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Abstract

The tgp package for R [25] is a tool for fully Bayesian nonstationary,
semiparametric nonlinear regression and design by treed Gaussian pro-
cesses with jumps to the limiting linear model. Special cases also imple-
mented include Bayesian linear models, linear CART, stationary separable
and isotropic Gaussian processes. In addition to inference and posterior
prediction, the package supports the (sequential) design of experiments
under these models paired with several objective criteria. 1-d and 2-d
plotting, with higher dimension projection and slice capabilities, and tree
drawing functions (requiring maptree and combinat libraries), are also
provided for visualization of tgp-class output.

Intended audience

This document is intended to familiarize a (potential) user of tgp with the
models and analyses available in the package. After a brief overview, the bulk of
this document consists of examples on mainly synthetic and randomly generated
data which illustrate the various functions and methodologies implemented by
the package. This document has been authored in Sweave (try help(Sweave)).
This means that the code quoted throughout is certified by R, and the Stangle

command can be used to extract it.
Note that this tutorial was not meant to serve as an instruction manual.

For more detailed documentation of the functions contained in the package, see
the package help-manuals. At an R prompt, type help(package=tgp). PDF
documentation is also available on the world-wide-web.

http://www.cran.r-project.org/doc/packages/tgp.pdf
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The outline is as follows. Section 1 introduces the functions and associated
regression models implemented by the tgp package, including plotting and visu-
alization methods. The Bayesian mathematical specification of these models is
contained in Section 2. In Section 3 the functions and methods implemented in
the package are illustrated by example. The appendix covers miscellaneous top-
ics such as how to link with the ATLAS libraries for fast linear algebra routines,
compile–time support for Pthreads parallelization, the gathering of parame-
ter traces, the verbosity of screen output, and some miscellaneous details of
implementation.

Motivation

Consider as motivation the Motorcycle Accident Dataset [30]. It is a classic data
set used in recent literature [26] to demonstrate the success of nonstationary
regression models. The data consists of measurements of the acceleration of
the head of a motorcycle rider as a function of time in the first moments after
an impact. Many authors have commented on the existence of two—perhaps
three—regimes in the data over time where the characteristics of the mean
process and noise level change (i.e., a nonstationarity and heteroskedasticity,
respectively). It can be interesting to see how various candidate models handle
this nuance.

Figure 1 shows a fit of this data using a standard (stationary) Gaussian
process (GP; left), and the treed GP model (right).1 Notice how stationary
GP model is unable to capture the smoothness in the linear section(s), nor
the decreased noise level. We say that the standard GP model is stationary
because it has a single fixed parameterization throughout the input space. An
additive model would be inappropriate for similar reasons. In contrast, the
treed GP model is able to model the first linear part, the noisy “whiplash”
middle section, and the smooth (possibly linear) final part with higher noise
level, thus exhibiting nonstationary modeling behavior and demonstrating an
ability to cope with heteroskedasticity.

The remainder of this paper describes the treed GP model in detail, and
provides illustrations though example. There are many special cases of the
treed GP model, e.g., the linear model (LM), treed LM, stationary GP, etc..
These are outlined and demonstrated as well.

1 What is implemented?

The tgp package contains implementations of seven Bayesian multivariate re-
gression models and functions for visualizing posterior predictive surfaces. These
models, and the functions which implement them, are outlined in Section 1.1.
Also implemented in the package are functions which aid in the sequential de-
sign of experiments for tgp-class models, which is what I call adaptive sampling.

1Note that these plots are static, i.e., they were not generated in–line with R code. See
Section 3.4 for dynamic versions.
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Figure 1: Fit of the Motorcycle Accident Dataset using a GP (top) and treed GP model
(bottom). The x-axis is time in milliseconds after an impact; the y–axis is acceleration of the
helmet of a motorcycle rider measured in “g’s” in a simulated impact.

These functions are introduced at the end of Section 2 and a demonstration is
given in Section 3.6.

1.1 Bayesian regression models

The seven regression models implemented in the package are summarized in
Table 1. They include combinations of treed partition models, (limiting) linear
models, and Gaussian process models as indicated by T, LM/LLM, & GP in
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R function Ingredients Description
blm LM Linear Model
btlm T, LM Treed Linear Model
bcart T Treed Constant Model
bgp GP GP Regression
bgpllm GP, LLM GP with jumps to the LLM
btgp T, GP treed GP Regression
btgpllm T, GP, LLM treed GP with jumps to the LLM
tgp Master interface for the above methods

Table 1: Bayesian regression models implemented by the tgp package

the center column of the table. The details of model specification and inference
are contained in Section 2. Each is a fully Bayesian regression model, and in
the table they are ordered by some notion of “flexibility”. These b* functions, as
I call them, are wrappers around the master tgp function which is an interface
to the core C code.

The b* functions are intended as the main interface, so little further attention
to the tgp master function will be included here. The easiest way to see how
the master tgp function implements one of the b* methods is to simply type the
name of the function of interest into R. For example, to see the implementation
of bgp, type:

> bgp

The output (return-value) of tgp and the b* functions is a list object of
class “tgp”. This is what is meant by a “tgp-class” object. This object re-
tains all of the relevant information necessary to summarize posterior predictive
inference, maximum a’ posteriori (MAP) trees, and statistics for adaptive sam-
pling. Information about its actual contents is contained in the help files for
the b* functions. Generic print, plot, and predict methods are defined for
tgp-class objects. The plot and predict functions are discussed below. The
print function simply provides a list of the names of the fields comprising a
tgp-class object.

1.1.1 Plotting and visualization

The two main functions provided by the tgp package for visualization are
plot.tgp, inheriting from the generic plot method, and a function called
tgp.trees for graphical visualization of MAP trees.

The plot.tgp function can make plots in 1-d or 2-d. Of course, if the data
are 1-d, the plot is in 1-d. If the data are 2-d, or higher, they are 2-d image
or perspective plots unless a 1-d projection argument is supplied. Data which
are 3-d, or higher, require projection down to 2-d or 1-d, or specification of
a 2-d slice. The plot.tgp default is to make a projection onto the first two
input variables. Alternate projections are specified as an argument (proj) to
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the function. Likewise, there is also an argument (slice) which allows one
to specify which slice of the posterior predictive data is desired. For models
that use treed partitioning (those with a T in the center column of Table 1),
the plot.tgp function will overlay the region boundaries of the MAP tree (T̂ )
found during MCMC.

A few notes on 2-d plotting of tgp-class objects:

• 2-d plotting requires interpolation of the data onto a uniform grid. This is
supported by the tgp package in two ways: (1) loess smoothing, and (2)
the akima package, available from CRAN. The default is loess because it
is more stable and does not require installing any further packages. When
akima works it makes (in my opinion) smarter interpolations. However
there are two bugs in the akima package, one malign and the other benign,
which preclude it from the default position in tgp. The malign bug can
cause a segmentation fault, and bring down the entire R session. The
benign bug produces NA’s when plotting data from a grid. For beautiful
2-d plots of gridded data I suggest exporting the tgp predictive output to
a text file and using gnuplot’s 2-d plotting features.

• The current version of this package contains no examples—nor does this
document—which demonstrate plotting of data with dimension larger
than two. The example provided in Section 3.5 uses 10-d data, how-
ever no plotting is required. tgp methods have been used on data with
input dimension as large as 15 [14], and were used in a sequential design
and detailed analysis of some proprietary 3-d input and 6-d output data
sampled using a NASA supercomputer [16].

• The plot.tgp function has many more options than are illustrated in
[Section 3 of] this document. Please refer to the help files for more details.

The tgp.trees function provides a diagrammatic representation of the MAP
trees of each height encountered by the Markov chain during sampling. The
function will not plot trees of height one, i.e., trees with no branching or parti-
tioning. Plotting of trees requires the maptree package, which in turn requires
the combinat package, both available from CRAN.

1.1.2 Prediction

Prediction, naturally, depends on fitted model parameters θ̂|data, or Monte
Carlo samples from the posterior distribution of θ in a Bayesian analysis. Rather
than saving samples from π(θ|data) for later prediction, usually requiring enor-
mous amounts of storage, tgp samples the posterior predictive distribution in-
line, as samples of θ become available. [Section 2.1.4 and 2.2.1 outlines the
prediction equations.] A predict.tgp function is provided should it be neces-
sary to obtain predictions after the MCMC has finished.

The b* functions save the MAP parameterization θ̂ maximizing π(θ|data).
More specifically, the “tgp”–class object stores the MAP tree T̂ and correspond-
ing GP (or LLM) parameters θ̂|T̂ found while sampling from the joint posterior
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π(θ, T |data). These may be accessed and used, via predict.tgp, to obtain
posterior–predictive inference through the MAP parameterization. In this way
predict.tgp is similar to predict.lm, for example. Samples can also be ob-
tained from the MAP–parameterized predictive distributions via predict.tgp,
or a re–initialization of the joint sampling of the posterior and posterior predic-
tive distribution can commence starting from the (θ̂, T̂ ).

The output of predict.tgp is also a tgp class object. Appendix B.3 il-
lustrates how this feature can be useful in the context of passing tgp model
fits between collaborators. There are other miscellaneous demonstrations in
Section 3.

1.1.3 Speed

Fully Bayesian analyses with MCMC are not the super-speediest of all statis-
tical models. Nor is inference for GP models, classical or Bayesian. When the
underlying relationship between inputs and responses is non-linear, GPs rep-
resent a state of the art phenomenological model with high predictive power.
The addition of axis–aligned treed partitioning provides a divide–and–conquer
mechanism that can not only reduce the computational burden relative to the
base GP model, but can also facilitate the efficient modeling of nonstationarity
and heteroskedasticity in the data. This is in stark contrast to other recent
approaches to nonstationary spatial models (e.g., via deformations [8, 28], or
process convolutions [19, 12, 24]) which can require orders of magnitude more
effort relative to stationary GPs.

