Package 'tensorflow'

April 15, 2024

Type Package

Title R Interface to 'TensorFlow'

Version 2.16.0

Description Interface to 'TensorFlow' <https://www.tensorflow.org/>, an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more 'CPUs' or 'GPUs' in a desktop, server, or mobile device with a single 'API'. 'TensorFlow' was originally developed by researchers and engineers working on the Google Brain Team within Google's Machine Intelligence research organization for the purposes of conducting machine learning and deep neural networks research, but the system is general enough to be applicable in a wide variety of other domains as well.

License Apache License 2.0

URL https://github.com/rstudio/tensorflow

BugReports https://github.com/rstudio/tensorflow/issues

SystemRequirements TensorFlow (https://www.tensorflow.org/)

Encoding UTF-8

Depends R (>= 3.6)

Imports config, processx, reticulate (>= 1.32), tfruns (>= 1.0), utils, yaml, grDevices, tfautograph (>= 0.3.1), rstudioapi (>= 0.7), lifecycle

Suggests testthat (>= 2.1.0), keras3, pillar, withr, callr

RoxygenNote 7.3.1

NeedsCompilation no

Author JJ Allaire [aut, cph], Tomasz Kalinowski [ctb, cph, cre], Daniel Falbel [ctb, cph], Dirk Eddelbuettel [ctb, cph], Yuan Tang [aut, cph] (<https://orcid.org/0000-0001-5243-233X>), Nick Golding [ctb, cph], Google Inc. [ctb, cph] (Examples and Tutorials), Posit, PBC [cph, fnd]

Maintainer Tomasz Kalinowski <tomasz.kalinowski@posit.co>

Repository CRAN

Date/Publication 2024-04-15 16:30:02 UTC

R topics documented:

all_dims	2
as_tensor	3
evaluate	4
install_tensorflow	4
parse_arguments	7
parse_flags	7
set_random_seed	8
shape	9
tensorboard	11
tensorflow	13
tf	14
tf_extract_opts	14
tf_function	15
tf_probability	16
use_compat	17
use_session_with_seed	17
view_savedmodel	18
[.tensorflow.tensor	19
	22

Index

all_dims

All dims

Description

This function returns an object that can be used when subsetting tensors with [. If you are familiar with python,, this is equivalent to the python Ellipsis ..., (not to be confused with ... in R).

Usage

all_dims()

as_tensor

Examples

```
## Not run:
# in python, if x is a numpy array or tensorflow tensor
x[..., i]
# the ellipsis means "expand to match number of dimension of x".
# to translate the above python expression to R, write:
x[all_dims(), i]
```

End(Not run)

as_tensor

as_tensor

Description

Coerce objects to tensorflow tensors (potentially of a specific dtype or shape). The provided default methods will call tf\$convert_to_tensor. Depending on arguments supplied it may also call some combination of

- tf\$saturate_cast or tf\$cast
- tf\$fill or tf\$reshape

Usage

```
as_tensor(x, dtype = NULL, ..., name = NULL)
## Default S3 method:
as_tensor(x, dtype = NULL, ..., shape = NULL, name = NULL)
## S3 method for class 'double'
as_tensor(x, dtype = NULL, ..., name = NULL)
```

Arguments

х	object to convert
dtype	NULL, a tensorflow dtype (tf $$int32$), or something coercible to one (e.g. a string "int32")
,	ignored
name	NULL or a string. Useful for debugging in graph mode, ignored while in eager mode.
shape	an integer vector, tensor, or tf.TensorShape. Can contain up to 1 unspecified dimension, encoded as a -1 or NA. This will reshape x using row-major (C-style) semantics. It will prefer reshaping using non-graph operations if possible, but will otherwise invoke tf\$reshape(). If x is a scalar and the requested shape is fully defined or a tensor, the value of x will be recycled to fill a tensor of the requested shape (it will dispatch to tf\$fill()).

Value

a tensorflow tensor

Examples

```
## Not run:
as_tensor(42, "int32")
as_tensor(as_tensor(42))
```

End(Not run)

evaluate

Evaluate a Model

Description

Evaluate a model object. See implementations in the keras3 package.

Usage

```
evaluate(object, ...)
```

Arguments

object	An evaluatable R object.
	Optional arguments passed on to implementing methods.

