
Categorical inputs, sensitivity analysis,

optimization and importance tempering

with tgp version 2, an R package for

treed Gaussian process models

Robert B. Gramacy

Department of Statistics

Virginia Tech

rbg@vt.edu

Matt Taddy

Amazon

mataddy@amazon.com

August 22, 2024

Abstract

This document describes the new features in version 2.x of the tgp package for R,
implementing treed Gaussian process (GP) models. The topics covered include methods
for dealing with categorical inputs and excluding inputs from the tree or GP part of the
model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization
of black-box functions; and a new Monte Carlo method for inference in multi-modal
posterior distributions that combines simulated tempering and importance sampling.
These additions extend the functionality of tgp across all models in the hierarchy:
from Bayesian linear models, to CART, to treed Gaussian processes with jumps to
the limiting linear model. It is assumed that the reader is familiar with the baseline
functionality of the package, outlined in the first vignette [11].

Intended audience

The tgp package contains implementations of seven related Bayesian regression frameworks
which combine treed partition models, linear models (LM), and stationary Gaussian process
(GP) models. GPs are flexible (phenomenological) priors over functions which, when used
for regression, are usually relegated to smaller applications for reasons of computational
expense. Trees, by contrast, are a crude but efficient divide-and-conquer approach to non-
stationary regression. When combined they are quite powerful, and provide a highly flexible
nonparametric and non-stationary family of regression tools. These treed GP models have
been successfully used in a variety of contexts, in particular in the sequential design and
analysis of computer experiments.

1

The models, and the (base) features of the package, are described the vignette for version
1.x of the package [11]. This document is intended as a follow-on, describing four new
features that have been added to the package in version 2.x. As such, it is divided into four
essentially disjoint sections: on categorical inputs (Section 1), sensitivity analysis (Section
2), statistical optimization (Section 3), and importance tempering (Section 4). The ability to
deal with categorical inputs greatly expands the sorts of regression problems which tgp can
handle. It also enables the partition component of the model to more parsimoniously describe
relationships that were previously left to the GP part of the model, at a great computational
expense and interpretational disadvantage. The analysis of sensitivity to inputs via the
predictive variance enables the user to inspect, and understand, the first-order and total
effects of each of the inputs on the response. The section on statistical optimization expands
the sequential design feature set described in the first vignette. We now provide a skeleton
which automates the optimization of black-box functions by expected improvement, along
with tools and suggestions for assessing convergence. Finally, the addition of tempering-
based MCMC methods leads to more reliable inference via a more thorough exploration of
the highly multi-modal posterior distributions that typically result from tree based models,
which previously could only be addressed by random restarts. Taken all together, these
four features have greatly expanded the capabilities of the package, and thus the variety of
statistical problems which can be addressed with the tgp family of methods.

Each of the four sections to follow will begin with a short mathematical introduction to
the new feature or methodology and commence with extensive examples in R on synthetic
and real data. This document has been authored in Sweave (try help(Sweave)). This
means that the code quoted throughout is certified by R, and the Stangle command can be
used to extract it. As with the first vignette, the R code in each of the sections to follow is
also available as a demo in the package. Note that this tutorial was not meant to serve as
an instruction manual. For more detailed documentation of the functions contained in the
package, see the package help–manuals. At an R prompt, type help(package=tgp). PDF
documentation is also available on the world-wide-web.

http://www.cran.r-project.org/doc/packages/tgp.pdf

Each section starts by seeding the random number generator with set.seed(0). This is
done to make the results and analyses reproducible within this document (assuming identical
architecture [64-bit Linux] and version of R [2.10.1]), and in demo form. We recommend you
try these examples with different seeds and see what happens. Usually the results will be
similar, but sometimes (especially when the data (X,Z) is generated randomly) they may be
quite different.

1 Non–real–valued, categorical and other inputs

Early versions of tgp worked best with real–valued inputs X. While it was possible to specify
ordinal, integer–valued, or even binary inputs, tgp would treat them the same as any other
real–valued input. Two new arguments to tgp.default.params, and thus the ellipses (...)

2

argument to the b* functions, provide a more natural way to model with non–real valued
inputs. In this section we shall introduce these extensions, and thereby illustrate how the
current version of the package can more gracefully handle categorical inputs. We argue that
the careful application of this new feature can lead to reductions in computational demands,
improved exploration of the posterior, increased predictive accuracy, and more transparent
interpretation of the effects of categorical inputs.

Classical treed methods, such as CART [1], can cope quite naturally with categorical,
binary, and ordinal, inputs. Categorical inputs can be encoded in binary, and splits can be
proposed with rules such as xi < 1. Once a split is made on a binary input, no further
process is needed, marginally, in that dimension. Ordinal inputs can also be coded in binary,
and thus treated as categorical, or treated as real–valued and handled in a default way. GP
regression, however, handles such non–real–valued inputs less naturally, unless (perhaps) a
custom and non–standard form of the covariance function is used [27]. When inputs are
scaled to lie in [0, 1], binary–valued inputs xi are always a constant distance apart—at the
largest possible distance in the range. A separable correlation function width parameter di
will tend to infinity (in the posterior) if the output does not vary with xi, and will tend to
zero if it does. Clearly, this functionality is more parsimoniously achieved by partitioning,
e.g., using a tree. However, trees with fancy regression models at the leaves pose other
problems, as discussed below.

Consider as motivation, the following modification of the Friedman data [6] (see also
Section 3.5 of [11]). Augment 10 real–valued covariates in the data (x = {x1, x2, . . . , x10})
with one categorical indicator I ∈ {1, 2, 3, 4} that can be encoded in binary as

1 ≡ (0, 0, 0) 2 ≡ (0, 0, 1) 3 ≡ (0, 1, 0) 4 ≡ (1, 0, 0).

Now let the function that describes the responses (Z), observed with standard Normal noise,
have a mean

E(Z|x, I) =





10 sin(πx1x2) if I = 1
20(x3 − 0.5)2 if I = 2
10x4 + 5x5 if I = 3

5x1 + 10x2 + 20(x3 − 0.5)2 + 10 sin(πx4x5) if I = 4

(1)

that depends on the indicator I. Notice that when I = 4 the original Friedman data is
recovered, but with the first five inputs in reverse order. Irrespective of I, the response
depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrelevant effects. When
I = 3 the response is linear x.

A new function has been included in the tgp package which facilitates generating random
realizations from (1). Below we obtain 500 such random realizations for training purposes,
and a further 1000 for testing.

> fb.train <- fried.bool(500)

> X <- fb.train[,1:13]; Z <- fb.train$Y

> fb.test <- fried.bool(1000)

> XX <- fb.test[,1:13]; ZZ <- fb.test$Ytrue

3

A separation into training and testing sets will be useful for later comparisons by RMSE.
The names of the data frame show that the first ten columns encode x and columns 11–13
encode the boolean representation of I.

> names(X)

[1] "X.1" "X.2" "X.3" "X.4" "X.5" "X.6" "X.7" "X.8"

[9] "X.9" "X.10" "I.1" "I.2" "I.3"

One, naïve approach to fitting this data would be to fit a treed GP LLM model ignoring the
categorical inputs. But this model can only account for the noise, giving high RMSE, and
so is not illustrated here. Clearly, the indicators must be included. One simple way to do so
would be to posit a Bayesian CART model.

> fit1 <- bcart(X=X, Z=Z, XX=XX, verb=0)

> rmse1 <- sqrt(mean((fit1$ZZ.mean - ZZ)^2))

> rmse1

[1] 2.720232

In this case the indicators are treated appropriately (as indicators), but in some sense so are
the real–valued inputs as only constant models are fit at the leaves of the tree. Figure 1 shows

> tgp.trees(fit1, "map")

I.3 <> 0

I.2 <> 0

I.1 <> 0

X.2 <> 0.502074

X.1 <> 0.401742

0.003
28 obs

1

0.0092
42 obs

2

0.0102
68 obs

3

X.2 <> 0.497401

X.4 <> 0.30794

0.0068
20 obs

4

0.018
52 obs

5

0.015
51 obs

6

X.4 <> 0.292054

0.0032
34 obs

7 X.4 <> 0.717721

0.0047
48 obs

8

0.0029
36 obs

9

X.3 <> 0.806592

0.0024
94 obs

10

0.0016
27 obs

11

 height=6, log(p)=552.473

Figure 1: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using Bayesian CART.

that the tree does indeed partition on the indicators, and the other inputs, as expected.
One might expect a much better fit from a treed linear model to this data, since the

response is linear in some of its inputs.

4

> fit2 <- btlm(X=X, Z=Z, XX=XX, verb=0)

> rmse2 <- sqrt(mean((fit2$ZZ.mean - ZZ)^2))

> rmse2

[1] 2.721477

Unfortunately, this is not the case—the RMSE obtained is similar to the one for the CART
model. Figure 2 shows that the tree does indeed partition, but not on the indicator variables.

> tgp.trees(fit2, "map")

NOTICE: skipped plotting tree of height 1, with lpost = 454.743

I.3 <> 0

I.1 <> 0

I.2 <> 0

0.0051
138 obs

1

0.0012
118 obs

2

0.0068
123 obs

3

X.3 <> 0.404275

0.0012
49 obs

4

0.0019
72 obs

5

 height=4, log(p)=749.502

Figure 2: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using a Bayesian treed linear model.

When a linear model is used at the leaves of the tree the boolean indicators cannot be
partitioned upon because doing so would cause the design matrix to become rank–deficient
at the leaves of the tree (there would be a column of all zeros or all ones). A treed GP would
have the same problem.

A new feature in tgp makes dealing with indicators such as these more natural, by
including them as candidates for treed partitioning, but ignoring them when it comes to
fitting the models at the leaves of the tree. The argument basemax to tgp.default.params,
and thus the ellipses (...) argument to the b* functions, allows for the specification of
the last columns of X to be considered under the base (LM or GP) model. In the context

5

of our example, specifying basemax = 10 ensures that only the first 10 inputs, i.e., X only
(excluding I), are used to predict the response under the GPs at the leaves. Both the columns
of X and the columns of the boolean representation of the (categorical) indicators I are (still)
candidates for partitioning. This way, whenever the boolean indicators are partitioned upon,
the design matrix (for the GP or LM) will not contain the corresponding column of zeros or
ones, and therefore will be of full rank.

Let us revisit the treed LM model with basemax = 10.

> fit3 <- btlm(X=X, Z=Z, XX=XX, basemax=10, verb=0)

> rmse3 <- sqrt(mean((fit3$ZZ.mean - ZZ)^2))

> rmse3

[1] 1.825078

> tgp.trees(fit3, "map")

I.3 <> 0

I.1 <> 0

I.2 <> 0

0.0051
138 obs

1

0.0012
118 obs

2

0.0068
123 obs

3

X.3 <> 0.404275

0.0012
49 obs

4

0.0019
72 obs

5

 height=4, log(p)=749.502

Figure 3: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using a Bayesian treed linear model with
the setting basemax = 10.

Figure 3 shows that the MAP tree does indeed partition on the indicators in an appropriate
way—as well as on some other real–valued inputs—and the result is the lower RMSE we
would expect.

6

A more high–powered approach would clearly be to treat all inputs as real–valued by
fitting a GP at the leaves of the tree. Binary partitions are allowed on all inputs, X and I,
but treating the boolean indicators as real–valued in the GP is clearly inappropriate since
it is known that the process does not vary smoothly over the 0 and 1 settings of the three
boolean indicators representing the categorical input I.

> fit4 <- btgpllm(X=X, Z=Z, XX=XX, verb=0)

> rmse4 <- sqrt(mean((fit4$ZZ.mean - ZZ)^2))

> rmse4

[1] 1.461194

Since the design matrices would become rank–deficient if the boolean indicators are parti-
tioned upon, there was no partitioning in this example.

> fit4$gpcs

grow prune change swap

1 0 NA NA NA

Since there are large covariance matrices to invert, the MCMC inference is very slow. Still,
the resulting fit (obtained with much patience) is better that the Bayesian CART and treed
LM (with basemax = 10) ones, as indicated by the RMSE.

We would expect to get the best of both worlds if the setting basemax = 10 were used
when fitting the treed GP model, thus allowing partitioning on the indicators by guarding
against rank deficient design matrices.

> fit5 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, verb=0)

> rmse5 <- sqrt(mean((fit5$ZZ.mean - ZZ)^2))

> rmse5

[1] 0.5624751

And indeed this is the case.
The benefits go beyond producing full rank design matrices at the leaves of the tree.