Great care has been taken to make the implementation of Bayesian infer-
ence for GP models as efficient as possible [see Appendix A]. However, inference
for non-treed GPs can be computationally intense. Several features are imple-
mented by the package which can help speed things up a bit. Direct support for
ATLAS [32] is provided for fast linear algebra. Details on linking this package with
ATLAS is contained in Appendix C.1. Parallelization of prediction and inference
is supported by a producer/consumer model implemented with Pthreads. Ap-
pendix C.2 shows how to activate this feature, as it is not turned on by default.
An argument called linburn is made available in tree class (T) b* functions in
Table 1. When linburn = TRUE, the Markov chain is initialized with a run of
the Bayesian treed linear model [5] before burn-in in order to pre-partition the
input space using linear models. Finally, thinning of the posterior predictive
samples obtained by the Markov chain can also help speed things up. This is
facilitated by the E-part of the BTE argument to b* functions.

1.2 Sequential design of experiments

Sequential design of experiments, a.k.a. adaptive sampling, is not implemented
by any single function in the tgp package. Nevertheless, options and functions
are provided in order to facilitate the automation of adaptive sampling with
tgp-class models. A detailed example is included in Section 3.6.
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Arguments to b* functions, and tgp, which aid in adaptive sampling include
Ds2x and improv. Both are booleans, i.e., should be set to TRUE or FALSE

(the default for both is FALSE). TRUE booleans cause the tgp-class output list
to contain vectors of similar names with statistics that can be used toward
adaptive sampling. When Ds2x = TRUE then ∆σ2(x̃) statistic is computed at
each x̃ ∈ XX, in accordance with the ALC (Active Learning–Cohn) algorithm
[6]. Likewise, when improv = TRUE, statistics are computed in order to asses
the expected improvement (EI) for each x̃ ∈ XX about the global minimum
[20]. The ALM (Active Learning–Mackay) algorithm [21] is implemented by
default in terms of difference in predictive quantiles for the inputs XX, which
can be accessed via the ZZ.q output field. Details on the ALM, ALC, and EI
algorithms are provided in Section 2.

Calculation of EI statistics was considered “beta” functionality while this
document was being prepared. At that time it had not been adequately tested,
and its implementation changed substantially in future versions of the pack-
age. For updates see the follow-on vignette [17], or vignette("tgp2"). That
document also discusses sensitivity analysis, handling of categorical inputs, and
importance tempring.

The functions included in the package which explicitly aid in the sequential
design of experiments are tgp.design and dopt.gp. They are both intended to
produce sequential D–optimal candidate designs XX at which one or more of the
adaptive sampling methods (ALM, ALC, EI) can gather statistics. The dopt.gp
function generates D–optimal candidates for a stationary GP. The tgp.design

function extracts the MAP tree from a tgp-class object and uses dopt.gp on
each region of the MAP partition in order to get treed sequential D–optimal
candidates.

2 Methods and Models

This section provides a quick overview of the statistical models and methods im-
plemented by the tgp package. Stationary Gaussian processes (GPs), GPs with
jumps to the limiting linear model (LLM; a.k.a. GP LLM), treed partitioning
for nonstationary models, and sequential design of experiments (a.k.a. adaptive

sampling) concepts for these models are all briefly discussed. Appropriate refer-
ences are provided for the details, including the original paper on Bayesian treed
Gaussian process models [14], and an application paper on adaptively designing
supercomputer experiments [16].

As a first pass on this document, it might make sense to skip this section
and go straight on to the examples in Section 3.

2.1 Stationary Gaussian processes

Below is a hierarchical generative model for a stationary GP with linear tend for
data D = {X,Z} consisting of n pairs of mX covariates and a single response
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variable {(xi1, . . . , ximX
), zi}ni=1

.

Z|β, σ2,K ∼ Nn(Fβ, σ
2K) σ2 ∼ IG(ασ/2, qσ/2)

β|σ2, τ2,W,β
0
∼ Nm(β

0
, σ2τ2W) τ2 ∼ IG(ατ/2, qτ/2) (1)

β
0
∼ Nm(µ,B) W−1 ∼ W ((ρV)−1, ρ),

X is a design matrix with mX columns. An intercept term is added with
F = (1,X) which has m ≡ mX + 1 columns, and W is a m × m matrix.
N , IG, and W are the (Multivariate) Normal, Inverse-Gamma, and Wishart
distributions, respectively. Constants µ,B,V, ρ, ασ, qσ, ατ , qτ . are treated as
known.

The GP correlation structure K is chosen either from the isotropic power
family, or separable power family, with a fixed power p0 (see below), but un-
known (random) range and nugget parameters. Correlation functions used in
the tgp package take the form K(xj ,xk) = K∗(xj ,xk) + gδj,k, where δ·,· is
the Kronecker delta function, g is the nugget, and K∗ is a true correlation
representative from a parametric family. The isotropic Matérn family is also
implemented in the current version as “beta” functionality.

All parameters in (1) can be sampled using Gibbs steps, except for the
covariance structure and nugget parameters, and their hyperparameters, which
can be sampled via Metropolis-Hastings [14].

2.1.1 The nugget

The g term in the correlation function K(·, ·) is referred to as the nugget in the
geostatistics literature [22, 7] and sometimes as jitter in the Machine Learning
literature [23]. It must always be positive (g > 0), and serves two purposes.
Primarily, it provides a mechanism for introducing measurement error into the
stochastic process. It arises when considering a model of the form:

Z(X) = m(X,β) + ε(X) + η(X), (2)

where m(·, ·) is underlying (usually linear) mean process, ε(·) is a process co-
variance whose underlying correlation is governed by K∗, and η(·) represents
i.i.d. Gaussian noise. Secondarily, though perhaps of equal practical impor-
tance, the nugget (or jitter) prevents K from becoming numerically singular.
Notational convenience and conceptual congruence motivates referral to K as a
correlation matrix, even though the nugget term (g) forces K(xi,xi) > 1.

2.1.2 Exponential Power family

Correlation functions in the isotropic power family are stationary which means
that correlations are measured identically throughout the input domain, and
isotropic in that correlations K∗(xj ,xk) depend only on a function of the Eu-
clidean distance between xj and xk: ||xj − xk||.

K∗(xj ,xk|d) = exp

{

−||xj − xk||p0

d

}

, (3)
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where d > 0 is referred to as the width or range parameter. The power 0 < p0 ≤ 2
determines the smoothness of the underlying process. A typical default choice
is the Gaussian p0 = 2 which gives an infinitely differentiable process.

A straightforward enhancement to the isotropic power family is to employ
a unique range parameter di in each dimension (i = 1, . . . ,mX). The resulting
separable correlation function is still stationary, but no longer isotropic.

K∗(xj ,xk|d) = exp

{

−
mX
∑

i=1

|xij − xik|p0

di

}

(4)

The isotropic power family is a special case (when di = d, for i = 1, . . . ,mX).
With the separable power family, one can model correlations in some input
variables as stronger than others. However, with added flexibility comes added
costs. When the true underlying correlation structure is isotropic, estimating
the extra parameters of the separable model represents a sort of overkill.

2.1.3 Matérn Family

Another popular set of correlation functions is the Matérn family, due to many
nice properties [31, 24]. Correlations in this family are isotropic, and have the
form:

K(xj ,xk|ν, ϕ, α) =
π1/2ϕ

2ν−1Γ(ν + 1/2)α2ν
(α||xj − xk||)νKν(α||xj − xk||) (5)

where Kν is a modified Bessel function of the second kind [1]. This fam-
ily of correlation functions are obtained from spectral densities of the form
f(ω) = ϕ(α2 + ω2)−ν−1/2. Since the resulting process can shown to be ⌈ν⌉ − 1
times differentiable, ν can be thought of as a smoothness parameter. The ability
to specify smoothness is a significant feature of the Matérn family, especially in
comparison to the power exponential family which is either nowhere differen-
tiable (0 < p0 < 2) or infinitely differentiable (p0 = 2).

Separable parameterizations of the Matérn family also exist, but the current
version of tgp supports only the isotropic parameterization, for fixed ν. Future
versions will allow ν to be estimated, and support both isotropic and separable
parameterizations.

2.1.4 Prediction and Adaptive Sampling

The predicted value of z(x) is normally distributed with mean and variance

ẑ(x) = f⊤(x)β̃ + k(x)⊤K−1(Z− Fβ̃), (6)

σ̂2(x) = σ2[κ(x,x)− q⊤(x)C−1q(x)], (7)

where β̃ is the posterior mean estimate of β, and

C−1 = (K+ FWF⊤/τ2)−1 q(x) = k(x) + τ2FWf(x)

κ(x,y) = K(x,y) + τ2f⊤(x)Wf(y)
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with f⊤(x) = (1,x⊤), and k(x) a n−vector with kν,j(x) = K(x,xj), for all
xj ∈ X. Notice that σ̂(x)2 does not directly depend on the observed responses
Z. These equations often called kriging equations [22].

The ALM algorithm [21] is implemented with MCMC by computing the
norm (or width) of predictive quantiles obtained by samples from the Normal
distribution given above. The ALC algorithm [6] computes the reduction in vari-
ance given that the candidate location x̃ ∈ X̃ is added into the data (averaged
over a reference set Ỹ):

∆σ̂2(x̃) =
1

|Ỹ|
∑

y∈Ỹ

∆σ̂2

y(x̃) =
1

|Ỹ|
∑

y∈Ỹ

σ̂2

y − σ̂2

y(x̃) (8)

=
1

|Ỹ|
∑

y∈Ỹ

σ2
[

q⊤
N (y)C−1

N qN (x̃)− κ(x̃,y)
]2

κ(x̃, x̃)− q⊤
N (x̃)C−1

N qN (x̃)
,

which is easily computed using MCMC methods [16]. In the tgp package, the
reference set is taken to be the same as the candidate set, i.e., Ỹ = X̃.

The Expected Global Optimization (EGO) algorithm [20] is based on a
statistic which captures the expected improvement (EI) in the model about
its ability to predict the spatial location of the global minimum. If fmin is the
current minimum, e.g., fmin = min{z1, . . . , zn}, then the EI at the point x̃ can
reasonably be encoded as

E[I(x̃)] = E[max(fmin − Z(x̃), 0)], (9)

which can be shown to work out to be

E[I(x̃)] = (fmin − ẑ(x̃))Φ

(

fmin − ẑ(x̃)

σ̂(x̃)

)

+ σ̂(x̃)ϕ

(

fmin − ẑ(x̃)

σ̂(x̃)

)

(10)

where ẑ and σ̂ =
√
σ̂2 are taken from the equations for the posterior predictive

distribution (6). Φ and ϕ are the standard Normal cumulative distribution and
probability density functions, respectively.

