
Using the usl package

Analyze System Scalability in R with the
Universal Scalability Law

Stefan Möding

August 27, 2022

The Universal Scalability Law is used to quantify the scalability of hardware or soft-
ware systems. It uses sparse measurements from an existing system to predict the
throughput for different loads and can be used to learn more about the scalability
limitations of the system. This document introduces the usl package for R and shows
how easily it can be used to perform the relevant calculations.

Contents

1 Version 1

2 Introduction 1

3 Background 2

4 Examples of Scalability Analysis 3
4.1 Case Study: Hardware Scalability . 3
4.2 Case Study: Software Scalability . 9
4.3 Case Study: Multi-valued Data . 15

References 18

1 Version

This document describes version 3.0.3 of the usl package.

2 Introduction

Every system architect faces the challenge to deliver an application system that meets the require-
ments. A critical point during the design is the scalability of the system.

1

Informally scalability can be defined as the ability to support a growing amount of work. A
system is said to scale if it handles the changing demand or hardware environment in a reasonable
efficient and practical way.

Scalability can have two facets with respect to a computer system. On the one hand, there is
software scalability where the focus is about how the system behaves when the demand increases,
i.e., when more users are using it or more requests need to be handled. On the other hand, there
is hardware scalability where the behavior of an application system running on larger hardware
configurations is investigated.

The Universal Scalability Law (USL) has been developed by Dr. Neil J. Gunther to allow the
quantification of scalability for the purpose of capacity planning. It provides an analytic model for
the scalability of a computer system.

A comprehensive introduction to the Universal Scalability Law including the mathematical
grounding has been published by Dr. Gunther (cf. [1]).

3 Background

Dr. Gunther shows how the scalability of every computer system can be described by a common
rational function. This function is universal in the sense that it does not assume any specific type
of software, hardware or system architecture.

Equation (1) illustrates the original Universal Scalability Law where C (N) = X (N)/X (1) is the
relative capacity given by the ratio of the measured throughput X (N) for load N to the throughput
X (1) for load 1.

C (N) = N

1+α(N −1)+βN (N −1)
(1)

The denominator consists of three terms that all have a specific physical interpretation:

Concurrency: The first term models linear scalability that would exist if the different parts of the
system (processors, threads . . .) could work without any interference caused by
their interaction.

Contention: The second term of the denominator refers to the contention between different
parts of the system. Most common are issues caused by serialization or queueing
effects.

Coherency: The last term represents the delay induced by keeping the system in a coherent
and consistent state. This is necessary when writable data is shared in different
parts of the system. Predominant factors for such a delay are caches implemented
in software and hardware.

In other words: α andβ represent two concrete physical issues that limit the achievable speedup
for parallel execution. Note that the contention and coherency terms grow linearly respectively
quadratically with N . As a consequence their influence becomes larger with an increasing N .

Due to the quadratic characteristic of the coherency term there will be a point where the through-
put of the system will start to go retrograde, i.e., will start to decrease with further increasing
load.

2

Dr. Gunther proved that eq. (1) is reduced to Amdahl’s Law for β = 0 (cf. [1]). Therefore the
Universal Scalability Law can be seen as a generalization of Amdahl’s Law for speedup in parallel
computing.

We can solve this nonlinear equation to estimate the coefficients α and β using a sparse set of
measurements for the throughput Xi at different loads Ni . Initially the Universal Scalability Law
normalized the measurements using the throughput X (1) for load 1 as the point of reference. This
placed an additional burden on the performance analyst who needed to either measure the value
or find a smart way to estimate it.

It was then discovered that a third coefficient γ can be added to the formula to represent the
missing point of reference (cf. [3]). Equation (2) shows the updated Universal Scalability Law
using three parameters.

X (N) = γN

1+α(N −1)+βN (N −1)
(2)

Nonlinear regression will solve this equation and find best-fit values for the three parameters α,
β and γ.

The usl package has been created to subsume the computation into one simple function call.
This greatly reduces the manual work that previously was needed to perform the scalability
analysis.

