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Abstract

The R package tscount provides likelihood-based estimation methods for analysis and
modeling of count time series following generalized linear models. This is a flexible class of
models which can describe serial correlation in a parsimonious way. The conditional mean
of the process is linked to its past values, to past observations and to potential covariate
effects. The package allows for models with the identity and with the logarithmic link
function. The conditional distribution can be Poisson or Negative Binomial. An important
special case of this class is the so-called INGARCH model and its log-linear extension. The
package includes methods for model fitting and assessment, prediction and intervention
analysis. This paper summarizes the theoretical background of these methods. It gives
details on the implementation of the package and provides simulation results for models
which have not been studied theoretically before. The usage of the package is illustrated
by two data examples. Additionally, we provide a review of R packages which can be used
for count time series analysis. This includes a detailed comparison of tscount to those
packages.

Keywords: aberration detection, autoregressive models, intervention analysis, likelihood, mixed
Poisson, model selection, prediction, R, regression model, serial correlation.

This document is published as a vignette of the R package tscount with minor updates since its
publication in Journal of Statistical Software. Its first version has been published as a discussion
paper in February 2015 (doi:10.17877/DE290R-7239). Please cite this manuscript as:
Liboschik, T., Fokianos, K. and Fried, R. (2017). tscount: An R package for analysis of count
time series following generalized linear models. Journal of Statistical Software 82(5), 1–51, doi:
10.18637/jss.v082.i05.

1. Introduction
Recently, there has been an increasing interest in regression models for time series of counts
and a considerable number of publications on this subject has appeared in the literature.
However, most of the proposed methods are not yet available in a statistical software package
and hence they cannot be applied easily. We aim at filling this gap and publish a package,
named tscount, for the popular free and open source software environment R (R Core Team
2016). In fact, our main goal is to develop software for models whose conditional mean depends
on previous observations and on its own previous values. These models are quite analogous
to the generalized autoregressive conditional heteroscedasticity (GARCH) models (Bollerslev
1986) which were proposed for describing the conditional variance.
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Count time series appear naturally in various areas whenever a number of events per time
period is observed over time. Examples showing the wide range of applications are the daily
number of hospital admissions, from public health, the number of stock market transactions
per minute, from finance or the hourly number of defect items, from industrial quality control.
Models for count time series should take into account that the observations are nonnegative
integers and they should capture suitably the dependence among observations. A convenient
and flexible approach is to employ the generalized linear model (GLM) methodology (Nelder
and Wedderburn 1972) for modeling the observations conditionally on the past information.
This methodology is implemented by choosing a suitable distribution for count data and
an appropriate link function. Such an approach is pursued by Fahrmeir and Tutz (2001,
Chapter 6) and Kedem and Fokianos (2002, Chapters 1–4), among others. Another important
class of models for time series of counts is based on the thinning operator, like the integer
autoregressive moving average (INARMA) models, which, in a way, imitate the structure of the
common autoregressive moving average (ARMA) models (see the review article by Weiß 2008).
A different type of count time series models are the so-called state space models. We refer to
the reviews of Fokianos (2011), Jung and Tremayne (2011), Fokianos (2012), Tjøstheim (2012)
and Fokianos (2015) for an in-depth overview of models for count time series. Advantages of
GLM-based models compared to the models which are based on the thinning operator are the
following:
(a) They can describe covariate effects and negative correlations in a straightforward way.
(b) There is a rich toolkit available for this class of models.

State space models allow to describe even more flexible data generating processes than GLM
models but at the cost of a more complicated model specification. On the other hand,
GLM-based models yield predictions in a convenient matter due to their explicit formulation.
In the first version of the tscount package we provide likelihood-based methods for the
framework of count time series following GLMs. Some simple autoregressive models can
be fitted with standard software by treating the observations as if they were independent
(see Section 8 and Appendix A.3), for example, using the R function glm. However, these
procedures are in general not tailored for dependent data and may yield invalid model fits.
The implementation in the package tscount allows for a more general dependence structure
which is specified conveniently by the user. We consider general time series models whose
conditional mean may depend on time-varying covariates, previous observations and, similar to
the conditional variance of a GARCH model, on its own previous values. The usage and output
of our functions is in parts inspired by the R functions arima and glm in order to provide a
familiar user experience. Furthermore tscount is object-oriented and provides many standard
S3 methods for well-known generic functions. There are several other R functions available
which can be employed for analyzing count time series. Many of those are related to GLMs and
have been developed for independent observations but are, with some limitations, also capable
to describe simple forms of serial dependence. There are also some functions available for
extending such models to time series. Another group of functions handles state space models
for count time series. We briefly review these functions and the corresponding model classes
in Section 8 and compare them to tscount. As it turns out, there are special cases for which
our model corresponds to existing ones. In these cases we obtain quite similar results with
functions from some other packages, thus confirming the reliability of our package. However,
many features of tscount, like the flexible dependence structure, outreach the capability of
other packages. Admittedly, some packages provide features like zero-inflation or more general
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forms of the linear predictor which cannot be accommodated yet by tscount but could possibly
be included in future versions. As a conclusion, this package is a valuable addition to the R
environment which fills some significant gaps associated with time series fitting.
The functionality of tscount partly goes beyond the theory available in the literature since
theoretical investigation of these models is still an ongoing research theme. For instance the
problem of accommodating covariates in such GLM-type count time series models or fitting a
mixed Poisson log-linear model have not been studied theoretically. We have checked their
appropriateness by simulations reported in Appendix B. However, some care should be taken
when applying the package’s programs to situations which are not covered by existing theory.
This paper is organized as follows. At first the theoretical background of the methods included
in the package is briefly summarized with references to the literature for more details. Section 2
introduces the models we consider. Section 3 describes quasi maximum likelihood estimation of
the unknown model parameters and gives some details regarding its implementation. Section 4
treats prediction with such models. Section 5 sums up tools for model assessment. Section 6
discusses procedures for the detection of interventions. Section 7 demonstrates the usage of
the package with two data examples. Section 8 reviews other R packages which are capable
to model count time series and compares them with our package. Finally, Section 9 gives an
outlook on possible future extensions of our package. In the Appendix we give further details
and we confirm empirically some of the new methods that we discuss but which have not been
studied, as of yet.

2. Models
Denote a count time series by tYt : t P Nu. We will denote by tXt : t P Nu a time-varying
r-dimensional covariate vector, say Xt � pXt,1, . . . , Xt,rqJ. We model the conditional mean
E pYt|Ft�1q of the count time series by a process, say tλt : t P Nu, such that E pYt|Ft�1q � λt.
Denote by Ft the history of the joint process tYt, λt,Xt�1 : t P Nu up to time t including
the covariate information at time t� 1. The distributional assumption for Yt given Ft�1 is
discussed later. We are interested in models of the general form

gpλtq � β0 �
p̧

k�1
βk rgpYt�ikq � q̧

`�1
α`gpλt�j`q � ηJXt, (1)

where g : R� Ñ R is a link function and rg : N0 Ñ R is a transformation function. The
parameter vector η � pη1, . . . , ηrqJ corresponds to the effects of covariates. In the terminology
of GLMs we call νt � gpλtq the linear predictor. To allow for regression on arbitrary past
observations of the response, define a set P � ti1, i2, . . . , ipu and integers 0   i1   i2 . . .   ip  
8, with p P N0. This enables us to regress on the lagged observations Yt�i1 , Yt�i2 , . . . , Yt�ip .
Analogously, define a set Q � tj1, j2, . . . , jqu, q P N0 and integers 0   j1   j2 . . .   jq   8,
for regression on lagged conditional means λt�j1 , λt�j2 , . . . , λt�jq . This case is covered by the
theory for models with P � t1, . . . , pu and Q � t1, . . . , qu by choosing p and q suitably and
setting some model parameters to zero. Our formulation is useful particularly when dealing
with modeling stochastic seasonality (see Section 7.1, for an example). Specification of the
model order, i.e., of the sets P and Q, are guided by considering the empirical autocorrelation
functions of the observed data. This approach is described for ARMA models in many
time series analysis textbooks and transfers to the above model by employing its ARMA
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representation (see (20) in Appendix A.3). Parameter constraints which ensure stationarity
and ergodicity of two important special cases of (1) are given in Section 3.
We give several examples of model (1). Consider the situation where g and rg equal the identity,
i.e., gpxq � rgpxq � x. Furthermore, let P � t1, . . . , pu, Q � t1, . . . , qu and η � 0. Then model
(1) becomes

λt � β0 �
p̧

k�1
βk Yt�k �

q̧

`�1
α`λt�`. (2)

Assuming further that Yt given the past is Poisson distributed, then we obtain an integer-valued
GARCH model of order p and q, abbreviated as INGARCH(p,q). These models are also known
as autoregressive conditional Poisson (ACP) models. They have been discussed by Heinen
(2003), Ferland, Latour, and Oraichi (2006) and Fokianos, Rahbek, and Tjøstheim (2009),
among others. When η � 0, then our package fits INGARCH models with nonnegative
covariates; this is so because we need to ensure that the resulting mean process is positive.
An example of an INGARCH model with covariates is given in Section 6, where we fit a count
time series model which includes intervention effects.
Consider again model (1) but now with the logarithmic link function gpxq � logpxq, rgpxq �
logpx� 1q and P , Q as before. Then, we obtain a log-linear model of order p and q for the
analysis of count time series. Indeed, set νt � logpλtq to obtain from (1) that

νt � β0 �
p̧

k�1
βk logpYt�k � 1q �

q̧

`�1
α`νt�`. (3)

This log-linear model is studied by Fokianos and Tjøstheim (2011), Woodard, Matteson,
and Henderson (2011) and Douc, Doukhan, and Moulines (2013). We follow Fokianos and
Tjøstheim (2011) in transforming past observations by employing the function rgpxq � logpx�1q,
such that they are on the same scale as the linear predictor νt. These authors show that
the addition of a constant c to each observation for avoiding zero values does not affect
inference; in addition they argue that a reasonable choice for c is 1. Note that model (3) allows
modeling of negative serial correlation, whereas (2) accommodates positive serial correlation
only. Additionally, (3) accommodates covariates easier than (2) since the log-linear model
implies positivity of the conditional mean process tλtu. The linear model (2) with covariates
should be fitted with some care because it is limited to positive effects on tλtu. The effects of
covariates on the response is multiplicative for model (3); it is additive though for model (2).
For a discussion on the inclusion of time-dependent covariates see Fokianos and Tjøstheim
(2011, Section 4.3).
Model (1) together with the Poisson assumption, i.e., Yt|Ft�1 � Poissonpλtq, implies that

P pYt � y|Ft�1q � λyt expp�λtq
y! , y � 0, 1, . . . . (4)

It holds VAR pYt|Ft�1q � E pYt|Ft�1q � λt. Hence in the case of a conditional Poisson response
model the conditional mean is identical to the conditional variance of the observed process.
The Negative Binomial distribution allows for a conditional variance to be larger than the
mean λt, which is often referred to as overdispersion. Following Christou and Fokianos (2014),
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it is assumed that Yt|Ft�1 � NegBinpλt, φq, where the Negative Binomial distribution is
parametrized in terms of its mean with an additional dispersion parameter φ P p0,8q, i.e.,

P pYt � y|Ft�1q � Γpφ� yq
Γpy � 1qΓpφq

�
φ

φ� λt


φ� λt
φ� λt


y
, y � 0, 1, . . . . (5)

In this case, VAR pYt|Ft�1q � λt � λ2
t {φ, i.e., the conditional variance increases quadratically

with λt. The Poisson distribution is a limiting case of the Negative Binomial when φÑ8.
Note that the Negative Binomial distribution belongs to the class of mixed Poisson processes.
A mixed Poisson process is specified by setting Yt � Ntp0, Ztλts, where tNtu are i.i.d. Poisson
processes with unit intensity and tZtu are i.i.d. random variables with mean 1 and variance
σ2, independent of tYtu (Christou and Fokianos 2014). When tZtu is an i.i.d. process of
Gamma random variables, then we obtain the Negative Binomial process with σ2 � 1{φ.
We refer to σ2 as the overdispersion coefficient because it is proportional to the extent of
overdispersion of the conditional distribution. The limiting case of σ2 � 0 corresponds to
the Poisson distribution, i.e., no overdispersion. The estimation procedure we study is not
confined to the Negative Binomial case but to any mixed Poisson distribution. However, the
Negative Binomial assumption is required for prediction intervals and model assessment; these
topics are discussed in Sections 4 and 5.
In model (1) the effect of a covariate fully enters the dynamics of the process and propagates
to future observations both by the regression on past observations and by the regression on
past conditional means. The effect of such covariates can be seen as an internal influence on
the data-generating process, which is why we refer to it as an internal covariate effect. We also
allow to include covariates in a way that their effect only propagates to future observations
by the regression on past observations but not directly by the regression on past conditional
means. Following Liboschik, Kerschke, Fokianos, and Fried (2016), who make this distinction
for the case of intervention effects described by deterministic covariates, we refer to the effect
of such covariates as an external covariate effect. Let e � pe1, . . . , erqJ be a vector specified
by the user with ei � 1 if the i-th component of the covariate vector has an external effect and
ei � 0 otherwise, i � 1, . . . , r. Denote by diagpeq a diagonal matrix with diagonal elements
given by e. The generalization of (1) allowing for both internal and external covariate effects
is given by

gpλtq � β0 �
p̧

k�1
βk rgpYt�ikq � q̧

`�1
α`

�
gpλt�j`q � ηJdiagpeqXt�j`

�� ηJXt. (6)

Basically, the effect of all covariates with an external effect is subtracted in the feedback
terms such that their effect enters the dynamics of the process only via the observations.
We refer to Liboschik et al. (2016) for an extensive discussion and comparison of internal
and external effects. It is our experience with these models that an empirical discrimination
between internal and external covariate effects is difficult and that it is not crucial which type
of covariate effect is chosen for applications.
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3. Estimation and inference
The tscount package fits models of the form (1) by quasi conditional maximum likelihood (ML)
estimation (function tsglm). If the Poisson assumption holds true, then we obtain an ordinary
ML estimator. However, under the mixed Poisson assumption we obtain a quasi-ML estimator.
Denote by θ � pβ0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηrqJ the vector of regression parameters.
Regardless of the distributional assumption, the parameter space for the INGARCH model (2)
with covariates is given by

Θ �
#
θ P Rp�q�r�1 : β0 ¡ 0, β1, . . . , βp, α1, . . . , αq, η1, . . . , ηr ¥ 0,

p̧

k�1
βk �

q̧

`�1
α`   1

+
.

