), getrlimit(2), kill(2), pidfd_send_signal(2), restart_syscall(2),
rt_sigqueueinfo(2), setitimer(2), setrlimit(2), sgetmask(2), sigaction(2), sigaltstack(2),
signal(2), signalfd(2), sigpending(2), sigprocmask(2), sigreturn(2), sigsuspend(2), sig-
waitinfo(2), abort(3), bsd_signal(3), killpg(3), longjmp(3), pthread_sigqueue(3),
raise(3), sigqueue(3), sigset(3), sigsetops(3), sigvec(3), sigwait(3), strsignal(3), swap-
context(3), sysv_signal(3), core(5), proc(5), nptl(7), pthreads(7), sigevent(3type)

Linux man-pages 6.16 2025-10-29 3770

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

NAME
signal-safety - async-signal-safe functions

DESCRIPTION
An async-signal-safe function is one that can be safely called from within a signal han-
dler. Many functions are not async-signal-safe. In particular, nonreentrant functions are
generally unsafe to call from a signal handler.

The kinds of issues that render a function unsafe can be quickly understood when one
considers the implementation of the stdio library, all of whose functions are not async-
signal-safe.

When performing buffered I/O on a file, the stdio functions must maintain a statically
allocated data buffer along with associated counters and indexes (or pointers) that record
the amount of data and the current position in the buffer. Suppose that the main pro-
gram is in the middle of a call to a stdio function such as printf(3) where the buffer and
associated variables have been partially updated. If, at that moment, the program is in-
terrupted by a signal handler that also calls printf(3), then the second call to printf(3)
will operate on inconsistent data, with unpredictable results.

To avoid problems with unsafe functions, there are two possible choices:

(a) Ensure that (1) the signal handler calls only async-signal-safe functions, and (2)
the signal handler itself is reentrant with respect to global variables in the main
program.

(b) Block signal delivery in the main program when calling functions that are unsafe
or operating on global data that is also accessed by the signal handler.

Generally, the second choice is difficult in programs of any complexity, so the first
choice is taken.

POSIX.1 specifies a set of functions that an implementation must make async-signal-
safe. (An implementation may provide safe implementations of additional functions,
but this is not required by the standard and other implementations may not provide the
same guarantees.)

In general, a function is async-signal-safe either because it is reentrant or because it is
atomic with respect to signals (i.e., its execution can’t be interrupted by a signal han-
dler).

The set of functions required to be async-signal-safe by POSIX.1 is shown in the fol-
lowing table. The functions not otherwise noted were required to be async-signal-safe
in POSIX.1-2001; the table details changes in the subsequent standards.

Function Notes
abort(3) Added in POSIX.1-2001 TC1
accept(2)
access(2)
aio_error(3)
aio_return(3)
aio_suspend(3) See notes below
alarm(2)

Linux man-pages 6.16 2025-10-29 3771

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

bind(2)
cfgetispeed(3)
cfgetospeed(3)
cfsetispeed(3)
cfsetospeed(3)
chdir(2)
chmod(2)
chown(2)
clock_gettime(2)
close(2)
connect(2)
creat(2)
dup(2)
dup2(2)
execl(3) Added in POSIX.1-2008; see

notes below
execle(3) See notes below
execv(3) Added in POSIX.1-2008
execve(2)
_exit(2)
_Exit(2)
faccessat(2) Added in POSIX.1-2008
fchdir(2) Added in POSIX.1-2008 TC1
fchmod(2)
fchmodat(2) Added in POSIX.1-2008
fchown(2)
fchownat(2) Added in POSIX.1-2008
fcntl(2)
fdatasync(2)
fexecve(3) Added in POSIX.1-2008
ffs(3) Added in POSIX.1-2008 TC2
_Fork(3)
fstat(2)
fstatat(2) Added in POSIX.1-2008
fsync(2)
ftruncate(2)
futimens(3) Added in POSIX.1-2008
getegid(2)
geteuid(2)
getgid(2)
getgroups(2)
getpeername(2)
getpgrp(2)
getpid(2)
getppid(2)
getsockname(2)

Linux man-pages 6.16 2025-10-29 3772

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

getsockopt(2)
getuid(2)
htonl(3) Added in POSIX.1-2008 TC2
htons(3) Added in POSIX.1-2008 TC2
kill(2)
link(2)
linkat(2) Added in POSIX.1-2008
listen(2)
longjmp(3) Added in POSIX.1-2008 TC2;

see notes below
lseek(2)
lstat(2)
memccpy(3) Added in POSIX.1-2008 TC2
memchr(3) Added in POSIX.1-2008 TC2
memcmp(3) Added in POSIX.1-2008 TC2
memcpy(3) Added in POSIX.1-2008 TC2
memmove(3) Added in POSIX.1-2008 TC2
memset(3) Added in POSIX.1-2008 TC2
mkdir(2)
mkdirat(2) Added in POSIX.1-2008
mkfifo(3)
mkfifoat(3) Added in POSIX.1-2008
mknod(2) Added in POSIX.1-2008
mknodat(2) Added in POSIX.1-2008
ntohl(3) Added in POSIX.1-2008 TC2
ntohs(3) Added in POSIX.1-2008 TC2
open(2)
openat(2) Added in POSIX.1-2008
pause(2)
pipe(2)
poll(2)
posix_trace_event(3)
pselect(2)
pthread_kill(3) Added in POSIX.1-2008 TC1
pthread_self(3) Added in POSIX.1-2008 TC1
pthread_sigmask(3) Added in POSIX.1-2008 TC1
raise(3)
read(2)
readlink(2)
readlinkat(2) Added in POSIX.1-2008
recv(2)
recvfrom(2)
recvmsg(2)
rename(2)
renameat(2) Added in POSIX.1-2008
rmdir(2)

Linux man-pages 6.16 2025-10-29 3773

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

select(2)
sem_post(3)
send(2)
sendmsg(2)
sendto(2)
setgid(2)
setpgid(2)
setsid(2)
setsockopt(2)
setuid(2)
shutdown(2)
sigaction(2)
sigaddset(3)
sigdelset(3)
sigemptyset(3)
sigfillset(3)
sigismember(3)
siglongjmp(3) Added in POSIX.1-2008 TC2;

see notes below
signal(2)
sigpause(3)
sigpending(2)
sigprocmask(2)
sigqueue(2)
sigset(3)
sigsuspend(2)
sleep(3)
sockatmark(3) Added in POSIX.1-2001 TC2
socket(2)
socketpair(2)
stat(2)
stpcpy(3) Added in POSIX.1-2008 TC2
stpncpy(3) Added in POSIX.1-2008 TC2
strcat(3) Added in POSIX.1-2008 TC2
strchr(3) Added in POSIX.1-2008 TC2
strcmp(3) Added in POSIX.1-2008 TC2
strcpy(3) Added in POSIX.1-2008 TC2
strcspn(3) Added in POSIX.1-2008 TC2
strlen(3) Added in POSIX.1-2008 TC2
strncat(3) Added in POSIX.1-2008 TC2
strncmp(3) Added in POSIX.1-2008 TC2
strncpy(3) Added in POSIX.1-2008 TC2
strnlen(3) Added in POSIX.1-2008 TC2
strpbrk(3) Added in POSIX.1-2008 TC2
strrchr(3) Added in POSIX.1-2008 TC2
strspn(3) Added in POSIX.1-2008 TC2

Linux man-pages 6.16 2025-10-29 3774

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

strstr(3) Added in POSIX.1-2008 TC2
strtok_r(3) Added in POSIX.1-2008 TC2
symlink(2)
symlinkat(2) Added in POSIX.1-2008
tcdrain(3)
tcflow(3)
tcflush(3)
tcgetattr(3)
tcgetpgrp(3)
tcsendbreak(3)
tcsetattr(3)
tcsetpgrp(3)
time(2)
timer_getoverrun(2)
timer_gettime(2)
timer_settime(2)
times(2)
umask(2)
uname(2)
unlink(2)
unlinkat(2) Added in POSIX.1-2008
utime(2)
utimensat(2) Added in POSIX.1-2008
utimes(2) Added in POSIX.1-2008
wait(2)
waitpid(2)
wcpcpy(3) Added in POSIX.1-2008 TC2
wcpncpy(3) Added in POSIX.1-2008 TC2
wcscat(3) Added in POSIX.1-2008 TC2
wcschr(3) Added in POSIX.1-2008 TC2
wcscmp(3) Added in POSIX.1-2008 TC2
wcscpy(3) Added in POSIX.1-2008 TC2
wcscspn(3) Added in POSIX.1-2008 TC2
wcslen(3) Added in POSIX.1-2008 TC2
wcsncat(3) Added in POSIX.1-2008 TC2
wcsncmp(3) Added in POSIX.1-2008 TC2
wcsncpy(3) Added in POSIX.1-2008 TC2
wcsnlen(3) Added in POSIX.1-2008 TC2
wcspbrk(3) Added in POSIX.1-2008 TC2
wcsrchr(3) Added in POSIX.1-2008 TC2
wcsspn(3) Added in POSIX.1-2008 TC2
wcsstr(3) Added in POSIX.1-2008 TC2
wcstok(3) Added in POSIX.1-2008 TC2
wmemchr(3) Added in POSIX.1-2008 TC2
wmemcmp(3) Added in POSIX.1-2008 TC2
wmemcpy(3) Added in POSIX.1-2008 TC2

Linux man-pages 6.16 2025-10-29 3775

signal-safety(7) Miscellaneous Information Manual signal-safety(7)

wmemmove(3) Added in POSIX.1-2008 TC2
wmemset(3) Added in POSIX.1-2008 TC2
write(2)

Notes:

• POSIX.1-2001 and POSIX.1-2001 TC2 required the functions fpathconf(3), path-
conf(3), and sysconf(3) to be async-signal-safe, but this requirement was removed in
POSIX.1-2008.

• If a signal handler interrupts the execution of an unsafe function, and the handler ter-
minates via a call to longjmp(3) or siglongjmp(3) and the program subsequently calls
an unsafe function, then the behavior of the program is undefined.

• Asynchronous signal handlers that call functions which are cancelation points and
nest over regions of deferred cancelation may trigger cancelation whose behavior is
as if asynchronous cancelation had occurred and may cause application state to be-
come inconsistent.

errno
Fetching and setting the value of errno is async-signal-safe provided that the signal han-
dler saves errno on entry and restores its value before returning.

Deviations in the GNU C library
The following known deviations from the standard occur in the GNU C library:

• Before glibc 2.24, execl(3) and execle(3) employed realloc(3) internally and were
consequently not async-signal-safe. This was fixed in glibc 2.24.

• The glibc implementation of aio_suspend(3) is not async-signal-safe because it uses
pthread_mutex_lock(3) internally.

SEE ALSO
sigaction(2), signal(7), standards(7)

Linux man-pages 6.16 2025-10-29 3776

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

NAME
sock_diag - obtaining information about sockets

SYNOPSIS
#include <sys/socket.h>
#include <linux/sock_diag.h>
#include <linux/unix_diag.h> /* for UNIX domain sockets */
#include <linux/inet_diag.h> /* for IPv4 and IPv6 sockets */

diag_socket = socket(AF_NETLINK, socket_type, NETLINK_SOCK_DIAG);

DESCRIPTION
The sock_diag netlink subsystem provides a mechanism for obtaining information about
sockets of various address families from the kernel. This subsystem can be used to ob-
tain information about individual sockets or request a list of sockets.

In the request, the caller can specify additional information it would like to obtain about
the socket, for example, memory information or information specific to the address fam-
ily.

When requesting a list of sockets, the caller can specify filters that would be applied by
the kernel to select a subset of sockets to report. For now, there is only the ability to fil-
ter sockets by state (connected, listening, and so on.)

Note that sock_diag reports only those sockets that have a name; that is, either sockets
bound explicitly with bind(2) or sockets that were automatically bound to an address
(e.g., by connect(2)). This is the same set of sockets that is available via /proc/net/unix,
/proc/net/tcp, /proc/net/udp, and so on.

Request
The request starts with a struct nlmsghdr header described in netlink(7) with nlmsg_type
field set to SOCK_DIAG_BY_FAMILY. It is followed by a header specific to the ad-
dress family that starts with a common part shared by all address families:

struct sock_diag_req {
__u8 sdiag_family;
__u8 sdiag_protocol;

};

The fields of this structure are as follows:

sdiag_family
An address family. It should be set to the appropriate AF_* constant.

sdiag_protocol
Depends on sdiag_family. It should be set to the appropriate IPPROTO_* con-
stant for AF_INET and AF_INET6, and to 0 otherwise.

If the nlmsg_flags field of the struct nlmsghdr header has the NLM_F_DUMP flag set,
it means that a list of sockets is being requested; otherwise it is a query about an individ-
ual socket.

Response
The response starts with a struct nlmsghdr header and is followed by an array of objects
specific to the address family. The array is to be accessed with the standard NLMSG_*

Linux man-pages 6.16 2025-09-21 3777

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

macros from the netlink(3) API.

Each object is the NLA (netlink attributes) list that is to be accessed with the RTA_*
macros from rtnetlink(3) API.

UNIX domain sockets
For UNIX domain sockets the request is represented in the following structure:

struct unix_diag_req {
__u8 sdiag_family;
__u8 sdiag_protocol;
__u16 pad;
__u32 udiag_states;
__u32 udiag_ino;
__u32 udiag_show;
__u32 udiag_cookie[2];

};

The fields of this structure are as follows:

sdiag_family
The address family; it should be set to AF_UNIX.

sdiag_protocol
pad These fields should be set to 0.

udiag_states
This is a bit mask that defines a filter of sockets states. Only those sockets
whose states are in this mask will be reported. Ignored when querying for an in-
dividual socket. Supported values are:

1 << TCP_ESTABLISHED

1 << TCP_LISTEN

udiag_ino
This is an inode number when querying for an individual socket. Ignored when
querying for a list of sockets.

udiag_show
This is a set of flags defining what kind of information to report. Each requested
kind of information is reported back as a netlink attribute as described below:

UDIAG_SHOW_NAME
The attribute reported in answer to this request is UNIX_DIAG_NAME.
The payload associated with this attribute is the pathname to which the
socket was bound (a sequence of bytes up to UNIX_PATH_MAX size).

UDIAG_SHOW_VFS
The attribute reported in answer to this request is UNIX_DIAG_VFS.
The payload associated with this attribute is represented in the following
structure:

struct unix_diag_vfs {
__u32 udiag_vfs_dev;

Linux man-pages 6.16 2025-09-21 3778

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

__u32 udiag_vfs_ino;
};

The fields of this structure are as follows:

udiag_vfs_dev
The device number of the corresponding on-disk socket inode.

udiag_vfs_ino
The inode number of the corresponding on-disk socket inode.

UDIAG_SHOW_PEER
The attribute reported in answer to this request is UNIX_DIAG_PEER.
The payload associated with this attribute is a __u32 value which is the
peer’s inode number. This attribute is reported for connected sockets
only.

UDIAG_SHOW_ICONS
The attribute reported in answer to this request is UNIX_DIAG_ICONS.
The payload associated with this attribute is an array of __u32 values
which are inode numbers of sockets that has passed the connect(2) call,
but hasn’t been processed with accept(2) yet. This attribute is reported
for listening sockets only.

UDIAG_SHOW_RQLEN
The attribute reported in answer to this request is
UNIX_DIAG_RQLEN. The payload associated with this attribute is
represented in the following structure:

struct unix_diag_rqlen {
__u32 udiag_rqueue;
__u32 udiag_wqueue;

};

The fields of this structure are as follows:

udiag_rqueue
For listening sockets: the number of pending connections. The
size of the array associated with the UNIX_DIAG_ICONS re-
sponse attribute is equal to this value.

For established sockets: the amount of data in incoming queue.

udiag_wqueue
For listening sockets: the backlog size which equals to the value
passed as the second argument to listen(2).

For established sockets: the amount of memory available for
sending.

UDIAG_SHOW_MEMINFO
The attribute reported in answer to this request is UNIX_DIAG_MEM-
INFO. The payload associated with this attribute is an array of __u32
values described below in the subsection "Socket memory information".

Linux man-pages 6.16 2025-09-21 3779

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

The following attributes are reported back without any specific request:

UNIX_DIAG_SHUTDOWN
The payload associated with this attribute is __u8 value which represents
bits of shutdown(2) state.

udiag_cookie
This is an array of opaque identifiers that could be used along with udiag_ino to
specify an individual socket. It is ignored when querying for a list of sockets, as
well as when all its elements are set to -1.

The response to a query for UNIX domain sockets is represented as an array of

struct unix_diag_msg {
__u8 udiag_family;
__u8 udiag_type;
__u8 udiag_state;
__u8 pad;
__u32 udiag_ino;
__u32 udiag_cookie[2];

};

followed by netlink attributes.

The fields of this structure are as follows:

udiag_family
This field has the same meaning as in struct unix_diag_req.

udiag_type
This is set to one of SOCK_PACKET, SOCK_STREAM, or SOCK_SEQ-
PACKET.

udiag_state
This is set to one of TCP_LISTEN or TCP_ESTABLISHED.

pad This field is set to 0.

udiag_ino
This is the socket inode number.

udiag_cookie
This is an array of opaque identifiers that could be used in subsequent queries.

IPv4 and IPv6 sockets
For IPv4 and IPv6 sockets, the request is represented in the following structure:

struct inet_diag_req_v2 {
__u8 sdiag_family;
__u8 sdiag_protocol;
__u8 idiag_ext;
__u8 pad;
__u32 idiag_states;
struct inet_diag_sockid id;

};

Linux man-pages 6.16 2025-09-21 3780

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

where struct inet_diag_sockid is defined as follows:

struct inet_diag_sockid {
__be16 idiag_sport;
__be16 idiag_dport;
__be32 idiag_src[4];
__be32 idiag_dst[4];
__u32 idiag_if;
__u32 idiag_cookie[2];

};

The fields of struct inet_diag_req_v2 are as follows:

sdiag_family
This should be set to either AF_INET or AF_INET6 for IPv4 or IPv6 sockets
respectively.

sdiag_protocol
This should be set to one of IPPROTO_TCP, IPPROTO_UDP, or IP-
PROTO_UDPLITE.

idiag_ext
This is a set of flags defining what kind of extended information to report. Each
requested kind of information is reported back as a netlink attribute as described
below:

INET_DIAG_TOS
The payload associated with this attribute is a __u8 value which is the
TOS of the socket.

INET_DIAG_TCLASS
The payload associated with this attribute is a __u8 value which is the
TClass of the socket. IPv6 sockets only. For LISTEN and CLOSE sock-
ets, this is followed by INET_DIAG_SKV6ONLY attribute with associ-
ated __u8 payload value meaning whether the socket is IPv6-only or not.

INET_DIAG_MEMINFO
The payload associated with this attribute is represented in the following
structure:

struct inet_diag_meminfo {
__u32 idiag_rmem;
__u32 idiag_wmem;
__u32 idiag_fmem;
__u32 idiag_tmem;

};

The fields of this structure are as follows:

idiag_rmem The amount of data in the receive queue.

idiag_wmem The amount of data that is queued by TCP but not yet
sent.

Linux man-pages 6.16 2025-09-21 3781

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

idiag_fmem The amount of memory scheduled for future use (TCP
only).

idiag_tmem The amount of data in send queue.

INET_DIAG_SKMEMINFO
The payload associated with this attribute is an array of __u32 values de-
scribed below in the subsection "Socket memory information".

INET_DIAG_INFO
The payload associated with this attribute is specific to the address fam-
ily. For TCP sockets, it is an object of type struct tcp_info.

INET_DIAG_CONG
The payload associated with this attribute is a string that describes the
congestion control algorithm used. For TCP sockets only.

pad This should be set to 0.

idiag_states
This is a bit mask that defines a filter of socket states. Only those sockets whose
states are in this mask will be reported. Ignored when querying for an individual
socket.

id This is a socket ID object that is used in dump requests, in queries about individ-
ual sockets, and is reported back in each response. Unlike UNIX domain sock-
ets, IPv4 and IPv6 sockets are identified using addresses and ports. All values
are in network byte order.

The fields of struct inet_diag_sockid are as follows:

idiag_sport
The source port.

idiag_dport
The destination port.

idiag_src
The source address.

idiag_dst
The destination address.

idiag_if
The interface number the socket is bound to.

idiag_cookie
This is an array of opaque identifiers that could be used along with other fields of
this structure to specify an individual socket. It is ignored when querying for a
list of sockets, as well as when all its elements are set to -1.

The response to a query for IPv4 or IPv6 sockets is represented as an array of

struct inet_diag_msg {
__u8 idiag_family;
__u8 idiag_state;
__u8 idiag_timer;

Linux man-pages 6.16 2025-09-21 3782

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

__u8 idiag_retrans;

struct inet_diag_sockid id;

__u32 idiag_expires;
__u32 idiag_rqueue;
__u32 idiag_wqueue;
__u32 idiag_uid;
__u32 idiag_inode;

};

followed by netlink attributes.

The fields of this structure are as follows:

idiag_family
This is the same field as in struct inet_diag_req_v2.

idiag_state
This denotes socket state as in struct inet_diag_req_v2.

idiag_timer
For TCP sockets, this field describes the type of timer that is currently active for
the socket. It is set to one of the following constants:

0 no timer is active
1 a retransmit timer
2 a keep-alive timer
3 a TIME_WAIT timer
4 a zero window probe timer

For non-TCP sockets, this field is set to 0.

idiag_retrans
For idiag_timer values 1, 2, and 4, this field contains the number of retransmits.
For other idiag_timer values, this field is set to 0.

idiag_expires
For TCP sockets that have an active timer, this field describes its expiration time
in milliseconds. For other sockets, this field is set to 0.

idiag_rqueue
For listening sockets: the number of pending connections.

For other sockets: the amount of data in the incoming queue.

idiag_wqueue
For listening sockets: the backlog size.

For other sockets: the amount of memory available for sending.

idiag_uid
This is the socket owner UID.

Linux man-pages 6.16 2025-09-21 3783

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

idiag_inode
This is the socket inode number.

Socket memory information
The payload associated with UNIX_DIAG_MEMINFO and INET_DIAG_SKMEM-
INFO netlink attributes is an array of the following __u32 values:

SK_MEMINFO_RMEM_ALLOC
The amount of data in receive queue.

SK_MEMINFO_RCVBUF
The receive socket buffer as set by SO_RCVBUF.

SK_MEMINFO_WMEM_ALLOC
The amount of data in send queue.

SK_MEMINFO_SNDBUF
The send socket buffer as set by SO_SNDBUF.

SK_MEMINFO_FWD_ALLOC
The amount of memory scheduled for future use (TCP only).

SK_MEMINFO_WMEM_QUEUED
The amount of data queued by TCP, but not yet sent.

SK_MEMINFO_OPTMEM
The amount of memory allocated for the socket’s service needs (e.g., socket fil-
ter).

SK_MEMINFO_BACKLOG
The amount of packets in the backlog (not yet processed).

VERSIONS
NETLINK_INET_DIAG was introduced in Linux 2.6.14 and supported AF_INET and
AF_INET6 sockets only. In Linux 3.3, it was renamed to NETLINK_SOCK_DIAG
and extended to support AF_UNIX sockets.

UNIX_DIAG_MEMINFO and INET_DIAG_SKMEMINFO were introduced in
Linux 3.6.

STANDARDS
Linux.

EXAMPLES
The following example program prints inode number, peer’s inode number, and name of
all UNIX domain sockets in the current namespace.

#include <errno.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/socket.h>
#include <sys/un.h>
#include <linux/netlink.h>
#include <linux/rtnetlink.h>

Linux man-pages 6.16 2025-09-21 3784

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

#include <linux/sock_diag.h>
#include <linux/unix_diag.h>

static int
send_query(int fd)
{

struct sockaddr_nl nladdr = {
.nl_family = AF_NETLINK

};
struct
{

struct nlmsghdr nlh;
struct unix_diag_req udr;

} req = {
.nlh = {

.nlmsg_len = sizeof(req),

.nlmsg_type = SOCK_DIAG_BY_FAMILY,

.nlmsg_flags = NLM_F_REQUEST | NLM_F_DUMP
},
.udr = {

.sdiag_family = AF_UNIX,

.udiag_states = -1,

.udiag_show = UDIAG_SHOW_NAME | UDIAG_SHOW_PEER
}

};
struct iovec iov = {

.iov_base = &req,

.iov_len = sizeof(req)
};
struct msghdr msg = {

.msg_name = &nladdr,

.msg_namelen = sizeof(nladdr),

.msg_iov = &iov,

.msg_iovlen = 1
};

for (;;) {
if (sendmsg(fd, &msg, 0) < 0) {

if (errno == EINTR)
continue;

perror("sendmsg");
return -1;

}

return 0;
}

Linux man-pages 6.16 2025-09-21 3785

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

}

static int
print_diag(const struct unix_diag_msg *diag, unsigned int size)
{

if (size < NLMSG_LENGTH(sizeof(*diag))) {
fputs("short response\n", stderr);
return -1;

}
if (diag->udiag_family != AF_UNIX) {

fprintf(stderr, "unexpected family %u\n", diag->udiag_family);
return -1;

}

unsigned int rta_len = size - NLMSG_LENGTH(sizeof(*diag));
unsigned int peer = 0;
size_t path_len = 0;
char path[sizeof(((struct sockaddr_un *) 0)->sun_path) + 1];

for (struct rtattr *attr = (struct rtattr *) (diag + 1);
RTA_OK(attr, rta_len); attr = RTA_NEXT(attr, rta_len)) {

switch (attr->rta_type) {
case UNIX_DIAG_NAME:

if (!path_len) {
path_len = RTA_PAYLOAD(attr);
if (path_len > sizeof(path) - 1)

path_len = sizeof(path) - 1;
memcpy(path, RTA_DATA(attr), path_len);
path[path_len] = '\0';

}
break;

case UNIX_DIAG_PEER:
if (RTA_PAYLOAD(attr) >= sizeof(peer))

peer = *(unsigned int *) RTA_DATA(attr);
break;

}
}

printf("inode=%u", diag->udiag_ino);

if (peer)
printf(", peer=%u", peer);

if (path_len)
printf(", name=%s%s", *path ? "" : "@",

*path ? path : path + 1);

Linux man-pages 6.16 2025-09-21 3786

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

putchar('\n');
return 0;

}

static int
receive_responses(int fd)
{

long buf[8192 / sizeof(long)];
struct sockaddr_nl nladdr;
struct iovec iov = {

.iov_base = buf,

.iov_len = sizeof(buf)
};
int flags = 0;

for (;;) {
struct msghdr msg = {

.msg_name = &nladdr,

.msg_namelen = sizeof(nladdr),

.msg_iov = &iov,

.msg_iovlen = 1
};

ssize_t ret = recvmsg(fd, &msg, flags);

if (ret < 0) {
if (errno == EINTR)

continue;

perror("recvmsg");
return -1;

}
if (ret == 0)

return 0;

if (nladdr.nl_family != AF_NETLINK) {
fputs("!AF_NETLINK\n", stderr);
return -1;

}

const struct nlmsghdr *h = (struct nlmsghdr *) buf;

if (!NLMSG_OK(h, ret)) {
fputs("!NLMSG_OK\n", stderr);
return -1;

}

Linux man-pages 6.16 2025-09-21 3787

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

for (; NLMSG_OK(h, ret); h = NLMSG_NEXT(h, ret)) {
if (h->nlmsg_type == NLMSG_DONE)

return 0;

if (h->nlmsg_type == NLMSG_ERROR) {
const struct nlmsgerr *err = NLMSG_DATA(h);

if (h->nlmsg_len < NLMSG_LENGTH(sizeof(*err))) {
fputs("NLMSG_ERROR\n", stderr);

} else {
errno = -err->error;
perror("NLMSG_ERROR");

}

return -1;
}

if (h->nlmsg_type != SOCK_DIAG_BY_FAMILY) {
fprintf(stderr, "unexpected nlmsg_type %u\n",

(unsigned) h->nlmsg_type);
return -1;

}

if (print_diag(NLMSG_DATA(h), h->nlmsg_len))
return -1;

}
}

}

int
main(void)
{

int fd = socket(AF_NETLINK, SOCK_RAW, NETLINK_SOCK_DIAG);

if (fd < 0) {
perror("socket");
return 1;

}

int ret = send_query(fd) || receive_responses(fd);

close(fd);
return ret;

}

Linux man-pages 6.16 2025-09-21 3788

sock_diag(7) Miscellaneous Information Manual sock_diag(7)

SEE ALSO
netlink(3), rtnetlink(3), netlink(7), tcp(7)

Linux man-pages 6.16 2025-09-21 3789

socket(7) Miscellaneous Information Manual socket(7)

NAME
socket - Linux socket interface

SYNOPSIS
#include <sys/socket.h>

sockfd = socket(int socket_family, int socket_type, int protocol);

DESCRIPTION
This manual page describes the Linux networking socket layer user interface. The BSD
compatible sockets are the uniform interface between the user process and the network
protocol stacks in the kernel. The protocol modules are grouped into protocol families
such as AF_INET, AF_IPX, and AF_PACKET, and socket types such as
SOCK_STREAM or SOCK_DGRAM. See socket(2) for more information on fami-
lies and types.

Socket-layer functions
These functions are used by the user process to send or receive packets and to do other
socket operations. For more information, see their respective manual pages.

socket(2) creates a socket, connect(2) connects a socket to a remote socket address, the
bind(2) function binds a socket to a local socket address, listen(2) tells the socket that
new connections shall be accepted, and accept(2) is used to get a new socket with a new
incoming connection. socketpair(2) returns two connected anonymous sockets (imple-
mented only for a few local families like AF_UNIX)

send(2), sendto(2), and sendmsg(2) send data over a socket, and recv(2), recvfrom(2),
recvmsg(2) receive data from a socket. poll(2) and select(2) wait for arriving data or a
readiness to send data. In addition, the standard I/O operations like write(2), writev(2),
sendfile(2), read(2), and readv(2) can be used to read and write data.

getsockname(2) returns the local socket address and getpeername(2) returns the remote
socket address. getsockopt(2) and setsockopt(2) are used to set or get socket layer or
protocol options. ioctl(2) can be used to set or read some other options.

close(2) is used to close a socket. shutdown(2) closes parts of a full-duplex socket con-
nection.

Seeking, or calling pread(2) or pwrite(2) with a nonzero position is not supported on
sockets.

It is possible to do nonblocking I/O on sockets by setting the O_NONBLOCK flag on a
socket file descriptor using fcntl(2). Then all operations that would block will (usually)
return with EAGAIN (operation should be retried later); connect(2) will return EIN-
PROGRESS error. The user can then wait for various events via poll(2) or select(2).

Linux man-pages 6.16 2025-09-21 3790

socket(7) Miscellaneous Information Manual socket(7)

I/O events
Event Poll flag Occurrence
Read POLLIN New data arrived.
Read POLLIN A connection setup has been completed (for connec-

tion-oriented sockets)
Read POLLHUP A disconnection request has been initiated by the other

end.
Read POLLHUP A connection is broken (only for connection-oriented

protocols). When the socket is written SIGPIPE is
also sent.

Write POLLOUT Socket has enough send buffer space for writing new
data.

Read/Write POLLIN |
POLLOUT

An outgoing connect(2) finished.

Read/Write POLLERR An asynchronous error occurred.
Read/Write POLLHUP The other end has shut down one direction.
Exception POLLPRI Urgent data arrived. SIGURG is sent then.

An alternative to poll(2) and select(2) is to let the kernel inform the application about
events via a SIGIO signal. For that the O_ASYNC flag must be set on a socket file de-
scriptor via fcntl(2) and a valid signal handler for SIGIO must be installed via sigac-
tion(2). See the Signals discussion below.

Socket address structures
Each socket domain has its own format for socket addresses, with a domain-specific ad-
dress structure. Each of these structures begins with an integer "family" field (typed as
sa_family_t) that indicates the type of the address structure. This allows the various sys-
tem calls (e.g., connect(2), bind(2), accept(2), getsockname(2), getpeername(2)), which
are generic to all socket domains, to determine the domain of a particular socket ad-
dress.

To allow any type of socket address to be passed to interfaces in the sockets API, the
type struct sockaddr is defined. The purpose of this type is purely to allow casting of
domain-specific socket address types to a "generic" type, so as to avoid compiler warn-
ings about type mismatches in calls to the sockets API.

In addition, the sockets API provides the data type struct sockaddr_storage. This type
is suitable to accommodate all supported domain-specific socket address structures; it is
large enough and is aligned properly. (In particular, it is large enough to hold IPv6
socket addresses.) The structure includes the following field, which can be used to iden-
tify the type of socket address actually stored in the structure:

sa_family_t ss_family;

The sockaddr_storage structure is useful in programs that must handle socket addresses
in a generic way (e.g., programs that must deal with both IPv4 and IPv6 socket ad-
dresses).

Linux man-pages 6.16 2025-09-21 3791

socket(7) Miscellaneous Information Manual socket(7)

Socket options
The socket options listed below can be set by using setsockopt(2) and read with getsock-
opt(2) with the socket level set to SOL_SOCKET for all sockets. Unless otherwise
noted, optval is a pointer to an int.

SO_ACCEPTCONN
Returns a value indicating whether or not this socket has been marked to accept
connections with listen(2). The value 0 indicates that this is not a listening
socket, the value 1 indicates that this is a listening socket. This socket option is
read-only.

SO_ATTACH_FILTER (since Linux 2.2)
SO_ATTACH_BPF (since Linux 3.19)

Attach a classic BPF (SO_ATTACH_FILTER) or an extended BPF (SO_AT-
TACH_BPF) program to the socket for use as a filter of incoming packets. A
packet will be dropped if the filter program returns zero. If the filter program re-
turns a nonzero value which is less than the packet’s data size, the packet will be
truncated to the size returned. If the value returned by the filter is greater than or
equal to the packet’s data size, the packet is allowed to proceed unmodified.

The argument for SO_ATTACH_FILTER is a sock_fprog structure, defined in
<linux/filter.h>:

struct sock_fprog {
unsigned short len;
struct sock_filter *filter;

};

The argument for SO_ATTACH_BPF is a file descriptor returned by the bpf(2)
system call and must refer to a program of type
BPF_PROG_TYPE_SOCKET_FILTER.

These options may be set multiple times for a given socket, each time replacing
the previous filter program. The classic and extended versions may be called on
the same socket, but the previous filter will always be replaced such that a socket
never has more than one filter defined.

Both classic and extended BPF are explained in the kernel source file Documen-
tation/networking/filter.txt

SO_ATTACH_REUSEPORT_CBPF
SO_ATTACH_REUSEPORT_EBPF

For use with the SO_REUSEPORT option, these options allow the user to set a
classic BPF (SO_ATTACH_REUSEPORT_CBPF) or an extended BPF
(SO_ATTACH_REUSEPORT_EBPF) program which defines how packets are
assigned to the sockets in the reuseport group (that is, all sockets which have
SO_REUSEPORT set and are using the same local address to receive packets).

The BPF program must return an index between 0 and N-1 representing the
socket which should receive the packet (where N is the number of sockets in the
group). If the BPF program returns an invalid index, socket selection will fall
back to the plain SO_REUSEPORT mechanism.

Linux man-pages 6.16 2025-09-21 3792

socket(7) Miscellaneous Information Manual socket(7)

Sockets are numbered in the order in which they are added to the group (that is,
the order of bind(2) calls for UDP sockets or the order of listen(2) calls for TCP
sockets). New sockets added to a reuseport group will inherit the BPF program.
When a socket is removed from a reuseport group (via close(2)), the last socket
in the group will be moved into the closed socket’s position.

These options may be set repeatedly at any time on any socket in the group to re-
place the current BPF program used by all sockets in the group.

SO_ATTACH_REUSEPORT_CBPF takes the same argument type as SO_AT-
TACH_FILTER and SO_ATTACH_REUSEPORT_EBPF takes the same ar-
gument type as SO_ATTACH_BPF.

UDP support for this feature is available since Linux 4.5; TCP support is avail-
able since Linux 4.6.

SO_BINDTODEVICE
Bind this socket to a particular device like “eth0”, as specified in the passed in-
terface name. If the name is an empty string or the option size is zero, the socket
device binding is removed. The passed option is a variable-size null-terminated
interface name string with the maximum size of IFNAMSIZ. If a socket is
bound to an interface, only packets received from that particular interface are
processed by the socket. Note that this works only for some socket types, partic-
ularly AF_INET sockets. It is not supported for packet sockets (use normal
bind(2) there).

Before Linux 3.8, this socket option could be set, but could not retrieved with
getsockopt(2). Since Linux 3.8, it is readable. The optlen argument should con-
tain the buffer size available to receive the device name and is recommended to
be IFNAMSIZ bytes. The real device name length is reported back in the
optlen argument.

SO_BROADCAST
Set or get the broadcast flag. When enabled, datagram sockets are allowed to
send packets to a broadcast address. This option has no effect on stream-ori-
ented sockets.

SO_BSDCOMPAT
Enable BSD bug-to-bug compatibility. This is used by the UDP protocol module
in Linux 2.0 and 2.2. If enabled, ICMP errors received for a UDP socket will not
be passed to the user program. In later kernel versions, support for this option
has been phased out: Linux 2.4 silently ignores it, and Linux 2.6 generates a ker-
nel warning (printk()) if a program uses this option. Linux 2.0 also enabled BSD
bug-to-bug compatibility options (random header changing, skipping of the
broadcast flag) for raw sockets with this option, but that was removed in Linux
2.2.

SO_DEBUG
Enable socket debugging. Allowed only for processes with the CAP_NET_AD-
MIN capability or an effective user ID of 0.

Linux man-pages 6.16 2025-09-21 3793

socket(7) Miscellaneous Information Manual socket(7)

SO_DETACH_FILTER (since Linux 2.2)
SO_DETACH_BPF (since Linux 3.19)

These two options, which are synonyms, may be used to remove the classic or
extended BPF program attached to a socket with either SO_ATTACH_FILTER
or SO_ATTACH_BPF. The option value is ignored.

SO_DOMAIN (since Linux 2.6.32)
Retrieves the socket domain as an integer, returning a value such as AF_INET6.
See socket(2) for details. This socket option is read-only.

SO_ERROR
Get and clear the pending socket error. This socket option is read-only. Expects
an integer.

SO_DONTROUTE
Don’t send via a gateway, send only to directly connected hosts. The same effect
can be achieved by setting the MSG_DONTROUTE flag on a socket send(2)
operation. Expects an integer boolean flag.

SO_INCOMING_CPU (gettable since Linux 3.19, settable since Linux 4.4)
Sets or gets the CPU affinity of a socket. Expects an integer flag.

int cpu = 1;
setsockopt(fd, SOL_SOCKET, SO_INCOMING_CPU, &cpu,

sizeof(cpu));

Because all of the packets for a single stream (i.e., all packets for the same 4-tu-
ple) arrive on the single RX queue that is associated with a particular CPU, the
typical use case is to employ one listening process per RX queue, with the in-
coming flow being handled by a listener on the same CPU that is handling the
RX queue. This provides optimal NUMA behavior and keeps CPU caches hot.

SO_INCOMING_NAPI_ID (gettable since Linux 4.12)
Returns a system-level unique ID called NAPI ID that is associated with a RX
queue on which the last packet associated with that socket is received.

This can be used by an application to split the incoming flows among worker
threads based on the RX queue on which the packets associated with the flows
are received. It allows each worker thread to be associated with a NIC HW re-
ceive queue and service all the connection requests received on that RX queue.
This mapping between an app thread and a HW NIC queue streamlines the flow
of data from the NIC to the application.

SO_KEEPALIVE
Enable sending of keep-alive messages on connection-oriented sockets. Expects
an integer boolean flag.

SO_LINGER
Sets or gets the SO_LINGER option. The argument is a linger structure.

struct linger {
int l_onoff; /* linger active */
int l_linger; /* how many seconds to linger for */

};

Linux man-pages 6.16 2025-09-21 3794

socket(7) Miscellaneous Information Manual socket(7)

When enabled, a close(2) or shutdown(2) will not return until all queued mes-
sages for the socket have been successfully sent or the linger timeout has been
reached. Otherwise, the call returns immediately and the closing is done in the
background. When the socket is closed as part of exit(2), it always lingers in the
background.

SO_LOCK_FILTER
When set, this option will prevent changing the filters associated with the socket.
These filters include any set using the socket options SO_ATTACH_FILTER,
SO_ATTACH_BPF, SO_ATTACH_REUSEPORT_CBPF, and SO_AT-
TACH_REUSEPORT_EBPF.

The typical use case is for a privileged process to set up a raw socket (an opera-
tion that requires the CAP_NET_RAW capability), apply a restrictive filter, set
the SO_LOCK_FILTER option, and then either drop its privileges or pass the
socket file descriptor to an unprivileged process via a UNIX domain socket.

Once the SO_LOCK_FILTER option has been enabled, attempts to change or
remove the filter attached to a socket, or to disable the SO_LOCK_FILTER op-
tion will fail with the error EPERM.

SO_MARK (since Linux 2.6.25)
Set the mark for each packet sent through this socket (similar to the netfilter
MARK target but socket-based). Changing the mark can be used for mark-based
routing without netfilter or for packet filtering. Setting this option requires the
CAP_NET_ADMIN or CAP_NET_RAW (since Linux 5.17) capability.

SO_OOBINLINE
If this option is enabled, out-of-band data is directly placed into the receive data
stream. Otherwise, out-of-band data is passed only when the MSG_OOB flag is
set during receiving.

SO_PASSCRED
Enable or disable the receiving of the SCM_CREDENTIALS control message.
For more information, see unix(7).

SO_PASSSEC
Enable or disable the receiving of the SCM_SECURITY control message. For
more information, see unix(7).

SO_PEEK_OFF (since Linux 3.4)
This option, which is currently supported only for unix(7) sockets, sets the value
of the "peek offset" for the recv(2) system call when used with MSG_PEEK
flag.

When this option is set to a negative value (it is set to -1 for all new sockets),
traditional behavior is provided: recv(2) with the MSG_PEEK flag will peek
data from the front of the queue.

When the option is set to a value greater than or equal to zero, then the next peek
at data queued in the socket will occur at the byte offset specified by the option
value. At the same time, the "peek offset" will be incremented by the number of
bytes that were peeked from the queue, so that a subsequent peek will return the

Linux man-pages 6.16 2025-09-21 3795

socket(7) Miscellaneous Information Manual socket(7)

next data in the queue.

If data is removed from the front of the queue via a call to recv(2) (or similar)
without the MSG_PEEK flag, the "peek offset" will be decreased by the number
of bytes removed. In other words, receiving data without the MSG_PEEK flag
will cause the "peek offset" to be adjusted to maintain the correct relative posi-
tion in the queued data, so that a subsequent peek will retrieve the data that
would have been retrieved had the data not been removed.

For datagram sockets, if the "peek offset" points to the middle of a packet, the
data returned will be marked with the MSG_TRUNC flag.

The following example serves to illustrate the use of SO_PEEK_OFF. Suppose
a stream socket has the following queued input data:

aabbccddeeff

The following sequence of recv(2) calls would have the effect noted in the com-
ments:

int ov = 4; // Set peek offset to 4
setsockopt(fd, SOL_SOCKET, SO_PEEK_OFF, &ov, sizeof(ov));

recv(fd, buf, 2, MSG_PEEK); // Peeks "cc"; offset set to 6
recv(fd, buf, 2, MSG_PEEK); // Peeks "dd"; offset set to 8
recv(fd, buf, 2, 0); // Reads "aa"; offset set to 6
recv(fd, buf, 2, MSG_PEEK); // Peeks "ee"; offset set to 8

SO_PEERCRED
Return the credentials of the peer process connected to this socket. For further
details, see unix(7).

SO_PEERSEC (since Linux 2.6.2)
Return the security context of the peer socket connected to this socket. For fur-
ther details, see unix(7) and ip(7).

SO_PRIORITY
Set the protocol-defined priority for all packets to be sent on this socket. Linux
uses this value to order the networking queues: packets with a higher priority
may be processed first depending on the selected device queueing discipline.
Setting a priority outside the range 0 to 6 requires the CAP_NET_ADMIN ca-
pability.

SO_PROTOCOL (since Linux 2.6.32)
Retrieves the socket protocol as an integer, returning a value such as IP-
PROTO_SCTP. See socket(2) for details. This socket option is read-only.

SO_RCVBUF
Sets or gets the maximum socket receive buffer in bytes. The kernel doubles this
value (to allow space for bookkeeping overhead) when it is set using setsock-
opt(2), and this doubled value is returned by getsockopt(2). The default value is
set by the /proc/sys/net/core/rmem_default file, and the maximum allowed value
is set by the /proc/sys/net/core/rmem_max file. The minimum (doubled) value
for this option is 256.

Linux man-pages 6.16 2025-09-21 3796

socket(7) Miscellaneous Information Manual socket(7)

SO_RCVBUFFORCE (since Linux 2.6.14)
Using this socket option, a privileged (CAP_NET_ADMIN) process can per-
form the same task as SO_RCVBUF, but the rmem_max limit can be overrid-
den.

SO_RCVLOWAT
SO_SNDLOWAT

Specify the minimum number of bytes in the buffer until the socket layer will
pass the data to the protocol (SO_SNDLOWAT) or the user on receiving
(SO_RCVLOWAT). These two values are initialized to 1. SO_SNDLOWAT is
not changeable on Linux (setsockopt(2) fails with the error ENOPROTOOPT).
SO_RCVLOWAT is changeable only since Linux 2.4.

Before Linux 2.6.28 select(2), poll(2), and epoll(7) did not respect the
SO_RCVLOWAT setting on Linux, and indicated a socket as readable when
even a single byte of data was available. A subsequent read from the socket
would then block until SO_RCVLOWAT bytes are available. Since Linux
2.6.28, select(2), poll(2), and epoll(7) indicate a socket as readable only if at
least SO_RCVLOWAT bytes are available.

SO_RCVTIMEO
SO_SNDTIMEO

Specify the receiving or sending timeouts until reporting an error. The argument
is a struct timeval. If an input or output function blocks for this period of time,
and data has been sent or received, the return value of that function will be the
amount of data transferred; if no data has been transferred and the timeout has
been reached, then -1 is returned with errno set to EAGAIN or EWOULD-
BLOCK, or EINPROGRESS (for connect(2)) just as if the socket was specified
to be nonblocking. If the timeout is set to zero (the default), then the operation
will never timeout. Timeouts only have effect for system calls that perform
socket I/O (e.g., accept(2), connect(2), read(2), recvmsg(2), send(2),
sendmsg(2)); timeouts have no effect for select(2), poll(2), epoll_wait(2), and so
on.

SO_REUSEADDR
Indicates that the rules used in validating addresses supplied in a bind(2) call
should allow reuse of local addresses. For AF_INET sockets this means that a
socket may bind, except when there is an active listening socket bound to the ad-
dress. When the listening socket is bound to INADDR_ANY with a specific
port then it is not possible to bind to this port for any local address. Argument is
an integer boolean flag.

SO_REUSEPORT (since Linux 3.9)
Permits multiple AF_INET or AF_INET6 sockets to be bound to an identical
socket address. This option must be set on each socket (including the first
socket) prior to calling bind(2) on the socket. To prevent port hijacking, all of
the processes binding to the same address must have the same effective UID.
This option can be employed with both TCP and UDP sockets.

For TCP sockets, this option allows accept(2) load distribution in a multi-
threaded server to be improved by using a distinct listener socket for each thread.

Linux man-pages 6.16 2025-09-21 3797

socket(7) Miscellaneous Information Manual socket(7)

This provides improved load distribution as compared to traditional techniques
such using a single accept(2)ing thread that distributes connections, or having
multiple threads that compete to accept(2) from the same socket.

For UDP sockets, the use of this option can provide better distribution of incom-
ing datagrams to multiple processes (or threads) as compared to the traditional
technique of having multiple processes compete to receive datagrams on the
same socket.

SO_RXQ_OVFL (since Linux 2.6.33)
Indicates that an unsigned 32-bit value ancillary message (cmsg) should be at-
tached to received skbs indicating the number of packets dropped by the socket
since its creation.

SO_SELECT_ERR_QUEUE (since Linux 3.10)
When this option is set on a socket, an error condition on a socket causes notifi-
cation not only via the exceptfds set of select(2). Similarly, poll(2) also returns a
POLLPRI whenever an POLLERR event is returned.

Background: this option was added when waking up on an error condition oc-
curred only via the readfds and writefds sets of select(2). The option was added
to allow monitoring for error conditions via the exceptfds argument without si-
multaneously having to receive notifications (via readfds) for regular data that
can be read from the socket. After changes in Linux 4.16, the use of this flag to
achieve the desired notifications is no longer necessary. This option is neverthe-
less retained for backwards compatibility.

SO_SNDBUF
Sets or gets the maximum socket send buffer in bytes. The kernel doubles this
value (to allow space for bookkeeping overhead) when it is set using setsock-
opt(2), and this doubled value is returned by getsockopt(2). The default value is
set by the /proc/sys/net/core/wmem_default file and the maximum allowed value
is set by the /proc/sys/net/core/wmem_max file. The minimum (doubled) value
for this option is 2048.

SO_SNDBUFFORCE (since Linux 2.6.14)
Using this socket option, a privileged (CAP_NET_ADMIN) process can per-
form the same task as SO_SNDBUF, but the wmem_max limit can be overrid-
den.

SO_TIMESTAMP
Enable or disable the receiving of the SO_TIMESTAMP control message. The
timestamp control message is sent with level SOL_SOCKET and a cmsg_type
of SCM_TIMESTAMP. The cmsg_data field is a struct timeval indicating the
reception time of the last packet passed to the user in this call. See cmsg(3) for
details on control messages.

SO_TIMESTAMPNS (since Linux 2.6.22)
Enable or disable the receiving of the SO_TIMESTAMPNS control message.
The timestamp control message is sent with level SOL_SOCKET and a
cmsg_type of SCM_TIMESTAMPNS. The cmsg_data field is a struct time-
spec indicating the reception time of the last packet passed to the user in this

Linux man-pages 6.16 2025-09-21 3798

socket(7) Miscellaneous Information Manual socket(7)

call. The clock used for the timestamp is CLOCK_REALTIME. See cmsg(3)
for details on control messages.

A socket cannot mix SO_TIMESTAMP and SO_TIMESTAMPNS: the two
modes are mutually exclusive.

SO_TYPE
Gets the socket type as an integer (e.g., SOCK_STREAM). This socket option
is read-only.

SO_BUSY_POLL (since Linux 3.11)
Sets the approximate time in microseconds to busy poll on a blocking receive
when there is no data. Increasing this value requires CAP_NET_ADMIN. The
default for this option is controlled by the /proc/sys/net/core/busy_read file.

The value in the /proc/sys/net/core/busy_poll file determines how long select(2)
and poll(2) will busy poll when they operate on sockets with SO_BUSY_POLL
set and no events to report are found.

In both cases, busy polling will only be done when the socket last received data
from a network device that supports this option.

While busy polling may improve latency of some applications, care must be
taken when using it since this will increase both CPU utilization and power us-
age.

Signals
When writing onto a connection-oriented socket that has been shut down (by the local or
the remote end) SIGPIPE is sent to the writing process and EPIPE is returned. The
signal is not sent when the write call specified the MSG_NOSIGNAL flag.

When requested with the FIOSETOWN fcntl(2) or SIOCSPGRP ioctl(2), SIGIO is
sent when an I/O event occurs. It is possible to use poll(2) or select(2) in the signal han-
dler to find out which socket the event occurred on. An alternative (in Linux 2.2) is to
set a real-time signal using the F_SETSIG fcntl(2); the handler of the real time signal
will be called with the file descriptor in the si_fd field of its siginfo_t. See fcntl(2) for
more information.

Under some circumstances (e.g., multiple processes accessing a single socket), the con-
dition that caused the SIGIO may have already disappeared when the process reacts to
the signal. If this happens, the process should wait again because Linux will resend the
signal later.

/proc interfaces
The core socket networking parameters can be accessed via files in the directory
/proc/sys/net/core/ .

rmem_default
contains the default setting in bytes of the socket receive buffer.

rmem_max
contains the maximum socket receive buffer size in bytes which a user may set
by using the SO_RCVBUF socket option.

Linux man-pages 6.16 2025-09-21 3799

socket(7) Miscellaneous Information Manual socket(7)

wmem_default
contains the default setting in bytes of the socket send buffer.

wmem_max
contains the maximum socket send buffer size in bytes which a user may set by
using the SO_SNDBUF socket option.

message_cost
message_burst

configure the token bucket filter used to load limit warning messages caused by
external network events.

netdev_max_backlog
Maximum number of packets in the global input queue.

optmem_max
Maximum size of ancillary data and user control data like the iovecs per socket.

Ioctls
These operations can be accessed using ioctl(2):

error = ioctl(ip_socket, ioctl_type, &value_result);

SIOCGSTAMP
Return a struct timeval with the receive timestamp of the last packet passed to
the user. This is useful for accurate round trip time measurements. See
setitimer(2) for a description of struct timeval. This ioctl should be used only if
the socket options SO_TIMESTAMP and SO_TIMESTAMPNS are not set on
the socket. Otherwise, it returns the timestamp of the last packet that was re-
ceived while SO_TIMESTAMP and SO_TIMESTAMPNS were not set, or it
fails if no such packet has been received, (i.e., ioctl(2) returns -1 with errno set
to ENOENT).

SIOCSPGRP
Set the process or process group that is to receive SIGIO or SIGURG signals
when I/O becomes possible or urgent data is available. The argument is a
pointer to a pid_t. For further details, see the description of F_SETOWN in fc-
ntl(2).

FIOASYNC
Change the O_ASYNC flag to enable or disable asynchronous I/O mode of the
socket. Asynchronous I/O mode means that the SIGIO signal or the signal set
with F_SETSIG is raised when a new I/O event occurs.

Argument is an integer boolean flag. (This operation is synonymous with the use
of fcntl(2) to set the O_ASYNC flag.)

SIOCGPGRP
Get the current process or process group that receives SIGIO or SIGURG sig-
nals, or 0 when none is set.

Valid fcntl(2) operations:

Linux man-pages 6.16 2025-09-21 3800

socket(7) Miscellaneous Information Manual socket(7)

FIOGETOWN
The same as the SIOCGPGRP ioctl(2).

FIOSETOWN
The same as the SIOCSPGRP ioctl(2).

VERSIONS
SO_BINDTODEVICE was introduced in Linux 2.0.30. SO_PASSCRED is new in
Linux 2.2. The /proc interfaces were introduced in Linux 2.2. SO_RCVTIMEO and
SO_SNDTIMEO are supported since Linux 2.3.41. Earlier, timeouts were fixed to a
protocol-specific setting, and could not be read or written.

NOTES
Linux assumes that half of the send/receive buffer is used for internal kernel structures;
thus the values in the corresponding /proc files are twice what can be observed on the
wire.

Linux will allow port reuse only with the SO_REUSEADDR option when this option
was set both in the previous program that performed a bind(2) to the port and in the pro-
gram that wants to reuse the port. This differs from some implementations (e.g.,
FreeBSD) where only the later program needs to set the SO_REUSEADDR option.
Typically this difference is invisible, since, for example, a server program is designed to
always set this option.

SEE ALSO
wireshark(1), bpf(2), connect(2), getsockopt(2), setsockopt(2), socket(2), pcap(3), ad-
dress_families(7), capabilities(7), ddp(7), ip(7), ipv6(7), packet(7), tcp(7), udp(7),
unix(7), tcpdump(8)

Linux man-pages 6.16 2025-09-21 3801

spufs(7) Miscellaneous Information Manual spufs(7)

NAME
spufs - SPU filesystem

DESCRIPTION
The SPU filesystem is used on PowerPC machines that implement the Cell Broadband
Engine Architecture in order to access Synergistic Processor Units (SPUs).

The filesystem provides a name space similar to POSIX shared memory or message
queues. Users that have write permissions on the filesystem can use spu_create(2) to es-
tablish SPU contexts under the spufs root directory.

Every SPU context is represented by a directory containing a predefined set of files.
These files can be used for manipulating the state of the logical SPU. Users can change
permissions on the files, but can’t add or remove files.

Mount options
uid=<uid>

Set the user owning the mount point; the default is 0 (root).

gid=<gid>
Set the group owning the mount point; the default is 0 (root).

mode=<mode>
Set the mode of the top-level directory in spufs, as an octal mode string. The de-
fault is 0775.

Files
The files in spufs mostly follow the standard behavior for regular system calls like
read(2) or write(2), but often support only a subset of the operations supported on regu-
lar filesystems. This list details the supported operations and the deviations from the
standard behavior described in the respective man pages.

All files that support the read(2) operation also support readv(2) and all files that sup-
port the write(2) operation also support writev(2). All files support the access(2) and
stat(2) family of operations, but for the latter call, the only fields of the returned stat
structure that contain reliable information are st_mode, st_nlink, st_uid , and st_gid .

All files support the chmod(2)/fchmod(2) and chown(2)/fchown(2) operations, but will
not be able to grant permissions that contradict the possible operations (e.g., read access
on the wbox file).

The current set of files is:

/capabilities
Contains a comma-delimited string representing the capabilities of this SPU con-
text. Possible capabilities are:

sched
This context may be scheduled.

step This context can be run in single-step mode, for debugging.

New capabilities flags may be added in the future.

Linux man-pages 6.16 2025-05-17 3802

spufs(7) Miscellaneous Information Manual spufs(7)

/mem
the contents of the local storage memory of the SPU. This can be accessed like a
regular shared memory file and contains both code and data in the address space
of the SPU. The possible operations on an open mem file are:

read(2)
pread(2)
write(2)
pwrite(2)
lseek(2)

These operate as usual, with the exception that lseek(2), write(2), and
pwrite(2) are not supported beyond the end of the file. The file size is the
size of the local storage of the SPU, which is normally 256 kilobytes.

mmap(2)
Mapping mem into the process address space provides access to the SPU
local storage within the process address space. Only MAP_SHARED
mappings are allowed.

/regs Contains the saved general-purpose registers of the SPU context. This file con-
tains the 128-bit values of each register, from register 0 to register 127, in order.
This allows the general-purpose registers to be inspected for debugging.

Reading to or writing from this file requires that the context is scheduled out, so
use of this file is not recommended in normal program operation.

The regs file is not present on contexts that have been created with the
SPU_CREATE_NOSCHED flag.

/mbox
The first SPU-to-CPU communication mailbox. This file is read-only and can be
read in units of 4 bytes. The file can be used only in nonblocking mode - even
poll(2) cannot be used to block on this file. The only possible operation on an
open mbox file is:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. If there is no data available in the mailbox (i.e., the SPU has not
sent a mailbox message), the return value is set to -1 and errno is set to
EAGAIN. When data has been read successfully, four bytes are placed
in the data buffer and the value four is returned.

/ibox
The second SPU-to-CPU communication mailbox. This file is similar to the first
mailbox file, but can be read in blocking I/O mode, thus calling read(2) on an
open ibox file will block until the SPU has written data to its interrupt mailbox
channel (unless the file has been opened with O_NONBLOCK, see below).
Also, poll(2) and similar system calls can be used to monitor for the presence of
mailbox data.

The possible operations on an open ibox file are:

Linux man-pages 6.16 2025-05-17 3803

spufs(7) Miscellaneous Information Manual spufs(7)

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. If there is no data available in the mailbox and the file descriptor
has been opened with O_NONBLOCK, the return value is set to -1 and
errno is set to EAGAIN.

If there is no data available in the mailbox and the file descriptor has been
opened without O_NONBLOCK, the call will block until the SPU
writes to its interrupt mailbox channel. When data has been read suc-
cessfully, four bytes are placed in the data buffer and the value four is re-
turned.

poll(2)
Poll on the ibox file returns (POLLIN | POLLRDNORM) whenever data
is available for reading.

/wbox
The CPU-to-SPU communication mailbox. It is write-only and can be written in
units of four bytes. If the mailbox is full, write(2) will block, and poll(2) can be
used to block until the mailbox is available for writing again. The possible oper-
ations on an open wbox file are:

write(2)
If count is smaller than four, write(2) returns -1 and sets errno to EIN-
VAL. If there is no space available in the mailbox and the file descriptor
has been opened with O_NONBLOCK, the return value is set to -1 and
errno is set to EAGAIN.

If there is no space available in the mailbox and the file descriptor has
been opened without O_NONBLOCK, the call will block until the SPU
reads from its PPE (PowerPC Processing Element) mailbox channel.
When data has been written successfully, the system call returns four as
its function result.

poll(2)
A poll on the wbox file returns (POLLOUT | POLLWRNORM) whenever
space is available for writing.

/mbox_stat
/ibox_stat
/wbox_stat

These are read-only files that contain the length of the current queue of each
mailbox—that is, how many words can be read from mbox or ibox or how many
words can be written to wbox without blocking. The files can be read only in
four-byte units and return a big-endian binary integer number. The only possible
operation on an open *box_stat file is:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is placed in the data buffer. This
value is the number of elements that can be read from (for mbox_stat and
ibox_stat) or written to (for wbox_stat) the respective mailbox without

Linux man-pages 6.16 2025-05-17 3804

spufs(7) Miscellaneous Information Manual spufs(7)

blocking or returning an EAGAIN error.

/npc
/decr
/decr_status
/spu_tag_mask
/event_mask
/event_status
/srr0
/lslr Internal registers of the SPU. These files contain an ASCII string representing

the hex value of the specified register. Reads and writes on these files (except for
npc, see below) require that the SPU context be scheduled out, so frequent ac-
cess to these files is not recommended for normal program operation.

The contents of these files are:

npc Next Program Counter - valid only when the SPU is in a
stopped state.

decr SPU Decrementer

decr_status Decrementer Status

spu_tag_mask MFC tag mask for SPU DMA

event_mask Event mask for SPU interrupts

event_status Number of SPU events pending (read-only)

srr0 Interrupt Return address register

lslr Local Store Limit Register

The possible operations on these files are:

read(2)
Reads the current register value. If the register value is larger than the
buffer passed to the read(2) system call, subsequent reads will continue
reading from the same buffer, until the end of the buffer is reached.

When a complete string has been read, all subsequent read operations
will return zero bytes and a new file descriptor needs to be opened to read
a new value.

write(2)
A write(2) operation on the file sets the register to the value given in the
string. The string is parsed from the beginning until the first nonnumeric
character or the end of the buffer. Subsequent writes to the same file de-
scriptor overwrite the previous setting.

Except for the npc file, these files are not present on contexts that have
been created with the SPU_CREATE_NOSCHED flag.

/fpcr This file provides access to the Floating Point Status and Control Register (fcpr)
as a binary, four-byte file. The operations on the fpcr file are:

Linux man-pages 6.16 2025-05-17 3805

spufs(7) Miscellaneous Information Manual spufs(7)

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is placed in the data buffer; this is the
current value of the fpcr register.

write(2)
If count is smaller than four, write(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is copied from the data buffer, updat-
ing the value of the fpcr register.

/signal1
/signal2

The files provide access to the two signal notification channels of an SPU. These
are read-write files that operate on four-byte words. Writing to one of these files
triggers an interrupt on the SPU. The value written to the signal files can be read
from the SPU through a channel read or from host user space through the file.
After the value has been read by the SPU, it is reset to zero. The possible opera-
tions on an open signal1 or signal2 file are:

read(2)
If count is smaller than four, read(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is placed in the data buffer; this is the
current value of the specified signal notification register.

write(2)
If count is smaller than four, write(2) returns -1 and sets errno to EIN-
VAL. Otherwise, a four-byte value is copied from the data buffer, updat-
ing the value of the specified signal notification register. The signal noti-
fication register will either be replaced with the input data or will be up-
dated to the bitwise OR operation of the old value and the input data, de-
pending on the contents of the signal1_type or signal2_type files respec-
tively.

