Package ‘trustOptim’

October 14, 2022
Type Package

Title Trust Region Optimization for Nonlinear Functions with Sparse
Hessians

Version 0.8.7.3
Date 2021-10-07

Maintainer Michael Braun <braunm@smu. edu>

URL https://braunm.github.io/trustOptim/,
https://github.com/braunm/trustOptim/

BugReports https://github.com/braunm/trustOptim/issues

Description Trust region algorithm for nonlinear optimization. Efficient when
the Hessian of the objective function is sparse (i.e., relatively few nonzero
cross-partial derivatives). See Braun, M. (2014) <doi:10.18637/jss.v060.104>.

License MPL (>=2.0)

Depends R (>=3.6)

Suggests testthat, knitr

Imports Matrix (>= 1.2.18), Rcpp (>= 1.0.3), methods
LinkingTo Rcpp, ReppEigen (>=0.3.3.7.0)
Copyright (c) 2015-2021 Michael Braun

Encoding UTF-8

VignetteBuilder knitr

SystemRequirements C++11

RoxygenNote 7.1.2

NeedsCompilation yes

Author Michael Braun [aut, cre, cph] (<https://orcid.org/0000-0003-4774-2119>)
Repository CRAN

Date/Publication 2021-10-11 08:10:02 UTC

https://braunm.github.io/trustOptim/
https://github.com/braunm/trustOptim/
https://github.com/braunm/trustOptim/issues
https://doi.org/10.18637/jss.v060.i04
https://orcid.org/0000-0003-4774-2119

2 binary-data

R topics documented:

binary L e e 2
binary-data e 2
tUSLOPLIM o e e e 3
trustOptim e e 6
Index 8
binary Binary choice example
Description

Functions for binary choice example in the vignette.

Usage

binary.f (P, data, priors, order.row = FALSE)
binary.grad(P, data, priors, order.row = FALSE)

binary.hess(P, data, priors, order.row = FALSE)

Arguments
P Numeric vector of length (N+1)*k. First N*k elements are heterogeneous coef-
ficients. The remaining k elements are population parameters.
data List of data matrices Y and X, and choice count integer T
priors List of named matrices inv.Omega and inv.Sigma
order.row Determines order of heterogeneous coefficients in parameter vector. Affects
sparsity pattern of Hessian. See vignette.
Details

Hessian is sparse, and returned as a dgcMatrix object

Value

Log posterior density, gradient and Hessian.

binary-data Sample simulated data for binary choice model in vignette

Description

Simulated data. See vignette. Generated from data-raw/binary.R

trust.optim

trust.optim

Nonlinear optimizers using trust regions.

Description

Run nonlinear minimizer using trust region algorithm with conjugate gradient search directions and
quasi-Hessian updates.

Usage

trust.optim(

X7

fn,
gr7
hs =

NULL,

method = c("SR1", "BFGS", "Sparse"),
control = 1list(),

Arguments

X

fn

gr

hs

method

control

Value

A numeric vector of starting values for the optimizer.

An R function that takes x as its first argument. Returns the value of the objective
function at x. Note that the optimizer will minimize fn (see function.scale.factor
under control)

An R function that takes x as its first argument. Returns a numeric vector that
is the gradient of fn at x. The length of the gradient must be the same as the
length of x. The user must supply this function. If an analytic gradient is not
available, and the method is SR1 or BFGS, the user should consider a numerical
approximation using finite differencing (see the numDeriv package). Do not use
a finite-differenced gradient with the Sparse method. That will cause a world
of hurt.

An R function that takes x as its first argument. It returns a Hessian matrix object
of class dgCMatrix (see the Matrix package). This function is called only if the
selected method is Sparse.

Valid arguments are SR1,BFGS,and Sparse.
A list containing control parameters for the optimizer. See details.

Additional arguments passed to fn, gr and hs. All arguments must be named.

List containing the following items:

fval

Value of the objective function

4 trust.optim

solution Parameter vector at the optimum

gradient Gradient at the optimum

hessian Estimate of the Hessian at the optimum (as class symmetricMatrix, returned
only for Sparse method).

iterations Number of iterations before stopping

status A message describing the last state of the iterator

nnz For the Sparse method only, the number of nonzero elements in the lower trian-

gle of the Hessian

Details

The following sections explain how to use the package as a whole.

Control parameters
The control list should include the following parameters.

start.trust.radius Initial radius of the trust region. Default is 5. If the algorithm returns non-finite
values of the objective function early in the process, try a lower number.

stop.trust.radius Minimum radius of trust region. Algorithm will terminate if radius is below this
value. This is because it may not be possible to get the norm of the gradient smaller than prec,
and this is another way to get the algorithm to stop.

cg.tol tolerance for the conjugate gradient algorithm that is used for the trust region subproblem.
Set it to something very small. Default is sqrt(.Machine$double.eps)

prec Precision for how close the norm of the gradient at the solution should be to zero, before
the algorithm halts. It is possible that the algorithm will not get that far, so it will also stop
when the radius of the trust region is smaller thanstop.trust.radius. If the trust region radius
collapses, but the norm of the gradient really isn’t close to zero, then something terrible has
happened.

report.freq An integer. The frequency at which the algorithm will display the current iteration
number or function value, among other things (see report.level). Defaults to 1.

report.level The amount of detail in each report. Defaults to 2.
report.precision The number of significant digits used in each report. Defaults to 5.

report.header.freq The number of lines of iterations before the report column headers are reprinted.
Defaults to 25.

maxit Maximum number of iterations. Defaults to 100.