The intercept β0 must be positive and all other parameters must be nonnegative to ensure
positivity of the conditional mean λt. The other condition ensures that the fitted model has
a stationary and ergodic solution with moments of any order (Ferland et al. 2006; Fokianos
et al. 2009; Doukhan, Fokianos, and Tjøstheim 2012); see also Tjøstheim (2015) for a recent
review. For the log-linear model (3) with covariates the parameter space is taken to be

Θ �
#
θ P Rp�q�r�1 : |β1|, . . . , |βp|, |α1|, . . . , |αq|   1,

�����
p̧

k�1
βk �

q̧

`�1
α`

�����   1
+
,

see Appendix A.1 for a discussion. Christou and Fokianos (2014) point out that with the
parametrization (5) of the Negative Binomial distribution the estimation of the regression
parameters θ does not depend on the additional dispersion parameter φ. This allows to
employ a quasi maximum likelihood approach based on the Poisson likelihood to estimate
the regression parameters θ, which is described below. The nuisance parameter φ is then
estimated separately in a second step. This approach is different from a full maximum
likelihood estimation based on the Negative Binomial distribution, which for example has been
implemented in the function glm.nb in the R package MASS (Venables and Ripley 2002). In
that algorithm, maximization of the Negative Binomial likelihood for an estimated dispersion
parameter φ and estimation of φ given the estimated regression parameters θ are iterated until
convergence. The quasi negative binomial approach has been chosen for simplicity and its
usefulness on deriving consistent estimators when the model for λt has been correctly specified
(see also Ahmad and Francq 2016).
The log-likelihood, score vector and information matrix are derived conditionally on pre-sample
values of the time series and the conditional mean process tλtu, precisely on F0. An appropriate
initialization is needed for their evaluation, which is discussed in the next subsection. For a
vector of observations y � py1, . . . , ynqJ, the conditional quasi log-likelihood function, up to a
constant, is given by

`pθq �
ņ

t�1
log ptpyt;θq �

ņ

t�1

�
yt lnpλtpθqq � λtpθq

	
, (7)

where ptpy;θq � PpYt � y|Ft�1q is the probability density function of a Poisson distribution
as defined in (4). The conditional mean is regarded as a function λt : Θ Ñ R� and thus it is
denoted by λtpθq for all t. The conditional score function is the pp� q � r � 1q-dimensional
vector given by

Snpθq � B`pθq
Bθ �

ņ

t�1

�
yt

λtpθq � 1

 Bλtpθq

Bθ . (8)
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The vector of partial derivatives Bλtpθq{Bθ can be computed recursively by the recursions
given in Appendix A.2. Finally, the conditional information matrix is given by

Gnpθ;σ2q �
ņ

t�1
COV

� B`pθ;Ytq
Bθ

����Ft�1



�

ņ

t�1

�
1

λtpθq � σ2

�Bλtpθq

Bθ

�Bλtpθq

Bθ

J

.

In the case of the Poisson assumption it holds σ2 � 0 and in the case of the Negative Binomial
assumption σ2 � 1{φ. For the ease of notation let G�

npθq � Gnpθ; 0q, which is the conditional
information matrix in case of a Poisson distribution.
The quasi maximum likelihood estimator (QMLE) pθn of θ, assuming that it exists, is the
solution of the non-linear constrained optimization problem

pθ :� pθn � argmaxθPΘ`pθq. (9)

Denote the fitted values by pλt � λtppθq. Following Christou and Fokianos (2014), the dispersion
parameter φ of the Negative Binomial distribution is estimated by solving the equation

ņ

t�1

pYt � pλtq2pλt � pλ2
t {pφq � n� pp� q � r � 1q, (10)

which is based on Pearson’s χ2 statistic. The variance parameter σ2 is estimated by pσ2 � 1{pφ.
For the Poisson distribution we set pσ2 � 0. Strictly speaking, the log-linear model (3) does
not fall into the class of models considered by Christou and Fokianos (2014). However, results
obtained by Douc et al. (2013) (for p � q � 1) and Sim (2016) (for p � q) allow us to use this
estimator also for the log-linear model. This issue is addressed by simulations in Appendix B.2,
which support that the estimator obtained by (10) provides good results also for models with
the logarithmic link function.
Inference for the regression parameters is based on the asymptotic normality of the QMLE,
which has been studied by Fokianos et al. (2009) and Christou and Fokianos (2014) for models
without covariates. For a well behaved covariate process tXtu we conjecture that

?
n
�pθn � θ0

	
dÝÑ Np�q�r�1

�
0, G�1

n ppθn; pσ2qG�
nppθnqG�1

n ppθn; pσ2q
	
, (11)

as nÑ8, where θ0 denotes the true parameter value and pσ2 is a consistent estimator of σ2.
We suppose that this applies under the same assumptions usually made for the ordinary linear
regression model (see for example Demidenko 2013, p. 140 ff.). For deterministic covariates
these assumptions are ||Xt||   c, where || � || denotes the usual Euclidean norm, i.e., the
covariate process is bounded, and limnÑ8 n

�1 °n
t�1XtX

J
t � A, where c is a constant and A

is a nonsingular matrix. For stochastic covariates it is assumed that the expectations E pXtq
and E

�
XtX

J
t

�
exist and that E

�
XtX

J
t

�
is nonsingular. The assumptions imply that the

information on each covariate grows linearly with the sample size and that the covariates
are not linearly dependent. Fuller (1996, Theorem 9.1.1) shows asymptotic normality of the
least squares estimator for a regression model with time series errors under even more general
conditions which allow the presence of certain types of trends in the covariates. For the
special case of a Poisson model with the identity link, Agosto, Cavaliere, Kristensen, and
Rahbek (2015) show asymptotic normality of the MLE for a model with covariates that are
functions of Markov processes with finite second moments and that are not collinearly related
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to the response. The asymptotic normality of the QMLE in our context is supported by the
simulations presented in Appendix B.1. A formal proof requires further research. To avoid
numerical instabilities when inverting Gnppθn; pσ2q we apply an algorithm which makes use of
the fact that it is a real symmetric and positive definite matrix; see Appendix A.4.
As an alternative method to the normal approximation (11) for obtaining standard errors and
confidence intervals (function se) we include a parametric bootstrap procedure (argument B),
for which computation time is many times higher. Accordingly, B time series are simulated
from the model fitted to the original data. The empirical standard errors of the parameter
estimates for these B time series are the bootstrap standard errors. Confidence intervals are
based on quantiles of the bootstrap sample, see Efron and Tibshirani (1993, Chapter 13). This
procedure can compute standard errors and confidence intervals both for pθ and pσ2. In our
experience B � 500 yields stable results.

Implementation

This section and Appendix A provide some details on the implementation of the function
tsglm and explain its technical arguments. The default settings of this arguments are chosen
wisely based on plenty of experiments and should be sufficient for most situations.
The parameter restrictions which are imposed by the condition θ P Θ can be formulated as d
linear inequalities. This means that there exists a matrix U of dimension d� pp� q � r � 1q
and a vector c of length d, such that Θ � tθ | Uθ ¥ cu. For the linear model (2) one needs
d � p�q�r�2 constraints to ensure nonnegativity of the conditional mean λt and stationarity
of the resulting process. For the log-linear model (3) there are not any constraints on the
intercept term and on the covariate coefficients; hence d � 2pp� q � 1q. In order to enforce
strict inequalities the respective constraints are tightened by an arbitrarily small constant
ξ ¡ 0; this constant is set to ξ � 10�6 by default (argument slackvar).
For solving numerically the maximization problem (9) we employ by default the function
constrOptim. This function applies an algorithm described by Lange (1999, Chapter 14),
which essentially enforces the constraints by adding a barrier value to the objective function
and then employs an algorithm for unconstrained optimization of this new objective function,
iterating these two steps if necessary. By default the quasi-Newton Broyden-Fletcher-Goldfarb-
Shanno (BFGS) algorithm is employed for the latter task of unconstrained optimization, which
additionally makes use of the score vector (8). It is possible to tune the optimization algorithm
and even to employ an unconstrained optimization (argument final.control).
Note that the log-likelihood (7) and the score (8) are given conditional on unobserved pre-
sample values. They depend on the linear predictor and its partial derivatives, which can
be computed recursively using any initialization. We give the recursions and present several
strategies for their initialization in Appendix A.2 (arguments init.method and init.drop).
Christou and Fokianos (2014, Remark 3.1) show that the effect of the initialization vanishes
asymptotically. Nevertheless, from a practical point of view the initialization of the recursions
is crucial. Especially in the presence of strong serial dependence, the resulting estimates can
differ substantially even for long time series with 1000 observations; see the simulated example
in Table 3 in Appendix A.2.
Solving the non-linear optimization problem (9) requires a starting value for the parameter
vector θ. This starting value can be obtained from fitting a simpler model for which an
estimation procedure is readily available. We consider either to fit a GLM or to fit an ARMA
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model. A third possibility is to fit a naive i.i.d. model without covariates. Furthermore, the user
can assign fixed values. All these possibilities are available by the argument start.control.
It turns out that the optimization algorithm converges very reliably even if the starting values
are not close to the global optimum of the likelihood. A starting value which is closer to
the global optimum usually requires fewer iterations until convergence. However, we have
encountered some examples where starting values close to a local optimum, obtained by one
of the first two aforementioned methods, do not yield the global optimum. Consequently, we
recommend fitting the naive i.i.d. model without covariates to obtain starting values. More
details on these approaches are given in Appendix A.3.

4. Prediction
In terms of the mean square error, the optimal 1-step-ahead predictor pYn�1 for Yn�1, given
Fn, i.e., the past of the process up to time n and potential covariates at time n � 1, is the
conditional expectation λn�1 given in (1) (S3 method of function predict). By construction
of the model the conditional distribution of pYn�1 is a Poisson (4) respectively Negative
Binomial (5) distribution with mean λn�1. An h-step-ahead prediction pYn�h for Yn�h is
obtained by recursive 1-step-ahead predictions, where unobserved values Yn�1, . . . , Yn�h�1
are replaced by their respective 1-step-ahead prediction, h P N. The distribution of this
h-step-ahead prediction pYn�h is not known analytically but can be approximated numerically
by a parametric bootstrap procedure, which is described below.
In applications, λn�1 is substituted by its estimator pλn�1 � λn�1ppθq, which depends on the
estimated regression parameters pθ. The dispersion parameter φ of the Negative Binomial
distribution is replaced by its estimator pφ. Note that plugging in the estimated parameters
induces additional uncertainty to the predictive distribution. This estimation uncertainty is
not taken into account for the construction of prediction intervals described in the following
paragraphs.
Prediction intervals for Yn�h with a given coverage rate 1� α (argument level) are designed
to cover the true observation Yn�h with a probability of 1 � α. Simultaneous prediction
intervals achieving a global coverage rate for Yn�1, . . . , Yn�h can be obtained by a Bonferroni
adjustment of the individual coverage rates to 1� α{h each (argument global = TRUE).
There are two different principles for constructing predictions intervals available which in
practice often yield identical intervals. Firstly, the limits can be the pα{2q- and p1�α{2q-quantile
of the (approximated) predictive distribution (argument type = "quantiles"). Secondly, the
limits can be chosen such that the interval has minimal length given that, according to the
(approximated) predictive distribution, the probability that a value falls into this interval is at
least as large as the desired coverage rate 1� α (argument type = "shortest").
One-step-ahead prediction intervals can be straightforwardly obtained from the conditional
distribution (argument method = "conddistr"). Prediction intervals obtained by a para-
metric bootstrap procedure (argument method = "bootstrap") are based on B simulations
of realizations ypbqn�1, . . . , y

pbq
n�h from the fitted model, b � 1, . . . , B (argument B). To obtain

an approximative prediction interval for Yn�h one can either use the empirical pα{2q- and
p1 � α{2q-quantile of yp1qn�h, . . . , y

pBq
n�h (if type = "quantiles") or find the shortest interval

which contains at least rp1 � αq � Bs of these observations (if type = "shortest"). This
bootstrap procedure can be accelerated by distributing it to multiple cores simultaneously
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(argument parallel = TRUE), which requires a computing cluster registered by the R package
parallel (see the help page of the function setDefaultCluster).

