-- File: tkz_elements_triangles.lua -- Copyright (c) 2023–2025 Alain Matthes -- SPDX-License-Identifier: LPPL-1.3c -- Maintainer: Alain Matthes triangle = {} triangle.__index = triangle function triangle:new(za, zb, zc) local eps = tkz.epsilon -- ===== Guardrails against degeneration ===== -- sall vertices combined if point.abs(za - zb) <= eps or point.abs(zb - zc) <= eps or point.abs(zc - za) <= eps then tex.error("Degenerate triangle: two vertices coincide.") return end -- aligned vertices if tkz.is_linear(za, zb, zc) then tex.error("Degenerate triangle: vertices aligned.") return end -- ===== Side lengths ===== local c = point.abs(zb - za) local a = point.abs(zc - zb) local b = point.abs(za - zc) -- ===== Line objects ===== local ab = line:new(za, zb) local bc = line:new(zb, zc) local ca = line:new(zc, za) -- ===== Angles ===== local alpha = find_angle_(za, zb, zc) local beta = find_angle_(zb, zc, za) local gamma = find_angle_(zc, za, zb) local type = "triangle" local circumcenter = circum_center_(za, zb, zc) local centroid = barycenter_({ za, 1 }, { zb, 1 }, { zc, 1 }) local incenter = in_center_(za, zb, zc) local orthocenter = ortho_center_(za, zb, zc) local eulercenter = euler_center_(za, zb, zc) local spiekercenter = spieker_center_(za, zb, zc) local orientation = find_orientation_(za, zb, zc) local semiperimeter = (a + b + c) / 2 local cross = (zb - za) ^ (zc - za) local area = 0.5 * math.abs((zb - za) ^ (zc - za)) local inradius = area / semiperimeter local circumradius = (a * b * c) / (4 * area) local tr = { pa = za, pb = zb, pc = zc, type = type, circumcenter = circumcenter, centroid = centroid, incenter = incenter, eulercenter = eulercenter, orthocenter = orthocenter, spiekercenter = spiekercenter, a = a, b = b, c = c, ab = ab, ca = ca, bc = bc, alpha = alpha, beta = beta, gamma = gamma, angle_alpha = angle_alpha, angle_beta = angle_beta, angle_gamma = angle_gamma, semiperimeter = semiperimeter, area = area, inradius = inradius, circumradius = circumradius, orientation = orientation, } setmetatable(tr, self) return tr end setmetatable(triangle, { __call = function(cls, ...) return cls:new(...) end, }) function triangle:get(i) if i == 1 then return self.pa elseif i == 2 then return self.pb elseif i == 3 then return self.pc else return self.pa, self.pb, self.pc end end ----------------------- -- Result -> boolean ----------------------- -- added strict function triangle:in_out(pt, strict) -- ne change pas → tous les anciens documents restent valides return in_out_(self.pa, self.pb, self.pc, pt, strict) end function triangle:check_equilateral() return check_equilateral_(self.pa, self.pb, self.pc) end triangle.is_equilateral = triangle.check_equilateral function triangle:check_acutangle() local asq = self.a * self.a local bsq = self.b * self.b local csq = self.c * self.c if asq + bsq > csq and bsq + csq > asq and csq + asq > bsq then return true else return false end end triangle.is_acute = triangle.check_acutangle ----------------------- -- Result -> real ----------------------- function triangle:area() -- obsolete return area_(self.pa, self.pb, self.pc) end function triangle:barycentric_coordinates(pt) local xA, yA = self.pa:get() local xB, yB = self.pb:get() local xC, yC = self.pc:get() local xP, yP = pt:get() local orient2d_ABC = oriented_area2_(xA, yA, xB, yB, xC, yC) local l_A = oriented_area2_(xP, yP, xB, yB, xC, yC) / orient2d_ABC local l_B = oriented_area2_(xA, yA, xP, yP, xC, yC) / orient2d_ABC local l_C = oriented_area2_(xA, yA, xB, yB, xP, yP) / orient2d_ABC return l_A, l_B, l_C end function triangle:trilinear_coordinates(pt) local la, lb, lc = self:barycentric_coordinates(pt) local ta, tb, tc = la / self.a, lb / self.b, lc / self.c -- normalize local N = ta + tb + tc return ta / N, tb / N, tc / N end function triangle:trilinear_to_d(x, y, z) return trilinear_to_d_(x, y, z, self.a, self.b, self.c) end function triangle:get_angle(n) local a, b, c a = self.pa b = self.pb c = self.pc if n == 1 then return point.arg((a - b) / (c - b)) elseif n == 2 then return point.arg((b - c) / (a - c)) else return point.arg((c - a) / (b - a)) end end function triangle:parameter(p) local a, b, c = self.a, self.b, self.c -- a=BC, b=CA, c=AB local A, B, C = self.pa, self.pb, self.pc local AB, BC, CA = self.ab, self.bc, self.ca local ptotal = a + b + c if AB:in_out_segment(p) then return length_(A, p) / ptotal