The tgp package computes the expectation in (9) via MCMC samples from
the improvement max{fmin−Z(x̃), 0} at locations x̃ ∈ X̃. However, the method
uses minni=1

{Zxi
}, a sample from the first order statistic of the posterior pre-

dictive distribution at the inputs x ∈ X, in place of fmin. An exception is when
the argument pred.n=FALSE is provided instructing tgp not to sample from
the posterior predictive distribution of the input locations X. In this case, the
original closed form EI formula (10) is used.

2.2 GPs and Limiting linear models

A special limiting case of the Gaussian process model is the standard linear
model. Replacing the top (likelihood) line in the hierarchical model (1)

Z|β, σ2,K ∼ N(Fβ, σ2K) with Z|β, σ2 ∼ N(Fβ, σ2I),
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where I is the n×n identity matrix, gives a parameterization of a linear model.
From a phenomenological perspective, GP regression is more flexible than stan-
dard linear regression in that it can capture nonlinearities in the interaction
between covariates (x) and responses (z). From a modeling perspective, the
GP can be more than just overkill for linear data. Parsimony and over-fitting
considerations are just the tip of the iceberg. It is also unnecessarily compu-
tationally expensive, as well as numerically unstable. Specifically, it requires
the inversion of a large covariance matrix—an operation whose computing cost
grows with the cube of the sample size. Moreover, large finite d parameters can
be problematic from a numerical perspective because, unless g is also large, the
resulting covariance matrix can be numerically singular when the off-diagonal
elements of K are nearly one.

Bayesians can take advantage of the limiting linear model (LLM) by con-
structing a prior for the “mixture” of the GP with its LLM [15]. The key
idea is an augmentation of the parameter space by mX indicators b = {b}mX

i=1
∈

{0, 1}mX . The boolean bi is intended to select either the GP (bi = 1) or its LLM
for the ith dimension. The actual range parameter used by the correlation func-
tion is multiplied by b: e.g. K∗(·, ·|b⊤d). To encode the preference that GPs
with larger range parameters be more likely to “jump” to the LLM, the prior on
bi is specified as a function of the range parameter di: p(bi, di) = p(bi|di)p(di).

p(d) = G(1,20) + G(10,10)

d

D
e

n
s
it
y

0.0 0.5 1.0 1.5 2.0

0
.0

1
.0

2
.0

3
.0

p(b) = 1
p(b|d)

Figure 2: Prior distribution for the boolean (b) superimposed on p(d). There is truncation in
the left–most bin, which rises to about 6.3.

Probability mass functions which increase as a function of di, e.g.,

pγ,θ1,θ2(bi = 0|di) = θ1 + (θ2 − θ1)/(1 + exp{−γ(di − 0.5)}) (11)

with 0 < γ and 0 ≤ θ1 ≤ θ2 < 1, can encode such a preference by calling
for the exclusion of dimensions i with large di when constructing K∗. Thus bi
determines whether the GP or the LLM is in charge of the marginal process
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in the ith dimension. Accordingly, θ1 and θ2 represent minimum and maximum
probabilities of jumping to the LLM, while γ governs the rate at which p(bi =
0|di) grows to θ2 as di increases. Figure 2 plots p(bi = 0|di) for (γ, θ1, θ2) =
(10, 0.2, 0.95) superimposed on a convenient p(di) which is taken to be a mixture
of Gamma distributions,

p(d) = [G(d|α = 1, β = 20) +G(d|α = 10, β = 10)]/2, (12)

representing a population of GP parameterizations for wavy surfaces (small
d) and a separate population of those which are quite smooth or approximately
linear. The θ2 parameter is taken to be strictly less than one so as not to preclude
a GP which models a genuinely nonlinear surface using an uncommonly large
range setting.

The implied prior probability of the full mX -dimensional LLM is

p(linear model) =

mX
∏

i=1

p(bi = 0|di) =
mX
∏

i=1

[

θ1 +
θ2 − θ1

1 + exp{−γ(di − 0.5)}

]

. (13)

Notice that the resulting process is still a GP if any of the booleans bi are
one. The primary computational advantage associated with the LLM is fore-
gone unless all of the bi’s are zero. However, the intermediate result offers
increased numerical stability and represents a unique transitionary model lying
somewhere between the GP and the LLM. It allows for the implementation of
a semiparametric stochastic processes like Z(x) = βf(x) + ε(x̃) representing
a piecemeal spatial extension of a simple linear model. The first part (βf(x))
of the process is linear in some known function of the full set of covariates
x = {xi}mX

i=1
, and ε(·) is a spatial random process (e.g. a GP) which acts on a

subset of the covariates x′. Such models are commonplace in the statistics com-
munity [9]. Traditionally, x′ is determined and fixed a’ priori. The separable
boolean prior (11) implements an adaptively semiparametric process where the
subset x′ = {xi : bi = 1, i = 1, . . . ,mX} is given a prior distribution, instead of
being fixed.

2.2.1 Prediction and Adaptive Sampling under LLM

Prediction under the limiting GP model is a simplification of (6) when it is
known that K = (1 + g)I. It can be shown [15] that the predicted value of z
at x is normally distributed with mean ẑ(x) = f⊤(x)β̃ and variance σ̂(x)2 =
σ2[1+ f⊤(x)Vβ̃f(x)], where Vβ̃ = (τ−2+F⊤F(1+g))−1. This is preferred over
(6) with K = I(1 + g) because an m×m inversion is faster than an n× n one.

Applying the ALC algorithm under the LLM also offers computational sav-
ings. Starting with the predictive variance given in (6), the expected reduction
in variance under the LM is [16]

∆σ̂2

y(x) =
σ2[f⊤(y)Vβ̃N

f(x)]2

1 + g + f⊤(x)Vβ̃N
f(x)

(14)

12



X
′[:, u2] < s2

D1 = {X1,Z1} D2 = {X2,Z2}

D3 = {X3,Z3}

X
′[:, u2] ≥ s2

X[:, u1] ≥ s1

{u1, s1}

{u2, s2}

T : diagram

X
′ ≡ X[:, u1] < s1

u2

D1

D3

u1

D2

s1

s2

T : graphically

Figure 3: An example tree T with two splits, resulting in three regions, shown in a diagram
(left) and pictorially (right). The notation X[:, u] < s represents a subsetting of the design
matrix X by selecting the rows which have uth column less than s, i.e. columns {i : xiu < s},
so that X1 has the rows I1 of X where I1 = {xiu1

< s1 & xiu2
< s2}, etc. The responses are

subsetted similarly so that Z1 contains the I1 elements of Z. We have that ∪jDi = {X,Z}
and Di ∩Dj = ∅ for i ̸= j.

which is similarly preferred over (8) with K = I(1 + g).
The statistic for expected improvement (EI; about the minimum) is the same

under the LLM as (10) for the GP. Of course, it helps to use the linear predictive
equations instead of the kriging ones for ẑ(x) and σ̂2(x).

2.3 Treed partitioning

Nonstationary models are obtained by treed partitioning and inferring a separate
model within each region of the partition. Treed partitioning is accomplished
by making (recursive) binary splits on the value of a single variable so that
region boundaries are parallel to coordinate axes. Partitioning is recursive, so
each new partition is a sub-partition of a previous one. Since variables may be
revisited, there is no loss of generality by using binary splits as multiple splits
on the same variable are equivalent to a non-binary split.

Figure 3 shows an example tree. In this example, region D1 contains x’s
whose u1 coordinate is less than s1 and whose u2 coordinate is less than s2.
Like D1, D2 has x’s whose coordinate u1 is less than s1, but differs from D1 in
that the u2 coordinate must be bigger than or equal to s2. Finally, D3 contains
the rest of the x’s differing from those in D1 and D2 because the u1 coordinate
of its x’s is greater than or equal to s1. The corresponding response values (z)
accompany the x’s of each region.

These sorts of models are often referred to as Classification and Regression
Trees (CART) [2]. CART has become popular because of its ease of use, clear
interpretation, and ability to provide a good fit in many cases. The Bayesian
approach is straightforward to apply to tree models, provided that one can
specify a meaningful prior for the size of the tree. The trees implemented in
the tgp package follow Chipman et al. [4] who specify the prior through a tree-
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generating process. Starting with a null tree (all data in a single partition), the
tree, T , is probabilistically split recursively with each partition, η, being split
with probability psplit(η, T ) = a(1 + qη)

−b where qη is the depth of η in T
and a and b are parameters chosen to give an appropriate size and spread to
the distribution of trees.

Extending the work of Chipman et al. [5], the tgp package implements a
stationary GP with linear trend, or GP LLM, independently within each of the
regions depicted by a tree T [14]. Integrating out dependence on T is accom-
plished by reversible-jump MCMC (RJ-MCMC) via tree operations grow, prune,

change, and swap [4]. To keep things simple, proposals for new parameters—
via an increase in the number of partitions (through a grow)—are drawn from
their priors2, thus eliminating the Jacobian term usually present in RJ-MCMC.
New splits are chosen uniformly from the set of marginalized input locations X.
The swap operation is augmented with a rotate option to improve mixing of the
Markov chain [14].

There are many advantages to partitioning the input space into regions, and
fitting separate GPs (or GP LLMs) within each region. Partitioning allows
for the modeling of non-stationary behavior, and can ameliorate some of the
computational demands by fitting models to less data. Finally, fully Bayesian
model averaging yields a uniquely efficient nonstationary, nonparametric, or
semiparametric (in the case of the GP LLM) regression tool. The most general
Bayesian treed GP LLM model can facilitate a model comparison between its
special cases (LM, CART, treed LM, GP, treed GP, treed GP LLM) through
the samples obtained from the posterior distribution.