5. Model assessment
Tools originally developed for generalized linear models as well as for time series can be
utilized to asses the model fit and its predictive performance. Within the class of count time
series following generalized linear models it is desirable to asses the specification of the linear
predictor as well as the choice of the link function and of the conditional distribution. The
tools presented in this section facilitate the selection of an adequate model for a given data
set. Note that all tools are introduced as in-sample versions, meaning that the observations
y1 . . . , yn are used for fitting the model as well as for assessing the obtained fit. However, it is
straightforward to apply such tools as out-of-sample criteria.
Recall that the fitted values are denoted by pλt � λtppθq. Note that these do not depend on
the chosen distribution, because the mean is the same regardless of the response distribution.
There are various types of residuals available (S3 method of function residuals). Response
(or raw) residuals (argument type = "response") are given by

rt � yt � pλt, (12)

whereas a standardized alternative are Pearson residuals (argument type = "pearson")

rPt � pyt � pλtq{bpλt � pλ2
t pσ2, (13)

or the more symmetrically distributed standardized Anscombe residuals (argument type =
"anscombe")

rAt � 3{pσ2��1� ytpσ2�2{3 � �
1� pλtpσ2�2{3�� 3

�
y

2{3
t � pλ2{3

t

�
2
�pλt � pλ2

t pσ2
�1{6 , (14)

for t � 1, . . . , n (see for example Hilbe 2011, Section 5.1). The empirical autocorrelation
function of these residuals is useful for diagnosing serial dependence which has not been
explained by the fitted model. A plot of the residuals against time can reveal changes of the
data generating process over time. Furthermore, a plot of squared residuals r2

t against the
corresponding fitted values pλt exhibits the relation of mean and variance and might point to
the Poisson distribution if the points scatter around the identity function or to the Negative
Binomial distribution if there exists a quadratic relation (see Ver Hoef and Boveng 2007).
Christou and Fokianos (2015b) and Jung and Tremayne (2011) extend tools for assessing
the predictive performance to count time series, which were originally proposed by Gneiting,
Balabdaoui, and Raftery (2007) and others for continuous data and transferred to independent
but not identically distributed count data by Czado, Gneiting, and Held (2009). These tools
follow the prequential principle formulated by Dawid (1984), depending only on the realized
observations and their respective forecast distributions. Denote by Ptpyq � P

�
Yt ¤ y|Ft�1

�
the cumulative distribution function (c.d.f.), by ptpyq � P

�
Yt � y|Ft�1

�
the probability

density function, y P N0, and by υt �
a

VAR pYt|Ft�1q the standard deviation of the predictive
distribution, which is either a Poisson distribution with mean pλt or a Negative Binomial
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distribution with mean pλt and overdispersion coefficient pσ2 (recall Section 4 on 1-step-ahead
prediction).
A tool for assessing the probabilistic calibration of the predictive distribution (see Gneiting et al.
2007) is the probability integral transform (PIT), which will follow a uniform distribution if the
predictive distribution is correct. For count data Czado et al. (2009) define a non-randomized
PIT value for the observed value yt and the predictive distribution Ptpyq by

Ftpu|yq �

$'''&'''%
0, u ¤ Ptpy � 1q
u� Ptpy � 1q

Ptpyq � Ptpy � 1q , Ptpy � 1q   u   Ptpyq
1, u ¥ Ptpyq

.

The mean PIT is then given by

F puq � 1
n

ņ

t�1
Ftpu|ytq, 0 ¤ u ¤ 1.

To check whether F puq is the c.d.f. of a uniform distribution Czado et al. (2009) propose plotting
a histogram withH bins, where bin h has the height fj � F ph{Hq�F pph�1q{Hq, h � 1, . . . ,H
(function pit). By default H is chosen to be 10. A U-shape indicates underdispersion of the
predictive distribution, whereas an upside down U-shape indicates overdispersion. Gneiting
et al. (2007) point out that the empirical coverage of central, e.g., 90% prediction intervals
can be read off the PIT histogram as the area under the 90% central bins.
Marginal calibration is defined as the difference of the average predictive c.d.f. and the empirical
c.d.f. of the observations, i.e.,

1
n

ņ

t�1
Ptpyq � 1

n

ņ

t�1
1pyt ¤ yq (15)

for all y P R. In practice we plot the marginal calibration for values y in the range of the
original observations (Christou and Fokianos 2015b) (function marcal). If the predictions from
a model are appropriate the marginal distribution of the predictions resembles the marginal
distribution of the observations and (15) should be close to zero. Major deviations from zero
point to model deficiencies.
Gneiting et al. (2007) show that the calibration assessed by a PIT histogram or a marginal
calibration plot is a necessary but not sufficient condition for a forecaster to be ideal. They
advocate to favor the model with the maximal sharpness among all sufficiently calibrated
models. Sharpness is the concentration of the predictive distribution and can be measured
by the width of prediction intervals. A simultaneous assessment of calibration and sharpness
summarized in a single numerical score can be accomplished by proper scoring rules (Gneiting
et al. 2007). Denote a score for the predictive distribution Pt and the observation yt by
spPt, ytq. A number of possible proper scoring rules is given in Table 1. The mean score for
each corresponding model is given by

°n
t�1 spPt, ytq{n. Each of the different proper scoring

rules captures different characteristics of the predictive distribution and its distance to the
observed data (function scoring). Except for the normalized error score, the model with
the lowest score is preferable. The mean squared error score is the only one which does not
depend on the distribution and is also known as mean squared prediction error. The mean
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Scoring rule Abbreviation Definition

squared error score sqerror pyt � λtq2
normalized squared error score normsq pyt � λtq2{υ2

t

Dawid-Sebastiani score dawseb pyt � λtq2{υ2
t � 2 logpυtq

logarithmic score logarithmic � logpptpytqq
quadratic (or Brier) score quadratic �2ptpytq � }pt}2
spherical score spherical �ptpytq{ }pt}
ranked probability score rankprob

°8
y�0 pPtpyq � 1pyt ¤ yqq2

Table 1: Definitions of proper scoring rules spPt, ytq (cf. Czado et al. 2009) and their abbrevia-
tions in the package; }pt}2 �

°8
y�0 p

2
t pyq.

normalized squared error score measures the variance of the Pearson residuals and is close to
one if the model is adequate. The Dawid-Sebastini score is a variant of this with an extra
term to penalize overerstimation of the standard deviation.
Other popular tools are model selection criteria like Akaike’s information criterion (AIC)
and the Bayesian information criterion (BIC) (functions AIC and BIC). The model with the
lowest value of the respective information criterion is preferable. Denote the log-likelihood
by r̀ppθ, pσ2q � °n

t�1 log pptpytqq. Note that this is the true and not the quasi log-likelihood
given in (7). Furthermore, r̀ppθ, pσ2q includes all constant terms which have been omitted on
the right hand side of (7). The AIC and BIC are given by AIC � �2r̀ppθ, pσ2q � 2df and
BIC � �2r̀ppθ, pσ2q � logpneffqdf , respectively. Here df is the total number of parameters
(including the dispersion coefficient) and neff the number of effective observations (excluding
those only used for initialization when argument init.drop = TRUE). The BIC generally
yields more parsimonious models than the AIC. Note that for other distributions than the
Poisson, pθ maximizes the quasi log-likelihood (7) but not r̀pθ, σ2q. In such cases the quasi
information criterion (QIC), proposed by Pan (2001) for regression analysis based on the
generalized estimating equations, is a properly adjusted alternative to the AIC (function
QIC). We have verified by a simulation reported in Appendix B.3 that in case of a Poisson
distribution the QIC approximates the AIC quite satisfactory.

6. Intervention analysis
In many applications sudden changes or extraordinary events occur. Box and Tiao (1975) refer
to such special events as interventions. This could be for example the outbreak of an epidemic
in a time series which counts the weekly number of patients infected with a particular disease.
It is of interest to examine the effect of known interventions, for example to judge whether a
policy change had the intended impact, or to search for unknown intervention effects and find
explanations for them a posteriori.
Fokianos and Fried (2010, 2012) model interventions affecting the location by including a
deterministic covariate of the form δt�τ1pt ¥ τq, where τ is the time of occurrence and the
decay rate δ is a known constant (function interv_covariate). This covers various types of
interventions for different choices of the constant δ: a singular effect for δ � 0 (spiky outlier),
an exponentially decaying change in location for δ P p0, 1q (transient shift) and a permanent
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change of location for δ � 1 (level shift). Similar to the case of covariates, the effect of an
intervention is essentially additive for the linear model and multiplicative for the log-linear
model. However, the intervention enters the dynamics of the process and therefore its effect
on the linear predictor is not purely additive. Our package includes methods to test for such
intervention effects developed by Fokianos and Fried (2010, 2012), suitably adapted to the
more general model class described in Section 2. The linear predictor of a model with s types
of interventions according to parameters δ1, . . . , δs occurring at time points τ1, . . . , τs reads

gpλtq � β0 �
p̧

k�1
βk rgpYt�ikq � q̧

`�1
α`gpλt�j`q � ηJXt �

ş

m�1
ωmδ

t�τm
m 1pt ¥ τmq, (16)

where ωm, m � 1, . . . , s are the intervention sizes. At the time of its occurrence an intervention
changes the level of the time series by adding the magnitude ωm, for a linear model like (2), or
by multiplying the factor exppωmq, for a log-linear model like (3). In the following paragraphs
we briefly outline the proposed intervention detection procedures and refer to the original
articles for details.
Our package allows to test whether s interventions of certain types occurring at given time
points, according to model (16), have an effect on the observed time series, i.e., to test the
hypothesis H0 : ω1 � . . . � ωs � 0 against the alternative H1 : ω` � 0 for some ` P t1, . . . , su.
This is accomplished by employing an approximate score test (function interv_test). Under
the null hypothesis the score test statistic Tnpτ1, . . . , τsq has asymptotically a χ2-distribution
with s degrees of freedom, assuming some regularity conditions (Fokianos and Fried 2010,
Lemma 1).
For testing whether a single intervention of a certain type occurring at an unknown time
point τ has an effect, the package employs the maximum of the score test statistics Tnpτq and
determines a p value by a parametric bootstrap procedure (function interv_detect). If we
consider a set D of time points at which the intervention might occur, e.g., D � t2, . . . , nu, this
test statistic is given by rTn � maxτPD Tnpτq. The bootstrap procedure can be computed on
multiple cores simultaneously (argument parallel = TRUE). The time point of the intervention
is estimated to be the value τ which maximizes this test statistic. Our empirical observation
is that such an estimator usually has a large variability. It is possible to speed up the
computation of the bootstrap test statistics by using the model parameters used for generation
of the bootstrap samples instead of estimating them for each bootstrap sample (argument
final.control_bootstrap = NULL). This results in a conservative procedure, as noted by
Fokianos and Fried (2012).
If more than one intervention is suspected in the data, but neither their types nor the
time points of its occurrences are known, an iterative detection procedure is used (function
interv_multiple). Consider the set of possible intervention times D as before and a set of
possible intervention types ∆, e.g., ∆ � t0, 0.8, 1u. In a first step the time series is tested for
an intervention of each type δ P ∆ as described in the previous paragraph and the p values are
corrected to account for the multiple testing by the Bonferroni method. If none of the p values
is below a previously specified significance level, the procedure stops and does not identify an
intervention effect. Otherwise the procedure detects an intervention of the type corresponding
to the lowest p value. In case of equal p values preference is given to interventions with δ � 1,
that is level shifts, and then to those with the largest test statistic. In a second step, the effect
of the detected intervention is eliminated from the time series and the procedures starts anew
and continues until no further intervention effects are detected. Finally, model (16) with all
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detected intervention effects can be fitted to the data to estimate the intervention sizes and
the other parameters jointly (which are in general different than when estimated in separate
steps). Note that statistical inference for this final model fit has to be done with care.
In practical applications, the decay rate δ of a particular intervention effect is often unknown
and needs to be estimated. Since the parameter δ is not identifiable when the corresponding
intervention size ω is zero, its estimation is nonstandard. As suggested by a reviewer, estimation
could be carried out by profiling the likelihood over this parameter. For a single intervention
effect this could be done by computing the (quasi) ML estimator of all other parameters for a
given decay rate δ. This is repeated for all δ P ∆, where ∆ is a set of possible decay rates,
and the value which results in the maximum value of the log-likelihood is chosen (apply the
function tsglm repeatedly). Note that this approach affects the validity of the usual statistical
inference for the other parameters.
Liboschik et al. (2016) study a model for external intervention effects (modeled by external
covariate effects, recall (6) and the related discussion) and compare it to internal intervention
effects studied in the two aforementioned publications (argument external).

7. Usage of the package
The most recent stable version of the tscount package is distributed via the Comprehensive
R Archive Network (CRAN). A current development version is available from the project’s
website http://tscount.r-forge.r-project.org on the development platform R-Forge.
After installation of the package it can be loaded in R by typing library("tscount").
The central function for fitting a GLM for count time series is tsglm, whose help page
(accessible by ?tsglm) is a good starting point to become familiar with the usage of the
package. The most relevant functions of the package are summarized in Table 2. There are
many standard S3 methods available for well-known generic functions. A detailed description
of the functions’ usage including examples can be found on the accompanying help pages. The
package provides some data sets which are also listed in Table 2.
In the following sections we demonstrate typical applications of the package by two data
examples.