elseif BC:in_out_segment(p) then return (c + length_(B, p)) / ptotal elseif CA:in_out_segment(p) then return (c + a + length_(C, p)) / ptotal else tex.error("The point is not on the boundary of the triangle.") end end ----------------------- -- Result -> point ----------------------- function triangle:barycenter(ka, kb, kc) return barycenter_({ self.pa, ka }, { self.pb, kb }, { self.pc, kc }) end triangle.barycentric = triangle.barycenter function triangle:base(u, v) -- (ab,ac) base coord u,v return barycenter_({ self.pa, (1 - u - v) }, { self.pb, u }, { self.pc, v }) end function triangle:point(t) local p = self.a + self.b + self.c -- périmètre local t1 = self.c / p -- fin de AB local t2 = (self.c + self.a) / p -- fin de AB + BC if t <= t1 then return self.ab:point(t / t1) elseif t <= t2 then return self.bc:point((t - t1) / (t2 - t1)) else return self.ca:point((t - t2) / (1 - t2)) end end function triangle:random(inside) inside = (inside == "inside") math.randomseed(os.time()) if inside then local x = self.bc:random() local L = line:new(self.pa, x) return L:random() else return self:point(math.random()) end end function triangle:trilinear(a, b, c) return barycenter_({ self.pa, a * self.a }, { self.pb, b * self.b }, { self.pc, c * self.c }) end function triangle:kimberling(n) local cos, sin, tan, pi = math.cos, math.sin, math.tan, math.pi local A, B, C = self.alpha, self.beta, self.gamma local a, b, c = self.a, self.b, self.c local pi = math.pi if n == 1 then return self:trilinear(1, 1, 1) -- incenter elseif n == 2 then return self:barycentric(1, 1, 1) -- centroid elseif n == 3 then return self:trilinear(cos(A), cos(B), cos(C)) --circumcenter elseif n == 4 then return self:barycentric(tan(A), tan(B), tan(C)) -- orthocenter elseif n == 5 then return self:trilinear(cos(B - C), cos(C - A), cos(A - B)) --nine elseif n == 6 then return self:trilinear(a, b, c) -- lemoine elseif n == 7 then return self:barycentric(1 / (b + c - a), 1 / (a + c - b), 1 / (a + b - c)) -- gergonne elseif n == 8 then return self:barycentric(b + c - a, a + c - b, a + b - c) -- nagel elseif n == 9 then return self:barycentric(a * (b + c - a), b * (a + c - b), c * (a + b - c)) -- mittenpunkt elseif n == 10 then return self:barycentric(b + c, a + c, a + b) -- spieker elseif n == 11 then return self:trilinear(1 - cos(B - C), 1 - cos(C - A), 1 - cos(A - B)) -- feuerbach elseif n == 13 then return self:trilinear(1 / sin(A + pi / 3), 1 / sin(B + pi / 3), 1 / sin(C + pi / 3)) -- first fermat elseif n == 14 then return self:trilinear(1 / sin(A - pi / 3), 1 / sin(B - pi / 3), 1 / sin(C - pi / 3)) -- second fermat elseif n == 19 then return self:trilinear(tan(A), tan(B), tan(C)) -- clawson elseif n == 20 then return self:barycentric(tan(B) + tan(C) - tan(A), tan(A) + tan(C) - tan(B), tan(A) + tan(B) - tan(C)) --de Longchamps elseif n == 39 then return self:trilinear(a * (b ^ 2 + c ^ 2), b * (c ^ 2 + a ^ 2), c * (a ^ 2 + b ^ 2)) --brocard midpoint elseif n == 55 then return self:trilinear(a * (b + c - a), b * (c + a - b), c * (a + b - c)) elseif n == 56 then return self:trilinear(a / (b + c - a), b / (c + a - b), c / (a + b - c)) elseif n == 110 then return self:trilinear(a / (b ^ 2 - c ^ 2), b / (c ^ 2 - a ^ 2), c / (a ^ 2 - b ^ 2)) -- kiepert parabola elseif n == 115 then return self:barycentric((b ^ 2 - c ^ 2) ^ 2, (c ^ 2 - a ^ 2) ^ 2, (a ^ 2 - b ^ 2) ^ 2) -- kiepert hyperbola elseif n == 175 then ra, rb, rc = radius_excircle_(self.pa, self.pb, self.pc) return self:barycentric(a - ra, b - rb, c - rc) elseif n == 176 then ra, rb, rc = radius_excircle_(self.pa, self.pb, self.pc) return self:barycentric(a + ra, b + rb, c + rc) elseif n == 213 then return self:trilinear((b + c) * a ^ 2, (c + a) * b ^ 2, (a + b) * c ^ 2) elseif n == 264 then return self:barycentric(1 / sin(2 * A), 1 / sin(2 * B), 1 / sin(2 * C)) elseif n == 371 then return self:trilinear(cos(A - pi / 4), cos(B - pi / 4), cos(C - pi / 4)) elseif n == 598 then return self:trilinear( b * c / (a ^ 2 - 2 * b ^ 2 - 2 * c ^ 2), c * a / (b ^ 2 - 2 * c ^ 2 - 2 * a ^ 2), a * b / (c ^ 2 - 2 * a ^ 2 - 2 * b ^ 2) ) -- to get lemoine triangle else tex.error({ " Your number is not yet in the list" }) end end function triangle:isogonal(pt) local pa = self.bc:reflection(pt) local pb = self.ca:reflection(pt) local pc = self.ab:reflection(pt) return circum_center_(pa, pb, pc) end function