## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE) ## ----eval=FALSE--------------------------------------------------------------- # fcs <- feature_columns(column_numeric("drat")) # input <- input_fn(mtcars, response = "mpg", features = c("drat", "cyl"), batch_size = 8L) # lr <- linear_regressor( # feature_columns = fcs # ) %>% train( # input_fn = input, # steps = 2, # hooks = list( # hook_progress_bar() # )) ## ----eval=FALSE--------------------------------------------------------------- # lr <- linear_regressor(feature_columns = fcs) # training_history <- train( # lr, # input_fn = input, # steps = 4, # hooks = list( # hook_history_saver(every_n_step = 2) # )) ## ----eval=FALSE--------------------------------------------------------------- # mean_losses_history <<- NULL # hook_history_saver_custom <- function(every_n_step) { # # iter_count <<- 0 # # session_run_hook( # # before_run = function(context) { # session_run_args( # losses = context$session$graph$get_collection("losses") # ) # }, # # after_run = function(context, values) { # iter_count <<- iter_count + 1 # print(paste0("Running step: ", iter_count)) # if (iter_count %% every_n_step == 0) { # raw_losses <- values$results$losses[[1]] # mean_losses_history <<- c(mean_losses_history, mean(raw_losses)) # } # } # ) # } ## ----eval=FALSE--------------------------------------------------------------- # lr <- linear_regressor( # feature_columns = fcs # ) %>% train( # input_fn = input, # steps = 4, # hooks = list( # hook_history_saver_custom(every_n_step = 1) # ))