7.1. Campylobacter infections in Canada
We first analyze the number of campylobacterosis cases (reported every 28 days) in the North
of Québec in Canada. The data are shown in Figure 1 and were first reported by Ferland
et al. (2006). These data are made available in the package (object campy). We fit a model to
this time series using the function tsglm. Following the analysis of Ferland et al. (2006) we
fit model (2) with the identity link function, defined by the argument link. For taking into
account serial dependence we include a regression on the previous observation. Seasonality
is captured by regressing on λt�13, the unobserved conditional mean 13 time units (which is
about one year) back in time. The aforementioned specification of the model for the linear
predictor is assigned by the argument model, which has to be a list. We also include the two
intervention effects detected by Fokianos and Fried (2010) in the model by suitably chosen
covariates provided by the argument xreg. We compare a fit of a Poisson with that of a
Negative Binomial conditional distribution, specified by the argument distr. The call for
both model fits is then given by:

http://tscount.r-forge.r-project.org
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Name Description

Functions tsglm Fitting a model to given data (class "tsglm")
tsglm.sim Simulating from the model
Generic functions with methods for class "tsglm":
plot Diagnostic plots
se Standard errors and confidence intervals
summary Summary of the fitted model
fitted Fitted values
residuals Residuals
AIC Akaike’s information criterion
BIC Bayesian information criterion
QIC Quasi information criterion
pit Probability integral transform histogram
marcal Marginal calibration plot
scoring Proper scoring rules
predict Prediction
interv_test Test for intervention effects
interv_detect Detection of single intervention effects
interv_multiple Iterative detection of multiple intervention effects

Data sets campy Campylobacter infections in Québec
ecoli E. coli infections in North Rhine-Westphalia (NRW)
ehec EHEC/HUS infections in NRW
influenza Influenza infections in NRW
measles Measles infections in NRW

Table 2: Most important functions of the R package tscount and the included data sets.
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Figure 1: Number of campylobacterosis cases (reported every 28 days) in the North of Québec
in Canada.
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R> interventions <- interv_covariate(n = length(campy), tau = c(84, 100),
+ delta = c(1, 0))
R> campyfit_pois <- tsglm(campy, model = list(past_obs = 1, past_mean = 13),
+ xreg = interventions, distr = "poisson")
R> campyfit_nbin <- tsglm(campy, model = list(past_obs = 1, past_mean = 13),
+ xreg = interventions, distr = "nbinom")

The resulting fitted models campyfit_pois and campyfit_nbin have class "tsglm", for which
a number of methods is provided (see help page), including summary for a detailed model
summary and plot for diagnostic plots. The diagnostic plots like in Figure 2 can be produced
by:

R> acf(residuals(campyfit_pois), main = "ACF of response residuals")
R> marcal(campyfit_pois, main = "Marginal calibration")
R> lines(marcal(campyfit_nbin, plot = FALSE), lty = "dashed")
R> legend("bottomright", legend = c("Pois", "NegBin"), lwd = 1,
+ lty = c("solid", "dashed"))
R> pit(campyfit_pois, ylim = c(0, 1.5), main = "PIT Poisson")
R> pit(campyfit_nbin, ylim = c(0, 1.5), main = "PIT Negative Binomial")
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Figure 2: Diagnostic plots after model fitting to the campylobacterosis data.

The response residuals are identical for the two conditional distributions. Their empirical
autocorrelation function, shown in Figure 2 (top left), does not exhibit any serial correlation or
seasonality which has not been taken into account by the models. Figure 2 (bottom left) points



Tobias Liboschik, Konstantinos Fokianos, Roland Fried 17

to an approximately U-shaped PIT histogram indicating that the Poisson distribution is not
adequate for model fitting. As opposed to this, the PIT histogram which corresponds to the
Negative Binomial distribution appears to approach uniformity better. Hence the probabilistic
calibration of the Negative Binomial model is satisfactory. The marginal calibration plot,
shown in Figure 2 (top right), is inconclusive. As a last tool we consider the scoring rules for
the two distributions:

R> rbind(Poisson = scoring(campyfit_pois), NegBin = scoring(campyfit_nbin))

logarithmic quadratic spherical rankprob dawseb normsq sqerror
Poisson 2.750 -0.07669 -0.2751 2.200 3.662 1.3081 16.51
NegBin 2.722 -0.07800 -0.2766 2.185 3.606 0.9643 16.51

All considered scoring rules are in favor of the Negative Binomial distribution. Based on the PIT
histograms and the results obtained by the scoring rules, we decide for the Negative Binomial
model. The degree of overdispersion seems to be small, as the estimated overdispersion
coefficient sigmasq of 0.0297 given in the output below is close to zero.

R> summary(campyfit_nbin)

Call:
tsglm(ts = campy, model = list(past_obs = 1, past_mean = 13),

xreg = interventions, distr = "nbinom")

Coefficients:
Estimate Std.Error CI(lower) CI(upper)

(Intercept) 3.3184 0.7851 1.7797 4.857
beta_1 0.3690 0.0696 0.2326 0.505
alpha_13 0.2198 0.0942 0.0352 0.404
interv_1 3.0810 0.8560 1.4032 4.759
interv_2 41.9541 12.0914 18.2554 65.653
sigmasq 0.0297 NA NA NA
Standard errors and confidence intervals (level = 95 %) obtained
by normal approximation.

Link function: identity
Distribution family: nbinom (with overdispersion coefficient 'sigmasq')
Number of coefficients: 6
Log-likelihood: -381.1
AIC: 774.2
BIC: 791.8
QIC: 787.6

The coefficient beta_1 corresponds to regression on the previous observation, alpha_13
corresponds to regression on values of the conditional mean thirteen units back in time. The
output reports the estimation of the overdispersion coefficient σ2, which is related to the
dispersion parameter φ of the Negative Binomial distribution by φ � 1{σ2. Accordingly,
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the fitted model for the number of new infections Yt in time period t is given by Yt|Ft�1 �
NegBinpλt, 33.61q with

λt � 3.32� 0.37Yt�1 � 0.22λt�13 � 3.081pt � 84q � 41.951pt ¥ 100q, t � 1, . . . , 140.

The standard errors of the estimated regression parameters and the corresponding confidence
intervals in the summary above are based on the normal approximation given in (11). For the
additional overdispersion coefficient sigmasq of the Negative Binomial distribution there is no
analytical approximation available for its standard error. Alternatively, standard errors (and
confidence intervals, not shown here) of the regression parameters and the overdispersion coef-
ficient can be obtained by a parametric bootstrap (which takes about 15 minutes computation
time on a single 3.2 GHz processor for 500 replications):

R> se(campyfit_nbin, B = 500)$se

(Intercept) beta_1 alpha_13 interv_1 interv_2 sigmasq
0.89850 0.06941 0.10136 0.93836 11.16856 0.01460

Warning message:
In se.tsglm(campyfit_nbin, B = 500) :

The overdispersion coefficient 'sigmasq' could not be estimated
in 5 of the 500 replications. It is set to zero for these
replications. This might to some extent result in a biased estimation
of its true variability.

Estimation problems for the dispersion parameter (see warning message) occur occasionally
for models where the true overdispersion coefficient σ2 is small, i.e., which are close to a
Poisson model; see Appendix B.2. The bootstrap standard errors of the regression parameters
are slightly larger than those based on the normal approximation. Note that neither of the
approaches reflects the additional uncertainty induced by the model selection.

7.2. Road casualties in Great Britain

Next we study the monthly number of killed drivers of light goods vehicles in Great Britain
between January 1969 and December 1984 shown in Figure 3. This time series is part of
a dataset which was first considered by Harvey and Durbin (1986) for studying the effect
of compulsory wearing of seatbelts introduced on 31 January 1983. The dataset, including
additional covariates, is available in R in the object Seatbelts. In their paper Harvey and
Durbin (1986) analyze the numbers of casualties for drivers and passengers of cars, which
are so large that they can be treated with methods for continuous-valued data. The monthly
number of killed drivers of vans analyzed here is much smaller (its minimum is 2 and its
maximum 17) and therefore methods for count data are to be preferred.
For model selection we only use the data until December 1981. We choose the log-linear
model with the logarithmic link because it allows for negative covariate effects. We aim at
capturing the short range serial dependence by a first order autoregressive term and the yearly
seasonality by a 12th order autoregressive term. Both of these terms are declared by the list
element named past_obs of the argument model. Following Harvey and Durbin (1986) we use
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Figure 3: Monthly number of killed van drivers in Great Britain. The introduction of
compulsory wearing of seatbelts on 31 January 1983 is marked by a vertical line.

the real price of petrol as an explanatory variable. We also include a deterministic covariate
describing a linear trend. Both covariates are provided by the argument xreg. Based on PIT
histograms, a marginal calibration plot and the scoring rules (not shown here) we find that
the Poisson distribution is sufficient for modeling. The model is fitted by the call:

R> timeseries <- Seatbelts[, "VanKilled"]
R> regressors <- cbind(PetrolPrice = Seatbelts[, c("PetrolPrice")],
+ linearTrend = seq(along = timeseries)/12)
R> timeseries_until1981 <- window(timeseries, end = 1981 + 11/12)
R> regressors_until1981 <- window(regressors, end = 1981 + 11/12)
R> seatbeltsfit <- tsglm(timeseries_until1981,
+ model = list(past_obs = c(1, 12)), link = "log", distr = "poisson",
+ xreg = regressors_until1981)

R> summary(seatbeltsfit, B = 500)

Call:
tsglm(ts = timeseries_until1981, model = list(past_obs = c(1,

12)), xreg = regressors_until1981, link = "log", distr = "pois")

Coefficients:
Estimate Std.Error CI(lower) CI(upper)

(Intercept) 1.8347 0.38343 1.2817 2.7490
beta_1 0.0866 0.08312 -0.0902 0.2267
beta_12 0.1535 0.09009 -0.0488 0.2947
PetrolPrice 0.7787 2.46641 -4.1364 5.5425
linearTrend -0.0303 0.00855 -0.0475 -0.0161
Standard errors and confidence intervals (level = 95 %) obtained
by parametric bootstrap with 500 replications.
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Link function: log
Distribution family: poisson
Number of coefficients: 5
Log-likelihood: -396.2
AIC: 802.4
BIC: 817.6
QIC: 802.4

Accordingly, the fitted model for the number of van drivers Yt killed in month t is given by
Yt|Ft�1 � Poissonpλtq with

logpλtq � 1.83� 0.09Yt�1 � 0.15Yt�12 � 0.78Xt � 0.03t{12, t � 1, . . . , 156,

where Xt denotes the real price of petrol at time t. The estimated coefficient beta_1 cor-
responding to the first order autocorrelation is very small and even slightly below the size
of its approximative standard error, indicating that there is no notable dependence on the
number of killed van drivers of the preceding week. We find a seasonal effect captured by the
twelfth order autocorrelation coefficient beta_12. Unlike in the model for the car drivers by
Harvey and Durbin (1986), the petrol price does not seem to influence the number of killed
van drivers. An explanation might be that vans are much more often used for commercial
purposes than cars and that commercial traffic is less influenced by the price of fuel. The
linear trend can be interpreted as a yearly reduction of the number of casualties by a factor of
0.97 (obtained by exponentiating the corresponding estimated coefficient), i.e., on average we
expect 3% fewer killed van drivers per year (which is below one in absolute numbers).
Based on the model fitted to the training data until December 1981, we can predict the number
of road casualties in 1982 given the respective petrol price. Coherent, i.e. integer-valued
forecasts could be obtained by rounding the predictions. A graphical representation of the
following predictions is given in Figure 4.

R> timeseries_1982 <- window(timeseries, start = 1982, end = 1982 + 11/12)
R> regressors_1982 <- window(regressors, start = 1982, end = 1982 + 11/12)
R> predict(seatbeltsfit, n.ahead = 12, level = 0.9, global = TRUE,
+ B = 2000, newxreg = regressors_1982)$pred

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
1982 7.72 7.44 7.56 7.41 7.20 7.00 7.16 7.86 7.53 7.86 8.06 7.48

Finally, we test whether there was an abrupt shift in the number of casualties occurring when
the compulsory wearing of seatbelts is introduced on 31 January 1983. The approximative
score test described in Section 6 is applied:

R> seatbeltsfit_alldata <- tsglm(timeseries, link = "log",
+ model = list(past_obs = c(1, 12)),
+ xreg = regressors, distr = "poisson")

R> interv_test(seatbeltsfit_alldata, tau = 170, delta = 1, est_interv = TRUE)
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Figure 4: Fitted values (dashed line) and predicted values (solid line) according to the model
with the Poisson distribution. Prediction intervals (grey bars) are designed to ensure a global
coverage rate of 90%. They are chosen to have minimal length and are based on a simulation
with 2000 replications.