/signal1_type
/signal2_type

These two files change the behavior of the signal1 and signal2 notification files.
They contain a numeric ASCII string which is read as either "1" or "0". In mode
0 (overwrite), the hardware replaces the contents of the signal channel with the
data that is written to it. In mode 1 (logical OR), the hardware accumulates the
bits that are subsequently written to it. The possible operations on an open sig-
nal1_type or signal2_type file are:

read(2)
When the count supplied to the read(2) call is shorter than the required
length for the digit (plus a newline character), subsequent reads from the
same file descriptor will complete the string. When a complete string has
been read, all subsequent read operations will return zero bytes and a new
file descriptor needs to be opened to read the value again.

Linux man-pages 6.16 2025-05-17 3806

spufs(7) Miscellaneous Information Manual spufs(7)

write(2)
A write(2) operation on the file sets the register to the value given in the
string. The string is parsed from the beginning until the first nonnumeric
character or the end of the buffer. Subsequent writes to the same file de-
scriptor overwrite the previous setting.

/mbox_info
/ibox_info
/wbox_info
/dma_into
/proxydma_info

Read-only files that contain the saved state of the SPU mailboxes and DMA
queues. This allows the SPU status to be inspected, mainly for debugging. The
mbox_info and ibox_info files each contain the four-byte mailbox message that
has been written by the SPU. If no message has been written to these mailboxes,
then contents of these files is undefined. The mbox_stat, ibox_stat, and
wbox_stat files contain the available message count.

The wbox_info file contains an array of four-byte mailbox messages, which have
been sent to the SPU. With current CBEA machines, the array is four items in
length, so up to 4 * 4 = 16 bytes can be read from this file. If any mailbox queue
entry is empty, then the bytes read at the corresponding location are undefined.

The dma_info file contains the contents of the SPU MFC DMA queue, repre-
sented as the following structure:

struct spu_dma_info {
uint64_t dma_info_type;
uint64_t dma_info_mask;
uint64_t dma_info_status;
uint64_t dma_info_stall_and_notify;
uint64_t dma_info_atomic_command_status;
struct mfc_cq_sr dma_info_command_data[16];

};

The last member of this data structure is the actual DMA queue, containing 16
entries. The mfc_cq_sr structure is defined as:

struct mfc_cq_sr {
uint64_t mfc_cq_data0_RW;
uint64_t mfc_cq_data1_RW;
uint64_t mfc_cq_data2_RW;
uint64_t mfc_cq_data3_RW;

};

The proxydma_info file contains similar information, but describes the proxy
DMA queue (i.e., DMAs initiated by entities outside the SPU) instead. The file
is in the following format:

struct spu_proxydma_info {
uint64_t proxydma_info_type;
uint64_t proxydma_info_mask;

Linux man-pages 6.16 2025-05-17 3807

spufs(7) Miscellaneous Information Manual spufs(7)

uint64_t proxydma_info_status;
struct mfc_cq_sr proxydma_info_command_data[8];

};

Accessing these files requires that the SPU context is scheduled out - frequent
use can be inefficient. These files should not be used for normal program opera-
tion.

These files are not present on contexts that have been created with the
SPU_CREATE_NOSCHED flag.

/cntl This file provides access to the SPU Run Control and SPU status registers, as an
ASCII string. The following operations are supported:

read(2)
Reads from the cntl file will return an ASCII string with the hex value of
the SPU Status register.

write(2)
Writes to the cntl file will set the context’s SPU Run Control register.

/mfc Provides access to the Memory Flow Controller of the SPU. Reading from the
file returns the contents of the SPU’s MFC Tag Status register, and writing to the
file initiates a DMA from the MFC. The following operations are supported:

write(2)
Writes to this file need to be in the format of a MFC DMA command, de-
fined as follows:

struct mfc_dma_command {
int32_t pad; /* reserved */
uint32_t lsa; /* local storage address */
uint64_t ea; /* effective address */
uint16_t size; /* transfer size */
uint16_t tag; /* command tag */
uint16_t class; /* class ID */
uint16_t cmd; /* command opcode */

};

Writes are required to be exactly sizeof(struct mfc_dma_command) bytes
in size. The command will be sent to the SPU’s MFC proxy queue, and
the tag stored in the kernel (see below).

read(2)
Reads the contents of the tag status register. If the file is opened in
blocking mode (i.e., without O_NONBLOCK), then the read will block
until a DMA tag (as performed by a previous write) is complete. In non-
blocking mode, the MFC tag status register will be returned without wait-
ing.

poll(2)
Calling poll(2) on the mfc file will block until a new DMA can be started
(by checking for POLLOUT) or until a previously started DMA (by
checking for POLLIN) has been completed.

Linux man-pages 6.16 2025-05-17 3808

spufs(7) Miscellaneous Information Manual spufs(7)

/mss Provides access to the MFC MultiSource Synchronization (MSS)
facility. By mmap(2)-ing this file, processes can access the MSS area of
the SPU.

The following operations are supported:

mmap(2)
Mapping mss into the process address space gives access to the SPU
MSS area within the process address space. Only MAP_SHARED map-
pings are allowed.

/psmap
Provides access to the whole problem-state mapping of the SPU. Applications
can use this area to interface to the SPU, rather than writing to individual register
files in spufs.

The following operations are supported:

mmap(2)
Mapping psmap gives a process a direct map of the SPU problem state
area. Only MAP_SHARED mappings are supported.

/phys-id
Read-only file containing the physical SPU number that the SPU context is run-
ning on. When the context is not running, this file contains the string "-1".

The physical SPU number is given by an ASCII hex string.

/object-id
Allows applications to store (or retrieve) a single 64-bit ID into the context. This
ID is later used by profiling tools to uniquely identify the context.

write(2)
By writing an ASCII hex value into this file, applications can set the ob-
ject ID of the SPU context. Any previous value of the object ID is over-
written.

read(2)
Reading this file gives an ASCII hex string representing the object ID for
this SPU context.

EXAMPLES
To automatically mount(8) the SPU filesystem when booting, at the location /spu cho-
sen by the user, put this line into the fstab(5) configuration file:
none /spu spufs gid=spu 0 0

SEE ALSO
close(2), spu_create(2), spu_run(2), capabilities(7)

The Cell Broadband Engine Architecture (CBEA) specification

Linux man-pages 6.16 2025-05-17 3809

standards(7) Miscellaneous Information Manual standards(7)

NAME
standards - C and UNIX Standards

DESCRIPTION
The STANDARDS section that appears in many manual pages identifies various stan-
dards to which the documented interface conforms. The following list briefly describes
these standards.

V7 Version 7 (also known as Seventh Edition) UNIX, released by AT&T/Bell Labs
in 1979. After this point, UNIX systems diverged into two main dialects: BSD
and System V.

4.2BSD
This is an implementation standard defined by the 4.2 release of the Berkeley
Software Distribution, released by the University of California at Berkeley. This
was the first Berkeley release that contained a TCP/IP stack and the sockets API.
4.2BSD was released in 1983.

Earlier major BSD releases included 3BSD (1980), 4BSD (1980), and 4.1BSD
(1981).

4.3BSD
The successor to 4.2BSD, released in 1986.

4.4BSD
The successor to 4.3BSD, released in 1993. This was the last major Berkeley re-
lease.

System V
This is an implementation standard defined by AT&T’s milestone 1983 release
of its commercial System V (five) release. The previous major AT&T release
was System III , released in 1981.

System V release 2 (SVr2)
This was the next System V release, made in 1985. The SVr2 was formally de-
scribed in the System V Interface Definition version 1 (SVID 1) published in
1985.

System V release 3 (SVr3)
This was the successor to SVr2, released in 1986. This release was formally de-
scribed in the System V Interface Definition version 2 (SVID 2).

System V release 4 (SVr4)
This was the successor to SVr3, released in 1989. This version of System V is
described in the "Programmer’s Reference Manual: Operating System API (Intel
processors)" (Prentice-Hall 1992, ISBN 0-13-951294-2) This release was for-
mally described in the System V Interface Definition version 3 (SVID 3), and is
considered the definitive System V release.

SVID 4
System V Interface Definition version 4, issued in 1995. Available online at
〈http://www.sco.com/developers/devspecs/〉.

Linux man-pages 6.16 2025-05-17 3810

standards(7) Miscellaneous Information Manual standards(7)

C89 This was the first C language standard, ratified by ANSI (American National
Standards Institute) in 1989 (X3.159-1989). Sometimes this is known as ANSI
C, but since C99 is also an ANSI standard, this term is ambiguous. This stan-
dard was also ratified by ISO (International Standards Organization) in 1990
(ISO/IEC 9899:1990), and is thus occasionally referred to as ISO C90.

C99 This revision of the C language standard was ratified by ISO in 1999 (ISO/IEC
9899:1999). Available online at 〈http://www.open-std.org/jtc1/sc22/wg14/www
/standards〉.

C11 This revision of the C language standard was ratified by ISO in 2011 (ISO/IEC
9899:2011).

LFS The Large File Summit specification, completed in 1996. This specification de-
fined mechanisms that allowed 32-bit systems to support the use of large files
(i.e., 64-bit file offsets). See 〈https://www.opengroup.org/platform/lfs.html〉.

POSIX.1-1988
This was the first POSIX standard, ratified by IEEE as IEEE Std 1003.1-1988,
and subsequently adopted (with minor revisions) as an ISO standard in 1990.
The term "POSIX" was coined by Richard Stallman.

POSIX.1-1990
"Portable Operating System Interface for Computing Environments". IEEE
1003.1-1990 part 1, ratified by ISO in 1990 (ISO/IEC 9945-1:1990).

POSIX.2
IEEE Std 1003.2-1992, describing commands and utilities, ratified by ISO in
1993 (ISO/IEC 9945-2:1993).

POSIX.1b (formerly known as POSIX.4)
IEEE Std 1003.1b-1993, describing real-time facilities for portable operating
systems, ratified by ISO in 1996 (ISO/IEC 9945-1:1996).

POSIX.1c (formerly known as POSIX.4a)
IEEE Std 1003.1c-1995, which describes the POSIX threads interfaces.

POSIX.1d
IEEE Std 1003.1d-1999, which describes additional real-time extensions.

POSIX.1g
IEEE Std 1003.1g-2000, which describes networking APIs (including sockets).

POSIX.1j
IEEE Std 1003.1j-2000, which describes advanced real-time extensions.

POSIX.1-1996
A 1996 revision of POSIX.1 which incorporated POSIX.1b and POSIX.1c.

XPG3
Released in 1989, this was the first release of the X/Open Portability Guide to be
based on a POSIX standard (POSIX.1-1988). This multivolume guide was de-
veloped by the X/Open Group, a multivendor consortium.

Linux man-pages 6.16 2025-05-17 3811

standards(7) Miscellaneous Information Manual standards(7)

XPG4
A revision of the X/Open Portability Guide, released in 1992. This revision in-
corporated POSIX.2.

XPG4v2
A 1994 revision of XPG4. This is also referred to as Spec 1170, where 1170 re-
ferred to the number of interfaces defined by this standard.

SUS (SUSv1)
Single UNIX Specification. This was a repackaging of XPG4v2 and other
X/Open standards (X/Open Curses Issue 4 version 2, X/Open Networking Ser-
vice (XNS) Issue 4). Systems conforming to this standard can be branded UNIX
95.

SUSv2
Single UNIX Specification version 2. Sometimes also referred to (incorrectly)
as XPG5. This standard appeared in 1997. Systems conforming to this standard
can be branded UNIX 98. See also 〈http://www.unix.org/version2/〉.)

POSIX.1-2001
SUSv3

This was a 2001 revision and consolidation of the POSIX.1, POSIX.2, and SUS
standards into a single document, conducted under the auspices of the Austin
Group 〈http://www.opengroup.org/austin/〉. The standard is available online at
〈http://www.unix.org/version3/〉.

The standard defines two levels of conformance: POSIX conformance, which is a
baseline set of interfaces required of a conforming system; and XSI Confor-
mance, which additionally mandates a set of interfaces (the "XSI extension")
which are only optional for POSIX conformance. XSI-conformant systems can
be branded UNIX 03.

The POSIX.1-2001 document is broken into four parts:

XBD: Definitions, terms, and concepts, header file specifications.

XSH: Specifications of functions (i.e., system calls and library functions in ac-
tual implementations).

XCU: Specifications of commands and utilities (i.e., the area formerly described
by POSIX.2).

XRAT: Informative text on the other parts of the standard.

POSIX.1-2001 is aligned with C99, so that all of the library functions standard-
ized in C99 are also standardized in POSIX.1-2001.

The Single UNIX Specification version 3 (SUSv3) comprises the Base Specifica-
tions containing XBD, XSH, XCU, and XRAT as above, plus X/Open Curses Is-
sue 4 version 2 as an extra volume that is not in POSIX.1-2001.

Two Technical Corrigenda (minor fixes and improvements) of the original 2001
standard have occurred: TC1 in 2003 and TC2 in 2004.

Linux man-pages 6.16 2025-05-17 3812

standards(7) Miscellaneous Information Manual standards(7)

POSIX.1-2008
SUSv4

Work on the next revision of POSIX.1/SUS was completed and ratified in 2008.
The standard is available online at 〈http://www.unix.org/version4/〉.

The changes in this revision are not as large as those that occurred for
POSIX.1-2001/SUSv3, but a number of new interfaces are added and various de-
tails of existing specifications are modified. Many of the interfaces that were op-
tional in POSIX.1-2001 become mandatory in the 2008 revision of the standard.
A few interfaces that are present in POSIX.1-2001 are marked as obsolete in
POSIX.1-2008, or removed from the standard altogether.

The revised standard is structured in the same way as its predecessor. The Single
UNIX Specification version 4 (SUSv4) comprises the Base Specifications con-
taining XBD, XSH, XCU, and XRAT, plus X/Open Curses Issue 7 as an extra
volume that is not in POSIX.1-2008.

Again there are two levels of conformance: the baseline POSIX Conformance,
and XSI Conformance, which mandates an additional set of interfaces beyond
those in the base specification.

In general, where the STANDARDS section of a manual page lists
POSIX.1-2001, it can be assumed that the interface also conforms to
POSIX.1-2008, unless otherwise noted.

Technical Corrigendum 1 (minor fixes and improvements) of this standard was
released in 2013.

Technical Corrigendum 2 of this standard was released in 2016.

Further information can be found on the Austin Group web site,
〈http://www.opengroup.org/austin/〉.

SUSv4 2016 edition
This is equivalent to POSIX.1-2008, with the addition of Technical Corrigenda 1
and 2 and the XCurses specification.

POSIX.1-2017
This revision of POSIX is technically identical to POSIX.1-2008 with Technical
Corrigenda 1 and 2 applied.

SUSv4 2018 edition
This is equivalent to POSIX.1-2017, with the addition of the XCurses specifica-
tion.

The interfaces documented in POSIX.1/SUS are available as manual pages under sec-
tions 0p (header files), 1p (commands), and 3p (functions); thus one can write "man 3p
open".

SEE ALSO
getconf (1), confstr(3), pathconf(3), sysconf(3), attributes(7), feature_test_macros(7),
libc(7), posixoptions(7), system_data_types(7)

Linux man-pages 6.16 2025-05-17 3813

string_copying(7) Miscellaneous Information Manual string_copying(7)

NAME
stpcpy, strcpy, strcat, stpecpy, strtcpy, strlcpy, strlcat, stpncpy, strncpy, strncat - copying
strings and character sequences

SYNOPSIS
Strings

// Chain-copy a string.
char *stpcpy(char *restrict dst, const char *restrict src);

// Copy/catenate a string.
char *strcpy(char *restrict dst, const char *restrict src);
char *strcat(char *restrict dst, const char *restrict src);

// Chain-copy a string with truncation.
char *stpecpy(char *dst, char end[0], const char *restrict src);

// Copy/catenate a string with truncation.
ssize_t strtcpy(size_t dsize;

char dst[restrict dsize], const char *restrict src,
size_t dsize);

size_t strlcpy(size_t dsize;
char dst[restrict dsize], const char *restrict src,
size_t dsize);

size_t strlcat(size_t dsize;
char dst[restrict dsize], const char *restrict src,
size_t dsize);

Null-padded character sequences
// Fill a fixed-size buffer with characters from a string
// and pad with null bytes.
char *strncpy(size_t dsize;

char dst[restrict dsize], const char *restrict src,
size_t dsize);

char *stpncpy(size_t dsize;
char dst[restrict dsize], const char *restrict src,
size_t dsize);

// Chain-copy a null-padded character sequence into a character sequence.
mempcpy(dst, src, strnlen(src, NITEMS(src)));

// Chain-copy a null-padded character sequence into a string.
stpcpy(mempcpy(dst, src, strnlen(src, NITEMS(src))), "");

// Catenate a null-padded character sequence into a string.
char *strncat(size_t ssize;

char *restrict dst, const char src[restrict ssize],
size_t ssize);

// Duplicate a null-padded character sequence into a string.
char *strndup(size_t ssize;

const char src[ssize], size_t ssize);

Linux man-pages 6.16 2025-09-21 3814

string_copying(7) Miscellaneous Information Manual string_copying(7)

Length-bounded character sequences
// Chain-copy a length-bounded character sequence.
void *mempcpy(size_t len;

void dst[restrict len], const void src[restrict len],
size_t len);

// Chain-copy a length-bounded character sequence into a string.
stpcpy(mempcpy(dst, src, len), "");

DESCRIPTION
Terms (and abbreviations)

string (str)
is a sequence of zero or more non-null characters followed by a null character.

character sequence
is a sequence of zero or more non-null characters. A program should never use a
character sequence where a string is required. However, with appropriate care, a
string can be used in the place of a character sequence.

null-padded character sequence
Character sequences can be contained in fixed-size buffers, which contain
padding null bytes after the character sequence, to fill the rest of the
buffer without affecting the character sequence; however, those padding
null bytes are not part of the character sequence. Don’t confuse null-
padded with null-terminated: null-padded means 0 or more padding null
bytes, while null-terminated means exactly 1 terminating null character.

length-bounded character sequence
Character sequence delimited by its length. It may be a slice of a larger
character sequence, or even of a string.

length (len)
is the number of non-null characters in a string or character sequence. It is the
return value of strlen(str) and of strnlen(buf, size).

size refers to the entire buffer where the string or character sequence is contained.

end is the name of a pointer to one past the last element of a buffer. It is equivalent
to &str[size]. It is used as a sentinel value, to be able to truncate strings or char-
acter sequences instead of overrunning the containing buffer.

copy This term is used when the writing starts at the first element pointed to by dst.

catenate
This term is used when a function first finds the terminating null character in dst,
and then starts writing at that position.

chain
This term is used when it’s the programmer who provides a pointer to the termi-
nating null character in the string dst (or one after the last character in a charac-
ter sequence), and the function starts writing at that location. The function re-
turns a pointer to the new location of the terminating null character (or one after
the last character in a character sequence) after the call, so that the programmer
can use it to chain such calls.

Linux man-pages 6.16 2025-09-21 3815

string_copying(7) Miscellaneous Information Manual string_copying(7)

duplicate
Allocate a new buffer where a copy is placed.

Copy, catenate, and chain-copy
Originally, there was a distinction between functions that copy and those that catenate.
However, newer functions that copy while allowing chaining cover both use cases with a
single API. They are also algorithmically faster, since they don’t need to search for the
terminating null character of the existing string. However, functions that catenate have a
much simpler use, so if performance is not important, it can make sense to use them for
improving readability.

The pointer returned by functions that allow chaining is a byproduct of the copy opera-
tion, so it has no performance costs. Functions that return such a pointer, and thus can
be chained, have names of the form *stp*(), since it’s common to name the pointer just
p.

Chain-copying functions that truncate should accept a pointer to the end of the destina-
tion buffer, and have names of the form *stpe*(). This allows not having to recalculate
the remaining size after each call.

Truncate or not?
The first thing to note is that programmers should be careful with buffers, so they always
have the correct size, and truncation is not necessary.

In most cases, truncation is not desired, and it is simpler to just do the copy. Simpler
code is safer code. Programming against programming mistakes by adding more code
just adds more points where mistakes can be made.

Nowadays, compilers can detect most programmer errors with features like compiler
warnings, static analyzers, and _FORTIFY_SOURCE (see ftm(7)). Keeping the code
simple helps these overflow-detection features be more precise.

When validating user input, code should normally not truncate, but instead fail and pre-
vent the copy at all.

In some cases, however, it makes sense to truncate.

Functions that truncate:

• stpecpy()

• strtcpy()

• strlcpy(3bsd) and strlcat(3bsd) are similar, but have important performance prob-
lems; see BUGS.

• stpncpy(3) and strncpy(3) also truncate, but they don’t write strings, but rather null-
padded character sequences.

Null-padded character sequences
For historic reasons, some standard APIs and file formats, such as utmpx(5) and tar(1),
use null-padded character sequences in fixed-size buffers. To interface with them, spe-
cialized functions need to be used.

To copy bytes from strings into these buffers, use strncpy(3) or stpncpy(3).

To read a null-padded character sequence, use strnlen(src, NITEMS(src)), and then you

Linux man-pages 6.16 2025-09-21 3816

string_copying(7) Miscellaneous Information Manual string_copying(7)

can treat it as a length-bounded character sequence; or use strncat(3) or strndup(3) di-
rectly.

Length-bounded character sequences
The simplest character sequence copying function is mempcpy(3). It requires always
knowing the length of your character sequences, for which structures can be used. It
makes the code much faster, since you always know the length of your character se-
quences, and can do the minimal copies and length measurements. mempcpy(3) copies
character sequences, so you need to explicitly set the terminating null character if you
need a string.

In programs that make considerable use of strings or character sequences, and need the
best performance, using overlapping character sequences can make a big difference. It
allows holding subsequences of a larger character sequence, while not duplicating mem-
ory nor using time to do a copy.

However, this is delicate, since it requires using character sequences. C library APIs use
strings, so programs that use character sequences will have to take care of differentiating
strings from character sequences.

To copy a length-bounded character sequence, use mempcpy(3).

To copy a length-bounded character sequence into a string, use
stpcpy(mempcpy(dst, src, len), "").

A string is also accepted as input, because mempcpy(3) asks for the length, and a string
is composed of a character sequence of the same length plus a terminating null charac-
ter.

String vs character sequence
Some functions only operate on strings. Those require that the input src is a string, and
guarantee an output string (even when truncation occurs). Functions that catenate also
require that dst holds a string before the call. List of functions:

• stpcpy(3)
• strcpy(3), strcat(3)
• stpecpy()
• strtcpy()
• strlcpy(3bsd), strlcat(3bsd)

Other functions require an input string, but create a character sequence as output. These
functions have confusing names, and have a long history of misuse. List of functions:

• stpncpy(3)
• strncpy(3)

Other functions operate on an input character sequence, and create an output string.
Functions that catenate also require that dst holds a string before the call. strncat(3) has
an even more misleading name than the functions above. List of functions:

• strncat(3)
• strndup(3)

Other functions operate on an input character sequence to create an output character se-
quence. List of functions:

Linux man-pages 6.16 2025-09-21 3817

string_copying(7) Miscellaneous Information Manual string_copying(7)

• mempcpy(3)

Functions
stpcpy(3)

Copy the input string into a destination string. The programmer is responsible
for allocating a buffer large enough. It returns a pointer suitable for chaining.

strcpy(3)
strcat(3)

Copy and catenate the input string into a destination string. The programmer is
responsible for allocating a buffer large enough. The return value is useless.

stpcpy(3) is a faster alternative to these functions.

stpecpy()
Chain-copy the input string into a destination string. If the destination buffer,
limited by a pointer to its end, isn’t large enough to hold the copy, the resulting
string is truncated (but it is guaranteed to be null-terminated). It returns a pointer
suitable for chaining. Truncation needs to be detected only once after the last
chained call.

This function is not provided by any library; see EXAMPLES for a reference im-
plementation.

strtcpy()
Copy the input string into a destination string. If the destination buffer isn’t
large enough to hold the copy, the resulting string is truncated (but it is guaran-
teed to be null-terminated). It returns the length of the string, or -1 if it trun-
cated.

This function is not provided by any library; see EXAMPLES for a reference im-
plementation.

strlcpy(3bsd)
strlcat(3bsd)

Copy and catenate the input string into a destination string. If the destination
buffer, limited by its size, isn’t large enough to hold the copy, the resulting string
is truncated (but it is guaranteed to be null-terminated). They return the length
of the total string they tried to create.

Check BUGS before using these functions.

strtcpy() and stpecpy() are better alternatives to these functions.

stpncpy(3)
Copy the input string into a destination null-padded character sequence in a
fixed-size buffer. If the destination buffer, limited by its size, isn’t large enough
to hold the copy, the resulting character sequence is truncated. Since it creates a
character sequence, it doesn’t need to write a terminating null character. It’s im-
possible to distinguish truncation by the result of the call, from a character se-
quence that just fits the destination buffer; truncation should be detected by com-
paring the length of the input string with the size of the destination buffer.

Linux man-pages 6.16 2025-09-21 3818

string_copying(7) Miscellaneous Information Manual string_copying(7)

strncpy(3)
This function is identical to stpncpy(3) except for the useless return value.

stpncpy(3) is a more useful alternative to this function.

strncat(3)
Catenate the input character sequence, contained in a null-padded fixed-size
buffer, into a destination string. The programmer is responsible for allocating a
buffer large enough. The return value is useless.

Do not confuse this function with strncpy(3); they are not related at all.

stpcpy(mempcpy(dst, src, strnlen(src, NITEMS(src))), "") is a faster alternative to
this function.

strndup(3)
Duplicate the input character sequence, contained in a null-padded fixed-size
buffer, into a newly allocated destination string.

The string must be freed with free(3).

mempcpy(3)
Copy the input character sequence, limited by its length, into a destination char-
acter sequence. The programmer is responsible for allocating a buffer large
enough. It returns a pointer suitable for chaining.

RETURN VALUE
stpcpy(3)

A pointer to the terminating null character in the destination string.

stpecpy()
A pointer to the terminating null character in the destination string, on success.
On error, NULL is returned, and errno is set to indicate the error.

mempcpy(3)
stpncpy(3)

A pointer to one after the last character in the destination character sequence.

strtcpy()
The length of the string, on success. On error, -1 is returned, and errno is set to
indicate the error.

strlcpy(3bsd)
strlcat(3bsd)

The length of the total string that they tried to create (as if truncation didn’t oc-
cur).

strcpy(3)
strcat(3)
strncpy(3)
strncat(3)

The dst pointer, which is useless.

Linux man-pages 6.16 2025-09-21 3819

string_copying(7) Miscellaneous Information Manual string_copying(7)

strndup(3)
The newly allocated string.

ERRORS
Most of these functions don’t set errno.

stpecpy()
strtcpy()

ENOBUFS
dsize was 0.

E2BIG
The string has been truncated.

strndup(3)

ENOMEM
Insufficient memory available to allocate duplicate string.

NOTES
The Linux kernel has an internal function for copying strings, strscpy(9), which is iden-
tical to strtcpy(), except that it returns -E2BIG instead of -1 and it doesn’t set errno.

CAVEATS
Don’t mix chain calls to truncating and non-truncating functions. It is conceptually
wrong unless you know that the first part of a copy will always fit. Anyway, the perfor-
mance difference will probably be negligible, so it will probably be more clear if you
use consistent semantics: either truncating or non-truncating. Calling a non-truncating
function after a truncating one is necessarily wrong.

BUGS
All catenation functions share the same performance problem: Shlemiel the painter
〈https://www.joelonsoftware.com/2001/12/11/back-to-basics/〉. As a mitigation, com-
pilers are able to transform some calls to catenation functions into normal copy func-
tions, since strlen(dst) is usually a byproduct of the previous copy.

strlcpy(3) and strlcat(3) need to read the entire src string, even if the destination buffer
is small. This makes them vulnerable to Denial of Service (DoS) attacks if an attacker
can control the length of the src string. And if not, they’re still unnecessarily slow.

EXAMPLES
The following are examples of correct use of each of these functions.

stpcpy(3)
p = buf;
p = stpcpy(p, "Hello ");
p = stpcpy(p, "world");
p = stpcpy(p, "!");
len = p - buf;
puts(buf);

strcpy(3)

Linux man-pages 6.16 2025-09-21 3820

string_copying(7) Miscellaneous Information Manual string_copying(7)

strcat(3)
strcpy(buf, "Hello ");
strcat(buf, "world");
strcat(buf, "!");
len = strlen(buf);
puts(buf);

stpecpy()
end = buf + NITEMS(buf);
p = buf;
p = stpecpy(p, end, "Hello ");
p = stpecpy(p, end, "world");
p = stpecpy(p, end, "!");
if (p == NULL) {

len = NITEMS(buf) - 1;
goto toolong;

}
len = p - buf;
puts(buf);

strtcpy()
len = strtcpy(buf, "Hello world!", NITEMS(buf));
if (len == -1)

goto toolong;
puts(buf);

strlcpy(3bsd)
strlcat(3bsd)

if (strlcpy(buf, "Hello ", NITEMS(buf)) >= NITEMS(buf))
goto toolong;

if (strlcat(buf, "world", NITEMS(buf)) >= NITEMS(buf))
goto toolong;

len = strlcat(buf, "!", NITEMS(buf));
if (len >= NITEMS(buf))

goto toolong;
puts(buf);

stpncpy(3)
p = stpncpy(u->ut_user, "alx", NITEMS(u->ut_user));
if (NITEMS(u->ut_user) < strlen("alx"))

goto toolong;
len = p - u->ut_user;
fwrite(u->ut_user, 1, len, stdout);

strncpy(3)
strncpy(u->ut_user, "alx", NITEMS(u->ut_user));
if (NITEMS(u->ut_user) < strlen("alx"))

goto toolong;
len = strnlen(u->ut_user, NITEMS(u->ut_user));
fwrite(u->ut_user, 1, len, stdout);

Linux man-pages 6.16 2025-09-21 3821

string_copying(7) Miscellaneous Information Manual string_copying(7)

mempcpy(dst, src, strnlen(src, NITEMS(src)))
char buf[NITEMS(u->ut_user)];
p = buf;
p = mempcpy(p, u->ut_user, strnlen(u->ut_user, NITEMS(u->ut_user)));
len = p - buf;
fwrite(buf, 1, len, stdout);

stpcpy(mempcpy(dst, src, strnlen(src, NITEMS(src))), "")
char buf[NITEMS(u->ut_user) + 1];
p = buf;
p = mempcpy(p, u->ut_user, strnlen(u->ut_user, NITEMS(u->ut_user)));
p = stpcpy(p, "");
len = p - buf;
puts(buf);

strncat(3)
char buf[NITEMS(u->ut_user) + 1];
strcpy(buf, "");
strncat(buf, u->ut_user, NITEMS(u->ut_user));
len = strlen(buf);
puts(buf);

strndup(3)
buf = strndup(u->ut_user, NITEMS(u->ut_user));
len = strlen(buf);
puts(buf);
free(buf);

mempcpy(3)
p = buf;
p = mempcpy(p, "Hello ", 6);
p = mempcpy(p, "world", 5);
p = mempcpy(p, "!", 1);
len = p - buf;
fwrite(buf, 1, len, stdout);

stpcpy(mempcpy(dst, src, len), "")
p = buf;
p = mempcpy(p, "Hello ", 6);
p = mempcpy(p, "world", 5);
p = mempcpy(p, "!", 1);
p = stpcpy(p, "");
len = p - buf;
puts(buf);

Implementations
Here are reference implementations for functions not provided by libc.

/* This code is in the public domain. */

char *

Linux man-pages 6.16 2025-09-21 3822

string_copying(7) Miscellaneous Information Manual string_copying(7)

stpecpy(char *dst, char end[0], const char *restrict src)
{

size_t dlen;

if (dst == NULL)
return NULL;

dlen = strtcpy(dst, src, end - dst);
return (dlen == -1) ? NULL : dst + dlen;

}

ssize_t
strtcpy(char *restrict dst, const char *restrict src, size_t dsize)
{

bool trunc;
size_t dlen, slen;

if (dsize == 0) {
errno = ENOBUFS;
return -1;

}

slen = strnlen(src, dsize);
trunc = (slen == dsize);
dlen = slen - trunc;

stpcpy(mempcpy(dst, src, dlen), "");
if (trunc)

errno = E2BIG;
return trunc ? -1 : slen;

}

SEE ALSO
bzero(3), memcpy(3), memccpy(3), mempcpy(3), stpcpy(3), strlcpy(3bsd), strncat(3),
stpncpy(3), string(3)

Linux man-pages 6.16 2025-09-21 3823

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

NAME
suffixes - list of file suffixes

DESCRIPTION
It is customary to indicate the contents of a file with the file suffix, which (typically)
consists of a period, followed by one or more letters. Many standard utilities, such as
compilers, use this to recognize the type of file they are dealing with. The make(1) util-
ity is driven by rules based on file suffix.

Following is a list of suffixes which are likely to be found on a Linux system.

Suffix File type
,v files for RCS (Revision Control System)
- backup file
.C C++ source code, equivalent to .cc
.F Fortran source with cpp(1) directives

or file compressed using freeze
.S assembler source with cpp(1) directives
.Y file compressed using yabba
.Z file compressed using compress(1)
.[0-9]+gf TeX generic font files
.[0-9]+pk TeX packed font files
.[1-9] manual page for the corresponding section
.[1-9][a-z] manual page for section plus subsection
.a static object code library
.ad X application default resource file
.ada Ada source (may be body, spec, or combination)
.adb Ada body source
.ads Ada spec source
.afm PostScript font metrics
.al Perl autoload file
.am automake(1) input file
.arc arc(1) archive
.arj arj(1) archive
.asc PGP ASCII-armored data
.asm (GNU) assembler source file
.au Audio sound file
.aux LaTeX auxiliary file
.avi (msvideo) movie
.awk AWK language program
.b LILO boot loader image
.bak backup file
.bash bash(1) shell script
.bb basic block list data produced by

gcc -ftest-coverage
.bbg basic block graph data produced by

gcc -ftest-coverage
.bbl BibTeX output

Linux man-pages 6.16 2025-09-06 3824

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.bdf X font file

.bib TeX bibliographic database, BibTeX input

.bm bitmap source

.bmp bitmap

.bz2 file compressed using bzip2(1)

.c C source

.cat message catalog files

.cc C++ source

.cf configuration file

.cfg configuration file

.cgi WWW content generating script or program

.cls LaTeX Class definition

.class Java compiled byte-code

.conf configuration file

.config configuration file

.cpp equivalent to .cc

.csh csh(1) shell script

.cxx equivalent to .cc

.dat data file

.deb Debian software package

.def Modula-2 source for definition modules

.def other definition files

.desc initial part of mail message unpacked with
munpack(1)

.diff file differences (diff (1) command output)

.dir dbm data base directory file

.doc documentation file

.dsc Debian Source Control (source package)

.dtx LaTeX package source file

.dvi TeX’s device independent output

.el Emacs-Lisp source

.elc compiled Emacs-Lisp source

.eps encapsulated PostScript

.exp Expect source code

.f Fortran source

.f77 Fortran 77 source

.f90 Fortran 90 source

.fas precompiled Common-Lisp

.fi Fortran include files

.fig FIG image file (used by xfig(1))

.fmt TeX format file

.gif Compuserve Graphics Image File format

.gmo GNU format message catalog

.gsf Ghostscript fonts

.gz file compressed using gzip(1)

.h C or C++ header files

Linux man-pages 6.16 2025-09-06 3825

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.help help file

.hf equivalent to .help

.hlp equivalent to .help

.htm poor man’s .html

.html HTML document used with the World Wide Web

.hqx 7-bit encoded Macintosh file

.i C source after preprocessing

.icon bitmap source

.idx reference or datum-index file for hypertext
or database system

.image bitmap source

.in configuration template, especially for GNU Autoconf

.info files for the Emacs info browser

.info-[0-9]+ split info files

.ins LaTeX package install file for docstrip

.itcl itcl source code;
itcl ([incr Tcl]) is an OO extension of tcl

.java a Java source file

.jpeg Joint Photographic Experts Group format

.jpg poor man’s .jpeg

.js JavaScript source code

.jsx JSX (JavaScript XML-like extension) source code

.kmap lyx(1) keymap

.l equivalent to .lex or .lisp

.lex lex(1) or flex(1) files

.lha lharc archive

.lib Common-Lisp library

.lisp Lisp source

.ln files for use with lint(1)

.log log file, in particular produced by TeX

.lsm Linux Software Map entry

.lsp Common-Lisp source

.lzh lharc archive

.m Objective-C source code

.m4 m4(1) source

.mac macro files for various programs

.man manual page (usually source rather than formatted)

.map map files for various programs

.me Nroff source using the me macro package

.mf Metafont (font generator for TeX) source

.mgp MagicPoint file

.mm sources for groff(1) in mm - format

.mo Message catalog binary file

.mod Modula-2 source for implementation modules

.mov (quicktime) movie

.mp Metapost source

Linux man-pages 6.16 2025-09-06 3826

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.mp2 MPEG Layer 2 (audio) file

.mp3 MPEG Layer 3 (audio) file

.mpeg movie file

.o object file

.old old or backup file

.orig backup (original) version of a file, from patch(1)

.out output file, often executable program (a.out)

.p Pascal source

.pag dbm data base data file

.patch file differences for patch(1)

.pbm portable bitmap format

.pcf X11 font files

.pdf Adobe Portable Data Format
(use Acrobat/acroread or xpdf)

.perl Perl source (see .ph, .pl, and .pm)

.pfa PostScript font definition files, ASCII format

.pfb PostScript font definition files, binary format

.pgm portable greymap format

.pgp PGP binary data

.ph Perl header file

.php PHP program file

.php3 PHP3 program file

.pid File to store daemon PID (e.g., crond.pid)

.pl TeX property list file or Perl library file

.pm Perl module

.png Portable Network Graphics file

.po Message catalog source

.pod perldoc(1) file

.ppm portable pixmap format

.pr bitmap source

.ps PostScript file

.py Python source

.pyc compiled python

.qt quicktime movie

.r RATFOR source (obsolete)

.rej patches that patch(1) couldn’t apply

.rpm RPM software package

.rtf Rich Text Format file

.rules rules for something

.s assembler source

.sa stub libraries for a.out shared libraries

.sc sc(1) spreadsheet commands

.scm Scheme source code

.sed sed source file

.sgml SGML source file

.sh sh(1) scripts

Linux man-pages 6.16 2025-09-06 3827

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

.shar archive created by the shar(1) utility

.shtml HTML using Server Side Includes

.so Shared library or dynamically loadable object

.sql SQL source

.sqml SQML schema or query program

.sty LaTeX style files

.sym Modula-2 compiled definition modules

.tar archive created by the tar(1) utility

.tar.Z tar(1) archive compressed with compress(1)

.tar.bz2 tar(1) archive compressed with bzip2(1)

.tar.gz tar(1) archive compressed with gzip(1)

.taz tar(1) archive compressed with compress(1)

.tcl tcl source code

.tex TeX or LaTeX source

.texi equivalent to .texinfo

.texinfo Texinfo documentation source

.text text file

.tfm TeX font metric file

.tgz tar(1) archive compressed with gzip(1)

.tif poor man’s .tiff

.tiff Tagged Image File Format

.tk tcl/tk script

.tmp temporary file

.tmpl template files

.ts TypeScript source code

.tsx TypeScript with JSX source code (.ts + .jsx)

.txt equivalent to .text

.uu equivalent to .uue

.uue binary file encoded with uuencode(1)

.vf TeX virtual font file

.vpl TeX virtual property list file

.w Silvio Levi’s CWEB

.wav wave sound file

.web Donald Knuth’s WEB

.wml Source file for Web Meta Language

.xbm X11 bitmap source

.xcf GIMP graphic

.xml eXtended Markup Language file

.xpm X11 pixmap source

.xs Perl xsub file produced by h2xs

.xsl XSL stylesheet

.y yacc(1) or bison(1) (parser generator) files

.z File compressed using pack(1) (or an old gzip(1))

.zip zip(1) archive

.zoo zoo(1) archive
~ Emacs or patch(1) backup file

Linux man-pages 6.16 2025-09-06 3828

SUFFIXES(7) Miscellaneous Information Manual SUFFIXES(7)

rc startup (‘run control’) file, e.g., .newsrc

STANDARDS
General UNIX conventions.

BUGS
This list is not exhaustive.

SEE ALSO
file(1), make(1)

Linux man-pages 6.16 2025-09-06 3829

symlink(7) Miscellaneous Information Manual symlink(7)

NAME
symlink - symbolic link handling

DESCRIPTION
Symbolic links are files that act as pointers to other files. To understand their behavior,
you must first understand how hard links work.

A hard link to a file is indistinguishable from the original file because it is a reference to
the object underlying the original filename. (To be precise: each of the hard links to a
file is a reference to the same inode number, where an inode number is an index into the
inode table, which contains metadata about all files on a filesystem. See stat(2).)
Changes to a file are independent of the name used to reference the file. Hard links may
not refer to directories (to prevent the possibility of loops within the filesystem tree,
which would confuse many programs) and may not refer to files on different filesystems
(because inode numbers are not unique across filesystems).

A symbolic link is a special type of file whose contents are a string that is the pathname
of another file, the file to which the link refers. (The contents of a symbolic link can be
read using readlink(2).) In other words, a symbolic link is a pointer to another name,
and not to an underlying object. For this reason, symbolic links may refer to directories
and may cross filesystem boundaries.

There is no requirement that the pathname referred to by a symbolic link should exist.
A symbolic link that refers to a pathname that does not exist is said to be a dangling
link.

Because a symbolic link and its referenced object coexist in the filesystem name space,
confusion can arise in distinguishing between the link itself and the referenced object.
On historical systems, commands and system calls adopted their own link-following
conventions in a somewhat ad-hoc fashion. Rules for a more uniform approach, as they
are implemented on Linux and other systems, are outlined here. It is important that site-
local applications also conform to these rules, so that the user interface can be as consis-
tent as possible.

Magic links
There is a special class of symbolic-link-like objects known as "magic links", which can
be found in certain pseudofilesystems such as proc(5) (examples include /proc/ pid /exe
and /proc/ pid /fd/ *). Unlike normal symbolic links, magic links are not resolved
through pathname-expansion, but instead act as direct references to the kernel’s own
representation of a file handle. As such, these magic links allow users to access files
which cannot be referenced with normal paths (such as unlinked files still referenced by
a running program).

Because they can bypass ordinary mount_namespaces(7)-based restrictions, magic links
have been used as attack vectors in various exploits.

Symbolic link ownership, permissions, and timestamps
The owner and group of an existing symbolic link can be changed using lchown(2). The
ownership of a symbolic link matters when the link is being removed or renamed in a di-
rectory that has the sticky bit set (see inode(7)), and when the fs.protected_symlinks
sysctl is set (see proc(5)).

Linux man-pages 6.16 2025-09-21 3830

symlink(7) Miscellaneous Information Manual symlink(7)

The last access and last modification timestamps of a symbolic link can be changed us-
ing utimensat(2) or lutimes(3).

On Linux, the permissions of an ordinary symbolic link are not used in any operations;
the permissions are always 0777 (read, write, and execute for all user categories), and
can’t be changed.

However, magic links do not follow this rule. They can have a non-0777 mode, though
this mode is not currently used in any permission checks.

Obtaining a file descriptor that refers to a symbolic link
Using the combination of the O_PATH and O_NOFOLLOW flags to open(2) yields a
file descriptor that can be passed as the dirfd argument in system calls such as fstatat(2),
fchownat(2), fchmodat(2), linkat(2), and readlinkat(2), in order to operate on the sym-
bolic link itself (rather than the file to which it refers).

By default (i.e., if the AT_SYMLINK_FOLLOW flag is not specified), if
name_to_handle_at(2) is applied to a symbolic link, it yields a handle for the symbolic
link (rather than the file to which it refers). One can then obtain a file descriptor for the
symbolic link (rather than the file to which it refers) by specifying the O_PATH flag in a
subsequent call to open_by_handle_at(2). Again, that file descriptor can be used in the
aforementioned system calls to operate on the symbolic link itself.

Handling of symbolic links by system calls and commands
Symbolic links are handled either by operating on the link itself, or by operating on the
object referred to by the link. In the latter case, an application or system call is said to
follow the link. Symbolic links may refer to other symbolic links, in which case the
links are dereferenced until an object that is not a symbolic link is found, a symbolic
link that refers to a file which does not exist is found, or a loop is detected. (Loop detec-
tion is done by placing an upper limit on the number of links that may be followed, and
an error results if this limit is exceeded.)

There are three separate areas that need to be discussed. They are as follows:

• Symbolic links used as filename arguments for system calls.

• Symbolic links specified as command-line arguments to utilities that are not travers-
ing a file tree.

• Symbolic links encountered by utilities that are traversing a file tree (either specified
on the command line or encountered as part of the file hierarchy walk).

Before describing the treatment of symbolic links by system calls and commands, we re-
quire some terminology. Given a pathname of the form a/b/c, the part preceding the fi-
nal slash (i.e., a/b) is called the dirname component, and the part following the final
slash (i.e., c) is called the basename component.

Treatment of symbolic links in system calls
The first area is symbolic links used as filename arguments for system calls.

The treatment of symbolic links within a pathname passed to a system call is as follows:

(1) Within the dirname component of a pathname, symbolic links are always followed
in nearly every system call. (This is also true for commands.) The one exception
is openat2(2), which provides flags that can be used to explicitly prevent

Linux man-pages 6.16 2025-09-21 3831

symlink(7) Miscellaneous Information Manual symlink(7)

following of symbolic links in the dirname component.

(2) Except as noted below, all system calls follow symbolic links in the basename
component of a pathname. For example, if there were a symbolic link slink which
pointed to a file named afile, the system call open("slink" ...) would return a file
descriptor referring to the file afile.

Various system calls do not follow links in the basename component of a pathname, and
operate on the symbolic link itself. They are: lchown(2), lgetxattr(2), llistxattr(2), lre-
movexattr(2), lsetxattr(2), lstat(2), readlink(2), rename(2), rmdir(2), and unlink(2).

Certain other system calls optionally follow symbolic links in the basename component
of a pathname. They are: faccessat(2), fchownat(2), fstatat(2), linkat(2), name_to_han-
dle_at(2), open(2), openat(2), open_by_handle_at(2), and utimensat(2); see their man-
ual pages for details. Because remove(3) is an alias for unlink(2), that library function
also does not follow symbolic links. When rmdir(2) is applied to a symbolic link, it
fails with the error ENOTDIR.

link(2) warrants special discussion. POSIX.1-2001 specifies that link(2) should derefer-
ence oldpath if it is a symbolic link. However, Linux does not do this. (By default, So-
laris is the same, but the POSIX.1-2001 specified behavior can be obtained with suitable
compiler options.) POSIX.1-2008 changed the specification to allow either behavior in
an implementation.

Commands not traversing a file tree
The second area is symbolic links, specified as command-line filename arguments, to
commands which are not traversing a file tree.

Except as noted below, commands follow symbolic links named as command-line argu-
ments. For example, if there were a symbolic link slink which pointed to a file named
afile, the command cat slink would display the contents of the file afile.

It is important to realize that this rule includes commands which may optionally traverse
file trees; for example, the command chown file is included in this rule, while the com-
mand chown -R file, which performs a tree traversal, is not. (The latter is described in
the third area, below.)

If it is explicitly intended that the command operate on the symbolic link instead of fol-
lowing the symbolic link —for example, it is desired that chown slink change the owner-
ship of the file that slink is, whether it is a symbolic link or not— then the -h option
should be used. In the above example, chown root slink would change the ownership of
the file referred to by slink, while chown -h root slink would change the ownership of
slink itself.

There are some exceptions to this rule:

• The mv(1) and rm(1) commands do not follow symbolic links named as arguments,
but respectively attempt to rename and delete them. (Note, if the symbolic link ref-
erences a file via a relative path, moving it to another directory may very well cause
it to stop working, since the path may no longer be correct.)

• The ls(1) command is also an exception to this rule. For compatibility with historic
systems (when ls(1) is not doing a tree walk—that is, -R option is not specified), the
ls(1) command follows symbolic links named as arguments if the -H or -L option

Linux man-pages 6.16 2025-09-21 3832

symlink(7) Miscellaneous Information Manual symlink(7)

is specified, or if the -F , -d , or -l options are not specified. (The ls(1) command is
the only command where the -H and -L options affect its behavior even though it is
not doing a walk of a file tree.)

• The file(1) command is also an exception to this rule. The file(1) command does
not follow symbolic links named as argument by default. The file(1) command does
follow symbolic links named as argument if the -L option is specified.

Commands traversing a file tree
The following commands either optionally or always traverse file trees: chgrp(1),
chmod(1), chown(1), cp(1), du(1), find(1), ls(1), pax(1), rm(1), and tar(1)

It is important to realize that the following rules apply equally to symbolic links encoun-
tered during the file tree traversal and symbolic links listed as command-line arguments.

The first rule applies to symbolic links that reference files other than directories. Oper-
ations that apply to symbolic links are performed on the links themselves, but otherwise
the links are ignored.

The command rm -r slink directory will remove slink, as well as any symbolic links en-
countered in the tree traversal of directory, because symbolic links may be removed. In
no case will rm(1) affect the file referred to by slink.

The second rule applies to symbolic links that refer to directories. Symbolic links that
refer to directories are never followed by default. This is often referred to as a "physi-
cal" walk, as opposed to a "logical" walk (where symbolic links that refer to directories
are followed).

Certain conventions are (should be) followed as consistently as possible by commands
that perform file tree walks:

• A command can be made to follow any symbolic links named on the command line,
regardless of the type of file they reference, by specifying the -H (for "half-logical")
flag. This flag is intended to make the command-line name space look like the logi-
cal name space. (Note, for commands that do not always do file tree traversals, the
-H flag will be ignored if the -R flag is not also specified.)

For example, the command chown -HR user slink will traverse the file hierarchy
rooted in the file pointed to by slink. Note, the -H is not the same as the previously
discussed -h flag. The -H flag causes symbolic links specified on the command
line to be dereferenced for the purposes of both the action to be performed and the
tree walk, and it is as if the user had specified the name of the file to which the sym-
bolic link pointed.

• A command can be made to follow any symbolic links named on the command line,
as well as any symbolic links encountered during the traversal, regardless of the type
of file they reference, by specifying the -L (for "logical") flag. This flag is intended
to make the entire name space look like the logical name space. (Note, for com-
mands that do not always do file tree traversals, the -L flag will be ignored if the -R
flag is not also specified.)

For example, the command chown -LR user slink will change the owner of the file
referred to by slink. If slink refers to a directory, chown will traverse the file hierar-
chy rooted in the directory that it references. In addition, if any symbolic links are

Linux man-pages 6.16 2025-09-21 3833

symlink(7) Miscellaneous Information Manual symlink(7)

encountered in any file tree that chown traverses, they will be treated in the same
fashion as slink.

• A command can be made to provide the default behavior by specifying the -P (for
"physical") flag. This flag is intended to make the entire name space look like the
physical name space.

For commands that do not by default do file tree traversals, the -H , -L, and -P flags are
ignored if the -R flag is not also specified. In addition, you may specify the -H , -L, and
-P options more than once; the last one specified determines the command’s behavior.
This is intended to permit you to alias commands to behave one way or the other, and
then override that behavior on the command line.

The ls(1) and rm(1) commands have exceptions to these rules:

• The rm(1) command operates on the symbolic link, and not the file it references, and
therefore never follows a symbolic link. The rm(1) command does not support the
-H , -L, or -P options.

• To maintain compatibility with historic systems, the ls(1) command acts a little dif-
ferently. If you do not specify the -F , -d , or -l options, ls(1) will follow symbolic
links specified on the command line. If the -L flag is specified, ls(1) follows all
symbolic links, regardless of their type, whether specified on the command line or
encountered in the tree walk.

SEE ALSO
chgrp(1), chmod(1), find(1), ln(1), ls(1), mv(1), namei(1), rm(1), lchown(2), link(2),
lstat(2), readlink(2), rename(2), symlink(2), unlink(2), utimensat(2), lutimes(3),
path_resolution(7)

Linux man-pages 6.16 2025-09-21 3834

system_data_types(7) Miscellaneous Information Manual system_data_types(7)

NAME
system_data_types - overview of system data types

DESCRIPTION
siginfo_t

Include: <signal.h>. Alternatively, <sys/wait.h>.

typedef struct {
int si_signo; /* Signal number */
int si_code; /* Signal code */
pid_t si_pid; /* Sending process ID */
uid_t si_uid; /* Real user ID of sending process */
void *si_addr; /* Memory location which caused fault */
int si_status; /* Exit value or signal */
union sigval si_value; /* Signal value */

} siginfo_t;

Information associated with a signal. For further details on this structure (in-
cluding additional, Linux-specific fields), see sigaction(2).

Conforming to: POSIX.1-2001 and later.

See also: pidfd_send_signal(2), rt_sigqueueinfo(2), sigaction(2), sigwaitinfo(2),
psiginfo(3)

sigset_t
Include: <signal.h>. Alternatively, <spawn.h>, or <sys/select.h>.

This is a type that represents a set of signals. According to POSIX, this shall be
an integer or structure type.

Conforming to: POSIX.1-2001 and later.

See also: epoll_pwait(2), ppoll(2), pselect(2), sigaction(2), signalfd(2), sigpend-
ing(2), sigprocmask(2), sigsuspend(2), sigwaitinfo(2), signal(7)

NOTES
The structures described in this manual page shall contain, at least, the members shown
in their definition, in no particular order.

Most of the integer types described in this page don’t have a corresponding length modi-
fier for the printf(3) and the scanf(3) families of functions. To print a value of an integer
type that doesn’t have a length modifier, it should be converted to intmax_t or uintmax_t
by an explicit cast. To scan into a variable of an integer type that doesn’t have a length
modifier, an intermediate temporary variable of type intmax_t or uintmax_t should be
used. When copying from the temporary variable to the destination variable, the value
could overflow. If the type has upper and lower limits, the user should check that the
value is within those limits, before actually copying the value. The example below
shows how these conversions should be done.

Conventions used in this page
In "Conforming to" we only concern ourselves with C99 and later and POSIX.1-2001
and later. Some types may be specified in earlier versions of one of these standards, but
in the interests of simplicity we omit details from earlier standards.

Linux man-pages 6.16 2025-09-21 3835

system_data_types(7) Miscellaneous Information Manual system_data_types(7)

In "Include", we first note the "primary" header(s) that define the type according to ei-
ther the C or POSIX.1 standards. Under "Alternatively", we note additional headers that
the standards specify shall define the type.

EXAMPLES
The program shown below scans from a string and prints a value stored in a variable of
an integer type that doesn’t have a length modifier. The appropriate conversions from
and to intmax_t, and the appropriate range checks, are used as explained in the notes
section above.

#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>

int
main (void)
{

static const char *const str = "500000 us in half a second";
suseconds_t us;
intmax_t tmp;

/* Scan the number from the string into the temporary variable. */

sscanf(str, "%jd", &tmp);

/* Check that the value is within the valid range of suseconds_t. */

if (tmp < -1 || tmp > 1000000) {
fprintf(stderr, "Scanned value outside valid range!\n");
exit(EXIT_FAILURE);

}

/* Copy the value to the suseconds_t variable 'us'. */

us = tmp;

/* Even though suseconds_t can hold the value -1, this isn't
a sensible number of microseconds. */

if (us < 0) {
fprintf(stderr, "Scanned value shouldn't be negative!\n");
exit(EXIT_FAILURE);

}

/* Print the value. */

printf("There are %jd microseconds in half a second.\n",

Linux man-pages 6.16 2025-09-21 3836

system_data_types(7) Miscellaneous Information Manual system_data_types(7)

(intmax_t) us);

exit(EXIT_SUCCESS);
}

SEE ALSO
feature_test_macros(7), standards(7)

Linux man-pages 6.16 2025-09-21 3837

sysvipc(7) Miscellaneous Information Manual sysvipc(7)

NAME
sysvipc - System V interprocess communication mechanisms

DESCRIPTION
System V IPC is the name given to three interprocess communication mechanisms that
are widely available on UNIX systems: message queues, semaphore, and shared mem-
ory.

Message queues
System V message queues allow data to be exchanged in units called messages. Each
message can have an associated priority. POSIX message queues provide an alternative
API for achieving the same result; see mq_overview(7).

The System V message queue API consists of the following system calls:

msgget(2)
Create a new message queue or obtain the ID of an existing message queue.
This call returns an identifier that is used in the remaining APIs.

msgsnd(2)
Add a message to a queue.

msgrcv(2)
Remove a message from a queue.

msgctl(2)
Perform various control operations on a queue, including deletion.

Semaphore sets
System V semaphores allow processes to synchronize their actions. System V sema-
phores are allocated in groups called sets; each semaphore in a set is a counting sema-
phore. POSIX semaphores provide an alternative API for achieving the same result; see
sem_overview(7).

The System V semaphore API consists of the following system calls:

semget(2)
Create a new set or obtain the ID of an existing set. This call returns an identifier
that is used in the remaining APIs.

semop(2)
Perform operations on the semaphores in a set.

semctl(2)
Perform various control operations on a set, including deletion.

Shared memory segments
System V shared memory allows processes to share a region a memory (a "segment").
POSIX shared memory is an alternative API for achieving the same result; see
shm_overview(7).

The System V shared memory API consists of the following system calls:

shmget(2)
Create a new segment or obtain the ID of an existing segment. This call returns
an identifier that is used in the remaining APIs.

Linux man-pages 6.16 2025-09-21 3838

sysvipc(7) Miscellaneous Information Manual sysvipc(7)

shmat(2)
Attach an existing shared memory object into the calling process’s address
space.

shmdt(2)
Detach a segment from the calling process’s address space.

shmctl(2)
Perform various control operations on a segment, including deletion.

IPC namespaces
For a discussion of the interaction of System V IPC objects and IPC namespaces, see
ipc_namespaces(7).

SEE ALSO
ipcmk(1), ipcrm(1), ipcs(1), lsipc(1), ipc(2), msgctl(2), msgget(2), msgrcv(2),
msgsnd(2), semctl(2), semget(2), semop(2), shmat(2), shmctl(2), shmdt(2), shmget(2),
ftok(3), ipc_namespaces(7)

Linux man-pages 6.16 2025-09-21 3839

tcp(7) Miscellaneous Information Manual tcp(7)

NAME
tcp - TCP protocol

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/tcp.h>

tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

DESCRIPTION
This is an implementation of the TCP protocol defined in RFC 793, RFC 1122 and
RFC 2001 with the NewReno and SACK extensions. It provides a reliable, stream-ori-
ented, full-duplex connection between two sockets on top of ip(7), for both v4 and v6
versions. TCP guarantees that the data arrives in order and retransmits lost packets. It
generates and checks a per-packet checksum to catch transmission errors. TCP does not
preserve record boundaries.

A newly created TCP socket has no remote or local address and is not fully specified.
To create an outgoing TCP connection use connect(2) to establish a connection to an-
other TCP socket. To receive new incoming connections, first bind(2) the socket to a lo-
cal address and port and then call listen(2) to put the socket into the listening state. Af-
ter that a new socket for each incoming connection can be accepted using accept(2). A
socket which has had accept(2) or connect(2) successfully called on it is fully specified
and may transmit data. Data cannot be transmitted on listening or not yet connected
sockets.

Linux supports RFC 1323 TCP high performance extensions. These include Protection
Against Wrapped Sequence Numbers (PAWS), Window Scaling and Timestamps. Win-
dow scaling allows the use of large (> 64 kB) TCP windows in order to support links
with high latency or bandwidth. To make use of them, the send and receive buffer sizes
must be increased. They can be set globally with the /proc/sys/net/ipv4/tcp_wmem and
/proc/sys/net/ipv4/tcp_rmem files, or on individual sockets by using the SO_SNDBUF
and SO_RCVBUF socket options with the setsockopt(2) call.

The maximum sizes for socket buffers declared via the SO_SNDBUF and
SO_RCVBUF mechanisms are limited by the values in the
/proc/sys/net/core/rmem_max and /proc/sys/net/core/wmem_max files. Note that TCP
actually allocates twice the size of the buffer requested in the setsockopt(2) call, and so a
succeeding getsockopt(2) call will not return the same size of buffer as requested in the
setsockopt(2) call. TCP uses the extra space for administrative purposes and internal
kernel structures, and the /proc file values reflect the larger sizes compared to the actual
TCP windows. On individual connections, the socket buffer size must be set prior to the
listen(2) or connect(2) calls in order to have it take effect. See socket(7) for more infor-
mation.

TCP supports urgent data. Urgent data is used to signal the receiver that some important
message is part of the data stream and that it should be processed as soon as possible.
To send urgent data specify the MSG_OOB option to send(2). When urgent data is re-
ceived, the kernel sends a SIGURG signal to the process or process group that has been
set as the socket "owner" using the SIOCSPGRP or FIOSETOWN ioctls (or the

Linux man-pages 6.16 2025-10-29 3840

tcp(7) Miscellaneous Information Manual tcp(7)

POSIX.1-specified fcntl(2) F_SETOWN operation). When the SO_OOBINLINE
socket option is enabled, urgent data is put into the normal data stream (a program can
test for its location using the SIOCATMARK ioctl described below), otherwise it can
be received only when the MSG_OOB flag is set for recv(2) or recvmsg(2).

When out-of-band data is present, select(2) indicates the file descriptor as having an ex-
ceptional condition and poll (2) indicates a POLLPRI event.

Linux 2.4 introduced a number of changes for improved throughput and scaling, as well
as enhanced functionality. Some of these features include support for zero-copy send-
file(2), Explicit Congestion Notification, new management of TIME_WAIT sockets,
keep-alive socket options and support for Duplicate SACK extensions.

Address formats
TCP is built on top of IP (see ip(7)). The address formats defined by ip(7) apply to TCP.
TCP supports point-to-point communication only; broadcasting and multicasting are not
supported.

/proc interfaces
System-wide TCP parameter settings can be accessed by files in the directory
/proc/sys/net/ipv4/ . In addition, most IP /proc interfaces also apply to TCP; see ip(7).
Variables described as Boolean take an integer value, with a nonzero value ("true")
meaning that the corresponding option is enabled, and a zero value ("false") meaning
that the option is disabled.

tcp_abc (Integer; default: 0; Linux 2.6.15 to Linux 3.8)
Control the Appropriate Byte Count (ABC), defined in RFC 3465. ABC is a
way of increasing the congestion window (cwnd) more slowly in response to
partial acknowledgements. Possible values are:

0 increase cwnd once per acknowledgement (no ABC)

1 increase cwnd once per acknowledgement of full sized segment

2 allow increase cwnd by two if acknowledgement is of two segments to
compensate for delayed acknowledgements.

tcp_abort_on_overflow (Boolean; default: disabled; since Linux 2.4)
Enable resetting connections if the listening service is too slow and unable to
keep up and accept them. It means that if overflow occurred due to a burst, the
connection will recover. Enable this option only if you are really sure that the
listening daemon cannot be tuned to accept connections faster. Enabling this op-
tion can harm the clients of your server.

tcp_adv_win_scale (integer; default: 2; since Linux 2.4)
Count buffering overhead as bytes/2^tcp_adv_win_scale, if tcp_adv_win_scale
is greater than 0; or bytes-bytes/2^(-tcp_adv_win_scale), if tcp_adv_win_scale is
less than or equal to zero.