Initially the coefficients are called σ and κ when hardware scalability is evaluated but α and β

when software scalability is analyzed. Up to version 1.8.0 the usl package always used sigma and
kappa as coefficients. This has been changed starting with the 2.0.0 release of the usl package. Now
the package will also use alpha and beta as coefficient names to follow Dr. Gunther’s nomenclature.
Additionally the gamma parameter was added to implement the Universal Scalability Law with three
parameters.

4 Examples of Scalability Analysis

The following sections present some examples of how the usl package can be used when perform-
ing a scalability analysis. They also explain typical function calls and their arguments.

4.1 Case Study: Hardware Scalability

The usl package contains a demo dataset with benchmark measurements from a ray tracer
software1. The data was gathered on an SGI Origin 2000 with 64 R12000 processors running at
300 MHz.

A number of reference images with different levels of complexity were computed for the bench-
mark. The measurements contain the average number of calculated ray-geometry intersections
per second for the number of used processors.

It is important to note that with changing hardware configurations the relative number of
homogeneous application processes per processor is to be held constant. So when k application
processes were used for the N processor benchmark then 2k processes must be used to get the
result for 2N processors.

Start the analysis by loading the usl package and look at the supplied dataset.

1http://sourceforge.net/projects/brlcad/

3

http://sourceforge.net/projects/brlcad/

R> library(usl)

R> data(raytracer)

R> raytracer

processors throughput

1 1 20

2 4 78

3 8 130

4 12 170

5 16 190

6 20 200

7 24 210

8 28 230

9 32 260

10 48 280

11 64 310

The data shows the throughput for different hardware configurations covering the available
range from one to 64 processors. We can easily see that the benefit for switching from one
processor to four processors is much larger than the gain for upgrading from 48 to 64 processors.

Create a simple scatterplot to visualize the raw data.

R> plot(throughput ~ processors, data = raytracer)

Figure 1 shows the throughput of the system for the different number of processors. This plot is
a typical example for the effects of diminishing returns, because it clearly shows how the benefit
of adding more processors to the system gets smaller for higher numbers of processors.

Our next step builds the USL model from the dataset. The usl() function creates an S4 object
that encapsulates the computation.

The first argument is a formula with a symbolic description of the model we want to analyze. In
this case we would like to analyze how the “throughput” changes with regard to the number of
“processors” in the system. The second argument is the dataset with the measured values. Note
how this call matches the syntax of the plot() function.

R> usl.model <- usl(throughput ~ processors, data = raytracer)

The model object can be investigated with the summary() function.

R> summary(usl.model)

Call:

usl(formula = throughput ~ processors, data = raytracer)

Efficiency:

Min 1Q Median 3Q Max

4

0 10 20 30 40 50 60

50
10

0
20

0
30

0

processors

th
ro

ug
hp

ut

Figure 1: Measured throughput of a ray tracing software in relation to the number of available
processors

0.222 0.374 0.458 0.696 0.915

Residuals:

Min 1Q Median 3Q Max

-15.18 -5.30 2.71 7.07 9.69

Coefficients:

Estimate Std. Error t value Pr(>|t|)

alpha 0.057771 0.013293 4.35 0.0025 **
beta 0.000000 0.000118 0.00 1.0000

gamma 21.848843 2.196165 9.95 0.0000088 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.34 on 8 degrees of freedom

Scalability bounds:

limit: throughput 378 (Amdahl asymptote)

peak: none (beta=0)

opt: throughput 195 at processors 17.3

The output of the summary() function shows different types of information.

• First of all it includes the call we used to create the model.

5

• The efficiency tells us something about the ratio of useful work that is performed per
processor. It is obvious that two processors might be able to handle twice the work of one
processor but not more. Calculating the ratio of the workload per processor should usually
be less or equal to 1. But often the maximum of the distribution is not exactly 1. This is
caused by the regression model when the expected value differs slightly from the measured
value.

• We are performing a regression on the data to calculate the coefficients and therefore we
determine the residuals for the fitted values. The distribution of the residuals is also given
as part of the summary.

• The coefficients α and β are the result that we are essentially interested in. They tell us the
magnitude of the contention and coherency effects within the system.