Implementations

• keras3

install_tensorflow Install TensorFlow and its dependencies

Description

install_tensorflow() installs just the tensorflow python package and it's direct dependencies. For a more complete installation that includes additional optional dependencies, use keras3::install_keras().

4

install_tensorflow

Usage

```
install_tensorflow(
  method = c("auto", "virtualenv", "conda"),
  conda = "auto",
  version = "default",
  envname = "r-tensorflow",
  extra_packages = NULL,
  restart_session = TRUE,
  conda_python_version = NULL,
  ...,
  cuda = NULL,
  metal = FALSE,
  pip_ignore_installed = FALSE,
  new_env = identical(envname, "r-tensorflow"),
  python_version = NULL
)
```

Arguments

method	Installation method. By default, "auto" automatically finds a method that will work in the local environment. Change the default to force a specific installation method. Note that the "virtualenv" method is not available on Windows.
conda	The path to a conda executable. Use "auto" to allow reticulate to automatically find an appropriate conda binary. See Finding Conda and conda_binary() for more details.
version	TensorFlow version to install. Valid values include:
	• "default" installs 2.16
	• "release" installs the latest release version of tensorflow (which may be incompatible with the current version of the R package)
	• A version specification like "2.4" or "2.4.0". Note that if the patch version is not supplied, the latest patch release is installed (e.g., "2.4" today installs version "2.4.2")
	 nightly for the latest available nightly build.
	 To any specification, you can append "-cpu" to install the cpu version only of the package (e.g., "2.4-cpu")
	• The full URL or path to a installer binary or python *.whl file.
envname	The name, or full path, of the environment in which Python packages are to be installed. When NULL (the default), the active environment as set by the RETICULATE_PYTHON_ENV variable will be used; if that is unset, then the r-reticulate environment will be used.
extra_packages	Additional Python packages to install along with TensorFlow.
restart_session	
	Restart R session after installing (note this will only occur within RStudio).
	other arguments passed to reticulate::conda_install() or reticulate::virtualenv_install(), depending on the method used.

cuda	logical TRUE or FALSE. If install_tensorflow() detects the platform is Linux, an Nvidia GPU is available, and the TensorFlow version is 2.14 (the default), it will install also install the required CUDA libraries through pip.
metal	Whether to install tensorflow-metal pip package on Arm Macs. This en- ables tensorflow to use the GPU. Pass a string to install a specific version like "tensorflow-metal==0.7.*.
<pre>pip_ignore_inst</pre>	alled
	Whether pip should ignore installed python packages and reinstall all already installed python packages.
new_env	If TRUE, any existing Python virtual environment and/or conda environment specified by envname is deleted first.
python_version,	conda_python_version
	Pass a string like "3.8" to request that conda install a specific Python version. This is ignored when attempting to install in a Python virtual environment. Note that the Python version must be compatible with the requested Tensorflow ver- sion, documented here: https://www.tensorflow.org/install/pip#system-requirements

Details

You may be prompted to download and install miniconda if reticulate did not find a non-system installation of python. Miniconda is the recommended installation method for most users, as it ensures that the R python installation is isolated from other python installations. All python packages will by default be installed into a self-contained conda or venv environment named "r-reticulate". Note that "conda" is the only supported method on M1 Mac.

If you initially declined the miniconda installation prompt, you can later manually install miniconda by running reticulate::install_miniconda().

Custom Installation

install_tensorflow() or keras3::install_keras() isn't required to use tensorflow with the package. If you manually configure a python environment with the required dependencies, you can tell R to use it by pointing reticulate at it, commonly by setting an environment variable:

Sys.setenv("RETICULATE_PYTHON" = "~/path/to/python-env/bin/python")

Apple Silicon

Beginning with Tensorflow version 2.13, the default tensorflow package now works on Apple Silicon. See https://developer.apple.com/metal/tensorflow-plugin/ for instructions on how to install older versions of Tensorflow on macOS. Please note that not all operations are supported on Arm Mac GPUs. You can work around the missing operations by pinning operations to CPU. For example:

```
x <- array(runif(64*64), c(1, 64, 64))
keras3::layer_random_rotation(x, .5) # Error:
# No registered 'RngReadAndSkip' OpKernel for 'GPU' devices
# Pin the operation to the CPU to avoid the error
with(tf$device("CPU"), keras3::layer_random_rotation(x, .5) ) # No Error</pre>
```

parse_arguments

Additional Packages

If you wish to add additional PyPI packages to your Keras / TensorFlow environment you can either specify the packages in the extra_packages argument of install_tensorflow() or install_keras(), or alternatively install them into an existing environment using the reticulate::py_install() function. Note that install_keras() includes a set of additional python packages by default, see ?keras3::install_keras for details.