Loosely speaking, removing the boolean indicators from the GP part of the treed GP gives
a more parsimonious model, without sacrificing any flexibility. The tree is able to capture
all of the dependence in the response as a function of the indicator input, and the GP is the
appropriate non–linear model for accounting for the remaining relationship between the real–
valued inputs and outputs. We can look at the maximum a’ posteriori (MAP) tree, to see
that only (and all of) the indicators were partitioned upon in Figure 4. Further advantages
to this approach include speed (a partitioned model gives smaller covariance matrices to
invert) and improved mixing in the Markov chain when a separable covariance function is
used. Note that using a non–separable covariance function in the presence of indicators

7

> h <- fit1$post$height[which.max(fit1$posts$lpost)]

> tgp.trees(fit5, "map")

I.1 <> 0

I.3 <> 0

I.2 <> 0

0.0585
138 obs

1

0.0169
118 obs

2

0.0114
121 obs

3

0.0511
123 obs

4

 height=4, log(p)=811.571

Figure 4: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the boolean
indicator version of the Friedman data in Eq. (1) using basemax=10.

would result in a poor fit. Good range (d) settings for the indicators would not necessarily
coincide with good range settings for the real–valued inputs.

A complimentary setting, splitmin, allows the user to specify the first column of the
inputs X upon which treed partitioning is allowed. From Section 3.5 of the first tgp vignette
[11], it was concluded that the original formulation of Friedman data was stationary, and
thus treed partitioning is not required to obtain a good fit. The same would be true of the
response in (1) after conditioning on the indicators. Therefore, the most parsimonious model
would use splitmin = 11, in addition to basemax = 10, so that only X are under the GP,
and only I under the tree. Fewer viable candidate inputs for treed partitioning should yield
improved mixing in the Markov chain, and thus lower RMSE.

> fit6 <- btgpllm(X=X, Z=Z, XX=XX, basemax=10, splitmin=11, verb=0)

> rmse6 <- sqrt(mean((fit6$ZZ.mean - ZZ)^2))

> rmse6

[1] 1.235418

Needless to say, it is important that the input X have columns which are ordered ap-
propriately before the basemax and splitmin arguments can be properly applied. Future

8

versions of tgp will have a formula–based interface to handle categorical (factors) and other
inputs more like other R regression routines, e.g., lm and glm.

The tree and binary encodings represent a particularly thrifty way to handle categorical
inputs in a GP regression framework, however it is by no means the only or best approach to
doing so. A disadvantage to the binary coding is that it causes the introduction of several new
variables for each categorical input. Although they only enter the tree part of the model, and
not the GP (where the introduction of many new variables could cause serious problems),
this may still be prohibitive if the number of categories is large. Another approach that
may be worth considering in this case involves designing a GP correlation function which
can explicitly handle a mixture of qualitative (categorical) and quantitative (real-valued)
factors [27]. An advantage of our treed approach is that it is straightforward to inspect the
effect of the categorical inputs by, e.g., counting the number of trees (in the posterior) which
contain a particular binary encoding. It is also easy to see how the categorical inputs interact
with the real-valued ones by inspecting the (posterior) parameterizations of the correlation
parameters in each partition on a binary encoding. Both of these are naturally facilitated
by gathering traces (trace = TRUE), as described in the 1.x vignette [11]. In Section 2 we
discuss a third way of determining the sensitivity of the response to categorical and other
inputs.

2 Analysis of sensitivity to inputs

Methods for understanding how inputs, or explanatory variables, contribute to the outputs,
or response, of simple statistical models are by now classic in the literature and frequently
used in practical application. For example, in linear regression one can perform F–tests to
ascertain the relevance of a predictor, or inspect the leverage of a particular input setting, or
use Cooks’ distance, to name a few. Unfortunately, such convenient statistics/methods are
not available for more complicated models, such as those in the tgp family of nonparametric
models. A more advanced tool is needed.

Sensitivity Analysis (SA) is a resolving of the sources of output variability by appor-
tioning elements of this variation to different sets of input variables. It is applicable in wide
generality. The edited volume by Saltelli et al. [29] provides an overview of the field. Valuable
recent work on smoothing methods is found in [34, 4], and Storlie, et al. [35], provide a nice
overview of nonparametric regression methods for inference about sensitivity. The analysis
of response variability is useful in a variety of different settings. For example, when there is a
large number of input variables over which an objective function is to be optimized, typically
only a small subset will be influential within the confines of their uncertainty distribution.
SA can be used to reduce the input space of such optimizations [36]. Other authors have
used SA to assess the risk associated with dynamic factors affecting the storage of nuclear
waste [14], and to investigate the uncertainty characteristics of a remote sensing model for
the reflection of light by surface vegetation [21]. The sens function adds to tgp a suite
of tools for global sensitivity analysis, and enables “out-of-the-box” estimation of valuable
sensitivity indices for any regression relationship that may be modeled by a member of the

9

tgp family.
The type of sensitivity analysis provided by tgp falls within the paradigm of global

sensitivity analysis, wherein the variability of the response is investigated with respect to a
probability distribution over the entire input space. The recent book by Saltelli et al. [30]
serves as a primer on this field. Global SA is inherently a problem of statistical inference, as
evidenced by the interpolation and estimation required in a study of the full range of inputs.
This is in contrast with the analytical nature of local SA, which involves derivative–based
investigation of the stability of the response over a small region of inputs. We will ignore
local SA for the remainder of this document.

The sensitivity of a response z to a changing input x is always considered in relation to a
specified uncertainty distribution, defined by the density u(x), and the appropriate marginal
densities ui(xi). What is represented by the uncertainty distribution changes depending
upon the context. The canonical setup has that z is the response from a complicated physics
or engineering simulation model, with tuning parameters x, that is used to predict physical
phenomena. In this situation, u(x) represents the experimentalist’s uncertainty about real–
world values of x. In optimization problems, the uncertainty distribution can be used to
express prior information from experimentalists or modelers on where to look for solutions.
Finally, in the case of observational systems (such as air-quality or smog levels), u(x) may
be an estimate of the density governing the natural occurrence of the x factors (e.g., air-
pressure, temperature, wind, and cloud cover). In this setup, SA attempts to resolve the
natural variability of z.

The most common notion of sensitivity is tied to the relationship between conditional
and marginal variance for z. Specifically, variance–based methods decompose the variance
of the objective function, with respect to the uncertainty distribution on the inputs, into
variances of conditional expectations. These are a natural measure of the output association
with specific sets of variables and provide a basis upon which the importance of individual
inputs may be judged. The other common component of global SA is an accounting of the
main effects for each input variable, Euj

[z|xj], which can be obtained as a by-product of the
variance analysis.

Our variance–based approach to SA is a version of the method of Sobol’, wherein a
deterministic objective function is decomposed into summands of functions on lower di-
mensional subsets of the input space. Consider the function decomposition f(x1, . . . , xd) =
f0+

∑d
j=1 fj(xj)+

∑
1≤i<j≤d fij(xj, xi)+ . . .+f1,...,d(x1, . . . , xd). When the response f is mod-

eled as a stochastic process z conditional on inputs x, we can develop a similar decomposition
into the response distributions which arise when z has been marginalized over one subset of
covariates and the complement of this subset is allowed to vary according to a marginalized
uncertainty distribution. In particular, we can obtain the marginal conditional expectation
E[z|xJ = {xj : j ∈ J}] =

∫
Rd−dJ

E[z|x]u(x)dx−J , where J = {j1, . . . , jdJ} indicates a subset
of input variables, x−j = {xj : j /∈ J}, and the marginal uncertainty density is given by
uJ(xJ) =

∫
Rd−dJ

u(x)d{xi : i /∈ J}. SA concerns the variability of E[z|xJ] with respect to
changes in xJ according to uJ(xJ) and, if u is such that the inputs are uncorrelated, the

10

variance decomposition is available as

var(E[z|x]) =
d∑

j=1

Vj +
∑

1≤i<j≤d

Vij + . . .+ V1,...,d, (2)

where Vj = var(E[z|xj]), Vij = var(E[z|xi, xj])−Vi−Vj, and so on. Clearly, when the inputs
are correlated this identity no longer holds (although a “less-than-or-equal-to” inequality is
always true). But it is useful to retain an intuitive interpretation of the VJ ’s as a portion of
the overall marginal variance.

Our global SA will focus on the related sensitivity indices SJ = VJ/var(z) which, as can
be seen in the above equation, will sum to one over all possible J and are bounded to [0, 1].
These SJ ’s provide a natural measure of the importance of a set J of inputs and serve as the
basis for an elegant analysis of sensitivity. The sens function allows for easy calculation of
two very important sensitivity indices associated with each input: the 1st order for the jth
input variable,

Sj =
var (E [z|xj])

var(z)
, (3)

and the total sensitivity for input j,

Tj =
E [var (z|x−j)]

var(z)
. (4)

The 1st order indices measure the portion of variability that is due to variation in the main
effects for each input variable, while the total effect indices measure the portion of vari-
ability that is due to total variation in each input. From the identity E [var (z|x−j)] =
var(z)−var (E [z|x−j]), it can be seen that Tj measures the residual variability remaining af-
ter variability in all other inputs has been apportioned and that, for a deterministic response
and uncorrelated input variables, Tj =

∑
J :j∈J SJ . This implies that the difference between

Tj and Sj provides a measure of the variability in z due to interaction between input j and
the other input variables. A large difference may lead the investigator to consider other
sensitivity indices to determine where this interaction is most influential, and this is often a
key aspect of the dimension–reduction that SA provides for optimization problems.

2.1 Monte Carlo integration for sensitivity indices

Due to the many integrals involved, estimation of the sensitivity indices is not straight-
forward. The influential paper by Oakley & O’Hagan [24] describes an empirical Bayes
estimation procedure for the sensitivity indices, however some variability in the indices is
lost due to plug-in estimation of GP model parameters and, more worryingly, the variance
ratios are only possible in the form of a ratio of expected values. Marrel, et al. [19], provide
a more complete analysis of the GP approach to this problem, but their methods remain
restricted to estimation of the first order Sobol indices. Likelihood based approaches have
also been proposed [38, 21]. The technique implemented in tgp is, in contrast, fully Bayesian

11

and provides a complete accounting of the uncertainty involved. Briefly, at each iteration
of an MCMC chain sampling from the treed GP posterior, output is predicted over a large
(carefully chosen) set of input locations. Conditional on this predicted output, the sensitivity
indices can be calculated via Monte Carlo integration. By conditioning on the predicted re-
sponse (and working as though it were the observed response), we obtain a posterior sample
of the indices, incorporating variability from both the integral estimation and uncertainty
about the function output. In particular, the sens function includes a model argument which
allows for SA based on any of the prediction models (the b* functions) in tgp.

Our Monte Carlo integration is based upon Saltelli’s [32] efficient Latin hypercube sam-
pling (LHS) scheme for estimation of both 1st order and total effect indices. We note that
the estimation is only valid for uncorrelated inputs, such that u(x) =

∏d
j=1 uj(xj). The

sens function only allows for uncertainty distributions of this type (in fact, the marginal
distributions also need to be bounded), but this is a feature of nearly every “out-of-the-box”
approach to SA. Studies which concern correlated inputs will inevitably require modeling for
this correlation, whereas most regression models (including those in tgp) condition on the
inputs and ignore the joint density for x. Refer to the work of Saltelli & Tarantola [31] for
an example of SA with correlated inputs.

We now briefly describe the integration scheme. The 2nd moment is a useful intermediate
quantity in variance estimation, and we define

DJ = E
[
E2 [z|xJ]

]
=

∫

RdJ

E2 [z|xJ] uJ(xJ)d(xJ).

Making use of an auxiliary variable,

DJ =

∫

RdJ

[∫

R
d
−J

E [z|xJ ,x−J] u−J(x−J)dx−J

∫

R
d
−J

E
[
z|xJ ,x

′
−J

]
u−J(x

′
−J)dx

′
−J

]
uJ(xJ)xJ

=

∫

R
d+d

−J

E [z|xJ ,x−J]E
[
z|xJ ,x

′
−J

]
u−J(x−J)u−J(x

′
−J)uJ(xJ)dxdx

′
J .

Thus, in the case of independent inputs,

DJ =

∫

R
d+d

−J

E [z|x]E
[
z|xJ ,x

′
−J

]
u−J(x

′
−J)u(x)dx

′
−Jdx.