• The third coefficient γ estimates the throughput for a single processor. In this case we
actually have a measurement for the single processor case but for a real-world analysis this
value if often unknown or can’t be measured. The difference between the value of γ and
the measurement is also caused by the regression. The difference should be small if the
regression finds a reasonable model.

• The residual standard error estimates how well the model fits the data. We can see that the
difference between the model prediction and the measured values is typically within 9.34
ray-tracing operations per second.

• Finally the scalability bounds are printed. These bounds state important limits of the
scalability as defined by the model. We will look at the meaning of these values shortly.

The function efficiency() extracts the efficiency values from the model and allows us to have a
closer look at the specific efficiencies of the different processor configurations.

R> efficiency(usl.model)

1 4 8 12 16 20 24 28 32 48 64

0.9154 0.8925 0.7437 0.6484 0.5435 0.4577 0.4005 0.3760 0.3719 0.2670 0.2217

A bar plot is useful to visually compare the decreasing efficiencies for the configurations with an
increasing number of processors. Figure 2 shows the output diagram.

R> barplot(efficiency(usl.model), ylab = "efficiency / processor", xlab = "processors")

The efficiency can be used for a first validation and sanity check of the measured values. Values
larger than 1.0 usually need a closer investigation. It is also suspicious if the efficiency gets bigger
when the load increases.

The model coefficients alone can be retrieved with the coef() function.

R> coef(usl.model)

alpha beta gamma

0.05777 0.00000 21.84884

6

1 4 8 12 16 20 24 28 32 48 64

processors

ef
fic

ie
nc

y
/ p

ro
ce

ss
or

0.
0

0.
2

0.
4

0.
6

0.
8

Figure 2: Rate of efficiency per processor for different numbers of processors running the ray
tracing software

We can see that the model estimates the contention parameter α to be about 5.8 percent and
the coherency parameter β to be 0.

With β= 0 the model indicates no coherency penalty for the system. In this case the throughput
will asymptotically approach an upper bound as the number of processors is increased. The
summary output above indicates a limit of 378 as the upper bound for the maximal achievable
throughput. There is no way to increase the throughput beyond that number, no matter how
many processors are available whatsoever.

For β= 0 the predicted throughput never reaches a maximum. Theoretically the throughput
could always be increased by adding more processors. At the same time it is limited as stated in the
previous paragraph. So the improvement becomes infinitesimal for more and more processors.

To get an impression of the scalability function we can use the plot() function and create a
combined graph with the original data as dots and the calculated scalability function as a solid
line. The scalability bounds are added as dotted lines to the output. Figure 3 has the result of that
plot.

R> plot(throughput ~ processors, data = raytracer, pch = 16, ylim = c(0, 400))

R> plot(usl.model, add = TRUE, bounds = TRUE)

The plot has dotted lines for the upper limit defined by Amdahl (here for a throughput of 378)
and the linear scalability we strive to see in all our applications. Unfortunately the throughput
falls away from the linear path rather quickly.

Optimal scalability is reached at 17.3 processors performing 195 ray-tracing operations per
second. The optimum is defined as the point on the x-axis below the intersection of the linear
scalability bound and the scalability limit defined by Amdahl’s Law.

7

0 10 20 30 40 50 60

0
10

0
20

0
30

0
40

0

processors

th
ro

ug
hp

ut

Figure 3: Throughput of a ray tracing software using different numbers of processors

Running a system below this point will underutilize already purchased capacity. But pushing
the system above this point leads to diminishing returns. The point of optimal scalability is also
given in the output of the summary() function as shown before.

The confidence intervals for the model coefficients are returned by calling the confint() func-
tion.

R> confint(usl.model, level = 0.95)

2.5 % 97.5 %

alpha 0.0336773 0.0818642

beta -0.0002137 0.0002137

gamma 17.8683796 25.8293061

The confidence interval shows for a given confidence level the expected range that the true
value lies in. We can see that the true β might in fact not really be zero. One reason is that all
measurements contain measurement and observation errors. The other reason is that a very small
β might only cause a measurable effect when a much higher number of processors are used.

