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combine.wsrf Combine Ensembles of Trees

Description

Combine two more more ensembles of trees into one.

Usage

combine(...)

Arguments

... two or more objects of class randomForest, to be combined into one.

Value

An object of class wsrf.

See Also

subset

https://orcid.org/0000-0001-5763-9743
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https://orcid.org/0000-0002-6797-2571
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Examples

library("wsrf")

# Prepare parameters.
ds <- iris
target <- "Species"
vars <- names(ds)
if (sum(is.na(ds[vars]))) ds[vars] <- randomForest::na.roughfix(ds[vars])
ds[target] <- as.factor(ds[[target]])
form <- as.formula(paste(target, "~ ."))
set.seed(42)
train.1 <- sample(nrow(ds), 0.7*nrow(ds))
test.1 <- setdiff(seq_len(nrow(ds)), train.1)

set.seed(49)
train.2 <- sample(nrow(ds), 0.7*nrow(ds))
test.2 <- setdiff(seq_len(nrow(ds)), train.2)

# Build model. We disable parallelism here, since CRAN Repository
# Policy (https://cran.r-project.org/web/packages/policies.html)
# limits the usage of multiple cores to save the limited resource of
# the check farm.

model.wsrf.1 <- wsrf(form, data=ds[train.1, vars], parallel=FALSE)
model.wsrf.2 <- wsrf(form, data=ds[train.2, vars], parallel=FALSE)

# Merge two models.
model.wsrf.big <- combine.wsrf(model.wsrf.1, model.wsrf.2)
print(model.wsrf.big)
cl <- predict(model.wsrf.big, newdata=ds[test.1, vars], type="response")$response
actual <- ds[test.1, target]
(accuracy.wsrf <- mean(cl==actual))

correlation.wsrf Correlation

Description

Give the measure for the diversity of the trees in the forest model built from wsrf.

Usage

## S3 method for class 'wsrf'
correlation(object, ...)

Arguments

object object of class wsrf.
... optional additional arguments. At present no additional arguments are used.
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Details

The measure was introduced in Breiman (2001).

Value

A numeric value.

Author(s)

He Zhao and Graham Williams (SIAT, CAS)

References

Breiman, L. 2001 "Random forests". Machine learning, 45(1), 5–32.

See Also

wsrf

importance.wsrf Extract Variable Importance Measure

Description

This is the extractor function for variable importance measures as produced by wsrf.

Usage

## S3 method for class 'wsrf'
importance(x, type=NULL, class=NULL, scale=TRUE, ...)

Arguments

x an object of class wsrf.

type either 1 or 2, specifying the type of importance measure (1=mean decrease in
accuracy, 2=mean decrease in node impurity).

class for classification problem, which class-specific measure to return.

scale for permutation based measures, should the measures be divided their “standard
errors”?

... not used.
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Details

Here are the definitions of the variable importance measures. The first measure is computed from
permuting OOB data: For each tree, the prediction error on the out-of-bag portion of the data is
recorded. Then the same is done after permuting each predictor variable. The difference between
the two are then averaged over all trees, and normalized by the standard deviation of the differences.

The second measure is the total decrease in node impurities from splitting on the variable, averaged
over all trees. The node impurity is measured by the Information Gain Ratio index.

Value

A matrix of importance measure, one row for each predictor variable. The column(s) are different
importance measures.

See Also

randomForest

oob.error.rate.wsrf Out-of-Bag Error Rate

Description

Return out-of-bag error rate for "wsrf" model.

Usage

## S3 method for class 'wsrf'
oob.error.rate(object, tree, ...)

Arguments

object object of class wsrf.

tree logical or an integer vector for the index of a specific tree in the forest model. If
provided as an integer vector, oobErrorRate.wsrf will give the corresponding
out-of-bag error rates of the exact trees specified by tree. If TRUE, all error
rates will be presented. If FALSE or missing, the gross error rate for the forest
will be given.

... not used.

Value

return a vector of error rates.

Author(s)

He Zhao and Graham Williams (SIAT, CAS)
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See Also

wsrf

predict.wsrf Predict Method for wsrf Model

Description

Give the predictions for the new data by the forest model built from wsrf.

Usage

## S3 method for class 'wsrf'
predict(object, newdata, type=c("response",
"class", "vote", "prob", "aprob", "waprob"), ...)