Note that at this point, if the inputs had been correlated, the integral would have been
instead with respect to the joint density u(x)u(x′

−J |xJ), leading to a more difficult integral
estimation problem.

Recognizing that Sj = (Dj −E2[z])/var(z) and Tj = 1− ((D−j − E2[z])) /var(z), we need
estimates of var(z), E2[z], and {(Dj, D−j) : j = 1, . . . , d} to calculate the sensitivity indices.
Given a LHS M proportional to u(x),

M =




s11 · · · s1d
...

sm1 · · · smd


 ,

12

it is possible to estimate Ê[z] = 1
m

∑m
k=1 E[z|sk] and v̂ar[z] = 1

m
ET [z|M]E[z|M] − Ê[z]Ê[z],

where the convenient notation E[z|M] is taken to mean [E[z|s1] · · ·E[z|sm]]
T . All that remains

is to estimate the D’s. Define a second LHS M ′ proportional to u of the same size as M and
say that NJ is M ′ with the J columns replaced by the corresponding columns of M . Hence,

Nj =




s′11 · · · s1j · · · s
′
1d

...
s′m1

· · · smj
· · · s′md


 and N−j =




s11 · · · s
′
1j
· · · s1d

...
sm1 · · · s

′
mj

· · · smd


 .

The estimates are then D̂j = ET [z|M]E[z|Nj]/(m− 1) and D̂−j = ET [z|M ′]E[z|Nj]/(m− 1)
≈ ET [z|M]E[z|N−j]/(m − 1). Along with the variance and expectation estimates, these

can be plugged into equations for Sj and Tj in (3–4) to obtain Ŝj and T̂j. Note that Saltelli

recommends the use of the alternative estimate Ê2[z] = 1
n−1

ET [z|M]E[z|M ′] in calculating 1st

order indices, as this brings the index closer to zero for non-influential variables. However,
it has been our experience that these biased estimates can be unstable, and so tgp uses

the standard Ê2[z] = Ê[z]Ê[z] throughout. As a final point, we note that identical MCMC
sampling-based integration schemes can be used to estimate other Sobol indices (e.g., second
order, etc) for particular combinations of inputs, but that this would require customization
of the tgp software.

The set of input locations which need to be evaluated for each calculation of the indices
is {M,M ′, N1, . . . , Nd}, and if m is the sample size for the Monte Carlo estimate this scheme
requires m(d+2) function evaluations. Hence, at each MCMC iteration of the model fitting,
the m(d + 2) locations are drawn randomly according the LHS scheme, creating a random
prediction matrix, XX. By allowing random draws of the input locations, the Monte Carlo
error of the integral estimates will be included in the posterior variability of the indices and
the posterior moments will not be dependent upon any single estimation input set. Using
predicted output over this input set, a single realization of the sensitivity indices is calculated
through Saltelli’s scheme. At the conclusion of the MCMC, we have a representative sample
from the posterior for S and T. The averages for these samples are unbiased estimates
of the posterior mean, and the variability of the sample is representative of the complete
uncertainty about model sensitivity.

Since a subset of the predictive locations (M and M ′) are actually a LHS proportional
to the uncertainty distribution, we can also estimate the main effects at little extra com-
putational cost. At each MCMC iteration, a one–dimensional nonparametric regression is
fit through the scatterplot of [s1j , . . . , smj

, s′1j , . . . , s
′
mj
] vs. [E[z|M],E[z|M ′]] for each of the

j = 1, . . . , d input variables. The resultant regression estimate provides a realization of
E[z|xj] over a grid of xj values, and therefore a posterior draw of the main effect curve.
Thus, at the end of the MCMC, we have not only unbiased estimates of the main effects
through posterior expectation, but also a full accounting of our uncertainty about the main
effect curve. This technique is not very sensitive to the method of non-parametric regres-
sion, since 2m will typically represent a very large sample in one–dimension. The estimation
in tgp uses a moving average with squared distance weights and a window containing the

13

span∗2m nearest points (the span argument defaults to 0.3).

2.2 Examples

We illustrate the capabilities of the sens function by looking at the Friedman function
considered earlier in this vignette. The function that describes the responses (Z), observed
with standard Normal noise, has mean

E(Z|x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (5)

A sensitivity analysis can be based upon any of the available regression models (e.g., btlm,
bgp, or btgp); we choose to specify model=btgpllm for this example. The size of each LHS
used in the integration scheme is specified through nn.lhs, such that this is equivalent to m
in the above algorithm description. Thus the number of locations used for prediction—the
size of the random XX prediction matrix—is nn.lhs*(ncol(X)+2). In addition, the window
for moving average estimation of the main effects is span*2*nn.lhs (independent of this, an
ngrid argument with a default setting of ngrid=100 dictates the number of grid points in
each input dimension upon which main effects will be estimated).

> f <- friedman.1.data(250)

This function actually generates 10 covariates, the last five of which are completely un-
influential. We’ll include one of these (x6) to show what the sensitivity analysis looks like
for unrelated variables.

> Xf <- f[, 1:6]

> Zf <- f$Y

> sf <- sens(X=Xf, Z=Zf, nn.lhs=600, model=bgpllm, verb=0)

The progress indicators printed to the screen (for verb > 0) are the same as would be
obtained under the specified regression model—bgpllm in this case—so we suppress them
here. All of the same options (e.g., BTE, R, etc.) apply, although if using the trace capabilities
one should be aware that the XX matrix is changing throughout the MCMC. The sens

function returns a "tgp"-class object, and all of the SA related material is included in the
sens list within this object.

> names(sf$sens)

[1] "par" "Xgrid" "ZZ.mean" "ZZ.q1" "ZZ.q2" "S"

[7] "T"

The object provides the SA parameters (par), the grid of locations for main effect prediction
(Xgrid), the mean and interval estimates for these main effects (ZZ.mean, ZZ.q1, and ZZ.q2),
and full posterior via samples of the sensitivity indices (S and T).

The plot function for "tgp"-class objects now provides a variety of ways to visualize the
results of a sensitivity analysis. This capability is accessed by specifying layout="sens" in

14

> plot(sf, layout="sens", legendloc="topleft")

−0.4 −0.2 0.0 0.2 0.4

−
0

.1
0

.0
0

.1
0

.2

Main Effects

scaled input

re
s
p

o
n

s
e

X1
X2
X3
X4
X5
X6

X1 X2 X3 X4 X5 X6

0
.0

0
.1

0
.2

0
.3

0
.4

1st order Sensitivity Indices

input variables

X1 X2 X3 X4 X5 X6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Total Effect Sensitivity Indices

input variables

Figure 5: Full sensitivity analysis results for the Friedman function.

the standard plot command. By default, the mean posterior main effects are plotted next
to boxplot summaries of the posterior sample for each Sj and Tj index, as in Figure 5.

A further note on the role played by nn.lhs: As always, the quality of the regression
model estimate depends on the length of the MCMC. But now, the quality of sensitivity
analysis is directly influenced by the size of the LHS used for integral approximation; as
with any Monte Carlo integration scheme, the sample size (i.e., nn.lhs) must increase with
the dimensionality of the problem. In particular, it can be seen in the estimation procedure
described above that the total sensitivity indices (the Tj’s) are not forced to be non-negative.
If negative values occur it is necessary to increase nn.lhs. In any case, the plot.tgp function
changes any of the negative values to zero for purposes of illustration.

The maineff argument can be used to plot either selected main effects (Figure 6), or
just the sensitivity indices (Figure 7). Note that the posterior intervals shown in these plots
represent uncertainty about both the function response and the integration estimates; this
full quantification of uncertainty is not presently available in any alternative SA procedures.
These plots may be compared to what we know about the Friedman function (refer to Eq. (5))
to evaluate the analysis. The main effects correspond to what we would expect: sine waves
for x1 and x2, a parabola for x3, and linear effects for x4 and x5. The sensitivity indices show
x1 and x2 contributing roughly equivalent amounts of variation, while x4 is relatively more
influential than x5. Full effect sensitivity indices for x3, x4, and x5 are roughly the same as
the first order indices, but (due to the interaction in the Friedman function) the sensitivity
indices for the total effect of x1 and x2 are significantly larger than the corresponding first
order indices. Finally, our SA is able to determine that x6 is unrelated to the response.

15

> par(mar=c(4,2,4,2), mfrow=c(2,3))

> plot(sf, layout="sens", maineff=t(1:6))

0.0 0.4 0.8

−
0
.2

0
−

0
.1

5
−

0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

X1

0.0 0.4 0.8

−
0
.2

0
−

0
.1

5
−

0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

X2

0.0 0.4 0.8

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

X3

0.0 0.4 0.8

−
0
.2

−
0
.1

0
.0

0
.1

0
.2

X4

0.0 0.4 0.8

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

X5

0.0 0.4 0.8

−
0
.0

2
0
.0

0
0
.0

2
0
.0

4

X6

Main effects: mean and 90 percent interval

Figure 6: Friedman function main effects, with posterior 90% intervals.

> plot(sf, layout="sens", maineff=FALSE)

X1 X2 X3 X4 X5 X6

0
.0

0
.1

0
.2

0
.3

0
.4

1st order Sensitivity Indices

input variables

X1 X2 X3 X4 X5 X6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Total Effect Sensitivity Indices

input variables

Figure 7: Sensitivity indices for the Friedman function.

This analysis assumes the default uncertainty distribution, which is uniform over the
range of input data. In other scenarios, it is useful to specify an informative u(x). In the
sens function, properties of u are defined through the rect, shape, and mode arguments. To
guarantee integrability of our indices, we have restricted ourselves to bounded uncertainty

16

distributions. Hence, rect defines these bounds. In particular, this defines the domain from
which the LHSs are to be taken. We then use independent scaled beta distributions, param-
eterized by the shape parameter and distribution mode, to define an informative uncertainty
distribution over this domain.

As an example of sensitivity analysis under an informative uncertainty distribution, con-
sider the airquality data available with the base distribution of R. This data set contains
daily readings of mean ozone in parts per billion (Ozone), solar radiation (Solar.R), wind
speed (Wind), and maximum temperature (Temp) for New York City, between May 1 and
September 30, 1973. Suppose that we are interested in the sensitivity of air quality to nat-
ural changes in Solar.R,Wind, and Temp. For convenience, we will build our uncertainty
distribution while assuming independence between these inputs. Hence, for each variable,
the input uncertainty distribution will be a scaled beta with shape=2, and mode equal to the
data mean.

> X <- airquality[,2:4]

> Z <- airquality$Ozone

> rect <- t(apply(X, 2, range, na.rm=TRUE))

> mode <- apply(X , 2, mean, na.rm=TRUE)

> shape <- rep(2,3)

LHS samples from the uncertainty distribution are shown in Figure (8)
Due to missing data (discarded in the current version of tgp), we suppress warnings for

the sensitivity analysis. We shall use the default model=btgp.

> s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect,

+ shape=shape, mode=mode, verb=0))

Figure (9) shows the results from this analysis.
Through use of predict.tgp, it is possible to quickly re-analyze with respect to a new

uncertainty distribution without running new MCMC. We can, for example, look at sen-
sitivity for air quality on only low–wind days. We thus alter the uncertainty distribution
(assuming that things remain the same for the other variables)

> rect[2,] <- c(0,5)

> mode[2] <- 2

> shape[2] <- 2

and build a set of parameters sens.p with the sens function by setting model=NULL.

> sens.p <- suppressWarnings(sens(X=X,Z=Z,nn.lhs=300, model=NULL, rect=rect, shape=shape,

Figures (9) and (10) both show total effect indices which are much larger than the respective
first order sensitivities. As one would expect, the effect on airquality is manifest largely
through an interaction between variables.

Finally, it is also possible to perform SA with binary covariates, included in the regression
model as described in Section 1. In this case, the uncertainty distribution is naturally

17

> Udraw <- lhs(300, rect=rect, mode=mode, shape=shape)

> par(mfrow=c(1,3), mar=c(4,2,4,2))

> for(i in 1:3){

+ hist(Udraw[,i], breaks=10,xlab=names(X)[i],

+ main="",ylab="", border=grey(.9), col=8)

+ }

Solar.R

0 50 100 150 200 250 300 350

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

Wind

5 10 15 20

0
1
0

2
0

3
0

4
0

Temp

60 70 80 90 100

0
1
0

2
0

3
0

4
0

5
0

Figure 8: A sample from the marginal uncertainty distribution for the airquality data.