SGI marketed the Origin 2000 with up to 128 processors. Let’s assume that going from 64 to
128 processors does not introduce any additional limitations to the system architecture. Then we
can use the existing model and forecast the system throughput for other numbers like 96 and 128
processors using the predict() function.

R> predict(usl.model, data.frame(processors = c(96, 128)))

1 2

323.3 335.5

We can see from the prediction that the throughput will reach 335.5 for 128 processors.

8

4.2 Case Study: Software Scalability

In this section we will perform an analysis of a SPEC benchmark. A SPARCcenter 2000 with 16
CPUs was used in October 1994 for the SDM91 benchmark2. The benchmark simulates a number
of users working on a UNIX server (editing files, compiling . . .) and measures the number of script
executions per hour.

First, select the demo dataset with the data from the SPEC SDM91 benchmark.

R> library(usl)

R> data(specsdm91)

R> specsdm91

load throughput

1 1 64.9

2 18 995.9

3 36 1652.4

4 72 1853.2

5 108 1828.9

6 144 1775.0

7 216 1702.2

The data provides the measurements made during the benchmark. The column “load” shows
the number of virtual users that were simulated by the benchmark and the column “throughput”
has the measured number of script executions per hour for that load.

Next we create the USL model for this dataset by calling the usl() function. Again we specify
a symbolic description of the model and the dataset with the measurements. But this time we
choose a different method for the analysis.

R> usl.model <- usl(throughput ~ load, specsdm91, method = "nls")

There are currently three possible values for the method parameter:

nls: This method uses the nls() function of the stats package for a nonlinear regression
model. It estimates the coefficientsα, β and γ. The nonlinear regression uses constraints
for its parameters which means the “port” algorithm is used internally to solve the model.
So all restrictions of the “port” algorithm apply.

nlxb: A nonlinear regression model is also used in this case. But instead of the nls() function
it uses the nlxb() function from the nlsr package (cf. [4]). It is expected to be more
robust than the nls method.

default: The default method traditionally used a transformation into a 2nd degree polynomial
and required the data to be normalized. This was the original algorithm for the two-
parameter Universal Scalability Law (cf. chapter 5.2.3 of [1]). Starting with version 2.0.0
of the usl package this algorithm is no longer available. The nlxb() function is used
instead.

2http://www.spec.org/osg/sdm91/results/results.html

9

http://www.spec.org/osg/sdm91/results/results.html

We also use the summary() function to look at the details for the analysis.

R> summary(usl.model)

Call:

usl(formula = throughput ~ load, data = specsdm91, method = "nls")

Efficiency:

Min 1Q Median 3Q Max

0.0876 0.1626 0.2860 0.5624 0.7211

Residuals:

Min 1Q Median 3Q Max

-81.7 -48.3 -25.1 29.5 111.1

Coefficients:

Estimate Std. Error t value Pr(>|t|)

alpha 0.0277285 0.0091217 3.04 0.0384 *
beta 0.0001044 0.0000199 5.25 0.0063 **
gamma 89.9952384 14.2134906 6.33 0.0032 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 82.8 on 4 degrees of freedom

Scalability bounds:

limit: throughput 3250 (Amdahl asymptote)

peak: throughput 1880 at load 96.5

opt: throughput 1540 at load 36.1

Looking at the coefficients we notice that α is about 0.028 and β is about 0.0001. The parameter
α indicates that about 2.8 percent of the execution time is strictly serial. As a rule of thumb we can
say that 3 percent is an excellent value for a reasonable complex application. Note that this serial
fraction is also recognized in Amdahl’s Law.

We hypothesize that a proposed change to the system — maybe a redesign of the cache archi-
tecture or the elimination of a point to point communication — could reduce β by half. Now we
want to predict how the scalability of the system would change.

We can calculate the point of maximum scalability for the current system and for the hypotheti-
cal system with the peak.scalability() function.

R> peak.scalability(usl.model)

[1] 96.52

R> peak.scalability(usl.model, beta = 0.00005)

[1] 139.4

10

The function accepts the optional arguments alpha and beta. They are useful to do a what-if
analysis. Setting these parameters override the calculated model parameters and show how the
system would behave with a different contention or coherency coefficient.