Score test on intervention(s) of given type at given time

Chisq-Statistic: 1.109 on 1 degree(s) of freedom, p-value: 0.2923

Fitted model with the specified intervention:

Call:
tsglm(ts = fit$ts, model = model_extended, xreg = xreg_extended,

link = fit$link, distr = fit$distr)

Coefficients:
(Intercept) beta_1 beta_12 PetrolPrice linearTrend

1.93298 0.08178 0.13943 0.41863 -0.03466
interv_1
-0.21683

With a p value of 0.29 the null hypothesis of no intervention cannot be rejected at a 5%
significance level. Note that this result does not rule out that there is an effect of the seatbelts
law which is either too small for being significant or of a different type than it is tested for.
For illustration we fit the model under the alternative of a level shift after the introduction
of the seatbelts law (see the output above). The multiplicative effect size of the intervention
is found to be 0.805. This indicates that according to this model fit -19.5% less van drivers
are killed after the law enforcement. For comparison, Harvey and Durbin (1986) estimate a
reduction of 18% for the number of killed car drivers.
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8. Comparison with other software packages
In this section we review functions (and the corresponding models) from other R packages
which can be employed for count time series analysis. Many of them have been published only
very recently, a fact that demonstrates the raising interest in count time series analysis. We
discuss how these packages differ from our package tscount. For illustration we use the time
series of Campylobacter infections analyzed in Section 7.1 ignoring the intervention effects.
For the presentation of other models we use a notation parallel to the one used in the previous
sections to highlight similarities. Interpretation of the final model should be done carefully,
though.
We consider a large number of somehow related packages which makes this comparison quite
extensive yet interesting for those readers who want guidance on choosing the most appropriate
package for their data. In the first subsection we present packages for independent data and
in the second subsection we discuss packages for dependent data.

8.1. Packages for independent data

We start reviewing functions which have been introduced for independent observations but
can, with certain limitations, be employed for time series whose temporal dependence is rather
simple. This is exemplarily discussed in the following paragraph.
The function glm in the package stats and, for the Negative Binomial distribution, the function
glm.nb in the package MASS (Venables and Ripley 2002) can fit standard GLMs to count
time series with the iteratively reweighted least squares (IRLS) algorithm. Just like with our
tsglm function, one can choose the identity or logarithmic link in combination with a Poisson
or Negative Binomial conditional distribution. Standard GLMs have been introduced to model
independent but not identically distributed observations. In principle, one could also fit simple
models for time series by including lagged values of the time series, i.e., Yt�i1 , . . . , Yt�ip , as
covariates. However, the glm function has several limitations; the most important being that
it does not allow for regression on past values of the conditional mean. For example, the
glm function cannot be used to fit the model which included stochastic seasonality; recall
Section 7.1. Furthermore, the glm function does not induce the constraints on the vector
of parameters given in Section 3, which are necessary to ensure stationarity of the fitted
process. Models which are violating these parameter constraints are generally not suitable for
prediction. We have also experienced that glm occasionally does not find good starting values
for its optimization procedure such that it returns an error and requests the user to provide
starting values. At least for the very simple case of a Poisson INGARCH(1,0) model fitted
to the Campylobacterosis data the glm function performs well and we obtain very similar
parameter estimates like with the tsglm function:

R> campydata <- data.frame(ts = campy[-1], lag1 = campy[-length(campy)])
R> coef(glm(ts ~ lag1, family = poisson(link = "identity"),
+ data = campydata))

(Intercept) lag1
4.0322 0.6556

R> coef(tsglm(campy, model = list(past_obs = 1), link = "identity"))
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(Intercept) beta_1
4.0083 0.6501

As described in more detail in Section A.3, a fit by the glm function can be used as a starting
value to the function tsglm.
The class of generalized additive models for location, scale and shape (GAMLSS) has been
introduced by Rigby and Stasinopoulos (2005) as an extension of a GLM and a generalized
additive model (GAM). In addition to the location parameter further parameters of the
conditional distribution can be modeled as functions of the explanatory variables. In the
following example we use the package gamlss (authored by Rigby and Stasinopoulos 2005) to
fit an INGARCH(1,0) model to the Campylobacterosis data. The overdispersion coefficient σ2

t

of the Negative Binomial distribution is not constant but changes with time according to the
equation

σ2
t � exp pβ�0 � β�1 logpYt�1 � 1qq .

R> library("gamlss")
R> gamlss(ts ~ lag1, sigma.formula = ~ log(lag1+1), data = campydata,
+ family = NBI(mu.link = "identity", sigma.link = "log"))[c(25, 43)]

GAMLSS-RS iteration 1: Global Deviance = 803.7
GAMLSS-RS iteration 2: Global Deviance = 803.7
GAMLSS-RS iteration 3: Global Deviance = 803.7
$mu.coefficients
(Intercept) lag1

3.8409 0.6768

$sigma.coefficients
(Intercept) log(lag1 + 1)

-4.2986 0.7167

The possibility of a time dependent dispersion coefficient does not improve the fit for this data
example (according to the AIC, which is 811.72 compared to 811.64 for a model with constant
overdispersion coefficient) but might be quite useful for other data examples. However, it is
clear that such a complex model yields more uncertainty of the parameter estimations (i.e.,
larger standard errors, which are not shown here).
The package ZIM (Yang, Zamba, and Cavanaugh 2014) fits zero-inflated models (ZIM) for
count time series with excess zeros. These models are suitable for data where the value zero
occurs more frequently than it would be expected when assuming other count time series
models. The main idea of these models is to replace the ordinary Poisson or Negative Binomial
distribution by its respective zero-inflated version, which is a mixture of a singular distribution
in zero (with probability ωt) and a Poisson or Negative Binomial distribution (with probability
1 � ωt), respectively. The model proposed by Yang, Zamba, and Cavanaugh (2013) allows
both, the probability ωt and the conditional mean λt of the ordinary count data distribution,
to vary over time. The conditional mean λt is modeled by using a logistic regression model.
The probability ωt is modeled by a GLM with the logistic link. Other methods for count
data with excess zeros, which also have these limitations, are provided by the well-established
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functions zeroinfl and hurdle from the package pscl (Zeileis, Kleiber, and Jackman 2008).
However, the package ZIM includes an extension of ZIM to state space models, which is
treated in the next section. The parameters of a ZIM are fitted by the function zim employing
an EM algorithm. Zero-inflation models are definitely appealing for count time series which
occasionally exhibit excess zeros. For our data example of Campylobacter infections, which
does not include any zero observations, ZIM are not applicable.
The current version of the tscount package considered in this paper is limited to modeling
univariate data. A possible extension to models for vectors of counts is provided by the
package VGAM (Yee 2016) introduced by Yee (2015). The function vglm in this package fits
a vector GLM (VGLM) (see Yee and Wild 1996) where the conditional density function of a
d-dimensional response vector Y t given an r-dimensional covariate vector Xt is assumed to
be of the form

fpY t|Xt;Hq � hpY t, ν1, . . . , νsq,

where νj � ηJj Xt, j � 1, . . . , s and hp�q is a suitably defined function. The model parameters
are given by the pr�sq-dimensional parameter matrixH � pηJ1 , . . . ,ηJs qJ. Choosing d � s � 1
results in the special case of an ordinary, univariate GLM. We demonstrate a fit of an
INGARCH(1,0) model to the Campylobacterosis data by the following code:

R> library("VGAM")
R> coef(vglm(ts ~ lag1, family = poissonff(link = "identitylink"),
+ data = campydata))

(Intercept) lag1
4.0322 0.6556

We note that the function vglm produces exactly the same output as the function glm for
this special case. The function vgam from the same package would allow to fit an even more
general vector generalized additive model (VGAM), which is a multivariate generalization of a
generalized additive model (GAM), see Yee (2015) for more details.
Due to the aforementioned limitations of the procedures developed for independent data we
would generally suggest the use of the function tsglm for modeling count time series. However,
in certain situations, where features of the data are currently not supported by tsglm, the
aforementioned packages can be employed with care; recall the second paragraph of this
section. For count time series with many zeros one might want to consider using, for example,
the package ZIM. If there are reasons to assume a time-varying overdispersion coefficient, the
package gamlss is a good choice. Multivariate count time series could be analyzed with the
package VGAM.

8.2. Packages for time series data

In this section we present R packages developed for count time series data.
The package acp (Siakoulis 2015) has been published recently and provides maximum likelihood
fitting of autoregressive conditional Poisson (ACP) regression models. These are the INGARCH
models given by (2); see Section 2. The acp package also allows to include covariate effects.
In its latest version 2.1, which has been published in December 2015, the package has been
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extended to fit models of general order p and q. The tsglm function of our package includes
these models as special cases and is more general in the following aspects:

• The acp package is different in many technical details. Notably, it does not allow to
incorporate the parameter constraints given in Section 3.

• Quasi maximum likelihood fitting allows to choose a more flexible Negative Binomial
model instead of a Poisson model (argument distr = "nbinom").

• The tsglm function additionally comprises a log-linear model (argument link = "log"),
which is more adequate for many count time series.

• The tsglm function allows for more flexible dependence modeling by allowing arbitrary
specification of dynamics. This flexibility is missing by the acp function for model fitting
because it requires all variables up to a given order to be included (e.g., λt�1, . . . , λt�12
and not just λt�12). For instance, tsglm allows for stochastic seasonality (see Section 7.1).

• The tsglm function differentiates between covariates with so-called external and internal
effect (see Equation (6) and the accompanying discussion).

In the following example, an INGARCH(1,1) model (ignoring the seasonal effect) is fitted to
the Campylobacterosis data analyzed in Section 7.1:

R> library("acp")
R> coef(acp(campy ~ -1, p = 1, q = 1))

[1] 2.5320 0.5562 0.2295

R> coef(tsglm(campy, model = list(past_obs = 1, past_mean = 1)))

(Intercept) beta_1 alpha_1
2.3890 0.5183 0.2693

The parameter estimations obtained by the acp function are very similar to those obtained by
the tsglm function when fitting the same model.
The class of generalized linear autoregressive moving average (GLARMA) models combines
GLM with ARMA processes. A software implementation is available in the package glarma
(Dunsmuir and Scott 2015). The GLARMA model assumes the conditional distribution of Yt
given the past Ft�1 to be Poisson or Negative Binomial with mean λt and density fpYt|λtq,
with λt given by

gpλtq � ηJXt �Ot � Zt,

where Ot is an offset term. An intercept is included by choosing the first column of the
time-varying covariate matrix Xt to be the vector p1, . . . , 1qJ. Serial correlation is induced by
an autoregressive moving average (ARMA) structure of Zt, which is given by

Zt �
p̧

k�1
φkpZt�ik � et�ikq �

q̧

`�1
ψ`et�j` .

Hereby the process tZt : t P Nu is defined by means of residuals et which can be possibly
rescaled, see (12) and (13). In the example below we choose Pearson residuals. For the link
function gp�q, the glarma package currently supports only the logarithm but not the identity,



26 tscount: An R Package for Analysis of Count Time Series Following GLMs

which is available in our function tsglm. Like in our package, the user can specify the model
order by considering the sets P � ti1, . . . , ipu and Q � tj1, . . . , jqu. The formulation of the
GLARMA model we consider describes the modeling possibilities provided by the glarma
package. In fact, this formulation is more general than the accompanying article by Dunsmuir
and Scott (2015), where the authors consider the case Q � t1, . . . , qu and P � t1, . . . , pu.
Choosing P and Q, in the context of GLARMA modeling, should be done cautiously (see
Dunsmuir and Scott 2015, Seection 3.4). Our limited experience shows that the minimum
element of the set Q should be chosen in such a way that it is larger than the maximum
element of P for avoiding errors. Unlike ordinary ARMA models, GLARMA models are not
driven by random innovations but by residuals et. Note that the model fitted by the function
tsglm is also related to ARMA processes, see (20) in the Appendix. The function glarma
implements maximum likelihood fitting of a GLARMA model. We compare the following
model fitted to the Campylobacterosis data by the function glarma with a fit by tsglm (see
Section 7.1, but without the intervention effects):

R> library("glarma")
R> glarmaModelEstimates(glarma(campy, phiLags = 1:3, thetaLags = 13,
+ residuals = "Pearson", X = cbind(intercept=rep(1, length(campy))),
+ type = "NegBin"))[c("Estimate", "Std.Error")]

Estimate Std.Error
intercept 2.34110 0.10757
phi_1 0.22101 0.03940
phi_2 0.05978 0.04555
phi_3 0.09784 0.04298
theta_13 0.08602 0.03736
alpha 10.50823 1.91232

With the notation introduced above the fitted model for the number of new infections Yt in
time period t is given by Yt|Ft�1 � NegBinpλt, 10.51q with logpλtq � 2.34� Zt and

Zt � 0.22pZt�1 � et�1q � 0.06pZt�2 � et�2q � 0.1pZt�3 � et�3q � 0.09et�13.

