## ----include = FALSE---------------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>", warning = FALSE, message = FALSE, out.width = "95%", # figures occupy ~95% of document width out.height = "auto", dpi = 320, # ensure figure quality fig.width = 6, # default aspect ratio (can be overridden per-figure) fig.height = 3 ) options(rmarkdown.html_vignette.check_title = FALSE) ## ----setup, echo=TRUE, eval=FALSE--------------------------------------------- # # Load necessary packages ---- # library(visOmopResults) # library(IncidencePrevalence) # library(CohortCharacteristics) # library(dplyr) # library(tidyr) # library(ggplot2) # # # Load mock results stored in the package ---- # data <- visOmopResults::data # # # Global options ---- # knitr::opts_chunk$set( # out.width = "95%", # figures occupy ~95% of document width # out.height = "auto", # dpi = 320, # ensure figure quality # fig.width = 6, # default aspect ratio (can be overridden per-figure) # fig.height = 3, # results = "asis" # enable Markdown produced via cat() inside chunks # ) # # # DARWIN style for visOmopResults plots and tables. # style <- "darwin" # tableType <- "flextable" # plotType <- "ggplot" # setGlobalPlotOptions(style = style, type = plotType) # setGlobalTableOptions(style = style, type = tableType) # # # Calibri font in ggplot figures (requires the extrafont package to be available) # requireExtrafont() ## ----echo=FALSE--------------------------------------------------------------- # Load necessary packages ---- library(visOmopResults) library(IncidencePrevalence) library(CohortCharacteristics) library(dplyr) library(tidyr) library(ggplot2) # Load mock results stored in the package ---- reportData <- system.file("mockReportData.RData", package = "visOmopResults") load(reportData) # loads an object named `data` containing mock results # DARWIN style for visOmopResults plots and tables. style <- "darwin" tableType <- "flextable" plotType <- "ggplot" setGlobalPlotOptions(style = style, type = plotType) setGlobalTableOptions(style = style, type = tableType) # Calibri font in ggplot figures (requires the extrafont package to be available) requireExtrafont() ## ----------------------------------------------------------------------------- data$summarised_characteristics |> dplyr::filter(variable_name != "Sex") |> tableCharacteristics( header = c("sex"), hide = c("cdm_name", "cohort_name", "table_name"), type = tableType, .options = list(style = style) ) ## ----------------------------------------------------------------------------- data$summarised_characteristics |> dplyr::filter(variable_name != "Sex") |> dplyr::mutate( variable_name = customiseText( variable_name, custom = c( "Comorbidities" = "Comorbidities flag -inf to 0", "Comedications" = "Comedications flag -180 to 0" ) ), variable_level = customiseText( variable_level, custom = c("HIV" = "Hiv") ) ) |> visOmopTable( header = c("sex"), estimateName = c( "N (%)" = " (%)", "N" = "", "Median [Q25 - Q75]" = " [ - ]", "Mean (SD)" = " ()", "Range" = " to " ), factor = list( "sex" = c("overall", "Male", "Female"), "variable_name" = c( "Number records", "Number subjects", "Age", "Days in cohort", "Prior observation", "Future observation", "Cohort start date", "Cohort end date", "Comedications", "Comorbidities" ), "variable_level" = c(NA, "Asthma", "Depression", "HIV", "Opioids", "Antidiabetes") ), hide = c("cdm_name", "cohort_name") ) ## ----------------------------------------------------------------------------- data$summarised_characteristics |> dplyr::filter(variable_name %in% c("Number records")) |> plotCharacteristics(colour = "sex") + themeVisOmop(style = style) + coord_flip() ## ----------------------------------------------------------------------------- data$incidence |> dplyr::filter(strata_name == "sex") |> plotIncidence(colour = "sex", facet = "sex", ribbon = TRUE) + themeVisOmop(style = style) + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1)) ## ----message=TRUE------------------------------------------------------------- data$measurement_change ## ----------------------------------------------------------------------------- data$measurement_change |> tidyr::pivot_longer( cols = c("median", "min", "max", "q25", "q75"), names_to = "estimate_name", values_to = "estimate_value" ) |> dplyr::mutate( estimate_type = "numeric", estimate_value = as.character(estimate_value), variable_name = customiseText(variable_name), sex = customiseText(sex) ) |> visTable( header = "sex", estimateName = c( "Median [Q25 - Q75]" = " [ - ]", "Range" = " to " ), hide = c("cohort_name", "estimate_type"), rename = c("Estimate" = "estimate_name", "Variable" = "variable_name") ) ## ----------------------------------------------------------------------------- data$measurement_change |> dplyr::filter(variable_name %in% c("value_before", "value_after")) |> dplyr::mutate( variable_name = customiseText(variable_name), sex = customiseText(sex) ) |> boxPlot(x = "variable_name", facet = "sex", colour = "variable_name") + theme(axis.text.x = element_blank(), axis.ticks.x = element_blank()) + xlab("") ## ----eval=FALSE--------------------------------------------------------------- # num_table <- 1 # cat(paste0( # ':::{custom-style="CaptionDarwin"}\n', # '**Table ', num_table, ':** Baseline population characteristics.\n', # ':::\n' # )) # num_table <- num_table + 1