triangle:excenter(pt) if pt == self.pa then return self:trilinear(-1, 1, 1) elseif pt == self.pb then return self:trilinear(1, -1, 1) elseif pt == self.pc then return self:trilinear(1, 1, -1) else tex.error("The argument must be a vertex of the triangle") end end function triangle:projection(p) local p1 = projection_(self.pb, self.pc, p) local p2 = projection_(self.pa, self.pc, p) local p3 = projection_(self.pa, self.pb, p) return p1, p2, p3 end function triangle:parallelogram() local x = self.pc + self.pa - self.pb return x end function triangle:bevan_point() return circum_center_(excentral_tr_(self.pa, self.pb, self.pc)) end function triangle:mittenpunkt_point() return lemoine_point_(excentral_tr_(self.pa, self.pb, self.pc)) end function triangle:gergonne_point() return gergonne_point_(self.pa, self.pb, self.pc) end function triangle:nagel_point() return nagel_point_(self.pa, self.pb, self.pc) end function triangle:feuerbach_point() return feuerbach_point_(self.pa, self.pb, self.pc) end function triangle:symmedian_point() return lemoine_point_(self.pa, self.pb, self.pc) end triangle.lemoine_point = triangle.symmedian_point triangle.grebe_point = triangle.symmedian_point function triangle:spieker_center() return spieker_center_(self.pa, self.pb, self.pc) end function triangle:euler_points() H = self.orthocenter return midpoint_(H, self.pa), midpoint_(H, self.pb), midpoint_(H, self.pc) end function triangle:nine_points() local ma, mb, mc, ha, hb, hc -- Calculate the medial triangle ma, mb, mc = medial_tr_(self.pa, self.pb, self.pc) -- Calculate the orthic triangle ha, hb, hc = orthic_tr_(self.pa, self.pb, self.pc) -- Calculate the orthocenter H = self.orthocenter -- Return the points of the nine-point circle return ma, mb, mc, ha, hb, hc, midpoint_(H, self.pa), midpoint_(H, self.pb), midpoint_(H, self.pc) end function triangle:first_lemoine_points() local lc = self:lemoine_point() local p1 = intersection_ll_(lc, ll_from_(lc, self.pa, self.pb), self.pa, self.pc) local p2 = intersection_ll_(lc, ll_from_(lc, self.pb, self.pc), self.pb, self.pa) local p3 = intersection_ll_(lc, ll_from_(lc, self.pc, self.pa), self.pc, self.pb) local p5 = intersection_ll_(lc, ll_from_(lc, self.pa, self.pb), self.pb, self.pc) local p6 = intersection_ll_(lc, ll_from_(lc, self.pb, self.pc), self.pa, self.pc) local p4 = intersection_ll_(lc, ll_from_(lc, self.pc, self.pa), self.pa, self.pb) return p1, p2, p3, p4, p5, p6 end function triangle:second_lemoine_points() local lc = self:lemoine_point() local ha, hb, hc = orthic_tr_(self.pa, self.pb, self.pc) local p1 = intersection_ll_(lc, ll_from_(lc, ha, hb), self.pa, self.pc) local p2 = intersection_ll_(lc, ll_from_(lc, hb, hc), self.pb, self.pa) local p3 = intersection_ll_(lc, ll_from_(lc, hc, ha), self.pc, self.pb) local p5 = intersection_ll_(lc, ll_from_(lc, ha, hb), self.pb, self.pc) local p6 = intersection_ll_(lc, ll_from_(lc, hb, hc), self.pa, self.pc) local p4 = intersection_ll_(lc, ll_from_(lc, hc, ha), self.pa, self.pb) return p1, p2, p3, p4, p5, p6 end function triangle:soddy_points() return soddy_center_(self.pa, self.pb, self.pc) end -- soddy centers function triangle:soddy_center(outer) outer = (outer == "outer") local index = outer and 175 or 176 return self:kimberling(index) end function triangle:conway_points() local a1 = report_(self.pb, self.pa, length_(self.pb, self.pc), self.pa) local a2 = report_(self.pc, self.pa, length_(self.pb, self.pc), self.pa) local b1 = report_(self.pa, self.pb, length_(self.pa, self.pc), self.pb) local b2 = report_(self.pc, self.pb, length_(self.pa, self.pc), self.pb) local c1 = report_(self.pb, self.pc, length_(self.pb, self.pa), self.pc) local c2 = report_(self.pa, self.pc, length_(self.pb, self.pa), self.pc) return a1, a2, b1, b2, c1, c2 end function triangle:conway_center() return self.incenter end function triangle:first_fermat_point() local x = equilateral_tr_(self.pb, self.pa) local y = equilateral_tr_(self.pa, self.pc) return intersection_ll_(x, self.pc, y, self.pb) end function triangle:second_fermat_point() local x = equilateral_tr_(self.pa, self.pb) local y = equilateral_tr_(self.pc, self.pa) return intersection_ll_(x, self.pc, y, self.pb) end function triangle:orthic_axis_points() return orthic_axis_(self.pa, self.pb, self.pc) end function triangle:kenmotu_point() return self:kimberling(371) end function