We focus on the models’ capability to explain the serial correlation which is present in the data.
Considering the GLARMA model, a choice of P � t1, 2, 3u and Q � t13u leaves approximately
uncorrelated residuals (see the autocorrelation function in Figure 5 (top right)). For the model
class fitted by our function tsglm we have chosen the more parsimonious model with P � t1u
and Q � t13u to obtain a fit with approximately uncorrelated residuals. Figure 6 shows that
both models seem to provide an adequate fit to given data. The package glarma provides
a collection of functions which can be applied to a fitted GLARMA model. For example it
provides a function for testing whether there exists serial dependence and it offers tools for
model diagnostics. To conclude, both models are able to explain quite general forms of serial
correlation but the role of the dependence parameters is quite different and any results should
be interpreted carefully. A more detailed comparison would be interesting but is beyond the
scope of this thesis.
Another class of models, which is closely related to the GLARMA models, are the so-called
generalized autoregressive moving average (GARMA) models developed by Benjamin, Rigby,
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and Stasinopoulos (2003). Dunsmuir and Scott (2015, Section 3) remark that both model
classes are similar in their structure but they have some important differences. The GARMA
model is formulated by

gpλtq � ηJXt �
p̧

k�1
φk

�
gpYt�kq � ηJXt�k

�� q̧

`�1
ψ` pgpYt�kq � gpλt�`qq ,

where the notation follows the GLARMA notation. Compared to the GLARMA model, the
GARMA model does not include an offset and the ARMA structure applies to values which
are transformed by the link function g, i.e., on the scale of the linear predictor. In case of a
logarithmic link, the observations Yt are replaced by maxpYt, cq for a threshold c P p0, 1q, such
that gpYtq is well-defined. In our package this problem is handled replacing Yt by Yt � 1. The
package gamlss.util (Stasinopoulos, Rigby, and Eilers 2015) contains the function garmaFit
for fitting such GARMA models. Like ordinary GLMs, these models are fitted by maximum
likelihood employing the IRLS algorithm. As pointed out on the accompanying help page,
the function garmaFit does not guarantee stationarity of the fitted model. Additionally,
the function garmaFit does not allow to specify serial dependence of higher order without
including all lower orders, which would be necessary for parsimoniously describing stochastic
seasonality. The following example shows a fit of a Negative Binomial GARMA model of order
p � 1 and q � 1 with link gp�q � logp�q to the Campybacterosis data:

R> library("gamlss.util")
R> coef(garmaFit(campy ~ 1, order = c(1, 1), family = NBI(mu.link = "log")))

deviance of linear model= 891.1
deviance of garma model= 803.3
beta.(Intercept) phi theta

2.6216 0.7763 -0.2917

deviance of linear model= 891.1
deviance of garma model= 803.3
beta.(Intercept) phi theta

2.6216 0.7763 -0.2917

In the above output the AR coefficient φ1 is named phi and the MA coefficient ψ1 theta.
The function garma from the package VGAM (Yee 2016) is an alternative implementation for
fitting GARMA models. However, the accompanying help page warns that this function is
still in premature stage and points to potential problems with the initialization (in version
1.0-1 of the package). In addition, garma allows only for autoregressive modeling (i.e. q � 0)
and the Negative Binomial distribution is not supported. Hence our example can only show a
fit of a Poisson GARMA model of order p � 1 and q � 0 to the Campylobacterosis data:

R> coef(vglm(campy ~ 1, family = garma(link="loge", p.ar.lag = 1,
+ q.ma.lag = 0, coefstart = c(0.1, 0.1))))

(Intercept) (lag1)
55952455 -71039968
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In this example the estimated coefficient for the autoregressive term is larger than one, which
suggests that the fitted process is not stationary. We could not find settings for which the
functions garmaFit and garma fit the same model and give identical or at least similar results.
Due to the close relationship of GARMA and GLARMA models we refrain from presenting a
comparison to a fit with our package and refer to the comparison in the previous paragraph
made for GLARMA models.
The models presented so far are determined by a single source of randomness, i.e., given all
past observations, uncertainty is only induced by the Poisson or Negative Binomial distribution
from which the observations are assumed to be drawn. These models belong to the class
of observation-driven models according to the classification of Cox (1981). In the following
paragraphs we present parameter-driven models. These models are determined by multiple
sources of randomness introduced by one or more innovation processes. Helske (2016b)
comment on the merits of both approaches. He argues that parameter-driven models are
appealing because they allow to introduce even multiple latent structures in a flexible way.
On the other hand, he observes that observation-driven models like the ones we consider are
of advantage for prediction because of their explicit dependence on past observations and
covariates.
The package surveillance (Salmon, Schumacher, and Höhle 2016) includes methods for online
change point detection in count time series. The included function hhh4 fits the model
proposed by Held, Höhle, and Hofmann (2005), where it is assumed that Yt � NegBinpλt, φq.
The conditional mean λt is given by

λt � exp pβ0 � δt� γtq � β1Yt�1,

where γt is a periodic function describing a seasonal effect. The exponential function is applied
to the linear trend and the seasonal effect but not to the autoregressive component such that
this model is not a GLM (since the linear predictor is not linear in the parameters) but could
instead be regarded as a generalized additive model (GAM). Another type of model considered
by the surveillance package are hierarchical time series (HTS), as proposed by Manitz and
Höhle (2013) based on the work by Heisterkamp, Dekkers, and Heijne (2006). This particular
state space model accounts for serial dependence by a time-varying intercept. More precisely,
it is assumed that the conditional mean λt is given by

λt � exp
�
β0,t � δt� γt � ηJXt

�
.

The time-varying intercept β0,t is assumed to depend on its previous values according to

∆dβ0,t|β0,t�1, . . . , β0,t�d � Np0, κ�1
β0
q,

for d � 1, 2, 3, respectively. For d ¡ 0 this induces dependence between successive observations.
The other parameters, δ for the linear trend, γt for a seasonal effect, and the vector η for the
effect of a covariate vector Xt, are also assumed to be normally distributed with certain priors.
Inference is done in a Bayesian framework and utilizes an efficient integrated nested Laplace
approximation (INLA) provided by the package INLA (Lindgren and Rue 2015) (available
from http://www.r-inla.org). In the following example we fit a Negative Binomial model
without trend, seasonality or covariate effects but with a time-varying intercept of order d � 1
to the Campylobacterosis data:

http://www.r-inla.org
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R> library("INLA")
R> campyfit_INLA <- inla(ts ~ f(time, model = "rw1", cyclic = FALSE),
+ data = data.frame(time = seq(along = campy), ts = campy),
+ family = "nbinomial", E = mean(campy),
+ control.predictor = list(compute = TRUE, link = 1),
+ control.compute = list(cpo = FALSE, config = TRUE),
+ control.inla = list(int.strategy = "grid", dz = 1,
+ diff.logdens = 10))
R> posterior <- inla.posterior.sample(1000, campyfit_INLA)
R> rowMeans(sapply(posterior, function(x) (unname(x$hyperpar))))

[1] 329.86 33.79

The estimates for the parameters φ (the former) and κβ0 (the latter) in the output above
are based on means of a sample of size 1000 from the posterior distribution. Fitted valuespλ1, . . . , pλ140 are obtained in the same way (not shown in the above code). With the Bayesian
approach it is very natural to obtain prediction intervals for future observations from the
posterior distribution which account for the estimation and observation uncertainties. This
is a clear advantage over the classical likelihood-based approach pursued in our package (cf.
Section 4). A disadvantage of the Bayesian approach is its much higher computational effort
which could be an obstacle for real-time applications and simultaneous analysis of several time
series. The above example runs more than eight seconds on a standard office computer (Intel
Xeon CPU with 2.83 GHz); this is seven times longer than tsglm takes to fit the model. An
additional difference between our approach and that taken by INLA is the specification of
temporal dependence. The comparison of the final fitted values, shown in Figure 6, illustrates
that the model with a time-varying intercept fitted by inla possess a much smoother line
through the observed values when compared to the model fitted by tsglm. For this example,
the empirical autocorrelation function of the response residuals in Figure 5 (bottom left)
is significantly different from zero at lag one; hence short term temporal correlation is not
explained sufficiently by the hierarchical model. It also becomes clear by this plot that we
should have included seasonality by employing the term γt. The residuals of the GLM-based
fit by the function tsglm do not exhibit any serial correlation which has not been explained by
the model (see Figure 5 (top left)). In general, the GLM-based model is expected to provide
more accurate 1-step-ahead predictions whilst the hierarchical model prediction obtained by
inla is more stable. Either of these two features could be preferable depending upon the
specific application. It would be interesting to study these two ways of modeling temporal
dependence in a future work.
The package KFAS (Helske 2016a) treats state space models for multivariate time series where
the distribution of the observations belongs to the exponential family (and also includes the
Negative Binomial distribution). Its name refers to Kalman filtering and smoothing, which
are the two key algorithms employed by the package. This package is able to cope with
very general state space models at the cost of a rather big effort for its correct specification.
However, some auxiliary functions and the use of symbolic model description reduces this
effort. In contrast to the package INLA, which is also capable of fitting state space models,
KFAS implements maximum likelihood estimation (for a comparison of these two packages
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see Helske 2016b). One possible univariate model for the Campylobacterosis data could be
the state space model Yt|Ft�1 � NegBinpλt, φq where λt � exppνtq and the state equation is

νt � νt�1 � εt.

The initialization ν1 is specified by assuming ν1 � Npλ, σ2
νq. The degree of serial dependence is

induced by independently distributed innovations εt for which it is assumed that εt � Np0, σ2
εq.

This model has unknown parameters λ P R, and φ, σ2
ν1 , σ

2
ε P r0,8q and can be fitted as follows:

R> library("KFAS")
R> model <- SSModel(campy ~ SSMcustom(Z = 1, T = 1, R = 1, Q = 0,
+ a1 = NA, P1 = NA) - 1,
+ distribution = "negative binomial", u = NA)
R> updatefn <- function(pars, model, ...){
+ model$a1[1, 1] <- pars[1]
+ model$u[, 1] <- exp(pars[2])
+ model$P1[1, 1] <- exp(pars[3])
+ model$Q[1,1,1] <- exp(pars[4])
+ return(model)
+ }
R> campyfit_KFAS <- fitSSM(model = model, inits = c(mean(campy), 0, 0, 0),
+ updatefn = updatefn)
R> exp(campyfit_KFAS$optim.out$par)

[1] 3.427e+00 9.148e+01 2.775e-16 4.334e-02

The output above corresponds to the estimated parameters λ, φ, σ2
ν1 and σ2

ε , respectively. We
observe that the estimation procedure is quite sensitive to given starting values; this fact has
been pointed out by Helske (2016b). As shown by the empirical autocorrelation function of the
residuals in Figure 5 (bottom right), the fitted model explains the temporal dependence of the
data quite adequately. The values fitted by this model (see Figure 6) do not show any delay
when compared to the fit obtained by tsglm. The algorithm used by tsglm yields fitted values
by 1-step-ahead forecasts based on previous observations; note that only the model parameters
are fitted using all available observations. The algorithm of the KFAS package for obtaining
fitted values includes future observations which naturally lead to a more accurate fit. However,
this methodology does not guarantee better out-of-sample forecasting performance since future
observations will not be available in general. Further empirical comparison between KFAS
and tscount is required to compare the accuracy of predictions obtained by both models.
Another state space model which could be used to describe count time series is a partially
observed Markov process (POMP). The package pomp (King, Nguyen, and Ionides 2016)
provides a general and abstract representation of such models. One example by King et al.
(2016, Sections 4.5 and 4.6) is the so-called Ricker model for describing the size Nt of a
population which is assumed to fulfill

Nt�1 � rNt expp�Nt � εtq
with innovations εt � Np0, σ2

εq. The actual observations Yt are noisy measurements of the
population size Nt and it is assumed to hold Yt � PoissonpφNtq, where φ is an unknown
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Figure 5: Empirical autocorrelation function of the response residuals for a model fit of the
campylobacterosis data by our function tsglm (see Section 7.1, but without the intervention
effects) and the packages glarma, INLA and KFAS (see Section 8).

dispersion parameter. Specification and fitting of this rather simple model with the package
pomp requires more than thirty lines of code. This complexity is an obstacle for using the
package in standard situations but might prove beneficial in very special scenarios.
The package gcmr provides methodology for Gaussian copula marginal regression (Masarotto
and Varin 2012), a framework which is also capable to model count time series. The marginal
distribution of a time series Yt given a covariate vector Xt can be modeled by a Poisson or
Negative Binomial distribution with mean λt using that gpλtq � β0 � ηJXt. This is similar
to model (1) but it does not include the terms for regression on past values of Yt and λt.
Furthermore, randomness is introduced through an unobserved error process tεt : t P Nu
by assuming that Yt � F�1

t pΦpεtqq, where Ft is the cumulative distribution function of the
Poisson or Negative Binomial distribution with mean λt and Φ is the cumulative distribution
function of the standard normal distribution. Hence the actual value of Yt is the Φpεtq-quantile
of the Poisson or Negative Binomial distribution with mean λt. As pointed out by Masarotto
and Varin (2012), copulas with discrete marginals might not be unique (see also Genest
and Nešlehová 2007). Temporal dependence of tYtu is modeled through the error process
tεtu by assuming an autoregressive moving average (ARMA) model of order p and q. Note
that although this model accounts for serial dependence it does not model the conditional
distribution of Yt given the past but only its time-varying marginal distribution. The mean
λt of this marginal distribution is not influenced by the actual (unobserved) value of the
error εt. Hence this model is not suitable for accurate 1-step-ahead predictions but rather
for quantifying the additional uncertainty induced by the serial dependence. The following
example presents a fit of a Negative Binomial model with an ARMA error process of order
p � 1 and q � 1:
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Figure 6: Comparison of a model fit of the campylobacterosis data by our function tsglm (see
Section 7.1, but without the intervention effects) and the packages glarma, INLA and KFAS
(see Section 8).

