-- File: tkz_elements_conic.lua -- Copyright (c) 2023–2025 Alain Matthes -- SPDX-License-Identifier: LPPL-1.3c -- Maintainer: Alain Matthes --------------------------------------------------------------------------- -- conics --------------------------------------------------------------------------- ----------------------------- ----- Conic parameters ----------------------------- -- foci, directrix and eccentricity are the main parameters and are used to define all conics. -------------------- General parameters common to all conics ------------- -- (e) is eccentricity e = 1 for parabola; e = p / h -- (h) distance between the focus and the directrix (sometime called f) ; h = p / e ellipse and hyperbola and h = p for parabola -- (p) semi-latus rectum (The latus rectum is the chord parallel to the directrix and passing through a focus) It's also called, the focal parameter (distance from a focus to the corresponding directrix.) -- vertex We can define the distance between the vertex and the directrix or the distance between the vertex and the focus p / (e + 1) so p / 2 for parabola; (e * h) / (e + 1) = h * e / (e + 1) -- major_axis : The principal axis is the line joining the foci of an ellipse or hyperbola, and its midpoint is the curve's center. A parabola has no center, in this case, the major_axis is the line joining the focus and the vertex. -- parabola has no center and one focus. c/a for hyperbola and ellipse -- (c) is the distance between the center and a focus. (line eccentricity) -- for ellipse -- a semi_major_awis distance between center and vertex -- b semi_mminor_axis distance between center and covertex -- c = math.sqrt(a^2 - b^2) and p = b^2 / a -- h = b^2 / c -- for hyperbola -- a semi_major_awis distance between center and vertex -- b semi_mminor_axis distance between center and covertex b/a slope of asymptote -- c = math.sqrt(a^2 - b^2) and p = b^2 / a -- h = b^2 / c --------------------------------------------------------------------------- conic = {} conic.__index = conic function conic:new(Fa, Di, ecc) -- focus, directrix, eccentricity local type = "conic" local e = ecc local subtype = get_subtype(e) local K = projection_(Di.pa, Di.pb, Fa) local h = length_(K, Fa) local a = get_a(h, e) local b = get_b(h, e) -- only hy and el local c = get_c(h, e) local p = e * h -- demi latus rectum if hy and el b^2/a local slope = slope_(K, Fa) local major_axis = line:new(K, Fa) local directrix = Di local vertex = get_vertex(Fa, K, e, h) -- pb No center, no covertex, no Fb with parabola local center = conic_center(Fa, K, e, h) local Fb = next_focus(Fa, K, e, h) local covertex = get_covertex(Fa, K, e, h) local minor_axis = get_minor_axis(Fa, K, e, h) local o = { type = type, subtype = subtype, K = K, e = e, h = h, a = a, b = b, c = c, p = p, Rx = a, Ry = b, Fa = Fa, Fb = Fb, center = center, vertex = vertex, covertex = covertex, major_axis = major_axis, minor_axis = minor_axis, directrix = directrix, slope = slope, } setmetatable(o, self) return o end setmetatable(conic, { __call = function(cls, ...) return cls:new(...) end, }) function conic:points(ta, tb, nb, swap) swap = (swap == "swap") if not swap then return path(get_points_conic_(self, ta, tb, nb)) else return path(get_points_sym_conic_(self, ta, tb, nb)) end end function conic:point(t, swap) swap = (swap == "swap") if not swap then return get_one_point_conic_(self, t) else return get_one_point_hyperbola_ii(self, t) end end function conic:antipode(pt) local e = self.e if math.abs(e - 1) < tkz.epsilon then tex.error("Undefined antipode for a parabola.") else return 2 * self.center - pt end end function conic:tangent_at(pt) -- actually only parabola local u, v local e = self.e if math.abs(e - 1) < tkz.epsilon then -- Parabola local h = self.directrix:projection(pt) u = self.vertex:identity(pt) and ll_from_(pt, self.directrix.pa, self.directrix.pb) or in_center_(pt, h, self.Fa) elseif self.e > 1 then -- Hyperbola u = self.vertex:identity(pt) and ll_from_(pt, self.directrix.pa, self.directrix.pb) or in_center_(pt, self.Fb, self.Fa) elseif self.e < 1 then -- Ellipse local zi = in_center_(self.Fa, pt, self.Fb) u = pt + (zi - pt) * point(0, 1) end u = normalize_(pt, u) v = pt:symmetry(u) return line:new(u, v) end -- Intersection entre une parabole et une droite function conic:inter_Pa_line(pa, pb) local function solve_para_line(p, m, n) return tkz.solve_quadratic_(1, -2 * p * m, -2 * p * n) end -- Crée un système de coordonnées basé sur l'axe majeur et le sommet de la parabole local sys = occs:new(self.major_axis, self.vertex) -- Calcule les coordonnées des points pa et pb dans ce système local Xa, Ya = sys:coordinates(pa) local Xb, Yb = sys:coordinates(pb) -- Résout l'intersection entre la parabole et la droite définie par les points pa et pb local r1, r2 = solve_para_line(self.h, tkz.line_coefficients(Xa, Ya, Xb, Yb)) -- Si les résultats de l'intersection sont invalides (false), retourne deux faux if r1 == false then local s1 = false local s2 = false return s1, s2 else -- Sinon, calcule les points d'intersection local s1, s2 = self:point(r1), self:point(r2) -- Retourne les points d'intersection dans l'ordre croissant de distance par rapport à pa if length_(pa, s1) < length_(pa, s2) then return s1, s2 else return s2, s1 end end end function conic:tangent_from(pt) if self.e == 1 then -- Parabola local sys = occs:new(self.major_axis, self.vertex) local Xb, Yb = sys:coordinates(pt) local p1, p2 = tkz.solve_quadratic_(self.h, -2 * Xb, 2 * Yb) local s1 = self:point(self.h * p1) local s2 = self:point(self.h * p2) return line:new(pt, s1), line:new(pt, s2) elseif self.e > 1 then -- Hyperbola local C = circle:radius(self.Fb, 2 * self.a) local m, n = intersection_cc_(pt, self.Fa, self.Fb, C.through) local u, v = mediator_(m, self.Fa) local x, y = mediator_(n, self.Fa) local T1, T2 = line:new(u, v), line:new(x, y) local d1, d2 = T1:distance(self.Fa), T2:distance(self.Fa) if d2 < d1 then T2, T1 = T1, T2 end local Fbsym = symmetry_axial_(T1.pa, T1.pb, self.Fb) local t1 = intersection_ll_(Fbsym, self.Fa, T1.pa, T1.pb) local Fasym = symmetry_axial_(T2.pa, T2.pb, self.Fa) local t2 = intersection_ll_(Fasym, self.Fb, T2.pa, T2.pb) return line:new(pt, t1), line:new(pt, t2) elseif self.e < 1 then -- Ellipse local w = report_(self.Fb, self.Fa, 2 * self.a) local s1, s2 = intersection_cc_(pt, self.Fa, self.Fb, w) local u, v = mediator_(s1, self.Fa) local U = intersection_ll_(u, v, self.Fb, s1) u, v = mediator_(s2, self.Fa) local V = intersection_ll_(u, v, self.Fb, s2) return line:new(pt, U), line:new(pt, V) end end -- intersection line hyperbola function conic:inter_Hy_line(pa, pb) local function hyp_fct(x) return self.a * math.sqrt(1 + (x ^ 2) / self.b ^ 2) end local function solve_hyper_line(a, b, m, p) local A = a ^ 2 / b ^ 2 - m ^ 2 local B = -2 * m * p local C = a ^ 2 - p ^ 2 return tkz.solve_quadratic_(A, B, C) end local sys = occs:new(self.major_axis, self.center) local XA, YA = sys:coordinates(pa) local XB, YB = sys:coordinates(pb) if math.abs(XA - XB) < tkz.epsilon then local xs = XA local fa, c = self.Fa, self.center local s1, s2 = hyp_fct(xs), -hyp_fct(xs) local wx = report_(self.directrix.pa, self.directrix.pb, xs, report_(c, fa, s1)) local wy = report_(self.directrix.pa, self.directrix.pb, xs, report_(c, fa, s2)) return wx, wy else local r, s = tkz.line_coefficients(XA, YA, XB, YB) local t1, t2 = solve_hyper_line(self.a, self.b, r, s) if t1 == false then return pa, pb else local s1, s2 = self:point(t1), self:point(t2) if r * t2 + s < 0 then s2 = self:point(t2, "swap") end if r * t1 + s < 0 then s1 = self:point(t1, "swap") end if length_(pa, s1) < length_(pa, s2) then return s1, s2 else return s2, s1 end end end end -- Fonction pour déterminer si un point est à l'intérieur ou à l'extérieur de la conique function conic:in_out(pt) local e = self.e if math.abs(e - 1) < tkz.epsilon then -- Parabole return PA_in_out(self, pt) elseif self.e > 1 then -- Hyperbole return HY_in_out(self, pt) elseif self.e < 1 then -- Ellipse return EL_in_out(self, pt) end end -- Fonction pour obtenir l'orthoptique de la conique function conic:orthoptic() local e = self.e if math.abs(e - 1) < tkz.epsilon then -- Parabole return self.directrix elseif self.e > 1 and self.e < math.sqrt(2) then -- Hyperbole local r = math.sqrt(self.a * self.a - self.b * self.b) local th = report_(self.center, self.vertex, r) return circle:new(self.center, th) elseif self.e < 1 then -- Ellipse local r = math.sqrt(self.a * self.a + self.b * self.b) local th = report_(self.center, self.vertex, r) return circle:new(self.center, th) end end -- Fonction pour calculer les asymptotes de la conique function conic:asymptotes() if self.e > 1 then -- Hyperbole -- Calcul du point sur les foyers et des asymptotes local pa = report_(self.Fa, self.Fb, self.a, self.center) local p1 = (pa - self.center):orthogonal(self.b):at(pa) local p2 = (pa - self.center):orthogonal(-self.b):at(pa) -- Symétrie des points d'asymptotes par rapport au centre local q1 = symmetry_(self.center, p1) local q2 = symmetry_(self.center, p2) -- Retourne les deux asymptotes return line:new(p1, q1), line:new(p2, q2) else -- Si ce n'est pas une hyperbole, renvoie une erreur tex.error("An error has occurred", { "It's not an hyperbola" }) return end end -- conic:path(za, zb, nb, mode, dir) -- mode : nil/"direct" (défaut) → arc direct (court) -- "swap" → arc complémentaire (l'autre partie) -- dir : "ccw" | "cw" (optionnel, utilisé pour lever l'ambiguïté à dt=±0.5 -- ou quand za==zb → tour complet) function conic:path(za, zb, nb, mode, dir) nb = nb or 20 mode = (mode or "direct"):lower() local ta = self:get_t_from_point(za) local tb = self:get_t_from_point(zb) local dt = tb - ta local function sgn(x) return (x < 0) and -1 or 1 end local function frac1(x) x = x % 1 if x < 0 then x = x + 1 end return x end -- Ellipse uniquement : paramètre périodique sur [0,1) if self.e and self.e < 1 then ta = frac1(ta) -- Normaliser dt dans (-0.5, 0.5] local eps = 1e-12 dt = ((dt + 0.5) % 1) - 0.5 -- Antipodes : trancher proprement if math.abs(math.abs(dt) - 0.5) < eps then -- choix déterministe selon dir (par défaut "cw") dt = (dir == "ccw") and 0.5 or -0.5 end if mode == "swap" then -- Prendre l'autre partie (arc complémentaire) if math.abs(dt) < eps then -- mêmes points : faire un tour complet dt = (dir == "cw") and -1 or 1 else -- décale de ±1 pour obtenir l'arc > 0.5 en valeur absolue dt = dt - sgn(dt) end else -- "direct" (défaut) : on garde dt dans (-0.5, 0.5] end else -- Parabole/hyperbole : pas de périodicité ; on ne modifie pas dt end -- Échantillonnage local P = path() for i = 0, nb do local t = i / nb local t_interp if self.e and self.e < 1 then t_interp = (ta + t * dt) % 1 if t_interp < 0 then t_interp = t_interp + 1 end else t_interp = ta + t * dt end local pt = self:point(t_interp) if not pt or not pt.re or not pt.im then tex.error("Invalid point at t = " .. tostring(t_interp)) end P:add_point(pt) end return P end function conic:get_t_from_point(z) local e = self.e if e == 1 then return self:get_t_parabola(z) elseif e < 1 then return self:get_t_ellipse(z) else return self:get_t_hyperbola(z) end end function conic:get_t_parabola(z) local H = self.directrix:projection(z) local d = length_(H, self.K) local u = self.directrix.pb - self.directrix.pa