The socket receive buffer space is shared between the application and kernel.
TCP maintains part of the buffer as the TCP window, this is the size of the re-
ceive window advertised to the other end. The rest of the space is used as the
"application" buffer, used to isolate the network from scheduling and application
latencies. The tcp_adv_win_scale default value of 2 implies that the space used

Linux man-pages 6.16 2025-10-29 3841

tcp(7) Miscellaneous Information Manual tcp(7)

for the application buffer is one fourth that of the total.

tcp_allowed_congestion_control (String; default: see text; since Linux 2.4.20)
Show/set the congestion control algorithm choices available to unprivileged
processes (see the description of the TCP_CONGESTION socket option). The
items in the list are separated by white space and terminated by a newline char-
acter. The list is a subset of those listed in tcp_available_congestion_control.
The default value for this list is "reno" plus the default setting of tcp_conges-
tion_control.

tcp_autocorking (Boolean; default: enabled; since Linux 3.14)
If this option is enabled, the kernel tries to coalesce small writes (from consecu-
tive write(2) and sendmsg(2) calls) as much as possible, in order to decrease the
total number of sent packets. Coalescing is done if at least one prior packet for
the flow is waiting in Qdisc queues or device transmit queue. Applications can
still use the TCP_CORK socket option to obtain optimal behavior when they
know how/when to uncork their sockets.

tcp_available_congestion_control (String; read-only; since Linux 2.4.20)
Show a list of the congestion-control algorithms that are registered. The items in
the list are separated by white space and terminated by a newline character. This
list is a limiting set for the list in tcp_allowed_congestion_control. More con-
gestion-control algorithms may be available as modules, but not loaded.

tcp_app_win (integer; default: 31; since Linux 2.4)
This variable defines how many bytes of the TCP window are reserved for
buffering overhead.

A maximum of (window/2^tcp_app_win, mss) bytes in the window are reserved
for the application buffer. A value of 0 implies that no amount is reserved.

tcp_base_mss (Integer; default: 512; since Linux 2.6.17)
The initial value of search_low to be used by the packetization layer Path MTU
discovery (MTU probing). If MTU probing is enabled, this is the initial MSS
used by the connection.

tcp_bic (Boolean; default: disabled; Linux 2.4.27/2.6.6 to Linux 2.6.13)
Enable BIC TCP congestion control algorithm. BIC-TCP is a sender-side-only
change that ensures a linear RTT fairness under large windows while offering
both scalability and bounded TCP-friendliness. The protocol combines two
schemes called additive increase and binary search increase. When the conges-
tion window is large, additive increase with a large increment ensures linear RTT
fairness as well as good scalability. Under small congestion windows, binary
search increase provides TCP friendliness.

tcp_bic_low_window (integer; default: 14; Linux 2.4.27/2.6.6 to Linux 2.6.13)
Set the threshold window (in packets) where BIC TCP starts to adjust the con-
gestion window. Below this threshold BIC TCP behaves the same as the default
TCP Reno.

Linux man-pages 6.16 2025-10-29 3842

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_bic_fast_convergence (Boolean; default: enabled; Linux 2.4.27/2.6.6 to Linux
2.6.13)

Force BIC TCP to more quickly respond to changes in congestion window. Al-
lows two flows sharing the same connection to converge more rapidly.

tcp_congestion_control (String; default: see text; since Linux 2.4.13)
Set the default congestion-control algorithm to be used for new connections.
The algorithm "reno" is always available, but additional choices may be available
depending on kernel configuration. The default value for this file is set as part of
kernel configuration.

tcp_dma_copybreak (integer; default: 4096; since Linux 2.6.24)
Lower limit, in bytes, of the size of socket reads that will be offloaded to a DMA
copy engine, if one is present in the system and the kernel was configured with
the CONFIG_NET_DMA option.

tcp_dsack (Boolean; default: enabled; since Linux 2.4)
Enable RFC 2883 TCP Duplicate SACK support.

tcp_fastopen (Bitmask; default: 0x1; since Linux 3.7)
Enables RFC 7413 Fast Open support. The flag is used as a bitmap with the fol-
lowing values:

0x1 Enables client side Fast Open support

0x2 Enables server side Fast Open support

0x4 Allows client side to transmit data in SYN without Fast Open option

0x200
Allows server side to accept SYN data without Fast Open option

0x400
Enables Fast Open on all listeners without TCP_FASTOPEN socket op-
tion

tcp_fastopen_key (since Linux 3.7)
Set server side RFC 7413 Fast Open key to generate Fast Open cookie when
server side Fast Open support is enabled.

tcp_ecn (Integer; default: see below; since Linux 2.4)
Enable RFC 3168 Explicit Congestion Notification.

This file can have one of the following values:

0 Disable ECN. Neither initiate nor accept ECN. This was the default up
to and including Linux 2.6.30.

1 Enable ECN when requested by incoming connections and also request
ECN on outgoing connection attempts.

2 Enable ECN when requested by incoming connections, but do not request
ECN on outgoing connections. This value is supported, and is the de-
fault, since Linux 2.6.31.

When enabled, connectivity to some destinations could be affected due to older,
misbehaving middle boxes along the path, causing connections to be dropped.

Linux man-pages 6.16 2025-10-29 3843

tcp(7) Miscellaneous Information Manual tcp(7)

However, to facilitate and encourage deployment with option 1, and to work
around such buggy equipment, the tcp_ecn_fallback option has been intro-
duced.

tcp_ecn_fallback (Boolean; default: enabled; since Linux 4.1)
Enable RFC 3168, Section 6.1.1.1 fallback. When enabled, outgoing ECN-setup
SYNs that time out within the normal SYN retransmission timeout will be resent
with CWR and ECE cleared.

tcp_fack (Boolean; default: enabled; since Linux 2.2)
Enable TCP Forward Acknowledgement support.

tcp_fin_timeout (integer; default: 60; since Linux 2.2)
This specifies how many seconds to wait for a final FIN packet before the socket
is forcibly closed. This is strictly a violation of the TCP specification, but re-
quired to prevent denial-of-service attacks. In Linux 2.2, the default value was
180.

tcp_frto (integer; default: see below; since Linux 2.4.21/2.6)
Enable F-RTO, an enhanced recovery algorithm for TCP retransmission timeouts
(RTOs). It is particularly beneficial in wireless environments where packet loss
is typically due to random radio interference rather than intermediate router con-
gestion. See RFC 4138 for more details.

This file can have one of the following values:

0 Disabled. This was the default up to and including Linux 2.6.23.

1 The basic version F-RTO algorithm is enabled.

2 Enable SACK-enhanced F-RTO if flow uses SACK. The basic version
can be used also when SACK is in use though in that case scenario(s) ex-
ists where F-RTO interacts badly with the packet counting of the SACK-
enabled TCP flow. This value is the default since Linux 2.6.24.

Before Linux 2.6.22, this parameter was a Boolean value, supporting just values
0 and 1 above.

tcp_frto_response (integer; default: 0; since Linux 2.6.22)
When F-RTO has detected that a TCP retransmission timeout was spurious (i.e.,
the timeout would have been avoided had TCP set a longer retransmission time-
out), TCP has several options concerning what to do next. Possible values are:

0 Rate halving based; a smooth and conservative response, results in halved
congestion window (cwnd) and slow-start threshold (ssthresh) after one
RTT.

1 Very conservative response; not recommended because even though be-
ing valid, it interacts poorly with the rest of Linux TCP; halves cwnd and
ssthresh immediately.

2 Aggressive response; undoes congestion-control measures that are now
known to be unnecessary (ignoring the possibility of a lost retransmission
that would require TCP to be more cautious); cwnd and ssthresh are re-
stored to the values prior to timeout.

Linux man-pages 6.16 2025-10-29 3844

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_keepalive_intvl (integer; default: 75; since Linux 2.4)
The number of seconds between TCP keep-alive probes.

tcp_keepalive_probes (integer; default: 9; since Linux 2.2)
The maximum number of TCP keep-alive probes to send before giving up and
killing the connection if no response is obtained from the other end.

tcp_keepalive_time (integer; default: 7200; since Linux 2.2)
The number of seconds a connection needs to be idle before TCP begins sending
out keep-alive probes. Keep-alives are sent only when the SO_KEEPALIVE
socket option is enabled. The default value is 7200 seconds (2 hours). An idle
connection is terminated after approximately an additional 11 minutes (9 probes
an interval of 75 seconds apart) when keep-alive is enabled.

Note that underlying connection tracking mechanisms and application timeouts
may be much shorter.

tcp_low_latency (Boolean; default: disabled; since Linux 2.4.21/2.6; obsolete since
Linux 4.14)

If enabled, the TCP stack makes decisions that prefer lower latency as opposed
to higher throughput. It this option is disabled, then higher throughput is pre-
ferred. An example of an application where this default should be changed
would be a Beowulf compute cluster. Since Linux 4.14, this file still exists, but
its value is ignored.

tcp_max_orphans (integer; default: see below; since Linux 2.4)
The maximum number of orphaned (not attached to any user file handle) TCP
sockets allowed in the system. When this number is exceeded, the orphaned
connection is reset and a warning is printed. This limit exists only to prevent
simple denial-of-service attacks. Lowering this limit is not recommended. Net-
work conditions might require you to increase the number of orphans allowed,
but note that each orphan can eat up to ~64 kB of unswappable memory. The
default initial value is set equal to the kernel parameter NR_FILE. This initial
default is adjusted depending on the memory in the system.

tcp_max_syn_backlog (integer; default: see below; since Linux 2.2)
The maximum number of queued connection requests which have still not re-
ceived an acknowledgement from the connecting client. If this number is ex-
ceeded, the kernel will begin dropping requests. The default value of 256 is in-
creased to 1024 when the memory present in the system is adequate or greater
(>= 128 MB), and reduced to 128 for those systems with very low memory (<=
32 MB).

Before Linux 2.6.20, it was recommended that if this needed to be increased
above 1024, the size of the SYNACK hash table (TCP_SYNQ_HSIZE) in in-
clude/net/tcp.h should be modified to keep

TCP_SYNQ_HSIZE * 16 <= tcp_max_syn_backlog

and the kernel should be recompiled. In Linux 2.6.20, the fixed sized
TCP_SYNQ_HSIZE was removed in favor of dynamic sizing.

Linux man-pages 6.16 2025-10-29 3845

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_max_tw_buckets (integer; default: see below; since Linux 2.4)
The maximum number of sockets in TIME_WAIT state allowed in the system.
This limit exists only to prevent simple denial-of-service attacks. The default
value of NR_FILE*2 is adjusted depending on the memory in the system. If this
number is exceeded, the socket is closed and a warning is printed.

tcp_moderate_rcvbuf (Boolean; default: enabled; since Linux 2.4.17/2.6.7)
If enabled, TCP performs receive buffer auto-tuning, attempting to automatically
size the buffer (no greater than tcp_rmem[2]) to match the size required by the
path for full throughput.

tcp_mem (since Linux 2.4)
This is a vector of 3 integers: [low, pressure, high]. These bounds, measured in
units of the system page size, are used by TCP to track its memory usage. The
defaults are calculated at boot time from the amount of available memory. (TCP
can only use low memory for this, which is limited to around 900 megabytes on
32-bit systems. 64-bit systems do not suffer this limitation.)

low TCP doesn’t regulate its memory allocation when the number of pages it
has allocated globally is below this number.

pressure
When the amount of memory allocated by TCP exceeds this number of
pages, TCP moderates its memory consumption. This memory pressure
state is exited once the number of pages allocated falls below the low
mark.

high The maximum number of pages, globally, that TCP will allocate. This
value overrides any other limits imposed by the kernel.

tcp_mtu_probing (integer; default: 0; since Linux 2.6.17)
This parameter controls TCP Packetization-Layer Path MTU Discovery. The
following values may be assigned to the file:

0 Disabled

1 Disabled by default, enabled when an ICMP black hole detected

2 Always enabled, use initial MSS of tcp_base_mss.

tcp_no_metrics_save (Boolean; default: disabled; since Linux 2.6.6)
By default, TCP saves various connection metrics in the route cache when the
connection closes, so that connections established in the near future can use
these to set initial conditions. Usually, this increases overall performance, but it
may sometimes cause performance degradation. If tcp_no_metrics_save is en-
abled, TCP will not cache metrics on closing connections.

tcp_orphan_retries (integer; default: 8; since Linux 2.4)
The maximum number of attempts made to probe the other end of a connection
which has been closed by our end.

tcp_reordering (integer; default: 3; since Linux 2.4)
The maximum a packet can be reordered in a TCP packet stream without TCP
assuming packet loss and going into slow start. It is not advisable to change this

Linux man-pages 6.16 2025-10-29 3846

tcp(7) Miscellaneous Information Manual tcp(7)

number. This is a packet reordering detection metric designed to minimize un-
necessary back off and retransmits provoked by reordering of packets on a con-
nection.

tcp_retrans_collapse (Boolean; default: enabled; since Linux 2.2)
Try to send full-sized packets during retransmit.

tcp_retries1 (integer; default: 3; since Linux 2.2)
The number of times TCP will attempt to retransmit a packet on an established
connection normally, without the extra effort of getting the network layers in-
volved. Once we exceed this number of retransmits, we first have the network
layer update the route if possible before each new retransmit. The default is the
RFC specified minimum of 3.

tcp_retries2 (integer; default: 15; since Linux 2.2)
The maximum number of times a TCP packet is retransmitted in established
state before giving up. The default value is 15, which corresponds to a duration
of approximately between 13 to 30 minutes, depending on the retransmission
timeout. The RFC 1122 specified minimum limit of 100 seconds is typically
deemed too short.

tcp_rfc1337 (Boolean; default: disabled; since Linux 2.2)
Enable TCP behavior conformant with RFC 1337. When disabled, if a RST is
received in TIME_WAIT state, we close the socket immediately without waiting
for the end of the TIME_WAIT period.

tcp_rmem (since Linux 2.4)
This is a vector of 3 integers: [min, default, max]. These parameters are used by
TCP to regulate receive buffer sizes. TCP dynamically adjusts the size of the re-
ceive buffer from the defaults listed below, in the range of these values, depend-
ing on memory available in the system.

min minimum size of the receive buffer used by each TCP socket. The de-
fault value is the system page size. (On Linux 2.4, the default value is
4 kB, lowered to PAGE_SIZE bytes in low-memory systems.) This
value is used to ensure that in memory pressure mode, allocations below
this size will still succeed. This is not used to bound the size of the re-
ceive buffer declared using SO_RCVBUF on a socket.

default
the default size of the receive buffer for a TCP socket. This value over-
writes the initial default buffer size from the generic global
net.core.rmem_default defined for all protocols. The default value is
87380 bytes. (On Linux 2.4, this will be lowered to 43689 in low-mem-
ory systems.) If larger receive buffer sizes are desired, this value should
be increased (to affect all sockets). To employ large TCP windows, the
net.ipv4.tcp_window_scaling must be enabled (default).

max the maximum size of the receive buffer used by each TCP socket. This
value does not override the global net.core.rmem_max. This is not used
to limit the size of the receive buffer declared using SO_RCVBUF on a
socket. The default value is calculated using the formula

Linux man-pages 6.16 2025-10-29 3847

tcp(7) Miscellaneous Information Manual tcp(7)

max(87380, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

(On Linux 2.4, the default is 87380*2 bytes, lowered to 87380 in low-
memory systems).

tcp_sack (Boolean; default: enabled; since Linux 2.2)
Enable RFC 2018 TCP Selective Acknowledgements.

tcp_slow_start_after_idle (Boolean; default: enabled; since Linux 2.6.18)
If enabled, provide RFC 2861 behavior and time out the congestion window after
an idle period. An idle period is defined as the current RTO (retransmission
timeout). If disabled, the congestion window will not be timed out after an idle
period.

tcp_stdurg (Boolean; default: disabled; since Linux 2.2)
If this option is enabled, then use the RFC 1122 interpretation of the TCP urgent-
pointer field. According to this interpretation, the urgent pointer points to the
last byte of urgent data. If this option is disabled, then use the BSD-compatible
interpretation of the urgent pointer: the urgent pointer points to the first byte after
the urgent data. Enabling this option may lead to interoperability problems.

tcp_syn_retries (integer; default: 6; since Linux 2.2)
The maximum number of times initial SYNs for an active TCP connection at-
tempt will be retransmitted. This value should not be higher than 255. The de-
fault value is 6, which corresponds to retrying for up to approximately 127 sec-
onds. Before Linux 3.7, the default value was 5, which (in conjunction with cal-
culation based on other kernel parameters) corresponded to approximately 180
seconds.

tcp_synack_retries (integer; default: 5; since Linux 2.2)
The maximum number of times a SYN/ACK segment for a passive TCP connec-
tion will be retransmitted. This number should not be higher than 255.

tcp_syncookies (integer; default: 1; since Linux 2.2)
Enable TCP syncookies. The kernel must be compiled with CON-
FIG_SYN_COOKIES. The syncookies feature attempts to protect a socket
from a SYN flood attack. This should be used as a last resort, if at all. This is a
violation of the TCP protocol, and conflicts with other areas of TCP such as TCP
extensions. It can cause problems for clients and relays. It is not recommended
as a tuning mechanism for heavily loaded servers to help with overloaded or mis-
configured conditions. For recommended alternatives see tcp_max_syn_backlog,
tcp_synack_retries, and tcp_abort_on_overflow. Set to one of the following val-
ues:

0 Disable TCP syncookies.

1 Send out syncookies when the syn backlog queue of a socket overflows.

2 (since Linux 3.12) Send out syncookies unconditionally. This can be
useful for network testing.

tcp_timestamps (integer; default: 1; since Linux 2.2)
Set to one of the following values to enable or disable RFC 1323 TCP time-
stamps:

Linux man-pages 6.16 2025-10-29 3848

tcp(7) Miscellaneous Information Manual tcp(7)

0 Disable timestamps.

1 Enable timestamps as defined in RFC1323 and use random offset for
each connection rather than only using the current time.

2 As for the value 1, but without random offsets. Setting tcp_timestamps
to this value is meaningful since Linux 4.10.

tcp_tso_win_divisor (integer; default: 3; since Linux 2.6.9)
This parameter controls what percentage of the congestion window can be con-
sumed by a single TCP Segmentation Offload (TSO) frame. The setting of this
parameter is a tradeoff between burstiness and building larger TSO frames.

tcp_tw_recycle (Boolean; default: disabled; Linux 2.4 to Linux 4.11)
Enable fast recycling of TIME_WAIT sockets. Enabling this option is not rec-
ommended as the remote IP may not use monotonically increasing timestamps
(devices behind NAT, devices with per-connection timestamp offsets). See RFC
1323 (PAWS) and RFC 6191.

tcp_tw_reuse (Boolean; default: disabled; since Linux 2.4.19/2.6)
Allow to reuse TIME_WAIT sockets for new connections when it is safe from
protocol viewpoint. It should not be changed without advice/request of technical
experts.

tcp_vegas_cong_avoid (Boolean; default: disabled; Linux 2.2 to Linux 2.6.13)
Enable TCP Vegas congestion avoidance algorithm. TCP Vegas is a sender-side-
only change to TCP that anticipates the onset of congestion by estimating the
bandwidth. TCP Vegas adjusts the sending rate by modifying the congestion
window. TCP Vegas should provide less packet loss, but it is not as aggressive
as TCP Reno.

tcp_westwood (Boolean; default: disabled; Linux 2.4.26/2.6.3 to Linux 2.6.13)
Enable TCP Westwood+ congestion control algorithm. TCP Westwood+ is a
sender-side-only modification of the TCP Reno protocol stack that optimizes the
performance of TCP congestion control. It is based on end-to-end bandwidth es-
timation to set congestion window and slow start threshold after a congestion
episode. Using this estimation, TCP Westwood+ adaptively sets a slow start
threshold and a congestion window which takes into account the bandwidth used
at the time congestion is experienced. TCP Westwood+ significantly increases
fairness with respect to TCP Reno in wired networks and throughput over wire-
less links.

tcp_window_scaling (Boolean; default: enabled; since Linux 2.2)
Enable RFC 1323 TCP window scaling. This feature allows the use of a large
window (> 64 kB) on a TCP connection, should the other end support it. Nor-
mally, the 16 bit window length field in the TCP header limits the window size to
less than 64 kB. If larger windows are desired, applications can increase the size
of their socket buffers and the window scaling option will be employed. If
tcp_window_scaling is disabled, TCP will not negotiate the use of window scal-
ing with the other end during connection setup.

Linux man-pages 6.16 2025-10-29 3849

tcp(7) Miscellaneous Information Manual tcp(7)

tcp_wmem (since Linux 2.4)
This is a vector of 3 integers: [min, default, max]. These parameters are used by
TCP to regulate send buffer sizes. TCP dynamically adjusts the size of the send
buffer from the default values listed below, in the range of these values, depend-
ing on memory available.

min Minimum size of the send buffer used by each TCP socket. The default
value is the system page size. (On Linux 2.4, the default value is 4 kB.)
This value is used to ensure that in memory pressure mode, allocations
below this size will still succeed. This is not used to bound the size of
the send buffer declared using SO_SNDBUF on a socket.

default
The default size of the send buffer for a TCP socket. This value over-
writes the initial default buffer size from the generic global
/proc/sys/net/core/wmem_default defined for all protocols. The default
value is 16 kB. If larger send buffer sizes are desired, this value should
be increased (to affect all sockets). To employ large TCP windows, the
/proc/sys/net/ipv4/tcp_window_scaling must be set to a nonzero value
(default).

max The maximum size of the send buffer used by each TCP socket. This
value does not override the value in /proc/sys/net/core/wmem_max. This
is not used to limit the size of the send buffer declared using SO_SND-
BUF on a socket. The default value is calculated using the formula

max(65536, min(4 MB, tcp_mem[1]*PAGE_SIZE/128))

(On Linux 2.4, the default value is 128 kB, lowered 64 kB depending on
low-memory systems.)

tcp_workaround_signed_windows (Boolean; default: disabled; since Linux 2.6.26)
If enabled, assume that no receipt of a window-scaling option means that the re-
mote TCP is broken and treats the window as a signed quantity. If disabled, as-
sume that the remote TCP is not broken even if we do not receive a window scal-
ing option from it.

Socket options
To set or get a TCP socket option, call getsockopt(2) to read or setsockopt(2) to write the
option with the option level argument set to IPPROTO_TCP. Unless otherwise noted,
optval is a pointer to an int. In addition, most IPPROTO_IP socket options are valid
on TCP sockets. For more information see ip(7).

Following is a list of TCP-specific socket options. For details of some other socket op-
tions that are also applicable for TCP sockets, see socket(7).

TCP_CONGESTION (since Linux 2.6.13)
The argument for this option is a string. This option allows the caller to set the
TCP congestion control algorithm to be used, on a per-socket basis. Unprivi-
leged processes are restricted to choosing one of the algorithms in tcp_al-
lowed_congestion_control (described above). Privileged processes
(CAP_NET_ADMIN) can choose from any of the available congestion-control

Linux man-pages 6.16 2025-10-29 3850

tcp(7) Miscellaneous Information Manual tcp(7)

algorithms (see the description of tcp_available_congestion_control above).

TCP_CORK (since Linux 2.2)
If set, don’t send out partial frames. All queued partial frames are sent when the
option is cleared again. This is useful for prepending headers before calling
sendfile(2), or for throughput optimization. As currently implemented, there is a
200 millisecond ceiling on the time for which output is corked by TCP_CORK.
If this ceiling is reached, then queued data is automatically transmitted. This op-
tion can be combined with TCP_NODELAY only since Linux 2.5.71. This op-
tion should not be used in code intended to be portable.

TCP_DEFER_ACCEPT (since Linux 2.4)
Allow a listener to be awakened only when data arrives on the socket. Takes an
integer value (seconds), this can bound the maximum number of attempts TCP
will make to complete the connection. This option should not be used in code
intended to be portable.

TCP_INFO (since Linux 2.4)
Used to collect information about this socket. The kernel returns a struct
tcp_info as defined in the file /usr/include/linux/tcp.h. This option should not be
used in code intended to be portable.

TCP_KEEPCNT (since Linux 2.4)
The maximum number of keepalive probes TCP should send before dropping the
connection. This option should not be used in code intended to be portable.

TCP_KEEPIDLE (since Linux 2.4)
The time (in seconds) the connection needs to remain idle before TCP starts
sending keepalive probes, if the socket option SO_KEEPALIVE has been set on
this socket. This option should not be used in code intended to be portable.

TCP_KEEPINTVL (since Linux 2.4)
The time (in seconds) between individual keepalive probes. This option should
not be used in code intended to be portable.

TCP_LINGER2 (since Linux 2.4)
The lifetime of orphaned FIN_WAIT2 state sockets. This option can be used to
override the system-wide setting in the file /proc/sys/net/ipv4/tcp_fin_timeout for
this socket. This is not to be confused with the socket(7) level option
SO_LINGER. This option should not be used in code intended to be portable.

TCP_MAXSEG
The maximum segment size for outgoing TCP packets. In Linux 2.2 and earlier,
and in Linux 2.6.28 and later, if this option is set before connection establish-
ment, it also changes the MSS value announced to the other end in the initial
packet. Values greater than the (eventual) interface MTU have no effect. TCP
will also impose its minimum and maximum bounds over the value provided.

TCP_NODELAY
If set, disable the Nagle algorithm. This means that segments are always sent as
soon as possible, even if there is only a small amount of data. When not set, data
is buffered until there is a sufficient amount to send out, thereby avoiding the

Linux man-pages 6.16 2025-10-29 3851

tcp(7) Miscellaneous Information Manual tcp(7)

frequent sending of small packets, which results in poor utilization of the net-
work. This option is overridden by TCP_CORK; however, setting this option
forces an explicit flush of pending output, even if TCP_CORK is currently set.

TCP_QUICKACK (since Linux 2.4.4)
Enable quickack mode if set or disable quickack mode if cleared. In quickack
mode, acks are sent immediately, rather than delayed if needed in accordance to
normal TCP operation. This flag is not permanent, it only enables a switch to or
from quickack mode. Subsequent operation of the TCP protocol will once again
enter/leave quickack mode depending on internal protocol processing and factors
such as delayed ack timeouts occurring and data transfer. This option should not
be used in code intended to be portable.

TCP_SYNCNT (since Linux 2.4)
Set the number of SYN retransmits that TCP should send before aborting the at-
tempt to connect. It cannot exceed 255. This option should not be used in code
intended to be portable.

TCP_SAVE_SYN (since Linux 4.3)
Saves incoming SYN packet contents of the listening socket until it is read with
TCP_SAVED_SYN once. Could be set before or after the listen(2) call.

TCP_SAVED_SYN (since Linux 4.3)
Reads SYN packet contents saved by TCP_SAVE_SYN. The saved SYN head-
ers are freed after the first call. The data returned in TCP_SAVED_SYN are
network (IPv4/IPv6) and TCP headers.

TCP_USER_TIMEOUT (since Linux 2.6.37)
This option takes an unsigned int as an argument. When the value is greater than
0, it specifies the maximum amount of time in milliseconds that transmitted data
may remain unacknowledged, or buffered data may remain untransmitted (due to
zero window size) before TCP will forcibly close the corresponding connection
and return ETIMEDOUT to the application. If the option value is specified as
0, TCP will use the system default.

Increasing user timeouts allows a TCP connection to survive extended periods
without end-to-end connectivity. Decreasing user timeouts allows applications
to "fail fast", if so desired. Otherwise, failure may take up to 20 minutes with the
current system defaults in a normal WAN environment.

This option can be set during any state of a TCP connection, but is effective only
during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1,
FIN-WAIT-2, CLOSE-WAIT, CLOSING, and LAST-ACK). Moreover, when
used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIME-
OUT will override keepalive to determine when to close a connection due to
keepalive failure.

The option has no effect on when TCP retransmits a packet, nor when a
keepalive probe is sent.

This option, like many others, will be inherited by the socket returned by ac-
cept(2), if it was set on the listening socket.

Linux man-pages 6.16 2025-10-29 3852

tcp(7) Miscellaneous Information Manual tcp(7)

Further details on the user timeout feature can be found in RFC 793 and
RFC 5482 ("TCP User Timeout Option").

TCP_WINDOW_CLAMP (since Linux 2.4)
Bound the size of the advertised window to this value. The kernel imposes a
minimum size of SOCK_MIN_RCVBUF/2. This option should not be used in
code intended to be portable.

TCP_FASTOPEN (since Linux 3.6)
This option enables Fast Open (RFC 7413) on the listener socket. The value
specifies the maximum length of pending SYNs (similar to the backlog argument
in listen(2)). Once enabled, the listener socket grants the TCP Fast Open cookie
on incoming SYN with TCP Fast Open option.

More importantly it accepts the data in SYN with a valid Fast Open cookie and
responds SYN-ACK acknowledging both the data and the SYN sequence. ac-
cept(2) returns a socket that is available for read and write when the handshake
has not completed yet. Thus the data exchange can commence before the hand-
shake completes. This option requires enabling the server-side support on sysctl
net.ipv4.tcp_fastopen (see above). For TCP Fast Open client-side support, see
send(2) MSG_FASTOPEN or TCP_FASTOPEN_CONNECT below.

TCP_FASTOPEN_CONNECT (since Linux 4.11)
This option enables an alternative way to perform Fast Open on the active side
(client). When this option is enabled, connect(2) would behave differently de-
pending on if a Fast Open cookie is available for the destination.

If a cookie is not available (i.e., first contact to the destination), connect(2) be-
haves as usual by sending a SYN immediately, except the SYN would include an
empty Fast Open cookie option to solicit a cookie.

If a cookie is available, connect(2) would return 0 immediately but the SYN
transmission is deferred. A subsequent write(2) or sendmsg(2) would trigger a
SYN with data plus cookie in the Fast Open option. In other words, the actual
connect operation is deferred until data is supplied.

Note: While this option is designed for convenience, enabling it does change the
behaviors and certain system calls might set different errno values. With cookie
present, write(2) or sendmsg(2) must be called right after connect(2) in order to
send out SYN+data to complete 3WHS and establish connection. Calling
read(2) right after connect(2) without write(2) will cause the blocking socket to
be blocked forever.

The application should either set TCP_FASTOPEN_CONNECT socket option
before write(2) or sendmsg(2), or call write(2) or sendmsg(2) with
MSG_FASTOPEN flag directly, instead of both on the same connection.

Here is the typical call flow with this new option:

s = socket();
setsockopt(s, IPPROTO_TCP, TCP_FASTOPEN_CONNECT, 1, ...);
connect(s);
write(s); /* write() should always follow connect()

Linux man-pages 6.16 2025-10-29 3853

tcp(7) Miscellaneous Information Manual tcp(7)

* in order to trigger SYN to go out. */
read(s)/write(s);
/* ... */
close(s);

Sockets API
TCP provides limited support for out-of-band data, in the form of (a single byte of) ur-
gent data. In Linux this means if the other end sends newer out-of-band data the older
urgent data is inserted as normal data into the stream (even when SO_OOBINLINE is
not set). This differs from BSD-based stacks.

Linux uses the BSD compatible interpretation of the urgent pointer field by default.
This violates RFC 1122, but is required for interoperability with other stacks. It can be
changed via /proc/sys/net/ipv4/tcp_stdurg.

It is possible to peek at out-of-band data using the recv(2) MSG_PEEK flag.

Since Linux 2.4, Linux supports the use of MSG_TRUNC in the flags argument of
recv(2) (and recvmsg(2)). This flag causes the received bytes of data to be discarded,
rather than passed back in a caller-supplied buffer. Since Linux 2.4.4, MSG_TRUNC
also has this effect when used in conjunction with MSG_OOB to receive out-of-band
data.

Ioctls
The following ioctl(2) calls return information in value. The correct syntax is:

int value;
error = ioctl(tcp_socket, ioctl_type, &value);

ioctl_type is one of the following:

SIOCINQ
Returns the amount of queued unread data in the receive buffer. The socket must
not be in LISTEN state, otherwise an error (EINVAL) is returned. SIOCINQ is
defined in <linux/sockios.h>. Alternatively, you can use the synonymous FION-
READ, defined in <sys/ioctl.h>.

SIOCATMARK
Returns true (i.e., value is nonzero) if the inbound data stream is at the urgent
mark.

If the SO_OOBINLINE socket option is set, and SIOCATMARK returns true,
then the next read from the socket will return the urgent data. If the
SO_OOBINLINE socket option is not set, and SIOCATMARK returns true,
then the next read from the socket will return the bytes following the urgent data
(to actually read the urgent data requires the recv(MSG_OOB) flag).

Note that a read never reads across the urgent mark. If an application is in-
formed of the presence of urgent data via select(2) (using the exceptfds argu-
ment) or through delivery of a SIGURG signal, then it can advance up to the
mark using a loop which repeatedly tests SIOCATMARK and performs a read
(requesting any number of bytes) as long as SIOCATMARK returns false.

Linux man-pages 6.16 2025-10-29 3854

tcp(7) Miscellaneous Information Manual tcp(7)

SIOCOUTQ
Returns the amount of unsent data in the socket send queue. The socket must
not be in LISTEN state, otherwise an error (EINVAL) is returned. SIOCOUTQ
is defined in <linux/sockios.h>. Alternatively, you can use the synonymous TI-
OCOUTQ, defined in <sys/ioctl.h>.

Error handling
When a network error occurs, TCP tries to resend the packet. If it doesn’t succeed after
some time, either ETIMEDOUT or the last received error on this connection is re-
ported.

Some applications require a quicker error notification. This can be enabled with the IP-
PROTO_IP level IP_RECVERR socket option. When this option is enabled, all in-
coming errors are immediately passed to the user program. Use this option with care —
it makes TCP less tolerant to routing changes and other normal network conditions.

ERRORS
EAFNOTSUPPORT

Passed socket address type in sin_family was not AF_INET.

EPIPE
The other end closed the socket unexpectedly or a read is executed on a shut
down socket.

ETIMEDOUT
The other end didn’t acknowledge retransmitted data after some time.

Any errors defined for ip(7) or the generic socket layer may also be returned for TCP.

VERSIONS
Support for Explicit Congestion Notification, zero-copy sendfile(2), reordering support
and some SACK extensions (DSACK) were introduced in Linux 2.4. Support for for-
ward acknowledgement (FACK), TIME_WAIT recycling, and per-connection keepalive
socket options were introduced in Linux 2.3.

BUGS
Not all errors are documented.

IPv6 is not described.

SEE ALSO
accept(2), bind(2), connect(2), getsockopt(2), listen(2), recvmsg(2), sendfile(2),
sendmsg(2), socket(2), ip(7), socket(7)

The kernel source file Documentation/networking/ip-sysctl.txt.

RFC 793 for the TCP specification.
RFC 1122 for the TCP requirements and a description of the Nagle algorithm.
RFC 1323 for TCP timestamp and window scaling options.
RFC 1337 for a description of TIME_WAIT assassination hazards.
RFC 3168 for a description of Explicit Congestion Notification.
RFC 2581 for TCP congestion control algorithms.
RFC 2018 and RFC 2883 for SACK and extensions to SACK.

Linux man-pages 6.16 2025-10-29 3855

termio(7) Miscellaneous Information Manual termio(7)

NAME
termio - System V terminal driver interface

DESCRIPTION
termio is the name of the old System V terminal driver interface. This interface defined
a termio structure used to store terminal settings, and a range of ioctl(2) operations to
get and set terminal attributes.

The termio interface is now obsolete: POSIX.1-1990 standardized a modified version of
this interface, under the name termios. The POSIX.1 data structure differs slightly from
the System V version, and POSIX.1 defined a suite of functions to replace the various
ioctl(2) operations that existed in System V. (This was done because ioctl(2) was un-
standardized, and its variadic third argument does not allow argument type checking.)

If you’re looking for a page called "termio", then you can probably find most of the in-
formation that you seek in either termios(3) or ioctl_tty(2).

SEE ALSO
reset(1), setterm(1), stty(1), ioctl_tty(2), termios(3), tty(4)

Linux man-pages 6.16 2025-05-17 3856

thread-keyring(7) Miscellaneous Information Manual thread-keyring(7)

NAME
thread-keyring - per-thread keyring

DESCRIPTION
The thread keyring is a keyring used to anchor keys on behalf of a process. It is created
only when a thread requests it. The thread keyring has the name (description) _tid .

A special serial number value, KEY_SPEC_THREAD_KEYRING, is defined that can
be used in lieu of the actual serial number of the calling thread’s thread keyring.

From the keyctl(1) utility, ’@t’ can be used instead of a numeric key ID in much the
same way, but as keyctl(1) is a program run after forking, this is of no utility.

Thread keyrings are not inherited across clone(2) and fork(2) and are cleared by ex-
ecve(2). A thread keyring is destroyed when the thread that refers to it terminates.

Initially, a thread does not have a thread keyring. If a thread doesn’t have a thread
keyring when it is accessed, then it will be created if it is to be modified; otherwise the
operation fails with the error ENOKEY.

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), process-keyring(7), session-
keyring(7), user-keyring(7), user-session-keyring(7)

Linux man-pages 6.16 2025-05-17 3857

time(7) Miscellaneous Information Manual time(7)

NAME
time - overview of time and timers

DESCRIPTION
Real time and process time

Real time is defined as time measured from some fixed point, either from a standard
point in the past (see the description of the Epoch and calendar time below), or from
some point (e.g., the start) in the life of a process (elapsed time).

Process time is defined as the amount of CPU time used by a process. This is some-
times divided into user and system components. User CPU time is the time spent exe-
cuting code in user mode. System CPU time is the time spent by the kernel executing in
system mode on behalf of the process (e.g., executing system calls). The time(1) com-
mand can be used to determine the amount of CPU time consumed during the execution
of a program. A program can determine the amount of CPU time it has consumed using
times(2), getrusage(2), or clock(3).

The hardware clock
Most computers have a (battery-powered) hardware clock which the kernel reads at boot
time in order to initialize the software clock. For further details, see rtc(4) and hw-
clock(8)

The software clock, HZ, and jiffies
The accuracy of various system calls that set timeouts, (e.g., select(2), sigtimedwait(2))
and measure CPU time (e.g., getrusage(2)) is limited by the resolution of the software
clock, a clock maintained by the kernel which measures time in jiffies. The size of a
jiffy is determined by the value of the kernel constant HZ .

The value of HZ varies across kernel versions and hardware platforms. On i386 the sit-
uation is as follows: on kernels up to and including Linux 2.4.x, HZ was 100, giving a
jiffy value of 0.01 seconds; starting with Linux 2.6.0, HZ was raised to 1000, giving a
jiffy of 0.001 seconds. Since Linux 2.6.13, the HZ value is a kernel configuration para-
meter and can be 100, 250 (the default) or 1000, yielding a jiffies value of, respectively,
0.01, 0.004, or 0.001 seconds. Since Linux 2.6.20, a further frequency is available: 300,
a number that divides evenly for the common video frame rates (PAL, 25 Hz; NTSC, 30
Hz).

The times(2) system call is a special case. It reports times with a granularity defined by
the kernel constant USER_HZ . User-space applications can determine the value of this
constant using sysconf(_SC_CLK_TCK).

System and process clocks; time namespaces
The kernel supports a range of clocks that measure various kinds of elapsed and virtual
(i.e., consumed CPU) time. These clocks are described in clock_gettime(2). A few of
the clocks are settable using clock_settime(2). The values of certain clocks are virtual-
ized by time namespaces; see time_namespaces(7).

High-resolution timers
Before Linux 2.6.21, the accuracy of timer and sleep system calls (see below) was also
limited by the size of the jiffy.

Since Linux 2.6.21, Linux supports high-resolution timers (HRTs), optionally

Linux man-pages 6.16 2025-09-21 3858

time(7) Miscellaneous Information Manual time(7)

configurable via CONFIG_HIGH_RES_TIMERS. On a system that supports HRTs,
the accuracy of sleep and timer system calls is no longer constrained by the jiffy, but in-
stead can be as accurate as the hardware allows (microsecond accuracy is typical of
modern hardware). You can determine whether high-resolution timers are supported by
checking the resolution returned by a call to clock_getres(2) or looking at the "resolu-
tion" entries in /proc/timer_list.

HRTs are not supported on all hardware architectures. (Support is provided on x86,
ARM, and PowerPC, among others.)

The Epoch
UNIX systems represent time in seconds since the Epoch, 1970-01-01 00:00:00 +0000
(UTC).

A program can determine the calendar time via the clock_gettime(2) CLOCK_REAL-
TIME clock, which returns time (in seconds and nanoseconds) that have elapsed since
the Epoch; time(2) provides similar information, but only with accuracy to the nearest
second. The system time can be changed using clock_settime(2).

Broken-down time
Certain library functions use a structure of type tm to represent broken-down time,
which stores time value separated out into distinct components (year, month, day, hour,
minute, second, etc.). This structure is described in tm(3type), which also describes
functions that convert between calendar time and broken-down time. Functions for con-
verting between broken-down time and printable string representations of the time are
described in ctime(3), strftime(3), and strptime(3).

Sleeping and setting timers
Various system calls and functions allow a program to sleep (suspend execution) for a
specified period of time; see nanosleep(2), clock_nanosleep(2), and sleep(3).

Various system calls allow a process to set a timer that expires at some point in the fu-
ture, and optionally at repeated intervals; see alarm(2), getitimer(2), timerfd_create(2),
and timer_create(2).

Timer slack
Since Linux 2.6.28, it is possible to control the "timer slack" value for a thread. The
timer slack is the length of time by which the kernel may delay the wake-up of certain
system calls that block with a timeout. Permitting this delay allows the kernel to coa-
lesce wake-up events, thus possibly reducing the number of system wake-ups and saving
power. For more details, see the description of PR_SET_TIMERSLACK in prctl(2).

SEE ALSO
date(1), time(1), timeout(1), adjtimex(2), alarm(2), clock_gettime(2),
clock_nanosleep(2), getitimer(2), getrlimit(2), getrusage(2), gettimeofday(2),
nanosleep(2), stat(2), time(2), timer_create(2), timerfd_create(2), times(2), utime(2),
adjtime(3), clock(3), clock_getcpuclockid(3), ctime(3), ntp_adjtime(3), ntp_gettime(3),
pthread_getcpuclockid(3), sleep(3), strftime(3), strptime(3), timeradd(3), usleep(3),
rtc(4), time_namespaces(7), hwclock(8)

Linux man-pages 6.16 2025-09-21 3859

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

NAME
time_namespaces - overview of Linux time namespaces

DESCRIPTION
Time namespaces virtualize the values of two system clocks:

• CLOCK_MONOTONIC (and likewise CLOCK_MONOTONIC_COARSE and
CLOCK_MONOTONIC_RAW), a nonsettable clock that represents monotonic
time since —as described by POSIX— "some unspecified point in the past".

• CLOCK_BOOTTIME (and likewise CLOCK_BOOTTIME_ALARM), a nonset-
table clock that is identical to CLOCK_MONOTONIC, except that it also includes
any time that the system is suspended.

Thus, the processes in a time namespace share per-namespace values for these clocks.
This affects various APIs that measure against these clocks, including: clock_gettime(2),
clock_nanosleep(2), nanosleep(2), timer_settime(2), timerfd_settime(2), and /proc/up-
time.

Currently, the only way to create a time namespace is by calling unshare(2) with the
CLONE_NEWTIME flag. This call creates a new time namespace but does not place
the calling process in the new namespace. Instead, the calling process’s subsequently
created children are placed in the new namespace. This allows clock offsets (see below)
for the new namespace to be set before the first process is placed in the namespace. The
/proc/ pid /ns/time_for_children symbolic link shows the time namespace in which the
children of a process will be created. (A process can use a file descriptor opened on this
symbolic link in a call to setns(2) in order to move into the namespace.)

/proc/pid/timens_offsets
Associated with each time namespace are offsets, expressed with respect to the initial
time namespace, that define the values of the monotonic and boot-time clocks in that
namespace. These offsets are exposed via the file /proc/ pid /timens_offsets. Within this
file, the offsets are expressed as lines consisting of three space-delimited fields:

<clock-id> <offset-secs> <offset-nanosecs>

The clock-id is a string that identifies the clock whose offsets are being shown. This
field is either monotonic, for CLOCK_MONOTONIC, or boottime, for
CLOCK_BOOTTIME. The remaining fields express the offset (seconds plus nanosec-
onds) for the clock in this time namespace. These offsets are expressed relative to the
clock values in the initial time namespace. The offset-secs value can be negative, sub-
ject to restrictions noted below; offset-nanosecs is an unsigned value.

In the initial time namespace, the contents of the timens_offsets file are as follows:

$ cat /proc/self/timens_offsets
monotonic 0 0
boottime 0 0

In a new time namespace that has had no member processes, the clock offsets can be
modified by writing newline-terminated records of the same form to the timens_offsets
file. The file can be written to multiple times, but after the first process has been created
in or has entered the namespace, write(2)s on this file fail with the error EACCES. In
order to write to the timens_offsets file, a process must have the CAP_SYS_TIME

Linux man-pages 6.16 2025-09-21 3860

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

capability in the user namespace that owns the time namespace.

Writes to the timens_offsets file can fail with the following errors:

EINVAL
An offset-nanosecs value is greater than 999,999,999.

EINVAL
A clock-id value is not valid.

EPERM
The caller does not have the CAP_SYS_TIME capability.

ERANGE
An offset-secs value is out of range. In particular;

• offset-secs can’t be set to a value which would make the current time on the
corresponding clock inside the namespace a negative value; and

• offset-secs can’t be set to a value such that the time on the corresponding
clock inside the namespace would exceed half of the value of the kernel con-
stant KTIME_SEC_MAX (this limits the clock value to a maximum of ap-
proximately 146 years).

In a new time namespace created by unshare(2), the contents of the timens_offsets file
are inherited from the time namespace of the creating process.

NOTES
Use of time namespaces requires a kernel that is configured with the CON-
FIG_TIME_NS option.

Note that time namespaces do not virtualize the CLOCK_REALTIME clock. Virtual-
ization of this clock was avoided for reasons of complexity and overhead within the ker-
nel.

For compatibility with the initial implementation, when writing a clock-id to the
/proc/ pid /timens_offsets file, the numerical values of the IDs can be written instead of
the symbolic names show above; i.e., 1 instead of monotonic, and 7 instead of boottime.
For readability, the use of the symbolic names over the numbers is preferred.

The motivation for adding time namespaces was to allow the monotonic and boot-time
clocks to maintain consistent values during container migration and checkpoint/restore.

EXAMPLES
The following shell session demonstrates the operation of time namespaces. We begin
by displaying the inode number of the time namespace of a shell in the initial time
namespace:

$ readlink /proc/$$/ns/time
time:[4026531834]

Continuing in the initial time namespace, we display the system uptime using uptime(1)
and use the clock_times example program shown in clock_getres(2) to display the values
of various clocks:

$ uptime --pretty
up 21 hours, 17 minutes

Linux man-pages 6.16 2025-09-21 3861

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

$./clock_times
CLOCK_REALTIME : 1585989401.971 (18356 days + 8h 36m 41s)
CLOCK_TAI : 1585989438.972 (18356 days + 8h 37m 18s)
CLOCK_MONOTONIC: 56338.247 (15h 38m 58s)
CLOCK_BOOTTIME : 76633.544 (21h 17m 13s)

We then use unshare(1) to create a time namespace and execute a bash(1) shell. From
the new shell, we use the built-in echo command to write records to the timens_offsets
file adjusting the offset for the CLOCK_MONOTONIC clock forward 2 days and the
offset for the CLOCK_BOOTTIME clock forward 7 days:

$ PS1=ns2# sudo unshare -T -- bash --norc
ns2# echo monotonic$((2*24*60*60))0">/proc/$$/timens_offsets"
ns2# echo boottime$((7*24*60*60))0">/proc/$$/timens_offsets"

Above, we started the bash(1) shell with the --norc option so that no start-up scripts
were executed. This ensures that no child processes are created from the shell before we
have a chance to update the timens_offsets file.

We then use cat(1) to display the contents of the timens_offsets file. The execution of
cat(1) creates the first process in the new time namespace, after which further attempts
to update the timens_offsets file produce an error.

ns2# cat /proc/$$/timens_offsets
monotonic 172800 0
boottime 604800 0
ns2# echo "boottime $((9*24*60*60)) 0" > /proc/$$/timens_offsets
bash: echo: write error: Permission denied

Continuing in the new namespace, we execute uptime(1) and the clock_times example
program:

ns2# uptime --pretty
up 1 week, 21 hours, 18 minutes
ns2# ./clock_times
CLOCK_REALTIME : 1585989457.056 (18356 days + 8h 37m 37s)
CLOCK_TAI : 1585989494.057 (18356 days + 8h 38m 14s)
CLOCK_MONOTONIC: 229193.332 (2 days + 15h 39m 53s)
CLOCK_BOOTTIME : 681488.629 (7 days + 21h 18m 8s)

From the above output, we can see that the monotonic and boot-time clocks have differ-
ent values in the new time namespace.

Examining the /proc/ pid /ns/time and /proc/ pid /ns/time_for_children symbolic links,
we see that the shell is a member of the initial time namespace, but its children are cre-
ated in the new namespace.

ns2# readlink /proc/$$/ns/time
time:[4026531834]
ns2# readlink /proc/$$/ns/time_for_children
time:[4026532900]
ns2# readlink /proc/self/ns/time # Creates a child process
time:[4026532900]

Linux man-pages 6.16 2025-09-21 3862

time_namespaces(7) Miscellaneous Information Manual time_namespaces(7)

Returning to the shell in the initial time namespace, we see that the monotonic and boot-
time clocks are unaffected by the timens_offsets changes that were made in the other
time namespace:

$ uptime --pretty
up 21 hours, 19 minutes
$./clock_times
CLOCK_REALTIME : 1585989401.971 (18356 days + 8h 38m 51s)
CLOCK_TAI : 1585989438.972 (18356 days + 8h 39m 28s)
CLOCK_MONOTONIC: 56338.247 (15h 41m 8s)
CLOCK_BOOTTIME : 76633.544 (21h 19m 23s)

SEE ALSO
nsenter(1), unshare(1), clock_settime(2), setns(2), unshare(2), namespaces(7), time(7)

Linux man-pages 6.16 2025-09-21 3863

udp(7) Miscellaneous Information Manual udp(7)

NAME
udp - User Datagram Protocol for IPv4

SYNOPSIS
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/udp.h>

udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

DESCRIPTION
This is an implementation of the User Datagram Protocol described in RFC 768. It im-
plements a connectionless, unreliable datagram packet service. Packets may be re-
ordered or duplicated before they arrive. UDP generates and checks checksums to catch
transmission errors.

When a UDP socket is created, its local and remote addresses are unspecified. Data-
grams can be sent immediately using sendto(2) or sendmsg(2) with a valid destination
address as an argument. When connect(2) is called on the socket, the default destination
address is set and datagrams can now be sent using send(2) or write(2) without specify-
ing a destination address. It is still possible to send to other destinations by passing an
address to sendto(2) or sendmsg(2). In order to receive packets, the socket can be bound
to a local address first by using bind(2). Otherwise, the socket layer will automatically
assign a free local port out of the range defined by /proc/sys/net/ipv4/ip_lo-
cal_port_range and bind the socket to INADDR_ANY.

All receive operations return only one packet. When the packet is smaller than the
passed buffer, only that much data is returned; when it is bigger, the packet is truncated
and the MSG_TRUNC flag is set. MSG_WAITALL is not supported.

IP options may be sent or received using the socket options described in ip(7). They are
processed by the kernel only when the appropriate /proc parameter is enabled (but still
passed to the user even when it is turned off). See ip(7).

When the MSG_DONTROUTE flag is set on sending, the destination address must re-
fer to a local interface address and the packet is sent only to that interface.

By default, Linux UDP does path MTU (Maximum Transmission Unit) discovery. This
means the kernel will keep track of the MTU to a specific target IP address and return
EMSGSIZE when a UDP packet write exceeds it. When this happens, the application
should decrease the packet size. Path MTU discovery can be also turned off using the
IP_MTU_DISCOVER socket option or the /proc/sys/net/ipv4/ip_no_pmtu_disc file;
see ip(7) for details. When turned off, UDP will fragment outgoing UDP packets that
exceed the interface MTU. However, disabling it is not recommended for performance
and reliability reasons.

Address format
UDP uses the IPv4 sockaddr_in address format described in ip(7).

Error handling
All fatal errors will be passed to the user as an error return even when the socket is not
connected. This includes asynchronous errors received from the network. You may get
an error for an earlier packet that was sent on the same socket. This behavior differs

Linux man-pages 6.16 2025-09-21 3864

udp(7) Miscellaneous Information Manual udp(7)

from many other BSD socket implementations which don’t pass any errors unless the
socket is connected. Linux’s behavior is mandated by RFC 1122.

For compatibility with legacy code, in Linux 2.0 and 2.2 it was possible to set the
SO_BSDCOMPAT SOL_SOCKET option to receive remote errors only when the
socket has been connected (except for EPROTO and EMSGSIZE). Locally generated
errors are always passed. Support for this socket option was removed in later kernels;
see socket(7) for further information.

When the IP_RECVERR option is enabled, all errors are stored in the socket error
queue, and can be received by recvmsg(2) with the MSG_ERRQUEUE flag set.

/proc interfaces
System-wide UDP parameter settings can be accessed by files in the directory
/proc/sys/net/ipv4/ .

udp_mem (since Linux 2.6.25)
This is a vector of three integers governing the number of pages allowed for
queueing by all UDP sockets.

min Below this number of pages, UDP is not bothered about its memory ap-
petite. When the amount of memory allocated by UDP exceeds this
number, UDP starts to moderate memory usage.

pressure
This value was introduced to follow the format of tcp_mem (see tcp(7)).

max Number of pages allowed for queueing by all UDP sockets.

Defaults values for these three items are calculated at boot time from the amount
of available memory.

udp_rmem_min (integer; default value: PAGE_SIZE; since Linux 2.6.25)
Minimal size, in bytes, of receive buffers used by UDP sockets in moderation.
Each UDP socket is able to use the size for receiving data, even if total pages of
UDP sockets exceed udp_mem pressure.

udp_wmem_min (integer; default value: PAGE_SIZE; since Linux 2.6.25)
Minimal size, in bytes, of send buffer used by UDP sockets in moderation. Each
UDP socket is able to use the size for sending data, even if total pages of UDP
sockets exceed udp_mem pressure.

Socket options
To set or get a UDP socket option, call getsockopt(2) to read or setsockopt(2) to write
the option with the option level argument set to IPPROTO_UDP. Unless otherwise
noted, optval is a pointer to an int.

Following is a list of UDP-specific socket options. For details of some other socket op-
tions that are also applicable for UDP sockets, see socket(7).

UDP_CORK (since Linux 2.5.44)
If this option is enabled, then all data output on this socket is accumulated into a
single datagram that is transmitted when the option is disabled. This option
should not be used in code intended to be portable.

Linux man-pages 6.16 2025-09-21 3865

udp(7) Miscellaneous Information Manual udp(7)

UDP_SEGMENT (since Linux 4.18)
Enables UDP segmentation offload. Segmentation offload reduces send(2) cost
by transferring multiple datagrams worth of data as a single large packet through
the kernel transmit path, even when that exceeds MTU. As late as possible, the
large packet is split by segment size into a series of datagrams. This segmenta-
tion offload step is deferred to hardware if supported, else performed in software.
This option takes a value in the range [0, USHRT_MAX] that sets the segment
size: the size of datagram payload, excluding the UDP header. The segment size
must be chosen such that at most 64 datagrams are sent in a single call and that
the datagrams after segmentation meet the same MTU rules that apply to data-
grams sent without this option. Segmentation offload depends on checksum of-
fload, as datagram checksums are computed after segmentation. The option may
also be set for individual sendmsg(2) calls by passing it as a cmsg(3). A value of
zero disables the feature. This option should not be used in code intended to be
portable.

UDP_GRO (since Linux 5.0)
Enables UDP receive offload. If enabled, the socket may receive multiple data-
grams worth of data as a single large buffer, together with a cmsg(3) that holds
the segment size. This option is the inverse of segmentation offload. It reduces
receive cost by handling multiple datagrams worth of data as a single large
packet in the kernel receive path, even when that exceeds MTU. This option
should not be used in code intended to be portable.

Ioctls
These ioctls can be accessed using ioctl(2). The correct syntax is:

int value;
error = ioctl(udp_socket, ioctl_type, &value);

FIONREAD (SIOCINQ)
Gets a pointer to an integer as argument. Returns the size of the next pending
datagram in the integer in bytes, or 0 when no datagram is pending. Warning:
Using FIONREAD, it is impossible to distinguish the case where no datagram is
pending from the case where the next pending datagram contains zero bytes of
data. It is safer to use select(2), poll(2), or epoll(7) to distinguish these cases.

TIOCOUTQ (SIOCOUTQ)
Returns the number of data bytes in the local send queue. Supported only with
Linux 2.4 and above.

In addition, all ioctls documented in ip(7) and socket(7) are supported.

ERRORS
All errors documented for socket(7) or ip(7) may be returned by a send or receive on a
UDP socket.

ECONNREFUSED
No receiver was associated with the destination address. This might be caused
by a previous packet sent over the socket.

Linux man-pages 6.16 2025-09-21 3866

udp(7) Miscellaneous Information Manual udp(7)

VERSIONS
IP_RECVERR is a new feature in Linux 2.2.

SEE ALSO
ip(7), raw(7), socket(7), udplite(7)

The kernel source file Documentation/networking/ip-sysctl.txt.

RFC 768 for the User Datagram Protocol.
RFC 1122 for the host requirements.
RFC 1191 for a description of path MTU discovery.

Linux man-pages 6.16 2025-09-21 3867

udplite(7) Miscellaneous Information Manual udplite(7)

NAME
udplite - Lightweight User Datagram Protocol

SYNOPSIS
#include <sys/socket.h>

sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDPLITE);

DESCRIPTION
This is an implementation of the Lightweight User Datagram Protocol (UDP-Lite), as
described in RFC 3828.

UDP-Lite is an extension of UDP (RFC 768) to support variable-length checksums.
This has advantages for some types of multimedia transport that may be able to make
use of slightly damaged datagrams, rather than having them discarded by lower-layer
protocols.

The variable-length checksum coverage is set via a setsockopt(2) option. If this option
is not set, the only difference from UDP is in using a different IP protocol identifier
(IANA number 136).

The UDP-Lite implementation is a full extension of udp(7)—that is, it shares the same
API and API behavior, and in addition offers two socket options to control the checksum
coverage.

Address format
UDP-Litev4 uses the sockaddr_in address format described in ip(7). UDP-Litev6 uses
the sockaddr_in6 address format described in ipv6(7).

Socket options
To set or get a UDP-Lite socket option, call getsockopt(2) to read or setsockopt(2) to
write the option with the option level argument set to IPPROTO_UDPLITE. In addi-
tion, all IPPROTO_UDP socket options are valid on a UDP-Lite socket. See udp(7) for
more information.

The following two options are specific to UDP-Lite.

UDPLITE_SEND_CSCOV
This option sets the sender checksum coverage and takes an int as argument,
with a checksum coverage value in the range 0..2^16-1.

A value of 0 means that the entire datagram is always covered. Values from 1-7
are illegal (RFC 3828, 3.1) and are rounded up to the minimum coverage of 8.

With regard to IPv6 jumbograms (RFC 2675), the UDP-Litev6 checksum cover-
age is limited to the first 2^16-1 octets, as per RFC 3828, 3.5. Higher values are
therefore silently truncated to 2^16-1. If in doubt, the current coverage value can
always be queried using getsockopt(2).

UDPLITE_RECV_CSCOV
This is the receiver-side analogue and uses the same argument format and value
range as UDPLITE_SEND_CSCOV. This option is not required to enable traf-
fic with partial checksum coverage. Its function is that of a traffic filter: when
enabled, it instructs the kernel to drop all packets which have a coverage less
than the specified coverage value.

Linux man-pages 6.16 2025-05-17 3868

udplite(7) Miscellaneous Information Manual udplite(7)

When the value of UDPLITE_RECV_CSCOV exceeds the actual packet cover-
age, incoming packets are silently dropped, but may generate a warning message
in the system log.

ERRORS
All errors documented for udp(7) may be returned. UDP-Lite does not add further er-
rors.

FILES
/proc/net/snmp

Basic UDP-Litev4 statistics counters.

/proc/net/snmp6
Basic UDP-Litev6 statistics counters.

VERSIONS
UDP-Litev4/v6 first appeared in Linux 2.6.20.

BUGS
Where glibc support is missing, the following definitions are needed:

#define IPPROTO_UDPLITE 136
#define UDPLITE_SEND_CSCOV 10
#define UDPLITE_RECV_CSCOV 11

SEE ALSO
ip(7), ipv6(7), socket(7), udp(7)

RFC 3828 for the Lightweight User Datagram Protocol (UDP-Lite).

Documentation/networking/udplite.txt in the Linux kernel source tree

Linux man-pages 6.16 2025-05-17 3869

unicode(7) Miscellaneous Information Manual unicode(7)

NAME
unicode - universal character set

DESCRIPTION
The international standard ISO/IEC 10646 defines the Universal Character Set (UCS).
UCS contains all characters of all other character set standards. It also guarantees
"round-trip compatibility"; in other words, conversion tables can be built such that no in-
formation is lost when a string is converted from any other encoding to UCS and back.

UCS contains the characters required to represent practically all known languages. This
includes not only the Latin, Greek, Cyrillic, Hebrew, Arabic, Armenian, and Georgian
scripts, but also Chinese, Japanese and Korean Han ideographs as well as scripts such as
Hiragana, Katakana, Hangul, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya, Tamil,
Telugu, Kannada, Malayalam, Thai, Lao, Khmer, Bopomofo, Tibetan, Runic, Ethiopic,
Canadian Syllabics, Cherokee, Mongolian, Ogham, Myanmar, Sinhala, Thaana, Yi, and
others. For scripts not yet covered, research on how to best encode them for computer
usage is still going on and they will be added eventually. This might eventually include
not only Hieroglyphs and various historic Indo-European languages, but even some se-
lected artistic scripts such as Tengwar, Cirth, and Klingon. UCS also covers a large
number of graphical, typographical, mathematical, and scientific symbols, including
those provided by TeX, Postscript, APL, MS-DOS, MS-Windows, Macintosh, OCR
fonts, as well as many word processing and publishing systems, and more are being
added.

The UCS standard (ISO/IEC 10646) describes a 31-bit character set architecture consist-
ing of 128 24-bit groups, each divided into 256 16-bit planes made up of 256 8-bit rows
with 256 column positions, one for each character. Part 1 of the standard (ISO/IEC
10646-1) defines the first 65534 code positions (0x0000 to 0xfffd), which form the Ba-
sic Multilingual Plane (BMP), that is plane 0 in group 0. Part 2 of the standard
(ISO/IEC 10646-2) adds characters to group 0 outside the BMP in several supplemen-
tary planes in the range 0x10000 to 0x10ffff. There are no plans to add characters be-
yond 0x10ffff to the standard, therefore of the entire code space, only a small fraction of
group 0 will ever be actually used in the foreseeable future. The BMP contains all char-
acters found in the commonly used other character sets. The supplemental planes added
by ISO/IEC 10646-2 cover only more exotic characters for special scientific, dictionary
printing, publishing industry, higher-level protocol and enthusiast needs.

The representation of each UCS character as a 2-byte word is referred to as the UCS-2
form (only for BMP characters), whereas UCS-4 is the representation of each character
by a 4-byte word. In addition, there exist two encoding forms UTF-8 for backward
compatibility with ASCII processing software and UTF-16 for the backward-compatible
handling of non-BMP characters up to 0x10ffff by UCS-2 software.