2.4 (Treed) sequential D-optimal design

In the statistics community, sequential data solicitation goes under the general
heading of design of experiments. Depending on a choice of utility, different
algorithms for obtaining optimal designs can be derived. Choose the Kullback-
Leibler distance between the posterior and prior distributions as a utility leads
to what are called D–optimal designs. For GPs with correlation matrix K,
this is equivalent to maximizing det(K). Choosing quadratic loss leads to what
are called A−optimal designs. An excellent review of Bayesian approaches to
the design of experiments is provided by Chaloner & Verdinelli [3]. Other ap-
proaches used by the statistics community include space-filling designs: e.g.
max-min distance and Latin Hypercube (LH) designs [27]. The FIELDS pack-
age [10] implements space-filling designs along side kriging and thin plate spline
models.

A hybrid approach to designing experiments employs active learning tech-
niques. The idea is to choose a set of candidate input configurations X̃ (say, a
D−optimal or LH design) and a rule for determining which x̃ ∈ X̃ to add into
the design next. The ALM algorithm has been shown to approximate maximum

2Proposed grows are the only place where the priors (for d, g and τ2 parameters; the
others can be integrated out) are used for MH–style proposals. All other MH proposals are
“random–walk” as described in Appendix A.
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expected information designs by choosing x̃ with the the largest predictive vari-
ance [21]. The ALC algorithm selects x̃ minimizing the reduction in squared
error averaged over the input space [6]. Seo et al. [29] provide a comparison
between ALC and ALM using standard GPs. The EI [20] algorithm can be
used to find global minima.

Choosing candidate configurations X̃ (XX in the tgp package), at which to
gather ALM, ALC, or EI statistics, is a significant component in the hybrid ap-
proach to experimental design. Candidates which are are well-spaced relative to
themselves, and relative to already sampled configurations, are clearly preferred.
Towards this end, a sequential D–optimal design is a good first choice, but has
a number of drawbacks. D–optimal designs are based require a known param-
eterization, and are thus not well-suited to MCMC inference. They may not
choose candidates in the “interesting” part of the input space, because sampling
is high there already. They are ill-suited partition models wherein “closeness”
may not measured homogeneously across the input space. Finally, they are
computationally costly, requiring many repeated determinant calculations for
(possibly) large covariance matrices.

One possible solution to both computational and nonstationary modeling is-
sues is to use treed sequential D–optimal design [16], where separate sequential
D–optimal designs are computed in each of the partitions depicted by the max-
imum a posteriori (MAP) tree T̂ . The number of candidates selected from each
region can be proportional to the volume of—or to the number of grid locations
in—the region. MAP parameters θ̂ν |T̂ , or “neutral” or “exploration encourag-
ing” ones, can be used to create the candidate design—a common practice [27].
Small range parameters, for learning about the wiggliness of the response, and
a modest nugget parameter, for numerical stability, tend to work well together.

Finding a local maxima is generally sufficient to get well-spaced candidates.
The dopt.gp function uses a stochastic ascent algorithm to find local maxima
without calculating too many determinants. This works work well with ALM
and ALC. However, it is less than ideal for EI as will be illustrated in Section
3.6. Adaptive sampling from EI (with tgp) is still an open area of research.

3 Examples using tgp

The following subsections take the reader through a series of examples based,
mostly, on synthetic data. At least two different b* models are fit for each
set of data, offering comparisons and contrasts. Duplicating these examples in
your own R session is highly recommended. The Stangle function can help
extract executable R code from this document. For example, the code for the
exponential data of Section 3.3 can be extracted with one command.

> Stangle(vignette("exp", package="tgp")$file)

This will write a file called “exp.R”. Additionally, each of the subsections that
follow is available as an R demo. Try demo(package="tgp") for a listing of
available demos. To invoke the demo for the exponential data of Section 3.3 try
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demo(exp, package="tgp"). This is equivalent to source("exp.R") because
the demos were created using Stangle on the source files of this document. 3

Each subsection (or subsection of the appendix) starts by seeding the random
number generator with set.seed(0). This is done to make the results and
analyses reproducible within this document, and in demo form. I recommend
you try these examples with different seeds and see what happens. Usually
the results will be similar, but sometimes (especially when the data (X, Z) is
generated randomly) they may be quite different.

Other successful uses of the methods in this package include applications to
the Boston housing data [18, 14], and designing an experiment for a reusable
NASA launch vehicle [13, 16] called the Langely glide-back booster (LGBB).

3.1 1-d Linear data

Consider data sampled from a linear model.

zi = 1 + 2xi + ϵ, where ϵi
iid∼ N(0, 0.252) (15)

The following R code takes a sample {X,Z} of size N = 50 from (15). It
also chooses N ′ = 99 evenly spaced predictive locations X̃ = XX.

> # 1-d linear data input and predictive data

> X <- seq(0,1,length=50) # inputs

> XX <- seq(0,1,length=99) # predictive locations

> Z <- 1 + 2*X + rnorm(length(X),sd=0.25) # responses

Using tgp on this data with a Bayesian hierarchical linear model goes as
follows:

> lin.blm <- blm(X=X, XX=XX, Z=Z)

burn in:

r=1000 d=[0]; n=50

Sampling @ nn=99 pred locs:

r=1000 d=[0]; mh=1 n=50

r=2000 d=[0]; mh=1 n=50

r=3000 d=[0]; mh=1 n=50

MCMC progress indicators are echoed every 1,000 rounds. The linear model
is indicated by d=[0]. For btlm the MCMC progress indicators are boring,
but we will see more interesting ones later. In terminal versions, e.g. Unix, the
progress indicators can give a sense of when the code will finish. GUI versions of
R—Windows or MacOS X—can buffer stdout, rendering this feature essentially
useless as a real–time indicator of progress. Progress indicators can be turned

3Note that this vignette functionality is only supported in tgp version < 2.x. In 2.x and
later the vignettes were coalesced in order to reduce clutter. The demos in 2.x, however, still
correspond to their respective sections.
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> plot(lin.blm, main='Linear Model,', layout='surf')

> abline(1,2,lty=3,col='blue')
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Figure 4: Posterior predictive distribution using blm on synthetic linear data: mean and 90%
credible interval. The actual generating lines are shown as blue-dotted.

off by providing the argument verb=0. Further explanation on the verbosity of
screen output and interpretations is provided in Appendix B.2.

The generic plot method can be used to visualize the fitted posterior pre-
dictive surface (with option layout = ’surf’) in terms of means and credible
intervals. Figure 4 shows how to do it, and what you get. The default option
layout = ’both’ shows both a predictive surface and error (or uncertainty)
plot, side by side. The error plot can be obtained alone via layout = ’as’.
Examples of these layouts appear later.

If, say, you were unsure about the dubious “linearness” of this data, you
might try a GP LLM (using bgpllm) and let a more flexible model speak as to
the linearity of the process.

> lin.gpllm <- bgpllm(X=X, XX=XX, Z=Z)

burn in:

r=1000 d=[0]; n=50

Sampling @ nn=99 pred locs:

r=1000 d=[0]; mh=1 n=50

r=2000 d=[0]; mh=1 n=50

r=3000 d=[0]; mh=1 n=50

Whenever the progress indicators show d=[0] the process is under the LLM
in that round, and the GP otherwise. A plot of the resulting surface is shown
in Figure 5 for comparison. Since the data is linear, the resulting predictive
surfaces should look strikingly similar to one another. On occasion, the GP
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> plot(lin.gpllm, main='GP LLM,', layout='surf')

> abline(1,2,lty=4,col='blue')
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Figure 5: Posterior predictive distribution using bgpllm on synthetic linear data: mean and
90% credible interval. The actual generating lines are shown as blue-dotted.

LLM may find some “bendyness” in the surface. This happens rarely with
samples as large as N = 50, but is quite a bit more common for N < 20.

To see the proportion of time the Markov chain spent in the LLM requires
the gathering of traces (Appendix B.1). For example

> lin.gpllm.tr <- bgpllm(X=X, XX=0.5, Z=Z, pred.n=FALSE, trace=TRUE,

+ verb=0)

> mla <- mean(lin.gpllm.tr$trace$linarea$la)

> mla

[1] 0.932

shows that the average area under the LLM is 0.932. Progress indicators are
suppressed with verb=0. Alternatively, the probability that input location xx

= 0.5 is under the LLM is given by

> 1-mean(lin.gpllm.tr$trace$XX[[1]]$b1)

[1] 0.932

This is the same value as the area under the LLM since the process is stationary
(i.e., there is no treed partitioning).

3.2 1-d Synthetic Sine Data

Consider 1-dimensional simulated data which is partly a mixture of sines and
cosines, and partly linear.

z(x) =

{

sin
(

πx
5

)

+ 1

5
cos

(

4πx
5

)

x < 9.6
x/10− 1 otherwise

(16)
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The R code below obtains N = 100 evenly spaced samples from this data
in the domain [0, 20], with noise added to keep things interesting. Some evenly
spaced predictive locations XX are also created.

> X <- seq(0,20,length=100)

> XX <- seq(0,20,length=99)

> Ztrue <- (sin(pi*X/5) + 0.2*cos(4*pi*X/5)) * (X <= 9.6)

> lin <- X>9.6;

> Ztrue[lin] <- -1 + X[lin]/10

> Z <- Ztrue + rnorm(length(Ztrue), sd=0.1)

By design, the data is clearly nonstationary in its mean. Perhaps not know-
ing this, a good first model choice for this data might be a GP.

> sin.bgp <- bgp(X=X, Z=Z, XX=XX, verb=0)

> plot(sin.bgp, main='GP,', layout='surf')

> lines(X, Ztrue, col=4, lty=2, lwd=2)
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Figure 6: Posterior predictive distribution using bgp on synthetic sinusoidal data: mean and
90% pointwise credible interval. The true mean is overlayed with a dashed line.

Figure 6 shows the resulting posterior predictive surface under the GP. Notice
how the (stationary) GP gets the wiggliness of the sinusoidal region, but fails
to capture the smoothness of the linear region. The true mean (16) is overlayed
with a dashed line.

So one might consider a Bayesian treed linear model (LM) instead.