> plot(s.air, layout="sens")

−0.4 −0.2 0.0 0.2 0.4

−
0

.1
0

.0
0

.1
0

.2
0

.3
0

.4

Main Effects

scaled input

re
s
p

o
n

s
e

Solar.R
Wind
Temp

Solar.R Wind Temp

0
.0

0
.2

0
.4

0
.6

1st order Sensitivity Indices

input variables

Solar.R Wind Temp

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Total Effect Sensitivity Indices

input variables

Figure 9: Sensitivity of NYC airquality to natural variation in wind, sun, and temperature.

18

> s.air2 <- predict(s.air, BTE=c(1,1000,1), sens.p=sens.p, verb=0)

> plot(s.air2, layout="sens")

−0.4 −0.2 0.0 0.2 0.4

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Main Effects

scaled input

re
s
p

o
n

s
e

Solar.R
Wind
Temp

Solar.R Wind Temp

0
.0

0
.2

0
.4

0
.6

0
.8

1st order Sensitivity Indices

input variables

Solar.R Wind Temp

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Total Effect Sensitivity Indices

input variables

Figure 10: Air quality sensitivity on low-wind days.

characterized by a Bernoulli density. Setting shape[i]=0 informs sens that the relevant
variable is binary (perhaps encoding a categorical input as in Section 1), and that the
Bernoulli uncertainty distribution should be used. In this case, the mode[i] parameter
dictates the probability parameter for the Bernoulli, and we must have rect[i,] = c(0,1).
As an example, we re-analyze the original air quality data with temperature included as an
indicator variable (set to one if temperature > 79, the median, and zero otherwise).

> X$Temp[X$Temp >70] <- 1

> X$Temp[X$Temp >1] <- 0

> rect <- t(apply(X, 2, range, na.rm=TRUE))

> mode <- apply(X , 2, mean, na.rm=TRUE)

> shape <- c(2,2,0)

> s.air <- suppressWarnings(sens(X=X, Z=Z, nn.lhs=300, rect=rect,

+ shape=shape, mode=mode, verb=0, basemax=2))

Figure (11) shows the results from this analysis.

3 Statistical search for optimization

There has been considerable recent interest in the use of statistically generated search pat-
terns (i.e., locations of relatively likely optima) for optimization. A popular approach is to
estimate a statistical (surrogate) model, and use it to design a set of well-chosen candidates

19

> plot(s.air, layout="sens")

−0.4 −0.2 0.0 0.2 0.4

−
0

.1
0

.0
0

.1
0

.2

Main Effects

scaled input

re
s
p

o
n

s
e

Solar.R
Wind
Temp

Solar.R Wind Temp

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

1st order Sensitivity Indices

input variables

Solar.R Wind Temp

0
.3

0
.4

0
.5

0
.6

0
.7

0
.8

0
.9

1
.0

Total Effect Sensitivity Indices

input variables

Figure 11: Sensitivity of NYC airquality to natural variation in wind, sun, and a binary
temperature variable (for a threshold of 79 degrees).

for further evaluation by a direct optimization routine. Such statistically designed search
patterns can be used either to direct the optimization completely (e.g., [16] or [28]) or to
work in hybrid with local pattern search optimization (as in [36]). An bonus feature of the
statistical surrogate approach is that it may be used to tackle problems of optimization under
uncertainty, wherein the function being optimized is observed with noise. In this case the
search is for input configurations which optimize the response with high probability. Direct-
search methods would not apply in this scenario without modification. However, a sensible
hybrid could involve inverting the relationship between the two approaches so that direct-
search is used on deterministic predictive surfaces from the statistical surrogate model. This
search can be used to find promising candidates to compliment space-filling ones at which
some statistical improvement criterion is evaluated.

Towards situating tgp as a promising statistical surrogate model for optimization (in both
contexts) the approach developed by Taddy, et al. [36], has been implemented to produce
a list of input locations that is ordered by a measure of the potential for new optima. The
procedure uses samples from the posterior predictive distribution of treed GP regression
models to estimate improvement statistics and build an ordered list of search locations
which maximize expected improvement. The single location improvement is defined I(x) =
max{fmin − f(x), 0}, where fmin is the minimum evaluated response in the search (refer to
[33] for extensive discussion on general improvement statistics and initial vignette [11] for
details of a base implementation in tgp). Thus, a high improvement corresponds to an input
location that is expected to be much lower than the current minimum. The criterion is easily
changed to a search for maximum values through negation of the response. The improvement

20

is always non-negative, as points which do not turn out to be new minimum points still
provide valuable information about the output surface. Thus, in the expectation, candidate
locations will be rewarded for high response uncertainty (indicating a poorly explored region
of the input space), as well as for low mean predicted response. Our tgp generated search
pattern will consist of m locations that recursively maximize (over a discrete candidate set)
a sequential version of the expected multi-location improvement developed by Schonlau, et
al. [33], defined as E [Ig(x1, . . . ,xm)] where

Ig(x1, . . . ,xm) = (max{(fmin − f(x1)), . . . , (fmin − f(xm)), 0})
g . (6)

Increasing g ∈ {0, 1, 2, 3, . . .} increases the global scope of the criteria by rewarding in the
expectation extra variability at x. For example, g = 0 leads to E[I0(x)] = Pr(I(x) > 0)
(assuming the convention 00 = 0), g = 1 yields the standard statistic, and g = 2 explic-
itly rewards the improvement variance since E[I2(x)] = var[I(x)] + E[I(x)]2. For further
discussion on the role of g, see [33] .

Finding the maximum expectation of (6) is practically impossible for the full posterior
distribution of Ig(x1, . . . ,xm), and would require conditioning on a single fit for the model
parameters (for example, static imputation of predictive GP means can be used to recursively
build the improvement set [10]). However, tgp just seeks to maximize over a discrete list of
predictive locations. In fact, the default is to return an ordering for the entire XX matrix,
thus defining a ranking of predictive locations by order of decreasing expected improvement.
There is no restriction on the form for XX.1 The structure of this scheme will dictate the
form for XX. If it is the case that we seek simply to explore the input space and map a list
of potential locations for improvement, using LHS to choose XX will suffice.

The discretization of decision space allows for a fast iterative solution to the optimization
of E [Ig(x1, . . . ,xm)]. This begins with evaluation of the simple improvement Ig(x̃i) over
x̃i ∈ X̃ at each of T = BTE[2]-BTE[1] MCMC iterations (each corresponding to a single
posterior realization of tgp parameters and predicted response after burn-in) to obtain the
posterior sample

I =





Ig(x̃1)1 . . . Ig(x̃m)1
...

Ig(x̃1)T . . . Ig(x̃m)T





.

Recall that in tgp parlance, and as input to the b* functions: X̃ ≡ XX.
We then proceed iteratively to build an ordered collection of m locations according to an

iteratively refined improvement: Designate x1 = argmax
x̃∈X̃E [Ig(x̃)], and for j = 2, . . . ,m,

1A full optimization routine would require that the search pattern is placed within an algorithm iterating
towards convergence, as in [36]. However, we concentrate here on the statistical problem of choosing the
next samples optimally. We shall touch on issues of convergence in Section 3.2 where we describe a skeleton
scheme for optimization extending R’s internal optim functionality.

21

given that x1, . . . ,xj−1 are already included in the collection, the next member is

xj = argmax
x̃∈X̃E [max{Ig(x1, . . . ,xj−1), I

g(x̃)}]

= argmax
x̃∈X̃E[(max{(fmin − f(x1)), . . . , (fmin − f(xj−1)), (fmin − f(x̃)), 0})g]

= argmax
x̃∈X̃E [Ig(x1, . . . ,xj−1, x̃)] .

Thus, after each jth additional point is added to the set, we have the maximum expected
j–location improvement conditional on the first j − 1 locations. This is not necessarily the
unconditionally maximal expected j–location improvement; instead, point xj is the location
which will cause the greatest increase in expected improvement over the given (j−1)–location
expected improvement.

The posterior sample I acts as a discrete approximation to the true posterior distribution
for improvement at locations within the candidate set XX. Based upon this approximation,
iterative selection of the point set is possible without any re-fitting of the tgp model. Condi-
tional on the inclusion of x̃i1 , . . . , x̃il−1

in the collection, a posterior sample of the l–location
improvement statistics is calculated as

Il =





Ig(x̃i1 , . . . , x̃il−1
, x̃1)1 . . . Ig(x̃i1 , . . . , x̃il−1

, x̃m)1
...

Ig(x̃i1 , . . . , x̃il−1
, x̃1)T . . . Ig(x̃i1 , . . . , x̃il−1

, x̃m)T





,

where the element in the tth row and jth column of this matrix is calculated as max{Ig(x̃i1 ,
. . . , x̃il−1

)t, I
g(x̃j)t} and the lth location included in the collection corresponds to the column

of this matrix with maximum average. Since the multi-location improvement is always at
least as high as the improvement at any subset of those locations, the same points will not be
chosen twice for inclusion. In practice, very few iterations (about 10% of the total candidate
size under the default inference and regression model(s)) through this ordering process can
be performed before the iteratively updated improvement statistics become essentially zero.
Increasing the number of MCMC iterations (BTE[2]-BTE[1]) can mitigate this to a large
extent.2 We refer the reader to [36] for further details on this approach to multi-location
improvement search.

3.1 A simple example

We shall use the Rosenbrock function to illustrate the production of an ordered collection of
(possible) adaptive samples to maximize the expected improvement within tgp. Specifically,
the two dimensional Rosenbrock function is defined as

> rosenbrock <- function(x){

+ x <- matrix(x, ncol=2)

+ 100*(x[,1]^2 - x[,2])^2 + (x[,1] - 1)^2

+ }

2Once a zero (maximal) iterative improvement is attained the rest of the ranking is essentially arbitrary,
at which point tgp cuts off the process prematurely.

22

and we shall bound the search space for adaptive samples to the rectangle: −1 ≤ xi ≤ 5 for
i = 1, 2. The single global minimum of the Rosenbrock function is at (1, 1).

> rosenbrock(c(1,1))

[1] 0

This function involves a long steep valley with a gradually sloping floor, and is considered
to be a difficult problem for local optimization routines.

We begin by drawing an LHS of 40 input locations within the bounding rectangle, and
evaluating the function at these locations.

> rect <- cbind(c(-1,-1),c(5,5))

> X <- lhs(40, rect)

> Z <- rosenbrock(X)

We will fit a bgp model to this data to predict the Rosenbrock response at unobserved
(candidate) input locations in XX. The improv argument may be used to obtain an or-
dered list of places where we should be looking for new minima. In particular, specifying
improv=c(1,10) will return the 10 locations which maximize the iterative multi-location
expected improvement function, with g = 1 (i.e., Eq. (6)). Note that improv=TRUE is also
possible, in which case g defaults to one and the entire list of locations is ranked. Our can-
didate set is just a space filling LHS design. In other situations, it may be useful to build an
informative LHS design (i.e., to specify shape and mode arguments for the lhs function) to
reflect what is already known about the location of optima.

> XX <- lhs(200, rect)

> rfit <- bgp(X,Z,XX,improv=c(1,10), verb=0)

Upon return, the "tgp"-class object rfit includes the matrix improv, which is a list of the
expected single location improvement for the 200 XX locations, and the top 10 ranks. Note
that the ranks for those points which are not included in the top 10 are set to nrow(XX)=200.
Here are the top 10:

> cbind(rfit$improv,XX)[rfit$improv$rank <= 10,]

improv rank 1 2

56 0.0003666608 3 0.57827513 0.39676242

64 0.0002693482 9 -0.39138946 0.19692999

77 0.0003094006 5 -0.02660146 -0.13137966

91 0.0003679809 2 2.01783426 3.77469298

112 0.0003385054 4 0.64276979 0.61760304

120 0.0003019632 6 2.16432006 4.68671341

123 0.0004334380 1 1.75291437 2.97385847

135 0.0003002970 8 0.01148077 -0.01297364

156 0.0002681629 10 0.07516381 -0.28489770

191 0.0003030534 7 0.19992901 -0.12483620

23

This iterative algorithm may produce ranks that differ significantly from a straightforward
ordering of expected improvement. This leads to a list that better explores the input space,
since the expected improvement is naturally balanced against a desire to search the domain.

We plot the results with the usual function, by setting as="improv", in Figure 12. The

> plot(rfit, as="improv")

x1

x2

z

 z mean

0 1 2 3 4

0
1

2
3

4

 z Improv stats (g=1)

x1

x
2

3
9

5

2

4

6

1

8
10

7

Figure 12: The left panel shows the mean predicted Rosenbrock function response, and on
the right we have expected single location improvement with the top 10 points (labelled by
rank) plotted on top.

banana–shaped region of higher expected improvement corresponds to the true valley floor
for the Rosenbrock function, indicating the that bgp model is doing a good job of prediction.
Also, we note that the ordered input points are well dispersed throughout the valley—a very
desirable property for adaptive sampling candidates.