triangle:kenmotu_points() local ck = self:kenmotu_circle() local p1, p2 = intersection_lc_(self.pa, self.pb, ck.center, ck.through) local p3, p4 = intersection_lc_(self.pb, self.pc, ck.center, ck.through) local p5, p6 = intersection_lc_(self.pc, self.pa, ck.center, ck.through) return p1, p2, p3, p4, p5, p6 end function triangle:taylor_points() local a, b, c = orthic_tr_(self.pa, self.pb, self.pc) return projection_(self.pa, self.pc, a), projection_(self.pa, self.pb, a), projection_(self.pb, self.pa, b), projection_(self.pb, self.pc, b), projection_(self.pc, self.pb, c), projection_(self.pc, self.pa, c) end function triangle:adams_points() local i = self:kimberling(1) local g = self:kimberling(7) local l = projection_(self.pa, self.pc, i) local n = projection_(self.pa, self.pb, i) local m = projection_(self.pb, self.pc, i) local x = ll_from_(g, m, n) local y = ll_from_(g, n, l) local z = ll_from_(g, m, l) local t1 = intersection_ll_(x, g, self.pa, self.pb) local t4 = intersection_ll_(x, g, self.pb, self.pc) local t2 = intersection_ll_(y, g, self.pa, self.pb) local t5 = intersection_ll_(y, g, self.pa, self.pc) local t3 = intersection_ll_(z, g, self.pb, self.pc) local t6 = intersection_ll_(z, g, self.pa, self.pc) return t1, t2, t3, t4, t5, t6 end function triangle:lamoen_points() local ma, mb, mc = medial_tr_(self.pa, self.pb, self.pc) local g = centroid_(self.pa, self.pb, self.pc) local p1 = circum_center_(self.pa, mc, g) local p2 = circum_center_(self.pb, ma, g) local p3 = circum_center_(self.pb, mc, g) local p4 = circum_center_(self.pc, mb, g) local p5 = circum_center_(self.pc, ma, g) local p6 = circum_center_(self.pa, mb, g) return p1, p2, p3, p4, p5, p6 end function triangle:yiu_centers() local ap = symmetry_axial_(self.pb, self.pc, self.pa) local bp = symmetry_axial_(self.pa, self.pc, self.pb) local cp = symmetry_axial_(self.pa, self.pb, self.pc) local oa = circum_center_(self.pa, bp, cp) local ob = circum_center_(self.pb, ap, cp) local oc = circum_center_(self.pc, bp, ap) return oa, ob, oc end function triangle:first_brocard_point() return self:trilinear(self.c / self.b, self.a / self.c, self.b / self.a) end function triangle:second_brocard_point() return self:trilinear(self.b / self.c, self.c / self.a, self.a / self.b) end function triangle:brocard_midpoint() return self:kimberling(39) end function triangle:macbeath_point() return self:kimberling(264) end function triangle:poncelet_point(pt) local A, B, C, D = self.pa, self.pb, self.pc, pt local e1 = euler_center_(A, B, C) local e2 = euler_center_(A, C, D) local m = midpoint_(A, C) local x, y = intersection_cc_(e1, m, e2, m) if not x or not y then tex.error("Poncelet construction failed: no intersection.") end if x == m then return y else return x end end function triangle:orthopole(l) local ap, bp, cp = l:projection(self.pa, self.pb, self.pc) local bpp = self.ca:projection(bp) local app = self.bc:projection(ap) local la = line:new(ap, app) local lb = line:new(bp, bpp) return intersection(la, lb) end ------------------- -- Result -> line ------------------- function triangle:symmedian_line(arg) local pts = { self.pa, self.pb, self.pc } local i = resolve_triangle_index(self, arg) if i < 0 or i > 2 then return nil end local A = pts[i + 1] local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] local L = self:lemoine_point() local P = intersection_ll_(A, L, B, C) return line:new(A, P) end function triangle:altitude(arg) local pts = { self.pa, self.pb, self.pc } local i = resolve_triangle_index(self, arg) if i < 0 or i > 2 then return nil end local A = pts[i + 1] local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] return line:new(A, projection_(B, C, A)) end function triangle:bisector(arg) local i = resolve_triangle_index(self, arg) if i < 0 or i > 2 then return nil end local pts = { self.pa, self.pb, self.pc } local I = self.incenter local A = pts[i + 1] local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] local P = intersection_ll_(A, I, B, C) return line:new(A, P) end function triangle:bisector_ext(arg) local i = resolve_triangle_index(self, arg) if i < 0 or i > 2 then return nil end local pts = { self.pa, self.pb, self.pc } local A = pts[i + 1] local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] return line:new(A, bisector_ext_(A, B, C)) end function triangle:mediator(arg) local i = resolve_triangle_index(self, arg) if i < 0 or i > 2 