> sin.btlm <- btlm(X=X, Z=Z, XX=XX)

burn in:

**GROW** @depth 0: [1,0.393939], n=(40,60)
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**GROW** @depth 1: [1,0.191919], n=(20,21)

**GROW** @depth 1: [1,0.55102], n=(14,45)

**GROW** @depth 3: [1,0.292929], n=(13,12)

r=1000 d=[0] [0] [0] [0] [0]; n=(16,12,15,11,46)

r=2000 d=[0] [0] [0] [0] [0]; n=(14,13,19,11,43)

Sampling @ nn=99 pred locs:

**PRUNE** @depth 2: [1,0.565657]

r=1000 d=[0] [0] [0] [0]; mh=4 n=(12,16,19,53)

r=2000 d=[0] [0] [0] [0]; mh=4 n=(14,14,19,53)

r=3000 d=[0] [0] [0] [0]; mh=4 n=(12,17,18,53)

r=4000 d=[0] [0] [0] [0]; mh=4 n=(12,18,17,53)

r=5000 d=[0] [0] [0] [0]; mh=4 n=(12,16,19,53)

Grow: 1.12%, Prune: 0.2841%, Change: 66.47%, Swap: 81.16%

MCMC progress indicators show successful grow and prune operations as they
happen, and region sizes n every 1,000 rounds. Specifying verb=3, or higher
will show echo more successful tree operations, i.e., change, swap, and rotate.

Figure 7 shows the resulting posterior predictive surface (top) and trees
(bottom). The MAP partition (T̂ ) is also drawn onto the surface plot (top) in
the form of vertical lines. The treed LM captures the smoothness of the linear
region just fine, but comes up short in the sinusoidal region—doing the best it
can with piecewise linear models.

The ideal model for this data is the Bayesian treed GP because it can be
both smooth and wiggly.

> sin.btgp <- btgp(X=X, Z=Z, XX=XX, verb=0)

Figure 8 shows the resulting posterior predictive surface (top) and MAP T̂ with
height=2.

Finally, speedups can be obtained if the GP is allowed to jump to the LLM
[14], since half of the response surface is very smooth, or linear. This is not
shown here since the results are very similar to those above, replacing btgp

with btgpllm. Each of the models fit in this section is a special case of the
treed GP LLM, so a model comparison is facilitated by fitting this more general
model. The example in the next subsection offers such a comparison for 2-
d data. A followup in Appendix B.1 shows how to use parameter traces to
extract the posterior probability of linearity in regions of the input space.

3.3 Synthetic 2-d Exponential Data

The next example involves a two-dimensional input space in [−2, 6] × [−2, 6].
The true response is given by

z(x) = x1 exp(−x2

1
− x2

2
). (17)

A small amount of Gaussian noise (with sd = 0.001) is added. Besides its di-
mensionality, a key difference between this data set and the last one is that
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> plot(sin.btlm, main='treed LM,', layout='surf')

> lines(X, Ztrue, col=4, lty=2, lwd=2)
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> tgp.trees(sin.btlm)

x1 <> 5.85859

x1 <> 2.2449

0.0051 

12 obs

1

0.0046 

18 obs

2

x1 <> 9.38776

0.004 

17 obs

3

0.0015 

53 obs

4

 height=3, log(p)=144.766

x1 <> 9.38776

x1 <> 5.45455

x1 <> 2.82828

0.0039 
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1

0.0025 
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2

0.0046 

19 obs

3
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4

 height=4, log(p)=146.654

x1 <> 11.4286
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x1 <> 2.65306
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5
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Figure 7: Top: Posterior predictive distribution using btlm on synthetic sinusoidal data: mean
and 90% pointwise credible interval, and MAP partition (T̂ ). The true mean is overlayed with
a dashed line. Bottom: MAP trees for each height encountered in the Markov chain showing
σ̂2 and the number of observation n, at each leaf.

it is not defined using step functions; this smooth function does not have any
artificial breaks between regions. The tgp package provides a function for data
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> plot(sin.btgp, main='treed GP,', layout='surf')

> lines(X, Ztrue, col=4, lty=2, lwd=2)
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Figure 8: Posterior predictive distribution using btgp on synthetic sinusoidal data: mean and
90% pointwise credible interval, and MAP partition (T̂ ) . The true mean is overlayed with a
dashed line.

subsampled from a grid of inputs and outputs described by (17) which concen-
trates inputs (X) more heavily in the first quadrant where the response is more
interesting. Predictive locations (XX) are the remaining grid locations.

> exp2d.data <- exp2d.rand()

> X <- exp2d.data$X; Z <- exp2d.data$Z

> XX <- exp2d.data$XX

The treed LM is clearly just as inappropriate for this data as it was for the
sinusoidal data in the previous section. However, a stationary GP fits this data
just fine. After all, the process is quite well behaved. In two dimensions one has
a choice between the isotropic and separable correlation functions. Separable is
the default in the tgp package. For illustrative purposes here, I shall use the
isotropic power family.

> exp.bgp <- bgp(X=X, Z=Z, XX=XX, corr="exp", verb=0)

Progress indicators are suppressed. Figure 9 shows the resulting posterior pre-
dictive surface under the GP in terms of means (left) and variances (right) in the
default layout. The sampled locations (X) are shown as dots on the right image
plot. Predictive locations (XX) are circles. Predictive uncertainty for the sta-
tionary GP model is highest where sampling is lowest, despite that the process
is very uninteresting there.

A treed GP seems more appropriate for this data. It can separate out the
large uninteresting part of the input space from the interesting part. The result
is speedier inference and region-specific estimates of predictive uncertainty.
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> plot(exp.bgp, main='GP,')
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Figure 9: Left: posterior predictive mean using bgp on synthetic exponential data; right image
plot of posterior predictive variance with data locations X (dots) and predictive locations XX

(circles).

> exp.btgp <- btgp(X=X, Z=Z, XX=XX, corr="exp", verb=0)

Figure 10 shows the resulting posterior predictive surface (top) and trees (bot-
tom). Typical runs of the treed GP on this data find two, and if lucky three,
partitions. As might be expected, jumping to the LLM for the uninteresting,
zero-response, part of the input space can yield even further speedups [14]. Also,
Chipman et al. recommend restarting the Markov chain a few times in order
to better explore the marginal posterior for T [5]. This can be important for
higher dimensional inputs requiring deeper trees. The tgp default is R = 1, i.e.,
one chain with no restarts. Here two chains—one restart—are obtained using R

= 2.

> exp.btgpllm <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", R=2)

burn in:

**GROW** @depth 0: [1,0.45], n=(52,28)

r=1000 d=0.0192823 0.919793; n=(59,21)

r=2000 d=0.0196436 0(0.918388); n=(59,21)

Sampling @ nn=361 pred locs:

r=1000 d=0.0216647 1.22252; mh=2 n=(59,21)

r=2000 d=0.0240168 1.65925; mh=2 n=(59,21)

r=3000 d=0.0212674 1.25945; mh=2 n=(59,21)

r=4000 d=0.02124 1.29208; mh=2 n=(59,21)

r=5000 d=0.0219515 1.66875; mh=2 n=(59,21)

Grow: 0.3003%, Prune: 0%, Change: 5.014%,

finished repetition 1 of 2
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> plot(exp.btgp, main='treed GP,')
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> tgp.trees(exp.btgp)

x1 <> 2.4  

x2 <> 1.6  
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46 obs
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 height=3, log(p)=225.66

Figure 10: Top-Left: posterior predictive mean using btgp on synthetic exponential data; top-

right image plot of posterior predictive variance with data locations X (dots) and predictive
locations XX (circles). Bottom: MAP trees of each height encountered in the Markov chain
with σ̂2 and the number of observations n at the leaves.

removed 2 leaves from the tree

burn in:

**GROW** @depth 0: [1,0.5], n=(59,21)

**GROW** @depth 1: [2,0.45], n=(46,13)
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r=1000 d=0.0203858 0(0.0224988) 0(1.20943); mh=2 n=(46,13,21)

r=2000 d=0.0234496 0(0.00594579) 0(2.06377); mh=2 n=(46,13,21)

Sampling @ nn=361 pred locs:

r=1000 d=0.0229784 0(0.063307) 0(0.927774); mh=3 n=(46,14,20)

r=2000 d=0.0211348 0(0.905025) 0(0.162901); mh=3 n=(46,13,21)

r=3000 d=0.0212057 0(1.11424) 0.00295558; mh=3 n=(46,14,20)

r=4000 d=0.0199452 0(0.933702) 0.00702906; mh=3 n=(46,13,21)

r=5000 d=0.020316 0(1.39777) 0.00722623; mh=3 n=(46,13,21)

Grow: 0.4451%, Prune: 0%, Change: 12.79%, Swap: 6.748%

finished repetition 2 of 2

removed 3 leaves from the tree

> plot(exp.btgpllm, main='treed GP LLM,')
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Figure 11: Left: posterior predictive mean using btgpllm on synthetic exponential data; right

image plot of posterior predictive variance with data locations X (dots) and predictive locations
XX (circles).

Progress indicators show where the LLM (corr=0(d)) or the GP is active. Fig-
ure 11 shows how similar the resulting posterior predictive surfaces are compared
to the treed GP (without LLM). Appendix B.1 shows how parameter traces can
be used to calculate the posterior probabilities of regional and location–specific
linearity in this example.

Finally, viewing 1-d projections of tgp-class output is possible by supplying
a scalar proj argument to the plot.tgp. Figure 12 shows the two projections
for exp.btgpllm. In the left surface plots the open circles indicate the mean of
posterior predictive distribution. Red lines show the 90% intervals, the norm of
which are shown on the right.
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> plot(exp.btgpllm, main='treed GP LLM,', proj=c(1))

> plot(exp.btgpllm, main='treed GP LLM,', proj=c(2))
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Figure 12: 1-d projections of the posterior predictive surface (left) and normed predictive
intervals (right) of the 1-d tree GP LLM analysis of the synthetic exponential data. The top

plots show projection onto the first input, and the bottom ones show the second.