The UCS characters 0x0000 to 0x007f are identical to those of the classic US-ASCII
character set and the characters in the range 0x0000 to 0x00ff are identical to those in
ISO/IEC 8859-1 (Latin-1).

Combining characters
Some code points in UCS have been assigned to combining characters. These are simi-
lar to the nonspacing accent keys on a typewriter. A combining character just adds an
accent to the previous character. The most important accented characters have codes of

Linux man-pages 6.16 2025-09-21 3870

unicode(7) Miscellaneous Information Manual unicode(7)

their own in UCS; however, the combining character mechanism allows us to add ac-
cents and other diacritical marks to any character. The combining characters always fol-
low the character which they modify. For example, the German character Umlaut-A
("Latin capital letter A with diaeresis") can either be represented by the precomposed
UCS code 0x00c4, or alternatively as the combination of a normal "Latin capital letter
A" followed by a "combining diaeresis": 0x0041 0x0308.

Combining characters are essential for instance for encoding the Thai script or for math-
ematical typesetting and users of the International Phonetic Alphabet.

Implementation levels
As not all systems are expected to support advanced mechanisms like combining charac-
ters, ISO/IEC 10646-1 specifies the following three implementation levels of UCS:

Level 1 Combining characters and Hangul Jamo (a variant encoding of the Korean
script, where a Hangul syllable glyph is coded as a triplet or pair of
vowel/consonant codes) are not supported.

Level 2 In addition to level 1, combining characters are now allowed for some lan-
guages where they are essential (e.g., Thai, Lao, Hebrew, Arabic, Devana-
gari, Malayalam).

Level 3 All UCS characters are supported.

The Unicode 3.0 Standard published by the Unicode Consortium contains exactly the
UCS Basic Multilingual Plane at implementation level 3, as described in ISO/IEC
10646-1:2000. Unicode 3.1 added the supplemental planes of ISO/IEC 10646-2. The
Unicode standard and technical reports published by the Unicode Consortium provide
much additional information on the semantics and recommended usages of various char-
acters. They provide guidelines and algorithms for editing, sorting, comparing, normal-
izing, converting, and displaying Unicode strings.

Unicode under Linux
Under GNU/Linux, the C type wchar_t is a signed 32-bit integer type. Its values are al-
ways interpreted by the C library as UCS code values (in all locales), a convention that
is signaled by the GNU C library to applications by defining the constant
__STDC_ISO_10646__ as specified in the ISO C99 standard.

UCS/Unicode can be used just like ASCII in input/output streams, terminal communica-
tion, plaintext files, filenames, and environment variables in the ASCII compatible
UTF-8 multibyte encoding. To signal the use of UTF-8 as the character encoding to all
applications, a suitable locale has to be selected via environment variables (e.g.,
"LANG=en_GB.UTF-8").

The nl_langinfo(CODESET) function returns the name of the selected encoding. Li-
brary functions such as wctomb(3) and mbsrtowcs(3) can be used to transform the inter-
nal wchar_t characters and strings into the system character encoding and back and
wcwidth(3) tells how many positions (0–2) the cursor is advanced by the output of a
character.

Private Use Areas (PUA)
In the Basic Multilingual Plane, the range 0xe000 to 0xf8ff will never be assigned to any
characters by the standard and is reserved for private usage. For the Linux community,

Linux man-pages 6.16 2025-09-21 3871

unicode(7) Miscellaneous Information Manual unicode(7)

this private area has been subdivided further into the range 0xe000 to 0xefff which can
be used individually by any end-user and the Linux zone in the range 0xf000 to 0xf8ff
where extensions are coordinated among all Linux users. The registry of the characters
assigned to the Linux zone is maintained by LANANA and the registry itself is Docu-
mentation/admin-guide/unicode.rst in the Linux kernel sources (or Documentation/uni-
code.txt before Linux 4.10).

Two other planes are reserved for private usage, plane 15 (Supplementary Private Use
Area-A, range 0xf0000 to 0xffffd) and plane 16 (Supplementary Private Use Area-B,
range 0x100000 to 0x10fffd).

Literature
• Information technology — Universal Multiple-Octet Coded Character Set (UCS) —

Part 1: Architecture and Basic Multilingual Plane. International Standard ISO/IEC
10646-1, International Organization for Standardization, Geneva, 2000.

This is the official specification of UCS. Available from 〈http://www.iso.ch/〉.

• The Unicode Standard, Version 3.0. The Unicode Consortium, Addison-Wesley,
Reading, MA, 2000, ISBN 0-201-61633-5.

• S. Harbison, G. Steele. C: A Reference Manual. Fourth edition, Prentice Hall, En-
glewood Cliffs, 1995, ISBN 0-13-326224-3.

A good reference book about the C programming language. The fourth edition cov-
ers the 1994 Amendment 1 to the ISO C90 standard, which adds a large number of
new C library functions for handling wide and multibyte character encodings, but it
does not yet cover ISO C99, which improved wide and multibyte character support
even further.

• Unicode Technical Reports.
〈http://www.unicode.org/reports/〉

• Markus Kuhn: UTF-8 and Unicode FAQ for UNIX/Linux.
〈http://www.cl.cam.ac.uk/~mgk25/unicode.html〉

• Bruno Haible: Unicode HOWTO.
〈http://www.tldp.org/HOWTO/Unicode-HOWTO.html〉

SEE ALSO
locale(1), setlocale(3), charsets(7), utf-8(7)

Linux man-pages 6.16 2025-09-21 3872

units(7) Miscellaneous Information Manual units(7)

NAME
units - decimal and binary prefixes

DESCRIPTION
Decimal prefixes

The SI system of units uses prefixes that indicate powers of ten. A kilometer is 1000
meter, and a megawatt is 1000000 watt. Below the standard prefixes.

Prefix Name Value
q quecto 10^-30 = 0.000000000000000000000000000001
r ronto 10^-27 = 0.000000000000000000000000001
y yocto 10^-24 = 0.000000000000000000000001
z zepto 10^-21 = 0.000000000000000000001
a atto 10^-18 = 0.000000000000000001
f femto 10^-15 = 0.000000000000001
p pico 10^-12 = 0.000000000001
n nano 10^-9 = 0.000000001
µ micro 10^-6 = 0.000001
m milli 10^-3 = 0.001
c centi 10^-2 = 0.01
d deci 10^-1 = 0.1
da deka 10^ 1 = 10
h hecto 10^ 2 = 100
k kilo 10^ 3 = 1000
M mega 10^ 6 = 1000000
G giga 10^ 9 = 1000000000
T tera 10^12 = 1000000000000
P peta 10^15 = 1000000000000000
E exa 10^18 = 1000000000000000000
Z zetta 10^21 = 1000000000000000000000
Y yotta 10^24 = 1000000000000000000000000
R ronna 10^27 = 1000000000000000000000000000
Q quetta 10^30 = 1000000000000000000000000000000

The symbol for micro is the Greek letter mu, often written u in an ASCII context where
this Greek letter is not available.

Binary prefixes
The binary prefixes resemble the decimal ones, but have an additional 'i' (and "Ki" starts
with a capital 'K'). The names are formed by taking the first syllable of the names of the
decimal prefix with roughly the same size, followed by "bi" for "binary".

Prefix Name Value
Ki kibi 2^10 = 1024
Mi mebi 2^20 = 1048576
Gi gibi 2^30 = 1073741824
Ti tebi 2^40 = 1099511627776
Pi pebi 2^50 = 1125899906842624
Ei exbi 2^60 = 1152921504606846976
Zi zebi 2^70 = 1180591620717411303424

Linux man-pages 6.16 2025-05-17 3873

units(7) Miscellaneous Information Manual units(7)

Yi yobi 2^80 = 1208925819614629174706176

Discussion
Before these binary prefixes were introduced, it was fairly common to use k=1000 and
K=1024, just like b=bit, B=byte. Unfortunately, the M is capital already, and cannot be
capitalized to indicate binary-ness.

At first that didn’t matter too much, since memory modules and disks came in sizes that
were powers of two, so everyone knew that in such contexts "kilobyte" and "megabyte"
meant 1024 and 1048576 bytes, respectively. What originally was a sloppy use of the
prefixes "kilo" and "mega" started to become regarded as the "real true meaning" when
computers were involved. But then disk technology changed, and disk sizes became ar-
bitrary numbers. After a period of uncertainty all disk manufacturers settled on the stan-
dard, namely k=1000, M=1000 k, G=1000 M.

The situation was messy: in the 14k4 modems, k=1000; in the 1.44 MB diskettes,
M=1024000; and so on. In 1998 the IEC approved the standard that defines the binary
prefixes given above, enabling people to be precise and unambiguous.

Thus, today, MB = 1000000 B and MiB = 1048576 B.

In the free software world programs are slowly being changed to conform. When the
Linux kernel boots and says

hda: 120064896 sectors (61473 MB) w/2048KiB Cache

the MB are megabytes and the KiB are kibibytes.

SEE ALSO
The International System of Units 〈https://www.bipm.org/documents/20126/41483022/
SI-Brochure-9.pdf〉.

Linux man-pages 6.16 2025-05-17 3874

UNIX(7) Miscellaneous Information Manual UNIX(7)

NAME
unix - sockets for local interprocess communication

SYNOPSIS
#include <sys/socket.h>
#include <sys/un.h>

unix_socket = socket(AF_UNIX, type, 0);
error = socketpair(AF_UNIX, type, 0, int *sv);

DESCRIPTION
The AF_UNIX (also known as AF_LOCAL) socket family is used to communicate be-
tween processes on the same machine efficiently. Traditionally, UNIX domain sockets
can be either unnamed, or bound to a filesystem pathname (marked as being of type
socket). Linux also supports an abstract namespace which is independent of the filesys-
tem.

Valid socket types in the UNIX domain are: SOCK_STREAM, for a stream-oriented
socket; SOCK_DGRAM, for a datagram-oriented socket that preserves message bound-
aries (as on most UNIX implementations, UNIX domain datagram sockets are always
reliable and don’t reorder datagrams); and (since Linux 2.6.4) SOCK_SEQPACKET,
for a sequenced-packet socket that is connection-oriented, preserves message bound-
aries, and delivers messages in the order that they were sent.

UNIX domain sockets support passing file descriptors or process credentials to other
processes using ancillary data.

Address format
A UNIX domain socket address is represented in the following structure:

struct sockaddr_un {
sa_family_t sun_family; /* AF_UNIX */
char sun_path[108]; /* Pathname */

};

The sun_family field always contains AF_UNIX. On Linux, sun_path is 108 bytes in
size; see also BUGS, below.

Various system calls (for example, bind(2), connect(2), and sendto(2)) take a sock-
addr_un argument as input. Some other system calls (for example, getsockname(2), get-
peername(2), recvfrom(2), and accept(2)) return an argument of this type.

Three types of address are distinguished in the sockaddr_un structure:

pathname
a UNIX domain socket can be bound to a null-terminated filesystem pathname
using bind(2). When the address of a pathname socket is returned (by one of the
system calls noted above), its length is

offsetof(struct sockaddr_un, sun_path) + strlen(sun_path) + 1

and sun_path contains the null-terminated pathname. (On Linux, the above off-
setof() expression equates to the same value as sizeof(sa_family_t), but some
other implementations include other fields before sun_path, so the offsetof() ex-
pression more portably describes the size of the address structure.)

Linux man-pages 6.16 2025-09-21 3875

UNIX(7) Miscellaneous Information Manual UNIX(7)

For further details of pathname sockets, see below.

unnamed
A stream socket that has not been bound to a pathname using bind(2) has no
name. Likewise, the two sockets created by socketpair(2) are unnamed. When
the address of an unnamed socket is returned, its length is sizeof(sa_family_t),
and sun_path should not be inspected.

abstract
an abstract socket address is distinguished (from a pathname socket) by the fact
that sun_path[0] is a null byte ('\0'). The socket’s address in this namespace is
given by the additional bytes in sun_path that are covered by the specified length
of the address structure. (Null bytes in the name have no special significance.)
The name has no connection with filesystem pathnames. When the address of an
abstract socket is returned, the returned addrlen is greater than sizeof(sa_fam-
ily_t) (i.e., greater than 2), and the name of the socket is contained in the first
(addrlen - sizeof(sa_family_t)) bytes of sun_path.

Pathname sockets
When binding a socket to a pathname, a few rules should be observed for maximum
portability and ease of coding:

• The pathname in sun_path should be null-terminated.

• The length of the pathname, including the terminating null byte, should not exceed
the size of sun_path.

• The addrlen argument that describes the enclosing sockaddr_un structure should
have a value of at least:

offsetof(struct sockaddr_un, sun_path)+strlen(addr.sun_path)+1

or, more simply, addrlen can be specified as sizeof(struct sockaddr_un).

There is some variation in how implementations handle UNIX domain socket addresses
that do not follow the above rules. For example, some (but not all) implementations ap-
pend a null terminator if none is present in the supplied sun_path.

When coding portable applications, keep in mind that some implementations have
sun_path as short as 92 bytes.

Various system calls (accept(2), recvfrom(2), getsockname(2), getpeername(2)) return
socket address structures. When applied to UNIX domain sockets, the value-result ad-
drlen argument supplied to the call should be initialized as above. Upon return, the ar-
gument is set to indicate the actual size of the address structure. The caller should
check the value returned in this argument: if the output value exceeds the input value,
then there is no guarantee that a null terminator is present in sun_path. (See BUGS.)

Pathname socket ownership and permissions
In the Linux implementation, pathname sockets honor the permissions of the directory
they are in. Creation of a new socket fails if the process does not have write and search
(execute) permission on the directory in which the socket is created.

On Linux, connecting to a stream socket object requires write permission on that socket;
sending a datagram to a datagram socket likewise requires write permission on that

Linux man-pages 6.16 2025-09-21 3876

UNIX(7) Miscellaneous Information Manual UNIX(7)

socket. POSIX does not make any statement about the effect of the permissions on a
socket file, and on some systems (e.g., older BSDs), the socket permissions are ignored.
Portable programs should not rely on this feature for security.

When creating a new socket, the owner and group of the socket file are set according to
the usual rules. The socket file has all permissions enabled, other than those that are
turned off by the process umask(2).

The owner, group, and permissions of a pathname socket can be changed (using
chown(2) and chmod(2)).

Abstract sockets
Socket permissions have no meaning for abstract sockets: the process umask(2) has no
effect when binding an abstract socket, and changing the ownership and permissions of
the object (via fchown(2) and fchmod(2)) has no effect on the accessibility of the socket.

Abstract sockets automatically disappear when all open references to the socket are
closed.

The abstract socket namespace is a nonportable Linux extension.

Socket options
For historical reasons, these socket options are specified with a SOL_SOCKET type
even though they are AF_UNIX specific. They can be set with setsockopt(2) and read
with getsockopt(2) by specifying SOL_SOCKET as the socket family.

SO_PASSCRED
Enabling this socket option causes receipt of the credentials of the sending
process in an SCM_CREDENTIALS ancillary message in each subsequently
received message. The returned credentials are those specified by the sender us-
ing SCM_CREDENTIALS, or a default that includes the sender’s PID, real
user ID, and real group ID, if the sender did not specify SCM_CREDENTIALS
ancillary data.

When this option is set and the socket is not yet connected, a unique name in the
abstract namespace will be generated automatically.

The value given as an argument to setsockopt(2) and returned as the result of get-
sockopt(2) is an integer boolean flag.

SO_PASSSEC
Enables receiving of the SELinux security label of the peer socket in an ancillary
message of type SCM_SECURITY (see below).

The value given as an argument to setsockopt(2) and returned as the result of get-
sockopt(2) is an integer boolean flag.

The SO_PASSSEC option is supported for UNIX domain datagram sockets
since Linux 2.6.18; support for UNIX domain stream sockets was added in
Linux 4.2.

SO_PEEK_OFF
See socket(7).

Linux man-pages 6.16 2025-09-21 3877

UNIX(7) Miscellaneous Information Manual UNIX(7)

SO_PEERCRED
This read-only socket option returns the credentials of the peer process con-
nected to this socket. The returned credentials are those that were in effect at the
time of the call to connect(2), listen(2), or socketpair(2).

The argument to getsockopt(2) is a pointer to a ucred structure; define the
_GNU_SOURCE feature test macro to obtain the definition of that structure
from <sys/socket.h>.

The use of this option is possible only for connected AF_UNIX stream sockets
and for AF_UNIX stream and datagram socket pairs created using socketpair(2).

SO_PEERSEC
This read-only socket option returns the security context of the peer socket con-
nected to this socket. By default, this will be the same as the security context of
the process that created the peer socket unless overridden by the policy or by a
process with the required permissions.

The argument to getsockopt(2) is a pointer to a buffer of the specified length in
bytes into which the security context string will be copied. If the buffer length is
less than the length of the security context string, then getsockopt(2) returns -1,
sets errno to ERANGE, and returns the required length via optlen. The caller
should allocate at least NAME_MAX bytes for the buffer initially, although this
is not guaranteed to be sufficient. Resizing the buffer to the returned length and
retrying may be necessary.

The security context string may include a terminating null character in the re-
turned length, but is not guaranteed to do so: a security context "foo" might be
represented as either {’f’,’o’,’o’} of length 3 or {’f’,’o’,’o’,’\0’} of length 4,
which are considered to be interchangeable. The string is printable, does not
contain non-terminating null characters, and is in an unspecified encoding (in
particular, it is not guaranteed to be ASCII or UTF-8).

The use of this option for sockets in the AF_UNIX address family is supported
since Linux 2.6.2 for connected stream sockets, and since Linux 4.18 also for
stream and datagram socket pairs created using socketpair(2).

Autobind feature
If a bind(2) call specifies addrlen as sizeof(sa_family_t), or the SO_PASSCRED socket
option was specified for a socket that was not explicitly bound to an address, then the
socket is autobound to an abstract address. The address consists of a null byte followed
by 5 bytes in the character set [0-9a-f]. Thus, there is a limit of 2^20 autobind ad-
dresses. (From Linux 2.1.15, when the autobind feature was added, 8 bytes were used,
and the limit was thus 2^32 autobind addresses. The change to 5 bytes came in Linux
2.3.15.)

Sockets API
The following paragraphs describe domain-specific details and unsupported features of
the sockets API for UNIX domain sockets on Linux.

UNIX domain sockets do not support the transmission of out-of-band data (the
MSG_OOB flag for send(2) and recv(2)).

Linux man-pages 6.16 2025-09-21 3878

UNIX(7) Miscellaneous Information Manual UNIX(7)

The send(2) MSG_MORE flag is not supported by UNIX domain sockets.

Before Linux 3.4, the use of MSG_TRUNC in the flags argument of recv(2) was not
supported by UNIX domain sockets.

The SO_SNDBUF socket option does have an effect for UNIX domain sockets, but the
SO_RCVBUF option does not. For datagram sockets, the SO_SNDBUF value imposes
an upper limit on the size of outgoing datagrams. This limit is calculated as the doubled
(see socket(7)) option value less 32 bytes used for overhead.

Ancillary messages
Ancillary data is sent and received using sendmsg(2) and recvmsg(2). For historical rea-
sons, the ancillary message types listed below are specified with a SOL_SOCKET type
even though they are AF_UNIX specific. To send them, set the cmsg_level field of the
struct cmsghdr to SOL_SOCKET and the cmsg_type field to the type. For more infor-
mation, see cmsg(3).

SCM_RIGHTS
Send or receive a set of open file descriptors from another process. The data por-
tion contains an integer array of the file descriptors.

Commonly, this operation is referred to as "passing a file descriptor" to another
process. However, more accurately, what is being passed is a reference to an
open file description (see open(2)), and in the receiving process it is likely that a
different file descriptor number will be used. Semantically, this operation is
equivalent to duplicating (dup(2)) a file descriptor into the file descriptor table of
another process.

If the buffer used to receive the ancillary data containing file descriptors is too
small (or is absent), then the ancillary data is truncated (or discarded) and the ex-
cess file descriptors are automatically closed in the receiving process.

If the number of file descriptors received in the ancillary data would cause the
process to exceed its RLIMIT_NOFILE resource limit (see getrlimit(2)), the
excess file descriptors are automatically closed in the receiving process.

The kernel constant SCM_MAX_FD defines a limit on the number of file de-
scriptors in the array. Attempting to send an array larger than this limit causes
sendmsg(2) to fail with the error EINVAL. SCM_MAX_FD has the value 253
(or 255 before Linux 2.6.38).

SCM_CREDENTIALS
Send or receive UNIX credentials. This can be used for authentication. The cre-
dentials are passed as a struct ucred ancillary message. This structure is defined
in <sys/socket.h> as follows:

struct ucred {
pid_t pid; /* Process ID of the sending process */
uid_t uid; /* User ID of the sending process */
gid_t gid; /* Group ID of the sending process */

};

Since glibc 2.8, the _GNU_SOURCE feature test macro must be defined (before
including any header files) in order to obtain the definition of this structure.

Linux man-pages 6.16 2025-09-21 3879

UNIX(7) Miscellaneous Information Manual UNIX(7)

The credentials which the sender specifies are checked by the kernel. A privi-
leged process is allowed to specify values that do not match its own. The sender
must specify its own process ID (unless it has the capability CAP_SYS_AD-
MIN, in which case the PID of any existing process may be specified), its real
user ID, effective user ID, or saved set-user-ID (unless it has CAP_SETUID),
and its real group ID, effective group ID, or saved set-group-ID (unless it has
CAP_SETGID).

To receive a struct ucred message, the SO_PASSCRED option must be enabled
on the socket.

SCM_SECURITY
Receive the SELinux security context (the security label) of the peer socket. The
received ancillary data is a null-terminated string containing the security context.
The receiver should allocate at least NAME_MAX bytes in the data portion of
the ancillary message for this data.

To receive the security context, the SO_PASSSEC option must be enabled on
the socket (see above).

When sending ancillary data with sendmsg(2), only one item of each of the above types
may be included in the sent message.

At least one byte of real data should be sent when sending ancillary data. On Linux, this
is required to successfully send ancillary data over a UNIX domain stream socket.
When sending ancillary data over a UNIX domain datagram socket, it is not necessary
on Linux to send any accompanying real data. However, portable applications should
also include at least one byte of real data when sending ancillary data over a datagram
socket.

When receiving from a stream socket, ancillary data forms a kind of barrier for the re-
ceived data. For example, suppose that the sender transmits as follows:

(1) sendmsg(2) of four bytes, with no ancillary data.
(2) sendmsg(2) of one byte, with ancillary data.
(3) sendmsg(2) of four bytes, with no ancillary data.

Suppose that the receiver now performs recvmsg(2) calls each with a buffer size of 20
bytes. The first call will receive five bytes of data, along with the ancillary data sent by
the second sendmsg(2) call. The next call will receive the remaining four bytes of data.

If the space allocated for receiving incoming ancillary data is too small then the ancil-
lary data is truncated to the number of headers that will fit in the supplied buffer (or, in
the case of an SCM_RIGHTS file descriptor list, the list of file descriptors may be trun-
cated). If no buffer is provided for incoming ancillary data (i.e., the msg_control field of
the msghdr structure supplied to recvmsg(2) is NULL), then the incoming ancillary data
is discarded. In both of these cases, the MSG_CTRUNC flag will be set in the
msg.msg_flags value returned by recvmsg(2).

Ioctls
The following ioctl(2) calls return information in value. The correct syntax is:

int value;
error = ioctl(unix_socket, ioctl_type, &value);

Linux man-pages 6.16 2025-09-21 3880

UNIX(7) Miscellaneous Information Manual UNIX(7)

ioctl_type can be:

SIOCINQ
For SOCK_STREAM sockets, this call returns the number of unread bytes in
the receive buffer. The socket must not be in LISTEN state, otherwise an error
(EINVAL) is returned. SIOCINQ is defined in <linux/sockios.h>. Alterna-
tively, you can use the synonymous FIONREAD, defined in <sys/ioctl.h>. For
SOCK_DGRAM sockets, the returned value is the same as for Internet domain
datagram sockets; see udp(7).

ERRORS
EADDRINUSE

The specified local address is already in use or the filesystem socket object al-
ready exists.

EBADF
This error can occur for sendmsg(2) when sending a file descriptor as ancillary
data over a UNIX domain socket (see the description of SCM_RIGHTS,
above), and indicates that the file descriptor number that is being sent is not valid
(e.g., it is not an open file descriptor).

ECONNREFUSED
The remote address specified by connect(2) was not a listening socket. This er-
ror can also occur if the target pathname is not a socket.

ECONNRESET
Remote socket was unexpectedly closed.

EFAULT
User memory address was not valid.

EINVAL
Invalid argument passed. A common cause is that the value AF_UNIX was not
specified in the sun_type field of passed addresses, or the socket was in an in-
valid state for the applied operation.

EISCONN
connect(2) called on an already connected socket or a target address was speci-
fied on a connected socket.

ENFILE
The system-wide limit on the total number of open files has been reached.

ENOENT
The pathname in the remote address specified to connect(2) did not exist.

ENOMEM
Out of memory.

ENOTCONN
Socket operation needs a target address, but the socket is not connected.

EOPNOTSUPP
Stream operation called on non-stream oriented socket or tried to use the out-of-
band data option.

Linux man-pages 6.16 2025-09-21 3881

UNIX(7) Miscellaneous Information Manual UNIX(7)

EPERM
The sender passed invalid credentials in the struct ucred .

EPIPE
Remote socket was closed on a stream socket. If enabled, a SIGPIPE is sent as
well. This can be avoided by passing the MSG_NOSIGNAL flag to send(2) or
sendmsg(2).

EPROTONOSUPPORT
Passed protocol is not AF_UNIX.

EPROTOTYPE
Remote socket does not match the local socket type (SOCK_DGRAM versus
SOCK_STREAM).

ESOCKTNOSUPPORT
Unknown socket type.

ESRCH
While sending an ancillary message containing credentials (SCM_CREDEN-
TIALS), the caller specified a PID that does not match any existing process.

ETOOMANYREFS
This error can occur for sendmsg(2) when sending a file descriptor as ancillary
data over a UNIX domain socket (see the description of SCM_RIGHTS,
above). It occurs if the number of "in-flight" file descriptors exceeds the
RLIMIT_NOFILE resource limit and the caller does not have the
CAP_SYS_RESOURCE capability. An in-flight file descriptor is one that has
been sent using sendmsg(2) but has not yet been accepted in the recipient process
using recvmsg(2).

This error is diagnosed since mainline Linux 4.5 (and in some earlier kernel ver-
sions where the fix has been backported). In earlier kernel versions, it was possi-
ble to place an unlimited number of file descriptors in flight, by sending each file
descriptor with sendmsg(2) and then closing the file descriptor so that it was not
accounted against the RLIMIT_NOFILE resource limit.

Other errors can be generated by the generic socket layer or by the filesystem while gen-
erating a filesystem socket object. See the appropriate manual pages for more informa-
tion.

VERSIONS
SCM_CREDENTIALS and the abstract namespace were introduced with Linux 2.2
and should not be used in portable programs. (Some BSD-derived systems also support
credential passing, but the implementation details differ.)

NOTES
Binding to a socket with a filename creates a socket in the filesystem that must be
deleted by the caller when it is no longer needed (using unlink(2)). The usual UNIX
close-behind semantics apply; the socket can be unlinked at any time and will be finally
removed from the filesystem when the last reference to it is closed.

To pass file descriptors or credentials over a SOCK_STREAM socket, you must send
or receive at least one byte of nonancillary data in the same sendmsg(2) or recvmsg(2)

Linux man-pages 6.16 2025-09-21 3882

UNIX(7) Miscellaneous Information Manual UNIX(7)

call.

UNIX domain stream sockets do not support the notion of out-of-band data.

BUGS
When binding a socket to an address, Linux is one of the implementations that append a
null terminator if none is supplied in sun_path. In most cases this is unproblematic:
when the socket address is retrieved, it will be one byte longer than that supplied when
the socket was bound. However, there is one case where confusing behavior can result:
if 108 non-null bytes are supplied when a socket is bound, then the addition of the null
terminator takes the length of the pathname beyond sizeof(sun_path). Consequently,
when retrieving the socket address (for example, via accept(2)), if the input addrlen ar-
gument for the retrieving call is specified as sizeof(struct sockaddr_un), then the re-
turned address structure won’t have a null terminator in sun_path.

In addition, some implementations don’t require a null terminator when binding a socket
(the addrlen argument is used to determine the length of sun_path) and when the socket
address is retrieved on these implementations, there is no null terminator in sun_path.

Applications that retrieve socket addresses can (portably) code to handle the possibility
that there is no null terminator in sun_path by respecting the fact that the number of
valid bytes in the pathname is:

strnlen(addr.sun_path, addrlen - offsetof(sockaddr_un, sun_path))

Alternatively, an application can retrieve the socket address by allocating a buffer of size
sizeof(struct sockaddr_un)+1 that is zeroed out before the retrieval. The retrieving call
can specify addrlen as sizeof(struct sockaddr_un), and the extra zero byte ensures that
there will be a null terminator for the string returned in sun_path:

void *addrp;

addrlen = sizeof(struct sockaddr_un);
addrp = malloc(addrlen + 1);
if (addrp == NULL)

/* Handle error */ ;
memset(addrp, 0, addrlen + 1);

if (getsockname(sfd, (struct sockaddr *) addrp, &addrlen)) == -1)
/* handle error */ ;

printf("sun_path = %s\n", ((struct sockaddr_un *) addrp)->sun_path);

This sort of messiness can be avoided if it is guaranteed that the applications that create
pathname sockets follow the rules outlined above under Pathname sockets.

EXAMPLES
The following code demonstrates the use of sequenced-packet sockets for local inter-
process communication. It consists of two programs. The server program waits for a
connection from the client program. The client sends each of its command-line argu-
ments in separate messages. The server treats the incoming messages as integers and
adds them up. The client sends the command string "END". The server sends back a

Linux man-pages 6.16 2025-09-21 3883

UNIX(7) Miscellaneous Information Manual UNIX(7)

message containing the sum of the client’s integers. The client prints the sum and exits.
The server waits for the next client to connect. To stop the server, the client is called
with the command-line argument "DOWN".

The following output was recorded while running the server in the background and re-
peatedly executing the client. Execution of the server program ends when it receives the
"DOWN" command.

Example output
$./server &
[1] 25887
$./client 3 4;
Result = 7
$./client 11 -5;
Result = 6
$./client DOWN;
Result = 0
[1]+ Done ./server
$

Program source

/*
* File connection.h
*/

#ifndef CONNECTION_H
#define CONNECTION_H

#define SOCKET_NAME "/tmp/9Lq7BNBnBycd6nxy.socket"
#define BUFFER_SIZE 12

#endif // include guard

/*
* File server.c
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>

#include "connection.h"

int
main(void)

Linux man-pages 6.16 2025-09-21 3884

UNIX(7) Miscellaneous Information Manual UNIX(7)

{
int down_flag = 0;
int ret;
int connection_socket;
int data_socket;
int result;
ssize_t r, w;
struct sockaddr_un name;
char buffer[BUFFER_SIZE];

/* Create local socket. */

connection_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (connection_socket == -1) {

perror("socket");
exit(EXIT_FAILURE);

}

/*
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/

memset(&name, 0, sizeof(name));

/* Bind socket to socket name. */

name.sun_family = AF_UNIX;
strncpy(name.sun_path, SOCKET_NAME, sizeof(name.sun_path) - 1);

ret = bind(connection_socket, (const struct sockaddr *) &name,
sizeof(name));

if (ret == -1) {
perror("bind");
exit(EXIT_FAILURE);

}

/*
* Prepare for accepting connections. The backlog size is set
* to 20. So while one request is being processed other requests
* can be waiting.
*/

ret = listen(connection_socket, 20);
if (ret == -1) {

perror("listen");

Linux man-pages 6.16 2025-09-21 3885

UNIX(7) Miscellaneous Information Manual UNIX(7)

exit(EXIT_FAILURE);
}

/* This is the main loop for handling connections. */

for (;;) {

/* Wait for incoming connection. */

data_socket = accept(connection_socket, NULL, NULL);
if (data_socket == -1) {

perror("accept");
exit(EXIT_FAILURE);

}

result = 0;
for (;;) {

/* Wait for next data packet. */

r = read(data_socket, buffer, sizeof(buffer));
if (r == -1) {

perror("read");
exit(EXIT_FAILURE);

}

/* Ensure buffer is 0-terminated. */

buffer[sizeof(buffer) - 1] = 0;

/* Handle commands. */

if (!strncmp(buffer, "DOWN", sizeof(buffer))) {
down_flag = 1;
continue;

}

if (!strncmp(buffer, "END", sizeof(buffer))) {
break;

}

if (down_flag) {
continue;

}

/* Add received summand. */

Linux man-pages 6.16 2025-09-21 3886

UNIX(7) Miscellaneous Information Manual UNIX(7)

result += atoi(buffer);
}

/* Send result. */

sprintf(buffer, "%d", result);
w = write(data_socket, buffer, sizeof(buffer));
if (w == -1) {

perror("write");
exit(EXIT_FAILURE);

}

/* Close socket. */

close(data_socket);

/* Quit on DOWN command. */

if (down_flag) {
break;

}
}

close(connection_socket);

/* Unlink the socket. */

unlink(SOCKET_NAME);

exit(EXIT_SUCCESS);
}

/*
* File client.c
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/un.h>
#include <unistd.h>

#include "connection.h"

int
main(int argc, char *argv[])

Linux man-pages 6.16 2025-09-21 3887

UNIX(7) Miscellaneous Information Manual UNIX(7)

{
int ret;
int data_socket;
ssize_t r, w;
struct sockaddr_un addr;
char buffer[BUFFER_SIZE];

/* Create local socket. */

data_socket = socket(AF_UNIX, SOCK_SEQPACKET, 0);
if (data_socket == -1) {

perror("socket");
exit(EXIT_FAILURE);

}

/*
* For portability clear the whole structure, since some
* implementations have additional (nonstandard) fields in
* the structure.
*/

memset(&addr, 0, sizeof(addr));

/* Connect socket to socket address. */

addr.sun_family = AF_UNIX;
strncpy(addr.sun_path, SOCKET_NAME, sizeof(addr.sun_path) - 1);

ret = connect(data_socket, (const struct sockaddr *) &addr,
sizeof(addr));

if (ret == -1) {
fprintf(stderr, "The server is down.\n");
exit(EXIT_FAILURE);

}

/* Send arguments. */

for (int i = 1; i < argc; ++i) {
w = write(data_socket, argv[i], strlen(argv[i]) + 1);
if (w == -1) {

perror("write");
break;

}
}

/* Request result. */

Linux man-pages 6.16 2025-09-21 3888

UNIX(7) Miscellaneous Information Manual UNIX(7)

strcpy(buffer, "END");
w = write(data_socket, buffer, strlen(buffer) + 1);
if (w == -1) {

perror("write");
exit(EXIT_FAILURE);

}

/* Receive result. */

r = read(data_socket, buffer, sizeof(buffer));
if (r == -1) {

perror("read");
exit(EXIT_FAILURE);

}

/* Ensure buffer is 0-terminated. */

buffer[sizeof(buffer) - 1] = 0;

printf("Result = %s\n", buffer);

/* Close socket. */

close(data_socket);

exit(EXIT_SUCCESS);
}

For examples of the use of SCM_RIGHTS, see cmsg(3) and seccomp_unotify(2).

SEE ALSO
recvmsg(2), sendmsg(2), socket(2), socketpair(2), cmsg(3), capabilities(7), creden-
tials(7), socket(7), udp(7)

Linux man-pages 6.16 2025-09-21 3889

uri(7) Miscellaneous Information Manual uri(7)

NAME
uri, url, urn - uniform resource identifier (URI), including a URL or URN

SYNOPSIS
URI = [absoluteURI | relativeURI] ["#" fragment]

absoluteURI = scheme ":" (hierarchical_part | opaque_part)

relativeURI = (net_path | absolute_path | relative_path) ["?" query]

scheme = "http" | "ftp" | "gopher" | "mailto" | "news" | "telnet" | "file" | "ftp" | "man" |
"info" | "whatis" | "ldap" | "wais" | ...

hierarchical_part = (net_path | absolute_path) ["?" query]

net_path = "//" authority [absolute_path]

absolute_path = "/" path_segments

relative_path = relative_segment [absolute_path]

DESCRIPTION
A Uniform Resource Identifier (URI) is a short string of characters identifying an ab-
stract or physical resource (for example, a web page). A Uniform Resource Locator
(URL) is a URI that identifies a resource through its primary access mechanism (e.g., its
network "location"), rather than by name or some other attribute of that resource. A
Uniform Resource Name (URN) is a URI that must remain globally unique and persis-
tent even when the resource ceases to exist or becomes unavailable.

URIs are the standard way to name hypertext link destinations for tools such as web
browsers. The string "http://www.kernel.org" is a URL (and thus it is also a URI).
Many people use the term URL loosely as a synonym for URI (though technically URLs
are a subset of URIs).

URIs can be absolute or relative. An absolute identifier refers to a resource independent
of context, while a relative identifier refers to a resource by describing the difference
from the current context. Within a relative path reference, the complete path segments
"." and ".." have special meanings: "the current hierarchy level" and "the level above this
hierarchy level", respectively, just like they do in UNIX-like systems. A path segment
which contains a colon character can’t be used as the first segment of a relative URI path
(e.g., "this:that"), because it would be mistaken for a scheme name; precede such seg-
ments with ./ (e.g., "./this:that"). Note that descendants of MS-DOS (e.g., Microsoft
Windows) replace devicename colons with the vertical bar ("|") in URIs, so "C:" be-
comes "C|".

A fragment identifier, if included, refers to a particular named portion (fragment) of a re-
source; text after a '#' identifies the fragment. A URI beginning with '#' refers to that
fragment in the current resource.

Usage
There are many different URI schemes, each with specific additional rules and mean-
ings, but they are intentionally made to be as similar as possible. For example, many
URL schemes permit the authority to be the following format, called here an ip_server
(square brackets show what’s optional):

Linux man-pages 6.16 2025-09-21 3890

uri(7) Miscellaneous Information Manual uri(7)

ip_server = [user [: password] @] host [: port]

This format allows you to optionally insert a username, a user plus password, and/or a
port number. The host is the name of the host computer, either its name as determined
by DNS or an IP address (numbers separated by periods). Thus the URI
<http://fred:fredpassword@example.com:8080/> logs into a web server on host exam-
ple.com as fred (using fredpassword) using port 8080. Avoid including a password in a
URI if possible because of the many security risks of having a password written down.
If the URL supplies a username but no password, and the remote server requests a pass-
word, the program interpreting the URL should request one from the user.

Here are some of the most common schemes in use on UNIX-like systems that are un-
derstood by many tools. Note that many tools using URIs also have internal schemes or
specialized schemes; see those tools’ documentation for information on those schemes.

http - Web (HTTP) server

http://ip_server/path
http://ip_server/path?query

This is a URL accessing a web (HTTP) server. The default port is 80. If the path refers
to a directory, the web server will choose what to return; usually if there is a file named
"index.html" or "index.htm", its content is returned; otherwise, a list of the files in the
current directory (with appropriate links) is generated and returned. An example is
<http://lwn.net>.

A query can be given in the archaic "isindex" format, consisting of a word or phrase and
not including an equal sign (=). A query can also be in the longer "GET" format, which
has one or more query entries of the form key=value separated by the ampersand charac-
ter (&). Note that key can be repeated more than once, though it’s up to the web server
and its application programs to determine if there’s any meaning to that. There is an un-
fortunate interaction with HTML/XML/SGML and the GET query format; when such
URIs with more than one key are embedded in SGML/XML documents (including
HTML), the ampersand (&) has to be rewritten as &. Note that not all queries use
this format; larger forms may be too long to store as a URI, so they use a different inter-
action mechanism (called POST) which does not include the data in the URI. See the
Common Gateway Interface specification at 〈http://www.w3.org/CGI〉 for more informa-
tion.

ftp - File Transfer Protocol (FTP)

ftp://ip_server/path

This is a URL accessing a file through the file transfer protocol (FTP). The default port
(for control) is 21. If no username is included, the username "anonymous" is supplied,
and in that case many clients provide as the password the requestor’s Internet email ad-
dress. An example is <ftp://ftp.is.co.za/rfc/rfc1808.txt>.

gopher - Gopher server

gopher://ip_server/gophertype selector
gopher://ip_server/gophertype selector%09search
gopher://ip_server/gophertype selector%09search%09gopher+_string

Linux man-pages 6.16 2025-09-21 3891

uri(7) Miscellaneous Information Manual uri(7)

The default gopher port is 70. gophertype is a single-character field to denote the Go-
pher type of the resource to which the URL refers. The entire path may also be empty,
in which case the delimiting "/" is also optional, and the gophertype defaults to "1".

selector is the Gopher selector string. In the Gopher protocol, Gopher selector strings
are a sequence of octets which may contain any octets except 09 hexadecimal (US-
ASCII HT or tab), 0A hexadecimal (US-ASCII character LF), and 0D (US-ASCII char-
acter CR).

mailto - Email address

mailto:email-address

This is an email address, usually of the form name@hostname. See mailaddr(7) for
more information on the correct format of an email address. Note that any % character
must be rewritten as %25. An example is <mailto:dwheeler@dwheeler.com>.

news - Newsgroup or News message

news:newsgroup-name
news:message-id

A newsgroup-name is a period-delimited hierarchical name, such as "comp.infosys-
tems.www.misc". If <newsgroup-name> is "*" (as in <news:*>), it is used to refer to
"all available news groups". An example is <news:comp.lang.ada>.

A message-id corresponds to the Message-ID of IETF RFC 1036, 〈http://www.ietf.org
/rfc/rfc1036.txt〉 without the enclosing "<" and ">"; it takes the form unique@ full_do-
main_name. A message identifier may be distinguished from a news group name by the
presence of the "@" character.

telnet - Telnet login

telnet://ip_server/

The Telnet URL scheme is used to designate interactive text services that may be ac-
cessed by the Telnet protocol. The final "/" character may be omitted. The default port
is 23. An example is <telnet://melvyl.ucop.edu/>.

file - Normal file

file://ip_server/path_segments
file:path_segments

This represents a file or directory accessible locally. As a special case, ip_server can be
the string "localhost" or the empty string; this is interpreted as "the machine from which
the URL is being interpreted". If the path is to a directory, the viewer should display the
directory’s contents with links to each containee; not all viewers currently do this. KDE
supports generated files through the URL <file:/cgi-bin>. If the given file isn’t found,
browser writers may want to try to expand the filename via filename globbing (see
glob(7) and glob(3)).

The second format (e.g., <file:/etc/passwd>) is a correct format for referring to a local
file. However, older standards did not permit this format, and some programs don’t rec-
ognize this as a URI. A more portable syntax is to use an empty string as the server
name, for example, <file:///etc/passwd>; this form does the same thing and is easily

Linux man-pages 6.16 2025-09-21 3892

uri(7) Miscellaneous Information Manual uri(7)

recognized by pattern matchers and older programs as a URI. Note that if you really
mean to say "start from the current location", don’t specify the scheme at all; use a rela-
tive address like <../test.txt>, which has the side-effect of being scheme-independent.
An example of this scheme is <file:///etc/passwd>.

man - Man page documentation

man:command-name
man:command-name(section)

This refers to local online manual (man) reference pages. The command name can op-
tionally be followed by a parenthesis and section number; see man(7) for more informa-
tion on the meaning of the section numbers. This URI scheme is unique to UNIX-like
systems (such as Linux) and is not currently registered by the IETF. An example is
<man:ls(1)>.

info - Info page documentation

info:virtual-filename
info:virtual-filename#nodename
info:(virtual-filename)
info:(virtual-filename)nodename

This scheme refers to online info reference pages (generated from texinfo files), a docu-
mentation format used by programs such as the GNU tools. This URI scheme is unique
to UNIX-like systems (such as Linux) and is not currently registered by the IETF. As of
this writing, GNOME and KDE differ in their URI syntax and do not accept the other’s
syntax. The first two formats are the GNOME format; in nodenames, all spaces are
written as underscores. The second two formats are the KDE format; spaces in node-
names must be written as spaces, even though this is forbidden by the URI standards.
It’s hoped that in the future most tools will understand all of these formats and will al-
ways accept underscores for spaces in nodenames. In both GNOME and KDE, if the
form without the nodename is used, the nodename is assumed to be "Top". Examples of
the GNOME format are <info:gcc> and <info:gcc#G++_and_GCC>. Examples of the
KDE format are <info:(gcc)> and <info:(gcc)G++ and GCC>.

whatis - Documentation search

whatis:string

This scheme searches the database of short (one-line) descriptions of commands and re-
turns a list of descriptions containing that string. Only complete word matches are re-
turned. See whatis(1)This URI scheme is unique to UNIX-like systems (such as Linux)
and is not currently registered by the IETF.

ghelp - GNOME help documentation

ghelp:name-of-application

This loads GNOME help for the given application. Note that not much documentation
currently exists in this format.

ldap - Lightweight Directory Access Protocol

ldap://hostport

Linux man-pages 6.16 2025-09-21 3893

uri(7) Miscellaneous Information Manual uri(7)

ldap://hostport/
ldap://hostport/dn
ldap://hostport/dn?attributes
ldap://hostport/dn?attributes?scope
ldap://hostport/dn?attributes?scope? filter
ldap://hostport/dn?attributes?scope? filter?extensions

This scheme supports queries to the Lightweight Directory Access Protocol (LDAP), a
protocol for querying a set of servers for hierarchically organized information (such as
people and computing resources). See RFC 2255 〈http://www.ietf.org/rfc/rfc2255.txt〉
for more information on the LDAP URL scheme. The components of this URL are:

hostport
the LDAP server to query, written as a hostname optionally followed by a colon
and the port number. The default LDAP port is TCP port 389. If empty, the
client determines which the LDAP server to use.

dn the LDAP Distinguished Name, which identifies the base object of the LDAP
search (see RFC 2253 〈http://www.ietf.org/rfc/rfc2253.txt〉 section 3).

attributes
a comma-separated list of attributes to be returned; see RFC 2251 section 4.1.5.
If omitted, all attributes should be returned.

scope
specifies the scope of the search, which can be one of "base" (for a base object
search), "one" (for a one-level search), or "sub" (for a subtree search). If scope
is omitted, "base" is assumed.

filter specifies the search filter (subset of entries to return). If omitted, all entries
should be returned. See RFC 2254 〈http://www.ietf.org/rfc/rfc2254.txt〉 section
4.

extensions
a comma-separated list of type=value pairs, where the =value portion may be
omitted for options not requiring it. An extension prefixed with a '!' is critical
(must be supported to be valid), otherwise it is noncritical (optional).

LDAP queries are easiest to explain by example. Here’s a query that asks
ldap.itd.umich.edu for information about the University of Michigan in the U.S.:

ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US

To just get its postal address attribute, request:

ldap://ldap.itd.umich.edu/o=University%20of%20Michigan,c=US?postalAddress

To ask a host.com at port 6666 for information about the person with common name
(cn) "Babs Jensen" at University of Michigan, request:

ldap://host.com:6666/o=University%20of%20Michigan,c=US??sub?(cn=Babs%20Jensen)

wais - Wide Area Information Servers

wais://hostport/database
wais://hostport/database?search

Linux man-pages 6.16 2025-09-21 3894

uri(7) Miscellaneous Information Manual uri(7)

wais://hostport/database/wtype/wpath

This scheme designates a WAIS database, search, or document (see IETF RFC 1625
〈http://www.ietf.org/rfc/rfc1625.txt〉 for more information on WAIS). Hostport is the
hostname, optionally followed by a colon and port number (the default port number is
210).

The first form designates a WAIS database for searching. The second form designates a
particular search of the WAIS database database. The third form designates a particular
document within a WAIS database to be retrieved. wtype is the WAIS designation of the
type of the object, and wpath is the WAIS document-id.

other schemes

There are many other URI schemes. Most tools that accept URIs support a set of inter-
nal URIs (e.g., Mozilla has the about: scheme for internal information, and the GNOME
help browser has the toc: scheme for various starting locations). There are many
schemes that have been defined but are not as widely used at the current time (e.g., pros-
pero). The nntp: scheme is deprecated in favor of the news: scheme. URNs are to be
supported by the urn: scheme, with a hierarchical name space (e.g., urn:ietf:... would
identify IETF documents); at this time, URNs are not widely implemented. Not all tools
support all schemes.

Character encoding
URIs use a limited number of characters so that they can be typed in and used in a vari-
ety of situations.

The following characters are reserved, that is, they may appear in a URI but their use is
limited to their reserved purpose (conflicting data must be escaped before forming the
URI):

; / ? : @ & = + $,

Unreserved characters may be included in a URI. Unreserved characters include upper-
case and lowercase Latin letters, decimal digits, and the following limited set of punctu-
ation marks and symbols:

- _ . ! ~ * ’ ()

All other characters must be escaped. An escaped octet is encoded as a character triplet,
consisting of the percent character "%" followed by the two hexadecimal digits repre-
senting the octet code (you can use uppercase or lowercase letters for the hexadecimal
digits). For example, a blank space must be escaped as "%20", a tab character as
"%09", and the "&" as "%26". Because the percent "%" character always has the re-
served purpose of being the escape indicator, it must be escaped as "%25". It is com-
mon practice to escape space characters as the plus symbol (+) in query text; this prac-
tice isn’t uniformly defined in the relevant RFCs (which recommend %20 instead) but
any tool accepting URIs with query text should be prepared for them. A URI is always
shown in its "escaped" form.

Unreserved characters can be escaped without changing the semantics of the URI, but
this should not be done unless the URI is being used in a context that does not allow the
unescaped character to appear. For example, "%7e" is sometimes used instead of "~" in
an HTTP URL path, but the two are equivalent for an HTTP URL.

Linux man-pages 6.16 2025-09-21 3895

uri(7) Miscellaneous Information Manual uri(7)

For URIs which must handle characters outside the US ASCII character set, the HTML
4.01 specification (section B.2) and IETF RFC 3986 (last paragraph of section 2.5) rec-
ommend the following approach:

(1) translate the character sequences into UTF-8 (IETF RFC 3629) —see utf-8(7)—
and then

(2) use the URI escaping mechanism, that is, use the %HH encoding for unsafe
octets.

Writing a URI
When written, URIs should be placed inside double quotes (e.g., "http://www.ker-
nel.org"), enclosed in angle brackets (e.g., <http://lwn.net>), or placed on a line by
themselves. A warning for those who use double-quotes: never move extraneous punc-
tuation (such as the period ending a sentence or the comma in a list) inside a URI, since
this will change the value of the URI. Instead, use angle brackets instead, or switch to a
quoting system that never includes extraneous characters inside quotation marks. This
latter system, called the ’new’ or ’logical’ quoting system by "Hart’s Rules" and the
"Oxford Dictionary for Writers and Editors", is preferred practice in Great Britain and in
various European languages. Older documents suggested inserting the prefix "URL:"
just before the URI, but this form has never caught on.

The URI syntax was designed to be unambiguous. However, as URIs have become
commonplace, traditional media (television, radio, newspapers, billboards, etc.) have in-
creasingly used abbreviated URI references consisting of only the authority and path
portions of the identified resource (e.g., <www.w3.org/Addressing>). Such references
are primarily intended for human interpretation rather than machine, with the assump-
tion that context-based heuristics are sufficient to complete the URI (e.g., hostnames be-
ginning with "www" are likely to have a URI prefix of "http://" and hostnames begin-
ning with "ftp" likely to have a prefix of "ftp://"). Many client implementations heuristi-
cally resolve these references. Such heuristics may change over time, particularly when
new schemes are introduced. Since an abbreviated URI has the same syntax as a relative
URL path, abbreviated URI references cannot be used where relative URIs are permit-
ted, and can be used only when there is no defined base (such as in dialog boxes). Don’t
use abbreviated URIs as hypertext links inside a document; use the standard format as
described here.

STANDARDS
(IETF RFC 2396) 〈http://www.ietf.org/rfc/rfc2396.txt〉 , (HTML 4.0) 〈http://www.w3.org
/TR/REC-html40〉.

NOTES
Any tool accepting URIs (e.g., a web browser) on a Linux system should be able to han-
dle (directly or indirectly) all of the schemes described here, including the man: and
info: schemes. Handling them by invoking some other program is fine and in fact en-
couraged.

Technically, the fragment isn’t part of the URI.

For information on how to embed URIs (including URLs) in a data format, see docu-
mentation on that format. HTML uses the format text . Texinfo
files use the format @uref{uri}. Man and mdoc have the recently added UR macro, or

Linux man-pages 6.16 2025-09-21 3896

uri(7) Miscellaneous Information Manual uri(7)

just include the URI in the text (viewers should be able to detect :// as part of a URI).

The GNOME and KDE desktop environments currently vary in the URIs they accept, in
particular in their respective help browsers. To list man pages, GNOME uses <toc:man>
while KDE uses <man:(index)>, and to list info pages, GNOME uses <toc:info> while
KDE uses <info:(dir)> (the author of this man page prefers the KDE approach here,
though a more regular format would be even better). In general, KDE uses <file:/cgi-
bin/> as a prefix to a set of generated files. KDE prefers documentation in HTML, ac-
cessed via the <file:/cgi-bin/helpindex>. GNOME prefers the ghelp scheme to store and
find documentation. Neither browser handles file: references to directories at the time of
this writing, making it difficult to refer to an entire directory with a browsable URI. As
noted above, these environments differ in how they handle the info: scheme, probably
the most important variation. It is expected that GNOME and KDE will converge to
common URI formats, and a future version of this man page will describe the converged
result. Efforts to aid this convergence are encouraged.

Security
A URI does not in itself pose a security threat. There is no general guarantee that a
URL, which at one time located a given resource, will continue to do so. Nor is there
any guarantee that a URL will not locate a different resource at some later point in time;
such a guarantee can be obtained only from the person(s) controlling that namespace
and the resource in question.

It is sometimes possible to construct a URL such that an attempt to perform a seemingly
harmless operation, such as the retrieval of an entity associated with the resource, will in
fact cause a possibly damaging remote operation to occur. The unsafe URL is typically
constructed by specifying a port number other than that reserved for the network proto-
col in question. The client unwittingly contacts a site that is in fact running a different
protocol. The content of the URL contains instructions that, when interpreted according
to this other protocol, cause an unexpected operation. An example has been the use of a
gopher URL to cause an unintended or impersonating message to be sent via a SMTP
server.

Caution should be used when using any URL that specifies a port number other than the
default for the protocol; especially, when it is a number within the reserved space.

Care should be taken when a URI contains escaped delimiters for a given protocol (for
example, CR and LF characters for telnet protocols) that these are not unescaped before
transmission. This might violate the protocol, but avoids the potential for such charac-
ters to be used to simulate an extra operation or parameter in that protocol, which might
lead to an unexpected and possibly harmful remote operation to be performed.

It is clearly unwise to use a URI that contains a password which is intended to be secret.
In particular, the use of a password within the "userinfo" component of a URI is strongly
recommended against except in those rare cases where the "password" parameter is in-
tended to be public.

BUGS
Documentation may be placed in a variety of locations, so there currently isn’t a good
URI scheme for general online documentation in arbitrary formats. References of the
form <file:///usr/doc/ZZZ> don’t work, because different distributions and local

Linux man-pages 6.16 2025-09-21 3897

uri(7) Miscellaneous Information Manual uri(7)

installation requirements may place the files in different directories (it may be in
/usr/doc, or /usr/local/doc, or /usr/share, or somewhere else). Also, the directory ZZZ
usually changes when a version changes (though filename globbing could partially over-
come this). Finally, using the file: scheme doesn’t easily support people who dynami-
cally load documentation from the Internet (instead of loading the files onto a local
filesystem). A future URI scheme may be added (e.g., "userdoc:") to permit programs
to include cross-references to more detailed documentation without having to know the
exact location of that documentation. Alternatively, a future version of the filesystem
specification may specify file locations sufficiently so that the file: scheme will be able
to locate documentation.

Many programs and file formats don’t include a way to incorporate or implement links
using URIs.

Many programs can’t handle all of these different URI formats; there should be a stan-
dard mechanism to load an arbitrary URI that automatically detects the users’ environ-
ment (e.g., text or graphics, desktop environment, local user preferences, and currently
executing tools) and invokes the right tool for any URI.

SEE ALSO
lynx(1), man2html(1), mailaddr(7), utf-8(7)

IETF RFC 2255 〈http://www.ietf.org/rfc/rfc2255.txt〉

Linux man-pages 6.16 2025-09-21 3898

user-keyring(7) Miscellaneous Information Manual user-keyring(7)

NAME
user-keyring - per-user keyring

DESCRIPTION
The user keyring is a keyring used to anchor keys on behalf of a user. Each UID the ker-
nel deals with has its own user keyring that is shared by all processes with that UID.
The user keyring has a name (description) of the form _uid.<UID> where <UID> is the
user ID of the corresponding user.

The user keyring is associated with the record that the kernel maintains for the UID. It
comes into existence upon the first attempt to access either the user keyring, the user-
session-keyring(7), or the session-keyring(7). The keyring remains pinned in existence
so long as there are processes running with that real UID or files opened by those
processes remain open. (The keyring can also be pinned indefinitely by linking it into
another keyring.)

Typically, the user keyring is created by pam_keyinit(8) when a user logs in.

The user keyring is not searched by default by request_key(2). When pam_keyinit(8)
creates a session keyring, it adds to it a link to the user keyring so that the user keyring
will be searched when the session keyring is.

A special serial number value, KEY_SPEC_USER_KEYRING, is defined that can be
used in lieu of the actual serial number of the calling process’s user keyring.

From the keyctl(1) utility, ’@u’ can be used instead of a numeric key ID in much the
same way.

User keyrings are independent of clone(2), fork(2), vfork(2), execve(2), and _exit(2) ex-
cepting that the keyring is destroyed when the UID record is destroyed when the last
process pinning it exits.

If it is necessary for a key associated with a user to exist beyond the UID record being
garbage collected—for example, for use by a cron(8) script—then the persistent-
keyring(7) should be used instead.

If a user keyring does not exist when it is accessed, it will be created.

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), process-keyring(7), session-
keyring(7), thread-keyring(7), user-session-keyring(7), pam_keyinit(8)

Linux man-pages 6.16 2025-05-17 3899

user-session-keyring(7) Miscellaneous Information Manual user-session-keyring(7)

NAME
user-session-keyring - per-user default session keyring

DESCRIPTION
The user session keyring is a keyring used to anchor keys on behalf of a user. Each UID
the kernel deals with has its own user session keyring that is shared by all processes with
that UID. The user session keyring has a name (description) of the form
_uid_ses.<UID> where <UID> is the user ID of the corresponding user.

The user session keyring is associated with the record that the kernel maintains for the
UID. It comes into existence upon the first attempt to access either the user session
keyring, the user-keyring(7), or the session-keyring(7). The keyring remains pinned in
existence so long as there are processes running with that real UID or files opened by
those processes remain open. (The keyring can also be pinned indefinitely by linking it
into another keyring.)

The user session keyring is created on demand when a thread requests it or when a
thread asks for its session-keyring(7) and that keyring doesn’t exist. In the latter case, a
user session keyring will be created and, if the session keyring wasn’t to be created, the
user session keyring will be set as the process’s actual session keyring.

The user session keyring is searched by request_key(2) if the actual session keyring does
not exist and is ignored otherwise.

A special serial number value, KEY_SPEC_USER_SESSION_KEYRING, is defined
that can be used in lieu of the actual serial number of the calling process’s user session
keyring.

From the keyctl(1) utility, ’@us’ can be used instead of a numeric key ID in much the
same way.

User session keyrings are independent of clone(2), fork(2), vfork(2), execve(2), and
_exit(2) excepting that the keyring is destroyed when the UID record is destroyed when
the last process pinning it exits.

If a user session keyring does not exist when it is accessed, it will be created.

Rather than relying on the user session keyring, it is strongly recommended—especially
if the process is running as root—that a session-keyring(7) be set explicitly, for example
by pam_keyinit(8)

NOTES
The user session keyring was added to support situations where a process doesn’t have a
session keyring, perhaps because it was created via a pathway that didn’t involve PAM
(e.g., perhaps it was a daemon started by inetd(8)). In such a scenario, the user session
keyring acts as a substitute for the session-keyring(7).

SEE ALSO
keyctl(1), keyctl(3), keyrings(7), persistent-keyring(7), process-keyring(7), session-
keyring(7), thread-keyring(7), user-keyring(7)

Linux man-pages 6.16 2025-05-17 3900

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

NAME
user_namespaces - overview of Linux user namespaces

DESCRIPTION
For an overview of namespaces, see namespaces(7).

User namespaces isolate security-related identifiers and attributes, in particular, user IDs
and group IDs (see credentials(7)), the root directory, keys (see keyrings(7)), and capa-
bilities (see capabilities(7)). A process’s user and group IDs can be different inside and
outside a user namespace. In particular, a process can have a normal unprivileged user
ID outside a user namespace while at the same time having a user ID of 0 inside the
namespace; in other words, the process has full privileges for operations inside the user
namespace, but is unprivileged for operations outside the namespace.

Nested namespaces, namespace membership
User namespaces can be nested; that is, each user namespace —except the initial
("root") namespace— has a parent user namespace, and can have zero or more child user
namespaces. The parent user namespace is the user namespace of the process that cre-
ates the user namespace via a call to unshare(2) or clone(2) with the
CLONE_NEWUSER flag.

The kernel imposes (since Linux 3.11) a limit of 32 nested levels of user namespaces.
Calls to unshare(2) or clone(2) that would cause this limit to be exceeded fail with the
error EUSERS.

Each process is a member of exactly one user namespace. A process created via fork(2)
or clone(2) without the CLONE_NEWUSER flag is a member of the same user name-
space as its parent. A single-threaded process can join another user namespace with
setns(2) if it has the CAP_SYS_ADMIN in that namespace; upon doing so, it gains a
full set of capabilities in that namespace.

A call to clone(2) or unshare(2) with the CLONE_NEWUSER flag makes the new
child process (for clone(2)) or the caller (for unshare(2)) a member of the new user
namespace created by the call.

The NS_GET_PARENT ioctl(2) operation can be used to discover the parental rela-
tionship between user namespaces; see ioctl_nsfs(2).

A task that changes one of its effective IDs will have its dumpability reset to the value in
/proc/sys/fs/suid_dumpable. This may affect the ownership of proc files of child
processes and may thus cause the parent to lack the permissions to write to mapping
files of child processes running in a new user namespace. In such cases, making the par-
ent process dumpable, using PR_SET_DUMPABLE in a call to prctl(2), before creat-
ing a child process in a new user namespace may rectify this problem. See prctl(2) and
proc(5) for details on how ownership is affected.

Capabilities
The child process created by clone(2) with the CLONE_NEWUSER flag starts out
with a complete set of capabilities in the new user namespace. Likewise, a process that
creates a new user namespace using unshare(2) or joins an existing user namespace us-
ing setns(2) gains a full set of capabilities in that namespace. On the other hand, that
process has no capabilities in the parent (in the case of clone(2)) or previous (in the case

Linux man-pages 6.16 2025-09-21 3901

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

of unshare(2) and setns(2)) user namespace, even if the new namespace is created or
joined by the root user (i.e., a process with user ID 0 in the root namespace).

Note that a call to execve(2) will cause a process’s capabilities to be recalculated in the
usual way (see capabilities(7)). Consequently, unless the process has a user ID of 0
within the namespace, or the executable file has a nonempty inheritable capabilities
mask, the process will lose all capabilities. See the discussion of user and group ID
mappings, below.