then return nil end local pts = { self.pa, self.pb, self.pc } local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] return line:new(B, C):mediator() end function triangle:trisector(arg) local pts = { self.pa, self.pb, self.pc } local i = resolve_triangle_index(self, arg) if i < 0 or i > 2 then return nil end local A = pts[i + 1] local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] local an = get_angle_(A, B, C) local pti = report_(A, B, 1) local ptj = rotation_(A, an / 3, pti) local ptk = rotation_(A, an / 3, ptj) return line(A, ptj), line(A, ptk) end function triangle:antiparallel(pt, arg) local a, b, c = self.pa, self.pb, self.pc local I = self.incenter local i = resolve_triangle_index(self, arg) local S = { a, b, c } local A = S[i + 1] -- sommet de départ local B = S[(i + 1) % 3 + 1] -- premier sommet adjacent local C = S[(i + 2) % 3 + 1] -- second sommet adjacent -- u, v sont les symétriques de B et C par rapport à la bissectrice en I local u = symmetry_axial_(A, I, B) local v = symmetry_axial_(A, I, C) local w = ll_from_(pt, u, v) return line:new(intersection_ll_(pt, w, B, A), intersection_ll_(pt, w, C, A)) end function triangle:orthic_axis() local x, y, z = orthic_axis_(self.pa, self.pb, self.pc) return line:new(x, z) end -- N,H,G,O -- check_equilateral_ (a,b,c) function triangle:euler_line() if check_equilateral_(self.pa, self.pb, self.pc) then tex.error("An error has occurred", { "No euler line with equilateral triangle" }) else local a, b, c = orthic_axis_(self.pa, self.pb, self.pc) local x = projection_(a, c, self.eulercenter) return line:new(self.eulercenter, x) end end -- with pt on the circumcircle function triangle:steiner_line(pt) local u = symmetry_axial_(self.pa, self.pb, pt) local v = symmetry_axial_(self.pa, self.pc, pt) return line:new(u, v) end function triangle:lemoine_axis() -- revoir car problème local C = self:circum_circle() local pl = self:lemoine_point() return C:polar(pl) end function triangle:fermat_axis() local x = self:first_fermat_point() local y = self:second_fermat_point() return line:new(x, y) end function triangle:brocard_axis() return line:new(self.circumcenter, self:lemoine_point()) end function triangle:simson_line(pt) -- pt on circumcircle local x = self.ab:projection(pt) local y = self.bc:projection(pt) return line:new(x, y) end function triangle:soddy_line() return line:new(self:soddy_center(), self:soddy_center("outer")) end ----------------------- --- Result -> circles -- ----------------------- function triangle:euler_circle() return circle:new(euler_center_(self.pa, self.pb, self.pc), midpoint_(self.pb, self.pc)) end function triangle:circum_circle() return circle:new(circum_center_(self.pa, self.pb, self.pc),self.pa) end function triangle:in_circle() return circle:new(self.incenter, projection_(self.pb, self.pc, self.incenter)) end -- see excenter ?? function triangle:ex_circle(arg) local pts = { self.pa, self.pb, self.pc } local i = resolve_triangle_index(self, arg) if i < 0 or i > 2 then return nil end local A = pts[i + 1] local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] local O = ex_center_(B, C, A) return circle:new(O, projection_(C, A, O)) end function triangle:spieker_circle() local ma, mb, mc, sp ma, mb, mc = medial_tr_(self.pa, self.pb, self.pc) sp = in_center_(ma, mb, mc) return circle:new(sp, projection_(ma, mb, sp)) end function triangle:cevian_circle(p) local pta, ptb, ptc = cevian_(self.pa, self.pb, self.pc, p) return circle:new(circum_center_(pta, ptb, ptc), pta) end function triangle:symmedial_circle() local pta, ptb, ptc, p p = lemoine_point_(self.pa, self.pb, self.pc) pta, ptb, ptc = cevian_(self.pa, self.pb, self.pc, p) return circle:new(circum_center_(pta, ptb, ptc), pta) end function triangle:conway_circle() local t t = report_(self.pb, self.pa, length_(self.pb, self.pc), self.pa) return circle:new(self.incenter, t) end function triangle:pedal_circle(pt) local x, y, z, c x = projection_(self.pb, self.pc, pt) y = projection_(self.pa, self.pc, pt) z = projection_(self.pa, self.pb, pt) c = circum_center_(x, y, z) return circle:new(c, x) end function triangle:first_lemoine_circle() local lc, oc lc = self:lemoine_point() oc = self.circumcenter return circle:new(midpoint_(lc, oc), intersection_ll_(lc, ll_from_(lc, self.pa, self.pb), self.pa, self.pc)) end function triangle:second_lemoine_circle() local lc, a, b, c, r, th