In this case we learn that the point of peak scalability would move from around 96.5 to about
139 virtual users if we would be able to actually build the system with the assumed optimization.

Both calculated scalability functions can be plotted using the plot() or curve() functions. The
following commands create a graph of the original data points and the derived scalability functions.
To completely include the scalability of the hypothetical system, we have to increase the range of
the plotted values with the first command.

R> plot(specsdm91, pch = 16, ylim = c(0,2500))

R> plot(usl.model, add = TRUE)

R>

R> # Create function cache.scale to perform calculations with the model

R> cache.scale <- scalability(usl.model, beta = 0.00005)

R> curve(cache.scale, lty = 2, add = TRUE)

We used the function scalability() here. It is a higher order function returning a function and
not just a single value. The return value is assigned to define cache.scale. That makes it possible
to use the curve() function to plot the values over the specific range.

Figure 4 shows the measured throughput in scripts per hour for a given load, i.e., the number of
simulated users. The solid line indicates the derived USL model while the dashed line resembles
our hypothetical system using the proposed optimization.

0 50 100 150 200

0
50

0
10

00
20

00

load

th
ro

ug
hp

ut

Figure 4: The result of the SPEC SDM91 benchmark for a SPARCcenter 2000 (dots) together with
the calculated scalability function (solid line) and a hypothetical scalability function
(dashed line)

11

From the figure we can see that the scalability really peaks at one point. Increasing the load
beyond that point leads to retrograde behavior, i.e., the throughput decreases again. As we have
calculated earlier, the measured system will reach this point sooner than the hypothetical system.

We can combine the cache.scale() (defined before) and peak.scalability() functions to get
the predicted throughput values for the peak values.

R> scalability(usl.model)(peak.scalability(usl.model))

[1] 1884

R> # Use cache.scale function defined before

R> cache.scale(peak.scalability(usl.model, beta = 0.00005))

[1] 2162

This illustrates how the Universal Scalability Law can help to decide if the system currently
is more limited by contention or by coherency issues and also what impact a proposed change
would have.

The predict() function can also be used to calculate a confidence bands for the scalability
function at a specified level. To get a smoother graph it is advisable to predict the values for a
higher number of points. Let’s start by creating a data frame with the required load values.

R> load <- with(specsdm91, expand.grid(load = seq(min(load), max(load))))

We use the data frame to determine the fitted values and also the upper and lower confidence
bounds at the requested level. The result will be a matrix with column names fit for the fitted
values, lwr for the lower and upr for the upper bounds.

R> fit <- predict(usl.model, newdata = load, interval = "confidence", level = 0.95)

The matrix is used to define the coordinates of a polygon containing the area between the lower
and the upper bounds. The polygon connects the points of the lower bounds from lower to higher
values and then back using the points of the upper bounds.

R> usl.polygon <- matrix(c(load[, 1], rev(load[, 1]), fit[, 'lwr'], rev(fit[, 'upr'])),

+ nrow = 2 * nrow(load))

The plot is composed from multiple single plots. The first plot initializes the canvas and creates
the axis. Then the polygon is plotted using a gray area. In the next step the measured values are
added as points. Finally a solid line is plotted to indicate the fitted scalability function. See fig. 5
for the entire plot.

R> # Create empty plot (define canvas size, axis, ...)

R> plot(specsdm91, xlab = names(specsdm91)[1], ylab = names(specsdm91)[2],

+ ylim = c(0, 2000), type = "n")

R>

R> # Plot gray polygon indicating the confidence interval

12

R> polygon(usl.polygon, border = NA, col = "gray")

R>

R> # Plot the measured throughput

R> points(specsdm91, pch = 16)

R>

R> # Plot the fit

R> lines(load[, 1], fit[, 'fit'])

0 50 100 150 200

0
50

0
10

00
15

00
20

00

load

th
ro

ug
hp

ut

Figure 5: The result of the SPEC SDM91 benchmark with confidence bands for the scalability
function at the 95% level

Another way to illustrate the impact of the parameters α and β on the scalability is by looking
at the achievable speedup when a fixed load is parallelized. A naive estimation would be that
doubling the degree of parallelization should cut the execution time in halve.

