-- File: tkz_elements_functions_lines.lua -- Copyright (c) 2023–2025 Alain Matthes -- SPDX-License-Identifier: LPPL-1.3c -- Maintainer: Alain Matthes function length_(a, b) return point.abs(a - b) end function distance_(a, b, pt) return point.mod(projection_(a, b, pt) - pt) end function line_in_out_(a, b, pt) return math.abs((pt - a) ^ (pt - b)) <= tkz.epsilon end function is_parallel_(pa, pb, pc, pd) local det = (pb - pa) ^ (pd -pc) return math.abs(det) < tkz.epsilon end function is_orthogonal_(pa, pb, pc, pd) local dot = (pb - pa) .. (pd - pc) return math.abs(dot) < tkz.epsilon end function is_equidistant_(a, b, p) return math.abs(point.mod(a - p) - point.mod(b - p)) < tkz.epsilon end --------------------------------------------------------------------------- -- Lines --------------------------------------------------------------------------- function normalize_(a, b) return a + (b - a) / point.mod(b - a) end function ortho_from_(p, a, b) return p + (b - a) * point(0, 1) end function ll_from_(p, a, b) return p + b - a end function slope_(a, b) return angle_normalize_(point.arg(b - a)) end function gold_segment_(a, b) return a + (b - a) * tkz.invphi end function online_(a, b, t) return barycenter_({ a, (1 - t) }, { b, t }) end function mediator_(a, b) local m = midpoint_(a, b) return m, rotation_(m, math.pi / 2, b) end function midpoint_(z1, z2) return (z1 + z2) / 2 end -- triangle specific function equilateral_tr_(a, b) return rotation_(a, math.pi / 3, b) end function isosceles_right_tr_(a, b) local pt = rotation_(a, math.pi / 4, b) return a + (pt - a) * math.sin(math.pi / 4) end function gold_tr_(a, b) local pt = rotation_(a, math.pi / 2, b) return a + (pt - a) * tkz.invphi end function euclide_tr_(a, b) return rotation_(a, math.pi / 5, b) end function golden_tr_(a, b) local pt = rotation_(a, 2 * math.pi / 5, b) return a + (pt - a) * tkz.phi end function div_harmonic_int_(a, b, n) local k = point.abs(a - n) / point.abs(b - n) return barycenter_({ a, 1 }, { b, k }) end function div_harmonic_ext_(a, b, n) local k = point.abs(a - n) / point.abs(b - n) return barycenter_({ a, 1 }, { b, -k }) end function div_harmonic_both_(a, b, k) return barycenter_({ a, 1 }, { b, k }), barycenter_({ a, 1 }, { b, -k }) end function golden_ratio_(a, b) return a + (b - a) * tkz.invphi end -- projection -- function projection(Dt, pt) -- return projection_(Dt.pa, Dt.pb, pt) -- end function projection_(pa, pb, pt) if islinear_(pa, pb, pt) then return pt else local v = pb - pa local z = ((pt - pa) .. v) / (v .. v) -- .. dot product return pa + z * v end end function projection_ll(Dt1, Dt2, pt) return projection_ll_(Dt1.pa, Dt1.pb, Dt2.pa, Dt2.pb, pt) end function projection_ll_(pa, pb, pc, pd, pt) if islinear_(pa, pb, pt) then return pt else local m = ll_from_(pt, pc, pd) return intersection_ll_(pt, m, pa, pb) end end function affinity_(pa, pb, pc, pd, k, pt) local p = projection_ll_(pa, pb, pc, pd, pt) return homothety_(p, k, pt) end function symmetry_axial_(pa, pb, pt) local p = projection_(pa, pb, pt) return symmetry_(p, pt) end function set_symmetry_axial_(u, v, ...) local t = {} for _, value in ipairs({ ... }) do table.insert(t, symmetry_axial_(u, v, value)) end return table.unpack(t) end function square_(a, b) return rotation_(b, -math.pi / 2, a), rotation_(a, math.pi / 2, b) end function in_segment_(a, b, pt) return point.mod(pt - a) + point.mod(pt - b) - point.mod(b - a) <= tkz.epsilon end function report_(za, zb, d, pt) local len = point.mod(zb - za) local t = d / len local result = barycenter_({ za, 1 - t }, { zb, t }) if pt then return result + pt - za else return result end end function collinear_at_(za, zb, pt, k) if k then return pt + k * (zb - za) else return pt + (zb - za) end end function orthogonal_at_(za, zb, pt, k) if k then return pt + k * (zb - za) * point(0, 1) else return pt + (zb - za) * point(0, 1) end end function collinear_at_distance_(za, zb, d) local len = point.mod(zb - za) local x = orthogonal_at_(za, zb, za, d / len) return x, collinear_at_(za, zb, x, 1) end -- Lignes équidistantes de deux droites L1 et L2 -- Cas parallèles : retourne la parallèle "milieu" (unique) -- Cas sécantes : retourne les deux bissectrices (interne, externe) -- Paramètre optionnel 'choice' : -- * nil → retourne soit 1 ligne (parallèles) soit 2 lignes (sécantes) -- * 1 ou 2 → ne retourner que la bissectrice #1 (u,v) ou #2 (up,vp) function lines_equidistant_(L1, L2, choice) local a, b = L1:get() local c, d = L2:get() -- 1) Parallèles → ligne "milieu" if is_parallel_(a, b, c, d) then -- Distance entre deux parallèles (AB) et (CD) local D = distance_(a, b, c) -- Signe pour aller du côté de L2 local s = (L1:side_line(c) >= 0) and 1 or -1 -- La droite à mi-distance (unique) local mid = L1:collinear_at_distance(s * D / 2) return mid end -- 2) Sécantes → deux bissectrices passant par l'intersection local i = intersection_ll_(a, b, c, d) -- Points unité depuis i sur chaque droite, dans les deux orientations -- NB : report_(pa, pb, ±1, i) → point sur (AB) à distance unitaire depuis i local u = report_(a, b, 1, i) local up = report_(a, b, -1, i) local v = report_(c, d, 1, i) local vp = report_(c, d, -1, i) -- Les bissectrices sont les médiatrices de [u v] et [up vp] local p1, q1 = mediator_(u, v) -- bissectrice #1 (interne) local p2, q2 = mediator_(v, up) -- bissectrice #2 (externe) local B1 = line:new(p1, q1) local B2 = line:new(p2, q2) if choice == 1 then return B1 end if choice == 2 then return B2 end return B1, B2 end