R> library("gcmr")
R> gcmr(ts ~ 1, marginal = negbin.marg(link = "identity"),
+ cormat = arma.cormat(p=1, q=1), data = data.frame(ts = campy))

Call:
gcmr(formula = ts ~ 1, data = data.frame(ts = campy),

marginal = negbin.marg(link = "identity"),
cormat = arma.cormat(p = 1, q = 1))

Marginal model parameters:
(Intercept) dispersion

11.315 0.255

Gaussian copula parameters:
ar1 ma1

0.824 -0.270

The estimated ARMA parameters of the error process indicate that there is a considerable
amount of serial correlation in the data. Some of the observed variability is explained by this
serial dependence. As discussed above, the fitted values are based solely on the estimated
marginal distribution and are therefore constant over time (equal to the estimated intercept
in the above output).
An extension of the zero-inflated models of the package ZIM, which was presented in the
previous section, are the so-called dynamic zero-inflated models (DZIM) as proposed by Yang,
Cavanaugh, and Zamba (2015). These fall within the framework of state space models and
introduce serial dependence by an unobserved autoregressive process of order p. Fitting is
based on the EM algorithm and MCMC simulation.
The package tsintermittent (Kourentzes and Petropoulos 2016) provides methods for so-called
intermittent demand time series (see for example Kourentzes 2014). These are time series
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giving the number of requested items of a particular product (e.g., rarely needed spare parts)
which is demanded in a sporadic fashion with periods of zero demand. Reliable forecasts of
such time series are important for companies to efficiently plan stocking the respective items.
In principle, these are count time series which could be analyzed with the methods in our
package. However, it is known that classical forecasting methods perform unsatisfactorily for
this kind of data (Kourentzes 2014). More successful approaches, which are included in the
tsintermittent package, are based on the idea of separately modeling the non-zero demand size
and the inter-demand intervals. These methods do not take into account that the observations
are integers and do not include covariate effects, as the methods in our package do. Temporal
dependence is considered implicitly, by assuming that there are periods where subsequent
observations are zero. Our functions consider explicit time dependence. The methods in the
tsintermittent package are possibly more appropriate for the specific context they are tailored
for (which would need further examination), but not suitable for count time series in general.
They compete with other types of models for zero excess time series data, for example with
DZIM.

9. Outlook
In its current version, the R package tscount allows for the analysis of count time series with a
quite broad class of models. It will hopefully prove to be useful for a wide range of applications.
There is a number of desirable extensions of the package which could be included in future
releases. We invite other researchers and developers to contribute to this package.
As an alternative to the Negative Binomial distribution, one could consider the so-called
Quasi-Poisson model. It allows for a conditional variance of φλt (instead of λt � φλ2

t , as for
the Negative Binomial distribution), which is linearly and not quadratically increasing in the
conditional mean λt (for the case of independent data see Ver Hoef and Boveng 2007). A
scatterplot of the squared residuals against the fitted values could reveal whether a linear
relation between conditional mean and variance is more adequate for a given time series. A
generalization of the test for overdispersion in INGARCH(1,0) processes proposed by Weiß and
Schweer (2015) could provide guidance for choosing an appropriate conditional distribution.
The common regression models for count data are often not capable to describe an exceptionally
large number of observations with the value zero. In the literature so-called zero-inflated and
hurdle regression models have become popular for zero excess count data (for an introduction
and comparison see Loeys, Moerkerke, De Smet, and Buysse 2012). A first attempt to utilize
zero-inflation for INGARCH time series models is made by Zhu (2012).
In some applications the variable of interest is not the number of events but the rate, which
expresses the number of events per unit. For example the number of infected people per 10 000
inhabitants, where the population size is a so-called exposure variable which varies over time.
For models with a logarithmic link function such a rate could be described by a model where
the number of events is the response variable and the logarithm of the exposure variable is a
so-called offset. An offset is supported by many standard functions for GLMs and could be
part of a future release of our package.
Alternative nonlinear models are for example the threshold model suggested by Woodard
et al. (2011) or the models studied by Fokianos and Tjøstheim (2012). Fokianos and Neumann
(2013) propose a class of goodness-of-fit tests for the specification of the linear predictor, which
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are based on the smoothed empirical process of Pearson residuals. Christou and Fokianos
(2015a) develop suitably adjusted score tests for parameters which are identifiable as well as
non-identifiable under the null hypothesis. These tests can be employed to test for linearity of
an assumed model.
In practical applications one is often faced with outliers. Elsaied and Fried (2014) and
Kitromilidou and Fokianos (2016) develop M-estimators for the linear and the log-linear model,
respectively. Fried, Liboschik, Elsaied, Kitromilidou, and Fokianos (2014) compare robust
estimators of the (partial) autocorrelation (see also Dürre, Fried, and Liboschik 2015) for time
series of counts, which can be useful for identifying the correct model order.
In the long term, related models for binary or categorical time series (Moysiadis and Fokianos
2014) or potential multivariate extensions of count time series following GLMs could be
included as well.
The models which are so far included in the package or mentioned above fall into the class
of time series following GLMs. There is also quite a lot of literature on thinning-based time
series models but we are not aware of any publicly available software implementations. To
name just a few of many publications, Weiß (2008) reviews univariate time series models based
on the thinning operation, Pedeli and Karlis (2013) study a multivariate extension and Scotto,
Weiß, Silva, and Pereira (2014) consider models for time series with a finite range of counts.
For the wide class of state space models there are the R packages INLA, KFAS and pomp
available, although it is quite complex to apply these to count time series. A future version of
our package could provide simple interfaces to such packages specifically for fitting certain
count time series models.
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A. Implementation details

A.1. Parameter space for the log-linear model

The parameter space Θ for the log-linear model (3) which guarantees a stationary and ergodic
solution of the process is subject of current research. In the current implementation of tsglm
the parameters need to fulfill the condition

max
#
|β1|, . . . , |βp|, |α1|, . . . , |αq|,

�����
p̧

k�1
βk �

q̧

`�1
α`

�����
+
  1. (17)

At the time we started developing tscount, (17) appeared as a reasonable extension of the
condition

max t|β1|, |α1|, |β1 � α1|u   1,

which Douc et al. (2013, Lemma 14) derive for p � q � 1. However, in a recent work, Sim
(2016, Proposition 5.4.7) derives sufficient conditions for a model of order p � q. For the first
order model he obtains the weaker condition

max t|α1|, |β1 � α1|u   1.

For p � q � 2 the required condition is

max
 |α1| � |α2| � |β2| , |α1α2| �

��α2α
2
1
��� |α1 � β2| , |α2| � |α1 � β1| � |β2| ,

|α2pα1 � β1q| � |α2 � α1pα1 � β1q| � |pα1 � β1qβ2| ,
|α1α2| � |α2 � α1pα1 � β1q � β2| � |α1β2| ,
|pα1 � β1qα2| �

��α2 � pα1 � β1q2 � β2
��� |pα1 � β1qβ2|

(   1.

(18)

There are parameters which fulfill (17) but not (18) (e.g., β1 � �0.9, β2 � 0.9, α1 � 0,
α2 � 0) and vice versa (e.g., β1 � �1.8, β2 � 0, α1 � 0.9, α2 � 0). However, there exists
a large intersection between values which fulfill (17) and (18). For the general case p � q
the condition can be obtained by considering the maximum among p elements of the norms
of matrix products with p factors, where each factor corresponds to a p2p � 1q � p2p � 1q
matrix. The implementation of this condition is a challenging problem and therefore we have
decided in favor of (17). Alternatively, we can obtain unconstrained estimates (argument
final.control = list(constrained = NULL)), which should be examined carefully.

A.2. Recursions for inference and their initialization

Let h be the inverse of the link function g and let h1pxq � Bhpxq{Bx be its derivative. In the
case of the identity link gpxq � x it holds hpxq � x and h1pxq � 1 and in the case of the
logarithmic link gpxq � logpxq it holds hpxq � h1pxq � exppxq. The partial derivative of the
conditional mean λtpθq is given by

Bλtpθq
Bθ � h1 pνtpθqq BνtpθqBθ ,
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where the vector of partial derivatives of the linear predictor νtpθq,

Bνtpθq
Bθ �

�Bνtpθq
Bβ0

,
Bνtpθq
Bβ1

, . . . ,
Bνtpθq
Bβp ,

Bνtpθq
Bα1

, . . . ,
Bνtpθq
Bαq ,

Bνtpθq
Bη1

, . . . ,
Bνtpθq
Bηr


J
,

can be computed recursively. The recursions are given by

Bνtpθq
Bβ0

� 1�
q̧

`�1
α`
Bνt�j`pθq
Bβ0

,

Bνtpθq
Bβs � rgpYt�isq � q̧

`�1
α`
Bνt�j`pθq
Bβs , s � 1, . . . , p,

Bνtpθq
Bαs �

q̧

`�1
α`
Bνt�j`pθq
Bαs � νt�jspθq, s � 1, . . . , q,

Bνtpθq
Bηs �

q̧

`�1
α`
Bνt�j`pθq

Bηs �Xt,s, s � 1, . . . , r.

The recursions for the linear predictor νt � gpλtq and its partial derivatives depend on past
values of the linear predictor and its derivatives, which are generally not observable. We
implemented three possibilities for initialization of these values. The default and preferable
choice is to initialize by the respective marginal expectations, assuming a model without
covariate effects, such that the process is stationary (argument init.method = "marginal").
For the linear model (2) it holds (Ferland et al. 2006)

EpYtq � Epνtq � β0
1�°p

k�1 βk �
°q
`�1 α`

�: µpθq. (19)

For the log-linear model (3) we instead consider the transformed time series Zt :� logpYt � 1q,
which has approximately the same second order properties as a time series from the linear
model (2). It approximately holds EpZtq � Epνtq � µpθq. Specifically, we initialize past values
of νt by µpθq and past values of Bνtpθq{Bθ by

Bµpθq
Bθ �

�Bµpθq
Bβ0

,
Bµpθq
Bβ1

, . . . ,
Bµpθq
Bβp ,

Bµpθq
Bα1

, . . . ,
Bµpθq
Bαq ,

Bµpθq
Bη1

, . . . ,
Bµpθq
Bηr


J
,

which is explicitly given by

Bµpθq
Bβ0

� 1
1�°p

k�1 βk �
°q
`�1 α`

,

Bµpθq
Bβk � Bµpθq

Bα` � β0�
1�°p

k�1 βk �
°q
`�1 α`

�2 , k � 1, . . . , p, ` � 1, . . . , q, and

Bµpθq
Bηm � 0, m � 1, . . . , r.

Another possibility is to initialize νt by β0 and Bνtpθq{Bθ by zero. In this case the model
corresponds to standard i.i.d. Poisson random variables (argument init.method = "iid").
A third possibility would be a data-dependent initialization of νt, for example by rgpy1q.
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pβ0 pβ1 pα1 `ppθq
init.method = "marginal", init.drop = FALSE 0.500 0.733 0.249 -3024.7
init.method = "marginal", init.drop = TRUE 0.567 0.746 0.236 -2568.0
init.method = "iid", init.drop = FALSE 0.867 0.757 0.218 -3037.2
init.method = "iid", init.drop = TRUE 0.563 0.738 0.246 -2587.8
init.method = "firstobs", init.drop = FALSE 0.559 0.739 0.246 -3018.7
init.method = "firstobs", init.drop = TRUE 0.559 0.739 0.246 -2578.1

Table 3: Estimated parameters and log-likelihood of a time series of length 1000 simulated from
model (2) for different initialization strategies. The true parameters are β0 � 0.5, β1 � 0.77
and α1 � 0.22. Likelihood values are included for completeness of the presentation. There are
not comparable as they are based on a different number of observations.

In this case, the partial derivatives of νt are initialized by zero (argument init.method =
"firstobs").
The recursions also depend on unavailable past observations of the time series, prior to the
sample which is used for the likelihood computation. The package allows to choose between
two strategies to cope with that. The default choice is to replace these pre-sample observations
by the same initializations as used for the linear predictor νt (see above), transformed by the
inverse link function h (argument init.drop = FALSE). An alternative is to use the first ip
observations for initialization and to compute the log-likelihood on the remaining observations
yip�1, . . . , yn (argument init.drop = TRUE). Recall that ip is the highest order for regression
on past observations.
Particularly in the presence of strong serial dependence, the different methods for initialization
can affect the estimation substantially even for quite long time series with 1000 observations.
We illustrate this by the simulated example presented in Table 3.

A.3. Starting value for optimization

The numerical optimization of the log-likelihood function requires a starting value for the
parameter vector θ, which can be obtained by initial estimation based on a simpler model.
Different strategies for this (controlled by the argument start.control) are discussed in this
section. We call this start estimation (and not initial estimation) to avoid confusion with the
initialization of the recursions described in the previous section.
The start estimation by the R function glm utilizes the fact that a time series following a
GLM without feedback (as in Kedem and Fokianos 2002) can be fitted by employing standard
software. Neglecting the feedback mechanism, the parameters of the GLM

Yt|F�
t�1 � Poipλ�t q, with ν�t � gpλ�t q and

ν�t � β�0 � β�1 rgpYt�i1q � . . .� β�p rgpYt�ipq � η�1Xt,1 � . . .� η�rXt,r, t � ip � 1, . . . , n,

with F�
t the history of the joint process tYt,Xtu, are estimated using the R function glm.

