| Type: | Package | 
| Title: | Shrinkage Estimation for Univariate Normal Mean | 
| Version: | 1.0.0 | 
| Maintainer: | Nanami Taketomi <nnmamikrn@gmail.com> | 
| Description: | Implement a shrinkage estimation for the univariate normal mean based on a preliminary test (pretest) estimator. This package also provides the confidence interval based on pivoting the cumulative density function. The methodologies are published in Taketomi et al.(2024) <doi:10.1007/s42081-023-00221-2> and Taketomi et al.(2024-)(under review). | 
| License: | GPL-2 | 
| Encoding: | UTF-8 | 
| RoxygenNote: | 7.3.2 | 
| NeedsCompilation: | no | 
| Packaged: | 2024-09-04 08:34:12 UTC; User | 
| Author: | Nanami Taketomi [aut, cre], Jia-Han Shih [aut], Takeshi Emura [aut] | 
| Repository: | CRAN | 
| Date/Publication: | 2024-09-10 09:00:02 UTC | 
Shrinkage Estimation for the Univariate Normal Mean based on a Preliminary Test Estimator
Description
This function computes a preliminary test (pretest) estimate for the univariate normal mean. This function also computes the confidence interval based on a pretest estimator.
Usage
uni.pt(y,s,alpha=0.05,gamma=0.05,gamma1=NA,gamma2=NA,conf.int=TRUE)
Arguments
| y | A vector of normal distributed data | 
| s | Standard deviation of  | 
| alpha | Significance level for the preliminary hypothesis test. This parameter satisfies 0<  | 
| gamma | A constant that 1- | 
| gamma1 | A constant for the 1- | 
| gamma2 | A constant for the 1- | 
| conf.int | An indicator whether confidence interval is in the output or not. The default is  | 
Value
| Sample_mean | Sample mean of y | 
| PT | Pretest estimator for the normal mean based on  | 
| Lower.pivotCI | Lower limit of the confidence interval | 
| Upper.pivotCI | Upper limit of the confidence interval | 
Author(s)
Nanami Taketomi, Takeshi Emura
References
Taketomi N, Shih JH, Emura T.(2024-). Confidence interval for the univariate normal mean based on a pretest estimator.(under review)
Examples
mu=0
s=10
y=rnorm(20,mu,s)
uni.pt(y,s)
mu=1.5
s=10
y=rnorm(20,mu,s)
uni.pt(y,s,alpha=0.10)