local v = H - self.K if v .. u >= 0 then return d else return -d end end function conic:get_t_hyperbola(z) local H = self.directrix:projection(z) local d = length_(H, self.K) local u = self.directrix.pb - self.directrix.pa local v = H - self.K if v .. u >= 0 then return d else return -d end end function conic:get_t_ellipse(z) local M = inverse_affinity_ellipse(self, z) local a = get_angle_normalize_(self.center, self.vertex, M) if a < 0 then a = a + 2 * math.pi end return a / (2 * math.pi) end -- Tangentes communes externes ellipse–ellipse. -- Retour : L1, L2 function conic:common_tangent(E2, which) which = which or "external" -- "external" (défaut) ou "internal" if self.subtype ~= "ellipse" or E2.subtype ~= "ellipse" then return nil, nil end local E1 = self local E2 = CO.E2 local C1 = E1.center local C2 = E2.center local A1 = E1.a local B1 = E1.b local a, b = E1.directrix:get() local ll = line(b, a) local sys = occs(ll, C1) local X2, Y2 = sys:coordinates(E2.center) local c2_loc = point(X2, Y2) local u2_loc, v2_loc do local vx, vy = sys:coordinates(E2.vertex) local cvx, cvy = vx - c2_loc.re, vy - c2_loc.im local nv = math.sqrt(cvx * cvx + cvy * cvy) if nv > 0 then cvx, cvy = cvx / nv, cvy / nv end u2_loc = point(cvx, cvy) local wx, wy = sys:coordinates(E2.covertex) local cwx, cwy = wx - c2_loc.re, wy - c2_loc.im local nw = math.sqrt(cwx * cwx + cwy * cwy) if nw > 0 then cwx, cwy = cwx / nw, cwy / nw end v2_loc = point(cwx, cwy) end local A2 = E2.a local B2 = E2.b -- paramétrisation locale de E2 (dans le repère sys) local function pE2_loc(t) return { x = c2_loc.re + A2 * math.cos(t) * u2_loc.re + B2 * math.sin(t) * v2_loc.re, y = c2_loc.im + A2 * math.cos(t) * u2_loc.im + B2 * math.sin(t) * v2_loc.im } end local function dE2_loc(t) return { x = -A2 * math.sin(t) * u2_loc.re + B2 * math.cos(t) * v2_loc.re, y = -A2 * math.sin(t) * u2_loc.im + B2 * math.cos(t) * v2_loc.im } end -- produit scalaire elliptique (E1) & normes associées local function ps_loc(z1, z2) return (z1.x * z2.x) / (A1 * A1) + (z1.y * z2.y) / (B1 * B1) end local function N2_loc(z) return ps_loc(z, z) end -- discriminant de tangence local function D_of_t(t) local p = pE2_loc(t) local dp = dE2_loc(t) return ps_loc(p, dp) ^ 2 - N2_loc(dp) * (N2_loc(p) - 1) end local function is_external(A, u) local px, py = -u.y, u.x local s1 = A.x * px + A.y * py local dx, dy = A.x - c2_loc.re, A.y - c2_loc.im local s2 = dx * px + dy * py return s1 * s2 >= 0 end local function is_internal(A, u) local px, py = -u.y, u.x local s1 = A.x * px + A.y * py local dx, dy = A.x - c2_loc.re, A.y - c2_loc.im local s2 = dx * px + dy * py return s1 * s2 <= 0 end local function to_global(O, origin, a, b) local ox, oy = origin.re, origin.im local ux, uy = O.x.re - ox, O.x.im - oy local vx, vy = O.y.re - ox, O.y.im - oy return point(ox + a * ux + b * vx, oy + a * uy + b * vy) end local function almost_eq(P, Q, eps) if (not P) or (not Q) then return false end eps = eps or 1e-4 return (math.abs(P.x - Q.x) < eps) and (math.abs(P.y - Q.y) < eps) end -- ===== Fin du bloc “préambule/repère” adapté ===== local E1_raw, E2_raw = {}, {} local T = tkz.fsolve(D_of_t, -math.pi, math.pi, 720) if T == nil then T = {} end if type(T) ~= "table" then T = { T } end for _, t in ipairs(T) do local A = pE2_loc(t) local u = dE2_loc(t) if A and u then local uu = ps_loc(u, u) if uu and uu > 0 then local lam = -ps_loc(A, u) / uu local B = { x = A.x + lam * u.x, y = A.y + lam * u.y } if which == "external" then is_which=is_external else is_which=is_internal end if is_which(A, u) then local n = utils.table_getn(E1_raw) local dup = false for i = 1, n do if almost_eq(B, E1_raw[i]) and almost_eq(A, E2_raw[i]) then dup = true break end end if not dup then E1_raw[n + 1] = B E2_raw[n + 1] = A if n + 1 >= 2 