Denote the estimated parameters by pβ�0 , pβ�1 , . . . , pβ�p , pη�1 , . . . , pη�r and set pα�1 , . . . , pα�q to zero
(argument start.control$method = "GLM").
Fokianos et al. (2009) suggest start estimation of θ, for the first order linear model (2) without
covariates, by employing its representation as an ARMA(1,1) process with identical second-



Tobias Liboschik, Konstantinos Fokianos, Roland Fried 43

order properties, see Ferland et al. (2006). For arbitrary orders P and Q with s :� maxpP,Qq
and the general model from Section 2 this representation, after straightforward calculations, is
given by

prgpYtq � µpθqloomoon
�:ζ

q �
ş

i�1
pβi � αiqlooomooon

�:ϕi

prgpYt�iq � µpθqq � εt �
q̧

i�1
p�αiqloomoon
�:ψi

εt�i, (20)

where βi :� 0 for i R P , αi :� 0 for i R Q and tεtu is a white noise process. Recall that rg
is defined by rgpxq � x for the linear model and rgpxq � logpx � 1q for the log-linear model.
Given the autoregressive parameters ϕi and the moving average parameters ψi of the ARMA
representation of tYtu, the parameters of the original process are obtained by αi � �ψi and
βi � ϕi � ψi. We get β0 from β0 � ζ

�
1 � °p

k�1 βk �
°q
`�1 α`

�
using the formula for the

marginal mean of tYtu. With these formulas estimates pβ�0 , pβ�i and pα�i are obtained from
ARMA estimates pζ, pϕi and pψi. Estimation of the ARMA parameters is implemented by
conditional least squares (argument start.control$method = "CSS"), maximum likelihood
assuming normally distributed errors (argument start.control$method = "ML"), or, for
models up to first order, the method of moments (argument start.control$method = "MM").
If covariates are included, a linear regression is fitted to rgpYtq, whose errors follow an ARMA
model like (20). Consequently, the covariate effects do not enter the dynamics of the process,
as it is the case in the actual model (1). It would be preferable to fit an ARMAX model, in
which covariate effects are included on the right hand side of (20), but this is currently not
readily available in R.
We compare both approaches to obtain start estimates. The GLM approach apparently
disregards the feedback mechanism, i.e., the dependence on past values of the conditional
mean. As opposed to this, the ARMA approach does not treat covariate effects in an
appropriate way. From extensive simulations we note that the final estimation results are
almost equally good for both approaches.
However, we also found out that in some situations (especially in the presence of certain types
of covariates) both approaches occasionally provoke the likelihood optimization algorithms
to run into a local optimum. This happens more often for increasing sample size. To
overcome this problem we recommend a naive start estimation assuming an i.i.d. model
without covariates, which only estimates the intercept and sets all other parameters to zero
(argument start.control$method = "iid"). This starting value is usually not close to any
local optimum of the likelihood function. Hence we expect, possibly, a larger number of steps
for the optimization algorithm to converge. This is the default method of start estimation as
we do not guarantee a global optimum with the other two methods, in some special cases.
Particularly for the linear model, some of the aforementioned approaches do not yield a
starting value pθ� � ppβ�0 , pβ�1 , . . . , pβ�p , pα�1 , . . . , pα�q , pη�1 , . . . , pη�r qJ for θ which lays in the interior of
the parameter space Θ. To overcome this problem, pθ� is suitably transformed to be used as a
starting value. For the linear model (2) this transformation is done according to the following
procedure (Liboschik et al. 2016):

1a. Set pβ�k :� min
 pβ�k , ε( and pα�` :� min

 pα�` , ε(.
1b. If c :� °p

k�1
pβ�k �°q

`�1 pα�` ¡ 1 � ξ � ε, then shrink each pβ�k and pα�` by multiplication
with the factor p1� ξ � εq{c.
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2a. Set pβ�0 :� pβ�0 � �1�°p
k�1

pβ�k �°q
`�1 pα�`	 {c.

2b. Set pβ�0 :� max
 pβ�0 , ξ � ε

(
.

3. Set pη�m :� max
 pη�m, ε(.

A small constant ε ¡ 0 ensures that the initial value lies inside the parameter space Θ and
not on its boundaries. It is chosen to be ε � 10�6 by default (argument epsilon). Another
small constant ξ ¡ 0 enforces the inequalities to be strict (i.e.   instead of ¤). This constant
is set to ξ � 10�6 by default (argument slackvar); recall Section 3. The shrinkage factor in
step 1b is chosen such that the sum of the parameters equals 1� ξ� ε after possible shrinkage
in this step. The choice of pβ�0 in step 2a ensures that the marginal mean remains unchanged
after possible shrinkage in step 1b. For the log-linear model (3) it is not necessary to ensure
positivity of the parameters. A valid starting value pθ� is transformed with the following
procedure:

1a. Set pβ�k :� sign
�pβ�k� �min

 ��pβ�k ��, ε( and pα�` :� sign
�pα�` � �min

 ��pα�` ��, ε(.
1b. If c :�

���°p
k�1

pβ�k �°q
`�1 pα�` ��� ¡ 1� ξ � ε, then shrink each pβ�k and pα�` by multiplication

with the factor p1� ξ � εq{c.

A.4. Stable inversion of the information matrix

In order to obtain standard errors from the normal approximation (11) one needs to invert
the information matrix Gnppθ; pσ2q. To avoid numerical instabilities we make use of the fact
that an information matrix is a real symmetric and positive definite matrix. We first compute
a Choleski factorization of the information matrix. Then we apply an efficient algorithm to
invert the matrix employing the upper triangular factor of the Choleski decomposition (see R
functions chol and chol2inv). This procedure is implemented in the function invertinfo in
our package.

B. Simulations
In this section we present simulations supporting that the methods that have not yet been
treated thoroughly in the literature work reliably.

B.1. Covariates

We present some limited simulation results for the problem of including covariates, in both
linear and log-linear models. For simplicity we employ first order models with one covariate
and a conditional Poisson distribution, that is, we consider the linear model with the identity
link function

Yt|Ft�1 � Poissonpλtq, λt � β0 � β1 Yt�1 � α1λt�1 � η1Xt, t � 1, . . . , n,

and the log-linear model with the logarithmic link function

Yt|Ft�1 � Poissonpλtq, logpλtq � β0 � β1 logpYt�1 � 1q � α1 logpλt�1q � η1Xt, t � 1, . . . , n.
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Abbreviation Definition

Linear t{n
Sine psinp2π � 5 � t{nq � 1q{2
Spiky outlier 1pt � τq
Transient shift 0.8t�τ1pt ¥ τq
Level shift 1pt ¥ τq
GARCH(1,1)

?
htεt with εt � Np0.5, 1q and ht � 0.002� 0.1X2

t�1 � 0.8ht�1
Exponential i.i.d. Exponential with mean 0.5
Normal i.i.d. Normal with mean 0.5 and variance 0.04

Table 4: Covariates tXt : t � 1, . . . , nu considered in the simulation study. The interventions
occur at time τ � n{2. The GARCH model is defined recursively (see Bollerslev 1986).

The parameters are chosen to be β1 � 0.3 and α1 � 0.2. The intercept parameter is β0 � 4 �0.5
for the linear and β0 � logp4q � 0.5 for the log-linear model in order to obtain a marginal mean
(without the covariate effect) of about 4 in both cases. We consider the covariates listed in
Table 4, covering a simple linear trend, seasonality, intervention effects, i.i.d. observations from
different distributions and a stochastic process. The covariates are chosen to be nonnegative,
which is necessary for the linear model but not for the log-linear model. All covariates have
a mean of about 0.5, such that their effect sizes are somewhat comparable. The regression
coefficient is chosen to be η1 � 2 � β0 for the linear and η1 � 1.5 � β0 for the log-linear model.
Apparently, certain types of covariates can to some extent be confused with serial dependence.
This is the case for the linear trend and the level shift, but also for the sinusoidal term, since
these lead to data patterns which resemble positive serial correlation; see Figure 7.
A second finding is that the effect of covariates, like a transient shift or a spiky outlier, is
hard to be estimated precisely. Note that both covariates have most of their values values
different from zero only at very few time points (especially the spiky outlier) which explains
this behavior of the estimation procedure. The estimators for the coefficients of such covariates
have a large variance which decreases only very slowly with growing sample size; see the
bottom right plots in Figures 8 and 9 for the linear and the log-linear model, respectively.
This does not affect the estimation of the other parameters, see the other three plots in the
same figures. For all other types of covariates the variance of the estimator for the regression
parameter decreases with growing sample size, which indicates consistency of the estimator.
The conjectured approximative normality of the model parameters stated in (11) seems to
hold for most of the covariates considered here even in case of a rather moderate sample size
of 100, as indicated by the QQ plots shown in Figure 10. The only serious deviation from
normality happens for the spiky outlier in the linear model, a case where many estimates of
the covariate coefficient η1 lie close to zero. This value is the lower boundary of the parameter
space for this model. Due to the consistency problem for this covariate (discussed in the
previous paragraph) the observed deviation from normality is still present even for a much
larger sample size of 2000 (not shown here). Note that for the spiky outlier the conditions
for asymptotic normality in linear regression models stated in Section 3 are not fulfilled. QQ
plots for the other model parameters β0, β1 and α1 look satisfactory for all types of covariates
and are not shown here.
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Figure 7: Scatterplots of the estimated covariate parameter pη1 against the sum pβ1 � pα1 of the
estimated dependence parameters in a linear (left) respectively log-linear (right) model with
an additional covariate of the given type. The time series of length n � 100 are simulated
from the respective model with the true values marked by grey lines. Each dot represents one
of 200 replications.

B.2. Negative Binomial distribution

As mentioned before, the model with the logarithmic link function is not covered by the
theory derived by Christou and Fokianos (2014). Consequently, we confirm by simulations
that estimating the additional dispersion parameter φ of the Negative Binomial distribution
by equation (10) yields good results. We consider both the linear model with the identity link

Yt|Ft�1 � NegBinpλt, φq, λt � β0 � β1 Yt�1 � α1λt�1, t � 1, . . . , n,

and the log-linear model with the logarithmic link

Yt|Ft�1 � NegBinpλt, φq, logpλtq � β0 � β1 logpYt�1 � 1q � α1 logpλt�1q, t � 1, . . . , n.

The parameters β0, β1 and α1 are chosen like in Section B.1. For the dispersion parameter φ
we employ the values 1, 5, 10, 20 and 8, which are corresponding to overdispersion coefficients
σ2 of 1, 0.2, 0.1, 0.05 and 0, respectively.
The estimator of the dispersion parameter φ has a positively skewed distribution. It is thus
preferable to consider the distribution of its inverse pσ2 � 1{pφ, which is only slightly negatively
skewed; see Table 5. In certain cases it is numerically not possible to solve (10) and the
estimation fails. This happens when the true value of φ is large and we are close to the limiting
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Mean Median Std.dev. MAD Failures (in %)

σ2 � 1.00 1.00 0.97 0.18 0.17 0.00
0.20 0.20 0.19 0.05 0.05 0.00
0.10 0.10 0.10 0.04 0.03 0.00
0.05 0.05 0.05 0.03 0.03 4.40
0.00 0.02 0.02 0.02 0.01 51.40

Table 5: Summary statistics for the estimated overdispersion coefficient pσ2 of the Negative
Binomial distribution. The time series are simulated from a log-linear model with the true
overdispersion coefficient given in the rows. Each statistic is based on 200 replications.

case of a Poisson distribution (see the proportion of failures in the last column of the table). In
such a case our fitting function gives an error and recommends fitting a model with a Poisson
distribution instead. These results are very similar for the linear model and thus not shown
here.
We check the consistency of the estimator by a simulation for a true value of σ2 � 1{φ � 1. Our
results shown in Figure 11 indicate that on average the deviation of the estimation from the
true value decreases with increasing sample size for both, the linear and the log-linear model.
The boxplots also confirm our above finding that the estimator has a clearly asymmetric
distribution for sample sizes up to several hundred.

B.3. Quasi information criterion

We confirm by simulation that the quasi information criterion (QIC) approximates Akaike’s
information criterion (AIC) in case of a Poisson distribution. Like in Section B.2, we consider
both the linear model with the identity link

Yt|Ft�1 � Poissonpλtq, λt � β0 � β1 Yt�1 � α1λt�1, t � 1, . . . , n,

and the log-linear model with the logarithmic link

Yt|Ft�1 � Poissonpλtq, logpλtq � β0 � β1 logpYt�1 � 1q � α1 logpλt�1q, t � 1, . . . , n,

but now with a Poisson distribution. Again, the parameters β0, β1 and α1 are chosen like in
Section B.1.
From each of the two models we simulate 200 time series of length n � 100 and compute the
QIC and AIC of the fitted model. Figure 12 shows that the relationship between QIC and
AIC is very close to the identity, i.e. the QIC is approximately equal to the AIC. There is
only one out of 200 cases (for the linear model) where the QIC deviates largely from the AIC.
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Figure 8: Estimated coefficients for a linear model of order p � q � 1 with an additional
covariate of the given type. The time series of length n � 100, 500, 1000, 2000 (from top to
bottom in each panel) are simulated from the respective model with the true coefficients
marked by a grey vertical line. Each boxplot is based on 200 replications.
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Figure 9: Identical simulation results as those shown in Figure 8 but for the log-linear model.
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Figure 10: Normal QQ-plots for the estimated covariate coefficient pη1 in a linear (left)
respectively log-linear (right) model of order p � q � 1 with an additional covariate of the
given type. The time series of length n � 100 are simulated from the respective model with
the true coefficient marked by a grey horizontal line. Each plot is based on 200 replications.
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Figure 11: Estimated overdispersion coefficient pσ2 of the Negative Binomial distribution for
a linear (left) respectively log-linear (right) model of order p � q � 1. The time series are
simulated from the respective model with the true overdispersion coefficient marked by a grey
vertical line. Each boxplot is based on 200 replications.
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Figure 12: Relationship of QIC and AIC for a linear (left) respectively log-linear (right) model
of order p � q � 1. Each of the 200 points represents the QIC and AIC of a fit to a time series
of length n � 100 simulated from the respective model. The diagonal line is the identity, i.e.
it represents values for which the QIC equals the AIC.
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