lc = self:lemoine_point() a = point.abs(self.pc - self.pb) b = point.abs(self.pa - self.pc) c = point.abs(self.pb - self.pa) r = (a * b * c) / (a * a + b * b + c * c) th = lc + point(r, 0) return circle:new(lc, th) end function triangle:bevan_circle() local o, r, s, t o = circum_center_(excentral_tr_(self.pa, self.pb, self.pc)) r, s, t = excentral_tr_(self.pa, self.pb, self.pc) return circle:new(o, r) end function triangle:taylor_circle() local a, b, c = orthic_tr_(self.pa, self.pb, self.pc) local d = projection_(self.pa, self.pb, a) local e = projection_(self.pb, self.pc, b) local f = projection_(self.pc, self.pa, c) return circle:new(circum_center_(d, e, f), d) end function triangle:adams_circle() local i = self:kimberling(1) local g = self:kimberling(7) local m = projection_(self.pb, self.pc, i) local n = projection_(self.pa, self.pb, i) local x = ll_from_(g, m, n) local t = intersection_ll_(x, g, self.pa, self.pb) return circle:new(i, t) end function triangle:lamoen_circle() local ma, mb, mc = medial_tr_(self.pa, self.pb, self.pc) local g = centroid_(self.pa, self.pb, self.pc) local p1 = circum_center_(self.pa, mb, g) local p2 = circum_center_(self.pb, ma, g) local p3 = circum_center_(self.pc, ma, g) local c = circum_center_(p1, p2, p3) return circle:new(c, p1) end -- soddy circles function triangle:soddy_circle(outer) outer = (outer == "outer") local index = outer and 175 or 176 local c = self:kimberling(index) local ra = (self.b + self.c - self.a) / 2 local ta = report_(self.pa, self.pb, ra, self.pa) local x, y = intersection_lc_(self.pa, c, self.pa, ta) local t if outer then t = (length_(x, c) > length_(y, c)) and x or y else t = (length_(x, c) < length_(y, c)) and x or y end return circle:new(c, t) end function triangle:yiu_circles() local x, y, z = self:yiu_centers() return circle:new(x, self.pa), circle:new(y, self.pb), circle:new(z, self.pc) end function triangle:kenmotu_circle() local a, b, c = self.a, self.b, self.c local area = self.area local rho = (math.sqrt(2) * a * b * c) / (4 * area + (a ^ 2 + b ^ 2 + c ^ 2)) local center = self:kimberling(371) return circle:new(through(center, rho)) end -- Circle tangent to the sides originating from p and to the circle passing through the other two vertices. -- argument the vertex of the chosen triangle, the center of the circle passing through the other two vertices. function triangle:c_c(p, C) local a, b, c local i = resolve_triangle_index(self, p) if i == 0 then a, b, c = self.pa, self.pb, self.pc elseif i == 1 then a, b, c = self.pb, self.pc, self.pa elseif i == 2 then a, b, c = self.pc, self.pa, self.pb end local Lm = self:mediator(p) local n = intersection(Lm, C) local i = self.incenter local m = line:new(c, i):reflection(n) local L = line:new(c, m):parallel_from(i) local Lac = line:new(a, c) local e = intersection(L, Lac) local Lia = line:new(i, a) local Le = Lac:orthogonal_from(e) return circle(intersection(Lia, Le), e) end triangle.thebault = triangle.c_c function triangle:three_tangent_circles() local i = self.incenter local a, b, c = self:projection(i) return circle:new(self.pa, c), circle:new(self.pb, a), circle:new(self.pc, b) end function triangle:mixtilinear_incircle(arg) local i = resolve_triangle_index(self, arg) local incenter = self.incenter local pts = { self.pa, self.pb, self.pc } local segs = { self.ab, self.bc, self.ca } local A = pts[i + 1] local B = pts[(i + 1) % 3 + 1] local C = pts[(i + 2) % 3 + 1] local AB = segs[i + 1] local BC = segs[(i + 1) % 3 + 1] local CA = segs[(i + 2) % 3 + 1] local l = line:new(A, incenter) local lp = l:orthogonal_from(incenter) local P1 = intersection(lp, CA) local P2 = intersection(lp, AB) local l1 = CA:orthogonal_from(P1) local l2 = AB:orthogonal_from(P2) local W = intersection(l1, l2) return circle(W, P1) end ------------------- -- Result -> triangle ------------------- function triangle:orthic() return triangle:new(orthic_tr_(self.pa, self.pb, self.pc)) end function triangle:medial() return triangle:new(medial_tr_(self.pa, self.pb, self.pc)) end function triangle:incentral() return triangle:new(incentral_tr_(self.pa, self.pb, self.pc)) end function triangle:excentral() return triangle:new(excentral_tr_(self.pa, self.pb, self.pc)) end function triangle:intouch() return triangle:new(intouch_tr_(self.pa, self.pb, self.pc)) end function triangle:contact() return