Arguments

object object of class wsrf.

newdata the data that needs to be predicted. Its format should be the same as that for
wsrf.

type the type of prediction required, a character vector indicating the types of output,
and can be one of the values below:

vote matrix of vote counts
response predicted values.
class the same as response.
prob matrix of class probabilities. The probability is the proportion of trees in

the forest voting for the particular outcome (prob = votes / ntree)
aprob the average score from the decision trees for each class rather than the

proportion of decision trees for each class (aprob = scores / ntree)
waprob the weighted average, weighted by the accuracy of the tree (waprob =

scores * accuracy / sum(accuracy))

... optional additional arguments. At present no additional arguments are used.

Value

a list of predictions for the new data with corresponding components for each type of predic-
tions. For type=class or type=class, a vector of length nrow(newdata), otherwise, a ma-
trix of nrow(newdata) * (number of class label). For example, if given type=c("class",
"prob") and the return value is res, then res$class is a vector of predicted class labels of length
nrow(newdata), and res$prob is a matrix of class probabilities.

Author(s)

He Zhao and Graham Williams (SIAT, CAS)
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See Also

wsrf

print.wsrf Print Method for wsrf Model

Description

Print a summary of the forest model or one specific tree in the forest model built from wsrf.

Usage

## S3 method for class 'wsrf'
print(x, trees, ...)

Arguments

x object of class wsrf.

trees the index of a specific tree. If missing, print will print a summary of the model.

... optional additional arguments. At present no additional arguments are used.

Author(s)

He Zhao and Graham Williams (SIAT, CAS)

See Also

wsrf

strength.wsrf Strength

Description

Give the measure for the collective performance of individual trees in the forest model built from
wsrf.

Usage

## S3 method for class 'wsrf'
strength(object, ...)

Arguments

object object of class wsrf.

... optional additional arguments. At present no additional arguments are used.
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Details

The measure was introduced in Breiman (2001).

Value

A numeric value.

Author(s)

He Zhao and Graham Williams (SIAT, CAS)

References

Breiman, L. 2001 "Random forests". Machine learning, 45(1), 5–32.

See Also

wsrf

subset.wsrf Subset of a Forest

Description

Obtain a subset of a forest.

Usage

## S3 method for class 'wsrf'
subset(x, trees, ...)

Arguments

x an object of class wsrf.

trees which trees should be included in the sub-forest. An integer vector, which indi-
cates the index of the trees.

... not used.

Value

An object of class wsrf.

See Also

combine
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Examples

library("wsrf")

# Prepare parameters.
ds <- iris
target <- "Species"
vars <- names(ds)
if (sum(is.na(ds[vars]))) ds[vars] <- randomForest::na.roughfix(ds[vars])
ds[target] <- as.factor(ds[[target]])
form <- as.formula(paste(target, "~ ."))
set.seed(42)
train <- sample(nrow(ds), 0.7*nrow(ds))
test <- setdiff(seq_len(nrow(ds)), train)

# Build model. We disable parallelism here, since CRAN Repository
# Policy (https://cran.r-project.org/web/packages/policies.html)
# limits the usage of multiple cores to save the limited resource of
# the check farm.

model.wsrf <- wsrf(form, data=ds[train, vars], parallel=FALSE)
print(model.wsrf)

# Subset.
submodel.wsrf <- subset.wsrf(model.wsrf, 1:200)
print(submodel.wsrf)
cl <- predict(submodel.wsrf, newdata=ds[test, vars], type="response")$response
actual <- ds[test, target]
(accuracy.wsrf <- mean(cl==actual))

varCounts.wsrf Number of Times of Variables Selected as Split Condition

Description

Return the times of each variable being selected as split condition. For evaluating the bias of wsrf
towards attribute types (categorical and numerical) and the number of values each attribute has.

Usage

## S3 method for class 'wsrf'
varCounts(object)

Arguments

object object of class wsrf.

Value

A vector of integer. The length is the same as the training data for building that wsrf model.
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Author(s)

He Zhao and Graham Williams (SIAT, CAS)

See Also

wsrf

wsrf Build a Forest of Weighted Subspace Decision Trees

Description

Build weighted subspace C4.5-based decision trees to construct a forest.