See Also

- keras3::install_keras()
- https://tensorflow.rstudio.com/reference/tensorflow/install_tensorflow

parse_arguments Parse Command Line Arguments

Description

Parse command line arguments of the form --key=value and --key value. The values are assumed to be valid yaml and will be converted using yaml.load().

Usage

parse_arguments(arguments = NULL)

Arguments

arguments	A vector of command line arguments. When NULL (the default), the command
	line arguments received by the current R process are used.

parse_flags Parse Configuration Flags for a TensorFlow Application

Description

Parse configuration flags for a TensorFlow application. Use this to parse and unify the configuration(s) specified through a flags.yml configuration file, alongside other arguments set through the command line.

Usage

```
parse_flags(
    config = Sys.getenv("R_CONFIG_ACTIVE", unset = "default"),
    file = "flags.yml",
    arguments = commandArgs(TRUE)
)
```

Arguments

config	The configuration to use. Defaults to the active configuration for the current environment (as specified by the R_CONFIG_ACTIVE environment variable), or default when unset.
file	The configuration file to read.
arguments	The command line arguments (as a character vector) to be parsed.

Value

A named R list, mapping configuration keys to values.

Examples

```
## Not run:
# examine an example configuration file provided by tensorflow
file <- system.file("examples/config/flags.yml", package = "tensorflow")
cat(readLines(file), sep = "\n")
# read the default configuration
FLAGS <- tensorflow::parse_flags("default", file = file)</pre>
```

```
str(FLAGS)
```

```
# read the alternate configuration: note that
# the default configuration is inherited, but
# we override the 'string' configuration here
FLAGS <- tensorflow::parse_flags("alternate", file = file)
str(FLAGS)
```

```
# override configuration values using command
# line arguments (normally, these would be
# passed in through the command line invocation
# used to start the process)
FLAGS <- tensorflow::parse_flags(
    "alternate",
    file = file,
    arguments = c("--foo=1")
)
str(FLAGS)
```

End(Not run)

set_random_seed Set random seed for TensorFlow

Description

Sets all random seeds needed to make TensorFlow code reproducible.

shape

Usage

set_random_seed(seed, disable_gpu = TRUE)

Arguments

seed	A single value, interpreted as an integer
disable_gpu	TRUE to disable GPU execution (see <i>Parallelism</i> below).

Details

This function should be used instead of use_session_with_seed() if you are using TensorFlow >= 2.0, as the concept of session doesn't really make sense anymore.

This functions sets:

- The R random seed with set.seed().
- The python and Numpy seeds via (reticulate::py_set_seed()).
- The TensorFlow seed with (tf\$random\$set_seed())

It also optionally disables the GPU execution as this is a potential source of non-reproducibility.

shape

Create a tf. TensorShape object

Description

Create a tf. TensorShape object

Usage

shape(..., dims = list(...))

Arguments

	Tensor dimensions as integers or NULL for an unknown dimensions. NA and -1 are synonyms for NULL.
dims	Tensor dimensions as a vector.

