## ----setup, include=FALSE----------------------------------------------------- library(tfestimators) knitr::opts_chunk$set(echo = TRUE) knitr::opts_chunk$set(eval = FALSE) ## ----------------------------------------------------------------------------- # parsing_spec <- classifier_parse_example_spec( # feature_columns = column_numeric('a'), # label_key = 'b', # weight_column = 'c' # ) ## ----------------------------------------------------------------------------- # expected_spec <- list( # a = tf$python$ops$parsing_ops$FixedLenFeature(reticulate::tuple(1L), dtype = tf$float32), # c = tf$python$ops$parsing_ops$FixedLenFeature(reticulate::tuple(1L), dtype = tf$float32), # b = tf$python$ops$parsing_ops$FixedLenFeature(reticulate::tuple(1L), dtype = tf$int64) # ) # # # This should be the same as the one we constructed using `classifier_parse_example_spec` # testthat::expect_equal(parsing_spec, expected_spec) ## ----------------------------------------------------------------------------- # fcs <- feature_columns(...) # # model <- dnn_classifier( # n_classes = 1000, # feature_columns = fcs, # weight_column = 'example-weight', # label_vocabulary= c('photos', 'keep', ...), # hidden_units = c(256, 64, 16) # ) ## ----------------------------------------------------------------------------- # parsing_spec <- classifier_parse_example_spec( # feature_columns = fcs, # label_key = 'my-label', # label_dtype = tf$string, # weight_column = 'example-weight' # ) # ## ----------------------------------------------------------------------------- # input_fn_train <- function() { # features <- tf$contrib$learn$read_batch_features( # file_pattern = train_files, # batch_size = batch_size, # features = parsing_spec, # reader = tf$RecordIOReader) # labels <- features[["my-label"]] # return(list(features, labels)) # } ## ----------------------------------------------------------------------------- # train(model, input_fn = input_fn_train)