3.4 Motorcycle Accident Data

The Motorcycle Accident Dataset [30] is a classic nonstationary data set used in
recent literature [26] to demonstrate the success of nonstationary models. The
data consists of measurements of the acceleration of the head of a motorcycle
rider as a function of time in the first moments after an impact. In addition to
being nonstationary, the data has input–dependent noise (heteroskedasticity)
which makes it useful for illustrating how the treed GP model handles this nu-
ance. There are at least two—perhaps three—three regions where the response
exhibits different behavior both in terms of the correlation structure and noise
level.
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The data is included as part of the MASS library in R.

> library(MASS)

> X <- data.frame(times=mcycle[,1])

> Z <- data.frame(accel=mcycle[,2])

Figure 13 shows how a stationary GP is able to capture the nonlinearity in the
response but fails to capture the input dependent noise and increased smooth-
ness (perhaps linearity) in parts of the input space.

> moto.bgp <- bgp(X=X, Z=Z, verb=0)

Progress indicators are suppressed.

> plot(moto.bgp, main='GP,', layout='surf')
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Figure 13: Posterior predictive distribution using bgp on the motorcycle accident data: mean
and 90% credible interval

A Bayesian Linear CART model is able to capture the input dependent
noise but fails to capture the waviness of the “whiplash”—center— segment of
the response.

> moto.btlm <- btlm(X=X, Z=Z, verb=0)

Figure 14 shows the resulting piecewise linear predictive surface and MAP par-
tition (T̂ ).

A treed GP model seems appropriate because it can model input dependent
smoothness and noise. A treed GP LLM is probably most appropriate since the
left-hand part of the input space is likely linear. One might further hypothe-
size that the right–hand region is also linear, perhaps with the same mean as
the left–hand region, only with higher noise. The b* functions can force an
i.i.d. hierarchical linear model by setting bprior="b0".
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> plot(moto.btlm, main='Bayesian CART,', layout='surf')
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Figure 14: Posterior predictive distribution using btlm on the motorcycle accident data: mean
and 90% credible interval

> moto.btgpllm <- btgpllm(X=X, Z=Z, bprior="b0", verb=0)

> moto.btgpllm.p <- predict(moto.btgpllm) ## using MAP

The predict.tgp function obtains posterior predictive estimates from the MAP
parameterization (a.k.a., kriging). The resulting posterior predictive surface is
shown in the top–left of Figure 15. The bottom–left of the figure shows the norm
(difference) in predictive quantiles, clearly illustrating the treed GP’s ability to
capture input-specific noise in the posterior predictive distribution. The right–
hand side of the figure shows the MAP surfaces obtained from the output of the
predict.tgp function.

The tgp–default bprior="bflat" implies an improper prior on the regres-
sion coefficients β. It essentially forces W = ∞, thus eliminating the need to
specify priors on β

0
and W−1 in (1). This was chosen as the default because

it works well in many examples, and leads to a simpler overall model and a
faster implementation. However, the Motorcycle data is an exception. More-
over, when the response data is very noisy (i.e., low signal–to–noise ratio), tgp
can be expected to partition heavily under the bprior="bflat" prior. In such
cases, one of the other proper priors like the full hierarchical bprior="b0" or
bprior="bmzt" might be preferred.

An anonymous reviewer pointed out a shortcoming of the treed GP model
on this data. The sharp spike in predictive variance near the first regime shift
suggests that the symmetric Gaussian noise model may be inappropriate. A
log Gaussian process might offer an improvement, at least locally. Running the
treed GP MCMC for longer will eventually result in the finding of a partition
near time=17, just after the first regime change. The variance is still poorly
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> par(mfrow=c(1,2))

> plot(moto.btgpllm, main='treed GP LLM,', layout='surf')

> plot(moto.btgpllm.p, center='km', layout='surf')
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> par(mfrow=c(1,2))

> plot(moto.btgpllm, main='treed GP LLM,', layout='as')

> plot(moto.btgpllm.p, as='ks2', layout='as')
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Figure 15: Top: Posterior predictive distribution using treed GP LLM on the motorcycle
accident data. The left–hand panes how mean and 90% credible interval; bottom: Quantile-
norm (90%-5%) showing input-dependent noise. The right–hand panes show similar kriging

surfaces for the MAP parameterization.

modeled in this region. Since it is isolated by the tree it could potentially be fit
with a different noise model.
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3.5 Friedman data

This Friedman data set is the first one of a suite that was used to illustrate
MARS (Multivariate Adaptive Regression Splines) [11]. There are 10 covariates
in the data (x = {x1, x2, . . . , x10}). The function that describes the responses
(Z), observed with standard Normal noise, has mean

E(Z|x) = µ = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5, (18)

but depends only on {x1, . . . , x5}, thus combining nonlinear, linear, and irrele-
vant effects. Comparisons are made on this data to results provided for several
other models in recent literature. Chipman et al. [5] used this data to compare
their treed LM algorithm to four other methods of varying parameterization:
linear regression, greedy tree, MARS, and neural networks. The statistic they
use for comparison is root mean-square error (RMSE)

MSE =
∑n

i=1
(µi − ẑi)

2/n RMSE =
√

MSE

where ẑi is the model–predicted response for input xi. The x’s are randomly
distributed on the unit interval.

Input data, responses, and predictive locations of size N = 200 and N ′ =
1000, respectively, can be obtained by a function included in the tgp package.

> f <- friedman.1.data(200)

> ff <- friedman.1.data(1000)

> X <- f[,1:10]; Z <- f$Y

> XX <- ff[,1:10]

This example compares Bayesian treed LMs with Bayesian GP LLM (not treed),
following the RMSE experiments of Chipman et al. It helps to scale the re-
sponses so that they have a mean of zero and a range of one. First, fit the
Bayesian treed LM, and obtain the RMSE.

> fr.btlm <- btlm(X=X, Z=Z, XX=XX, tree=c(0.95,2), pred.n=FALSE, verb=0)

> fr.btlm.mse <- sqrt(mean((fr.btlm$ZZ.mean - ff$Ytrue)^2))

> fr.btlm.mse

[1] 2.102101

Next, fit the GP LLM, and obtain its RMSE.

> fr.bgpllm <- bgpllm(X=X, Z=Z, XX=XX, pred.n=FALSE, verb=0)

> fr.bgpllm.mse <- sqrt(mean((fr.bgpllm$ZZ.mean - ff$Ytrue)^2))

> fr.bgpllm.mse

[1] 0.5841117

So, the GP LLM is 3.599 times better than Bayesian treed LM on this data, in
terms of RMSE (in terms of MSE the GP LLM is 1.897 times better).

Parameter traces need to be gathered in order to judge the ability of the GP
LLM model to identify linear and irrelevant effects.
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> XX1 <- matrix(rep(0,10), nrow=1)

> fr.bgpllm.tr <- bgpllm(X=X, Z=Z, XX=XX1, pred.n=FALSE, trace=TRUE,

+ m0r1=FALSE, verb=0)

Here, m0r1 = FALSE has been specified instead so that the β estimates pro-
vided below will be on the original scale.4 A summary of the parameter traces
show that the Markov chain had the following (average) configuration for the
booleans.

> trace <- fr.bgpllm.tr$trace$XX[[1]]

> apply(trace[,27:36], 2, mean)

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

1 1 1 0 0 0 0 0 0 0

Therefore the GP LLM model correctly identified that only the first three input
variables interact only linearly with the response. This agrees with dimension–
wise estimate of the total area of the input domain under the LLM (out of a
total of 10 input variables).

> mean(fr.bgpllm.tr$trace$linarea$ba)

[1] 7

A similar summary of the parameter traces for β shows that the GP LLM
correctly identified the linear regression coefficients associated with the fourth
and fifth input covariates (from (18))

> summary(trace[,9:10])

beta4 beta5

Min. : 8.979 Min. :4.200

1st Qu.: 9.626 1st Qu.:4.865

Median : 9.803 Median :5.037

Mean : 9.808 Mean :5.037

3rd Qu.: 9.989 3rd Qu.:5.205

Max. :10.675 Max. :6.074

and that the rest are much closer to zero.

> apply(trace[,11:15], 2, mean)

beta6 beta7 beta8 beta9 beta10

-0.11609186 -0.25663259 -0.19475444 -0.19633581 -0.07778259

4The default setting of m0r1 = TRUE causes the Z–values to undergo pre-processing so that
they have a mean of zero and a range of one. The default prior specification has been tuned
so as to work well this range.
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3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. adaptive sampling, is
demonstrated on the exponential data of Section 3.3. Gathering, again, the
data:

> exp2d.data <- exp2d.rand(lh=0, dopt=10)

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> Xcand <- lhs(1000, rbind(c(-2,6),c(-2,6)))

In contrast with the data from Section 3.3, which was based on a grid, the
above code generates a randomly subsampled D–optimal design X from LH
candidates, and random responses Z. As before, design configurations are more
densely packed in the interesting region. Candidates X̃ are from a large LH–
sample.

Given some data {X,Z}, the first step in sequential design using tgp is to
fit a treed GP LLM model to the data, without prediction, in order to infer the
MAP tree T̂ .

> exp1 <- btgpllm(X=X, Z=Z, pred.n=FALSE, corr="exp", R=5, verb=0)

> tgp.trees(exp1)

x1 <> 2.07392

0.0199 
61 obs

1

0 
19 obs

2

 height=2, log(p)=184.136

x1 <> 2.07392

x2 <> 1.50802

0.0329 
45 obs

1

0 
16 obs

2

0 
19 obs

3

 height=3, log(p)=234.51

Figure 16: MAP trees of each height encountered in the Markov chain for the exponential
data, showing σ̂2 and the number of observations n at the leaves. T̂ is the one with the
maximum log(p) above.

The trees are shown in Figure 16. Then, use the tgp.design function to create
D–optimal candidate designs in each region of T̂ . For the purposes of illustrating
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the improv statistic, I have manually added the known (from calculus) global
minimum to XX.

> XX <- tgp.design(200, Xcand, exp1)

sequential treed D-Optimal design in 3 partitions

> XX <- rbind(XX, c(-sqrt(1/2),0))

Figure 17 shows the sampled XX locations (circles) amongst the input locations
X (dots) and MAP partition (T̂ ). Notice how the candidates XX are spaced
out relative to themselves, and relative to the inputs X, unless they are near
partition boundaries. The placing of configurations near region boundaries is
a symptom particular to D–optimal designs. This is desirable for experiments
with tgp models, as model uncertainty is usually high there [3].