See Also

https://www.tensorflow.org/api_docs/python/tf/TensorShape

Examples

Not run:

```
# --- construct ---
shape() # tf.TensorShape()
                                       # scalar
shape(NULL) # tf.TensorShape([None]) # 1-D array of unknown length
shape(NA) # tf.TensorShape([None]) # 1-D array of unknown length, NA is a synonym for NULL
shape(dims = NULL) # TensorShape(None)
                                          # Unknown rank, unknown size
                  # TensorShape([3, 4]) # 2-D array (matrix) with 3 rows, 4 columns
shape(3, 4)
                  # TensorShape([None, 4]) # 2-D array (matrix) with unknown rows, 4 columns
shape(NA, 4)
shape(dims = c(NA, 4)) # TensorShape([None, 4]) # same as above; bypass ... and pass dims directly
# --- inspect ---
length(shape(dims = NULL)) # NA_integer_
length(shape(1,2,3,NA))
                        # 4L
# ---convert ---
x <- shape(dims = list(3L, 5L))</pre>
as.list(x) # list(3L, 5L)
as.integer(x) # c(3L, 5L)
as.numeric(x) # c(3, 5)
as.double(x) # c(3, 5) # alias for as.numeric
as_tensor(x) # tf.Tensor([3 5], shape=(2,), dtype=int32)
# convert partially undefined shapes
x <- shape(NA, 3)
            # list(NULL, 3L)
as.list(x)
as.integer(x) # c(NA, 3L)
as_tensor(x) # tf.Tensor([-1 3], shape=(2,), dtype=int32) # unspecified dims default is -1
# as_tensor() converts undefined dimensions to -1, which is useful for
# tf functions that only accept tensors for shapes, e.g,
tf$reshape(tf$zeros(shape(8)),
          as_tensor(shape(NA, 4)))
# tf.Tensor([[0. 0. 0. 0.]
            [0. 0. 0. 0.]], shape=(2, 4), dtype=float32)
#
# converting fully unknown shapes raises an error
try(as.list(shape(dims = NULL))) # ValueError: as_list() is not defined on an unknown TensorShape.
# test for rank first if this a concern:
as.list_or_null <- function(x) if(is.na(length(x))) NULL else as.list(x)
as.list_or_null(shape(dims = NULL))
# --- compare ---
# Fully known shapes return TRUE if and only if each element is equal
shape(3, 4) == shape(3, 4) \# TRUE
shape(3, 4) = shape(4, 4) # FALSE
# two unknown dimensions are treated as equal
shape(NA, 4) == shape(NA, 4) # TRUE
```

10

tensorboard

```
shape(NA, 4) == shape(3, 4) # FALSE
# Two unknown shapes, return TRUE
shape(dims = NULL) == shape(dims = NULL) # TRUE
# Comparing an unknown shape to a partially or fully defined shape returns FALSE
shape(dims = NULL) == shape(NULL) # FALSE
shape(dims = NULL) == shape(4)
                                    # FALSE
values of length greater than one supplied to `...` are automatically flattened
shape(1, c(2, 3), 4) # shape(1, 2, 3, 4)
shape(1, shape(2, 3), 4) # shape(1, 2, 3, 4)
shape(1, as_tensor(2, 3), 4) # shape(1, 2, 3, 4)
# --- extract or replace ---
# regular R-list semantics for `[`, `[[`, `[<-`, `[[<-`</pre>
x <- shape(1, 2, 3)
x[1]
           # TensorShape([1])
x[[1]]
           # 1L
x[2:3]
           # TensorShape([2, 3])
x[-1]
          # TensorShape([2, 3])
                 ; x # TensorShape([11, 2, 3])
x[1] <- 11
x[1] <- shape(11) ; x # TensorShape([11, 2, 3])</pre>
x[1] <- list(11) ; x # TensorShape([11, 2, 3])</pre>
x[[1]] <- 22 ; x # TensorShape([22, 2, 3])
x[1:2] <- c(NA, 99) ; x # TensorShape([None, 99, 3])</pre>
x[1:2] <- shape(33, 44) ; x # TensorShape([33, 44, 3])
# --- concatenate ---
c(shape(1), shape(2, 3), shape(4, NA)) # TensorShape([1, 2, 3, 4, None])
# --- merge ---
merge(shape(NA, 2),
      shape(1 , 2)) # TensorShape([1, 2])
try(merge(shape(2, 2),
           shape(1, 2))) # ValueError: Shapes (2, 2) and (1, 2) are not compatible
rm(x) # cleanup
## End(Not run)
```

tensorboard

TensorBoard Visualization Tool

Description

TensorBoard is a tool inspecting and understanding your TensorFlow runs and graphs.