It is straightforward, with predict.tgp, to obtain a new ordering for the more global
g=5 (or any new g). Figure 13 shows a more diffuse expected improvement surface and a
substantially different point ordering. In practice, we have found that g=2 provides a good
compromise between local and global search.

3.2 A skeleton optimization scheme

The capabilities outlined above are useful in their own right, as a search list or candidate set
ranked by expected improvement gain provides concrete information about potential optima.
However, a full optimization framework requires that the production of these sets of search

24

> rfit2 <- predict(rfit, XX=XX, BTE=c(1,1000,1), improv=c(5,20), verb=0)

> plot(rfit2, layout="as", as="improv")

0 1 2 3 4

0
1

2
3

4

 z Improv stats (g=5)

x1

x
2

14

12

20

13

5

108

1

16

7

2

15

4

3

9

17
11

6

18

19

Figure 13: The expected improvement surface and top 20 ordered locations, for g=5.

locations are nested within an iterative search scheme. The approach taken by Taddy, et
al. [36], achieves this by taking the tgp generated sets of locations and using them to augment
a local optimization search algorithm. In this way, the authors are able to achieve robust
solutions which balance the convergence properties of the local methods with the global scope
provided by tgp. Indeed, any optimization routine capable of evaluating points provided by
an outside source could benefit from a tgp generated list of search locations.

In the absence of this sort of formal hybrid search algorithm, it is still possible to devise
robust optimization algorithms based around tgp. A basic algorithm is as follows: first, use
a LHS to explore the input space (see the lhs function included in tgp). Repeatedly fit one
of the b* models with improv!=FALSE to the evaluated iterates to produce a search set, then
evaluate the objective function over this search set, as described earlier. Then evaluate the
objective function over the highest ranked locations in the search set. Continue until you
are confident that the search has narrowed to a neighborhood around the true optimum (a
good indicator of this is when all of the top-ranked points are in the same area). At this
point, the optimization may be completed by optim, R’s general purpose local optimization
algorithm in order to guarentee convergence. The optim routine may be initialized to the
best input location (i.e. corresponding the most optimal function evaluation) found thus far
by tgp.

Note that this approach is actually an extreme version of a template proposed by Taddy,

25

et al. [36], where the influence of global (i.e. tgp) search is downweighted over time rather
than cut off. In either case, a drawback to such approaches is that they do not apply when
the function being optimized is deterministic. An alternative scheme is to employ both
tgp search and a local optimization at each iteration. The idea is that a mix of local and
global information is provided throughout the entire optimization, but with an added twist.
Rather than apply optim on the stochastic function directly, which would not converge due
to the noise, it can be applied on a deterministic (MAP) kriging surface provided by tgp.
The local optima obtained can be used to augment the candidate set of locations where
the improvement statistic is gathered—which would otherwise be simple LHS. That way the
search pattern produced on output is likely to have a candidate with high improvement.

To fix ideas, and for the sake of demonstration, the tgp package includes a skeleton
function for performing a single iteration in the derivative–free optimization of noisy black–
box functions. The function is called optim.step.tgp, and the name is intended to em-
phasize that it performs a single step in an optimization by trading off local optim–based
search of tgp predictive (kriging surrogate) surfaces, with the expected posterior improve-
ment. In other words, it is loosely based on some the techniques alluded to above, but
is designed to be augmented/adjusted as needed. Given N pairs of inputs and responses
(X,Z), optim.step.tgp suggests new points at which the function being optimized should
be evaluated. It also returns information that can be used to assess convergence. An outline
follows.

The optim.step.tgp function begins by constructing a set of candidate locations, either
as a space filling LHS over the input space (the default) or from a treed D–optimal design,
based on a previously obtained "tgp"-class model. R’s optim command is used on the
MAP predictive surface contained within the object to obtain an estimate of the current
best guess x-location of the optimal solution. A standalone subroutine called optim.ptgpf

is provided for this specific task, to be used within optim.step.tgp or otherwise. Within
optim.step.tgp, optim.ptgpf is initialized with the data location currently predicted to
be the best guess of the minimum. The optimal x-location found is then added into the set
of candidates as it is likely that the expected improvement would be high there.

Then, a new "tgp"-class object is obtained by applying a b* function to (X,Z) whilst
sampling from the posterior distribution of the improvement statistic. The best one, two, or
several locations with highest improvement ranks are suggested for addition into the design.
The values of the maximum improvement statistic are also returned in order to track progress
in future iterations. The "tgp"-class object returned is used to construct candidates and
initialize the optim.ptgpf function in future rounds.

To illustrate, consider the 2-d exponential data from the initial vignette [11] as our noisy
function f .

> f <- function(x) { exp2d.Z(x)$Z }

Recall that this data is characterized by a mean value of

f(x) = x1 exp(−x2
1 − x2

2)

26

which is observed with a small amount of Gaussian noise (with sd = 0.001). Elementary
calculus gives that the minimum of f is obtained at x = (−

√
1/2, 0).

The optim.step.tgp function requires that the search domain be defined by a bounding
rectangle, and we require an initial design to start things off. Here we shall use [−2, 6]2 with
an LHS design therein.

> rect <- rbind(c(-2,6), c(-2,6))

> X <- lhs(20, rect)

> Z <- f(X)

The following code proceeds with several rounds of sequential design towards finding the
minimum of f.

> out <- progress <- NULL

> for(i in 1:20) {

+

+ ## get recommendations for the next point to sample

+ out <- optim.step.tgp(f, X=X, Z=Z, rect=rect, prev=out, verb=0)

+

+ ## add in the inputs, and newly sampled outputs

+ X <- rbind(X, out$X)

+ Z <- c(Z, f(out$X))

+

+ ## keep track of progress and best optimum

+ progress <- rbind(progress, out$progress)

+ }

The progress can be tracked through the rows of a data.frame, as constructed above,
containing a listing of the input location of the current best guess of the minimum for each
round, together with the value of the objective at that point, as well as the maximum of the
improvement statistic. In addition to printing this data to the screen, plots such as the ones
in Figure 14 can be valuable for assessing convergence. As can be seen in the figure, the
final iteration gives an x-value that is very close to the correct result, and is (in some loose
sense) close to convergence.

> out$progress[1:2]

x1 x2

1 -0.7075544 0.006562706

As mentioned above, if it is known that the function evaluations are deterministic then,
at any time, R’s optim routine can be invoked—perhaps initialized by the x-location in
out$progress—and convergence to a local optimum thus guaranteed. Otherwise, the quan-
tities in out$progress will converge, in some sense, as long as the number of MCMC rounds
used in each round, above, (T = BTE[2]-BTE[1]) tends to infinity. Such arguments to the

27

> par(mfrow=c(1,2))

> matplot(progress[,1:2], main="x progress",

+ xlab="rounds", ylab="x[,1:2]", type="l", lwd=2)

> legend("topright", c("x1", "x2"), lwd=2, col=1:2, lty=1:2)

> plot(log(progress$improv), type="l", main="max log improv",

+ xlab="rounds", ylab="max log(improv)")

5 10 15 20

−
2
.0

−
1
.5

−
1
.0

−
0
.5

0
.0

0
.5

1
.0

x progress

rounds

x
[,
1
:2

]

x1

x2

5 10 15 20

−
9

−
8

−
7

−
6

−
5

−
4

max log improv

rounds

m
a
x
 l
o
g
(i
m

p
ro

v
)

Figure 14: Progress in iterations of optim.step.tgp shown by tracking the x–locations of
the best guess of the minimum (left) and the logarithm of the maximum of the improvement
statistics at the candidate locations (right)

b* functions can be set via the ellipses (...) arguments to optim.step.tgp.3 A heuristic
stopping criterion can be based on the maximum improvement statistic obtained in each
round as long as the candidate locations become dense in the region as T → ∞. This can
be adjusted by increasing the NN argument to optim.step.tgp.

The internal use of optim within optim.step.tgp on the posterior predictive (kriging
surrogate) surface via optim.ptgpf may proceed with any of the usual method arguments.
I.e.,

> formals(optim)$method

c("Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN", "Brent")

however the default ordering is switched in optim.ptgpf and includes one extra method.

3This runs contrary to how the ellipses are used by optim in order to specify static arguments to f.
If setting static arguments to f is required within optim.step.tgp, then they must be set in advance by
adjusting the default arguments via formals.

28

> formals(optim.ptgpf)$method

c("L-BFGS-B", "Nelder-Mead", "BFGS", "CG", "SANN", "optimize")

Placing "L-BFGS-B" in the default position is sensible since this method enforces a rectangle
of constraints as specified by rect. This guarentees that the additional candidate found by
optim.ptfpf will be valid. However, the other optim methods generally work well despite
that they do not enforce this constraint. The final method, "optimize", applies only when
the inputs to f are 1-d. In this case, the documentation for optim suggests using the
optimize function instead.

4 Importance tempering

It is well–known that MCMC inference in Bayesian treed methods suffers from poor mix-
ing. For example, Chipman et al. [2, 3] recommend periodically restarting the MCMC to
avoid chains becoming stuck in local modes of the posterior distribution (particularly in tree
space). The treed GP models are or no exception, although it is worth remarking that using
flexible GP models at the leaves of the tree typically results in shallower trees, and thus less
pathalogical mixing in tree space. Version 1.x provided some crude tools to help mitigate
the effects of poor mixing in tree space. For example, the R argument to the b* functions
facilitates the restarts suggested by Chipman et al.

A modern Monte Carlo technique for dealing with poor mixing in Markov chain methods
is to employ tempering to flatten the peaks and raise the troughs in the posterior distribution
so that movements between modes is more fluid. One such method, called simulated temper-
ing (ST) [9], is essentially the MCMC analogue of the popular simulated annealing algorithm
for optimization. The ST algorithm helps obtain samples from a multimodal density π(θ)
where standard methods, such as Metropolis–Hastings (MH) [20, 13] and Gibbs Sampling
(GS) [7], fail.

As will be shown in our examples, ST can guard against becoming stuck in local modes
of the tgp posterior by encouraging better mixing between modes via in increase in the
acceptance rate of tree modification proposals, particularly prunes. However, as we will see,
ST suffers from inefficiency because it discards the lions share of the samples it collects. The
discarded samples can be recycled if they are given appropriate importance sampling (IS)
[18] weights. These weights, if combined carefully, can be used to construct meta-estimators
of expectations under the tgp posterior that have much lower variance compared to ST alone.
This combined application of ST and IT is dubbed importance tempering [12].

4.1 Simulated Tempering and related methods

ST is an application of the MH algorithm on the product space of parameters and inverse tem-
peratures k ∈ [0, 1]. That is, ST uses MH to sample from the joint chain π(θ, k) ∝ π(θ)kp(k).
The inverse temperature is allowed to take on a discrete set of values k ∈ {k1, . . . , km : k1 =
1, ki > ki+1 ≥ 0}, called the temperature ladder. Typically, ST calls for sampling (θ, k)(t+1)

29

by first updating θ(t+1) conditional on k(t) and (possibly) on θ(t), using MH or GS. Then,
for a proposed k′ ∼ q(k(t) → k′), usually giving equal probability to the nearest inverse
temperatures greater and less than k(t), an acceptance ratio is calculated:

A(t+1) =
π(θ(t+1))k

′

p(k′)q(k′ → k(t))

π(θ(t+1))k(t)p(k(t))q(k(t) → k′)
.

Finally, k(t+1) is determined according to the MH accept/reject rule: set k(t+1) = k′ with
probability α(t+1) = min{1, A(t+1)}, or k(t+1) = k(t) otherwise. Standard theory for MH and
GS gives that samples from the marginals πki can be obtained by collecting samples θ(t)

where k(t) = ki. Samples from π(θ) are obtained when k(t) = 1.
The success of ST depends crucially on the ability of the Markov chain frequently to: (a)

visit high temperatures (low k) where the probability of escaping local modes is increased;
(b) visit k = 1 to obtain samples from π. The algorithm can be tuned by: (i.) adjusting the
number and location of the rungs of the temperature ladder; or (ii.) setting the pseudo-prior
p(k) for the inverse temperature.