Unfortunately it doesn’t work this way. In general there is a range where doubling the paralleliza-
tion will actually improve the execution time. But the improvement will get smaller and smaller
when the degree of parallelism is increased further. This is also an effect of diminishing returns as
already seen in section 4.1. The real execution time is in fact the sum of the ideal execution time
and the overhead for dealing with contention and coherency delays.

The total execution time of a parallelized workload depends on the degree of parallelism p and
the coefficients α and β of the associated USL model.

The magnitude of the three components — given as fractions of the serial execution time T1 —
that account for the total execution time of the parallelized workload can be calculated as follows
(cf. [2] eqn. 26).

Ti deal =
1

p
T1 (3)

13

Tcontenti on =α

(
p −1

p

)
T1 (4)

Tcoher enc y =β
1

2
(p −1)T1 (5)

The function overhead() can be used to calculate the correspondent fractions for a given model.
The function has the same interface as the predict() function. Calling it with only the model as
argument will calculate the overhead for the fitted values. It can also be called with a data frame
as second argument. Then the data frame will be used to determine the values for the calculation.

Let’s use our current model to calculate the overhead for a load of 10, 20, 100 and 200 simulated
users. We create a data frame with the number of users and use the overhead() function to
estimate the overhead.

R> load <- data.frame(load = c(10, 20, 100, 200))

R> ovhd <- overhead(usl.model, newdata = load)

R> ovhd

ideal contention coherency

1 0.100 0.02496 0.0004696

2 0.050 0.02634 0.0009915

3 0.010 0.02745 0.0051661

4 0.005 0.02759 0.0103844

We can see that the ideal execution time for running 10 jobs in parallel is 1/10 of the execution
time of running the jobs unparallelized. To get the total fraction we have to add the overhead for
contention (2.5%) and for coherency delays (0.047%). This gives a total of 12.54%. So with 10 jobs
in parallel we are only about 8 times faster than running the same workload in a serial way.

Equation (4) shows that the percentage of time spent on dealing with contention will converge
to the value of α. Equation (5) explains that coherency delays will grow beyond any limit if the
degree of parallelism is large enough. This corresponds to the observation that adding more
parallelism will sometimes make performance worse.

A stacked barplot can be used to visualize how the different effects change with an increasing
degree of parallelism. Note that the result matrix must be transposed to match the format needed
for the barplot() command.

R> barplot(height = t(ovhd), names.arg = load[, 1],

+ xlab = names(load), legend.text = TRUE)

Figure 6 shows the resulting plot. It clearly shows the decrease in ideal execution time when the
degree of parallelism is increased. It also shows how initially almost only contention contributes
to the total execution time. For higher degrees of parallelism the impact of coherency delays grows.
Note how the difference in ideal execution time between 100 and 200 parallel jobs effectively has
no effect on the total execution time.

14

10 20 100 200

coherency
contention
ideal

load

0.
00

0.
04

0.
08

0.
12

Figure 6: Decomposition of the execution time for parallelized workloads of the SPECSDM91
benchmark. The time is measured as a fraction of the time needed for serial execution of
the workload.

4.3 Case Study: Multi-valued Data

It is very common to use multi-valued data for a scalability analysis. These measurements are
often taken from a live system and may include many different data points for similar load values.
This could be the result of a non-homogeneous workload and an analyst has to decide how to
take that into account. But for a production system there is usually no feasible way to create a
homogeneous workload.

The following data shows a subset of performance data gathered from an Oracle database
system providing a login service for multiple web applications. For the analysis we focus on only
two of the available metrics:

txn_rate: The average number of processed database transactions. This metric is given as trans-
actions per second.

db_time: The average time spent inside the database either working on a CPU or waiting for
resources (I/O, locks, buffers . . .). The time is expressed as seconds per second, so two
sessions working for exactly one quarter of a second each will contribute a total of half
a second for that second. Oracle has coined the term Average Active Sessions (AAS) for
this metric.