contract.factor When the algorithm decides to shrink the trust region, it will multiply the trust
radius by this factor. Defaults to 0.5.

expand.factor When the algorithm decides to expand the trust region, it will multiply the algorithm
by this factor. Defaults to 3.

contract.threshold The algorithm with accept a proposed move if the ratio of the actual improve-
ment in the objective function, to the predicted improvement from the trust region subproblem,
is greater than this amount. Otherwise, the trust region will contract. Default is 0.25.

trust.optim 5

expand.threshold.ap First criterion to determine if the trust region should expand. If the ratio of
the actual and proposed improvements in the objective function is less than this factor, the
algorithm will consider expanding the trust region. See expand. threshold. radius. Default
is 0.8.

expand.threshold.radius If the ratio of the actual and proposed improvement in the objective func-
tion is less than expand. threshold. ap, then, if the normed distance of the proposed move is
greater than expand. threshold. radius, times the current trust region radius, the trust region
will expand. Default is 0.8.

function.scale.factor The algorithm will minimize fn times this factor. If you want to maximize
fn, this value should be negative (usually -1). Default is 1.

precond.refresh.freq Frequency at which the preconditioner for the conjugate gradiate estimation
of the trust region subproblem is reestimated. Preconditioners can help the convergence prop-
erties of the algorithm. Default is 1.

preconditioner ID for choice of preconditioner. O is the identity matrix (default), For the Sparse
method, 1 is a modified Cholesky preconditioner. For the BFGS method, 1 is the full Cholesky
decomposition. If you select 1 for the SR1 method, the algorithm will use the identity precon-
ditioner instead.

trust.iter Maximum number of conjugate gradient iterations to run when solving the trust region
subproblem. A higher number will lead to more accurate solutions to the subproblem, but may
also lead to longer run times. Defaults to 2000.

Report levels

The report.level control parameter determines how much information is displayed each time the
algorithm reports the current state. Possible values are

<=0 No information (a quiet run)

1 Current iteration number, and current value of the objective function.

2 Information from level 1, plus the current norm of the gradient and a status message.
3 Information from levels 1 and 2, plus the current normed radius of the trust region.

4 Information from levels 1, 2, and 3, plus information from each estimate of the trust region sub-
problem (number of conjugate gradient iterations and how/why the CG algorithm terminated).

Default level is 2. Levels 3 and 4 are available primarily for debugging purposes.

Stopping criteria
The algorithm will stop when one of the following three conditions are met:
* The norm of the gradient, divided by the square root of the number of parameters, is less than
prec.

* The trust region collapse to a radius smaller than machine precision

* The algorithm proposes zero or negative improvement in the objective function (should never
happen)

* The number of iterations reaches the control parameter maxit
If the algorithm appears to have stopped prematurely (i.e., the norm of the gradient is still too large),

then one might just restart the algorithm. For the quasi-Newton algorithms (SR1 and BFGS), this will
refresh the Hessian, and might allow more progress to be made.

6 trustOptim

Estimating a sparse Hessian

Sometimes estimating the Hessian is easy (e.g., you have an analytic representation, or you are
using some kind of algorithmic differentiation software). If you do not know the Hessian, but you do
know the sparsity structure, try the sparseHessianFD package. The routines in sparseHessianFD
compute the Hessian using finite differencing, but in a way that exploits the sparsity structure. In
many cases, this can be faster than constructing an analytic Hessian for a large problem (e.g., when
the Hessian has a block-arrow structure with a large number of blocks).

To use the sparseHessianFD package, you need to provide the row and column indices of the non-
zero elements of the lower triangle of the Hessian. This structure cannot change during the course
of the trust.optim routine. Also, you really should provide an analytic gradient. sparseHessianFD
computes finite differences of the gradient, so if the gradient itself is finite-differenced, so much
error is propagated through that the Hessians are nearly worthless close to the optimum.

Of course, sparseHessianFD is useful only for the Sparse method. That said, one may still get
decent performance using these routines even if the Hessian is sparse, if the problem is not too large.
Just treat the Hessian as if it were sparse.

Examples

Not run:
data(binary)
N <- length(binary$Y)
k <= NROW(binary$x)
start <- rep(@, (N+1)*k)
priors <- list(inv.Sigma = diag(k), inv.Omega = diag(k))
opt <- trust.optim(start, fn=binary.f,
gr = binary.grad,
hs = binary.hess,
method = "Sparse”,
control = list(
report.precision=1L,
function.scale.factor=-1

)'
data=binary, priors=priors
)
End(Not run)
trustOptim Trust-region optimization

Description

Nonlinear optimizers using trust regions, with methods optimized for sparse Hessians.

trustOptim 7

Details

Trust region algorithm for nonlinear optimization. In addition to being more stable and robust than
optim, this package includes methods that are scalable and efficient (in terms of both speed and
memory usage) when the Hessian is sparse.

References
Braun, Michael. 2014. trustOptim: An R Package for Trust Region Optimization with Sparse
Hessians. Journal of Statistical Software 60(4), 1-16. www.jstatsoft.org/v60/i04/.
Nocedal, Jorge, and Stephen J Wright. 2006. Numerical Optimization. Second edition. Springer.

Steihaug, Trond. 1983. The Conjugate Gradient Method and Trust Regions in Large Scale Opti-
mization. SIAM Journal on Numerical Analysis 20(3), 626-637.

Index

binary, 2
binary-data, 2

trust.optim, 3
trustOptim, 6

	binary
	binary-data
	trust.optim
	trustOptim
	Index