A call to clone(2) or unshare(2) using the CLONE_NEWUSER flag or a call to
setns(2) that moves the caller into another user namespace sets the "securebits" flags
(see capabilities(7)) to their default values (all flags disabled) in the child (for clone(2))
or caller (for unshare(2) or setns(2)). Note that because the caller no longer has capabil-
ities in its original user namespace after a call to setns(2), it is not possible for a process
to reset its "securebits" flags while retaining its user namespace membership by using a
pair of setns(2) calls to move to another user namespace and then return to its original
user namespace.

The rules for determining whether or not a process has a capability in a particular user
namespace are as follows:

• A process has a capability inside a user namespace if it is a member of that name-
space and it has the capability in its effective capability set. A process can gain ca-
pabilities in its effective capability set in various ways. For example, it may execute
a set-user-ID program or an executable with associated file capabilities. In addition,
a process may gain capabilities via the effect of clone(2), unshare(2), or setns(2), as
already described.

• If a process has a capability in a user namespace, then it has that capability in all
child (and further removed descendant) namespaces as well.

• When a user namespace is created, the kernel records the effective user ID of the
creating process as being the "owner" of the namespace. A process that resides in
the parent of the user namespace and whose effective user ID matches the owner of
the namespace has all capabilities in the namespace. By virtue of the previous rule,
this means that the process has all capabilities in all further removed descendant user
namespaces as well. The NS_GET_OWNER_UID ioctl(2) operation can be used
to discover the user ID of the owner of the namespace; see ioctl_nsfs(2).

Effect of capabilities within a user namespace
Having a capability inside a user namespace permits a process to perform operations
(that require privilege) only on resources governed by that namespace. In other words,
having a capability in a user namespace permits a process to perform privileged opera-
tions on resources that are governed by (nonuser) namespaces owned by (associated
with) the user namespace (see the next subsection).

On the other hand, there are many privileged operations that affect resources that are not
associated with any namespace type, for example, changing the system (i.e., calendar)
time (governed by CAP_SYS_TIME), loading a kernel module (governed by
CAP_SYS_MODULE), and creating a device (governed by CAP_MKNOD). Only a
process with privileges in the initial user namespace can perform such operations.

Linux man-pages 6.16 2025-09-21 3902

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

Holding CAP_SYS_ADMIN within the user namespace that owns a process’s mount
namespace allows that process to create bind mounts and mount the following types of
filesystems:

• /proc (since Linux 3.8)
• /sys (since Linux 3.8)
• devpts (since Linux 3.9)
• tmpfs(5) (since Linux 3.9)
• ramfs (since Linux 3.9)
• mqueue (since Linux 3.9)
• bpf (since Linux 4.4)
• overlayfs (since Linux 5.11)

Holding CAP_SYS_ADMIN within the user namespace that owns a process’s cgroup
namespace allows (since Linux 4.6) that process to mount the cgroup version 2 filesys-
tem and cgroup version 1 named hierarchies (i.e., cgroup filesystems mounted with the
"none,name=" option).

Holding CAP_SYS_ADMIN within the user namespace that owns a process’s PID
namespace allows (since Linux 3.8) that process to mount /proc filesystems.

However, mounting block-based filesystems can be done only by a process that holds
CAP_SYS_ADMIN in the initial user namespace.

Interaction of user namespaces and other types of namespaces
Since Linux 3.8, unprivileged processes can create user namespaces, and the other types
of namespaces can be created with just the CAP_SYS_ADMIN capability in the caller’s
user namespace.

When a nonuser namespace is created, it is owned by the user namespace in which the
creating process was a member at the time of the creation of the namespace. Privileged
operations on resources governed by the nonuser namespace require that the process has
the necessary capabilities in the user namespace that owns the nonuser namespace.

If CLONE_NEWUSER is specified along with other CLONE_NEW* flags in a single
clone(2) or unshare(2) call, the user namespace is guaranteed to be created first, giving
the child (clone(2)) or caller (unshare(2)) privileges over the remaining namespaces
created by the call. Thus, it is possible for an unprivileged caller to specify this combi-
nation of flags.

When a new namespace (other than a user namespace) is created via clone(2) or un-
share(2), the kernel records the user namespace of the creating process as the owner of
the new namespace. (This association can’t be changed.) When a process in the new
namespace subsequently performs privileged operations that operate on global resources
isolated by the namespace, the permission checks are performed according to the
process’s capabilities in the user namespace that the kernel associated with the new
namespace. For example, suppose that a process attempts to change the hostname
(sethostname(2)), a resource governed by the UTS namespace. In this case, the kernel
will determine which user namespace owns the process’s UTS namespace, and check
whether the process has the required capability (CAP_SYS_ADMIN) in that user name-
space.

Linux man-pages 6.16 2025-09-21 3903

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

The NS_GET_USERNS ioctl(2) operation can be used to discover the user namespace
that owns a nonuser namespace; see ioctl_nsfs(2).

User and group ID mappings: uid_map and gid_map
When a user namespace is created, it starts out without a mapping of user IDs (group
IDs) to the parent user namespace. The /proc/ pid /uid_map and /proc/ pid /gid_map
files (available since Linux 3.5) expose the mappings for user and group IDs inside the
user namespace for the process pid . These files can be read to view the mappings in a
user namespace and written to (once) to define the mappings.

The description in the following paragraphs explains the details for uid_map; gid_map
is exactly the same, but each instance of "user ID" is replaced by "group ID".

The uid_map file exposes the mapping of user IDs from the user namespace of the
process pid to the user namespace of the process that opened uid_map (but see a qualifi-
cation to this point below). In other words, processes that are in different user name-
spaces will potentially see different values when reading from a particular uid_map file,
depending on the user ID mappings for the user namespaces of the reading processes.

Each line in the uid_map file specifies a 1-to-1 mapping of a range of contiguous user
IDs between two user namespaces. (When a user namespace is first created, this file is
empty.) The specification in each line takes the form of three numbers delimited by
white space. The first two numbers specify the starting user ID in each of the two user
namespaces. The third number specifies the size of the mapped range. In detail, the
fields are interpreted as follows:

(1) The start of the range of user IDs in the user namespace of the process pid .

(2) The start of the range of user IDs to which the user IDs specified by field one
map. How field two is interpreted depends on whether the process that opened
uid_map and the process pid are in the same user namespace, as follows:

(a) If the two processes are in different user namespaces: field two is the start
of a range of user IDs in the user namespace of the process that opened
uid_map.

(b) If the two processes are in the same user namespace: field two is the start of
the range of user IDs in the parent user namespace of the process pid . This
case enables the opener of uid_map (the common case here is opening
/proc/self/uid_map) to see the mapping of user IDs into the user namespace
of the process that created this user namespace.

(3) The size of the range of user IDs that is mapped between the two user name-
spaces.

System calls that return user IDs (group IDs)—for example, getuid(2), getgid(2), and the
credential fields in the structure returned by stat(2)—return the user ID (group ID)
mapped into the caller’s user namespace.

When a process accesses a file, its user and group IDs are mapped into the initial user
namespace for the purpose of permission checking and assigning IDs when creating a
file. When a process retrieves file user and group IDs via stat(2), the IDs are mapped in
the opposite direction, to produce values relative to the process user and group ID map-
pings.

Linux man-pages 6.16 2025-09-21 3904

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

The initial user namespace has no parent namespace, but, for consistency, the kernel
provides dummy user and group ID mapping files for this namespace. Looking at the
uid_map file (gid_map is the same) from a shell in the initial namespace shows:

$ cat /proc/$$/uid_map;
0 0 4294967295

This mapping tells us that the range starting at user ID 0 in this namespace maps to a
range starting at 0 in the (nonexistent) parent namespace, and the size of the range is the
largest 32-bit unsigned integer. This leaves 4294967295 (the 32-bit signed -1 value)
unmapped. This is deliberate: (uid_t) -1 is used in several interfaces (e.g., setreuid(2))
as a way to specify "no user ID". Leaving (uid_t) -1 unmapped and unusable guaran-
tees that there will be no confusion when using these interfaces.

Defining user and group ID mappings: writing to uid_map and gid_map
After the creation of a new user namespace, the uid_map file of one of the processes in
the namespace may be written to once to define the mapping of user IDs in the new user
namespace. An attempt to write more than once to a uid_map file in a user namespace
fails with the error EPERM. Similar rules apply for gid_map files.

The lines written to uid_map (gid_map) must conform to the following validity rules:

• The three fields must be valid numbers, and the last field must be greater than 0.

• Lines are terminated by newline characters.

• There is a limit on the number of lines in the file. Up to Linux 4.14, this limit was
(arbitrarily) set at 5 lines. Since Linux 4.16, the limit is 340 lines. In addition, the
number of bytes written to the file must be less than the system page size, and the
write must be performed at the start of the file (i.e., lseek(2) and pwrite(2) can’t be
used to write to nonzero offsets in the file).

• The range of user IDs (group IDs) specified in each line cannot overlap with the
ranges in any other lines. In the initial implementation (Linux 3.8), this requirement
was satisfied by a simplistic implementation that imposed the further requirement
that the values in both field 1 and field 2 of successive lines must be in ascending nu-
merical order, which prevented some otherwise valid maps from being created.
Since Linux 3.9, this limitation has been removed, allowing any valid set of nonover-
lapping maps.

• At least one line must be written to the file.

Writes that violate the above rules fail with the error EINVAL.

In order for a process to write to the /proc/ pid /uid_map (/proc/ pid /gid_map) file, all of
the following permission requirements must be met:

• The writing process must have the CAP_SETUID (CAP_SETGID) capability in
the user namespace of the process pid .

• The writing process must either be in the user namespace of the process pid or be in
the parent user namespace of the process pid .

Linux man-pages 6.16 2025-09-21 3905

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

• The mapped user IDs (group IDs) must in turn have a mapping in the parent user
namespace.

• If updating /proc/ pid /uid_map to create a mapping that maps UID 0 in the parent
namespace, then one of the following must be true:

(a) if writing process is in the parent user namespace, then it must have the
CAP_SETFCAP capability in that user namespace; or

(b) if the writing process is in the child user namespace, then the process that cre-
ated the user namespace must have had the CAP_SETFCAP capability when
the namespace was created.

This rule has been in place since Linux 5.12. It eliminates an earlier security bug
whereby a UID 0 process that lacks the CAP_SETFCAP capability, which is
needed to create a binary with namespaced file capabilities (as described in capabili-
ties(7)), could nevertheless create such a binary, by the following steps:

(1) Create a new user namespace with the identity mapping (i.e., UID 0 in the
new user namespace maps to UID 0 in the parent namespace), so that UID 0
in both namespaces is equivalent to the same root user ID.

(2) Since the child process has the CAP_SETFCAP capability, it could create a
binary with namespaced file capabilities that would then be effective in the
parent user namespace (because the root user IDs are the same in the two
namespaces).

• One of the following two cases applies:

(a) Either the writing process has the CAP_SETUID (CAP_SETGID) capability
in the parent user namespace.

• No further restrictions apply: the process can make mappings to arbitrary
user IDs (group IDs) in the parent user namespace.

(b) Or otherwise all of the following restrictions apply:

• The data written to uid_map (gid_map) must consist of a single line that
maps the writing process’s effective user ID (group ID) in the parent user
namespace to a user ID (group ID) in the user namespace.

• The writing process must have the same effective user ID as the process
that created the user namespace.

• In the case of gid_map, use of the setgroups(2) system call must first be
denied by writing "deny" to the /proc/ pid /setgroups file (see below) be-
fore writing to gid_map.

Writes that violate the above rules fail with the error EPERM.

Project ID mappings: projid_map
Similarly to user and group ID mappings, it is possible to create project ID mappings for
a user namespace. (Project IDs are used for disk quotas; see setquota(8) and
quotactl(2).)

Project ID mappings are defined by writing to the /proc/ pid /projid_map file (present
since Linux 3.7).

Linux man-pages 6.16 2025-09-21 3906

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

The validity rules for writing to the /proc/ pid /projid_map file are as for writing to the
uid_map file; violation of these rules causes write(2) to fail with the error EINVAL.

The permission rules for writing to the /proc/ pid /projid_map file are as follows:

• The writing process must either be in the user namespace of the process pid or be in
the parent user namespace of the process pid .

• The mapped project IDs must in turn have a mapping in the parent user namespace.

Violation of these rules causes write(2) to fail with the error EPERM.

Interaction with system calls that change process UIDs or GIDs
In a user namespace where the uid_map file has not been written, the system calls that
change user IDs will fail. Similarly, if the gid_map file has not been written, the system
calls that change group IDs will fail. After the uid_map and gid_map files have been
written, only the mapped values may be used in system calls that change user and group
IDs.

For user IDs, the relevant system calls include setuid(2), setfsuid(2), setreuid(2), and se-
tresuid(2). For group IDs, the relevant system calls include setgid(2), setfsgid(2), se-
tregid(2), setresgid(2), and setgroups(2).

Writing "deny" to the /proc/ pid /setgroups file before writing to /proc/ pid /gid_map will
permanently disable setgroups(2) in a user namespace and allow writing to
/proc/ pid /gid_map without having the CAP_SETGID capability in the parent user
namespace.

The /proc/pid/setgroups file
The /proc/ pid /setgroups file displays the string "allow" if processes in the user name-
space that contains the process pid are permitted to employ the setgroups(2) system
call; it displays "deny" if setgroups(2) is not permitted in that user namespace. Note that
regardless of the value in the /proc/ pid /setgroups file (and regardless of the process’s
capabilities), calls to setgroups(2) are also not permitted if /proc/ pid /gid_map has not
yet been set.

A privileged process (one with the CAP_SYS_ADMIN capability in the namespace)
may write either of the strings "allow" or "deny" to this file before writing a group ID
mapping for this user namespace to the file /proc/ pid /gid_map. Writing the string
"deny" prevents any process in the user namespace from employing setgroups(2).

The essence of the restrictions described in the preceding paragraph is that it is permit-
ted to write to /proc/ pid /setgroups only so long as calling setgroups(2) is disallowed be-
cause /proc/ pid /gid_map has not been set. This ensures that a process cannot transition
from a state where setgroups(2) is allowed to a state where setgroups(2) is denied; a
process can transition only from setgroups(2) being disallowed to setgroups(2) being al-
lowed.

The default value of this file in the initial user namespace is "allow".

Once /proc/ pid /gid_map has been written to (which has the effect of enabling set-
groups(2) in the user namespace), it is no longer possible to disallow setgroups(2) by
writing "deny" to /proc/ pid /setgroups (the write fails with the error EPERM).

A child user namespace inherits the /proc/ pid /setgroups setting from its parent.

Linux man-pages 6.16 2025-09-21 3907

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

If the setgroups file has the value "deny", then the setgroups(2) system call can’t subse-
quently be reenabled (by writing "allow" to the file) in this user namespace. (Attempts
to do so fail with the error EPERM.) This restriction also propagates down to all child
user namespaces of this user namespace.

The /proc/ pid /setgroups file was added in Linux 3.19, but was backported to many ear-
lier stable kernel series, because it addresses a security issue. The issue concerned files
with permissions such as "rwx---rwx". Such files give fewer permissions to "group"
than they do to "other". This means that dropping groups using setgroups(2) might al-
low a process file access that it did not formerly have. Before the existence of user
namespaces this was not a concern, since only a privileged process (one with the
CAP_SETGID capability) could call setgroups(2). However, with the introduction of
user namespaces, it became possible for an unprivileged process to create a new name-
space in which the user had all privileges. This then allowed formerly unprivileged
users to drop groups and thus gain file access that they did not previously have. The
/proc/ pid /setgroups file was added to address this security issue, by denying any path-
way for an unprivileged process to drop groups with setgroups(2).

Unmapped user and group IDs
There are various places where an unmapped user ID (group ID) may be exposed to user
space. For example, the first process in a new user namespace may call getuid(2) before
a user ID mapping has been defined for the namespace. In most such cases, an un-
mapped user ID is converted to the overflow user ID (group ID); the default value for the
overflow user ID (group ID) is 65534. See the descriptions of /proc/sys/kernel/over-
flowuid and /proc/sys/kernel/overflowgid in proc(5).

The cases where unmapped IDs are mapped in this fashion include system calls that re-
turn user IDs (getuid(2), getgid(2), and similar), credentials passed over a UNIX do-
main socket, credentials returned by stat(2), waitid(2), and the System V IPC "ctl"
IPC_STAT operations, credentials exposed by /proc/ pid /status and the files in
/proc/sysvipc/*, credentials returned via the si_uid field in the siginfo_t received with a
signal (see sigaction(2)), credentials written to the process accounting file (see acct(5)),
and credentials returned with POSIX message queue notifications (see mq_notify(3)).

There is one notable case where unmapped user and group IDs are not converted to the
corresponding overflow ID value. When viewing a uid_map or gid_map file in which
there is no mapping for the second field, that field is displayed as 4294967295 (-1 as an
unsigned integer).

Accessing files
In order to determine permissions when an unprivileged process accesses a file, the
process credentials (UID, GID) and the file credentials are in effect mapped back to
what they would be in the initial user namespace and then compared to determine the
permissions that the process has on the file. The same is also true of other objects that
employ the credentials plus permissions mask accessibility model, such as System V
IPC objects.

Operation of file-related capabilities
Certain capabilities allow a process to bypass various kernel-enforced restrictions when
performing operations on files owned by other users or groups. These capabilities are:
CAP_CHOWN, CAP_DAC_OVERRIDE, CAP_DAC_READ_SEARCH,

Linux man-pages 6.16 2025-09-21 3908

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

CAP_FOWNER, and CAP_FSETID.

Within a user namespace, these capabilities allow a process to bypass the rules if the
process has the relevant capability over the file, meaning that:

• the process has the relevant effective capability in its user namespace; and

• the file’s user ID and group ID both have valid mappings in the user namespace.

The CAP_FOWNER capability is treated somewhat exceptionally: it allows a process
to bypass the corresponding rules so long as at least the file’s user ID has a mapping in
the user namespace (i.e., the file’s group ID does not need to have a valid mapping).

Set-user-ID and set-group-ID programs
When a process inside a user namespace executes a set-user-ID (set-group-ID) program,
the process’s effective user (group) ID inside the namespace is changed to whatever
value is mapped for the user (group) ID of the file. However, if either the user or the
group ID of the file has no mapping inside the namespace, the set-user-ID (set-group-
ID) bit is silently ignored: the new program is executed, but the process’s effective user
(group) ID is left unchanged. (This mirrors the semantics of executing a set-user-ID or
set-group-ID program that resides on a filesystem that was mounted with the MS_NO-
SUID flag, as described in mount(2).)

Miscellaneous
When a process’s user and group IDs are passed over a UNIX domain socket to a
process in a different user namespace (see the description of SCM_CREDENTIALS in
unix(7)), they are translated into the corresponding values as per the receiving process’s
user and group ID mappings.

STANDARDS
Linux.

NOTES
Over the years, there have been a lot of features that have been added to the Linux ker-
nel that have been made available only to privileged users because of their potential to
confuse set-user-ID-root applications. In general, it becomes safe to allow the root user
in a user namespace to use those features because it is impossible, while in a user name-
space, to gain more privilege than the root user of a user namespace has.

Global root
The term "global root" is sometimes used as a shorthand for user ID 0 in the initial user
namespace.

Availability
Use of user namespaces requires a kernel that is configured with the CON-
FIG_USER_NS option. User namespaces require support in a range of subsystems
across the kernel. When an unsupported subsystem is configured into the kernel, it is
not possible to configure user namespaces support.

As at Linux 3.8, most relevant subsystems supported user namespaces, but a number of
filesystems did not have the infrastructure needed to map user and group IDs between
user namespaces. Linux 3.9 added the required infrastructure support for many of the
remaining unsupported filesystems (Plan 9 (9P), Andrew File System (AFS), Ceph,
CIFS, CODA, NFS, and OCFS2). Linux 3.12 added support for the last of the

Linux man-pages 6.16 2025-09-21 3909

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

unsupported major filesystems, XFS.

EXAMPLES
The program below is designed to allow experimenting with user namespaces, as well as
other types of namespaces. It creates namespaces as specified by command-line options
and then executes a command inside those namespaces. The comments and usage()
function inside the program provide a full explanation of the program. The following
shell session demonstrates its use.

First, we look at the run-time environment:

$ uname -rs; # Need Linux 3.8 or later
Linux 3.8.0
$ id -u; # Running as unprivileged user
1000
$ id -g;
1000

Now start a new shell in new user (-U), mount (-m), and PID (-p) namespaces, with
user ID (-M) and group ID (-G) 1000 mapped to 0 inside the user namespace:

$./userns_child_exec -p -m -U -M '0 1000 1' -G '0 1000 1' bash;

The shell has PID 1, because it is the first process in the new PID namespace:

bash$ echo $$;
1

Mounting a new /proc filesystem and listing all of the processes visible in the new PID
namespace shows that the shell can’t see any processes outside the PID namespace:

bash$ mount -t proc proc /proc;
bash$ ps ax;

PID TTY STAT TIME COMMAND
1 pts/3 S 0:00 bash

22 pts/3 R+ 0:00 ps ax

Inside the user namespace, the shell has user and group ID 0, and a full set of permitted
and effective capabilities:

bash$ cat /proc/$$/status | egrep '^[UG]id';
Uid: 0 0 0 0
Gid: 0 0 0 0
bash$ cat /proc/$$/status | egrep '^Cap(Prm|Inh|Eff)';
CapInh: 0000000000000000
CapPrm: 0000001fffffffff
CapEff: 0000001fffffffff

Program source

/* userns_child_exec.c

Licensed under GNU General Public License v2 or later

Linux man-pages 6.16 2025-09-21 3910

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

Create a child process that executes a shell command in new
namespace(s); allow UID and GID mappings to be specified when
creating a user namespace.

*/
#define _GNU_SOURCE
#include <err.h>
#include <sched.h>
#include <unistd.h>
#include <stdint.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <signal.h>
#include <fcntl.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include <errno.h>

struct child_args {
char **argv; /* Command to be executed by child, with args */
int pipe_fd[2]; /* Pipe used to synchronize parent and child */

};

static int verbose;

static void
usage(char *pname)
{

fprintf(stderr, "Usage: %s [options] cmd [arg...]\n\n", pname);
fprintf(stderr, "Create a child process that executes a shell "

"command in a new user namespace,\n"
"and possibly also other new namespace(s).\n\n");

fprintf(stderr, "Options can be:\n\n");
#define fpe(str) fprintf(stderr, " %s", str);

fpe("-i New IPC namespace\n");
fpe("-m New mount namespace\n");
fpe("-n New network namespace\n");
fpe("-p New PID namespace\n");
fpe("-u New UTS namespace\n");
fpe("-U New user namespace\n");
fpe("-M uid_map Specify UID map for user namespace\n");
fpe("-G gid_map Specify GID map for user namespace\n");
fpe("-z Map user's UID and GID to 0 in user namespace\n");
fpe(" (equivalent to: -M '0 <uid> 1' -G '0 <gid> 1')\n");
fpe("-v Display verbose messages\n");
fpe("\n");
fpe("If -z, -M, or -G is specified, -U is required.\n");

Linux man-pages 6.16 2025-09-21 3911

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

fpe("It is not permitted to specify both -z and either -M or -G.\n");
fpe("\n");
fpe("Map strings for -M and -G consist of records of the form:\n");
fpe("\n");
fpe(" ID-inside-ns ID-outside-ns size\n");
fpe("\n");
fpe("A map string can contain multiple records, separated"

" by commas;\n");
fpe("the commas are replaced by newlines before writing"

" to map files.\n");

exit(EXIT_FAILURE);
}

/* Update the mapping file 'map_file', with the value provided in
'mapping', a string that defines a UID or GID mapping. A UID or
GID mapping consists of one or more newline-delimited records
of the form:

ID_inside-ns ID-outside-ns size

Requiring the user to supply a string that contains newlines is
of course inconvenient for command-line use. Thus, we permit the
use of commas to delimit records in this string, and replace them
with newlines before writing the string to the file. */

static void
update_map(char *mapping, char *map_file)
{

int fd;
size_t map_len; /* Length of 'mapping' */

/* Replace commas in mapping string with newlines. */

map_len = strlen(mapping);
for (size_t j = 0; j < map_len; j++)

if (mapping[j] == ',')
mapping[j] = '\n';

fd = open(map_file, O_RDWR);
if (fd == -1) {

fprintf(stderr, "ERROR: open %s: %s\n", map_file,
strerror(errno));

exit(EXIT_FAILURE);
}

if (write(fd, mapping, map_len) != map_len) {

Linux man-pages 6.16 2025-09-21 3912

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

fprintf(stderr, "ERROR: write %s: %s\n", map_file,
strerror(errno));

exit(EXIT_FAILURE);
}

close(fd);
}

/* Linux 3.19 made a change in the handling of setgroups(2) and
the 'gid_map' file to address a security issue. The issue
allowed *unprivileged* users to employ user namespaces in
order to drop groups. The upshot of the 3.19 changes is that
in order to update the 'gid_maps' file, use of the setgroups()
system call in this user namespace must first be disabled by
writing "deny" to one of the /proc/PID/setgroups files for
this namespace. That is the purpose of the following function. */

static void
proc_setgroups_write(pid_t child_pid, char *str)
{

char setgroups_path[PATH_MAX];
int fd;

snprintf(setgroups_path, PATH_MAX, "/proc/%jd/setgroups",
(intmax_t) child_pid);

fd = open(setgroups_path, O_RDWR);
if (fd == -1) {

/* We may be on a system that doesn't support
/proc/PID/setgroups. In that case, the file won't exist,
and the system won't impose the restrictions that Linux 3.19
added. That's fine: we don't need to do anything in order
to permit 'gid_map' to be updated.

However, if the error from open() was something other than
the ENOENT error that is expected for that case, let the
user know. */

if (errno != ENOENT)
fprintf(stderr, "ERROR: open %s: %s\n", setgroups_path,

strerror(errno));
return;

}

if (write(fd, str, strlen(str)) == -1)
fprintf(stderr, "ERROR: write %s: %s\n", setgroups_path,

Linux man-pages 6.16 2025-09-21 3913

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

strerror(errno));

close(fd);
}

static int /* Start function for cloned child */
childFunc(void *arg)
{

struct child_args *args = arg;
char ch;

/* Wait until the parent has updated the UID and GID mappings.
See the comment in main(). We wait for end of file on a
pipe that will be closed by the parent process once it has
updated the mappings. */

close(args->pipe_fd[1]); /* Close our descriptor for the write
end of the pipe so that we see EOF
when parent closes its descriptor. */

if (read(args->pipe_fd[0], &ch, 1) != 0) {
fprintf(stderr,

"Failure in child: read from pipe returned != 0\n");
exit(EXIT_FAILURE);

}

close(args->pipe_fd[0]);

/* Execute a shell command. */

printf("About to exec %s\n", args->argv[0]);
execvp(args->argv[0], args->argv);
err(EXIT_FAILURE, "execvp");

}

#define STACK_SIZE (1024 * 1024)

static char child_stack[STACK_SIZE]; /* Space for child's stack */

int
main(int argc, char *argv[])
{

int flags, opt, map_zero;
pid_t child_pid;
struct child_args args;
char *uid_map, *gid_map;
const int MAP_BUF_SIZE = 100;
char map_buf[MAP_BUF_SIZE];

Linux man-pages 6.16 2025-09-21 3914

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

char map_path[PATH_MAX];

/* Parse command-line options. The initial '+' character in
the final getopt() argument prevents GNU-style permutation
of command-line options. That's useful, since sometimes
the 'command' to be executed by this program itself
has command-line options. We don't want getopt() to treat
those as options to this program. */

flags = 0;
verbose = 0;
gid_map = NULL;
uid_map = NULL;
map_zero = 0;
while ((opt = getopt(argc, argv, "+imnpuUM:G:zv")) != -1) {

switch (opt) {
case 'i': flags |= CLONE_NEWIPC; break;
case 'm': flags |= CLONE_NEWNS; break;
case 'n': flags |= CLONE_NEWNET; break;
case 'p': flags |= CLONE_NEWPID; break;
case 'u': flags |= CLONE_NEWUTS; break;
case 'v': verbose = 1; break;
case 'z': map_zero = 1; break;
case 'M': uid_map = optarg; break;
case 'G': gid_map = optarg; break;
case 'U': flags |= CLONE_NEWUSER; break;
default: usage(argv[0]);
}

}

/* -M or -G without -U is nonsensical */

if (((uid_map != NULL || gid_map != NULL || map_zero) &&
!(flags & CLONE_NEWUSER)) ||

(map_zero && (uid_map != NULL || gid_map != NULL)))
usage(argv[0]);

args.argv = &argv[optind];

/* We use a pipe to synchronize the parent and child, in order to
ensure that the parent sets the UID and GID maps before the child
calls execve(). This ensures that the child maintains its
capabilities during the execve() in the common case where we
want to map the child's effective user ID to 0 in the new user
namespace. Without this synchronization, the child would lose
its capabilities if it performed an execve() with nonzero
user IDs (see the capabilities(7) man page for details of the

Linux man-pages 6.16 2025-09-21 3915

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

transformation of a process's capabilities during execve()). */

if (pipe(args.pipe_fd) == -1)
err(EXIT_FAILURE, "pipe");

/* Create the child in new namespace(s). */

child_pid = clone(childFunc, child_stack + STACK_SIZE,
flags | SIGCHLD, &args);

if (child_pid == -1)
err(EXIT_FAILURE, "clone");

/* Parent falls through to here. */

if (verbose)
printf("%s: PID of child created by clone() is %jd\n",

argv[0], (intmax_t) child_pid);

/* Update the UID and GID maps in the child. */

if (uid_map != NULL || map_zero) {
snprintf(map_path, PATH_MAX, "/proc/%jd/uid_map",

(intmax_t) child_pid);
if (map_zero) {

snprintf(map_buf, MAP_BUF_SIZE, "0 %jd 1",
(intmax_t) getuid());

uid_map = map_buf;
}
update_map(uid_map, map_path);

}

if (gid_map != NULL || map_zero) {
proc_setgroups_write(child_pid, "deny");

snprintf(map_path, PATH_MAX, "/proc/%jd/gid_map",
(intmax_t) child_pid);

if (map_zero) {
snprintf(map_buf, MAP_BUF_SIZE, "0 %ld 1",

(intmax_t) getgid());
gid_map = map_buf;

}
update_map(gid_map, map_path);

}

/* Close the write end of the pipe, to signal to the child that we
have updated the UID and GID maps. */

Linux man-pages 6.16 2025-09-21 3916

user_namespaces(7) Miscellaneous Information Manual user_namespaces(7)

close(args.pipe_fd[1]);

if (waitpid(child_pid, NULL, 0) == -1) /* Wait for child */
err(EXIT_FAILURE, "waitpid");

if (verbose)
printf("%s: terminating\n", argv[0]);

exit(EXIT_SUCCESS);
}

SEE ALSO
newgidmap(1), newuidmap(1), clone(2), ptrace(2), setns(2), unshare(2), proc(5), sub-
gid(5), subuid(5), capabilities(7), cgroup_namespaces(7), credentials(7), name-
spaces(7), pid_namespaces(7)

The kernel source file Documentation/admin-guide/namespaces/resource-control.rst.

Linux man-pages 6.16 2025-09-21 3917

UTF-8(7) Miscellaneous Information Manual UTF-8(7)

NAME
UTF-8 - an ASCII compatible multibyte Unicode encoding

DESCRIPTION
The Unicode 3.0 character set occupies a 16-bit code space. The most obvious Unicode
encoding (known as UCS-2) consists of a sequence of 16-bit words. Such strings can
contain—as part of many 16-bit characters—bytes such as '\0' or '/', which have a special
meaning in filenames and other C library function arguments. In addition, the majority
of UNIX tools expect ASCII files and can’t read 16-bit words as characters without ma-
jor modifications. For these reasons, UCS-2 is not a suitable external encoding of Uni-
code in filenames, text files, environment variables, and so on. The ISO/IEC 10646 Uni-
versal Character Set (UCS), a superset of Unicode, occupies an even larger code
space—31 bits—and the obvious UCS-4 encoding for it (a sequence of 32-bit words)
has the same problems.

The UTF-8 encoding of Unicode and UCS does not have these problems and is the com-
mon way in which Unicode is used on UNIX-style operating systems.

Properties
The UTF-8 encoding has the following nice properties:

• UCS characters 0x00000000 to 0x0000007f (the classic US-ASCII characters) are
encoded simply as bytes 0x00 to 0x7f (ASCII compatibility). This means that files
and strings which contain only 7-bit ASCII characters have the same encoding under
both ASCII and UTF-8.

• All UCS characters greater than 0x7f are encoded as a multibyte sequence consisting
only of bytes in the range 0x80 to 0xfd, so no ASCII byte can appear as part of an-
other character and there are no problems with, for example, '\0' or '/'.

• The lexicographic sorting order of UCS-4 strings is preserved.

• All possible 2^31 UCS codes can be encoded using UTF-8.

• The bytes 0xc0, 0xc1, 0xfe, and 0xff are never used in the UTF-8 encoding.

• The first byte of a multibyte sequence which represents a single non-ASCII UCS
character is always in the range 0xc2 to 0xfd and indicates how long this multibyte
sequence is. All further bytes in a multibyte sequence are in the range 0x80 to 0xbf.
This allows easy resynchronization and makes the encoding stateless and robust
against missing bytes.

• UTF-8 encoded UCS characters may be up to six bytes long, however the Unicode
standard specifies no characters above 0x10ffff, so Unicode characters can be only
up to four bytes long in UTF-8.

Encoding
The following byte sequences are used to represent a character. The sequence to be used
depends on the UCS code number of the character:

0x00000000 - 0x0000007F:
0xxxxxxx

Linux man-pages 6.16 2025-05-17 3918

UTF-8(7) Miscellaneous Information Manual UTF-8(7)

0x00000080 - 0x000007FF:
110xxxxx 10xxxxxx

0x00000800 - 0x0000FFFF:
1110xxxx 10xxxxxx 10xxxxxx

0x00010000 - 0x001FFFFF:
11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

0x00200000 - 0x03FFFFFF:
111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

0x04000000 - 0x7FFFFFFF:
1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

The xxx bit positions are filled with the bits of the character code number in binary rep-
resentation, most significant bit first (big-endian). Only the shortest possible multibyte
sequence which can represent the code number of the character can be used.

The UCS code values 0xd800–0xdfff (UTF-16 surrogates) as well as 0xfffe and 0xffff
(UCS noncharacters) should not appear in conforming UTF-8 streams. According to
RFC 3629 no point above U+10FFFF should be used, which limits characters to four
bytes.

Example
The Unicode character 0xa9 = 1010 1001 (the copyright sign) is encoded in UTF-8 as

11000010 10101001 = 0xc2 0xa9

and character 0x2260 = 0010 0010 0110 0000 (the "not equal" symbol) is encoded as:

11100010 10001001 10100000 = 0xe2 0x89 0xa0

Application notes
Users have to select a UTF-8 locale, for example with

export LANG=en_GB.UTF-8

in order to activate the UTF-8 support in applications.

Application software that has to be aware of the used character encoding should always
set the locale with for example

setlocale(LC_CTYPE, "")

and programmers can then test the expression

strcmp(nl_langinfo(CODESET), "UTF-8") == 0

to determine whether a UTF-8 locale has been selected and whether therefore all plain-
text standard input and output, terminal communication, plaintext file content, file-
names, and environment variables are encoded in UTF-8.

Programmers accustomed to single-byte encodings such as US-ASCII or ISO/IEC 8859
have to be aware that two assumptions made so far are no longer valid in UTF-8 locales.
Firstly, a single byte does not necessarily correspond any more to a single character.
Secondly, since modern terminal emulators in UTF-8 mode also support Chinese, Japan-
ese, and Korean double-width characters as well as nonspacing combining characters,

Linux man-pages 6.16 2025-05-17 3919

UTF-8(7) Miscellaneous Information Manual UTF-8(7)

outputting a single character does not necessarily advance the cursor by one position as
it did in ASCII. Library functions such as mbsrtowcs(3) and wcswidth(3) should be
used today to count characters and cursor positions.

The official ESC sequence to switch from an ISO/IEC 2022 encoding scheme (as used
for instance by VT100 terminals) to UTF-8 is ESC % G ("\x1b%G"). The correspond-
ing return sequence from UTF-8 to ISO/IEC 2022 is ESC % @ ("\x1b%@"). Other
ISO/IEC 2022 sequences (such as for switching the G0 and G1 sets) are not applicable
in UTF-8 mode.

Security
The Unicode and UCS standards require that producers of UTF-8 shall use the shortest
form possible, for example, producing a two-byte sequence with first byte 0xc0 is non-
conforming. Unicode 3.1 has added the requirement that conforming programs must not
accept non-shortest forms in their input. This is for security reasons: if user input is
checked for possible security violations, a program might check only for the ASCII ver-
sion of "/../" or ";" or NUL and overlook that there are many non-ASCII ways to repre-
sent these things in a non-shortest UTF-8 encoding.

Standards
ISO/IEC 10646-1:2000, Unicode 3.1, RFC 3629, Plan 9.

SEE ALSO
locale(1), nl_langinfo(3), setlocale(3), charsets(7), unicode(7)

Linux man-pages 6.16 2025-05-17 3920

uts_namespaces(7) Miscellaneous Information Manual uts_namespaces(7)

NAME
uts_namespaces - overview of Linux UTS namespaces

DESCRIPTION
UTS namespaces provide isolation of two system identifiers: the hostname and the NIS
domain name. These identifiers are set using sethostname(2) and setdomainname(2),
and can be retrieved using uname(2), gethostname(2), and getdomainname(2). Changes
made to these identifiers are visible to all other processes in the same UTS namespace,
but are not visible to processes in other UTS namespaces.

When a process creates a new UTS namespace using clone(2) or unshare(2) with the
CLONE_NEWUTS flag, the hostname and domain name of the new UTS namespace
are copied from the corresponding values in the caller’s UTS namespace.

Use of UTS namespaces requires a kernel that is configured with the CON-
FIG_UTS_NS option.

SEE ALSO
nsenter(1), unshare(1), clone(2), getdomainname(2), gethostname(2), setns(2), un-
ame(2), unshare(2), namespaces(7)

Linux man-pages 6.16 2025-05-17 3921

vDSO(7) Miscellaneous Information Manual vDSO(7)

NAME
vdso - overview of the virtual ELF dynamic shared object

SYNOPSIS
#include <sys/auxv.h>

void *vdso = (uintptr_t) getauxval(AT_SYSINFO_EHDR);

DESCRIPTION
The "vDSO" (virtual dynamic shared object) is a small shared library that the kernel au-
tomatically maps into the address space of all user-space applications. Applications
usually do not need to concern themselves with these details as the vDSO is most com-
monly called by the C library. This way you can code in the normal way using standard
functions and the C library will take care of using any functionality that is available via
the vDSO.

Why does the vDSO exist at all? There are some system calls the kernel provides that
user-space code ends up using frequently, to the point that such calls can dominate over-
all performance. This is due both to the frequency of the call as well as the context-
switch overhead that results from exiting user space and entering the kernel.

The rest of this documentation is geared toward the curious and/or C library writers
rather than general developers. If you’re trying to call the vDSO in your own applica-
tion rather than using the C library, you’re most likely doing it wrong.

Example background
Making system calls can be slow. In x86 32-bit systems, you can trigger a software in-
terrupt (int $0x80) to tell the kernel you wish to make a system call. However, this in-
struction is expensive: it goes through the full interrupt-handling paths in the processor’s
microcode as well as in the kernel. Newer processors have faster (but backward incom-
patible) instructions to initiate system calls. Rather than require the C library to figure
out if this functionality is available at run time, the C library can use functions provided
by the kernel in the vDSO.

Note that the terminology can be confusing. On x86 systems, the vDSO function used
to determine the preferred method of making a system call is named "__ker-
nel_vsyscall", but on x86-64, the term "vsyscall" also refers to an obsolete way to ask
the kernel what time it is or what CPU the caller is on.

One frequently used system call is gettimeofday(2). This system call is called both di-
rectly by user-space applications as well as indirectly by the C library. Think time-
stamps or timing loops or polling—all of these frequently need to know what time it is
right now. This information is also not secret—any application in any privilege mode
(root or any unprivileged user) will get the same answer. Thus the kernel arranges for
the information required to answer this question to be placed in memory the process can
access. Now a call to gettimeofday(2) changes from a system call to a normal function
call and a few memory accesses.

Finding the vDSO
The base address of the vDSO (if one exists) is passed by the kernel to each program in
the initial auxiliary vector (see getauxval(3)), via the AT_SYSINFO_EHDR tag.

You must not assume the vDSO is mapped at any particular location in the user’s

Linux man-pages 6.16 2025-10-04 3922

vDSO(7) Miscellaneous Information Manual vDSO(7)

memory map. The base address will usually be randomized at run time every time a
new process image is created (at execve(2) time). This is done for security reasons, to
prevent "return-to-libc" attacks.

For some architectures, there is also an AT_SYSINFO tag. This is used only for locat-
ing the vsyscall entry point and is frequently omitted or set to 0 (meaning it’s not avail-
able). This tag is a throwback to the initial vDSO work (see History below) and its use
should be avoided.

File format
Since the vDSO is a fully formed ELF image, you can do symbol lookups on it. This al-
lows new symbols to be added with newer kernel releases, and allows the C library to
detect available functionality at run time when running under different kernel versions.
Oftentimes the C library will do detection with the first call and then cache the result for
subsequent calls.

All symbols are also versioned (using the GNU version format). This allows the kernel
to update the function signature without breaking backward compatibility. This means
changing the arguments that the function accepts as well as the return value. Thus,
when looking up a symbol in the vDSO, you must always include the version to match
the ABI you expect.

Typically the vDSO follows the naming convention of prefixing all symbols with
"__vdso_" or "__kernel_" so as to distinguish them from other standard symbols. For
example, the "gettimeofday" function is named "__vdso_gettimeofday".

You use the standard C calling conventions when calling any of these functions. No
need to worry about weird register or stack behavior.

NOTES
Source

When you compile the kernel, it will automatically compile and link the vDSO code for
you. You will frequently find it under the architecture-specific directory:

find arch/$ARCH/ -name '*vdso*.so*' -o -name '*gate*.so*'

vDSO names
The name of the vDSO varies across architectures. It will often show up in things like
glibc’s ldd(1) output. The exact name should not matter to any code, so do not hardcode
it.

user ABI vDSO name
aarch64 linux-vdso.so.1
arm linux-vdso.so.1
ia64 linux-gate.so.1
mips linux-vdso.so.1
ppc/32 linux-vdso32.so.1
ppc/64 linux-vdso64.so.1
riscv linux-vdso.so.1
s390 linux-vdso32.so.1
s390x linux-vdso64.so.1

Linux man-pages 6.16 2025-10-04 3923

vDSO(7) Miscellaneous Information Manual vDSO(7)

sh linux-gate.so.1
i386 linux-gate.so.1
x86-64 linux-vdso.so.1
x86/x32 linux-vdso.so.1

strace(1), seccomp(2), and the vDSO
When tracing system calls with strace(1), symbols (system calls) that are exported by
the vDSO will not appear in the trace output. Those system calls will likewise not be
visible to seccomp(2) filters.

ARCHITECTURE-SPECIFIC NOTES
The subsections below provide architecture-specific notes on the vDSO.

Note that the vDSO that is used is based on the ABI of your user-space code and not the
ABI of the kernel. Thus, for example, when you run an i386 32-bit ELF binary, you’ll
get the same vDSO regardless of whether you run it under an i386 32-bit kernel or under
an x86-64 64-bit kernel. Therefore, the name of the user-space ABI should be used to
determine which of the sections below is relevant.

ARM functions
The table below lists the symbols exported by the vDSO.

symbol version
__vdso_gettimeofday LINUX_2.6 (exported since Linux 4.1)
__vdso_clock_gettime LINUX_2.6 (exported since Linux 4.1)

Additionally, the ARM port has a code page full of utility functions. Since it’s just a
raw page of code, there is no ELF information for doing symbol lookups or versioning.
It does provide support for different versions though.

For information on this code page, it’s best to refer to the kernel documentation as it’s
extremely detailed and covers everything you need to know: Documentation/arm/ker-
nel_user_helpers.rst.

aarch64 functions
The table below lists the symbols exported by the vDSO.

symbol version
__kernel_rt_sigreturn LINUX_2.6.39
__kernel_gettimeofday LINUX_2.6.39
__kernel_clock_gettime LINUX_2.6.39
__kernel_clock_getres LINUX_2.6.39

bfin (Blackfin) functions (port removed in Linux 4.17)
As this CPU lacks a memory management unit (MMU), it doesn’t set up a vDSO in the
normal sense. Instead, it maps at boot time a few raw functions into a fixed location in
memory. User-space applications then call directly into that region. There is no provi-
sion for backward compatibility beyond sniffing raw opcodes, but as this is an embedded
CPU, it can get away with things—some of the object formats it runs aren’t even ELF
based (they’re bFLT/FLAT).

For information on this code page, it’s best to refer to the public documentation:
http://docs.blackfin.uclinux.org/doku.php?id=linux-kernel:fixed-code

Linux man-pages 6.16 2025-10-04 3924

vDSO(7) Miscellaneous Information Manual vDSO(7)

mips functions
The table below lists the symbols exported by the vDSO.

symbol version
__kernel_gettimeofday LINUX_2.6 (exported since Linux 4.4)
__kernel_clock_gettime LINUX_2.6 (exported since Linux 4.4)

ia64 (Itanium) functions
The table below lists the symbols exported by the vDSO.

symbol version
__kernel_sigtramp LINUX_2.5
__kernel_syscall_via_break LINUX_2.5
__kernel_syscall_via_epc LINUX_2.5

The Itanium port is somewhat tricky. In addition to the vDSO above, it also has "light-
weight system calls" (also known as "fast syscalls" or "fsys"). You can invoke these via
the __kernel_syscall_via_epc vDSO helper. The system calls listed here have the same
semantics as if you called them directly via syscall(2), so refer to the relevant documen-
tation for each. The table below lists the functions available via this mechanism.

function
clock_gettime
getcpu
getpid
getppid
gettimeofday
set_tid_address

parisc (hppa) functions
The parisc port has a code page with utility functions called a gateway page. Rather
than use the normal ELF auxiliary vector approach, it passes the address of the page to
the process via the SR2 register. The permissions on the page are such that merely exe-
cuting those addresses automatically executes with kernel privileges and not in user
space. This is done to match the way HP-UX works.

Since it’s just a raw page of code, there is no ELF information for doing symbol lookups
or versioning. Simply call into the appropriate offset via the branch instruction, for ex-
ample:

ble <offset>(%sr2, %r0)

offset function
00b0 lws_entry (CAS operations)
00e0 set_thread_pointer (used by glibc)
0100 linux_gateway_entry (syscall)

ppc/32 functions
The table below lists the symbols exported by the vDSO. The functions marked with a *
are available only when the kernel is a PowerPC64 (64-bit) kernel.

symbol version

Linux man-pages 6.16 2025-10-04 3925

vDSO(7) Miscellaneous Information Manual vDSO(7)

__kernel_clock_getres LINUX_2.6.15
__kernel_clock_gettime LINUX_2.6.15
__kernel_clock_gettime64 LINUX_5.11
__kernel_datapage_offset LINUX_2.6.15
__kernel_get_syscall_map LINUX_2.6.15
__kernel_get_tbfreq LINUX_2.6.15
__kernel_getcpu * LINUX_2.6.15
__kernel_gettimeofday LINUX_2.6.15
__kernel_sigtramp_rt32 LINUX_2.6.15
__kernel_sigtramp32 LINUX_2.6.15
__kernel_sync_dicache LINUX_2.6.15
__kernel_sync_dicache_p5 LINUX_2.6.15

Before Linux 5.6, the CLOCK_REALTIME_COARSE and CLOCK_MONOTO-
NIC_COARSE clocks are not supported by the __kernel_clock_getres and __ker-
nel_clock_gettime interfaces; the kernel falls back to the real system call.

ppc/64 functions
The table below lists the symbols exported by the vDSO.

symbol version
__kernel_clock_getres LINUX_2.6.15
__kernel_clock_gettime LINUX_2.6.15
__kernel_datapage_offset LINUX_2.6.15
__kernel_get_syscall_map LINUX_2.6.15
__kernel_get_tbfreq LINUX_2.6.15
__kernel_getcpu LINUX_2.6.15
__kernel_gettimeofday LINUX_2.6.15
__kernel_sigtramp_rt64 LINUX_2.6.15
__kernel_sync_dicache LINUX_2.6.15
__kernel_sync_dicache_p5 LINUX_2.6.15

Before Linux 4.16, the CLOCK_REALTIME_COARSE and CLOCK_MONOTO-
NIC_COARSE clocks are not supported by the __kernel_clock_getres and __ker-
nel_clock_gettime interfaces; the kernel falls back to the real system call.

riscv functions
The table below lists the symbols exported by the vDSO.

symbol version
__vdso_rt_sigreturn LINUX_4.15
__vdso_gettimeofday LINUX_4.15
__vdso_clock_gettime LINUX_4.15
__vdso_clock_getres LINUX_4.15
__vdso_getcpu LINUX_4.15
__vdso_flush_icache LINUX_4.15

s390 functions
The table below lists the symbols exported by the vDSO.

symbol version

Linux man-pages 6.16 2025-10-04 3926

vDSO(7) Miscellaneous Information Manual vDSO(7)

__kernel_clock_getres LINUX_2.6.29
__kernel_clock_gettime LINUX_2.6.29
__kernel_gettimeofday LINUX_2.6.29

s390x functions
The table below lists the symbols exported by the vDSO.

symbol version
__kernel_clock_getres LINUX_2.6.29
__kernel_clock_gettime LINUX_2.6.29
__kernel_gettimeofday LINUX_2.6.29

sh (SuperH) functions
The table below lists the symbols exported by the vDSO.

symbol version
__kernel_rt_sigreturn LINUX_2.6
__kernel_sigreturn LINUX_2.6
__kernel_vsyscall LINUX_2.6

i386 functions
The table below lists the symbols exported by the vDSO.

symbol version
__kernel_sigreturn LINUX_2.5
__kernel_rt_sigreturn LINUX_2.5
__kernel_vsyscall LINUX_2.5
__vdso_clock_gettime LINUX_2.6 (exported since Linux 3.15)
__vdso_gettimeofday LINUX_2.6 (exported since Linux 3.15)
__vdso_time LINUX_2.6 (exported since Linux 3.15)

x86-64 functions
The table below lists the symbols exported by the vDSO. All of these symbols are also
available without the "__vdso_" prefix, but you should ignore those and stick to the
names below.

symbol version
__vdso_clock_gettime LINUX_2.6
__vdso_getcpu LINUX_2.6
__vdso_gettimeofday LINUX_2.6
__vdso_time LINUX_2.6

x86/x32 functions
The table below lists the symbols exported by the vDSO.

symbol version
__vdso_clock_gettime LINUX_2.6
__vdso_getcpu LINUX_2.6
__vdso_gettimeofday LINUX_2.6
__vdso_time LINUX_2.6

Linux man-pages 6.16 2025-10-04 3927

vDSO(7) Miscellaneous Information Manual vDSO(7)

History
The vDSO was originally just a single function—the vsyscall. In older kernels, you
might see that name in a process’s memory map rather than "vdso". Over time, people
realized that this mechanism was a great way to pass more functionality to user space,
so it was reconceived as a vDSO in the current format.

SEE ALSO
syscalls(2), getauxval(3), proc(5)

The documents, examples, and source code in the Linux source code tree:

Documentation/ABI/stable/vdso
Documentation/ia64/fsys.rst
Documentation/vDSO/* (includes examples of using the vDSO)

find arch/ -iname '*vdso*' -o -iname '*gate*'

〈http://articles.manugarg.com/systemcallinlinux2_6.html〉

〈https://lwn.net/Articles/446528/〉

〈http://www.linuxjournal.com/content/creating-vdso-colonels-other-chicken〉

〈http://www.trilithium.com/johan/2005/08/linux-gate/〉

Linux man-pages 6.16 2025-10-04 3928

vsock(7) Miscellaneous Information Manual vsock(7)

NAME
vsock - Linux VSOCK address family

SYNOPSIS
#include <sys/socket.h>
#include <linux/vm_sockets.h>

stream_socket = socket(AF_VSOCK, SOCK_STREAM, 0);
datagram_socket = socket(AF_VSOCK, SOCK_DGRAM, 0);

DESCRIPTION
The VSOCK address family facilitates communication between virtual machines and
the host they are running on. This address family is used by guest agents and hypervisor
services that need a communications channel that is independent of virtual machine net-
work configuration.

Valid socket types are SOCK_STREAM and SOCK_DGRAM. SOCK_STREAM
provides connection-oriented byte streams with guaranteed, in-order delivery.
SOCK_DGRAM provides a connectionless datagram packet service with best-effort
delivery and best-effort ordering. Availability of these socket types is dependent on the
underlying hypervisor.

A new socket is created with

socket(AF_VSOCK, socket_type, 0);

When a process wants to establish a connection, it calls connect(2) with a given destina-
tion socket address. The socket is automatically bound to a free port if unbound.

A process can listen for incoming connections by first binding to a socket address using
bind(2) and then calling listen(2).

Data is transmitted using the send(2) or write(2) families of system calls and data is re-
ceived using the recv(2) or read(2) families of system calls.

Address format
A socket address is defined as a combination of a 32-bit Context Identifier (CID) and a
32-bit port number. The CID identifies the source or destination, which is either a vir-
tual machine or the host. The port number differentiates between multiple services run-
ning on a single machine.

struct sockaddr_vm {
sa_family_t svm_family; /* Address family: AF_VSOCK */
unsigned short svm_reserved1;
unsigned int svm_port; /* Port # in host byte order */
unsigned int svm_cid; /* Address in host byte order */
unsigned char svm_zero[sizeof(struct sockaddr) -

sizeof(sa_family_t) -
sizeof(unsigned short) -
sizeof(unsigned int) -
sizeof(unsigned int)];

};

svm_family is always set to AF_VSOCK. svm_reserved1 is always set to 0. svm_port

Linux man-pages 6.16 2025-05-17 3929

vsock(7) Miscellaneous Information Manual vsock(7)

contains the port number in host byte order. The port numbers below 1024 are called
privileged ports. Only a process with the CAP_NET_BIND_SERVICE capability
may bind(2) to these port numbers. svm_zero must be zero-filled.

There are several special addresses: VMADDR_CID_ANY (-1U) means any address
for binding; VMADDR_CID_HYPERVISOR (0) is reserved for services built into the
hypervisor; VMADDR_CID_LOCAL (1) is the well-known address for local commu-
nication (loopback); VMADDR_CID_HOST (2) is the well-known address of the host.

The special constant VMADDR_PORT_ANY (-1U) means any port number for bind-
ing.

Live migration
Sockets are affected by live migration of virtual machines. Connected
SOCK_STREAM sockets become disconnected when the virtual machine migrates to a
new host. Applications must reconnect when this happens.

The local CID may change across live migration if the old CID is not available on the
new host. Bound sockets are automatically updated to the new CID.

Ioctls
The following ioctls are available on the /dev/vsock device.

IOCTL_VM_SOCKETS_GET_LOCAL_CID
Get the CID of the local machine. The argument is a pointer to an unsigned int.

ioctl(fd, IOCTL_VM_SOCKETS_GET_LOCAL_CID, &cid);

Consider using VMADDR_CID_ANY when binding instead of getting the local
CID with IOCTL_VM_SOCKETS_GET_LOCAL_CID.

Local communication
VMADDR_CID_LOCAL (1) directs packets to the same host that generated them.
This is useful for testing applications on a single host and for debugging.

The local CID obtained with IOCTL_VM_SOCKETS_GET_LOCAL_CID can be
used for the same purpose, but it is preferable to use VMADDR_CID_LOCAL.

ERRORS
EACCES

Unable to bind to a privileged port without the CAP_NET_BIND_SERVICE
capability.

EADDRINUSE
Unable to bind to a port that is already in use.

EADDRNOTAVAIL
Unable to find a free port for binding or unable to bind to a nonlocal CID.

EINVAL
Invalid parameters. This includes: attempting to bind a socket that is already
bound, providing an invalid struct sockaddr_vm, and other input validation er-
rors.

Linux man-pages 6.16 2025-05-17 3930

vsock(7) Miscellaneous Information Manual vsock(7)

ENOPROTOOPT
Invalid socket option in setsockopt(2) or getsockopt(2).

ENOTCONN
Unable to perform operation on an unconnected socket.

EOPNOTSUPP
Operation not supported. This includes: the MSG_OOB flag that is not imple-
mented for the send(2) family of syscalls and MSG_PEEK for the recv(2) fam-
ily of syscalls.

EPROTONOSUPPORT
Invalid socket protocol number. The protocol should always be 0.

ESOCKTNOSUPPORT
Unsupported socket type in socket(2). Only SOCK_STREAM and
SOCK_DGRAM are valid.

VERSIONS
Support for VMware (VMCI) has been available since Linux 3.9. KVM (virtio) is sup-
ported since Linux 4.8. Hyper-V is supported since Linux 4.14.

VMADDR_CID_LOCAL is supported since Linux 5.6. Local communication in the
guest and on the host is available since Linux 5.6. Previous versions supported only lo-
cal communication within a guest (not on the host), and with only some transports
(VMCI and virtio).

SEE ALSO
bind(2), connect(2), listen(2), recv(2), send(2), socket(2), capabilities(7)

Linux man-pages 6.16 2025-05-17 3931

x25(7) Miscellaneous Information Manual x25(7)

NAME
x25 - ITU-T X.25 / ISO/IEC 8208 protocol interface

SYNOPSIS
#include <sys/socket.h>
#include <linux/x25.h>

x25_socket = socket(AF_X25, SOCK_SEQPACKET, 0);

DESCRIPTION
X25 sockets provide an interface to the X.25 packet layer protocol. This allows applica-
tions to communicate over a public X.25 data network as standardized by International
Telecommunication Union’s recommendation X.25 (X.25 DTE-DCE mode). X25 sock-
ets can also be used for communication without an intermediate X.25 network (X.25
DTE-DTE mode) as described in ISO/IEC 8208.

Message boundaries are preserved — a read(2) from a socket will retrieve the same
chunk of data as output with the corresponding write(2) to the peer socket. When neces-
sary, the kernel takes care of segmenting and reassembling long messages by means of
the X.25 M-bit. There is no hard-coded upper limit for the message size. However, re-
assembling of a long message might fail if there is a temporary lack of system resources
or when other constraints (such as socket memory or buffer size limits) become effec-
tive. If that occurs, the X.25 connection will be reset.

Socket addresses
The AF_X25 socket address family uses the struct sockaddr_x25 for representing net-
work addresses as defined in ITU-T recommendation X.121.

struct sockaddr_x25 {
sa_family_t sx25_family; /* must be AF_X25 */
x25_address sx25_addr; /* X.121 Address */

};

sx25_addr contains a char array x25_addr[] to be interpreted as a null-terminated
string. sx25_addr.x25_addr[] consists of up to 15 (not counting the terminating null
byte) ASCII characters forming the X.121 address. Only the decimal digit characters
from '0' to '9' are allowed.

Socket options
The following X.25-specific socket options can be set by using setsockopt(2) and read
with getsockopt(2) with the level argument set to SOL_X25.

X25_QBITINCL
Controls whether the X.25 Q-bit (Qualified Data Bit) is accessible by the user. It
expects an integer argument. If set to 0 (default), the Q-bit is never set for outgo-
ing packets and the Q-bit of incoming packets is ignored. If set to 1, an addi-
tional first byte is prepended to each message read from or written to the socket.
For data read from the socket, a 0 first byte indicates that the Q-bits of the corre-
sponding incoming data packets were not set. A first byte with value 1 indicates
that the Q-bit of the corresponding incoming data packets was set. If the first
byte of the data written to the socket is 1, the Q-bit of the corresponding outgo-
ing data packets will be set. If the first byte is 0, the Q-bit will not be set.

Linux man-pages 6.16 2025-05-17 3932

x25(7) Miscellaneous Information Manual x25(7)

VERSIONS
The AF_X25 protocol family is a new feature of Linux 2.2.

BUGS
Plenty, as the X.25 PLP implementation is CONFIG_EXPERIMENTAL.

This man page is incomplete.

There is no dedicated application programmer’s header file yet; you need to include the
kernel header file <linux/x25.h>. CONFIG_EXPERIMENTAL might also imply that
future versions of the interface are not binary compatible.

X.25 N-Reset events are not propagated to the user process yet. Thus, if a reset oc-
curred, data might be lost without notice.

SEE ALSO
socket(2), socket(7)

Jonathan Simon Naylor: “The Re-Analysis and Re-Implementation of X.25.” The URL
is 〈ftp://ftp.pspt.fi/pub/ham/linux/ax25/x25doc.tgz〉.

Linux man-pages 6.16 2025-05-17 3933

xattr(7) Miscellaneous Information Manual xattr(7)

NAME
xattr - Extended attributes

DESCRIPTION
Extended attributes are name:value pairs associated permanently with files and directo-
ries, similar to the environment strings associated with a process. An attribute may be
defined or undefined. If it is defined, its value may be empty or non-empty.

Extended attributes are extensions to the normal attributes which are associated with all
inodes in the system (i.e., the stat(2) data). They are often used to provide additional
functionality to a filesystem—for example, additional security features such as Access
Control Lists (ACLs) may be implemented using extended attributes.

Users with search access to a file or directory may use listxattr(2) to retrieve a list of at-
tribute names defined for that file or directory.

Extended attributes are accessed as atomic objects. Reading (getxattr(2)) retrieves the
whole value of an attribute and stores it in a buffer. Writing (setxattr(2)) replaces any
previous value with the new value.

Space consumed for extended attributes may be counted towards the disk quotas of the
file owner and file group.

Extended attribute namespaces
Attribute names are null-terminated strings. The attribute name is always specified in
the fully qualified namespace.attribute form, for example, user.mime_type,
trusted.md5sum, system.posix_acl_access, or security.selinux.

The namespace mechanism is used to define different classes of extended attributes.
These different classes exist for several reasons; for example, the permissions and capa-
bilities required for manipulating extended attributes of one namespace may differ to an-
other.

Currently, the security, system, trusted , and user extended attribute classes are defined
as described below. Additional classes may be added in the future.

Extended security attributes
The security attribute namespace is used by kernel security modules, such as Security
Enhanced Linux, and also to implement file capabilities (see capabilities(7)). Read and
write access permissions to security attributes depend on the policy implemented for
each security attribute by the security module. When no security module is loaded, all
processes have read access to extended security attributes, and write access is limited to
processes that have the CAP_SYS_ADMIN capability.

System extended attributes
System extended attributes are used by the kernel to store system objects such as Access
Control Lists. Read and write access permissions to system attributes depend on the
policy implemented for each system attribute implemented by filesystems in the kernel.

Trusted extended attributes
Trusted extended attributes are visible and accessible only to processes that have the
CAP_SYS_ADMIN capability. Attributes in this class are used to implement mecha-
nisms in user space (i.e., outside the kernel) which keep information in extended attrib-
utes to which ordinary processes should not have access.

Linux man-pages 6.16 2025-05-17 3934

xattr(7) Miscellaneous Information Manual xattr(7)

User extended attributes
User extended attributes may be assigned to files and directories for storing arbitrary ad-
ditional information such as the mime type, character set or encoding of a file. The ac-
cess permissions for user attributes are defined by the file permission bits: read permis-
sion is required to retrieve the attribute value, and writer permission is required to
change it.

The file permission bits of regular files and directories are interpreted differently from
the file permission bits of special files and symbolic links. For regular files and directo-
ries the file permission bits define access to the file’s contents, while for device special
files they define access to the device described by the special file. The file permissions
of symbolic links are not used in access checks. These differences would allow users to
consume filesystem resources in a way not controllable by disk quotas for group or
world writable special files and directories.