triangle:new(intouch_tr_(self.pa, self.pb, self.pc)) end triangle.contact = triangle.intouch triangle.gergonne = triangle.intouch function triangle:extouch() return triangle:new(extouch_tr_(self.pa, self.pb, self.pc)) end triangle.nagel = triangle.extouch function triangle:feuerbach() return triangle:new(feuerbach_tr_(self.pa, self.pb, self.pc)) end function triangle:anti() return triangle:new(anti_tr_(self.pa, self.pb, self.pc)) end triangle.anticomplementary = triangle.anti triangle.similar = triangle.anti function triangle:tangential() return triangle:new(tangential_tr_(self.pa, self.pb, self.pc)) end function triangle:cevian(p) return triangle:new(cevian_(self.pa, self.pb, self.pc, p)) end function triangle:symmedian() local p = lemoine_point_(self.pa, self.pb, self.pc) return triangle:new(cevian_(self.pa, self.pb, self.pc, p)) end triangle.symmedial = triangle.symmedian function triangle:lemoine() local X = self:kimberling(598) return triangle:new(cevian_(self.pa, self.pb, self.pc, X)) end function triangle:macbeath() local X = self:kimberling(264) return triangle:new(cevian_(self.pa, self.pb, self.pc, X)) end function triangle:euler() return triangle:new(euler_points_(self.pa, self.pb, self.pc)) end function triangle:pedal(pt) return triangle:new(self:projection(pt)) end function triangle:yiu() return triangle:new(self:yiu_centers()) end function triangle:reflection() return triangle:new( symmetry_axial_(self.pb, self.pc, self.pa), symmetry_axial_(self.pa, self.pc, self.pb), symmetry_axial_(self.pa, self.pb, self.pc) ) end function triangle:circumcevian(pt) local circum = self:circum_circle() local x = intersection_lc_(self.pa, pt, circum.center, circum.through) local y = intersection_lc_(self.pb, pt, circum.center, circum.through) local z = intersection_lc_(self.pc, pt, circum.center, circum.through) return triangle:new(x, y, z) end function triangle:morley() local la1, la2 = self:trisector(self.pa) local lb1, lb2 = self:trisector(self.pb) local lc1, lc2 = self:trisector(self.pc) local D = intersection(la1, lb2) local E = intersection(lb1, lc2) local F = intersection(lc1, la2) return triangle:new(D, E, F) end function triangle:napoleon(swap) swap = (swap == "swap") if swap then local a = self.ab:equilateral().centroid local b = self.bc:equilateral().centroid local c = self.ca:equilateral().centroid return triangle:new(a, b, c) else local a = self.ab:equilateral("swap").centroid local b = self.bc:equilateral("swap").centroid local c = self.ca:equilateral("swap").centroid return triangle:new(a, b, c) end end function triangle:soddy(outer) local ci = self:soddy_circle(outer) local a, b, c = self.pa, self.pb, self.pc outer = (outer == "outer") local ce = ci.center local ti = ci.through local sa = intersection_lc_(ce, a, ce, ti) local sb = intersection_lc_(ce, b, ce, ti) local sc = intersection_lc_(ce, c, ce, ti) return triangle:new(sa, sb, sc) end ------------------- -- Result -> square ------------------- -- Method for inscribing a square in a triangle with vertex rotation function triangle:square_inscribed(permutation) -- Set a default value for rotation if not supplied permutation = permutation or 0 permutation = permutation + 1 local vertices = { self.pa, self.pb, self.pc } local i = (permutation - 1) % 3 + 1 local j = i % 3 + 1 local k = j % 3 + 1 local a = vertices[i] local b = vertices[j] local c = vertices[k] return square:new(square_inscribed_(a, b, c)) end ------------------- -- Result -> conic ------------------- function triangle:steiner_inellipse() return steiner_(self.pa, self.pb, self.pc) end function triangle:steiner_circumellipse() local e = steiner_(self.pa, self.pb, self.pc) local v = report_(e.center, e.vertex, e.a, e.vertex) local cv = report_(e.center, e.covertex, e.b, e.covertex) return conic:new(EL_points(e.center, v, cv)) end function triangle:euler_ellipse() if self:check_acutangle() then local x, y = intersection_lc_(self.orthocenter, self.circumcenter, self.eulercenter, self.ab.mid) local a = 0.5 * length_(x, y) return conic:new(EL_bifocal(self.orthocenter, self.circumcenter, a)) end end -- kiepert hyperbola function triangle:kiepert_hyperbola() -- center local center = self:kimberling(115) local O = self.circumcenter local G = self.centroid -- Brocard axis local L = self:brocard_axis() local M, N = intersection_lc_(L.pa, L.pb, O, self.pa) -- simson lines local Lsa = self:simson_line(M) local