> plot(exp1$X, pch=19, cex=0.5)

> points(XX)

> mapT(exp1, add=TRUE)
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Figure 17: Treed D–optimal candidate locations XX (circles), input locations X (dots), and

MAP tree T̂

Now, the idea is to fit the treed GP LLM model, again, in order to assess
uncertainty in the predictive surface at those new candidate design points. The
following code gathers all three adaptive sampling statistics: ALM, ALC, & EI.
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> exp.as <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", improv=TRUE,

+ Ds2x=TRUE, R=5, verb=0)

Figure 18 shows the posterior predictive estimates of the adaptive sampling
statistics. The error surface, on the left, summarizes posterior predictive uncer-
tainty by a norm of quantiles.

> par(mfrow=c(1,3), bty="n")

> plot(exp.as, main="tgpllm,", layout="as", as="alm")

> plot(exp.as, main="tgpllm,", layout='as', as='alc')

> plot(exp.as, main="tgpllm,", layout='as', as='improv')
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Figure 18: Left: Image plots of adaptive sampling statistics and MAP trees T̂ ; Left; ALM
adaptive sampling image for (only) candidate locations XX (circles); center: ALC; and right:

EI.

In accordance with the ALM algorithm, candidate locations XX with largest
predictive error would be sampled (added into the design) next. These are
most likely to be in the interesting region, i.e., the first quadrant. However,
these results depend heavily on the clumping of the original design in the un-
interesting areas, and on the estimate of T̂ . Adaptive sampling via the ALC,
or EI (or both) algorithms proceeds similarly, following the surfaces shown in
center and right panels of Figure 18.
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A Implementation notes

The treed GP model is coded in a mixture of C and C++: C++ for the tree data
structure (T ) and C for the GP at each leaf of T . The code has been tested on
Unix (Solaris, Linux, FreeBSD, OSX) and Windows (2000, XP) platforms.

It is useful to first translate and re-scale the input data (X) so that it lies in
an ℜmX dimensional unit cube. This makes it easier to construct prior distri-
butions for the width parameters to the correlation function K(·, ·). Proposals
for all parameters which require MH sampling are taken from a uniform “sliding
window” centered around the location of the last accepted setting. For exam-
ple, a proposed a new nugget parameter gν to the correlation function K(·, ·) in
region rν would go as

g∗ν ∼ Unif

(

3

4
gν ,

4

3
gν

)

.

Calculating the corresponding forward and backwards proposal probabilities for
the MH acceptance ratio is straightforward.

For more details about the MCMC algorithm and proposals, etc., please see
the original technical report on Bayesian treed Gaussian process models [14].

B Interfaces and features

The following subsections describe some of the ancillary features of the tgp

package such as the gathering and summarizing of MCMC parameter traces,
the progress meter, and an example of how to use the predict.tgp function in
a collaborative setting.

B.1 Parameter traces

Traces of (almost) all parameters to the tgp model can be collected by supplying
trace=TRUE to the b* functions. In the current version, traces for the linear
prior correlation matrix (W) are not provided. I shall illustrate the gathering
and analyzing of traces through example. But first, a few notes and cautions.

Models which involve treed partitioning may have more than one base model
(GP or LM). The process governing a particular input x depends on the coor-
dinates of x. As such, tgp records region–specific traces of parameters to GP
(and linear) models at the locations enumerated in the XX argument. Even
traces of single–parameter Markov chains can require hefty amounts of storage,
so recording traces at each of the XX locations can be an enormous memory hog.
A related warning will be given if the product of |XX|, (BTE[2]-BTE[1])/BTE[3]
and R is beyond a threshold. The easiest way to keep the storage requirements
for traces down is to control the size of XX and the thinning level BTE[3]. Fi-
nally, traces for most of the parameters are stored in output files. The contents
of the trace files are read into R and stored as data.frame objects, and the files
are removed. The existence of partially written trace files in the current working
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directory (CWD)—while the C code is executing—means that not more than
one tgp run (with trace = TRUE) should be active in the CWD at one time.

Consider again the exponential data. For illustrative purposes I chose XX

locations (where traces are gathered) to be (1) in the interior of the interesting
region, (2) on/near the plausible intersection of partition boundaries, and (3)
in the interior of the flat region. The hierarchical prior bprior = "b0" is used
to leverage a (prior) belief the most of the input domain is uninteresting.

> exp2d.data <- exp2d.rand(n2=150, lh=0, dopt=10)

> X <- exp2d.data$X

> Z <- exp2d.data$Z

> XX <- rbind(c(0,0),c(2,2),c(4,4))

We now fit a treed GP LLM and gather traces, and also gather EI and ALC
statistics for the purposes of illustration. Prediction at the input locations X is
turned off to be thrifty.

> out <- btgpllm(X=X, Z=Z, XX=XX, corr="exp", bprior="b0",

+ pred.n=FALSE, Ds2x=TRUE, R=10,

+ trace=TRUE, verb=0)

Figure 19 shows a dump of out$trace which is a "tgptraces"–class object. It
depicts the full set of parameter traces broken down into the elements of a list:
$XX with GP/LLM parameter traces for each XX location (the parameters are
listed); $hier with traces for (non–input–dependent) hierarchical parameters
(listed); $linarea recording proportions of the input space under the LLM;
$parts with the boundaries of all partitions visited; $post containing (log)
posterior probabilities; preds containing traces of samples from the posterior
predictive distribution and adaptive sampling statistics.

Plots of traces are useful for assessing the mixing of the Markov chain. For
example, Figure 20 plots traces of the range parameter (d) for each of the 3
predictive locations XX. It is easy to see which of the locations is in the same
partition with others, and which have smaller range parameters than others.

The mean area under the LLM can be calculated as

> linarea <- mean(out$trace$linarea$la)

> linarea

[1] 0.5005405

This means that the expected proportion of the input domain under the full LLM
is 0.501. Figure 21 shows a histogram of areas under the LLM. The clumps near
0, 0.25, 0.5, and 0.75 can be thought of as representing quadrants (none, one,
two, and tree) under the LLM. Similarly, we can calculate the probability that
each of the XX locations is governed by the LLM.

> m <- matrix(0, nrow=length(trXX), ncol=3)#ncol=5)

> for(i in 1:length(trXX))
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> out$trace

This 'tgptraces'-class object contains traces of the parameters

to a tgp model. Access is as a list:

1.) $XX contains the traces of GP parameters for 3 predictive

locations

Each of $XX[[1]] ... $XX[[3]] is a data frame with the

columns representing GP parameters:

[1] index lambda s2 tau2 beta0 beta1 beta2 nug

[9] d b ldetK

2.) $hier has a trace of the hierarchical params:

[1] s2.a0 s2.g0 tau2.a0 tau2.g0 beta0 beta1 beta2

[8] d.a0 d.g0 d.a1 d.g1 nug.a0 nug.g0 nug.a1

[15] nug.g1

3.) $linarea has a trace of areas under the LLM. It is a

data frame with columns:

count: number of booleans b=0, indicating LLM

la: area of domain under LLM

ba: area of domain under LLM weighed by dim

4.) $parts contains all of the partitions visited. Use the

tgp.plot.parts.[1d,2d] functions for visuals

5.) $post is a data frame with columns showing the following:

log posterior ($lpost), tree height ($height) and leaves

($leaves), IS weights ($w), tempered log posterior ($tlpost),

inv-temp ($itemp), and weights adjusted for ESS ($wlambda)

6.) $preds is a list containing data.frames for samples from

the posterior predictive distributions data (X) locations

(if pred.n=TRUE: $Zp, $Zp.km, $Zp.ks2) and (XX) locations

(if XX != NULL: $ZZ, $ZZ.km, $ZZ.ks2), with $Ds2x when

input argument ds2x=TRUE, and $improv when improv=TRUE

Figure 19: Listing the contents of "tgptraces"–class objects.
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> trXX <- out$trace$XX; ltrXX <- length(trXX)

> y <- trXX[[1]]$d

> for(i in 2:ltrXX) y <- c(y, trXX[[i]]$d)

> plot(log(trXX[[1]]$d), type="l", ylim=range(log(y)), ylab="log(d)",

+ main="range (d) parameter traces")

> names <- "XX[1,]"

> for(i in 2:ltrXX) {

+ lines(log(trXX[[i]]$d), col=i, lty=i)

+ names <- c(names, paste("XX[", i, ",]", sep=""))

+ }

> legend("bottomleft", names, col=1:ltrXX, lty=1:ltrXX)
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Figure 20: Traces of the (log of the) first range parameter for each of the three XX locations

+ m[i,] <- as.double(c(out$XX[i,], mean(trXX[[i]]$b)))

> m <- data.frame(cbind(m, 1-m[,3]))

> names(m)=c("XX1","XX2","b","pllm")

> m

XX1 XX2 b pllm

1 0 0 1.00000 0.00000

2 2 2 0.78504 0.21496

3 4 4 0.24184 0.75816

The final column above represents the probability that the corresponding XX

location is under the LLM (which is equal to 1-b).
Traces of posterior predictive and adaptive sampling statistics are contained

in the $preds field. For example, Figure 22 shows samples of the ALC statistic
∆σ2(x̃). We can see from the trace that statistic is generally lowest for XX[3,]
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> hist(out$trace$linarea$la)

Histogram of out$trace$linarea$la
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Figure 21: Histogram of proportions of the area of the input domain under the LLM

which is in the uninteresting region, and that there is some competition between
XX[2,] which lies on the boundary between the regions, and XX[1,] which is
in the interior of the interesting region. Similar plots can be made for the other
adaptive sampling statistics (i.e., ALM & EI).

B.2 Explaining the progress meter

The progress meter shows the state of the MCMC as it iterates through the
desired number of rounds of burn–in (BTE[1]), and sampling (BTE[2]-BTE[1]),
for the requested number of repeats (R-1). The verbosity of progress meter
print statements is controlled by the verb arguments to the b* functions. Pro-
viding verb=0 silences all non–warning (or error) statements. To suppress warn-
ings, try enclosing commands within suppressWarnings(...), or globally set
options(warn=0). See the help file (?options) for more global warning set-
tings.