Let’s have a look at the first couple of data points in our data set. For each time interval of two
minutes there is a corresponding value for the average database time per seconds and for the
average number of transactions per second in this interval.

15

R> data(oracledb)

R> head(subset(oracledb, select = c(timestamp, db_time, txn_rate)))

timestamp db_time txn_rate

1 2012-01-19 08:02:00 0.3120 2.205

2 2012-01-19 08:04:00 0.3224 2.574

3 2012-01-19 08:06:00 0.1918 1.790

4 2012-01-19 08:08:00 0.3136 2.587

5 2012-01-19 08:10:00 0.3584 2.321

6 2012-01-19 08:12:00 0.2354 1.958

A naive approach would be a plot of the data as a time series (see fig. 7). This plot shows the
familiar pattern of an OLTP application that is mostly used during office hours. Unfortunately this
type of plot is pretty much useless when performing a scalability analysis.

09:00 11:00 13:00 15:00 17:00 19:00

1
2

3
4

5
6

7

Time of day

T
xn

 /
se

c

Figure 7: Transaction rates of an Oracle database system during the day of January 19th, 2012

The Universal Scalability Law correlates a throughput with a load. In this case the throughput
is clearly given by the transaction rate and the database time is a taken as the load metric. The
definition above states that the total time spent — either running on a CPU or waiting — is a
measurement for the average number of active sessions. So we use that to express the load on the
database system.

As usual, we call the usl() function to carry out the analysis. See fig. 8 for the scatterplot of the
data including the plot of the estimated scalability function.

R> plot(txn_rate ~ db_time, oracledb,

+ xlab = "Average active sessions", ylab = "Txn / sec")

R>

R> usl.oracle <- usl(txn_rate ~ db_time, oracledb)

16

R> plot(usl.oracle, add = TRUE)

0 1 2 3 4 5 6

1
2

3
4

5
6

7

Average active sessions

T
xn

 /
se

c

Figure 8: Relationship between the transaction rate and the number of average active sessions in
an Oracle database system

Now we can retrieve the coefficients for this model.

R> coef(usl.oracle)

alpha beta gamma

0.4414 0.0453 3.3861

Here our α is about an order of magnitude bigger than what we have seen in the previous
sections. This indicates a major issue with some kind of serialization or queueing that severely
limits the scalability. In fact it is so bad that the impact is already visible with only a few active
sessions working at the same time: according to the model the peak throughput is reached at
about 3.5 sessions.

R> peak.scalability(usl.oracle)

[1] 3.512

The confidence interval for α confirms that there is only a small uncertainty about the magni-
tude of the calculated coefficients.

R> confint(usl.oracle)

2.5 % 97.5 %

17

alpha 0.36429 0.51845

beta 0.01861 0.07199

gamma 3.28529 3.48687

This analysis shows how we can use some of the metrics provided by a live Oracle database
system to learn about the scalability. Note that neither the Oracle software nor the application
needed any additional instrumentation to collect this data. Also the analysis was done without
any internal knowledge about the way the application was using the database.

References

[1] Neil J. Gunther. Guerrilla Capacity Planning: A Tactical Approach to Planning for Highly
Scalable Applications and Services. Springer, Heidelberg, Germany, 1st edition, 2007.

[2] Neil J. Gunther. A general theory of computational scalability based on rational functions.
CoRR, abs/0808.1431, 2008.

[3] Neil J. Gunther. Usl scalability modeling with three parameters. http://perfdynamics.

blogspot.com/2018/05/usl-scalability-modeling-with-three.html, 2018. Accessed: 2020-
01-08.

[4] John C. Nash. nlsr: Functions for nonlinear least squares solutions, 2017. R package version
2017.6.18.

18

http://perfdynamics.blogspot.com/2018/05/usl-scalability-modeling-with-three.html
http://perfdynamics.blogspot.com/2018/05/usl-scalability-modeling-with-three.html

	Version
	Introduction
	Background
	Examples of Scalability Analysis
	Case Study: Hardware Scalability
	Case Study: Software Scalability
	Case Study: Multi-valued Data

	References