Lsb = self:simson_line(N) local axis = tkz.bisector(center, Lsa.pa, Lsb.pa) -- new frame system local minor = axis:ortho_from(center) local sys = occs:new(minor, center) local x, y = sys:coordinates(self.pa) local a = math.sqrt(x ^ 2 - y ^ 2) local c = math.sqrt(2) * a local Fa = report_(center, axis.pb, -c, center) local Fb = report_(center, axis.pb, c, center) local K = report_(center, axis.pb, -a ^ 2 / c, center) local directrix = axis:ortho_from(K) return conic:new(Fa, directrix, math.sqrt(2)) end -- kiepert parabola function triangle:kiepert_parabola() if (self.a == self.b) or (self.a == self.c) or (self.c == self.b) then tex.error("An error has occurred", { "No X(110)" }) else L = self:euler_line() F = self:kimberling(110) return conic:new(F, L, 1) end end --lemoine inellipse -- bifocal a besoin des deux foyers et d'un point sur l'ellipse ou bien de a function triangle:lemoine_inellipse() local G = self.centroid local L = self:lemoine_point() local Xa = self:lemoine().pa return conic:new(EL_bifocal(G, L, Xa)) end --brocard inellipse function triangle:brocard_inellipse() local B1 = self:first_brocard_point() local B2 = self:second_brocard_point() local Ka = self:symmedian().pa return conic:new(EL_bifocal(B2, B1, Ka)) end -- orthic inellipse function triangle:macbeath_inellipse() if self:check_acutangle() then local O = self.circumcenter local H = self.orthocenter local Xa = self:macbeath().pa return conic:new(EL_bifocal(O, H, Xa)) else tex.error("This function is only valid if none of the angles is obtuse.") end end function triangle:mandart_inellipse() local T = self local M = T:mittenpunkt_point() local Xa, Yb, Zc = T:extouch():get() local X, Y = M:symmetry(Xa, Yb) local coefficients = search_ellipse_(X, Y, Xa, Yb, Zc) local center, ra, rb, angle = ellipse_axes_angle(coefficients) return conic:new(EL_radii(center, ra, rb, angle)) end function triangle:orthic_inellipse() if self:check_acutangle() then local T = self local K = T:symmedian_point() local Ha, Hb, Hc = T:orthic():get() local Sa, Sb = K:symmetry(Ha, Hb) local coefficients = search_ellipse_(Ha, Hb, Hc, Sa, Sb) local center, ra, rb, angle = ellipse_axes_angle(coefficients) return conic:new(EL_radii(center, ra, rb, angle)) else tex.error("This function is only valid if none of the angles is obtuse.") end end function triangle:path(p1, p2) local list = {} -- Liste des côtés et sommets local sides = { { seg = self.ab, A = self.pa, B = self.pb }, { seg = self.bc, A = self.pb, B = self.pc }, { seg = self.ca, A = self.pc, B = self.pa }, } -- Trouver les indices des segments contenant p1 et p2 local function locate(p) for i, s in ipairs(sides) do if s.seg:in_out_segment(p) then return i end end tex.error("Point not on triangle boundary.") end local i1 = locate(p1) local i2 = locate(p2) -- Cas simple : même segment if i1 == i2 then table.insert(list, "(" .. checknumber_(p1.re) .. "," .. checknumber_(p1.im) .. ")") table.insert(list, "(" .. checknumber_(p2.re) .. "," .. checknumber_(p2.im) .. ")") return path:new(list) end -- Sinon, commencer par p1 table.insert(list, "(" .. checknumber_(p1.re) .. "," .. checknumber_(p1.im) .. ")") -- Parcourir les sommets intermédiaires dans l’ordre trigonométrique local i = i1 repeat local s = sides[i] table.insert(list, "(" .. checknumber_(s.B.re) .. "," .. checknumber_(s.B.im) .. ")") i = i % 3 + 1 until i == i2 -- Terminer par p2 table.insert(list, "(" .. checknumber_(p2.re) .. "," .. checknumber_(p2.im) .. ")") return path:new(list) end --- CONTACT PROBLEM APOLLONIUS -- Circle tangent to the three lines of the triangle: -- returns (in this order): incircle, excircle at pa, excircle at pb, excircle at pc. -- Optionnel: which ∈ { nil/"all", "in", "pa", "pb", "pc", "ex_a", "ex_b", "ex_c" } function triangle:LLL(which) which = which or "all" -- --- sélecteur local C_in = self:in_circle() local C_ea = self:ex_circle(0) -- pa local C_eb = self:ex_circle(1) -- pb local C_ec = self:ex_circle(2) -- pc if which == "all" or which == nil then return C_in, C_ea, C_eb, C_ec end -- alias pratiques if which == "in" then return C_in end if which == "pa" or which == "ex_a" then return C_ea end if which == "pb" or which == "ex_b" then return C_eb end if which == "pc" or which == "ex_c" then return C_ec end tex.error("Unknown selector for triangle:c_lll: "..tostring(which)) end triangle.c_lll = triangle.LLL return triangle