The default verbosity setting (verb=1) shows all grows and prunes, and a
summary of d–(range) parameters for each partition every 1000 rounds. Higher
verbosity arguments will show more tree operations, e.g., change and swap,
etc. Setting verb=2 will cause an echo of the tgp model parameters and their
starting values; but is otherwise the same as verb=1. The max is verb=4 shows
all successful tree operations. Here is an example grow statement.

**GROW** @depth 2: [0,0.05], n=(10,29)

The *GROW* statements indicate the depth of the split leaf node; the splitting
dimension u and location v is shown between square brackets [u,v], followed
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> trALC <- out$trace$preds$Ds2x

> y <- trALC[,1]

> for(i in 2:ncol(trALC)) y <- c(y, trALC[,i])

> plot(log(trALC[,1]), type="l", ylim=range(log(y)), ylab="Ds2x",

+ main="ALC: samples from Ds2x")

> names <- "XX[1,]"

> for(i in 2:ncol(trALC)) {

+ lines(log(trALC[,i]), col=i, lty=i)

+ names <- c(names, paste("XX[", i, ",]", sep=""))

+ }

> legend("bottomright", names, col=1:ltrXX, lty=1:ltrXX)
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Figure 22: Traces of the (log of the) samples for the ALC statistic ∆σ2(x̃) at for each of the
three XX locations

by the size of the two new children n=(n1,n2). *PRUNE* is about the same,
without printing n=(n1,n2).

Every 1000 rounds a progress indicator is printed. Its format depends on
a number of things: (1) whether parallelization is turned on or not, (2) the
correlation model [isotropic or separable], (3) whether jumps to the LLM are
allowed. Here is an example with the 2-d exp data with parallel prediction under
the separable correlation function:

(r,l)=(5000,104) d=[0.0144 0.0236] [1.047 0/0.626]; mh=2 n=(59,21)

The first part (r,l)=(5000,104) is indicating the MCMC round number
r=5000 and the number of leaves waiting to be "consumed" for prediction by
the parallel prediction thread. When parallelization is turned off (default), the
print will simply be "r=5000".
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The second part is a printing of the d–(range) parameter to a separable
correlation function. For 2 partitions there are two sets of square brackets.
Inside the square brackets is the mX (2 in this case) range parameters for the
separable correlation function. Whenever the LLM governs one of the input
dimensions a zero will appear. I.e., the placement of 0/0.626 indicates the
LLM is active in the 2nd dimension of the 2nd partition. 0.626 is the d–(range)
parameter that would have been used if the LLM were inactive. Whenever all
dimensions are under the LLM, the d-parameter print is simply [0]. This also
happens when forcing the LLM (i.e., for blm and btlm), where [0] appears for
each partition. These prints will look slightly different if the isotropic instead
of separable correlation is used, since there are not as many range parameters.

B.3 Collaboration with predict.tgp

In this section I revisit the motorcycle accident data in order to demonstrate how
the predict.tgp function can be helpful in collaborative uses of tgp. Consider
a fit of the motorcycle data, and suppose that infer the model parameters only
(obtaining no samples from the posterior predictive distribution). The "tgp"-
class output object can be saved to a file using the R–internal save function.

> library(MASS)

> out <- btgpllm(X=mcycle[,1], Z=mcycle[,2], bprior="b0",

+ pred.n=FALSE, verb=0)

> save(out, file="out.Rsave")

> out <- NULL

Note that there is nothing to plot here because there is no predictive data.
(out <- NULL is set for illustrative purposes.)

Now imagine e–mailing the “out.Rsave” file to a collaborator who wishes
to use your fitted tgp model. S/he could first load in the "tgp"–class object
we just saved, design a new set of predictive locations XX and obtain kriging
estimates from the MAP model.

> load("out.Rsave")

> XX <- seq(2.4, 56.7, length=200)

> out.kp <- predict(out, XX=XX, pred.n=FALSE)

Another option would be to sample from the posterior predictive distribution
of the MAP model.

> out.p <- predict(out, XX=XX, pred.n=FALSE, BTE=c(0,1000,1))

This holds the parameterization of the tgp model fixed at the MAP, and samples
from the GP or LM posterior predictive distributions at the leaves of the tree.

Finally, the MAP parameterization can be used as a jumping-off point for
more sampling from the joint posterior and posterior predictive distribution.

> out2 <- predict(out, XX, pred.n=FALSE, BTE=c(0,2000,2), MAP=FALSE)
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> plot(out.kp, center="km", as="ks2")
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> plot(out.p)
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> plot(out2)
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Figure 23: Predictive surfaces (left) and error/variance plots (right) resulting from three
different uses of the predict.tgp function: MAP kriging (top), sampling from the MAP
(middle), sampling from the joint posterior and posterior predictive starting from the MAP
(bottom).
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Since the return–value of a predict.tgp call is also a "tgp"–class object the pro-
cess can be applied iteratively. That is, out2 can also be passed to predict.tgp.

Figure 23 plots the posterior predictive surfaces for each of the three calls to
predict.tgp above. The kriging surfaces are smooth within regions of the par-
tition, but the process is discontinuous across partition boundaries. The middle
surface is simply a Monte Carlo–sample summarization of the kriging one above
it. The final surface summarizes samples from the posterior predictive distri-
bution when obtained jointly with samples from T |θ and θ|T . Though these
summaries are still “noisy” they depict a process with smoother transitions across
partition boundaries than ones conditioned only on the MAP parameterization.

Finally, the predict.tgp function can also sample from the ALC statistic
and calculate expected improvements (EI) at the XX locations. While the func-
tion was designed with prediction in mind, it is actually far more general. It
allows a continuation of MCMC sampling where the b* function left off (when
MAP=FALSE) with a possibly new set of predictive locations XX. The intended use
of this function is to obtain quick kriging–style predictions for a previously-fit
MAP estimate (contained in a "tgp"-class object) on a new set of predictive
locations XX. However, it can also be used simply to extend the search for an
MAP model when MAP=FALSE, pred.n=FALSE, and XX=NULL.

C Configuration and performance optimization

In what follows I describe customizations and enhancements that can be made
to tgp at compile time in order to take advantage of custom computing archi-
tectures. The compilation of tgp with a linear algebra library different from the
one used to compile R (e.g., ATLAS), and the configuration and compilation of
tgp with parallelization is described in detail.

C.1 Linking to ATLAS

ATLAS [32] is supported as an alternative to standard BLAS and LAPACK for fast,
automatically tuned, linear algebra routines. If you know that R has already
been linked to tuned linear algebra libraries (e.g., on OSX), then compiling with
ATLAS as described below, is unnecessary—just install tgp as usual. As an
alternative to linking tgp to ATLAS directly, one could re-compile all of R linking
it to ATLAS, or some other platform–specific BLAS/Lapack, i.e., Intel’s Math
Kernel Library, or AMD’s Core Math Library, as described in:

http://cran.r-project.org/doc/manuals/R-admin.html

Look for the section titled “Linear Algebra”. While this is arguably best solu-
tion since all of R benefits, the task can prove challenging to accomplish and
may require administrator (root) privileges. Linking tgp with ATLAS directly is
described here.

GP models implemented in tgp can get a huge benefit from tuned linear
algebra libraries, since the MCMC requires many large matrix multiplications
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and inversions (particularly of K). In some cases the improvement can be as
large as tenfold with ATLAS as compared to the default R linear algebra routines.
Comparisons between ATLAS and architecture specific libraries like MKL for Intel
or veclib for OSX usually show the latter favorably, though the difference is less
impressive. For example, see

http://www.intel.com/cd/software/products/asmo-na/eng/266858.htm

for a comparison to MKL on several typical benchmarks.
Three easy steps (assuming, of course, you have already compiled and in-

stalled ATLAS – http://math-atlas.sourceforge.net) need to be performed
before you install the tgp package from source.

1. Edit src/Makevars. Comment out the existing PKG_LIBS line, and replace
it with:

PKG_LIBS = -L/path/to/ATLAS/lib -llapack -lcblas -latlas

You may need replace -llapack -lcblas -latlas with whatever ATLAS
recommends for your OS. (See ATLAS README.) For example, if your
ATLAS compilation included F77 support, you may need to add "-lF77blas",
if you compiled with Pthreads, you would might use

-llapack -lptcblas -lptf77blas -latlas

2. Continue editing src/Makevars. Add:

PKG_CFLAGS = -I/path/to/ATLAS/include

3. Edit src/linalg.h and comment out lines 40 & 41:

/*#define FORTPACK

#define FORTBLAS*/

Now simply install the tgp package as usual. Reverse the above instructions to
disable ATLAS. Don’t forget to re-install the package when you’re done. Similar
steps can be taken for platform specific libraries like MKL, leaving off step 3.

C.2 Parallelization with Pthreads

After conditioning on the tree and parameters ({T ,θ}), prediction can be par-
allelized by using a producer/consumer model. This allows the use of PThreads
in order to take advantage of multiple processors, and get speed-ups of at least
a factor of two. This is particularly relevant since dual processor workstations
and multi-processor servers are becoming commonplace in modern research labs.
However, multi–processors are not yet ubiquitous, so parallel–tgp is not yet the
default. Using the parallel version will be slower than the non–parallel (serial)
version on a single processor machine.

Enabling parallelization requires two simple steps, and then a re–install.
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1. Add -DPARALLEL to PKG_CXXFLAGS of src/Makevars

2. You may need to add -pthread to PKG_LIBS of src/Makevars, or whatever
is needed by your compiler in order to correctly link code with PThreads.

The biggest improvement in the parallel version, over the serial, is observed
when calculating ALC statistics, which require O(n2

2
) time for n2 predictive

locations, or when calculating ALM (default) or EI statistics on predictive lo-
cations whose number (n2) is at least an order of magnitude larger (n2 ≫ n1)
than the number of input locations (n1).

Parallel sampling of the posterior of θ|T for each of the {θν}Rν=1
is also

possible. However, the speed-up in this second case is less impressive, and so is
not supported by the current version of the tgp package.
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