For this reason, user extended attributes are allowed only for regular files and directo-
ries, and access to user extended attributes is restricted to the owner and to users with
appropriate capabilities for directories with the sticky bit set (see the chmod(1) manual
page for an explanation of the sticky bit).

Filesystem differences
The kernel and the filesystem may place limits on the maximum number and size of ex-
tended attributes that can be associated with a file. The VFS-imposed limits on attribute
names and values are 255 bytes and 64 kB, respectively. The list of attribute names that
can be returned is also limited to 64 kB (see BUGS in listxattr(2)).

Some filesystems, such as Reiserfs (and, historically, ext2 and ext3), require the filesys-
tem to be mounted with the user_xattr mount option in order for user extended attrib-
utes to be used.

In the current ext2, ext3, and ext4 filesystem implementations, the total bytes used by
the names and values of all of a file’s extended attributes must fit in a single filesystem
block (1024, 2048 or 4096 bytes, depending on the block size specified when the filesys-
tem was created).

In the Btrfs, XFS, and Reiserfs filesystem implementations, there is no practical limit on
the number of extended attributes associated with a file, and the algorithms used to store
extended attribute information on disk are scalable.

In the JFS, XFS, and Reiserfs filesystem implementations, the limit on bytes used in an
EA value is the ceiling imposed by the VFS.

In the Btrfs filesystem implementation, the total bytes used for the name, value, and im-
plementation overhead bytes is limited to the filesystem nodesize value (16 kB by de-
fault).

STANDARDS
Extended attributes are not specified in POSIX.1, but some other systems (e.g., the
BSDs and Solaris) provide a similar feature.

NOTES
Since the filesystems on which extended attributes are stored might also be used on ar-
chitectures with a different byte order and machine word size, care should be taken to

Linux man-pages 6.16 2025-05-17 3935

xattr(7) Miscellaneous Information Manual xattr(7)

store attribute values in an architecture-independent format.

This page was formerly named attr(5)

SEE ALSO
attr(1), getfattr(1), setfattr(1), getxattr(2), FS_IOC_GETFLAGS(2const), FS_IOC_SET-
FLAGS(2const), listxattr(2), removexattr(2), setxattr(2), acl(5), capabilities(7),
selinux(8)

Linux man-pages 6.16 2025-05-17 3936

intro(8) System Manager’s Manual intro(8)

NAME
intro - introduction to administration and privileged commands

DESCRIPTION
Section 8 of the manual describes commands which either can be or are used only by the
superuser, like system-administration commands, daemons, and hardware-related com-
mands.

As with the commands described in Section 1, the commands described in this section
terminate with an exit status that indicates whether the command succeeded or failed.
See intro(1) for more information.

NOTES
Authors and copyright conditions

Look at the header of the manual page source for the author(s) and copyright conditions.
Note that these can be different from page to page!

Linux man-pages 6.16 2025-05-17 3937

iconvconfig(8) System Manager’s Manual iconvconfig(8)

NAME
iconvconfig - create iconv module configuration cache

SYNOPSIS
iconvconfig [options] [directory]...

DESCRIPTION
The iconv(3) function internally uses gconv modules to convert to and from a character
set. A configuration file is used to determine the needed modules for a conversion.
Loading and parsing such a configuration file would slow down programs that use
iconv(3), so a caching mechanism is employed.

The iconvconfig program reads iconv module configuration files and writes a fast-load-
ing gconv module configuration cache file.

In addition to the system provided gconv modules, the user can specify custom gconv
module directories with the environment variable GCONV_PATH. However, iconv
module configuration caching is used only when the environment variable
GCONV_PATH is not set.

OPTIONS
--nostdlib

Do not search the system default gconv directory, only the directories provided
on the command line.

--output=outputfile
-o outputfile

Use outputfile for output instead of the system default cache location.

--prefix=pathname
Set the prefix to be prepended to the system pathnames. See FILES, below. By
default, the prefix is empty. Setting the prefix to foo, the gconv module configu-
ration would be read from foo/usr/lib/gconv/gconv-modules and the cache
would be written to foo/usr/lib/gconv/gconv-modules.cache.

--help
-? Print a usage summary and exit.

--usage
Print a short usage summary and exit.

--version
-V Print the version number, license, and disclaimer of warranty for iconv.

EXIT STATUS
Zero on success, nonzero on errors.

FILES
/usr/lib/gconv

Usual default gconv module path.

/usr/lib/gconv/gconv-modules
Usual system default gconv module configuration file.

Linux man-pages 6.16 2025-05-17 3938

iconvconfig(8) System Manager’s Manual iconvconfig(8)

/usr/lib/gconv/gconv-modules.cache
Usual system gconv module configuration cache.

Depending on the architecture, the above files may instead be located at directories with
the path prefix /usr/lib64.

SEE ALSO
iconv(1), iconv(3)

Linux man-pages 6.16 2025-05-17 3939

ld.so(8) System Manager’s Manual ld.so(8)

NAME
ld.so, ld-linux.so - dynamic linker/loader

SYNOPSIS
The dynamic linker can be run either indirectly by running some dynamically linked
program or shared object (in which case no command-line options to the dynamic linker
can be passed and, in the ELF case, the dynamic linker which is stored in the .interp
section of the program is executed) or directly by running:

/lib/ld-linux.so.* [OPTIONS] [PROGRAM [ARGUMENTS]]

DESCRIPTION
The programs ld.so and ld-linux.so* find and load the shared objects (shared libraries)
needed by a program, prepare the program to run, and then run it.

Linux binaries require dynamic linking (linking at run time) unless the -static option
was given to ld(1) during compilation.

The program ld.so handles a.out binaries, a binary format used long ago. The program
ld-linux.so* (/lib/ld-linux.so.1 for libc5, /lib/ld-linux.so.2 for glibc2) handles binaries
that are in the more modern ELF format. Both programs have the same behavior, and
use the same support files and programs (ldd(1), ldconfig(8), and /etc/ld.so.conf).

When resolving shared object dependencies, the dynamic linker first inspects each de-
pendency string to see if it contains a slash (this can occur if a shared object pathname
containing slashes was specified at link time). If a slash is found, then the dependency
string is interpreted as a (relative or absolute) pathname, and the shared object is loaded
using that pathname.

If a shared object dependency does not contain a slash, then it is searched for in the fol-
lowing order:

(1) Using the directories specified in the DT_RPATH dynamic section attribute of the
binary if present and DT_RUNPATH attribute does not exist.

(2) Using the environment variable LD_LIBRARY_PATH, unless the executable is
being run in secure-execution mode (see below), in which case this variable is ig-
nored.

(3) Using the directories specified in the DT_RUNPATH dynamic section attribute of
the binary if present. Such directories are searched only to find those objects re-
quired by DT_NEEDED (direct dependencies) entries and do not apply to those
objects’ children, which must themselves have their own DT_RUNPATH entries.
This is unlike DT_RPATH, which is applied to searches for all children in the de-
pendency tree.

(4) From the cache file /etc/ld.so.cache, which contains a compiled list of candidate
shared objects previously found in the augmented library path. If, however, the
binary was linked with the -z nodefaultlib linker option, shared objects in the de-
fault paths are skipped. Shared objects installed in hardware capability directories
(see below) are preferred to other shared objects.

Linux man-pages 6.16 2025-09-21 3940

ld.so(8) System Manager’s Manual ld.so(8)

(5) In the default path /lib, and then /usr/lib. (On some 64-bit architectures, the de-
fault paths for 64-bit shared objects are /lib64, and then /usr/lib64.) If the binary
was linked with the -z nodefaultlib linker option, this step is skipped.

Dynamic string tokens
In several places, the dynamic linker expands dynamic string tokens:

• In the environment variables LD_LIBRARY_PATH, LD_PRELOAD, and
LD_AUDIT,

• inside the values of the dynamic section tags DT_NEEDED, DT_RPATH,
DT_RUNPATH, DT_AUDIT, and DT_DEPAUDIT of ELF binaries,

• in the arguments to the ld.so command line options --audit, --library-path, and
--preload (see below), and

• in the filename arguments to the dlopen(3) and dlmopen(3) functions.

The substituted tokens are as follows:

$ORIGIN (or equivalently ${ORIGIN})
This expands to the directory containing the program or shared object. Thus, an
application located in somedir/app could be compiled with

gcc -Wl,-rpath,'$ORIGIN/../lib'

so that it finds an associated shared object in somedir/lib no matter where
somedir is located in the directory hierarchy. This facilitates the creation of
"turn-key" applications that do not need to be installed into special directories,
but can instead be unpacked into any directory and still find their own shared ob-
jects.

$LIB (or equivalently ${LIB})
This expands to lib or lib64 depending on the architecture (e.g., on x86-64, it ex-
pands to lib64 and on x86-32, it expands to lib).

$PLATFORM (or equivalently ${PLATFORM})
This expands to a string corresponding to the processor type of the host system
(e.g., "x86_64"). On some architectures, the Linux kernel doesn’t provide a plat-
form string to the dynamic linker. The value of this string is taken from the
AT_PLATFORM value in the auxiliary vector (see getauxval(3)).

Note that the dynamic string tokens have to be quoted properly when set from a shell, to
prevent their expansion as shell or environment variables.

OPTIONS
--argv0 string (since glibc 2.33)

Set argv[0] to the value string before running the program.

--audit list
Use objects named in list as auditors. The objects in list are delimited by colons.

--glibc-hwcaps-mask list
only search built-in subdirectories if in list.

Linux man-pages 6.16 2025-09-21 3941

ld.so(8) System Manager’s Manual ld.so(8)

--glibc-hwcaps-prepend list
Search glibc-hwcaps subdirectories in list.

--inhibit-cache
Do not use /etc/ld.so.cache.

--library-path path
Use path instead of LD_LIBRARY_PATH environment variable setting (see
below). The names ORIGIN , LIB, and PLATFORM are interpreted as for the
LD_LIBRARY_PATH environment variable.

--inhibit-rpath list
Ignore RPATH and RUNPATH information in object names in list. This option
is ignored when running in secure-execution mode (see below). The objects in
list are delimited by colons or spaces.

--list
List all dependencies and how they are resolved.

--list-diagnostics (since glibc 2.33)
Print system diagnostic information in a machine-readable format, such as some
internal loader variables, the auxiliary vector (see getauxval(3)), and the environ-
ment variables. On some architectures, the command might print additional in-
formation (like the cpu features used in GNU indirect function selection on x86).
--list-tunables (since glibc 2.33) Print the names and values of all tunables,
along with the minimum and maximum allowed values.

--preload list (since glibc 2.30)
Preload the objects specified in list. The objects in list are delimited by colons
or spaces. The objects are preloaded as explained in the description of the
LD_PRELOAD environment variable below.

By contrast with LD_PRELOAD, the --preload option provides a way to per-
form preloading for a single executable without affecting preloading performed
in any child process that executes a new program.

--verify
Verify that program is dynamically linked and this dynamic linker can handle it.

ENVIRONMENT
Various environment variables influence the operation of the dynamic linker.

Secure-execution mode
For security reasons, if the dynamic linker determines that a binary should be run in se-
cure-execution mode, the effects of some environment variables are voided or modified,
and furthermore those environment variables are stripped from the environment, so that
the program does not even see the definitions. Some of these environment variables af-
fect the operation of the dynamic linker itself, and are described below. Other environ-
ment variables treated in this way include: GCONV_PATH, GETCONF_DIR,
HOSTALIASES, LOCALDOMAIN, LD_AUDIT, LD_DEBUG, LD_DE-
BUG_OUTPUT, LD_DYNAMIC_WEAK, LD_HWCAP_MASK, LD_LI-
BRARY_PATH, LD_ORIGIN_PATH, LD_PRELOAD, LD_PROFILE,
LD_SHOW_AUXV, LOCALDOMAIN, LOCPATH, MALLOC_TRACE,

Linux man-pages 6.16 2025-09-21 3942

ld.so(8) System Manager’s Manual ld.so(8)

NIS_PATH, NLSPATH, RESOLV_HOST_CONF, RES_OPTIONS, TMPDIR, and
TZDIR.

A binary is executed in secure-execution mode if the AT_SECURE entry in the auxil-
iary vector (see getauxval(3)) has a nonzero value. This entry may have a nonzero value
for various reasons, including:

• The process’s real and effective user IDs differ, or the real and effective group IDs
differ. This typically occurs as a result of executing a set-user-ID or set-group-ID
program.

• A process with a non-root user ID executed a binary that conferred capabilities to the
process.

• A nonzero value may have been set by a Linux Security Module.

Environment variables
Among the more important environment variables are the following:

LD_ASSUME_KERNEL (from glibc 2.2.3 to glibc 2.36)
Each shared object can inform the dynamic linker of the minimum kernel ABI
version that it requires. (This requirement is encoded in an ELF note section that
is viewable via readelf -n as a section labeled NT_GNU_ABI_TAG.) At run
time, the dynamic linker determines the ABI version of the running kernel and
will reject loading shared objects that specify minimum ABI versions that ex-
ceed that ABI version.

LD_ASSUME_KERNEL can be used to cause the dynamic linker to assume
that it is running on a system with a different kernel ABI version. For example,
the following command line causes the dynamic linker to assume it is running on
Linux 2.2.5 when loading the shared objects required by myprog:

$ LD_ASSUME_KERNEL=2.2.5 ./myprog

On systems that provide multiple versions of a shared object (in different direc-
tories in the search path) that have different minimum kernel ABI version re-
quirements, LD_ASSUME_KERNEL can be used to select the version of the
object that is used (dependent on the directory search order).

Historically, the most common use of the LD_ASSUME_KERNEL feature was
to manually select the older LinuxThreads POSIX threads implementation on
systems that provided both LinuxThreads and NPTL (which latter was typically
the default on such systems); see pthreads(7).

LD_BIND_NOW (since glibc 2.1.1)
If set to a nonempty string, causes the dynamic linker to resolve all symbols at
program startup instead of deferring function call resolution to the point when
they are first referenced. This is useful when using a debugger.

LD_LIBRARY_PATH
A list of directories in which to search for ELF libraries at execution time. The
items in the list are separated by either colons or semicolons, and there is no sup-
port for escaping either separator. A zero-length directory name indicates the
current working directory.

Linux man-pages 6.16 2025-09-21 3943

ld.so(8) System Manager’s Manual ld.so(8)

This variable is ignored in secure-execution mode.

Within the pathnames specified in LD_LIBRARY_PATH, the dynamic linker
expands the tokens $ORIGIN , $LIB, and $PLATFORM (or the versions using
curly braces around the names) as described above in Dynamic string tokens.
Thus, for example, the following would cause a library to be searched for in ei-
ther the lib or lib64 subdirectory below the directory containing the program to
be executed:

$ LD_LIBRARY_PATH='$ORIGIN/$LIB' prog

(Note the use of single quotes, which prevent expansion of $ORIGIN and $LIB
as shell variables!)

LD_PRELOAD
A list of additional, user-specified, ELF shared objects to be loaded before all
others. This feature can be used to selectively override functions in other shared
objects.

The items of the list can be separated by spaces or colons, and there is no support
for escaping either separator. The objects are searched for using the rules given
under DESCRIPTION. Objects are searched for and added to the link map in
the left-to-right order specified in the list.

In secure-execution mode, preload pathnames containing slashes are ignored.
Furthermore, shared objects are preloaded only from the standard search directo-
ries and only if they have set-user-ID mode bit enabled (which is not typical).

Within the names specified in the LD_PRELOAD list, the dynamic linker un-
derstands the tokens $ORIGIN , $LIB, and $PLATFORM (or the versions using
curly braces around the names) as described above in Dynamic string tokens.
(See also the discussion of quoting under the description of LD_LI-
BRARY_PATH.)

There are various methods of specifying libraries to be preloaded, and these are
handled in the following order:

(1) The LD_PRELOAD environment variable.

(2) The --preload command-line option when invoking the dynamic linker
directly.

(3) The /etc/ld.so.preload file (described below).

LD_TRACE_LOADED_OBJECTS
If set (to any value), causes the program to list its dynamic dependencies, as if
run by ldd(1), instead of running normally.

Then there are lots of more or less obscure variables, many obsolete or only for internal
use.

LD_AUDIT (since glibc 2.4)
A list of user-specified, ELF shared objects to be loaded before all others in a
separate linker namespace (i.e., one that does not intrude upon the normal sym-
bol bindings that would occur in the process) These objects can be used to audit

Linux man-pages 6.16 2025-09-21 3944

ld.so(8) System Manager’s Manual ld.so(8)

the operation of the dynamic linker. The items in the list are colon-separated,
and there is no support for escaping the separator.

LD_AUDIT is ignored in secure-execution mode.

The dynamic linker will notify the audit shared objects at so-called auditing
checkpoints—for example, loading a new shared object, resolving a symbol, or
calling a symbol from another shared object—by calling an appropriate function
within the audit shared object. For details, see rtld-audit(7). The auditing inter-
face is largely compatible with that provided on Solaris, as described in its
Linker and Libraries Guide, in the chapter Runtime Linker Auditing Interface.

Within the names specified in the LD_AUDIT list, the dynamic linker under-
stands the tokens $ORIGIN , $LIB, and $PLATFORM (or the versions using
curly braces around the names) as described above in Dynamic string tokens.
(See also the discussion of quoting under the description of LD_LI-
BRARY_PATH.)

Since glibc 2.13, in secure-execution mode, names in the audit list that contain
slashes are ignored, and only shared objects in the standard search directories
that have the set-user-ID mode bit enabled are loaded.

LD_BIND_NOT (since glibc 2.1.95)
If this environment variable is set to a nonempty string, do not update the GOT
(global offset table) and PLT (procedure linkage table) after resolving a function
symbol. By combining the use of this variable with LD_DEBUG (with the cate-
gories bindings and symbols), one can observe all run-time function bindings.

LD_DEBUG (since glibc 2.1)
Output verbose debugging information about operation of the dynamic linker.
The content of this variable is one or more of the following categories, separated
by colons, commas, or (if the value is quoted) spaces:

help Specifying help in the value of this variable does not run the spec-
ified program, and displays a help message about which cate-
gories can be specified in this environment variable.

all Print all debugging information (except statistics and unused; see
below).

bindings Display information about which definition each symbol is bound
to.

files Display progress for input file.

libs Display library search paths.

reloc Display relocation processing.

scopes Display scope information.

statistics Display relocation statistics.

symbols Display search paths for each symbol look-up.

Linux man-pages 6.16 2025-09-21 3945

ld.so(8) System Manager’s Manual ld.so(8)

unused Determine unused DSOs.

versions Display version dependencies.

Since glibc 2.3.4, LD_DEBUG is ignored in secure-execution mode, unless the
file /etc/suid-debug exists (the content of the file is irrelevant).

LD_DEBUG_OUTPUT (since glibc 2.1)
By default, LD_DEBUG output is written to standard error. If LD_DE-
BUG_OUTPUT is defined, then output is written to the pathname specified by
its value, with the suffix "." (dot) followed by the process ID appended to the
pathname.

LD_DEBUG_OUTPUT is ignored in secure-execution mode.

LD_DYNAMIC_WEAK (since glibc 2.1.91)
By default, when searching shared libraries to resolve a symbol reference, the
dynamic linker will resolve to the first definition it finds.

Old glibc versions (before glibc 2.2), provided a different behavior: if the linker
found a symbol that was weak, it would remember that symbol and keep search-
ing in the remaining shared libraries. If it subsequently found a strong definition
of the same symbol, then it would instead use that definition. (If no further sym-
bol was found, then the dynamic linker would use the weak symbol that it ini-
tially found.)

The old glibc behavior was nonstandard. (Standard practice is that the distinc-
tion between weak and strong symbols should have effect only at static link
time.) In glibc 2.2, the dynamic linker was modified to provide the current be-
havior (which was the behavior that was provided by most other implementa-
tions at that time).

Defining the LD_DYNAMIC_WEAK environment variable (with any value)
provides the old (nonstandard) glibc behavior, whereby a weak symbol in one
shared library may be overridden by a strong symbol subsequently discovered in
another shared library. (Note that even when this variable is set, a strong symbol
in a shared library will not override a weak definition of the same symbol in the
main program.)

Since glibc 2.3.4, LD_DYNAMIC_WEAK is ignored in secure-execution
mode.

LD_HWCAP_MASK (from glibc 2.1 to glibc 2.38)
Mask for hardware capabilities. Since glibc 2.26, the option might be ignored if
glibc does not support tunables.

LD_ORIGIN_PATH (since glibc 2.1)
Path where the binary is found.

Since glibc 2.4, LD_ORIGIN_PATH is ignored in secure-execution mode.

LD_POINTER_GUARD (from glibc 2.4 to glibc 2.22)
Set to 0 to disable pointer guarding. Any other value enables pointer guarding,
which is also the default. Pointer guarding is a security mechanism whereby
some pointers to code stored in writable program memory (return addresses

Linux man-pages 6.16 2025-09-21 3946

ld.so(8) System Manager’s Manual ld.so(8)

saved by setjmp(3) or function pointers used by various glibc internals) are man-
gled semi-randomly to make it more difficult for an attacker to hijack the point-
ers for use in the event of a buffer overrun or stack-smashing attack. Since glibc
2.23, LD_POINTER_GUARD can no longer be used to disable pointer guard-
ing, which is now always enabled.

LD_PROFILE (since glibc 2.1)
The name of a (single) shared object to be profiled, specified either as a path-
name or a soname. Profiling output is appended to the file whose name is:
$LD_PROFILE_OUTPUT /$LD_PROFILE.profile.

Since glibc 2.2.5, LD_PROFILE uses a different default path in secure-execu-
tion mode.

LD_PROFILE_OUTPUT (since glibc 2.1)
Directory where LD_PROFILE output should be written. If this variable is not
defined, or is defined as an empty string, then the default is /var/tmp.

LD_PROFILE_OUTPUT is ignored in secure-execution mode; instead
/var/profile is always used.

LD_SHOW_AUXV (since glibc 2.1)
If this environment variable is defined (with any value), show the auxiliary array
passed up from the kernel (see also getauxval(3)).

Since glibc 2.3.4, LD_SHOW_AUXV is ignored in secure-execution mode.

LD_TRACE_PRELINKING (from glibc 2.4 to glibc 2.35)
If this environment variable is defined, trace prelinking of the object whose name
is assigned to this environment variable. (Use ldd(1) to get a list of the objects
that might be traced.) If the object name is not recognized, then all prelinking
activity is traced.

LD_USE_LOAD_BIAS (from glibc 2.3.3 to glibc 2.35)
By default (i.e., if this variable is not defined), executables and prelinked shared
objects will honor base addresses of their dependent shared objects and (nonpre-
linked) position-independent executables (PIEs) and other shared objects will not
honor them. If LD_USE_LOAD_BIAS is defined with the value 1, both exe-
cutables and PIEs will honor the base addresses. If LD_USE_LOAD_BIAS is
defined with the value 0, neither executables nor PIEs will honor the base ad-
dresses.

Since glibc 2.3.3, this variable is ignored in secure-execution mode.

LD_VERBOSE (since glibc 2.1)
If set to a nonempty string, output symbol versioning information about the pro-
gram if the LD_TRACE_LOADED_OBJECTS environment variable has been
set.

LD_WARN (since glibc 2.1.3)
If set to a nonempty string, warn about unresolved symbols.

Linux man-pages 6.16 2025-09-21 3947

ld.so(8) System Manager’s Manual ld.so(8)

LD_PREFER_MAP_32BIT_EXEC (x86-64 only; since glibc 2.23)
According to the Intel Silvermont software optimization guide, for 64-bit appli-
cations, branch prediction performance can be negatively impacted when the tar-
get of a branch is more than 4 GB away from the branch. If this environment
variable is set (to any value), the dynamic linker will first try to map executable
pages using the mmap(2) MAP_32BIT flag, and fall back to mapping without
that flag if that attempt fails. NB: MAP_32BIT will map to the low 2 GB (not
4 GB) of the address space.

Because MAP_32BIT reduces the address range available for address space lay-
out randomization (ASLR), LD_PREFER_MAP_32BIT_EXEC is always dis-
abled in secure-execution mode.

FILES
/lib/ld.so

a.out dynamic linker/loader

/lib/ld-linux.so.{1,2}
ELF dynamic linker/loader

/etc/ld.so.cache
File containing a compiled list of directories in which to search for shared ob-
jects and an ordered list of candidate shared objects. See ldconfig(8).

/etc/ld.so.preload
File containing a whitespace-separated list of ELF shared objects to be loaded
before the program. See the discussion of LD_PRELOAD above. If both
LD_PRELOAD and /etc/ld.so.preload are employed, the libraries specified by
LD_PRELOAD are preloaded first. /etc/ld.so.preload has a system-wide effect,
causing the specified libraries to be preloaded for all programs that are executed
on the system. (This is usually undesirable, and is typically employed only as an
emergency remedy, for example, as a temporary workaround to a library miscon-
figuration issue.)

lib*.so*
shared objects

NOTES
Legacy Hardware capabilities (from glibc 2.5 to glibc 2.37)

Some shared objects are compiled using hardware-specific instructions which do not ex-
ist on every CPU. Such objects should be installed in directories whose names define
the required hardware capabilities, such as /usr/lib/sse2/ . The dynamic linker checks
these directories against the hardware of the machine and selects the most suitable ver-
sion of a given shared object. Hardware capability directories can be cascaded to com-
bine CPU features. The list of supported hardware capability names depends on the
CPU. The following names are currently recognized:

Alpha
ev4, ev5, ev56, ev6, ev67

Linux man-pages 6.16 2025-09-21 3948

ld.so(8) System Manager’s Manual ld.so(8)

MIPS
loongson2e, loongson2f, octeon, octeon2

PowerPC
4xxmac, altivec, arch_2_05, arch_2_06, booke, cellbe, dfp, efpdouble, efpsingle,
fpu, ic_snoop, mmu, notb, pa6t, power4, power5, power5+, power6x, ppc32,
ppc601, ppc64, smt, spe, ucache, vsx

SPARC
flush, muldiv, stbar, swap, ultra3, v9, v9v, v9v2

s390 dfp, eimm, esan3, etf3enh, g5, highgprs, hpage, ldisp, msa, stfle, z900, z990,
z9-109, z10, zarch

x86 (32-bit only)
acpi, apic, clflush, cmov, cx8, dts, fxsr, ht, i386, i486, i586, i686, mca, mmx,
mtrr, pat, pbe, pge, pn, pse36, sep, ss, sse, sse2, tm

The legacy hardware capabilities support has the drawback that each new feature added
grows the search path exponentially, because it has to be added to every combination of
the other existing features.

For instance, on x86 32-bit, if the hardware supports i686 and sse2, the resulting search
path will be i686/sse2:i686:sse2:.. A new capability newcap will set the search path to
newcap/i686/sse2:newcap/i686:newcap/sse2:newcap:i686/sse2:i686:sse2:.

glibc Hardware capabilities (from glibc 2.33)
glibc 2.33 added a new hardware capability scheme,

where under each CPU architecture, certain levels can be defined, grouping sup-
port for certain features or special instructions. Each architecture level has a
fixed set of paths that it adds to the dynamic linker search list, depending on the
hardware of the machine. Since each new architecture level is not combined
with previously existing ones, the new scheme does not have the drawback of
growing the dynamic linker search list uncontrollably.

For instance, on x86 64-bit, if the hardware supports x86_64-v3 (for instance Intel
Haswell or AMD Excavator), the resulting search path will be glibc-hw-
caps/x86-64-v3:glibc-hwcaps/x86-64-v2:. The following paths are currently sup-
ported, in priority order.

PowerPC (64-bit little-endian only)
power10, power9

s390 (64-bit only)
z16, z15, z14, z13

x86 (64-bit only)
x86-64-v4, x86-64-v3, x86-64-v2

glibc 2.37 removed support for the legacy hardware capabilities.

SEE ALSO
ld(1), ldd(1), pldd(1), sprof(1), dlopen(3), getauxval(3), elf(5), capabilities(7), rtld-au-
dit(7), ldconfig(8), sln(8)

Linux man-pages 6.16 2025-09-21 3949

ld.so(8) System Manager’s Manual ld.so(8)

Linux man-pages 6.16 2025-09-21 3950

ldconfig(8) System Manager’s Manual ldconfig(8)

NAME
ldconfig - configure dynamic linker run-time bindings

SYNOPSIS
/sbin/ldconfig [-nNvVX] [-C cache] [-f conf] [-r root] directory . . .
/sbin/ldconfig -l [-v] library . . .
/sbin/ldconfig -p

DESCRIPTION
ldconfig creates the necessary links and cache to the most recent shared libraries found
in the directories specified on the command line, in the file /etc/ld.so.conf , and in the
trusted directories, /lib and /usr/lib. On some 64-bit architectures such as x86-64, /lib
and /usr/lib are the trusted directories for 32-bit libraries, while /lib64 and /usr/lib64
are used for 64-bit libraries.

The cache is used by the run-time linker, ld.so or ld-linux.so. ldconfig checks the
header and filenames of the libraries it encounters when determining which versions
should have their links updated. ldconfig should normally be run by the superuser as it
may require write permission on some root owned directories and files.

ldconfig will look only at files that are named lib*.so* (for regular shared objects) or
ld-*.so* (for the dynamic loader itself). Other files will be ignored. Also, ldconfig ex-
pects a certain pattern to how the symbolic links are set up, like this example, where the
middle file (libfoo.so.1 here) is the SONAME for the library:

libfoo.so -> libfoo.so.1 -> libfoo.so.1.12

Failure to follow this pattern may result in compatibility issues after an upgrade.

OPTIONS
--format= fmt
-c fmt

(Since glibc 2.2) Use cache format fmt, which is one of old, new, or compat.
Since glibc 2.32, the default is new. Before that, it was compat.

-C cache
Use cache instead of /etc/ld.so.cache.

-f conf
Use conf instead of /etc/ld.so.conf .

--ignore-aux-cache
-i (Since glibc 2.7) Ignore auxiliary cache file.

-l (Since glibc 2.2) Interpret each operand as a library name and configure its links.
Intended for use only by experts.

-n Process only the directories specified on the command line; don’t process the
trusted directories, nor those specified in /etc/ld.so.conf . Implies -N.

-N Don’t rebuild the cache. Unless -X is also specified, links are still updated.

--print-cache

Linux man-pages 6.16 2025-05-17 3951

ldconfig(8) System Manager’s Manual ldconfig(8)

-p Print the lists of directories and candidate libraries stored in the current cache.

-r root
Change to and use root as the root directory.

--verbose
-v Verbose mode. Print current version number, the name of each directory as it is

scanned, and any links that are created. Overrides quiet mode.

--version
-V Print program version.

-X Don’t update links. Unless -N is also specified, the cache is still rebuilt.

FILES
/lib/ld.so

is the run-time linker/loader.
/etc/ld.so.conf

contains a list of directories, one per line, in which to search for libraries.
/etc/ld.so.cache

contains an ordered list of libraries found in the directories specified in
/etc/ld.so.conf , as well as those found in the trusted directories.

SEE ALSO
ldd(1), ld.so(8)

Linux man-pages 6.16 2025-05-17 3952

nscd(8) System Manager’s Manual nscd(8)

NAME
nscd - name service cache daemon

DESCRIPTION
nscd is a daemon that provides a cache for the most common name service requests.
The default configuration file, /etc/nscd.conf , determines the behavior of the cache dae-
mon. See nscd.conf(5).

nscd provides caching for accesses of the passwd(5), group(5), hosts(5) services(5) and
netgroup databases through standard libc interfaces, such as getpwnam(3), getpwuid(3),
getgrnam(3), getgrgid(3), gethostbyname(3), and others.

There are two caches for each database: a positive one for items found, and a negative
one for items not found. Each cache has a separate TTL (time-to-live) period for its
data. Note that the shadow file is specifically not cached. getspnam(3) calls remain un-
cached as a result.

OPTIONS
--help

will give you a list with all options and what they do.

NOTES
The daemon will try to watch for changes in configuration files appropriate for each
database (e.g., /etc/passwd for the passwd database or /etc/hosts and /etc/resolv.conf
for the hosts database), and flush the cache when these are changed. However, this will
happen only after a short delay (unless the inotify(7) mechanism is available and glibc
2.9 or later is available), and this auto-detection does not cover configuration files re-
quired by nonstandard NSS modules, if any are specified in /etc/nsswitch.conf . In that
case, you need to run the following command after changing the configuration file of the
database so that nscd invalidates its cache:

$ nscd -i <database>

SEE ALSO
nscd.conf(5), nsswitch.conf(5)

Linux man-pages 6.16 2025-05-17 3953

sln(8) System Manager’s Manual sln(8)

NAME
sln - create symbolic links

SYNOPSIS
sln source dest
sln filelist

DESCRIPTION
The sln program creates symbolic links. Unlike the ln(1) program, it is statically linked.
This means that if for some reason the dynamic linker is not working, sln can be used to
make symbolic links to dynamic libraries.

The command line has two forms. In the first form, it creates dest as a new symbolic
link to source.

In the second form, filelist is a list of space-separated pathname pairs, and the effect is
as if sln was executed once for each line of the file, with the two pathnames as the argu-
ments.

The sln program supports no command-line options.

SEE ALSO
ln(1), ld.so(8), ldconfig(8)

Linux man-pages 6.16 2025-05-17 3954

tzselect(8) System Manager’s Manual tzselect(8)

NAME
tzselect - select a timezone

SYNOPSIS
tzselect [-c coord] [-n limit] [--help] [--version]

DESCRIPTION
The tzselect program asks the user for information about the current location, and out-
puts the resulting timezone to standard output. The output is suitable as a value for the
TZ environment variable.

All interaction with the user is done via standard input and standard error.

OPTIONS
-c coord

Instead of asking for continent and then country and then city, ask for selection
from time zones whose largest cities are closest to the location with geographical
coordinates coord. Use ISO 6709 notation for coord, that is, a latitude immedi-
ately followed by a longitude. The latitude and longitude should be signed inte-
gers followed by an optional decimal point and fraction: positive numbers repre-
sent north and east, negative south and west. Latitudes with two and longitudes
with three integer digits are treated as degrees; latitudes with four or six and lon-
gitudes with five or seven integer digits are treated as DDMM, DDDMM,
DDMMSS, or DDDMMSS representing DD or DDD degrees, MM minutes, and
zero or SS seconds, with any trailing fractions represent fractional minutes or (if
SS is present) seconds. The decimal point is that of the current locale. For ex-
ample, in the (default) C locale, -c +40.689-074.045 specifies 40.689° N,
74.045° W, -c +4041.4-07402.7 specifies 40° 41.4′ N, 74° 2.7′ W, and
-c +404121-0740240 specifies 40° 41′ 21″ N, 74° 2′ 40″ W. If coord is not one
of the documented forms, the resulting behavior is unspecified.

-n limit
When -c is used, display the closest limit locations (default 10).

--help
Output help information and exit.

--version
Output version information and exit.

ENVIRONMENT VARIABLES
AWK

Name of a POSIX-compliant awk program (default: awk).

TZDIR
Name of the directory containing timezone data files (default: /usr/share/zone-
info).

FILES
TZDIR/iso3166.tab

Table of ISO 3166 2-letter country codes and country names.

Time Zone Database 3955

tzselect(8) System Manager’s Manual tzselect(8)

TZDIR/zone1970.tab
Table of country codes, latitude and longitude, timezones, and descriptive com-
ments.

TZDIR/TZ
Timezone data file for timezone TZ.

EXIT STATUS
The exit status is zero if a timezone was successfully obtained from the user, nonzero
otherwise.

SEE ALSO
newctime(3), tzfile(5), zdump(8), zic(8)

NOTES
Applications should not assume that tzselect’s output matches the user’s political prefer-
ences.

Time Zone Database 3956

zdump(8) System Manager’s Manual zdump(8)

NAME
zdump - timezone dumper

SYNOPSIS
zdump [option ...] [timezone ...]

DESCRIPTION
The zdump program prints the current time in each timezone named on the command
line. A timezone of - is treated as if it were /dev/stdin; this can be used to pipe TZif
data into zdump.

OPTIONS
--version

Output version information and exit.

--help
Output short usage message and exit.

-i Output a description of time intervals. For each timezone on the command line,
output an interval-format description of the timezone. See “INTERVAL FOR-
MAT” below.

-v Output a verbose description of time intervals. For each timezone on the com-
mand line, print the times at the two extreme time values, the times (if present) at
and just beyond the boundaries of years that localtime(3) and gmtime(3) can rep-
resent, and the times both one second before and exactly at each detected time
discontinuity. Each line is followed by isdst=D where D is positive, zero, or
negative depending on whether the given time is daylight saving time, standard
time, or an unknown time type, respectively. Each line is also followed by
gmtoff=N if the given local time is known to be N seconds east of Greenwich.

-V Like -v, except omit output concerning extreme time and year values. This gen-
erates output that is easier to compare to that of implementations with different
time representations.

-c [loyear,]hiyear
Cut off interval output at the given year(s). Cutoff times are computed using the
proleptic Gregorian calendar with year 0 and with Universal Time (UT) ignoring
leap seconds. Cutoffs are at the start of each year, where the lower-bound time-
stamp is inclusive and the upper is exclusive; for example, -c 1970,2070 selects
transitions on or after 1970-01-01 00:00:00 UTC and before 2070-01-01
00:00:00 UTC. The default cutoff is -500,2500.

-t [lotime,]hitime
Cut off interval output at the given time(s), given in decimal seconds since
1970-01-01 00:00:00 Coordinated Universal Time (UTC). The timezone deter-
mines whether the count includes leap seconds. As with -c, the cutoff’s lower
bound is inclusive and its upper bound is exclusive.

INTERVAL FORMAT
The interval format is a compact text representation that is intended to be both human-
and machine-readable. It consists of an empty line, then a line “TZ=string” where
string is a double-quoted string giving the timezone, a second line “- - interval”

Time Zone Database 3957

zdump(8) System Manager’s Manual zdump(8)

describing the time interval before the first transition if any, and zero or more following
lines “date time interval”, one line for each transition time and following interval.
Fields are separated by single tabs.

Dates are in yyyy-mm-dd format and times are in 24-hour hh:mm:ss format where
hh<24. Times are in local time immediately after the transition. A time interval de-
scription consists of a UT offset in signed ±hhmmss format, a time zone abbreviation,
and an isdst flag. An abbreviation that equals the UT offset is omitted; other abbrevia-
tions are double-quoted strings unless they consist of one or more alphabetic characters.
An isdst flag is omitted for standard time, and otherwise is a decimal integer that is un-
signed and positive (typically 1) for daylight saving time and negative for unknown.

In times and in UT offsets with absolute value less than 100 hours, the seconds are omit-
ted if they are zero, and the minutes are also omitted if they are also zero. Positive UT
offsets are east of Greenwich. The UT offset -00 denotes a UT placeholder in areas
where the actual offset is unspecified; by convention, this occurs when the UT offset is
zero and the time zone abbreviation begins with “-” or is “zzz”.

In double-quoted strings, escape sequences represent unusual characters. The escape se-
quences are \s for space, and \", \\, \f, \n, \r, \t, and \v with their usual meaning in the C
programming language. E.g., the double-quoted string “"CET\s\"\\"” represents the
character sequence “CET "\”.

Here is an example of the output, with the leading empty line omitted. (This example is
shown with tab stops set far enough apart so that the tabbed columns line up.)

TZ="Pacific/Honolulu"
- - -103126 LMT
1896-01-13 12:01:26 -1030 HST
1933-04-30 03 -0930 HDT 1
1933-05-21 11 -1030 HST
1942-02-09 03 -0930 HWT 1
1945-08-14 13:30 -0930 HPT 1
1945-09-30 01 -1030 HST
1947-06-08 02:30 -10 HST

Here, local time begins 10 hours, 31 minutes and 26 seconds west of UT, and is a stan-
dard time abbreviated LMT. Immediately after the first transition, the date is
1896-01-13 and the time is 12:01:26, and the following time interval is 10.5 hours west
of UT, a standard time abbreviated HST. Immediately after the second transition, the
date is 1933-04-30 and the time is 03:00:00 and the following time interval is 9.5 hours
west of UT, is abbreviated HDT, and is daylight saving time. Immediately after the last
transition the date is 1947-06-08 and the time is 02:30:00, and the following time inter-
val is 10 hours west of UT, a standard time abbreviated HST.

Time Zone Database 3958

zdump(8) System Manager’s Manual zdump(8)

Here are excerpts from another example:

TZ="Europe/Astrakhan"
- - +031212 LMT
1924-04-30 23:47:48 +03
1930-06-21 01 +04
1981-04-01 01 +05 1
1981-09-30 23 +04
...
2014-10-26 01 +03
2016-03-27 03 +04

This time zone is east of UT, so its UT offsets are positive. Also, many of its time zone
abbreviations are omitted since they duplicate the text of the UT offset.

LIMITATIONS
Time discontinuities are found by sampling the results returned by localtime(3) at
twelve-hour intervals. This works in all real-world cases; one can construct artificial
time zones for which this fails.

In the -v and -V output, “UT” denotes the value returned by gmtime(3), which uses
UTC for modern timestamps and some other UT flavor for timestamps that predate the
introduction of UTC. No attempt is currently made to have the output use “UTC” for
newer and “UT” for older timestamps, partly because the exact date of the introduction
of UTC is problematic.

SEE ALSO
tzfile(5), zic(8)

Time Zone Database 3959

zic(8) System Manager’s Manual zic(8)

NAME
zic - timezone compiler

SYNOPSIS
zic [option ...] [filename ...]

DESCRIPTION
The zic program reads text from the file(s) named on the command line and creates the
timezone information format (TZif) files specified in this input. If a filename is “-”,
standard input is read.

OPTIONS
--version

Output version information and exit.

--help
Output short usage message and exit.

-b bloat
Output backward-compatibility data as specified by bloat. If bloat is fat, gener-
ate additional data entries that work around potential bugs or incompatibilities in
older software, such as software that mishandles the 64-bit generated data. If
bloat is slim, keep the output files small; this can help check for the bugs and in-
compatibilities. The default is slim, as software that mishandles 64-bit data typi-
cally mishandles timestamps after the year 2038 anyway. Also see the -r option
for another way to alter output size.

-d directory
Create time conversion information files in the named directory rather than in the
standard directory named below.

-l timezone
Use timezone as local time. zic will act as if the input contained a link line of the
form

Link timezone localtime

If timezone is -, any already-existing link is removed.

-L leapsecondfilename
Read leap second information from the file with the given name. If this option is
not used, no leap second information appears in output files.

-p timezone
Use timezone’s rules when handling nonstandard TZ strings like "EET-2EEST"
that lack transition rules. zic will act as if the input contained a link line of the
form

Link timezone posixrules

If timezone is “-” (the default), any already-existing link is removed.

Time Zone Database 3960

zic(8) System Manager’s Manual zic(8)

Unless timezone is “-”, this option is obsolete and poorly supported. Among
other things it should not be used for timestamps after the year 2037, and it
should not be combined with -b slim if timezone’s transitions are at standard
time or Universal Time (UT) instead of local time.

-r [@lo][/@hi]
Limit the applicability of output files to timestamps in the range from lo (inclu-
sive) to hi (exclusive), where lo and hi are possibly signed decimal counts of
seconds since the Epoch (1970-01-01 00:00:00 UTC). Omitted counts default to
extreme values. The output files use UT offset 0 and abbreviation “-00” in place
of the omitted timestamp data. For example, “zic -r @0” omits data intended
for negative timestamps (i.e., before the Epoch), and “zic -r @0/@2147483648”
outputs data intended only for nonnegative timestamps that fit into 31-bit signed
integers. On platforms with GNU date, “zic -r @$(date +%s)” omits data in-
tended for past timestamps. Although this option typically reduces the output
file’s size, the size can increase due to the need to represent the timestamp range
boundaries, particularly if hi causes a TZif file to contain explicit entries for pre-
hi transitions rather than concisely representing them with a proleptic TZ string.
Also see the -b slim option for another way to shrink output size.

-R @hi
Generate redundant trailing explicit transitions for timestamps that occur less
than hi seconds since the Epoch, even though the transitions could be more con-
cisely represented via the proleptic TZ string. This option does not affect the
represented timestamps. Although it accommodates nonstandard TZif readers
that ignore the proleptic TZ string, it increases the size of the altered output files.

-t file
When creating local time information, put the configuration link in the named
file rather than in the standard location.

-v Be more verbose, and complain about the following situations:

The input specifies a link to a link, something not supported by some older
parsers, including zic itself through release 2022e.

A year that appears in a data file is outside the range of representable years.

A time of 24:00 or more appears in the input. Pre-1998 versions of zic prohibit
24:00, and pre-2007 versions prohibit times greater than 24:00.

A rule goes past the start or end of the month. Pre-2004 versions of zic prohibit
this.

A time zone abbreviation uses a %z format. Pre-2015 versions of zic do not
support this.

A timestamp contains fractional seconds. Pre-2018 versions of zic do not sup-
port this.

The input contains abbreviations that are mishandled by pre-2018 versions of zic
due to a longstanding coding bug. These abbreviations include “L” for “Link”,
“mi” for “min”, “Sa” for “Sat”, and “Su” for “Sun”.

Time Zone Database 3961

zic(8) System Manager’s Manual zic(8)

The output file does not contain all the information about the long-term future of
a timezone, because the future cannot be summarized as a proleptic TZ string.
For example, as of 2023 this problem occurs for Morocco’s daylight-saving
rules, as these rules are based on predictions for when Ramadan will be ob-
served, something that a proleptic TZ string cannot represent.

The output contains data that may not be handled properly by client code de-
signed for older zic output formats. These compatibility issues affect only time-
stamps before 1970 or after the start of 2038.

The output contains a truncated leap second table, which can cause some older
TZif readers to misbehave. This can occur if the -L option is used, and either an
Expires line is present or the -r option is also used.

The output file contains more than 1200 transitions, which may be mishandled
by some clients. The current reference client supports at most 2000 transitions;
pre-2014 versions of the reference client support at most 1200 transitions.

A time zone abbreviation has fewer than 3 or more than 6 characters. POSIX re-
quires at least 3, and requires implementations to support at least 6.

An output file name contains a byte that is not an ASCII letter, “-”, “/”, or “_”;
or it contains a file name component that contains more than 14 bytes or that
starts with “-”.

FILES
Input files use the format described in this section; output files use tzfile(5) format.

Input files should be text files, that is, they should be a series of zero or more lines, each
ending in a newline byte and containing at most 2048 bytes counting the newline, and
without any NUL bytes. The input text’s encoding is typically UTF-8 or ASCII; it
should have a unibyte representation for the POSIX Portable Character Set (PPCS)
〈https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap06.html〉 and the
encoding’s non-unibyte characters should consist entirely of non-PPCS bytes. Non-
PPCS characters typically occur only in comments: although output file names and time
zone abbreviations can contain nearly any character, other software will work better if
these are limited to the restricted syntax described under the -v option.

Input lines are made up of fields. Fields are separated from one another by one or more
white space characters. The white space characters are space, form feed, carriage return,
newline, tab, and vertical tab. Leading and trailing white space on input lines is ignored.
An unquoted sharp character (#) in the input introduces a comment which extends to the
end of the line the sharp character appears on. White space characters and sharp charac-
ters may be enclosed in double quotes (") if they’re to be used as part of a field. Any
line that is blank (after comment stripping) is ignored. Nonblank lines are expected to
be of one of three types: rule lines, zone lines, and link lines.

Names must be in English and are case insensitive. They appear in several contexts, and
include month and weekday names and keywords such as maximum, only, Rolling, and
Zone. A name can be abbreviated by omitting all but an initial prefix; any abbreviation
must be unambiguous in context.

A rule line has the form

Time Zone Database 3962

zic(8) System Manager’s Manual zic(8)

Rule NAME FROM TO - IN ON AT SAVE LETTER/S

For example:

Rule US 1967 1973 - Apr lastSun 2:00w 1:00d D

The fields that make up a rule line are:

NAME
Gives the name of the rule set that contains this line. The name must start with a
character that is neither an ASCII digit nor “-” nor “+”. To allow for future ex-
tensions, an unquoted name should not contain characters from the set
“!$%&'()*,/:;<=>?@[\]^`{|}~ ”. “!$%&’()*,/:;<=>?@[\]ˆ‘{|}˜”.

FROM
Gives the first year in which the rule applies. Any signed integer year can be
supplied; the proleptic Gregorian calendar is assumed, with year 0 preceding
year 1. Rules can describe times that are not representable as time values, with
the unrepresentable times ignored; this allows rules to be portable among hosts
with differing time value types.

TO Gives the final year in which the rule applies. The word maximum (or an abbre-
viation) means the indefinite future, and the word only (or an abbreviation) may
be used to repeat the value of the FROM field.

- Is a reserved field and should always contain “-” for compatibility with older
versions of zic. It was previously known as the TYPE field, which could contain
values to allow a separate script to further restrict in which “types” of years the
rule would apply.

IN Names the month in which the rule takes effect. Month names may be abbrevi-
ated as mentioned previously; for example, January can appear as “January”,
“JANU” or “Ja”, but not as “j” which would be ambiguous with both June and
July.

ON Gives the day on which the rule takes effect. Recognized forms include:

5 the fifth of the month
lastSun the last Sunday in the month
lastMon the last Monday in the month
Sun>=8 first Sunday on or after the eighth
Sun<=25 last Sunday on or before the 25th

A weekday name (e.g., Sunday) or a weekday name preceded by “last” (e.g.,
lastSunday) may be abbreviated as mentioned previously, e.g., “Su” for Sunday
and “lastsa” for the last Saturday. There must be no white space characters
within the ON field. The “<=” and “>=” constructs can result in a day in the
neighboring month; for example, the IN-ON combination “Oct Sun>=31” stands
for the first Sunday on or after October 31, even if that Sunday occurs in Novem-
ber.

Time Zone Database 3963

zic(8) System Manager’s Manual zic(8)

AT Gives the time of day at which the rule takes effect, relative to 00:00, the start of
a calendar day. Recognized forms include:

2 time in hours
2:00 time in hours and minutes
01:28:14 time in hours, minutes, and seconds
00:19:32.13 time with fractional seconds
12:00 midday, 12 hours after 00:00
15:00 3 PM, 15 hours after 00:00
24:00 end of day, 24 hours after 00:00
260:00 260 hours after 00:00
-2:30 2.5 hours before 00:00
- equivalent to 0

Although zic rounds times to the nearest integer second (breaking ties to the
even integer), the fractions may be useful to other applications requiring greater
precision. The source format does not specify any maximum precision. Any of
these forms may be followed by the letter w if the given time is local or “wall
clock” time, s if the given time is standard time without any adjustment for day-
light saving, or u (or g or z) if the given time is universal time; in the absence of
an indicator, local (wall clock) time is assumed. These forms ignore leap sec-
onds; for example, if a leap second occurs at 00:59:60 local time, “1:00” stands
for 3601 seconds after local midnight instead of the usual 3600 seconds. The in-
tent is that a rule line describes the instants when a clock/calendar set to the type
of time specified in the AT field would show the specified date and time of day.

SAVE
Gives the amount of time to be added to local standard time when the rule is in
effect, and whether the resulting time is standard or daylight saving. This field
has the same format as the AT field except with a different set of suffix letters: s
for standard time and d for daylight saving time. The suffix letter is typically
omitted, and defaults to s if the offset is zero and to d otherwise. Negative off-
sets are allowed; in Ireland, for example, daylight saving time is observed in
winter and has a negative offset relative to Irish Standard Time. The offset is
merely added to standard time; for example, zic does not distinguish a 10:30
standard time plus an 0:30 SAVE from a 10:00 standard time plus a 1:00 SAVE.

LETTER/S
Gives the “variable part” (for example, the “S” or “D” in “EST” or “EDT”) of
time zone abbreviations to be used when this rule is in effect. If this field is “-”,
the variable part is null.

A zone line has the form

Zone NAME STDOFF RULES FORMAT [UNTIL]

For example:

Zone Asia/Amman 2:00 Jordan EE%sT 2017 Oct 27 01:00

Time Zone Database 3964

zic(8) System Manager’s Manual zic(8)

The fields that make up a zone line are:

NAME
The name of the timezone. This is the name used in creating the time conversion
information file for the timezone. It should not contain a file name component
“.” or “..”; a file name component is a maximal substring that does not contain
“/”.

STDOFF
The amount of time to add to UT to get standard time, without any adjustment
for daylight saving. This field has the same format as the AT and SAVE fields of
rule lines, except without suffix letters; begin the field with a minus sign if time
must be subtracted from UT.

RULES
The name of the rules that apply in the timezone or, alternatively, a field in the
same format as a rule-line SAVE field, giving the amount of time to be added to
local standard time and whether the resulting time is standard or daylight saving.
Standard time applies if this field is - or for timestamps occurring before any
rule takes effect. When an amount of time is given, only the sum of standard
time and this amount matters.

FORMAT
The format for time zone abbreviations. The pair of characters %s shows where
to put the time zone abbreviation’s variable part, which is taken from the LET-
TER/S field of the corresponding rule; any timestamps that precede the earliest
rule use the LETTER/S of the earliest standard-time rule (which in this case
must exist). Alternatively, a format can use the pair of characters %z to stand
for the UT offset in the form ±hh, ±hhmm, or ±hhmmss, using the shortest form
that does not lose information, where hh, mm, and ss are the hours, minutes, and
seconds east (+) or west (-) of UT. Alternatively, a slash (/) separates standard
and daylight abbreviations. To conform to POSIX, a time zone abbreviation
should contain only alphanumeric ASCII characters, “+” and “-”. By conven-
tion, the time zone abbreviation “-00” is a placeholder that means local time is
unspecified.

UNTIL
The time at which the UT offset or the rule(s) change for a location. It takes the
form of one to four fields YEAR [MONTH [DAY [TIME]]]. If this is specified,
the time zone information is generated from the given UT offset and rule change
until the time specified, which is interpreted using the rules in effect just before
the transition. The month, day, and time of day have the same format as the IN,
ON, and AT fields of a rule; trailing fields can be omitted, and default to the ear-
liest possible value for the missing fields.

The next line must be a “continuation” line; this has the same form as a zone line
except that the string “Zone” and the name are omitted, as the continuation line
will place information starting at the time specified as the “until” information in
the previous line in the file used by the previous line. Continuation lines may
contain “until” information, just as zone lines do, indicating that the next line is a
further continuation.

Time Zone Database 3965

zic(8) System Manager’s Manual zic(8)

If a zone changes at the same instant that a rule would otherwise take effect in the earlier
zone or continuation line, the rule is ignored. A zone or continuation line L with a
named rule set starts with standard time by default: that is, any of L’s timestamps pre-
ceding L’s earliest rule use the rule in effect after L’s first transition into standard time.
In a single zone it is an error if two rules take effect at the same instant, or if two zone
changes take effect at the same instant.

If a continuation line subtracts N seconds from the UT offset after a transition that
would be interpreted to be later if using the continuation line’s UT offset and rules, the
“until” time of the previous zone or continuation line is interpreted according to the con-
tinuation line’s UT offset and rules, and any rule that would otherwise take effect in the
next N seconds is instead assumed to take effect simultaneously. For example:

Rule NAME FROM TO - IN ON AT SAVE LETTER/S
Rule US 1967 2006 - Oct lastSun 2:00 0 S
Rule US 1967 1973 - Apr lastSun 2:00 1:00 D
Zone NAME STDOFF RULES FORMAT [UNTIL]
Zone America/Menominee -5:00 - EST 1973 Apr 29 2:00

-6:00 US C%sT

Here, an incorrect reading would be there were two clock changes on 1973-04-29, the
first from 02:00 EST (-05) to 01:00 CST (-06), and the second an hour later from 02:00
CST (-06) to 03:00 CDT (-05). However, zic interprets this more sensibly as a single
transition from 02:00 CST (-05) to 02:00 CDT (-05).

A link line has the form

Link TARGET LINK-NAME

For example:

Link Europe/Istanbul Asia/Istanbul

The TARGET field should appear as the NAME field in some zone line or as the
LINK-NAME field in some link line. The LINK-NAME field is used as an alternative
name for that zone; it has the same syntax as a zone line’s NAME field. Links can chain
together, although the behavior is unspecified if a chain of one or more links does not
terminate in a Zone name. A link line can appear before the line that defines the link
target. For example:

Link Greenwich G_M_T
Link Etc/GMT Greenwich
Zone Etc/GMT 0 - GMT

The two links are chained together, and G_M_T, Greenwich, and Etc/GMT all name the
same zone.

Except for continuation lines, lines may appear in any order in the input. However, the
behavior is unspecified if multiple zone or link lines define the same name.

Time Zone Database 3966

zic(8) System Manager’s Manual zic(8)

The file that describes leap seconds can have leap lines and an expiration line. Leap
lines have the following form:

Leap YEAR MONTH DAY HH:MM:SS CORR R/S

For example:

Leap 2016 Dec 31 23:59:60 + S

The YEAR, MONTH, DAY, and HH:MM:SS fields tell when the leap second hap-
pened. The CORR field should be “+” if a second was added or “-” if a second was
skipped. The R/S field should be (an abbreviation of) “Stationary” if the leap second
time given by the other fields should be interpreted as UTC or (an abbreviation of)
“Rolling” if the leap second time given by the other fields should be interpreted as local
(wall clock) time.

Rolling leap seconds would let one see Times Square ball drops where there’d be a “3...
2... 1... leap... Happy New Year” countdown, placing the leap second at midnight New
York time rather than midnight UTC. Although stationary leap seconds are the common
practice, rolling leap seconds can be useful in specialized applications like SMPTE
timecodes that may prefer to put leap second discontinuities at the end of a local broad-
cast day. However, rolling leap seconds are not supported if the -r option is used.

The expiration line, if present, has the form:

Expires YEAR MONTH DAY HH:MM:SS

For example:

Expires 2020 Dec 28 00:00:00

The YEAR, MONTH, DAY, and HH:MM:SS fields give the expiration timestamp in
UTC for the leap second table.

Time Zone Database 3967

zic(8) System Manager’s Manual zic(8)

EXTENDED EXAMPLE
Here is an extended example of zic input, intended to illustrate many of its features.

Rule NAME FROM TO - IN ON AT SAVE LETTER/S
Rule Swiss 1941 1942 - May Mon>=1 1:00 1:00 S
Rule Swiss 1941 1942 - Oct Mon>=1 2:00 0 -

Rule EU 1977 1980 - Apr Sun>=1 1:00u 1:00 S
Rule EU 1977 only - Sep lastSun 1:00u 0 -
Rule EU 1978 only - Oct 1 1:00u 0 -
Rule EU 1979 1995 - Sep lastSun 1:00u 0 -
Rule EU 1981 max - Mar lastSun 1:00u 1:00 S
Rule EU 1996 max - Oct lastSun 1:00u 0 -

Zone NAME STDOFF RULES FORMAT [UNTIL]
Zone Europe/Zurich 0:34:08 - LMT 1853 Jul 16

0:29:45.50 - BMT 1894 Jun
1:00 Swiss CE%sT 1981
1:00 EU CE%sT

Link Europe/Zurich Europe/Vaduz

In this example, the EU rules are for the European Union and for its predecessor organi-
zation, the European Communities. The timezone is named Europe/Zurich and it has
the alias Europe/Vaduz. This example says that Zurich was 34 minutes and 8 seconds
east of UT until 1853-07-16 at 00:00, when the legal offset was changed to
7° 26′ 22.50″ , which works out to 0:29:45.50; zic treats this by rounding it to 0:29:46.
After 1894-06-01 at 00:00 the UT offset became one hour and Swiss daylight saving
rules (defined with lines beginning with “Rule Swiss”) apply. From 1981 to the present,
EU daylight saving rules have applied, and the UTC offset has remained at one hour.

In 1941 and 1942, daylight saving time applied from the first Monday in May at 01:00
to the first Monday in October at 02:00. The pre-1981 EU daylight-saving rules have no
effect here, but are included for completeness. Since 1981, daylight saving has begun
on the last Sunday in March at 01:00 UTC. Until 1995 it ended the last Sunday in Sep-
tember at 01:00 UTC, but this changed to the last Sunday in October starting in 1996.

For purposes of display, “LMT” and “BMT” were initially used, respectively. Since
Swiss rules and later EU rules were applied, the time zone abbreviation has been CET
for standard time and CEST for daylight saving time.

FILES
/etc/localtime

Default local timezone file.

/usr/share/zoneinfo
Default timezone information directory.

NOTES
For areas with more than two types of local time, you may need to use local standard
time in the AT field of the earliest transition time’s rule to ensure that the earliest

Time Zone Database 3968

zic(8) System Manager’s Manual zic(8)

transition time recorded in the compiled file is correct.

If, for a particular timezone, a clock advance caused by the start of daylight saving coin-
cides with and is equal to a clock retreat caused by a change in UT offset, zic produces a
single transition to daylight saving at the new UT offset without any change in local
(wall clock) time. To get separate transitions use multiple zone continuation lines speci-
fying transition instants using universal time.