Geyer & Thompson [9] give ways of adjusting the spacing of the rungs of the ladder
so that the ST algorithm achieves between–temperature acceptance rates of 20–40%. More
recently, authors have preferred to rely on defaults, e.g.,

ki =

{
(1 + ∆k)

1−i geometric spacing
{1 + ∆k(i− 1)}−1 harmonic spacing

i = 1, . . . ,m. (7)

Motivation for such default spacings is outlined by Liu [18]. Geometric spacing, or uniform
spacing of log(ki), is also advocated by Neal [22, 23] to encourage the Markov chain to
rapidly traverse the breadth of the temperature ladder. Harmonic spacing is more often
used by a related method called Metropolis coupled Markov chain Monte Carlo (MC3) [8].
Both defaults are implemented in the tgp package, through the provided default.itemps

function. A new “sigmoidal” option is also implemented, as discussed below. The rate
parameter ∆k > 0 can be problem specific. Rather than work with ∆k the default.itemps

function allows the ladder to be specified via m and the hottest temperature km, thus fixing
∆k implicitly. I.e., for the geometric ladder ∆k = (km)

1/(1−m) − 1, and for the harmonic

ladder ∆k =
(km)−1−1

m−1
.

A sigmoidal ladder can provide a higher concentration of temperatures near k = 1 without
sacrificing the other nice properties of the geometric and harmonic ladders. It is specified
by first situating m indices ji ∈ R so that k1 = k(j1) = 1 and km = k(jm) = km under

k(ji) = 1.01−
1

1 + eji
.

The remaining ji, i = 2, . . . , (m − 1) are spaced evenly between j1 and jm to fill out the
ladder ki = k(ji), i = 1, . . . , (m− 1).

By way of comparison, consider generating the three different types of ladder with iden-
tical minimum inverse temperature km = 0.1, the default setting in tgp.

30

> geo <- default.itemps(type="geometric")

> har <- default.itemps(type="harmonic")

> sig <- default.itemps(type="sigmoidal")

The plots in Figure 15 show the resulting inverse temperature ladders, and their logarithms.
Observe how, relative to the geometric ladder, the harmonic ladder has a higher concentration
of inverse temperatures near zero, whereas the sigmoidal ladder has a higher concentration
near one.

Once a suitable ladder has been chosen, the tgp package implementation of ST follows
the suggestions of Geyer & Thompson [9] in setting the pseudo–prior, starting from a uniform
p0. First, p0 is adjusted by stochastic approximation: add c0/[m(t+n0)] to log p0(k) for each
ki ̸= k(t) and subtract c0/(t+ n0) from log p0(k

(t)) over t = 1, . . . , B burn–in MCMC rounds
sampling from the joint posterior of (θ, k). Then, p0 is normalized to obtain p1. Before sub-
sequent runs, specified via an R >= 2 argument, occupation numbers o(ki) =

∑B
t=1 1{k(t)=ki},

are used update p(ki) ∝ p1(ki)/o(ki). Note that, in this setting, the R argument is used to
update the pseudo–prior only, not to restart the Markov chain.

4.2 Importance sampling from tempered distributions

ST provides us with {(θ(t), k(t)) : t = 1, . . . , T}, where θ(t) is an observation from πk(t) .
It is convenient to write Ti = {t : k(t) = ki} for the index set of observations at the ith

temperature, and let Ti = |Ti|. Let the vector of observations at the ith temperature collect
in θi = (θi1, . . . , θiTi

), so that {θij}
Ti

j=1 ∼ πki . Each vector θi can be used to construct an IS
estimator of Eπ{h(θ)} by setting

ĥi =

∑Ti

j=1 wi(θij)h(θij)∑Ti

j=1 wi(θij)
≡

∑Ti

j=1 wijh(θij)

Wi

,

say. That is, rather than obtain one estimator from ST (at the cold temperature), we can
obtain m estimators (one at each temperature) via IS. The efficiency of each estimator,
i = 1, . . . ,m can be measured through its variance, but unfortunately this can be difficult
to calculate in general. As a result, the notion of effective sample size [18] (ESS) plays an
important role in the study of IS estimators. Denote the vector of IS weights at the ith

temperature as wi = wi(θi) = (wi(θi1), . . . , wi(θiTi
)), where wi(θ) = π(θ)/πki(θ). The ESS

of ĥi is defined by

ESS(wi) =
T

1 + cv2(wi)
, (8)

where cv(wi) is the coefficient of variation of the weights (in the ith temperature), given by

cv2(wi) =

∑T
t=1(w(θ

(t))− w̄)2

(T − 1)w̄2
, where w̄ = T−1

T∑

t=1

w(θ(t)).

In R:

31

> par(mfrow=c(2,1))

> all <- cbind(geok, hark, sig$k)

> matplot(all, pch=21:23,

+ main="inv-temp ladders", xlab="indx", ylab="itemp")

> legend("topright", pch=21:23,

+ c("geometric","harmonic","sigmoidal"), col=1:3)

> matplot(log(all), pch=21:23,

+ main="log(inv-temp) ladders", xlab="indx", ylab="itemp")

0 10 20 30 40

0
.2

0
.4

0
.6

0
.8

1
.0

inv−temp ladders

indx

ite
m

p

geometric

harmonic

sigmoidal

0 10 20 30 40

−
2
.0

−
1
.5

−
1
.0

−
0
.5

0
.0

log(inv−temp) ladders

indx

ite
m

p

Figure 15: Three different inverse temperature ladders, each with m = 40 temperatures
starting at k1 = 1 and ending at km = 0.1

32

> ESS <- function(w)

+ {

+ mw <- mean(w)

+ cv2 <- sum((w-mw)^2)/((length(w)-1)*mw^2)

+ ess <- length(w)/(1+cv2)

+ return(ess)

+ }

This should not be confused with the concept of effective sample size due to autocorrela-
tion [17] (due to serially correlated samples coming from a Markov chain as in MCMC) as
implemented by the effectiveSize function in the coda package [26] for R.

Before attempting to combine m IS estimators it is fruitful backtrack briefly to obtain
some perspective on the topic of applying IS with a single tempered proposal distribution.
Jennison [15] put this idea forward more than a decade ago, although the question of how
to choose the best temperature was neither posed or resolved. It is clear that larger k leads
to lower variance estimators (and larger ESS), but at the expense of poorer mixing in the
Markov chain. It can be shown that the optimal inverse temperature k∗ for IS, in the sense
of constructing a minimum variance estimator, may be significantly lower than one [12].
However, the variance of such an estimator will indeed become unbounded as k → 0, just
as ESS → 0. Needless to say, the choice of how to best pick the best temperatures (for ST
or IS) is still an open problem. But in the context of the family of tempered distributions
used by ST for mixing considerations, this means that the discarded samples obtained when
k(t) < 1 may actually lead to more efficient estimators than the ones saved from the cold
distribution. So ST is wastefull indeed.

However, when combining IS estimators from the multiple temperatures used in ST, the
deleterious effect of the high variance ones obtained at high temperature must be mitigated.
The possible strategies involved in developing such a meta-estimator comprise the importance
tempering (IT) family of methods. The idea is that small ESS will indicate high variance
IS estimators which should be relegated to having only a small influence on the overall
estimator.

4.3 An optimal way to combine IS estimators

It is natural to consider an overall meta-estimator of Eπ{h(θ)} defined by a convex combi-
nation:

ĥλ =
m∑

i=1

λiĥi, where 0 ≤ λi ≤

m∑

i=1

λi = 1. (9)

Unfortunately, if λ1, . . . , λm are not chosen carefully, Var(ĥλ), can be nearly as large as the
largest Var(ĥi) [25], due to the considerations alluded to in Section 4.2. Notice that ST is
recovered as a special case when λ1 = 1 and λ2, . . . , λm = 0. It may be tempting to choose

33

λi = Wi/W , where W =
∑m

i=1 Wi. The resulting estimator is equivalent to

ĥ = W−1

T∑

t=1

w(θ(t), k(t))h(θ(t)), where W =
T∑

t=1

w(θ(t), k(t)), (10)

and w(θ, k) = π(θ)/π(θ)k = π(θ)1−k. It can lead to a very poor estimator, even compared
to ST, as will be demonstrated empirically in the examples to follow shortly.

Observe that we can equivalently write

ĥλ =
m∑

i=1

Ti∑

j=1

wλ
ijh(θij), where wλ

ij = λiwij/Wi. (11)

Let wλ = (wλ
11, . . . , w

λ
1T1

, wλ
21, . . . , w

λ
2T2

, . . . , wλ
m1, . . . , w

λ
mTm

). Attempting to choose λ1, . . . , λm

to minimize Var(ĥλ) directly can be difficult. Moreover, for the applications that we have
in mind, it is important that our estimator can be constructed without knowledge of the
normalizing constants of πk1 , . . . , πkm , and without evaluating the MH transition kernels
Kπki

(·, ·). It is for this reason that methods like the balance heuristic [37], MCV [25], or pop-
ulation Monte Carlo (PMC) [5] cannot be applied. Instead, we seek maximize the effective
sample size of ĥλ in (9), and look for an O(T) operation to determine the optimal λ∗.

Among estimators of the form (9), it can be shown [12] that ESS(wλ) is maximized by
λ = λ∗, where, for i = 1, . . . ,m,

λ∗
i =

ℓi∑m
i=1 ℓi

, and ℓi =
W 2

i∑Ti

j=1 w
2
ij

.

The efficiency of each IS estimator ĥi can be measured through ESS(wi). Intuitively, we
hope that with a good choice of λ, the ESS (8) of ĥλ, would be close to the sum over i of
the effective sample sizes each of ĥi. This is indeed the case for ĥλ∗ , because it can be shown
[12] that

ESS(wλ∗

) ≥
m∑

i=1

ESS(wi)−
1

4
−

1

T
.

In practice we have found that this bound is conservative and that in fact ESS(wλ∗

) ≥∑m
i=1 ESS(wi), as will be shown empirically in the examples that follow. Thus our optimally–

combined IS estimator has a highly desirable and intuitive property in terms of its effective
sample size: that the whole is greater than the sum of its parts.

ESS(wλ∗

) depends on ESS(wi) which in turn depend on the ki. Smaller ki will lead
to better mixing in the Markov chain, but lower ESS(wi). Therefore, we can expect that
the geometric and sigmoidal ladders will fare better than the harmonic ones, so long as the
desired improvements in mixing are achieved. In the examples to follow, we shall see that
the sigmoidal ladder does indeed leader to higher ESS(wλ∗

).

34

4.4 Examples

Here the IT method is shown in action for tgp models. IT is controlled in b* functions
via the itemps argument: a data.frame coinciding with the output of the default.itemps

function. The lambda argument to default.itemps can be used to base posterior predictive
inference the other IT heuristics: ST and the naïve approach (10). Whenever the argument m
= 1 is used with k.min != 1 the resulting estimator is constructed via tempered importance
sampling at the single inverse temperature k.min, in the style of Jennison [15] as outlined
in Section 4.2. The parameters c0 and n0 for stochastic approximation of the pseudo–prior
can be specified as a 2–vector c0n0 argument to default.itemps. In the examples which
follow we simply use the default configuration of the IT method, adjusting only the minimum
inverse temperature via the k.min argument.

Before delving into more involved examples, we illustrate the stages involved in a small
run of importance tempering (IT) on the exponential data from Section 3.3 of [11]. The data
can be obtained as:

> exp2d.data<-exp2d.rand()

> X<-exp2d.data$X

> Z<-exp2d.data$Z

Now, consider applying IT to the Bayesian treed LM with a small geometric ladder. A
warning will be given if the default setting of bprior="bflat" is used, as this (numerically)
improper prior can lead to improper posterior inference at high temperatures.