Usage

## S3 method for class 'formula'
wsrf(formula, data, ...)
## Default S3 method:
wsrf(x, y, mtry=floor(log2(length(x))+1), ntree=500,

weights=TRUE, parallel=TRUE, na.action=na.fail,
importance=FALSE, nodesize=2, clusterlogfile, ...)

Arguments

x, formula a data frame or a matrix of predictors, or a formula with a response but no
interaction terms.

y a response vector.
data a data frame in which to interpret the variables named in the formula.
ntree number of trees to grow. By default, 500
mtry number of variables to choose as candidates at each node split, by default,

floor(log2(length(x))+1).
weights logical. TRUE for weighted subspace selection, which is the default; FALSE for

random selection, and the trees are based on C4.5.
na.action a function indicate the behaviour when encountering NA values in data. By

default, na.fail. If NULL, do nothing.
parallel whether to run multiple cores (TRUE), nodes, or sequentially (FALSE).
importance should importance of predictors be assessed?
nodesize minimum size of leaf node, i.e., minimum number of observations a leaf node

represents. By default, 2.
clusterlogfile character. The pathname of the log file when building model in a cluster. For

debug.
... optional parameters to be passed to the low level function wsrf.default.
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Details

See Xu, Huang, Williams, Wang, and Ye (2012) for more details of the algorithm, and Zhao,
Williams, Huang (2017) for more details of the package.

Currently, wsrf can only be used for classification. When weights=FALSE, C4.5-based trees (Quin-
lan (1993)) are grown by wsrf, where binary split is used for continuous predictors (variables) and
k-way split for categorical ones. For continuous predictors, each of the values themselves is used as
split points, no discretization used. The only stopping condition for split is the minimum node size
must not less than nodesize.

Value

An object of class wsrf, which is a list with the following components:

confusion the confusion matrix of the prediction (based on OOB data).

oob.times number of times cases are ‘out-of-bag’ (and thus used in computing OOB error
estimate)

predicted the predicted values of the input data based on out-of-bag samples.

useweights logical. Whether weighted subspace selection is used? NULL if the model is
obtained by combining multiple wsrf model and one of them has different value
of ’useweights’.

mtry integer. The number of variables to be chosen when splitting a node.

Author(s)

He Zhao and Graham Williams (SIAT, CAS)

References

Xu, B. and Huang, J. Z. and Williams, G. J. and Wang, Q. and Ye, Y. 2012 "Classifying very high-
dimensional data with random forests built from small subspaces". International Journal of Data
Warehousing and Mining (IJDWM), 8(2), 44–63.

Quinlan, J. R. 1993 C4.5: Programs for Machine Learning. Morgan Kaufmann.

Zhao, H. and Williams, G. J. and Huang, J. Z. 2017 "wsrf: An R Package for Classification
with Scalable Weighted Subspace Random Forests". Journal of Statistical Software, 77(3), 1–30.
doi:10.18637/jss.v077.i03

Examples

library("wsrf")

# Prepare parameters.
ds <- iris
dim(ds)
names(ds)
target <- "Species"
vars <- names(ds)
if (sum(is.na(ds[vars]))) ds[vars] <- randomForest::na.roughfix(ds[vars])
ds[target] <- as.factor(ds[[target]])
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(tt <- table(ds[target]))
form <- as.formula(paste(target, "~ ."))
set.seed(42)
train <- sample(nrow(ds), 0.7*nrow(ds))
test <- setdiff(seq_len(nrow(ds)), train)

# Build model. We disable parallelism here, since CRAN Repository
# Policy (https://cran.r-project.org/web/packages/policies.html)
# limits the usage of multiple cores to save the limited resource of
# the check farm.

model.wsrf <- wsrf(form, data=ds[train, vars], parallel=FALSE)

# View model.
print(model.wsrf)
print(model.wsrf, tree=1)

# Evaluate.
strength(model.wsrf)
correlation(model.wsrf)
res <- predict(model.wsrf, newdata=ds[test, vars], type=c("response", "waprob"))
actual <- ds[test, target]
(accuracy.wsrf <- mean(res$response==actual))

# Different type of prediction.
cl <- apply(res$waprob, 1, which.max)
cl <- factor(cl, levels=1:ncol(res$waprob), labels=levels(actual))
(accuracy2.wsrf <- mean(cl==actual))
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