SEE ALSO
tzfile(5), zdump(8)

Time Zone Database 3969

	General Commands Manual
	intro(1)
	NAME
	DESCRIPTION
	NOTES
	Login
	The shell
	Pathnames and the current directory
	Directories
	Disks and filesystems
	Processes
	Getting information

	SEE ALSO

	diffman-git(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	EXAMPLES
	SEE ALSO

	getent(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	SEE ALSO

	iconv(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	FILES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	ldd(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Security

	OPTIONS
	BUGS
	SEE ALSO

	locale(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	localedef(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	Operation-selection options
	Other options

	EXIT STATUS
	ENVIRONMENT
	FILES
	STANDARDS
	EXAMPLES
	SEE ALSO

	mansect(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	memusage(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	Memory usage summary
	Histogram for block sizes

	OPTIONS
	EXIT STATUS
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	memusagestat(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	EXAMPLES
	SEE ALSO

	mtrace(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	BUGS
	SEE ALSO

	pdfman(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	pldd(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	sortman(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	sprof(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	STANDARDS
	EXAMPLES
	SEE ALSO

	time(1)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	ENVIRONMENT
	GNU VERSION
	The format string
	GNU options
	GNU standard options

	BUGS
	SEE ALSO

	System Calls Manual
	intro(2)
	NAME
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	NOTES
	Calling directly
	Authors and copyright conditions

	SEE ALSO

	accept(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	Error handling

	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	The socklen_t type

	EXAMPLES
	SEE ALSO

	accept4(2)
	access(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	faccessat()
	faccessat2()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	glibc notes

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	acct(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	add_key(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Key types

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	adjtimex(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	clock_adjtime ()
	ntp_adjtime ()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	afs_syscall(2)
	alarm(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	alloc_hugepages(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	NOTES

	arch_prctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	SEE ALSO

	arm_fadvise(2)
	arm_fadvise64_64(2)
	arm_sync_file_range(2)
	bdflush(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	bind(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	bpf(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	Extended BPF Design/Architecture
	Arguments
	eBPF maps
	eBPF map types
	eBPF programs
	eBPF program types
	Events

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	break(2)
	brk(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	SEE ALSO

	cacheflush(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	Architecture-specific variants
	GCC alternative

	STANDARDS
	BUGS

	cachestat(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS

	capget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Current details
	With VFS capabilities support
	Without VFS capabilities support

	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	SEE ALSO

	capset(2)
	chdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	chmod(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fchmodat()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	glibc notes

	STANDARDS
	HISTORY
	SEE ALSO

	chown(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fchownat()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	Ownership of new files
	glibc notes
	NFS
	Historical details

	EXAMPLES
	Program source

	SEE ALSO

	chown32(2)
	chroot(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	clock_adjtime(2)
	clock_getres(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Dynamic clocks

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	Historical note for SMP systems

	EXAMPLES
	Program source

	SEE ALSO

	clock_gettime(2)
	clock_nanosleep(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	clock_settime(2)
	clone(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The clone() wrapper function
	clone3()
	Equivalence between clone() and clone3() arguments
	The child termination signal
	The set_tid array
	The flags mask

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	blackfin, m68k, and sparc

	STANDARDS
	HISTORY
	Linux 2.4 and earlier
	ia64

	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	clone2(2)
	__clone2(2)
	clone3(2)
	close(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	Multithreaded processes and close()
	Dealing with error returns from close()

	SEE ALSO

	close_range(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Closing all open file descriptors
	Closing file descriptors before exec
	Closing files on exec

	EXAMPLES
	Program source

	SEE ALSO

	connect(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	copy_file_range(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	creat(2)
	create_module(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	delete_module(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux 2.4 and earlier

	NOTES
	SEE ALSO

	dup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	dup2()
	dup3()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	dup2(2)
	dup3(2)
	epoll_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	epoll_create1()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	epoll_create1(2)
	epoll_ctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	epoll_pwait(2)
	epoll_pwait2(2)
	epoll_wait(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	epoll_pwait()
	epoll_pwait2()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	BUGS
	SEE ALSO

	eventfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences
	Additional glibc features

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	eventfd2(2)
	execve(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Effect on process attributes
	Interpreter scripts
	Limits on size of arguments and environment

	RETURN VALUE
	ERRORS
	VERSIONS
	Interpreter scripts

	STANDARDS
	HISTORY
	NOTES
	execve() and EAGAIN

	EXAMPLES
	SEE ALSO

	execveat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	_Exit(2)
	_exit(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	SEE ALSO

	exit(2)
	exit_group(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	faccessat(2)
	faccessat2(2)
	fadvise64(2)
	fadvise64_64(2)
	fallocate(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Allocating disk space
	Deallocating file space
	Collapsing file space
	Zeroing file space
	Increasing file space

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	fanotify_init(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	fanotify_mark(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	FAN_OPEN_EXEC and FAN_OPEN_EXEC_PERM

	BUGS
	SEE ALSO

	fattach(2)
	fchdir(2)
	fchmod(2)
	fchmodat(2)
	fchown(2)
	fchown32(2)
	fchownat(2)
	fcntl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Duplicating a file descriptor
	File descriptor flags
	File status flags
	Advisory record locking
	Open file description locks (non-POSIX)
	Managing signals
	Leases
	File and directory change notification (dnotify)
	Changing the capacity of a pipe
	File Sealing
	File read/write hints

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	fcntl_locking(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Advisory record locking
	Open file description locks (non-POSIX)
	Mandatory locking
	Lost locks

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	File locking
	Record locks
	Record locking and NFS

	BUGS
	Deadlock detection
	Mandatory locking

	SEE ALSO

	fcntl64(2)
	fdatasync(2)
	fdetach(2)
	fgetxattr(2)
	finit_module(2)
	flistxattr(2)
	flock(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	CIFS details

	STANDARDS
	HISTORY
	NFS details

	NOTES
	SEE ALSO

	fork(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	Async-signal safety

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	free_hugepages(2)
	fremovexattr(2)
	fsconfig(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Generic filesystem parameters
	Mount attributes and filesystem parameters

	CAVEATS
	Filesystem parameter types

	EXAMPLES
	SEE ALSO

	fsetxattr(2)
	fsmount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	fsopen(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Message retrieval interface

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	Message retrieval interface and EMSGSIZE

	EXAMPLES
	SEE ALSO

	fspick(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	fstat(2)
	fstat64(2)
	fstatat(2)
	fstatat64(2)
	fstatfs(2)
	fstatfs64(2)
	fsync(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	ftruncate(2)
	ftruncate64(2)
	futex(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Arguments
	Futex operations
	Priority-inheritance futexes

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	futimesat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	glibc

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	get_kernel_syms(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	get_mempolicy(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	get_robust_list(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	NOTES
	SEE ALSO

	get_thread_area(2)
	getcpu(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO

	getcwd(2)
	getdents(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getdents()
	getdents64()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	getdents64(2)
	getdomainname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getegid(2)
	getegid32(2)
	geteuid(2)
	geteuid32(2)
	getgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getgid32(2)
	getgroups(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getgroups32(2)
	gethostname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO

	getitimer(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getitimer()
	setitimer()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	getmsg(2)
	getpagesize(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getpeername(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getpgid(2)
	getpgrp(2)
	getpid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO

	getpmsg(2)
	getppid(2)
	getpriority(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences

	BUGS
	SEE ALSO

	getrandom(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Maximum number of bytes returned
	Interruption by a signal handler

	BUGS
	SEE ALSO

	getresgid(2)
	getresgid32(2)
	getresuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	getresuid32(2)
	getrlimit(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	prlimit()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	C library/kernel ABI differences

	BUGS
	Representation of "large" resource limit values on 32-bit platforms

	EXAMPLES
	SEE ALSO

	getrusage(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getsid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getsockname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	getsockopt(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	gettid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	gettimeofday(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	The tz_dsttime field

	NOTES
	SEE ALSO

	getuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	getuid32(2)
	getunwind(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	getxattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	gtty(2)
	idle(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY

	inb(2)
	inb_p(2)
	init_module(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	finit_module()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux 2.4 and earlier

	NOTES
	SEE ALSO

	inl(2)
	inl_p(2)
	inotify_add_watch(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	inotify_init(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	inotify_init1(2)
	inotify_rm_watch(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	insb(2)
	insl(2)
	insw(2)
	inw(2)
	inw_p(2)
	io_cancel(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	io_destroy(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	io_getevents(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	io_setup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	io_submit(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	ioctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	ioctl structure

	SEE ALSO

	ioctl_console(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	CAVEATS
	SEE ALSO

	ioctl_eventpoll(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The epoll_params structure

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	ioctl_fat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Reading and setting file attributes
	Reading the volume ID
	Reading short filenames of a directory

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	ioctl_fs(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Share some of the data of one file with another file
	Operations for inode flags
	Get or set a filesystem label
	Get and/or clear page flags

	RETURN VALUE
	STANDARDS
	SEE ALSO

	ioctl_fsmap(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Fields of struct fsmap_head
	Keys
	Fields of struct fsmap
	Owner values

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	ioctl_kd(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	ioctl_nsfs(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	Discovering namespace relationships
	Discovering the namespace type
	Discovering the owner of a user namespace

	ERRORS
	STANDARDS
	SEE ALSO

	ioctl_pipe(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	ioctl_tty(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Get and set terminal attributes
	Locking the termios structure
	Get and set window size
	Sending a break
	Software flow control
	Buffer count and flushing
	Faking input
	Redirecting console output
	Controlling terminal
	Process group and session ID
	Exclusive mode
	Line discipline
	Pseudoterminal ioctls
	Modem control
	Marking a line as local
	Linux-specific
	Kernel debugging

	RETURN VALUE
	SEE ALSO

	ioctl_userfaultfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	EXAMPLES
	SEE ALSO

	ioctl_vt(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	ioperm(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iopl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	ioprio_get(2)
	ioprio_set(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Selecting an I/O scheduler
	The Completely Fair Queuing (CFQ) I/O scheduler
	Required permissions to set I/O priorities

	BUGS
	SEE ALSO

	ipc(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	isastream(2)
	kcmp(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	kexec_file_load(2)
	kexec_load(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	kexec_file_load()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	keyctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	kill(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux notes

	NOTES
	BUGS
	SEE ALSO

	landlock_add_rule(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	landlock_create_ruleset(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	landlock_restrict_self(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	lchown(2)
	lchown32(2)
	lgetxattr(2)
	link(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	linkat()

	RETURN VALUE
	ERRORS
	VERSIONS
	glibc

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	linkat(2)
	listen(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	listmount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The mnt_id_req structure

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	listxattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Example

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Example output
	Program source (listxattr.c)

	SEE ALSO

	llistxattr(2)
	_llseek(2)
	_llseek(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	SEE ALSO

	lock(2)
	lookup_dcookie(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	lremovexattr(2)
	lseek(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Seeking file data and holes

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	lsetxattr(2)
	lstat(2)
	lstat64(2)
	madvise(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Conventional advice values
	Linux-specific advice values

	RETURN VALUE
	ERRORS
	VERSIONS
	Linux

	STANDARDS
	HISTORY
	SEE ALSO

	madvise1(2)
	mbind(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	membarrier(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES

	memfd_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	File sealing

	EXAMPLES
	Program source: t_memfd_create.c
	Program source: t_get_seals.c

	SEE ALSO

	memfd_secret(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	migrate_pages(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mincore(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	mkdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mkdirat()

	RETURN VALUE
	ERRORS
	VERSIONS
	glibc notes

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mkdirat(2)
	mknod(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mknodat()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mknodat(2)
	mlock(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mlock(), mlock2(), and munlock()
	mlockall() and munlockall()

	RETURN VALUE
	ERRORS
	VERSIONS
	Linux

	STANDARDS
	HISTORY
	NOTES
	Limits and permissions

	BUGS
	SEE ALSO

	mlock2(2)
	mlockall(2)
	mmap(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The flags argument
	munmap()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Using MAP_FIXED safely
	Timestamps changes for file-backed mappings
	Huge page (Huge TLB) mappings

	CAVEATS
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	mmap2(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	modify_ldt(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	BUGS
	SEE ALSO

	mount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Additional mount flags
	Remounting an existing mount
	Creating a bind mount
	Changing the propagation type of an existing mount
	Moving a mount
	Creating a new mount

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Mount namespaces
	Parental relationship between mounts
	/proc/pid/mounts and /proc/pid/mountinfo

	SEE ALSO

	mount_setattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	ID-mapped mounts
	Mount attributes and filesystem parameters
	Extensibility

	EXAMPLES
	SEE ALSO

	move_mount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	move_pages(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Page states in the status array

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mprotect(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	mpx(2)
	mq_getsetattr(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	NOTES
	SEE ALSO

	mq_notify(2)
	mq_open(2)
	mq_timedreceive(2)
	mq_timedsend(2)
	mq_unlink(2)
	mremap(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	MREMAP_DONTUNMAP use cases

	BUGS
	SEE ALSO

	msgctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	msgget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	Linux

	NOTES
	BUGS
	SEE ALSO

	MSGOP(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	msgsnd()
	msgrcv()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	msgrcv(2)
	msgsnd(2)
	msync(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	munlock(2)
	munlockall(2)
	munmap(2)
	name_to_handle_at(2)
	nanosleep(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	newfstatat(2)
	_newselect(2)
	nfsservctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	nice(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	oldfstat(2)
	oldlstat(2)
	oldolduname(2)
	oldstat(2)
	olduname(2)
	open(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	creat()
	openat()
	openat2(2)

	RETURN VALUE
	ERRORS
	VERSIONS
	Synchronized I/O
	C library/kernel differences
	POSIX

	STANDARDS
	HISTORY
	NOTES
	Open file descriptions
	NFS
	FIFOs
	File access mode
	Rationale for openat() and other directory file descriptor APIs
	O_DIRECT

	BUGS
	SEE ALSO

	open_by_handle_at(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	name_to_handle_at()
	open_by_handle_at()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	Obtaining a persistent filesystem ID

	EXAMPLES
	Program source: t_name_to_handle_at.c
	Program source: t_open_by_handle_at.c

	SEE ALSO

	open_tree(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	open_tree_attr()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	open_tree()
	open_tree_attr()

	NOTES
	Mount propagation

	EXAMPLES
	open_tree_attr()

	SEE ALSO

	open_tree_attr(2)
	openat(2)
	openat2(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The open_how structure

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Extensibility

	SEE ALSO

	outb(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	outb_p(2)
	outl(2)
	outl_p(2)
	outsb(2)
	outsl(2)
	outsw(2)
	outw(2)
	outw_p(2)
	pause(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	pciconfig_iobase(2)
	pciconfig_read(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	pciconfig_write(2)
	perf_event_open(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Arguments
	Reading results
	MMAP layout
	Overflow handling
	rdpmc instruction
	perf_event ioctl calls
	Using prctl(2)
	perf_event related configuration files

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	perfmonctl(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	personality(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	phys(2)
	pidfd_getfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pidfd_open(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Use cases for PID file descriptors

	EXAMPLES
	Program source

	SEE ALSO

	pidfd_send_signal(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	PID file descriptors

	EXAMPLES
	SEE ALSO

	pipe(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pipe2(2)
	pivot_root(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	pivot_root(".", ".")
	Historical notes

	EXAMPLES
	Program source

	SEE ALSO

	pkey_alloc(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pkey_free(2)
	pkey_mprotect(2)
	poll(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ppoll()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	posix_fadvise(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences
	Architecture-specific variants

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	ppoll(2)
	prctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	pread(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	BUGS
	SEE ALSO

	pread64(2)
	preadv(2)
	preadv2(2)
	prlimit(2)
	prlimit64(2)
	process_madvise(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	process_vm_readv(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	process_vm_writev(2)
	prof(2)
	pselect(2)
	pselect6(2)
	ptrace(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Death under ptrace
	Stopped states
	Signal-delivery-stop
	Signal injection and suppression
	Group-stop
	PTRACE_EVENT stops
	Syscall-stops
	PTRACE_EVENT_SECCOMP stops (Linux 3.5 to Linux 4.7)
	PTRACE_EVENT_SECCOMP stops (since Linux 4.8)
	PTRACE_SINGLESTEP stops
	Informational and restarting ptrace commands
	Attaching and detaching
	execve(2) under ptrace
	Real parent

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Ptrace access mode checking
	/proc/sys/kernel/yama/ptrace_scope
	C library/kernel differences

	BUGS
	SEE ALSO

	putmsg(2)
	putpmsg(2)
	pwrite(2)
	pwrite64(2)
	pwritev(2)
	pwritev2(2)
	query_module(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS
	SEE ALSO

	quotactl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	NOTES
	Alternative XFS header
	quotactl() versus quotactl_fd()

	STANDARDS
	HISTORY
	SEE ALSO

	quotactl_fd(2)
	read(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	readahead(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	readdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	SEE ALSO

	readlink(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	readlinkat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc

	NOTES
	EXAMPLES
	SEE ALSO

	readlinkat(2)
	readv(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	preadv() and pwritev()
	preadv2() and pwritev2()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	Historical C library/kernel differences

	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	reboot(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Behavior inside PID namespaces

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	recv(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The flags argument
	recvfrom()
	recv()
	recvmsg()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	recvfrom(2)
	recvmmsg(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	recvmsg(2)
	remap_file_pages(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	removexattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	rename(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	renameat()
	renameat2()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc notes

	BUGS
	SEE ALSO

	renameat(2)
	renameat2(2)
	request_key(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Requesting user-space instantiation of a key

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	restart_syscall(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	riscv_flush_icache(2)
	rmdir(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	rt_sigaction(2)
	rt_sigpending(2)
	rt_sigprocmask(2)
	rt_sigqueueinfo(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	rt_sigreturn(2)
	rt_sigsuspend(2)
	rt_sigtimedwait(2)
	rt_tgsigqueueinfo(2)
	s390_guarded_storage(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	s390_pci_mmio_read(2)
	s390_pci_mmio_write(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	s390_runtime_instr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	s390_sthyi(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sbrk(2)
	sched_get_priority_max(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	sched_get_priority_min(2)
	sched_getaffinity(2)
	sched_getattr(2)
	sched_getparam(2)
	sched_getscheduler(2)
	sched_rr_get_interval(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	Linux

	STANDARDS
	HISTORY
	Linux

	NOTES
	SEE ALSO

	sched_setaffinity(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	C library/kernel differences
	Handling systems with large CPU affinity masks

	EXAMPLES
	Program source

	SEE ALSO

	sched_setattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	sched_setattr()
	sched_getattr()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sched_setparam(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	sched_setscheduler(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sched_yield(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	seccomp(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Filters
	/proc interfaces
	Audit logging of seccomp actions

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Architecture support for seccomp BPF
	Caveats
	Seccomp-specific BPF details

	EXAMPLES
	Program source

	SEE ALSO

	seccomp_unotify(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Overview

	IOCTL OPERATIONS
	SECCOMP_IOCTL_NOTIF_RECV
	SECCOMP_IOCTL_NOTIF_ID_VALID
	SECCOMP_IOCTL_NOTIF_SEND
	SECCOMP_IOCTL_NOTIF_ADDFD

	NOTES
	select()/poll()/epoll semantics
	Design goals; use of SECCOMP_USER_NOTIF_FLAG_CONTINUE
	Caveats regarding the use of
	Caveats regarding blocking system calls
	Interaction with SA_RESTART signal handlers

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	security(2)
	select(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fd_set
	File descriptor sets
	Arguments
	pselect()
	The timeout

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	The self-pipe trick
	Emulating usleep(3)
	Correspondence between select() and poll() notifications
	Multithreaded applications
	C library/kernel differences
	Historical glibc details

	BUGS
	EXAMPLES
	SEE ALSO

	SELECT_TUT(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Combining signal and data events
	Practical
	Select law

	RETURN VALUE
	NOTES
	EXAMPLES
	SEE ALSO

	semctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	The sempid value

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	semget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Semaphore initialization
	Semaphore limits

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	semop(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	semtimedop()

	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS
	NOTES
	Semaphore limits

	BUGS
	EXAMPLES
	SEE ALSO

	semtimedop(2)
	send(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The flags argument
	sendmsg()

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	sendfile(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sendfile64(2)
	sendmmsg(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	sendmsg(2)
	sendto(2)
	set_mempolicy(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	set_robust_list(2)
	set_thread_area(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	set_tid_address(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	setdomainname(2)
	setegid(2)
	seteuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO

	setfsgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	BUGS
	SEE ALSO

	setfsgid32(2)
	setfsuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	C library/kernel differences

	BUGS
	SEE ALSO

	setfsuid32(2)
	setgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO

	setgid32(2)
	setgroups(2)
	setgroups32(2)
	sethostname(2)
	setitimer(2)
	setns(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fd refers to a /proc/pid/ns/ link
	fd is a PID file descriptor
	Details for specific namespace types

	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	setpgid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	setpgrp(2)
	setpriority(2)
	setregid(2)
	setregid32(2)
	setresgid(2)
	setresgid32(2)
	setresuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO

	setresuid32(2)
	setreuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	C library/kernel differences

	SEE ALSO

	setreuid32(2)
	setrlimit(2)
	setsid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	setsockopt(2)
	settimeofday(2)
	setuid(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	setuid32(2)
	setup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	VERSIONS

	setxattr(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	sgetmask(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	shmat(2)
	shmctl(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	shmdt(2)
	shmget(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Shared memory limits
	Linux notes

	BUGS
	EXAMPLES
	SEE ALSO

	SHMOP(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	shmat()
	shmdt()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source: svshm_string.h
	Program source: svshm_string_read.c
	Program source: svshm_string_write.c

	SEE ALSO

	shutdown(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sigaction(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The siginfo_t argument to a SA_SIGINFO handler
	The si_code field
	Dynamically probing for flag bit support

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Undocumented

	BUGS
	EXAMPLES
	Probing for flag support

	SEE ALSO

	sigaltstack(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	History

	BUGS
	EXAMPLES
	SEE ALSO

	signal(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	Portability

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	signalfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The signalfd_siginfo structure
	fork(2) semantics
	Semantics of file descriptor passing
	execve(2) semantics
	Thread semantics
	epoll(7) semantics

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Limitations

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	signalfd4(2)
	sigpending(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	BUGS
	SEE ALSO

	sigprocmask(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sigreturn(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	NOTES
	C library/kernel differences

	SEE ALSO

	sigsuspend(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO

	sigtimedwait(2)
	sigwaitinfo(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	socket(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	socketcall(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	socketpair(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	splice(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	spu_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	spu_run(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	ssetmask(2)
	stat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The stat structure
	fstatat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	EXAMPLES
	SEE ALSO

	stat64(2)
	statfs(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	The f_fsid field

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	statfs64(2)
	statmount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The mnt_id_req structure
	The returned information

	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	statx(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Invoking statx():
	The returned information
	File attributes

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	stime(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	stty(2)
	subpage_prot(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Rationale

	SEE ALSO

	swapoff(2)
	swapon(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Priority

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	symlink(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	symlinkat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc notes

	NOTES
	SEE ALSO

	symlinkat(2)
	sync(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	sync_file_range(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Warning
	Some details

	RETURN VALUE
	ERRORS
	VERSIONS
	sync_file_range2()

	STANDARDS
	HISTORY
	sync_file_range2()

	NOTES
	SEE ALSO

	sync_file_range2(2)
	syncfs(2)
	_syscall(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Sample output

	SEE ALSO

	syscall(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	NOTES
	Architecture-specific requirements
	Architecture calling conventions

	EXAMPLES
	SEE ALSO

	syscalls(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	System calls and library wrapper functions
	System call list
	System calls on removed ports

	NOTES
	Architecture-specific details: Alpha

	SEE ALSO

	sysctl(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	_sysctl(2)
	sysfs(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	sysinfo(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	syslog(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The kernel log buffer
	Commands
	/proc/sys/kernel/printk
	The log level

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	tee(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	tgkill(2)
	time(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	timer_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	timer_delete(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	timer_getoverrun(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	timer_gettime(2)
	timer_settime(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	timerfd_create(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	timerfd_create()
	timerfd_settime()
	timerfd_gettime()
	Operating on a timer file descriptor
	fork(2) semantics
	execve(2) semantics

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	timerfd_gettime(2)
	timerfd_settime(2)
	times(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	tkill(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	truncate(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	truncate64(2)
	tuxcall(2)
	ugetrlimit(2)
	umask(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	umount(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	umount() and shared mounts

	SEE ALSO

	umount2(2)
	uname(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	C library/kernel differences

	NOTES
	SEE ALSO

	UNIMPLEMENTED(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	NOTES
	SEE ALSO

	unlink(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	unlinkat()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	glibc

	BUGS
	SEE ALSO

	unlinkat(2)
	unshare(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	uretprobe(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS

	uselib(2)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	userfaultfd(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Usage
	Userfaultfd operation
	Userfaultfd write-protect mode (since Linux 5.7)
	Userfaultfd minor fault mode (since Linux 5.13)
	Reading from the userfaultfd structure

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	ustat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	HP-UX notes

	SEE ALSO

	utime(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	utimensat(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Permissions requirements
	utimensat() specifics

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel ABI differences

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	utimes(2)
	vfork(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Standard description
	Linux description
	Historic description

	VERSIONS
	Linux notes

	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	vhangup(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	vm86(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS

	vm86old(2)
	vmsplice(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	vserver(2)
	wait(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	wait() and waitpid()
	waitid()

	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	Linux notes

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	wait3(2)
	wait4(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	C library/kernel differences

	SEE ALSO

	waitid(2)
	waitpid(2)
	write(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	writev(2)

	System Calls Manual (constants)
	EPIOCGPARAMS2const)
	EPIOCSPARAMS2const)
	F_ADD_SEALS2const)
	F_DUPFD(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	F_DUPFD_CLOEXEC2const)
	F_GET_FILE_RW_HINT2const)
	F_GET_RW_HINT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	F_GET_SEALS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	F_GETFD(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	F_GETFL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	F_SETFL

	SEE ALSO

	F_GETLEASE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Leases

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	F_GETLK2const)
	F_GETOWN2const)
	F_GETOWN_EX2const)
	F_GETPIPE_SZ(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	F_GETSIG(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	F_GETOWN
	F_SETOWN

	SEE ALSO

	F_NOTIFY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	F_OFD_GETLK2const)
	F_OFD_SETLK2const)
	F_OFD_SETLKW2const)
	F_SET_FILE_RW_HINT2const)
	F_SET_RW_HINT2const)
	F_SETFD2const)
	F_SETFL2const)
	F_SETLEASE2const)
	F_SETLK2const)
	F_SETLKW2const)
	F_SETOWN2const)
	F_SETOWN_EX2const)
	F_SETPIPE_SZ2const)
	F_SETSIG2const)
	FAT_IOCTL_GET_ATTRIBUTES2const)
	FAT_IOCTL_GET_VOLUME_ID(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source (display_fat_volume_id.c)

	SEE ALSO

	FAT_IOCTL_SET_ATTRIBUTES(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source (toggle_fat_archive_flag.c)

	SEE ALSO

	FICLONE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	FICLONERANGE2const)
	FIDEDUPERANGE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	FIONREAD(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	FS_IOC_GETFLAGS2const)
	FS_IOC_GETFSLABEL2const)
	FS_IOC_GETFSMAP2const)
	FS_IOC_SETFLAGS(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	NOTES
	SEE ALSO

	FS_IOC_SETFSLABEL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	FUTEX_CMP_REQUEUE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_CMP_REQUEUE_PI(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_FD(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_LOCK_PI(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	FUTEX_LOCK_PI2(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_REQUEUE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_TRYLOCK_PI(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_UNLOCK_PI(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_WAIT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	FUTEX_WAIT_BITSET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_WAIT_REQUEUE_PI(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_WAKE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	FUTEX_WAKE_BITSET2const)
	FUTEX_WAKE_OP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	GIO_CMAP2const)
	GIO_FONT2const)
	GIO_FONTX2const)
	GIO_SCRNMAP2const)
	GIO_UNIMAP2const)
	GIO_UNISCRNMAP2const)
	KDADDIO2const)
	KDDELIO2const)
	KDDISABIO2const)
	KDENABIO2const)
	KDGETKEYCODE2const)
	KDGETLED2const)
	KDGETMODE2const)
	KDGKBDIACR2const)
	KDGKBENT2const)
	KDGKBLED2const)
	KDGKBMETA2const)
	KDGKBMODE2const)
	KDGKBSENT2const)
	KDGKBTYPE2const)
	KDMKTONE2const)
	KDSETKEYCODE2const)
	KDSETLED2const)
	KDSETMODE2const)
	KDSIGACCEPT2const)
	KDSKBENT2const)
	KDSKBLED2const)
	KDSKBMETA2const)
	KDSKBMODE2const)
	KDSKBSENT2const)
	KEYCTL_ASSUME_AUTHORITY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_CHOWN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_CLEAR(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_DESCRIBE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_DH_COMPUTE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_GET_KEYRING_ID(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_GET_PERSISTENT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_GET_SECURITY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_INSTANTIATE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_INSTANTIATE_IOV2const)
	KEYCTL_INVALIDATE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_JOIN_SESSION_KEYRING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_LINK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_NEGATE2const)
	KEYCTL_READ(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_REJECT2const)
	KEYCTL_RESTRICT_KEYRING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_REVOKE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SEARCH(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SESSION_TO_PARENT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SET_REQKEY_KEYRING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SET_TIMEOUT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_SETPERM(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_UNLINK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KEYCTL_UPDATE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	KIOCSOUND2const)
	NS_GET_NSTYPE(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	NS_GET_OWNER_UID(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	NS_GET_PARENT2const)
	NS_GET_USERNS(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	PAGEMAP_SCAN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Supported page flags
	Supported operations
	The struct pm_scan_arg argument

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PIO_CMAP2const)
	PIO_FONT2const)
	PIO_FONTRESET2const)
	PIO_FONTX2const)
	PIO_SCRNMAP2const)
	PIO_UNIMAP2const)
	PIO_UNIMAPCLR2const)
	PIO_UNISCRNMAP2const)
	PR_CAP_AMBIENT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_CLEAR_ALL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_IS_SET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_LOWER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAP_AMBIENT_RAISE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAPBSET_DROP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_CAPBSET_READ(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_FUTEX_HASH(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_FUTEX_HASH_GET_SLOTS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_FUTEX_HASH_SET_SLOTS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_AUXV(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_CHILD_SUBREAPER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_DUMPABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_ENDIAN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_FP_MODE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_FPEMU(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_FPEXC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_IO_FLUSHER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_KEEPCAPS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_MDWE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_NAME2const)
	PR_GET_NO_NEW_PRIVS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_PDEATHSIG(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_SECCOMP(2)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_SECUREBITS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_SPECULATION_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TAGGED_ADDR_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_THP_DISABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TID_ADDRESS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_GET_TIMERSLACK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TIMING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_TSC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_GET_UNALIGN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL_CLEAR(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL_GET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MCE_KILL_SET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_MPX_DISABLE_MANAGEMENT2const)
	PR_MPX_ENABLE_MANAGEMENT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_PAC_RESET_KEYS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_RISCV_SET_ICACHE_FLUSH_CTX(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	Program source: cmodx.c
	Program source: cmodx.S
	Expected result

	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_CHILD_SUBREAPER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_DUMPABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_ENDIAN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_FP_MODE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_FPEMU(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_FPEXC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_IO_FLUSHER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_KEEPCAPS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MDWE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_ARG_END2const)
	PR_SET_MM_ARG_START(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_AUXV(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_BRK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_END_CODE2const)
	PR_SET_MM_END_DATA2const)
	PR_SET_MM_ENV_END2const)
	PR_SET_MM_ENV_START2const)
	PR_SET_MM_EXE_FILE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_MAP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_MAP_SIZE2const)
	PR_SET_MM_START_BRK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_START_CODE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_START_DATA(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_MM_START_STACK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_NAME(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_NO_NEW_PRIVS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_PDEATHSIG(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SET_PTRACER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SECCOMP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SECUREBITS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SPECULATION_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_SYSCALL_USER_DISPATCH(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_TAGGED_ADDR_CTRL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SET_THP_DISABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_TIMERSLACK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_TIMING(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SET_TSC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_UNALIGN(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SET_VMA(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	PR_SVE_GET_VL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_SVE_SET_VL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	PR_TASK_PERF_EVENTS_DISABLE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	PR_TASK_PERF_EVENTS_ENABLE2const)
	TCFLSH2const)
	TCGETA2const)
	TCGETS2const)
	TCGETS22const)
	TCSBRK(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TCSBRKP2const)
	TCSETA2const)
	TCSETAF2const)
	TCSETAW2const)
	TCSETS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO

	TCSETS22const)
	TCSETSF2const)
	TCSETSF22const)
	TCSETSW2const)
	TCSETSW22const)
	TCXONC(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TIOCCBRK2const)
	TIOCCONS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	HISTORY
	SEE ALSO

	TIOCEXCL(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	HISTORY
	SEE ALSO

	TIOCGETD2const)
	TIOCGEXCL2const)
	TIOCGICOUNT2const)
	TIOCGLCKTRMIOS2const)
	TIOCGPGRP2const)
	TIOCGPKT2const)
	TIOCGPTLCK2const)
	TIOCGPTPEER2const)
	TIOCGSID2const)
	TIOCGSOFTCAR2const)
	TIOCGWINSZ2const)
	TIOCINQ2const)
	TIOCLINUX(2const)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	SEE ALSO

	TIOCMBIC2const)
	TIOCMBIS2const)
	TIOCMGET2const)
	TIOCMIWAIT2const)
	TIOCMSET(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	EXAMPLES
	SEE ALSO

	TIOCNOTTY2const)
	TIOCNXCL2const)
	TIOCOUTQ2const)
	TIOCPKT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	HISTORY
	SEE ALSO

	TIOCSBRK2const)
	TIOCSCTTY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TIOCSERGETLSR2const)
	TIOCSETD(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TIOCSLCKTRMIOS(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	CAVEATS
	SEE ALSO

	TIOCSPGRP(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TIOCSPTLCK2const)
	TIOCSSOFTCAR(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TIOCSTI(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	TIOCSWINSZ(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	TIOCTTYGSTRUCT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	HISTORY
	SEE ALSO

	UFFDIO_API(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	EXAMPLES
	SEE ALSO

	UFFDIO_CONTINUE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_COPY(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_MOVE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	UFFDIO_POISON(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_REGISTER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_UNREGISTER(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_WAKE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_WRITEPROTECT(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	UFFDIO_ZEROPAGE(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	VFAT_IOCTL_READDIR_BOTH(2const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	VFAT_IOCTL_READDIR_SHORT2const)
	VT_ACTIVATE2const)
	VT_DISALLOCATE2const)
	VT_GETCONSIZECSRPOS2const)
	VT_GETMODE2const)
	VT_GETSTATE2const)
	VT_OPENQRY2const)
	VT_RELDISP2const)
	VT_RESIZE2const)
	VT_RESIZEX2const)
	VT_SETMODE2const)
	VT_WAITACTIVE2const)

	System Calls Manual (types)
	mount_attr(2type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	open_how(2type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	Library Functions Manual
	intro(3)
	NAME
	DESCRIPTION
	Subsections

	STANDARDS
	NOTES
	Authors and copyright conditions

	SEE ALSO

	Library Functions Manual (attributes)
	intro(3attr)
	NAME
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY

	Library Functions Manual
	a64l(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	abort(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	abs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	acos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	acosf(3)
	acosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	acoshf(3)
	acoshl(3)
	acosl(3)
	addmntent(3)
	addseverity(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	adjtime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	__after_morecore_hook(3)
	aio_cancel(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	aio_error(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	aio_fsync(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	aio_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	aio_read(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	aio_return(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	aio_suspend(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	aio_write(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	aligned_alloc(3)
	alloca(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	alphasort(3)
	arc4random(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	arc4random_buf(3)
	arc4random_uniform(3)
	argz(3)
	argz_add(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	BUGS
	SEE ALSO

	argz_add_sep(3)
	argz_append(3)
	argz_count(3)
	argz_create(3)
	argz_create_sep(3)
	argz_delete(3)
	argz_extract(3)
	argz_insert(3)
	argz_next(3)
	argz_replace(3)
	argz_stringify(3)
	asctime(3)
	asctime_r(3)
	asin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	asinf(3)
	asinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	asinhf(3)
	asinhl(3)
	asinl(3)
	asprintf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	assert(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	assert_perror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	BUGS
	SEE ALSO

	atan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	atan2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	atan2f(3)
	atan2l(3)
	atanf(3)
	atanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	atanhf(3)
	atanhl(3)
	atanl(3)
	atexit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	Linux notes

	EXAMPLES
	SEE ALSO

	atof(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	atoi(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	atol(3)
	atoll(3)
	atoq(3)
	auth_destroy(3)
	authnone_create(3)
	authunix_create(3)
	authunix_create_default(3)
	backtrace(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	backtrace_symbols(3)
	backtrace_symbols_fd(3)
	basename(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	bcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	bcopy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	be16toh(3)
	be32toh(3)
	be64toh(3)
	bindresvport(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	NOTES
	STANDARDS
	SEE ALSO

	bsd_signal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	bsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	bstring(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	NOTES
	SEE ALSO

	bswap(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO

	bswap_16(3)
	bswap_32(3)
	bswap_64(3)
	btowc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	btree(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	BUGS
	SEE ALSO

	BYTEORDER(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	bzero(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	cabs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	cabsf(3)
	cabsl(3)
	cacos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	cacosf(3)
	cacosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	cacoshf(3)
	cacoshl(3)
	cacosl(3)
	calloc(3)
	callrpc(3)
	canonicalize_file_name(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	carg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	cargf(3)
	cargl(3)
	casin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	casinf(3)
	casinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	casinhf(3)
	casinhl(3)
	casinl(3)
	catan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	catanf(3)
	catanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	catanhf(3)
	catanhl(3)
	catanl(3)
	catclose(3)
	catgets(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	catopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	cbc_crypt(3)
	cbrt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	cbrtf(3)
	cbrtl(3)
	ccos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ccosf(3)
	ccosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	ccoshf(3)
	ccoshl(3)
	ccosl(3)
	ceil(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ceilf(3)
	ceill(3)
	cexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	cexp2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	SEE ALSO

	cexp2f(3)
	cexp2l(3)
	cexpf(3)
	cexpl(3)
	cfgetispeed(3)
	cfgetospeed(3)
	cfmakeraw(3)
	cfree(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	1-arg cfree
	3-arg cfree

	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	cfsetispeed(3)
	cfsetospeed(3)
	cfsetspeed(3)
	cimag(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	cimagf(3)
	cimagl(3)
	CIRCLEQ(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal

	RETURN VALUE
	STANDARDS
	BUGS
	EXAMPLES
	SEE ALSO

	CIRCLEQ_EMPTY(3)
	CIRCLEQ_ENTRY(3)
	CIRCLEQ_FIRST(3)
	CIRCLEQ_FOREACH(3)
	CIRCLEQ_FOREACH_REVERSE(3)
	CIRCLEQ_HEAD(3)
	CIRCLEQ_HEAD_INITIALIZER(3)
	CIRCLEQ_INIT(3)
	CIRCLEQ_INSERT_AFTER(3)
	CIRCLEQ_INSERT_BEFORE(3)
	CIRCLEQ_INSERT_HEAD(3)
	CIRCLEQ_INSERT_TAIL(3)
	CIRCLEQ_LAST(3)
	CIRCLEQ_LOOP_NEXT(3)
	CIRCLEQ_LOOP_PREV(3)
	CIRCLEQ_NEXT(3)
	CIRCLEQ_PREV(3)
	CIRCLEQ_REMOVE(3)
	clearenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	clearerr(3)
	clearerr_unlocked(3)
	clnt_broadcast(3)
	clnt_call(3)
	clnt_control(3)
	clnt_create(3)
	clnt_destroy(3)
	clnt_freeres(3)
	clnt_geterr(3)
	clnt_pcreateerror(3)
	clnt_perrno(3)
	clnt_perror(3)
	clnt_spcreateerror(3)
	clnt_sperrno(3)
	clnt_sperror(3)
	clntraw_create(3)
	clnttcp_create(3)
	clntudp_bufcreate(3)
	clntudp_create(3)
	clock(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	clock_getcpuclockid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	clog(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	clog2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	clog10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	clog10f(3)
	clog10l(3)
	clog2f(3)
	clog2l(3)
	clogf(3)
	clogl(3)
	closedir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	closelog(3)
	CMSG(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	CMSG_ALIGN(3)
	CMSG_DATA(3)
	CMSG_FIRSTHDR(3)
	CMSG_LEN(3)
	CMSG_NXTHDR(3)
	CMSG_SPACE(3)
	confstr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	conj(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	conjf(3)
	conjl(3)
	copysign(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	copysignf(3)
	copysignl(3)
	cos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	cosf(3)
	cosh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	coshf(3)
	coshl(3)
	cosl(3)
	countof(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	cpow(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	cpowf(3)
	cpowl(3)
	cproj(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	cprojf(3)
	cprojl(3)
	CPU_ALLOC(3)
	CPU_ALLOC_SIZE(3)
	CPU_AND(3)
	CPU_AND_S(3)
	CPU_CLR(3)
	CPU_CLR_S(3)
	CPU_COUNT(3)
	CPU_COUNT_S(3)
	CPU_EQUAL(3)
	CPU_EQUAL_S(3)
	CPU_FREE(3)
	CPU_ISSET(3)
	CPU_ISSET_S(3)
	CPU_OR(3)
	CPU_OR_S(3)
	CPU_SET(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Dynamically sized CPU sets

	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	CPU_SET_S(3)
	CPU_XOR(3)
	CPU_XOR_S(3)
	CPU_ZERO(3)
	CPU_ZERO_S(3)
	creal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	crealf(3)
	creall(3)
	crypt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	Availability in glibc

	NOTES
	Features in glibc

	SEE ALSO

	crypt_r(3)
	csin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	csinf(3)
	csinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	csinhf(3)
	csinhl(3)
	csinl(3)
	csqrt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	csqrtf(3)
	csqrtl(3)
	ctan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ctanf(3)
	ctanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ctanhf(3)
	ctanhl(3)
	ctanl(3)
	ctermid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	ctime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	Thread safety
	mktime()

	EXAMPLES
	Program source: mktime.c

	SEE ALSO

	ctime_r(3)
	cuserid(3)
	daemon(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	daylight(3)
	db(3)
	dbopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Key/data pairs

	ERRORS
	BUGS
	SEE ALSO

	des_crypt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	DES_FAILED(3)
	des_setparity(3)
	difftime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	dirfd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	dirname(3)
	div(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	dl_iterate_phdr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	dladdr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	dladdr1(3)
	dlclose(3)
	dlerror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	dlinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	dlmopen(3)
	dlopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	dlopen()
	dlmopen()
	dlclose()

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	dlmopen() and namespaces
	Initialization and finalization functions
	History

	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	dlsym(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	History

	EXAMPLES
	SEE ALSO

	dlvsym(3)
	dn_comp(3)
	dn_expand(3)
	dprintf(3)
	drand48(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	drand48_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	drem(3)
	dremf(3)
	dreml(3)
	duplocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	dysize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	eaccess(3)
	ecb_crypt(3)
	ecvt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	ecvt_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	edata(3)
	encrypt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	Availability in glibc
	Features in glibc

	EXAMPLES
	SEE ALSO

	encrypt_r(3)
	end(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	endaliasent(3)
	endfsent(3)
	endgrent(3)
	endhostent(3)
	endian(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	endmntent(3)
	endnetent(3)
	endnetgrent(3)
	endprotoent(3)
	endpwent(3)
	endrpcent(3)
	endservent(3)
	endspent(3)
	endttyent(3)
	endusershell(3)
	endutent(3)
	endutxent(3)
	envz(3)
	envz_add(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	EXAMPLES
	SEE ALSO

	envz_entry(3)
	envz_get(3)
	envz_merge(3)
	envz_remove(3)
	envz_strip(3)
	erand48(3)
	erand48_r(3)
	erf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	erfc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	erfcf(3)
	erfcl(3)
	erff(3)
	erfl(3)
	err(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	errno(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	errno
	Error numbers and names
	List of error names

	NOTES
	SEE ALSO

	error(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	error_at_line(3)
	error_message_count(3)
	error_one_per_line(3)
	error_print_progname(3)
	errx(3)
	etext(3)
	ether_aton(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	ether_aton_r(3)
	ether_hostton(3)
	ether_line(3)
	ether_ntoa(3)
	ether_ntoa_r(3)
	ether_ntohost(3)
	euidaccess(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	eventfd_read(3)
	eventfd_write(3)
	exec(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	l - execl(), execlp(), execle()
	v - execv(), execvp(), execvpe()
	e - execle(), execvpe()
	p - execlp(), execvp(), execvpe()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	Architecture-specific details

	SEE ALSO

	execl(3)
	execle(3)
	execlp(3)
	execv(3)
	execvp(3)
	execvpe(3)
	exit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	Signals sent to other processes

	SEE ALSO

	exp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	exp2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	exp10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	exp10f(3)
	exp10l(3)
	exp2f(3)
	exp2l(3)
	expf(3)
	expl(3)
	explicit_bzero(3)
	expm1(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	expm1f(3)
	expm1l(3)
	fabs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fabsf(3)
	fabsl(3)
	__fbufsize(3)
	fclose(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fcloseall(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	fcvt(3)
	fcvt_r(3)
	FD_CLR(3)
	FD_ISSET(3)
	FD_SET(3)
	FD_ZERO(3)
	fdim(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	fdimf(3)
	fdiml(3)
	fdopen(3)
	fdopendir(3)
	feclearexcept(3)
	fedisableexcept(3)
	feenableexcept(3)
	fegetenv(3)
	fegetexcept(3)
	fegetexceptflag(3)
	fegetround(3)
	feholdexcept(3)
	fenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Exceptions
	Exception handling
	Rounding mode
	Floating-point environment

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	BUGS
	SEE ALSO

	feof(3)
	feof_unlocked(3)
	feraiseexcept(3)
	ferror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	SEE ALSO

	ferror_unlocked(3)
	fesetenv(3)
	fesetexceptflag(3)
	fesetround(3)
	fetestexcept(3)
	feupdateenv(3)
	fexecve(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	fflush(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fflush_unlocked(3)
	ffs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	ffsl(3)
	ffsll(3)
	fgetc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fgetc_unlocked(3)
	fgetgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fgetgrent_r(3)
	fgetpos(3)
	fgetpwent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fgetpwent_r(3)
	fgets(3)
	fgets_unlocked(3)
	fgetspent(3)
	fgetspent_r(3)
	fgetwc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fgetwc_unlocked(3)
	fgetws(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fgetws_unlocked(3)
	fileno(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fileno_unlocked(3)
	finite(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	NOTES
	SEE ALSO

	finitef(3)
	finitel(3)
	__flbf(3)
	flockfile(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	floor(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	floorf(3)
	floorl(3)
	_flushlbf(3)
	fma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fmaf(3)
	fmal(3)
	fmax(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fmaxf(3)
	fmaxl(3)
	fmemopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	Binary mode

	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	fmin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fminf(3)
	fminl(3)
	fmod(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	fmodf(3)
	fmodl(3)
	fmtmsg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Dummy arguments
	The classification argument
	The severity argument

	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	fnmatch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fopen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fdopen()
	freopen()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	BUGS
	SEE ALSO

	fopencookie(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	EXAMPLES
	Program source

	NOTES
	SEE ALSO

	_Fork(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	forkpty(3)
	fpathconf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fpclassify(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	__fpending(3)
	fprintf(3)
	__fpurge(3)
	fpurge(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fputc(3)
	fputc_unlocked(3)
	fputs(3)
	fputs_unlocked(3)
	fputwc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fputwc_unlocked(3)
	fputws(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fputws_unlocked(3)
	fread(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	fread_unlocked(3)
	__freadable(3)
	__freading(3)
	free(3)
	__free_hook(3)
	freeaddrinfo(3)
	freehostent(3)
	freeifaddrs(3)
	freelocale(3)
	freopen(3)
	frexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	frexpf(3)
	frexpl(3)
	fscanf(3)
	fseek(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	fseeko(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	__fsetlocking(3)
	fsetpos(3)
	fstatvfs(3)
	ftell(3)
	ftello(3)
	ftime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	ftok(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	ftrylockfile(3)
	fts(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fts_open()
	fts_read()
	fts_children()
	fts_set()
	fts_close()

	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	fts_children(3)
	fts_close(3)
	fts_open(3)
	fts_read(3)
	fts_set(3)
	ftw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ftw()

	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	funlockfile(3)
	futimens(3)
	futimes(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fwide(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fwprintf(3)
	__fwritable(3)
	fwrite(3)
	fwrite_unlocked(3)
	__fwriting(3)
	gai_cancel(3)
	gai_error(3)
	gai_strerror(3)
	gai_suspend(3)
	gamma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	*BSD version
	glibc version

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	gammaf(3)
	gammal(3)
	gcvt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	_Generic(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	EXAMPLES

	get_avphys_pages(3)
	get_current_dir_name(3)
	get_myaddress(3)
	get_nprocs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	EXAMPLES
	SEE ALSO

	get_nprocs_conf(3)
	get_phys_pages(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getaddrinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Extensions to getaddrinfo() for Internationalized Domain Names

	RETURN VALUE
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Server program
	Client program

	SEE ALSO

	getaddrinfo_a(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Synchronous example
	Asynchronous example

	SEE ALSO

	getaliasbyname(3)
	getaliasbyname_r(3)
	getaliasent(3)
	getaliasent_r(3)
	getauxval(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	getc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	BUGS
	Multiple evaluation
	Name

	SEE ALSO

	getc_unlocked(3)
	getchar(3)
	getchar_unlocked(3)
	getcontext(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getcwd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	getdate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ENVIRONMENT
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	getdate_err(3)
	getdate_r(3)
	getdelim(3)
	getdirentries(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	getdtablesize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getentropy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getfsent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getfsfile(3)
	getfsspec(3)
	getgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getgrent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getgrgid(3)
	getgrgid_r(3)
	getgrnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getgrnam_r(3)
	getgrouplist(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	gethostbyaddr(3)
	gethostbyaddr_r(3)
	gethostbyname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Historical

	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	System V/POSIX extension
	GNU extensions

	BUGS
	SEE ALSO

	gethostbyname_r(3)
	gethostbyname2(3)
	gethostbyname2_r(3)
	gethostent(3)
	gethostent_r(3)
	gethostid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getifaddrs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	getipnodebyaddr(3)
	getipnodebyname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getipnodebyname() arguments
	getipnodebyaddr() arguments

	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	getline(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	getloadavg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getlogin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	STANDARDS
	BUGS
	SEE ALSO

	getlogin_r(3)
	getmntent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getmntent_r(3)
	getnameinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Extensions to getnameinfo() for Internationalized Domain Names

	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getnetbyaddr(3)
	getnetbyaddr_r(3)
	getnetbyname(3)
	getnetbyname_r(3)
	getnetent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getnetent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	getnetgrent(3)
	getnetgrent_r(3)
	getopt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	getopt_long() and getopt_long_only()

	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	getopt()
	getopt_long()

	SEE ALSO

	getopt_long(3)
	getopt_long_only(3)
	getpass(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	getprotobyname(3)
	getprotobyname_r(3)
	getprotobynumber(3)
	getprotobynumber_r(3)
	getprotoent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getprotoent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO

	getpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getpw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getpwent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	getpwent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getpwnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getpwnam_r(3)
	getpwuid(3)
	getpwuid_r(3)
	getrpcbyname(3)
	getrpcbyname_r(3)
	getrpcbynumber(3)
	getrpcbynumber_r(3)
	getrpcent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getrpcent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	getrpcport(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY

	gets(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getservbyname(3)
	getservbyname_r(3)
	getservbyport(3)
	getservbyport_r(3)
	getservent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getservent_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO

	getspent(3)
	getspent_r(3)
	getspnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Reentrant versions
	Structure

	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	getspnam_r(3)
	getsubopt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	getttyent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	getttynam(3)
	getusershell(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	getutent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	EXAMPLES
	SEE ALSO

	getutent_r(3)
	getutid(3)
	getutid_r(3)
	getutline(3)
	getutline_r(3)
	getutmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getutmpx(3)
	getutxent(3)
	getutxid(3)
	getutxline(3)
	getw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	getwc(3)
	getwc_unlocked(3)
	getwchar(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	getwchar_unlocked(3)
	getwd(3)
	glob(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	globfree(3)
	gmtime(3)
	gmtime_r(3)
	gnu_dev_major(3)
	gnu_dev_makedev(3)
	gnu_dev_minor(3)
	gnu_get_libc_release(3)
	gnu_get_libc_version(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	grantpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	group_member(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	SEE ALSO

	gsignal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	h_errno(3)
	hash(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	BUGS
	SEE ALSO

	hasmntopt(3)
	hcreate(3)
	hcreate_r(3)
	hdestroy(3)
	hdestroy_r(3)
	herror(3)
	hsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	hsearch_r(3)
	hstrerror(3)
	htobe16(3)
	htobe32(3)
	htobe64(3)
	htole16(3)
	htole32(3)
	htole64(3)
	htonl(3)
	htons(3)
	HUGE_VAL(3)
	HUGE_VALF(3)
	HUGE_VALL(3)
	hypot(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	hypotf(3)
	hypotl(3)
	iconv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iconv_close(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	iconv_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	if_freenameindex(3)
	if_indextoname(3)
	if_nameindex(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	if_nametoindex(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ilogb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	ilogbf(3)
	ilogbl(3)
	imaxabs(3)
	imaxdiv(3)
	index(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	inet(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	STANDARDS
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	inet_addr(3)
	inet_aton(3)
	inet_lnaof(3)
	inet_makeaddr(3)
	inet_net_ntop(3)
	inet_net_pton(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	inet_net_pton()
	inet_net_ntop()

	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	Input presentation format for inet_net_pton()
	Return value of inet_net_pton()

	EXAMPLES
	Program source

	SEE ALSO

	inet_netof(3)
	inet_network(3)
	inet_ntoa(3)
	inet_ntop(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	inet_pton(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	INFINITY(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	initgroups(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	initstate(3)
	initstate_r(3)
	innetgr(3)
	insque(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	iruserok(3)
	iruserok_af(3)
	isalnum(3)
	isalnum_l(3)
	isalpha(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	isalpha_l(3)
	isascii(3)
	isascii_l(3)
	isatty(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	isblank(3)
	isblank_l(3)
	iscntrl(3)
	iscntrl_l(3)
	isdigit(3)
	isdigit_l(3)
	isfdtype(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	isfinite(3)
	isgraph(3)
	isgraph_l(3)
	isgreater(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	isgreaterequal(3)
	isinf(3)
	isinff(3)
	isinfl(3)
	isless(3)
	islessequal(3)
	islessgreater(3)
	islower(3)
	islower_l(3)
	isnan(3)
	isnanf(3)
	isnanl(3)
	isnormal(3)
	isprint(3)
	isprint_l(3)
	ispunct(3)
	ispunct_l(3)
	isspace(3)
	isspace_l(3)
	isunordered(3)
	isupper(3)
	isupper_l(3)
	iswalnum(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswalpha(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswblank(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswcntrl(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswctype(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswdigit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswgraph(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswlower(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswprint(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswpunct(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswspace(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswupper(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iswxdigit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	isxdigit(3)
	isxdigit_l(3)
	j0(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	j1(3)
	j0f(3)
	j0l(3)
	j1f(3)
	j1l(3)
	jn(3)
	jnf(3)
	jnl(3)
	jrand48(3)
	jrand48_r(3)
	key_decryptsession(3)
	key_encryptsession(3)
	key_gendes(3)
	key_secretkey_is_set(3)
	key_setsecret(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	NOTES
	SEE ALSO

	killpg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	SEE ALSO

	klogctl(3)
	l64a(3)
	labs(3)
	lckpwdf(3)
	lcong48(3)
	lcong48_r(3)
	ldexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ldexpf(3)
	ldexpl(3)
	ldiv(3)
	le16toh(3)
	le32toh(3)
	le64toh(3)
	lfind(3)
	lgamma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	lgamma_r(3)
	lgammaf(3)
	lgammaf_r(3)
	lgammal(3)
	lgammal_r(3)
	lio_listio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	LIST(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal

	RETURN VALUE
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	LIST_EMPTY(3)
	LIST_ENTRY(3)
	LIST_FIRST(3)
	LIST_FOREACH(3)
	LIST_HEAD(3)
	LIST_HEAD_INITIALIZER(3)
	LIST_INIT(3)
	LIST_INSERT_AFTER(3)
	LIST_INSERT_BEFORE(3)
	LIST_INSERT_HEAD(3)
	LIST_NEXT(3)
	LIST_REMOVE(3)
	llabs(3)
	lldiv(3)
	llrint(3)
	llrintf(3)
	llrintl(3)
	llround(3)
	llroundf(3)
	llroundl(3)
	localeconv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	localtime(3)
	localtime_r(3)
	lockf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	log(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	log2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	log10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	log10f(3)
	log10l(3)
	log1p(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	log1pf(3)
	log1pl(3)
	log2f(3)
	log2l(3)
	logb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	logbf(3)
	logbl(3)
	logf(3)
	login(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	GNU details

	RETURN VALUE
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	login_tty(3)
	logl(3)
	logout(3)
	logwtmp(3)
	longjmp(3)
	lrand48(3)
	lrand48_r(3)
	lrint(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	lrintf(3)
	lrintl(3)
	lround(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	lroundf(3)
	lroundl(3)
	lsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	lseek64(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	lseek()
	lseek64()
	llseek()
	_llseek()

	ATTRIBUTES
	NOTES
	SEE ALSO

	lutimes(3)
	major(3)
	makecontext(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	makedev(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	mallinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	mallinfo2(3)
	malloc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	malloc()
	free()
	calloc()
	realloc()
	reallocarray()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	realloc(p, 0)

	HISTORY
	realloc(p, 0)

	NOTES
	Nonportable behavior

	BUGS
	EXAMPLES
	SEE ALSO

	malloc_get_state(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	__malloc_hook(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	NOTES
	EXAMPLES
	SEE ALSO

	__malloc_hook(3)
	malloc_info(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	__malloc_initialize_hook(3)
	malloc_set_state(3)
	malloc_stats(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	malloc_trim(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	VERSIONS
	NOTES
	SEE ALSO

	malloc_usable_size(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	CAVEATS
	SEE ALSO

	mallopt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Environment variables

	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	matherr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Math functions that employ matherr()

	ATTRIBUTES
	EXAMPLES
	Program source

	SEE ALSO

	MAX(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	MB_CUR_MAX(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	SEE ALSO

	MB_LEN_MAX(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mblen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbrlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbrtowc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbsinit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbsnrtowcs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	mbsrtowcs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mbstowcs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	mbtowc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mcheck(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	mcheck_check_all(3)
	mcheck_pedantic(3)
	memalign(3)
	__memalign_hook(3)
	memccpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	memchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	memcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	memcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	memeq(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	memfrob(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	memmem(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	memmove(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	mempcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	memrchr(3)
	memset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	MIN(3)
	minor(3)
	mkdtemp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	mkfifo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	mkfifoat()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	mkfifoat(3)
	mkostemp(3)
	mkostemps(3)
	mkstemp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	mkstemps(3)
	mktemp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	mktime(3)
	mmap64(3)
	modf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	modff(3)
	modfl(3)
	mpool(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	STANDARDS
	SEE ALSO

	mprobe(3)
	mq_close(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	mq_getattr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	mq_notify(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	mq_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	mq_receive(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	mq_send(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	mq_setattr(3)
	mq_timedreceive(3)
	mq_timedsend(3)
	mq_unlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	mrand48(3)
	mrand48_r(3)
	mtrace(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	muntrace(3)
	NAN(3)
	nan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	nanf(3)
	nanl(3)
	nearbyint(3)
	nearbyintf(3)
	nearbyintl(3)
	netlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	newlocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	freelocale()

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	nextafter(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	nextafterf(3)
	nextafterl(3)
	nextdown(3)
	nextdownf(3)
	nextdownl(3)
	nexttoward(3)
	nexttowardf(3)
	nexttowardl(3)
	nextup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	nextupf(3)
	nextupl(3)
	nftw(3)
	nl_langinfo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	nl_langinfo_l(3)
	nrand48(3)
	nrand48_r(3)
	ntohl(3)
	ntohs(3)
	ntp_adjtime(3)
	ntp_gettime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ntp_gettimex(3)
	offsetof(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	on_exit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	open_memstream(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	open_wmemstream(3)
	opendir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	STANDARDS
	NOTES
	SEE ALSO

	openlog(3)
	openpty(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	optarg(3)
	opterr(3)
	optind(3)
	optopt(3)
	passwd2des(3)
	pathconf(3)
	pclose(3)
	perror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	pmap_getmaps(3)
	pmap_getport(3)
	pmap_rmtcall(3)
	pmap_set(3)
	pmap_unset(3)
	popen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	posix_fallocate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	posix_madvise(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	posix_memalign(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	Headers

	NOTES
	SEE ALSO

	posix_openpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	posix_spawn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	fork() step
	pre-exec() step: housekeeping
	exec() step

	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	posix_spawnp(3)
	pow(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	Historical bugs (now fixed)

	SEE ALSO

	pow10(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	VERSIONS
	SEE ALSO

	pow10f(3)
	pow10l(3)
	powerof2(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	CAVEATS
	SEE ALSO

	powf(3)
	powl(3)
	__ppc_get_timebase(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	__ppc_get_timebase_freq(3)
	__ppc_mdoio(3)
	__ppc_mdoom(3)
	__ppc_set_ppr_low(3)
	__ppc_set_ppr_med(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	__ppc_set_ppr_med_high(3)
	__ppc_set_ppr_med_low(3)
	__ppc_set_ppr_very_low(3)
	__ppc_yield(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	printf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Format of the format string
	Flag characters
	Field width
	Precision
	Length modifier
	Conversion specifiers

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	EXAMPLES
	SEE ALSO

	profil(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	program_invocation_name(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	SEE ALSO

	program_invocation_short_name(3)
	psiginfo(3)
	psignal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	pthread_atfork(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_destroy(3)
	pthread_attr_getaffinity_np(3)
	pthread_attr_getdetachstate(3)
	pthread_attr_getguardsize(3)
	pthread_attr_getinheritsched(3)
	pthread_attr_getschedparam(3)
	pthread_attr_getschedpolicy(3)
	pthread_attr_getscope(3)
	pthread_attr_getsigmask_np(3)
	pthread_attr_getstack(3)
	pthread_attr_getstackaddr(3)
	pthread_attr_getstacksize(3)
	pthread_attr_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_attr_setaffinity_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setdetachstate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_attr_setguardsize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_attr_setinheritsched(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_attr_setschedparam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_attr_setschedpolicy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	pthread_attr_setscope(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setsigmask_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setstack(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_attr_setstackaddr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_attr_setstacksize(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_cancel(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pthread_cleanup_pop(3)
	pthread_cleanup_pop_restore_np(3)
	pthread_cleanup_push(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pthread_cleanup_push_defer_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	pthread_cond_broadcast(3)
	pthread_cond_destroy(3)
	pthread_cond_init(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	CANCELLATION
	ASYNC-SIGNAL SAFETY
	RETURN VALUE
	ERRORS
	SEE ALSO
	CAVEATS
	EXAMPLE

	pthread_cond_signal(3)
	pthread_cond_timedwait(3)
	pthread_cond_wait(3)
	pthread_condattr_destroy(3)
	pthread_condattr_init(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	SEE ALSO

	pthread_create(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Linux-specific details

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	pthread_detach(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_equal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_exit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	pthread_getaffinity_np(3)
	pthread_getattr_default_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pthread_getattr_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pthread_getconcurrency(3)
	pthread_getcpuclockid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_getname_np(3)
	pthread_getschedparam(3)
	pthread_getspecific(3)
	pthread_join(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_key_create(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO
	EXAMPLE

	pthread_key_delete(3)
	pthread_kill(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_kill_other_threads_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_mutex_consistent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_mutex_consistent_np(3)
	pthread_mutex_destroy(3)
	pthread_mutex_init(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	CANCELLATION
	ASYNC-SIGNAL SAFETY
	RETURN VALUE
	ERRORS
	SEE ALSO
	EXAMPLE

	pthread_mutex_lock(3)
	pthread_mutex_trylock(3)
	pthread_mutex_unlock(3)
	pthread_mutexattr_destroy(3)
	pthread_mutexattr_getkind_np(3)
	pthread_mutexattr_getpshared(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	pthread_mutexattr_getrobust(3)
	pthread_mutexattr_getrobust_np(3)
	pthread_mutexattr_gettype(3)
	pthread_mutexattr_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_mutexattr_setkind_np(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	SEE ALSO

	pthread_mutexattr_setpshared(3)
	pthread_mutexattr_setrobust(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	pthread_mutexattr_setrobust_np(3)
	pthread_mutexattr_settype(3)
	pthread_once(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS

	pthread_rwlockattr_getkind_np(3)
	pthread_rwlockattr_setkind_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	pthread_self(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_setaffinity_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	pthread_setattr_default_np(3)
	pthread_setcancelstate(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	Asynchronous cancelability
	Portability notes

	EXAMPLES
	SEE ALSO

	pthread_setcanceltype(3)
	pthread_setconcurrency(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_setname_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_setschedparam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_setschedprio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_setspecific(3)
	pthread_sigmask(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	pthread_sigqueue(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	pthread_spin_destroy(3)
	pthread_spin_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	pthread_spin_lock(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	pthread_spin_trylock(3)
	pthread_spin_unlock(3)
	pthread_testcancel(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	pthread_timedjoin_np(3)
	pthread_tryjoin_np(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	pthread_yield(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	ptsname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	ptsname_r(3)
	putc(3)
	putc_unlocked(3)
	putchar(3)
	putchar_unlocked(3)
	putenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	putgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	putpwent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	puts(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	putspent(3)
	pututline(3)
	pututxline(3)
	putw(3)
	putwc(3)
	putwc_unlocked(3)
	putwchar(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	putwchar_unlocked(3)
	pvalloc(3)
	qecvt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	qecvt_r(3)
	qfcvt(3)
	qfcvt_r(3)
	qgcvt(3)
	qsort(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	qsort_r(3)
	queue(3)
	raise(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	rand(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	rand_r(3)
	random(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	BUGS
	SEE ALSO

	random_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	BUGS
	SEE ALSO

	rawmemchr(3)
	rcmd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	rcmd()
	rresvport()
	iruserok() and ruserok()
	*_af() variants