> its <- default.itemps(m=10)

> exp.btlm <- btlm(X=X,Z=Z, bprior="b0", R=2, itemps=its, pred.n=FALSE,

+ BTE=c(1000,3000,2))

burn in: [with stoch approx (c0,n0)=(100,1000)]

GROW @depth 0: [2,0.45], n=(57,23)

GROW @depth 1: [2,0.1], n=(16,30)

PRUNE @depth 1: [2,0.1]

GROW @depth 1: [1,0.45], n=(16,18)

CPRUNE @depth 0: var=2, val=0.4->0.45, n=(57,23)

GROW @depth 1: [1,0.5], n=(46,11)

r=1000 d=[0] [0] [0]; n=(46,11,23) k=0.129155

PRUNE @depth 1: [1,0.5]

PRUNE @depth 0: [2,0.5]

GROW @depth 0: [2,0.4], n=(46,34)

GROW @depth 1: [1,0.5], n=(46,11)

r=2000 d=[0] [0] [0]; n=(46,11,23) k=0.1

PRUNE @depth 1: [2,0.45]

GROW @depth 1: [2,0.45], n=(46,13)

r=3000 d=[0] [0] [0]; n=(46,14,20) k=0.359381

35

Sampling @ nn=0 pred locs:

GROW @depth 2: [1,0.2], n=(21,25)

PRUNE @depth 2: [1,0.2]

PRUNE @depth 1: [1,0.5]

GROW @depth 1: [1,0.5], n=(50,12)

r=1000 d=[0] [0] [0]; mh=4 n=(46,11,23) k=0.1

PRUNE @depth 1: [1,0.5]

GROW @depth 1: [1,0.45], n=(41,16)

r=2000 d=[0] [0] [0]; mh=4 n=(46,11,23) k=0.464159

Grow: 4.348%, Prune: 2.917%, Change: 30.74%, Swap: 39.05%

finished repetition 1 of 2

burn in:

r=1000 d=[0] [0] [0]; mh=4 n=(46,14,20) k=0.464159

Sampling @ nn=0 pred locs:

GROW @depth 2: [1,0.25], n=(26,20)

PRUNE @depth 2: [1,0.25]

r=1000 d=[0] [0] [0]; mh=4 n=(46,11,23) k=0.774264

PRUNE @depth 1: [1,0.5]

GROW @depth 1: [1,0.5], n=(46,11)

PRUNE @depth 1: [1,0.5]

r=2000 d=[0] [0]; mh=4 n=(57,23) k=0.129155

Grow: 3.03%, Prune: 2.591%, Change: 30.32%, Swap: 42.42%

finished repetition 2 of 2

effective sample sizes:

0: itemp=1, len=218, ess=218

1: itemp=0.774264, len=236, ess=39.9928

2: itemp=0.599484, len=258, ess=15.94

3: itemp=0.464159, len=228, ess=1.17103

4: itemp=0.359381, len=116, ess=1.01731

5: itemp=0.278256, len=126, ess=1.07575

6: itemp=0.215443, len=146, ess=2.25592

7: itemp=0.16681, len=188, ess=1.98526

8: itemp=0.129155, len=254, ess=1.18215

9: itemp=0.1, len=230, ess=1.0325

total: len=2000, ess.sum=283.653, ess(w)=283.788

lambda-combined ess=283.788

Notice how the MCMC inference procedure starts with B + T = 4000 rounds of stochastic
approximation (initial adjustment of the pseudo–prior) in place of typical (default) the B =

36

1000 burn–in rounds. Then, the first round of sampling from the posterior commences, over
T = 2000 rounds, during which the observation counts in each temperature are tallied. The
progress meter shows the current temperature the chain is in, say k=0.629961, after each of
1000 sampling rounds. The first repeat starts with a pseudo–prior that has been adjusted by
the observation counts, which continue to be accumulated throughout the entire procedure
(i.e., they are never reset). Any subsequent repeats begin after a similar (re-)adjustment.

Before finishing, the routine summarizes the sample size and effective sample sizes in
each rung of the temperature ladder. The number of samples is given by len, and the ESS
by ess. These quantities can also be recovered via traces, as shown later. The ESS of
the optimal combined IT sample is the last quantity printed. This, along with the ESS and
total numbers of samples in each temperature, can also be obtained via the tgp-class output
object.

> exp.btlm$ess

$combined

[1] 283.7877

$each

k count ess

1 1.0000000 218 218.000000

2 0.7742637 236 39.992779

3 0.5994843 258 15.940002

4 0.4641589 228 1.171034

5 0.3593814 116 1.017310

6 0.2782559 126 1.075745

7 0.2154435 146 2.255923

8 0.1668101 188 1.985259

9 0.1291550 254 1.182148

10 0.1000000 230 1.032503

4.4.1 Motorcycle accident data

Recall the motorcycle accident data of Section 3.4 of the first tgp vignette [11]. Consider
using IT to sample from the posterior distribution of the treed GP LLM model using the
geometric temperature ladder.

> library(MASS)

> moto.it <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10),

+ bprior="b0", R=3, itemps=geo, trace=TRUE, pred.n=FALSE, verb=0)

Out of a total of 15600 samples from the joint chain, the resulting (optimally combined) ESS
was:

> moto.itesscombined

37

[1] 912.8193

Alternatively, wλ∗

can be extracted from the traces, and used to make the ESS calculation
directly.

> p <- moto.it$trace$post

> ESS(p$wlambda)

[1] 912.8193

The unadjusted weights w are also available from trace. We can see that the naïve choice
of λi = Wi/W , leading to the estimator in (10), has a clearly inferior effective sample size.

> ESS(p$w)

[1] 8.778233

To see the benefit of IT over ST we can simply count the number of samples obtained when
k(t) = 1. This can be accomplished in several ways: either via the traces or through the
output object.

> as.numeric(c(sum(p$itemp == 1), moto.it$ess$each[1,2:3]))

[1] 350 350 350

That is, (optimal) IT gives effectively 2.61 times more samples. The naïve combination,
leading to the estimator in (10), yields an estimator with an effective sample size that is 3%
of the number of samples obtained under ST.

Now, we should like to compare to the MCMC samples obtained under the same model,
without IT.

> moto.reg <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10),

+ R=3, bprior="b0", trace=TRUE, pred.n=FALSE, verb=0)

The easiest comparison to make is to look at the heights explored under the three chains: the
regular one, the chain of heights visited at all temperatures (combined), and those obtained
after applying IT via re-weighting under the optimal combination λ∗.

> L <- length(p$height)

> hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE))

> b <- hist2bar(cbind(moto.reg$trace$post$height, p$height, hw))

Figure 16 shows barplots indicating the count of the number of times the Markov chains were
in trees of various heights after burn–in. Notice how the tempered chain (denoted “All Temps”
in the figure) frequently visits trees of height one, whereas the non–tempered chain (denoted
“reg MCMC”) never does. The result is that the non–tempered chain underestimates the
probability of height two trees and produces a corresponding overestimate of height four

38

> barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts",

+ main="tree heights encountered")

> legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3)

1 2 3 4

tree heights encountered

tree height

c
o

u
n

ts

0
2

0
0

0
4

0
0

0
6

0
0

0
8

0
0

0
1

0
0

0
0

1
2

0
0

0

reg MCMC

All Temps

IT

Figure 16: Barplots indicating the counts of the number of times the Markov chains (for
regular MCMC, combining all temperatures in the inverse temperature ladder, and those
re-weighted via IT) were in trees of various heights for the motorcycle data.

trees—which are clearly not supported by the data—even visiting trees of height five. The
IT estimator appropriately down–weights height one trees and provides correspondingly more
realistic estimates of the probability of height two and four trees.

Whenever introducing another parameter into the model, like the inverse temperature k,
it is important to check that the marginal posterior chain for that parameter is mixing well.
For ST it is crucial that the chain makes rapid excursions between the cold temperature, the
hottest temperatures, and visits each temperature roughly the same number of times.

Figure 17 shows a trace of the posterior samples for k in the motorcycle experiment.
Arguably, the mixing in k–space leaves something to be desired. Since it can be very difficult
to tune the pseudo–prior and MH proposal mechanism to get good mixing in k–space, it is
fortunate that the IT methodology does not rely on the same mixing properties as ST does.
Since samples can be obtained from the posterior distribution of the parameters of interest by
re-weighting samples obtained when k < 1 it is only important that the chain frequently visit
low temperatures to obtain good sampling, and high temperatures to obtain good mixing.
The actual time spent in specific temperatures, i.e., k = 1 is less important. Figure 18 shows
the histogram of the inverse temperatures visited in the Markov chain for the motorcycle
experiment. Also plotted is a histogram of the observation counts in each temperature. The
two histograms should have similar shape but different totals. Observation counts are tallied

39

> plot(log(moto.it$trace$post$itemp), type="l", ylab="log(k)", xlab="samples",

+ main="trace of log(k)")

0 5000 10000 15000

−
2

.0
−

1
.5

−
1

.0
−

0
.5

0
.0

trace of log(k)

samples

lo
g

(k
)

Figure 17: A trace of the MCMC samples from the marginal posterior distribution of the
inverse temperature parameter, k, in the motorcycle experiment

during every MCMC sample after burn–in, whereas the posterior samples of k are thinned
(at a rate specified in BTE[3]). When the default trace=FALSE argument is used only the
observation counts will be available in the tgp–class object, and these can be used as a
surrogate for a trace of k.

The compromise IT approach obtained using the sigmoidal ladder can yield an increase
in ESS.

> moto.it.sig <- btgpllm(X=mcycle[,1], Z=mcycle[,2], BTE=c(2000,52000,10),

+ R=3, bprior="b0", krige=FALSE, itemps=sig, verb=0)

Compare the resulting ESS to the one given for the geometric ladder above.

> moto.it.sigesscombined

[1] 5021.38

Plots of the resulting predictive surface is shown in Figure 19 for comparison with those
in Section 1.1 of the first tgp vignette [11]. In particular, observe that the transition from
the middle region to the right one is much less stark in this tempered version than than in
the original—which very likely spent a disproportionate amount of time stuck in a posterior
mode with trees of depth three or greater.

40

> b <- itemps.barplot(moto.it, plot.it=FALSE)

> barplot(t(cbind(moto.it$itemps$counts, b)), col=1:2,

+ beside=TRUE, ylab="counts", xlab="itemps",

+ main="inv-temp observation counts")

> legend("topleft", c("observation counts", "posterior samples"), fill=1:2)

1 0.889 0.744 0.624 0.522 0.438 0.367 0.307 0.257 0.215 0.18 0.151 0.127 0.106

inv−temp observation counts

itemps

c
o

u
n

ts

0
2

0
0

4
0

0
6

0
0

8
0

0
1

0
0

0

observation counts

posterior samples

Figure 18: Comparing (thinned) samples from the posterior distribution for the inverse
temperature parameter, k, (posterior samples), to the observation counts used to update the
pseudo–prior, in the motorcycle experiment

> plot(moto.it.sig)

10 20 30 40 50

−
1

0
0

−
5

0
0

5
0

 z mean

x1

z

10 20 30 40 50

2
0

4
0

6
0

8
0

 quantile diff (error)

x1

q
u

a
n

ti
le

 d
if
f

(e
rr

o
r)

Figure 19: Posterior predictive surface for the motorcycle data, with 90% quantile errorbars,
obtained under IT with the sigmoidal ladder.

41

4.4.2 Synthetic 2–d Exponential Data

Recall the synthetic 2–d exponential data of Section 3.4 of the tgp vignette [11], where the
true response is given by

z(x) = x1 exp(−x2
1 − x2

2).

Here, we will take x ∈ [−6, 6]× [−6, 6] with a D–optimal design

> Xcand <- lhs(10000, rbind(c(-6,6),c(-6,6)))

> X <- dopt.gp(400, X=NULL, Xcand)$XX

> Z <- exp2d.Z(X)$Z

Consider a treed GP LLM model fit to this data using the standard MCMC.

> exp.reg <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0",

+ trace=TRUE, krige=FALSE, R=10, verb=0)

> plot(exp.reg)

x1

x2

z

 z mean

−4 −2 0 2 4

−
4

−
2

0
2

4
 z quantile diff (error)

x1

x
2

Figure 20: Posterior predictive surface for the 2–d exponential data: mean surface (left) and
90% quantile difference (right)

Figure 20 shows the resulting posterior predictive surface. The maximum a’ posteriori
(MAP) tree is drawn over the error surface in the right–hand plot. The height of this
tree can be obtained from the tgp-class object.

> h <- exp.reg$post$height[which.max(exp.reg$posts$lpost)]

> h

[1] 7

42

> tgp.trees(exp.reg, "map")

x1 <> −1.95142

x2 <> 3.29397

x2 <> −0.631807

0
59 obs

1 x1 <> −4.07743

0
20 obs

2 x2 <> 1.53854

0
11 obs

3

0
12 obs

4

0
33 obs

5

x2 <> 2.82812

x1 <> 2.4842

x2 <> 1.19394

x2 <> −1.6527

x2 <> −3.06511

0
35 obs

6

0
15 obs

7

0.0378
34 obs

8

1e−04
17 obs

9

0
90 obs

10

0
74 obs

11

 height=7, log(p)=2276.26

Figure 21: Diagrammatic depiction of the maximum a’ posteriori (MAP) tree for the 2–d
exponential data under standard MCMC sampling

It is easy to see that many fewer partitions are actually necessary to separate the interesting,
central, region from the surrounding flat region. Figure 21 shows a diagrammatic represen-
tation of the MAP tree. Given the apparent over–partitioning in this height 7 tree it would
be surprising to find much posterior support for trees of greater height. One might indeed
suspect that there are trees with fewer partitions which would have higher posterior prob-
ability, and thus guess that the Markov chain for the trees plotted in these figures possibly
became stuck in a local mode of tree space while on an excursion into deeper trees.