Usage

```
tensorboard(
  log_dir,
  action = c("start", "stop"),
  host = "127.0.0.1",
  port = "auto",
  launch_browser = getOption("tensorflow.tensorboard.browser", interactive()),
  reload_interval = 5,
  purge_orphaned_data = TRUE
)
```

Arguments

log_dir	Directories to scan for training logs. If this is a named character vector then the specified names will be used as aliases within TensorBoard.
action	Specify whether to start or stop TensorBoard (TensorBoard will be stopped automatically when the R session from which it is launched is terminated).
host	Host for serving TensorBoard
port	Port for serving TensorBoard. If "auto" is specified (the default) then an unused port will be chosen automatically.
launch_browser	Open a web browser for TensorBoard after launching. Defaults to TRUE in inter- active sessions. When running under RStudio uses an RStudio window by de- fault (pass a function e.g. utils::browseURL() to open in an external browser). Use the tensorflow.tensorboard.browser option to establish a global de- fault behavior.
reload_interval	
	How often the backend should load more data.
purge_orphaned_	data
	Whether to purge data that may have been orphaned due to TensorBoard restarts. Disabling purge_orphaned_data can be used to debug data disappearance.

Details

When TensorBoard is passed a logdir at startup, it recursively walks the directory tree rooted at logdir looking for subdirectories that contain the front data. Every time it encounters such a subdirectory, it loads it as a new run, and the front will organize the data accordingly.

The TensorBoard process will be automatically destroyed when the R session in which it is launched exits. You can pass action = "stop" to manually terminate TensorBoard.

Value

URL for browsing TensorBoard (invisibly).

12

tensorflow

Description

TensorFlow is an open source software library for numerical computation using data flow graphs. Nodes in the graph represent mathematical operations, while the graph edges represent the multidimensional data arrays (tensors) communicated between them. The flexible architecture allows you to deploy computation to one or more CPUs or GPUs in a desktop, server, or mobile device with a single API.

Details

The TensorFlow API is composed of a set of Python modules that enable constructing and executing TensorFlow graphs. The tensorflow package provides access to the complete TensorFlow API from within R.

For additional documentation on the tensorflow package see https://tensorflow.rstudio.com

Author(s)

Maintainer: Tomasz Kalinowski <tomasz.kalinowski@posit.co>[contributor, copyright holder] Authors:

- JJ Allaire [copyright holder]
- Yuan Tang <terrytangyuan@gmail.com> (ORCID) [copyright holder]

Other contributors:

- Daniel Falbel <daniel@posit.co> [contributor, copyright holder]
- Dirk Eddelbuettel <edd@debian.org> [contributor, copyright holder]
- Nick Golding <nick.golding.research@gmail.com> [contributor, copyright holder]
- Google Inc. (Examples and Tutorials) [contributor, copyright holder]
- Posit, PBC [copyright holder, funder]

See Also

Useful links:

- https://github.com/rstudio/tensorflow
- Report bugs at https://github.com/rstudio/tensorflow/issues

Description

Interface to main TensorFlow module. Provides access to top level classes and functions as well as sub-modules (e.g. tf\$nn, tf\$contrib\$learn, etc.).

Usage

tf

Format

TensorFlow module

Examples

Not run: library(tensorflow) hello <- tf\$constant('Hello, TensorFlow!') zeros <- tf\$Variable(tf\$zeros(shape(1L))) tf\$print(hello)

tf\$print(zeros)

```
## End(Not run)
```

tf_extract_opts Tensor extract options

Description

Tensor extract options

Usage

```
tf_extract_opts(
   style = getOption("tensorflow.extract.style"),
   ...,
   one_based = getOption("tensorflow.extract.one_based", TRUE),
   inclusive_stop = getOption("tensorflow.extract.inclusive_stop", TRUE),
   disallow_out_of_bounds = getOption("tensorflow.extract.dissallow_out_of_bounds", TRUE),
   warn_tensors_passed_asis = getOption("tensorflow.extract.warn_tensors_passed_asis",
        TRUE),
   warn_negatives_pythonic = getOption("tensorflow.extract.warn_negatives_pythonic", TRUE)
)
```

tf

tf_function

Arguments

style	one of NULL (the default) "R" or "python". If supplied, this overrides all other options. "python" is equivalent to all the other arguments being FALSE. "R" is equivalent to warn_tensors_passed_asis and warn_negatives_pythonic set to FALSE	
	ignored	
one_based	TRUE or FALSE, if one-based indexing should be used	
inclusive_stop	TRUE or FALSE, if slices like start: stop should be inclusive of stop	
disallow_out_of_bounds		
	TRUE or FALSE, whether checks are performed on the slicing index to ensure	
	it is within bounds.	
warn_tensors_passed_asis		
	TRUE or FALSE, whether to emit a warning the first time a tensor is supplied	
	to [that tensors are passed as-is, with no R to python translation	
warn_negatives_pythonic		
	TRUE or FALSE, whether to emit a warning the first time a negative number is supplied to [about the non-standard (python-style) interpretation	