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	rcmd_af(3)
	re_comp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	re_exec(3)
	readdir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	The d_name field

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	readdir_r(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	realloc(3)
	__realloc_hook(3)
	reallocarray(3)
	realpath(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	GNU extensions

	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	recno(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ERRORS
	BUGS
	SEE ALSO

	regcomp(3)
	regerror(3)
	regex(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Compilation
	Matching
	Match offsets
	Error reporting
	Freeing

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO

	regexec(3)
	regfree(3)
	register_printf_modifier(3)
	register_printf_specifier(3)
	register_printf_type(3)
	registerrpc(3)
	remainder(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	remainderf(3)
	remainderl(3)
	remove(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	remque(3)
	remquo(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	remquof(3)
	remquol(3)
	res_init(3)
	res_mkquery(3)
	res_nclose(3)
	res_ninit(3)
	res_nmkquery(3)
	res_nquery(3)
	res_nquerydomain(3)
	res_nsearch(3)
	res_nsend(3)
	res_query(3)
	res_querydomain(3)
	res_search(3)
	res_send(3)
	resolver(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	rewind(3)
	rewinddir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	rexec(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	rexec_af()

	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	rexec_af(3)
	rindex(3)
	rint(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	rintf(3)
	rintl(3)
	__riscv_flush_icache(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	round(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	roundf(3)
	roundl(3)
	roundup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	STANDARDS
	CAVEATS
	SEE ALSO

	rpc(3)
	NAME
	LIBRARY
	SYNOPSIS AND DESCRIPTION
	ATTRIBUTES
	SEE ALSO

	rpmatch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	rresvport(3)
	rresvport_af(3)
	rtime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	rtnetlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	BUGS
	EXAMPLES
	SEE ALSO

	ruserok(3)
	ruserok_af(3)
	S_ISBLK(3)
	S_ISCHR(3)
	S_ISDIR(3)
	S_ISFIFO(3)
	S_ISLNK(3)
	S_ISREG(3)
	S_ISSOCK(3)
	scalb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	scalbf(3)
	scalbl(3)
	scalbln(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	scalblnf(3)
	scalblnl(3)
	scalbn(3)
	scalbnf(3)
	scalbnl(3)
	scandir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	scandirat()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	scandirat(3)
	scanf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	sched_getcpu(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	secure_getenv(3)
	seed48(3)
	seed48_r(3)
	seekdir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	sem_close(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sem_destroy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sem_getvalue(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sem_init(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	sem_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	sem_post(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	sem_timedwait(3)
	sem_trywait(3)
	sem_unlink(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	sem_wait(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	setaliasent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	setbuf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	setbuffer(3)
	setcontext(3)
	setenv(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	__setfpucw(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	setfsent(3)
	setgrent(3)
	sethostent(3)
	sethostid(3)
	setjmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	sigsetjmp() and siglongjmp()

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	Nonlocal gotos and program readability
	Undefined behavior

	SEE ALSO

	setkey(3)
	setkey_r(3)
	setlinebuf(3)
	setlocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	Categories

	HISTORY
	Categories

	SEE ALSO

	setlogmask(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	setmntent(3)
	setnetent(3)
	setnetgrent(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	setprotoent(3)
	setpwent(3)
	setrpcent(3)
	setservent(3)
	setspent(3)
	setstate(3)
	setstate_r(3)
	setttyent(3)
	setusershell(3)
	setutent(3)
	setutxent(3)
	setvbuf(3)
	sgetspent(3)
	sgetspent_r(3)
	shm_open(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source: pshm_ucase.h
	Program source: pshm_ucase_bounce.c
	Program source: pshm_ucase_send.c

	SEE ALSO

	shm_unlink(3)
	sigabbrev_np(3)
	sigaddset(3)
	sigandset(3)
	sigblock(3)
	sigdelset(3)
	sigdescr_np(3)
	sigemptyset(3)
	sigfillset(3)
	siggetmask(3)
	sighold(3)
	sigignore(3)
	siginterrupt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	sigisemptyset(3)
	sigismember(3)
	siglongjmp(3)
	sigmask(3)
	signbit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	signgam(3)
	significand(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	significandf(3)
	significandl(3)
	sigorset(3)
	sigpause(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	sigqueue(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	C library/kernel differences

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sigrelse(3)
	sigset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sigsetjmp(3)
	sigsetmask(3)
	SIGSETOPS(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	GNU

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sigstack(3)
	sigvec(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sigwait(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	simpleq(3)
	SIMPLEQ_EMPTY(3)
	SIMPLEQ_ENTRY(3)
	SIMPLEQ_FIRST(3)
	SIMPLEQ_FOREACH(3)
	SIMPLEQ_HEAD(3)
	SIMPLEQ_HEAD_INITIALIZER(3)
	SIMPLEQ_INIT(3)
	SIMPLEQ_INSERT_AFTER(3)
	SIMPLEQ_INSERT_HEAD(3)
	SIMPLEQ_INSERT_TAIL(3)
	SIMPLEQ_NEXT(3)
	SIMPLEQ_REMOVE(3)
	SIMPLEQ_REMOVE_HEAD(3)
	sin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	sincos(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	sincosf(3)
	sincosl(3)
	sinf(3)
	sinh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	sinhf(3)
	sinhl(3)
	sinl(3)
	sleep(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	SLIST(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal

	RETURN VALUE
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	SEE ALSO

	SLIST_EMPTY(3)
	SLIST_ENTRY(3)
	SLIST_FIRST(3)
	SLIST_FOREACH(3)
	SLIST_HEAD(3)
	SLIST_HEAD_INITIALIZER(3)
	SLIST_INIT(3)
	SLIST_INSERT_AFTER(3)
	SLIST_INSERT_HEAD(3)
	SLIST_NEXT(3)
	SLIST_REMOVE(3)
	SLIST_REMOVE_HEAD(3)
	snprintf(3)
	sockatmark(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	sprintf(3)
	sqrt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	sqrtf(3)
	sqrtl(3)
	srand(3)
	srand48(3)
	srand48_r(3)
	srandom(3)
	srandom_r(3)
	sscanf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Conversions

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	The 'a' assignment-allocation modifier

	BUGS
	Numeric conversion specifiers
	Nonstandard modifiers

	EXAMPLES
	SEE ALSO

	ssignal(3)
	STAILQ(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal
	Other features

	RETURN VALUE
	VERSIONS
	BUGS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	STAILQ_CONCAT(3)
	STAILQ_EMPTY(3)
	STAILQ_ENTRY(3)
	STAILQ_FIRST(3)
	STAILQ_FOREACH(3)
	STAILQ_HEAD(3)
	STAILQ_HEAD_INITIALIZER(3)
	STAILQ_INIT(3)
	STAILQ_INSERT_AFTER(3)
	STAILQ_INSERT_HEAD(3)
	STAILQ_INSERT_TAIL(3)
	STAILQ_NEXT(3)
	STAILQ_REMOVE(3)
	STAILQ_REMOVE_HEAD(3)
	_Static_assert(3)
	static_assert(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	VERSIONS
	STANDARDS
	EXAMPLES
	SEE ALSO

	statvfs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	NOTES
	STANDARDS
	HISTORY
	SEE ALSO

	stdarg(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	va_start()
	va_arg()
	va_end()
	va_copy()

	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO

	stderr(3)
	stdin(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	stdio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	List of functions

	STANDARDS
	HISTORY
	SEE ALSO

	stdio_ext(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	SEE ALSO

	stdout(3)
	stpcpy(3)
	stpncpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO

	strcasecmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strcasestr(3)
	strcat(3)
	strchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strchrnul(3)
	strcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	EXAMPLES
	Program source

	SEE ALSO

	strcoll(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	strcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	STANDARDS
	CAVEATS
	EXAMPLES
	SEE ALSO

	strcspn(3)
	strdup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strdupa(3)
	streq(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strerror(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	strerror_r()
	strerror_l()

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	strerror_l(3)
	strerror_r(3)
	strerrordesc_np(3)
	strerrorname_np(3)
	strfmon(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	strfmon_l(3)
	strfromd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Format of the format string

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	VERSIONS
	NOTES
	EXAMPLES
	SEE ALSO

	strfromf(3)
	strfroml(3)
	strfry(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	strftime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ENVIRONMENT
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	ISO 8601 week dates
	glibc notes

	BUGS
	EXAMPLES
	Example program
	Program source

	SEE ALSO

	strftime_l(3)
	string(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	strlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	strncasecmp(3)
	strncat(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	EXAMPLES
	SEE ALSO

	strncmp(3)
	strncpy(3)
	strndup(3)
	strndupa(3)
	strnlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strpbrk(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strptime(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	glibc notes

	EXAMPLES
	SEE ALSO

	strrchr(3)
	strsep(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	Program source

	SEE ALSO

	strsignal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	strspn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strstr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strtod(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO

	strtof(3)
	strtoimax(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	strtok(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	BUGS
	EXAMPLES
	Program source

	SEE ALSO

	strtok_r(3)
	strtol(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	Range checks
	base

	BUGS
	White space

	EXAMPLES
	Program source

	SEE ALSO

	strtold(3)
	strtoll(3)
	strtoq(3)
	strtoul(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	Signed numbers
	White space
	isalnum(3)

	EXAMPLES
	SEE ALSO

	strtoull(3)
	strtoumax(3)
	strtouq(3)
	strverscmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	EXAMPLES
	Program source

	SEE ALSO

	strxfrm(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	svc_destroy(3)
	svc_freeargs(3)
	svc_getargs(3)
	svc_getcaller(3)
	svc_getreq(3)
	svc_getreqset(3)
	svc_register(3)
	svc_run(3)
	svc_sendreply(3)
	svc_unregister(3)
	svcerr_auth(3)
	svcerr_decode(3)
	svcerr_noproc(3)
	svcerr_noprog(3)
	svcerr_progvers(3)
	svcerr_systemerr(3)
	svcerr_weakauth(3)
	svcfd_create(3)
	svcraw_create(3)
	svctcp_create(3)
	svcudp_bufcreate(3)
	svcudp_create(3)
	swab(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	swapcontext(3)
	swprintf(3)
	sys_errlist(3)
	sys_nerr(3)
	sys_siglist(3)
	sysconf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	POSIX.1 variables
	POSIX.2 variables

	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	syslog(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	openlog()
	syslog() and vsyslog()
	closelog()
	Values for option
	Values for facility
	Values for level

	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	system(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	Caveats

	BUGS
	SEE ALSO

	sysv_signal(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	SEE ALSO

	TAILQ(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Creation
	Insertion
	Traversal
	Removal
	Other features

	RETURN VALUE
	STANDARDS
	HISTORY
	CAVEATS
	EXAMPLES
	SEE ALSO

	TAILQ_CONCAT(3)
	TAILQ_EMPTY(3)
	TAILQ_ENTRY(3)
	TAILQ_FIRST(3)
	TAILQ_FOREACH(3)
	TAILQ_FOREACH_REVERSE(3)
	TAILQ_HEAD(3)
	TAILQ_HEAD_INITIALIZER(3)
	TAILQ_INIT(3)
	TAILQ_INSERT_AFTER(3)
	TAILQ_INSERT_BEFORE(3)
	TAILQ_INSERT_HEAD(3)
	TAILQ_INSERT_TAIL(3)
	TAILQ_LAST(3)
	TAILQ_NEXT(3)
	TAILQ_PREV(3)
	TAILQ_REMOVE(3)
	TAILQ_SWAP(3)
	tan(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	tanf(3)
	tanh(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	tanhf(3)
	tanhl(3)
	tanl(3)
	tcdrain(3)
	tcflow(3)
	tcflush(3)
	tcgetattr(3)
	tcgetpgrp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	tcgetsid(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	tcsendbreak(3)
	tcsetattr(3)
	tcsetpgrp(3)
	tdelete(3)
	tdestroy(3)
	telldir(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	tempnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	termios(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The termios structure
	Retrieving and changing terminal settings
	Canonical and noncanonical mode
	Raw mode
	Line control
	Line speed

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	tfind(3)
	tgamma(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	tgammaf(3)
	tgammal(3)
	timegm(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	timelocal(3)
	timeradd(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	SEE ALSO

	timerclear(3)
	timercmp(3)
	timerisset(3)
	timersub(3)
	timespec_get(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	timespec_getres(3)
	TIMESPEC_TO_TIMEVAL(3)
	TIMEVAL_TO_TIMESPEC(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	STANDARDS

	timezone(3)
	tmpfile(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	tmpnam(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	tmpnam_r(3)
	toascii(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	tolower(3)
	tolower_l(3)
	toupper(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	toupper_l(3)
	towctrans(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	towlower(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	STANDARDS
	NOTES
	SEE ALSO

	towlower_l(3)
	towupper(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	towupper_l(3)
	trunc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	truncf(3)
	truncl(3)
	tsearch(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	ttyname(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	ttyname_r(3)
	ttyslot(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Ancient history
	Ancient history (2)
	The semantics of ttyslot

	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	twalk(3)
	twalk_r(3)
	tzname(3)
	tzset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ENVIRONMENT
	FILES
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	BUGS
	SEE ALSO

	uabs(3)
	ualarm(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	uimaxabs(3)
	ulabs(3)
	ulckpwdf(3)
	ulimit(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	ullabs(3)
	umaxabs(3)
	undocumented(3)
	NAME
	SYNOPSIS
	DESCRIPTION
	Solicitation
	The list

	ungetc(3)
	ungetwc(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	unlocked_stdio(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	unlockpt(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	unsetenv(3)
	updwtmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	FILES
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	updwtmpx(3)
	uselocale(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	usleep(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	utmpname(3)
	utmpxname(3)
	va_arg(3)
	va_copy(3)
	va_end(3)
	va_start(3)
	valloc(3)
	vasprintf(3)
	vdprintf(3)
	verr(3)
	verrx(3)
	versionsort(3)
	vfprintf(3)
	vfscanf(3)
	vfwprintf(3)
	vlimit(3)
	vprintf(3)
	vscanf(3)
	vsnprintf(3)
	vsprintf(3)
	vsscanf(3)
	vswprintf(3)
	vsyslog(3)
	vtimes(3)
	vwarn(3)
	vwarnx(3)
	vwprintf(3)
	warn(3)
	warnx(3)
	wcpcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	wcpncpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	SEE ALSO

	wcrtomb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcscasecmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcscat(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcschr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcscmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcscpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcscspn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsdup(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcslen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcsncasecmp(3)
	wcsncat(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsncmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsncpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsnlen(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsnrtombs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	NOTES
	SEE ALSO

	wcspbrk(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsrchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsrtombs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcsspn(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcsstr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcstoimax(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wcstok(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	SEE ALSO

	wcstombs(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcstoumax(3)
	wcswidth(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctob(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctomb(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctrans(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wctype(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wcwidth(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wmemchr(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wmemcmp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wmemcpy(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wmemmove(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wmempcpy(3)
	wmemset(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	SEE ALSO

	wordexp(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	The string argument
	The expansion
	The output array
	The flags argument

	RETURN VALUE
	ATTRIBUTES
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	wordfree(3)
	wprintf(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	XCRYPT(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ATTRIBUTES
	VERSIONS
	BUGS
	SEE ALSO

	xdecrypt(3)
	xdr(3)
	NAME
	LIBRARY
	SYNOPSIS AND DESCRIPTION
	ATTRIBUTES
	SEE ALSO

	xdr_accepted_reply(3)
	xdr_array(3)
	xdr_authunix_parms(3)
	xdr_bool(3)
	xdr_bytes(3)
	xdr_callhdr(3)
	xdr_callmsg(3)
	xdr_char(3)
	xdr_destroy(3)
	xdr_double(3)
	xdr_enum(3)
	xdr_float(3)
	xdr_free(3)
	xdr_getpos(3)
	xdr_inline(3)
	xdr_int(3)
	xdr_long(3)
	xdr_opaque(3)
	xdr_opaque_auth(3)
	xdr_pmap(3)
	xdr_pmaplist(3)
	xdr_pointer(3)
	xdr_reference(3)
	xdr_rejected_reply(3)
	xdr_replymsg(3)
	xdr_setpos(3)
	xdr_short(3)
	xdr_string(3)
	xdr_u_char(3)
	xdr_u_int(3)
	xdr_u_long(3)
	xdr_u_short(3)
	xdr_union(3)
	xdr_vector(3)
	xdr_void(3)
	xdr_wrapstring(3)
	xdrmem_create(3)
	xdrrec_create(3)
	xdrrec_endofrecord(3)
	xdrrec_eof(3)
	xdrrec_skiprecord(3)
	xdrstdio_create(3)
	xencrypt(3)
	xprt_register(3)
	xprt_unregister(3)
	y0(3)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	RETURN VALUE
	ERRORS
	ATTRIBUTES
	STANDARDS
	HISTORY
	BUGS
	SEE ALSO

	y1(3)
	y0f(3)
	y0l(3)
	y1f(3)
	y1l(3)
	yn(3)
	ynf(3)
	ynl(3)

	Library Functions Manual (attributes)
	gnu::aligned(3attr)
	NAME
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	CAVEATS

	gnu::format(3attr)
	NAME
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	GNU syntax
	Styles
	Non-variadic functions

	STANDARDS
	HISTORY
	EXAMPLES

	Library Functions Manual (constants)
	EOF(3const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	EXIT_FAILURE3const)
	EXIT_SUCCESS(3const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	NULL(3const)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	CAVEATS
	BUGS
	SEE ALSO

	PA_CHAR3const)
	PA_DOUBLE3const)
	PA_FLAG_LONG3const)
	PA_FLAG_LONG_DOUBLE3const)
	PA_FLAG_LONG_LONG3const)
	PA_FLAG_PTR3const)
	PA_FLAG_SHORT3const)
	PA_FLOAT3const)
	PA_INT3const)
	PA_LAST3const)
	PA_POINTER3const)
	PA_STRING3const)
	PA_WCHAR3const)
	PA_WSTRING3const)

	Library Functions Manual (headers)
	printf.h(3head)
	NAME
	LIBRARY
	SYNOPSIS
	Callbacks
	Types
	Constants

	DESCRIPTION
	register_printf_specifier()
	register_printf_modifier()
	register_printf_type()

	RETURN VALUE
	Callbacks

	ERRORS
	STANDARDS
	HISTORY
	EXAMPLES
	SEE ALSO

	sysexits.h(3head)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	CAVEATS
	SEE ALSO

	Library Functions Manual (types)
	aiocb(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	blkcnt_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	blksize_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	cc_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	clock_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	clockid_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	dev_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	div_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	double_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	epoll_data3type)
	epoll_data_t3type)
	epoll_event(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	C library/kernel differences

	STANDARDS
	SEE ALSO

	fenv_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	fexcept_t3type)
	FILE(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	float_t3type)
	gid_t3type)
	id_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	imaxdiv_t3type)
	in_addr3type)
	in_addr_t3type)
	in_port_t3type)
	in6_addr3type)
	int16_t3type)
	int32_t3type)
	int64_t3type)
	int8_t3type)
	intmax_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	BUGS
	SEE ALSO

	intN_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	intptr_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	iovec(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	itimerspec(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	lconv(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	ldiv_t3type)
	lldiv_t3type)
	locale_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	loff_t3type)
	mbstate_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	mode_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	off_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	VERSIONS
	NOTES
	SEE ALSO

	off64_t3type)
	pid_t3type)
	printf_arginfo_size_function3type)
	printf_function3type)
	printf_info3type)
	printf_va_arg_function3type)
	ptrdiff_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	SEE ALSO

	regex_t3type)
	regmatch_t3type)
	regoff_t3type)
	rlim_t3type)
	rlimit3type)
	sa_family_t3type)
	sigevent(3type)
	NAME
	SYNOPSIS
	DESCRIPTION
	sigevent
	sigval

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	siginfo_t3type)
	sigset_t3type)
	sigval3type)
	size_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	Use with printf(3) and scanf(3)

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sockaddr(3type)
	NAME
	LIBRARY
	SYNOPSIS
	Internet domain sockets
	UNIX domain sockets

	DESCRIPTION
	Internet domain sockets
	UNIX domain sockets

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	sockaddr_in3type)
	sockaddr_in63type)
	sockaddr_storage3type)
	sockaddr_un3type)
	socklen_t3type)
	speed_t3type)
	ssize_t3type)
	stat(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	suseconds_t3type)
	tcflag_t3type)
	time_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	Header files
	time_t

	NOTES
	SEE ALSO

	timer_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	timespec(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	timeval(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	tm(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	uid_t3type)
	uint16_t3type)
	uint32_t3type)
	uint64_t3type)
	uint8_t3type)
	uintmax_t3type)
	uintN_t3type)
	uintptr_t3type)
	useconds_t3type)
	va_list(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	void(3type)
	NAME
	SYNOPSIS
	DESCRIPTION
	Use with printf(3) and scanf(3)

	VERSIONS
	STANDARDS
	HISTORY
	SEE ALSO

	wchar_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	wint_t(3type)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	Kernel Interfaces Manual
	intro(4)
	NAME
	DESCRIPTION
	FILES
	NOTES
	Authors and copyright conditions

	SEE ALSO

	cciss(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Options
	Supported hardware
	Configuration details

	FILES
	Device nodes
	Files in /proc
	Files in /sys
	SCSI tape drive and medium changer support
	Hot plug support for SCSI tape drives
	SCSI error handling for tape drives and medium changers

	SEE ALSO

	console_codes(4)
	NAME
	DESCRIPTION
	Linux console controls
	Character sets
	Mouse tracking
	Comparisons with other terminals

	NOTES
	BUGS
	SEE ALSO

	console_ioctl(4)
	cpuid(4)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	dsp56k(4)
	NAME
	SYNOPSIS
	CONFIGURATION
	DESCRIPTION
	FILES
	SEE ALSO

	fd(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO

	full(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	FILES
	SEE ALSO

	fuse(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	The basic protocol
	Exchanged messages

	ERRORS
	STANDARDS
	NOTES
	SEE ALSO

	hd(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	hpsa(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Options
	Supported hardware
	Configuration details

	FILES
	Device nodes
	HPSA-specific host attribute files in /sys
	HPSA-specific disk attribute files in /sys
	Supported ioctl() operations

	SEE ALSO

	initrd(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	Boot-up operation
	Options
	Changing the normal root filesystem
	Usage

	FILES
	NOTES
	SEE ALSO

	kmem(4)
	lirc(4)
	NAME
	DESCRIPTION
	Reading input with the LIRC_MODE_MODE2 mode
	Reading input with the LIRC_MODE_SCANCODE mode
	Writing output with the LIRC_MODE_PULSE mode
	Writing output with the LIRC_MODE_SCANCODE mode

	IOCTL COMMANDS
	Always Supported Commands
	Optional Commands

	FEATURES
	BUGS
	SEE ALSO

	loop(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	/dev/loop-control

	FILES
	EXAMPLES
	Program source

	SEE ALSO

	loop-control(4)
	lp(4)
	NAME
	SYNOPSIS
	CONFIGURATION
	DESCRIPTION
	FILES
	SEE ALSO

	mem(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	mouse(4)
	NAME
	CONFIGURATION
	DESCRIPTION
	Introduction
	Microsoft protocol
	3-button Microsoft protocol
	Logitech protocol
	Mousesystems protocol
	Sun protocol
	MM protocol

	FILES
	SEE ALSO

	msr(4)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	null(4)
	NAME
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO

	port(4)
	ptmx(4)
	pts(4)
	NAME
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO

	ram(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	random(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Usage
	Configuration
	/proc interfaces
	ioctl(2) interface

	FILES
	NOTES
	BUGS
	SEE ALSO

	rtc(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	RTC vs system clock
	RTC functionality
	ioctl(2) interface

	FILES
	NOTES
	SEE ALSO

	sd(4)
	NAME
	SYNOPSIS
	CONFIGURATION
	DESCRIPTION
	FILES

	sk98lin(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Parameters

	FILES
	BUGS
	SEE ALSO

	smartpqi(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Supported ioctl() operations
	Boot options

	FILES
	Device nodes
	SmartPQI-specific host attribute files in /sys
	SmartPQI-specific disk attribute files in /sys

	VERSIONS
	NOTES
	Configuration

	HISTORY
	SEE ALSO

	st(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Data transfer
	Ioctls
	MTIOCTOP — perform a tape operation
	MTIOCGET — get status
	MTIOCPOS — get tape position

	RETURN VALUE
	FILES
	NOTES
	SEE ALSO

	tty(4)
	NAME
	DESCRIPTION
	TIOCNOTTY

	FILES
	SEE ALSO

	tty_ioctl(4)
	ttyS(4)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	urandom(4)
	vcs(4)
	NAME
	DESCRIPTION
	FILES
	VERSIONS
	EXAMPLES
	SEE ALSO

	vcsa(4)
	veth(4)
	NAME
	DESCRIPTION
	SEE ALSO

	wavelan(4)
	NAME
	SYNOPSIS
	DESCRIPTION
	Parameters
	Wireless extensions
	NWID (or domain)
	Frequency & channels
	Statistics spy
	/proc/net/wireless
	Private ioctl
	Quality and level threshold
	Histogram
	Specific notes

	SEE ALSO

	zero(4)

	File Formats Manual
	intro(5)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	SEE ALSO

	acct(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	Version 3 accounting file format

	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	charmap(5)
	NAME
	DESCRIPTION
	Syntax

	FILES
	STANDARDS
	EXAMPLES
	SEE ALSO

	core(5)
	NAME
	DESCRIPTION
	Naming of core dump files
	Piping core dumps to a program
	/proc/sys/kernel/core_pipe_limit
	Controlling which mappings are written to the core dump
	Core dumps and systemd

	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	dir_colors(5)
	NAME
	DESCRIPTION
	ISO/IEC 6429 (ANSI) color sequences
	Other terminal types (advanced configuration)
	Escape sequences

	FILES
	NOTES
	SEE ALSO

	ELF(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	Basic types
	ELF header (Ehdr)
	Program header (Phdr)
	Section header (Shdr)
	String and symbol tables
	Relocation entries (Rel & Rela)
	Dynamic tags (Dyn)
	Notes (Nhdr)

	NOTES
	SEE ALSO

	erofs(5)
	NAME
	DESCRIPTION
	Mount options

	VERSIONS
	CONFIGURATION
	SEE ALSO

	filesystems(5)
	NAME
	DESCRIPTION
	SEE ALSO

	fs(5)
	ftpusers(5)
	NAME
	DESCRIPTION
	Format

	FILES
	SEE ALSO

	gai.conf(5)
	NAME
	DESCRIPTION
	FILES
	VERSIONS
	EXAMPLES
	SEE ALSO

	group(5)
	NAME
	DESCRIPTION
	FILES
	BUGS
	SEE ALSO

	host.conf(5)
	NAME
	DESCRIPTION
	ENVIRONMENT
	FILES
	NOTES
	Historical

	SEE ALSO

	hosts.equiv(5)
	NAME
	DESCRIPTION
	FILES
	NOTES
	EXAMPLES
	SEE ALSO

	hosts(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	NOTES
	Historical notes

	EXAMPLES
	SEE ALSO

	issue(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	locale(5)
	NAME
	DESCRIPTION
	Syntax
	Locale category sections
	LC_ADDRESS
	LC_CTYPE
	LC_COLLATE
	LC_IDENTIFICATION
	LC_MESSAGES
	LC_MEASUREMENT
	LC_MONETARY
	LC_NAME
	LC_NUMERIC
	LC_PAPER
	LC_TELEPHONE
	LC_TIME

	FILES
	STANDARDS
	NOTES
	SEE ALSO

	motd(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	networks(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	nologin(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	nscd.conf(5)
	NAME
	DESCRIPTION
	NOTES
	Reloading

	SEE ALSO

	nss(5)
	NAME
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO

	nsswitch.conf(5)
	NAME
	DESCRIPTION
	Compatibility mode (compat)

	FILES
	NOTES
	SEE ALSO

	passwd(5)
	NAME
	DESCRIPTION
	FILES
	NOTES
	SEE ALSO

	proc(5)
	NAME
	DESCRIPTION
	Mount options
	Overview

	NOTES
	SEE ALSO

	proc_apm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_buddyinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_bus(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_cgroups(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_cmdline(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_config.gz(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_cpuinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_crypto(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_devices(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_diskstats(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_dma(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_driver(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_execdomains(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_fb(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_filesystems(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_fs(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_ide(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_interrupts(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_iomem(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_ioports(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kallsyms(5)
	NAME
	DESCRIPTION
	HISTORY
	SEE ALSO

	proc_kcore(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_key-users(5)
	proc_keys(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kmsg(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kpagecgroup(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kpagecount(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_kpageflags(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_ksyms(5)
	proc_loadavg(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_locks(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_malloc(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_meminfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_modules(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_mounts(5)
	proc_mtrr(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_net(5)
	proc_partitions(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pci(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_attr(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_autogroup(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_auxv(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cgroup(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_clear_refs(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cmdline(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_comm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_coredump_filter(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cpuset(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_cwd(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_environ(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_exe(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_fd(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_fdinfo(5)
	NAME
	DESCRIPTION
	HISTORY
	SEE ALSO

	proc_pid_gid_map(5)
	proc_pid_io(5)
	NAME
	DESCRIPTION
	CAVEATS
	SEE ALSO

	proc_pid_limits(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_map_files(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_maps(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mem(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mountinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mounts(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_mountstats(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_net(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_ns(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_numa_maps(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_oom_adj(5)
	proc_pid_oom_score(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_oom_score_adj(5)
	NAME
	DESCRIPTION
	HISTORY
	SEE ALSO

	proc_pid_pagemap(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_personality(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_projid_map(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_root(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_seccomp(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_setgroups(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_smaps(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_stack(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_stat(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_statm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_status(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_syscall(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_task(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_timers(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_timerslack_ns(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_uid_map(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_pid_wchan(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_profile(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_scsi(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_self(5)
	proc_slabinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_stat(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_swaps(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_abi(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_debug(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_dev(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_fs(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_kernel(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_net(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_proc(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_sunrpc(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_user(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sys_vm(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sysrq-trigger(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_sysvipc(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_thread-self(5)
	proc_tid(5)
	proc_tid_children(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_timer_list(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_timer_stats(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_tty(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_uptime(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_version(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_vmstat(5)
	NAME
	DESCRIPTION
	SEE ALSO

	proc_zoneinfo(5)
	NAME
	DESCRIPTION
	SEE ALSO

	procfs(5)
	protocols(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	repertoiremap(5)
	NAME
	DESCRIPTION
	Syntax

	FILES
	STANDARDS
	NOTES
	EXAMPLES
	SEE ALSO

	resolv.conf(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	resolver(5)
	rpc(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO

	securetty(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	services(5)
	NAME
	DESCRIPTION
	FILES
	SEE ALSO

	shells(5)
	NAME
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO

	slabinfo(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	VERSIONS
	NOTES
	SEE ALSO

	sysfs(5)
	NAME
	DESCRIPTION
	Files and directories

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	termcap(5)
	NAME
	DESCRIPTION
	Boolean capabilities
	Numeric capabilities
	String capabilities

	SEE ALSO

	tmpfs(5)
	NAME
	DESCRIPTION
	Mount options

	VERSIONS
	NOTES
	SEE ALSO

	ttytype(5)
	NAME
	DESCRIPTION
	FILES
	EXAMPLES
	SEE ALSO

	tzfile(5)
	NAME
	DESCRIPTION
	Version 2 format
	Version 3 format
	Version 4 format
	Interoperability considerations
	Common interoperability issues

	SEE ALSO

	utmp(5)
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	utmpx(5)
	wtmp(5)

	Games Manual
	intro(6)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	Miscellaneous Information Manual
	intro(7)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	SEE ALSO

	address_families(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	AIO(7)
	NAME
	DESCRIPTION
	ERRORS
	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	ARMSCII-8(7)
	NAME
	DESCRIPTION
	ArmSCII-8 characters

	SEE ALSO

	arp(7)
	NAME
	DESCRIPTION
	Ioctls
	/proc interfaces

	VERSIONS
	BUGS
	SEE ALSO

	ascii(7)
	NAME
	DESCRIPTION
	Tables

	NOTES
	History

	SEE ALSO

	attributes(7)
	NAME
	DESCRIPTION
	Conditionally safe features
	Other safety remarks

	SEE ALSO

	boot(7)
	NAME
	DESCRIPTION
	Hardware
	OS loader
	Kernel
	Root user-space process
	Boot scripts
	Sequencing directories
	Boot configuration

	FILES
	SEE ALSO

	bootparam(7)
	NAME
	DESCRIPTION
	The argument list
	General non-device-specific boot arguments
	Boot arguments for use by kernel developers
	Boot arguments for ramdisk use
	Boot arguments for SCSI devices
	Hard disks
	Ethernet devices
	The floppy disk driver
	The sound driver
	The line printer driver

	SEE ALSO

	BPF-HELPERS(7)
	NAME
	DESCRIPTION
	HELPERS
	EXAMPLES
	LICENSE
	IMPLEMENTATION
	SEE ALSO

	Capabilities(7)
	NAME
	DESCRIPTION
	Capabilities list
	Past and current implementation
	Notes to kernel developers
	Thread capability sets
	File capabilities
	File capability extended attribute versioning
	Transformation of capabilities during execve()
	Safety checking for capability-dumb binaries
	Capabilities and execution of programs by root
	Set-user-ID-root programs that have file capabilities
	Capability bounding set
	Effect of user ID changes on capabilities
	Programmatically adjusting capability sets
	The securebits flags: establishing a capabilities-only environment
	Per-user-namespace "set-user-ID-root" programs
	Namespaced file capabilities
	Interaction with user namespaces

	STANDARDS
	NOTES
	SEE ALSO

	cgroup_namespaces(7)
	NAME
	DESCRIPTION
	STANDARDS
	NOTES
	SEE ALSO

	cgroups(7)
	NAME
	DESCRIPTION
	Terminology
	Cgroups version 1 and version 2

	CGROUPS VERSION 1
	Tasks (threads) versus processes
	Mounting v1 controllers
	Unmounting v1 controllers
	Cgroups version 1 controllers
	Creating cgroups and moving processes
	Removing cgroups
	Cgroups v1 release notification
	Cgroup v1 named hierarchies

	CGROUPS VERSION 2
	Cgroups v2 unified hierarchy
	Cgroups v2 mount options
	Cgroups v2 controllers
	Cgroups v2 subtree control
	Cgroups v2 "no internal processes" rule
	Cgroups v2 cgroup.events file
	Cgroup v2 release notification
	Cgroups v2 cgroup.stat file
	Limiting the number of descendant cgroups

	CGROUPS DELEGATION: DELEGATING A HIERARCHY TO A LESS PRIVILEGED USER
	Cgroups v2 delegation: nsdelegate and cgroup namespaces
	Cgroup delegation containment rules

	CGROUPS VERSION 2 THREAD MODE
	Threaded versus domain controllers
	Creating a threaded subtree
	Using a threaded subtree
	Rules for writing to cgroup.type and creating threaded subtrees
	The "domain threaded" cgroup type
	Exceptions for the root cgroup
	The cgroups v2 "cpu" controller and realtime threads

	ERRORS
	NOTES
	/proc files
	/sys/kernel/cgroup files

	SEE ALSO

	charsets(7)
	NAME
	DESCRIPTION
	ASCII
	ISO/IEC 8859
	KOI8-R / KOI8-U
	GB 2312
	Big5
	JIS X 0208
	KS X 1001
	ISO/IEC 2022 and ISO/IEC 4873
	TIS-620
	Unicode

	SEE ALSO

	complex(7)
	NAME
	LIBRARY
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO

	cp1251(7)
	NAME
	DESCRIPTION
	CP 1251 characters

	NOTES
	SEE ALSO

	cp1252(7)
	NAME
	DESCRIPTION
	CP 1252 characters

	NOTES
	SEE ALSO

	cpuset(7)
	NAME
	DESCRIPTION
	FILES
	EXTENDED CAPABILITIES
	Exclusive cpusets
	Hardwall
	Notify on release
	Memory pressure
	Memory spread
	Memory migration
	Scheduler load balancing
	Scheduler relax domain level

	FORMATS
	Mask format
	List format

	RULES
	PERMISSIONS
	WARNINGS
	Enabling memory_pressure
	Using the echo command

	EXCEPTIONS
	Memory placement
	Renaming cpusets

	ERRORS
	VERSIONS
	NOTES
	BUGS
	EXAMPLES
	Creating and attaching to a cpuset.
	Migrating a job to different memory nodes.

	SEE ALSO

	credentials(7)
	NAME
	DESCRIPTION
	Process ID (PID)
	Parent process ID (PPID)
	Process group ID and session ID
	User and group identifiers
	Modifying process user and group IDs

	STANDARDS
	NOTES
	SEE ALSO

	ddp(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options
	/proc interfaces
	Ioctls

	ERRORS
	VERSIONS
	NOTES
	Compatibility

	BUGS
	SEE ALSO

	environ(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	NOTES
	BUGS
	SEE ALSO

	epoll(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Level-triggered and edge-triggered
	Interaction with autosleep
	/proc interfaces
	Example for suggested usage
	Questions and answers
	Possible pitfalls and ways to avoid them

	VERSIONS
	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	fanotify(7)
	NAME
	DESCRIPTION
	fanotify_init(), fanotify_mark(), and notification groups
	The event queue
	Reading fanotify events
	Monitoring an fanotify file descriptor for events
	Dealing with permission events
	Monitoring filesystems for errors
	Closing the fanotify file descriptor
	/proc interfaces

	ERRORS
	STANDARDS
	HISTORY
	NOTES
	Limitations and caveats

	BUGS
	EXAMPLES
	Example program: fanotify_example.c
	Program source: fanotify_example.c
	Example program: fanotify_fid.c
	Program source: fanotify_fid.c

	SEE ALSO

	feature_test_macros(7)
	NAME
	DESCRIPTION
	Specification of feature test macro requirements in manual pages
	Feature test macros understood by glibc
	Default definitions, implicit definitions, and combining definitions

	STANDARDS
	HISTORY
	NOTES
	EXAMPLES
	Program source

	SEE ALSO

	fifo(7)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	futex(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Semantics

	VERSIONS
	NOTES
	SEE ALSO

	glibc(7)
	glob(7)
	NAME
	DESCRIPTION
	Wildcard matching
	Pathnames
	Empty lists

	NOTES
	Regular expressions
	Character classes and internationalization

	SEE ALSO

	hier(7)
	NAME
	DESCRIPTION
	STANDARDS
	BUGS
	SEE ALSO

	hostname(7)
	NAME
	DESCRIPTION
	SEE ALSO

	icmp(7)
	NAME
	DESCRIPTION
	/proc interfaces

	VERSIONS
	NOTES
	SEE ALSO

	inode(7)
	NAME
	DESCRIPTION
	The file type and mode

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	inotify(7)
	NAME
	DESCRIPTION
	Reading events from an inotify file descriptor
	inotify events
	Examples
	/proc interfaces

	STANDARDS
	HISTORY
	NOTES
	Limitations and caveats
	Dealing with rename() events

	BUGS
	EXAMPLES
	Example output
	Program source

	SEE ALSO

	ip(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Special and reserved addresses
	Socket options
	/proc interfaces
	Ioctls

	ERRORS
	NOTES
	Compatibility

	BUGS
	SEE ALSO

	ipc_namespaces(7)
	NAME
	DESCRIPTION
	SEE ALSO

	ipv6(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options

	ERRORS
	VERSIONS
	NOTES
	BUGS
	SEE ALSO

	iso-8859-1(7)
	iso-8859-2(7)
	iso-8859-3(7)
	iso-8859-4(7)
	iso-8859-5(7)
	iso-8859-6(7)
	iso-8859-7(7)
	iso-8859-8(7)
	iso-8859-9(7)
	iso-8859-10(7)
	iso-8859-11(7)
	iso-8859-13(7)
	iso-8859-14(7)
	iso-8859-15(7)
	iso-8859-16(7)
	ISO_8859-1(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-1 characters

	NOTES
	SEE ALSO

	ISO_8859-2(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-2 characters

	NOTES
	SEE ALSO

	ISO_8859-3(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-3 characters

	NOTES
	SEE ALSO

	ISO_8859-4(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-4 characters

	NOTES
	SEE ALSO

	ISO_8859-5(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-5 characters

	SEE ALSO

	ISO_8859-6(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-6 characters

	NOTES
	SEE ALSO

	ISO_8859-7(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-7 characters

	NOTES
	SEE ALSO

	ISO_8859-8(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-8 characters

	NOTES
	SEE ALSO

	ISO_8859-9(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-9 characters

	NOTES
	SEE ALSO

	ISO_8859-10(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-10 characters

	NOTES
	SEE ALSO

	ISO_8859-11(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-11 characters

	NOTES
	SEE ALSO

	ISO_8859-13(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-13 characters

	NOTES
	SEE ALSO

	ISO_8859-14(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-14 characters

	NOTES
	SEE ALSO

	ISO_8859-15(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-15 characters

	NOTES
	SEE ALSO

	ISO_8859-16(7)
	NAME
	DESCRIPTION
	ISO/IEC 8859 alphabets
	ISO/IEC 8859-16 characters

	NOTES
	SEE ALSO

	iso_8859_1(7)
	iso_8859_2(7)
	iso_8859_3(7)
	iso_8859_4(7)
	iso_8859_5(7)
	iso_8859_6(7)
	iso_8859_7(7)
	iso_8859_8(7)
	iso_8859_9(7)
	iso_8859_10(7)
	iso_8859_11(7)
	iso_8859_13(7)
	iso_8859_14(7)
	iso_8859_15(7)
	iso_8859_16(7)
	kernel_lockdown(7)
	NAME
	DESCRIPTION
	Coverage

	VERSIONS
	NOTES

	keyrings(7)
	NAME
	DESCRIPTION
	Keys
	Key types
	Keyrings
	Anchoring keys
	Possession
	Access rights
	Searching for keys
	On-demand key creation
	Users

	FILES
	SEE ALSO

	KOI8-R(7)
	NAME
	DESCRIPTION
	KOI8-R characters

	NOTES
	SEE ALSO

	KOI8-U(7)
	NAME
	DESCRIPTION
	KOI8-U characters

	NOTES
	SEE ALSO

	Landlock(7)
	NAME
	DESCRIPTION
	Landlock rules
	Filesystem actions
	Network flags
	Scope flags
	Layers of file path access rights
	Bind mounts and OverlayFS
	Inheritance
	Ptrace restrictions
	IPC scoping
	Truncating files

	VERSIONS
	NOTES
	CAVEATS
	EXAMPLES
	SEE ALSO

	latin1(7)
	latin2(7)
	latin3(7)
	latin4(7)
	latin5(7)
	latin6(7)
	latin7(7)
	latin8(7)
	latin9(7)
	latin10(7)
	libc(7)
	NAME
	DESCRIPTION
	glibc
	Linux libc
	Other C libraries

	SEE ALSO

	locale(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	POSIX.1-2008 extensions to the locale API

	ENVIRONMENT
	FILES
	STANDARDS
	SEE ALSO

	mailaddr(7)
	NAME
	DESCRIPTION
	Abbreviation
	Route-addrs
	Postmaster

	FILES
	SEE ALSO

	man(7)
	man-pages(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Sections of the manual pages
	Macro package
	Conventions for source file layout
	Title line
	Sections within a manual page

	FORMATTING AND WORDING CONVENTIONS
	SYNOPSIS
	RETURN VALUE
	ATTRIBUTES

	STYLE GUIDE
	Use of gender-neutral language
	Formatting conventions for manual pages describing commands
	Formatting conventions for manual pages describing functions
	Use semantic newlines
	Lists
	Formatting conventions (general)
	Spelling
	BSD version numbers
	Capitalization
	Indentation of structure definitions, shell session logs, and so on
	Preferred terms
	Terms to avoid
	Trademarks
	NULL, NUL, null pointer, and null byte
	Hyperlinks
	Use of e.g., i.e., etc., a.k.a., and similar
	Em-dashes
	Hyphenation of attributive compounds
	Hyphenation with multi, non, pre, re, sub, and so on
	Generating optimal glyphs
	Example programs and shell sessions

	EXAMPLES
	SEE ALSO

	math_error(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Domain error
	Pole error
	Range error

	NOTES
	SEE ALSO

	mctp(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Sending messages
	Receiving messages

	SEE ALSO

	mount_namespaces(7)
	NAME
	DESCRIPTION
	SHARED SUBTREES
	MS_SHARED and MS_PRIVATE example
	MS_SLAVE example
	MS_UNBINDABLE example
	Propagation type transitions
	Bind (MS_BIND) semantics
	Move (MS_MOVE) semantics
	Mount semantics
	Unmount semantics
	The /proc/ pid /mountinfo propagate_from tag

	STANDARDS
	HISTORY
	NOTES
	Restrictions on mount namespaces

	EXAMPLES
	SEE ALSO

	mq_overview(7)
	NAME
	DESCRIPTION
	Library interfaces and system calls
	Versions
	Kernel configuration
	Persistence
	Linking
	/proc interfaces
	Resource limit
	Mounting the message queue filesystem
	Linux implementation of message queue descriptors
	IPC namespaces

	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	namespaces(7)
	NAME
	DESCRIPTION
	Namespace types
	The namespaces API
	The /proc/pid/ns/ directory
	The /proc/sys/user directory
	Namespace lifetime

	EXAMPLES
	SEE ALSO

	netdevice(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Ioctls

	NOTES
	BUGS
	SEE ALSO

	netlink(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address formats
	Socket options

	VERSIONS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	network_namespaces(7)
	NAME
	DESCRIPTION
	SEE ALSO

	nptl(7)
	NAME
	DESCRIPTION
	NPTL and signals
	NPTL and process credential changes

	STANDARDS
	NOTES
	SEE ALSO

	numa(7)
	NAME
	DESCRIPTION
	NUMA system calls
	/proc/pid/numa_maps (since Linux 2.6.14)

	STANDARDS
	NOTES
	Library support

	SEE ALSO

	operator(7)
	NAME
	DESCRIPTION

	packet(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address types
	Socket options
	Ioctls
	Error handling

	ERRORS
	VERSIONS
	NOTES
	Compatibility

	BUGS
	LLC header handling
	MSG_TRUNC issues
	spkt_device device name truncation
	Documentation issues

	SEE ALSO

	path_resolution(7)
	NAME
	DESCRIPTION
	Step 1: start of the resolution process
	Step 2: walk along the path
	Step 3: find the final entry
	. and ..
	Mount points
	Trailing slashes
	Final symbolic link
	Length limit
	Empty pathname
	Permissions
	Bypassing permission checks: superuser and capabilities

	SEE ALSO

	pathname(7)
	NAME
	DESCRIPTION
	VERSIONS
	SEE ALSO

	persistent-keyring(7)
	NAME
	DESCRIPTION
	Special operations

	NOTES
	SEE ALSO

	pid_namespaces(7)
	NAME
	DESCRIPTION
	The namespace init process
	Nesting PID namespaces
	setns(2) and unshare(2) semantics
	Adoption of orphaned children
	Compatibility of CLONE_NEWPID with other CLONE_* flags
	/proc and PID namespaces
	/proc files
	Miscellaneous

	STANDARDS
	EXAMPLES
	SEE ALSO

	pipe(7)
	NAME
	DESCRIPTION
	I/O on pipes and FIFOs
	Pipe capacity
	/proc files
	PIPE_BUF
	Open file status flags
	Portability notes
	BUGS

	SEE ALSO

	pkeys(7)
	NAME
	DESCRIPTION
	Signal Handler Behavior
	Protection Keys system calls

	EXAMPLES
	Program source

	SEE ALSO

	posixoptions(7)
	NAME
	DESCRIPTION
	ADV - _POSIX_ADVISORY_INFO - _SC_ADVISORY_INFO
	AIO - _POSIX_ASYNCHRONOUS_IO - _SC_ASYNCHRONOUS_IO
	BAR - _POSIX_BARRIERS - _SC_BARRIERS
	--- - POSIX_CHOWN_RESTRICTED
	CS - _POSIX_CLOCK_SELECTION - _SC_CLOCK_SELECTION
	CPT - _POSIX_CPUTIME - _SC_CPUTIME
	--- - _POSIX_FILE_LOCKING - _SC_FILE_LOCKING
	FSC - _POSIX_FSYNC - _SC_FSYNC
	IP6 - _POSIX_IPV6 - _SC_IPV6
	--- - _POSIX_JOB_CONTROL - _SC_JOB_CONTROL
	MF - _POSIX_MAPPED_FILES - _SC_MAPPED_FILES
	ML - _POSIX_MEMLOCK - _SC_MEMLOCK
	MR/MLR - _POSIX_MEMLOCK_RANGE - _SC_MEMLOCK_RANGE
	MPR - _POSIX_MEMORY_PROTECTION - _SC_MEMORY_PROTECTION
	MSG - _POSIX_MESSAGE_PASSING - _SC_MESSAGE_PASSING
	MON - _POSIX_MONOTONIC_CLOCK - _SC_MONOTONIC_CLOCK
	--- - _POSIX_MULTI_PROCESS - _SC_MULTI_PROCESS
	--- - _POSIX_NO_TRUNC
	PIO - _POSIX_PRIORITIZED_IO - _SC_PRIORITIZED_IO
	PS - _POSIX_PRIORITY_SCHEDULING - _SC_PRIORITY_SCHEDULING
	RS - _POSIX_RAW_SOCKETS
	--- - _POSIX_READER_WRITER_LOCKS - _SC_READER_WRITER_LOCKS
	RTS - _POSIX_REALTIME_SIGNALS - _SC_REALTIME_SIGNALS
	--- - _POSIX_REGEXP - _SC_REGEXP
	--- - _POSIX_SAVED_IDS - _SC_SAVED_IDS
	SEM - _POSIX_SEMAPHORES - _SC_SEMAPHORES
	SHM - _POSIX_SHARED_MEMORY_OBJECTS - _SC_SHARED_MEMORY_OBJECTS
	--- - _POSIX_SHELL - _SC_SHELL
	SPN - _POSIX_SPAWN - _SC_SPAWN
	SPI - _POSIX_SPIN_LOCKS - _SC_SPIN_LOCKS
	SS - _POSIX_SPORADIC_SERVER - _SC_SPORADIC_SERVER
	SIO - _POSIX_SYNCHRONIZED_IO - _SC_SYNCHRONIZED_IO
	TSA - _POSIX_THREAD_ATTR_STACKADDR - _SC_THREAD_ATTR_STACKADDR
	TSS - _POSIX_THREAD_ATTR_STACKSIZE - _SC_THREAD_ATTR_STACKSIZE
	TCT - _POSIX_THREAD_CPUTIME - _SC_THREAD_CPUTIME
	TPI - _POSIX_THREAD_PRIO_INHERIT - _SC_THREAD_PRIO_INHERIT
	TPP - _POSIX_THREAD_PRIO_PROTECT - _SC_THREAD_PRIO_PROTECT
	TPS - _POSIX_THREAD_PRIORITY_SCHEDULING - _SC_THREAD_PRIORITY_SCHEDULING
	TSH - _POSIX_THREAD_PROCESS_SHARED - _SC_THREAD_PROCESS_SHARED
	TSF - _POSIX_THREAD_SAFE_FUNCTIONS - _SC_THREAD_SAFE_FUNCTIONS
	TSP - _POSIX_THREAD_SPORADIC_SERVER - _SC_THREAD_SPORADIC_SERVER
	THR - _POSIX_THREADS - _SC_THREADS
	TMO - _POSIX_TIMEOUTS - _SC_TIMEOUTS
	TMR - _POSIX_TIMERS - _SC_TIMERS
	TRC - _POSIX_TRACE - _SC_TRACE
	TEF - _POSIX_TRACE_EVENT_FILTER - _SC_TRACE_EVENT_FILTER
	TRI - _POSIX_TRACE_INHERIT - _SC_TRACE_INHERIT
	TRL - _POSIX_TRACE_LOG - _SC_TRACE_LOG
	TYM - _POSIX_TYPED_MEMORY_OBJECTS - _SC_TYPED_MEMORY_OBJECT
	--- - _POSIX_VDISABLE

	X/OPEN SYSTEM INTERFACE EXTENSIONS
	XSI - _XOPEN_CRYPT - _SC_XOPEN_CRYPT
	XSI - _XOPEN_REALTIME - _SC_XOPEN_REALTIME
	ADV - --- - ---
	XSI - _XOPEN_REALTIME_THREADS - _SC_XOPEN_REALTIME_THREADS
	ADVANCED REALTIME THREADS - --- - ---
	TRACING - --- - ---
	STREAMS - _XOPEN_STREAMS - _SC_XOPEN_STREAMS
	XSI - _XOPEN_LEGACY - _SC_XOPEN_LEGACY
	XSI - _XOPEN_UNIX - _SC_XOPEN_UNIX

	SEE ALSO

	precedence(7)
	process-keyring(7)
	NAME
	DESCRIPTION
	SEE ALSO

	pthreads(7)
	NAME
	DESCRIPTION
	Pthreads function return values
	Thread IDs
	Thread-safe functions
	Async-cancel-safe functions
	Cancelation points
	Compiling on Linux
	Linux implementations of POSIX threads
	LinuxThreads
	NPTL
	Determining the threading implementation
	Selecting the threading implementation: LD_ASSUME_KERNEL

	SEE ALSO

	pty(7)
	NAME
	DESCRIPTION
	UNIX 98 pseudoterminals
	BSD pseudoterminals

	FILES
	NOTES
	SEE ALSO

	queue(7)
	NAME
	DESCRIPTION
	Singly linked lists (SLIST)
	Singly linked tail queues (STAILQ)
	Doubly linked data structures
	Doubly linked lists (LIST)
	Doubly linked tail queues (TAILQ)
	Doubly linked circular queues (CIRCLEQ)

	STANDARDS
	HISTORY
	NOTES
	SEE ALSO

	random(7)
	NAME
	DESCRIPTION
	Initialization of the entropy pool
	Choice of random source
	Monte Carlo and other probabilistic sampling applications
	Comparison between getrandom, /dev/urandom, and /dev/random
	Generating cryptographic keys

	SEE ALSO

	raw(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options
	Error handling

	ERRORS
	VERSIONS
	NOTES
	BUGS
	SEE ALSO

	regex(7)
	NAME
	DESCRIPTION
	BUGS
	AUTHOR
	SEE ALSO

	RTLD-AUDIT(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	la_version()
	la_objsearch()
	la_activity()
	la_objopen()
	la_objclose()
	la_preinit()
	la_symbind*()
	la_pltenter()
	la_pltexit()

	VERSIONS
	STANDARDS
	NOTES
	BUGS
	EXAMPLES
	SEE ALSO

	rtnetlink(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Routing attributes
	Messages

	VERSIONS
	BUGS
	SEE ALSO

	sched(7)
	NAME
	DESCRIPTION
	API summary
	Scheduling policies
	SCHED_FIFO: First in-first out scheduling
	SCHED_RR: Round-robin scheduling
	SCHED_DEADLINE: Sporadic task model deadline scheduling
	SCHED_OTHER: Default Linux time-sharing scheduling
	The nice value
	SCHED_BATCH: Scheduling batch processes
	SCHED_IDLE: Scheduling very low priority jobs
	Resetting scheduling policy for child processes
	Privileges and resource limits
	Limiting the CPU usage of real-time and deadline processes
	Response time
	Miscellaneous
	The autogroup feature
	The nice value and group scheduling
	Real-time features in the mainline Linux kernel

	NOTES
	SEE ALSO

	sem_overview(7)
	NAME
	DESCRIPTION
	Versions
	Persistence
	Linking
	Accessing named semaphores via the filesystem

	NOTES
	EXAMPLES
	SEE ALSO

	session-keyring(7)
	NAME
	DESCRIPTION
	Special operations

	SEE ALSO

	shm_overview(7)
	NAME
	DESCRIPTION
	Versions
	Persistence
	Linking
	Accessing shared memory objects via the filesystem

	NOTES
	SEE ALSO

	sigevent(7)
	signal(7)
	NAME
	DESCRIPTION
	Signal dispositions
	Sending a signal
	Waiting for a signal to be caught
	Synchronously accepting a signal
	Signal mask and pending signals
	Execution of signal handlers
	Standard signals
	Queueing and delivery semantics for standard signals
	Signal numbering for standard signals
	Real-time signals
	Interruption of system calls and library functions by signal handlers
	Interruption of system calls and library functions by stop signals

	STANDARDS
	NOTES
	BUGS
	SEE ALSO

	signal-safety(7)
	NAME
	DESCRIPTION
	errno
	Deviations in the GNU C library

	SEE ALSO

	sock_diag(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Request
	Response
	UNIX domain sockets
	IPv4 and IPv6 sockets
	Socket memory information

	VERSIONS
	STANDARDS
	EXAMPLES
	SEE ALSO

	socket(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Socket-layer functions
	Socket address structures
	Socket options
	Signals
	/proc interfaces
	Ioctls

	VERSIONS
	NOTES
	SEE ALSO

	spufs(7)
	NAME
	DESCRIPTION
	Mount options
	Files

	EXAMPLES
	SEE ALSO

	standards(7)
	NAME
	DESCRIPTION
	SEE ALSO

	string_copying(7)
	NAME
	SYNOPSIS
	Strings
	Null-padded character sequences
	Length-bounded character sequences

	DESCRIPTION
	Terms (and abbreviations)
	Copy, catenate, and chain-copy
	Truncate or not?
	Null-padded character sequences
	Length-bounded character sequences
	String vs character sequence
	Functions

	RETURN VALUE
	ERRORS
	NOTES
	CAVEATS
	BUGS
	EXAMPLES
	Implementations

	SEE ALSO

	SUFFIXES(7)
	NAME
	DESCRIPTION
	STANDARDS
	BUGS
	SEE ALSO

	svipc(7)
	symlink(7)
	NAME
	DESCRIPTION
	Magic links
	Symbolic link ownership, permissions, and timestamps
	Obtaining a file descriptor that refers to a symbolic link
	Handling of symbolic links by system calls and commands
	Treatment of symbolic links in system calls
	Commands not traversing a file tree
	Commands traversing a file tree

	SEE ALSO

	system_data_types(7)
	NAME
	DESCRIPTION
	NOTES
	Conventions used in this page

	EXAMPLES
	SEE ALSO

	sysvipc(7)
	NAME
	DESCRIPTION
	Message queues
	Semaphore sets
	Shared memory segments
	IPC namespaces

	SEE ALSO

	tcp(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address formats
	/proc interfaces
	Socket options
	Sockets API
	Ioctls
	Error handling

	ERRORS
	VERSIONS
	BUGS
	SEE ALSO

	termio(7)
	NAME
	DESCRIPTION
	SEE ALSO

	thread-keyring(7)
	NAME
	DESCRIPTION
	SEE ALSO

	time(7)
	NAME
	DESCRIPTION
	Real time and process time
	The hardware clock
	The software clock, HZ, and jiffies
	System and process clocks; time namespaces
	High-resolution timers
	The Epoch
	Broken-down time
	Sleeping and setting timers
	Timer slack

	SEE ALSO

	time_namespaces(7)
	NAME
	DESCRIPTION
	/proc/pid/timens_offsets

	NOTES
	EXAMPLES
	SEE ALSO

	tis-620(7)
	udp(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Error handling
	/proc interfaces
	Socket options
	Ioctls

	ERRORS
	VERSIONS
	SEE ALSO

	udplite(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Socket options

	ERRORS
	FILES
	VERSIONS
	BUGS
	SEE ALSO

	unicode(7)
	NAME
	DESCRIPTION
	Combining characters
	Implementation levels
	Unicode under Linux
	Private Use Areas (PUA)
	Literature

	SEE ALSO

	units(7)
	NAME
	DESCRIPTION
	Decimal prefixes
	Binary prefixes
	Discussion

	SEE ALSO

	UNIX(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Pathname sockets
	Pathname socket ownership and permissions
	Abstract sockets
	Socket options
	Autobind feature
	Sockets API
	Ancillary messages
	Ioctls

	ERRORS
	VERSIONS
	NOTES
	BUGS
	EXAMPLES
	Example output
	Program source

	SEE ALSO

	uri(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Usage
	Character encoding
	Writing a URI

	STANDARDS
	NOTES
	Security

	BUGS
	SEE ALSO

	url(7)
	urn(7)
	user-keyring(7)
	NAME
	DESCRIPTION
	SEE ALSO

	user-session-keyring(7)
	NAME
	DESCRIPTION
	NOTES
	SEE ALSO

	user_namespaces(7)
	NAME
	DESCRIPTION
	Nested namespaces, namespace membership
	Capabilities
	Effect of capabilities within a user namespace
	Interaction of user namespaces and other types of namespaces
	User and group ID mappings: uid_map and gid_map
	Defining user and group ID mappings: writing to uid_map and gid_map
	Project ID mappings: projid_map
	Interaction with system calls that change process UIDs or GIDs
	The /proc/pid/setgroups file
	Unmapped user and group IDs
	Accessing files
	Operation of file-related capabilities
	Set-user-ID and set-group-ID programs
	Miscellaneous

	STANDARDS
	NOTES
	Global root
	Availability

	EXAMPLES
	Program source

	SEE ALSO

	UTF-8(7)
	NAME
	DESCRIPTION
	Properties
	Encoding
	Example
	Application notes
	Security
	Standards

	SEE ALSO

	utf8(7)
	uts_namespaces(7)
	NAME
	DESCRIPTION
	SEE ALSO

	vDSO(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Example background
	Finding the vDSO
	File format

	NOTES
	Source
	vDSO names
	strace(1), seccomp(2), and the vDSO

	ARCHITECTURE-SPECIFIC NOTES
	ARM functions
	aarch64 functions
	bfin (Blackfin) functions (port removed in Linux 4.17)
	mips functions
	ia64 (Itanium) functions
	parisc (hppa) functions
	ppc/32 functions
	ppc/64 functions
	riscv functions
	s390 functions
	s390x functions
	sh (SuperH) functions
	i386 functions
	x86-64 functions
	x86/x32 functions
	History

	SEE ALSO

	vsock(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Address format
	Live migration
	Ioctls
	Local communication

	ERRORS
	VERSIONS
	SEE ALSO

	x25(7)
	NAME
	SYNOPSIS
	DESCRIPTION
	Socket addresses
	Socket options

	VERSIONS
	BUGS
	SEE ALSO

	xattr(7)
	NAME
	DESCRIPTION
	Extended attribute namespaces
	Extended security attributes
	System extended attributes
	Trusted extended attributes
	User extended attributes
	Filesystem differences

	STANDARDS
	NOTES
	SEE ALSO

	System Manager's Manual
	intro(8)
	NAME
	DESCRIPTION
	NOTES
	Authors and copyright conditions

	iconvconfig(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	EXIT STATUS
	FILES
	SEE ALSO

	ld.so(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	Dynamic string tokens

	OPTIONS
	ENVIRONMENT
	Secure-execution mode
	Environment variables

	FILES
	NOTES
	Legacy Hardware capabilities (from glibc 2.5 to glibc 2.37)
	glibc Hardware capabilities (from glibc 2.33)

	SEE ALSO

	ld-linux.so(8)
	ld-linux(8)
	ldconfig(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	SEE ALSO

	nscd(8)
	NAME
	DESCRIPTION
	OPTIONS
	NOTES
	SEE ALSO

	sln(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	SEE ALSO

	tzselect(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT VARIABLES
	FILES
	EXIT STATUS
	SEE ALSO
	NOTES

	zdump(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	INTERVAL FORMAT
	LIMITATIONS
	SEE ALSO

	zic(8)
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	FILES
	EXTENDED EXAMPLE
	FILES
	NOTES
	SEE ALSO