Now consider using IT. It will be important in this case to have a km small enough to
ensure that the tree occasionally prunes back to the root. We shall therefore use a smaller
km. Generally speaking, some pilot tuning may be necessary to choose an appropriate km

and number of rungs m, although the defaults should give adequate performance in most
cases.

> its <- default.itemps(k.min=0.02)

> exp.it <- btgpllm(X=X, Z=Z, BTE=c(2000,52000,10), bprior="b0",

+ trace=TRUE, krige=FALSE, itemps=its, R=10, verb=0)

As expected, the tempered chain moves more rapidly throughout tree space by accepting
more tree proposals. The acceptance rates of tree operations can be accessed from the
tgp–class object.

> exp.it$gpcs

grow prune change swap

1 0.07517816 0.07436648 0.834322 0.6006113

43

> exp.reg$gpcs

grow prune change swap

1 0.01084365 0.008600469 0.6613878 0.4896883

The increased rate of prune operations explains how the tempered distributions helped the
chain escape the local modes of deep trees.

We can quickly compare the effective sample sizes of the three possible estimators: ST,
naïve IT, and optimal IT.

> p <- exp.it$trace$post

> data.frame(ST=sum(p$itemp == 1), nIT=ESS(p$w), oIT=exp.itesscombined)

ST nIT oIT

1 1754 359.8958 1994.479

Due to the thinning in the Markov chain (BTE[3] = 10) and the traversal between m = 10
temperatures in the ladder, we can be reasonably certain that the 1994 samples obtained via
IT from the total of 50000 samples obtained from the posterior are far less correlated than
the ones obtained via standard MCMC.

As with the motorcycle data, we can compare the tree heights visited by the two chains.

> L <- length(p$height)

> hw <- suppressWarnings(sample(p$height, L, prob=p$wlambda, replace=TRUE))

> b <- hist2bar(cbind(exp.reg$trace$post$height, p$height, hw))

Figure 22 shows a barplot of b, which illustrates that the tempered chain frequently visited
shallow trees. IT with the optimal weights shows that the standard MCMC chain missed
many trees of height three and four with considerable posterior support.

To more directly compare the mixing in tree space between the ST and tempered chains,
consider the trace plots of the heights of the trees explored by the chains shown in Figure
23. Despite being restarted 10 times, the regular MCMC chain (almost) never visits trees of
height less than five after burn–in and instead makes rather lengthy excursions into deeper
trees, exploring a local mode in the posterior. In contrast, the tempered chain frequently
prunes back to the tree root, and consequently discovers posterior modes in tree heights
three and four.

To conclude, a plot of the posterior predictive surface is given in Figure 24, where the
MAP tree is shown both graphically and diagrammatically.

Acknowledgments

This work was partially supported by research subaward 08008-002-011-000 from the Univer-
sities Space Research Association and NASA, NASA/University Affiliated Research Center
grant SC 2003028 NAS2-03144, Sandia National Laboratories grant 496420, National Sci-
ence Foundation grants DMS 0233710 and 0504851, and Engineering and Physical Sciences

44

> barplot(b, beside=TRUE, col=1:3, xlab="tree height", ylab="counts",

+ main="tree heights encountered")

> legend("topright", c("reg MCMC", "All Temps", "IT"), fill=1:3)

1 2 3 4 5 6 7 8

tree heights encountered

tree height

c
o

u
n

ts

0
5

0
0

0
1

0
0

0
0

1
5

0
0

0
2

0
0

0
0

2
5

0
0

0
3

0
0

0
0

reg MCMC

All Temps

IT

Figure 22: Barplots indicating the counts of the number of times the Markov chains (for
regular MCMC, combining all temperatures in the inverse temperature ladder, and those
re-weighted via IT) were in trees of various heights for the 2–d exponential data.

Research Council Grant EP/D065704/1. The authors would like to thank their Ph.D. ad-
visor, Herbie Lee, whose contributions and guidance in this project have been invaluable
throughout. Finally, we would like to thank two anonymous referees whose many helpful
comments improved the paper.

References

[1] L. Breiman, J. H. Friedman, R. Olshen, and C. Stone. Classification and Regression
Trees. Wadsworth, Belmont, CA, 1984.

[2] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian CART model search
(with discussion). Journal of the American Statistical Association, 93:935–960, 1998.

[3] H. A. Chipman, E. I. George, and R. E. McCulloch. Bayesian treed models. Machine
Learning, 48:303–324, 2002.

[4] S. Da Veiga, F. Wahl, and F. Gamboa. Local polynomial estimation for sensitivity
analysis on models with correlated inputs. Technometrics, 51:452–463, 2009.

45

> ylim <- range(p$height, exp.reg$trace$post$height)

> plot(p$height, type="l", main="trace of tree heights",

+ xlab="t", ylab="height", ylim=ylim)

> lines(exp.reg$trace$post$height, col=2)

> legend("topright", c("tempered", "reg MCMC"), lty=c(1,1), col=1:2)

0 10000 20000 30000 40000 50000

1
2

3
4

5
6

7
8

trace of tree heights

t

h
e

ig
h

t

tempered

reg MCMC

Figure 23: Traces of the tree heights obtained under the two Markov chains (for regular
MCMC, combining all temperatures in the inverse temperature ladder) on the 2–d exponen-
tial data.

[5] R. Douc, A. Guillin, J.-M. Marin, and C.P. Robert. Minimum variance importance
sampling via population monte carlo. Technical report, CEREMADE, Université Paris
Dauphine, and CREST, INSEE, Paris, 2007.

[6] J. H. Friedman. Multivariate adaptive regression splines. Annals of Statistics, 19, No.
1:1–67, March 1991.

[7] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,
6:721–741, 1984.

[8] C.J. Geyer. Markov chain Monte Carlo maximum likelihood. In Computing Science and
Statistics: Proceedings of the 23rd Symposium on the Interface, pages 156–163, 1991.

[9] C.J. Geyer and E.A. Thompson. Annealing Markov chain Monte Carlo with applications
to ancenstral inference. Journal of the American Statistical Association, 90:909–920,
1995.

46

> plot(exp.it)

> tgp.trees(exp.it, "map")

x1

x2

z

 z mean

−4 −2 0 2 4
−

4
−

2
0

2
4

 z quantile diff (error)

x1

x
2

x2 <> −2.11734

0
132 obs

1 x2 <> 2.22547

x1 <> 2.25553

x2 <> 1.77984

x1 <> −2.50142

0
34 obs

2

0.0115
47 obs

3

0
11 obs

4

0
43 obs

5

0
133 obs

6

 height=6, log(p)=2088.54

Figure 24: 2–d exponential data fit with IT. Top: Posterior predictive mean surface for the
2d–exponential, with the MAP tree overlayed. Bottom: diagrammatic representation of the
MAP tree.

[10] David Ginsbourger, Rodolphe Le Riche, and Laurent Carraro. A multi-points criterion
for deterministic parallel global optimization based on Gaussian processes. HAL: hal-
00260579, 2009.

47

[11] Robert B. Gramacy. tgp: An R package for Bayesian nonstationary, semiparametric
nonlinear regression and design by treed gaussian process models. Journal of Statistical
Software, 19(9), 6 2007.

[12] Robert B. Gramacy, Richard J. Samworth, and Ruth King. Importance tempering.
Technical Report 0707.4242, ArXiv, 2009. to appear in Statistics and Computing.

[13] W.K. Hastings. Monte Carlo sampling methods using Markov chains and their appli-
cations. Biometrika, 57:97–109, 1970.

[14] T. Homma and A. Saltelli. Importance measures in global sensitivity analysis of non-
linear models. Reliability engineering and system safety, 52:1–17, 1996.

[15] C. Jennison. Discussion on the meeting on the gibbs sampler and other Markov chain
Monte Carlo methods. Journal of the Royal Statistical Society, Series B, 55:54–56, 1993.

[16] D.R. Jones, M. Schonlau, and W.J Welch. Efficient global optimization of expensive
black-box functions. Journal of Global Optimization, 13:455–492, 1998.

[17] Robert E. Kass, Bradley P. Carlin, Andrew Gelman, and Radford M. Neal. Markov
chain monte carlo in practice: A roundtable discussion. The American Statistician,
52(2):93–100, May 1998.

[18] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New York, 2001.

[19] A. Marrel, B. Iooss, B. Laurent, and O. Roustant. Calculations of sobol indices for
the gaussian process metamodel. Reliability Engineering & System Safety, 94:742–751,
2009.

[20] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and R. Teller. Equa-
tions of state calculations by fast computing machine. Journal of Chemical Physics,
21:1087–1091, 1953.

[21] R. D. Morris, A. Kottas, M. Taddy, R. Furfaro, and B. Ganapol. A statistical frame-
work for the sensitivity analysis of radiative transfer models. IEEE Transactions on
Geoscience and Remote Sensing, To appear.

[22] Radford M. Neal. Sampling from multimodal distributions using tempered transition.
Statistics and Computing, 6:353–366, 1996.

[23] Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11:125–
129, 2001.

[24] J.E. Oakley and A. O’Hagan. Probabilistic sensitivity analysis of complex models: a
Bayesian approach. Journal of the Royal Statistical Society Series B, 66:751–769, 2004.

[25] Art Owen and Yi Zhou. Safe and effective importance sampling. Journal of the American
Statstical Association, 95(449):135–143, March 2000.

48

[26] Martyn Plummer, Nicky Best, Kate Cowles, and Karen Vines. coda: Output analysis
and diagnostics for MCMC, 2008. R package version 0.13-3.

[27] Z.G. Qian, H. Wu, and C.F.J. Wu. Gaussian process models for computer experiments
with qualitative and quantitative factors. Technometrics, 50:383–396, 2009.

[28] Rommel G. Regis and Christine A. Shoemaker. Improved strategies for radial basis
function methods for global optimization. J. of Global Optimization, 37(1):113–135,
2007.

[29] A. Saltelli, K. Chan, and E.M. Scott, editors. Sensitivity Analysis. John Wiley and
Sons, 2000.

[30] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana,
and S. Tarantola. Global Sensitivity Analysis: The Primer. John Wiley & Sons, 2008.

[31] A. Saltelli and S. Tarantola. On the relative importance of input factors in mathematical
models: safety assessment for nuclear waste disposal. Journal of the American Statistical
Association, 97:702–709, 2002.

[32] Andrea Saltelli. Making best use of model evaluations to compute sensitivity indices.
Computer Physics Communications, 145:280–297, 2002.

[33] M. Schonlau, D.R. Jones, and W.J. Welch. Global versus local search in constrained op-
timization of computer models. In New Developments and applications in experimental
design, number 34 in IMS Lecture Notes - Monograph Series, pages 11–25. IMS, 1998.

[34] Curtis B. Storlie and Jon C. Helton. Multiple predictor smoothing methods for sen-
sitivity analysis: Description of techniques. Reliability Engineering & System Safety,
93:28–54, 2008.

[35] Curtis B. Storlie, Laura P. Swiler, Jon C. Helton, and Cedric J. Sallaberry. Implemen-
tation and evaluation of nonparametric regression procedures for sensitivity analysis of
computationally demanding models. Reliability Engineering & System Safety, 94:1735–
1763, 2009.

[36] Matthew A. Taddy, Herbert K. H. Lee, Genetha A. Gray, and Joshua D. Griffin.
Bayesian guided pattern search for robust local optimization. Technometrics, 51:389–
401, 2009.

[37] Eric Veach and Leonidas J. Guibas. Optimally combining sampling techniques for monte
carlo rendering. In SIGGRAPH ’95 Conference Proceedings, pages 419–428, Reading,
MA, 1995. Addison–Wesley.

[38] W. J. Welch, R. J. Buck, J. Sacks, H. P. Wynn, T.J Mitchell, and M. D. Morris.
Screening, predicting, and computer experiment. Technometrics, 34:15–25, 1992.

49