Value

an object with class "tf_extract_opts", suitable for passing to [.tensorflow.tensor()

Examples

```
## Not run:
x <- tf$constant(1:10)
opts <- tf_extract_opts("R")
x[1, options = opts]
# or for more fine-grained control
opts <- tf_extract_opts(
    one_based = FALSE,
    warn_tensors_passed_asis = FALSE,
    warn_negatives_pythonic = FALSE
)
x[0:2, options = opts]
## End(Not run)
```

tf_function

Creates a callable TensorFlow graph from an R function.

Description

tf_function constructs a callable that executes a TensorFlow graph created by tracing the TensorFlow operations in f. This allows the TensorFlow runtime to apply optimizations and exploit parallelism in the computation defined by f.

Usage

```
tf_function(f, input_signature = NULL, autograph = TRUE, ...)
```

Arguments

f	the function to be compiled
input_signatu	re
	A possibly nested sequence of tf\$TensorSpec objects specifying the shapes and dtypes of the tensors that will be supplied to this function. If NULL, a separate function is instantiated for each inferred input signature. If input_signature is specified, every input to f must be a tensor.
autograph	TRUE or FALSE. If TRUE (the default), you can use tensors in R control flow expressions if, while, for and break and they will be traced into the tensorflow graph. A guide to getting started and additional details can be found: here
	additional arguments passed on to tf.function (vary based on Tensorflow version). See here for details.

Details

A guide to getting started with tf. function can be found here.

tf_probability TensorFlow Probability Module

Description

TensorFlow Probability Module

Usage

```
tf_probability()
```

Value

Reference to TensorFlow Probability functions and classes

Examples

```
## Not run:
library(tensorflow)
## one time setup:
# reticulate::py_install("tensorflow_probability")
tfp <- tf_probability()
tfp$distributions$Normal(loc = 0, scale = 1)
```

End(Not run)

use_compat

Description

Enables TensorFlow to run under a different API version for compatibility with previous versions. For instance, this is useful to run TensorFlow 1.x code when using TensorFlow 2.x.

Usage

use_compat(version = c("v1", "v2"))

Arguments

version The version to activate. Must be "v1" or "v2"

Examples

```
## Not run:
library(tensorflow)
use_compat("v1")
```

End(Not run)

use_session_with_seed Use a session with a random seed

Description

Set various random seeds required to ensure reproducible results. The provided seed value will establish a new random seed for R, Python, NumPy, and TensorFlow. GPU computations and CPU parallelism will also be disabled by default.

Usage

```
use_session_with_seed(
   seed,
   disable_gpu = TRUE,
   disable_parallel_cpu = TRUE,
   quiet = FALSE
)
```

Arguments

seed	A single value, interpreted as an integer
disable_gpu	TRUE to disable GPU execution (see <i>Parallelism</i> below).
disable_parallel_cpu	
	TRUE to disable CPU parallelism (see <i>Parallelism</i> below).
quiet	TRUE to suppress printing of messages.

Details

This function must be called at the very top of your script (i.e. immediately after library(tensorflow), library(keras), etc.). Any existing TensorFlow session is torn down via tf\$reset_default_graph().

This function takes all measures known to promote reproducible results from TensorFlow sessions, however it's possible that various individual TensorFlow features or dependent libraries escape its effects. If you encounter non-reproducible results please investigate the possible sources of the problem, contributions via pull request are very welcome!

Packages which need to be notified before and after the seed is set can register for the "tensor-flow.on_before_use_session" and "tensorflow.on_use_session" hooks (see setHook()) for additional details on hooks).

Value

TensorFlow session object, invisibly

Parallelism

By default the use_session_with_seed() function disables GPU and CPU parallelism, since both can result in non-deterministic execution patterns (see https://stackoverflow.com/questions/42022950/). You can optionally enable GPU or CPU parallelism by setting the disable_gpu and/or disable_parallel_cpu parameters to FALSE.