then break end end end end end end -- projection finale en global via le repère sys centré en C1 local a = E1_raw[1] and to_global(sys, C1, E1_raw[1].x, E1_raw[1].y) or nil local b = E1_raw[2] and to_global(sys, C1, E1_raw[2].x, E1_raw[2].y) or nil local c = E2_raw[1] and to_global(sys, C1, E2_raw[1].x, E2_raw[1].y) or nil local d = E2_raw[2] and to_global(sys, C1, E2_raw[2].x, E2_raw[2].y) or nil return line:new(a, b), line:new(c, d) end function conic:common_tangent_internal(E2) if self.subtype ~= "ellipse" or E2.subtype ~= "ellipse" then return nil, nil end local E1 = self local E2 = CO.E2 local C1 = E1.center local C2 = E2.center local A1 = E1.a local B1 = E1.b local a, b = E1.directrix:get() local ll = line(b, a) local sys = occs(ll, C1) local X2, Y2 = sys:coordinates(E2.center) local c2_loc = point(X2, Y2) local u2_loc, v2_loc do local vx, vy = sys:coordinates(E2.vertex) local cvx, cvy = vx - c2_loc.re, vy - c2_loc.im local nv = math.sqrt(cvx * cvx + cvy * cvy) if nv > 0 then cvx, cvy = cvx / nv, cvy / nv end u2_loc = point(cvx, cvy) local wx, wy = sys:coordinates(E2.covertex) local cwx, cwy = wx - c2_loc.re, wy - c2_loc.im local nw = math.sqrt(cwx * cwx + cwy * cwy) if nw > 0 then cwx, cwy = cwx / nw, cwy / nw end v2_loc = point(cwx, cwy) end local A2 = E2.a local B2 = E2.b -- paramétrisation locale de E2 (dans le repère sys) local function pE2_loc(t) return { x = c2_loc.re + A2 * math.cos(t) * u2_loc.re + B2 * math.sin(t) * v2_loc.re, y = c2_loc.im + A2 * math.cos(t) * u2_loc.im + B2 * math.sin(t) * v2_loc.im } end local function dE2_loc(t) return { x = -A2 * math.sin(t) * u2_loc.re + B2 * math.cos(t) * v2_loc.re, y = -A2 * math.sin(t) * u2_loc.im + B2 * math.cos(t) * v2_loc.im } end -- produit scalaire elliptique (E1) & normes associées local function ps_loc(z1, z2) return (z1.x * z2.x) / (A1 * A1) + (z1.y * z2.y) / (B1 * B1) end local function N2_loc(z) return ps_loc(z, z) end -- discriminant de tangence local function D_of_t(t) local p = pE2_loc(t) local dp = dE2_loc(t) return ps_loc(p, dp) ^ 2 - N2_loc(dp) * (N2_loc(p) - 1) end local function is_internal(A, u) local px, py = -u.y, u.x local s1 = A.x * px + A.y * py local dx, dy = A.x - c2_loc.re, A.y - c2_loc.im local s2 = dx * px + dy * py return s1 * s2 <= 0 end local function to_global(O, origin, a, b) local ox, oy = origin.re, origin.im local ux, uy = O.x.re - ox, O.x.im - oy local vx, vy = O.y.re - ox, O.y.im - oy return point(ox + a * ux + b * vx, oy + a * uy + b * vy) end local function almost_eq(P, Q, eps) if (not P) or (not Q) then return false end eps = eps or 1e-4 return (math.abs(P.x - Q.x) < eps) and (math.abs(P.y - Q.y) < eps) end -- ===== Fin du bloc “préambule/repère” adapté ===== local E1_raw, E2_raw = {}, {} local T = solve(D_of_t, -math.pi, math.pi, 720) if T == nil then T = {} end if type(T) ~= "table" then T = { T } end for _, t in ipairs(T) do local A = pE2_loc(t) local u = dE2_loc(t) if A and u then local uu = ps_loc(u, u) if uu and uu > 0 then local lam = -ps_loc(A, u) / uu local B = { x = A.x + lam * u.x, y = A.y + lam * u.y } if is_internal(A, u) then local n = utils.table_getn(E1_raw) local dup = false for i = 1, n do if almost_eq(B, E1_raw[i]) and almost_eq(A, E2_raw[i]) then dup = true break end end if not dup then E1_raw[n + 1] = B E2_raw[n + 1] = A if n + 1 >= 2 then break end end end end end end -- projection finale en global via le repère sys centré en C1 local a = E1_raw[1] and to_global(sys, C1, E1_raw[1].x, E1_raw[1].y) or nil local b = E1_raw[2] and to_global(sys, C1, E1_raw[2].x, E1_raw[2].y) or nil local c = E2_raw[1] and to_global(sys, C1, E2_raw[1].x, E2_raw[1].y) or nil local d = E2_raw[2] and to_global(sys, C1, E2_raw[2].x, E2_raw[2].y) or nil return line:new(a, b), line:new(c, d) end return conic