## ----setup, include=FALSE----------------------------------------------------- knitr::opts_chunk$set(echo = TRUE, eval = FALSE) ## ----------------------------------------------------------------------------- # input <- input_fn(mtcars, # features = c("drat", "mpg", "am"), # response = "vs", # batch_size = 128, # epochs = 3) ## ----------------------------------------------------------------------------- # input <- input_fn(vs ~ drat + mpg + am, data = mtcars, # batch_size = 128, # epochs = 3) ## ----------------------------------------------------------------------------- # cols <- feature_columns( # column_numeric("drat"), # column_indicator("am") # ) ## ----------------------------------------------------------------------------- # # construct feature columns # linear_feature_columns <- feature_columns(column_numeric("mpg")) # dnn_feature_columns <- feature_columns(column_numeric("drat")) # # # generate classifier # classifier <- # dnn_linear_combined_classifier( # linear_feature_columns = linear_feature_columns, # dnn_feature_columns = dnn_feature_columns, # dnn_hidden_units = c(3, 3), # dnn_optimizer = "Adagrad" # ) ## ----------------------------------------------------------------------------- # classifier %>% # train(input_fn = input, steps = 2) ## ----------------------------------------------------------------------------- # predictions <- predict(classifier, input_fn = input) ## ----------------------------------------------------------------------------- # predictions <- predict( # classifier, # input_fn = input, # predict_keys = "probabilities") ## ----------------------------------------------------------------------------- # predictions <- predict( # classifier, # input_fn = input, # predict_keys = "logistic") ## ----------------------------------------------------------------------------- # saved_model_dir <- model_dir(classifier) ## ----------------------------------------------------------------------------- # library(tfestimators) # linear_feature_columns <- feature_columns(column_numeric("mpg")) # dnn_feature_columns <- feature_columns(column_numeric("drat")) # # loaded_model <- # dnn_linear_combined_classifier( # linear_feature_columns = linear_feature_columns, # dnn_feature_columns = dnn_feature_columns, # dnn_hidden_units = c(3, 3), # dnn_optimizer = "Adagrad", # model_dir = saved_model_dir # ) # loaded_model