Examples

```
## Not run:
library(tensorflow)
use_session_with_seed(42)
```

End(Not run)

view_savedmodel View a Saved Model

Description

View a serialized model from disk.

[.tensorflow.tensor

Usage

view_savedmodel(model_dir)

Arguments

model_dir The path to the exported model, as a string.

Value

URL for browsing TensorBoard (invisibly).

[.tensorflow.tensor Subset tensors with [

Description

Subset tensors with [

Usage

```
## S3 method for class 'tensorflow.tensor'
x[
...,
drop = TRUE,
style = getOption("tensorflow.extract.style"),
options = tf_extract_opts(style)
]
```

Arguments

Tensorflow tensor
slicing specs. See examples and details.
whether to drop scalar dimensions
One of "python" or "R".
An object returned by tf_extract_opts()

Examples

Not run:

```
x <- as_tensor(array(1:15, dim = c(3, 5)))
x
# by default, numerics supplied to [...] are interpreted R style
x[,1] # first column
x[1:2,] # first two rows
x[,1, drop = FALSE] # 1 column matrix</pre>
```

```
# strided steps can be specified in R syntax or python syntax
x[, seq(1, 5, by = 2)]
x[, 1:5:2]
# if you are unfamiliar with python-style strided steps, see:
# https://numpy.org/doc/stable/reference/arrays.indexing.html#basic-slicing-and-indexing
# missing arguments for python syntax are valid, but they must by backticked
# or supplied as NULL
x[, `::2`]
x[, NULL:NULL:2]
x[, `2:`]
# all_dims() expands to the shape of the tensor
# (equivalent to a python ellipsis `...`)
# (not to be confused with R dots `...`)
y <- as_tensor(array(1:(3^5), dim = c(3,3,3,3,3)))</pre>
all.equal(y[all_dims(), 1],
         y[, , , , 1])
# tf$newaxis are valid (equivalent to a NULL)
x[,, tf$newaxis]
x[,, NULL]
# negative numbers are always interpreted python style
# The first time a negative number is supplied to `[`, a warning is issued
# about the non-standard behavior.
x[-1,] # last row, with a warning
x[-1,] # the warning is only issued once
# specifying `style = 'python'` changes the following:
# + zero-based indexing is used
# + slice sequences in the form of `start:stop` do not include `stop`
     in the returned value
#
# + out-of-bounds indices in a slice are valid
# The style argument can be supplied to individual calls of `[` or set
# as a global option
# example of zero based indexing
x[0, , style = 'python'] # first row
x[1, , style = 'python'] # second row
# example of slices with exclusive stop
options(tensorflow.extract.style = 'python')
x[, 0:1] # just the first column
x[, 0:2] # first and second column
# example of out-of-bounds index
x[, 0:10]
options(tensorflow.extract.style = NULL)
```

20

[.tensorflow.tensor

slicing with tensors is valid too, but note, tensors are never # translated and are always interpreted python-style. # A warning is issued the first time a tensor is passed to `[` x[, tf\$constant(0L):tf\$constant(2L)] # just as in python, only scalar tensors are valid # https://www.tensorflow.org/api_docs/python/tf/Tensor#__getitem__ # To silence the warnings about tensors being passed as-is and negative numbers # being interpreted python-style, set options(tensorflow.extract.style = 'R') # clean up from examples

clean up from examples
options(tensorflow.extract.style = NULL)

End(Not run)

Index

* datasets tf, 14 [.tensorflow.tensor, 19 all_dims, 2 as_tensor, 3 conda_binary(), 5 evaluate, 4 install_tensorflow, 4 keras3,4 keras3::install_keras(), 4, 7 parse_arguments, 7 parse_flags, 7 reticulate::conda_install(), 5 reticulate::install_miniconda(), 6 reticulate::py_install(), 7 reticulate::py_set_seed(),9 reticulate::virtualenv_install(), 5 set.seed(), 9 set_random_seed, 8 setHook(), 18 shape, 9 tensorboard, 11 tensorflow, 13 tensorflow-package(tensorflow), 13 tf, 14 tf_extract_opts, 14 tf_function, 15 tf_probability, 16 use_compat, 17 use_session_with_seed, 17 use_session_with_seed(), 9

utils::browseURL(), 12
view_savedmodel, 18
yaml.load(), 7